monitor: Don't change VNC server when disabled (Jan Kiszka)
[sniper_test.git] / hw / ppc.c
blob9a01c0174875b8c6263919b868ea8fb3c519d0a1
1 /*
2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "ppc.h"
26 #include "qemu-timer.h"
27 #include "sysemu.h"
28 #include "nvram.h"
29 #include "qemu-log.h"
31 //#define PPC_DEBUG_IRQ
32 //#define PPC_DEBUG_TB
34 #ifdef PPC_DEBUG_IRQ
35 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
36 #else
37 # define LOG_IRQ(...) do { } while (0)
38 #endif
41 #ifdef PPC_DEBUG_TB
42 # define LOG_TB(...) qemu_log(__VA_ARGS__)
43 #else
44 # define LOG_TB(...) do { } while (0)
45 #endif
47 static void cpu_ppc_tb_stop (CPUState *env);
48 static void cpu_ppc_tb_start (CPUState *env);
50 static void ppc_set_irq (CPUState *env, int n_IRQ, int level)
52 if (level) {
53 env->pending_interrupts |= 1 << n_IRQ;
54 cpu_interrupt(env, CPU_INTERRUPT_HARD);
55 } else {
56 env->pending_interrupts &= ~(1 << n_IRQ);
57 if (env->pending_interrupts == 0)
58 cpu_reset_interrupt(env, CPU_INTERRUPT_HARD);
60 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
61 "req %08x\n", __func__, env, n_IRQ, level,
62 env->pending_interrupts, env->interrupt_request);
65 /* PowerPC 6xx / 7xx internal IRQ controller */
66 static void ppc6xx_set_irq (void *opaque, int pin, int level)
68 CPUState *env = opaque;
69 int cur_level;
71 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
72 env, pin, level);
73 cur_level = (env->irq_input_state >> pin) & 1;
74 /* Don't generate spurious events */
75 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
76 switch (pin) {
77 case PPC6xx_INPUT_TBEN:
78 /* Level sensitive - active high */
79 LOG_IRQ("%s: %s the time base\n",
80 __func__, level ? "start" : "stop");
81 if (level) {
82 cpu_ppc_tb_start(env);
83 } else {
84 cpu_ppc_tb_stop(env);
86 case PPC6xx_INPUT_INT:
87 /* Level sensitive - active high */
88 LOG_IRQ("%s: set the external IRQ state to %d\n",
89 __func__, level);
90 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
91 break;
92 case PPC6xx_INPUT_SMI:
93 /* Level sensitive - active high */
94 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
95 __func__, level);
96 ppc_set_irq(env, PPC_INTERRUPT_SMI, level);
97 break;
98 case PPC6xx_INPUT_MCP:
99 /* Negative edge sensitive */
100 /* XXX: TODO: actual reaction may depends on HID0 status
101 * 603/604/740/750: check HID0[EMCP]
103 if (cur_level == 1 && level == 0) {
104 LOG_IRQ("%s: raise machine check state\n",
105 __func__);
106 ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
108 break;
109 case PPC6xx_INPUT_CKSTP_IN:
110 /* Level sensitive - active low */
111 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
112 /* XXX: Note that the only way to restart the CPU is to reset it */
113 if (level) {
114 LOG_IRQ("%s: stop the CPU\n", __func__);
115 env->halted = 1;
117 break;
118 case PPC6xx_INPUT_HRESET:
119 /* Level sensitive - active low */
120 if (level) {
121 LOG_IRQ("%s: reset the CPU\n", __func__);
122 env->interrupt_request |= CPU_INTERRUPT_EXITTB;
123 /* XXX: TOFIX */
124 #if 0
125 cpu_ppc_reset(env);
126 #else
127 qemu_system_reset_request();
128 #endif
130 break;
131 case PPC6xx_INPUT_SRESET:
132 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
133 __func__, level);
134 ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
135 break;
136 default:
137 /* Unknown pin - do nothing */
138 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
139 return;
141 if (level)
142 env->irq_input_state |= 1 << pin;
143 else
144 env->irq_input_state &= ~(1 << pin);
148 void ppc6xx_irq_init (CPUState *env)
150 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc6xx_set_irq, env,
151 PPC6xx_INPUT_NB);
154 #if defined(TARGET_PPC64)
155 /* PowerPC 970 internal IRQ controller */
156 static void ppc970_set_irq (void *opaque, int pin, int level)
158 CPUState *env = opaque;
159 int cur_level;
161 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
162 env, pin, level);
163 cur_level = (env->irq_input_state >> pin) & 1;
164 /* Don't generate spurious events */
165 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
166 switch (pin) {
167 case PPC970_INPUT_INT:
168 /* Level sensitive - active high */
169 LOG_IRQ("%s: set the external IRQ state to %d\n",
170 __func__, level);
