Allow additions of ACPI tables from command line (Gleb Natapov)
[sniper_test.git] / qemu-doc.texi
blob39a3a76ca4939189b9b0dab25d98a8537f5e939e
1 \input texinfo @c -*- texinfo -*-
2 @c %**start of header
3 @setfilename qemu-doc.info
4 @settitle QEMU Emulator User Documentation
5 @exampleindent 0
6 @paragraphindent 0
7 @c %**end of header
9 @iftex
10 @titlepage
11 @sp 7
12 @center @titlefont{QEMU Emulator}
13 @sp 1
14 @center @titlefont{User Documentation}
15 @sp 3
16 @end titlepage
17 @end iftex
19 @ifnottex
20 @node Top
21 @top
23 @menu
24 * Introduction::
25 * Installation::
26 * QEMU PC System emulator::
27 * QEMU System emulator for non PC targets::
28 * QEMU User space emulator::
29 * compilation:: Compilation from the sources
30 * Index::
31 @end menu
32 @end ifnottex
34 @contents
36 @node Introduction
37 @chapter Introduction
39 @menu
40 * intro_features:: Features
41 @end menu
43 @node intro_features
44 @section Features
46 QEMU is a FAST! processor emulator using dynamic translation to
47 achieve good emulation speed.
49 QEMU has two operating modes:
51 @itemize @minus
53 @item
54 Full system emulation. In this mode, QEMU emulates a full system (for
55 example a PC), including one or several processors and various
56 peripherals. It can be used to launch different Operating Systems
57 without rebooting the PC or to debug system code.
59 @item
60 User mode emulation. In this mode, QEMU can launch
61 processes compiled for one CPU on another CPU. It can be used to
62 launch the Wine Windows API emulator (@url{http://www.winehq.org}) or
63 to ease cross-compilation and cross-debugging.
65 @end itemize
67 QEMU can run without an host kernel driver and yet gives acceptable
68 performance.
70 For system emulation, the following hardware targets are supported:
71 @itemize
72 @item PC (x86 or x86_64 processor)
73 @item ISA PC (old style PC without PCI bus)
74 @item PREP (PowerPC processor)
75 @item G3 Beige PowerMac (PowerPC processor)
76 @item Mac99 PowerMac (PowerPC processor, in progress)
77 @item Sun4m/Sun4c/Sun4d (32-bit Sparc processor)
78 @item Sun4u/Sun4v (64-bit Sparc processor, in progress)
79 @item Malta board (32-bit and 64-bit MIPS processors)
80 @item MIPS Magnum (64-bit MIPS processor)
81 @item ARM Integrator/CP (ARM)
82 @item ARM Versatile baseboard (ARM)
83 @item ARM RealView Emulation baseboard (ARM)
84 @item Spitz, Akita, Borzoi, Terrier and Tosa PDAs (PXA270 processor)
85 @item Luminary Micro LM3S811EVB (ARM Cortex-M3)
86 @item Luminary Micro LM3S6965EVB (ARM Cortex-M3)
87 @item Freescale MCF5208EVB (ColdFire V2).
88 @item Arnewsh MCF5206 evaluation board (ColdFire V2).
89 @item Palm Tungsten|E PDA (OMAP310 processor)
90 @item N800 and N810 tablets (OMAP2420 processor)
91 @item MusicPal (MV88W8618 ARM processor)
92 @item Gumstix "Connex" and "Verdex" motherboards (PXA255/270).
93 @item Siemens SX1 smartphone (OMAP310 processor)
94 @end itemize
96 For user emulation, x86, PowerPC, ARM, 32-bit MIPS, Sparc32/64 and ColdFire(m68k) CPUs are supported.
98 @node Installation
99 @chapter Installation
101 If you want to compile QEMU yourself, see @ref{compilation}.
103 @menu
104 * install_linux::   Linux
105 * install_windows:: Windows
106 * install_mac::     Macintosh
107 @end menu
109 @node install_linux
110 @section Linux
112 If a precompiled package is available for your distribution - you just
113 have to install it. Otherwise, see @ref{compilation}.
115 @node install_windows
116 @section Windows
118 Download the experimental binary installer at
119 @url{http://www.free.oszoo.org/@/download.html}.
121 @node install_mac
122 @section Mac OS X
124 Download the experimental binary installer at
125 @url{http://www.free.oszoo.org/@/download.html}.
127 @node QEMU PC System emulator
128 @chapter QEMU PC System emulator
130 @menu
131 * pcsys_introduction:: Introduction
132 * pcsys_quickstart::   Quick Start
133 * sec_invocation::     Invocation
134 * pcsys_keys::         Keys
135 * pcsys_monitor::      QEMU Monitor
136 * disk_images::        Disk Images
137 * pcsys_network::      Network emulation
138 * direct_linux_boot::  Direct Linux Boot
139 * pcsys_usb::          USB emulation
140 * vnc_security::       VNC security
141 * gdb_usage::          GDB usage
142 * pcsys_os_specific::  Target OS specific information
143 @end menu
145 @node pcsys_introduction
146 @section Introduction
148 @c man begin DESCRIPTION
150 The QEMU PC System emulator simulates the
151 following peripherals:
153 @itemize @minus
154 @item
155 i440FX host PCI bridge and PIIX3 PCI to ISA bridge
156 @item
157 Cirrus CLGD 5446 PCI VGA card or dummy VGA card with Bochs VESA
158 extensions (hardware level, including all non standard modes).
159 @item
160 PS/2 mouse and keyboard
161 @item
162 2 PCI IDE interfaces with hard disk and CD-ROM support
163 @item
164 Floppy disk
165 @item
166 PCI/ISA PCI network adapters
167 @item
168 Serial ports
169 @item
170 Creative SoundBlaster 16 sound card
171 @item
172 ENSONIQ AudioPCI ES1370 sound card
173 @item
174 Intel 82801AA AC97 Audio compatible sound card
175 @item
176 Adlib(OPL2) - Yamaha YM3812 compatible chip
177 @item
178 Gravis Ultrasound GF1 sound card
179 @item
180 CS4231A compatible sound card
181 @item
182 PCI UHCI USB controller and a virtual USB hub.
183 @end itemize
185 SMP is supported with up to 255 CPUs.
187 Note that adlib, gus and cs4231a are only available when QEMU was
188 configured with --audio-card-list option containing the name(s) of
189 required card(s).
191 QEMU uses the PC BIOS from the Bochs project and the Plex86/Bochs LGPL
192 VGA BIOS.
194 QEMU uses YM3812 emulation by Tatsuyuki Satoh.
196 QEMU uses GUS emulation(GUSEMU32 @url{http://www.deinmeister.de/gusemu/})
197 by Tibor "TS" Schütz.
199 CS4231A is the chip used in Windows Sound System and GUSMAX products
201 @c man end
203 @node pcsys_quickstart
204 @section Quick Start
206 Download and uncompress the linux image (@file{linux.img}) and type:
208 @example
209 qemu linux.img
210 @end example
212 Linux should boot and give you a prompt.
214 @node sec_invocation
215 @section Invocation
217 @example
218 @c man begin SYNOPSIS
219 usage: qemu [options] [@var{disk_image}]
220 @c man end
221 @end example
223 @c man begin OPTIONS
224 @var{disk_image} is a raw hard disk image for IDE hard disk 0. Some
225 targets do not need a disk image.
227 General options:
228 @table @option
229 @item -h
230 Display help and exit
232 @item -M @var{machine}
233 Select the emulated @var{machine} (@code{-M ?} for list)
235 @item -cpu @var{model}
236 Select CPU model (-cpu ? for list and additional feature selection)
238 @item -smp @var{n}
239 Simulate an SMP system with @var{n} CPUs. On the PC target, up to 255
240 CPUs are supported. On Sparc32 target, Linux limits the number of usable CPUs
241 to 4.
243 @item -fda @var{file}
244 @item -fdb @var{file}
245 Use @var{file} as floppy disk 0/1 image (@pxref{disk_images}). You can
246 use the host floppy by using @file{/dev/fd0} as filename (@pxref{host_drives}).
248 @item -hda @var{file}
249 @item -hdb @var{file}
250 @item -hdc @var{file}
251 @item -hdd @var{file}
252 Use @var{file} as hard disk 0, 1, 2 or 3 image (@pxref{disk_images}).
254 @item -cdrom @var{file}
255 Use @var{file} as CD-ROM image (you cannot use @option{-hdc} and
256 @option{-cdrom} at the same time). You can use the host CD-ROM by
257 using @file{/dev/cdrom} as filename (@pxref{host_drives}).
259 @item -drive @var{option}[,@var{option}[,@var{option}[,...]]]
261 Define a new drive. Valid options are:
263 @table @code
264 @item file=@var{file}
265 This option defines which disk image (@pxref{disk_images}) to use with
266 this drive. If the filename contains comma, you must double it
267 (for instance, "file=my,,file" to use file "my,file").
268 @item if=@var{interface}
269 This option defines on which type on interface the drive is connected.
270 Available types are: ide, scsi, sd, mtd, floppy, pflash, virtio.
271 @item bus=@var{bus},unit=@var{unit}
272 These options define where is connected the drive by defining the bus number and
273 the unit id.
274 @item index=@var{index}
275 This option defines where is connected the drive by using an index in the list
276 of available connectors of a given interface type.
277 @item media=@var{media}
278 This option defines the type of the media: disk or cdrom.
279 @item cyls=@var{c},heads=@var{h},secs=@var{s}[,trans=@var{t}]
280 These options have the same definition as they have in @option{-hdachs}.
281 @item snapshot=@var{snapshot}
282 @var{snapshot} is "on" or "off" and allows to enable snapshot for given drive (see @option{-snapshot}).
283 @item cache=@var{cache}
284 @var{cache} is "none", "writeback", or "writethrough" and controls how the host cache is used to access block data.
285 @item format=@var{format}
286 Specify which disk @var{format} will be used rather than detecting
287 the format.  Can be used to specifiy format=raw to avoid interpreting
288 an untrusted format header.
289 @item serial=@var{serial}
290 This option specifies the serial number to assign to the device.
291 @end table
293 By default, writethrough caching is used for all block device.  This means that
294 the host page cache will be used to read and write data but write notification
295 will be sent to the guest only when the data has been reported as written by
296 the storage subsystem.
298 Writeback caching will report data writes as completed as soon as the data is
299 present in the host page cache.  This is safe as long as you trust your host.
300 If your host crashes or loses power, then the guest may experience data
301 corruption.  When using the @option{-snapshot} option, writeback caching is
302 used by default.
304 The host page can be avoided entirely with @option{cache=none}.  This will
305 attempt to do disk IO directly to the guests memory.  QEMU may still perform
306 an internal copy of the data.
308 Some block drivers perform badly with @option{cache=writethrough}, most notably,
309 qcow2.  If performance is more important than correctness,
310 @option{cache=writeback} should be used with qcow2.  By default, if no explicit
311 caching is specified for a qcow2 disk image, @option{cache=writeback} will be
312 used.  For all other disk types, @option{cache=writethrough} is the default.
314 Instead of @option{-cdrom} you can use:
315 @example
316 qemu -drive file=file,index=2,media=cdrom
317 @end example
319 Instead of @option{-hda}, @option{-hdb}, @option{-hdc}, @option{-hdd}, you can
320 use:
321 @example
322 qemu -drive file=file,index=0,media=disk
323 qemu -drive file=file,index=1,media=disk
324 qemu -drive file=file,index=2,media=disk
325 qemu -drive file=file,index=3,media=disk
326 @end example
328 You can connect a CDROM to the slave of ide0:
329 @example
330 qemu -drive file=file,if=ide,index=1,media=cdrom
331 @end example
333 If you don't specify the "file=" argument, you define an empty drive:
334 @example
335 qemu -drive if=ide,index=1,media=cdrom
336 @end example
338 You can connect a SCSI disk with unit ID 6 on the bus #0:
339 @example
340 qemu -drive file=file,if=scsi,bus=0,unit=6
341 @end example
343 Instead of @option{-fda}, @option{-fdb}, you can use:
344 @example
345 qemu -drive file=file,index=0,if=floppy
346 qemu -drive file=file,index=1,if=floppy
347 @end example
349 By default, @var{interface} is "ide" and @var{index} is automatically
350 incremented:
351 @example
352 qemu -drive file=a -drive file=b"
353 @end example
354 is interpreted like:
355 @example
356 qemu -hda a -hdb b
357 @end example
359 @item -mtdblock file
360 Use 'file' as on-board Flash memory image.
362 @item -sd file
363 Use 'file' as SecureDigital card image.
365 @item -pflash file
366 Use 'file' as a parallel flash image.
368 @item -boot [a|c|d|n]
369 Boot on floppy (a), hard disk (c), CD-ROM (d), or Etherboot (n). Hard disk boot
370 is the default.
372 @item -snapshot
373 Write to temporary files instead of disk image files. In this case,
374 the raw disk image you use is not written back. You can however force
375 the write back by pressing @key{C-a s} (@pxref{disk_images}).
377 @item -m @var{megs}
378 Set virtual RAM size to @var{megs} megabytes. Default is 128 MiB.  Optionally,
379 a suffix of ``M'' or ``G'' can be used to signify a value in megabytes or
380 gigabytes respectively.
382 @item -k @var{language}
384 Use keyboard layout @var{language} (for example @code{fr} for
385 French). This option is only needed where it is not easy to get raw PC
386 keycodes (e.g. on Macs, with some X11 servers or with a VNC
387 display). You don't normally need to use it on PC/Linux or PC/Windows
388 hosts.
390 The available layouts are:
391 @example
392 ar  de-ch  es  fo     fr-ca  hu  ja  mk     no  pt-br  sv
393 da  en-gb  et  fr     fr-ch  is  lt  nl     pl  ru     th
394 de  en-us  fi  fr-be  hr     it  lv  nl-be  pt  sl     tr
395 @end example
397 The default is @code{en-us}.
399 @item -audio-help
401 Will show the audio subsystem help: list of drivers, tunable
402 parameters.
404 @item -soundhw @var{card1}[,@var{card2},...] or -soundhw all
406 Enable audio and selected sound hardware. Use ? to print all
407 available sound hardware.
409 @example
410 qemu -soundhw sb16,adlib disk.img
411 qemu -soundhw es1370 disk.img
412 qemu -soundhw ac97 disk.img
413 qemu -soundhw all disk.img
414 qemu -soundhw ?
415 @end example
417 Note that Linux's i810_audio OSS kernel (for AC97) module might
418 require manually specifying clocking.
420 @example
421 modprobe i810_audio clocking=48000
422 @end example
424 @end table
426 USB options:
427 @table @option
429 @item -usb
430 Enable the USB driver (will be the default soon)
432 @item -usbdevice @var{devname}
433 Add the USB device @var{devname}. @xref{usb_devices}.
435 @table @code
437 @item mouse
438 Virtual Mouse. This will override the PS/2 mouse emulation when activated.
440 @item tablet
441 Pointer device that uses absolute coordinates (like a touchscreen). This
442 means qemu is able to report the mouse position without having to grab the
443 mouse. Also overrides the PS/2 mouse emulation when activated.
445 @item disk:[format=@var{format}]:file
446 Mass storage device based on file. The optional @var{format} argument
447 will be used rather than detecting the format. Can be used to specifiy
448 format=raw to avoid interpreting an untrusted format header.
