2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
22 #define WIN32_LEAN_AND_MEAN
25 #include <sys/types.h>
38 #include "qemu-common.h"
43 #if defined(CONFIG_USER_ONLY)
47 //#define DEBUG_TB_INVALIDATE
50 //#define DEBUG_UNASSIGNED
52 /* make various TB consistency checks */
53 //#define DEBUG_TB_CHECK
54 //#define DEBUG_TLB_CHECK
56 //#define DEBUG_IOPORT
57 //#define DEBUG_SUBPAGE
59 #if !defined(CONFIG_USER_ONLY)
60 /* TB consistency checks only implemented for usermode emulation. */
64 #define SMC_BITMAP_USE_THRESHOLD 10
66 #define MMAP_AREA_START 0x00000000
67 #define MMAP_AREA_END 0xa8000000
69 #if defined(TARGET_SPARC64)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 41
71 #elif defined(TARGET_SPARC)
72 #define TARGET_PHYS_ADDR_SPACE_BITS 36
73 #elif defined(TARGET_ALPHA)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #define TARGET_VIRT_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_PPC64)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 42
78 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
79 #define TARGET_PHYS_ADDR_SPACE_BITS 42
80 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
81 #define TARGET_PHYS_ADDR_SPACE_BITS 36
83 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
84 #define TARGET_PHYS_ADDR_SPACE_BITS 32
87 static TranslationBlock
*tbs
;
88 int code_gen_max_blocks
;
89 TranslationBlock
*tb_phys_hash
[CODE_GEN_PHYS_HASH_SIZE
];
91 /* any access to the tbs or the page table must use this lock */
92 spinlock_t tb_lock
= SPIN_LOCK_UNLOCKED
;
94 #if defined(__arm__) || defined(__sparc_v9__)
95 /* The prologue must be reachable with a direct jump. ARM and Sparc64
96 have limited branch ranges (possibly also PPC) so place it in a
97 section close to code segment. */
98 #define code_gen_section \
99 __attribute__((__section__(".gen_code"))) \
100 __attribute__((aligned (32)))
102 #define code_gen_section \
103 __attribute__((aligned (32)))
106 uint8_t code_gen_prologue
[1024] code_gen_section
;
107 static uint8_t *code_gen_buffer
;
108 static unsigned long code_gen_buffer_size
;
109 /* threshold to flush the translated code buffer */
110 static unsigned long code_gen_buffer_max_size
;
111 uint8_t *code_gen_ptr
;
113 #if !defined(CONFIG_USER_ONLY)
114 ram_addr_t phys_ram_size
;
116 uint8_t *phys_ram_base
;
117 uint8_t *phys_ram_dirty
;
118 static int in_migration
;
119 static ram_addr_t phys_ram_alloc_offset
= 0;
123 /* current CPU in the current thread. It is only valid inside
125 CPUState
*cpu_single_env
;
126 /* 0 = Do not count executed instructions.
127 1 = Precise instruction counting.
128 2 = Adaptive rate instruction counting. */
130 /* Current instruction counter. While executing translated code this may
131 include some instructions that have not yet been executed. */
134 typedef struct PageDesc
{
135 /* list of TBs intersecting this ram page */
136 TranslationBlock
*first_tb
;
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count
;
140 uint8_t *code_bitmap
;
141 #if defined(CONFIG_USER_ONLY)
146 typedef struct PhysPageDesc
{
147 /* offset in host memory of the page + io_index in the low bits */
148 ram_addr_t phys_offset
;
149 ram_addr_t region_offset
;
153 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
154 /* XXX: this is a temporary hack for alpha target.
155 * In the future, this is to be replaced by a multi-level table
156 * to actually be able to handle the complete 64 bits address space.
158 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
160 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
163 #define L1_SIZE (1 << L1_BITS)
164 #define L2_SIZE (1 << L2_BITS)
166 unsigned long qemu_real_host_page_size
;
167 unsigned long qemu_host_page_bits
;
168 unsigned long qemu_host_page_size
;
169 unsigned long qemu_host_page_mask
;
171 /* XXX: for system emulation, it could just be an array */
172 static PageDesc
*l1_map
[L1_SIZE
];
173 static PhysPageDesc
**l1_phys_map
;
175 #if !defined(CONFIG_USER_ONLY)
176 static void io_mem_init(void);
178 /* io memory support */
179 CPUWriteMemoryFunc
*io_mem_write
[IO_MEM_NB_ENTRIES
][4];
180 CPUReadMemoryFunc
*io_mem_read
[IO_MEM_NB_ENTRIES
][4];
181 void *io_mem_opaque
[IO_MEM_NB_ENTRIES
];
182 static char io_mem_used
[IO_MEM_NB_ENTRIES
];
183 static int io_mem_watch
;
187 static const char *logfilename
= "/tmp/qemu.log";
190 static int log_append
= 0;
193 static int tlb_flush_count
;
194 static int tb_flush_count
;
195 static int tb_phys_invalidate_count
;
197 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
198 typedef struct subpage_t
{
199 target_phys_addr_t base
;
200 CPUReadMemoryFunc
**mem_read
[TARGET_PAGE_SIZE
][4];
201 CPUWriteMemoryFunc
**mem_write
[TARGET_PAGE_SIZE
][4];
202 void *opaque
[TARGET_PAGE_SIZE
][2][4];
203 ram_addr_t region_offset
[TARGET_PAGE_SIZE
][2][4];
207 static void map_exec(void *addr
, long size
)
210 VirtualProtect(addr
, size
,
211 PAGE_EXECUTE_READWRITE
, &old_protect
);
215 static void map_exec(void *addr
, long size
)
217 unsigned long start
, end
, page_size
;
219 page_size
= getpagesize();
220 start
= (unsigned long)addr
;
221 start
&= ~(page_size
- 1);
223 end
= (unsigned long)addr
+ size
;
224 end
+= page_size
- 1;
225 end
&= ~(page_size
- 1);
227 mprotect((void *)start
, end
- start
,
228 PROT_READ
| PROT_WRITE
| PROT_EXEC
);
232 static void page_init(void)
234 /* NOTE: we can always suppose that qemu_host_page_size >=
238 SYSTEM_INFO system_info
;
240 GetSystemInfo(&system_info
);
241 qemu_real_host_page_size
= system_info
.dwPageSize
;
244 qemu_real_host_page_size
= getpagesize();
246 if (qemu_host_page_size
== 0)
247 qemu_host_page_size
= qemu_real_host_page_size
;
248 if (qemu_host_page_size
< TARGET_PAGE_SIZE
)
249 qemu_host_page_size
= TARGET_PAGE_SIZE
;
250 qemu_host_page_bits
= 0;
251 while ((1 << qemu_host_page_bits
) < qemu_host_page_size
)
252 qemu_host_page_bits
++;
253 qemu_host_page_mask
= ~(qemu_host_page_size
- 1);
254 l1_phys_map
= qemu_vmalloc(L1_SIZE
* sizeof(void *));
255 memset(l1_phys_map
, 0, L1_SIZE
* sizeof(void *));
257 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
259 long long startaddr
, endaddr
;
264 last_brk
= (unsigned long)sbrk(0);
265 f
= fopen("/proc/self/maps", "r");
268 n
= fscanf (f
, "%llx-%llx %*[^\n]\n", &startaddr
, &endaddr
);
270 startaddr
= MIN(startaddr
,
271 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS
) - 1);
272 endaddr
= MIN(endaddr
,
273 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS
) - 1);
274 page_set_flags(startaddr
& TARGET_PAGE_MASK
,
275 TARGET_PAGE_ALIGN(endaddr
),
286 static inline PageDesc
**page_l1_map(target_ulong index
)
288 #if TARGET_LONG_BITS > 32
289 /* Host memory outside guest VM. For 32-bit targets we have already
290 excluded high addresses. */
291 if (index
> ((target_ulong
)L2_SIZE
* L1_SIZE
))
294 return &l1_map
[index
>> L2_BITS
];
297 static inline PageDesc
*page_find_alloc(target_ulong index
)
300 lp
= page_l1_map(index
);
306 /* allocate if not found */
307 #if defined(CONFIG_USER_ONLY)
308 size_t len
= sizeof(PageDesc
) * L2_SIZE
;
309 /* Don't use qemu_malloc because it may recurse. */
310 p
= mmap(0, len
, PROT_READ
| PROT_WRITE
,
311 MAP_PRIVATE
| MAP_ANONYMOUS
, -1, 0);
314 unsigned long addr
= h2g(p
);
315 page_set_flags(addr
& TARGET_PAGE_MASK
,
316 TARGET_PAGE_ALIGN(addr
+ len
),
320 p
= qemu_mallocz(sizeof(PageDesc
) * L2_SIZE
);
324 return p
+ (index
& (L2_SIZE
- 1));
327 static inline PageDesc
*page_find(target_ulong index
)
330 lp
= page_l1_map(index
);
337 return p
+ (index
& (L2_SIZE
- 1));
340 static PhysPageDesc
*phys_page_find_alloc(target_phys_addr_t index
, int alloc
)
345 p
= (void **)l1_phys_map
;
346 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
348 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
349 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
351 lp
= p
+ ((index
>> (L1_BITS
+ L2_BITS
)) & (L1_SIZE
- 1));
354 /* allocate if not found */
357 p
= qemu_vmalloc(sizeof(void *) * L1_SIZE
);
358 memset(p
, 0, sizeof(void *) * L1_SIZE
);
362 lp
= p
+ ((index
>> L2_BITS
) & (L1_SIZE
- 1));
366 /* allocate if not found */
369 pd
= qemu_vmalloc(sizeof(PhysPageDesc
) * L2_SIZE
);
371 for (i
= 0; i
< L2_SIZE
; i
++) {
372 pd
[i
].phys_offset
= IO_MEM_UNASSIGNED
;
373 pd
[i
].region_offset
= (index
+ i
) << TARGET_PAGE_BITS
;
376 return ((PhysPageDesc
*)pd
) + (index
& (L2_SIZE
- 1));
379 static inline PhysPageDesc
*phys_page_find(target_phys_addr_t index
)
381 return phys_page_find_alloc(index
, 0);
384 #if !defined(CONFIG_USER_ONLY)
385 static void tlb_protect_code(ram_addr_t ram_addr
);
386 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
388 #define mmap_lock() do { } while(0)
389 #define mmap_unlock() do { } while(0)
392 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
394 #if defined(CONFIG_USER_ONLY)
395 /* Currently it is not recommanded to allocate big chunks of data in
396 user mode. It will change when a dedicated libc will be used */
397 #define USE_STATIC_CODE_GEN_BUFFER
400 #ifdef USE_STATIC_CODE_GEN_BUFFER
401 static uint8_t static_code_gen_buffer
[DEFAULT_CODE_GEN_BUFFER_SIZE
];
404 static void code_gen_alloc(unsigned long tb_size
)
406 #ifdef USE_STATIC_CODE_GEN_BUFFER
407 code_gen_buffer
= static_code_gen_buffer
;
408 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
409 map_exec(code_gen_buffer
, code_gen_buffer_size
);
411 code_gen_buffer_size
= tb_size
;
412 if (code_gen_buffer_size
== 0) {
413 #if defined(CONFIG_USER_ONLY)
414 /* in user mode, phys_ram_size is not meaningful */
415 code_gen_buffer_size
= DEFAULT_CODE_GEN_BUFFER_SIZE
;
417 /* XXX: needs ajustments */
418 code_gen_buffer_size
= (unsigned long)(phys_ram_size
/ 4);
421 if (code_gen_buffer_size
< MIN_CODE_GEN_BUFFER_SIZE
)
422 code_gen_buffer_size
= MIN_CODE_GEN_BUFFER_SIZE
;
423 /* The code gen buffer location may have constraints depending on
424 the host cpu and OS */
425 #if defined(__linux__)
430 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
431 #if defined(__x86_64__)
433 /* Cannot map more than that */
434 if (code_gen_buffer_size
> (800 * 1024 * 1024))
435 code_gen_buffer_size
= (800 * 1024 * 1024);
436 #elif defined(__sparc_v9__)
437 // Map the buffer below 2G, so we can use direct calls and branches
439 start
= (void *) 0x60000000UL
;
440 if (code_gen_buffer_size
> (512 * 1024 * 1024))
441 code_gen_buffer_size
= (512 * 1024 * 1024);
442 #elif defined(__arm__)
443 /* Map the buffer below 32M, so we can use direct calls and branches */
445 start
= (void *) 0x01000000UL
;
446 if (code_gen_buffer_size
> 16 * 1024 * 1024)
447 code_gen_buffer_size
= 16 * 1024 * 1024;
449 code_gen_buffer
= mmap(start
, code_gen_buffer_size
,
450 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
452 if (code_gen_buffer
== MAP_FAILED
) {
453 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
