9 #include "qemu-common.h"
11 static uint32_t cortexa8_cp15_c0_c1
[8] =
12 { 0x1031, 0x11, 0x400, 0, 0x31100003, 0x20000000, 0x01202000, 0x11 };
14 static uint32_t cortexa8_cp15_c0_c2
[8] =
15 { 0x00101111, 0x12112111, 0x21232031, 0x11112131, 0x00111142, 0, 0, 0 };
17 static uint32_t mpcore_cp15_c0_c1
[8] =
18 { 0x111, 0x1, 0, 0x2, 0x01100103, 0x10020302, 0x01222000, 0 };
20 static uint32_t mpcore_cp15_c0_c2
[8] =
21 { 0x00100011, 0x12002111, 0x11221011, 0x01102131, 0x141, 0, 0, 0 };
23 static uint32_t arm1136_cp15_c0_c1
[8] =
24 { 0x111, 0x1, 0x2, 0x3, 0x01130003, 0x10030302, 0x01222110, 0 };
26 static uint32_t arm1136_cp15_c0_c2
[8] =
27 { 0x00140011, 0x12002111, 0x11231111, 0x01102131, 0x141, 0, 0, 0 };
29 static uint32_t cpu_arm_find_by_name(const char *name
);
31 static inline void set_feature(CPUARMState
*env
, int feature
)
33 env
->features
|= 1u << feature
;
36 static void cpu_reset_model_id(CPUARMState
*env
, uint32_t id
)
38 env
->cp15
.c0_cpuid
= id
;
40 case ARM_CPUID_ARM920T
:
41 set_feature(env
, ARM_FEATURE_S3C
);
42 env
->cp15
.c0_cachetype
= 0xd172172;
43 env
->cp15
.c1_sys
= 0x00000078;
45 case ARM_CPUID_ARM926
:
46 set_feature(env
, ARM_FEATURE_VFP
);
47 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x41011090;
48 env
->cp15
.c0_cachetype
= 0x1dd20d2;
49 env
->cp15
.c1_sys
= 0x00090078;
51 case ARM_CPUID_ARM946
:
52 set_feature(env
, ARM_FEATURE_MPU
);
53 env
->cp15
.c0_cachetype
= 0x0f004006;
54 env
->cp15
.c1_sys
= 0x00000078;
56 case ARM_CPUID_ARM1026
:
57 set_feature(env
, ARM_FEATURE_VFP
);
58 set_feature(env
, ARM_FEATURE_AUXCR
);
59 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410110a0;
60 env
->cp15
.c0_cachetype
= 0x1dd20d2;
61 env
->cp15
.c1_sys
= 0x00090078;
63 case ARM_CPUID_ARM1136_R2
:
64 case ARM_CPUID_ARM1136
:
65 set_feature(env
, ARM_FEATURE_V6
);
66 set_feature(env
, ARM_FEATURE_VFP
);
67 set_feature(env
, ARM_FEATURE_AUXCR
);
68 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410120b4;
69 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11111111;
70 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00000000;
71 memcpy(env
->cp15
.c0_c1
, arm1136_cp15_c0_c1
, 8 * sizeof(uint32_t));
72 memcpy(env
->cp15
.c0_c2
, arm1136_cp15_c0_c2
, 8 * sizeof(uint32_t));
73 env
->cp15
.c0_cachetype
= 0x1dd20d2;
75 case ARM_CPUID_ARM11MPCORE
:
76 set_feature(env
, ARM_FEATURE_V6
);
77 set_feature(env
, ARM_FEATURE_V6K
);
78 set_feature(env
, ARM_FEATURE_VFP
);
79 set_feature(env
, ARM_FEATURE_AUXCR
);
80 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410120b4;
81 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11111111;
82 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00000000;
83 memcpy(env
->cp15
.c0_c1
, mpcore_cp15_c0_c1
, 8 * sizeof(uint32_t));
84 memcpy(env
->cp15
.c0_c2
, mpcore_cp15_c0_c2
, 8 * sizeof(uint32_t));
85 env
->cp15
.c0_cachetype
= 0x1dd20d2;
87 case ARM_CPUID_CORTEXA8
:
88 set_feature(env
, ARM_FEATURE_V6
);
89 set_feature(env
, ARM_FEATURE_V6K
);
90 set_feature(env
, ARM_FEATURE_V7
);
91 set_feature(env
, ARM_FEATURE_AUXCR
);
92 set_feature(env
, ARM_FEATURE_THUMB2
);
93 set_feature(env
, ARM_FEATURE_VFP
);
94 set_feature(env
, ARM_FEATURE_VFP3
);
95 set_feature(env
, ARM_FEATURE_NEON
);
96 set_feature(env
, ARM_FEATURE_THUMB2EE
);
97 env
->vfp
.xregs
[ARM_VFP_FPSID
] = 0x410330c0;
98 env
->vfp
.xregs
[ARM_VFP_MVFR0
] = 0x11110222;
99 env
->vfp
.xregs
[ARM_VFP_MVFR1
] = 0x00011100;
100 memcpy(env
->cp15
.c0_c1
, cortexa8_cp15_c0_c1
, 8 * sizeof(uint32_t));
101 memcpy(env
->cp15
.c0_c2
, cortexa8_cp15_c0_c2
, 8 * sizeof(uint32_t));
102 env
->cp15
.c0_cachetype
= 0x82048004;
103 env
->cp15
.c0_clid
= (1 << 27) | (2 << 24) | 3;
104 env
->cp15
.c0_ccsid
[0] = 0xe007e01a; /* 16k L1 dcache. */
105 env
->cp15
.c0_ccsid
[1] = 0x2007e01a; /* 16k L1 icache. */
106 env
->cp15
.c0_ccsid
[2] = 0xf0000000; /* No L2 icache. */
108 case ARM_CPUID_CORTEXM3
:
109 set_feature(env
, ARM_FEATURE_V6
);
110 set_feature(env
, ARM_FEATURE_THUMB2
);
111 set_feature(env
, ARM_FEATURE_V7
);
112 set_feature(env
, ARM_FEATURE_M
);
113 set_feature(env
, ARM_FEATURE_DIV
);
115 case ARM_CPUID_ANY
: /* For userspace emulation. */
116 set_feature(env
, ARM_FEATURE_V6
);
117 set_feature(env
, ARM_FEATURE_V6K
);
118 set_feature(env
, ARM_FEATURE_V7
);
119 set_feature(env
, ARM_FEATURE_THUMB2
);
120 set_feature(env
, ARM_FEATURE_VFP
);
121 set_feature(env
, ARM_FEATURE_VFP3
);
122 set_feature(env
, ARM_FEATURE_NEON
);
123 set_feature(env
, ARM_FEATURE_THUMB2EE
);
124 set_feature(env
, ARM_FEATURE_DIV
);
126 case ARM_CPUID_TI915T
:
127 case ARM_CPUID_TI925T
:
128 set_feature(env
, ARM_FEATURE_OMAPCP
);
129 env
->cp15
.c0_cpuid
= ARM_CPUID_TI925T
; /* Depends on wiring. */
130 env
->cp15
.c0_cachetype
= 0x5109149;
131 env
->cp15
.c1_sys
= 0x00000070;
132 env
->cp15
.c15_i_max
= 0x000;
133 env
->cp15
.c15_i_min
= 0xff0;
135 case ARM_CPUID_PXA250
:
136 case ARM_CPUID_PXA255
:
137 case ARM_CPUID_PXA260
:
138 case ARM_CPUID_PXA261
:
139 case ARM_CPUID_PXA262
:
140 set_feature(env
, ARM_FEATURE_XSCALE
);
141 /* JTAG_ID is ((id << 28) | 0x09265013) */
142 env
->cp15
.c0_cachetype
= 0xd172172;
143 env
->cp15
.c1_sys
= 0x00000078;
145 case ARM_CPUID_PXA270_A0
:
146 case ARM_CPUID_PXA270_A1
:
147 case ARM_CPUID_PXA270_B0
:
148 case ARM_CPUID_PXA270_B1
:
149 case ARM_CPUID_PXA270_C0
:
150 case ARM_CPUID_PXA270_C5
:
151 set_feature(env
, ARM_FEATURE_XSCALE
);
152 /* JTAG_ID is ((id << 28) | 0x09265013) */
153 set_feature(env
, ARM_FEATURE_IWMMXT
);
154 env
->iwmmxt
.cregs
[ARM_IWMMXT_wCID
] = 0x69051000 | 'Q';
155 env
->cp15
.c0_cachetype
= 0xd172172;
156 env
->cp15
.c1_sys
= 0x00000078;
159 cpu_abort(env
, "Bad CPU ID: %x\n", id
);
164 void cpu_reset(CPUARMState
*env
)
168 if (qemu_loglevel_mask(CPU_LOG_RESET
)) {
169 qemu_log("CPU Reset (CPU %d)\n", env
->cpu_index
);
170 log_cpu_state(env
, 0);
173 id
= env
->cp15
.c0_cpuid
;
174 memset(env
, 0, offsetof(CPUARMState
, breakpoints
));
176 cpu_reset_model_id(env
, id
);
177 #if defined (CONFIG_USER_ONLY)
178 env
->uncached_cpsr
= ARM_CPU_MODE_USR
;
179 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 1 << 30;
181 /* SVC mode with interrupts disabled. */
182 env
->uncached_cpsr
= ARM_CPU_MODE_SVC
| CPSR_A
| CPSR_F
| CPSR_I
;
183 /* On ARMv7-M the CPSR_I is the value of the PRIMASK register, and is
186 env
->uncached_cpsr
&= ~CPSR_I
;
187 env
->vfp
.xregs
[ARM_VFP_FPEXC
] = 0;
188 env
->cp15
.c2_base_mask
= 0xffffc000u
;
194 static int vfp_gdb_get_reg(CPUState
*env
, uint8_t *buf
, int reg
)
198 /* VFP data registers are always little-endian. */
199 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
201 stfq_le_p(buf
, env
->vfp
.regs
[reg
]);
204 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
205 /* Aliases for Q regs. */
208 stfq_le_p(buf
, env
->vfp
.regs
[(reg
- 32) * 2]);
209 stfq_le_p(buf
+ 8, env
->vfp
.regs
[(reg
- 32) * 2 + 1]);
213 switch (reg
- nregs
) {
214 case 0: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSID
]); return 4;
215 case 1: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPSCR
]); return 4;
216 case 2: stl_p(buf