450 @item host:bus.addr
451 Pass through the host device identified by bus.addr (Linux only).
453 @item host:vendor_id:product_id
454 Pass through the host device identified by vendor_id:product_id (Linux only).
456 @item serial:[vendorid=@var{vendor_id}][,productid=@var{product_id}]:@var{dev}
457 Serial converter to host character device @var{dev}, see @code{-serial} for the
458 available devices.
460 @item braille
461 Braille device.  This will use BrlAPI to display the braille output on a real
462 or fake device.
464 @item net:options
465 Network adapter that supports CDC ethernet and RNDIS protocols.
467 @end table
469 @item -name @var{name}
470 Sets the @var{name} of the guest.
471 This name will be displayed in the SDL window caption.
472 The @var{name} will also be used for the VNC server.
474 @item -uuid @var{uuid}
475 Set system UUID.
477 @end table
479 Display options:
480 @table @option
482 @item -nographic
484 Normally, QEMU uses SDL to display the VGA output. With this option,
485 you can totally disable graphical output so that QEMU is a simple
486 command line application. The emulated serial port is redirected on
487 the console. Therefore, you can still use QEMU to debug a Linux kernel
488 with a serial console.
490 @item -curses
492 Normally, QEMU uses SDL to display the VGA output.  With this option,
493 QEMU can display the VGA output when in text mode using a 
494 curses/ncurses interface.  Nothing is displayed in graphical mode.
496 @item -no-frame
498 Do not use decorations for SDL windows and start them using the whole
499 available screen space. This makes the using QEMU in a dedicated desktop
500 workspace more convenient.
502 @item -alt-grab
504 Use Ctrl-Alt-Shift to grab mouse (instead of Ctrl-Alt).
506 @item -no-quit
508 Disable SDL window close capability.
510 @item -sdl
512 Enable SDL.
514 @item -portrait
516 Rotate graphical output 90 deg left (only PXA LCD).
518 @item -vga @var{type}
519 Select type of VGA card to emulate. Valid values for @var{type} are
520 @table @code
521 @item cirrus
522 Cirrus Logic GD5446 Video card. All Windows versions starting from
523 Windows 95 should recognize and use this graphic card. For optimal
524 performances, use 16 bit color depth in the guest and the host OS.
525 (This one is the default)
526 @item std
527 Standard VGA card with Bochs VBE extensions.  If your guest OS
528 supports the VESA 2.0 VBE extensions (e.g. Windows XP) and if you want
529 to use high resolution modes (>= 1280x1024x16) then you should use
530 this option.
531 @item vmware
532 VMWare SVGA-II compatible adapter. Use it if you have sufficiently
533 recent XFree86/XOrg server or Windows guest with a driver for this
534 card.
535 @item none
536 Disable VGA card.
537 @end table
539 @item -full-screen
540 Start in full screen.
542 @item -vnc @var{display}[,@var{option}[,@var{option}[,...]]]
544 Normally, QEMU uses SDL to display the VGA output.  With this option,
545 you can have QEMU listen on VNC display @var{display} and redirect the VGA
546 display over the VNC session.  It is very useful to enable the usb
547 tablet device when using this option (option @option{-usbdevice
548 tablet}). When using the VNC display, you must use the @option{-k}
549 parameter to set the keyboard layout if you are not using en-us. Valid
550 syntax for the @var{display} is
552 @table @code
554 @item @var{host}:@var{d}
556 TCP connections will only be allowed from @var{host} on display @var{d}.
557 By convention the TCP port is 5900+@var{d}. Optionally, @var{host} can
558 be omitted in which case the server will accept connections from any host.
560 @item @code{unix}:@var{path}
562 Connections will be allowed over UNIX domain sockets where @var{path} is the
563 location of a unix socket to listen for connections on.
565 @item none
567 VNC is initialized but not started. The monitor @code{change} command
568 can be used to later start the VNC server.
570 @end table
572 Following the @var{display} value there may be one or more @var{option} flags
573 separated by commas. Valid options are
575 @table @code
577 @item reverse
579 Connect to a listening VNC client via a ``reverse'' connection. The
580 client is specified by the @var{display}. For reverse network
581 connections (@var{host}:@var{d},@code{reverse}), the @var{d} argument
582 is a TCP port number, not a display number.
584 @item password
586 Require that password based authentication is used for client connections.
587 The password must be set separately using the @code{change} command in the
588 @ref{pcsys_monitor}
590 @item tls
592 Require that client use TLS when communicating with the VNC server. This
593 uses anonymous TLS credentials so is susceptible to a man-in-the-middle
594 attack. It is recommended that this option be combined with either the
595 @var{x509} or @var{x509verify} options.
597 @item x509=@var{/path/to/certificate/dir}
599 Valid if @option{tls} is specified. Require that x509 credentials are used
600 for negotiating the TLS session. The server will send its x509 certificate
601 to the client. It is recommended that a password be set on the VNC server
602 to provide authentication of the client when this is used. The path following
603 this option specifies where the x509 certificates are to be loaded from.
604 See the @ref{vnc_security} section for details on generating certificates.
606 @item x509verify=@var{/path/to/certificate/dir}
608 Valid if @option{tls} is specified. Require that x509 credentials are used
609 for negotiating the TLS session. The server will send its x509 certificate
610 to the client, and request that the client send its own x509 certificate.
611 The server will validate the client's certificate against the CA certificate,
612 and reject clients when validation fails. If the certificate authority is
613 trusted, this is a sufficient authentication mechanism. You may still wish
614 to set a password on the VNC server as a second authentication layer. The
615 path following this option specifies where the x509 certificates are to
616 be loaded from. See the @ref{vnc_security} section for details on generating
617 certificates.
619 @end table
621 @end table
623 Network options:
625 @table @option
627 @item -net nic[,vlan=@var{n}][,macaddr=@var{addr}][,model=@var{type}][,name=@var{name}]
628 Create a new Network Interface Card and connect it to VLAN @var{n} (@var{n}
629 = 0 is the default). The NIC is an ne2k_pci by default on the PC
630 target. Optionally, the MAC address can be changed to @var{addr}
631 and a @var{name} can be assigned for use in monitor commands. If no
632 @option{-net} option is specified, a single NIC is created.
633 Qemu can emulate several different models of network card.
634 Valid values for @var{type} are
635 @code{i82551}, @code{i82557b}, @code{i82559er},
636 @code{ne2k_pci}, @code{ne2k_isa}, @code{pcnet}, @code{rtl8139},
637 @code{e1000}, @code{smc91c111}, @code{lance} and @code{mcf_fec}.
638 Not all devices are supported on all targets.  Use -net nic,model=?
639 for a list of available devices for your target.
641 @item -net user[,vlan=@var{n}][,hostname=@var{name}][,name=@var{name}]
642 Use the user mode network stack which requires no administrator
643 privilege to run.  @option{hostname=name} can be used to specify the client
644 hostname reported by the builtin DHCP server.
646 @item -net channel,@var{port}:@var{dev}
647 Forward @option{user} TCP connection to port @var{port} to character device @var{dev}
649 @item -net tap[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,ifname=@var{name}][,script=@var{file}][,downscript=@var{dfile}]
650 Connect the host TAP network interface @var{name} to VLAN @var{n}, use
651 the network script @var{file} to configure it and the network script 
652 @var{dfile} to deconfigure it. If @var{name} is not provided, the OS 
653 automatically provides one. @option{fd}=@var{h} can be used to specify
654 the handle of an already opened host TAP interface. The default network 
655 configure script is @file{/etc/qemu-ifup} and the default network 
656 deconfigure script is @file{/etc/qemu-ifdown}. Use @option{script=no} 
657 or @option{downscript=no} to disable script execution. Example:
659 @example
660 qemu linux.img -net nic -net tap
661 @end example
663 More complicated example (two NICs, each one connected to a TAP device)
664 @example
665 qemu linux.img -net nic,vlan=0 -net tap,vlan=0,ifname=tap0 \
666                -net nic,vlan=1 -net tap,vlan=1,ifname=tap1
667 @end example
670 @item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,listen=[@var{host}]:@var{port}][,connect=@var{host}:@var{port}]
672 Connect the VLAN @var{n} to a remote VLAN in another QEMU virtual
673 machine using a TCP socket connection. If @option{listen} is
674 specified, QEMU waits for incoming connections on @var{port}
675 (@var{host} is optional). @option{connect} is used to connect to
676 another QEMU instance using the @option{listen} option. @option{fd}=@var{h}
677 specifies an already opened TCP socket.
679 Example:
680 @example
681 # launch a first QEMU instance
682 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
683                -net socket,listen=:1234
684 # connect the VLAN 0 of this instance to the VLAN 0
685 # of the first instance
686 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
687                -net socket,connect=127.0.0.1:1234
688 @end example
690 @item -net socket[,vlan=@var{n}][,name=@var{name}][,fd=@var{h}][,mcast=@var{maddr}:@var{port}]
692 Create a VLAN @var{n} shared with another QEMU virtual
693 machines using a UDP multicast socket, effectively making a bus for
694 every QEMU with same multicast address @var{maddr} and @var{port}.
695 NOTES:
696 @enumerate
697 @item
698 Several QEMU can be running on different hosts and share same bus (assuming
699 correct multicast setup for these hosts).
700 @item
701 mcast support is compatible with User Mode Linux (argument @option{eth@var{N}=mcast}), see
702 @url{http://user-mode-linux.sf.net}.
703 @item
704 Use @option{fd=h} to specify an already opened UDP multicast socket.
705 @end enumerate
707 Example:
708 @example
709 # launch one QEMU instance
710 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
711                -net socket,mcast=230.0.0.1:1234
712 # launch another QEMU instance on same "bus"
713 qemu linux.img -net nic,macaddr=52:54:00:12:34:57 \
714                -net socket,mcast=230.0.0.1:1234
715 # launch yet another QEMU instance on same "bus"
716 qemu linux.img -net nic,macaddr=52:54:00:12:34:58 \
717                -net socket,mcast=230.0.0.1:1234
718 @end example
720 Example (User Mode Linux compat.):
721 @example
722 # launch QEMU instance (note mcast address selected
723 # is UML's default)
724 qemu linux.img -net nic,macaddr=52:54:00:12:34:56 \
725                -net socket,mcast=239.192.168.1:1102
726 # launch UML
727 /path/to/linux ubd0=/path/to/root_fs eth0=mcast
728 @end example
730 @item -net vde[,vlan=@var{n}][,name=@var{name}][,sock=@var{socketpath}][,port=@var{n}][,group=@var{groupname}][,mode=@var{octalmode}]
731 Connect VLAN @var{n} to PORT @var{n} of a vde switch running on host and
732 listening for incoming connections on @var{socketpath}. Use GROUP @var{groupname}
733 and MODE @var{octalmode} to change default ownership and permissions for
734 communication port. This option is available only if QEMU has been compiled
735 with vde support enabled.
737 Example:
738 @example
739 # launch vde switch
740 vde_switch -F -sock /tmp/myswitch
741 # launch QEMU instance
742 qemu linux.img -net nic -net vde,sock=/tmp/myswitch
743 @end example
745 @item -net none
746 Indicate that no network devices should be configured. It is used to
747 override the default configuration (@option{-net nic -net user}) which
748 is activated if no @option{-net} options are provided.
750 @item -tftp @var{dir}
751 When using the user mode network stack, activate a built-in TFTP
752 server. The files in @var{dir} will be exposed as the root of a TFTP server.
753 The TFTP client on the guest must be configured in binary mode (use the command
754 @code{bin} of the Unix TFTP client). The host IP address on the guest is as
755 usual 10.0.2.2.
757 @item -bootp @var{file}
758 When using the user mode network stack, broadcast @var{file} as the BOOTP
759 filename.  In conjunction with @option{-tftp}, this can be used to network boot
760 a guest from a local directory.
762 Example (using pxelinux):
763 @example
764 qemu -hda linux.img -boot n -tftp /path/to/tftp/files -bootp /pxelinux.0
765 @end example
767 @item -smb @var{dir}
768 When using the user mode network stack, activate a built-in SMB
769 server so that Windows OSes can access to the host files in @file{@var{dir}}
770 transparently.
772 In the guest Windows OS, the line:
773 @example
774 10.0.2.4 smbserver
775 @end example
776 must be added in the file @file{C:\WINDOWS\LMHOSTS} (for windows 9x/Me)
777 or @file{C:\WINNT\SYSTEM32\DRIVERS\ETC\LMHOSTS} (Windows NT/2000).
779 Then @file{@var{dir}} can be accessed in @file{\\smbserver\qemu}.
781 Note that a SAMBA server must be installed on the host OS in
782 @file{/usr/sbin/smbd}. QEMU was tested successfully with smbd version
783 2.2.7a from the Red Hat 9 and version 3.0.10-1.fc3 from Fedora Core 3.
785 @item -redir [tcp|udp]:@var{host-port}:[@var{guest-host}]:@var{guest-port}
787 When using the user mode network stack, redirect incoming TCP or UDP
788 connections to the host port @var{host-port} to the guest
789 @var{guest-host} on guest port @var{guest-port}. If @var{guest-host}
790 is not specified, its value is 10.0.2.15 (default address given by the
791 built-in DHCP server).
793 For example, to redirect host X11 connection from screen 1 to guest
794 screen 0, use the following:
796 @example
797 # on the host
798 qemu -redir tcp:6001::6000 [...]
799 # this host xterm should open in the guest X11 server
800 xterm -display :1
801 @end example
803 To redirect telnet connections from host port 5555 to telnet port on
804 the guest, use the following:
806 @example
807 # on the host
808 qemu -redir tcp:5555::23 [...]
809 telnet localhost 5555
810 @end example
812 Then when you use on the host @code{telnet localhost 5555}, you
813 connect to the guest telnet server.
815 @end table
817 Bluetooth(R) options:
818 @table @option
820 @item -bt hci[...]
821 Defines the function of the corresponding Bluetooth HCI.  -bt options
822 are matched with the HCIs present in the chosen machine type.  For
823 example when emulating a machine with only one HCI built into it, only
824 the first @code{-bt hci[...]} option is valid and defines the HCI's
825 logic.  The Transport Layer is decided by the machine type.  Currently
826 the machines @code{n800} and @code{n810} have one HCI and all other
827 machines have none.
829 @anchor{bt-hcis}
830 The following three types are recognized:
832 @table @code
833 @item -bt hci,null
834 (default) The corresponding Bluetooth HCI assumes no internal logic
835 and will not respond to any HCI commands or emit events.
837 @item -bt hci,host[:@var{id}]
838 (@code{bluez} only) The corresponding HCI passes commands / events
839 to / from the physical HCI identified by the name @var{id} (default:
840 @code{hci0}) on the computer running QEMU.  Only available on @code{bluez}
841 capable systems like Linux.
843 @item -bt hci[,vlan=@var{n}]
844 Add a virtual, standard HCI that will participate in the Bluetooth
845 scatternet @var{n} (default @code{0}).  Similarly to @option{-net}
846 VLANs, devices inside a bluetooth network @var{n} can only communicate
847 with other devices in the same network (scatternet).
