monitor: Rework modal password input (Jan Kiszka)
[sniper_test.git] / exec.c
blobf4a071e0f30746d215e1c011d4b24b4966f75a65
1 /*
2 * virtual page mapping and translated block handling
4 * Copyright (c) 2003 Fabrice Bellard
6 * This library is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2 of the License, or (at your option) any later version.
11 * This library is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this library; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston MA 02110-1301 USA
20 #include "config.h"
21 #ifdef _WIN32
22 #define WIN32_LEAN_AND_MEAN
23 #include <windows.h>
24 #else
25 #include <sys/types.h>
26 #include <sys/mman.h>
27 #endif
28 #include <stdlib.h>
29 #include <stdio.h>
30 #include <stdarg.h>
31 #include <string.h>
32 #include <errno.h>
33 #include <unistd.h>
34 #include <inttypes.h>
36 #include "cpu.h"
37 #include "exec-all.h"
38 #include "qemu-common.h"
39 #include "tcg.h"
40 #include "hw/hw.h"
41 #include "osdep.h"
42 #include "kvm.h"
43 #if defined(CONFIG_USER_ONLY)
44 #include <qemu.h>
45 #endif
47 //#define DEBUG_TB_INVALIDATE
48 //#define DEBUG_FLUSH
49 //#define DEBUG_TLB
50 //#define DEBUG_UNASSIGNED
52 /* make various TB consistency checks */
53 //#define DEBUG_TB_CHECK
54 //#define DEBUG_TLB_CHECK
56 //#define DEBUG_IOPORT
57 //#define DEBUG_SUBPAGE
59 #if !defined(CONFIG_USER_ONLY)
60 /* TB consistency checks only implemented for usermode emulation. */
61 #undef DEBUG_TB_CHECK
62 #endif
64 #define SMC_BITMAP_USE_THRESHOLD 10
66 #define MMAP_AREA_START 0x00000000
67 #define MMAP_AREA_END 0xa8000000
69 #if defined(TARGET_SPARC64)
70 #define TARGET_PHYS_ADDR_SPACE_BITS 41
71 #elif defined(TARGET_SPARC)
72 #define TARGET_PHYS_ADDR_SPACE_BITS 36
73 #elif defined(TARGET_ALPHA)
74 #define TARGET_PHYS_ADDR_SPACE_BITS 42
75 #define TARGET_VIRT_ADDR_SPACE_BITS 42
76 #elif defined(TARGET_PPC64)
77 #define TARGET_PHYS_ADDR_SPACE_BITS 42
78 #elif defined(TARGET_X86_64) && !defined(USE_KQEMU)
79 #define TARGET_PHYS_ADDR_SPACE_BITS 42
80 #elif defined(TARGET_I386) && !defined(USE_KQEMU)
81 #define TARGET_PHYS_ADDR_SPACE_BITS 36
82 #else
83 /* Note: for compatibility with kqemu, we use 32 bits for x86_64 */
84 #define TARGET_PHYS_ADDR_SPACE_BITS 32
85 #endif
87 static TranslationBlock *tbs;
88 int code_gen_max_blocks;
89 TranslationBlock *tb_phys_hash[CODE_GEN_PHYS_HASH_SIZE];
90 static int nb_tbs;
91 /* any access to the tbs or the page table must use this lock */
92 spinlock_t tb_lock = SPIN_LOCK_UNLOCKED;
94 #if defined(__arm__) || defined(__sparc_v9__)
95 /* The prologue must be reachable with a direct jump. ARM and Sparc64
96 have limited branch ranges (possibly also PPC) so place it in a
97 section close to code segment. */
98 #define code_gen_section \
99 __attribute__((__section__(".gen_code"))) \
100 __attribute__((aligned (32)))
101 #else
102 #define code_gen_section \
103 __attribute__((aligned (32)))
104 #endif
106 uint8_t code_gen_prologue[1024] code_gen_section;
107 static uint8_t *code_gen_buffer;
108 static unsigned long code_gen_buffer_size;
109 /* threshold to flush the translated code buffer */
110 static unsigned long code_gen_buffer_max_size;
111 uint8_t *code_gen_ptr;
113 #if !defined(CONFIG_USER_ONLY)
114 ram_addr_t phys_ram_size;
115 int phys_ram_fd;
116 uint8_t *phys_ram_base;
117 uint8_t *phys_ram_dirty;
118 static int in_migration;
119 static ram_addr_t phys_ram_alloc_offset = 0;
120 #endif
122 CPUState *first_cpu;
123 /* current CPU in the current thread. It is only valid inside
124 cpu_exec() */
125 CPUState *cpu_single_env;
126 /* 0 = Do not count executed instructions.
127 1 = Precise instruction counting.
128 2 = Adaptive rate instruction counting. */
129 int use_icount = 0;
130 /* Current instruction counter. While executing translated code this may
131 include some instructions that have not yet been executed. */
132 int64_t qemu_icount;
134 typedef struct PageDesc {
135 /* list of TBs intersecting this ram page */
136 TranslationBlock *first_tb;
137 /* in order to optimize self modifying code, we count the number
138 of lookups we do to a given page to use a bitmap */
139 unsigned int code_write_count;
140 uint8_t *code_bitmap;
141 #if defined(CONFIG_USER_ONLY)
142 unsigned long flags;
143 #endif
144 } PageDesc;
146 typedef struct PhysPageDesc {
147 /* offset in host memory of the page + io_index in the low bits */
148 ram_addr_t phys_offset;
149 ram_addr_t region_offset;
150 } PhysPageDesc;
152 #define L2_BITS 10
153 #if defined(CONFIG_USER_ONLY) && defined(TARGET_VIRT_ADDR_SPACE_BITS)
154 /* XXX: this is a temporary hack for alpha target.
155 * In the future, this is to be replaced by a multi-level table
156 * to actually be able to handle the complete 64 bits address space.
158 #define L1_BITS (TARGET_VIRT_ADDR_SPACE_BITS - L2_BITS - TARGET_PAGE_BITS)
159 #else
160 #define L1_BITS (32 - L2_BITS - TARGET_PAGE_BITS)
161 #endif
163 #define L1_SIZE (1 << L1_BITS)
164 #define L2_SIZE (1 << L2_BITS)
166 unsigned long qemu_real_host_page_size;
167 unsigned long qemu_host_page_bits;
168 unsigned long qemu_host_page_size;
169 unsigned long qemu_host_page_mask;
171 /* XXX: for system emulation, it could just be an array */
172 static PageDesc *l1_map[L1_SIZE];
173 static PhysPageDesc **l1_phys_map;
175 #if !defined(CONFIG_USER_ONLY)
176 static void io_mem_init(void);
178 /* io memory support */
179 CPUWriteMemoryFunc *io_mem_write[IO_MEM_NB_ENTRIES][4];
180 CPUReadMemoryFunc *io_mem_read[IO_MEM_NB_ENTRIES][4];
181 void *io_mem_opaque[IO_MEM_NB_ENTRIES];
182 char io_mem_used[IO_MEM_NB_ENTRIES];
183 static int io_mem_watch;
184 #endif
186 /* log support */
187 static const char *logfilename = "/tmp/qemu.log";
188 FILE *logfile;
189 int loglevel;
190 static int log_append = 0;
192 /* statistics */
193 static int tlb_flush_count;
194 static int tb_flush_count;
195 static int tb_phys_invalidate_count;
197 #define SUBPAGE_IDX(addr) ((addr) & ~TARGET_PAGE_MASK)
198 typedef struct subpage_t {
199 target_phys_addr_t base;
200 CPUReadMemoryFunc **mem_read[TARGET_PAGE_SIZE][4];
201 CPUWriteMemoryFunc **mem_write[TARGET_PAGE_SIZE][4];
202 void *opaque[TARGET_PAGE_SIZE][2][4];
203 ram_addr_t region_offset[TARGET_PAGE_SIZE][2][4];
204 } subpage_t;
206 #ifdef _WIN32
207 static void map_exec(void *addr, long size)
209 DWORD old_protect;
210 VirtualProtect(addr, size,
211 PAGE_EXECUTE_READWRITE, &old_protect);
214 #else
215 static void map_exec(void *addr, long size)
217 unsigned long start, end, page_size;
219 page_size = getpagesize();
220 start = (unsigned long)addr;
221 start &= ~(page_size - 1);
223 end = (unsigned long)addr + size;
224 end += page_size - 1;
225 end &= ~(page_size - 1);
227 mprotect((void *)start, end - start,
228 PROT_READ | PROT_WRITE | PROT_EXEC);
230 #endif
232 static void page_init(void)
234 /* NOTE: we can always suppose that qemu_host_page_size >=
235 TARGET_PAGE_SIZE */
236 #ifdef _WIN32
238 SYSTEM_INFO system_info;
240 GetSystemInfo(&system_info);
241 qemu_real_host_page_size = system_info.dwPageSize;
243 #else
244 qemu_real_host_page_size = getpagesize();
245 #endif
246 if (qemu_host_page_size == 0)
247 qemu_host_page_size = qemu_real_host_page_size;
248 if (qemu_host_page_size < TARGET_PAGE_SIZE)
249 qemu_host_page_size = TARGET_PAGE_SIZE;
250 qemu_host_page_bits = 0;
251 while ((1 << qemu_host_page_bits) < qemu_host_page_size)
252 qemu_host_page_bits++;
253 qemu_host_page_mask = ~(qemu_host_page_size - 1);
254 l1_phys_map = qemu_vmalloc(L1_SIZE * sizeof(void *));
255 memset(l1_phys_map, 0, L1_SIZE * sizeof(void *));
257 #if !defined(_WIN32) && defined(CONFIG_USER_ONLY)
259 long long startaddr, endaddr;
260 FILE *f;
261 int n;
263 mmap_lock();
264 last_brk = (unsigned long)sbrk(0);
265 f = fopen("/proc/self/maps", "r");
266 if (f) {
267 do {
268 n = fscanf (f, "%llx-%llx %*[^\n]\n", &startaddr, &endaddr);
269 if (n == 2) {
270 startaddr = MIN(startaddr,
271 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
272 endaddr = MIN(endaddr,
273 (1ULL << TARGET_PHYS_ADDR_SPACE_BITS) - 1);
274 page_set_flags(startaddr & TARGET_PAGE_MASK,
275 TARGET_PAGE_ALIGN(endaddr),
276 PAGE_RESERVED);
278 } while (!feof(f));
279 fclose(f);
281 mmap_unlock();
283 #endif
286 static inline PageDesc **page_l1_map(target_ulong index)
288 #if TARGET_LONG_BITS > 32
289 /* Host memory outside guest VM. For 32-bit targets we have already
290 excluded high addresses. */
291 if (index > ((target_ulong)L2_SIZE * L1_SIZE))
292 return NULL;
293 #endif
294 return &l1_map[index >> L2_BITS];
297 static inline PageDesc *page_find_alloc(target_ulong index)
299 PageDesc **lp, *p;
300 lp = page_l1_map(index);
301 if (!lp)
302 return NULL;
304 p = *lp;
305 if (!p) {
306 /* allocate if not found */
307 #if defined(CONFIG_USER_ONLY)
308 size_t len = sizeof(PageDesc) * L2_SIZE;
309 /* Don't use qemu_malloc because it may recurse. */
310 p = mmap(0, len, PROT_READ | PROT_WRITE,
311 MAP_PRIVATE | MAP_ANONYMOUS, -1, 0);
312 *lp = p;
313 if (h2g_valid(p)) {
314 unsigned long addr = h2g(p);
315 page_set_flags(addr & TARGET_PAGE_MASK,
316 TARGET_PAGE_ALIGN(addr + len),
317 PAGE_RESERVED);
319 #else
320 p = qemu_mallocz(sizeof(PageDesc) * L2_SIZE);
321 *lp = p;
322 #endif
324 return p + (index & (L2_SIZE - 1));
327 static inline PageDesc *page_find(target_ulong index)
329 PageDesc **lp, *p;
330 lp = page_l1_map(index);
331 if (!lp)
332 return NULL;
334 p = *lp;
335 if (!p)
336 return 0;
337 return p + (index & (L2_SIZE - 1));
340 static PhysPageDesc *phys_page_find_alloc(target_phys_addr_t index, int alloc)
342 void **lp, **p;
343 PhysPageDesc *pd;
345 p = (void **)l1_phys_map;
346 #if TARGET_PHYS_ADDR_SPACE_BITS > 32
348 #if TARGET_PHYS_ADDR_SPACE_BITS > (32 + L1_BITS)
349 #error unsupported TARGET_PHYS_ADDR_SPACE_BITS
350 #endif
351 lp = p + ((index >> (L1_BITS + L2_BITS)) & (L1_SIZE - 1));
352 p = *lp;
353 if (!p) {
354 /* allocate if not found */
355 if (!alloc)
356 return NULL;
357 p = qemu_vmalloc(sizeof(void *) * L1_SIZE);
358 memset(p, 0, sizeof(void *) * L1_SIZE);
359 *lp = p;
361 #endif
362 lp = p + ((index >> L2_BITS) & (L1_SIZE - 1));
363 pd = *lp;
364 if (!pd) {
365 int i;
366 /* allocate if not found */
367 if (!alloc)
368 return NULL;
369 pd = qemu_vmalloc(sizeof(PhysPageDesc) * L2_SIZE);
370 *lp = pd;
371 for (i = 0; i < L2_SIZE; i++) {
372 pd[i].phys_offset = IO_MEM_UNASSIGNED;
373 pd[i].region_offset = (index + i) << TARGET_PAGE_BITS;
376 return ((PhysPageDesc *)pd) + (index & (L2_SIZE - 1));
379 static inline PhysPageDesc *phys_page_find(target_phys_addr_t index)
381 return phys_page_find_alloc(index, 0);
384 #if !defined(CONFIG_USER_ONLY)
385 static void tlb_protect_code(ram_addr_t ram_addr);
386 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
387 target_ulong vaddr);
388 #define mmap_lock() do { } while(0)
389 #define mmap_unlock() do { } while(0)
390 #endif
392 #define DEFAULT_CODE_GEN_BUFFER_SIZE (32 * 1024 * 1024)
394 #if defined(CONFIG_USER_ONLY)
395 /* Currently it is not recommanded to allocate big chunks of data in
396 user mode. It will change when a dedicated libc will be used */
397 #define USE_STATIC_CODE_GEN_BUFFER
398 #endif
400 #ifdef USE_STATIC_CODE_GEN_BUFFER
401 static uint8_t static_code_gen_buffer[DEFAULT_CODE_GEN_BUFFER_SIZE];
402 #endif
404 static void code_gen_alloc(unsigned long tb_size)
406 #ifdef USE_STATIC_CODE_GEN_BUFFER
407 code_gen_buffer = static_code_gen_buffer;