171 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
172 break;
173 case PPC970_INPUT_THINT:
174 /* Level sensitive - active high */
175 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__,
176 level);
177 ppc_set_irq(env, PPC_INTERRUPT_THERM, level);
178 break;
179 case PPC970_INPUT_MCP:
180 /* Negative edge sensitive */
181 /* XXX: TODO: actual reaction may depends on HID0 status
182 * 603/604/740/750: check HID0[EMCP]
184 if (cur_level == 1 && level == 0) {
185 LOG_IRQ("%s: raise machine check state\n",
186 __func__);
187 ppc_set_irq(env, PPC_INTERRUPT_MCK, 1);
189 break;
190 case PPC970_INPUT_CKSTP:
191 /* Level sensitive - active low */
192 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
193 if (level) {
194 LOG_IRQ("%s: stop the CPU\n", __func__);
195 env->halted = 1;
196 } else {
197 LOG_IRQ("%s: restart the CPU\n", __func__);
198 env->halted = 0;
200 break;
201 case PPC970_INPUT_HRESET:
202 /* Level sensitive - active low */
203 if (level) {
204 #if 0 // XXX: TOFIX
205 LOG_IRQ("%s: reset the CPU\n", __func__);
206 cpu_reset(env);
207 #endif
209 break;
210 case PPC970_INPUT_SRESET:
211 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
212 __func__, level);
213 ppc_set_irq(env, PPC_INTERRUPT_RESET, level);
214 break;
215 case PPC970_INPUT_TBEN:
216 LOG_IRQ("%s: set the TBEN state to %d\n", __func__,
217 level);
218 /* XXX: TODO */
219 break;
220 default:
221 /* Unknown pin - do nothing */
222 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
223 return;
225 if (level)
226 env->irq_input_state |= 1 << pin;
227 else
228 env->irq_input_state &= ~(1 << pin);
232 void ppc970_irq_init (CPUState *env)
234 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc970_set_irq, env,
235 PPC970_INPUT_NB);
237 #endif /* defined(TARGET_PPC64) */
239 /* PowerPC 40x internal IRQ controller */
240 static void ppc40x_set_irq (void *opaque, int pin, int level)
242 CPUState *env = opaque;
243 int cur_level;
245 LOG_IRQ("%s: env %p pin %d level %d\n", __func__,
246 env, pin, level);
247 cur_level = (env->irq_input_state >> pin) & 1;
248 /* Don't generate spurious events */
249 if ((cur_level == 1 && level == 0) || (cur_level == 0 && level != 0)) {
250 switch (pin) {
251 case PPC40x_INPUT_RESET_SYS:
252 if (level) {
253 LOG_IRQ("%s: reset the PowerPC system\n",
254 __func__);
255 ppc40x_system_reset(env);
257 break;
258 case PPC40x_INPUT_RESET_CHIP:
259 if (level) {
260 LOG_IRQ("%s: reset the PowerPC chip\n", __func__);
261 ppc40x_chip_reset(env);
263 break;
264 case PPC40x_INPUT_RESET_CORE:
265 /* XXX: TODO: update DBSR[MRR] */
266 if (level) {
267 LOG_IRQ("%s: reset the PowerPC core\n", __func__);
268 ppc40x_core_reset(env);
270 break;
271 case PPC40x_INPUT_CINT:
272 /* Level sensitive - active high */
273 LOG_IRQ("%s: set the critical IRQ state to %d\n",
274 __func__, level);
275 ppc_set_irq(env, PPC_INTERRUPT_CEXT, level);
276 break;
277 case PPC40x_INPUT_INT:
278 /* Level sensitive - active high */
279 LOG_IRQ("%s: set the external IRQ state to %d\n",
280 __func__, level);
281 ppc_set_irq(env, PPC_INTERRUPT_EXT, level);
282 break;
283 case PPC40x_INPUT_HALT:
284 /* Level sensitive - active low */
285 if (level) {
286 LOG_IRQ("%s: stop the CPU\n", __func__);
287 env->halted = 1;
288 } else {
289 LOG_IRQ("%s: restart the CPU\n", __func__);
290 env->halted = 0;
292 break;
293 case PPC40x_INPUT_DEBUG:
294 /* Level sensitive - active high */
295 LOG_IRQ("%s: set the debug pin state to %d\n",
296 __func__, level);
297 ppc_set_irq(env, PPC_INTERRUPT_DEBUG, level);
298 break;
299 default:
300 /* Unknown pin - do nothing */
301 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__, pin);
302 return;
304 if (level)
305 env->irq_input_state |= 1 << pin;
306 else
307 env->irq_input_state &= ~(1 << pin);
311 void ppc40x_irq_init (CPUState *env)
313 env->irq_inputs = (void **)qemu_allocate_irqs(&ppc40x_set_irq,
314 env, PPC40x_INPUT_NB);
317 /*****************************************************************************/
318 /* PowerPC time base and decrementer emulation */
319 struct ppc_tb_t {
320 /* Time base management */
321 int64_t tb_offset; /* Compensation */
322 int64_t atb_offset; /* Compensation */
323 uint32_t tb_freq; /* TB frequency */
324 /* Decrementer management */
325 uint64_t decr_next; /* Tick for next decr interrupt */
