MINI2440: Updated pin names/numbers
[sniper_test.git] / gdbstub.c
blob8876c1d9a04fb4c9d2654920cd760a2c10fea6d9
1 /*
2 * gdb server stub
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include "config.h"
21 #include "qemu-common.h"
22 #ifdef CONFIG_USER_ONLY
23 #include <stdlib.h>
24 #include <stdio.h>
25 #include <stdarg.h>
26 #include <string.h>
27 #include <errno.h>
28 #include <unistd.h>
29 #include <fcntl.h>
31 #include "qemu.h"
32 #else
33 #include "monitor.h"
34 #include "qemu-char.h"
35 #include "sysemu.h"
36 #include "gdbstub.h"
37 #endif
39 #define MAX_PACKET_LENGTH 4096
41 #include "qemu_socket.h"
42 #include "kvm.h"
45 enum {
46 GDB_SIGNAL_0 = 0,
47 GDB_SIGNAL_INT = 2,
48 GDB_SIGNAL_TRAP = 5,
49 GDB_SIGNAL_UNKNOWN = 143
52 #ifdef CONFIG_USER_ONLY
54 /* Map target signal numbers to GDB protocol signal numbers and vice
55 * versa. For user emulation's currently supported systems, we can
56 * assume most signals are defined.
59 static int gdb_signal_table[] = {
61 TARGET_SIGHUP,
62 TARGET_SIGINT,
63 TARGET_SIGQUIT,
64 TARGET_SIGILL,
65 TARGET_SIGTRAP,
66 TARGET_SIGABRT,
67 -1, /* SIGEMT */
68 TARGET_SIGFPE,
69 TARGET_SIGKILL,
70 TARGET_SIGBUS,
71 TARGET_SIGSEGV,
72 TARGET_SIGSYS,
73 TARGET_SIGPIPE,
74 TARGET_SIGALRM,
75 TARGET_SIGTERM,
76 TARGET_SIGURG,
77 TARGET_SIGSTOP,
78 TARGET_SIGTSTP,
79 TARGET_SIGCONT,
80 TARGET_SIGCHLD,
81 TARGET_SIGTTIN,
82 TARGET_SIGTTOU,
83 TARGET_SIGIO,
84 TARGET_SIGXCPU,
85 TARGET_SIGXFSZ,
86 TARGET_SIGVTALRM,
87 TARGET_SIGPROF,
88 TARGET_SIGWINCH,
89 -1, /* SIGLOST */
90 TARGET_SIGUSR1,
91 TARGET_SIGUSR2,
92 #ifdef TARGET_SIGPWR
93 TARGET_SIGPWR,
94 #else
95 -1,
96 #endif
97 -1, /* SIGPOLL */
98 -1,
99 -1,
109 #ifdef __SIGRTMIN
110 __SIGRTMIN + 1,
111 __SIGRTMIN + 2,
112 __SIGRTMIN + 3,
113 __SIGRTMIN + 4,
114 __SIGRTMIN + 5,
115 __SIGRTMIN + 6,
116 __SIGRTMIN + 7,
117 __SIGRTMIN + 8,
118 __SIGRTMIN + 9,
119 __SIGRTMIN + 10,
120 __SIGRTMIN + 11,
121 __SIGRTMIN + 12,
122 __SIGRTMIN + 13,
123 __SIGRTMIN + 14,
124 __SIGRTMIN + 15,
125 __SIGRTMIN + 16,
126 __SIGRTMIN + 17,
127 __SIGRTMIN + 18,
128 __SIGRTMIN + 19,
129 __SIGRTMIN + 20,
130 __SIGRTMIN + 21,
131 __SIGRTMIN + 22,
132 __SIGRTMIN + 23,
133 __SIGRTMIN + 24,
134 __SIGRTMIN + 25,
135 __SIGRTMIN + 26,
136 __SIGRTMIN + 27,
137 __SIGRTMIN + 28,
138 __SIGRTMIN + 29,
139 __SIGRTMIN + 30,
140 __SIGRTMIN + 31,
141 -1, /* SIGCANCEL */
142 __SIGRTMIN,
143 __SIGRTMIN + 32,
144 __SIGRTMIN + 33,
145 __SIGRTMIN + 34,
146 __SIGRTMIN + 35,
147 __SIGRTMIN + 36,
148 __SIGRTMIN + 37,
149 __SIGRTMIN + 38,
150 __SIGRTMIN + 39,
151 __SIGRTMIN + 40,
152 __SIGRTMIN + 41,
153 __SIGRTMIN + 42,
154 __SIGRTMIN + 43,
155 __SIGRTMIN + 44,
156 __SIGRTMIN + 45,
157 __SIGRTMIN + 46,
158 __SIGRTMIN + 47,
159 __SIGRTMIN + 48,
160 __SIGRTMIN + 49,
161 __SIGRTMIN + 50,
162 __SIGRTMIN + 51,
163 __SIGRTMIN + 52,
164 __SIGRTMIN + 53,
165 __SIGRTMIN + 54,
166 __SIGRTMIN + 55,
167 __SIGRTMIN + 56,
168 __SIGRTMIN + 57,
169 __SIGRTMIN + 58,
170 __SIGRTMIN + 59,
171 __SIGRTMIN + 60,
172 __SIGRTMIN + 61,
173 __SIGRTMIN + 62,
174 __SIGRTMIN + 63,
175 __SIGRTMIN + 64,
176 __SIGRTMIN + 65,
177 __SIGRTMIN + 66,
178 __SIGRTMIN + 67,
179 __SIGRTMIN + 68,
180 __SIGRTMIN + 69,
181 __SIGRTMIN + 70,
182 __SIGRTMIN + 71,
183 __SIGRTMIN + 72,
184 __SIGRTMIN + 73,
185 __SIGRTMIN + 74,
186 __SIGRTMIN + 75,
187 __SIGRTMIN + 76,
188 __SIGRTMIN + 77,
189 __SIGRTMIN + 78,
190 __SIGRTMIN + 79,
191 __SIGRTMIN + 80,
192 __SIGRTMIN + 81,
193 __SIGRTMIN + 82,
194 __SIGRTMIN + 83,
195 __SIGRTMIN + 84,
196 __SIGRTMIN + 85,
197 __SIGRTMIN + 86,
198 __SIGRTMIN + 87,
199 __SIGRTMIN + 88,
200 __SIGRTMIN + 89,
201 __SIGRTMIN + 90,
202 __SIGRTMIN + 91,
203 __SIGRTMIN + 92,
204 __SIGRTMIN + 93,
205 __SIGRTMIN + 94,
206 __SIGRTMIN + 95,
207 -1, /* SIGINFO */
208 -1, /* UNKNOWN */
209 -1, /* DEFAULT */
216 #endif
218 #else
219 /* In system mode we only need SIGINT and SIGTRAP; other signals
220 are not yet supported. */
222 enum {
223 TARGET_SIGINT = 2,
224 TARGET_SIGTRAP = 5
227 static int gdb_signal_table[] = {
230 TARGET_SIGINT,
233 TARGET_SIGTRAP
235 #endif
237 #ifdef CONFIG_USER_ONLY
238 static int target_signal_to_gdb (int sig)
240 int i;
241 for (i = 0; i < ARRAY_SIZE (gdb_signal_table); i++)
242 if (gdb_signal_table[i] == sig)
243 return i;
244 return GDB_SIGNAL_UNKNOWN;
246 #endif
248 static int gdb_signal_to_target (int sig)
250 if (sig < ARRAY_SIZE (gdb_signal_table))
251 return gdb_signal_table[sig];
252 else
253 return -1;
256 //#define DEBUG_GDB
258 typedef struct GDBRegisterState {
259 int base_reg;
260 int num_regs;
261 gdb_reg_cb get_reg;
262 gdb_reg_cb set_reg;
263 const char *xml;
264 struct GDBRegisterState *next;
265 } GDBRegisterState;
267 enum RSState {
268 RS_IDLE,
269 RS_GETLINE,
270 RS_CHKSUM1,
271 RS_CHKSUM2,
272 RS_SYSCALL,
274 typedef struct GDBState {
275 CPUState *c_cpu; /* current CPU for step/continue ops */
276 CPUState *g_cpu; /* current CPU for other ops */
277 CPUState *query_cpu; /* for q{f|s}ThreadInfo */
278 enum RSState state; /* parsing state */
279 char line_buf[MAX_PACKET_LENGTH];
280 int line_buf_index;
281 int line_csum;
282 uint8_t last_packet[MAX_PACKET_LENGTH + 4];
283 int last_packet_len;
284 int signal;
285 #ifdef CONFIG_USER_ONLY
286 int fd;
287 int running_state;
288 #else
289 CharDriverState *chr;
290 CharDriverState *mon_chr;
291 #endif
292 } GDBState;
294 /* By default use no IRQs and no timers while single stepping so as to
295 * make single stepping like an ICE HW step.
297 static int sstep_flags = SSTEP_ENABLE|SSTEP_NOIRQ|SSTEP_NOTIMER;
299 static GDBState *gdbserver_state;
301 /* This is an ugly hack to cope with both new and old gdb.