408 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
409 map_exec(code_gen_buffer, code_gen_buffer_size);
410 #else
411 code_gen_buffer_size = tb_size;
412 if (code_gen_buffer_size == 0) {
413 #if defined(CONFIG_USER_ONLY)
414 /* in user mode, phys_ram_size is not meaningful */
415 code_gen_buffer_size = DEFAULT_CODE_GEN_BUFFER_SIZE;
416 #else
417 /* XXX: needs ajustments */
418 code_gen_buffer_size = (unsigned long)(phys_ram_size / 4);
419 #endif
421 if (code_gen_buffer_size < MIN_CODE_GEN_BUFFER_SIZE)
422 code_gen_buffer_size = MIN_CODE_GEN_BUFFER_SIZE;
423 /* The code gen buffer location may have constraints depending on
424 the host cpu and OS */
425 #if defined(__linux__)
427 int flags;
428 void *start = NULL;
430 flags = MAP_PRIVATE | MAP_ANONYMOUS;
431 #if defined(__x86_64__)
432 flags |= MAP_32BIT;
433 /* Cannot map more than that */
434 if (code_gen_buffer_size > (800 * 1024 * 1024))
435 code_gen_buffer_size = (800 * 1024 * 1024);
436 #elif defined(__sparc_v9__)
437 // Map the buffer below 2G, so we can use direct calls and branches
438 flags |= MAP_FIXED;
439 start = (void *) 0x60000000UL;
440 if (code_gen_buffer_size > (512 * 1024 * 1024))
441 code_gen_buffer_size = (512 * 1024 * 1024);
442 #elif defined(__arm__)
443 /* Map the buffer below 32M, so we can use direct calls and branches */
444 flags |= MAP_FIXED;
445 start = (void *) 0x01000000UL;
446 if (code_gen_buffer_size > 16 * 1024 * 1024)
447 code_gen_buffer_size = 16 * 1024 * 1024;
448 #endif
449 code_gen_buffer = mmap(start, code_gen_buffer_size,
450 PROT_WRITE | PROT_READ | PROT_EXEC,
451 flags, -1, 0);
452 if (code_gen_buffer == MAP_FAILED) {
453 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
454 exit(1);
457 #elif defined(__FreeBSD__)
459 int flags;
460 void *addr = NULL;
461 flags = MAP_PRIVATE | MAP_ANONYMOUS;
462 #if defined(__x86_64__)
463 /* FreeBSD doesn't have MAP_32BIT, use MAP_FIXED and assume
464 * 0x40000000 is free */
465 flags |= MAP_FIXED;
466 addr = (void *)0x40000000;
467 /* Cannot map more than that */
468 if (code_gen_buffer_size > (800 * 1024 * 1024))
469 code_gen_buffer_size = (800 * 1024 * 1024);
470 #endif
471 code_gen_buffer = mmap(addr, code_gen_buffer_size,
472 PROT_WRITE | PROT_READ | PROT_EXEC,
473 flags, -1, 0);
474 if (code_gen_buffer == MAP_FAILED) {
475 fprintf(stderr, "Could not allocate dynamic translator buffer\n");
476 exit(1);
479 #else
480 code_gen_buffer = qemu_malloc(code_gen_buffer_size);
481 map_exec(code_gen_buffer, code_gen_buffer_size);
482 #endif
483 #endif /* !USE_STATIC_CODE_GEN_BUFFER */
484 map_exec(code_gen_prologue, sizeof(code_gen_prologue));
485 code_gen_buffer_max_size = code_gen_buffer_size -
486 code_gen_max_block_size();
487 code_gen_max_blocks = code_gen_buffer_size / CODE_GEN_AVG_BLOCK_SIZE;
488 tbs = qemu_malloc(code_gen_max_blocks * sizeof(TranslationBlock));
491 /* Must be called before using the QEMU cpus. 'tb_size' is the size
492 (in bytes) allocated to the translation buffer. Zero means default
493 size. */
494 void cpu_exec_init_all(unsigned long tb_size)
496 cpu_gen_init();
497 code_gen_alloc(tb_size);
498 code_gen_ptr = code_gen_buffer;
499 page_init();
500 #if !defined(CONFIG_USER_ONLY)
501 io_mem_init();
502 #endif
505 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
507 #define CPU_COMMON_SAVE_VERSION 1
509 static void cpu_common_save(QEMUFile *f, void *opaque)
511 CPUState *env = opaque;
513 qemu_put_be32s(f, &env->halted);
514 qemu_put_be32s(f, &env->interrupt_request);
517 static int cpu_common_load(QEMUFile *f, void *opaque, int version_id)
519 CPUState *env = opaque;
521 if (version_id != CPU_COMMON_SAVE_VERSION)
522 return -EINVAL;
524 qemu_get_be32s(f, &env->halted);
525 qemu_get_be32s(f, &env->interrupt_request);
526 tlb_flush(env, 1);
528 return 0;
530 #endif
532 void cpu_exec_init(CPUState *env)
534 CPUState **penv;
535 int cpu_index;
537 env->next_cpu = NULL;
538 penv = &first_cpu;
539 cpu_index = 0;
540 while (*penv != NULL) {
541 penv = (CPUState **)&(*penv)->next_cpu;
542 cpu_index++;
544 env->cpu_index = cpu_index;
545 TAILQ_INIT(&env->breakpoints);
546 TAILQ_INIT(&env->watchpoints);
547 *penv = env;
548 #if defined(CPU_SAVE_VERSION) && !defined(CONFIG_USER_ONLY)
549 register_savevm("cpu_common", cpu_index, CPU_COMMON_SAVE_VERSION,
550 cpu_common_save, cpu_common_load, env);
551 register_savevm("cpu", cpu_index, CPU_SAVE_VERSION,
552 cpu_save, cpu_load, env);
553 #endif
556 static inline void invalidate_page_bitmap(PageDesc *p)
558 if (p->code_bitmap) {
559 qemu_free(p->code_bitmap);
560 p->code_bitmap = NULL;
562 p->code_write_count = 0;
565 /* set to NULL all the 'first_tb' fields in all PageDescs */
566 static void page_flush_tb(void)
568 int i, j;
569 PageDesc *p;
571 for(i = 0; i < L1_SIZE; i++) {
572 p = l1_map[i];
573 if (p) {
574 for(j = 0; j < L2_SIZE; j++) {
575 p->first_tb = NULL;
576 invalidate_page_bitmap(p);
577 p++;
583 /* flush all the translation blocks */
584 /* XXX: tb_flush is currently not thread safe */
585 void tb_flush(CPUState *env1)
587 CPUState *env;
588 #if defined(DEBUG_FLUSH)
589 printf("qemu: flush code_size=%ld nb_tbs=%d avg_tb_size=%ld\n",
590 (unsigned long)(code_gen_ptr - code_gen_buffer),
591 nb_tbs, nb_tbs > 0 ?
592 ((unsigned long)(code_gen_ptr - code_gen_buffer)) / nb_tbs : 0);
593 #endif
594 if ((unsigned long)(code_gen_ptr - code_gen_buffer) > code_gen_buffer_size)
595 cpu_abort(env1, "Internal error: code buffer overflow\n");
597 nb_tbs = 0;
599 for(env = first_cpu; env != NULL; env = env->next_cpu) {
600 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
603 memset (tb_phys_hash, 0, CODE_GEN_PHYS_HASH_SIZE * sizeof (void *));
604 page_flush_tb();
606 code_gen_ptr = code_gen_buffer;
607 /* XXX: flush processor icache at this point if cache flush is
608 expensive */
609 tb_flush_count++;
612 #ifdef DEBUG_TB_CHECK
614 static void tb_invalidate_check(target_ulong address)
616 TranslationBlock *tb;
617 int i;
618 address &= TARGET_PAGE_MASK;
619 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
620 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
621 if (!(address + TARGET_PAGE_SIZE <= tb->pc ||
622 address >= tb->pc + tb->size)) {
623 printf("ERROR invalidate: address=%08lx PC=%08lx size=%04x\n",
624 address, (long)tb->pc, tb->size);
630 /* verify that all the pages have correct rights for code */
631 static void tb_page_check(void)
633 TranslationBlock *tb;
634 int i, flags1, flags2;
636 for(i = 0;i < CODE_GEN_PHYS_HASH_SIZE; i++) {
637 for(tb = tb_phys_hash[i]; tb != NULL; tb = tb->phys_hash_next) {
638 flags1 = page_get_flags(tb->pc);
639 flags2 = page_get_flags(tb->pc + tb->size - 1);
640 if ((flags1 & PAGE_WRITE) || (flags2 & PAGE_WRITE)) {
641 printf("ERROR page flags: PC=%08lx size=%04x f1=%x f2=%x\n",
642 (long)tb->pc, tb->size, flags1, flags2);
648 static void tb_jmp_check(TranslationBlock *tb)
650 TranslationBlock *tb1;
651 unsigned int n1;
653 /* suppress any remaining jumps to this TB */
654 tb1 = tb->jmp_first;
655 for(;;) {
656 n1 = (long)tb1 & 3;
657 tb1 = (TranslationBlock *)((long)tb1 & ~3);
658 if (n1 == 2)
659 break;
660 tb1 = tb1->jmp_next[n1];
662 /* check end of list */
663 if (tb1 != tb) {
664 printf("ERROR: jmp_list from 0x%08lx\n", (long)tb);
668 #endif
670 /* invalidate one TB */
671 static inline void tb_remove(TranslationBlock **ptb, TranslationBlock *tb,
672 int next_offset)
674 TranslationBlock *tb1;
675 for(;;) {
676 tb1 = *ptb;
677 if (tb1 == tb) {
678 *ptb = *(TranslationBlock **)((char *)tb1 + next_offset);
679 break;
681 ptb = (TranslationBlock **)((char *)tb1 + next_offset);
685 static inline void tb_page_remove(TranslationBlock **ptb, TranslationBlock *tb)
687 TranslationBlock *tb1;
688 unsigned int n1;
690 for(;;) {
691 tb1 = *ptb;
692 n1 = (long)tb1 & 3;
693 tb1 = (TranslationBlock *)((long)tb1 & ~3);
694 if (tb1 == tb) {
695 *ptb = tb1->page_next[n1];
696 break;
698 ptb = &tb1->page_next[n1];
702 static inline void tb_jmp_remove(TranslationBlock *tb, int n)
704 TranslationBlock *tb1, **ptb;
705 unsigned int n1;
707 ptb = &tb->jmp_next[n];
708 tb1 = *ptb;
709 if (tb1) {
710 /* find tb(n) in circular list */
711 for(;;) {
712 tb1 = *ptb;
713 n1 = (long)tb1 & 3;
714 tb1 = (TranslationBlock *)((long)tb1 & ~3);
715 if (n1 == n && tb1 == tb)
716 break;
717 if (n1 == 2) {
718 ptb = &tb1->jmp_first;
719 } else {
720 ptb = &tb1->jmp_next[n1];
723 /* now we can suppress tb(n) from the list */
724 *ptb = tb->jmp_next[n];
726 tb->jmp_next[n] = NULL;
730 /* reset the jump entry 'n' of a TB so that it is not chained to
731 another TB */
732 static inline void tb_reset_jump(TranslationBlock *tb, int n)
734 tb_set_jmp_target(tb, n, (unsigned long)(tb->tc_ptr + tb->tb_next_offset[n]));
737 void tb_phys_invalidate(TranslationBlock *tb, target_ulong page_addr)
739 CPUState *env;
740 PageDesc *p;
741 unsigned int h, n1;
742 target_phys_addr_t phys_pc;
743 TranslationBlock *tb1, *tb2;
745 /* remove the TB from the hash list */
746 phys_pc = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
747 h = tb_phys_hash_func(phys_pc);
748 tb_remove(&tb_phys_hash[h], tb,
749 offsetof(TranslationBlock, phys_hash_next));
751 /* remove the TB from the page list */
752 if (tb->page_addr[0] != page_addr) {
753 p = page_find(tb->page_addr[0] >> TARGET_PAGE_BITS);
754 tb_page_remove(&p->first_tb, tb);
755 invalidate_page_bitmap(p);
757 if (tb->page_addr[1] != -1 && tb->page_addr[1] != page_addr) {
758 p = page_find(tb->page_addr[1] >> TARGET_PAGE_BITS);
759 tb_page_remove(&p->first_tb, tb);
760 invalidate_page_bitmap(p);
763 tb_invalidated_flag = 1;
765 /* remove the TB from the hash list */
766 h = tb_jmp_cache_hash_func(tb->pc);
767 for(env = first_cpu; env != NULL; env = env->next_cpu) {
768 if (env->tb_jmp_cache[h] == tb)
769 env->tb_jmp_cache[h] = NULL;
772 /* suppress this TB from the two jump lists */
773 tb_jmp_remove(tb, 0);
774 tb_jmp_remove(tb, 1);
776 /* suppress any remaining jumps to this TB */
777 tb1 = tb->jmp_first;
778 for(;;) {
779 n1 = (long)tb1 & 3;
780 if (n1 == 2)
781 break;
782 tb1 = (TranslationBlock *)((long)tb1 & ~3);
783 tb2 = tb1->jmp_next[n1];
784 tb_reset_jump(tb1, n1);
785 tb1->jmp_next[n1] = NULL;
786 tb1 = tb2;
788 tb->jmp_first = (TranslationBlock *)((long)tb | 2); /* fail safe */
790 tb_phys_invalidate_count++;
793 static inline void set_bits(uint8_t *tab, int start, int len)
795 int end, mask, end1;
797 end = start + len;
798 tab += start >> 3;
799 mask = 0xff << (start & 7);
800 if ((start & ~7) == (end & ~7)) {
801 if (start < end) {
802 mask &= ~(0xff << (end & 7));
803 *tab |= mask;
805 } else {
806 *tab++ |= mask;
807 start = (start + 8) & ~7;
808 end1 = end & ~7;
809 while (start < end1) {
810 *tab++ = 0xff;
811 start += 8;
813 if (start < end) {
814 mask = ~(0xff << (end & 7));
815 *tab |= mask;
820 static void build_page_bitmap(PageDesc *p)
822 int n, tb_start, tb_end;
823 TranslationBlock *tb;
825 p->code_bitmap = qemu_mallocz(TARGET_PAGE_SIZE / 8);
827 tb = p->first_tb;
828 while (tb != NULL) {
829 n = (long)tb & 3;
830 tb = (TranslationBlock *)((long)tb & ~3);
831 /* NOTE: this is subtle as a TB may span two physical pages */
832 if (n == 0) {
833 /* NOTE: tb_end may be after the end of the page, but
834 it is not a problem */
835 tb_start = tb->pc & ~TARGET_PAGE_MASK;
836 tb_end = tb_start + tb->size;
837 if (tb_end > TARGET_PAGE_SIZE)
838 tb_end = TARGET_PAGE_SIZE;