457 #elif defined(__FreeBSD__) || defined(__DragonFly__)
461 flags
= MAP_PRIVATE
| MAP_ANONYMOUS
;
462 #if defined(__x86_64__)
463 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
464 * 0x40000000 is free */
466 addr
= (void *)0x40000000;
467 /* Cannot map more than that */
468 if (code_gen_buffer_size
> (800 * 1024 * 1024))
469 code_gen_buffer_size
= (800 * 1024 * 1024);
471 code_gen_buffer
= mmap(addr
, code_gen_buffer_size
,
472 PROT_WRITE
| PROT_READ
| PROT_EXEC
,
474 if (code_gen_buffer
== MAP_FAILED
) {
475 fprintf(stderr
, "Could not allocate dynamic translator buffer\n");
480 code_gen_buffer
= qemu_malloc(code_gen_buffer_size
);
481 map_exec(code_gen_buffer
, code_gen_buffer_size
);
483 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
484 map_exec(code_gen_prologue
, sizeof(code_gen_prologue
));
485 code_gen_buffer_max_size
= code_gen_buffer_size
-
486 code_gen_max_block_size();
487 code_gen_max_blocks
= code_gen_buffer_size
/ CODE_GEN_AVG_BLOCK_SIZE
;
488 tbs
= qemu_malloc(code_gen_max_blocks
* sizeof(TranslationBlock
));
491 /* Must be called before using the QEMU cpus. 'tb_size' is the size
492 (in bytes) allocated to the translation buffer. Zero means default
494 void cpu_exec_init_all(unsigned long tb_size
)
497 code_gen_alloc(tb_size
);
498 code_gen_ptr
= code_gen_buffer
;
500 #if !defined(CONFIG_USER_ONLY)
505 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
507 #define CPU_COMMON_SAVE_VERSION 1
509 static void cpu_common_save(QEMUFile
*f
, void *opaque
)
511 CPUState
*env
= opaque
;
513 qemu_put_be32s(f
, &env
->halted
);
514 qemu_put_be32s(f
, &env
->interrupt_request
);
517 static int cpu_common_load(QEMUFile
*f
, void *opaque
, int version_id
)
519 CPUState
*env
= opaque
;
521 if (version_id
!= CPU_COMMON_SAVE_VERSION
)
524 qemu_get_be32s(f
, &env
->halted
);
525 qemu_get_be32s(f
, &env
->interrupt_request
);
526 /* 0x01 was CPU_INTERRUPT_EXIT. This line can be removed when the
527 version_id is increased. */
528 env
->interrupt_request
&= ~0x01;
535 void cpu_exec_init(CPUState
*env
)
540 #if defined(CONFIG_USER_ONLY)
543 env
->next_cpu
= NULL
;
546 while (*penv
!= NULL
) {
547 penv
= (CPUState
**)&(*penv
)->next_cpu
;
550 env
->cpu_index
= cpu_index
;
551 TAILQ_INIT(&env
->breakpoints
);
552 TAILQ_INIT(&env
->watchpoints
);
554 #if defined(CONFIG_USER_ONLY)
557 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
558 register_savevm("cpu_common", cpu_index
, CPU_COMMON_SAVE_VERSION
,
559 cpu_common_save
, cpu_common_load
, env
);
560 register_savevm("cpu", cpu_index
, CPU_SAVE_VERSION
,
561 cpu_save
, cpu_load
, env
);
565 static inline void invalidate_page_bitmap(PageDesc
*p
)
567 if (p
->code_bitmap
) {
568 qemu_free(p
->code_bitmap
);
569 p
->code_bitmap
= NULL
;
571 p
->code_write_count
= 0;
574 /* set to NULL all the 'first_tb' fields in all PageDescs */
575 static void page_flush_tb(void)
580 for(i
= 0; i
< L1_SIZE
; i
++) {
583 for(j
= 0; j
< L2_SIZE
; j
++) {
585 invalidate_page_bitmap(p
);
592 /* flush all the translation blocks */
593 /* XXX: tb_flush is currently not thread safe */
594 void tb_flush(CPUState
*env1
)
597 #if defined(DEBUG_FLUSH)
598 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
599 (unsigned long)(code_gen_ptr
- code_gen_buffer
),
601 ((unsigned long)(code_gen_ptr
- code_gen_buffer
)) / nb_tbs
: 0);
603 if ((unsigned long)(code_gen_ptr
- code_gen_buffer
) > code_gen_buffer_size
)
604 cpu_abort(env1
, "Internal error: code buffer overflow\n");
608 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
609 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
612 memset (tb_phys_hash
, 0, CODE_GEN_PHYS_HASH_SIZE
* sizeof (void *));
615 code_gen_ptr
= code_gen_buffer
;
616 /* XXX: flush processor icache at this point if cache flush is
621 #ifdef DEBUG_TB_CHECK
623 static void tb_invalidate_check(target_ulong address
)
625 TranslationBlock
*tb
;
627 address
&= TARGET_PAGE_MASK
;
628 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
629 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
630 if (!(address
+ TARGET_PAGE_SIZE
<= tb
->pc
||
631 address
>= tb
->pc
+ tb
->size
)) {
632 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
633 address
, (long)tb
->pc
, tb
->size
);
639 /* verify that all the pages have correct rights for code */
640 static void tb_page_check(void)
642 TranslationBlock
*tb
;
643 int i
, flags1
, flags2
;
645 for(i
= 0;i
< CODE_GEN_PHYS_HASH_SIZE
; i
++) {
646 for(tb
= tb_phys_hash
[i
]; tb
!= NULL
; tb
= tb
->phys_hash_next
) {
647 flags1
= page_get_flags(tb
->pc
);
648 flags2
= page_get_flags(tb
->pc
+ tb
->size
- 1);
649 if ((flags1
& PAGE_WRITE
) || (flags2
& PAGE_WRITE
)) {
650 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
651 (long)tb
->pc
, tb
->size
, flags1
, flags2
);
657 static void tb_jmp_check(TranslationBlock
*tb
)
659 TranslationBlock
*tb1
;
662 /* suppress any remaining jumps to this TB */
666 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
669 tb1
= tb1
->jmp_next
[n1
];
671 /* check end of list */
673 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb
);
679 /* invalidate one TB */
680 static inline void tb_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
,
683 TranslationBlock
*tb1
;
687 *ptb
= *(TranslationBlock
**)((char *)tb1
+ next_offset
);
690 ptb
= (TranslationBlock
**)((char *)tb1
+ next_offset
);
694 static inline void tb_page_remove(TranslationBlock
**ptb
, TranslationBlock
*tb
)
696 TranslationBlock
*tb1
;
702 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
704 *ptb
= tb1
->page_next
[n1
];
707 ptb
= &tb1
->page_next
[n1
];
711 static inline void tb_jmp_remove(TranslationBlock
*tb
, int n
)
713 TranslationBlock
*tb1
, **ptb
;
716 ptb
= &tb
->jmp_next
[n
];
719 /* find tb(n) in circular list */
723 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
724 if (n1
== n
&& tb1
== tb
)
727 ptb
= &tb1
->jmp_first
;
729 ptb
= &tb1
->jmp_next
[n1
];
732 /* now we can suppress tb(n) from the list */
733 *ptb
= tb
->jmp_next
[n
];
735 tb
->jmp_next
[n
] = NULL
;
739 /* reset the jump entry 'n' of a TB so that it is not chained to
741 static inline void tb_reset_jump(TranslationBlock
*tb
, int n
)
743 tb_set_jmp_target(tb
, n
, (unsigned long)(tb
->tc_ptr
+ tb
->tb_next_offset
[n
]));
746 void tb_phys_invalidate(TranslationBlock
*tb
, target_ulong page_addr
)
751 target_phys_addr_t phys_pc
;
752 TranslationBlock
*tb1
, *tb2
;
754 /* remove the TB from the hash list */
755 phys_pc
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
756 h
= tb_phys_hash_func(phys_pc
);
757 tb_remove(&tb_phys_hash
[h
], tb
,
758 offsetof(TranslationBlock
, phys_hash_next
));
760 /* remove the TB from the page list */
761 if (tb
->page_addr
[0] != page_addr
) {
762 p
= page_find(tb
->page_addr
[0] >> TARGET_PAGE_BITS
);
763 tb_page_remove(&p
->first_tb
, tb
);
764 invalidate_page_bitmap(p
);
766 if (tb
->page_addr
[1] != -1 && tb
->page_addr
[1] != page_addr
) {
767 p
= page_find(tb
->page_addr
[1] >> TARGET_PAGE_BITS
);
768 tb_page_remove(&p
->first_tb
, tb
);
769 invalidate_page_bitmap(p
);
772 tb_invalidated_flag
= 1;
774 /* remove the TB from the hash list */
775 h
= tb_jmp_cache_hash_func(tb
->pc
);
776 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
777 if (env
->tb_jmp_cache
[h
] == tb
)
778 env
->tb_jmp_cache
[h
] = NULL
;
781 /* suppress this TB from the two jump lists */
782 tb_jmp_remove(tb
, 0);
783 tb_jmp_remove(tb
, 1);
785 /* suppress any remaining jumps to this TB */
791 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
792 tb2
= tb1
->jmp_next
[n1
];
793 tb_reset_jump(tb1
, n1
);
794 tb1
->jmp_next
[n1
] = NULL
;
797 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2); /* fail safe */
799 tb_phys_invalidate_count
++;
802 static inline void set_bits(uint8_t *tab
, int start
, int len
)
808 mask
= 0xff << (start
& 7);
809 if ((start
& ~7) == (end
& ~7)) {
811 mask
&= ~(0xff << (end
& 7));
816 start
= (start
+ 8) & ~7;
818 while (start
< end1
) {
823 mask
= ~(0xff << (end
& 7));
829 static void build_page_bitmap(PageDesc
*p
)
831 int n
, tb_start
, tb_end
;
832 TranslationBlock
*tb
;
834 p
->code_bitmap
= qemu_mallocz(TARGET_PAGE_SIZE
/ 8);
839 tb
= (TranslationBlock
*)((long)tb
& ~3);
840 /* NOTE: this is subtle as a TB may span two physical pages */
842 /* NOTE: tb_end may be after the end of the page, but
843 it is not a problem */
844 tb_start
= tb
->pc
& ~TARGET_PAGE_MASK
;
845 tb_end
= tb_start
+ tb
->size
;
846 if (tb_end
> TARGET_PAGE_SIZE
)
847 tb_end
= TARGET_PAGE_SIZE
;
850 tb_end
= ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
852 set_bits(p
->code_bitmap
, tb_start
, tb_end
- tb_start
);
853 tb
= tb
->page_next
[n
];
857 TranslationBlock
*tb_gen_code(CPUState
*env
,
858 target_ulong pc
, target_ulong cs_base
,
859 int flags
, int cflags
)
861 TranslationBlock
*tb
;
863 target_ulong phys_pc
, phys_page2
, virt_page2
;
866 phys_pc
= get_phys_addr_code(env
, pc
);
869 /* flush must be done */
871 /* cannot fail at this point */
873 /* Don't forget to invalidate previous TB info. */
874 tb_invalidated_flag
= 1;
876 tc_ptr
= code_gen_ptr
;
878 tb
->cs_base
= cs_base
;
881 cpu_gen_code(env
, tb
, &code_gen_size
);
882 code_gen_ptr
= (void *)(((unsigned long)code_gen_ptr
+ code_gen_size
+ CODE_GEN_ALIGN
- 1) & ~(CODE_GEN_ALIGN
- 1));
884 /* check next page if needed */
885 virt_page2
= (pc
+ tb
->size
- 1) & TARGET_PAGE_MASK
;
887 if ((pc
& TARGET_PAGE_MASK
) != virt_page2
) {
888 phys_page2
= get_phys_addr_code(env
, virt_page2
);
890 tb_link_phys(tb
, phys_pc
, phys_page2
);
894 /* invalidate all TBs which intersect with the target physical page
895 starting in range [start;end[. NOTE: start and end must refer to
896 the same physical page. 'is_cpu_write_access' should be true if called
897 from a real cpu write access: the virtual CPU will exit the current
898 TB if code is modified inside this TB. */
899 void tb_invalidate_phys_page_range(target_phys_addr_t start
, target_phys_addr_t end
,
900 int is_cpu_write_access
)
902 TranslationBlock
*tb
, *tb_next
, *saved_tb
;
903 CPUState
*env
= cpu_single_env
;
904 target_ulong tb_start
, tb_end
;
907 #ifdef TARGET_HAS_PRECISE_SMC
908 int current_tb_not_found
= is_cpu_write_access
;
909 TranslationBlock
*current_tb
= NULL
;
910 int current_tb_modified
= 0;
911 target_ulong current_pc
= 0;
912 target_ulong current_cs_base
= 0;
913 int current_flags
= 0;
914 #endif /* TARGET_HAS_PRECISE_SMC */
916 p
= page_find(start
>> TARGET_PAGE_BITS
);
919 if (!p
->code_bitmap
&&
920 ++p
->code_write_count
>= SMC_BITMAP_USE_THRESHOLD
&&
921 is_cpu_write_access
) {
922 /* build code bitmap */
923 build_page_bitmap(p
);
926 /* we remove all the TBs in the range [start, end[ */
927 /* XXX: see if in some cases it could be faster to invalidate all the code */
931 tb
= (TranslationBlock
*)((long)tb
& ~3);
932 tb_next
= tb
->page_next
[n
];