302 If gdb sends qXfer:features:read then assume we're talking to a newish
303 gdb that understands target descriptions. */
304 static int gdb_has_xml;
306 #ifdef CONFIG_USER_ONLY
307 /* XXX: This is not thread safe. Do we care? */
308 static int gdbserver_fd = -1;
310 static int get_char(GDBState *s)
312 uint8_t ch;
313 int ret;
315 for(;;) {
316 ret = recv(s->fd, &ch, 1, 0);
317 if (ret < 0) {
318 if (errno == ECONNRESET)
319 s->fd = -1;
320 if (errno != EINTR && errno != EAGAIN)
321 return -1;
322 } else if (ret == 0) {
323 close(s->fd);
324 s->fd = -1;
325 return -1;
326 } else {
327 break;
330 return ch;
332 #endif
334 static gdb_syscall_complete_cb gdb_current_syscall_cb;
336 enum {
337 GDB_SYS_UNKNOWN,
338 GDB_SYS_ENABLED,
339 GDB_SYS_DISABLED,
340 } gdb_syscall_mode;
342 /* If gdb is connected when the first semihosting syscall occurs then use
343 remote gdb syscalls. Otherwise use native file IO. */
344 int use_gdb_syscalls(void)
346 if (gdb_syscall_mode == GDB_SYS_UNKNOWN) {
347 gdb_syscall_mode = (gdbserver_state ? GDB_SYS_ENABLED
348 : GDB_SYS_DISABLED);
350 return gdb_syscall_mode == GDB_SYS_ENABLED;
353 /* Resume execution. */
354 static inline void gdb_continue(GDBState *s)
356 #ifdef CONFIG_USER_ONLY
357 s->running_state = 1;
358 #else
359 vm_start();
360 #endif
363 static void put_buffer(GDBState *s, const uint8_t *buf, int len)
365 #ifdef CONFIG_USER_ONLY
366 int ret;
368 while (len > 0) {
369 ret = send(s->fd, buf, len, 0);
370 if (ret < 0) {
371 if (errno != EINTR && errno != EAGAIN)
372 return;
373 } else {
374 buf += ret;
375 len -= ret;
378 #else
379 qemu_chr_write(s->chr, buf, len);
380 #endif
383 static inline int fromhex(int v)
385 if (v >= '0' && v <= '9')
386 return v - '0';
387 else if (v >= 'A' && v <= 'F')
388 return v - 'A' + 10;
389 else if (v >= 'a' && v <= 'f')
390 return v - 'a' + 10;
391 else
392 return 0;
395 static inline int tohex(int v)
397 if (v < 10)
398 return v + '0';
399 else
400 return v - 10 + 'a';
403 static void memtohex(char *buf, const uint8_t *mem, int len)
405 int i, c;
406 char *q;
407 q = buf;
408 for(i = 0; i < len; i++) {
409 c = mem[i];
410 *q++ = tohex(c >> 4);
411 *q++ = tohex(c & 0xf);
413 *q = '\0';
416 static void hextomem(uint8_t *mem, const char *buf, int len)
418 int i;
420 for(i = 0; i < len; i++) {
421 mem[i] = (fromhex(buf[0]) << 4) | fromhex(buf[1]);
422 buf += 2;
426 /* return -1 if error, 0 if OK */
427 static int put_packet_binary(GDBState *s, const char *buf, int len)
429 int csum, i;
430 uint8_t *p;
432 for(;;) {
433 p = s->last_packet;
434 *(p++) = '$';
435 memcpy(p, buf, len);
436 p += len;
437 csum = 0;
438 for(i = 0; i < len; i++) {
439 csum += buf[i];
441 *(p++) = '#';
442 *(p++) = tohex((csum >> 4) & 0xf);
443 *(p++) = tohex((csum) & 0xf);
445 s->last_packet_len = p - s->last_packet;
446 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
448 #ifdef CONFIG_USER_ONLY
449 i = get_char(s);
450 if (i < 0)
451 return -1;
452 if (i == '+')
453 break;
454 #else
455 break;
456 #endif
458 return 0;
461 /* return -1 if error, 0 if OK */
462 static int put_packet(GDBState *s, const char *buf)
464 #ifdef DEBUG_GDB
465 printf("reply='%s'\n", buf);
466 #endif
468 return put_packet_binary(s, buf, strlen(buf));
471 /* The GDB remote protocol transfers values in target byte order. This means
472 we can use the raw memory access routines to access the value buffer.
473 Conveniently, these also handle the case where the buffer is mis-aligned.
475 #define GET_REG8(val) do { \
476 stb_p(mem_buf, val); \
477 return 1; \
478 } while(0)
479 #define GET_REG16(val) do { \
480 stw_p(mem_buf, val); \
481 return 2; \
482 } while(0)
483 #define GET_REG32(val) do { \
484 stl_p(mem_buf, val); \
485 return 4; \
486 } while(0)
487 #define GET_REG64(val) do { \
488 stq_p(mem_buf, val); \
489 return 8; \
490 } while(0)
492 #if TARGET_LONG_BITS == 64
493 #define GET_REGL(val) GET_REG64(val)
494 #define ldtul_p(addr) ldq_p(addr)
495 #else
496 #define GET_REGL(val) GET_REG32(val)
497 #define ldtul_p(addr) ldl_p(addr)
498 #endif
500 #if defined(TARGET_I386)
502 #ifdef TARGET_X86_64
503 static const int gpr_map[16] = {
504 R_EAX, R_EBX, R_ECX, R_EDX, R_ESI, R_EDI, R_EBP, R_ESP,
505 8, 9, 10, 11, 12, 13, 14, 15
507 #else
508 static const int gpr_map[8] = {0, 1, 2, 3, 4, 5, 6, 7};
509 #endif
511 #define NUM_CORE_REGS (CPU_NB_REGS * 2 + 25)
513 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
515 if (n < CPU_NB_REGS) {
516 GET_REGL(env->regs[gpr_map[n]]);
517 } else if (n >= CPU_NB_REGS + 8 && n < CPU_NB_REGS + 16) {
518 /* FIXME: byteswap float values. */
519 #ifdef USE_X86LDOUBLE
520 memcpy(mem_buf, &env->fpregs[n - (CPU_NB_REGS + 8)], 10);
521 #else
522 memset(mem_buf, 0, 10);
523 #endif
524 return 10;
525 } else if (n >= CPU_NB_REGS + 24) {
526 n -= CPU_NB_REGS + 24;
527 if (n < CPU_NB_REGS) {
528 stq_p(mem_buf, env->xmm_regs[n].XMM_Q(0));
529 stq_p(mem_buf + 8, env->xmm_regs[n].XMM_Q(1));
530 return 16;
531 } else if (n == CPU_NB_REGS) {
532 GET_REG32(env->mxcsr);
534 } else {
535 n -= CPU_NB_REGS;
536 switch (n) {
537 case 0: GET_REGL(env->eip);
538 case 1: GET_REG32(env->eflags);
539 case 2: GET_REG32(env->segs[R_CS].selector);
540 case 3: GET_REG32(env->segs[R_SS].selector);
541 case 4: GET_REG32(env->segs[R_DS].selector);
542 case 5: GET_REG32(env->segs[R_ES].selector);
543 case 6: GET_REG32(env->segs[R_FS].selector);
544 case 7: GET_REG32(env->segs[R_GS].selector);
545 /* 8...15 x87 regs. */
546 case 16: GET_REG32(env->fpuc);
547 case 17: GET_REG32((env->fpus & ~0x3800) | (env->fpstt & 0x7) << 11);
548 case 18: GET_REG32(0); /* ftag */
549 case 19: GET_REG32(0); /* fiseg */
550 case 20: GET_REG32(0); /* fioff */
551 case 21: GET_REG32(0); /* foseg */
552 case 22: GET_REG32(0); /* fooff */
553 case 23: GET_REG32(0); /* fop */
554 /* 24+ xmm regs. */
557 return 0;
560 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int i)
562 uint32_t tmp;
564 if (i < CPU_NB_REGS) {
565 env->regs[gpr_map[i]] = ldtul_p(mem_buf);
566 return sizeof(target_ulong);
567 } else if (i >= CPU_NB_REGS + 8 && i < CPU_NB_REGS + 16) {
568 i -= CPU_NB_REGS + 8;
569 #ifdef USE_X86LDOUBLE
570 memcpy(&env->fpregs[i], mem_buf, 10);
571 #endif
572 return 10;
573 } else if (i >= CPU_NB_REGS + 24) {
574 i -= CPU_NB_REGS + 24;
575 if (i < CPU_NB_REGS) {
576 env->xmm_regs[i].XMM_Q(0) = ldq_p(mem_buf);
577 env->xmm_regs[i].XMM_Q(1) = ldq_p(mem_buf + 8);
578 return 16;
579 } else if (i == CPU_NB_REGS) {
580 env->mxcsr = ldl_p(mem_buf);
581 return 4;
583 } else {
584 i -= CPU_NB_REGS;
585 switch (i) {
586 case 0: env->eip = ldtul_p(mem_buf); return sizeof(target_ulong);
587 case 1: env->eflags = ldl_p(mem_buf); return 4;
588 #if defined(CONFIG_USER_ONLY)
589 #define LOAD_SEG(index, sreg)\