326 uint32_t decr_freq; /* decrementer frequency */
327 struct QEMUTimer *decr_timer;
328 /* Hypervisor decrementer management */
329 uint64_t hdecr_next; /* Tick for next hdecr interrupt */
330 struct QEMUTimer *hdecr_timer;
331 uint64_t purr_load;
332 uint64_t purr_start;
333 void *opaque;
336 static always_inline uint64_t cpu_ppc_get_tb (ppc_tb_t *tb_env, uint64_t vmclk,
337 int64_t tb_offset)
339 /* TB time in tb periods */
340 return muldiv64(vmclk, tb_env->tb_freq, ticks_per_sec) + tb_offset;
343 uint32_t cpu_ppc_load_tbl (CPUState *env)
345 ppc_tb_t *tb_env = env->tb_env;
346 uint64_t tb;
348 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
349 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
351 return tb & 0xFFFFFFFF;
354 static always_inline uint32_t _cpu_ppc_load_tbu (CPUState *env)
356 ppc_tb_t *tb_env = env->tb_env;
357 uint64_t tb;
359 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
360 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
362 return tb >> 32;
365 uint32_t cpu_ppc_load_tbu (CPUState *env)
367 return _cpu_ppc_load_tbu(env);
370 static always_inline void cpu_ppc_store_tb (ppc_tb_t *tb_env, uint64_t vmclk,
371 int64_t *tb_offsetp,
372 uint64_t value)
374 *tb_offsetp = value - muldiv64(vmclk, tb_env->tb_freq, ticks_per_sec);
375 LOG_TB("%s: tb %016" PRIx64 " offset %08" PRIx64 "\n",
376 __func__, value, *tb_offsetp);
379 void cpu_ppc_store_tbl (CPUState *env, uint32_t value)
381 ppc_tb_t *tb_env = env->tb_env;
382 uint64_t tb;
384 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
385 tb &= 0xFFFFFFFF00000000ULL;
386 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
387 &tb_env->tb_offset, tb | (uint64_t)value);
390 static always_inline void _cpu_ppc_store_tbu (CPUState *env, uint32_t value)
392 ppc_tb_t *tb_env = env->tb_env;
393 uint64_t tb;
395 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->tb_offset);
396 tb &= 0x00000000FFFFFFFFULL;
397 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
398 &tb_env->tb_offset, ((uint64_t)value << 32) | tb);
401 void cpu_ppc_store_tbu (CPUState *env, uint32_t value)
403 _cpu_ppc_store_tbu(env, value);
406 uint32_t cpu_ppc_load_atbl (CPUState *env)
408 ppc_tb_t *tb_env = env->tb_env;
409 uint64_t tb;
411 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
412 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
414 return tb & 0xFFFFFFFF;
417 uint32_t cpu_ppc_load_atbu (CPUState *env)
419 ppc_tb_t *tb_env = env->tb_env;
420 uint64_t tb;
422 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
423 LOG_TB("%s: tb %016" PRIx64 "\n", __func__, tb);
425 return tb >> 32;
428 void cpu_ppc_store_atbl (CPUState *env, uint32_t value)
430 ppc_tb_t *tb_env = env->tb_env;
431 uint64_t tb;
433 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
434 tb &= 0xFFFFFFFF00000000ULL;
435 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
436 &tb_env->atb_offset, tb | (uint64_t)value);
439 void cpu_ppc_store_atbu (CPUState *env, uint32_t value)
441 ppc_tb_t *tb_env = env->tb_env;
442 uint64_t tb;
444 tb = cpu_ppc_get_tb(tb_env, qemu_get_clock(vm_clock), tb_env->atb_offset);
445 tb &= 0x00000000FFFFFFFFULL;
446 cpu_ppc_store_tb(tb_env, qemu_get_clock(vm_clock),
447 &tb_env->atb_offset, ((uint64_t)value << 32) | tb);
450 static void cpu_ppc_tb_stop (CPUState *env)
452 ppc_tb_t *tb_env = env->tb_env;
453 uint64_t tb, atb, vmclk;
455 /* If the time base is already frozen, do nothing */
456 if (tb_env->tb_freq != 0) {
457 vmclk = qemu_get_clock(vm_clock);
458 /* Get the time base */
459 tb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->tb_offset);
460 /* Get the alternate time base */
461 atb = cpu_ppc_get_tb(tb_env, vmclk, tb_env->atb_offset);
462 /* Store the time base value (ie compute the current offset) */
463 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
464 /* Store the alternate time base value (compute the current offset) */
465 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
466 /* Set the time base frequency to zero */
467 tb_env->tb_freq = 0;
468 /* Now, the time bases are frozen to tb_offset / atb_offset value */
472 static void cpu_ppc_tb_start (CPUState *env)
474 ppc_tb_t *tb_env = env->tb_env;
475 uint64_t tb, atb, vmclk;
477 /* If the time base is not frozen, do nothing */