, env
->vfp
.xregs
[ARM_VFP_FPEXC
]); return 4;
221 static int vfp_gdb_set_reg(CPUState
*env
, uint8_t *buf
, int reg
)
225 nregs
= arm_feature(env
, ARM_FEATURE_VFP3
) ? 32 : 16;
227 env
->vfp
.regs
[reg
] = ldfq_le_p(buf
);
230 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
233 env
->vfp
.regs
[(reg
- 32) * 2] = ldfq_le_p(buf
);
234 env
->vfp
.regs
[(reg
- 32) * 2 + 1] = ldfq_le_p(buf
+ 8);
238 switch (reg
- nregs
) {
239 case 0: env
->vfp
.xregs
[ARM_VFP_FPSID
] = ldl_p(buf
); return 4;
240 case 1: env
->vfp
.xregs
[ARM_VFP_FPSCR
] = ldl_p(buf
); return 4;
241 case 2: env
->vfp
.xregs
[ARM_VFP_FPEXC
] = ldl_p(buf
); return 4;
246 CPUARMState
*cpu_arm_init(const char *cpu_model
)
250 static int inited
= 0;
252 id
= cpu_arm_find_by_name(cpu_model
);
255 env
= qemu_mallocz(sizeof(CPUARMState
));
259 arm_translate_init();
262 env
->cpu_model_str
= cpu_model
;
263 env
->cp15
.c0_cpuid
= id
;
265 if (arm_feature(env
, ARM_FEATURE_NEON
)) {
266 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
267 51, "arm-neon.xml", 0);
268 } else if (arm_feature(env
, ARM_FEATURE_VFP3
)) {
269 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
270 35, "arm-vfp3.xml", 0);
271 } else if (arm_feature(env
, ARM_FEATURE_VFP
)) {
272 gdb_register_coprocessor(env
, vfp_gdb_get_reg
, vfp_gdb_set_reg
,
273 19, "arm-vfp.xml", 0);
283 static const struct arm_cpu_t arm_cpu_names
[] = {
284 { ARM_CPUID_ARM920T
, "arm920t"},
285 { ARM_CPUID_ARM926
, "arm926"},
286 { ARM_CPUID_ARM946
, "arm946"},
287 { ARM_CPUID_ARM1026
, "arm1026"},
288 { ARM_CPUID_ARM1136
, "arm1136"},
289 { ARM_CPUID_ARM1136_R2
, "arm1136-r2"},
290 { ARM_CPUID_ARM11MPCORE
, "arm11mpcore"},
291 { ARM_CPUID_CORTEXM3
, "cortex-m3"},
292 { ARM_CPUID_CORTEXA8
, "cortex-a8"},
293 { ARM_CPUID_TI925T
, "ti925t" },
294 { ARM_CPUID_PXA250
, "pxa250" },
295 { ARM_CPUID_PXA255
, "pxa255" },
296 { ARM_CPUID_PXA260
, "pxa260" },
297 { ARM_CPUID_PXA261
, "pxa261" },
298 { ARM_CPUID_PXA262
, "pxa262" },
299 { ARM_CPUID_PXA270
, "pxa270" },
300 { ARM_CPUID_PXA270_A0
, "pxa270-a0" },
301 { ARM_CPUID_PXA270_A1
, "pxa270-a1" },
302 { ARM_CPUID_PXA270_B0
, "pxa270-b0" },
303 { ARM_CPUID_PXA270_B1
, "pxa270-b1" },
304 { ARM_CPUID_PXA270_C0
, "pxa270-c0" },
305 { ARM_CPUID_PXA270_C5
, "pxa270-c5" },
306 { ARM_CPUID_ANY
, "any"},
310 void arm_cpu_list(FILE *f
, int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...))
314 (*cpu_fprintf
)(f
, "Available CPUs:\n");
315 for (i
= 0; arm_cpu_names
[i
].name
; i
++) {
316 (*cpu_fprintf
)(f
, " %s\n", arm_cpu_names
[i
].name
);
320 /* return 0 if not found */
321 static uint32_t cpu_arm_find_by_name(const char *name
)
327 for (i
= 0; arm_cpu_names
[i
].name
; i
++) {
328 if (strcmp(name
, arm_cpu_names
[i
].name
) == 0) {
329 id
= arm_cpu_names
[i
].id
;
336 void cpu_arm_close(CPUARMState
*env
)
341 uint32_t cpsr_read(CPUARMState
*env
)
345 return env
->uncached_cpsr
| (env
->NF
& 0x80000000) | (ZF
<< 30) |
346 (env
->CF
<< 29) | ((env
->VF
& 0x80000000) >> 3) | (env
->QF
<< 27)
347 | (env
->thumb
<< 5) | ((env
->condexec_bits
& 3) << 25)
348 | ((env
->condexec_bits
& 0xfc) << 8)
352 void cpsr_write(CPUARMState
*env
, uint32_t val
, uint32_t mask
)
354 if (mask
& CPSR_NZCV
) {
355 env
->ZF
= (~val
) & CPSR_Z
;
357 env
->CF
= (val
>> 29) & 1;
358 env
->VF
= (val
<< 3) & 0x80000000;
361 env
->QF
= ((val
& CPSR_Q
) != 0);
363 env
->thumb
= ((val
& CPSR_T
) != 0);
364 if (mask
& CPSR_IT_0_1
) {
365 env
->condexec_bits
&= ~3;
366 env
->condexec_bits
|= (val
>> 25) & 3;
368 if (mask
& CPSR_IT_2_7
) {
369 env
->condexec_bits
&= 3;
370 env
->condexec_bits
|= (val
>> 8) & 0xfc;
372 if (mask
& CPSR_GE
) {
373 env
->GE
= (val
>> 16) & 0xf;
376 if ((env
->uncached_cpsr
^ val
) & mask
& CPSR_M
) {
377 switch_mode(env
, val
& CPSR_M
);
379 mask
&= ~CACHED_CPSR_BITS
;
380 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~mask
) | (val
& mask
);
383 /* Sign/zero extend */
384 uint32_t HELPER(sxtb16
)(uint32_t x
)
387 res
= (uint16_t)(int8_t)x
;
388 res
|= (uint32_t)(int8_t)(x
>> 16) << 16;
392 uint32_t HELPER(uxtb16
)(uint32_t x
)
395 res
= (uint16_t)(uint8_t)x
;
396 res
|= (uint32_t)(uint8_t)(x
>> 16) << 16;
400 uint32_t HELPER(clz
)(uint32_t x
)
403 for (count
= 32; x
; count
--)
408 int32_t HELPER(sdiv
)(int32_t num
, int32_t den
)
415 uint32_t HELPER(udiv
)(uint32_t num
, uint32_t den
)
422 uint32_t HELPER(rbit
)(uint32_t x
)
424 x
= ((x
& 0xff000000) >> 24)
425 | ((x
& 0x00ff0000) >> 8)
426 | ((x
& 0x0000ff00) << 8)
427 | ((x
& 0x000000ff) << 24);
428 x
= ((x
& 0xf0f0f0f0) >> 4)
429 | ((x
& 0x0f0f0f0f) << 4);
430 x
= ((x
& 0x88888888) >> 3)
431 | ((x
& 0x44444444) >> 1)
432 | ((x
& 0x22222222) << 1)
433 | ((x
& 0x11111111) << 3);
437 uint32_t HELPER(abs
)(uint32_t x
)
439 return ((int32_t)x
< 0) ? -x
: x
;
442 #if defined(CONFIG_USER_ONLY)
444 void do_interrupt (CPUState
*env
)
446 env
->exception_index
= -1;
449 /* Structure used to record exclusive memory locations. */
450 typedef struct mmon_state
{
451 struct mmon_state
*next
;
452 CPUARMState
*cpu_env
;
456 /* Chain of current locks. */
457 static mmon_state
* mmon_head
= NULL
;
459 int cpu_arm_handle_mmu_fault (CPUState
*env
, target_ulong address
, int rw
,
460 int mmu_idx
, int is_softmmu
)
463 env
->exception_index
= EXCP_PREFETCH_ABORT
;
464 env
->cp15
.c6_insn
= address
;
466 env
->exception_index
= EXCP_DATA_ABORT
;
467 env
->cp15
.c6_data
= address
;
472 static void allocate_mmon_state(CPUState
*env
)
474 env
->mmon_entry
= malloc(sizeof (mmon_state
));
475 memset (env
->mmon_entry
, 0, sizeof (mmon_state
));
476 env
->mmon_entry
->cpu_env
= env
;
477 mmon_head
= env
->mmon_entry
;
480 /* Flush any monitor locks for the specified address. */
481 static void flush_mmon(uint32_t addr
)
485 for (mon
= mmon_head
; mon
; mon
= mon
->next
)
487 if (mon
->addr
!= addr
)
495 /* Mark an address for exclusive access. */
496 void HELPER(mark_exclusive
)(CPUState
*env
, uint32_t addr
)
498 if (!env
->mmon_entry
)
499 allocate_mmon_state(env
);
500 /* Clear any previous locks. */
502 env
->mmon_entry
->addr
= addr
;
505 /* Test if an exclusive address is still exclusive. Returns zero
506 if the address is still exclusive. */
507 uint32_t HELPER(test_exclusive
)(CPUState
*env
, uint32_t addr
)
511 if (!env
->mmon_entry
)
513 if (env
->mmon_entry
->addr
== addr
)
521 void HELPER(clrex
)(CPUState
*env
)
523 if (!(env
->mmon_entry
&& env
->mmon_entry
->addr
))
525 flush_mmon(env
->mmon_entry
->addr
);
528 target_phys_addr_t
cpu_get_phys_page_debug(CPUState
*env
, target_ulong addr
)
533 /* These should probably raise undefined insn exceptions. */
534 void HELPER(set_cp
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
536 int op1
= (insn
>> 8) & 0xf;
537 cpu_abort(env
, "cp%i insn %08x\n", op1
, insn
);
541 uint32_t HELPER(get_cp
)(CPUState
*env
, uint32_t insn
)
543 int op1
= (insn
>> 8) & 0xf;
544 cpu_abort(env
, "cp%i insn %08x\n", op1
, insn
);
548 void HELPER(set_cp15
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
550 cpu_abort(env
, "cp15 insn %08x\n", insn
);
553 uint32_t HELPER(get_cp15
)(CPUState
*env
, uint32_t insn