590 tmp = ldl_p(mem_buf);\
591 if (tmp != env->segs[sreg].selector)\
592 cpu_x86_load_seg(env, sreg, tmp);
593 #else
594 /* FIXME: Honor segment registers. Needs to avoid raising an exception
595 when the selector is invalid. */
596 #define LOAD_SEG(index, sreg) do {} while(0)
597 #endif
598 case 2: LOAD_SEG(10, R_CS); return 4;
599 case 3: LOAD_SEG(11, R_SS); return 4;
600 case 4: LOAD_SEG(12, R_DS); return 4;
601 case 5: LOAD_SEG(13, R_ES); return 4;
602 case 6: LOAD_SEG(14, R_FS); return 4;
603 case 7: LOAD_SEG(15, R_GS); return 4;
604 /* 8...15 x87 regs. */
605 case 16: env->fpuc = ldl_p(mem_buf); return 4;
606 case 17:
607 tmp = ldl_p(mem_buf);
608 env->fpstt = (tmp >> 11) & 7;
609 env->fpus = tmp & ~0x3800;
610 return 4;
611 case 18: /* ftag */ return 4;
612 case 19: /* fiseg */ return 4;
613 case 20: /* fioff */ return 4;
614 case 21: /* foseg */ return 4;
615 case 22: /* fooff */ return 4;
616 case 23: /* fop */ return 4;
617 /* 24+ xmm regs. */
620 /* Unrecognised register. */
621 return 0;
624 #elif defined (TARGET_PPC)
626 /* Old gdb always expects FP registers. Newer (xml-aware) gdb only
627 expects whatever the target description contains. Due to a
628 historical mishap the FP registers appear in between core integer
629 regs and PC, MSR, CR, and so forth. We hack round this by giving the
630 FP regs zero size when talking to a newer gdb. */
631 #define NUM_CORE_REGS 71
632 #if defined (TARGET_PPC64)
633 #define GDB_CORE_XML "power64-core.xml"
634 #else
635 #define GDB_CORE_XML "power-core.xml"
636 #endif
638 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
640 if (n < 32) {
641 /* gprs */
642 GET_REGL(env->gpr[n]);
643 } else if (n < 64) {
644 /* fprs */
645 if (gdb_has_xml)
646 return 0;
647 stfq_p(mem_buf, env->fpr[n-32]);
648 return 8;
649 } else {
650 switch (n) {
651 case 64: GET_REGL(env->nip);
652 case 65: GET_REGL(env->msr);
653 case 66:
655 uint32_t cr = 0;
656 int i;
657 for (i = 0; i < 8; i++)
658 cr |= env->crf[i] << (32 - ((i + 1) * 4));
659 GET_REG32(cr);
661 case 67: GET_REGL(env->lr);
662 case 68: GET_REGL(env->ctr);
663 case 69: GET_REGL(env->xer);
664 case 70:
666 if (gdb_has_xml)
667 return 0;
668 GET_REG32(0); /* fpscr */
672 return 0;
675 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
677 if (n < 32) {
678 /* gprs */
679 env->gpr[n] = ldtul_p(mem_buf);
680 return sizeof(target_ulong);
681 } else if (n < 64) {
682 /* fprs */
683 if (gdb_has_xml)
684 return 0;
685 env->fpr[n-32] = ldfq_p(mem_buf);
686 return 8;
687 } else {
688 switch (n) {
689 case 64:
690 env->nip = ldtul_p(mem_buf);
691 return sizeof(target_ulong);
692 case 65:
693 ppc_store_msr(env, ldtul_p(mem_buf));
694 return sizeof(target_ulong);
695 case 66:
697 uint32_t cr = ldl_p(mem_buf);
698 int i;
699 for (i = 0; i < 8; i++)
700 env->crf[i] = (cr >> (32 - ((i + 1) * 4))) & 0xF;
701 return 4;
703 case 67:
704 env->lr = ldtul_p(mem_buf);
705 return sizeof(target_ulong);
706 case 68:
707 env->ctr = ldtul_p(mem_buf);
708 return sizeof(target_ulong);
709 case 69:
710 env->xer = ldtul_p(mem_buf);
711 return sizeof(target_ulong);
712 case 70:
713 /* fpscr */
714 if (gdb_has_xml)
715 return 0;
716 return 4;
719 return 0;
722 #elif defined (TARGET_SPARC)
724 #if defined(TARGET_SPARC64) && !defined(TARGET_ABI32)
725 #define NUM_CORE_REGS 86
726 #else
727 #define NUM_CORE_REGS 72
728 #endif
730 #ifdef TARGET_ABI32
731 #define GET_REGA(val) GET_REG32(val)
732 #else
733 #define GET_REGA(val) GET_REGL(val)
734 #endif
736 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
738 if (n < 8) {
739 /* g0..g7 */
740 GET_REGA(env->gregs[n]);
742 if (n < 32) {
743 /* register window */
744 GET_REGA(env->regwptr[n - 8]);
746 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
747 if (n < 64) {
748 /* fprs */
749 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
751 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
752 switch (n) {
753 case 64: GET_REGA(env->y);
754 case 65: GET_REGA(GET_PSR(env));
755 case 66: GET_REGA(env->wim);
756 case 67: GET_REGA(env->tbr);
757 case 68: GET_REGA(env->pc);
758 case 69: GET_REGA(env->npc);
759 case 70: GET_REGA(env->fsr);
760 case 71: GET_REGA(0); /* csr */
761 default: GET_REGA(0);
763 #else
764 if (n < 64) {
765 /* f0-f31 */
766 GET_REG32(*((uint32_t *)&env->fpr[n - 32]));
768 if (n < 80) {
769 /* f32-f62 (double width, even numbers only) */
770 uint64_t val;
772 val = (uint64_t)*((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) << 32;
773 val |= *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]);
774 GET_REG64(val);
776 switch (n) {
777 case 80: GET_REGL(env->pc);
778 case 81: GET_REGL(env->npc);
779 case 82: GET_REGL(((uint64_t)GET_CCR(env) << 32) |
780 ((env->asi & 0xff) << 24) |
781 ((env->pstate & 0xfff) << 8) |
782 GET_CWP64(env));
783 case 83: GET_REGL(env->fsr);
784 case 84: GET_REGL(env->fprs);
785 case 85: GET_REGL(env->y);
787 #endif
788 return 0;
791 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
793 #if defined(TARGET_ABI32)
794 abi_ulong tmp;
796 tmp = ldl_p(mem_buf);
797 #else
798 target_ulong tmp;
800 tmp = ldtul_p(mem_buf);
801 #endif
803 if (n < 8) {
804 /* g0..g7 */
805 env->gregs[n] = tmp;
806 } else if (n < 32) {
807 /* register window */
808 env->regwptr[n - 8] = tmp;
810 #if defined(TARGET_ABI32) || !defined(TARGET_SPARC64)
811 else if (n < 64) {
812 /* fprs */
813 *((uint32_t *)&env->fpr[n - 32]) = tmp;
814 } else {
815 /* Y, PSR, WIM, TBR, PC, NPC, FPSR, CPSR */
816 switch (n) {
817 case 64: env->y = tmp; break;
818 case 65: PUT_PSR(env, tmp); break;
819 case 66: env->wim = tmp; break;
820 case 67: env->tbr = tmp; break;
821 case 68: env->pc = tmp; break;
822 case 69: env->npc = tmp; break;
823 case 70: env->fsr = tmp; break;
824 default: return 0;
827 return 4;
828 #else
829 else if (n < 64) {
830 /* f0-f31 */
831 env->fpr[n] = ldfl_p(mem_buf);
832 return 4;
833 } else if (n < 80) {
834 /* f32-f62 (double width, even numbers only) */
835 *((uint32_t *)&env->fpr[(n - 64) * 2 + 32]) = tmp >> 32;
836 *((uint32_t *)&env->fpr[(n - 64) * 2 + 33]) = tmp;
837 } else {
838 switch (n) {
839 case 80: env->pc = tmp; break;
840 case 81: env->npc = tmp; break;
841 case 82:
842 PUT_CCR(env, tmp >> 32);
843 env->asi = (tmp >> 24) & 0xff;
844 env->pstate = (tmp >> 8) & 0xfff;
845 PUT_CWP64(env, tmp & 0xff);
846 break;
847 case 83: env->fsr = tmp; break;
848 case 84: env->fprs = tmp; break;
849 case 85: env->y = tmp; break;
850 default: return 0;
853 return 8;
854 #endif
856 #elif defined (TARGET_ARM)
858 /* Old gdb always expect FPA registers. Newer (xml-aware) gdb only expect
859 whatever the target description contains. Due to a historical mishap
860 the FPA registers appear in between core integer regs and the CPSR.