839 } else {
840 tb_start = 0;
841 tb_end = ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
843 set_bits(p->code_bitmap, tb_start, tb_end - tb_start);
844 tb = tb->page_next[n];
848 TranslationBlock *tb_gen_code(CPUState *env,
849 target_ulong pc, target_ulong cs_base,
850 int flags, int cflags)
852 TranslationBlock *tb;
853 uint8_t *tc_ptr;
854 target_ulong phys_pc, phys_page2, virt_page2;
855 int code_gen_size;
857 phys_pc = get_phys_addr_code(env, pc);
858 tb = tb_alloc(pc);
859 if (!tb) {
860 /* flush must be done */
861 tb_flush(env);
862 /* cannot fail at this point */
863 tb = tb_alloc(pc);
864 /* Don't forget to invalidate previous TB info. */
865 tb_invalidated_flag = 1;
867 tc_ptr = code_gen_ptr;
868 tb->tc_ptr = tc_ptr;
869 tb->cs_base = cs_base;
870 tb->flags = flags;
871 tb->cflags = cflags;
872 cpu_gen_code(env, tb, &code_gen_size);
873 code_gen_ptr = (void *)(((unsigned long)code_gen_ptr + code_gen_size + CODE_GEN_ALIGN - 1) & ~(CODE_GEN_ALIGN - 1));
875 /* check next page if needed */
876 virt_page2 = (pc + tb->size - 1) & TARGET_PAGE_MASK;
877 phys_page2 = -1;
878 if ((pc & TARGET_PAGE_MASK) != virt_page2) {
879 phys_page2 = get_phys_addr_code(env, virt_page2);
881 tb_link_phys(tb, phys_pc, phys_page2);
882 return tb;
885 /* invalidate all TBs which intersect with the target physical page
886 starting in range [start;end[. NOTE: start and end must refer to
887 the same physical page. 'is_cpu_write_access' should be true if called
888 from a real cpu write access: the virtual CPU will exit the current
889 TB if code is modified inside this TB. */
890 void tb_invalidate_phys_page_range(target_phys_addr_t start, target_phys_addr_t end,
891 int is_cpu_write_access)
893 TranslationBlock *tb, *tb_next, *saved_tb;
894 CPUState *env = cpu_single_env;
895 target_ulong tb_start, tb_end;
896 PageDesc *p;
897 int n;
898 #ifdef TARGET_HAS_PRECISE_SMC
899 int current_tb_not_found = is_cpu_write_access;
900 TranslationBlock *current_tb = NULL;
901 int current_tb_modified = 0;
902 target_ulong current_pc = 0;
903 target_ulong current_cs_base = 0;
904 int current_flags = 0;
905 #endif /* TARGET_HAS_PRECISE_SMC */
907 p = page_find(start >> TARGET_PAGE_BITS);
908 if (!p)
909 return;
910 if (!p->code_bitmap &&
911 ++p->code_write_count >= SMC_BITMAP_USE_THRESHOLD &&
912 is_cpu_write_access) {
913 /* build code bitmap */
914 build_page_bitmap(p);
917 /* we remove all the TBs in the range [start, end[ */
918 /* XXX: see if in some cases it could be faster to invalidate all the code */
919 tb = p->first_tb;
920 while (tb != NULL) {
921 n = (long)tb & 3;
922 tb = (TranslationBlock *)((long)tb & ~3);
923 tb_next = tb->page_next[n];
924 /* NOTE: this is subtle as a TB may span two physical pages */
925 if (n == 0) {
926 /* NOTE: tb_end may be after the end of the page, but
927 it is not a problem */
928 tb_start = tb->page_addr[0] + (tb->pc & ~TARGET_PAGE_MASK);
929 tb_end = tb_start + tb->size;
930 } else {
931 tb_start = tb->page_addr[1];
932 tb_end = tb_start + ((tb->pc + tb->size) & ~TARGET_PAGE_MASK);
934 if (!(tb_end <= start || tb_start >= end)) {
935 #ifdef TARGET_HAS_PRECISE_SMC
936 if (current_tb_not_found) {
937 current_tb_not_found = 0;
938 current_tb = NULL;
939 if (env->mem_io_pc) {
940 /* now we have a real cpu fault */
941 current_tb = tb_find_pc(env->mem_io_pc);
944 if (current_tb == tb &&
945 (current_tb->cflags & CF_COUNT_MASK) != 1) {
946 /* If we are modifying the current TB, we must stop
947 its execution. We could be more precise by checking
948 that the modification is after the current PC, but it
949 would require a specialized function to partially
950 restore the CPU state */
952 current_tb_modified = 1;
953 cpu_restore_state(current_tb, env,
954 env->mem_io_pc, NULL);
955 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
956 &current_flags);
958 #endif /* TARGET_HAS_PRECISE_SMC */
959 /* we need to do that to handle the case where a signal
960 occurs while doing tb_phys_invalidate() */
961 saved_tb = NULL;
962 if (env) {
963 saved_tb = env->current_tb;
964 env->current_tb = NULL;
966 tb_phys_invalidate(tb, -1);
967 if (env) {
968 env->current_tb = saved_tb;
969 if (env->interrupt_request && env->current_tb)
970 cpu_interrupt(env, env->interrupt_request);
973 tb = tb_next;
975 #if !defined(CONFIG_USER_ONLY)
976 /* if no code remaining, no need to continue to use slow writes */
977 if (!p->first_tb) {
978 invalidate_page_bitmap(p);
979 if (is_cpu_write_access) {
980 tlb_unprotect_code_phys(env, start, env->mem_io_vaddr);
983 #endif
984 #ifdef TARGET_HAS_PRECISE_SMC
985 if (current_tb_modified) {
986 /* we generate a block containing just the instruction
987 modifying the memory. It will ensure that it cannot modify
988 itself */
989 env->current_tb = NULL;
990 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
991 cpu_resume_from_signal(env, NULL);
993 #endif
996 /* len must be <= 8 and start must be a multiple of len */
997 static inline void tb_invalidate_phys_page_fast(target_phys_addr_t start, int len)
999 PageDesc *p;
1000 int offset, b;
1001 #if 0
1002 if (1) {
1003 qemu_log("modifying code at 0x%x size=%d EIP=%x PC=%08x\n",
1004 cpu_single_env->mem_io_vaddr, len,
1005 cpu_single_env->eip,
1006 cpu_single_env->eip + (long)cpu_single_env->segs[R_CS].base);
1008 #endif
1009 p = page_find(start >> TARGET_PAGE_BITS);
1010 if (!p)
1011 return;
1012 if (p->code_bitmap) {
1013 offset = start & ~TARGET_PAGE_MASK;
1014 b = p->code_bitmap[offset >> 3] >> (offset & 7);
1015 if (b & ((1 << len) - 1))
1016 goto do_invalidate;
1017 } else {
1018 do_invalidate:
1019 tb_invalidate_phys_page_range(start, start + len, 1);
1023 #if !defined(CONFIG_SOFTMMU)
1024 static void tb_invalidate_phys_page(target_phys_addr_t addr,
1025 unsigned long pc, void *puc)
1027 TranslationBlock *tb;
1028 PageDesc *p;
1029 int n;
1030 #ifdef TARGET_HAS_PRECISE_SMC
1031 TranslationBlock *current_tb = NULL;
1032 CPUState *env = cpu_single_env;
1033 int current_tb_modified = 0;
1034 target_ulong current_pc = 0;
1035 target_ulong current_cs_base = 0;
1036 int current_flags = 0;
1037 #endif
1039 addr &= TARGET_PAGE_MASK;
1040 p = page_find(addr >> TARGET_PAGE_BITS);
1041 if (!p)
1042 return;
1043 tb = p->first_tb;
1044 #ifdef TARGET_HAS_PRECISE_SMC
1045 if (tb && pc != 0) {
1046 current_tb = tb_find_pc(pc);
1048 #endif
1049 while (tb != NULL) {
1050 n = (long)tb & 3;
1051 tb = (TranslationBlock *)((long)tb & ~3);
1052 #ifdef TARGET_HAS_PRECISE_SMC
1053 if (current_tb == tb &&
1054 (current_tb->cflags & CF_COUNT_MASK) != 1) {
1055 /* If we are modifying the current TB, we must stop
1056 its execution. We could be more precise by checking
1057 that the modification is after the current PC, but it
1058 would require a specialized function to partially
1059 restore the CPU state */
1061 current_tb_modified = 1;
1062 cpu_restore_state(current_tb, env, pc, puc);
1063 cpu_get_tb_cpu_state(env, &current_pc, &current_cs_base,
1064 &current_flags);
1066 #endif /* TARGET_HAS_PRECISE_SMC */
1067 tb_phys_invalidate(tb, addr);
1068 tb = tb->page_next[n];
1070 p->first_tb = NULL;
1071 #ifdef TARGET_HAS_PRECISE_SMC
1072 if (current_tb_modified) {
1073 /* we generate a block containing just the instruction
1074 modifying the memory. It will ensure that it cannot modify
1075 itself */
1076 env->current_tb = NULL;
1077 tb_gen_code(env, current_pc, current_cs_base, current_flags, 1);
1078 cpu_resume_from_signal(env, puc);
1080 #endif
1082 #endif
1084 /* add the tb in the target page and protect it if necessary */
1085 static inline void tb_alloc_page(TranslationBlock *tb,
1086 unsigned int n, target_ulong page_addr)
1088 PageDesc *p;
1089 TranslationBlock *last_first_tb;
1091 tb->page_addr[n] = page_addr;
1092 p = page_find_alloc(page_addr >> TARGET_PAGE_BITS);
1093 tb->page_next[n] = p->first_tb;
1094 last_first_tb = p->first_tb;
1095 p->first_tb = (TranslationBlock *)((long)tb | n);
1096 invalidate_page_bitmap(p);
1098 #if defined(TARGET_HAS_SMC) || 1
1100 #if defined(CONFIG_USER_ONLY)
1101 if (p->flags & PAGE_WRITE) {
1102 target_ulong addr;
1103 PageDesc *p2;
1104 int prot;
1106 /* force the host page as non writable (writes will have a
1107 page fault + mprotect overhead) */
1108 page_addr &= qemu_host_page_mask;
1109 prot = 0;
1110 for(addr = page_addr; addr < page_addr + qemu_host_page_size;
1111 addr += TARGET_PAGE_SIZE) {
1113 p2 = page_find (addr >> TARGET_PAGE_BITS);
1114 if (!p2)
1115 continue;
1116 prot |= p2->flags;
1117 p2->flags &= ~PAGE_WRITE;
1118 page_get_flags(addr);
1120 mprotect(g2h(page_addr), qemu_host_page_size,
1121 (prot & PAGE_BITS) & ~PAGE_WRITE);
1122 #ifdef DEBUG_TB_INVALIDATE
1123 printf("protecting code page: 0x" TARGET_FMT_lx "\n",
1124 page_addr);
1125 #endif
1127 #else
1128 /* if some code is already present, then the pages are already
1129 protected. So we handle the case where only the first TB is
1130 allocated in a physical page */
1131 if (!last_first_tb) {
1132 tlb_protect_code(page_addr);
1134 #endif
1136 #endif /* TARGET_HAS_SMC */
1139 /* Allocate a new translation block. Flush the translation buffer if
1140 too many translation blocks or too much generated code. */
1141 TranslationBlock *tb_alloc(target_ulong pc)
1143 TranslationBlock *tb;
1145 if (nb_tbs >= code_gen_max_blocks ||
1146 (code_gen_ptr - code_gen_buffer) >= code_gen_buffer_max_size)
1147 return NULL;
1148 tb = &tbs[nb_tbs++];
1149 tb->pc = pc;
1150 tb->cflags = 0;
1151 return tb;
1154 void tb_free(TranslationBlock *tb)
1156 /* In practice this is mostly used for single use temporary TB
1157 Ignore the hard cases and just back up if this TB happens to
1158 be the last one generated. */
1159 if (nb_tbs > 0 && tb == &tbs[nb_tbs - 1]) {
1160 code_gen_ptr = tb->tc_ptr;
1161 nb_tbs--;
1165 /* add a new TB and link it to the physical page tables. phys_page2 is
1166 (-1) to indicate that only one page contains the TB. */
1167 void tb_link_phys(TranslationBlock *tb,
1168 target_ulong phys_pc, target_ulong phys_page2)
1170 unsigned int h;
1171 TranslationBlock **ptb;
1173 /* Grab the mmap lock to stop another thread invalidating this TB
1174 before we are done. */
1175 mmap_lock();
1176 /* add in the physical hash table */
1177 h = tb_phys_hash_func(phys_pc);
1178 ptb = &tb_phys_hash[h];
1179 tb->phys_hash_next = *ptb;
1180 *ptb = tb;
1182 /* add in the page list */
1183 tb_alloc_page(tb, 0, phys_pc & TARGET_PAGE_MASK);
1184 if (phys_page2 != -1)
1185 tb_alloc_page(tb, 1, phys_page2);
1186 else
1187 tb->page_addr[1] = -1;
1189 tb->jmp_first = (TranslationBlock *)((long)tb | 2);
1190 tb->jmp_next[0] = NULL;
1191 tb->jmp_next[1] = NULL;
1193 /* init original jump addresses */
1194 if (tb->tb_next_offset[0] != 0xffff)
1195 tb_reset_jump(tb, 0);
1196 if (tb->tb_next_offset[1] != 0xffff)
1197 tb_reset_jump(tb, 1);
1199 #ifdef DEBUG_TB_CHECK
1200 tb_page_check();
1201 #endif
1202 mmap_unlock();
1205 /* find the TB 'tb' such that tb[0].tc_ptr <= tc_ptr <
1206 tb[1].tc_ptr. Return NULL if not found */
1207 TranslationBlock *tb_find_pc(unsigned long tc_ptr)
1209 int m_min, m_max, m;
1210 unsigned long v;
1211 TranslationBlock *tb;
1213 if (nb_tbs <= 0)
1214 return NULL;
1215 if (tc_ptr < (unsigned long)code_gen_buffer ||
1216 tc_ptr >= (unsigned long)code_gen_ptr)
1217 return NULL;
1218 /* binary search (cf Knuth) */
1219 m_min = 0;
1220 m_max = nb_tbs - 1;
1221 while (m_min <= m_max) {
