qemu:virtio-net: Check return size on the correct sg list (Alex Williamson)
[sniper_test.git] / target-i386 / kvm.c
blob5168a02ca72e887c80d191ef0cd4499edb61631b
1 /*
2 * QEMU KVM support
4 * Copyright (C) 2006-2008 Qumranet Technologies
5 * Copyright IBM, Corp. 2008
7 * Authors:
8 * Anthony Liguori <aliguori@us.ibm.com>
10 * This work is licensed under the terms of the GNU GPL, version 2 or later.
11 * See the COPYING file in the top-level directory.
15 #include <sys/types.h>
16 #include <sys/ioctl.h>
17 #include <sys/mman.h>
19 #include <linux/kvm.h>
21 #include "qemu-common.h"
22 #include "sysemu.h"
23 #include "kvm.h"
24 #include "cpu.h"
25 #include "gdbstub.h"
27 //#define DEBUG_KVM
29 #ifdef DEBUG_KVM
30 #define dprintf(fmt, ...) \
31 do { fprintf(stderr, fmt, ## __VA_ARGS__); } while (0)
32 #else
33 #define dprintf(fmt, ...) \
34 do { } while (0)
35 #endif
37 int kvm_arch_init_vcpu(CPUState *env)
39 struct {
40 struct kvm_cpuid2 cpuid;
41 struct kvm_cpuid_entry2 entries[100];
42 } __attribute__((packed)) cpuid_data;
43 uint32_t limit, i, j, cpuid_i;
44 uint32_t eax, ebx, ecx, edx;
46 cpuid_i = 0;
48 cpu_x86_cpuid(env, 0, 0, &eax, &ebx, &ecx, &edx);
49 limit = eax;
51 for (i = 0; i <= limit; i++) {
52 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
54 switch (i) {
55 case 2: {
56 /* Keep reading function 2 till all the input is received */
57 int times;
59 cpu_x86_cpuid(env, i, 0, &eax, &ebx, &ecx, &edx);
60 times = eax & 0xff;
62 c->function = i;
63 c->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
64 c->flags |= KVM_CPUID_FLAG_STATE_READ_NEXT;
65 c->eax = eax;
66 c->ebx = ebx;
67 c->ecx = ecx;
68 c->edx = edx;
70 for (j = 1; j < times; ++j) {
71 cpu_x86_cpuid(env, i, 0, &eax, &ebx, &ecx, &edx);
72 c->function = i;
73 c->flags |= KVM_CPUID_FLAG_STATEFUL_FUNC;
74 c->eax = eax;
75 c->ebx = ebx;
76 c->ecx = ecx;
77 c->edx = edx;
78 c = &cpuid_data.entries[++cpuid_i];
80 break;
82 case 4:
83 case 0xb:
84 case 0xd:
85 for (j = 0; ; j++) {
86 cpu_x86_cpuid(env, i, j, &eax, &ebx, &ecx, &edx);
87 c->function = i;
88 c->flags = KVM_CPUID_FLAG_SIGNIFCANT_INDEX;
89 c->index = j;
90 c->eax = eax;
91 c->ebx = ebx;
92 c->ecx = ecx;
93 c->edx = edx;
94 c = &cpuid_data.entries[++cpuid_i];
96 if (i == 4 && eax == 0)
97 break;
98 if (i == 0xb && !(ecx & 0xff00))
99 break;
100 if (i == 0xd && eax == 0)
101 break;
103 break;
104 default:
105 cpu_x86_cpuid(env, i, 0, &eax, &ebx, &ecx, &edx);
106 c->function = i;
107 c->eax = eax;
108 c->ebx = ebx;
109 c->ecx = ecx;
110 c->edx = edx;
111 break;
114 cpu_x86_cpuid(env, 0x80000000, 0, &eax, &ebx, &ecx, &edx);
115 limit = eax;
117 for (i = 0x80000000; i <= limit; i++) {
118 struct kvm_cpuid_entry2 *c = &cpuid_data.entries[cpuid_i++];
120 cpu_x86_cpuid(env, i, 0, &eax, &ebx, &ecx, &edx);
121 c->function = i;
122 c->eax = eax;
123 c->ebx = ebx;
124 c->ecx = ecx;
125 c->edx = edx;
128 cpuid_data.cpuid.nent = cpuid_i;
130 return kvm_vcpu_ioctl(env, KVM_SET_CPUID2, &cpuid_data);
133 static int kvm_has_msr_star(CPUState *env)
135 static int has_msr_star;
136 int ret;
138 /* first time */
139 if (has_msr_star == 0) {
140 struct kvm_msr_list msr_list, *kvm_msr_list;
142 has_msr_star = -1;