861 We hack round this by giving the FPA regs zero size when talking to a
862 newer gdb. */
863 #define NUM_CORE_REGS 26
864 #define GDB_CORE_XML "arm-core.xml"
866 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
868 if (n < 16) {
869 /* Core integer register. */
870 GET_REG32(env->regs[n]);
872 if (n < 24) {
873 /* FPA registers. */
874 if (gdb_has_xml)
875 return 0;
876 memset(mem_buf, 0, 12);
877 return 12;
879 switch (n) {
880 case 24:
881 /* FPA status register. */
882 if (gdb_has_xml)
883 return 0;
884 GET_REG32(0);
885 case 25:
886 /* CPSR */
887 GET_REG32(cpsr_read(env));
889 /* Unknown register. */
890 return 0;
893 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
895 uint32_t tmp;
897 tmp = ldl_p(mem_buf);
899 /* Mask out low bit of PC to workaround gdb bugs. This will probably
900 cause problems if we ever implement the Jazelle DBX extensions. */
901 if (n == 15)
902 tmp &= ~1;
904 if (n < 16) {
905 /* Core integer register. */
906 env->regs[n] = tmp;
907 return 4;
909 if (n < 24) { /* 16-23 */
910 /* FPA registers (ignored). */
911 if (gdb_has_xml)
912 return 0;
913 return 12;
915 switch (n) {
916 case 24:
917 /* FPA status register (ignored). */
918 if (gdb_has_xml)
919 return 0;
920 return 4;
921 case 25:
922 /* CPSR */
923 cpsr_write (env, tmp, 0xffffffff);
924 return 4;
926 /* Unknown register. */
927 return 0;
930 #elif defined (TARGET_M68K)
932 #define NUM_CORE_REGS 18
934 #define GDB_CORE_XML "cf-core.xml"
936 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
938 if (n < 8) {
939 /* D0-D7 */
940 GET_REG32(env->dregs[n]);
941 } else if (n < 16) {
942 /* A0-A7 */
943 GET_REG32(env->aregs[n - 8]);
944 } else {
945 switch (n) {
946 case 16: GET_REG32(env->sr);
947 case 17: GET_REG32(env->pc);
950 /* FP registers not included here because they vary between
951 ColdFire and m68k. Use XML bits for these. */
952 return 0;
955 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
957 uint32_t tmp;
959 tmp = ldl_p(mem_buf);
961 if (n < 8) {
962 /* D0-D7 */
963 env->dregs[n] = tmp;
964 } else if (n < 8) {
965 /* A0-A7 */
966 env->aregs[n - 8] = tmp;
967 } else {
968 switch (n) {
969 case 16: env->sr = tmp; break;
970 case 17: env->pc = tmp; break;
971 default: return 0;
974 return 4;
976 #elif defined (TARGET_MIPS)
978 #define NUM_CORE_REGS 73
980 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
982 if (n < 32) {
983 GET_REGL(env->active_tc.gpr[n]);
985 if (env->CP0_Config1 & (1 << CP0C1_FP)) {
986 if (n >= 38 && n < 70) {
987 if (env->CP0_Status & (1 << CP0St_FR))
988 GET_REGL(env->active_fpu.fpr[n - 38].d);
989 else
990 GET_REGL(env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX]);
992 switch (n) {
993 case 70: GET_REGL((int32_t)env->active_fpu.fcr31);
994 case 71: GET_REGL((int32_t)env->active_fpu.fcr0);
997 switch (n) {
998 case 32: GET_REGL((int32_t)env->CP0_Status);
999 case 33: GET_REGL(env->active_tc.LO[0]);
1000 case 34: GET_REGL(env->active_tc.HI[0]);
1001 case 35: GET_REGL(env->CP0_BadVAddr);
1002 case 36: GET_REGL((int32_t)env->CP0_Cause);
1003 case 37: GET_REGL(env->active_tc.PC);
1004 case 72: GET_REGL(0); /* fp */
1005 case 89: GET_REGL((int32_t)env->CP0_PRid);
1007 if (n >= 73 && n <= 88) {
1008 /* 16 embedded regs. */
1009 GET_REGL(0);
1012 return 0;
1015 /* convert MIPS rounding mode in FCR31 to IEEE library */
1016 static unsigned int ieee_rm[] =
1018 float_round_nearest_even,
1019 float_round_to_zero,
1020 float_round_up,
1021 float_round_down
1023 #define RESTORE_ROUNDING_MODE \
1024 set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
1026 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1028 target_ulong tmp;
1030 tmp = ldtul_p(mem_buf);
1032 if (n < 32) {
1033 env->active_tc.gpr[n] = tmp;
1034 return sizeof(target_ulong);
1036 if (env->CP0_Config1 & (1 << CP0C1_FP)
1037 && n >= 38 && n < 73) {
1038 if (n < 70) {
1039 if (env->CP0_Status & (1 << CP0St_FR))
1040 env->active_fpu.fpr[n - 38].d = tmp;
1041 else
1042 env->active_fpu.fpr[n - 38].w[FP_ENDIAN_IDX] = tmp;
1044 switch (n) {
1045 case 70:
1046 env->active_fpu.fcr31 = tmp & 0xFF83FFFF;
1047 /* set rounding mode */
1048 RESTORE_ROUNDING_MODE;
1049 #ifndef CONFIG_SOFTFLOAT
1050 /* no floating point exception for native float */
1051 SET_FP_ENABLE(env->active_fpu.fcr31, 0);
1052 #endif
1053 break;
1054 case 71: env->active_fpu.fcr0 = tmp; break;
1056 return sizeof(target_ulong);
1058 switch (n) {
1059 case 32: env->CP0_Status = tmp; break;
1060 case 33: env->active_tc.LO[0] = tmp; break;
1061 case 34: env->active_tc.HI[0] = tmp; break;
1062 case 35: env->CP0_BadVAddr = tmp; break;
1063 case 36: env->CP0_Cause = tmp; break;
1064 case 37: env->active_tc.PC = tmp; break;
1065 case 72: /* fp, ignored */ break;
1066 default:
1067 if (n > 89)
1068 return 0;
1069 /* Other registers are readonly. Ignore writes. */
1070 break;
1073 return sizeof(target_ulong);
1075 #elif defined (TARGET_SH4)
1077 /* Hint: Use "set architecture sh4" in GDB to see fpu registers */
1078 /* FIXME: We should use XML for this. */
1080 #define NUM_CORE_REGS 59
1082 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1084 if (n < 8) {
1085 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1086 GET_REGL(env->gregs[n + 16]);
1087 } else {
1088 GET_REGL(env->gregs[n]);
1090 } else if (n < 16) {
1091 GET_REGL(env->gregs[n - 8]);
1092 } else if (n >= 25 && n < 41) {
1093 GET_REGL(env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)]);
1094 } else if (n >= 43 && n < 51) {
1095 GET_REGL(env->gregs[n - 43]);
1096 } else if (n >= 51 && n < 59) {
1097 GET_REGL(env->gregs[n - (51 - 16)]);
1099 switch (n) {
1100 case 16: GET_REGL(env->pc);
1101 case 17: GET_REGL(env->pr);
1102 case 18: GET_REGL(env->gbr);
1103 case 19: GET_REGL(env->vbr);
1104 case 20: GET_REGL(env->mach);
1105 case 21: GET_REGL(env->macl);
1106 case 22: GET_REGL(env->sr);
1107 case 23: GET_REGL(env->fpul);
1108 case 24: GET_REGL(env->fpscr);
1109 case 41: GET_REGL(env->ssr);
1110 case 42: GET_REGL(env->spc);
1113 return 0;
1116 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1118 uint32_t tmp;
1120 tmp = ldl_p(mem_buf);
1122 if (n < 8) {
1123 if ((env->sr & (SR_MD | SR_RB)) == (SR_MD | SR_RB)) {
1124 env->gregs[n + 16] = tmp;
1125 } else {
1126 env->gregs[n] = tmp;
1128 return 4;
1129 } else if (n < 16) {
1130 env->gregs[n - 8] = tmp;
1131 return 4;
1132 } else if (n >= 25 && n < 41) {
1133 env->fregs[(n - 25) + ((env->fpscr & FPSCR_FR) ? 16 : 0)] = tmp;
1134 } else if (n >= 43 && n < 51) {
1135 env->gregs[n - 43] = tmp;
1136 return 4;
1137 } else if (n >= 51 && n < 59) {
1138 env->gregs[n - (51 - 16)] = tmp;
1139 return 4;
1141 switch (n) {
1142 case 16: env->pc = tmp;
1143 case 17: env->pr = tmp;
1144 case 18: env->gbr = tmp;
1145 case 19: env->vbr = tmp;
1146 case 20: env->mach = tmp;
1147 case 21: env->macl = tmp;
1148 case 22: env->sr = tmp;
1149 case 23: env->fpul = tmp;
1150 case 24: env->fpscr = tmp;
1151 case 41: env->ssr = tmp;
1152 case 42: env->spc = tmp;
1153 default: return 0;
1156 return 4;
1158 #elif defined (TARGET_CRIS)
1160 #define NUM_CORE_REGS 49
1162 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1164 uint8_t srs;
1166 srs = env->pregs[PR_SRS];
1167 if (n < 16) {
1168 GET_REG32(env->regs[n]);
1171 if (n >= 21 && n < 32) {
1172 GET_REG32(env->pregs[n - 16]);
1174 if (n >= 33 && n < 49) {
1175 GET_REG32(env->sregs[srs][n - 33]);
1177 switch (n) {
1178 case 16: GET_REG8(env->pregs[0]);
1179 case 17: GET_REG8(env->pregs[1]);
1180 case 18: GET_REG32(env->pregs[2]);
1181 case 19: GET_REG8(srs);
1182 case 20: GET_REG16(env->pregs[4]);
1183 case 32: GET_REG32(env->pc);
1186 return 0;
1189 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1191 uint32_t tmp;
1193 if (n > 49)
1194 return 0;
1196 tmp = ldl_p(mem_buf);
1198 if (n < 16) {