848 @end table
850 @item -bt vhci[,vlan=@var{n}]
851 (Linux-host only) Create a HCI in scatternet @var{n} (default 0) attached
852 to the host bluetooth stack instead of to the emulated target.  This
853 allows the host and target machines to participate in a common scatternet
854 and communicate.  Requires the Linux @code{vhci} driver installed.  Can
855 be used as following:
857 @example
858 qemu [...OPTIONS...] -bt hci,vlan=5 -bt vhci,vlan=5
859 @end example
861 @item -bt device:@var{dev}[,vlan=@var{n}]
862 Emulate a bluetooth device @var{dev} and place it in network @var{n}
863 (default @code{0}).  QEMU can only emulate one type of bluetooth devices
864 currently:
866 @table @code
867 @item keyboard
868 Virtual wireless keyboard implementing the HIDP bluetooth profile.
869 @end table
871 @end table
873 i386 target only:
875 @table @option
877 @item -win2k-hack
878 Use it when installing Windows 2000 to avoid a disk full bug. After
879 Windows 2000 is installed, you no longer need this option (this option
880 slows down the IDE transfers).
882 @item -rtc-td-hack
883 Use it if you experience time drift problem in Windows with ACPI HAL.
884 This option will try to figure out how many timer interrupts were not
885 processed by the Windows guest and will re-inject them.
887 @item -no-fd-bootchk
888 Disable boot signature checking for floppy disks in Bochs BIOS. It may
889 be needed to boot from old floppy disks.
891 @item -no-acpi
892 Disable ACPI (Advanced Configuration and Power Interface) support. Use
893 it if your guest OS complains about ACPI problems (PC target machine
894 only).
896 @item -no-hpet
897 Disable HPET support.
899 @item -acpitable [sig=@var{str}][,rev=@var{n}][,oem_id=@var{str}][,oem_table_id=@var{str}][,oem_rev=@var{n}] [,asl_compiler_id=@var{str}][,asl_compiler_rev=@var{n}][,data=@var{file1}[:@var{file2}]...]
900 Add ACPI table with specified header fields and context from specified files.
902 @end table
904 Linux boot specific: When using these options, you can use a given
905 Linux kernel without installing it in the disk image. It can be useful
906 for easier testing of various kernels.
908 @table @option
910 @item -kernel @var{bzImage}
911 Use @var{bzImage} as kernel image.
913 @item -append @var{cmdline}
914 Use @var{cmdline} as kernel command line
916 @item -initrd @var{file}
917 Use @var{file} as initial ram disk.
919 @end table
921 Debug/Expert options:
922 @table @option
924 @item -serial @var{dev}
925 Redirect the virtual serial port to host character device
926 @var{dev}. The default device is @code{vc} in graphical mode and
927 @code{stdio} in non graphical mode.
929 This option can be used several times to simulate up to 4 serial
930 ports.
932 Use @code{-serial none} to disable all serial ports.
934 Available character devices are:
935 @table @code
936 @item vc[:WxH]
937 Virtual console. Optionally, a width and height can be given in pixel with
938 @example
939 vc:800x600
940 @end example
941 It is also possible to specify width or height in characters:
942 @example
943 vc:80Cx24C
944 @end example
945 @item pty
946 [Linux only] Pseudo TTY (a new PTY is automatically allocated)
947 @item none
948 No device is allocated.
949 @item null
950 void device
951 @item /dev/XXX
952 [Linux only] Use host tty, e.g. @file{/dev/ttyS0}. The host serial port
953 parameters are set according to the emulated ones.
954 @item /dev/parport@var{N}
955 [Linux only, parallel port only] Use host parallel port
956 @var{N}. Currently SPP and EPP parallel port features can be used.
957 @item file:@var{filename}
958 Write output to @var{filename}. No character can be read.
959 @item stdio
960 [Unix only] standard input/output
961 @item pipe:@var{filename}
962 name pipe @var{filename}
963 @item COM@var{n}
964 [Windows only] Use host serial port @var{n}
965 @item udp:[@var{remote_host}]:@var{remote_port}[@@[@var{src_ip}]:@var{src_port}]
966 This implements UDP Net Console.
967 When @var{remote_host} or @var{src_ip} are not specified
968 they default to @code{0.0.0.0}.
969 When not using a specified @var{src_port} a random port is automatically chosen.
970 @item msmouse
971 Three button serial mouse. Configure the guest to use Microsoft protocol.
973 If you just want a simple readonly console you can use @code{netcat} or
974 @code{nc}, by starting qemu with: @code{-serial udp::4555} and nc as:
975 @code{nc -u -l -p 4555}. Any time qemu writes something to that port it
976 will appear in the netconsole session.
978 If you plan to send characters back via netconsole or you want to stop
979 and start qemu a lot of times, you should have qemu use the same
980 source port each time by using something like @code{-serial
981 udp::4555@@:4556} to qemu. Another approach is to use a patched
982 version of netcat which can listen to a TCP port and send and receive
983 characters via udp.  If you have a patched version of netcat which
984 activates telnet remote echo and single char transfer, then you can
985 use the following options to step up a netcat redirector to allow
986 telnet on port 5555 to access the qemu port.
987 @table @code
988 @item Qemu Options:
989 -serial udp::4555@@:4556
990 @item netcat options:
991 -u -P 4555 -L 0.0.0.0:4556 -t -p 5555 -I -T
992 @item telnet options:
993 localhost 5555
994 @end table
997 @item tcp:[@var{host}]:@var{port}[,@var{server}][,nowait][,nodelay]
998 The TCP Net Console has two modes of operation.  It can send the serial
999 I/O to a location or wait for a connection from a location.  By default
1000 the TCP Net Console is sent to @var{host} at the @var{port}.  If you use
1001 the @var{server} option QEMU will wait for a client socket application
1002 to connect to the port before continuing, unless the @code{nowait}
1003 option was specified.  The @code{nodelay} option disables the Nagle buffering
1004 algorithm.  If @var{host} is omitted, 0.0.0.0 is assumed. Only
1005 one TCP connection at a time is accepted. You can use @code{telnet} to
1006 connect to the corresponding character device.
1007 @table @code
1008 @item Example to send tcp console to 192.168.0.2 port 4444
1009 -serial tcp:192.168.0.2:4444
1010 @item Example to listen and wait on port 4444 for connection
1011 -serial tcp::4444,server
1012 @item Example to not wait and listen on ip 192.168.0.100 port 4444
1013 -serial tcp:192.168.0.100:4444,server,nowait
1014 @end table
1016 @item telnet:@var{host}:@var{port}[,server][,nowait][,nodelay]
1017 The telnet protocol is used instead of raw tcp sockets.  The options
1018 work the same as if you had specified @code{-serial tcp}.  The
1019 difference is that the port acts like a telnet server or client using
1020 telnet option negotiation.  This will also allow you to send the
1021 MAGIC_SYSRQ sequence if you use a telnet that supports sending the break
1022 sequence.  Typically in unix telnet you do it with Control-] and then
1023 type "send break" followed by pressing the enter key.
1025 @item unix:@var{path}[,server][,nowait]
1026 A unix domain socket is used instead of a tcp socket.  The option works the
1027 same as if you had specified @code{-serial tcp} except the unix domain socket
1028 @var{path} is used for connections.
1030 @item mon:@var{dev_string}
1031 This is a special option to allow the monitor to be multiplexed onto
1032 another serial port.  The monitor is accessed with key sequence of
1033 @key{Control-a} and then pressing @key{c}. See monitor access
1034 @ref{pcsys_keys} in the -nographic section for more keys.
1035 @var{dev_string} should be any one of the serial devices specified
1036 above.  An example to multiplex the monitor onto a telnet server
1037 listening on port 4444 would be:
1038 @table @code
1039 @item -serial mon:telnet::4444,server,nowait
1040 @end table
1042 @item braille
1043 Braille device.  This will use BrlAPI to display the braille output on a real
1044 or fake device.
1046 @end table
1048 @item -parallel @var{dev}
1049 Redirect the virtual parallel port to host device @var{dev} (same
1050 devices as the serial port). On Linux hosts, @file{/dev/parportN} can
1051 be used to use hardware devices connected on the corresponding host
1052 parallel port.
1054 This option can be used several times to simulate up to 3 parallel
1055 ports.
1057 Use @code{-parallel none} to disable all parallel ports.
1059 @item -monitor @var{dev}
1060 Redirect the monitor to host device @var{dev} (same devices as the
1061 serial port).
1062 The default device is @code{vc} in graphical mode and @code{stdio} in
1063 non graphical mode.
1065 @item -pidfile @var{file}
1066 Store the QEMU process PID in @var{file}. It is useful if you launch QEMU
1067 from a script.
1069 @item -S
1070 Do not start CPU at startup (you must type 'c' in the monitor).
1072 @item -s
1073 Wait gdb connection to port 1234 (@pxref{gdb_usage}).
1075 @item -p @var{port}
1076 Change gdb connection port.  @var{port} can be either a decimal number
1077 to specify a TCP port, or a host device (same devices as the serial port).
1079 @item -d
1080 Output log in /tmp/qemu.log
1081 @item -hdachs @var{c},@var{h},@var{s},[,@var{t}]
1082 Force hard disk 0 physical geometry (1 <= @var{c} <= 16383, 1 <=
1083 @var{h} <= 16, 1 <= @var{s} <= 63) and optionally force the BIOS
1084 translation mode (@var{t}=none, lba or auto). Usually QEMU can guess
1085 all those parameters. This option is useful for old MS-DOS disk
1086 images.
1088 @item -L  @var{path}
1089 Set the directory for the BIOS, VGA BIOS and keymaps.
1091 @item -bios @var{file}
1092 Set the filename for the BIOS.
1094 @item -kernel-kqemu
1095 Enable KQEMU full virtualization (default is user mode only).
1097 @item -no-kqemu
1098 Disable KQEMU kernel module usage. KQEMU options are only available if
1099 KQEMU support is enabled when compiling.
1101 @item -enable-kvm
1102 Enable KVM full virtualization support. This option is only available
1103 if KVM support is enabled when compiling.
1105 @item -no-reboot
1106 Exit instead of rebooting.
1108 @item -no-shutdown
1109 Don't exit QEMU on guest shutdown, but instead only stop the emulation.
1110 This allows for instance switching to monitor to commit changes to the
1111 disk image.
1113 @item -loadvm @var{file}
1114 Start right away with a saved state (@code{loadvm} in monitor)
1116 @item -daemonize
1117 Daemonize the QEMU process after initialization.  QEMU will not detach from
1118 standard IO until it is ready to receive connections on any of its devices.
1119 This option is a useful way for external programs to launch QEMU without having
1120 to cope with initialization race conditions.
1122 @item -option-rom @var{file}
1123 Load the contents of @var{file} as an option ROM.
1124 This option is useful to load things like EtherBoot.
1126 @item -clock @var{method}
1127 Force the use of the given methods for timer alarm. To see what timers
1128 are available use -clock ?.
1130 @item -localtime
1131 Set the real time clock to local time (the default is to UTC
1132 time). This option is needed to have correct date in MS-DOS or
1133 Windows.
1135 @item -startdate @var{date}
1136 Set the initial date of the real time clock. Valid formats for
1137 @var{date} are: @code{now} or @code{2006-06-17T16:01:21} or
1138 @code{2006-06-17}. The default value is @code{now}.
1140 @item -icount [N|auto]
1141 Enable virtual instruction counter.  The virtual cpu will execute one
1142 instruction every 2^N ns of virtual time.  If @code{auto} is specified
1143 then the virtual cpu speed will be automatically adjusted to keep virtual
1144 time within a few seconds of real time.
1146 Note that while this option can give deterministic behavior, it does not
1147 provide cycle accurate emulation.  Modern CPUs contain superscalar out of
1148 order cores with complex cache hierarchies.  The number of instructions
1149 executed often has little or no correlation with actual performance.
1151 @item -echr numeric_ascii_value
1152 Change the escape character used for switching to the monitor when using
1153 monitor and serial sharing.  The default is @code{0x01} when using the
1154 @code{-nographic} option.  @code{0x01} is equal to pressing
1155 @code{Control-a}.  You can select a different character from the ascii
1156 control keys where 1 through 26 map to Control-a through Control-z.  For
1157 instance you could use the either of the following to change the escape
1158 character to Control-t.
1159 @table @code
1160 @item -echr 0x14
1161 @item -echr 20
1162 @end table
1164 @end table
1166 @c man end
1168 @node pcsys_keys
1169 @section Keys
1171 @c man begin OPTIONS
1173 During the graphical emulation, you can use the following keys:
1174 @table @key
1175 @item Ctrl-Alt-f
1176 Toggle full screen
1178 @item Ctrl-Alt-n
1179 Switch to virtual console 'n'. Standard console mappings are:
1180 @table @emph
1181 @item 1
1182 Target system display
1183 @item 2
1184 Monitor
1185 @item 3
1186 Serial port
1187 @end table
1189 @item Ctrl-Alt
1190 Toggle mouse and keyboard grab.
1191 @end table
1193 In the virtual consoles, you can use @key{Ctrl-Up}, @key{Ctrl-Down},
1194 @key{Ctrl-PageUp} and @key{Ctrl-PageDown} to move in the back log.
1196 During emulation, if you are using the @option{-nographic} option, use
1197 @key{Ctrl-a h} to get terminal commands:
1199 @table @key
1200 @item Ctrl-a h
1201 @item Ctrl-a ?
1202 Print this help
1203 @item Ctrl-a x
1204 Exit emulator
1205 @item Ctrl-a s
1206 Save disk data back to file (if -snapshot)
1207 @item Ctrl-a t
1208 Toggle console timestamps
1209 @item Ctrl-a b
1210 Send break (magic sysrq in Linux)
1211 @item Ctrl-a c
1212 Switch between console and monitor
1213 @item Ctrl-a Ctrl-a
1214 Send Ctrl-a
1215 @end table
1216 @c man end
1218 @ignore
1220 @c man begin SEEALSO
1221 The HTML documentation of QEMU for more precise information and Linux
1222 user mode emulator invocation.
1223 @c man end
1225 @c man begin AUTHOR
1226 Fabrice Bellard
1227 @c man end
1229 @end ignore
1231 @node pcsys_monitor
1232 @section QEMU Monitor
1234 The QEMU monitor is used to give complex commands to the QEMU
1235 emulator. You can use it to:
1237 @itemize @minus
1239 @item
1240 Remove or insert removable media images
1241 (such as CD-ROM or floppies).
1243 @item
1244 Freeze/unfreeze the Virtual Machine (VM) and save or restore its state
1245 from a disk file.
1247 @item Inspect the VM state without an external debugger.
