DisplayAllocator interface (Stefano Stabellini)
[sniper_test.git] / hw / slavio_intctl.c
blobdffa11539acd6cb90599d45d15265c97ca17cced
1 /*
2 * QEMU Sparc SLAVIO interrupt controller emulation
4 * Copyright (c) 2003-2005 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "sun4m.h"
26 #include "monitor.h"
28 //#define DEBUG_IRQ_COUNT
29 //#define DEBUG_IRQ
31 #ifdef DEBUG_IRQ
32 #define DPRINTF(fmt, args...) \
33 do { printf("IRQ: " fmt , ##args); } while (0)
34 #else
35 #define DPRINTF(fmt, args...)
36 #endif
39 * Registers of interrupt controller in sun4m.
41 * This is the interrupt controller part of chip STP2001 (Slave I/O), also
42 * produced as NCR89C105. See
43 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C105.txt
45 * There is a system master controller and one for each cpu.
49 #define MAX_CPUS 16
50 #define MAX_PILS 16
52 struct SLAVIO_CPUINTCTLState;
54 typedef struct SLAVIO_INTCTLState {
55 uint32_t intregm_pending;
56 uint32_t intregm_disabled;
57 uint32_t target_cpu;
58 #ifdef DEBUG_IRQ_COUNT
59 uint64_t irq_count[32];
60 #endif
61 qemu_irq *cpu_irqs[MAX_CPUS];
62 const uint32_t *intbit_to_level;
63 uint32_t cputimer_lbit, cputimer_mbit;
64 uint32_t pil_out[MAX_CPUS];
65 struct SLAVIO_CPUINTCTLState *slaves[MAX_CPUS];
66 } SLAVIO_INTCTLState;
68 typedef struct SLAVIO_CPUINTCTLState {
69 uint32_t intreg_pending;
70 SLAVIO_INTCTLState *master;
71 uint32_t cpu;
72 } SLAVIO_CPUINTCTLState;
74 #define INTCTL_MAXADDR 0xf
75 #define INTCTL_SIZE (INTCTL_MAXADDR + 1)
76 #define INTCTLM_SIZE 0x14
77 #define MASTER_IRQ_MASK ~0x0fa2007f
78 #define MASTER_DISABLE 0x80000000
79 #define CPU_SOFTIRQ_MASK 0xfffe0000
80 #define CPU_HARDIRQ_MASK 0x0000fffe
81 #define CPU_IRQ_INT15_IN 0x0004000
82 #define CPU_IRQ_INT15_MASK 0x80000000
84 static void slavio_check_interrupts(SLAVIO_INTCTLState *s);
86 // per-cpu interrupt controller
87 static uint32_t slavio_intctl_mem_readl(void *opaque, target_phys_addr_t addr)
89 SLAVIO_CPUINTCTLState *s = opaque;
90 uint32_t saddr, ret;
92 saddr = addr >> 2;
93 switch (saddr) {
94 case 0:
95 ret = s->intreg_pending;
96 break;
97 default:
98 ret = 0;
99 break;
101 DPRINTF("read cpu %d reg 0x" TARGET_FMT_plx " = %x\n", s->cpu, addr, ret);
103 return ret;
106 static void slavio_intctl_mem_writel(void *opaque, target_phys_addr_t addr,
107 uint32_t val)
109 SLAVIO_CPUINTCTLState *s = opaque;
110 uint32_t saddr;
112 saddr = addr >> 2;
113 DPRINTF("write cpu %d reg 0x" TARGET_FMT_plx " = %x\n", s->cpu, addr, val);
114 switch (saddr) {
115 case 1: // clear pending softints
116 if (val & CPU_IRQ_INT15_IN)
117 val |= CPU_IRQ_INT15_MASK;
118 val &= CPU_SOFTIRQ_MASK;
119 s->intreg_pending &= ~val;
120 slavio_check_interrupts(s->master);
121 DPRINTF("Cleared cpu %d irq mask %x, curmask %x\n", s->cpu, val,
122 s->intreg_pending);
123 break;
124 case 2: // set softint
125 val &= CPU_SOFTIRQ_MASK;
126 s->intreg_pending |= val;
127 slavio_check_interrupts(s->master);
128 DPRINTF("Set cpu %d irq mask %x, curmask %x\n", s->cpu, val,
129 s->intreg_pending);
130 break;
131 default:
132 break;
136 static CPUReadMemoryFunc *slavio_intctl_mem_read[3] = {
137 NULL,
138 NULL,
139 slavio_intctl_mem_readl,
142 static CPUWriteMemoryFunc *slavio_intctl_mem_write[3] = {
143 NULL,
144 NULL,
145 slavio_intctl_mem_writel,
148 // master system interrupt controller
149 static uint32_t slavio_intctlm_mem_readl(void *opaque, target_phys_addr_t addr)