)
555 cpu_abort(env
, "cp15 insn %08x\n", insn
);
559 /* These should probably raise undefined insn exceptions. */
560 void HELPER(v7m_msr
)(CPUState
*env
, uint32_t reg
, uint32_t val
)
562 cpu_abort(env
, "v7m_mrs %d\n", reg
);
565 uint32_t HELPER(v7m_mrs
)(CPUState
*env
, uint32_t reg
)
567 cpu_abort(env
, "v7m_mrs %d\n", reg
);
571 void switch_mode(CPUState
*env
, int mode
)
573 if (mode
!= ARM_CPU_MODE_USR
)
574 cpu_abort(env
, "Tried to switch out of user mode\n");
577 void HELPER(set_r13_banked
)(CPUState
*env
, uint32_t mode
, uint32_t val
)
579 cpu_abort(env
, "banked r13 write\n");
582 uint32_t HELPER(get_r13_banked
)(CPUState
*env
, uint32_t mode
)
584 cpu_abort(env
, "banked r13 read\n");
590 extern int semihosting_enabled
;
592 /* Map CPU modes onto saved register banks. */
593 static inline int bank_number (int mode
)
596 case ARM_CPU_MODE_USR
:
597 case ARM_CPU_MODE_SYS
:
599 case ARM_CPU_MODE_SVC
:
601 case ARM_CPU_MODE_ABT
:
603 case ARM_CPU_MODE_UND
:
605 case ARM_CPU_MODE_IRQ
:
607 case ARM_CPU_MODE_FIQ
:
610 cpu_abort(cpu_single_env
, "Bad mode %x\n", mode
);
614 void switch_mode(CPUState
*env
, int mode
)
619 old_mode
= env
->uncached_cpsr
& CPSR_M
;
620 if (mode
== old_mode
)
623 if (old_mode
== ARM_CPU_MODE_FIQ
) {
624 memcpy (env
->fiq_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
625 memcpy (env
->regs
+ 8, env
->usr_regs
, 5 * sizeof(uint32_t));
626 } else if (mode
== ARM_CPU_MODE_FIQ
) {
627 memcpy (env
->usr_regs
, env
->regs
+ 8, 5 * sizeof(uint32_t));
628 memcpy (env
->regs
+ 8, env
->fiq_regs
, 5 * sizeof(uint32_t));
631 i
= bank_number(old_mode
);
632 env
->banked_r13
[i
] = env
->regs
[13];
633 env
->banked_r14
[i
] = env
->regs
[14];
634 env
->banked_spsr
[i
] = env
->spsr
;
636 i
= bank_number(mode
);
637 env
->regs
[13] = env
->banked_r13
[i
];
638 env
->regs
[14] = env
->banked_r14
[i
];
639 env
->spsr
= env
->banked_spsr
[i
];
642 static void v7m_push(CPUARMState
*env
, uint32_t val
)
645 stl_phys(env
->regs
[13], val
);
648 static uint32_t v7m_pop(CPUARMState
*env
)
651 val
= ldl_phys(env
->regs
[13]);
656 /* Switch to V7M main or process stack pointer. */
657 static void switch_v7m_sp(CPUARMState
*env
, int process
)
660 if (env
->v7m
.current_sp
!= process
) {
661 tmp
= env
->v7m
.other_sp
;
662 env
->v7m
.other_sp
= env
->regs
[13];
664 env
->v7m
.current_sp
= process
;
668 static void do_v7m_exception_exit(CPUARMState
*env
)
673 type
= env
->regs
[15];
674 if (env
->v7m
.exception
!= 0)
675 armv7m_nvic_complete_irq(env
->v7m
.nvic
, env
->v7m
.exception
);
677 /* Switch to the target stack. */
678 switch_v7m_sp(env
, (type
& 4) != 0);
680 env
->regs
[0] = v7m_pop(env
);
681 env
->regs
[1] = v7m_pop(env
);
682 env
->regs
[2] = v7m_pop(env
);
683 env
->regs
[3] = v7m_pop(env
);
684 env
->regs
[12] = v7m_pop(env
);
685 env
->regs
[14] = v7m_pop(env
);
686 env
->regs
[15] = v7m_pop(env
);
688 xpsr_write(env
, xpsr
, 0xfffffdff);
689 /* Undo stack alignment. */
692 /* ??? The exception return type specifies Thread/Handler mode. However
693 this is also implied by the xPSR value. Not sure what to do
694 if there is a mismatch. */
695 /* ??? Likewise for mismatches between the CONTROL register and the stack
699 static void do_interrupt_v7m(CPUARMState
*env
)
701 uint32_t xpsr
= xpsr_read(env
);
706 if (env
->v7m
.current_sp
)
708 if (env
->v7m
.exception
== 0)
711 /* For exceptions we just mark as pending on the NVIC, and let that
713 /* TODO: Need to escalate if the current priority is higher than the
714 one we're raising. */
715 switch (env
->exception_index
) {
717 armv7m_nvic_set_pending(env
->v7m
.nvic
, ARMV7M_EXCP_USAGE
);
721 armv7m_nvic_set_pending(env
->v7m
.nvic
, ARMV7M_EXCP_SVC
);
723 case EXCP_PREFETCH_ABORT
:
724 case EXCP_DATA_ABORT
:
725 armv7m_nvic_set_pending(env
->v7m
.nvic
, ARMV7M_EXCP_MEM
);
728 if (semihosting_enabled
) {
730 nr
= lduw_code(env
->regs
[15]) & 0xff;
733 env
->regs
[0] = do_arm_semihosting(env
);
737 armv7m_nvic_set_pending(env
->v7m
.nvic
, ARMV7M_EXCP_DEBUG
);
740 env
->v7m
.exception
= armv7m_nvic_acknowledge_irq(env
->v7m
.nvic
);
742 case EXCP_EXCEPTION_EXIT
:
743 do_v7m_exception_exit(env
);
746 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
747 return; /* Never happens. Keep compiler happy. */
750 /* Align stack pointer. */
751 /* ??? Should only do this if Configuration Control Register
752 STACKALIGN bit is set. */
753 if (env
->regs
[13] & 4) {
757 /* Switch to the handler mode. */
759 v7m_push(env
, env
->regs
[15]);
760 v7m_push(env
, env
->regs
[14]);
761 v7m_push(env
, env
->regs
[12]);
762 v7m_push(env
, env
->regs
[3]);
763 v7m_push(env
, env
->regs
[2]);
764 v7m_push(env
, env
->regs
[1]);
765 v7m_push(env
, env
->regs
[0]);
766 switch_v7m_sp(env
, 0);
767 env
->uncached_cpsr
&= ~CPSR_IT
;
769 addr
= ldl_phys(env
->v7m
.vecbase
+ env
->v7m
.exception
* 4);
770 env
->regs
[15] = addr
& 0xfffffffe;
771 env
->thumb
= addr
& 1;
774 /* Handle a CPU exception. */
775 void do_interrupt(CPUARMState
*env
)
783 do_interrupt_v7m(env
);
786 /* TODO: Vectored interrupt controller. */
787 switch (env
->exception_index
) {
789 new_mode
= ARM_CPU_MODE_UND
;
798 if (semihosting_enabled
) {
799 /* Check for semihosting interrupt. */
801 mask
= lduw_code(env
->regs
[15] - 2) & 0xff;
803 mask
= ldl_code(env
->regs
[15] - 4) & 0xffffff;
805 /* Only intercept calls from privileged modes, to provide some
806 semblance of security. */
807 if (((mask
== 0x123456 && !env
->thumb
)
808 || (mask
== 0xab && env
->thumb
))
809 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
810 env
->regs
[0] = do_arm_semihosting(env
);
814 new_mode
= ARM_CPU_MODE_SVC
;
817 /* The PC already points to the next instruction. */
821 /* See if this is a semihosting syscall. */
822 if (env
->thumb
&& semihosting_enabled
) {
823 mask
= lduw_code(env
->regs
[15]) & 0xff;
825 && (env
->uncached_cpsr
& CPSR_M
) != ARM_CPU_MODE_USR
) {
827 env
->regs
[0] = do_arm_semihosting(env
);
831 /* Fall through to prefetch abort. */
832 case EXCP_PREFETCH_ABORT
:
833 new_mode
= ARM_CPU_MODE_ABT
;
835 mask
= CPSR_A
| CPSR_I
;
838 case EXCP_DATA_ABORT
:
839 new_mode
= ARM_CPU_MODE_ABT
;
841 mask
= CPSR_A
| CPSR_I
;
845 new_mode
= ARM_CPU_MODE_IRQ
;
847 /* Disable IRQ and imprecise data aborts. */
848 mask
= CPSR_A
| CPSR_I
;
852 new_mode
= ARM_CPU_MODE_FIQ
;
854 /* Disable FIQ, IRQ and imprecise data aborts. */
855 mask
= CPSR_A
| CPSR_I
| CPSR_F
;
859 cpu_abort(env
, "Unhandled exception 0x%x\n", env
->exception_index
);
860 return; /* Never happens. Keep compiler happy. */
863 if (env
->cp15
.c1_sys
& (1 << 13)) {
866 switch_mode (env
, new_mode
);
867 env
->spsr
= cpsr_read(env
);
869 env
->condexec_bits
= 0;
870 /* Switch to the new mode, and switch to Arm mode. */
871 /* ??? Thumb interrupt handlers not implemented. */
872 env
->uncached_cpsr
= (env
->uncached_cpsr
& ~CPSR_M
) | new_mode
;
873 env
->uncached_cpsr
|= mask
;
875 env
->regs
[14] = env
->regs
[15] + offset
;
876 env
->regs
[15] = addr
;
877 env
->interrupt_request
|= CPU_INTERRUPT_EXITTB
;
880 /* Check section/page access permissions.