1249 @end itemize
1251 @subsection Commands
1253 The following commands are available:
1255 @table @option
1257 @item help or ? [@var{cmd}]
1258 Show the help for all commands or just for command @var{cmd}.
1260 @item commit
1261 Commit changes to the disk images (if -snapshot is used).
1263 @item info @var{subcommand}
1264 Show various information about the system state.
1266 @table @option
1267 @item info version
1268 show the version of QEMU
1269 @item info network
1270 show the various VLANs and the associated devices
1271 @item info chardev
1272 show the character devices
1273 @item info block
1274 show the block devices
1275 @item info block
1276 show block device statistics
1277 @item info registers
1278 show the cpu registers
1279 @item info cpus
1280 show infos for each CPU
1281 @item info history
1282 show the command line history
1283 @item info irq
1284 show the interrupts statistics (if available)
1285 @item info pic
1286 show i8259 (PIC) state
1287 @item info pci
1288 show emulated PCI device info
1289 @item info tlb
1290 show virtual to physical memory mappings (i386 only)
1291 @item info mem
1292 show the active virtual memory mappings (i386 only)
1293 @item info hpet
1294 show state of HPET (i386 only)
1295 @item info kqemu
1296 show KQEMU information
1297 @item info kvm
1298 show KVM information
1299 @item info usb
1300 show USB devices plugged on the virtual USB hub
1301 @item info usbhost
1302 show all USB host devices
1303 @item info profile
1304 show profiling information
1305 @item info capture
1306 show information about active capturing
1307 @item info snapshots
1308 show list of VM snapshots
1309 @item info status
1310 show the current VM status (running|paused)
1311 @item info pcmcia
1312 show guest PCMCIA status
1313 @item info mice
1314 show which guest mouse is receiving events
1315 @item info vnc
1316 show the vnc server status
1317 @item info name
1318 show the current VM name
1319 @item info uuid
1320 show the current VM UUID
1321 @item info cpustats
1322 show CPU statistics
1323 @item info slirp
1324 show SLIRP statistics (if available)
1325 @item info migrate
1326 show migration status
1327 @item info balloon
1328 show balloon information
1329 @end table
1331 @item q or quit
1332 Quit the emulator.
1334 @item eject [-f] @var{device}
1335 Eject a removable medium (use -f to force it).
1337 @item change @var{device} @var{setting}
1339 Change the configuration of a device.
1341 @table @option
1342 @item change @var{diskdevice} @var{filename} [@var{format}]
1343 Change the medium for a removable disk device to point to @var{filename}. eg
1345 @example
1346 (qemu) change ide1-cd0 /path/to/some.iso
1347 @end example
1349 @var{format} is optional.
1351 @item change vnc @var{display},@var{options}
1352 Change the configuration of the VNC server. The valid syntax for @var{display}
1353 and @var{options} are described at @ref{sec_invocation}. eg
1355 @example
1356 (qemu) change vnc localhost:1
1357 @end example
1359 @item change vnc password [@var{password}]
1361 Change the password associated with the VNC server. If the new password is not
1362 supplied, the monitor will prompt for it to be entered. VNC passwords are only
1363 significant up to 8 letters. eg
1365 @example
1366 (qemu) change vnc password
1367 Password: ********
1368 @end example
1370 @end table
1372 @item screendump @var{filename}
1373 Save screen into PPM image @var{filename}.
1375 @item logfile @var{filename}
1376 Output logs to @var{filename}.
1378 @item log @var{item1}[,...]
1379 Activate logging of the specified items to @file{/tmp/qemu.log}.
1381 @item savevm [@var{tag}|@var{id}]
1382 Create a snapshot of the whole virtual machine. If @var{tag} is
1383 provided, it is used as human readable identifier. If there is already
1384 a snapshot with the same tag or ID, it is replaced. More info at
1385 @ref{vm_snapshots}.
1387 @item loadvm @var{tag}|@var{id}
1388 Set the whole virtual machine to the snapshot identified by the tag
1389 @var{tag} or the unique snapshot ID @var{id}.
1391 @item delvm @var{tag}|@var{id}
1392 Delete the snapshot identified by @var{tag} or @var{id}.
1394 @item stop
1395 Stop emulation.
1397 @item c or cont
1398 Resume emulation.
1400 @item gdbserver [@var{port}]
1401 Start gdbserver session (default @var{port}=1234)
1403 @item x/fmt @var{addr}
1404 Virtual memory dump starting at @var{addr}.
1406 @item xp /@var{fmt} @var{addr}
1407 Physical memory dump starting at @var{addr}.
1409 @var{fmt} is a format which tells the command how to format the
1410 data. Its syntax is: @option{/@{count@}@{format@}@{size@}}
1412 @table @var
1413 @item count
1414 is the number of items to be dumped.
1416 @item format
1417 can be x (hex), d (signed decimal), u (unsigned decimal), o (octal),
1418 c (char) or i (asm instruction).
1420 @item size
1421 can be b (8 bits), h (16 bits), w (32 bits) or g (64 bits). On x86,
1422 @code{h} or @code{w} can be specified with the @code{i} format to
1423 respectively select 16 or 32 bit code instruction size.
1425 @end table
1427 Examples:
1428 @itemize
1429 @item
1430 Dump 10 instructions at the current instruction pointer:
1431 @example
1432 (qemu) x/10i $eip
1433 0x90107063:  ret
1434 0x90107064:  sti
1435 0x90107065:  lea    0x0(%esi,1),%esi
1436 0x90107069:  lea    0x0(%edi,1),%edi
1437 0x90107070:  ret
1438 0x90107071:  jmp    0x90107080
1439 0x90107073:  nop
1440 0x90107074:  nop
1441 0x90107075:  nop
1442 0x90107076:  nop
1443 @end example
1445 @item
1446 Dump 80 16 bit values at the start of the video memory.
1447 @smallexample
1448 (qemu) xp/80hx 0xb8000
1449 0x000b8000: 0x0b50 0x0b6c 0x0b65 0x0b78 0x0b38 0x0b36 0x0b2f 0x0b42
1450 0x000b8010: 0x0b6f 0x0b63 0x0b68 0x0b73 0x0b20 0x0b56 0x0b47 0x0b41
1451 0x000b8020: 0x0b42 0x0b69 0x0b6f 0x0b73 0x0b20 0x0b63 0x0b75 0x0b72
1452 0x000b8030: 0x0b72 0x0b65 0x0b6e 0x0b74 0x0b2d 0x0b63 0x0b76 0x0b73
1453 0x000b8040: 0x0b20 0x0b30 0x0b35 0x0b20 0x0b4e 0x0b6f 0x0b76 0x0b20
1454 0x000b8050: 0x0b32 0x0b30 0x0b30 0x0b33 0x0720 0x0720 0x0720 0x0720
1455 0x000b8060: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1456 0x000b8070: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1457 0x000b8080: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1458 0x000b8090: 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720 0x0720
1459 @end smallexample
1460 @end itemize
1462 @item p or print/@var{fmt} @var{expr}
1464 Print expression value. Only the @var{format} part of @var{fmt} is
1465 used.
1467 @item sendkey @var{keys}
1469 Send @var{keys} to the emulator. @var{keys} could be the name of the
1470 key or @code{#} followed by the raw value in either decimal or hexadecimal
1471 format. Use @code{-} to press several keys simultaneously. Example:
1472 @example
1473 sendkey ctrl-alt-f1
1474 @end example
1476 This command is useful to send keys that your graphical user interface
1477 intercepts at low level, such as @code{ctrl-alt-f1} in X Window.
1479 @item system_reset
1481 Reset the system.
1483 @item system_powerdown
1485 Power down the system (if supported).
1487 @item sum @var{addr} @var{size}
1489 Compute the checksum of a memory region.
1491 @item usb_add @var{devname}
1493 Add the USB device @var{devname}.  For details of available devices see
1494 @ref{usb_devices}
1496 @item usb_del @var{devname}
1498 Remove the USB device @var{devname} from the QEMU virtual USB
1499 hub. @var{devname} has the syntax @code{bus.addr}. Use the monitor
1500 command @code{info usb} to see the devices you can remove.
1502 @item mouse_move @var{dx} @var{dy} [@var{dz}]
1503 Move the active mouse to the specified coordinates @var{dx} @var{dy}
1504 with optional scroll axis @var{dz}.
1506 @item mouse_button @var{val}
1507 Change the active mouse button state @var{val} (1=L, 2=M, 4=R).
1509 @item mouse_set @var{index}
1510 Set which mouse device receives events at given @var{index}, index
1511 can be obtained with
1512 @example
1513 info mice
1514 @end example
1516 @item wavcapture @var{filename} [@var{frequency} [@var{bits} [@var{channels}]]]
1517 Capture audio into @var{filename}. Using sample rate @var{frequency}
1518 bits per sample @var{bits} and number of channels @var{channels}.
1520 Defaults:
1521 @itemize @minus
1522 @item Sample rate = 44100 Hz - CD quality
1523 @item Bits = 16
1524 @item Number of channels = 2 - Stereo
1525 @end itemize
1527 @item stopcapture @var{index}
1528 Stop capture with a given @var{index}, index can be obtained with
1529 @example
1530 info capture
1531 @end example
1533 @item memsave @var{addr} @var{size} @var{file}
1534 save to disk virtual memory dump starting at @var{addr} of size @var{size}.
1536 @item pmemsave @var{addr} @var{size} @var{file}
1537 save to disk physical memory dump starting at @var{addr} of size @var{size}.
1539 @item boot_set @var{bootdevicelist}
1541 Define new values for the boot device list. Those values will override
1542 the values specified on the command line through the @code{-boot} option.
1544 The values that can be specified here depend on the machine type, but are
1545 the same that can be specified in the @code{-boot} command line option.
1547 @item nmi @var{cpu}
1548 Inject an NMI on the given CPU.
1550 @item migrate [-d] @var{uri}
1551 Migrate to @var{uri} (using -d to not wait for completion).
1553 @item migrate_cancel
1554 Cancel the current VM migration.
1556 @item migrate_set_speed @var{value}
1557 Set maximum speed to @var{value} (in bytes) for migrations.
1559 @item balloon @var{value}
1560 Request VM to change its memory allocation to @var{value} (in MB).
1562 @item set_link @var{name} [up|down]
1563 Set link @var{name} up or down.
1565 @end table
1567 @subsection Integer expressions
1569 The monitor understands integers expressions for every integer
1570 argument. You can use register names to get the value of specifics
1571 CPU registers by prefixing them with @emph{$}.
1573 @node disk_images
1574 @section Disk Images
1576 Since version 0.6.1, QEMU supports many disk image formats, including
1577 growable disk images (their size increase as non empty sectors are
1578 written), compressed and encrypted disk images. Version 0.8.3 added
1579 the new qcow2 disk image format which is essential to support VM
1580 snapshots.
1582 @menu
1583 * disk_images_quickstart::    Quick start for disk image creation
1584 * disk_images_snapshot_mode:: Snapshot mode
1585 * vm_snapshots::              VM snapshots
1586 * qemu_img_invocation::       qemu-img Invocation
1587 * qemu_nbd_invocation::       qemu-nbd Invocation
1588 * host_drives::               Using host drives
1589 * disk_images_fat_images::    Virtual FAT disk images
1590 * disk_images_nbd::           NBD access
1591 @end menu
1593 @node disk_images_quickstart
1594 @subsection Quick start for disk image creation
1596 You can create a disk image with the command:
1597 @example
1598 qemu-img create myimage.img mysize
1599 @end example
1600 where @var{myimage.img} is the disk image filename and @var{mysize} is its
1601 size in kilobytes. You can add an @code{M} suffix to give the size in
1602 megabytes and a @code{G} suffix for gigabytes.
1604 See @ref{qemu_img_invocation} for more information.
1606 @node disk_images_snapshot_mode
1607 @subsection Snapshot mode
1609 If you use the option @option{-snapshot}, all disk images are
1610 considered as read only. When sectors in written, they are written in
1611 a temporary file created in @file{/tmp}. You can however force the
1612 write back to the raw disk images by using the @code{commit} monitor
1613 command (or @key{C-a s} in the serial console).
1615 @node vm_snapshots
1616 @subsection VM snapshots
1618 VM snapshots are snapshots of the complete virtual machine including
1619 CPU state, RAM, device state and the content of all the writable
1620 disks. In order to use VM snapshots, you must have at least one non
1621 removable and writable block device using the @code{qcow2} disk image
1622 format. Normally this device is the first virtual hard drive.
1624 Use the monitor command @code{savevm} to create a new VM snapshot or
1625 replace an existing one. A human readable name can be assigned to each
1626 snapshot in addition to its numerical ID.
1628 Use @code{loadvm} to restore a VM snapshot and @code{delvm} to remove
1629 a VM snapshot. @code{info snapshots} lists the available snapshots
1630 with their associated information:
1632 @example
1633 (qemu) info snapshots
1634 Snapshot devices: hda
1635 Snapshot list (from hda):
1636 ID        TAG                 VM SIZE                DATE       VM CLOCK
1637 1         start                   41M 2006-08-06 12:38:02   00:00:14.954
1638 2                                 40M 2006-08-06 12:43:29   00:00:18.633
1639 3         msys                    40M 2006-08-06 12:44:04   00:00:23.514
1640 @end example
1642 A VM snapshot is made of a VM state info (its size is shown in
1643 @code{info snapshots}) and a snapshot of every writable disk image.
1644 The VM state info is stored in the first @code{qcow2} non removable
1645 and writable block device. The disk image snapshots are stored in
1646 every disk image. The size of a snapshot in a disk image is difficult
1647 to evaluate and is not shown by @code{info snapshots} because the
1648 associated disk sectors are shared among all the snapshots to save
1649 disk space (otherwise each snapshot would need a full copy of all the
1650 disk images).
1652 When using the (unrelated) @code{-snapshot} option
1653 (@ref{disk_images_snapshot_mode}), you can always make VM snapshots,
1654 but they are deleted as soon as you exit QEMU.
1656 VM snapshots currently have the following known limitations:
1657 @itemize
1658 @item
1659 They cannot cope with removable devices if they are removed or
1660 inserted after a snapshot is done.
1661 @item
1662 A few device drivers still have incomplete snapshot support so their
1663 state is not saved or restored properly (in particular USB).
1664 @end itemize
1666 @node qemu_img_invocation
1667 @subsection @code{qemu-img} Invocation
1669 @include qemu-img.texi
1671 @node qemu_nbd_invocation
1672 @subsection @code{qemu-nbd} Invocation
1674 @include qemu-nbd.texi
1676 @node host_drives
1677 @subsection Using host drives
1679 In addition to disk image files, QEMU can directly access host
1680 devices. We describe here the usage for QEMU version >= 0.8.3.
1682 @subsubsection Linux
1684 On Linux, you can directly use the host device filename instead of a
1685 disk image filename provided you have enough privileges to access
1686 it. For example, use @file{/dev/cdrom} to access to the CDROM or
1687 @file{/dev/fd0} for the floppy.
1689 @table @code
1690 @item CD
1691 You can specify a CDROM device even if no CDROM is loaded. QEMU has
1692 specific code to detect CDROM insertion or removal. CDROM ejection by
1693 the guest OS is supported. Currently only data CDs are supported.
1694 @item Floppy
1695 You can specify a floppy device even if no floppy is loaded. Floppy
1696 removal is currently not detected accurately (if you change floppy
1697 without doing floppy access while the floppy is not loaded, the guest
1698 OS will think that the same floppy is loaded).
1699 @item Hard disks
1700 Hard disks can be used. Normally you must specify the whole disk
1701 (@file{/dev/hdb} instead of @file{/dev/hdb1}) so that the guest OS can
1702 see it as a partitioned disk. WARNING: unless you know what you do, it
1703 is better to only make READ-ONLY accesses to the hard disk otherwise
1704 you may corrupt your host data (use the @option{-snapshot} command
1705 line option or modify the device permissions accordingly).