151 SLAVIO_INTCTLState *s = opaque;
152 uint32_t saddr, ret;
154 saddr = addr >> 2;
155 switch (saddr) {
156 case 0:
157 ret = s->intregm_pending & ~MASTER_DISABLE;
158 break;
159 case 1:
160 ret = s->intregm_disabled & MASTER_IRQ_MASK;
161 break;
162 case 4:
163 ret = s->target_cpu;
164 break;
165 default:
166 ret = 0;
167 break;
169 DPRINTF("read system reg 0x" TARGET_FMT_plx " = %x\n", addr, ret);
171 return ret;
174 static void slavio_intctlm_mem_writel(void *opaque, target_phys_addr_t addr,
175 uint32_t val)
177 SLAVIO_INTCTLState *s = opaque;
178 uint32_t saddr;
180 saddr = addr >> 2;
181 DPRINTF("write system reg 0x" TARGET_FMT_plx " = %x\n", addr, val);
182 switch (saddr) {
183 case 2: // clear (enable)
184 // Force clear unused bits
185 val &= MASTER_IRQ_MASK;
186 s->intregm_disabled &= ~val;
187 DPRINTF("Enabled master irq mask %x, curmask %x\n", val,
188 s->intregm_disabled);
189 slavio_check_interrupts(s);
190 break;
191 case 3: // set (disable, clear pending)
192 // Force clear unused bits
193 val &= MASTER_IRQ_MASK;
194 s->intregm_disabled |= val;
195 s->intregm_pending &= ~val;
196 slavio_check_interrupts(s);
197 DPRINTF("Disabled master irq mask %x, curmask %x\n", val,
198 s->intregm_disabled);
199 break;
200 case 4:
201 s->target_cpu = val & (MAX_CPUS - 1);
202 slavio_check_interrupts(s);
203 DPRINTF("Set master irq cpu %d\n", s->target_cpu);
204 break;
205 default:
206 break;
210 static CPUReadMemoryFunc *slavio_intctlm_mem_read[3] = {
211 NULL,
212 NULL,
213 slavio_intctlm_mem_readl,
216 static CPUWriteMemoryFunc *slavio_intctlm_mem_write[3] = {
217 NULL,
218 NULL,
219 slavio_intctlm_mem_writel,
222 void slavio_pic_info(Monitor *mon, void *opaque)
224 SLAVIO_INTCTLState *s = opaque;
225 int i;
227 for (i = 0; i < MAX_CPUS; i++) {
228 monitor_printf(mon, "per-cpu %d: pending 0x%08x\n", i,
229 s->slaves[i]->intreg_pending);
231 monitor_printf(mon, "master: pending 0x%08x, disabled 0x%08x\n",
232 s->intregm_pending, s->intregm_disabled);
235 void slavio_irq_info(Monitor *mon, void *opaque)
237 #ifndef DEBUG_IRQ_COUNT
238 monitor_printf(mon, "irq statistic code not compiled.\n");
239 #else
240 SLAVIO_INTCTLState *s = opaque;
241 int i;
242 int64_t count;
244 monitor_printf(mon, "IRQ statistics:\n");
245 for (i = 0; i < 32; i++) {
246 count = s->irq_count[i];
247 if (count > 0)
248 monitor_printf(mon, "%2d: %" PRId64 "\n", i, count);
250 #endif
253 static void slavio_check_interrupts(SLAVIO_INTCTLState *s)
255 uint32_t pending = s->intregm_pending, pil_pending;
256 unsigned int i, j;
258 pending &= ~s->intregm_disabled;
260 DPRINTF("pending %x disabled %x\n", pending, s->intregm_disabled);
261 for (i = 0; i < MAX_CPUS; i++) {
262 pil_pending = 0;
263 if (pending && !(s->intregm_disabled & MASTER_DISABLE) &&
264 (i == s->target_cpu)) {
265 for (j = 0; j < 32; j++) {
266 if (pending & (1 << j))
267 pil_pending |= 1 << s->intbit_to_level[j];
270 pil_pending |= (s->slaves[i]->intreg_pending & CPU_SOFTIRQ_MASK) >> 16;
272 for (j = 0; j < MAX_PILS; j++) {
273 if (pil_pending & (1 << j)) {
274 if (!(s->pil_out[i] & (1 << j)))
275 qemu_irq_raise(s->cpu_irqs[i][j]);
276 } else {
277 if (s->pil_out[i] & (1 << j))
278 qemu_irq_lower(s->cpu_irqs[i][j]);
281 s->pil_out[i] = pil_pending;
286 * "irq" here is the bit number in the system interrupt register to
287 * separate serial and keyboard interrupts sharing a level.
