2 * QEMU generic PowerPC hardware System Emulator
4 * Copyright (c) 2003-2007 Jocelyn Mayer
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
26 #include "qemu-timer.h"
31 //#define PPC_DEBUG_IRQ
32 //#define PPC_DEBUG_TB
35 # define LOG_IRQ(...) qemu_log_mask(CPU_LOG_INT, ## __VA_ARGS__)
37 # define LOG_IRQ(...) do { } while (0)
42 # define LOG_TB(...) qemu_log(__VA_ARGS__)
44 # define LOG_TB(...) do { } while (0)
47 static void cpu_ppc_tb_stop (CPUState
*env
);
48 static void cpu_ppc_tb_start (CPUState
*env
);
50 static void ppc_set_irq (CPUState
*env
, int n_IRQ
, int level
)
53 env
->pending_interrupts
|= 1 << n_IRQ
;
54 cpu_interrupt(env
, CPU_INTERRUPT_HARD
);
56 env
->pending_interrupts
&= ~(1 << n_IRQ
);
57 if (env
->pending_interrupts
== 0)
58 cpu_reset_interrupt(env
, CPU_INTERRUPT_HARD
);
60 LOG_IRQ("%s: %p n_IRQ %d level %d => pending %08" PRIx32
61 "req %08x\n", __func__
, env
, n_IRQ
, level
,
62 env
->pending_interrupts
, env
->interrupt_request
);
65 /* PowerPC 6xx / 7xx internal IRQ controller */
66 static void ppc6xx_set_irq (void *opaque
, int pin
, int level
)
68 CPUState
*env
= opaque
;
71 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
73 cur_level
= (env
->irq_input_state
>> pin
) & 1;
74 /* Don't generate spurious events */
75 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
77 case PPC6xx_INPUT_TBEN
:
78 /* Level sensitive - active high */
79 LOG_IRQ("%s: %s the time base\n",
80 __func__
, level
? "start" : "stop");
82 cpu_ppc_tb_start(env
);
86 case PPC6xx_INPUT_INT
:
87 /* Level sensitive - active high */
88 LOG_IRQ("%s: set the external IRQ state to %d\n",
90 ppc_set_irq(env
, PPC_INTERRUPT_EXT
, level
);
92 case PPC6xx_INPUT_SMI
:
93 /* Level sensitive - active high */
94 LOG_IRQ("%s: set the SMI IRQ state to %d\n",
96 ppc_set_irq(env
, PPC_INTERRUPT_SMI
, level
);
98 case PPC6xx_INPUT_MCP
:
99 /* Negative edge sensitive */
100 /* XXX: TODO: actual reaction may depends on HID0 status
101 * 603/604/740/750: check HID0[EMCP]
103 if (cur_level
== 1 && level
== 0) {
104 LOG_IRQ("%s: raise machine check state\n",
106 ppc_set_irq(env
, PPC_INTERRUPT_MCK
, 1);
109 case PPC6xx_INPUT_CKSTP_IN
:
110 /* Level sensitive - active low */
111 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
112 /* XXX: Note that the only way to restart the CPU is to reset it */
114 LOG_IRQ("%s: stop the CPU\n", __func__
);
118 case PPC6xx_INPUT_HRESET
:
119 /* Level sensitive - active low */
121 LOG_IRQ("%s: reset the CPU\n", __func__
);
122 env
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
127 qemu_system_reset_request();
131 case PPC6xx_INPUT_SRESET
:
132 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
134 ppc_set_irq(env
, PPC_INTERRUPT_RESET
, level
);
137 /* Unknown pin - do nothing */
138 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
142 env
->irq_input_state
|= 1 << pin
;
144 env
->irq_input_state
&= ~(1 << pin
);
148 void ppc6xx_irq_init (CPUState
*env
)
150 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc6xx_set_irq
, env
,
154 #if defined(TARGET_PPC64)
155 /* PowerPC 970 internal IRQ controller */
156 static void ppc970_set_irq (void *opaque
, int pin
, int level
)
158 CPUState
*env
= opaque
;
161 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
163 cur_level
= (env
->irq_input_state
>> pin
) & 1;
164 /* Don't generate spurious events */
165 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
167 case PPC970_INPUT_INT
:
168 /* Level sensitive - active high */
169 LOG_IRQ("%s: set the external IRQ state to %d\n",
171 ppc_set_irq(env
, PPC_INTERRUPT_EXT
, level
);
173 case PPC970_INPUT_THINT
:
174 /* Level sensitive - active high */
175 LOG_IRQ("%s: set the SMI IRQ state to %d\n", __func__
,
177 ppc_set_irq(env
, PPC_INTERRUPT_THERM
, level
);
179 case PPC970_INPUT_MCP
:
180 /* Negative edge sensitive */
181 /* XXX: TODO: actual reaction may depends on HID0 status