478 if (tb_env->tb_freq == 0) {
479 vmclk = qemu_get_clock(vm_clock);
480 /* Get the time base from tb_offset */
481 tb = tb_env->tb_offset;
482 /* Get the alternate time base from atb_offset */
483 atb = tb_env->atb_offset;
484 /* Restore the tb frequency from the decrementer frequency */
485 tb_env->tb_freq = tb_env->decr_freq;
486 /* Store the time base value */
487 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->tb_offset, tb);
488 /* Store the alternate time base value */
489 cpu_ppc_store_tb(tb_env, vmclk, &tb_env->atb_offset, atb);
493 static always_inline uint32_t _cpu_ppc_load_decr (CPUState *env,
494 uint64_t *next)
496 ppc_tb_t *tb_env = env->tb_env;
497 uint32_t decr;
498 int64_t diff;
500 diff = tb_env->decr_next - qemu_get_clock(vm_clock);
501 if (diff >= 0)
502 decr = muldiv64(diff, tb_env->decr_freq, ticks_per_sec);
503 else
504 decr = -muldiv64(-diff, tb_env->decr_freq, ticks_per_sec);
505 LOG_TB("%s: %08" PRIx32 "\n", __func__, decr);
507 return decr;
510 uint32_t cpu_ppc_load_decr (CPUState *env)
512 ppc_tb_t *tb_env = env->tb_env;
514 return _cpu_ppc_load_decr(env, &tb_env->decr_next);
517 uint32_t cpu_ppc_load_hdecr (CPUState *env)
519 ppc_tb_t *tb_env = env->tb_env;
521 return _cpu_ppc_load_decr(env, &tb_env->hdecr_next);
524 uint64_t cpu_ppc_load_purr (CPUState *env)
526 ppc_tb_t *tb_env = env->tb_env;
527 uint64_t diff;
529 diff = qemu_get_clock(vm_clock) - tb_env->purr_start;
531 return tb_env->purr_load + muldiv64(diff, tb_env->tb_freq, ticks_per_sec);
534 /* When decrementer expires,
535 * all we need to do is generate or queue a CPU exception
537 static always_inline void cpu_ppc_decr_excp (CPUState *env)
539 /* Raise it */
540 LOG_TB("raise decrementer exception\n");
541 ppc_set_irq(env, PPC_INTERRUPT_DECR, 1);
544 static always_inline void cpu_ppc_hdecr_excp (CPUState *env)
546 /* Raise it */
547 LOG_TB("raise decrementer exception\n");
548 ppc_set_irq(env, PPC_INTERRUPT_HDECR, 1);
551 static void __cpu_ppc_store_decr (CPUState *env, uint64_t *nextp,
552 struct QEMUTimer *timer,
553 void (*raise_excp)(CPUState *),
554 uint32_t decr, uint32_t value,
555 int is_excp)
557 ppc_tb_t *tb_env = env->tb_env;
558 uint64_t now, next;
560 LOG_TB("%s: %08" PRIx32 " => %08" PRIx32 "\n", __func__,
561 decr, value);
562 now = qemu_get_clock(vm_clock);
563 next = now + muldiv64(value, ticks_per_sec, tb_env->decr_freq);
564 if (is_excp)
565 next += *nextp - now;
566 if (next == now)
567 next++;
568 *nextp = next;
569 /* Adjust timer */
570 qemu_mod_timer(timer, next);
571 /* If we set a negative value and the decrementer was positive,
572 * raise an exception.
574 if ((value & 0x80000000) && !(decr & 0x80000000))
575 (*raise_excp)(env);
578 static always_inline void _cpu_ppc_store_decr (CPUState *env, uint32_t decr,
579 uint32_t value, int is_excp)
581 ppc_tb_t *tb_env = env->tb_env;
583 __cpu_ppc_store_decr(env, &tb_env->decr_next, tb_env->decr_timer,
584 &cpu_ppc_decr_excp, decr, value, is_excp);
587 void cpu_ppc_store_decr (CPUState *env, uint32_t value)
589 _cpu_ppc_store_decr(env, cpu_ppc_load_decr(env), value, 0);
592 static void cpu_ppc_decr_cb (void *opaque)
594 _cpu_ppc_store_decr(opaque, 0x00000000, 0xFFFFFFFF, 1);
597 static always_inline void _cpu_ppc_store_hdecr (CPUState *env, uint32_t hdecr,
598 uint32_t value, int is_excp)
600 ppc_tb_t *tb_env = env->tb_env;
602 if (tb_env->hdecr_timer != NULL) {
603 __cpu_ppc_store_decr(env, &tb_env->hdecr_next, tb_env->hdecr_timer,
604 &cpu_ppc_hdecr_excp, hdecr, value, is_excp);
608 void cpu_ppc_store_hdecr (CPUState *env, uint32_t value)
610 _cpu_ppc_store_hdecr(env, cpu_ppc_load_hdecr(env), value, 0);
613 static void cpu_ppc_hdecr_cb (void *opaque)
615 _cpu_ppc_store_hdecr(opaque, 0x00000000, 0xFFFFFFFF, 1);
618 void cpu_ppc_store_purr (CPUState *env, uint64_t value)
620 ppc_tb_t *tb_env = env->tb_env;
622 tb_env->purr_load = value;
623 tb_env->purr_start = qemu_get_clock(vm_clock);
626 static void cpu_ppc_set_tb_clk (void *opaque, uint32_t freq)
628 CPUState *env = opaque;
629 ppc_tb_t *tb_env = env->tb_env;
631 tb_env->tb_freq = freq;
632 tb_env->decr_freq = freq;
633 /* There is a bug in Linux 2.4 kernels:
634 * if a decrementer exception is pending when it enables msr_ee at startup,
635 * it's not ready to handle it...