881 Returns the page protection flags, or zero if the access is not
883 static inline int check_ap(CPUState
*env
, int ap
, int domain
, int access_type
,
889 return PAGE_READ
| PAGE_WRITE
;
891 if (access_type
== 1)
898 if (access_type
== 1)
900 switch ((env
->cp15
.c1_sys
>> 8) & 3) {
902 return is_user
? 0 : PAGE_READ
;
909 return is_user
? 0 : PAGE_READ
| PAGE_WRITE
;
914 return PAGE_READ
| PAGE_WRITE
;
916 return PAGE_READ
| PAGE_WRITE
;
917 case 4: /* Reserved. */
920 return is_user
? 0 : prot_ro
;
924 if (!arm_feature (env
, ARM_FEATURE_V7
))
932 static uint32_t get_level1_table_address(CPUState
*env
, uint32_t address
)
936 if (address
& env
->cp15
.c2_mask
)
937 table
= env
->cp15
.c2_base1
& 0xffffc000;
939 table
= env
->cp15
.c2_base0
& env
->cp15
.c2_base_mask
;
941 table
|= (address
>> 18) & 0x3ffc;
945 static int get_phys_addr_v5(CPUState
*env
, uint32_t address
, int access_type
,
946 int is_user
, uint32_t *phys_ptr
, int *prot
)
956 /* Pagetable walk. */
957 /* Lookup l1 descriptor. */
958 table
= get_level1_table_address(env
, address
);
959 desc
= ldl_phys(table
);
961 domain
= (env
->cp15
.c3
>> ((desc
>> 4) & 0x1e)) & 3;
963 /* Section translation fault. */
967 if (domain
== 0 || domain
== 2) {
969 code
= 9; /* Section domain fault. */
971 code
= 11; /* Page domain fault. */
976 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
977 ap
= (desc
>> 10) & 3;
980 /* Lookup l2 entry. */
982 /* Coarse pagetable. */
983 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
985 /* Fine pagetable. */
986 table
= (desc
& 0xfffff000) | ((address
>> 8) & 0xffc);
988 desc
= ldl_phys(table
);
990 case 0: /* Page translation fault. */
993 case 1: /* 64k page. */
994 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
995 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
997 case 2: /* 4k page. */
998 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
999 ap
= (desc
>> (4 + ((address
>> 13) & 6))) & 3;
1001 case 3: /* 1k page. */
1003 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1004 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
1006 /* Page translation fault. */
1011 phys_addr
= (desc
& 0xfffffc00) | (address
& 0x3ff);
1013 ap
= (desc
>> 4) & 3;
1016 /* Never happens, but compiler isn't smart enough to tell. */
1021 *prot
= check_ap(env
, ap
, domain
, access_type
, is_user
);
1023 /* Access permission fault. */
1026 *phys_ptr
= phys_addr
;
1029 return code
| (domain
<< 4);
1032 static int get_phys_addr_v6(CPUState
*env
, uint32_t address
, int access_type
,
1033 int is_user
, uint32_t *phys_ptr
, int *prot
)
1044 /* Pagetable walk. */
1045 /* Lookup l1 descriptor. */
1046 table
= get_level1_table_address(env
, address
);
1047 desc
= ldl_phys(table
);
1050 /* Section translation fault. */
1054 } else if (type
== 2 && (desc
& (1 << 18))) {
1058 /* Section or page. */
1059 domain
= (desc
>> 4) & 0x1e;
1061 domain
= (env
->cp15
.c3
>> domain
) & 3;
1062 if (domain
== 0 || domain
== 2) {
1064 code
= 9; /* Section domain fault. */
1066 code
= 11; /* Page domain fault. */
1070 if (desc
& (1 << 18)) {
1072 phys_addr
= (desc
& 0xff000000) | (address
& 0x00ffffff);
1075 phys_addr
= (desc
& 0xfff00000) | (address
& 0x000fffff);
1077 ap
= ((desc
>> 10) & 3) | ((desc
>> 13) & 4);
1078 xn
= desc
& (1 << 4);
1081 /* Lookup l2 entry. */
1082 table
= (desc
& 0xfffffc00) | ((address
>> 10) & 0x3fc);
1083 desc
= ldl_phys(table
);
1084 ap
= ((desc
>> 4) & 3) | ((desc
>> 7) & 4);
1086 case 0: /* Page translation fault. */
1089 case 1: /* 64k page. */
1090 phys_addr
= (desc
& 0xffff0000) | (address
& 0xffff);
1091 xn
= desc
& (1 << 15);
1093 case 2: case 3: /* 4k page. */
1094 phys_addr
= (desc
& 0xfffff000) | (address
& 0xfff);
1098 /* Never happens, but compiler isn't smart enough to tell. */
1103 if (xn
&& access_type
== 2)
1106 /* The simplified model uses AP[0] as an access control bit. */
1107 if ((env
->cp15
.c1_sys
& (1 << 29)) && (ap
& 1) == 0) {
1108 /* Access flag fault. */
1109 code
= (code
== 15) ? 6 : 3;
1112 *prot
= check_ap(env
, ap
, domain
, access_type
, is_user
);
1114 /* Access permission fault. */
1117 *phys_ptr
= phys_addr
;
1120 return code
| (domain
<< 4);
1123 static int get_phys_addr_mpu(CPUState
*env
, uint32_t address
, int access_type
,
1124 int is_user
, uint32_t *phys_ptr
, int *prot
)
1130 *phys_ptr
= address
;
1131 for (n
= 7; n
>= 0; n
--) {
1132 base
= env
->cp15
.c6_region
[n
];
1133 if ((base
& 1) == 0)
1135 mask
= 1 << ((base
>> 1) & 0x1f);
1136 /* Keep this shift separate from the above to avoid an
1137 (undefined) << 32. */
1138 mask
= (mask
<< 1) - 1;
1139 if (((base
^ address
) & ~mask
) == 0)
1145 if (access_type
== 2) {
1146 mask
= env
->cp15
.c5_insn
;
1148 mask
= env
->cp15
.c5_data
;
1150 mask
= (mask
>> (n
* 4)) & 0xf;
1157 *prot
= PAGE_READ
| PAGE_WRITE
;
1162 *prot
|= PAGE_WRITE
;
1165 *prot
= PAGE_READ
| PAGE_WRITE
;
1176 /* Bad permission. */
1182 static inline int get_phys_addr(CPUState
*env
, uint32_t address
,
1183 int access_type
, int is_user
,
1184 uint32_t *phys_ptr
, int *prot
)
1186 /* Fast Context Switch Extension. */
1187 if (address
< 0x02000000)
1188 address
+= env
->cp15
.c13_fcse
;
1190 if ((env
->cp15
.c1_sys
& 1) == 0) {
1191 /* MMU/MPU disabled. */
1192 *phys_ptr
= address
;
1193 *prot
= PAGE_READ
| PAGE_WRITE
;
1195 } else if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1196 return get_phys_addr_mpu(env
, address
, access_type
, is_user
, phys_ptr
,
1198 } else if (env
->cp15
.c1_sys
& (1 << 23)) {
1199 return get_phys_addr_v6(env
, address
, access_type
, is_user
, phys_ptr
,
1202 return get_phys_addr_v5(env
, address
, access_type
, is_user
, phys_ptr
,
1207 int cpu_arm_handle_mmu_fault (CPUState
*env
, target_ulong address
,
1208 int access_type
, int mmu_idx
, int is_softmmu
)
1214 is_user
= mmu_idx
== MMU_USER_IDX
;
1215 ret
= get_phys_addr(env
, address
, access_type
, is_user
, &phys_addr
, &prot
);
1217 /* Map a single [sub]page. */
1218 phys_addr
&= ~(uint32_t)0x3ff;
1219 address
&= ~(uint32_t)0x3ff;
1220 return tlb_set_page (env
, address
, phys_addr
, prot
, mmu_idx
,
1224 if (access_type
== 2) {
1225 env
->cp15
.c5_insn
= ret
;
1226 env
->cp15
.c6_insn
= address
;
1227 env
->exception_index
= EXCP_PREFETCH_ABORT
;
1229 env
->cp15
.c5_data
= ret
;
1230 if (access_type
== 1 && arm_feature(env
, ARM_FEATURE_V6
))
1231 env
->cp15
.c5_data
|= (1 << 11);
1232 env
->cp15
.c6_data
= address
;
1233 env
->exception_index
= EXCP_DATA_ABORT
;
1238 target_phys_addr_t
cpu_get_phys_page_debug(CPUState
*env
, target_ulong addr
)
1244 ret
= get_phys_addr(env
, addr
, 0, 0, &phys_addr
, &prot
);
1252 /* Not really implemented. Need to figure out a sane way of doing this.