182 * 603/604/740/750: check HID0[EMCP]
184 if (cur_level
== 1 && level
== 0) {
185 LOG_IRQ("%s: raise machine check state\n",
187 ppc_set_irq(env
, PPC_INTERRUPT_MCK
, 1);
190 case PPC970_INPUT_CKSTP
:
191 /* Level sensitive - active low */
192 /* XXX: TODO: relay the signal to CKSTP_OUT pin */
194 LOG_IRQ("%s: stop the CPU\n", __func__
);
197 LOG_IRQ("%s: restart the CPU\n", __func__
);
201 case PPC970_INPUT_HRESET
:
202 /* Level sensitive - active low */
205 LOG_IRQ("%s: reset the CPU\n", __func__
);
210 case PPC970_INPUT_SRESET
:
211 LOG_IRQ("%s: set the RESET IRQ state to %d\n",
213 ppc_set_irq(env
, PPC_INTERRUPT_RESET
, level
);
215 case PPC970_INPUT_TBEN
:
216 LOG_IRQ("%s: set the TBEN state to %d\n", __func__
,
221 /* Unknown pin - do nothing */
222 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
226 env
->irq_input_state
|= 1 << pin
;
228 env
->irq_input_state
&= ~(1 << pin
);
232 void ppc970_irq_init (CPUState
*env
)
234 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc970_set_irq
, env
,
237 #endif /* defined(TARGET_PPC64) */
239 /* PowerPC 40x internal IRQ controller */
240 static void ppc40x_set_irq (void *opaque
, int pin
, int level
)
242 CPUState
*env
= opaque
;
245 LOG_IRQ("%s: env %p pin %d level %d\n", __func__
,
247 cur_level
= (env
->irq_input_state
>> pin
) & 1;
248 /* Don't generate spurious events */
249 if ((cur_level
== 1 && level
== 0) || (cur_level
== 0 && level
!= 0)) {
251 case PPC40x_INPUT_RESET_SYS
:
253 LOG_IRQ("%s: reset the PowerPC system\n",
255 ppc40x_system_reset(env
);
258 case PPC40x_INPUT_RESET_CHIP
:
260 LOG_IRQ("%s: reset the PowerPC chip\n", __func__
);
261 ppc40x_chip_reset(env
);
264 case PPC40x_INPUT_RESET_CORE
:
265 /* XXX: TODO: update DBSR[MRR] */
267 LOG_IRQ("%s: reset the PowerPC core\n", __func__
);
268 ppc40x_core_reset(env
);
271 case PPC40x_INPUT_CINT
:
272 /* Level sensitive - active high */
273 LOG_IRQ("%s: set the critical IRQ state to %d\n",
275 ppc_set_irq(env
, PPC_INTERRUPT_CEXT
, level
);
277 case PPC40x_INPUT_INT
:
278 /* Level sensitive - active high */
279 LOG_IRQ("%s: set the external IRQ state to %d\n",
281 ppc_set_irq(env
, PPC_INTERRUPT_EXT
, level
);
283 case PPC40x_INPUT_HALT
:
284 /* Level sensitive - active low */
286 LOG_IRQ("%s: stop the CPU\n", __func__
);
289 LOG_IRQ("%s: restart the CPU\n", __func__
);
293 case PPC40x_INPUT_DEBUG
:
294 /* Level sensitive - active high */
295 LOG_IRQ("%s: set the debug pin state to %d\n",
297 ppc_set_irq(env
, PPC_INTERRUPT_DEBUG
, level
);
300 /* Unknown pin - do nothing */
301 LOG_IRQ("%s: unknown IRQ pin %d\n", __func__
, pin
);
305 env
->irq_input_state
|= 1 << pin
;
307 env
->irq_input_state
&= ~(1 << pin
);
311 void ppc40x_irq_init (CPUState
*env
)
313 env
->irq_inputs
= (void **)qemu_allocate_irqs(&ppc40x_set_irq
,
314 env
, PPC40x_INPUT_NB
);
317 /*****************************************************************************/
318 /* PowerPC time base and decrementer emulation */
320 /* Time base management */
321 int64_t tb_offset
; /* Compensation */
322 int64_t atb_offset
; /* Compensation */
323 uint32_t tb_freq
; /* TB frequency */
324 /* Decrementer management */
325 uint64_t decr_next
; /* Tick for next decr interrupt */
326 uint32_t decr_freq
; /* decrementer frequency */
327 struct QEMUTimer
*decr_timer
;
328 /* Hypervisor decrementer management */
329 uint64_t hdecr_next
; /* Tick for next hdecr interrupt */
330 struct QEMUTimer
*hdecr_timer
;
336 static always_inline
uint64_t cpu_ppc_get_tb (ppc_tb_t
*tb_env
, uint64_t vmclk
,
339 /* TB time in tb periods */
340 return muldiv64(vmclk
, tb_env
->tb_freq
, ticks_per_sec
) + tb_offset
;
343 uint32_t cpu_ppc_load_tbl (CPUState
*env
)
345 ppc_tb_t
*tb_env
= env
->tb_env
;
348 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock(vm_clock
), tb_env
->tb_offset
);