144 /* Obtain MSR list from KVM. These are the MSRs that we must
145 * save/restore */
146 msr_list.nmsrs = 0;
147 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, &msr_list);
148 if (ret < 0)
149 return 0;
151 kvm_msr_list = qemu_mallocz(sizeof(msr_list) +
152 msr_list.nmsrs * sizeof(msr_list.indices[0]));
154 kvm_msr_list->nmsrs = msr_list.nmsrs;
155 ret = kvm_ioctl(env->kvm_state, KVM_GET_MSR_INDEX_LIST, kvm_msr_list);
156 if (ret >= 0) {
157 int i;
159 for (i = 0; i < kvm_msr_list->nmsrs; i++) {
160 if (kvm_msr_list->indices[i] == MSR_STAR) {
161 has_msr_star = 1;
162 break;
167 free(kvm_msr_list);
170 if (has_msr_star == 1)
171 return 1;
172 return 0;
175 int kvm_arch_init(KVMState *s, int smp_cpus)
177 int ret;
179 /* create vm86 tss. KVM uses vm86 mode to emulate 16-bit code
180 * directly. In order to use vm86 mode, a TSS is needed. Since this
181 * must be part of guest physical memory, we need to allocate it. Older
182 * versions of KVM just assumed that it would be at the end of physical
183 * memory but that doesn't work with more than 4GB of memory. We simply
184 * refuse to work with those older versions of KVM. */
185 ret = kvm_ioctl(s, KVM_CHECK_EXTENSION, KVM_CAP_SET_TSS_ADDR);
186 if (ret <= 0) {
187 fprintf(stderr, "kvm does not support KVM_CAP_SET_TSS_ADDR\n");
188 return ret;
191 /* this address is 3 pages before the bios, and the bios should present
192 * as unavaible memory. FIXME, need to ensure the e820 map deals with
193 * this?
195 return kvm_vm_ioctl(s, KVM_SET_TSS_ADDR, 0xfffbd000);
198 static void set_v8086_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
200 lhs->selector = rhs->selector;
201 lhs->base = rhs->base;
202 lhs->limit = rhs->limit;
203 lhs->type = 3;
204 lhs->present = 1;
205 lhs->dpl = 3;
206 lhs->db = 0;
207 lhs->s = 1;
208 lhs->l = 0;
209 lhs->g = 0;
210 lhs->avl = 0;
211 lhs->unusable = 0;
214 static void set_seg(struct kvm_segment *lhs, const SegmentCache *rhs)
216 unsigned flags = rhs->flags;
217 lhs->selector = rhs->selector;
218 lhs->base = rhs->base;
219 lhs->limit = rhs->limit;
220 lhs->type = (flags >> DESC_TYPE_SHIFT) & 15;
221 lhs->present = (flags & DESC_P_MASK) != 0;
222 lhs->dpl = rhs->selector & 3;
223 lhs->db = (flags >> DESC_B_SHIFT) & 1;
224 lhs->s = (flags & DESC_S_MASK) != 0;
225 lhs->l = (flags >> DESC_L_SHIFT) & 1;
226 lhs->g = (flags & DESC_G_MASK) != 0;
227 lhs->avl = (flags & DESC_AVL_MASK) != 0;
228 lhs->unusable = 0;
231 static void get_seg(SegmentCache *lhs, const struct kvm_segment *rhs)
233 lhs->selector = rhs->selector;
234 lhs->base = rhs->base;
235 lhs->limit = rhs->limit;
236 lhs->flags =
237 (rhs->type << DESC_TYPE_SHIFT)
238 | (rhs->present * DESC_P_MASK)
239 | (rhs->dpl << DESC_DPL_SHIFT)
240 | (rhs->db << DESC_B_SHIFT)
241 | (rhs->s * DESC_S_MASK)
242 | (rhs->l << DESC_L_SHIFT)
243 | (rhs->g * DESC_G_MASK)
244 | (rhs->avl * DESC_AVL_MASK);
247 static void kvm_getput_reg(__u64 *kvm_reg, target_ulong *qemu_reg, int set)
249 if (set)
250 *kvm_reg = *qemu_reg;
251 else
252 *qemu_reg = *kvm_reg;
255 static int kvm_getput_regs(CPUState *env, int set)
257 struct kvm_regs regs;
258 int ret = 0;
260 if (!set) {
261 ret = kvm_vcpu_ioctl(env, KVM_GET_REGS, &regs);
262 if (ret < 0)
263 return ret;