289 static void slavio_set_irq(void *opaque, int irq, int level)
291 SLAVIO_INTCTLState *s = opaque;
292 uint32_t mask = 1 << irq;
293 uint32_t pil = s->intbit_to_level[irq];
295 DPRINTF("Set cpu %d irq %d -> pil %d level %d\n", s->target_cpu, irq, pil,
296 level);
297 if (pil > 0) {
298 if (level) {
299 #ifdef DEBUG_IRQ_COUNT
300 s->irq_count[pil]++;
301 #endif
302 s->intregm_pending |= mask;
303 s->slaves[s->target_cpu]->intreg_pending |= 1 << pil;
304 } else {
305 s->intregm_pending &= ~mask;
306 s->slaves[s->target_cpu]->intreg_pending &= ~(1 << pil);
308 slavio_check_interrupts(s);
312 static void slavio_set_timer_irq_cpu(void *opaque, int cpu, int level)
314 SLAVIO_INTCTLState *s = opaque;
316 DPRINTF("Set cpu %d local timer level %d\n", cpu, level);
318 if (level) {
319 s->intregm_pending |= s->cputimer_mbit;
320 s->slaves[cpu]->intreg_pending |= s->cputimer_lbit;
321 } else {
322 s->intregm_pending &= ~s->cputimer_mbit;
323 s->slaves[cpu]->intreg_pending &= ~s->cputimer_lbit;
326 slavio_check_interrupts(s);
329 static void slavio_intctl_save(QEMUFile *f, void *opaque)
331 SLAVIO_INTCTLState *s = opaque;
332 int i;
334 for (i = 0; i < MAX_CPUS; i++) {
335 qemu_put_be32s(f, &s->slaves[i]->intreg_pending);
337 qemu_put_be32s(f, &s->intregm_pending);
338 qemu_put_be32s(f, &s->intregm_disabled);
339 qemu_put_be32s(f, &s->target_cpu);
342 static int slavio_intctl_load(QEMUFile *f, void *opaque, int version_id)
344 SLAVIO_INTCTLState *s = opaque;
345 int i;
347 if (version_id != 1)
348 return -EINVAL;
350 for (i = 0; i < MAX_CPUS; i++) {
351 qemu_get_be32s(f, &s->slaves[i]->intreg_pending);
353 qemu_get_be32s(f, &s->intregm_pending);
354 qemu_get_be32s(f, &s->intregm_disabled);
355 qemu_get_be32s(f, &s->target_cpu);
356 slavio_check_interrupts(s);
357 return 0;
360 static void slavio_intctl_reset(void *opaque)
362 SLAVIO_INTCTLState *s = opaque;
363 int i;
365 for (i = 0; i < MAX_CPUS; i++) {
366 s->slaves[i]->intreg_pending = 0;
368 s->intregm_disabled = ~MASTER_IRQ_MASK;
369 s->intregm_pending = 0;
370 s->target_cpu = 0;
371 slavio_check_interrupts(s);
374 void *slavio_intctl_init(target_phys_addr_t addr, target_phys_addr_t addrg,
375 const uint32_t *intbit_to_level,
376 qemu_irq **irq, qemu_irq **cpu_irq,
377 qemu_irq **parent_irq, unsigned int cputimer)
379 int slavio_intctl_io_memory, slavio_intctlm_io_memory, i;
380 SLAVIO_INTCTLState *s;
381 SLAVIO_CPUINTCTLState *slave;
383 s = qemu_mallocz(sizeof(SLAVIO_INTCTLState));
385 s->intbit_to_level = intbit_to_level;
386 for (i = 0; i < MAX_CPUS; i++) {
387 slave = qemu_mallocz(sizeof(SLAVIO_CPUINTCTLState));
389 slave->cpu = i;
390 slave->master = s;
392 slavio_intctl_io_memory = cpu_register_io_memory(0,
393 slavio_intctl_mem_read,
394 slavio_intctl_mem_write,
395 slave);
396 cpu_register_physical_memory(addr + i * TARGET_PAGE_SIZE, INTCTL_SIZE,
397 slavio_intctl_io_memory);
399 s->slaves[i] = slave;
400 s->cpu_irqs[i] = parent_irq[i];
403 slavio_intctlm_io_memory = cpu_register_io_memory(0,
404 slavio_intctlm_mem_read,
405 slavio_intctlm_mem_write,
407 cpu_register_physical_memory(addrg, INTCTLM_SIZE, slavio_intctlm_io_memory);
409 register_savevm("slavio_intctl", addr, 1, slavio_intctl_save,
410 slavio_intctl_load, s);
411 qemu_register_reset(slavio_intctl_reset, s);
412 *irq = qemu_allocate_irqs(slavio_set_irq, s, 32);
414 *cpu_irq = qemu_allocate_irqs(slavio_set_timer_irq_cpu, s, MAX_CPUS);
415 s->cputimer_mbit = 1 << cputimer;
416 s->cputimer_lbit = 1 << intbit_to_level[cputimer];
417 slavio_intctl_reset(s);
418 return s;