1253 Maybe add generic watchpoint support and use that. */
1255 void HELPER(mark_exclusive
)(CPUState
*env
, uint32_t addr
)
1257 env
->mmon_addr
= addr
;
1260 uint32_t HELPER(test_exclusive
)(CPUState
*env
, uint32_t addr
)
1262 return (env
->mmon_addr
!= addr
);
1265 void HELPER(clrex
)(CPUState
*env
)
1267 env
->mmon_addr
= -1;
1270 void HELPER(set_cp
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
1272 int cp_num
= (insn
>> 8) & 0xf;
1273 int cp_info
= (insn
>> 5) & 7;
1274 int src
= (insn
>> 16) & 0xf;
1275 int operand
= insn
& 0xf;
1277 if (env
->cp
[cp_num
].cp_write
)
1278 env
->cp
[cp_num
].cp_write(env
->cp
[cp_num
].opaque
,
1279 cp_info
, src
, operand
, val
);
1282 uint32_t HELPER(get_cp
)(CPUState
*env
, uint32_t insn
)
1284 int cp_num
= (insn
>> 8) & 0xf;
1285 int cp_info
= (insn
>> 5) & 7;
1286 int dest
= (insn
>> 16) & 0xf;
1287 int operand
= insn
& 0xf;
1289 if (env
->cp
[cp_num
].cp_read
)
1290 return env
->cp
[cp_num
].cp_read(env
->cp
[cp_num
].opaque
,
1291 cp_info
, dest
, operand
);
1295 /* Return basic MPU access permission bits. */
1296 static uint32_t simple_mpu_ap_bits(uint32_t val
)
1303 for (i
= 0; i
< 16; i
+= 2) {
1304 ret
|= (val
>> i
) & mask
;
1310 /* Pad basic MPU access permission bits to extended format. */
1311 static uint32_t extended_mpu_ap_bits(uint32_t val
)
1318 for (i
= 0; i
< 16; i
+= 2) {
1319 ret
|= (val
& mask
) << i
;
1325 void HELPER(set_cp15
)(CPUState
*env
, uint32_t insn
, uint32_t val
)
1331 op1
= (insn
>> 21) & 7;
1332 op2
= (insn
>> 5) & 7;
1334 switch ((insn
>> 16) & 0xf) {
1337 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1339 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1341 if (arm_feature(env
, ARM_FEATURE_V7
)
1342 && op1
== 2 && crm
== 0 && op2
== 0) {
1343 env
->cp15
.c0_cssel
= val
& 0xf;
1347 case 1: /* System configuration. */
1348 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1352 if (!arm_feature(env
, ARM_FEATURE_XSCALE
) || crm
== 0)
1353 env
->cp15
.c1_sys
= val
;
1354 /* ??? Lots of these bits are not implemented. */
1355 /* This may enable/disable the MMU, so do a TLB flush. */
1358 case 1: /* Auxiliary cotrol register. */
1359 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1360 env
->cp15
.c1_xscaleauxcr
= val
;
1363 /* Not implemented. */
1366 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1368 if (env
->cp15
.c1_coproc
!= val
) {
1369 env
->cp15
.c1_coproc
= val
;
1370 /* ??? Is this safe when called from within a TB? */
1378 case 2: /* MMU Page table control / MPU cache control. */
1379 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1382 env
->cp15
.c2_data
= val
;
1385 env
->cp15
.c2_insn
= val
;
1393 env
->cp15
.c2_base0
= val
;
1396 env
->cp15
.c2_base1
= val
;
1400 env
->cp15
.c2_control
= val
;
1401 env
->cp15
.c2_mask
= ~(((uint32_t)0xffffffffu
) >> val
);
1402 env
->cp15
.c2_base_mask
= ~((uint32_t)0x3fffu
>> val
);
1409 case 3: /* MMU Domain access control / MPU write buffer control. */
1411 tlb_flush(env
, 1); /* Flush TLB as domain not tracked in TLB */
1413 case 4: /* Reserved. */
1415 case 5: /* MMU Fault status / MPU access permission. */
1416 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1420 if (arm_feature(env
, ARM_FEATURE_MPU
))
1421 val
= extended_mpu_ap_bits(val
);
1422 env
->cp15
.c5_data
= val
;
1425 if (arm_feature(env
, ARM_FEATURE_MPU
))
1426 val
= extended_mpu_ap_bits(val
);
1427 env
->cp15
.c5_insn
= val
;
1430 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1432 env
->cp15
.c5_data
= val
;
1435 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1437 env
->cp15
.c5_insn
= val
;
1443 case 6: /* MMU Fault address / MPU base/size. */
1444 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1447 env
->cp15
.c6_region
[crm
] = val
;
1449 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1453 env
->cp15
.c6_data
= val
;
1455 case 1: /* ??? This is WFAR on armv6 */
1457 env
->cp15
.c6_insn
= val
;
1464 case 7: /* Cache control. */
1465 env
->cp15
.c15_i_max
= 0x000;
1466 env
->cp15
.c15_i_min
= 0xff0;
1467 /* No cache, so nothing to do. */
1468 /* ??? MPCore has VA to PA translation functions. */
1470 case 8: /* MMU TLB control. */
1472 case 0: /* Invalidate all. */
1475 case 1: /* Invalidate single TLB entry. */
1477 /* ??? This is wrong for large pages and sections. */
1478 /* As an ugly hack to make linux work we always flush a 4K
1481 tlb_flush_page(env
, val
);
1482 tlb_flush_page(env
, val
+ 0x400);
1483 tlb_flush_page(env
, val
+ 0x800);
1484 tlb_flush_page(env
, val
+ 0xc00);
1489 case 2: /* Invalidate on ASID. */
1490 tlb_flush(env
, val
== 0);
1492 case 3: /* Invalidate single entry on MVA. */
1493 /* ??? This is like case 1, but ignores ASID. */
1501 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1504 case 0: /* Cache lockdown. */
1506 case 0: /* L1 cache. */
1509 env
->cp15
.c9_data
= val
;
1512 env
->cp15
.c9_insn
= val
;
1518 case 1: /* L2 cache. */
1519 /* Ignore writes to L2 lockdown/auxiliary registers. */
1525 case 1: /* TCM memory region registers. */
1526 /* Not implemented. */
1532 case 10: /* MMU TLB lockdown. */
1533 /* ??? TLB lockdown not implemented. */
1535 case 12: /* Reserved. */
1537 case 13: /* Process ID. */
1538 if (arm_feature(env
, ARM_FEATURE_S3C
))
1542 /* Unlike real hardware the qemu TLB uses virtual addresses,
1543 not modified virtual addresses, so this causes a TLB flush.