1706 @end table
1708 @subsubsection Windows
1710 @table @code
1711 @item CD
1712 The preferred syntax is the drive letter (e.g. @file{d:}). The
1713 alternate syntax @file{\\.\d:} is supported. @file{/dev/cdrom} is
1714 supported as an alias to the first CDROM drive.
1716 Currently there is no specific code to handle removable media, so it
1717 is better to use the @code{change} or @code{eject} monitor commands to
1718 change or eject media.
1719 @item Hard disks
1720 Hard disks can be used with the syntax: @file{\\.\PhysicalDrive@var{N}}
1721 where @var{N} is the drive number (0 is the first hard disk).
1723 WARNING: unless you know what you do, it is better to only make
1724 READ-ONLY accesses to the hard disk otherwise you may corrupt your
1725 host data (use the @option{-snapshot} command line so that the
1726 modifications are written in a temporary file).
1727 @end table
1730 @subsubsection Mac OS X
1732 @file{/dev/cdrom} is an alias to the first CDROM.
1734 Currently there is no specific code to handle removable media, so it
1735 is better to use the @code{change} or @code{eject} monitor commands to
1736 change or eject media.
1738 @node disk_images_fat_images
1739 @subsection Virtual FAT disk images
1741 QEMU can automatically create a virtual FAT disk image from a
1742 directory tree. In order to use it, just type:
1744 @example
1745 qemu linux.img -hdb fat:/my_directory
1746 @end example
1748 Then you access access to all the files in the @file{/my_directory}
1749 directory without having to copy them in a disk image or to export
1750 them via SAMBA or NFS. The default access is @emph{read-only}.
1752 Floppies can be emulated with the @code{:floppy:} option:
1754 @example
1755 qemu linux.img -fda fat:floppy:/my_directory
1756 @end example
1758 A read/write support is available for testing (beta stage) with the
1759 @code{:rw:} option:
1761 @example
1762 qemu linux.img -fda fat:floppy:rw:/my_directory
1763 @end example
1765 What you should @emph{never} do:
1766 @itemize
1767 @item use non-ASCII filenames ;
1768 @item use "-snapshot" together with ":rw:" ;
1769 @item expect it to work when loadvm'ing ;
1770 @item write to the FAT directory on the host system while accessing it with the guest system.
1771 @end itemize
1773 @node disk_images_nbd
1774 @subsection NBD access
1776 QEMU can access directly to block device exported using the Network Block Device
1777 protocol.
1779 @example
1780 qemu linux.img -hdb nbd:my_nbd_server.mydomain.org:1024
1781 @end example
1783 If the NBD server is located on the same host, you can use an unix socket instead
1784 of an inet socket:
1786 @example
1787 qemu linux.img -hdb nbd:unix:/tmp/my_socket
1788 @end example
1790 In this case, the block device must be exported using qemu-nbd:
1792 @example
1793 qemu-nbd --socket=/tmp/my_socket my_disk.qcow2
1794 @end example
1796 The use of qemu-nbd allows to share a disk between several guests:
1797 @example
1798 qemu-nbd --socket=/tmp/my_socket --share=2 my_disk.qcow2
1799 @end example
1801 and then you can use it with two guests:
1802 @example
1803 qemu linux1.img -hdb nbd:unix:/tmp/my_socket
1804 qemu linux2.img -hdb nbd:unix:/tmp/my_socket
1805 @end example
1807 @node pcsys_network
1808 @section Network emulation
1810 QEMU can simulate several network cards (PCI or ISA cards on the PC
1811 target) and can connect them to an arbitrary number of Virtual Local
1812 Area Networks (VLANs). Host TAP devices can be connected to any QEMU
1813 VLAN. VLAN can be connected between separate instances of QEMU to
1814 simulate large networks. For simpler usage, a non privileged user mode
1815 network stack can replace the TAP device to have a basic network
1816 connection.
1818 @subsection VLANs
1820 QEMU simulates several VLANs. A VLAN can be symbolised as a virtual
1821 connection between several network devices. These devices can be for
1822 example QEMU virtual Ethernet cards or virtual Host ethernet devices
1823 (TAP devices).
1825 @subsection Using TAP network interfaces
1827 This is the standard way to connect QEMU to a real network. QEMU adds
1828 a virtual network device on your host (called @code{tapN}), and you
1829 can then configure it as if it was a real ethernet card.
1831 @subsubsection Linux host
1833 As an example, you can download the @file{linux-test-xxx.tar.gz}
1834 archive and copy the script @file{qemu-ifup} in @file{/etc} and
1835 configure properly @code{sudo} so that the command @code{ifconfig}
1836 contained in @file{qemu-ifup} can be executed as root. You must verify
1837 that your host kernel supports the TAP network interfaces: the
1838 device @file{/dev/net/tun} must be present.
1840 See @ref{sec_invocation} to have examples of command lines using the
1841 TAP network interfaces.
1843 @subsubsection Windows host
1845 There is a virtual ethernet driver for Windows 2000/XP systems, called
1846 TAP-Win32. But it is not included in standard QEMU for Windows,
1847 so you will need to get it separately. It is part of OpenVPN package,
1848 so download OpenVPN from : @url{http://openvpn.net/}.
1850 @subsection Using the user mode network stack
1852 By using the option @option{-net user} (default configuration if no
1853 @option{-net} option is specified), QEMU uses a completely user mode
1854 network stack (you don't need root privilege to use the virtual
1855 network). The virtual network configuration is the following:
1857 @example
1859          QEMU VLAN      <------>  Firewall/DHCP server <-----> Internet
1860                            |          (10.0.2.2)
1861                            |
1862                            ---->  DNS server (10.0.2.3)
1863                            |
1864                            ---->  SMB server (10.0.2.4)
1865 @end example
1867 The QEMU VM behaves as if it was behind a firewall which blocks all
1868 incoming connections. You can use a DHCP client to automatically
1869 configure the network in the QEMU VM. The DHCP server assign addresses
1870 to the hosts starting from 10.0.2.15.
1872 In order to check that the user mode network is working, you can ping
1873 the address 10.0.2.2 and verify that you got an address in the range
1874 10.0.2.x from the QEMU virtual DHCP server.
1876 Note that @code{ping} is not supported reliably to the internet as it
1877 would require root privileges. It means you can only ping the local
1878 router (10.0.2.2).
1880 When using the built-in TFTP server, the router is also the TFTP
1881 server.
1883 When using the @option{-redir} option, TCP or UDP connections can be
1884 redirected from the host to the guest. It allows for example to
1885 redirect X11, telnet or SSH connections.
1887 @subsection Connecting VLANs between QEMU instances
1889 Using the @option{-net socket} option, it is possible to make VLANs
1890 that span several QEMU instances. See @ref{sec_invocation} to have a
1891 basic example.
1893 @node direct_linux_boot
1894 @section Direct Linux Boot
1896 This section explains how to launch a Linux kernel inside QEMU without
1897 having to make a full bootable image. It is very useful for fast Linux
1898 kernel testing.
1900 The syntax is:
1901 @example
1902 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img -append "root=/dev/hda"
1903 @end example
1905 Use @option{-kernel} to provide the Linux kernel image and
1906 @option{-append} to give the kernel command line arguments. The
1907 @option{-initrd} option can be used to provide an INITRD image.
1909 When using the direct Linux boot, a disk image for the first hard disk
1910 @file{hda} is required because its boot sector is used to launch the
1911 Linux kernel.
1913 If you do not need graphical output, you can disable it and redirect
1914 the virtual serial port and the QEMU monitor to the console with the
1915 @option{-nographic} option. The typical command line is:
1916 @example
1917 qemu -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
1918      -append "root=/dev/hda console=ttyS0" -nographic
1919 @end example
1921 Use @key{Ctrl-a c} to switch between the serial console and the
1922 monitor (@pxref{pcsys_keys}).
1924 @node pcsys_usb
1925 @section USB emulation
1927 QEMU emulates a PCI UHCI USB controller. You can virtually plug
1928 virtual USB devices or real host USB devices (experimental, works only
1929 on Linux hosts).  Qemu will automatically create and connect virtual USB hubs
1930 as necessary to connect multiple USB devices.
1932 @menu
1933 * usb_devices::
1934 * host_usb_devices::
1935 @end menu
1936 @node usb_devices
1937 @subsection Connecting USB devices
1939 USB devices can be connected with the @option{-usbdevice} commandline option
1940 or the @code{usb_add} monitor command.  Available devices are:
1942 @table @code
1943 @item mouse
1944 Virtual Mouse.  This will override the PS/2 mouse emulation when activated.
1945 @item tablet
1946 Pointer device that uses absolute coordinates (like a touchscreen).
1947 This means qemu is able to report the mouse position without having
1948 to grab the mouse.  Also overrides the PS/2 mouse emulation when activated.
1949 @item disk:@var{file}
1950 Mass storage device based on @var{file} (@pxref{disk_images})
1951 @item host:@var{bus.addr}
1952 Pass through the host device identified by @var{bus.addr}
1953 (Linux only)
1954 @item host:@var{vendor_id:product_id}
1955 Pass through the host device identified by @var{vendor_id:product_id}
1956 (Linux only)
1957 @item wacom-tablet
1958 Virtual Wacom PenPartner tablet.  This device is similar to the @code{tablet}
1959 above but it can be used with the tslib library because in addition to touch
1960 coordinates it reports touch pressure.
1961 @item keyboard
1962 Standard USB keyboard.  Will override the PS/2 keyboard (if present).
1963 @item serial:[vendorid=@var{vendor_id}][,product_id=@var{product_id}]:@var{dev}
1964 Serial converter. This emulates an FTDI FT232BM chip connected to host character
1965 device @var{dev}. The available character devices are the same as for the
1966 @code{-serial} option. The @code{vendorid} and @code{productid} options can be
1967 used to override the default 0403:6001. For instance, 
1968 @example
1969 usb_add serial:productid=FA00:tcp:192.168.0.2:4444
1970 @end example
1971 will connect to tcp port 4444 of ip 192.168.0.2, and plug that to the virtual
1972 serial converter, faking a Matrix Orbital LCD Display (USB ID 0403:FA00).
1973 @item braille
1974 Braille device.  This will use BrlAPI to display the braille output on a real
1975 or fake device.
1976 @item net:@var{options}
1977 Network adapter that supports CDC ethernet and RNDIS protocols.  @var{options}
1978 specifies NIC options as with @code{-net nic,}@var{options} (see description).
1979 For instance, user-mode networking can be used with
1980 @example
1981 qemu [...OPTIONS...] -net user,vlan=0 -usbdevice net:vlan=0
1982 @end example
1983 Currently this cannot be used in machines that support PCI NICs.
1984 @item bt[:@var{hci-type}]
1985 Bluetooth dongle whose type is specified in the same format as with
1986 the @option{-bt hci} option, @pxref{bt-hcis,,allowed HCI types}.  If
1987 no type is given, the HCI logic corresponds to @code{-bt hci,vlan=0}.
1988 This USB device implements the USB Transport Layer of HCI.  Example
1989 usage:
1990 @example
1991 qemu [...OPTIONS...] -usbdevice bt:hci,vlan=3 -bt device:keyboard,vlan=3
1992 @end example
1993 @end table
1995 @node host_usb_devices
1996 @subsection Using host USB devices on a Linux host
1998 WARNING: this is an experimental feature. QEMU will slow down when
1999 using it. USB devices requiring real time streaming (i.e. USB Video
2000 Cameras) are not supported yet.
2002 @enumerate
2003 @item If you use an early Linux 2.4 kernel, verify that no Linux driver
2004 is actually using the USB device. A simple way to do that is simply to
2005 disable the corresponding kernel module by renaming it from @file{mydriver.o}
2006 to @file{mydriver.o.disabled}.
2008 @item Verify that @file{/proc/bus/usb} is working (most Linux distributions should enable it by default). You should see something like that:
2009 @example
2010 ls /proc/bus/usb
2011 001  devices  drivers
2012 @end example
2014 @item Since only root can access to the USB devices directly, you can either launch QEMU as root or change the permissions of the USB devices you want to use. For testing, the following suffices:
2015 @example
2016 chown -R myuid /proc/bus/usb
2017 @end example
2019 @item Launch QEMU and do in the monitor:
2020 @example
2021 info usbhost
2022   Device 1.2, speed 480 Mb/s
2023     Class 00: USB device 1234:5678, USB DISK
2024 @end example
2025 You should see the list of the devices you can use (Never try to use
2026 hubs, it won't work).
2028 @item Add the device in QEMU by using:
2029 @example
2030 usb_add host:1234:5678
2031 @end example
2033 Normally the guest OS should report that a new USB device is
2034 plugged. You can use the option @option{-usbdevice} to do the same.
2036 @item Now you can try to use the host USB device in QEMU.
2038 @end enumerate
2040 When relaunching QEMU, you may have to unplug and plug again the USB
2041 device to make it work again (this is a bug).
2043 @node vnc_security
2044 @section VNC security
2046 The VNC server capability provides access to the graphical console
2047 of the guest VM across the network. This has a number of security
2048 considerations depending on the deployment scenarios.
2050 @menu
2051 * vnc_sec_none::
2052 * vnc_sec_password::
2053 * vnc_sec_certificate::
2054 * vnc_sec_certificate_verify::
2055 * vnc_sec_certificate_pw::
2056 * vnc_generate_cert::
2057 @end menu
2058 @node vnc_sec_none
2059 @subsection Without passwords
2061 The simplest VNC server setup does not include any form of authentication.
2062 For this setup it is recommended to restrict it to listen on a UNIX domain
2063 socket only. For example
2065 @example
2066 qemu [...OPTIONS...] -vnc unix:/home/joebloggs/.qemu-myvm-vnc
2067 @end example
2069 This ensures that only users on local box with read/write access to that
2070 path can access the VNC server. To securely access the VNC server from a
2071 remote machine, a combination of netcat+ssh can be used to provide a secure
2072 tunnel.
2074 @node vnc_sec_password
2075 @subsection With passwords
2077 The VNC protocol has limited support for password based authentication. Since
2078 the protocol limits passwords to 8 characters it should not be considered
2079 to provide high security. The password can be fairly easily brute-forced by
2080 a client making repeat connections. For this reason, a VNC server using password
2081 authentication should be restricted to only listen on the loopback interface
2082 or UNIX domain sockets. Password authentication is requested with the @code{password}
2083 option, and then once QEMU is running the password is set with the monitor. Until
2084 the monitor is used to set the password all clients will be rejected.
2086 @example
2087 qemu [...OPTIONS...] -vnc :1,password -monitor stdio
2088 (qemu) change vnc password
2089 Password: ********
2090 (qemu)
2091 @end example
2093 @node vnc_sec_certificate
2094 @subsection With x509 certificates
2096 The QEMU VNC server also implements the VeNCrypt extension allowing use of
2097 TLS for encryption of the session, and x509 certificates for authentication.
2098 The use of x509 certificates is strongly recommended, because TLS on its
2099 own is susceptible to man-in-the-middle attacks. Basic x509 certificate
2100 support provides a secure session, but no authentication. This allows any
2101 client to connect, and provides an encrypted session.
2103 @example
2104 qemu [...OPTIONS...] -vnc :1,tls,x509=/etc/pki/qemu -monitor stdio
2105 @end example
2107 In the above example @code{/etc/pki/qemu} should contain at least three files,
2108 @code{ca-cert.pem}, @code{server-cert.pem} and @code{server-key.pem}. Unprivileged
2109 users will want to use a private directory, for example @code{$HOME/.pki/qemu}.