349 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
351 return tb
& 0xFFFFFFFF;
354 static always_inline
uint32_t _cpu_ppc_load_tbu (CPUState
*env
)
356 ppc_tb_t
*tb_env
= env
->tb_env
;
359 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock(vm_clock
), tb_env
->tb_offset
);
360 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
365 uint32_t cpu_ppc_load_tbu (CPUState
*env
)
367 return _cpu_ppc_load_tbu(env
);
370 static always_inline
void cpu_ppc_store_tb (ppc_tb_t
*tb_env
, uint64_t vmclk
,
374 *tb_offsetp
= value
- muldiv64(vmclk
, tb_env
->tb_freq
, ticks_per_sec
);
375 LOG_TB("%s: tb %016" PRIx64
" offset %08" PRIx64
"\n",
376 __func__
, value
, *tb_offsetp
);
379 void cpu_ppc_store_tbl (CPUState
*env
, uint32_t value
)
381 ppc_tb_t
*tb_env
= env
->tb_env
;
384 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock(vm_clock
), tb_env
->tb_offset
);
385 tb
&= 0xFFFFFFFF00000000ULL
;
386 cpu_ppc_store_tb(tb_env
, qemu_get_clock(vm_clock
),
387 &tb_env
->tb_offset
, tb
| (uint64_t)value
);
390 static always_inline
void _cpu_ppc_store_tbu (CPUState
*env
, uint32_t value
)
392 ppc_tb_t
*tb_env
= env
->tb_env
;
395 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock(vm_clock
), tb_env
->tb_offset
);
396 tb
&= 0x00000000FFFFFFFFULL
;
397 cpu_ppc_store_tb(tb_env
, qemu_get_clock(vm_clock
),
398 &tb_env
->tb_offset
, ((uint64_t)value
<< 32) | tb
);
401 void cpu_ppc_store_tbu (CPUState
*env
, uint32_t value
)
403 _cpu_ppc_store_tbu(env
, value
);
406 uint32_t cpu_ppc_load_atbl (CPUState
*env
)
408 ppc_tb_t
*tb_env
= env
->tb_env
;
411 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock(vm_clock
), tb_env
->atb_offset
);
412 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
414 return tb
& 0xFFFFFFFF;
417 uint32_t cpu_ppc_load_atbu (CPUState
*env
)
419 ppc_tb_t
*tb_env
= env
->tb_env
;
422 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock(vm_clock
), tb_env
->atb_offset
);
423 LOG_TB("%s: tb %016" PRIx64
"\n", __func__
, tb
);
428 void cpu_ppc_store_atbl (CPUState
*env
, uint32_t value
)
430 ppc_tb_t
*tb_env
= env
->tb_env
;
433 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock(vm_clock
), tb_env
->atb_offset
);
434 tb
&= 0xFFFFFFFF00000000ULL
;
435 cpu_ppc_store_tb(tb_env
, qemu_get_clock(vm_clock
),
436 &tb_env
->atb_offset
, tb
| (uint64_t)value
);
439 void cpu_ppc_store_atbu (CPUState
*env
, uint32_t value
)
441 ppc_tb_t
*tb_env
= env
->tb_env
;
444 tb
= cpu_ppc_get_tb(tb_env
, qemu_get_clock(vm_clock
), tb_env
->atb_offset
);
445 tb
&= 0x00000000FFFFFFFFULL
;
446 cpu_ppc_store_tb(tb_env
, qemu_get_clock(vm_clock
),
447 &tb_env
->atb_offset
, ((uint64_t)value
<< 32) | tb
);
450 static void cpu_ppc_tb_stop (CPUState
*env
)
452 ppc_tb_t
*tb_env
= env
->tb_env
;
453 uint64_t tb
, atb
, vmclk
;
455 /* If the time base is already frozen, do nothing */
456 if (tb_env
->tb_freq
!= 0) {
457 vmclk
= qemu_get_clock(vm_clock
);
458 /* Get the time base */
459 tb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->tb_offset
);
460 /* Get the alternate time base */
461 atb
= cpu_ppc_get_tb(tb_env
, vmclk
, tb_env
->atb_offset
);
462 /* Store the time base value (ie compute the current offset) */
463 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
464 /* Store the alternate time base value (compute the current offset) */
465 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
466 /* Set the time base frequency to zero */
468 /* Now, the time bases are frozen to tb_offset / atb_offset value */
472 static void cpu_ppc_tb_start (CPUState
*env
)
474 ppc_tb_t
*tb_env
= env
->tb_env
;
475 uint64_t tb
, atb
, vmclk
;
477 /* If the time base is not frozen, do nothing */
478 if (tb_env
->tb_freq
== 0) {
479 vmclk
= qemu_get_clock(vm_clock
);
480 /* Get the time base from tb_offset */
481 tb
= tb_env
->tb_offset
;
482 /* Get the alternate time base from atb_offset */
483 atb
= tb_env