1545 if (env
->cp15
.c13_fcse
!= val
)
1547 env
->cp15
.c13_fcse
= val
;
1550 /* This changes the ASID, so do a TLB flush. */
1551 if (env
->cp15
.c13_context
!= val
1552 && !arm_feature(env
, ARM_FEATURE_MPU
))
1554 env
->cp15
.c13_context
= val
;
1557 env
->cp15
.c13_tls1
= val
;
1560 env
->cp15
.c13_tls2
= val
;
1563 env
->cp15
.c13_tls3
= val
;
1569 case 14: /* Reserved. */
1571 case 15: /* Implementation specific. */
1572 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1573 if (op2
== 0 && crm
== 1) {
1574 if (env
->cp15
.c15_cpar
!= (val
& 0x3fff)) {
1575 /* Changes cp0 to cp13 behavior, so needs a TB flush. */
1577 env
->cp15
.c15_cpar
= val
& 0x3fff;
1583 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
1587 case 1: /* Set TI925T configuration. */
1588 env
->cp15
.c15_ticonfig
= val
& 0xe7;
1589 env
->cp15
.c0_cpuid
= (val
& (1 << 5)) ? /* OS_TYPE bit */
1590 ARM_CPUID_TI915T
: ARM_CPUID_TI925T
;
1592 case 2: /* Set I_max. */
1593 env
->cp15
.c15_i_max
= val
;
1595 case 3: /* Set I_min. */
1596 env
->cp15
.c15_i_min
= val
;
1598 case 4: /* Set thread-ID. */
1599 env
->cp15
.c15_threadid
= val
& 0xffff;
1601 case 8: /* Wait-for-interrupt (deprecated). */
1602 cpu_interrupt(env
, CPU_INTERRUPT_HALT
);
1612 /* ??? For debugging only. Should raise illegal instruction exception. */
1613 cpu_abort(env
, "Unimplemented cp15 register write (c%d, c%d, {%d, %d})\n",
1614 (insn
>> 16) & 0xf, crm
, op1
, op2
);
1617 uint32_t HELPER(get_cp15
)(CPUState
*env
, uint32_t insn
)
1623 op1
= (insn
>> 21) & 7;
1624 op2
= (insn
>> 5) & 7;
1626 switch ((insn
>> 16) & 0xf) {
1627 case 0: /* ID codes. */
1633 case 0: /* Device ID. */
1634 return env
->cp15
.c0_cpuid
;
1635 case 1: /* Cache Type. */
1636 return env
->cp15
.c0_cachetype
;
1637 case 2: /* TCM status. */
1638 if (arm_feature(env
, ARM_FEATURE_S3C
))
1639 return env
->cp15
.c0_cpuid
;
1641 case 3: /* TLB type register. */
1642 return 0; /* No lockable TLB entries. */
1643 case 5: /* CPU ID */
1644 return env
->cpu_index
;
1649 if (!arm_feature(env
, ARM_FEATURE_V6
))
1651 return env
->cp15
.c0_c1
[op2
];
1653 if (!arm_feature(env
, ARM_FEATURE_V6
))
1655 return env
->cp15
.c0_c2
[op2
];
1656 case 3: case 4: case 5: case 6: case 7:
1662 /* These registers aren't documented on arm11 cores. However
1663 Linux looks at them anyway. */
1664 if (!arm_feature(env
, ARM_FEATURE_V6
))
1668 if (!arm_feature(env
, ARM_FEATURE_V7
))
1673 return env
->cp15
.c0_ccsid
[env
->cp15
.c0_cssel
];
1675 return env
->cp15
.c0_clid
;
1681 if (op2
!= 0 || crm
!= 0)
1683 return env
->cp15
.c0_cssel
;
1687 case 1: /* System configuration. */
1688 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1691 case 0: /* Control register. */
1692 return env
->cp15
.c1_sys
;
1693 case 1: /* Auxiliary control register. */
1694 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1695 return env
->cp15
.c1_xscaleauxcr
;
1696 if (!arm_feature(env
, ARM_FEATURE_AUXCR
))
1698 switch (ARM_CPUID(env
)) {
1699 case ARM_CPUID_ARM1026
:
1701 case ARM_CPUID_ARM1136
:
1702 case ARM_CPUID_ARM1136_R2
:
1704 case ARM_CPUID_ARM11MPCORE
:
1706 case ARM_CPUID_CORTEXA8
:
1711 case 2: /* Coprocessor access register. */
1712 if (arm_feature(env
, ARM_FEATURE_XSCALE
))
1714 return env
->cp15
.c1_coproc
;
1718 case 2: /* MMU Page table control / MPU cache control. */
1719 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1722 return env
->cp15
.c2_data
;
1725 return env
->cp15
.c2_insn
;
1733 return env
->cp15
.c2_base0
;
1735 return env
->cp15
.c2_base1
;
1737 return env
->cp15
.c2_control
;
1742 case 3: /* MMU Domain access control / MPU write buffer control. */
1743 return env
->cp15
.c3
;
1744 case 4: /* Reserved. */
1746 case 5: /* MMU Fault status / MPU access permission. */
1747 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1751 if (arm_feature(env
, ARM_FEATURE_MPU
))
1752 return simple_mpu_ap_bits(env
->cp15
.c5_data
);
1753 return env
->cp15
.c5_data
;
1755 if (arm_feature(env
, ARM_FEATURE_MPU
))
1756 return simple_mpu_ap_bits(env
->cp15
.c5_data
);
1757 return env
->cp15
.c5_insn
;
1759 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1761 return env
->cp15
.c5_data
;
1763 if (!arm_feature(env
, ARM_FEATURE_MPU
))
1765 return env
->cp15
.c5_insn
;
1769 case 6: /* MMU Fault address. */
1770 if (arm_feature(env
, ARM_FEATURE_MPU
)) {
1773 return env
->cp15
.c6_region
[crm
];
1775 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1779 return env
->cp15
.c6_data
;
1781 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1782 /* Watchpoint Fault Adrress. */
1783 return 0; /* Not implemented. */
1785 /* Instruction Fault Adrress. */
1786 /* Arm9 doesn't have an IFAR, but implementing it anyway
1787 shouldn't do any harm. */
1788 return env
->cp15
.c6_insn
;
1791 if (arm_feature(env
, ARM_FEATURE_V6
)) {
1792 /* Instruction Fault Adrress. */
1793 return env
->cp15
.c6_insn
;
1801 case 7: /* Cache control. */
1802 /* FIXME: Should only clear Z flag if destination is r15. */
1805 case 8: /* MMU TLB control. */
1807 case 9: /* Cache lockdown. */
1809 case 0: /* L1 cache. */
1810 if (arm_feature(env
, ARM_FEATURE_OMAPCP
))
1814 return env
->cp15
.c9_data
;
1816 return env
->cp15
.c9_insn
;
1820 case 1: /* L2 cache */
1823 /* L2 Lockdown and Auxiliary control. */
1828 case 10: /* MMU TLB lockdown. */
1829 /* ??? TLB lockdown not implemented. */
1831 case 11: /* TCM DMA control. */
1832 case 12: /* Reserved. */
1834 case 13: /* Process ID. */
1837 return env
->cp15
.c13_fcse
;
1839 return env
->cp15
.c13_context
;
1841 return env
->cp15
.c13_tls1
;
1843 return env
->cp15
.c13_tls2
;
1845 return env
->cp15
.c13_tls3
;
1849 case 14: /* Reserved. */
1851 case 15: /* Implementation specific. */
1852 if (arm_feature(env
, ARM_FEATURE_XSCALE
)) {
1853 if (op2
== 0 && crm
== 1)
1854 return env
->cp15
.c15_cpar
;
1858 if (arm_feature(env
, ARM_FEATURE_OMAPCP
)) {
1862 case 1: /* Read TI925T configuration. */
1863 return env
->cp15
.c15_ticonfig
;
1864 case 2: /* Read I_max. */
1865 return env
->cp15
.c15_i_max
;
1866 case 3: /* Read I_min. */
1867 return env
->cp15
.c15_i_min
;
1868 case 4: /* Read thread-ID. */
1869 return env
->cp15
.c15_threadid
;
1870 case 8: /* TI925T_status */
1873 /* TODO: Peripheral port remap register:
1874 * On OMAP2 mcr p15, 0, rn, c15, c2, 4 sets up the interrupt
1875 * controller base address at $rn & ~0xfff and map size of
1876 * 0x200 << ($rn & 0xfff), when MMU is off. */
1882 /* ??? For debugging only. Should raise illegal instruction exception. */
1883 cpu_abort(env
, "Unimplemented cp15 register read (c%d, c%d, {%d, %d})\n",
1884 (insn
>> 16) & 0xf, crm
, op1
, op2
);
1888 void HELPER(set_r13_banked
)(CPUState
*env
, uint32_t mode
, uint32_t val
)
1890 env
->banked_r13
[bank_number(mode
)] = val
;
1893 uint32_t HELPER(get_r13_banked
)(CPUState
*env
, uint32_t mode
)
1895 return env
->banked_r13
[bank_number(mode
)];
1898 uint32_t HELPER(v7m_mrs
)(CPUState
*env
, uint32_t reg
)
1902 return xpsr_read(env
) & 0xf8000000;
1904 return xpsr_read(env
) & 0xf80001ff;
1906 return xpsr_read(env
) & 0xff00fc00;
1908 return xpsr_read(env
) & 0xff00fdff;
1910 return xpsr_read(env
) & 0x000001ff;
1912 return xpsr_read(env
) & 0x0700fc00;
1914 return xpsr_read(env
) & 0x0700edff;
1916 return env
->v7m
.current_sp
? env
->v7m
.other_sp
: env
->regs
[13];
1918 return env
->v7m
.current_sp
? env
->regs
[13] : env
->v7m
.other_sp
;
1919 case 16: /* PRIMASK */
1920 return (env
->uncached_cpsr
& CPSR_I
) != 0;
1921 case 17: /* FAULTMASK */
1922 return (env
->uncached_cpsr
& CPSR_F
) != 0;
1923 case 18: /* BASEPRI */
1924 case 19: /* BASEPRI_MAX */
1925 return env
->v7m
.basepri
;
1926 case 20: /* CONTROL */
1927 return env
->v7m
.control
;
1929 /* ??? For debugging only. */
1930 cpu_abort(env
, "Unimplemented system register read (%d)\n", reg
);
1935 void HELPER(v7m_msr
)(CPUState
*env
, uint32_t reg
, uint32_t val
)
1939 xpsr_write(env
, val
, 0xf8000000);
1942 xpsr_write(env
, val
, 0xf8000000);
1945 xpsr_write(env
, val
, 0xfe00fc00);
1948 xpsr_write(env
, val
, 0xfe00fc00);
1951 /* IPSR bits are readonly. */
1954 xpsr_write(env
, val
, 0x0600fc00);
1957 xpsr_write(env
, val
, 0x0600fc00);
1960 if (env
->v7m
.current_sp
)
1961 env
->v7m
.other_sp
= val
;
1963 env
->regs
[13] = val
;
1966 if (env
->v7m
.current_sp
)
1967 env
->regs
[13] = val
;
1969 env
->v7m
.other_sp
= val
;
1971 case 16: /* PRIMASK */
1973 env
->uncached_cpsr
|= CPSR_I
;
1975 env
->uncached_cpsr
&= ~CPSR_I
;
1977 case 17: /* FAULTMASK */
1979 env
->uncached_cpsr
|= CPSR_F
;
1981 env
->uncached_cpsr
&= ~CPSR_F
;
1983 case 18: /* BASEPRI */
1984 env
->v7m
.basepri
= val
& 0xff;
1986 case 19: /* BASEPRI_MAX */
1988 if (val
!= 0 && (val
< env
->v7m
.basepri
|| env
->v7m
.basepri
== 0))
1989 env
->v7m
.basepri
= val
;
1991 case 20: /* CONTROL */
1992 env
->v7m
.control
= val
& 3;
1993 switch_v7m_sp(env
, (val
& 2) != 0);
1996 /* ??? For debugging only. */
1997 cpu_abort(env
, "Unimplemented system register write (%d)\n", reg
);
2002 void cpu_arm_set_cp_io(CPUARMState
*env
, int cpnum
,
2003 ARMReadCPFunc
*cp_read
, ARMWriteCPFunc
*cp_write
,
2006 if (cpnum
< 0 || cpnum
> 14) {
2007 cpu_abort(env
, "Bad coprocessor number: %i\n", cpnum
);
2011 env
->cp
[cpnum
].cp_read
= cp_read
;
2012 env
->cp
[cpnum
].cp_write
= cp_write
;
2013 env
->cp
[cpnum
].opaque
= opaque
;
2018 /* Note that signed overflow is undefined in C. The following routines are
2019 careful to use unsigned types where modulo arithmetic is required.