1222 m = (m_min + m_max) >> 1;
1223 tb = &tbs[m];
1224 v = (unsigned long)tb->tc_ptr;
1225 if (v == tc_ptr)
1226 return tb;
1227 else if (tc_ptr < v) {
1228 m_max = m - 1;
1229 } else {
1230 m_min = m + 1;
1233 return &tbs[m_max];
1236 static void tb_reset_jump_recursive(TranslationBlock *tb);
1238 static inline void tb_reset_jump_recursive2(TranslationBlock *tb, int n)
1240 TranslationBlock *tb1, *tb_next, **ptb;
1241 unsigned int n1;
1243 tb1 = tb->jmp_next[n];
1244 if (tb1 != NULL) {
1245 /* find head of list */
1246 for(;;) {
1247 n1 = (long)tb1 & 3;
1248 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1249 if (n1 == 2)
1250 break;
1251 tb1 = tb1->jmp_next[n1];
1253 /* we are now sure now that tb jumps to tb1 */
1254 tb_next = tb1;
1256 /* remove tb from the jmp_first list */
1257 ptb = &tb_next->jmp_first;
1258 for(;;) {
1259 tb1 = *ptb;
1260 n1 = (long)tb1 & 3;
1261 tb1 = (TranslationBlock *)((long)tb1 & ~3);
1262 if (n1 == n && tb1 == tb)
1263 break;
1264 ptb = &tb1->jmp_next[n1];
1266 *ptb = tb->jmp_next[n];
1267 tb->jmp_next[n] = NULL;
1269 /* suppress the jump to next tb in generated code */
1270 tb_reset_jump(tb, n);
1272 /* suppress jumps in the tb on which we could have jumped */
1273 tb_reset_jump_recursive(tb_next);
1277 static void tb_reset_jump_recursive(TranslationBlock *tb)
1279 tb_reset_jump_recursive2(tb, 0);
1280 tb_reset_jump_recursive2(tb, 1);
1283 #if defined(TARGET_HAS_ICE)
1284 static void breakpoint_invalidate(CPUState *env, target_ulong pc)
1286 target_phys_addr_t addr;
1287 target_ulong pd;
1288 ram_addr_t ram_addr;
1289 PhysPageDesc *p;
1291 addr = cpu_get_phys_page_debug(env, pc);
1292 p = phys_page_find(addr >> TARGET_PAGE_BITS);
1293 if (!p) {
1294 pd = IO_MEM_UNASSIGNED;
1295 } else {
1296 pd = p->phys_offset;
1298 ram_addr = (pd & TARGET_PAGE_MASK) | (pc & ~TARGET_PAGE_MASK);
1299 tb_invalidate_phys_page_range(ram_addr, ram_addr + 1, 0);
1301 #endif
1303 /* Add a watchpoint. */
1304 int cpu_watchpoint_insert(CPUState *env, target_ulong addr, target_ulong len,
1305 int flags, CPUWatchpoint **watchpoint)
1307 target_ulong len_mask = ~(len - 1);
1308 CPUWatchpoint *wp;
1310 /* sanity checks: allow power-of-2 lengths, deny unaligned watchpoints */
1311 if ((len != 1 && len != 2 && len != 4 && len != 8) || (addr & ~len_mask)) {
1312 fprintf(stderr, "qemu: tried to set invalid watchpoint at "
1313 TARGET_FMT_lx ", len=" TARGET_FMT_lu "\n", addr, len);
1314 return -EINVAL;
1316 wp = qemu_malloc(sizeof(*wp));
1318 wp->vaddr = addr;
1319 wp->len_mask = len_mask;
1320 wp->flags = flags;
1322 /* keep all GDB-injected watchpoints in front */
1323 if (flags & BP_GDB)
1324 TAILQ_INSERT_HEAD(&env->watchpoints, wp, entry);
1325 else
1326 TAILQ_INSERT_TAIL(&env->watchpoints, wp, entry);
1328 tlb_flush_page(env, addr);
1330 if (watchpoint)
1331 *watchpoint = wp;
1332 return 0;
1335 /* Remove a specific watchpoint. */
1336 int cpu_watchpoint_remove(CPUState *env, target_ulong addr, target_ulong len,
1337 int flags)
1339 target_ulong len_mask = ~(len - 1);
1340 CPUWatchpoint *wp;
1342 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1343 if (addr == wp->vaddr && len_mask == wp->len_mask
1344 && flags == (wp->flags & ~BP_WATCHPOINT_HIT)) {
1345 cpu_watchpoint_remove_by_ref(env, wp);
1346 return 0;
1349 return -ENOENT;
1352 /* Remove a specific watchpoint by reference. */
1353 void cpu_watchpoint_remove_by_ref(CPUState *env, CPUWatchpoint *watchpoint)
1355 TAILQ_REMOVE(&env->watchpoints, watchpoint, entry);
1357 tlb_flush_page(env, watchpoint->vaddr);
1359 qemu_free(watchpoint);
1362 /* Remove all matching watchpoints. */
1363 void cpu_watchpoint_remove_all(CPUState *env, int mask)
1365 CPUWatchpoint *wp, *next;
1367 TAILQ_FOREACH_SAFE(wp, &env->watchpoints, entry, next) {
1368 if (wp->flags & mask)
1369 cpu_watchpoint_remove_by_ref(env, wp);
1373 /* Add a breakpoint. */
1374 int cpu_breakpoint_insert(CPUState *env, target_ulong pc, int flags,
1375 CPUBreakpoint **breakpoint)
1377 #if defined(TARGET_HAS_ICE)
1378 CPUBreakpoint *bp;
1380 bp = qemu_malloc(sizeof(*bp));
1382 bp->pc = pc;
1383 bp->flags = flags;
1385 /* keep all GDB-injected breakpoints in front */
1386 if (flags & BP_GDB)
1387 TAILQ_INSERT_HEAD(&env->breakpoints, bp, entry);
1388 else
1389 TAILQ_INSERT_TAIL(&env->breakpoints, bp, entry);
1391 breakpoint_invalidate(env, pc);
1393 if (breakpoint)
1394 *breakpoint = bp;
1395 return 0;
1396 #else
1397 return -ENOSYS;
1398 #endif
1401 /* Remove a specific breakpoint. */
1402 int cpu_breakpoint_remove(CPUState *env, target_ulong pc, int flags)
1404 #if defined(TARGET_HAS_ICE)
1405 CPUBreakpoint *bp;
1407 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1408 if (bp->pc == pc && bp->flags == flags) {
1409 cpu_breakpoint_remove_by_ref(env, bp);
1410 return 0;
1413 return -ENOENT;
1414 #else
1415 return -ENOSYS;
1416 #endif
1419 /* Remove a specific breakpoint by reference. */
1420 void cpu_breakpoint_remove_by_ref(CPUState *env, CPUBreakpoint *breakpoint)
1422 #if defined(TARGET_HAS_ICE)
1423 TAILQ_REMOVE(&env->breakpoints, breakpoint, entry);
1425 breakpoint_invalidate(env, breakpoint->pc);
1427 qemu_free(breakpoint);
1428 #endif
1431 /* Remove all matching breakpoints. */
1432 void cpu_breakpoint_remove_all(CPUState *env, int mask)
1434 #if defined(TARGET_HAS_ICE)
1435 CPUBreakpoint *bp, *next;
1437 TAILQ_FOREACH_SAFE(bp, &env->breakpoints, entry, next) {
1438 if (bp->flags & mask)
1439 cpu_breakpoint_remove_by_ref(env, bp);
1441 #endif
1444 /* enable or disable single step mode. EXCP_DEBUG is returned by the
1445 CPU loop after each instruction */
1446 void cpu_single_step(CPUState *env, int enabled)
1448 #if defined(TARGET_HAS_ICE)
1449 if (env->singlestep_enabled != enabled) {
1450 env->singlestep_enabled = enabled;
1451 /* must flush all the translated code to avoid inconsistancies */
1452 /* XXX: only flush what is necessary */
1453 tb_flush(env);
1455 #endif
1458 /* enable or disable low levels log */
1459 void cpu_set_log(int log_flags)
1461 loglevel = log_flags;
1462 if (loglevel && !logfile) {
1463 logfile = fopen(logfilename, log_append ? "a" : "w");
1464 if (!logfile) {
1465 perror(logfilename);
1466 _exit(1);
1468 #if !defined(CONFIG_SOFTMMU)
1469 /* must avoid mmap() usage of glibc by setting a buffer "by hand" */
1471 static char logfile_buf[4096];
1472 setvbuf(logfile, logfile_buf, _IOLBF, sizeof(logfile_buf));
1474 #else
1475 setvbuf(logfile, NULL, _IOLBF, 0);
1476 #endif
1477 log_append = 1;
1479 if (!loglevel && logfile) {
1480 fclose(logfile);
1481 logfile = NULL;
1485 void cpu_set_log_filename(const char *filename)
1487 logfilename = strdup(filename);
1488 if (logfile) {
1489 fclose(logfile);
1490 logfile = NULL;
1492 cpu_set_log(loglevel);
1495 /* mask must never be zero, except for A20 change call */
1496 void cpu_interrupt(CPUState *env, int mask)
1498 #if !defined(USE_NPTL)
1499 TranslationBlock *tb;
1500 static spinlock_t interrupt_lock = SPIN_LOCK_UNLOCKED;
1501 #endif
1502 int old_mask;
1504 old_mask = env->interrupt_request;
1505 /* FIXME: This is probably not threadsafe. A different thread could
1506 be in the middle of a read-modify-write operation. */
1507 env->interrupt_request |= mask;
1508 #if defined(USE_NPTL)
1509 /* FIXME: TB unchaining isn't SMP safe. For now just ignore the
1510 problem and hope the cpu will stop of its own accord. For userspace
1511 emulation this often isn't actually as bad as it sounds. Often
1512 signals are used primarily to interrupt blocking syscalls. */
1513 #else
1514 if (use_icount) {
1515 env->icount_decr.u16.high = 0xffff;
1516 #ifndef CONFIG_USER_ONLY
1517 /* CPU_INTERRUPT_EXIT isn't a real interrupt. It just means
1518 an async event happened and we need to process it. */
1519 if (!can_do_io(env)
1520 && (mask & ~(old_mask | CPU_INTERRUPT_EXIT)) != 0) {
1521 cpu_abort(env, "Raised interrupt while not in I/O function");
1523 #endif
1524 } else {
1525 tb = env->current_tb;
1526 /* if the cpu is currently executing code, we must unlink it and
1527 all the potentially executing TB */
1528 if (tb && !testandset(&interrupt_lock)) {
1529 env->current_tb = NULL;
1530 tb_reset_jump_recursive(tb);
1531 resetlock(&interrupt_lock);
1534 #endif
1537 void cpu_reset_interrupt(CPUState *env, int mask)
1539 env->interrupt_request &= ~mask;
1542 const CPULogItem cpu_log_items[] = {
1543 { CPU_LOG_TB_OUT_ASM, "out_asm",
1544 "show generated host assembly code for each compiled TB" },
1545 { CPU_LOG_TB_IN_ASM, "in_asm",
1546 "show target assembly code for each compiled TB" },
1547 { CPU_LOG_TB_OP, "op",
1548 "show micro ops for each compiled TB" },
1549 { CPU_LOG_TB_OP_OPT, "op_opt",
1550 "show micro ops "
1551 #ifdef TARGET_I386
1552 "before eflags optimization and "
1553 #endif
1554 "after liveness analysis" },
1555 { CPU_LOG_INT, "int",
1556 "show interrupts/exceptions in short format" },
1557 { CPU_LOG_EXEC, "exec",
1558 "show trace before each executed TB (lots of logs)" },
1559 { CPU_LOG_TB_CPU, "cpu",
1560 "show CPU state before block translation" },
1561 #ifdef TARGET_I386
1562 { CPU_LOG_PCALL, "pcall",
1563 "show protected mode far calls/returns/exceptions" },
1564 { CPU_LOG_RESET, "cpu_reset",
1565 "show CPU state before CPU resets" },
1566 #endif
1567 #ifdef DEBUG_IOPORT
1568 { CPU_LOG_IOPORT, "ioport",
1569 "show all i/o ports accesses" },
1570 #endif
1571 { 0, NULL, NULL },
1574 static int cmp1(const char *s1, int n, const char *s2)
1576 if (strlen(s2) != n)
1577 return 0;
1578 return memcmp(s1, s2, n) == 0;
1581 /* takes a comma separated list of log masks. Return 0 if error. */
1582 int cpu_str_to_log_mask(const char *str)
1584 const CPULogItem *item;
1585 int mask;
1586 const char *p, *p1;
1588 p = str;
1589 mask = 0;
1590 for(;;) {
1591 p1 = strchr(p, ',');
1592 if (!p1)
1593 p1 = p + strlen(p);
1594 if(cmp1(p,p1-p,"all")) {
1595 for(item = cpu_log_items; item->mask != 0; item++) {
1596 mask |= item->mask;
1598 } else {
1599 for(item = cpu_log_items; item->mask != 0; item++) {
1600 if (cmp1(p, p1 - p, item->name))
1601 goto found;
1603 return 0;
1605 found:
1606 mask |= item->mask;
1607 if (*p1 != ',')
1608 break;
1609 p = p1 + 1;
1611 return mask;
1614 void cpu_abort(CPUState *env, const char *fmt, ...)
1616 va_list ap;
1617 va_list ap2;
1619 va_start(ap, fmt);
1620 va_copy(ap2, ap);
1621 fprintf(stderr, "qemu: fatal: ");
1622 vfprintf(stderr, fmt, ap);
1623 fprintf(stderr, "\n");
1624 #ifdef TARGET_I386
1625 cpu_dump_state(env, stderr, fprintf, X86_DUMP_FPU | X86_DUMP_CCOP);
1626 #else
1627 cpu_dump_state(env, stderr, fprintf, 0);
1628 #endif
1629 if (qemu_log_enabled()) {
1630 qemu_log("qemu: fatal: ");
1631 qemu_log_vprintf(fmt, ap2);
1632 qemu_log("\n");
1633 #ifdef TARGET_I386
1634 log_cpu_state(env, X86_DUMP_FPU | X86_DUMP_CCOP);
1635 #else
1636 log_cpu_state(env, 0);
1637 #endif
1638 qemu_log_flush();
1639 qemu_log_close();
1641 va_end(ap2);
1642 va_end(ap);
1643 abort();
1646 CPUState *cpu_copy(CPUState *env)
1648 CPUState *new_env = cpu_init(env->cpu_model_str);
1649 CPUState *next_cpu = new_env->next_cpu;
1650 int cpu_index = new_env->cpu_index;
1651 #if defined(TARGET_HAS_ICE)
1652 CPUBreakpoint *bp;
1653 CPUWatchpoint *wp;
1654 #endif
1656 memcpy(new_env, env, sizeof(CPUState));
1658 /* Preserve chaining and index. */
1659 new_env->next_cpu = next_cpu;
1660 new_env->cpu_index = cpu_index;
1662 /* Clone all break/watchpoints.