637 _cpu_ppc_store_decr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
638 _cpu_ppc_store_hdecr(env, 0xFFFFFFFF, 0xFFFFFFFF, 0);
639 cpu_ppc_store_purr(env, 0x0000000000000000ULL);
642 /* Set up (once) timebase frequency (in Hz) */
643 clk_setup_cb cpu_ppc_tb_init (CPUState *env, uint32_t freq)
645 ppc_tb_t *tb_env;
647 tb_env = qemu_mallocz(sizeof(ppc_tb_t));
648 env->tb_env = tb_env;
649 /* Create new timer */
650 tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_ppc_decr_cb, env);
651 if (0) {
652 /* XXX: find a suitable condition to enable the hypervisor decrementer
654 tb_env->hdecr_timer = qemu_new_timer(vm_clock, &cpu_ppc_hdecr_cb, env);
655 } else {
656 tb_env->hdecr_timer = NULL;
658 cpu_ppc_set_tb_clk(env, freq);
660 return &cpu_ppc_set_tb_clk;
663 /* Specific helpers for POWER & PowerPC 601 RTC */
664 #if 0
665 static clk_setup_cb cpu_ppc601_rtc_init (CPUState *env)
667 return cpu_ppc_tb_init(env, 7812500);
669 #endif
671 void cpu_ppc601_store_rtcu (CPUState *env, uint32_t value)
673 _cpu_ppc_store_tbu(env, value);
676 uint32_t cpu_ppc601_load_rtcu (CPUState *env)
678 return _cpu_ppc_load_tbu(env);
681 void cpu_ppc601_store_rtcl (CPUState *env, uint32_t value)
683 cpu_ppc_store_tbl(env, value & 0x3FFFFF80);
686 uint32_t cpu_ppc601_load_rtcl (CPUState *env)
688 return cpu_ppc_load_tbl(env) & 0x3FFFFF80;
691 /*****************************************************************************/
692 /* Embedded PowerPC timers */
694 /* PIT, FIT & WDT */
695 typedef struct ppcemb_timer_t ppcemb_timer_t;
696 struct ppcemb_timer_t {
697 uint64_t pit_reload; /* PIT auto-reload value */
698 uint64_t fit_next; /* Tick for next FIT interrupt */
699 struct QEMUTimer *fit_timer;
700 uint64_t wdt_next; /* Tick for next WDT interrupt */
701 struct QEMUTimer *wdt_timer;
704 /* Fixed interval timer */
705 static void cpu_4xx_fit_cb (void *opaque)
707 CPUState *env;
708 ppc_tb_t *tb_env;
709 ppcemb_timer_t *ppcemb_timer;
710 uint64_t now, next;
712 env = opaque;
713 tb_env = env->tb_env;
714 ppcemb_timer = tb_env->opaque;
715 now = qemu_get_clock(vm_clock);
716 switch ((env->spr[SPR_40x_TCR] >> 24) & 0x3) {
717 case 0:
718 next = 1 << 9;
719 break;
720 case 1:
721 next = 1 << 13;
722 break;
723 case 2:
724 next = 1 << 17;
725 break;
726 case 3:
727 next = 1 << 21;
728 break;
729 default:
730 /* Cannot occur, but makes gcc happy */
731 return;
733 next = now + muldiv64(next, ticks_per_sec, tb_env->tb_freq);
734 if (next == now)
735 next++;
736 qemu_mod_timer(ppcemb_timer->fit_timer, next);
737 env->spr[SPR_40x_TSR] |= 1 << 26;
738 if ((env->spr[SPR_40x_TCR] >> 23) & 0x1)
739 ppc_set_irq(env, PPC_INTERRUPT_FIT, 1);
740 LOG_TB("%s: ir %d TCR " ADDRX " TSR " ADDRX "\n", __func__,
741 (int)((env->spr[SPR_40x_TCR] >> 23) & 0x1),
742 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
745 /* Programmable interval timer */
746 static void start_stop_pit (CPUState *env, ppc_tb_t *tb_env, int is_excp)
748 ppcemb_timer_t *ppcemb_timer;
749 uint64_t now, next;
751 ppcemb_timer = tb_env->opaque;
752 if (ppcemb_timer->pit_reload <= 1 ||
753 !((env->spr[SPR_40x_TCR] >> 26) & 0x1) ||
754 (is_excp && !((env->spr[SPR_40x_TCR] >> 22) & 0x1))) {
755 /* Stop PIT */
756 LOG_TB("%s: stop PIT\n", __func__);
757 qemu_del_timer(tb_env->decr_timer);
758 } else {
759 LOG_TB("%s: start PIT %016" PRIx64 "\n",
760 __func__, ppcemb_timer->pit_reload);
761 now = qemu_get_clock(vm_clock);
762 next = now + muldiv64(ppcemb_timer->pit_reload,
763 ticks_per_sec, tb_env->decr_freq);
764 if (is_excp)
765 next += tb_env->decr_next - now;
766 if (next == now)
767 next++;
768 qemu_mod_timer(tb_env->decr_timer, next);
769 tb_env->decr_next = next;
773 static void cpu_4xx_pit_cb (void *opaque)
775 CPUState *env;
776 ppc_tb_t *tb_env;