->atb_offset
;
484 /* Restore the tb frequency from the decrementer frequency */
485 tb_env
->tb_freq
= tb_env
->decr_freq
;
486 /* Store the time base value */
487 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->tb_offset
, tb
);
488 /* Store the alternate time base value */
489 cpu_ppc_store_tb(tb_env
, vmclk
, &tb_env
->atb_offset
, atb
);
493 static always_inline
uint32_t _cpu_ppc_load_decr (CPUState
*env
,
496 ppc_tb_t
*tb_env
= env
->tb_env
;
500 diff
= tb_env
->decr_next
- qemu_get_clock(vm_clock
);
502 decr
= muldiv64(diff
, tb_env
->decr_freq
, ticks_per_sec
);
504 decr
= -muldiv64(-diff
, tb_env
->decr_freq
, ticks_per_sec
);
505 LOG_TB("%s: %08" PRIx32
"\n", __func__
, decr
);
510 uint32_t cpu_ppc_load_decr (CPUState
*env
)
512 ppc_tb_t
*tb_env
= env
->tb_env
;
514 return _cpu_ppc_load_decr(env
, &tb_env
->decr_next
);
517 uint32_t cpu_ppc_load_hdecr (CPUState
*env
)
519 ppc_tb_t
*tb_env
= env
->tb_env
;
521 return _cpu_ppc_load_decr(env
, &tb_env
->hdecr_next
);
524 uint64_t cpu_ppc_load_purr (CPUState
*env
)
526 ppc_tb_t
*tb_env
= env
->tb_env
;
529 diff
= qemu_get_clock(vm_clock
) - tb_env
->purr_start
;
531 return tb_env
->purr_load
+ muldiv64(diff
, tb_env
->tb_freq
, ticks_per_sec
);
534 /* When decrementer expires,
535 * all we need to do is generate or queue a CPU exception
537 static always_inline
void cpu_ppc_decr_excp (CPUState
*env
)
540 LOG_TB("raise decrementer exception\n");
541 ppc_set_irq(env
, PPC_INTERRUPT_DECR
, 1);
544 static always_inline
void cpu_ppc_hdecr_excp (CPUState
*env
)
547 LOG_TB("raise decrementer exception\n");
548 ppc_set_irq(env
, PPC_INTERRUPT_HDECR
, 1);
551 static void __cpu_ppc_store_decr (CPUState
*env
, uint64_t *nextp
,
552 struct QEMUTimer
*timer
,
553 void (*raise_excp
)(CPUState
*),
554 uint32_t decr
, uint32_t value
,
557 ppc_tb_t
*tb_env
= env
->tb_env
;
560 LOG_TB("%s: %08" PRIx32
" => %08" PRIx32
"\n", __func__
,
562 now
= qemu_get_clock(vm_clock
);
563 next
= now
+ muldiv64(value
, ticks_per_sec
, tb_env
->decr_freq
);
565 next
+= *nextp
- now
;
570 qemu_mod_timer(timer
, next
);
571 /* If we set a negative value and the decrementer was positive,
572 * raise an exception.
574 if ((value
& 0x80000000) && !(decr
& 0x80000000))
578 static always_inline
void _cpu_ppc_store_decr (CPUState
*env
, uint32_t decr
,
579 uint32_t value
, int is_excp
)
581 ppc_tb_t
*tb_env
= env
->tb_env
;
583 __cpu_ppc_store_decr(env
, &tb_env
->decr_next
, tb_env
->decr_timer
,
584 &cpu_ppc_decr_excp
, decr
, value
, is_excp
);
587 void cpu_ppc_store_decr (CPUState
*env
, uint32_t value
)
589 _cpu_ppc_store_decr(env
, cpu_ppc_load_decr(env
), value
, 0);
592 static void cpu_ppc_decr_cb (void *opaque
)
594 _cpu_ppc_store_decr(opaque
, 0x00000000, 0xFFFFFFFF, 1);
597 static always_inline
void _cpu_ppc_store_hdecr (CPUState
*env
, uint32_t hdecr
,
598 uint32_t value
, int is_excp
)
600 ppc_tb_t
*tb_env
= env
->tb_env
;
602 if (tb_env
->hdecr_timer
!= NULL
) {
603 __cpu_ppc_store_decr(env
, &tb_env
->hdecr_next
, tb_env
->hdecr_timer
,
604 &cpu_ppc_hdecr_excp
, hdecr
, value
, is_excp
);
608 void cpu_ppc_store_hdecr (CPUState
*env
, uint32_t value
)
610 _cpu_ppc_store_hdecr(env
, cpu_ppc_load_hdecr(env
), value
, 0);
613 static void cpu_ppc_hdecr_cb (void *opaque
)
615 _cpu_ppc_store_hdecr(opaque
, 0x00000000, 0xFFFFFFFF, 1);
618 void cpu_ppc_store_purr (CPUState
*env
, uint64_t value
)
620 ppc_tb_t
*tb_env
= env
->tb_env
;
622 tb_env
->purr_load
= value
;
623 tb_env
->purr_start
= qemu_get_clock(vm_clock
);
626 static void cpu_ppc_set_tb_clk (void *opaque
, uint32_t freq
)
628 CPUState
*env
= opaque
;
629 ppc_tb_t
*tb_env
= env
->tb_env
;
631 tb_env
->tb_freq
= freq
;
632 tb_env
->decr_freq
= freq
;
633 /* There is a bug in Linux 2.4 kernels:
634 * if a decrementer exception is pending when it enables msr_ee at startup,
635 * it's not ready to handle it...