1663 Note: Once we support ptrace with hw-debug register access, make sure
1664 BP_CPU break/watchpoints are handled correctly on clone. */
1665 TAILQ_INIT(&env->breakpoints);
1666 TAILQ_INIT(&env->watchpoints);
1667 #if defined(TARGET_HAS_ICE)
1668 TAILQ_FOREACH(bp, &env->breakpoints, entry) {
1669 cpu_breakpoint_insert(new_env, bp->pc, bp->flags, NULL);
1671 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1672 cpu_watchpoint_insert(new_env, wp->vaddr, (~wp->len_mask) + 1,
1673 wp->flags, NULL);
1675 #endif
1677 return new_env;
1680 #if !defined(CONFIG_USER_ONLY)
1682 static inline void tlb_flush_jmp_cache(CPUState *env, target_ulong addr)
1684 unsigned int i;
1686 /* Discard jump cache entries for any tb which might potentially
1687 overlap the flushed page. */
1688 i = tb_jmp_cache_hash_page(addr - TARGET_PAGE_SIZE);
1689 memset (&env->tb_jmp_cache[i], 0,
1690 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1692 i = tb_jmp_cache_hash_page(addr);
1693 memset (&env->tb_jmp_cache[i], 0,
1694 TB_JMP_PAGE_SIZE * sizeof(TranslationBlock *));
1697 /* NOTE: if flush_global is true, also flush global entries (not
1698 implemented yet) */
1699 void tlb_flush(CPUState *env, int flush_global)
1701 int i;
1703 #if defined(DEBUG_TLB)
1704 printf("tlb_flush:\n");
1705 #endif
1706 /* must reset current TB so that interrupts cannot modify the
1707 links while we are modifying them */
1708 env->current_tb = NULL;
1710 for(i = 0; i < CPU_TLB_SIZE; i++) {
1711 env->tlb_table[0][i].addr_read = -1;
1712 env->tlb_table[0][i].addr_write = -1;
1713 env->tlb_table[0][i].addr_code = -1;
1714 env->tlb_table[1][i].addr_read = -1;
1715 env->tlb_table[1][i].addr_write = -1;
1716 env->tlb_table[1][i].addr_code = -1;
1717 #if (NB_MMU_MODES >= 3)
1718 env->tlb_table[2][i].addr_read = -1;
1719 env->tlb_table[2][i].addr_write = -1;
1720 env->tlb_table[2][i].addr_code = -1;
1721 #if (NB_MMU_MODES == 4)
1722 env->tlb_table[3][i].addr_read = -1;
1723 env->tlb_table[3][i].addr_write = -1;
1724 env->tlb_table[3][i].addr_code = -1;
1725 #endif
1726 #endif
1729 memset (env->tb_jmp_cache, 0, TB_JMP_CACHE_SIZE * sizeof (void *));
1731 #ifdef USE_KQEMU
1732 if (env->kqemu_enabled) {
1733 kqemu_flush(env, flush_global);
1735 #endif
1736 tlb_flush_count++;
1739 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
1741 if (addr == (tlb_entry->addr_read &
1742 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1743 addr == (tlb_entry->addr_write &
1744 (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
1745 addr == (tlb_entry->addr_code &
1746 (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1747 tlb_entry->addr_read = -1;
1748 tlb_entry->addr_write = -1;
1749 tlb_entry->addr_code = -1;
1753 void tlb_flush_page(CPUState *env, target_ulong addr)
1755 int i;
1757 #if defined(DEBUG_TLB)
1758 printf("tlb_flush_page: " TARGET_FMT_lx "\n", addr);
1759 #endif
1760 /* must reset current TB so that interrupts cannot modify the
1761 links while we are modifying them */
1762 env->current_tb = NULL;
1764 addr &= TARGET_PAGE_MASK;
1765 i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1766 tlb_flush_entry(&env->tlb_table[0][i], addr);
1767 tlb_flush_entry(&env->tlb_table[1][i], addr);
1768 #if (NB_MMU_MODES >= 3)
1769 tlb_flush_entry(&env->tlb_table[2][i], addr);
1770 #if (NB_MMU_MODES == 4)
1771 tlb_flush_entry(&env->tlb_table[3][i], addr);
1772 #endif
1773 #endif
1775 tlb_flush_jmp_cache(env, addr);
1777 #ifdef USE_KQEMU
1778 if (env->kqemu_enabled) {
1779 kqemu_flush_page(env, addr);
1781 #endif
1784 /* update the TLBs so that writes to code in the virtual page 'addr'
1785 can be detected */
1786 static void tlb_protect_code(ram_addr_t ram_addr)
1788 cpu_physical_memory_reset_dirty(ram_addr,
1789 ram_addr + TARGET_PAGE_SIZE,
1790 CODE_DIRTY_FLAG);
1793 /* update the TLB so that writes in physical page 'phys_addr' are no longer
1794 tested for self modifying code */
1795 static void tlb_unprotect_code_phys(CPUState *env, ram_addr_t ram_addr,
1796 target_ulong vaddr)
1798 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] |= CODE_DIRTY_FLAG;
1801 static inline void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry,
1802 unsigned long start, unsigned long length)
1804 unsigned long addr;
1805 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1806 addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) + tlb_entry->addend;
1807 if ((addr - start) < length) {
1808 tlb_entry->addr_write = (tlb_entry->addr_write & TARGET_PAGE_MASK) | TLB_NOTDIRTY;
1813 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t end,
1814 int dirty_flags)
1816 CPUState *env;
1817 unsigned long length, start1;
1818 int i, mask, len;
1819 uint8_t *p;
1821 start &= TARGET_PAGE_MASK;
1822 end = TARGET_PAGE_ALIGN(end);
1824 length = end - start;
1825 if (length == 0)
1826 return;
1827 len = length >> TARGET_PAGE_BITS;
1828 #ifdef USE_KQEMU
1829 /* XXX: should not depend on cpu context */
1830 env = first_cpu;
1831 if (env->kqemu_enabled) {
1832 ram_addr_t addr;
1833 addr = start;
1834 for(i = 0; i < len; i++) {
1835 kqemu_set_notdirty(env, addr);
1836 addr += TARGET_PAGE_SIZE;
1839 #endif
1840 mask = ~dirty_flags;
1841 p = phys_ram_dirty + (start >> TARGET_PAGE_BITS);
1842 for(i = 0; i < len; i++)
1843 p[i] &= mask;
1845 /* we modify the TLB cache so that the dirty bit will be set again
1846 when accessing the range */
1847 start1 = start + (unsigned long)phys_ram_base;
1848 for(env = first_cpu; env != NULL; env = env->next_cpu) {
1849 for(i = 0; i < CPU_TLB_SIZE; i++)
1850 tlb_reset_dirty_range(&env->tlb_table[0][i], start1, length);
1851 for(i = 0; i < CPU_TLB_SIZE; i++)
1852 tlb_reset_dirty_range(&env->tlb_table[1][i], start1, length);
1853 #if (NB_MMU_MODES >= 3)
1854 for(i = 0; i < CPU_TLB_SIZE; i++)
1855 tlb_reset_dirty_range(&env->tlb_table[2][i], start1, length);
1856 #if (NB_MMU_MODES == 4)
1857 for(i = 0; i < CPU_TLB_SIZE; i++)
1858 tlb_reset_dirty_range(&env->tlb_table[3][i], start1, length);
1859 #endif
1860 #endif
1864 int cpu_physical_memory_set_dirty_tracking(int enable)
1866 in_migration = enable;
1867 return 0;
1870 int cpu_physical_memory_get_dirty_tracking(void)
1872 return in_migration;
1875 void cpu_physical_sync_dirty_bitmap(target_phys_addr_t start_addr, target_phys_addr_t end_addr)
1877 if (kvm_enabled())
1878 kvm_physical_sync_dirty_bitmap(start_addr, end_addr);
1881 static inline void tlb_update_dirty(CPUTLBEntry *tlb_entry)
1883 ram_addr_t ram_addr;
1885 if ((tlb_entry->addr_write & ~TARGET_PAGE_MASK) == IO_MEM_RAM) {
1886 ram_addr = (tlb_entry->addr_write & TARGET_PAGE_MASK) +
1887 tlb_entry->addend - (unsigned long)phys_ram_base;
1888 if (!cpu_physical_memory_is_dirty(ram_addr)) {
1889 tlb_entry->addr_write |= TLB_NOTDIRTY;
1894 /* update the TLB according to the current state of the dirty bits */
1895 void cpu_tlb_update_dirty(CPUState *env)
1897 int i;
1898 for(i = 0; i < CPU_TLB_SIZE; i++)
1899 tlb_update_dirty(&env->tlb_table[0][i]);
1900 for(i = 0; i < CPU_TLB_SIZE; i++)
1901 tlb_update_dirty(&env->tlb_table[1][i]);
1902 #if (NB_MMU_MODES >= 3)
1903 for(i = 0; i < CPU_TLB_SIZE; i++)
1904 tlb_update_dirty(&env->tlb_table[2][i]);
1905 #if (NB_MMU_MODES == 4)
1906 for(i = 0; i < CPU_TLB_SIZE; i++)
1907 tlb_update_dirty(&env->tlb_table[3][i]);
1908 #endif
1909 #endif
1912 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
1914 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY))
1915 tlb_entry->addr_write = vaddr;
1918 /* update the TLB corresponding to virtual page vaddr
1919 so that it is no longer dirty */
1920 static inline void tlb_set_dirty(CPUState *env, target_ulong vaddr)
1922 int i;
1924 vaddr &= TARGET_PAGE_MASK;
1925 i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1926 tlb_set_dirty1(&env->tlb_table[0][i], vaddr);
1927 tlb_set_dirty1(&env->tlb_table[1][i], vaddr);
1928 #if (NB_MMU_MODES >= 3)
1929 tlb_set_dirty1(&env->tlb_table[2][i], vaddr);
1930 #if (NB_MMU_MODES == 4)
1931 tlb_set_dirty1(&env->tlb_table[3][i], vaddr);
1932 #endif
1933 #endif
1936 /* add a new TLB entry. At most one entry for a given virtual address
1937 is permitted. Return 0 if OK or 2 if the page could not be mapped
1938 (can only happen in non SOFTMMU mode for I/O pages or pages
1939 conflicting with the host address space). */
1940 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
1941 target_phys_addr_t paddr, int prot,
1942 int mmu_idx, int is_softmmu)
1944 PhysPageDesc *p;
1945 unsigned long pd;
1946 unsigned int index;
1947 target_ulong address;
1948 target_ulong code_address;
1949 target_phys_addr_t addend;
1950 int ret;
1951 CPUTLBEntry *te;
1952 CPUWatchpoint *wp;
1953 target_phys_addr_t iotlb;
1955 p = phys_page_find(paddr >> TARGET_PAGE_BITS);
1956 if (!p) {
1957 pd = IO_MEM_UNASSIGNED;
1958 } else {
1959 pd = p->phys_offset;
1961 #if defined(DEBUG_TLB)
1962 printf("tlb_set_page: vaddr=" TARGET_FMT_lx " paddr=0x%08x prot=%x idx=%d smmu=%d pd=0x%08lx\n",
1963 vaddr, (int)paddr, prot, mmu_idx, is_softmmu, pd);
1964 #endif
1966 ret = 0;
1967 address = vaddr;
1968 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM && !(pd & IO_MEM_ROMD)) {
1969 /* IO memory case (romd handled later) */
1970 address |= TLB_MMIO;
1972 addend = (unsigned long)phys_ram_base + (pd & TARGET_PAGE_MASK);
1973 if ((pd & ~TARGET_PAGE_MASK) <= IO_MEM_ROM) {
1974 /* Normal RAM. */
1975 iotlb = pd & TARGET_PAGE_MASK;
1976 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM)
1977 iotlb |= IO_MEM_NOTDIRTY;
1978 else
1979 iotlb |= IO_MEM_ROM;
1980 } else {
1981 /* IO handlers are currently passed a phsical address.
1982 It would be nice to pass an offset from the base address
1983 of that region. This would avoid having to special case RAM,
1984 and avoid full address decoding in every device.
1985 We can't use the high bits of pd for this because
1986 IO_MEM_ROMD uses these as a ram address. */
1987 iotlb = (pd & ~TARGET_PAGE_MASK);
1988 if (p) {
1989 iotlb += p->region_offset;
1990 } else {
1991 iotlb += paddr;
1995 code_address = address;
1996 /* Make accesses to pages with watchpoints go via the
1997 watchpoint trap routines. */
1998 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
1999 if (vaddr == (wp->vaddr & TARGET_PAGE_MASK)) {
2000 iotlb = io_mem_watch + paddr;
2001 /* TODO: The memory case can be optimized by not trapping
2002 reads of pages with a write breakpoint. */
2003 address |= TLB_MMIO;
2007 index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
2008 env->iotlb[mmu_idx][index] = iotlb - vaddr;
2009 te = &env->tlb_table[mmu_idx][index];
2010 te->addend = addend - vaddr;
2011 if (prot & PAGE_READ) {
2012 te->addr_read = address;
2013 } else {
2014 te->addr_read = -1;
2017 if (prot & PAGE_EXEC) {
2018 te->addr_code = code_address;
2019 } else {
2020 te->addr_code = -1;
2022 if (prot & PAGE_WRITE) {
2023 if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_ROM ||
2024 (pd & IO_MEM_ROMD)) {
2025 /* Write access calls the I/O callback. */
2026 te->addr_write = address | TLB_MMIO;
2027 } else if ((pd & ~TARGET_PAGE_MASK) == IO_MEM_RAM &&
2028 !cpu_physical_memory_is_dirty(pd)) {
2029 te->addr_write = address | TLB_NOTDIRTY;
2030 } else {
2031 te->addr_write = address;
2033 } else {
2034 te->addr_write = -1;
2036 return ret;
2039 #else
2041 void tlb_flush(CPUState *env, int flush_global)
2045 void tlb_flush_page(CPUState *env, target_ulong addr)
2049 int tlb_set_page_exec(CPUState *env, target_ulong vaddr,
2050 target_phys_addr_t paddr, int prot,
2051 int mmu_idx, int is_softmmu)
2053 return 0;
2056 /* dump memory mappings */
2057 void page_dump(FILE *f)
2059 unsigned long start, end;
2060 int i, j, prot, prot1;
2061 PageDesc *p;
2063 fprintf(f, "%-8s %-8s %-8s %s\n",
2064 "start", "end", "size", "prot");
2065 start = -1;
2066 end = -1;
2067 prot = 0;
2068 for(i = 0; i <= L1_SIZE; i++) {
2069 if (i < L1_SIZE)
2070 p = l1_map[i];
2071 else
2072 p = NULL;
2073 for(j = 0;j < L2_SIZE; j++) {
2074 if (!p)
2075 prot1 = 0;
2076 else
2077 prot1 = p[j].flags;
2078 if (prot1 != prot) {
2079 end = (i << (32 - L1_BITS)) | (j << TARGET_PAGE_BITS);
2080 if (start != -1) {
2081 fprintf(f, "%08lx-%08lx %08lx %c%c%c\n",
2082 start, end, end - start,
2083 prot & PAGE_READ ? 'r' : '-',
2084 prot & PAGE_WRITE ? 'w' : '-',
2085 prot & PAGE_EXEC ? 'x' : '-');
2087 if (prot1 != 0)
2088 start = end;
2089 else
2090 start = -1;
2091 prot = prot1;
2093 if (!p)
2094 break;
2099 int page_get_flags(target_ulong address)
2101 PageDesc *p;
2103 p = page_find(address >> TARGET_PAGE_BITS);
2104 if (!p)
2105 return 0;
2106 return p->flags;
2109 /* modify the flags of a page and invalidate the code if
2110 necessary. The flag PAGE_WRITE_ORG is positionned automatically
2111 depending on PAGE_WRITE */
2112 void page_set_flags(target_ulong start, target_ulong end, int flags)
2114 PageDesc *p;
2115 target_ulong addr;
2117 /* mmap_lock should already be held. */
2118 start = start & TARGET_PAGE_MASK;
2119 end = TARGET_PAGE_ALIGN(end);
2120 if (flags & PAGE_WRITE)
2121 flags |= PAGE_WRITE_ORG;
2122 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2123 p = page_find_alloc(addr >> TARGET_PAGE_BITS);
2124 /* We may be called for host regions that are outside guest
2125 address space. */
2126 if (!p)
2127 return;
2128 /* if the write protection is set, then we invalidate the code
2129 inside */
2130 if (!(p->flags & PAGE_WRITE) &&
2131 (flags & PAGE_WRITE) &&
2132 p->first_tb) {
2133 tb_invalidate_phys_page(addr, 0, NULL);
2135 p->flags = flags;
2139 int page_check_range(target_ulong start, target_ulong len, int flags)
2141 PageDesc *p;
2142 target_ulong end;
2143 target_ulong addr;
2145 if (start + len < start)
2146 /* we've wrapped around */
2147 return -1;
2149 end = TARGET_PAGE_ALIGN(start+len); /* must do before we loose bits in the next step */
2150 start = start & TARGET_PAGE_MASK;
2152 for(addr = start; addr < end; addr += TARGET_PAGE_SIZE) {
2153 p = page_find(addr >> TARGET_PAGE_BITS);
2154 if( !p )
2155 return -1;
2156 if( !(p->flags & PAGE_VALID) )
2157 return -1;
2159 if ((flags & PAGE_READ) && !(p->flags & PAGE_READ))
2160 return -1;
2161 if (flags & PAGE_WRITE) {