777 ppcemb_timer_t *ppcemb_timer;
779 env = opaque;
780 tb_env = env->tb_env;
781 ppcemb_timer = tb_env->opaque;
782 env->spr[SPR_40x_TSR] |= 1 << 27;
783 if ((env->spr[SPR_40x_TCR] >> 26) & 0x1)
784 ppc_set_irq(env, PPC_INTERRUPT_PIT, 1);
785 start_stop_pit(env, tb_env, 1);
786 LOG_TB("%s: ar %d ir %d TCR " ADDRX " TSR " ADDRX " "
787 "%016" PRIx64 "\n", __func__,
788 (int)((env->spr[SPR_40x_TCR] >> 22) & 0x1),
789 (int)((env->spr[SPR_40x_TCR] >> 26) & 0x1),
790 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR],
791 ppcemb_timer->pit_reload);
794 /* Watchdog timer */
795 static void cpu_4xx_wdt_cb (void *opaque)
797 CPUState *env;
798 ppc_tb_t *tb_env;
799 ppcemb_timer_t *ppcemb_timer;
800 uint64_t now, next;
802 env = opaque;
803 tb_env = env->tb_env;
804 ppcemb_timer = tb_env->opaque;
805 now = qemu_get_clock(vm_clock);
806 switch ((env->spr[SPR_40x_TCR] >> 30) & 0x3) {
807 case 0:
808 next = 1 << 17;
809 break;
810 case 1:
811 next = 1 << 21;
812 break;
813 case 2:
814 next = 1 << 25;
815 break;
816 case 3:
817 next = 1 << 29;
818 break;
819 default:
820 /* Cannot occur, but makes gcc happy */
821 return;
823 next = now + muldiv64(next, ticks_per_sec, tb_env->decr_freq);
824 if (next == now)
825 next++;
826 LOG_TB("%s: TCR " ADDRX " TSR " ADDRX "\n", __func__,
827 env->spr[SPR_40x_TCR], env->spr[SPR_40x_TSR]);
828 switch ((env->spr[SPR_40x_TSR] >> 30) & 0x3) {
829 case 0x0:
830 case 0x1:
831 qemu_mod_timer(ppcemb_timer->wdt_timer, next);
832 ppcemb_timer->wdt_next = next;
833 env->spr[SPR_40x_TSR] |= 1 << 31;
834 break;
835 case 0x2:
836 qemu_mod_timer(ppcemb_timer->wdt_timer, next);
837 ppcemb_timer->wdt_next = next;
838 env->spr[SPR_40x_TSR] |= 1 << 30;
839 if ((env->spr[SPR_40x_TCR] >> 27) & 0x1)
840 ppc_set_irq(env, PPC_INTERRUPT_WDT, 1);
841 break;
842 case 0x3:
843 env->spr[SPR_40x_TSR] &= ~0x30000000;
844 env->spr[SPR_40x_TSR] |= env->spr[SPR_40x_TCR] & 0x30000000;
845 switch ((env->spr[SPR_40x_TCR] >> 28) & 0x3) {
846 case 0x0:
847 /* No reset */
848 break;
849 case 0x1: /* Core reset */
850 ppc40x_core_reset(env);
851 break;
852 case 0x2: /* Chip reset */
853 ppc40x_chip_reset(env);
854 break;
855 case 0x3: /* System reset */
856 ppc40x_system_reset(env);
857 break;
862 void store_40x_pit (CPUState *env, target_ulong val)
864 ppc_tb_t *tb_env;
865 ppcemb_timer_t *ppcemb_timer;
867 tb_env = env->tb_env;
868 ppcemb_timer = tb_env->opaque;
869 LOG_TB("%s val" ADDRX "\n", __func__, val);
870 ppcemb_timer->pit_reload = val;
871 start_stop_pit(env, tb_env, 0);
874 target_ulong load_40x_pit (CPUState *env)
876 return cpu_ppc_load_decr(env);
879 void store_booke_tsr (CPUState *env, target_ulong val)
881 LOG_TB("%s: val " ADDRX "\n", __func__, val);
882 env->spr[SPR_40x_TSR] &= ~(val & 0xFC000000);
883 if (val & 0x80000000)
884 ppc_set_irq(env, PPC_INTERRUPT_PIT, 0);
887 void store_booke_tcr (CPUState *env, target_ulong val)
889 ppc_tb_t *tb_env;
891 tb_env = env->tb_env;
892 LOG_TB("%s: val " ADDRX "\n", __func__, val);
893 env->spr[SPR_40x_TCR] = val & 0xFFC00000;
894 start_stop_pit(env, tb_env, 1);
895 cpu_4xx_wdt_cb(env);
898 static void ppc_emb_set_tb_clk (void *opaque, uint32_t freq)
900 CPUState *env = opaque;
901 ppc_tb_t *tb_env = env->tb_env;
903 LOG_TB("%s set new frequency to %" PRIu32 "\n", __func__,
904 freq);
905 tb_env->tb_freq = freq;
906 tb_env->decr_freq = freq;
907 /* XXX: we should also update all timers */
910 clk_setup_cb ppc_emb_timers_init (CPUState *env, uint32_t freq)
912 ppc_tb_t *tb_env;
913 ppcemb_timer_t *ppcemb_timer;
915 tb_env = qemu_mallocz(sizeof(ppc_tb_t));
916 env->tb_env = tb_env;
917 ppcemb_timer = qemu_mallocz(sizeof(ppcemb_timer_t));
918 tb_env->tb_freq = freq;
919 tb_env->decr_freq = freq;
920 tb_env->opaque = ppcemb_timer;