637 _cpu_ppc_store_decr(env
, 0xFFFFFFFF, 0xFFFFFFFF, 0);
638 _cpu_ppc_store_hdecr(env
, 0xFFFFFFFF, 0xFFFFFFFF, 0);
639 cpu_ppc_store_purr(env
, 0x0000000000000000ULL
);
642 /* Set up (once) timebase frequency (in Hz) */
643 clk_setup_cb
cpu_ppc_tb_init (CPUState
*env
, uint32_t freq
)
647 tb_env
= qemu_mallocz(sizeof(ppc_tb_t
));
648 env
->tb_env
= tb_env
;
649 /* Create new timer */
650 tb_env
->decr_timer
= qemu_new_timer(vm_clock
, &cpu_ppc_decr_cb
, env
);
652 /* XXX: find a suitable condition to enable the hypervisor decrementer
654 tb_env
->hdecr_timer
= qemu_new_timer(vm_clock
, &cpu_ppc_hdecr_cb
, env
);
656 tb_env
->hdecr_timer
= NULL
;
658 cpu_ppc_set_tb_clk(env
, freq
);
660 return &cpu_ppc_set_tb_clk
;
663 /* Specific helpers for POWER & PowerPC 601 RTC */
665 static clk_setup_cb
cpu_ppc601_rtc_init (CPUState
*env
)
667 return cpu_ppc_tb_init(env
, 7812500);
671 void cpu_ppc601_store_rtcu (CPUState
*env
, uint32_t value
)
673 _cpu_ppc_store_tbu(env
, value
);
676 uint32_t cpu_ppc601_load_rtcu (CPUState
*env
)
678 return _cpu_ppc_load_tbu(env
);
681 void cpu_ppc601_store_rtcl (CPUState
*env
, uint32_t value
)
683 cpu_ppc_store_tbl(env
, value
& 0x3FFFFF80);
686 uint32_t cpu_ppc601_load_rtcl (CPUState
*env
)
688 return cpu_ppc_load_tbl(env
) & 0x3FFFFF80;
691 /*****************************************************************************/
692 /* Embedded PowerPC timers */
695 typedef struct ppcemb_timer_t ppcemb_timer_t
;
696 struct ppcemb_timer_t
{
697 uint64_t pit_reload
; /* PIT auto-reload value */
698 uint64_t fit_next
; /* Tick for next FIT interrupt */
699 struct QEMUTimer
*fit_timer
;
700 uint64_t wdt_next
; /* Tick for next WDT interrupt */
701 struct QEMUTimer
*wdt_timer
;
704 /* Fixed interval timer */
705 static void cpu_4xx_fit_cb (void *opaque
)
709 ppcemb_timer_t
*ppcemb_timer
;
713 tb_env
= env
->tb_env
;
714 ppcemb_timer
= tb_env
->opaque
;
715 now
= qemu_get_clock(vm_clock
);
716 switch ((env
->spr
[SPR_40x_TCR
] >> 24) & 0x3) {
730 /* Cannot occur, but makes gcc happy */
733 next
= now
+ muldiv64(next
, ticks_per_sec
, tb_env
->tb_freq
);
736 qemu_mod_timer(ppcemb_timer
->fit_timer
, next
);
737 env
->spr
[SPR_40x_TSR
] |= 1 << 26;
738 if ((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1)
739 ppc_set_irq(env
, PPC_INTERRUPT_FIT
, 1);
740 LOG_TB("%s: ir %d TCR " ADDRX
" TSR " ADDRX
"\n", __func__
,
741 (int)((env
->spr
[SPR_40x_TCR
] >> 23) & 0x1),
742 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
745 /* Programmable interval timer */
746 static void start_stop_pit (CPUState
*env
, ppc_tb_t
*tb_env
, int is_excp
)
748 ppcemb_timer_t
*ppcemb_timer
;
751 ppcemb_timer
= tb_env
->opaque
;
752 if (ppcemb_timer
->pit_reload
<= 1 ||
753 !((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1) ||
754 (is_excp
&& !((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1))) {
756 LOG_TB("%s: stop PIT\n", __func__
);
757 qemu_del_timer(tb_env
->decr_timer
);
759 LOG_TB("%s: start PIT %016" PRIx64
"\n",
760 __func__
, ppcemb_timer
->pit_reload
);
761 now
= qemu_get_clock(vm_clock
);
762 next
= now
+ muldiv64(ppcemb_timer
->pit_reload
,
763 ticks_per_sec
, tb_env
->decr_freq
);
765 next
+= tb_env
->decr_next
- now
;
768 qemu_mod_timer(tb_env
->decr_timer
, next
);
769 tb_env
->decr_next
= next
;
773 static void cpu_4xx_pit_cb (void *opaque