2162 if (!(p->flags & PAGE_WRITE_ORG))
2163 return -1;
2164 /* unprotect the page if it was put read-only because it
2165 contains translated code */
2166 if (!(p->flags & PAGE_WRITE)) {
2167 if (!page_unprotect(addr, 0, NULL))
2168 return -1;
2170 return 0;
2173 return 0;
2176 /* called from signal handler: invalidate the code and unprotect the
2177 page. Return TRUE if the fault was succesfully handled. */
2178 int page_unprotect(target_ulong address, unsigned long pc, void *puc)
2180 unsigned int page_index, prot, pindex;
2181 PageDesc *p, *p1;
2182 target_ulong host_start, host_end, addr;
2184 /* Technically this isn't safe inside a signal handler. However we
2185 know this only ever happens in a synchronous SEGV handler, so in
2186 practice it seems to be ok. */
2187 mmap_lock();
2189 host_start = address & qemu_host_page_mask;
2190 page_index = host_start >> TARGET_PAGE_BITS;
2191 p1 = page_find(page_index);
2192 if (!p1) {
2193 mmap_unlock();
2194 return 0;
2196 host_end = host_start + qemu_host_page_size;
2197 p = p1;
2198 prot = 0;
2199 for(addr = host_start;addr < host_end; addr += TARGET_PAGE_SIZE) {
2200 prot |= p->flags;
2201 p++;
2203 /* if the page was really writable, then we change its
2204 protection back to writable */
2205 if (prot & PAGE_WRITE_ORG) {
2206 pindex = (address - host_start) >> TARGET_PAGE_BITS;
2207 if (!(p1[pindex].flags & PAGE_WRITE)) {
2208 mprotect((void *)g2h(host_start), qemu_host_page_size,
2209 (prot & PAGE_BITS) | PAGE_WRITE);
2210 p1[pindex].flags |= PAGE_WRITE;
2211 /* and since the content will be modified, we must invalidate
2212 the corresponding translated code. */
2213 tb_invalidate_phys_page(address, pc, puc);
2214 #ifdef DEBUG_TB_CHECK
2215 tb_invalidate_check(address);
2216 #endif
2217 mmap_unlock();
2218 return 1;
2221 mmap_unlock();
2222 return 0;
2225 static inline void tlb_set_dirty(CPUState *env,
2226 unsigned long addr, target_ulong vaddr)
2229 #endif /* defined(CONFIG_USER_ONLY) */
2231 #if !defined(CONFIG_USER_ONLY)
2233 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2234 ram_addr_t memory, ram_addr_t region_offset);
2235 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2236 ram_addr_t orig_memory, ram_addr_t region_offset);
2237 #define CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2, \
2238 need_subpage) \
2239 do { \
2240 if (addr > start_addr) \
2241 start_addr2 = 0; \
2242 else { \
2243 start_addr2 = start_addr & ~TARGET_PAGE_MASK; \
2244 if (start_addr2 > 0) \
2245 need_subpage = 1; \
2248 if ((start_addr + orig_size) - addr >= TARGET_PAGE_SIZE) \
2249 end_addr2 = TARGET_PAGE_SIZE - 1; \
2250 else { \
2251 end_addr2 = (start_addr + orig_size - 1) & ~TARGET_PAGE_MASK; \
2252 if (end_addr2 < TARGET_PAGE_SIZE - 1) \
2253 need_subpage = 1; \
2255 } while (0)
2257 /* register physical memory. 'size' must be a multiple of the target
2258 page size. If (phys_offset & ~TARGET_PAGE_MASK) != 0, then it is an
2259 io memory page. The address used when calling the IO function is
2260 the offset from the start of the region, plus region_offset. Both
2261 start_region and regon_offset are rounded down to a page boundary
2262 before calculating this offset. This should not be a problem unless
2263 the low bits of start_addr and region_offset differ. */
2264 void cpu_register_physical_memory_offset(target_phys_addr_t start_addr,
2265 ram_addr_t size,
2266 ram_addr_t phys_offset,
2267 ram_addr_t region_offset)
2269 target_phys_addr_t addr, end_addr;
2270 PhysPageDesc *p;
2271 CPUState *env;
2272 ram_addr_t orig_size = size;
2273 void *subpage;
2275 #ifdef USE_KQEMU
2276 /* XXX: should not depend on cpu context */
2277 env = first_cpu;
2278 if (env->kqemu_enabled) {
2279 kqemu_set_phys_mem(start_addr, size, phys_offset);
2281 #endif
2282 if (kvm_enabled())
2283 kvm_set_phys_mem(start_addr, size, phys_offset);
2285 if (phys_offset == IO_MEM_UNASSIGNED) {
2286 region_offset = start_addr;
2288 region_offset &= TARGET_PAGE_MASK;
2289 size = (size + TARGET_PAGE_SIZE - 1) & TARGET_PAGE_MASK;
2290 end_addr = start_addr + (target_phys_addr_t)size;
2291 for(addr = start_addr; addr != end_addr; addr += TARGET_PAGE_SIZE) {
2292 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2293 if (p && p->phys_offset != IO_MEM_UNASSIGNED) {
2294 ram_addr_t orig_memory = p->phys_offset;
2295 target_phys_addr_t start_addr2, end_addr2;
2296 int need_subpage = 0;
2298 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr, end_addr2,
2299 need_subpage);
2300 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2301 if (!(orig_memory & IO_MEM_SUBPAGE)) {
2302 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2303 &p->phys_offset, orig_memory,
2304 p->region_offset);
2305 } else {
2306 subpage = io_mem_opaque[(orig_memory & ~TARGET_PAGE_MASK)
2307 >> IO_MEM_SHIFT];
2309 subpage_register(subpage, start_addr2, end_addr2, phys_offset,
2310 region_offset);
2311 p->region_offset = 0;
2312 } else {
2313 p->phys_offset = phys_offset;
2314 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2315 (phys_offset & IO_MEM_ROMD))
2316 phys_offset += TARGET_PAGE_SIZE;
2318 } else {
2319 p = phys_page_find_alloc(addr >> TARGET_PAGE_BITS, 1);
2320 p->phys_offset = phys_offset;
2321 p->region_offset = region_offset;
2322 if ((phys_offset & ~TARGET_PAGE_MASK) <= IO_MEM_ROM ||
2323 (phys_offset & IO_MEM_ROMD)) {
2324 phys_offset += TARGET_PAGE_SIZE;
2325 } else {
2326 target_phys_addr_t start_addr2, end_addr2;
2327 int need_subpage = 0;
2329 CHECK_SUBPAGE(addr, start_addr, start_addr2, end_addr,
2330 end_addr2, need_subpage);
2332 if (need_subpage || phys_offset & IO_MEM_SUBWIDTH) {
2333 subpage = subpage_init((addr & TARGET_PAGE_MASK),
2334 &p->phys_offset, IO_MEM_UNASSIGNED,
2335 addr & TARGET_PAGE_MASK);
2336 subpage_register(subpage, start_addr2, end_addr2,
2337 phys_offset, region_offset);
2338 p->region_offset = 0;
2342 region_offset += TARGET_PAGE_SIZE;
2345 /* since each CPU stores ram addresses in its TLB cache, we must
2346 reset the modified entries */
2347 /* XXX: slow ! */
2348 for(env = first_cpu; env != NULL; env = env->next_cpu) {
2349 tlb_flush(env, 1);
2353 /* XXX: temporary until new memory mapping API */
2354 ram_addr_t cpu_get_physical_page_desc(target_phys_addr_t addr)
2356 PhysPageDesc *p;
2358 p = phys_page_find(addr >> TARGET_PAGE_BITS);
2359 if (!p)
2360 return IO_MEM_UNASSIGNED;
2361 return p->phys_offset;
2364 void qemu_register_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2366 if (kvm_enabled())
2367 kvm_coalesce_mmio_region(addr, size);
2370 void qemu_unregister_coalesced_mmio(target_phys_addr_t addr, ram_addr_t size)
2372 if (kvm_enabled())
2373 kvm_uncoalesce_mmio_region(addr, size);
2376 /* XXX: better than nothing */
2377 ram_addr_t qemu_ram_alloc(ram_addr_t size)
2379 ram_addr_t addr;
2380 if ((phys_ram_alloc_offset + size) > phys_ram_size) {
2381 fprintf(stderr, "Not enough memory (requested_size = %" PRIu64 ", max memory = %" PRIu64 ")\n",
2382 (uint64_t)size, (uint64_t)phys_ram_size);
2383 abort();
2385 addr = phys_ram_alloc_offset;
2386 phys_ram_alloc_offset = TARGET_PAGE_ALIGN(phys_ram_alloc_offset + size);
2387 return addr;
2390 void qemu_ram_free(ram_addr_t addr)
2394 static uint32_t unassigned_mem_readb(void *opaque, target_phys_addr_t addr)
2396 #ifdef DEBUG_UNASSIGNED
2397 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2398 #endif
2399 #if defined(TARGET_SPARC)
2400 do_unassigned_access(addr, 0, 0, 0, 1);
2401 #endif
2402 return 0;
2405 static uint32_t unassigned_mem_readw(void *opaque, target_phys_addr_t addr)
2407 #ifdef DEBUG_UNASSIGNED
2408 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2409 #endif
2410 #if defined(TARGET_SPARC)
2411 do_unassigned_access(addr, 0, 0, 0, 2);
2412 #endif
2413 return 0;
2416 static uint32_t unassigned_mem_readl(void *opaque, target_phys_addr_t addr)
2418 #ifdef DEBUG_UNASSIGNED
2419 printf("Unassigned mem read " TARGET_FMT_plx "\n", addr);
2420 #endif
2421 #if defined(TARGET_SPARC)
2422 do_unassigned_access(addr, 0, 0, 0, 4);
2423 #endif
2424 return 0;
2427 static void unassigned_mem_writeb(void *opaque, target_phys_addr_t addr, uint32_t val)
2429 #ifdef DEBUG_UNASSIGNED
2430 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2431 #endif
2432 #if defined(TARGET_SPARC)
2433 do_unassigned_access(addr, 1, 0, 0, 1);
2434 #endif
2437 static void unassigned_mem_writew(void *opaque, target_phys_addr_t addr, uint32_t val)
2439 #ifdef DEBUG_UNASSIGNED
2440 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2441 #endif
2442 #if defined(TARGET_SPARC)
2443 do_unassigned_access(addr, 1, 0, 0, 2);
2444 #endif
2447 static void unassigned_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
2449 #ifdef DEBUG_UNASSIGNED
2450 printf("Unassigned mem write " TARGET_FMT_plx " = 0x%x\n", addr, val);
2451 #endif
2452 #if defined(TARGET_SPARC)
2453 do_unassigned_access(addr, 1, 0, 0, 4);
2454 #endif
2457 static CPUReadMemoryFunc *unassigned_mem_read[3] = {
2458 unassigned_mem_readb,
2459 unassigned_mem_readw,
2460 unassigned_mem_readl,
2463 static CPUWriteMemoryFunc *unassigned_mem_write[3] = {
2464 unassigned_mem_writeb,
2465 unassigned_mem_writew,
2466 unassigned_mem_writel,
2469 static void notdirty_mem_writeb(void *opaque, target_phys_addr_t ram_addr,
2470 uint32_t val)
2472 int dirty_flags;
2473 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2474 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2475 #if !defined(CONFIG_USER_ONLY)
2476 tb_invalidate_phys_page_fast(ram_addr, 1);
2477 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2478 #endif
2480 stb_p(phys_ram_base + ram_addr, val);
2481 #ifdef USE_KQEMU
2482 if (cpu_single_env->kqemu_enabled &&
2483 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2484 kqemu_modify_page(cpu_single_env, ram_addr);
2485 #endif
2486 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2487 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2488 /* we remove the notdirty callback only if the code has been
2489 flushed */
2490 if (dirty_flags == 0xff)
2491 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2494 static void notdirty_mem_writew(void *opaque, target_phys_addr_t ram_addr,
2495 uint32_t val)
2497 int dirty_flags;
2498 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2499 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2500 #if !defined(CONFIG_USER_ONLY)
2501 tb_invalidate_phys_page_fast(ram_addr, 2);
2502 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2503 #endif
2505 stw_p(phys_ram_base + ram_addr, val);
2506 #ifdef USE_KQEMU
2507 if (cpu_single_env->kqemu_enabled &&
2508 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2509 kqemu_modify_page(cpu_single_env, ram_addr);
2510 #endif
2511 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2512 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2513 /* we remove the notdirty callback only if the code has been
2514 flushed */
2515 if (dirty_flags == 0xff)
2516 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2519 static void notdirty_mem_writel(void *opaque, target_phys_addr_t ram_addr,
2520 uint32_t val)
2522 int dirty_flags;
2523 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2524 if (!(dirty_flags & CODE_DIRTY_FLAG)) {
2525 #if !defined(CONFIG_USER_ONLY)
2526 tb_invalidate_phys_page_fast(ram_addr, 4);
2527 dirty_flags = phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS];
2528 #endif
2530 stl_p(phys_ram_base + ram_addr, val);
2531 #ifdef USE_KQEMU
2532 if (cpu_single_env->kqemu_enabled &&
2533 (dirty_flags & KQEMU_MODIFY_PAGE_MASK) != KQEMU_MODIFY_PAGE_MASK)
2534 kqemu_modify_page(cpu_single_env, ram_addr);
2535 #endif
2536 dirty_flags |= (0xff & ~CODE_DIRTY_FLAG);
2537 phys_ram_dirty[ram_addr >> TARGET_PAGE_BITS] = dirty_flags;
2538 /* we remove the notdirty callback only if the code has been
2539 flushed */
2540 if (dirty_flags == 0xff)
2541 tlb_set_dirty(cpu_single_env, cpu_single_env->mem_io_vaddr);
2544 static CPUReadMemoryFunc *error_mem_read[3] = {
2545 NULL, /* never used */
2546 NULL, /* never used */
2547 NULL, /* never used */
2550 static CPUWriteMemoryFunc *notdirty_mem_write[3] = {
2551 notdirty_mem_writeb,
2552 notdirty_mem_writew,
2553 notdirty_mem_writel,
2556 /* Generate a debug exception if a watchpoint has been hit. */
2557 static void check_watchpoint(int offset, int len_mask, int flags)
2559 CPUState *env = cpu_single_env;
2560 target_ulong pc, cs_base;
2561 TranslationBlock *tb;
2562 target_ulong vaddr;
2563 CPUWatchpoint *wp;
2564 int cpu_flags;
2566 if (env->watchpoint_hit) {
2567 /* We re-entered the check after replacing the TB. Now raise
2568 * the debug interrupt so that is will trigger after the
2569 * current instruction. */
2570 cpu_interrupt(env, CPU_INTERRUPT_DEBUG);
2571 return;
2573 vaddr = (env->mem_io_vaddr & TARGET_PAGE_MASK) + offset;
2574 TAILQ_FOREACH(wp, &env->watchpoints, entry) {
2575 if ((vaddr == (wp->vaddr & len_mask) ||
2576 (vaddr & wp->len_mask) == wp->vaddr) && (wp->flags & flags)) {
2577 wp->flags |= BP_WATCHPOINT_HIT;
2578 if (!env->watchpoint_hit) {
2579 env->watchpoint_hit = wp;
2580 tb = tb_find_pc(env->mem_io_pc);
2581 if (!tb) {
2582 cpu_abort(env, "check_watchpoint: could not find TB for "
2583 "pc=%p", (void *)env->mem_io_pc);
2585 cpu_restore_state(tb, env, env->mem_io_pc, NULL);
2586 tb_phys_invalidate(tb, -1);
2587 if (wp->flags & BP_STOP_BEFORE_ACCESS) {
2588 env->exception_index = EXCP_DEBUG;
2589 } else {
2590 cpu_get_tb_cpu_state(env, &pc, &cs_base, &cpu_flags);
2591 tb_gen_code(env, pc, cs_base, cpu_flags, 1);
2593 cpu_resume_from_signal(env, NULL);
2595 } else {
2596 wp->flags &= ~BP_WATCHPOINT_HIT;
2601 /* Watchpoint access routines. Watchpoints are inserted using TLB tricks,
2602 so these check for a hit then pass through to the normal out-of-line
2603 phys routines. */
2604 static uint32_t watch_mem_readb(void *opaque, target_phys_addr_t addr)
2606 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_READ);
2607 return ldub_phys(addr);
2610 static uint32_t watch_mem_readw(void *opaque, target_phys_addr_t addr)
2612 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_READ);