2110 NB the @code{server-key.pem} file should be protected with file mode 0600 to
2111 only be readable by the user owning it.
2113 @node vnc_sec_certificate_verify
2114 @subsection With x509 certificates and client verification
2116 Certificates can also provide a means to authenticate the client connecting.
2117 The server will request that the client provide a certificate, which it will
2118 then validate against the CA certificate. This is a good choice if deploying
2119 in an environment with a private internal certificate authority.
2121 @example
2122 qemu [...OPTIONS...] -vnc :1,tls,x509verify=/etc/pki/qemu -monitor stdio
2123 @end example
2126 @node vnc_sec_certificate_pw
2127 @subsection With x509 certificates, client verification and passwords
2129 Finally, the previous method can be combined with VNC password authentication
2130 to provide two layers of authentication for clients.
2132 @example
2133 qemu [...OPTIONS...] -vnc :1,password,tls,x509verify=/etc/pki/qemu -monitor stdio
2134 (qemu) change vnc password
2135 Password: ********
2136 (qemu)
2137 @end example
2139 @node vnc_generate_cert
2140 @subsection Generating certificates for VNC
2142 The GNU TLS packages provides a command called @code{certtool} which can
2143 be used to generate certificates and keys in PEM format. At a minimum it
2144 is neccessary to setup a certificate authority, and issue certificates to
2145 each server. If using certificates for authentication, then each client
2146 will also need to be issued a certificate. The recommendation is for the
2147 server to keep its certificates in either @code{/etc/pki/qemu} or for
2148 unprivileged users in @code{$HOME/.pki/qemu}.
2150 @menu
2151 * vnc_generate_ca::
2152 * vnc_generate_server::
2153 * vnc_generate_client::
2154 @end menu
2155 @node vnc_generate_ca
2156 @subsubsection Setup the Certificate Authority
2158 This step only needs to be performed once per organization / organizational
2159 unit. First the CA needs a private key. This key must be kept VERY secret
2160 and secure. If this key is compromised the entire trust chain of the certificates
2161 issued with it is lost.
2163 @example
2164 # certtool --generate-privkey > ca-key.pem
2165 @end example
2167 A CA needs to have a public certificate. For simplicity it can be a self-signed
2168 certificate, or one issue by a commercial certificate issuing authority. To
2169 generate a self-signed certificate requires one core piece of information, the
2170 name of the organization.
2172 @example
2173 # cat > ca.info <<EOF
2174 cn = Name of your organization
2176 cert_signing_key
2178 # certtool --generate-self-signed \
2179            --load-privkey ca-key.pem
2180            --template ca.info \
2181            --outfile ca-cert.pem
2182 @end example
2184 The @code{ca-cert.pem} file should be copied to all servers and clients wishing to utilize
2185 TLS support in the VNC server. The @code{ca-key.pem} must not be disclosed/copied at all.
2187 @node vnc_generate_server
2188 @subsubsection Issuing server certificates
2190 Each server (or host) needs to be issued with a key and certificate. When connecting
2191 the certificate is sent to the client which validates it against the CA certificate.
2192 The core piece of information for a server certificate is the hostname. This should
2193 be the fully qualified hostname that the client will connect with, since the client
2194 will typically also verify the hostname in the certificate. On the host holding the
2195 secure CA private key:
2197 @example
2198 # cat > server.info <<EOF
2199 organization = Name  of your organization
2200 cn = server.foo.example.com
2201 tls_www_server
2202 encryption_key
2203 signing_key
2205 # certtool --generate-privkey > server-key.pem
2206 # certtool --generate-certificate \
2207            --load-ca-certificate ca-cert.pem \
2208            --load-ca-privkey ca-key.pem \
2209            --load-privkey server server-key.pem \
2210            --template server.info \
2211            --outfile server-cert.pem
2212 @end example
2214 The @code{server-key.pem} and @code{server-cert.pem} files should now be securely copied
2215 to the server for which they were generated. The @code{server-key.pem} is security
2216 sensitive and should be kept protected with file mode 0600 to prevent disclosure.
2218 @node vnc_generate_client
2219 @subsubsection Issuing client certificates
2221 If the QEMU VNC server is to use the @code{x509verify} option to validate client
2222 certificates as its authentication mechanism, each client also needs to be issued
2223 a certificate. The client certificate contains enough metadata to uniquely identify
2224 the client, typically organization, state, city, building, etc. On the host holding
2225 the secure CA private key:
2227 @example
2228 # cat > client.info <<EOF
2229 country = GB
2230 state = London
2231 locality = London
2232 organiazation = Name of your organization
2233 cn = client.foo.example.com
2234 tls_www_client
2235 encryption_key
2236 signing_key
2238 # certtool --generate-privkey > client-key.pem
2239 # certtool --generate-certificate \
2240            --load-ca-certificate ca-cert.pem \
2241            --load-ca-privkey ca-key.pem \
2242            --load-privkey client-key.pem \
2243            --template client.info \
2244            --outfile client-cert.pem
2245 @end example
2247 The @code{client-key.pem} and @code{client-cert.pem} files should now be securely
2248 copied to the client for which they were generated.
2250 @node gdb_usage
2251 @section GDB usage
2253 QEMU has a primitive support to work with gdb, so that you can do
2254 'Ctrl-C' while the virtual machine is running and inspect its state.
2256 In order to use gdb, launch qemu with the '-s' option. It will wait for a
2257 gdb connection:
2258 @example
2259 > qemu -s -kernel arch/i386/boot/bzImage -hda root-2.4.20.img \
2260        -append "root=/dev/hda"
2261 Connected to host network interface: tun0
2262 Waiting gdb connection on port 1234
2263 @end example
2265 Then launch gdb on the 'vmlinux' executable:
2266 @example
2267 > gdb vmlinux
2268 @end example
2270 In gdb, connect to QEMU:
2271 @example
2272 (gdb) target remote localhost:1234
2273 @end example
2275 Then you can use gdb normally. For example, type 'c' to launch the kernel:
2276 @example
2277 (gdb) c
2278 @end example
2280 Here are some useful tips in order to use gdb on system code:
2282 @enumerate
2283 @item
2284 Use @code{info reg} to display all the CPU registers.
2285 @item
2286 Use @code{x/10i $eip} to display the code at the PC position.
2287 @item
2288 Use @code{set architecture i8086} to dump 16 bit code. Then use
2289 @code{x/10i $cs*16+$eip} to dump the code at the PC position.
2290 @end enumerate
2292 Advanced debugging options:
2294 The default single stepping behavior is step with the IRQs and timer service routines off.  It is set this way because when gdb executes a single step it expects to advance beyond the current instruction.  With the IRQs and and timer service routines on, a single step might jump into the one of the interrupt or exception vectors instead of executing the current instruction. This means you may hit the same breakpoint a number of times before executing the instruction gdb wants to have executed.  Because there are rare circumstances where you want to single step into an interrupt vector the behavior can be controlled from GDB.  There are three commands you can query and set the single step behavior:
2295 @table @code
2296 @item maintenance packet qqemu.sstepbits
2298 This will display the MASK bits used to control the single stepping IE:
2299 @example
2300 (gdb) maintenance packet qqemu.sstepbits
2301 sending: "qqemu.sstepbits"
2302 received: "ENABLE=1,NOIRQ=2,NOTIMER=4"
2303 @end example
2304 @item maintenance packet qqemu.sstep
2306 This will display the current value of the mask used when single stepping IE:
2307 @example
2308 (gdb) maintenance packet qqemu.sstep
2309 sending: "qqemu.sstep"
2310 received: "0x7"
2311 @end example
2312 @item maintenance packet Qqemu.sstep=HEX_VALUE
2314 This will change the single step mask, so if wanted to enable IRQs on the single step, but not timers, you would use:
2315 @example
2316 (gdb) maintenance packet Qqemu.sstep=0x5
2317 sending: "qemu.sstep=0x5"
2318 received: "OK"
2319 @end example
2320 @end table
2322 @node pcsys_os_specific
2323 @section Target OS specific information
2325 @subsection Linux
2327 To have access to SVGA graphic modes under X11, use the @code{vesa} or
2328 the @code{cirrus} X11 driver. For optimal performances, use 16 bit
2329 color depth in the guest and the host OS.
2331 When using a 2.6 guest Linux kernel, you should add the option
2332 @code{clock=pit} on the kernel command line because the 2.6 Linux
2333 kernels make very strict real time clock checks by default that QEMU
2334 cannot simulate exactly.
2336 When using a 2.6 guest Linux kernel, verify that the 4G/4G patch is
2337 not activated because QEMU is slower with this patch. The QEMU
2338 Accelerator Module is also much slower in this case. Earlier Fedora
2339 Core 3 Linux kernel (< 2.6.9-1.724_FC3) were known to incorporate this
2340 patch by default. Newer kernels don't have it.
2342 @subsection Windows
2344 If you have a slow host, using Windows 95 is better as it gives the
2345 best speed. Windows 2000 is also a good choice.
2347 @subsubsection SVGA graphic modes support
2349 QEMU emulates a Cirrus Logic GD5446 Video
2350 card. All Windows versions starting from Windows 95 should recognize
2351 and use this graphic card. For optimal performances, use 16 bit color
2352 depth in the guest and the host OS.
2354 If you are using Windows XP as guest OS and if you want to use high
2355 resolution modes which the Cirrus Logic BIOS does not support (i.e. >=
2356 1280x1024x16), then you should use the VESA VBE virtual graphic card
2357 (option @option{-std-vga}).
2359 @subsubsection CPU usage reduction
2361 Windows 9x does not correctly use the CPU HLT
2362 instruction. The result is that it takes host CPU cycles even when
2363 idle. You can install the utility from
2364 @url{http://www.user.cityline.ru/~maxamn/amnhltm.zip} to solve this
2365 problem. Note that no such tool is needed for NT, 2000 or XP.
2367 @subsubsection Windows 2000 disk full problem
2369 Windows 2000 has a bug which gives a disk full problem during its
2370 installation. When installing it, use the @option{-win2k-hack} QEMU
2371 option to enable a specific workaround. After Windows 2000 is
2372 installed, you no longer need this option (this option slows down the
2373 IDE transfers).
2375 @subsubsection Windows 2000 shutdown
2377 Windows 2000 cannot automatically shutdown in QEMU although Windows 98
2378 can. It comes from the fact that Windows 2000 does not automatically
2379 use the APM driver provided by the BIOS.
2381 In order to correct that, do the following (thanks to Struan
2382 Bartlett): go to the Control Panel => Add/Remove Hardware & Next =>
2383 Add/Troubleshoot a device => Add a new device & Next => No, select the
2384 hardware from a list & Next => NT Apm/Legacy Support & Next => Next
2385 (again) a few times. Now the driver is installed and Windows 2000 now
2386 correctly instructs QEMU to shutdown at the appropriate moment.
2388 @subsubsection Share a directory between Unix and Windows
2390 See @ref{sec_invocation} about the help of the option @option{-smb}.
2392 @subsubsection Windows XP security problem
2394 Some releases of Windows XP install correctly but give a security
2395 error when booting:
2396 @example
2397 A problem is preventing Windows from accurately checking the
2398 license for this computer. Error code: 0x800703e6.
2399 @end example
2401 The workaround is to install a service pack for XP after a boot in safe
2402 mode. Then reboot, and the problem should go away. Since there is no
2403 network while in safe mode, its recommended to download the full
2404 installation of SP1 or SP2 and transfer that via an ISO or using the
2405 vvfat block device ("-hdb fat:directory_which_holds_the_SP").
2407 @subsection MS-DOS and FreeDOS
2409 @subsubsection CPU usage reduction
2411 DOS does not correctly use the CPU HLT instruction. The result is that
2412 it takes host CPU cycles even when idle. You can install the utility
2413 from @url{http://www.vmware.com/software/dosidle210.zip} to solve this
2414 problem.
2416 @node QEMU System emulator for non PC targets
2417 @chapter QEMU System emulator for non PC targets
2419 QEMU is a generic emulator and it emulates many non PC
2420 machines. Most of the options are similar to the PC emulator. The
2421 differences are mentioned in the following sections.
2423 @menu
2424 * QEMU PowerPC System emulator::
2425 * Sparc32 System emulator::
2426 * Sparc64 System emulator::
2427 * MIPS System emulator::
2428 * ARM System emulator::
2429 * ColdFire System emulator::
2430 @end menu
2432 @node QEMU PowerPC System emulator
2433 @section QEMU PowerPC System emulator
2435 Use the executable @file{qemu-system-ppc} to simulate a complete PREP
2436 or PowerMac PowerPC system.
2438 QEMU emulates the following PowerMac peripherals:
2440 @itemize @minus
2441 @item
2442 UniNorth or Grackle PCI Bridge
2443 @item
2444 PCI VGA compatible card with VESA Bochs Extensions
2445 @item
2446 2 PMAC IDE interfaces with hard disk and CD-ROM support
2447 @item
2448 NE2000 PCI adapters
2449 @item
2450 Non Volatile RAM
2451 @item
2452 VIA-CUDA with ADB keyboard and mouse.
2453 @end itemize
2455 QEMU emulates the following PREP peripherals:
2457 @itemize @minus
2458 @item
2459 PCI Bridge
2460 @item
2461 PCI VGA compatible card with VESA Bochs Extensions
2462 @item
2463 2 IDE interfaces with hard disk and CD-ROM support
2464 @item
2465 Floppy disk
2466 @item
2467 NE2000 network adapters
2468 @item
2469 Serial port
2470 @item
2471 PREP Non Volatile RAM
2472 @item
2473 PC compatible keyboard and mouse.
2474 @end itemize
2476 QEMU uses the Open Hack'Ware Open Firmware Compatible BIOS available at
2477 @url{http://perso.magic.fr/l_indien/OpenHackWare/index.htm}.
2479 Since version 0.9.1, QEMU uses OpenBIOS @url{http://www.openbios.org/}
2480 for the g3beige and mac99 PowerMac machines. OpenBIOS is a free (GPL
2481 v2) portable firmware implementation. The goal is to implement a 100%
2482 IEEE 1275-1994 (referred to as Open Firmware) compliant firmware.
2484 @c man begin OPTIONS
2486 The following options are specific to the PowerPC emulation:
2488 @table @option
2490 @item -g WxH[xDEPTH]
2492 Set the initial VGA graphic mode. The default is 800x600x15.
2494 @item -prom-env string
2496 Set OpenBIOS variables in NVRAM, for example:
2498 @example
2499 qemu-system-ppc -prom-env 'auto-boot?=false' \
2500  -prom-env 'boot-device=hd:2,\yaboot' \
2501  -prom-env 'boot-args=conf=hd:2,\yaboot.conf'
2502 @end example
2504 These variables are not used by Open Hack'Ware.
2506 @end table
2508 @c man end
2511 More information is available at
2512 @url{http://perso.magic.fr/l_indien/qemu-ppc/}.