933 /* NOTE: this is subtle as a TB may span two physical pages */
935 /* NOTE: tb_end may be after the end of the page, but
936 it is not a problem */
937 tb_start
= tb
->page_addr
[0] + (tb
->pc
& ~TARGET_PAGE_MASK
);
938 tb_end
= tb_start
+ tb
->size
;
940 tb_start
= tb
->page_addr
[1];
941 tb_end
= tb_start
+ ((tb
->pc
+ tb
->size
) & ~TARGET_PAGE_MASK
);
943 if (!(tb_end
<= start
|| tb_start
>= end
)) {
944 #ifdef TARGET_HAS_PRECISE_SMC
945 if (current_tb_not_found
) {
946 current_tb_not_found
= 0;
948 if (env
->mem_io_pc
) {
949 /* now we have a real cpu fault */
950 current_tb
= tb_find_pc(env
->mem_io_pc
);
953 if (current_tb
== tb
&&
954 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
955 /* If we are modifying the current TB, we must stop
956 its execution. We could be more precise by checking
957 that the modification is after the current PC, but it
958 would require a specialized function to partially
959 restore the CPU state */
961 current_tb_modified
= 1;
962 cpu_restore_state(current_tb
, env
,
963 env
->mem_io_pc
, NULL
);
964 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
967 #endif /* TARGET_HAS_PRECISE_SMC */
968 /* we need to do that to handle the case where a signal
969 occurs while doing tb_phys_invalidate() */
972 saved_tb
= env
->current_tb
;
973 env
->current_tb
= NULL
;
975 tb_phys_invalidate(tb
, -1);
977 env
->current_tb
= saved_tb
;
978 if (env
->interrupt_request
&& env
->current_tb
)
979 cpu_interrupt(env
, env
->interrupt_request
);
984 #if !defined(CONFIG_USER_ONLY)
985 /* if no code remaining, no need to continue to use slow writes */
987 invalidate_page_bitmap(p
);
988 if (is_cpu_write_access
) {
989 tlb_unprotect_code_phys(env
, start
, env
->mem_io_vaddr
);
993 #ifdef TARGET_HAS_PRECISE_SMC
994 if (current_tb_modified
) {
995 /* we generate a block containing just the instruction
996 modifying the memory. It will ensure that it cannot modify
998 env
->current_tb
= NULL
;
999 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1000 cpu_resume_from_signal(env
, NULL
);
1005 /* len must be <= 8 and start must be a multiple of len */
1006 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start
, int len
)
1012 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1013 cpu_single_env
->mem_io_vaddr
, len
,
1014 cpu_single_env
->eip
,
1015 cpu_single_env
->eip
+ (long)cpu_single_env
->segs
[R_CS
].base
);
1018 p
= page_find(start
>> TARGET_PAGE_BITS
);
1021 if (p
->code_bitmap
) {
1022 offset
= start
& ~TARGET_PAGE_MASK
;
1023 b
= p
->code_bitmap
[offset
>> 3] >> (offset
& 7);
1024 if (b
& ((1 << len
) - 1))
1028 tb_invalidate_phys_page_range(start
, start
+ len
, 1);
1032 #if !defined(CONFIG_SOFTMMU)
1033 static void tb_invalidate_phys_page(target_phys_addr_t addr
,
1034 unsigned long pc
, void *puc
)
1036 TranslationBlock
*tb
;
1039 #ifdef TARGET_HAS_PRECISE_SMC
1040 TranslationBlock
*current_tb
= NULL
;
1041 CPUState
*env
= cpu_single_env
;
1042 int current_tb_modified
= 0;
1043 target_ulong current_pc
= 0;
1044 target_ulong current_cs_base
= 0;
1045 int current_flags
= 0;
1048 addr
&= TARGET_PAGE_MASK
;
1049 p
= page_find(addr
>> TARGET_PAGE_BITS
);
1053 #ifdef TARGET_HAS_PRECISE_SMC
1054 if (tb
&& pc
!= 0) {
1055 current_tb
= tb_find_pc(pc
);
1058 while (tb
!= NULL
) {
1060 tb
= (TranslationBlock
*)((long)tb
& ~3);
1061 #ifdef TARGET_HAS_PRECISE_SMC
1062 if (current_tb
== tb
&&
1063 (current_tb
->cflags
& CF_COUNT_MASK
) != 1) {
1064 /* If we are modifying the current TB, we must stop
1065 its execution. We could be more precise by checking
1066 that the modification is after the current PC, but it
1067 would require a specialized function to partially
1068 restore the CPU state */
1070 current_tb_modified
= 1;
1071 cpu_restore_state(current_tb
, env
, pc
, puc
);
1072 cpu_get_tb_cpu_state(env
, ¤t_pc
, ¤t_cs_base
,
1075 #endif /* TARGET_HAS_PRECISE_SMC */
1076 tb_phys_invalidate(tb
, addr
);
1077 tb
= tb
->page_next
[n
];
1080 #ifdef TARGET_HAS_PRECISE_SMC
1081 if (current_tb_modified
) {
1082 /* we generate a block containing just the instruction
1083 modifying the memory. It will ensure that it cannot modify
1085 env
->current_tb
= NULL
;
1086 tb_gen_code(env
, current_pc
, current_cs_base
, current_flags
, 1);
1087 cpu_resume_from_signal(env
, puc
);
1093 /* add the tb in the target page and protect it if necessary */
1094 static inline void tb_alloc_page(TranslationBlock
*tb
,
1095 unsigned int n
, target_ulong page_addr
)
1098 TranslationBlock
*last_first_tb
;
1100 tb
->page_addr
[n
] = page_addr
;
1101 p
= page_find_alloc(page_addr
>> TARGET_PAGE_BITS
);
1102 tb
->page_next
[n
] = p
->first_tb
;
1103 last_first_tb
= p
->first_tb
;
1104 p
->first_tb
= (TranslationBlock
*)((long)tb
| n
);
1105 invalidate_page_bitmap(p
);
1107 #if defined(TARGET_HAS_SMC) || 1
1109 #if defined(CONFIG_USER_ONLY)
1110 if (p
->flags
& PAGE_WRITE
) {
1115 /* force the host page as non writable (writes will have a
1116 page fault + mprotect overhead) */
1117 page_addr
&= qemu_host_page_mask
;
1119 for(addr
= page_addr
; addr
< page_addr
+ qemu_host_page_size
;
1120 addr
+= TARGET_PAGE_SIZE
) {
1122 p2
= page_find (addr
>> TARGET_PAGE_BITS
);
1126 p2
->flags
&= ~PAGE_WRITE
;
1127 page_get_flags(addr
);
1129 mprotect(g2h(page_addr
), qemu_host_page_size
,
1130 (prot
& PAGE_BITS
) & ~PAGE_WRITE
);
1131 #ifdef DEBUG_TB_INVALIDATE
1132 printf("protecting code page: 0x" TARGET_FMT_lx
"\n",
1137 /* if some code is already present, then the pages are already
1138 protected. So we handle the case where only the first TB is
1139 allocated in a physical page */
1140 if (!last_first_tb
) {
1141 tlb_protect_code(page_addr
);
1145 #endif /* TARGET_HAS_SMC */
1148 /* Allocate a new translation block. Flush the translation buffer if
1149 too many translation blocks or too much generated code. */
1150 TranslationBlock
*tb_alloc(target_ulong pc
)
1152 TranslationBlock
*tb
;
1154 if (nb_tbs
>= code_gen_max_blocks
||
1155 (code_gen_ptr
- code_gen_buffer
) >= code_gen_buffer_max_size
)
1157 tb
= &tbs
[nb_tbs
++];
1163 void tb_free(TranslationBlock
*tb
)
1165 /* In practice this is mostly used for single use temporary TB
1166 Ignore the hard cases and just back up if this TB happens to
1167 be the last one generated. */
1168 if (nb_tbs
> 0 && tb
== &tbs
[nb_tbs
- 1]) {
1169 code_gen_ptr
= tb
->tc_ptr
;
1174 /* add a new TB and link it to the physical page tables. phys_page2 is
1175 (-1) to indicate that only one page contains the TB. */
1176 void tb_link_phys(TranslationBlock
*tb
,
1177 target_ulong phys_pc
, target_ulong phys_page2
)
1180 TranslationBlock
**ptb
;
1182 /* Grab the mmap lock to stop another thread invalidating this TB
1183 before we are done. */
1185 /* add in the physical hash table */
1186 h
= tb_phys_hash_func(phys_pc
);
1187 ptb
= &tb_phys_hash
[h
];
1188 tb
->phys_hash_next
= *ptb
;
1191 /* add in the page list */
1192 tb_alloc_page(tb
, 0, phys_pc
& TARGET_PAGE_MASK
);
1193 if (phys_page2
!= -1)
1194 tb_alloc_page(tb
, 1, phys_page2
);
1196 tb
->page_addr
[1] = -1;
1198 tb
->jmp_first
= (TranslationBlock
*)((long)tb
| 2);
1199 tb
->jmp_next
[0] = NULL
;
1200 tb
->jmp_next
[1] = NULL
;
1202 /* init original jump addresses */
1203 if (tb
->tb_next_offset
[0] != 0xffff)
1204 tb_reset_jump(tb
, 0);
1205 if (tb
->tb_next_offset
[1] != 0xffff)
1206 tb_reset_jump(tb
, 1);
1208 #ifdef DEBUG_TB_CHECK
1214 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1215 tb[1].tc_ptr. Return NULL if not found */
1216 TranslationBlock
*tb_find_pc(unsigned long tc_ptr
)
1218 int m_min
, m_max
, m
;
1220 TranslationBlock
*tb
;
1224 if (tc_ptr
< (unsigned long)code_gen_buffer
||
1225 tc_ptr
>= (unsigned long)code_gen_ptr
)
1227 /* binary search (cf Knuth) */
1230 while (m_min
<= m_max
) {
1231 m
= (m_min
+ m_max
) >> 1;
1233 v
= (unsigned long)tb
->tc_ptr
;
1236 else if (tc_ptr
< v
) {
1245 static void tb_reset_jump_recursive(TranslationBlock
*tb
);
1247 static inline void tb_reset_jump_recursive2(TranslationBlock
*tb
, int n
)
1249 TranslationBlock
*tb1
, *tb_next
, **ptb
;
1252 tb1
= tb
->jmp_next
[n
];
1254 /* find head of list */
1257 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1260 tb1
= tb1
->jmp_next
[n1
];
1262 /* we are now sure now that tb jumps to tb1 */
1265 /* remove tb from the jmp_first list */
1266 ptb
= &tb_next
->jmp_first
;
1270 tb1
= (TranslationBlock
*)((long)tb1
& ~3);
1271 if (n1
== n
&& tb1
== tb
)
1273 ptb
= &tb1
->jmp_next
[n1
];
1275 *ptb
= tb
->jmp_next
[n
];
1276 tb
->jmp_next
[n
] = NULL
;
1278 /* suppress the jump to next tb in generated code */
1279 tb_reset_jump(tb
, n
);
1281 /* suppress jumps in the tb on which we could have jumped */
1282 tb_reset_jump_recursive(tb_next
);
1286 static void tb_reset_jump_recursive(TranslationBlock
*tb
)
1288 tb_reset_jump_recursive2(tb
, 0);
1289 tb_reset_jump_recursive2(tb
, 1);
1292 #if defined(TARGET_HAS_ICE)
1293 static void breakpoint_invalidate(CPUState
*env
, target_ulong pc
)
1295 target_phys_addr_t addr
;
1297 ram_addr_t ram_addr
;
1300 addr
= cpu_get_phys_page_debug(env
, pc
);
1301 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
1303 pd
= IO_MEM_UNASSIGNED
;
1305 pd
= p
->phys_offset
;
1307 ram_addr
= (pd
& TARGET_PAGE_MASK
) | (pc
& ~TARGET_PAGE_MASK
);
1308 tb_invalidate_phys_page_range(ram_addr
, ram_addr
+ 1, 0);
1312 /* Add a watchpoint. */
1313 int cpu_watchpoint_insert(CPUState
*env
, target_ulong addr
, target_ulong len
,
1314 int flags
, CPUWatchpoint
**watchpoint
)
1316 target_ulong len_mask
= ~(len
- 1);
1319 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1320 if ((len
!= 1 && len
!= 2 && len
!= 4 && len
!= 8) || (addr
& ~len_mask
)) {
1321 fprintf(stderr
, "qemu: tried to set invalid watchpoint at "
1322 TARGET_FMT_lx
", len=" TARGET_FMT_lu
"\n", addr
, len
);
1325 wp
= qemu_malloc(sizeof(*wp
));
1328 wp
->len_mask
= len_mask
;
1331 /* keep all GDB-injected watchpoints in front */
1333 TAILQ_INSERT_HEAD(&env
->watchpoints
, wp
, entry
);
1335 TAILQ_INSERT_TAIL(&env
->watchpoints
, wp
, entry
);
1337 tlb_flush_page(env
, addr
);
1344 /* Remove a specific watchpoint. */
1345 int cpu_watchpoint_remove(CPUState
*env
, target_ulong addr
, target_ulong len
,
1348 target_ulong len_mask
= ~(len
- 1);
1351 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1352 if (addr
== wp
->vaddr
&& len_mask
== wp
->len_mask
1353 && flags
== (wp
->flags
& ~BP_WATCHPOINT_HIT
)) {
1354 cpu_watchpoint_remove_by_ref(env
, wp
);
1361 /* Remove a specific watchpoint by reference. */
1362 void cpu_watchpoint_remove_by_ref(CPUState
*env
, CPUWatchpoint
*watchpoint
)
1364 TAILQ_REMOVE(&env
->watchpoints
, watchpoint
, entry
);
1366 tlb_flush_page(env
, watchpoint
->vaddr
);
1368 qemu_free(watchpoint
);
1371 /* Remove all matching watchpoints. */
1372 void cpu_watchpoint_remove_all(CPUState
*env
, int mask
)
1374 CPUWatchpoint
*wp