921 LOG_TB("%s freq %" PRIu32 "\n", __func__, freq);
922 if (ppcemb_timer != NULL) {
923 /* We use decr timer for PIT */
924 tb_env->decr_timer = qemu_new_timer(vm_clock, &cpu_4xx_pit_cb, env);
925 ppcemb_timer->fit_timer =
926 qemu_new_timer(vm_clock, &cpu_4xx_fit_cb, env);
927 ppcemb_timer->wdt_timer =
928 qemu_new_timer(vm_clock, &cpu_4xx_wdt_cb, env);
931 return &ppc_emb_set_tb_clk;
934 /*****************************************************************************/
935 /* Embedded PowerPC Device Control Registers */
936 typedef struct ppc_dcrn_t ppc_dcrn_t;
937 struct ppc_dcrn_t {
938 dcr_read_cb dcr_read;
939 dcr_write_cb dcr_write;
940 void *opaque;
943 /* XXX: on 460, DCR addresses are 32 bits wide,
944 * using DCRIPR to get the 22 upper bits of the DCR address
946 #define DCRN_NB 1024
947 struct ppc_dcr_t {
948 ppc_dcrn_t dcrn[DCRN_NB];
949 int (*read_error)(int dcrn);
950 int (*write_error)(int dcrn);
953 int ppc_dcr_read (ppc_dcr_t *dcr_env, int dcrn, target_ulong *valp)
955 ppc_dcrn_t *dcr;
957 if (dcrn < 0 || dcrn >= DCRN_NB)
958 goto error;
959 dcr = &dcr_env->dcrn[dcrn];
960 if (dcr->dcr_read == NULL)
961 goto error;
962 *valp = (*dcr->dcr_read)(dcr->opaque, dcrn);
964 return 0;
966 error:
967 if (dcr_env->read_error != NULL)
968 return (*dcr_env->read_error)(dcrn);
970 return -1;
973 int ppc_dcr_write (ppc_dcr_t *dcr_env, int dcrn, target_ulong val)
975 ppc_dcrn_t *dcr;
977 if (dcrn < 0 || dcrn >= DCRN_NB)
978 goto error;
979 dcr = &dcr_env->dcrn[dcrn];
980 if (dcr->dcr_write == NULL)
981 goto error;
982 (*dcr->dcr_write)(dcr->opaque, dcrn, val);
984 return 0;
986 error:
987 if (dcr_env->write_error != NULL)
988 return (*dcr_env->write_error)(dcrn);
990 return -1;
993 int ppc_dcr_register (CPUState *env, int dcrn, void *opaque,
994 dcr_read_cb dcr_read, dcr_write_cb dcr_write)
996 ppc_dcr_t *dcr_env;
997 ppc_dcrn_t *dcr;
999 dcr_env = env->dcr_env;
1000 if (dcr_env == NULL)
1001 return -1;
1002 if (dcrn < 0 || dcrn >= DCRN_NB)
1003 return -1;
1004 dcr = &dcr_env->dcrn[dcrn];
1005 if (dcr->opaque != NULL ||
1006 dcr->dcr_read != NULL ||
1007 dcr->dcr_write != NULL)
1008 return -1;
1009 dcr->opaque = opaque;
1010 dcr->dcr_read = dcr_read;
1011 dcr->dcr_write = dcr_write;
1013 return 0;
1016 int ppc_dcr_init (CPUState *env, int (*read_error)(int dcrn),
1017 int (*write_error)(int dcrn))
1019 ppc_dcr_t *dcr_env;
1021 dcr_env = qemu_mallocz(sizeof(ppc_dcr_t));
1022 dcr_env->read_error = read_error;
1023 dcr_env->write_error = write_error;
1024 env->dcr_env = dcr_env;
1026 return 0;
1029 #if 0
1030 /*****************************************************************************/
1031 /* Handle system reset (for now, just stop emulation) */
1032 void cpu_ppc_reset (CPUState *env)
1034 printf("Reset asked... Stop emulation\n");
1035 abort();
1037 #endif
1039 /*****************************************************************************/
1040 /* Debug port */
1041 void PPC_debug_write (void *opaque, uint32_t addr, uint32_t val)
1043 addr &= 0xF;
1044 switch (addr) {
1045 case 0:
1046 printf("%c", val);
1047 break;
1048 case 1:
1049 printf("\n");
1050 fflush(stdout);
1051 break;
1052 case 2:
1053 printf("Set loglevel to %04" PRIx32 "\n", val);
1054 cpu_set_log(val | 0x100);
1055 break;
1059 /*****************************************************************************/
1060 /* NVRAM helpers */
1061 static inline uint32_t nvram_read (nvram_t *nvram, uint32_t addr)
1063 return (*nvram->read_fn)(nvram->opaque, addr);;
1066 static inline void nvram_write (nvram_t *nvram, uint32_t addr, uint32_t val)
1068 (*nvram->write_fn)(nvram->opaque, addr, val);
1071 void NVRAM_set_byte (nvram_t *nvram, uint32_t addr, uint8_t value)
1073 nvram_write(nvram, addr, value);