2613 return lduw_phys(addr);
2616 static uint32_t watch_mem_readl(void *opaque, target_phys_addr_t addr)
2618 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_READ);
2619 return ldl_phys(addr);
2622 static void watch_mem_writeb(void *opaque, target_phys_addr_t addr,
2623 uint32_t val)
2625 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x0, BP_MEM_WRITE);
2626 stb_phys(addr, val);
2629 static void watch_mem_writew(void *opaque, target_phys_addr_t addr,
2630 uint32_t val)
2632 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x1, BP_MEM_WRITE);
2633 stw_phys(addr, val);
2636 static void watch_mem_writel(void *opaque, target_phys_addr_t addr,
2637 uint32_t val)
2639 check_watchpoint(addr & ~TARGET_PAGE_MASK, ~0x3, BP_MEM_WRITE);
2640 stl_phys(addr, val);
2643 static CPUReadMemoryFunc *watch_mem_read[3] = {
2644 watch_mem_readb,
2645 watch_mem_readw,
2646 watch_mem_readl,
2649 static CPUWriteMemoryFunc *watch_mem_write[3] = {
2650 watch_mem_writeb,
2651 watch_mem_writew,
2652 watch_mem_writel,
2655 static inline uint32_t subpage_readlen (subpage_t *mmio, target_phys_addr_t addr,
2656 unsigned int len)
2658 uint32_t ret;
2659 unsigned int idx;
2661 idx = SUBPAGE_IDX(addr);
2662 #if defined(DEBUG_SUBPAGE)
2663 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d\n", __func__,
2664 mmio, len, addr, idx);
2665 #endif
2666 ret = (**mmio->mem_read[idx][len])(mmio->opaque[idx][0][len],
2667 addr + mmio->region_offset[idx][0][len]);
2669 return ret;
2672 static inline void subpage_writelen (subpage_t *mmio, target_phys_addr_t addr,
2673 uint32_t value, unsigned int len)
2675 unsigned int idx;
2677 idx = SUBPAGE_IDX(addr);
2678 #if defined(DEBUG_SUBPAGE)
2679 printf("%s: subpage %p len %d addr " TARGET_FMT_plx " idx %d value %08x\n", __func__,
2680 mmio, len, addr, idx, value);
2681 #endif
2682 (**mmio->mem_write[idx][len])(mmio->opaque[idx][1][len],
2683 addr + mmio->region_offset[idx][1][len],
2684 value);
2687 static uint32_t subpage_readb (void *opaque, target_phys_addr_t addr)
2689 #if defined(DEBUG_SUBPAGE)
2690 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2691 #endif
2693 return subpage_readlen(opaque, addr, 0);
2696 static void subpage_writeb (void *opaque, target_phys_addr_t addr,
2697 uint32_t value)
2699 #if defined(DEBUG_SUBPAGE)
2700 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2701 #endif
2702 subpage_writelen(opaque, addr, value, 0);
2705 static uint32_t subpage_readw (void *opaque, target_phys_addr_t addr)
2707 #if defined(DEBUG_SUBPAGE)
2708 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2709 #endif
2711 return subpage_readlen(opaque, addr, 1);
2714 static void subpage_writew (void *opaque, target_phys_addr_t addr,
2715 uint32_t value)
2717 #if defined(DEBUG_SUBPAGE)
2718 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2719 #endif
2720 subpage_writelen(opaque, addr, value, 1);
2723 static uint32_t subpage_readl (void *opaque, target_phys_addr_t addr)
2725 #if defined(DEBUG_SUBPAGE)
2726 printf("%s: addr " TARGET_FMT_plx "\n", __func__, addr);
2727 #endif
2729 return subpage_readlen(opaque, addr, 2);
2732 static void subpage_writel (void *opaque,
2733 target_phys_addr_t addr, uint32_t value)
2735 #if defined(DEBUG_SUBPAGE)
2736 printf("%s: addr " TARGET_FMT_plx " val %08x\n", __func__, addr, value);
2737 #endif
2738 subpage_writelen(opaque, addr, value, 2);
2741 static CPUReadMemoryFunc *subpage_read[] = {
2742 &subpage_readb,
2743 &subpage_readw,
2744 &subpage_readl,
2747 static CPUWriteMemoryFunc *subpage_write[] = {
2748 &subpage_writeb,
2749 &subpage_writew,
2750 &subpage_writel,
2753 static int subpage_register (subpage_t *mmio, uint32_t start, uint32_t end,
2754 ram_addr_t memory, ram_addr_t region_offset)
2756 int idx, eidx;
2757 unsigned int i;
2759 if (start >= TARGET_PAGE_SIZE || end >= TARGET_PAGE_SIZE)
2760 return -1;
2761 idx = SUBPAGE_IDX(start);
2762 eidx = SUBPAGE_IDX(end);
2763 #if defined(DEBUG_SUBPAGE)
2764 printf("%s: %p start %08x end %08x idx %08x eidx %08x mem %d\n", __func__,
2765 mmio, start, end, idx, eidx, memory);
2766 #endif
2767 memory >>= IO_MEM_SHIFT;
2768 for (; idx <= eidx; idx++) {
2769 for (i = 0; i < 4; i++) {
2770 if (io_mem_read[memory][i]) {
2771 mmio->mem_read[idx][i] = &io_mem_read[memory][i];
2772 mmio->opaque[idx][0][i] = io_mem_opaque[memory];
2773 mmio->region_offset[idx][0][i] = region_offset;
2775 if (io_mem_write[memory][i]) {
2776 mmio->mem_write[idx][i] = &io_mem_write[memory][i];
2777 mmio->opaque[idx][1][i] = io_mem_opaque[memory];
2778 mmio->region_offset[idx][1][i] = region_offset;
2783 return 0;
2786 static void *subpage_init (target_phys_addr_t base, ram_addr_t *phys,
2787 ram_addr_t orig_memory, ram_addr_t region_offset)
2789 subpage_t *mmio;
2790 int subpage_memory;
2792 mmio = qemu_mallocz(sizeof(subpage_t));
2794 mmio->base = base;
2795 subpage_memory = cpu_register_io_memory(0, subpage_read, subpage_write, mmio);
2796 #if defined(DEBUG_SUBPAGE)
2797 printf("%s: %p base " TARGET_FMT_plx " len %08x %d\n", __func__,
2798 mmio, base, TARGET_PAGE_SIZE, subpage_memory);
2799 #endif
2800 *phys = subpage_memory | IO_MEM_SUBPAGE;
2801 subpage_register(mmio, 0, TARGET_PAGE_SIZE - 1, orig_memory,
2802 region_offset);
2804 return mmio;
2807 static int get_free_io_mem_idx(void)
2809 int i;
2811 for (i = 0; i<IO_MEM_NB_ENTRIES; i++)
2812 if (!io_mem_used[i]) {
2813 io_mem_used[i] = 1;
2814 return i;
2817 return -1;
2820 static void io_mem_init(void)
2822 int i;
2824 cpu_register_io_memory(IO_MEM_ROM >> IO_MEM_SHIFT, error_mem_read, unassigned_mem_write, NULL);
2825 cpu_register_io_memory(IO_MEM_UNASSIGNED >> IO_MEM_SHIFT, unassigned_mem_read, unassigned_mem_write, NULL);
2826 cpu_register_io_memory(IO_MEM_NOTDIRTY >> IO_MEM_SHIFT, error_mem_read, notdirty_mem_write, NULL);
2827 for (i=0; i<5; i++)
2828 io_mem_used[i] = 1;
2830 io_mem_watch = cpu_register_io_memory(0, watch_mem_read,
2831 watch_mem_write, NULL);
2832 /* alloc dirty bits array */
2833 phys_ram_dirty = qemu_vmalloc(phys_ram_size >> TARGET_PAGE_BITS);
2834 memset(phys_ram_dirty, 0xff, phys_ram_size >> TARGET_PAGE_BITS);
2837 /* mem_read and mem_write are arrays of functions containing the
2838 function to access byte (index 0), word (index 1) and dword (index
2839 2). Functions can be omitted with a NULL function pointer. The
2840 registered functions may be modified dynamically later.
2841 If io_index is non zero, the corresponding io zone is
2842 modified. If it is zero, a new io zone is allocated. The return
2843 value can be used with cpu_register_physical_memory(). (-1) is
2844 returned if error. */
2845 int cpu_register_io_memory(int io_index,
2846 CPUReadMemoryFunc **mem_read,
2847 CPUWriteMemoryFunc **mem_write,
2848 void *opaque)
2850 int i, subwidth = 0;
2852 if (io_index <= 0) {
2853 io_index = get_free_io_mem_idx();
2854 if (io_index == -1)
2855 return io_index;
2856 } else {
2857 if (io_index >= IO_MEM_NB_ENTRIES)
2858 return -1;
2861 for(i = 0;i < 3; i++) {
2862 if (!mem_read[i] || !mem_write[i])
2863 subwidth = IO_MEM_SUBWIDTH;
2864 io_mem_read[io_index][i] = mem_read[i];
2865 io_mem_write[io_index][i] = mem_write[i];
2867 io_mem_opaque[io_index] = opaque;
2868 return (io_index << IO_MEM_SHIFT) | subwidth;
2871 void cpu_unregister_io_memory(int io_table_address)
2873 int i;
2874 int io_index = io_table_address >> IO_MEM_SHIFT;
2876 for (i=0;i < 3; i++) {
2877 io_mem_read[io_index][i] = unassigned_mem_read[i];
2878 io_mem_write[io_index][i] = unassigned_mem_write[i];
2880 io_mem_opaque[io_index] = NULL;
2881 io_mem_used[io_index] = 0;
2884 CPUWriteMemoryFunc **cpu_get_io_memory_write(int io_index)
2886 return io_mem_write[io_index >> IO_MEM_SHIFT];
2889 CPUReadMemoryFunc **cpu_get_io_memory_read(int io_index)
2891 return io_mem_read[io_index >> IO_MEM_SHIFT];
2894 #endif /* !defined(CONFIG_USER_ONLY) */
2896 /* physical memory access (slow version, mainly for debug) */
2897 #if defined(CONFIG_USER_ONLY)
2898 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2899 int len, int is_write)
2901 int l, flags;
2902 target_ulong page;
2903 void * p;
2905 while (len > 0) {
2906 page = addr & TARGET_PAGE_MASK;
2907 l = (page + TARGET_PAGE_SIZE) - addr;
2908 if (l > len)
2909 l = len;
2910 flags = page_get_flags(page);
2911 if (!(flags & PAGE_VALID))
2912 return;
2913 if (is_write) {
2914 if (!(flags & PAGE_WRITE))
2915 return;
2916 /* XXX: this code should not depend on lock_user */
2917 if (!(p = lock_user(VERIFY_WRITE, addr, l, 0)))
2918 /* FIXME - should this return an error rather than just fail? */
2919 return;
2920 memcpy(p, buf, l);
2921 unlock_user(p, addr, l);
2922 } else {
2923 if (!(flags & PAGE_READ))
2924 return;
2925 /* XXX: this code should not depend on lock_user */
2926 if (!(p = lock_user(VERIFY_READ, addr, l, 1)))
2927 /* FIXME - should this return an error rather than just fail? */
2928 return;
2929 memcpy(buf, p, l);
2930 unlock_user(p, addr, 0);
2932 len -= l;
2933 buf += l;
2934 addr += l;
2938 #else
2939 void cpu_physical_memory_rw(target_phys_addr_t addr, uint8_t *buf,
2940 int len, int is_write)
2942 int l, io_index;
2943 uint8_t *ptr;
2944 uint32_t val;
2945 target_phys_addr_t page;
2946 unsigned long pd;
2947 PhysPageDesc *p;
2949 while (len > 0) {
2950 page = addr & TARGET_PAGE_MASK;
2951 l = (page + TARGET_PAGE_SIZE) - addr;
2952 if (l > len)
2953 l = len;
2954 p = phys_page_find(page >> TARGET_PAGE_BITS);
2955 if (!p) {
2956 pd = IO_MEM_UNASSIGNED;
2957 } else {
2958 pd = p->phys_offset;
2961 if (is_write) {
2962 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
2963 target_phys_addr_t addr1 = addr;
2964 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
2965 if (p)
2966 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
2967 /* XXX: could force cpu_single_env to NULL to avoid
2968 potential bugs */
2969 if (l >= 4 && ((addr1 & 3) == 0)) {
2970 /* 32 bit write access */
2971 val = ldl_p(buf);
2972 io_mem_write[io_index][2](io_mem_opaque[io_index], addr1, val);
2973 l = 4;
2974 } else if (l >= 2 && ((addr1 & 1) == 0)) {
2975 /* 16 bit write access */
2976 val = lduw_p(buf);
2977 io_mem_write[io_index][1](io_mem_opaque[io_index], addr1, val);
2978 l = 2;
2979 } else {
2980 /* 8 bit write access */
2981 val = ldub_p(buf);
2982 io_mem_write[io_index][0](io_mem_opaque[io_index], addr1, val);
2983 l = 1;
2985 } else {
2986 unsigned long addr1;
2987 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
2988 /* RAM case */
2989 ptr = phys_ram_base + addr1;
2990 memcpy(ptr, buf, l);
2991 if (!cpu_physical_memory_is_dirty(addr1)) {
2992 /* invalidate code */
2993 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
2994 /* set dirty bit */
2995 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
2996 (0xff & ~CODE_DIRTY_FLAG);
2999 } else {
3000 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3001 !(pd & IO_MEM_ROMD)) {
3002 target_phys_addr_t addr1 = addr;
3003 /* I/O case */
3004 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3005 if (p)
3006 addr1 = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3007 if (l >= 4 && ((addr1 & 3) == 0)) {
3008 /* 32 bit read access */
3009 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr1);
3010 stl_p(buf, val);
3011 l = 4;
3012 } else if (l >= 2 && ((addr1 & 1) == 0)) {
3013 /* 16 bit read access */
3014 val = io_mem_read[io_index][1](io_mem_opaque[io_index], addr1);
3015 stw_p(buf, val);
3016 l = 2;
3017 } else {
3018 /* 8 bit read access */
3019 val = io_mem_read[io_index][0](io_mem_opaque[io_index], addr1);
3020 stb_p(buf, val);
3021 l = 1;
3023 } else {
3024 /* RAM case */
3025 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3026 (addr & ~TARGET_PAGE_MASK);
3027 memcpy(buf, ptr, l);
3030 len -= l;
3031 buf += l;
3032 addr += l;
3036 /* used for ROM loading : can write in RAM and ROM */
3037 void cpu_physical_memory_write_rom(target_phys_addr_t addr,
3038 const uint8_t *buf, int len)
3040 int l;
3041 uint8_t *ptr;
3042 target_phys_addr_t page;
3043 unsigned long pd;
3044 PhysPageDesc *p;
3046 while (len > 0) {
3047 page = addr & TARGET_PAGE_MASK;
3048 l = (page + TARGET_PAGE_SIZE) - addr;
3049 if (l > len)
3050 l = len;
3051 p = phys_page_find(page >> TARGET_PAGE_BITS);
3052 if (!p) {
3053 pd = IO_MEM_UNASSIGNED;
3054 } else {
3055 pd = p->phys_offset;
3058 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
3059 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM &&
3060 !(pd & IO_MEM_ROMD)) {
3061 /* do nothing */
3062 } else {
3063 unsigned long addr1;
3064 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3065 /* ROM/RAM case */
3066 ptr = phys_ram_base + addr1;
3067 memcpy(ptr, buf, l);
3069 len -= l;
3070 buf += l;
3071 addr += l;
3075 typedef struct {
3076 void *buffer;
3077 target_phys_addr_t addr;
3078 target_phys_addr_t len;
3079 } BounceBuffer;
3081 static BounceBuffer bounce;
3083 typedef struct MapClient {
3084 void *opaque;
3085 void (*callback)(void *opaque);
3086 LIST_ENTRY(MapClient) link;
3087 } MapClient;
3089 static LIST_HEAD(map_client_list, MapClient) map_client_list
3090 = LIST_HEAD_INITIALIZER(map_client_list);
3092 void *cpu_register_map_client(void *opaque, void (*callback)(void *opaque))
3094 MapClient *client = qemu_malloc(sizeof(*client));
3096 client->opaque = opaque;
3097 client->callback = callback;
3098 LIST_INSERT_HEAD(&map_client_list, client, link);
3099 return client;
3102 void cpu_unregister_map_client(void *_client)
3104 MapClient *client = (MapClient *)_client;
3106 LIST_REMOVE(client, link);
3109 static void cpu_notify_map_clients(void)
3111 MapClient *client;
3113 while (!LIST_EMPTY(&map_client_list)) {
3114 client = LIST_FIRST(&map_client_list);
3115 client->callback(client->opaque);
3116 LIST_REMOVE(client, link);
3120 /* Map a physical memory region into a host virtual address.
3121 * May map a subset of the requested range, given by and returned in *plen.
3122 * May return NULL if resources needed to perform the mapping are exhausted.
3123 * Use only for reads OR writes - not for read-modify-write operations.
3124 * Use cpu_register_map_client() to know when retrying the map operation is
3125 * likely to succeed.