, *next
;
1376 TAILQ_FOREACH_SAFE(wp
, &env
->watchpoints
, entry
, next
) {
1377 if (wp
->flags
& mask
)
1378 cpu_watchpoint_remove_by_ref(env
, wp
);
1382 /* Add a breakpoint. */
1383 int cpu_breakpoint_insert(CPUState
*env
, target_ulong pc
, int flags
,
1384 CPUBreakpoint
**breakpoint
)
1386 #if defined(TARGET_HAS_ICE)
1389 bp
= qemu_malloc(sizeof(*bp
));
1394 /* keep all GDB-injected breakpoints in front */
1396 TAILQ_INSERT_HEAD(&env
->breakpoints
, bp
, entry
);
1398 TAILQ_INSERT_TAIL(&env
->breakpoints
, bp
, entry
);
1400 breakpoint_invalidate(env
, pc
);
1410 /* Remove a specific breakpoint. */
1411 int cpu_breakpoint_remove(CPUState
*env
, target_ulong pc
, int flags
)
1413 #if defined(TARGET_HAS_ICE)
1416 TAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1417 if (bp
->pc
== pc
&& bp
->flags
== flags
) {
1418 cpu_breakpoint_remove_by_ref(env
, bp
);
1428 /* Remove a specific breakpoint by reference. */
1429 void cpu_breakpoint_remove_by_ref(CPUState
*env
, CPUBreakpoint
*breakpoint
)
1431 #if defined(TARGET_HAS_ICE)
1432 TAILQ_REMOVE(&env
->breakpoints
, breakpoint
, entry
);
1434 breakpoint_invalidate(env
, breakpoint
->pc
);
1436 qemu_free(breakpoint
);
1440 /* Remove all matching breakpoints. */
1441 void cpu_breakpoint_remove_all(CPUState
*env
, int mask
)
1443 #if defined(TARGET_HAS_ICE)
1444 CPUBreakpoint
*bp
, *next
;
1446 TAILQ_FOREACH_SAFE(bp
, &env
->breakpoints
, entry
, next
) {
1447 if (bp
->flags
& mask
)
1448 cpu_breakpoint_remove_by_ref(env
, bp
);
1453 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1454 CPU loop after each instruction */
1455 void cpu_single_step(CPUState
*env
, int enabled
)
1457 #if defined(TARGET_HAS_ICE)
1458 if (env
->singlestep_enabled
!= enabled
) {
1459 env
->singlestep_enabled
= enabled
;
1460 /* must flush all the translated code to avoid inconsistancies */
1461 /* XXX: only flush what is necessary */
1467 /* enable or disable low levels log */
1468 void cpu_set_log(int log_flags
)
1470 loglevel
= log_flags
;
1471 if (loglevel
&& !logfile
) {
1472 logfile
= fopen(logfilename
, log_append
? "a" : "w");
1474 perror(logfilename
);
1477 #if !defined(CONFIG_SOFTMMU)
1478 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1480 static char logfile_buf
[4096];
1481 setvbuf(logfile
, logfile_buf
, _IOLBF
, sizeof(logfile_buf
));
1484 setvbuf(logfile
, NULL
, _IOLBF
, 0);
1488 if (!loglevel
&& logfile
) {
1494 void cpu_set_log_filename(const char *filename
)
1496 logfilename
= strdup(filename
);
1501 cpu_set_log(loglevel
);
1504 static void cpu_unlink_tb(CPUState
*env
)
1506 #if defined(USE_NPTL)
1507 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1508 problem and hope the cpu will stop of its own accord. For userspace
1509 emulation this often isn't actually as bad as it sounds. Often
1510 signals are used primarily to interrupt blocking syscalls. */
1512 TranslationBlock
*tb
;
1513 static spinlock_t interrupt_lock
= SPIN_LOCK_UNLOCKED
;
1515 tb
= env
->current_tb
;
1516 /* if the cpu is currently executing code, we must unlink it and
1517 all the potentially executing TB */
1518 if (tb
&& !testandset(&interrupt_lock
)) {
1519 env
->current_tb
= NULL
;
1520 tb_reset_jump_recursive(tb
);
1521 resetlock(&interrupt_lock
);
1526 /* mask must never be zero, except for A20 change call */
1527 void cpu_interrupt(CPUState
*env
, int mask
)
1531 old_mask
= env
->interrupt_request
;
1532 env
->interrupt_request
|= mask
;
1535 env
->icount_decr
.u16
.high
= 0xffff;
1536 #ifndef CONFIG_USER_ONLY
1538 && (mask
& ~old_mask
) != 0) {
1539 cpu_abort(env
, "Raised interrupt while not in I/O function");
1547 void cpu_reset_interrupt(CPUState
*env
, int mask
)
1549 env
->interrupt_request
&= ~mask
;
1552 void cpu_exit(CPUState
*env
)
1554 env
->exit_request
= 1;
1558 const CPULogItem cpu_log_items
[] = {
1559 { CPU_LOG_TB_OUT_ASM
, "out_asm",
1560 "show generated host assembly code for each compiled TB" },
1561 { CPU_LOG_TB_IN_ASM
, "in_asm",
1562 "show target assembly code for each compiled TB" },
1563 { CPU_LOG_TB_OP
, "op",
1564 "show micro ops for each compiled TB" },
1565 { CPU_LOG_TB_OP_OPT
, "op_opt",
1568 "before eflags optimization and "
1570 "after liveness analysis" },
1571 { CPU_LOG_INT
, "int",
1572 "show interrupts/exceptions in short format" },
1573 { CPU_LOG_EXEC
, "exec",
1574 "show trace before each executed TB (lots of logs)" },
1575 { CPU_LOG_TB_CPU
, "cpu",
1576 "show CPU state before block translation" },
1578 { CPU_LOG_PCALL
, "pcall",
1579 "show protected mode far calls/returns/exceptions" },
1580 { CPU_LOG_RESET
, "cpu_reset",
1581 "show CPU state before CPU resets" },
1584 { CPU_LOG_IOPORT
, "ioport",
1585 "show all i/o ports accesses" },
1590 static int cmp1(const char *s1
, int n
, const char *s2
)
1592 if (strlen(s2
) != n
)
1594 return memcmp(s1
, s2
, n
) == 0;
1597 /* takes a comma separated list of log masks. Return 0 if error. */
1598 int cpu_str_to_log_mask(const char *str
)
1600 const CPULogItem
*item
;
1607 p1
= strchr(p
, ',');
1610 if(cmp1(p
,p1
-p
,"all")) {
1611 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1615 for(item
= cpu_log_items
; item
->mask
!= 0; item
++) {
1616 if (cmp1(p
, p1
- p
, item
->name
))
1630 void cpu_abort(CPUState
*env
, const char *fmt
, ...)
1637 fprintf(stderr
, "qemu: fatal: ");
1638 vfprintf(stderr
, fmt
, ap
);
1639 fprintf(stderr
, "\n");
1641 cpu_dump_state(env
, stderr
, fprintf
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1643 cpu_dump_state(env
, stderr
, fprintf
, 0);
1645 if (qemu_log_enabled()) {
1646 qemu_log("qemu: fatal: ");
1647 qemu_log_vprintf(fmt
, ap2
);
1650 log_cpu_state(env
, X86_DUMP_FPU
| X86_DUMP_CCOP
);
1652 log_cpu_state(env
, 0);
1662 CPUState
*cpu_copy(CPUState
*env
)
1664 CPUState
*new_env
= cpu_init(env
->cpu_model_str
);
1665 CPUState
*next_cpu
= new_env
->next_cpu
;
1666 int cpu_index
= new_env
->cpu_index
;
1667 #if defined(TARGET_HAS_ICE)
1672 memcpy(new_env
, env
, sizeof(CPUState
));
1674 /* Preserve chaining and index. */
1675 new_env
->next_cpu
= next_cpu
;
1676 new_env
->cpu_index
= cpu_index
;
1678 /* Clone all break/watchpoints.
1679 Note: Once we support ptrace with hw-debug register access, make sure
1680 BP_CPU break/watchpoints are handled correctly on clone. */
1681 TAILQ_INIT(&env
->breakpoints
);
1682 TAILQ_INIT(&env
->watchpoints
);
1683 #if defined(TARGET_HAS_ICE)
1684 TAILQ_FOREACH(bp
, &env
->breakpoints
, entry
) {
1685 cpu_breakpoint_insert(new_env
, bp
->pc
, bp
->flags
, NULL
);
1687 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
1688 cpu_watchpoint_insert(new_env
, wp
->vaddr
, (~wp
->len_mask
) + 1,
1696 #if !defined(CONFIG_USER_ONLY)
1698 static inline void tlb_flush_jmp_cache(CPUState
*env
, target_ulong addr
)
1702 /* Discard jump cache entries for any tb which might potentially
1703 overlap the flushed page. */
1704 i
= tb_jmp_cache_hash_page(addr
- TARGET_PAGE_SIZE
);
1705 memset (&env
->tb_jmp_cache
[i
], 0,
1706 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1708 i
= tb_jmp_cache_hash_page(addr
);
1709 memset (&env
->tb_jmp_cache
[i
], 0,
1710 TB_JMP_PAGE_SIZE
* sizeof(TranslationBlock
*));
1713 /* NOTE: if flush_global is true, also flush global entries (not
1715 void tlb_flush(CPUState
*env
, int flush_global
)
1719 #if defined(DEBUG_TLB)
1720 printf("tlb_flush:\n");
1722 /* must reset current TB so that interrupts cannot modify the
1723 links while we are modifying them */
1724 env
->current_tb
= NULL
;
1726 for(i
= 0; i
< CPU_TLB_SIZE
; i
++) {
1727 env
->tlb_table
[0][i
].addr_read
= -1;
1728 env
->tlb_table
[0][i
].addr_write
= -1;
1729 env
->tlb_table
[0][i
].addr_code
= -1;
1730 env
->tlb_table
[1][i
].addr_read
= -1;
1731 env
->tlb_table
[1][i
].addr_write
= -1;
1732 env
->tlb_table
[1][i
].addr_code
= -1;
1733 #if (NB_MMU_MODES >= 3)
1734 env
->tlb_table
[2][i
].addr_read
= -1;
1735 env
->tlb_table
[2][i
].addr_write
= -1;
1736 env
->tlb_table
[2][i
].addr_code
= -1;
1737 #if (NB_MMU_MODES == 4)
1738 env
->tlb_table
[3][i
].addr_read
= -1;
1739 env
->tlb_table
[3][i
].addr_write
= -1;
1740 env
->tlb_table
[3][i
].addr_code
= -1;
1745 memset (env
->tb_jmp_cache
, 0, TB_JMP_CACHE_SIZE
* sizeof (void *));
1748 if (env
->kqemu_enabled
) {
1749 kqemu_flush(env
, flush_global
);
1755 static inline void tlb_flush_entry(CPUTLBEntry
*tlb_entry
, target_ulong addr
)
1757 if (addr
== (tlb_entry
->addr_read
&
1758 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1759 addr
== (tlb_entry
->addr_write
&
1760 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
)) ||
1761 addr
== (tlb_entry
->addr_code
&
1762 (TARGET_PAGE_MASK
| TLB_INVALID_MASK
))) {
1763 tlb_entry
->addr_read
= -1;
1764 tlb_entry
->addr_write
= -1;
1765 tlb_entry
->addr_code
= -1;
1769 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
1773 #if defined(DEBUG_TLB)
1774 printf("tlb_flush_page: " TARGET_FMT_lx
"\n", addr
);
1776 /* must reset current TB so that interrupts cannot modify the
1777 links while we are modifying them */
1778 env
->current_tb
= NULL
;
1780 addr
&= TARGET_PAGE_MASK
;
1781 i
= (addr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1782 tlb_flush_entry(&env
->tlb_table
[0][i
], addr
);
1783 tlb_flush_entry(&env
->tlb_table
[1][i
], addr
);
1784 #if (NB_MMU_MODES >= 3)
1785 tlb_flush_entry(&env
->tlb_table
[2][i
], addr
);
1786 #if (NB_MMU_MODES == 4)
1787 tlb_flush_entry(&env
->tlb_table
[3][i
], addr
);
1791 tlb_flush_jmp_cache(env
, addr
);
1794 if (env
->kqemu_enabled
) {
1795 kqemu_flush_page(env
, addr
);
1800 /* update the TLBs so that writes to code in the virtual page 'addr'
1802 static void tlb_protect_code(ram_addr_t ram_addr
)
1804 cpu_physical_memory_reset_dirty(ram_addr
,
1805 ram_addr
+ TARGET_PAGE_SIZE
,
1809 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1810 tested for self modifying code */
1811 static void tlb_unprotect_code_phys(CPUState
*env
, ram_addr_t ram_addr
,
1814 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] |= CODE_DIRTY_FLAG
;
1817 static inline void tlb_reset_dirty_range(CPUTLBEntry
*tlb_entry
,
1818 unsigned long start
, unsigned long length
)
1821 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
1822 addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) + tlb_entry
->addend
;
1823 if ((addr
- start
) < length
) {
1824 tlb_entry
->addr_write
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) | TLB_NOTDIRTY
;
1829 void cpu_physical_memory_reset_dirty(ram_addr_t start
, ram_addr_t end
,
1833 unsigned long length
, start1
;
1837 start
&= TARGET_PAGE_MASK
;
1838 end
= TARGET_PAGE_ALIGN(end
);
1840 length
= end
- start
;
1843 len
= length
>> TARGET_PAGE_BITS
;
1845 /* XXX: should not depend on cpu context */
1847 if (env
->kqemu_enabled
) {
1850 for(i
= 0; i
< len
; i
++) {
1851 kqemu_set_notdirty(env
, addr
);
1852 addr
+= TARGET_PAGE_SIZE
;
1856 mask
= ~dirty_flags
;