1199 env->regs[n] = tmp;
1202 if (n >= 21 && n < 32) {
1203 env->pregs[n - 16] = tmp;
1206 /* FIXME: Should support function regs be writable? */
1207 switch (n) {
1208 case 16: return 1;
1209 case 17: return 1;
1210 case 18: env->pregs[PR_PID] = tmp; break;
1211 case 19: return 1;
1212 case 20: return 2;
1213 case 32: env->pc = tmp; break;
1216 return 4;
1218 #elif defined (TARGET_ALPHA)
1220 #define NUM_CORE_REGS 65
1222 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1224 if (n < 31) {
1225 GET_REGL(env->ir[n]);
1227 else if (n == 31) {
1228 GET_REGL(0);
1230 else if (n<63) {
1231 uint64_t val;
1233 val=*((uint64_t *)&env->fir[n-32]);
1234 GET_REGL(val);
1236 else if (n==63) {
1237 GET_REGL(env->fpcr);
1239 else if (n==64) {
1240 GET_REGL(env->pc);
1242 else {
1243 GET_REGL(0);
1246 return 0;
1249 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1251 target_ulong tmp;
1252 tmp = ldtul_p(mem_buf);
1254 if (n < 31) {
1255 env->ir[n] = tmp;
1258 if (n > 31 && n < 63) {
1259 env->fir[n - 32] = ldfl_p(mem_buf);
1262 if (n == 64 ) {
1263 env->pc=tmp;
1266 return 8;
1268 #else
1270 #define NUM_CORE_REGS 0
1272 static int cpu_gdb_read_register(CPUState *env, uint8_t *mem_buf, int n)
1274 return 0;
1277 static int cpu_gdb_write_register(CPUState *env, uint8_t *mem_buf, int n)
1279 return 0;
1282 #endif
1284 static int num_g_regs = NUM_CORE_REGS;
1286 #ifdef GDB_CORE_XML
1287 /* Encode data using the encoding for 'x' packets. */
1288 static int memtox(char *buf, const char *mem, int len)
1290 char *p = buf;
1291 char c;
1293 while (len--) {
1294 c = *(mem++);
1295 switch (c) {
1296 case '#': case '$': case '*': case '}':
1297 *(p++) = '}';
1298 *(p++) = c ^ 0x20;
1299 break;
1300 default:
1301 *(p++) = c;
1302 break;
1305 return p - buf;
1308 static const char *get_feature_xml(const char *p, const char **newp)
1310 extern const char *const xml_builtin[][2];
1311 size_t len;
1312 int i;
1313 const char *name;
1314 static char target_xml[1024];
1316 len = 0;
1317 while (p[len] && p[len] != ':')
1318 len++;
1319 *newp = p + len;
1321 name = NULL;
1322 if (strncmp(p, "target.xml", len) == 0) {
1323 /* Generate the XML description for this CPU. */
1324 if (!target_xml[0]) {
1325 GDBRegisterState *r;
1327 snprintf(target_xml, sizeof(target_xml),
1328 "<?xml version=\"1.0\"?>"
1329 "<!DOCTYPE target SYSTEM \"gdb-target.dtd\">"
1330 "<target>"
1331 "<xi:include href=\"%s\"/>",
1332 GDB_CORE_XML);
1334 for (r = first_cpu->gdb_regs; r; r = r->next) {
1335 strcat(target_xml, "<xi:include href=\"");
1336 strcat(target_xml, r->xml);
1337 strcat(target_xml, "\"/>");
1339 strcat(target_xml, "</target>");
1341 return target_xml;
1343 for (i = 0; ; i++) {
1344 name = xml_builtin[i][0];
1345 if (!name || (strncmp(name, p, len) == 0 && strlen(name) == len))
1346 break;
1348 return name ? xml_builtin[i][1] : NULL;
1350 #endif
1352 static int gdb_read_register(CPUState *env, uint8_t *mem_buf, int reg)
1354 GDBRegisterState *r;
1356 if (reg < NUM_CORE_REGS)
1357 return cpu_gdb_read_register(env, mem_buf, reg);
1359 for (r = env->gdb_regs; r; r = r->next) {
1360 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1361 return r->get_reg(env, mem_buf, reg - r->base_reg);
1364 return 0;
1367 static int gdb_write_register(CPUState *env, uint8_t *mem_buf, int reg)
1369 GDBRegisterState *r;
1371 if (reg < NUM_CORE_REGS)
1372 return cpu_gdb_write_register(env, mem_buf, reg);
1374 for (r = env->gdb_regs; r; r = r->next) {
1375 if (r->base_reg <= reg && reg < r->base_reg + r->num_regs) {
1376 return r->set_reg(env, mem_buf, reg - r->base_reg);
1379 return 0;
1382 /* Register a supplemental set of CPU registers. If g_pos is nonzero it
1383 specifies the first register number and these registers are included in
1384 a standard "g" packet. Direction is relative to gdb, i.e. get_reg is
1385 gdb reading a CPU register, and set_reg is gdb modifying a CPU register.
1388 void gdb_register_coprocessor(CPUState * env,
1389 gdb_reg_cb get_reg, gdb_reg_cb set_reg,
1390 int num_regs, const char *xml, int g_pos)
1392 GDBRegisterState *s;
1393 GDBRegisterState **p;
1394 static int last_reg = NUM_CORE_REGS;
1396 s = (GDBRegisterState *)qemu_mallocz(sizeof(GDBRegisterState));
1397 s->base_reg = last_reg;
1398 s->num_regs = num_regs;
1399 s->get_reg = get_reg;
1400 s->set_reg = set_reg;
1401 s->xml = xml;
1402 p = &env->gdb_regs;
1403 while (*p) {
1404 /* Check for duplicates. */
1405 if (strcmp((*p)->xml, xml) == 0)
1406 return;
1407 p = &(*p)->next;
1409 /* Add to end of list. */
1410 last_reg += num_regs;
1411 *p = s;
1412 if (g_pos) {
1413 if (g_pos != s->base_reg) {
1414 fprintf(stderr, "Error: Bad gdb register numbering for '%s'\n"
1415 "Expected %d got %d\n", xml, g_pos, s->base_reg);
1416 } else {
1417 num_g_regs = last_reg;
1422 #ifndef CONFIG_USER_ONLY
1423 static const int xlat_gdb_type[] = {
1424 [GDB_WATCHPOINT_WRITE] = BP_GDB | BP_MEM_WRITE,
1425 [GDB_WATCHPOINT_READ] = BP_GDB | BP_MEM_READ,
1426 [GDB_WATCHPOINT_ACCESS] = BP_GDB | BP_MEM_ACCESS,
1428 #endif
1430 static int gdb_breakpoint_insert(target_ulong addr, target_ulong len, int type)
1432 CPUState *env;
1433 int err = 0;
1435 if (kvm_enabled())
1436 return kvm_insert_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1438 switch (type) {
1439 case GDB_BREAKPOINT_SW:
1440 case GDB_BREAKPOINT_HW:
1441 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1442 err = cpu_breakpoint_insert(env, addr, BP_GDB, NULL);
1443 if (err)
1444 break;
1446 return err;
1447 #ifndef CONFIG_USER_ONLY
1448 case GDB_WATCHPOINT_WRITE:
1449 case GDB_WATCHPOINT_READ:
1450 case GDB_WATCHPOINT_ACCESS:
1451 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1452 err = cpu_watchpoint_insert(env, addr, len, xlat_gdb_type[type],
1453 NULL);
1454 if (err)
1455 break;
1457 return err;
1458 #endif
1459 default:
1460 return -ENOSYS;
1464 static int gdb_breakpoint_remove(target_ulong addr, target_ulong len, int type)
1466 CPUState *env;
1467 int err = 0;
1469 if (kvm_enabled())
1470 return kvm_remove_breakpoint(gdbserver_state->c_cpu, addr, len, type);
1472 switch (type) {
1473 case GDB_BREAKPOINT_SW:
1474 case GDB_BREAKPOINT_HW:
1475 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1476 err = cpu_breakpoint_remove(env, addr, BP_GDB);
1477 if (err)
1478 break;
1480 return err;
1481 #ifndef CONFIG_USER_ONLY
1482 case GDB_WATCHPOINT_WRITE:
1483 case GDB_WATCHPOINT_READ:
1484 case GDB_WATCHPOINT_ACCESS:
1485 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1486 err = cpu_watchpoint_remove(env, addr, len, xlat_gdb_type[type]);
1487 if (err)
1488 break;
1490 return err;
1491 #endif
1492 default:
1493 return -ENOSYS;
1497 static void gdb_breakpoint_remove_all(void)
1499 CPUState *env;
1501 if (kvm_enabled()) {
1502 kvm_remove_all_breakpoints(gdbserver_state->c_cpu);
1503 return;
1506 for (env = first_cpu; env != NULL; env = env->next_cpu) {
1507 cpu_breakpoint_remove_all(env, BP_GDB);
1508 #ifndef CONFIG_USER_ONLY
1509 cpu_watchpoint_remove_all(env, BP_GDB);
1510 #endif
1514 static int gdb_handle_packet(GDBState *s, const char *line_buf)
1516 CPUState *env;
1517 const char *p;
1518 int ch, reg_size, type, res, thread;
1519 char buf[MAX_PACKET_LENGTH];
1520 uint8_t mem_buf[MAX_PACKET_LENGTH];
1521 uint8_t *registers;
1522 target_ulong addr, len;
1524 #ifdef DEBUG_GDB
1525 printf("command='%s'\n", line_buf);
1526 #endif
1527 p = line_buf;
1528 ch = *p++;
1529 switch(ch) {
1530 case '?':
1531 /* TODO: Make this return the correct value for user-mode. */
1532 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", GDB_SIGNAL_TRAP,
1533 s->c_cpu->cpu_index+1);
1534 put_packet(s, buf);
1535 /* Remove all the breakpoints when this query is issued,
1536 * because gdb is doing and initial connect and the state
1537 * should be cleaned up.