2020 Failure to do so _will_ break on newer gcc. */
2022 /* Signed saturating arithmetic. */
2024 /* Perform 16-bit signed saturating addition. */
2025 static inline uint16_t add16_sat(uint16_t a
, uint16_t b
)
2030 if (((res
^ a
) & 0x8000) && !((a
^ b
) & 0x8000)) {
2039 /* Perform 8-bit signed saturating addition. */
2040 static inline uint8_t add8_sat(uint8_t a
, uint8_t b
)
2045 if (((res
^ a
) & 0x80) && !((a
^ b
) & 0x80)) {
2054 /* Perform 16-bit signed saturating subtraction. */
2055 static inline uint16_t sub16_sat(uint16_t a
, uint16_t b
)
2060 if (((res
^ a
) & 0x8000) && ((a
^ b
) & 0x8000)) {
2069 /* Perform 8-bit signed saturating subtraction. */
2070 static inline uint8_t sub8_sat(uint8_t a
, uint8_t b
)
2075 if (((res
^ a
) & 0x80) && ((a
^ b
) & 0x80)) {
2084 #define ADD16(a, b, n) RESULT(add16_sat(a, b), n, 16);
2085 #define SUB16(a, b, n) RESULT(sub16_sat(a, b), n, 16);
2086 #define ADD8(a, b, n) RESULT(add8_sat(a, b), n, 8);
2087 #define SUB8(a, b, n) RESULT(sub8_sat(a, b), n, 8);
2090 #include "op_addsub.h"
2092 /* Unsigned saturating arithmetic. */
2093 static inline uint16_t add16_usat(uint16_t a
, uint16_t b
)
2102 static inline uint16_t sub16_usat(uint16_t a
, uint16_t b
)
2110 static inline uint8_t add8_usat(uint8_t a
, uint8_t b
)
2119 static inline uint8_t sub8_usat(uint8_t a
, uint8_t b
)
2127 #define ADD16(a, b, n) RESULT(add16_usat(a, b), n, 16);
2128 #define SUB16(a, b, n) RESULT(sub16_usat(a, b), n, 16);
2129 #define ADD8(a, b, n) RESULT(add8_usat(a, b), n, 8);
2130 #define SUB8(a, b, n) RESULT(sub8_usat(a, b), n, 8);
2133 #include "op_addsub.h"
2135 /* Signed modulo arithmetic. */
2136 #define SARITH16(a, b, n, op) do { \
2138 sum = (int16_t)((uint16_t)(a) op (uint16_t)(b)); \
2139 RESULT(sum, n, 16); \
2141 ge |= 3 << (n * 2); \
2144 #define SARITH8(a, b, n, op) do { \
2146 sum = (int8_t)((uint8_t)(a) op (uint8_t)(b)); \
2147 RESULT(sum, n, 8); \
2153 #define ADD16(a, b, n) SARITH16(a, b, n, +)
2154 #define SUB16(a, b, n) SARITH16(a, b, n, -)
2155 #define ADD8(a, b, n) SARITH8(a, b, n, +)
2156 #define SUB8(a, b, n) SARITH8(a, b, n, -)
2160 #include "op_addsub.h"
2162 /* Unsigned modulo arithmetic. */
2163 #define ADD16(a, b, n) do { \
2165 sum = (uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b); \
2166 RESULT(sum, n, 16); \
2167 if ((sum >> 16) == 1) \
2168 ge |= 3 << (n * 2); \
2171 #define ADD8(a, b, n) do { \
2173 sum = (uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b); \
2174 RESULT(sum, n, 8); \
2175 if ((sum >> 8) == 1) \
2179 #define SUB16(a, b, n) do { \
2181 sum = (uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b); \
2182 RESULT(sum, n, 16); \
2183 if ((sum >> 16) == 0) \
2184 ge |= 3 << (n * 2); \
2187 #define SUB8(a, b, n) do { \
2189 sum = (uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b); \
2190 RESULT(sum, n, 8); \
2191 if ((sum >> 8) == 0) \
2198 #include "op_addsub.h"
2200 /* Halved signed arithmetic. */
2201 #define ADD16(a, b, n) \
2202 RESULT(((int32_t)(int16_t)(a) + (int32_t)(int16_t)(b)) >> 1, n, 16)
2203 #define SUB16(a, b, n) \
2204 RESULT(((int32_t)(int16_t)(a) - (int32_t)(int16_t)(b)) >> 1, n, 16)
2205 #define ADD8(a, b, n) \
2206 RESULT(((int32_t)(int8_t)(a) + (int32_t)(int8_t)(b)) >> 1, n, 8)
2207 #define SUB8(a, b, n) \
2208 RESULT(((int32_t)(int8_t)(a) - (int32_t)(int8_t)(b)) >> 1, n, 8)
2211 #include "op_addsub.h"
2213 /* Halved unsigned arithmetic. */
2214 #define ADD16(a, b, n) \
2215 RESULT(((uint32_t)(uint16_t)(a) + (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2216 #define SUB16(a, b, n) \
2217 RESULT(((uint32_t)(uint16_t)(a) - (uint32_t)(uint16_t)(b)) >> 1, n, 16)
2218 #define ADD8(a, b, n) \
2219 RESULT(((uint32_t)(uint8_t)(a) + (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2220 #define SUB8(a, b, n) \
2221 RESULT(((uint32_t)(uint8_t)(a) - (uint32_t)(uint8_t)(b)) >> 1, n, 8)
2224 #include "op_addsub.h"
2226 static inline uint8_t do_usad(uint8_t a
, uint8_t b
)
2234 /* Unsigned sum of absolute byte differences. */
2235 uint32_t HELPER(usad8
)(uint32_t a
, uint32_t b
)
2238 sum
= do_usad(a
, b
);
2239 sum
+= do_usad(a
>> 8, b
>> 8);
2240 sum
+= do_usad(a
>> 16, b
>>16);
2241 sum
+= do_usad(a
>> 24, b
>> 24);
2245 /* For ARMv6 SEL instruction. */
2246 uint32_t HELPER(sel_flags
)(uint32_t flags
, uint32_t a
, uint32_t b
)
2259 return (a
& mask
) | (b
& ~mask
);
2262 uint32_t HELPER(logicq_cc
)(uint64_t val
)
2264 return (val
>> 32) | (val
!= 0);
2267 /* VFP support. We follow the convention used for VFP instrunctions:
2268 Single precition routines have a "s" suffix, double precision a
2271 /* Convert host exception flags to vfp form. */
2272 static inline int vfp_exceptbits_from_host(int host_bits
)
2274 int target_bits
= 0;
2276 if (host_bits
& float_flag_invalid
)
2278 if (host_bits
& float_flag_divbyzero
)
2280 if (host_bits
& float_flag_overflow
)
2282 if (host_bits
& float_flag_underflow
)
2284 if (host_bits
& float_flag_inexact
)
2285 target_bits
|= 0x10;
2289 uint32_t HELPER(vfp_get_fpscr
)(CPUState
*env
)
2294 fpscr
= (env
->vfp
.xregs
[ARM_VFP_FPSCR
] & 0xffc8ffff)
2295 | (env
->vfp
.vec_len
<< 16)
2296 | (env
->vfp
.vec_stride
<< 20);
2297 i
= get_float_exception_flags(&env
->vfp
.fp_status
);
2298 fpscr
|= vfp_exceptbits_from_host(i
);
2302 /* Convert vfp exception flags to target form. */
2303 static inline int vfp_exceptbits_to_host(int target_bits
)
2307 if (target_bits
& 1)
2308 host_bits
|= float_flag_invalid
;
2309 if (target_bits
& 2)
2310 host_bits
|= float_flag_divbyzero
;
2311 if (target_bits
& 4)
2312 host_bits
|= float_flag_overflow
;
2313 if (target_bits
& 8)
2314 host_bits
|= float_flag_underflow
;
2315 if (target_bits
& 0x10)
2316 host_bits
|= float_flag_inexact
;
2320 void HELPER(vfp_set_fpscr
)(CPUState
*env
, uint32_t val
)
2325 changed
= env
->vfp
.xregs
[ARM_VFP_FPSCR
];
2326 env
->vfp
.xregs
[ARM_VFP_FPSCR
] = (val
& 0xffc8ffff);
2327 env
->vfp
.vec_len
= (val
>> 16) & 7;
2328 env
->vfp
.vec_stride
= (val
>> 20) & 3;
2331 if (changed
& (3 << 22)) {
2332 i
= (val
>> 22) & 3;
2335 i
= float_round_nearest_even
;
2341 i
= float_round_down
;
2344 i
= float_round_to_zero
;
2347 set_float_rounding_mode(i
, &env
->vfp
.fp_status
);
2349 if (changed
& (1 << 24))
2350 set_flush_to_zero((val
& (1 << 24)) != 0, &env
->vfp
.fp_status
);
2351 if (changed
& (1 << 25))
2352 set_default_nan_mode((val
& (1 << 25)) != 0, &env
->vfp
.fp_status
);
2354 i
= vfp_exceptbits_to_host((val
>> 8) & 0x1f);
2355 set_float_exception_flags(i
, &env
->vfp
.fp_status
);
2358 #define VFP_HELPER(name, p) HELPER(glue(glue(vfp_,name),p))
2360 #define VFP_BINOP(name) \