)
777 ppcemb_timer_t
*ppcemb_timer
;
780 tb_env
= env
->tb_env
;
781 ppcemb_timer
= tb_env
->opaque
;
782 env
->spr
[SPR_40x_TSR
] |= 1 << 27;
783 if ((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1)
784 ppc_set_irq(env
, PPC_INTERRUPT_PIT
, 1);
785 start_stop_pit(env
, tb_env
, 1);
786 LOG_TB("%s: ar %d ir %d TCR " ADDRX
" TSR " ADDRX
" "
787 "%016" PRIx64
"\n", __func__
,
788 (int)((env
->spr
[SPR_40x_TCR
] >> 22) & 0x1),
789 (int)((env
->spr
[SPR_40x_TCR
] >> 26) & 0x1),
790 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
],
791 ppcemb_timer
->pit_reload
);
795 static void cpu_4xx_wdt_cb (void *opaque
)
799 ppcemb_timer_t
*ppcemb_timer
;
803 tb_env
= env
->tb_env
;
804 ppcemb_timer
= tb_env
->opaque
;
805 now
= qemu_get_clock(vm_clock
);
806 switch ((env
->spr
[SPR_40x_TCR
] >> 30) & 0x3) {
820 /* Cannot occur, but makes gcc happy */
823 next
= now
+ muldiv64(next
, ticks_per_sec
, tb_env
->decr_freq
);
826 LOG_TB("%s: TCR " ADDRX
" TSR " ADDRX
"\n", __func__
,
827 env
->spr
[SPR_40x_TCR
], env
->spr
[SPR_40x_TSR
]);
828 switch ((env
->spr
[SPR_40x_TSR
] >> 30) & 0x3) {
831 qemu_mod_timer(ppcemb_timer
->wdt_timer
, next
);
832 ppcemb_timer
->wdt_next
= next
;
833 env
->spr
[SPR_40x_TSR
] |= 1 << 31;
836 qemu_mod_timer(ppcemb_timer
->wdt_timer
, next
);
837 ppcemb_timer
->wdt_next
= next
;
838 env
->spr
[SPR_40x_TSR
] |= 1 << 30;
839 if ((env
->spr
[SPR_40x_TCR
] >> 27) & 0x1)
840 ppc_set_irq(env
, PPC_INTERRUPT_WDT
, 1);
843 env
->spr
[SPR_40x_TSR
] &= ~0x30000000;
844 env
->spr
[SPR_40x_TSR
] |= env
->spr
[SPR_40x_TCR
] & 0x30000000;
845 switch ((env
->spr
[SPR_40x_TCR
] >> 28) & 0x3) {
849 case 0x1: /* Core reset */
850 ppc40x_core_reset(env
);
852 case 0x2: /* Chip reset */
853 ppc40x_chip_reset(env
);
855 case 0x3: /* System reset */
856 ppc40x_system_reset(env
);
862 void store_40x_pit (CPUState
*env
, target_ulong val
)
865 ppcemb_timer_t
*ppcemb_timer
;
867 tb_env
= env
->tb_env
;
868 ppcemb_timer
= tb_env
->opaque
;
869 LOG_TB("%s val" ADDRX
"\n", __func__
, val
);
870 ppcemb_timer
->pit_reload
= val
;
871 start_stop_pit(env
, tb_env
, 0);
874 target_ulong
load_40x_pit (CPUState
*env
)
876 return cpu_ppc_load_decr(env
);
879 void store_booke_tsr (CPUState
*env
, target_ulong val
)
881 LOG_TB("%s: val " ADDRX
"\n", __func__
, val
);
882 env
->spr
[SPR_40x_TSR
] &= ~(val
& 0xFC000000);
883 if (val
& 0x80000000)
884 ppc_set_irq(env
, PPC_INTERRUPT_PIT
, 0);
887 void store_booke_tcr (CPUState
*env
, target_ulong val
)
891 tb_env
= env
->tb_env
;
892 LOG_TB("%s: val " ADDRX
"\n", __func__
, val
);
893 env
->spr
[SPR_40x_TCR
] = val
& 0xFFC00000;
894 start_stop_pit(env
, tb_env
, 1);
898 static void ppc_emb_set_tb_clk (void *opaque
, uint32_t freq
)
900 CPUState
*env
= opaque
;
901 ppc_tb_t
*tb_env
= env
->tb_env
;
903 LOG_TB("%s set new frequency to %" PRIu32
"\n", __func__
,
905 tb_env
->tb_freq
= freq
;
906 tb_env
->decr_freq
= freq
;
907 /* XXX: we should also update all timers */
910 clk_setup_cb
ppc_emb_timers_init (CPUState
*env
, uint32_t freq
)
913 ppcemb_timer_t
*ppcemb_timer
;
915 tb_env
= qemu_mallocz(sizeof(ppc_tb_t
));
916 env
->tb_env
= tb_env
;
917 ppcemb_timer
= qemu_mallocz(sizeof(ppcemb_timer_t
));
918 tb_env
->tb_freq
= freq
;
919 tb_env
->decr_freq
= freq
;
920 tb_env
->opaque
= ppcemb_timer
;
921 LOG_TB("%s freq %" PRIu32