1857 p
= phys_ram_dirty
+ (start
>> TARGET_PAGE_BITS
);
1858 for(i
= 0; i
< len
; i
++)
1861 /* we modify the TLB cache so that the dirty bit will be set again
1862 when accessing the range */
1863 start1
= start
+ (unsigned long)phys_ram_base
;
1864 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
1865 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1866 tlb_reset_dirty_range(&env
->tlb_table
[0][i
], start1
, length
);
1867 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1868 tlb_reset_dirty_range(&env
->tlb_table
[1][i
], start1
, length
);
1869 #if (NB_MMU_MODES >= 3)
1870 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1871 tlb_reset_dirty_range(&env
->tlb_table
[2][i
], start1
, length
);
1872 #if (NB_MMU_MODES == 4)
1873 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1874 tlb_reset_dirty_range(&env
->tlb_table
[3][i
], start1
, length
);
1880 int cpu_physical_memory_set_dirty_tracking(int enable
)
1882 in_migration
= enable
;
1886 int cpu_physical_memory_get_dirty_tracking(void)
1888 return in_migration
;
1891 void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr
, target_phys_addr_t end_addr
)
1894 kvm_physical_sync_dirty_bitmap(start_addr
, end_addr
);
1897 static inline void tlb_update_dirty(CPUTLBEntry
*tlb_entry
)
1899 ram_addr_t ram_addr
;
1901 if ((tlb_entry
->addr_write
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
) {
1902 ram_addr
= (tlb_entry
->addr_write
& TARGET_PAGE_MASK
) +
1903 tlb_entry
->addend
- (unsigned long)phys_ram_base
;
1904 if (!cpu_physical_memory_is_dirty(ram_addr
)) {
1905 tlb_entry
->addr_write
|= TLB_NOTDIRTY
;
1910 /* update the TLB according to the current state of the dirty bits */
1911 void cpu_tlb_update_dirty(CPUState
*env
)
1914 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1915 tlb_update_dirty(&env
->tlb_table
[0][i
]);
1916 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1917 tlb_update_dirty(&env
->tlb_table
[1][i
]);
1918 #if (NB_MMU_MODES >= 3)
1919 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1920 tlb_update_dirty(&env
->tlb_table
[2][i
]);
1921 #if (NB_MMU_MODES == 4)
1922 for(i
= 0; i
< CPU_TLB_SIZE
; i
++)
1923 tlb_update_dirty(&env
->tlb_table
[3][i
]);
1928 static inline void tlb_set_dirty1(CPUTLBEntry
*tlb_entry
, target_ulong vaddr
)
1930 if (tlb_entry
->addr_write
== (vaddr
| TLB_NOTDIRTY
))
1931 tlb_entry
->addr_write
= vaddr
;
1934 /* update the TLB corresponding to virtual page vaddr
1935 so that it is no longer dirty */
1936 static inline void tlb_set_dirty(CPUState
*env
, target_ulong vaddr
)
1940 vaddr
&= TARGET_PAGE_MASK
;
1941 i
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
1942 tlb_set_dirty1(&env
->tlb_table
[0][i
], vaddr
);
1943 tlb_set_dirty1(&env
->tlb_table
[1][i
], vaddr
);
1944 #if (NB_MMU_MODES >= 3)
1945 tlb_set_dirty1(&env
->tlb_table
[2][i
], vaddr
);
1946 #if (NB_MMU_MODES == 4)
1947 tlb_set_dirty1(&env
->tlb_table
[3][i
], vaddr
);
1952 /* add a new TLB entry. At most one entry for a given virtual address
1953 is permitted. Return 0 if OK or 2 if the page could not be mapped
1954 (can only happen in non SOFTMMU mode for I/O pages or pages
1955 conflicting with the host address space). */
1956 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
1957 target_phys_addr_t paddr
, int prot
,
1958 int mmu_idx
, int is_softmmu
)
1963 target_ulong address
;
1964 target_ulong code_address
;
1965 target_phys_addr_t addend
;
1969 target_phys_addr_t iotlb
;
1971 p
= phys_page_find(paddr
>> TARGET_PAGE_BITS
);
1973 pd
= IO_MEM_UNASSIGNED
;
1975 pd
= p
->phys_offset
;
1977 #if defined(DEBUG_TLB)
1978 printf("tlb_set_page: vaddr=" TARGET_FMT_lx
" paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1979 vaddr
, (int)paddr
, prot
, mmu_idx
, is_softmmu
, pd
);
1984 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&& !(pd
& IO_MEM_ROMD
)) {
1985 /* IO memory case (romd handled later) */
1986 address
|= TLB_MMIO
;
1988 addend
= (unsigned long)phys_ram_base
+ (pd
& TARGET_PAGE_MASK
);
1989 if ((pd
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
) {
1991 iotlb
= pd
& TARGET_PAGE_MASK
;
1992 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
)
1993 iotlb
|= IO_MEM_NOTDIRTY
;
1995 iotlb
|= IO_MEM_ROM
;
1997 /* IO handlers are currently passed a phsical address.
1998 It would be nice to pass an offset from the base address
1999 of that region. This would avoid having to special case RAM,
2000 and avoid full address decoding in every device.
2001 We can't use the high bits of pd for this because
2002 IO_MEM_ROMD uses these as a ram address. */
2003 iotlb
= (pd
& ~TARGET_PAGE_MASK
);
2005 iotlb
+= p
->region_offset
;
2011 code_address
= address
;
2012 /* Make accesses to pages with watchpoints go via the
2013 watchpoint trap routines. */
2014 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2015 if (vaddr
== (wp
->vaddr
& TARGET_PAGE_MASK
)) {
2016 iotlb
= io_mem_watch
+ paddr
;
2017 /* TODO: The memory case can be optimized by not trapping
2018 reads of pages with a write breakpoint. */
2019 address
|= TLB_MMIO
;
2023 index
= (vaddr
>> TARGET_PAGE_BITS
) & (CPU_TLB_SIZE
- 1);
2024 env
->iotlb
[mmu_idx
][index
] = iotlb
- vaddr
;
2025 te
= &env
->tlb_table
[mmu_idx
][index
];
2026 te
->addend
= addend
- vaddr
;
2027 if (prot
& PAGE_READ
) {
2028 te
->addr_read
= address
;
2033 if (prot
& PAGE_EXEC
) {
2034 te
->addr_code
= code_address
;
2038 if (prot
& PAGE_WRITE
) {
2039 if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_ROM
||
2040 (pd
& IO_MEM_ROMD
)) {
2041 /* Write access calls the I/O callback. */
2042 te
->addr_write
= address
| TLB_MMIO
;
2043 } else if ((pd
& ~TARGET_PAGE_MASK
) == IO_MEM_RAM
&&
2044 !cpu_physical_memory_is_dirty(pd
)) {
2045 te
->addr_write
= address
| TLB_NOTDIRTY
;
2047 te
->addr_write
= address
;
2050 te
->addr_write
= -1;
2057 void tlb_flush(CPUState
*env
, int flush_global
)
2061 void tlb_flush_page(CPUState
*env
, target_ulong addr
)
2065 int tlb_set_page_exec(CPUState
*env
, target_ulong vaddr
,
2066 target_phys_addr_t paddr
, int prot
,
2067 int mmu_idx
, int is_softmmu
)
2072 /* dump memory mappings */
2073 void page_dump(FILE *f
)
2075 unsigned long start
, end
;
2076 int i
, j
, prot
, prot1
;
2079 fprintf(f
, "%-8s %-8s %-8s %s\n",
2080 "start", "end", "size", "prot");
2084 for(i
= 0; i
<= L1_SIZE
; i
++) {
2089 for(j
= 0;j
< L2_SIZE
; j
++) {
2094 if (prot1
!= prot
) {
2095 end
= (i
<< (32 - L1_BITS
)) | (j
<< TARGET_PAGE_BITS
);
2097 fprintf(f
, "%08lx-%08lx %08lx %c%c%c\n",
2098 start
, end
, end
- start
,
2099 prot
& PAGE_READ
? 'r' : '-',
2100 prot
& PAGE_WRITE
? 'w' : '-',
2101 prot
& PAGE_EXEC
? 'x' : '-');
2115 int page_get_flags(target_ulong address
)
2119 p
= page_find(address
>> TARGET_PAGE_BITS
);
2125 /* modify the flags of a page and invalidate the code if
2126 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2127 depending on PAGE_WRITE */
2128 void page_set_flags(target_ulong start
, target_ulong end
, int flags
)
2133 /* mmap_lock should already be held. */
2134 start
= start
& TARGET_PAGE_MASK
;
2135 end
= TARGET_PAGE_ALIGN(end
);
2136 if (flags
& PAGE_WRITE
)
2137 flags
|= PAGE_WRITE_ORG
;
2138 for(addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
2139 p
= page_find_alloc(addr
>> TARGET_PAGE_BITS
);
2140 /* We may be called for host regions that are outside guest
2144 /* if the write protection is set, then we invalidate the code
2146 if (!(p
->flags
& PAGE_WRITE
) &&
2147 (flags
& PAGE_WRITE
) &&
2149 tb_invalidate_phys_page(addr
, 0, NULL
);
2155 int page_check_range(target_ulong start
, target_ulong len
, int flags
)
2161 if (start
+ len
< start
)
2162 /* we've wrapped around */
2165 end
= TARGET_PAGE_ALIGN(start
+len
); /* must do before we loose bits in the next step */
2166 start
= start
& TARGET_PAGE_MASK
;
2168 for(addr
= start
; addr
< end
; addr
+= TARGET_PAGE_SIZE
) {
2169 p
= page_find(addr
>> TARGET_PAGE_BITS
);
2172 if( !(p
->flags
& PAGE_VALID
) )
2175 if ((flags
& PAGE_READ
) && !(p
->flags
& PAGE_READ
))
2177 if (flags
& PAGE_WRITE
) {
2178 if (!(p
->flags
& PAGE_WRITE_ORG
))
2180 /* unprotect the page if it was put read-only because it
2181 contains translated code */
2182 if (!(p
->flags
& PAGE_WRITE
)) {
2183 if (!page_unprotect(addr
, 0, NULL
))
2192 /* called from signal handler: invalidate the code and unprotect the
2193 page. Return TRUE if the fault was succesfully handled. */
2194 int page_unprotect(target_ulong address
, unsigned long pc
, void *puc
)
2196 unsigned int page_index
, prot
, pindex
;
2198 target_ulong host_start
, host_end
, addr
;
2200 /* Technically this isn't safe inside a signal handler. However we
2201 know this only ever happens in a synchronous SEGV handler, so in
2202 practice it seems to be ok. */
2205 host_start
= address
& qemu_host_page_mask
;
2206 page_index
= host_start
>> TARGET_PAGE_BITS
;
2207 p1
= page_find(page_index
);
2212 host_end
= host_start
+ qemu_host_page_size
;
2215 for(addr
= host_start
;addr
< host_end
; addr
+= TARGET_PAGE_SIZE
) {
2219 /* if the page was really writable, then we change its
2220 protection back to writable */
2221 if (prot
& PAGE_WRITE_ORG
) {
2222 pindex
= (address
- host_start
) >> TARGET_PAGE_BITS
;
2223 if (!(p1
[pindex
].flags
& PAGE_WRITE
)) {
2224 mprotect((void *)g2h(host_start
), qemu_host_page_size
,
2225 (prot
& PAGE_BITS
) | PAGE_WRITE
);
2226 p1
[pindex
].flags
|= PAGE_WRITE
;
2227 /* and since the content will be modified, we must invalidate
2228 the corresponding translated code. */
2229 tb_invalidate_phys_page(address
, pc
, puc
);
2230 #ifdef DEBUG_TB_CHECK
2231 tb_invalidate_check(address
);
2241 static inline void tlb_set_dirty(CPUState
*env
,
2242 unsigned long addr
, target_ulong vaddr
)
2245 #endif /* defined(CONFIG_USER_ONLY) */
2247 #if !defined(CONFIG_USER_ONLY)
2249 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2250 ram_addr_t memory
, ram_addr_t region_offset
);
2251 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2252 ram_addr_t orig_memory
, ram_addr_t region_offset
);
2253 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2256 if (addr > start_addr) \
2259 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2260 if (start_addr2 > 0) \
2264 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2265 end_addr2 = TARGET_PAGE_SIZE - 1; \
2267 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2268 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2273 /* register physical memory. 'size' must be a multiple of the target
2274 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2275 io memory page. The address used when calling the IO function is
2276 the offset from the start of the region, plus region_offset. Both
2277 start_region and regon_offset are rounded down to a page boundary
2278 before calculating this offset. This should not be a problem unless