1076 uint8_t NVRAM_get_byte (nvram_t *nvram, uint32_t addr)
1078 return nvram_read(nvram, addr);
1081 void NVRAM_set_word (nvram_t *nvram, uint32_t addr, uint16_t value)
1083 nvram_write(nvram, addr, value >> 8);
1084 nvram_write(nvram, addr + 1, value & 0xFF);
1087 uint16_t NVRAM_get_word (nvram_t *nvram, uint32_t addr)
1089 uint16_t tmp;
1091 tmp = nvram_read(nvram, addr) << 8;
1092 tmp |= nvram_read(nvram, addr + 1);
1094 return tmp;
1097 void NVRAM_set_lword (nvram_t *nvram, uint32_t addr, uint32_t value)
1099 nvram_write(nvram, addr, value >> 24);
1100 nvram_write(nvram, addr + 1, (value >> 16) & 0xFF);
1101 nvram_write(nvram, addr + 2, (value >> 8) & 0xFF);
1102 nvram_write(nvram, addr + 3, value & 0xFF);
1105 uint32_t NVRAM_get_lword (nvram_t *nvram, uint32_t addr)
1107 uint32_t tmp;
1109 tmp = nvram_read(nvram, addr) << 24;
1110 tmp |= nvram_read(nvram, addr + 1) << 16;
1111 tmp |= nvram_read(nvram, addr + 2) << 8;
1112 tmp |= nvram_read(nvram, addr + 3);
1114 return tmp;
1117 void NVRAM_set_string (nvram_t *nvram, uint32_t addr,
1118 const char *str, uint32_t max)
1120 int i;
1122 for (i = 0; i < max && str[i] != '\0'; i++) {
1123 nvram_write(nvram, addr + i, str[i]);
1125 nvram_write(nvram, addr + i, str[i]);
1126 nvram_write(nvram, addr + max - 1, '\0');
1129 int NVRAM_get_string (nvram_t *nvram, uint8_t *dst, uint16_t addr, int max)
1131 int i;
1133 memset(dst, 0, max);
1134 for (i = 0; i < max; i++) {
1135 dst[i] = NVRAM_get_byte(nvram, addr + i);
1136 if (dst[i] == '\0')
1137 break;
1140 return i;
1143 static uint16_t NVRAM_crc_update (uint16_t prev, uint16_t value)
1145 uint16_t tmp;
1146 uint16_t pd, pd1, pd2;
1148 tmp = prev >> 8;
1149 pd = prev ^ value;
1150 pd1 = pd & 0x000F;
1151 pd2 = ((pd >> 4) & 0x000F) ^ pd1;
1152 tmp ^= (pd1 << 3) | (pd1 << 8);
1153 tmp ^= pd2 | (pd2 << 7) | (pd2 << 12);
1155 return tmp;
1158 static uint16_t NVRAM_compute_crc (nvram_t *nvram, uint32_t start, uint32_t count)
1160 uint32_t i;
1161 uint16_t crc = 0xFFFF;
1162 int odd;
1164 odd = count & 1;
1165 count &= ~1;
1166 for (i = 0; i != count; i++) {
1167 crc = NVRAM_crc_update(crc, NVRAM_get_word(nvram, start + i));
1169 if (odd) {
1170 crc = NVRAM_crc_update(crc, NVRAM_get_byte(nvram, start + i) << 8);
1173 return crc;
1176 #define CMDLINE_ADDR 0x017ff000
1178 int PPC_NVRAM_set_params (nvram_t *nvram, uint16_t NVRAM_size,
1179 const char *arch,
1180 uint32_t RAM_size, int boot_device,
1181 uint32_t kernel_image, uint32_t kernel_size,
1182 const char *cmdline,
1183 uint32_t initrd_image, uint32_t initrd_size,
1184 uint32_t NVRAM_image,
1185 int width, int height, int depth)
1187 uint16_t crc;
1189 /* Set parameters for Open Hack'Ware BIOS */
1190 NVRAM_set_string(nvram, 0x00, "QEMU_BIOS", 16);
1191 NVRAM_set_lword(nvram, 0x10, 0x00000002); /* structure v2 */
1192 NVRAM_set_word(nvram, 0x14, NVRAM_size);
1193 NVRAM_set_string(nvram, 0x20, arch, 16);
1194 NVRAM_set_lword(nvram, 0x30, RAM_size);
1195 NVRAM_set_byte(nvram, 0x34, boot_device);
1196 NVRAM_set_lword(nvram, 0x38, kernel_image);
1197 NVRAM_set_lword(nvram, 0x3C, kernel_size);
1198 if (cmdline) {
1199 /* XXX: put the cmdline in NVRAM too ? */
1200 strcpy((char *)(phys_ram_base + CMDLINE_ADDR), cmdline);
1201 NVRAM_set_lword(nvram, 0x40, CMDLINE_ADDR);
1202 NVRAM_set_lword(nvram, 0x44, strlen(cmdline));
1203 } else {
1204 NVRAM_set_lword(nvram, 0x40, 0);
1205 NVRAM_set_lword(nvram, 0x44, 0);
1207 NVRAM_set_lword(nvram, 0x48, initrd_image);
1208 NVRAM_set_lword(nvram, 0x4C, initrd_size);
1209 NVRAM_set_lword(nvram, 0x50, NVRAM_image);
1211 NVRAM_set_word(nvram, 0x54, width);
1212 NVRAM_set_word(nvram, 0x56, height);
1213 NVRAM_set_word(nvram, 0x58, depth);
1214 crc = NVRAM_compute_crc(nvram, 0x00, 0xF8);
1215 NVRAM_set_word(nvram, 0xFC, crc);
1217 return 0;