"\n", __func__
, freq
);
922 if (ppcemb_timer
!= NULL
) {
923 /* We use decr timer for PIT */
924 tb_env
->decr_timer
= qemu_new_timer(vm_clock
, &cpu_4xx_pit_cb
, env
);
925 ppcemb_timer
->fit_timer
=
926 qemu_new_timer(vm_clock
, &cpu_4xx_fit_cb
, env
);
927 ppcemb_timer
->wdt_timer
=
928 qemu_new_timer(vm_clock
, &cpu_4xx_wdt_cb
, env
);
931 return &ppc_emb_set_tb_clk
;
934 /*****************************************************************************/
935 /* Embedded PowerPC Device Control Registers */
936 typedef struct ppc_dcrn_t ppc_dcrn_t
;
938 dcr_read_cb dcr_read
;
939 dcr_write_cb dcr_write
;
943 /* XXX: on 460, DCR addresses are 32 bits wide,
944 * using DCRIPR to get the 22 upper bits of the DCR address
948 ppc_dcrn_t dcrn
[DCRN_NB
];
949 int (*read_error
)(int dcrn
);
950 int (*write_error
)(int dcrn
);
953 int ppc_dcr_read (ppc_dcr_t
*dcr_env
, int dcrn
, target_ulong
*valp
)
957 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
959 dcr
= &dcr_env
->dcrn
[dcrn
];
960 if (dcr
->dcr_read
== NULL
)
962 *valp
= (*dcr
->dcr_read
)(dcr
->opaque
, dcrn
);
967 if (dcr_env
->read_error
!= NULL
)
968 return (*dcr_env
->read_error
)(dcrn
);
973 int ppc_dcr_write (ppc_dcr_t
*dcr_env
, int dcrn
, target_ulong val
)
977 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
979 dcr
= &dcr_env
->dcrn
[dcrn
];
980 if (dcr
->dcr_write
== NULL
)
982 (*dcr
->dcr_write
)(dcr
->opaque
, dcrn
, val
);
987 if (dcr_env
->write_error
!= NULL
)
988 return (*dcr_env
->write_error
)(dcrn
);
993 int ppc_dcr_register (CPUState
*env
, int dcrn
, void *opaque
,
994 dcr_read_cb dcr_read
, dcr_write_cb dcr_write
)
999 dcr_env
= env
->dcr_env
;
1000 if (dcr_env
== NULL
)
1002 if (dcrn
< 0 || dcrn
>= DCRN_NB
)
1004 dcr
= &dcr_env
->dcrn
[dcrn
];
1005 if (dcr
->opaque
!= NULL
||
1006 dcr
->dcr_read
!= NULL
||
1007 dcr
->dcr_write
!= NULL
)
1009 dcr
->opaque
= opaque
;
1010 dcr
->dcr_read
= dcr_read
;
1011 dcr
->dcr_write
= dcr_write
;
1016 int ppc_dcr_init (CPUState
*env
, int (*read_error
)(int dcrn
),
1017 int (*write_error
)(int dcrn
))
1021 dcr_env
= qemu_mallocz(sizeof(ppc_dcr_t
));
1022 dcr_env
->read_error
= read_error
;
1023 dcr_env
->write_error
= write_error
;
1024 env
->dcr_env
= dcr_env
;
1030 /*****************************************************************************/
1031 /* Handle system reset (for now, just stop emulation) */
1032 void cpu_ppc_reset (CPUState
*env
)
1034 printf("Reset asked... Stop emulation\n");
1039 /*****************************************************************************/
1041 void PPC_debug_write (void *opaque
, uint32_t addr
, uint32_t val
)
1053 printf("Set loglevel to %04" PRIx32
"\n", val
);
1054 cpu_set_log(val
| 0x100);
1059 /*****************************************************************************/
1061 static inline uint32_t nvram_read (nvram_t
*nvram
, uint32_t addr
)
1063 return (*nvram
->read_fn
)(nvram
->opaque
, addr
);;
1066 static inline void nvram_write (nvram_t
*nvram
, uint32_t addr
, uint32_t val
)
1068 (*nvram
->write_fn
)(nvram
->opaque
, addr
, val
);
1071 void NVRAM_set_byte (nvram_t
*nvram
, uint32_t addr
, uint8_t value
)
1073 nvram_write(nvram
, addr
, value
);
1076 uint8_t NVRAM_get_byte (nvram_t
*nvram
, uint32_t addr
)
1078 return nvram_read(nvram
, addr
);
1081 void NVRAM_set_word (nvram_t