1539 gdb_breakpoint_remove_all();
1540 break;
1541 case 'c':
1542 if (*p != '\0') {
1543 addr = strtoull(p, (char **)&p, 16);
1544 #if defined(TARGET_I386)
1545 s->c_cpu->eip = addr;
1546 cpu_synchronize_state(s->c_cpu, 1);
1547 #elif defined (TARGET_PPC)
1548 s->c_cpu->nip = addr;
1549 #elif defined (TARGET_SPARC)
1550 s->c_cpu->pc = addr;
1551 s->c_cpu->npc = addr + 4;
1552 #elif defined (TARGET_ARM)
1553 s->c_cpu->regs[15] = addr;
1554 #elif defined (TARGET_SH4)
1555 s->c_cpu->pc = addr;
1556 #elif defined (TARGET_MIPS)
1557 s->c_cpu->active_tc.PC = addr;
1558 #elif defined (TARGET_CRIS)
1559 s->c_cpu->pc = addr;
1560 #elif defined (TARGET_ALPHA)
1561 s->c_cpu->pc = addr;
1562 #endif
1564 s->signal = 0;
1565 gdb_continue(s);
1566 return RS_IDLE;
1567 case 'C':
1568 s->signal = gdb_signal_to_target (strtoul(p, (char **)&p, 16));
1569 if (s->signal == -1)
1570 s->signal = 0;
1571 gdb_continue(s);
1572 return RS_IDLE;
1573 case 'k':
1574 /* Kill the target */
1575 fprintf(stderr, "\nQEMU: Terminated via GDBstub\n");
1576 exit(0);
1577 case 'D':
1578 /* Detach packet */
1579 gdb_breakpoint_remove_all();
1580 gdb_continue(s);
1581 put_packet(s, "OK");
1582 break;
1583 case 's':
1584 if (*p != '\0') {
1585 addr = strtoull(p, (char **)&p, 16);
1586 #if defined(TARGET_I386)
1587 s->c_cpu->eip = addr;
1588 cpu_synchronize_state(s->c_cpu, 1);
1589 #elif defined (TARGET_PPC)
1590 s->c_cpu->nip = addr;
1591 #elif defined (TARGET_SPARC)
1592 s->c_cpu->pc = addr;
1593 s->c_cpu->npc = addr + 4;
1594 #elif defined (TARGET_ARM)
1595 s->c_cpu->regs[15] = addr;
1596 #elif defined (TARGET_SH4)
1597 s->c_cpu->pc = addr;
1598 #elif defined (TARGET_MIPS)
1599 s->c_cpu->active_tc.PC = addr;
1600 #elif defined (TARGET_CRIS)
1601 s->c_cpu->pc = addr;
1602 #elif defined (TARGET_ALPHA)
1603 s->c_cpu->pc = addr;
1604 #endif
1606 cpu_single_step(s->c_cpu, sstep_flags);
1607 gdb_continue(s);
1608 return RS_IDLE;
1609 case 'F':
1611 target_ulong ret;
1612 target_ulong err;
1614 ret = strtoull(p, (char **)&p, 16);
1615 if (*p == ',') {
1616 p++;
1617 err = strtoull(p, (char **)&p, 16);
1618 } else {
1619 err = 0;
1621 if (*p == ',')
1622 p++;
1623 type = *p;
1624 if (gdb_current_syscall_cb)
1625 gdb_current_syscall_cb(s->c_cpu, ret, err);
1626 if (type == 'C') {
1627 put_packet(s, "T02");
1628 } else {
1629 gdb_continue(s);
1632 break;
1633 case 'g':
1634 cpu_synchronize_state(s->g_cpu, 0);
1635 len = 0;
1636 for (addr = 0; addr < num_g_regs; addr++) {
1637 reg_size = gdb_read_register(s->g_cpu, mem_buf + len, addr);
1638 len += reg_size;
1640 memtohex(buf, mem_buf, len);
1641 put_packet(s, buf);
1642 break;
1643 case 'G':
1644 registers = mem_buf;
1645 len = strlen(p) / 2;
1646 hextomem((uint8_t *)registers, p, len);
1647 for (addr = 0; addr < num_g_regs && len > 0; addr++) {
1648 reg_size = gdb_write_register(s->g_cpu, registers, addr);
1649 len -= reg_size;
1650 registers += reg_size;
1652 cpu_synchronize_state(s->g_cpu, 1);
1653 put_packet(s, "OK");
1654 break;
1655 case 'm':
1656 addr = strtoull(p, (char **)&p, 16);
1657 if (*p == ',')
1658 p++;
1659 len = strtoull(p, NULL, 16);
1660 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 0) != 0) {
1661 put_packet (s, "E14");
1662 } else {
1663 memtohex(buf, mem_buf, len);
1664 put_packet(s, buf);
1666 break;
1667 case 'M':
1668 addr = strtoull(p, (char **)&p, 16);
1669 if (*p == ',')
1670 p++;
1671 len = strtoull(p, (char **)&p, 16);
1672 if (*p == ':')
1673 p++;
1674 hextomem(mem_buf, p, len);
1675 if (cpu_memory_rw_debug(s->g_cpu, addr, mem_buf, len, 1) != 0)
1676 put_packet(s, "E14");
1677 else
1678 put_packet(s, "OK");
1679 break;
1680 case 'p':
1681 /* Older gdb are really dumb, and don't use 'g' if 'p' is avaialable.
1682 This works, but can be very slow. Anything new enough to
1683 understand XML also knows how to use this properly. */
1684 if (!gdb_has_xml)
1685 goto unknown_command;
1686 addr = strtoull(p, (char **)&p, 16);
1687 reg_size = gdb_read_register(s->g_cpu, mem_buf, addr);
1688 if (reg_size) {
1689 memtohex(buf, mem_buf, reg_size);
1690 put_packet(s, buf);
1691 } else {
1692 put_packet(s, "E14");
1694 break;
1695 case 'P':
1696 if (!gdb_has_xml)
1697 goto unknown_command;
1698 addr = strtoull(p, (char **)&p, 16);
1699 if (*p == '=')
1700 p++;
1701 reg_size = strlen(p) / 2;
1702 hextomem(mem_buf, p, reg_size);
1703 gdb_write_register(s->g_cpu, mem_buf, addr);
1704 put_packet(s, "OK");
1705 break;
1706 case 'Z':
1707 case 'z':
1708 type = strtoul(p, (char **)&p, 16);
1709 if (*p == ',')
1710 p++;
1711 addr = strtoull(p, (char **)&p, 16);
1712 if (*p == ',')
1713 p++;
1714 len = strtoull(p, (char **)&p, 16);
1715 if (ch == 'Z')
1716 res = gdb_breakpoint_insert(addr, len, type);
1717 else
1718 res = gdb_breakpoint_remove(addr, len, type);
1719 if (res >= 0)
1720 put_packet(s, "OK");
1721 else if (res == -ENOSYS)
1722 put_packet(s, "");
1723 else
1724 put_packet(s, "E22");
1725 break;
1726 case 'H':
1727 type = *p++;
1728 thread = strtoull(p, (char **)&p, 16);
1729 if (thread == -1 || thread == 0) {
1730 put_packet(s, "OK");
1731 break;
1733 for (env = first_cpu; env != NULL; env = env->next_cpu)
1734 if (env->cpu_index + 1 == thread)
1735 break;
1736 if (env == NULL) {
1737 put_packet(s, "E22");
1738 break;
1740 switch (type) {
1741 case 'c':
1742 s->c_cpu = env;
1743 put_packet(s, "OK");
1744 break;
1745 case 'g':
1746 s->g_cpu = env;
1747 put_packet(s, "OK");
1748 break;
1749 default:
1750 put_packet(s, "E22");
1751 break;
1753 break;
1754 case 'T':
1755 thread = strtoull(p, (char **)&p, 16);
1756 #ifndef CONFIG_USER_ONLY
1757 if (thread > 0 && thread < smp_cpus + 1)
1758 #else
1759 if (thread == 1)
1760 #endif
1761 put_packet(s, "OK");
1762 else
1763 put_packet(s, "E22");
1764 break;
1765 case 'q':
1766 case 'Q':
1767 /* parse any 'q' packets here */
1768 if (!strcmp(p,"qemu.sstepbits")) {
1769 /* Query Breakpoint bit definitions */
1770 snprintf(buf, sizeof(buf), "ENABLE=%x,NOIRQ=%x,NOTIMER=%x",
1771 SSTEP_ENABLE,
1772 SSTEP_NOIRQ,
1773 SSTEP_NOTIMER);
1774 put_packet(s, buf);
1775 break;
1776 } else if (strncmp(p,"qemu.sstep",10) == 0) {
1777 /* Display or change the sstep_flags */
1778 p += 10;
1779 if (*p != '=') {
1780 /* Display current setting */
1781 snprintf(buf, sizeof(buf), "0x%x", sstep_flags);
1782 put_packet(s, buf);
1783 break;
1785 p++;
1786 type = strtoul(p, (char **)&p, 16);
1787 sstep_flags = type;
1788 put_packet(s, "OK");
1789 break;
1790 } else if (strcmp(p,"C") == 0) {
1791 /* "Current thread" remains vague in the spec, so always return
1792 * the first CPU (gdb returns the first thread). */
1793 put_packet(s, "QC1");
1794 break;
1795 } else if (strcmp(p,"fThreadInfo") == 0) {
1796 s->query_cpu = first_cpu;