2514 @node Sparc32 System emulator
2515 @section Sparc32 System emulator
2517 Use the executable @file{qemu-system-sparc} to simulate the following
2518 Sun4m architecture machines:
2519 @itemize @minus
2520 @item
2521 SPARCstation 4
2522 @item
2523 SPARCstation 5
2524 @item
2525 SPARCstation 10
2526 @item
2527 SPARCstation 20
2528 @item
2529 SPARCserver 600MP
2530 @item
2531 SPARCstation LX
2532 @item
2533 SPARCstation Voyager
2534 @item
2535 SPARCclassic
2536 @item
2537 SPARCbook
2538 @end itemize
2540 The emulation is somewhat complete. SMP up to 16 CPUs is supported,
2541 but Linux limits the number of usable CPUs to 4.
2543 It's also possible to simulate a SPARCstation 2 (sun4c architecture),
2544 SPARCserver 1000, or SPARCcenter 2000 (sun4d architecture), but these
2545 emulators are not usable yet.
2547 QEMU emulates the following sun4m/sun4c/sun4d peripherals:
2549 @itemize @minus
2550 @item
2551 IOMMU or IO-UNITs
2552 @item
2553 TCX Frame buffer
2554 @item
2555 Lance (Am7990) Ethernet
2556 @item
2557 Non Volatile RAM M48T02/M48T08
2558 @item
2559 Slave I/O: timers, interrupt controllers, Zilog serial ports, keyboard
2560 and power/reset logic
2561 @item
2562 ESP SCSI controller with hard disk and CD-ROM support
2563 @item
2564 Floppy drive (not on SS-600MP)
2565 @item
2566 CS4231 sound device (only on SS-5, not working yet)
2567 @end itemize
2569 The number of peripherals is fixed in the architecture.  Maximum
2570 memory size depends on the machine type, for SS-5 it is 256MB and for
2571 others 2047MB.
2573 Since version 0.8.2, QEMU uses OpenBIOS
2574 @url{http://www.openbios.org/}. OpenBIOS is a free (GPL v2) portable
2575 firmware implementation. The goal is to implement a 100% IEEE
2576 1275-1994 (referred to as Open Firmware) compliant firmware.
2578 A sample Linux 2.6 series kernel and ram disk image are available on
2579 the QEMU web site. There are still issues with NetBSD and OpenBSD, but
2580 some kernel versions work. Please note that currently Solaris kernels
2581 don't work probably due to interface issues between OpenBIOS and
2582 Solaris.
2584 @c man begin OPTIONS
2586 The following options are specific to the Sparc32 emulation:
2588 @table @option
2590 @item -g WxHx[xDEPTH]
2592 Set the initial TCX graphic mode. The default is 1024x768x8, currently
2593 the only other possible mode is 1024x768x24.
2595 @item -prom-env string
2597 Set OpenBIOS variables in NVRAM, for example:
2599 @example
2600 qemu-system-sparc -prom-env 'auto-boot?=false' \
2601  -prom-env 'boot-device=sd(0,2,0):d' -prom-env 'boot-args=linux single'
2602 @end example
2604 @item -M [SS-4|SS-5|SS-10|SS-20|SS-600MP|LX|Voyager|SPARCClassic|SPARCbook|SS-2|SS-1000|SS-2000]
2606 Set the emulated machine type. Default is SS-5.
2608 @end table
2610 @c man end
2612 @node Sparc64 System emulator
2613 @section Sparc64 System emulator
2615 Use the executable @file{qemu-system-sparc64} to simulate a Sun4u
2616 (UltraSPARC PC-like machine), Sun4v (T1 PC-like machine), or generic
2617 Niagara (T1) machine. The emulator is not usable for anything yet, but
2618 it can launch some kernels.
2620 QEMU emulates the following peripherals:
2622 @itemize @minus
2623 @item
2624 UltraSparc IIi APB PCI Bridge
2625 @item
2626 PCI VGA compatible card with VESA Bochs Extensions
2627 @item
2628 PS/2 mouse and keyboard
2629 @item
2630 Non Volatile RAM M48T59
2631 @item
2632 PC-compatible serial ports
2633 @item
2634 2 PCI IDE interfaces with hard disk and CD-ROM support
2635 @item
2636 Floppy disk
2637 @end itemize
2639 @c man begin OPTIONS
2641 The following options are specific to the Sparc64 emulation:
2643 @table @option
2645 @item -prom-env string
2647 Set OpenBIOS variables in NVRAM, for example:
2649 @example
2650 qemu-system-sparc64 -prom-env 'auto-boot?=false'
2651 @end example
2653 @item -M [sun4u|sun4v|Niagara]
2655 Set the emulated machine type. The default is sun4u.
2657 @end table
2659 @c man end
2661 @node MIPS System emulator
2662 @section MIPS System emulator
2664 Four executables cover simulation of 32 and 64-bit MIPS systems in
2665 both endian options, @file{qemu-system-mips}, @file{qemu-system-mipsel}
2666 @file{qemu-system-mips64} and @file{qemu-system-mips64el}.
2667 Five different machine types are emulated:
2669 @itemize @minus
2670 @item
2671 A generic ISA PC-like machine "mips"
2672 @item
2673 The MIPS Malta prototype board "malta"
2674 @item
2675 An ACER Pica "pica61". This machine needs the 64-bit emulator.
2676 @item
2677 MIPS emulator pseudo board "mipssim"
2678 @item
2679 A MIPS Magnum R4000 machine "magnum". This machine needs the 64-bit emulator.
2680 @end itemize
2682 The generic emulation is supported by Debian 'Etch' and is able to
2683 install Debian into a virtual disk image. The following devices are
2684 emulated:
2686 @itemize @minus
2687 @item
2688 A range of MIPS CPUs, default is the 24Kf
2689 @item
2690 PC style serial port
2691 @item
2692 PC style IDE disk
2693 @item
2694 NE2000 network card
2695 @end itemize
2697 The Malta emulation supports the following devices:
2699 @itemize @minus
2700 @item
2701 Core board with MIPS 24Kf CPU and Galileo system controller
2702 @item
2703 PIIX4 PCI/USB/SMbus controller
2704 @item
2705 The Multi-I/O chip's serial device
2706 @item
2707 PCnet32 PCI network card
2708 @item
2709 Malta FPGA serial device
2710 @item
2711 Cirrus (default) or any other PCI VGA graphics card
2712 @end itemize
2714 The ACER Pica emulation supports:
2716 @itemize @minus
2717 @item
2718 MIPS R4000 CPU
2719 @item
2720 PC-style IRQ and DMA controllers
2721 @item
2722 PC Keyboard
2723 @item
2724 IDE controller
2725 @end itemize
2727 The mipssim pseudo board emulation provides an environment similiar
2728 to what the proprietary MIPS emulator uses for running Linux.
2729 It supports:
2731 @itemize @minus
2732 @item
2733 A range of MIPS CPUs, default is the 24Kf
2734 @item
2735 PC style serial port
2736 @item
2737 MIPSnet network emulation
2738 @end itemize
2740 The MIPS Magnum R4000 emulation supports:
2742 @itemize @minus
2743 @item
2744 MIPS R4000 CPU
2745 @item
2746 PC-style IRQ controller
2747 @item
2748 PC Keyboard
2749 @item
2750 SCSI controller
2751 @item
2752 G364 framebuffer
2753 @end itemize
2756 @node ARM System emulator
2757 @section ARM System emulator
2759 Use the executable @file{qemu-system-arm} to simulate a ARM
2760 machine. The ARM Integrator/CP board is emulated with the following
2761 devices:
2763 @itemize @minus
2764 @item
2765 ARM926E, ARM1026E, ARM946E, ARM1136 or Cortex-A8 CPU
2766 @item
2767 Two PL011 UARTs
2768 @item
2769 SMC 91c111 Ethernet adapter
2770 @item
2771 PL110 LCD controller
2772 @item
2773 PL050 KMI with PS/2 keyboard and mouse.
2774 @item
2775 PL181 MultiMedia Card Interface with SD card.
2776 @end itemize
2778 The ARM Versatile baseboard is emulated with the following devices:
2780 @itemize @minus
2781 @item
2782 ARM926E, ARM1136 or Cortex-A8 CPU
2783 @item
2784 PL190 Vectored Interrupt Controller
2785 @item
2786 Four PL011 UARTs
2787 @item
2788 SMC 91c111 Ethernet adapter
2789 @item
2790 PL110 LCD controller
2791 @item
2792 PL050 KMI with PS/2 keyboard and mouse.
2793 @item
2794 PCI host bridge.  Note the emulated PCI bridge only provides access to
2795 PCI memory space.  It does not provide access to PCI IO space.
2796 This means some devices (eg. ne2k_pci NIC) are not usable, and others
2797 (eg. rtl8139 NIC) are only usable when the guest drivers use the memory
2798 mapped control registers.
2799 @item
2800 PCI OHCI USB controller.
2801 @item
2802 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices.
2803 @item
2804 PL181 MultiMedia Card Interface with SD card.
2805 @end itemize
2807 The ARM RealView Emulation baseboard is emulated with the following devices:
2809 @itemize @minus
2810 @item
2811 ARM926E, ARM1136, ARM11MPCORE(x4) or Cortex-A8 CPU
2812 @item
2813 ARM AMBA Generic/Distributed Interrupt Controller
2814 @item
2815 Four PL011 UARTs
2816 @item
2817 SMC 91c111 Ethernet adapter
2818 @item
2819 PL110 LCD controller
2820 @item
2821 PL050 KMI with PS/2 keyboard and mouse
2822 @item
2823 PCI host bridge
2824 @item
2825 PCI OHCI USB controller
2826 @item
2827 LSI53C895A PCI SCSI Host Bus Adapter with hard disk and CD-ROM devices
2828 @item
2829 PL181 MultiMedia Card Interface with SD card.
2830 @end itemize
2832 The XScale-based clamshell PDA models ("Spitz", "Akita", "Borzoi"
2833 and "Terrier") emulation includes the following peripherals:
2835 @itemize @minus
2836 @item
2837 Intel PXA270 System-on-chip (ARM V5TE core)
2838 @item
2839 NAND Flash memory
2840 @item
2841 IBM/Hitachi DSCM microdrive in a PXA PCMCIA slot - not in "Akita"
2842 @item
2843 On-chip OHCI USB controller
2844 @item
2845 On-chip LCD controller
2846 @item
2847 On-chip Real Time Clock
2848 @item
2849 TI ADS7846 touchscreen controller on SSP bus
2850 @item
2851 Maxim MAX1111 analog-digital converter on I@math{^2}C bus
2852 @item
2853 GPIO-connected keyboard controller and LEDs
2854 @item
2855 Secure Digital card connected to PXA MMC/SD host
2856 @item
2857 Three on-chip UARTs
2858 @item
2859 WM8750 audio CODEC on I@math{^2}C and I@math{^2}S busses
2860 @end itemize
2862 The Palm Tungsten|E PDA (codename "Cheetah") emulation includes the
2863 following elements:
2865 @itemize @minus
2866 @item
2867 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2868 @item
2869 ROM and RAM memories (ROM firmware image can be loaded with -option-rom)
2870 @item
2871 On-chip LCD controller
2872 @item
2873 On-chip Real Time Clock
2874 @item
2875 TI TSC2102i touchscreen controller / analog-digital converter / Audio
2876 CODEC, connected through MicroWire and I@math{^2}S busses
2877 @item
2878 GPIO-connected matrix keypad
2879 @item
2880 Secure Digital card connected to OMAP MMC/SD host
2881 @item
2882 Three on-chip UARTs
2883 @end itemize
2885 Nokia N800 and N810 internet tablets (known also as RX-34 and RX-44 / 48)
2886 emulation supports the following elements:
2888 @itemize @minus
2889 @item
2890 Texas Instruments OMAP2420 System-on-chip (ARM 1136 core)
2891 @item
2892 RAM and non-volatile OneNAND Flash memories
2893 @item
2894 Display connected to EPSON remote framebuffer chip and OMAP on-chip
2895 display controller and a LS041y3 MIPI DBI-C controller
2896 @item
2897 TI TSC2301 (in N800) and TI TSC2005 (in N810) touchscreen controllers
2898 driven through SPI bus
2899 @item
2900 National Semiconductor LM8323-controlled qwerty keyboard driven
2901 through I@math{^2}C bus
2902 @item
2903 Secure Digital card connected to OMAP MMC/SD host
2904 @item
2905 Three OMAP on-chip UARTs and on-chip STI debugging console
2906 @item
2907 A Bluetooth(R) transciever and HCI connected to an UART
2908 @item
2909 Mentor Graphics "Inventra" dual-role USB controller embedded in a TI
2910 TUSB6010 chip - only USB host mode is supported
2911 @item
2912 TI TMP105 temperature sensor driven through I@math{^2}C bus
2913 @item
2914 TI TWL92230C power management companion with an RTC on I@math{^2}C bus
2915 @item
2916 Nokia RETU and TAHVO multi-purpose chips with an RTC, connected
2917 through CBUS
2918 @end itemize
2920 The Luminary Micro Stellaris LM3S811EVB emulation includes the following
2921 devices:
2923 @itemize @minus
2924 @item
2925 Cortex-M3 CPU core.
2926 @item
2927 64k Flash and 8k SRAM.
2928 @item
2929 Timers, UARTs, ADC and I@math{^2}C interface.
2930 @item
2931 OSRAM Pictiva 96x16 OLED with SSD0303 controller on I@math{^2}C bus.
2932 @end itemize
2934 The Luminary Micro Stellaris LM3S6965EVB emulation includes the following
2935 devices:
2937 @itemize @minus
2938 @item
2939 Cortex-M3 CPU core.
2940 @item
2941 256k Flash and 64k SRAM.
2942 @item
2943 Timers, UARTs, ADC, I@math{^2}C and SSI interfaces.
2944 @item
2945 OSRAM Pictiva 128x64 OLED with SSD0323 controller connected via SSI.
2946 @end itemize
2948 The Freecom MusicPal internet radio emulation includes the following
2949 elements:
2951 @itemize @minus
2952 @item
2953 Marvell MV88W8618 ARM core.
2954 @item
2955 32 MB RAM, 256 KB SRAM, 8 MB flash.
2956 @item
2957 Up to 2 16550 UARTs
2958 @item
2959 MV88W8xx8 Ethernet controller
2960 @item
2961 MV88W8618 audio controller, WM8750 CODEC and mixer
2962 @item
2963 128×64 display with brightness control
2964 @item
2965 2 buttons, 2 navigation wheels with button function
2966 @end itemize
2968 The Siemens SX1 models v1 and v2 (default) basic emulation.
2969 The emulaton includes the following elements:
2971 @itemize @minus
2972 @item
2973 Texas Instruments OMAP310 System-on-chip (ARM 925T core)
2974 @item
2975 ROM and RAM memories (ROM firmware image can be loaded with -pflash)
2977 1 Flash of 16MB and 1 Flash of 8MB
2979 1 Flash of 32MB
2980 @item
2981 On-chip LCD controller
2982 @item
2983 On-chip Real Time Clock
2984 @item
2985 Secure Digital card connected to OMAP MMC/SD host
2986 @item
2987 Three on-chip UARTs
2988 @end itemize
2990 A Linux 2.6 test image is available on the QEMU web site. More
2991 information is available in the QEMU mailing-list archive.