2279 the low bits of start_addr and region_offset differ. */
2280 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr
,
2282 ram_addr_t phys_offset
,
2283 ram_addr_t region_offset
)
2285 target_phys_addr_t addr
, end_addr
;
2288 ram_addr_t orig_size
= size
;
2292 /* XXX: should not depend on cpu context */
2294 if (env
->kqemu_enabled
) {
2295 kqemu_set_phys_mem(start_addr
, size
, phys_offset
);
2299 kvm_set_phys_mem(start_addr
, size
, phys_offset
);
2301 if (phys_offset
== IO_MEM_UNASSIGNED
) {
2302 region_offset
= start_addr
;
2304 region_offset
&= TARGET_PAGE_MASK
;
2305 size
= (size
+ TARGET_PAGE_SIZE
- 1) & TARGET_PAGE_MASK
;
2306 end_addr
= start_addr
+ (target_phys_addr_t
)size
;
2307 for(addr
= start_addr
; addr
!= end_addr
; addr
+= TARGET_PAGE_SIZE
) {
2308 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2309 if (p
&& p
->phys_offset
!= IO_MEM_UNASSIGNED
) {
2310 ram_addr_t orig_memory
= p
->phys_offset
;
2311 target_phys_addr_t start_addr2
, end_addr2
;
2312 int need_subpage
= 0;
2314 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
, end_addr2
,
2316 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2317 if (!(orig_memory
& IO_MEM_SUBPAGE
)) {
2318 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2319 &p
->phys_offset
, orig_memory
,
2322 subpage
= io_mem_opaque
[(orig_memory
& ~TARGET_PAGE_MASK
)
2325 subpage_register(subpage
, start_addr2
, end_addr2
, phys_offset
,
2327 p
->region_offset
= 0;
2329 p
->phys_offset
= phys_offset
;
2330 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2331 (phys_offset
& IO_MEM_ROMD
))
2332 phys_offset
+= TARGET_PAGE_SIZE
;
2335 p
= phys_page_find_alloc(addr
>> TARGET_PAGE_BITS
, 1);
2336 p
->phys_offset
= phys_offset
;
2337 p
->region_offset
= region_offset
;
2338 if ((phys_offset
& ~TARGET_PAGE_MASK
) <= IO_MEM_ROM
||
2339 (phys_offset
& IO_MEM_ROMD
)) {
2340 phys_offset
+= TARGET_PAGE_SIZE
;
2342 target_phys_addr_t start_addr2
, end_addr2
;
2343 int need_subpage
= 0;
2345 CHECK_SUBPAGE(addr
, start_addr
, start_addr2
, end_addr
,
2346 end_addr2
, need_subpage
);
2348 if (need_subpage
|| phys_offset
& IO_MEM_SUBWIDTH
) {
2349 subpage
= subpage_init((addr
& TARGET_PAGE_MASK
),
2350 &p
->phys_offset
, IO_MEM_UNASSIGNED
,
2351 addr
& TARGET_PAGE_MASK
);
2352 subpage_register(subpage
, start_addr2
, end_addr2
,
2353 phys_offset
, region_offset
);
2354 p
->region_offset
= 0;
2358 region_offset
+= TARGET_PAGE_SIZE
;
2361 /* since each CPU stores ram addresses in its TLB cache, we must
2362 reset the modified entries */
2364 for(env
= first_cpu
; env
!= NULL
; env
= env
->next_cpu
) {
2369 /* XXX: temporary until new memory mapping API */
2370 ram_addr_t
cpu_get_physical_page_desc(target_phys_addr_t addr
)
2374 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
2376 return IO_MEM_UNASSIGNED
;
2377 return p
->phys_offset
;
2380 void qemu_register_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2383 kvm_coalesce_mmio_region(addr
, size
);
2386 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr
, ram_addr_t size
)
2389 kvm_uncoalesce_mmio_region(addr
, size
);
2392 /* XXX: better than nothing */
2393 ram_addr_t
qemu_ram_alloc(ram_addr_t size
)
2396 if ((phys_ram_alloc_offset
+ size
) > phys_ram_size
) {
2397 fprintf(stderr
, "Not enough memory (requested_size = %" PRIu64
", max memory = %" PRIu64
")\n",
2398 (uint64_t)size
, (uint64_t)phys_ram_size
);
2401 addr
= phys_ram_alloc_offset
;
2402 phys_ram_alloc_offset
= TARGET_PAGE_ALIGN(phys_ram_alloc_offset
+ size
);
2406 void qemu_ram_free(ram_addr_t addr
)
2410 static uint32_t unassigned_mem_readb(void *opaque
, target_phys_addr_t addr
)
2412 #ifdef DEBUG_UNASSIGNED
2413 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2415 #if defined(TARGET_SPARC)
2416 do_unassigned_access(addr
, 0, 0, 0, 1);
2421 static uint32_t unassigned_mem_readw(void *opaque
, target_phys_addr_t addr
)
2423 #ifdef DEBUG_UNASSIGNED
2424 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2426 #if defined(TARGET_SPARC)
2427 do_unassigned_access(addr
, 0, 0, 0, 2);
2432 static uint32_t unassigned_mem_readl(void *opaque
, target_phys_addr_t addr
)
2434 #ifdef DEBUG_UNASSIGNED
2435 printf("Unassigned mem read " TARGET_FMT_plx
"\n", addr
);
2437 #if defined(TARGET_SPARC)
2438 do_unassigned_access(addr
, 0, 0, 0, 4);
2443 static void unassigned_mem_writeb(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2445 #ifdef DEBUG_UNASSIGNED
2446 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2448 #if defined(TARGET_SPARC)
2449 do_unassigned_access(addr
, 1, 0, 0, 1);
2453 static void unassigned_mem_writew(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2455 #ifdef DEBUG_UNASSIGNED
2456 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2458 #if defined(TARGET_SPARC)
2459 do_unassigned_access(addr
, 1, 0, 0, 2);
2463 static void unassigned_mem_writel(void *opaque
, target_phys_addr_t addr
, uint32_t val
)
2465 #ifdef DEBUG_UNASSIGNED
2466 printf("Unassigned mem write " TARGET_FMT_plx
" = 0x%x\n", addr
, val
);
2468 #if defined(TARGET_SPARC)
2469 do_unassigned_access(addr
, 1, 0, 0, 4);
2473 static CPUReadMemoryFunc
*unassigned_mem_read
[3] = {
2474 unassigned_mem_readb
,
2475 unassigned_mem_readw
,
2476 unassigned_mem_readl
,
2479 static CPUWriteMemoryFunc
*unassigned_mem_write
[3] = {
2480 unassigned_mem_writeb
,
2481 unassigned_mem_writew
,
2482 unassigned_mem_writel
,
2485 static void notdirty_mem_writeb(void *opaque
, target_phys_addr_t ram_addr
,
2489 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2490 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2491 #if !defined(CONFIG_USER_ONLY)
2492 tb_invalidate_phys_page_fast(ram_addr
, 1);
2493 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2496 stb_p(phys_ram_base
+ ram_addr
, val
);
2498 if (cpu_single_env
->kqemu_enabled
&&
2499 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2500 kqemu_modify_page(cpu_single_env
, ram_addr
);
2502 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2503 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2504 /* we remove the notdirty callback only if the code has been
2506 if (dirty_flags
== 0xff)
2507 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2510 static void notdirty_mem_writew(void *opaque
, target_phys_addr_t ram_addr
,
2514 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2515 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2516 #if !defined(CONFIG_USER_ONLY)
2517 tb_invalidate_phys_page_fast(ram_addr
, 2);
2518 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2521 stw_p(phys_ram_base
+ ram_addr
, val
);
2523 if (cpu_single_env
->kqemu_enabled
&&
2524 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2525 kqemu_modify_page(cpu_single_env
, ram_addr
);
2527 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2528 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2529 /* we remove the notdirty callback only if the code has been
2531 if (dirty_flags
== 0xff)
2532 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2535 static void notdirty_mem_writel(void *opaque
, target_phys_addr_t ram_addr
,
2539 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2540 if (!(dirty_flags
& CODE_DIRTY_FLAG
)) {
2541 #if !defined(CONFIG_USER_ONLY)
2542 tb_invalidate_phys_page_fast(ram_addr
, 4);
2543 dirty_flags
= phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
];
2546 stl_p(phys_ram_base
+ ram_addr
, val
);
2548 if (cpu_single_env
->kqemu_enabled
&&
2549 (dirty_flags
& KQEMU_MODIFY_PAGE_MASK
) != KQEMU_MODIFY_PAGE_MASK
)
2550 kqemu_modify_page(cpu_single_env
, ram_addr
);
2552 dirty_flags
|= (0xff & ~CODE_DIRTY_FLAG
);
2553 phys_ram_dirty
[ram_addr
>> TARGET_PAGE_BITS
] = dirty_flags
;
2554 /* we remove the notdirty callback only if the code has been
2556 if (dirty_flags
== 0xff)
2557 tlb_set_dirty(cpu_single_env
, cpu_single_env
->mem_io_vaddr
);
2560 static CPUReadMemoryFunc
*error_mem_read
[3] = {
2561 NULL
, /* never used */
2562 NULL
, /* never used */
2563 NULL
, /* never used */
2566 static CPUWriteMemoryFunc
*notdirty_mem_write
[3] = {
2567 notdirty_mem_writeb
,
2568 notdirty_mem_writew
,
2569 notdirty_mem_writel
,
2572 /* Generate a debug exception if a watchpoint has been hit. */
2573 static void check_watchpoint(int offset
, int len_mask
, int flags
)
2575 CPUState
*env
= cpu_single_env
;
2576 target_ulong pc
, cs_base
;
2577 TranslationBlock
*tb
;
2582 if (env
->watchpoint_hit
) {
2583 /* We re-entered the check after replacing the TB. Now raise
2584 * the debug interrupt so that is will trigger after the
2585 * current instruction. */
2586 cpu_interrupt(env
, CPU_INTERRUPT_DEBUG
);
2589 vaddr
= (env
->mem_io_vaddr
& TARGET_PAGE_MASK
) + offset
;
2590 TAILQ_FOREACH(wp
, &env
->watchpoints
, entry
) {
2591 if ((vaddr
== (wp
->vaddr
& len_mask
) ||
2592 (vaddr
& wp
->len_mask
) == wp
->vaddr
) && (wp
->flags
& flags
)) {
2593 wp
->flags
|= BP_WATCHPOINT_HIT
;
2594 if (!env
->watchpoint_hit
) {
2595 env
->watchpoint_hit
= wp
;
2596 tb
= tb_find_pc(env
->mem_io_pc
);
2598 cpu_abort(env
, "check_watchpoint: could not find TB for "
2599 "pc=%p", (void *)env
->mem_io_pc
);
2601 cpu_restore_state(tb
, env
, env
->mem_io_pc
, NULL
);
2602 tb_phys_invalidate(tb
, -1);
2603 if (wp
->flags
& BP_STOP_BEFORE_ACCESS
) {
2604 env
->exception_index
= EXCP_DEBUG
;
2606 cpu_get_tb_cpu_state(env
, &pc
, &cs_base
, &cpu_flags
);
2607 tb_gen_code(env
, pc
, cs_base
, cpu_flags
, 1);
2609 cpu_resume_from_signal(env
, NULL
);
2612 wp
->flags
&= ~BP_WATCHPOINT_HIT
;
2617 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2618 so these check for a hit then pass through to the normal out-of-line
2620 static uint32_t watch_mem_readb(void *opaque
, target_phys_addr_t addr
)
2622 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_READ
);
2623 return ldub_phys(addr
);
2626 static uint32_t watch_mem_readw(void *opaque
, target_phys_addr_t addr
)
2628 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_READ
);
2629 return lduw_phys(addr
);
2632 static uint32_t watch_mem_readl(void *opaque
, target_phys_addr_t addr
)
2634 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_READ
);
2635 return ldl_phys(addr
);
2638 static void watch_mem_writeb(void *opaque
, target_phys_addr_t addr
,
2641 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x0, BP_MEM_WRITE
);
2642 stb_phys(addr
, val
);
2645 static void watch_mem_writew(void *opaque
, target_phys_addr_t addr
,
2648 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x1, BP_MEM_WRITE
);
2649 stw_phys(addr
, val
);
2652 static void watch_mem_writel(void *opaque
, target_phys_addr_t addr
,
2655 check_watchpoint(addr
& ~TARGET_PAGE_MASK
, ~0x3, BP_MEM_WRITE
);
2656 stl_phys(addr
, val
);
2659 static CPUReadMemoryFunc
*watch_mem_read
[3] = {
2665 static CPUWriteMemoryFunc
*watch_mem_write
[3] = {
2671 static inline uint32_t subpage_readlen (subpage_t
*mmio