1797 goto report_cpuinfo;
1798 } else if (strcmp(p,"sThreadInfo") == 0) {
1799 report_cpuinfo:
1800 if (s->query_cpu) {
1801 snprintf(buf, sizeof(buf), "m%x", s->query_cpu->cpu_index+1);
1802 put_packet(s, buf);
1803 s->query_cpu = s->query_cpu->next_cpu;
1804 } else
1805 put_packet(s, "l");
1806 break;
1807 } else if (strncmp(p,"ThreadExtraInfo,", 16) == 0) {
1808 thread = strtoull(p+16, (char **)&p, 16);
1809 for (env = first_cpu; env != NULL; env = env->next_cpu)
1810 if (env->cpu_index + 1 == thread) {
1811 cpu_synchronize_state(env, 0);
1812 len = snprintf((char *)mem_buf, sizeof(mem_buf),
1813 "CPU#%d [%s]", env->cpu_index,
1814 env->halted ? "halted " : "running");
1815 memtohex(buf, mem_buf, len);
1816 put_packet(s, buf);
1817 break;
1819 break;
1821 #ifdef CONFIG_USER_ONLY
1822 else if (strncmp(p, "Offsets", 7) == 0) {
1823 TaskState *ts = s->c_cpu->opaque;
1825 snprintf(buf, sizeof(buf),
1826 "Text=" TARGET_ABI_FMT_lx ";Data=" TARGET_ABI_FMT_lx
1827 ";Bss=" TARGET_ABI_FMT_lx,
1828 ts->info->code_offset,
1829 ts->info->data_offset,
1830 ts->info->data_offset);
1831 put_packet(s, buf);
1832 break;
1834 #else /* !CONFIG_USER_ONLY */
1835 else if (strncmp(p, "Rcmd,", 5) == 0) {
1836 int len = strlen(p + 5);
1838 if ((len % 2) != 0) {
1839 put_packet(s, "E01");
1840 break;
1842 hextomem(mem_buf, p + 5, len);
1843 len = len / 2;
1844 mem_buf[len++] = 0;
1845 qemu_chr_read(s->mon_chr, mem_buf, len);
1846 put_packet(s, "OK");
1847 break;
1849 #endif /* !CONFIG_USER_ONLY */
1850 if (strncmp(p, "Supported", 9) == 0) {
1851 snprintf(buf, sizeof(buf), "PacketSize=%x", MAX_PACKET_LENGTH);
1852 #ifdef GDB_CORE_XML
1853 strcat(buf, ";qXfer:features:read+");
1854 #endif
1855 put_packet(s, buf);
1856 break;
1858 #ifdef GDB_CORE_XML
1859 if (strncmp(p, "Xfer:features:read:", 19) == 0) {
1860 const char *xml;
1861 target_ulong total_len;
1863 gdb_has_xml = 1;
1864 p += 19;
1865 xml = get_feature_xml(p, &p);
1866 if (!xml) {
1867 snprintf(buf, sizeof(buf), "E00");
1868 put_packet(s, buf);
1869 break;
1872 if (*p == ':')
1873 p++;
1874 addr = strtoul(p, (char **)&p, 16);
1875 if (*p == ',')
1876 p++;
1877 len = strtoul(p, (char **)&p, 16);
1879 total_len = strlen(xml);
1880 if (addr > total_len) {
1881 snprintf(buf, sizeof(buf), "E00");
1882 put_packet(s, buf);
1883 break;
1885 if (len > (MAX_PACKET_LENGTH - 5) / 2)
1886 len = (MAX_PACKET_LENGTH - 5) / 2;
1887 if (len < total_len - addr) {
1888 buf[0] = 'm';
1889 len = memtox(buf + 1, xml + addr, len);
1890 } else {
1891 buf[0] = 'l';
1892 len = memtox(buf + 1, xml + addr, total_len - addr);
1894 put_packet_binary(s, buf, len + 1);
1895 break;
1897 #endif
1898 /* Unrecognised 'q' command. */
1899 goto unknown_command;
1901 default:
1902 unknown_command:
1903 /* put empty packet */
1904 buf[0] = '\0';
1905 put_packet(s, buf);
1906 break;
1908 return RS_IDLE;
1911 void gdb_set_stop_cpu(CPUState *env)
1913 gdbserver_state->c_cpu = env;
1914 gdbserver_state->g_cpu = env;
1917 #ifndef CONFIG_USER_ONLY
1918 static void gdb_vm_state_change(void *opaque, int running, int reason)
1920 GDBState *s = gdbserver_state;
1921 CPUState *env = s->c_cpu;
1922 char buf[256];
1923 const char *type;
1924 int ret;
1926 if (running || (reason != EXCP_DEBUG && reason != EXCP_INTERRUPT) ||
1927 s->state == RS_SYSCALL)
1928 return;
1930 /* disable single step if it was enable */
1931 cpu_single_step(env, 0);
1933 if (reason == EXCP_DEBUG) {
1934 if (env->watchpoint_hit) {
1935 switch (env->watchpoint_hit->flags & BP_MEM_ACCESS) {
1936 case BP_MEM_READ:
1937 type = "r";
1938 break;
1939 case BP_MEM_ACCESS:
1940 type = "a";
1941 break;
1942 default:
1943 type = "";
1944 break;
1946 snprintf(buf, sizeof(buf),
1947 "T%02xthread:%02x;%swatch:" TARGET_FMT_lx ";",
1948 GDB_SIGNAL_TRAP, env->cpu_index+1, type,
1949 env->watchpoint_hit->vaddr);
1950 put_packet(s, buf);
1951 env->watchpoint_hit = NULL;
1952 return;
1954 tb_flush(env);
1955 ret = GDB_SIGNAL_TRAP;
1956 } else {
1957 ret = GDB_SIGNAL_INT;
1959 snprintf(buf, sizeof(buf), "T%02xthread:%02x;", ret, env->cpu_index+1);
1960 put_packet(s, buf);
1962 #endif
1964 /* Send a gdb syscall request.
1965 This accepts limited printf-style format specifiers, specifically:
1966 %x - target_ulong argument printed in hex.
1967 %lx - 64-bit argument printed in hex.
1968 %s - string pointer (target_ulong) and length (int) pair. */
1969 void gdb_do_syscall(gdb_syscall_complete_cb cb, const char *fmt, ...)
1971 va_list va;
1972 char buf[256];
1973 char *p;
1974 target_ulong addr;
1975 uint64_t i64;
1976 GDBState *s;
1978 s = gdbserver_state;
1979 if (!s)
1980 return;
1981 gdb_current_syscall_cb = cb;
1982 s->state = RS_SYSCALL;
1983 #ifndef CONFIG_USER_ONLY
1984 vm_stop(EXCP_DEBUG);
1985 #endif
1986 s->state = RS_IDLE;
1987 va_start(va, fmt);
1988 p = buf;
1989 *(p++) = 'F';
1990 while (*fmt) {
1991 if (*fmt == '%') {
1992 fmt++;
1993 switch (*fmt++) {
1994 case 'x':
1995 addr = va_arg(va, target_ulong);
1996 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx, addr);
1997 break;
1998 case 'l':
1999 if (*(fmt++) != 'x')
2000 goto bad_format;
2001 i64 = va_arg(va, uint64_t);
2002 p += snprintf(p, &buf[sizeof(buf)] - p, "%" PRIx64, i64);
2003 break;
2004 case 's':
2005 addr = va_arg(va, target_ulong);
2006 p += snprintf(p, &buf[sizeof(buf)] - p, TARGET_FMT_lx "/%x",
2007 addr, va_arg(va, int));
2008 break;
2009 default:
2010 bad_format:
2011 fprintf(stderr, "gdbstub: Bad syscall format string '%s'\n",
2012 fmt - 1);
2013 break;
2015 } else {
2016 *(p++) = *(fmt++);
2019 *p = 0;
2020 va_end(va);
2021 put_packet(s, buf);
2022 #ifdef CONFIG_USER_ONLY
2023 gdb_handlesig(s->c_cpu, 0);
2024 #else
2025 cpu_exit(s->c_cpu);
2026 #endif
2029 static void gdb_read_byte(GDBState *s, int ch)
2031 int i, csum;
2032 uint8_t reply;
2034 #ifndef CONFIG_USER_ONLY
2035 if (s->last_packet_len) {
2036 /* Waiting for a response to the last packet. If we see the start
2037 of a new command then abandon the previous response. */
2038 if (ch == '-') {
2039 #ifdef DEBUG_GDB
2040 printf("Got NACK, retransmitting\n");
2041 #endif
2042 put_buffer(s, (uint8_t *)s->last_packet, s->last_packet_len);
2044 #ifdef DEBUG_GDB
2045 else if (ch == '+')
2046 printf("Got ACK\n");
2047 else
2048 printf("Got '%c' when expecting ACK/NACK\n", ch);
2049 #endif
2050 if (ch == '+' || ch == '$')
2051 s->last_packet_len = 0;
2052 if (ch != '$')
2053 return;
2055 if (vm_running) {
2056 /* when the CPU is running, we cannot do anything except stop
2057 it when receiving a char */
2058 vm_stop(EXCP_INTERRUPT);
2059 } else
2060 #endif
2062 switch(s->state) {
2063 case RS_IDLE:
2064 if (ch == '$') {
2065 s->line_buf_index = 0;
2066 s->state = RS_GETLINE;
2068 break;
2069 case RS_GETLINE:
2070 if (ch == '#') {
2071 s->state = RS_CHKSUM1;
2072 } else if (s->line_buf_index >= sizeof(s->line_buf) - 1) {
2073 s->state = RS_IDLE;
2074 } else {
2075 s->line_buf[s->line_buf_index++] = ch;
2077 break;
2078 case RS_CHKSUM1:
2079 s->line_buf[s->line_buf_index] = '\0';
2080 s->line_csum = fromhex(ch) << 4;
2081 s->state = RS_CHKSUM2;
2082 break;
2083 case RS_CHKSUM2:
2084 s->line_csum |= fromhex(ch);
2085 csum = 0;
2086 for(i = 0; i < s->line_buf_index; i++) {
2087 csum += s->line_buf[i];
2089 if (s->line_csum != (csum & 0xff)) {
2090 reply = '-';
2091 put_buffer(s, &reply, 1);
2092 s->state = RS_IDLE;
2093 } else {
2094 reply = '+';
2095 put_buffer(s, &reply, 1);
2096 s->state = gdb_handle_packet(s, s->line_buf);
2098 break;
2099 default:
2100 abort();
2105 #ifdef CONFIG_USER_ONLY
2107 gdb_queuesig (void)
2109 GDBState *s;
2111 s = gdbserver_state;
2113 if (gdbserver_fd < 0 || s->fd < 0)
2114 return 0;
2115 else
2116 return 1;
2120 gdb_handlesig (CPUState *env, int sig)
2122 GDBState *s;
2123 char buf[256];
2124 int n;
2126 s = gdbserver_state;
2127 if (gdbserver_fd < 0 || s->fd < 0)
2128 return sig;
2130 /* disable single step if it was enabled */
2131 cpu_single_step(env, 0);
2132 tb_flush(env);
2134 if (sig != 0)
2136 snprintf(buf, sizeof(buf), "S%02x", target_signal_to_gdb (sig));
2137 put_packet(s, buf);
2139 /* put_packet() might have detected that the peer terminated the
2140 connection. */
2141 if (s->fd < 0)
2142 return sig;
2144 sig = 0;
2145 s->state = RS_IDLE;
2146 s->running_state = 0;
2147 while (s->running_state == 0) {
2148 n = read (s->fd, buf, 256);
2149 if (n > 0)
2151 int i;
2153 for (i = 0; i < n; i++)
2154 gdb_read_byte (s, buf[i]);
2156 else if (n == 0 || errno != EAGAIN)
2158 /* XXX: Connection closed. Should probably wait for annother
2159 connection before continuing. */
2160 return sig;
2163 sig = s->signal;
2164 s->signal = 0;
2165 return sig;
2168 /* Tell the remote gdb that the process has exited. */
2169 void gdb_exit(CPUState *env, int code)
2171 GDBState *s;
2172 char buf[4];
2174 s = gdbserver_state;
2175 if (gdbserver_fd < 0 || s->fd < 0)
2176 return;
2178 snprintf(buf, sizeof(buf), "W%02x", code);
2179 put_packet(s, buf);
2182 /* Tell the remote gdb that the process has exited due to SIG. */
2183 void gdb_signalled(CPUState *env, int sig)
2185 GDBState *s;
2186 char buf[4];
2188 s = gdbserver_state;
2189 if (gdbserver_fd < 0 || s->fd < 0)
2190 return;
2192 snprintf(buf, sizeof(buf), "X%02x", target_signal_to_gdb (sig));
2193 put_packet(s, buf);
2196 static void gdb_accept(void)
2198 GDBState *s;
2199 struct sockaddr_in sockaddr;
2200 socklen_t len;
2201 int val, fd;
2203 for(;;) {
2204 len = sizeof(sockaddr);
2205 fd = accept(gdbserver_fd, (struct sockaddr *)&sockaddr, &len);
2206 if (fd < 0 && errno != EINTR) {
2207 perror("accept");
2208 return;
2209 } else if (fd >= 0) {
2210 break;
2214 /* set short latency */
2215 val = 1;
2216 setsockopt(fd, IPPROTO_TCP, TCP_NODELAY, (char *)&val, sizeof(val));
2218 s = qemu_mallocz(sizeof(GDBState));
2220 memset (s, 0, sizeof (GDBState));
2221 s->c_cpu = first_cpu;
2222 s->g_cpu = first_cpu;
2223 s->fd = fd;
2224 gdb_has_xml = 0;
2226 gdbserver_state = s;
2228 fcntl(fd, F_SETFL, O_NONBLOCK);
2231 static int gdbserver_open(int port)
2233 struct sockaddr_in sockaddr;
2234 int fd, val, ret;
2236 fd = socket(PF_INET, SOCK_STREAM, 0);
2237 if (fd < 0) {
2238 perror("socket");
2239 return -1;
2242 /* allow fast reuse */
2243 val = 1;
2244 setsockopt(fd, SOL_SOCKET, SO_REUSEADDR, (char *)&val, sizeof(val));
2246 sockaddr.sin_family = AF_INET;
2247 sockaddr.sin_port = htons(port);
2248 sockaddr.sin_addr.s_addr = 0;
2249 ret = bind(fd, (struct sockaddr *)&sockaddr, sizeof(sockaddr));
2250 if (ret < 0) {
2251 perror("bind");
2252 return -1;
2254 ret = listen(fd, 0);
2255 if (ret < 0) {
2256 perror("listen");
2257 return -1;
2259 return fd;
2262 int gdbserver_start(int port)
2264 gdbserver_fd = gdbserver_open(port);
2265 if (gdbserver_fd < 0)
2266 return -1;
2267 /* accept connections */
2268 gdb_accept();
2269 return 0;
2272 /* Disable gdb stub for child processes. */
2273 void gdbserver_fork(CPUState *env)
2275 GDBState *s = gdbserver_state;
2276 if (gdbserver_fd < 0 || s->fd < 0)
2277 return;
2278 close(s->fd);
2279 s->fd = -1;
2280 cpu_breakpoint_remove_all(env, BP_GDB);
2281 cpu_watchpoint_remove_all(env, BP_GDB);
2283 #else
2284 static int gdb_chr_can_receive(void *opaque)
2286 /* We can handle an arbitrarily large amount of data.
2287 Pick the maximum packet size, which is as good as anything. */
2288 return MAX_PACKET_LENGTH;
2291 static void gdb_chr_receive(void *opaque, const uint8_t *buf, int size)
2293 int i;
2295 for (i = 0; i < size; i++) {
2296 gdb_read_byte(gdbserver_state, buf[i]);
2300 static void gdb_chr_event(void *opaque, int event)
2302 switch (event) {
2303 case CHR_EVENT_RESET:
2304 vm_stop(EXCP_INTERRUPT);
2305 gdb_has_xml = 0;
2306 break;
2307 default:
2308 break;
2312 static void gdb_monitor_output(GDBState *s, const char *msg, int len)
2314 char buf[MAX_PACKET_LENGTH];
2316 buf[0] = 'O';
2317 if (len > (MAX_PACKET_LENGTH/2) - 1)
2318 len = (MAX_PACKET_LENGTH/2) - 1;
2319 memtohex(buf + 1, (uint8_t *)msg, len);
2320 put_packet(s, buf);
2323 static int gdb_monitor_write(CharDriverState *chr, const uint8_t *buf, int len)
2325 const char *p = (const char *)buf;
2326 int max_sz;
2328 max_sz = (sizeof(gdbserver_state->last_packet) - 2) / 2;
2329 for (;;) {
2330 if (len <= max_sz) {
2331 gdb_monitor_output(gdbserver_state, p, len);
2332 break;
2334 gdb_monitor_output(gdbserver_state, p, max_sz);
2335 p += max_sz;
2336 len -= max_sz;
2338 return len;
2341 int gdbserver_start(const char *port)
2343 GDBState *s;
2344 char gdbstub_port_name[128];
2345 int port_num;
2346 char *p;
2347 CharDriverState *chr;
2349 if (!port || !*port)
2350 return -1;
2352 port_num = strtol(port, &p, 10);
2353 if (*p == 0) {
2354 /* A numeric value is interpreted as a port number. */
2355 snprintf(gdbstub_port_name, sizeof(gdbstub_port_name),
2356 "tcp::%d,nowait,nodelay,server", port_num);
2357 port = gdbstub_port_name;
2360 chr = qemu_chr_open("gdb", port, NULL);
2361 if (!chr)
2362 return -1;
2364 s = qemu_mallocz(sizeof(GDBState));
2365 s->c_cpu = first_cpu;
2366 s->g_cpu = first_cpu;
2367 s->chr = chr;
2368 gdbserver_state = s;
2369 qemu_chr_add_handlers(chr, gdb_chr_can_receive, gdb_chr_receive,
2370 gdb_chr_event, NULL);
2371 qemu_add_vm_change_state_handler(gdb_vm_state_change, NULL);
2373 /* Initialize a monitor terminal for gdb */
2374 s->mon_chr = qemu_mallocz(sizeof(*s->mon_chr));
2375 s->mon_chr->chr_write = gdb_monitor_write;
2376 monitor_init(s->mon_chr, 0);
2378 return 0;
2380 #endif