3127 void *cpu_physical_memory_map(target_phys_addr_t addr,
3128 target_phys_addr_t *plen,
3129 int is_write)
3131 target_phys_addr_t len = *plen;
3132 target_phys_addr_t done = 0;
3133 int l;
3134 uint8_t *ret = NULL;
3135 uint8_t *ptr;
3136 target_phys_addr_t page;
3137 unsigned long pd;
3138 PhysPageDesc *p;
3139 unsigned long addr1;
3141 while (len > 0) {
3142 page = addr & TARGET_PAGE_MASK;
3143 l = (page + TARGET_PAGE_SIZE) - addr;
3144 if (l > len)
3145 l = len;
3146 p = phys_page_find(page >> TARGET_PAGE_BITS);
3147 if (!p) {
3148 pd = IO_MEM_UNASSIGNED;
3149 } else {
3150 pd = p->phys_offset;
3153 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3154 if (done || bounce.buffer) {
3155 break;
3157 bounce.buffer = qemu_memalign(TARGET_PAGE_SIZE, TARGET_PAGE_SIZE);
3158 bounce.addr = addr;
3159 bounce.len = l;
3160 if (!is_write) {
3161 cpu_physical_memory_rw(addr, bounce.buffer, l, 0);
3163 ptr = bounce.buffer;
3164 } else {
3165 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3166 ptr = phys_ram_base + addr1;
3168 if (!done) {
3169 ret = ptr;
3170 } else if (ret + done != ptr) {
3171 break;
3174 len -= l;
3175 addr += l;
3176 done += l;
3178 *plen = done;
3179 return ret;
3182 /* Unmaps a memory region previously mapped by cpu_physical_memory_map().
3183 * Will also mark the memory as dirty if is_write == 1. access_len gives
3184 * the amount of memory that was actually read or written by the caller.
3186 void cpu_physical_memory_unmap(void *buffer, target_phys_addr_t len,
3187 int is_write, target_phys_addr_t access_len)
3189 if (buffer != bounce.buffer) {
3190 if (is_write) {
3191 unsigned long addr1 = (uint8_t *)buffer - phys_ram_base;
3192 while (access_len) {
3193 unsigned l;
3194 l = TARGET_PAGE_SIZE;
3195 if (l > access_len)
3196 l = access_len;
3197 if (!cpu_physical_memory_is_dirty(addr1)) {
3198 /* invalidate code */
3199 tb_invalidate_phys_page_range(addr1, addr1 + l, 0);
3200 /* set dirty bit */
3201 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3202 (0xff & ~CODE_DIRTY_FLAG);
3204 addr1 += l;
3205 access_len -= l;
3208 return;
3210 if (is_write) {
3211 cpu_physical_memory_write(bounce.addr, bounce.buffer, access_len);
3213 qemu_free(bounce.buffer);
3214 bounce.buffer = NULL;
3215 cpu_notify_map_clients();
3218 /* warning: addr must be aligned */
3219 uint32_t ldl_phys(target_phys_addr_t addr)
3221 int io_index;
3222 uint8_t *ptr;
3223 uint32_t val;
3224 unsigned long pd;
3225 PhysPageDesc *p;
3227 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3228 if (!p) {
3229 pd = IO_MEM_UNASSIGNED;
3230 } else {
3231 pd = p->phys_offset;
3234 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3235 !(pd & IO_MEM_ROMD)) {
3236 /* I/O case */
3237 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3238 if (p)
3239 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3240 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3241 } else {
3242 /* RAM case */
3243 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3244 (addr & ~TARGET_PAGE_MASK);
3245 val = ldl_p(ptr);
3247 return val;
3250 /* warning: addr must be aligned */
3251 uint64_t ldq_phys(target_phys_addr_t addr)
3253 int io_index;
3254 uint8_t *ptr;
3255 uint64_t val;
3256 unsigned long pd;
3257 PhysPageDesc *p;
3259 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3260 if (!p) {
3261 pd = IO_MEM_UNASSIGNED;
3262 } else {
3263 pd = p->phys_offset;
3266 if ((pd & ~TARGET_PAGE_MASK) > IO_MEM_ROM &&
3267 !(pd & IO_MEM_ROMD)) {
3268 /* I/O case */
3269 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3270 if (p)
3271 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3272 #ifdef TARGET_WORDS_BIGENDIAN
3273 val = (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr) << 32;
3274 val |= io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4);
3275 #else
3276 val = io_mem_read[io_index][2](io_mem_opaque[io_index], addr);
3277 val |= (uint64_t)io_mem_read[io_index][2](io_mem_opaque[io_index], addr + 4) << 32;
3278 #endif
3279 } else {
3280 /* RAM case */
3281 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3282 (addr & ~TARGET_PAGE_MASK);
3283 val = ldq_p(ptr);
3285 return val;
3288 /* XXX: optimize */
3289 uint32_t ldub_phys(target_phys_addr_t addr)
3291 uint8_t val;
3292 cpu_physical_memory_read(addr, &val, 1);
3293 return val;
3296 /* XXX: optimize */
3297 uint32_t lduw_phys(target_phys_addr_t addr)
3299 uint16_t val;
3300 cpu_physical_memory_read(addr, (uint8_t *)&val, 2);
3301 return tswap16(val);
3304 /* warning: addr must be aligned. The ram page is not masked as dirty
3305 and the code inside is not invalidated. It is useful if the dirty
3306 bits are used to track modified PTEs */
3307 void stl_phys_notdirty(target_phys_addr_t addr, uint32_t val)
3309 int io_index;
3310 uint8_t *ptr;
3311 unsigned long pd;
3312 PhysPageDesc *p;
3314 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3315 if (!p) {
3316 pd = IO_MEM_UNASSIGNED;
3317 } else {
3318 pd = p->phys_offset;
3321 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3322 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3323 if (p)
3324 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3325 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3326 } else {
3327 unsigned long addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3328 ptr = phys_ram_base + addr1;
3329 stl_p(ptr, val);
3331 if (unlikely(in_migration)) {
3332 if (!cpu_physical_memory_is_dirty(addr1)) {
3333 /* invalidate code */
3334 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3335 /* set dirty bit */
3336 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3337 (0xff & ~CODE_DIRTY_FLAG);
3343 void stq_phys_notdirty(target_phys_addr_t addr, uint64_t val)
3345 int io_index;
3346 uint8_t *ptr;
3347 unsigned long pd;
3348 PhysPageDesc *p;
3350 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3351 if (!p) {
3352 pd = IO_MEM_UNASSIGNED;
3353 } else {
3354 pd = p->phys_offset;
3357 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3358 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3359 if (p)
3360 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3361 #ifdef TARGET_WORDS_BIGENDIAN
3362 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val >> 32);
3363 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val);
3364 #else
3365 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3366 io_mem_write[io_index][2](io_mem_opaque[io_index], addr + 4, val >> 32);
3367 #endif
3368 } else {
3369 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK) +
3370 (addr & ~TARGET_PAGE_MASK);
3371 stq_p(ptr, val);
3375 /* warning: addr must be aligned */
3376 void stl_phys(target_phys_addr_t addr, uint32_t val)
3378 int io_index;
3379 uint8_t *ptr;
3380 unsigned long pd;
3381 PhysPageDesc *p;
3383 p = phys_page_find(addr >> TARGET_PAGE_BITS);
3384 if (!p) {
3385 pd = IO_MEM_UNASSIGNED;
3386 } else {
3387 pd = p->phys_offset;
3390 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM) {
3391 io_index = (pd >> IO_MEM_SHIFT) & (IO_MEM_NB_ENTRIES - 1);
3392 if (p)
3393 addr = (addr & ~TARGET_PAGE_MASK) + p->region_offset;
3394 io_mem_write[io_index][2](io_mem_opaque[io_index], addr, val);
3395 } else {
3396 unsigned long addr1;
3397 addr1 = (pd & TARGET_PAGE_MASK) + (addr & ~TARGET_PAGE_MASK);
3398 /* RAM case */
3399 ptr = phys_ram_base + addr1;
3400 stl_p(ptr, val);
3401 if (!cpu_physical_memory_is_dirty(addr1)) {
3402 /* invalidate code */
3403 tb_invalidate_phys_page_range(addr1, addr1 + 4, 0);
3404 /* set dirty bit */
3405 phys_ram_dirty[addr1 >> TARGET_PAGE_BITS] |=
3406 (0xff & ~CODE_DIRTY_FLAG);
3411 /* XXX: optimize */
3412 void stb_phys(target_phys_addr_t addr, uint32_t val)
3414 uint8_t v = val;
3415 cpu_physical_memory_write(addr, &v, 1);
3418 /* XXX: optimize */
3419 void stw_phys(target_phys_addr_t addr, uint32_t val)
3421 uint16_t v = tswap16(val);
3422 cpu_physical_memory_write(addr, (const uint8_t *)&v, 2);
3425 /* XXX: optimize */
3426 void stq_phys(target_phys_addr_t addr, uint64_t val)
3428 val = tswap64(val);
3429 cpu_physical_memory_write(addr, (const uint8_t *)&val, 8);
3432 #endif
3434 /* virtual memory access for debug */
3435 int cpu_memory_rw_debug(CPUState *env, target_ulong addr,
3436 uint8_t *buf, int len, int is_write)
3438 int l;
3439 target_phys_addr_t phys_addr;
3440 target_ulong page;
3442 while (len > 0) {
3443 page = addr & TARGET_PAGE_MASK;
3444 phys_addr = cpu_get_phys_page_debug(env, page);
3445 /* if no physical page mapped, return an error */
3446 if (phys_addr == -1)
3447 return -1;
3448 l = (page + TARGET_PAGE_SIZE) - addr;
3449 if (l > len)
3450 l = len;
3451 cpu_physical_memory_rw(phys_addr + (addr & ~TARGET_PAGE_MASK),
3452 buf, l, is_write);
3453 len -= l;
3454 buf += l;
3455 addr += l;
3457 return 0;
3460 /* in deterministic execution mode, instructions doing device I/Os
3461 must be at the end of the TB */
3462 void cpu_io_recompile(CPUState *env, void *retaddr)
3464 TranslationBlock *tb;
3465 uint32_t n, cflags;
3466 target_ulong pc, cs_base;
3467 uint64_t flags;
3469 tb = tb_find_pc((unsigned long)retaddr);
3470 if (!tb) {
3471 cpu_abort(env, "cpu_io_recompile: could not find TB for pc=%p",
3472 retaddr);
3474 n = env->icount_decr.u16.low + tb->icount;
3475 cpu_restore_state(tb, env, (unsigned long)retaddr, NULL);
3476 /* Calculate how many instructions had been executed before the fault
3477 occurred. */
3478 n = n - env->icount_decr.u16.low;
3479 /* Generate a new TB ending on the I/O insn. */
3480 n++;
3481 /* On MIPS and SH, delay slot instructions can only be restarted if
3482 they were already the first instruction in the TB. If this is not
3483 the first instruction in a TB then re-execute the preceding
3484 branch. */
3485 #if defined(TARGET_MIPS)
3486 if ((env->hflags & MIPS_HFLAG_BMASK) != 0 && n > 1) {
3487 env->active_tc.PC -= 4;
3488 env->icount_decr.u16.low++;
3489 env->hflags &= ~MIPS_HFLAG_BMASK;
3491 #elif defined(TARGET_SH4)
3492 if ((env->flags & ((DELAY_SLOT | DELAY_SLOT_CONDITIONAL))) != 0
3493 && n > 1) {
3494 env->pc -= 2;
3495 env->icount_decr.u16.low++;
3496 env->flags &= ~(DELAY_SLOT | DELAY_SLOT_CONDITIONAL);
3498 #endif
3499 /* This should never happen. */
3500 if (n > CF_COUNT_MASK)
3501 cpu_abort(env, "TB too big during recompile");
3503 cflags = n | CF_LAST_IO;
3504 pc = tb->pc;
3505 cs_base = tb->cs_base;
3506 flags = tb->flags;
3507 tb_phys_invalidate(tb, -1);
3508 /* FIXME: In theory this could raise an exception. In practice
3509 we have already translated the block once so it's probably ok. */
3510 tb_gen_code(env, pc, cs_base, flags, cflags);
3511 /* TODO: If env->pc != tb->pc (i.e. the faulting instruction was not
3512 the first in the TB) then we end up generating a whole new TB and
3513 repeating the fault, which is horribly inefficient.
3514 Better would be to execute just this insn uncached, or generate a
3515 second new TB. */
3516 cpu_resume_from_signal(env, NULL);
3519 void dump_exec_info(FILE *f,
3520 int (*cpu_fprintf)(FILE *f, const char *fmt, ...))
3522 int i, target_code_size, max_target_code_size;
3523 int direct_jmp_count, direct_jmp2_count, cross_page;
3524 TranslationBlock *tb;
3526 target_code_size = 0;
3527 max_target_code_size = 0;
3528 cross_page = 0;
3529 direct_jmp_count = 0;
3530 direct_jmp2_count = 0;
3531 for(i = 0; i < nb_tbs; i++) {
3532 tb = &tbs[i];
3533 target_code_size += tb->size;
3534 if (tb->size > max_target_code_size)
3535 max_target_code_size = tb->size;
3536 if (tb->page_addr[1] != -1)
3537 cross_page++;
3538 if (tb->tb_next_offset[0] != 0xffff) {
3539 direct_jmp_count++;
3540 if (tb->tb_next_offset[1] != 0xffff) {
3541 direct_jmp2_count++;
3545 /* XXX: avoid using doubles ? */
3546 cpu_fprintf(f, "Translation buffer state:\n");
3547 cpu_fprintf(f, "gen code size %ld/%ld\n",
3548 code_gen_ptr - code_gen_buffer, code_gen_buffer_max_size);
3549 cpu_fprintf(f, "TB count %d/%d\n",
3550 nb_tbs, code_gen_max_blocks);
3551 cpu_fprintf(f, "TB avg target size %d max=%d bytes\n",
3552 nb_tbs ? target_code_size / nb_tbs : 0,
3553 max_target_code_size);
3554 cpu_fprintf(f, "TB avg host size %d bytes (expansion ratio: %0.1f)\n",
3555 nb_tbs ? (code_gen_ptr - code_gen_buffer) / nb_tbs : 0,
3556 target_code_size ? (double) (code_gen_ptr - code_gen_buffer) / target_code_size : 0);
3557 cpu_fprintf(f, "cross page TB count %d (%d%%)\n",
3558 cross_page,
3559 nb_tbs ? (cross_page * 100) / nb_tbs : 0);
3560 cpu_fprintf(f, "direct jump count %d (%d%%) (2 jumps=%d %d%%)\n",
3561 direct_jmp_count,
3562 nb_tbs ? (direct_jmp_count * 100) / nb_tbs : 0,
3563 direct_jmp2_count,
3564 nb_tbs ? (direct_jmp2_count * 100) / nb_tbs : 0);
3565 cpu_fprintf(f, "\nStatistics:\n");
3566 cpu_fprintf(f, "TB flush count %d\n", tb_flush_count);
3567 cpu_fprintf(f, "TB invalidate count %d\n", tb_phys_invalidate_count);
3568 cpu_fprintf(f, "TLB flush count %d\n", tlb_flush_count);
3569 tcg_dump_info(f, cpu_fprintf);
3572 #if !defined(CONFIG_USER_ONLY)
3574 #define MMUSUFFIX _cmmu
3575 #define GETPC() NULL
3576 #define env cpu_single_env
3577 #define SOFTMMU_CODE_ACCESS
3579 #define SHIFT 0
3580 #include "softmmu_template.h"
3582 #define SHIFT 1
3583 #include "softmmu_template.h"
3585 #define SHIFT 2
3586 #include "softmmu_template.h"
3588 #define SHIFT 3
3589 #include "softmmu_template.h"
3591 #undef env
3593 #endif