, target_phys_addr_t addr
,
2677 idx
= SUBPAGE_IDX(addr
);
2678 #if defined(DEBUG_SUBPAGE)
2679 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d\n", __func__
,
2680 mmio
, len
, addr
, idx
);
2682 ret
= (**mmio
->mem_read
[idx
][len
])(mmio
->opaque
[idx
][0][len
],
2683 addr
+ mmio
->region_offset
[idx
][0][len
]);
2688 static inline void subpage_writelen (subpage_t
*mmio
, target_phys_addr_t addr
,
2689 uint32_t value
, unsigned int len
)
2693 idx
= SUBPAGE_IDX(addr
);
2694 #if defined(DEBUG_SUBPAGE)
2695 printf("%s: subpage %p len %d addr " TARGET_FMT_plx
" idx %d value %08x\n", __func__
,
2696 mmio
, len
, addr
, idx
, value
);
2698 (**mmio
->mem_write
[idx
][len
])(mmio
->opaque
[idx
][1][len
],
2699 addr
+ mmio
->region_offset
[idx
][1][len
],
2703 static uint32_t subpage_readb (void *opaque
, target_phys_addr_t addr
)
2705 #if defined(DEBUG_SUBPAGE)
2706 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2709 return subpage_readlen(opaque
, addr
, 0);
2712 static void subpage_writeb (void *opaque
, target_phys_addr_t addr
,
2715 #if defined(DEBUG_SUBPAGE)
2716 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2718 subpage_writelen(opaque
, addr
, value
, 0);
2721 static uint32_t subpage_readw (void *opaque
, target_phys_addr_t addr
)
2723 #if defined(DEBUG_SUBPAGE)
2724 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2727 return subpage_readlen(opaque
, addr
, 1);
2730 static void subpage_writew (void *opaque
, target_phys_addr_t addr
,
2733 #if defined(DEBUG_SUBPAGE)
2734 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2736 subpage_writelen(opaque
, addr
, value
, 1);
2739 static uint32_t subpage_readl (void *opaque
, target_phys_addr_t addr
)
2741 #if defined(DEBUG_SUBPAGE)
2742 printf("%s: addr " TARGET_FMT_plx
"\n", __func__
, addr
);
2745 return subpage_readlen(opaque
, addr
, 2);
2748 static void subpage_writel (void *opaque
,
2749 target_phys_addr_t addr
, uint32_t value
)
2751 #if defined(DEBUG_SUBPAGE)
2752 printf("%s: addr " TARGET_FMT_plx
" val %08x\n", __func__
, addr
, value
);
2754 subpage_writelen(opaque
, addr
, value
, 2);
2757 static CPUReadMemoryFunc
*subpage_read
[] = {
2763 static CPUWriteMemoryFunc
*subpage_write
[] = {
2769 static int subpage_register (subpage_t
*mmio
, uint32_t start
, uint32_t end
,
2770 ram_addr_t memory
, ram_addr_t region_offset
)
2775 if (start
>= TARGET_PAGE_SIZE
|| end
>= TARGET_PAGE_SIZE
)
2777 idx
= SUBPAGE_IDX(start
);
2778 eidx
= SUBPAGE_IDX(end
);
2779 #if defined(DEBUG_SUBPAGE)
2780 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__
,
2781 mmio
, start
, end
, idx
, eidx
, memory
);
2783 memory
>>= IO_MEM_SHIFT
;
2784 for (; idx
<= eidx
; idx
++) {
2785 for (i
= 0; i
< 4; i
++) {
2786 if (io_mem_read
[memory
][i
]) {
2787 mmio
->mem_read
[idx
][i
] = &io_mem_read
[memory
][i
];
2788 mmio
->opaque
[idx
][0][i
] = io_mem_opaque
[memory
];
2789 mmio
->region_offset
[idx
][0][i
] = region_offset
;
2791 if (io_mem_write
[memory
][i
]) {
2792 mmio
->mem_write
[idx
][i
] = &io_mem_write
[memory
][i
];
2793 mmio
->opaque
[idx
][1][i
] = io_mem_opaque
[memory
];
2794 mmio
->region_offset
[idx
][1][i
] = region_offset
;
2802 static void *subpage_init (target_phys_addr_t base
, ram_addr_t
*phys
,
2803 ram_addr_t orig_memory
, ram_addr_t region_offset
)
2808 mmio
= qemu_mallocz(sizeof(subpage_t
));
2811 subpage_memory
= cpu_register_io_memory(0, subpage_read
, subpage_write
, mmio
);
2812 #if defined(DEBUG_SUBPAGE)
2813 printf("%s: %p base " TARGET_FMT_plx
" len %08x %d\n", __func__
,
2814 mmio
, base
, TARGET_PAGE_SIZE
, subpage_memory
);
2816 *phys
= subpage_memory
| IO_MEM_SUBPAGE
;
2817 subpage_register(mmio
, 0, TARGET_PAGE_SIZE
- 1, orig_memory
,
2823 static int get_free_io_mem_idx(void)
2827 for (i
= 0; i
<IO_MEM_NB_ENTRIES
; i
++)
2828 if (!io_mem_used
[i
]) {
2836 static void io_mem_init(void)
2840 cpu_register_io_memory(IO_MEM_ROM
>> IO_MEM_SHIFT
, error_mem_read
, unassigned_mem_write
, NULL
);
2841 cpu_register_io_memory(IO_MEM_UNASSIGNED
>> IO_MEM_SHIFT
, unassigned_mem_read
, unassigned_mem_write
, NULL
);
2842 cpu_register_io_memory(IO_MEM_NOTDIRTY
>> IO_MEM_SHIFT
, error_mem_read
, notdirty_mem_write
, NULL
);
2846 io_mem_watch
= cpu_register_io_memory(0, watch_mem_read
,
2847 watch_mem_write
, NULL
);
2848 /* alloc dirty bits array */
2849 phys_ram_dirty
= qemu_vmalloc(phys_ram_size
>> TARGET_PAGE_BITS
);
2850 memset(phys_ram_dirty
, 0xff, phys_ram_size
>> TARGET_PAGE_BITS
);
2853 /* mem_read and mem_write are arrays of functions containing the
2854 function to access byte (index 0), word (index 1) and dword (index
2855 2). Functions can be omitted with a NULL function pointer. The
2856 registered functions may be modified dynamically later.
2857 If io_index is non zero, the corresponding io zone is
2858 modified. If it is zero, a new io zone is allocated. The return
2859 value can be used with cpu_register_physical_memory(). (-1) is
2860 returned if error. */
2861 int cpu_register_io_memory(int io_index
,
2862 CPUReadMemoryFunc
**mem_read
,
2863 CPUWriteMemoryFunc
**mem_write
,
2866 int i
, subwidth
= 0;
2868 if (io_index
<= 0) {
2869 io_index
= get_free_io_mem_idx();
2873 if (io_index
>= IO_MEM_NB_ENTRIES
)
2877 for(i
= 0;i
< 3; i
++) {
2878 if (!mem_read
[i
] || !mem_write
[i
])
2879 subwidth
= IO_MEM_SUBWIDTH
;
2880 io_mem_read
[io_index
][i
] = mem_read
[i
];
2881 io_mem_write
[io_index
][i
] = mem_write
[i
];
2883 io_mem_opaque
[io_index
] = opaque
;
2884 return (io_index
<< IO_MEM_SHIFT
) | subwidth
;
2887 void cpu_unregister_io_memory(int io_table_address
)
2890 int io_index
= io_table_address
>> IO_MEM_SHIFT
;
2892 for (i
=0;i
< 3; i
++) {
2893 io_mem_read
[io_index
][i
] = unassigned_mem_read
[i
];
2894 io_mem_write
[io_index
][i
] = unassigned_mem_write
[i
];
2896 io_mem_opaque
[io_index
] = NULL
;
2897 io_mem_used
[io_index
] = 0;
2900 CPUWriteMemoryFunc
**cpu_get_io_memory_write(int io_index
)
2902 return io_mem_write
[io_index
>> IO_MEM_SHIFT
];
2905 CPUReadMemoryFunc
**cpu_get_io_memory_read(int io_index
)
2907 return io_mem_read
[io_index
>> IO_MEM_SHIFT
];
2910 #endif /* !defined(CONFIG_USER_ONLY) */
2912 /* physical memory access (slow version, mainly for debug) */
2913 #if defined(CONFIG_USER_ONLY)
2914 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
2915 int len
, int is_write
)
2922 page
= addr
& TARGET_PAGE_MASK
;
2923 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2926 flags
= page_get_flags(page
);
2927 if (!(flags
& PAGE_VALID
))
2930 if (!(flags
& PAGE_WRITE
))
2932 /* XXX: this code should not depend on lock_user */
2933 if (!(p
= lock_user(VERIFY_WRITE
, addr
, l
, 0)))
2934 /* FIXME - should this return an error rather than just fail? */
2937 unlock_user(p
, addr
, l
);
2939 if (!(flags
& PAGE_READ
))
2941 /* XXX: this code should not depend on lock_user */
2942 if (!(p
= lock_user(VERIFY_READ
, addr
, l
, 1)))
2943 /* FIXME - should this return an error rather than just fail? */
2946 unlock_user(p
, addr
, 0);
2955 void cpu_physical_memory_rw(target_phys_addr_t addr
, uint8_t *buf
,
2956 int len
, int is_write
)
2961 target_phys_addr_t page
;
2966 page
= addr
& TARGET_PAGE_MASK
;
2967 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
2970 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
2972 pd
= IO_MEM_UNASSIGNED
;
2974 pd
= p
->phys_offset
;
2978 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
2979 target_phys_addr_t addr1
= addr
;
2980 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
2982 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
2983 /* XXX: could force cpu_single_env to NULL to avoid
2985 if (l
>= 4 && ((addr1
& 3) == 0)) {
2986 /* 32 bit write access */
2988 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr1
, val
);
2990 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
2991 /* 16 bit write access */
2993 io_mem_write
[io_index
][1](io_mem_opaque
[io_index
], addr1
, val
);
2996 /* 8 bit write access */
2998 io_mem_write
[io_index
][0](io_mem_opaque
[io_index
], addr1
, val
);
3002 unsigned long addr1
;
3003 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3005 ptr
= phys_ram_base
+ addr1
;
3006 memcpy(ptr
, buf
, l
);
3007 if (!cpu_physical_memory_is_dirty(addr1
)) {
3008 /* invalidate code */
3009 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3011 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3012 (0xff & ~CODE_DIRTY_FLAG
);
3016 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3017 !(pd
& IO_MEM_ROMD
)) {
3018 target_phys_addr_t addr1
= addr
;
3020 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3022 addr1
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3023 if (l
>= 4 && ((addr1
& 3) == 0)) {
3024 /* 32 bit read access */
3025 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr1
);
3028 } else if (l
>= 2 && ((addr1
& 1) == 0)) {
3029 /* 16 bit read access */
3030 val
= io_mem_read
[io_index
][1](io_mem_opaque
[io_index
], addr1
);
3034 /* 8 bit read access */
3035 val
= io_mem_read
[io_index
][0](io_mem_opaque
[io_index
], addr1
);
3041 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
3042 (addr
& ~TARGET_PAGE_MASK
);
3043 memcpy(buf
, ptr
, l
);
3052 /* used for ROM loading : can write in RAM and ROM */
3053 void cpu_physical_memory_write_rom(target_phys_addr_t addr
,
3054 const uint8_t *buf
, int len
)
3058 target_phys_addr_t page
;
3063 page
= addr
& TARGET_PAGE_MASK
;
3064 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3067 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3069 pd
= IO_MEM_UNASSIGNED
;
3071 pd
= p
->phys_offset
;
3074 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
&&
3075 (pd
& ~TARGET_PAGE_MASK
) != IO_MEM_ROM
&&
3076 !(pd
& IO_MEM_ROMD
)) {
3079 unsigned long addr1
;
3080 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3082 ptr
= phys_ram_base
+ addr1
;
3083 memcpy(ptr
, buf
, l
);
3093 target_phys_addr_t addr
;
3094 target_phys_addr_t len
;
3097 static BounceBuffer bounce
;
3099 typedef struct MapClient
{
3101 void (*callback
)(void *opaque
);
3102 LIST_ENTRY(MapClient
) link
;
3105 static LIST_HEAD(map_client_list
, MapClient
) map_client_list
3106 = LIST_HEAD_INITIALIZER(map_client_list
);
3108 void *cpu_register_map_client(void *opaque
, void (*callback
)(void *opaque
))
3110 MapClient
*client
= qemu_malloc(sizeof(*client
));
3112 client
->opaque
= opaque
;
3113 client
->callback
= callback
;
3114 LIST_INSERT_HEAD(&map_client_list
, client
, link
);
3118 void cpu_unregister_map_client(void *_client
)
3120 MapClient
*client
= (MapClient
*)_client
;
3122 LIST_REMOVE(client
, link
);
3125 static void cpu_notify_map_clients(void)
3129 while (!LIST_EMPTY(&map_client_list
)) {
3130 client
= LIST_FIRST(&map_client_list
);
3131 client
->callback(client
->opaque
);
3132 LIST_REMOVE(client
, link
);
3136 /* Map a physical memory region into a host virtual address.