2993 @c man begin OPTIONS
2995 The following options are specific to the ARM emulation:
2997 @table @option
2999 @item -semihosting
3000 Enable semihosting syscall emulation.
3002 On ARM this implements the "Angel" interface.
3004 Note that this allows guest direct access to the host filesystem,
3005 so should only be used with trusted guest OS.
3007 @end table
3009 @node ColdFire System emulator
3010 @section ColdFire System emulator
3012 Use the executable @file{qemu-system-m68k} to simulate a ColdFire machine.
3013 The emulator is able to boot a uClinux kernel.
3015 The M5208EVB emulation includes the following devices:
3017 @itemize @minus
3018 @item
3019 MCF5208 ColdFire V2 Microprocessor (ISA A+ with EMAC).
3020 @item
3021 Three Two on-chip UARTs.
3022 @item
3023 Fast Ethernet Controller (FEC)
3024 @end itemize
3026 The AN5206 emulation includes the following devices:
3028 @itemize @minus
3029 @item
3030 MCF5206 ColdFire V2 Microprocessor.
3031 @item
3032 Two on-chip UARTs.
3033 @end itemize
3035 @c man begin OPTIONS
3037 The following options are specific to the ARM emulation:
3039 @table @option
3041 @item -semihosting
3042 Enable semihosting syscall emulation.
3044 On M68K this implements the "ColdFire GDB" interface used by libgloss.
3046 Note that this allows guest direct access to the host filesystem,
3047 so should only be used with trusted guest OS.
3049 @end table
3051 @node QEMU User space emulator
3052 @chapter QEMU User space emulator
3054 @menu
3055 * Supported Operating Systems ::
3056 * Linux User space emulator::
3057 * Mac OS X/Darwin User space emulator ::
3058 * BSD User space emulator ::
3059 @end menu
3061 @node Supported Operating Systems
3062 @section Supported Operating Systems
3064 The following OS are supported in user space emulation:
3066 @itemize @minus
3067 @item
3068 Linux (referred as qemu-linux-user)
3069 @item
3070 Mac OS X/Darwin (referred as qemu-darwin-user)
3071 @item
3072 BSD (referred as qemu-bsd-user)
3073 @end itemize
3075 @node Linux User space emulator
3076 @section Linux User space emulator
3078 @menu
3079 * Quick Start::
3080 * Wine launch::
3081 * Command line options::
3082 * Other binaries::
3083 @end menu
3085 @node Quick Start
3086 @subsection Quick Start
3088 In order to launch a Linux process, QEMU needs the process executable
3089 itself and all the target (x86) dynamic libraries used by it.
3091 @itemize
3093 @item On x86, you can just try to launch any process by using the native
3094 libraries:
3096 @example
3097 qemu-i386 -L / /bin/ls
3098 @end example
3100 @code{-L /} tells that the x86 dynamic linker must be searched with a
3101 @file{/} prefix.
3103 @item Since QEMU is also a linux process, you can launch qemu with
3104 qemu (NOTE: you can only do that if you compiled QEMU from the sources):
3106 @example
3107 qemu-i386 -L / qemu-i386 -L / /bin/ls
3108 @end example
3110 @item On non x86 CPUs, you need first to download at least an x86 glibc
3111 (@file{qemu-runtime-i386-XXX-.tar.gz} on the QEMU web page). Ensure that
3112 @code{LD_LIBRARY_PATH} is not set:
3114 @example
3115 unset LD_LIBRARY_PATH
3116 @end example
3118 Then you can launch the precompiled @file{ls} x86 executable:
3120 @example
3121 qemu-i386 tests/i386/ls
3122 @end example
3123 You can look at @file{qemu-binfmt-conf.sh} so that
3124 QEMU is automatically launched by the Linux kernel when you try to
3125 launch x86 executables. It requires the @code{binfmt_misc} module in the
3126 Linux kernel.
3128 @item The x86 version of QEMU is also included. You can try weird things such as:
3129 @example
3130 qemu-i386 /usr/local/qemu-i386/bin/qemu-i386 \
3131           /usr/local/qemu-i386/bin/ls-i386
3132 @end example
3134 @end itemize
3136 @node Wine launch
3137 @subsection Wine launch
3139 @itemize
3141 @item Ensure that you have a working QEMU with the x86 glibc
3142 distribution (see previous section). In order to verify it, you must be
3143 able to do:
3145 @example
3146 qemu-i386 /usr/local/qemu-i386/bin/ls-i386
3147 @end example
3149 @item Download the binary x86 Wine install
3150 (@file{qemu-XXX-i386-wine.tar.gz} on the QEMU web page).
3152 @item Configure Wine on your account. Look at the provided script
3153 @file{/usr/local/qemu-i386/@/bin/wine-conf.sh}. Your previous
3154 @code{$@{HOME@}/.wine} directory is saved to @code{$@{HOME@}/.wine.org}.
3156 @item Then you can try the example @file{putty.exe}:
3158 @example
3159 qemu-i386 /usr/local/qemu-i386/wine/bin/wine \
3160           /usr/local/qemu-i386/wine/c/Program\ Files/putty.exe
3161 @end example
3163 @end itemize
3165 @node Command line options
3166 @subsection Command line options
3168 @example
3169 usage: qemu-i386 [-h] [-d] [-L path] [-s size] [-cpu model] [-g port] program [arguments...]
3170 @end example
3172 @table @option
3173 @item -h
3174 Print the help
3175 @item -L path
3176 Set the x86 elf interpreter prefix (default=/usr/local/qemu-i386)
3177 @item -s size
3178 Set the x86 stack size in bytes (default=524288)
3179 @item -cpu model
3180 Select CPU model (-cpu ? for list and additional feature selection)
3181 @end table
3183 Debug options:
3185 @table @option
3186 @item -d
3187 Activate log (logfile=/tmp/qemu.log)
3188 @item -p pagesize
3189 Act as if the host page size was 'pagesize' bytes
3190 @item -g port
3191 Wait gdb connection to port
3192 @end table
3194 Environment variables:
3196 @table @env
3197 @item QEMU_STRACE
3198 Print system calls and arguments similar to the 'strace' program
3199 (NOTE: the actual 'strace' program will not work because the user
3200 space emulator hasn't implemented ptrace).  At the moment this is
3201 incomplete.  All system calls that don't have a specific argument
3202 format are printed with information for six arguments.  Many
3203 flag-style arguments don't have decoders and will show up as numbers.
3204 @end table
3206 @node Other binaries
3207 @subsection Other binaries
3209 @command{qemu-arm} is also capable of running ARM "Angel" semihosted ELF
3210 binaries (as implemented by the arm-elf and arm-eabi Newlib/GDB
3211 configurations), and arm-uclinux bFLT format binaries.
3213 @command{qemu-m68k} is capable of running semihosted binaries using the BDM
3214 (m5xxx-ram-hosted.ld) or m68k-sim (sim.ld) syscall interfaces, and
3215 coldfire uClinux bFLT format binaries.
3217 The binary format is detected automatically.
3219 @command{qemu-sparc} can execute Sparc32 binaries (Sparc32 CPU, 32 bit ABI).
3221 @command{qemu-sparc32plus} can execute Sparc32 and SPARC32PLUS binaries
3222 (Sparc64 CPU, 32 bit ABI).
3224 @command{qemu-sparc64} can execute some Sparc64 (Sparc64 CPU, 64 bit ABI) and
3225 SPARC32PLUS binaries (Sparc64 CPU, 32 bit ABI).
3227 @node Mac OS X/Darwin User space emulator
3228 @section Mac OS X/Darwin User space emulator
3230 @menu
3231 * Mac OS X/Darwin Status::
3232 * Mac OS X/Darwin Quick Start::
3233 * Mac OS X/Darwin Command line options::
3234 @end menu
3236 @node Mac OS X/Darwin Status
3237 @subsection Mac OS X/Darwin Status
3239 @itemize @minus
3240 @item
3241 target x86 on x86: Most apps (Cocoa and Carbon too) works. [1]
3242 @item
3243 target PowerPC on x86: Not working as the ppc commpage can't be mapped (yet!)
3244 @item
3245 target PowerPC on PowerPC: Most apps (Cocoa and Carbon too) works. [1]
3246 @item
3247 target x86 on PowerPC: most utilities work. Cocoa and Carbon apps are not yet supported.
3248 @end itemize
3250 [1] If you're host commpage can be executed by qemu.
3252 @node Mac OS X/Darwin Quick Start
3253 @subsection Quick Start
3255 In order to launch a Mac OS X/Darwin process, QEMU needs the process executable
3256 itself and all the target dynamic libraries used by it. If you don't have the FAT
3257 libraries (you're running Mac OS X/ppc) you'll need to obtain it from a Mac OS X
3258 CD or compile them by hand.
3260 @itemize
3262 @item On x86, you can just try to launch any process by using the native
3263 libraries:
3265 @example
3266 qemu-i386 /bin/ls
3267 @end example
3269 or to run the ppc version of the executable:
3271 @example
3272 qemu-ppc /bin/ls
3273 @end example
3275 @item On ppc, you'll have to tell qemu where your x86 libraries (and dynamic linker)
3276 are installed:
3278 @example
3279 qemu-i386 -L /opt/x86_root/ /bin/ls
3280 @end example
3282 @code{-L /opt/x86_root/} tells that the dynamic linker (dyld) path is in
3283 @file{/opt/x86_root/usr/bin/dyld}.
3285 @end itemize
3287 @node Mac OS X/Darwin Command line options
3288 @subsection Command line options
3290 @example
3291 usage: qemu-i386 [-h] [-d] [-L path] [-s size] program [arguments...]
3292 @end example
3294 @table @option
3295 @item -h
3296 Print the help
3297 @item -L path
3298 Set the library root path (default=/)
3299 @item -s size
3300 Set the stack size in bytes (default=524288)
3301 @end table
3303 Debug options:
3305 @table @option
3306 @item -d
3307 Activate log (logfile=/tmp/qemu.log)
3308 @item -p pagesize
3309 Act as if the host page size was 'pagesize' bytes
3310 @end table
3312 @node BSD User space emulator
3313 @section BSD User space emulator
3315 @menu
3316 * BSD Status::
3317 * BSD Quick Start::
3318 * BSD Command line options::
3319 @end menu
3321 @node BSD Status
3322 @subsection BSD Status
3324 @itemize @minus
3325 @item
3326 target Sparc64 on Sparc64: Some trivial programs work.
3327 @end itemize
3329 @node BSD Quick Start
3330 @subsection Quick Start
3332 In order to launch a BSD process, QEMU needs the process executable
3333 itself and all the target dynamic libraries used by it.
3335 @itemize
3337 @item On Sparc64, you can just try to launch any process by using the native
3338 libraries:
3340 @example
3341 qemu-sparc64 /bin/ls
3342 @end example
3344 @end itemize
3346 @node BSD Command line options
3347 @subsection Command line options
3349 @example
3350 usage: qemu-sparc64 [-h] [-d] [-L path] [-s size] [-bsd type] program [arguments...]
3351 @end example
3353 @table @option
3354 @item -h
3355 Print the help
3356 @item -L path
3357 Set the library root path (default=/)
3358 @item -s size
3359 Set the stack size in bytes (default=524288)
3360 @item -bsd type
3361 Set the type of the emulated BSD Operating system. Valid values are
3362 FreeBSD, NetBSD and OpenBSD (default).
3363 @end table
3365 Debug options:
3367 @table @option
3368 @item -d
3369 Activate log (logfile=/tmp/qemu.log)
3370 @item -p pagesize
3371 Act as if the host page size was 'pagesize' bytes
3372 @end table
3374 @node compilation
3375 @chapter Compilation from the sources
3377 @menu
3378 * Linux/Unix::
3379 * Windows::
3380 * Cross compilation for Windows with Linux::
3381 * Mac OS X::
3382 @end menu
3384 @node Linux/Unix
3385 @section Linux/Unix
3387 @subsection Compilation
3389 First you must decompress the sources:
3390 @example
3391 cd /tmp
3392 tar zxvf qemu-x.y.z.tar.gz
3393 cd qemu-x.y.z
3394 @end example
3396 Then you configure QEMU and build it (usually no options are needed):
3397 @example
3398 ./configure
3399 make
3400 @end example
3402 Then type as root user:
3403 @example
3404 make install
3405 @end example
3406 to install QEMU in @file{/usr/local}.
3408 @subsection GCC version
3410 In order to compile QEMU successfully, it is very important that you
3411 have the right tools. The most important one is gcc. On most hosts and
3412 in particular on x86 ones, @emph{gcc 4.x is not supported}. If your
3413 Linux distribution includes a gcc 4.x compiler, you can usually
3414 install an older version (it is invoked by @code{gcc32} or
3415 @code{gcc34}). The QEMU configure script automatically probes for
3416 these older versions so that usually you don't have to do anything.
3418 @node Windows
3419 @section Windows
3421 @itemize
3422 @item Install the current versions of MSYS and MinGW from
3423 @url{http://www.mingw.org/}. You can find detailed installation
3424 instructions in the download section and the FAQ.
3426 @item Download
3427 the MinGW development library of SDL 1.2.x
3428 (@file{SDL-devel-1.2.x-@/mingw32.tar.gz}) from
3429 @url{http://www.libsdl.org}. Unpack it in a temporary place, and
3430 unpack the archive @file{i386-mingw32msvc.tar.gz} in the MinGW tool
3431 directory. Edit the @file{sdl-config} script so that it gives the
3432 correct SDL directory when invoked.
3434 @item Extract the current version of QEMU.
3436 @item Start the MSYS shell (file @file{msys.bat}).
3438 @item Change to the QEMU directory. Launch @file{./configure} and
3439 @file{make}.  If you have problems using SDL, verify that
3440 @file{sdl-config} can be launched from the MSYS command line.
3442 @item You can install QEMU in @file{Program Files/Qemu} by typing
3443 @file{make install}. Don't forget to copy @file{SDL.dll} in
3444 @file{Program Files/Qemu}.
3446 @end itemize
3448 @node Cross compilation for Windows with Linux
3449 @section Cross compilation for Windows with Linux
3451 @itemize
3452 @item
3453 Install the MinGW cross compilation tools available at
3454 @url{http://www.mingw.org/}.
3456 @item
3457 Install the Win32 version of SDL (@url{http://www.libsdl.org}) by
3458 unpacking @file{i386-mingw32msvc.tar.gz}. Set up the PATH environment
3459 variable so that @file{i386-mingw32msvc-sdl-config} can be launched by
3460 the QEMU configuration script.
3462 @item
3463 Configure QEMU for Windows cross compilation:
3464 @example
3465 ./configure --enable-mingw32
3466 @end example
3467 If necessary, you can change the cross-prefix according to the prefix
3468 chosen for the MinGW tools with --cross-prefix. You can also use
3469 --prefix to set the Win32 install path.
3471 @item You can install QEMU in the installation directory by typing
3472 @file{make install}. Don't forget to copy @file{SDL.dll} in the
3473 installation directory.
3475 @end itemize
3477 Note: Currently, Wine does not seem able to launch
3478 QEMU for Win32.
3480 @node Mac OS X
3481 @section Mac OS X
3483 The Mac OS X patches are not fully merged in QEMU, so you should look
3484 at the QEMU mailing list archive to have all the necessary
3485 information.
3487 @node Index
3488 @chapter Index
3489 @printindex cp
3491 @bye