2361 float32 VFP_HELPER(name, s)(float32 a, float32 b, CPUState *env) \
2363 return float32_ ## name (a, b, &env->vfp.fp_status); \
2365 float64 VFP_HELPER(name, d)(float64 a, float64 b, CPUState *env) \
2367 return float64_ ## name (a, b, &env->vfp.fp_status); \
2375 float32
VFP_HELPER(neg
, s
)(float32 a
)
2377 return float32_chs(a
);
2380 float64
VFP_HELPER(neg
, d
)(float64 a
)
2382 return float64_chs(a
);
2385 float32
VFP_HELPER(abs
, s
)(float32 a
)
2387 return float32_abs(a
);
2390 float64
VFP_HELPER(abs
, d
)(float64 a
)
2392 return float64_abs(a
);
2395 float32
VFP_HELPER(sqrt
, s
)(float32 a
, CPUState
*env
)
2397 return float32_sqrt(a
, &env
->vfp
.fp_status
);
2400 float64
VFP_HELPER(sqrt
, d
)(float64 a
, CPUState
*env
)
2402 return float64_sqrt(a
, &env
->vfp
.fp_status
);
2405 /* XXX: check quiet/signaling case */
2406 #define DO_VFP_cmp(p, type) \
2407 void VFP_HELPER(cmp, p)(type a, type b, CPUState *env) \
2410 switch(type ## _compare_quiet(a, b, &env->vfp.fp_status)) { \
2411 case 0: flags = 0x6; break; \
2412 case -1: flags = 0x8; break; \
2413 case 1: flags = 0x2; break; \
2414 default: case 2: flags = 0x3; break; \
2416 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2417 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2419 void VFP_HELPER(cmpe, p)(type a, type b, CPUState *env) \
2422 switch(type ## _compare(a, b, &env->vfp.fp_status)) { \
2423 case 0: flags = 0x6; break; \
2424 case -1: flags = 0x8; break; \
2425 case 1: flags = 0x2; break; \
2426 default: case 2: flags = 0x3; break; \
2428 env->vfp.xregs[ARM_VFP_FPSCR] = (flags << 28) \
2429 | (env->vfp.xregs[ARM_VFP_FPSCR] & 0x0fffffff); \
2431 DO_VFP_cmp(s
, float32
)
2432 DO_VFP_cmp(d
, float64
)
2435 /* Helper routines to perform bitwise copies between float and int. */
2436 static inline float32
vfp_itos(uint32_t i
)
2447 static inline uint32_t vfp_stoi(float32 s
)
2458 static inline float64
vfp_itod(uint64_t i
)
2469 static inline uint64_t vfp_dtoi(float64 d
)
2480 /* Integer to float conversion. */
2481 float32
VFP_HELPER(uito
, s
)(float32 x
, CPUState
*env
)
2483 return uint32_to_float32(vfp_stoi(x
), &env
->vfp
.fp_status
);
2486 float64
VFP_HELPER(uito
, d
)(float32 x
, CPUState
*env
)
2488 return uint32_to_float64(vfp_stoi(x
), &env
->vfp
.fp_status
);
2491 float32
VFP_HELPER(sito
, s
)(float32 x
, CPUState
*env
)
2493 return int32_to_float32(vfp_stoi(x
), &env
->vfp
.fp_status
);
2496 float64
VFP_HELPER(sito
, d
)(float32 x
, CPUState
*env
)
2498 return int32_to_float64(vfp_stoi(x
), &env
->vfp
.fp_status
);
2501 /* Float to integer conversion. */
2502 float32
VFP_HELPER(toui
, s
)(float32 x
, CPUState
*env
)
2504 return vfp_itos(float32_to_uint32(x
, &env
->vfp
.fp_status
));
2507 float32
VFP_HELPER(toui
, d
)(float64 x
, CPUState
*env
)
2509 return vfp_itos(float64_to_uint32(x
, &env
->vfp
.fp_status
));
2512 float32
VFP_HELPER(tosi
, s
)(float32 x
, CPUState
*env
)
2514 return vfp_itos(float32_to_int32(x
, &env
->vfp
.fp_status
));
2517 float32
VFP_HELPER(tosi
, d
)(float64 x
, CPUState
*env
)
2519 return vfp_itos(float64_to_int32(x
, &env
->vfp
.fp_status
));
2522 float32
VFP_HELPER(touiz
, s
)(float32 x
, CPUState
*env
)
2524 return vfp_itos(float32_to_uint32_round_to_zero(x
, &env
->vfp
.fp_status
));
2527 float32
VFP_HELPER(touiz
, d
)(float64 x
, CPUState
*env
)
2529 return vfp_itos(float64_to_uint32_round_to_zero(x
, &env
->vfp
.fp_status
));
2532 float32
VFP_HELPER(tosiz
, s
)(float32 x
, CPUState
*env
)
2534 return vfp_itos(float32_to_int32_round_to_zero(x
, &env
->vfp
.fp_status
));
2537 float32
VFP_HELPER(tosiz
, d
)(float64 x
, CPUState
*env
)
2539 return vfp_itos(float64_to_int32_round_to_zero(x
, &env
->vfp
.fp_status
));
2542 /* floating point conversion */
2543 float64
VFP_HELPER(fcvtd
, s
)(float32 x
, CPUState
*env
)
2545 return float32_to_float64(x
, &env
->vfp
.fp_status
);
2548 float32
VFP_HELPER(fcvts
, d
)(float64 x
, CPUState
*env
)
2550 return float64_to_float32(x
, &env
->vfp
.fp_status
);
2553 /* VFP3 fixed point conversion. */
2554 #define VFP_CONV_FIX(name, p, ftype, itype, sign) \
2555 ftype VFP_HELPER(name##to, p)(ftype x, uint32_t shift, CPUState *env) \
2558 tmp = sign##int32_to_##ftype ((itype)vfp_##p##toi(x), \
2559 &env->vfp.fp_status); \
2560 return ftype##_scalbn(tmp, -(int)shift, &env->vfp.fp_status); \
2562 ftype VFP_HELPER(to##name, p)(ftype x, uint32_t shift, CPUState *env) \
2565 tmp = ftype##_scalbn(x, shift, &env->vfp.fp_status); \
2566 return vfp_ito##p((itype)ftype##_to_##sign##int32_round_to_zero(tmp, \
2567 &env->vfp.fp_status)); \
2570 VFP_CONV_FIX(sh
, d
, float64
, int16
, )
2571 VFP_CONV_FIX(sl
, d
, float64
, int32
, )
2572 VFP_CONV_FIX(uh
, d
, float64
, uint16
, u
)
2573 VFP_CONV_FIX(ul
, d
, float64
, uint32
, u
)
2574 VFP_CONV_FIX(sh
, s
, float32
, int16
, )
2575 VFP_CONV_FIX(sl
, s
, float32
, int32
, )
2576 VFP_CONV_FIX(uh
, s
, float32
, uint16
, u
)
2577 VFP_CONV_FIX(ul
, s
, float32
, uint32
, u
)
2580 float32
HELPER(recps_f32
)(float32 a
, float32 b
, CPUState
*env
)
2582 float_status
*s
= &env
->vfp
.fp_status
;
2583 float32 two
= int32_to_float32(2, s
);
2584 return float32_sub(two
, float32_mul(a
, b
, s
), s
);
2587 float32
HELPER(rsqrts_f32
)(float32 a
, float32 b
, CPUState
*env
)
2589 float_status
*s
= &env
->vfp
.fp_status
;
2590 float32 three
= int32_to_float32(3, s
);
2591 return float32_sub(three
, float32_mul(a
, b
, s
), s
);
2596 /* TODO: The architecture specifies the value that the estimate functions
2597 should return. We return the exact reciprocal/root instead. */
2598 float32
HELPER(recpe_f32
)(float32 a
, CPUState
*env
)
2600 float_status
*s
= &env
->vfp
.fp_status
;
2601 float32 one
= int32_to_float32(1, s
);
2602 return float32_div(one
, a
, s
);
2605 float32
HELPER(rsqrte_f32
)(float32 a
, CPUState
*env
)
2607 float_status
*s
= &env
->vfp
.fp_status
;
2608 float32 one
= int32_to_float32(1, s
);
2609 return float32_div(one
, float32_sqrt(a
, s
), s
);
2612 uint32_t HELPER(recpe_u32
)(uint32_t a
, CPUState
*env
)
2614 float_status
*s
= &env
->vfp
.fp_status
;
2616 tmp
= int32_to_float32(a
, s
);
2617 tmp
= float32_scalbn(tmp
, -32, s
);
2618 tmp
= helper_recpe_f32(tmp
, env
);
2619 tmp
= float32_scalbn(tmp
, 31, s
);
2620 return float32_to_int32(tmp
, s
);
2623 uint32_t HELPER(rsqrte_u32
)(uint32_t a
, CPUState
*env
)
2625 float_status
*s
= &env
->vfp
.fp_status
;
2627 tmp
= int32_to_float32(a
, s
);
2628 tmp
= float32_scalbn(tmp
, -32, s
);
2629 tmp
= helper_rsqrte_f32(tmp
, env
);
2630 tmp
= float32_scalbn(tmp
, 31, s
);
2631 return float32_to_int32(tmp
, s
);
2634 void HELPER(set_teecr
)(CPUState
*env
, uint32_t val
)
2637 if (env
->teecr
!= val
) {