3137 * May map a subset of the requested range, given by and returned in *plen.
3138 * May return NULL if resources needed to perform the mapping are exhausted.
3139 * Use only for reads OR writes - not for read-modify-write operations.
3140 * Use cpu_register_map_client() to know when retrying the map operation is
3141 * likely to succeed.
3143 void *cpu_physical_memory_map(target_phys_addr_t addr
,
3144 target_phys_addr_t
*plen
,
3147 target_phys_addr_t len
= *plen
;
3148 target_phys_addr_t done
= 0;
3150 uint8_t *ret
= NULL
;
3152 target_phys_addr_t page
;
3155 unsigned long addr1
;
3158 page
= addr
& TARGET_PAGE_MASK
;
3159 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3162 p
= phys_page_find(page
>> TARGET_PAGE_BITS
);
3164 pd
= IO_MEM_UNASSIGNED
;
3166 pd
= p
->phys_offset
;
3169 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3170 if (done
|| bounce
.buffer
) {
3173 bounce
.buffer
= qemu_memalign(TARGET_PAGE_SIZE
, TARGET_PAGE_SIZE
);
3177 cpu_physical_memory_rw(addr
, bounce
.buffer
, l
, 0);
3179 ptr
= bounce
.buffer
;
3181 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3182 ptr
= phys_ram_base
+ addr1
;
3186 } else if (ret
+ done
!= ptr
) {
3198 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3199 * Will also mark the memory as dirty if is_write == 1. access_len gives
3200 * the amount of memory that was actually read or written by the caller.
3202 void cpu_physical_memory_unmap(void *buffer
, target_phys_addr_t len
,
3203 int is_write
, target_phys_addr_t access_len
)
3205 if (buffer
!= bounce
.buffer
) {
3207 unsigned long addr1
= (uint8_t *)buffer
- phys_ram_base
;
3208 while (access_len
) {
3210 l
= TARGET_PAGE_SIZE
;
3213 if (!cpu_physical_memory_is_dirty(addr1
)) {
3214 /* invalidate code */
3215 tb_invalidate_phys_page_range(addr1
, addr1
+ l
, 0);
3217 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3218 (0xff & ~CODE_DIRTY_FLAG
);
3227 cpu_physical_memory_write(bounce
.addr
, bounce
.buffer
, access_len
);
3229 qemu_free(bounce
.buffer
);
3230 bounce
.buffer
= NULL
;
3231 cpu_notify_map_clients();
3234 /* warning: addr must be aligned */
3235 uint32_t ldl_phys(target_phys_addr_t addr
)
3243 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3245 pd
= IO_MEM_UNASSIGNED
;
3247 pd
= p
->phys_offset
;
3250 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3251 !(pd
& IO_MEM_ROMD
)) {
3253 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3255 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3256 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3259 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
3260 (addr
& ~TARGET_PAGE_MASK
);
3266 /* warning: addr must be aligned */
3267 uint64_t ldq_phys(target_phys_addr_t addr
)
3275 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3277 pd
= IO_MEM_UNASSIGNED
;
3279 pd
= p
->phys_offset
;
3282 if ((pd
& ~TARGET_PAGE_MASK
) > IO_MEM_ROM
&&
3283 !(pd
& IO_MEM_ROMD
)) {
3285 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3287 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3288 #ifdef TARGET_WORDS_BIGENDIAN
3289 val
= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
) << 32;
3290 val
|= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4);
3292 val
= io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
);
3293 val
|= (uint64_t)io_mem_read
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4) << 32;
3297 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
3298 (addr
& ~TARGET_PAGE_MASK
);
3305 uint32_t ldub_phys(target_phys_addr_t addr
)
3308 cpu_physical_memory_read(addr
, &val
, 1);
3313 uint32_t lduw_phys(target_phys_addr_t addr
)
3316 cpu_physical_memory_read(addr
, (uint8_t *)&val
, 2);
3317 return tswap16(val
);
3320 /* warning: addr must be aligned. The ram page is not masked as dirty
3321 and the code inside is not invalidated. It is useful if the dirty
3322 bits are used to track modified PTEs */
3323 void stl_phys_notdirty(target_phys_addr_t addr
, uint32_t val
)
3330 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3332 pd
= IO_MEM_UNASSIGNED
;
3334 pd
= p
->phys_offset
;
3337 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3338 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3340 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3341 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3343 unsigned long addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3344 ptr
= phys_ram_base
+ addr1
;
3347 if (unlikely(in_migration
)) {
3348 if (!cpu_physical_memory_is_dirty(addr1
)) {
3349 /* invalidate code */
3350 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3352 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3353 (0xff & ~CODE_DIRTY_FLAG
);
3359 void stq_phys_notdirty(target_phys_addr_t addr
, uint64_t val
)
3366 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3368 pd
= IO_MEM_UNASSIGNED
;
3370 pd
= p
->phys_offset
;
3373 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3374 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3376 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3377 #ifdef TARGET_WORDS_BIGENDIAN
3378 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
>> 32);
3379 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
);
3381 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3382 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
+ 4, val
>> 32);
3385 ptr
= phys_ram_base
+ (pd
& TARGET_PAGE_MASK
) +
3386 (addr
& ~TARGET_PAGE_MASK
);
3391 /* warning: addr must be aligned */
3392 void stl_phys(target_phys_addr_t addr
, uint32_t val
)
3399 p
= phys_page_find(addr
>> TARGET_PAGE_BITS
);
3401 pd
= IO_MEM_UNASSIGNED
;
3403 pd
= p
->phys_offset
;
3406 if ((pd
& ~TARGET_PAGE_MASK
) != IO_MEM_RAM
) {
3407 io_index
= (pd
>> IO_MEM_SHIFT
) & (IO_MEM_NB_ENTRIES
- 1);
3409 addr
= (addr
& ~TARGET_PAGE_MASK
) + p
->region_offset
;
3410 io_mem_write
[io_index
][2](io_mem_opaque
[io_index
], addr
, val
);
3412 unsigned long addr1
;
3413 addr1
= (pd
& TARGET_PAGE_MASK
) + (addr
& ~TARGET_PAGE_MASK
);
3415 ptr
= phys_ram_base
+ addr1
;
3417 if (!cpu_physical_memory_is_dirty(addr1
)) {
3418 /* invalidate code */
3419 tb_invalidate_phys_page_range(addr1
, addr1
+ 4, 0);
3421 phys_ram_dirty
[addr1
>> TARGET_PAGE_BITS
] |=
3422 (0xff & ~CODE_DIRTY_FLAG
);
3428 void stb_phys(target_phys_addr_t addr
, uint32_t val
)
3431 cpu_physical_memory_write(addr
, &v
, 1);
3435 void stw_phys(target_phys_addr_t addr
, uint32_t val
)
3437 uint16_t v
= tswap16(val
);
3438 cpu_physical_memory_write(addr
, (const uint8_t *)&v
, 2);
3442 void stq_phys(target_phys_addr_t addr
, uint64_t val
)
3445 cpu_physical_memory_write(addr
, (const uint8_t *)&val
, 8);
3450 /* virtual memory access for debug */
3451 int cpu_memory_rw_debug(CPUState
*env
, target_ulong addr
,
3452 uint8_t *buf
, int len
, int is_write
)
3455 target_phys_addr_t phys_addr
;
3459 page
= addr
& TARGET_PAGE_MASK
;
3460 phys_addr
= cpu_get_phys_page_debug(env
, page
);
3461 /* if no physical page mapped, return an error */
3462 if (phys_addr
== -1)
3464 l
= (page
+ TARGET_PAGE_SIZE
) - addr
;
3467 cpu_physical_memory_rw(phys_addr
+ (addr
& ~TARGET_PAGE_MASK
),
3476 /* in deterministic execution mode, instructions doing device I/Os
3477 must be at the end of the TB */
3478 void cpu_io_recompile(CPUState
*env
, void *retaddr
)
3480 TranslationBlock
*tb
;
3482 target_ulong pc
, cs_base
;
3485 tb
= tb_find_pc((unsigned long)retaddr
);
3487 cpu_abort(env
, "cpu_io_recompile: could not find TB for pc=%p",
3490 n
= env
->icount_decr
.u16
.low
+ tb
->icount
;
3491 cpu_restore_state(tb
, env
, (unsigned long)retaddr
, NULL
);
3492 /* Calculate how many instructions had been executed before the fault
3494 n
= n
- env
->icount_decr
.u16
.low
;
3495 /* Generate a new TB ending on the I/O insn. */
3497 /* On MIPS and SH, delay slot instructions can only be restarted if
3498 they were already the first instruction in the TB. If this is not
3499 the first instruction in a TB then re-execute the preceding
3501 #if defined(TARGET_MIPS)
3502 if ((env
->hflags
& MIPS_HFLAG_BMASK
) != 0 && n
> 1) {
3503 env
->active_tc
.PC
-= 4;
3504 env
->icount_decr
.u16
.low
++;
3505 env
->hflags
&= ~MIPS_HFLAG_BMASK
;
3507 #elif defined(TARGET_SH4)
3508 if ((env
->flags
& ((DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
))) != 0
3511 env
->icount_decr
.u16
.low
++;
3512 env
->flags
&= ~(DELAY_SLOT
| DELAY_SLOT_CONDITIONAL
);
3515 /* This should never happen. */
3516 if (n
> CF_COUNT_MASK
)
3517 cpu_abort(env
, "TB too big during recompile");
3519 cflags
= n
| CF_LAST_IO
;
3521 cs_base
= tb
->cs_base
;
3523 tb_phys_invalidate(tb
, -1);
3524 /* FIXME: In theory this could raise an exception. In practice
3525 we have already translated the block once so it's probably ok. */
3526 tb_gen_code(env
, pc
, cs_base
, flags
, cflags
);
3527 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3528 the first in the TB) then we end up generating a whole new TB and
3529 repeating the fault, which is horribly inefficient.
3530 Better would be to execute just this insn uncached, or generate a
3532 cpu_resume_from_signal(env
, NULL
);
3535 void dump_exec_info(FILE *f
,
3536 int (*cpu_fprintf
)(FILE *f
, const char *fmt
, ...))
3538 int i
, target_code_size
, max_target_code_size
;
3539 int direct_jmp_count
, direct_jmp2_count
, cross_page
;
3540 TranslationBlock
*tb
;
3542 target_code_size
= 0;
3543 max_target_code_size
= 0;
3545 direct_jmp_count
= 0;
3546 direct_jmp2_count
= 0;
3547 for(i
= 0; i
< nb_tbs
; i
++) {
3549 target_code_size
+= tb
->size
;
3550 if (tb
->size
> max_target_code_size
)
3551 max_target_code_size
= tb
->size
;
3552 if (tb
->page_addr
[1] != -1)
3554 if (tb
->tb_next_offset
[0] != 0xffff) {
3556 if (tb
->tb_next_offset
[1] != 0xffff) {
3557 direct_jmp2_count
++;
3561 /* XXX: avoid using doubles ? */
3562 cpu_fprintf(f
, "Translation buffer state:\n");
3563 cpu_fprintf(f
, "gen code size %ld/%ld\n",
3564 code_gen_ptr
- code_gen_buffer
, code_gen_buffer_max_size
);
3565 cpu_fprintf(f
, "TB count %d/%d\n",
3566 nb_tbs
, code_gen_max_blocks
);
3567 cpu_fprintf(f
, "TB avg target size %d max=%d bytes\n",
3568 nb_tbs
? target_code_size
/ nb_tbs
: 0,
3569 max_target_code_size
);
3570 cpu_fprintf(f
, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3571 nb_tbs
? (code_gen_ptr
- code_gen_buffer
) / nb_tbs
: 0,
3572 target_code_size
? (double) (code_gen_ptr
- code_gen_buffer
) / target_code_size
: 0);
3573 cpu_fprintf(f
, "cross page TB count %d (%d%%)\n",
3575 nb_tbs
? (cross_page
* 100) / nb_tbs
: 0);
3576 cpu_fprintf(f
, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3578 nb_tbs
? (direct_jmp_count
* 100) / nb_tbs
: 0,
3580 nb_tbs
? (direct_jmp2_count
* 100) / nb_tbs
: 0);
3581 cpu_fprintf(f
, "\nStatistics:\n");
3582 cpu_fprintf(f
, "TB flush count %d\n", tb_flush_count
);
3583 cpu_fprintf(f
, "TB invalidate count %d\n", tb_phys_invalidate_count
);
3584 cpu_fprintf(f
, "TLB flush count %d\n", tlb_flush_count
);
3585 tcg_dump_info(f
, cpu_fprintf
);
3588 #if !defined(CONFIG_USER_ONLY)
3590 #define MMUSUFFIX _cmmu
3591 #define GETPC() NULL
3592 #define env cpu_single_env
3593 #define SOFTMMU_CODE_ACCESS
3596 #include "softmmu_template.h"
3599 #include "softmmu_template.h"
3602 #include "softmmu_template.h"
3605 #include "softmmu_template.h"