*nvram
, uint32_t addr
, uint16_t value
)
1083 nvram_write(nvram
, addr
, value
>> 8);
1084 nvram_write(nvram
, addr
+ 1, value
& 0xFF);
1087 uint16_t NVRAM_get_word (nvram_t
*nvram
, uint32_t addr
)
1091 tmp
= nvram_read(nvram
, addr
) << 8;
1092 tmp
|= nvram_read(nvram
, addr
+ 1);
1097 void NVRAM_set_lword (nvram_t
*nvram
, uint32_t addr
, uint32_t value
)
1099 nvram_write(nvram
, addr
, value
>> 24);
1100 nvram_write(nvram
, addr
+ 1, (value
>> 16) & 0xFF);
1101 nvram_write(nvram
, addr
+ 2, (value
>> 8) & 0xFF);
1102 nvram_write(nvram
, addr
+ 3, value
& 0xFF);
1105 uint32_t NVRAM_get_lword (nvram_t
*nvram
, uint32_t addr
)
1109 tmp
= nvram_read(nvram
, addr
) << 24;
1110 tmp
|= nvram_read(nvram
, addr
+ 1) << 16;
1111 tmp
|= nvram_read(nvram
, addr
+ 2) << 8;
1112 tmp
|= nvram_read(nvram
, addr
+ 3);
1117 void NVRAM_set_string (nvram_t
*nvram
, uint32_t addr
,
1118 const char *str
, uint32_t max
)
1122 for (i
= 0; i
< max
&& str
[i
] != '\0'; i
++) {
1123 nvram_write(nvram
, addr
+ i
, str
[i
]);
1125 nvram_write(nvram
, addr
+ i
, str
[i
]);
1126 nvram_write(nvram
, addr
+ max
- 1, '\0');
1129 int NVRAM_get_string (nvram_t
*nvram
, uint8_t *dst
, uint16_t addr
, int max
)
1133 memset(dst
, 0, max
);
1134 for (i
= 0; i
< max
; i
++) {
1135 dst
[i
] = NVRAM_get_byte(nvram
, addr
+ i
);
1143 static uint16_t NVRAM_crc_update (uint16_t prev
, uint16_t value
)
1146 uint16_t pd
, pd1
, pd2
;
1151 pd2
= ((pd
>> 4) & 0x000F) ^ pd1
;
1152 tmp
^= (pd1
<< 3) | (pd1
<< 8);
1153 tmp
^= pd2
| (pd2
<< 7) | (pd2
<< 12);
1158 static uint16_t NVRAM_compute_crc (nvram_t
*nvram
, uint32_t start
, uint32_t count
)
1161 uint16_t crc
= 0xFFFF;
1166 for (i
= 0; i
!= count
; i
++) {
1167 crc
= NVRAM_crc_update(crc
, NVRAM_get_word(nvram
, start
+ i
));
1170 crc
= NVRAM_crc_update(crc
, NVRAM_get_byte(nvram
, start
+ i
) << 8);
1176 #define CMDLINE_ADDR 0x017ff000
1178 int PPC_NVRAM_set_params (nvram_t
*nvram
, uint16_t NVRAM_size
,
1180 uint32_t RAM_size
, int boot_device
,
1181 uint32_t kernel_image
, uint32_t kernel_size
,
1182 const char *cmdline
,
1183 uint32_t initrd_image
, uint32_t initrd_size
,
1184 uint32_t NVRAM_image
,
1185 int width
, int height
, int depth
)
1189 /* Set parameters for Open Hack'Ware BIOS */
1190 NVRAM_set_string(nvram
, 0x00, "QEMU_BIOS", 16);
1191 NVRAM_set_lword(nvram
, 0x10, 0x00000002); /* structure v2 */
1192 NVRAM_set_word(nvram
, 0x14, NVRAM_size
);
1193 NVRAM_set_string(nvram
, 0x20, arch
, 16);
1194 NVRAM_set_lword(nvram
, 0x30, RAM_size
);
1195 NVRAM_set_byte(nvram
, 0x34, boot_device
);
1196 NVRAM_set_lword(nvram
, 0x38, kernel_image
);
1197 NVRAM_set_lword(nvram
, 0x3C, kernel_size
);
1199 /* XXX: put the cmdline in NVRAM too ? */
1200 strcpy((char *)(phys_ram_base
+ CMDLINE_ADDR
), cmdline
);
1201 NVRAM_set_lword(nvram
, 0x40, CMDLINE_ADDR
);
1202 NVRAM_set_lword(nvram
, 0x44, strlen(cmdline
));
1204 NVRAM_set_lword(nvram
, 0x40, 0);
1205 NVRAM_set_lword(nvram
, 0x44, 0);
1207 NVRAM_set_lword(nvram
, 0x48, initrd_image
);
1208 NVRAM_set_lword(nvram
, 0x4C, initrd_size
);
1209 NVRAM_set_lword(nvram
, 0x50, NVRAM_image
);
1211 NVRAM_set_word(nvram
, 0x54, width
);
1212 NVRAM_set_word(nvram
, 0x56, height
);
1213 NVRAM_set_word(nvram
, 0x58, depth
);
1214 crc
= NVRAM_compute_crc(nvram
, 0x00, 0xF8);
1215 NVRAM_set_word(nvram
, 0xFC, crc
);