266 kvm_getput_reg(&regs.rax, &env->regs[R_EAX], set);
267 kvm_getput_reg(&regs.rbx, &env->regs[R_EBX], set);
268 kvm_getput_reg(&regs.rcx, &env->regs[R_ECX], set);
269 kvm_getput_reg(&regs.rdx, &env->regs[R_EDX], set);
270 kvm_getput_reg(&regs.rsi, &env->regs[R_ESI], set);
271 kvm_getput_reg(&regs.rdi, &env->regs[R_EDI], set);
272 kvm_getput_reg(&regs.rsp, &env->regs[R_ESP], set);
273 kvm_getput_reg(&regs.rbp, &env->regs[R_EBP], set);
274 #ifdef TARGET_X86_64
275 kvm_getput_reg(&regs.r8, &env->regs[8], set);
276 kvm_getput_reg(&regs.r9, &env->regs[9], set);
277 kvm_getput_reg(&regs.r10, &env->regs[10], set);
278 kvm_getput_reg(&regs.r11, &env->regs[11], set);
279 kvm_getput_reg(&regs.r12, &env->regs[12], set);
280 kvm_getput_reg(&regs.r13, &env->regs[13], set);
281 kvm_getput_reg(&regs.r14, &env->regs[14], set);
282 kvm_getput_reg(&regs.r15, &env->regs[15], set);
283 #endif
285 kvm_getput_reg(&regs.rflags, &env->eflags, set);
286 kvm_getput_reg(&regs.rip, &env->eip, set);
288 if (set)
289 ret = kvm_vcpu_ioctl(env, KVM_SET_REGS, &regs);
291 return ret;
294 static int kvm_put_fpu(CPUState *env)
296 struct kvm_fpu fpu;
297 int i;
299 memset(&fpu, 0, sizeof fpu);
300 fpu.fsw = env->fpus & ~(7 << 11);
301 fpu.fsw |= (env->fpstt & 7) << 11;
302 fpu.fcw = env->fpuc;
303 for (i = 0; i < 8; ++i)
304 fpu.ftwx |= (!env->fptags[i]) << i;
305 memcpy(fpu.fpr, env->fpregs, sizeof env->fpregs);
306 memcpy(fpu.xmm, env->xmm_regs, sizeof env->xmm_regs);
307 fpu.mxcsr = env->mxcsr;
309 return kvm_vcpu_ioctl(env, KVM_SET_FPU, &fpu);
312 static int kvm_put_sregs(CPUState *env)
314 struct kvm_sregs sregs;
316 memcpy(sregs.interrupt_bitmap,
317 env->interrupt_bitmap,
318 sizeof(sregs.interrupt_bitmap));
320 if ((env->eflags & VM_MASK)) {
321 set_v8086_seg(&sregs.cs, &env->segs[R_CS]);
322 set_v8086_seg(&sregs.ds, &env->segs[R_DS]);
323 set_v8086_seg(&sregs.es, &env->segs[R_ES]);
324 set_v8086_seg(&sregs.fs, &env->segs[R_FS]);
325 set_v8086_seg(&sregs.gs, &env->segs[R_GS]);
326 set_v8086_seg(&sregs.ss, &env->segs[R_SS]);
327 } else {
328 set_seg(&sregs.cs, &env->segs[R_CS]);
329 set_seg(&sregs.ds, &env->segs[R_DS]);
330 set_seg(&sregs.es, &env->segs[R_ES]);
331 set_seg(&sregs.fs, &env->segs[R_FS]);
332 set_seg(&sregs.gs, &env->segs[R_GS]);
333 set_seg(&sregs.ss, &env->segs[R_SS]);
335 if (env->cr[0] & CR0_PE_MASK) {
336 /* force ss cpl to cs cpl */
337 sregs.ss.selector = (sregs.ss.selector & ~3) |
338 (sregs.cs.selector & 3);
339 sregs.ss.dpl = sregs.ss.selector & 3;
343 set_seg(&sregs.tr, &env->tr);
344 set_seg(&sregs.ldt, &env->ldt);
346 sregs.idt.limit = env->idt.limit;
347 sregs.idt.base = env->idt.base;
348 sregs.gdt.limit = env->gdt.limit;
349 sregs.gdt.base = env->gdt.base;
351 sregs.cr0 = env->cr[0];
352 sregs.cr2 = env->cr[2];
353 sregs.cr3 = env->cr[3];
354 sregs.cr4 = env->cr[4];
356 sregs.cr8 = cpu_get_apic_tpr(env);
357 sregs.apic_base = cpu_get_apic_base(env);
359 sregs.efer = env->efer;
361 return kvm_vcpu_ioctl(env, KVM_SET_SREGS, &sregs);
364 static void kvm_msr_entry_set(struct kvm_msr_entry *entry,
365 uint32_t index, uint64_t value)
367 entry->index = index;
368 entry->data = value;
371 static int kvm_put_msrs(CPUState *env)
373 struct {
374 struct kvm_msrs info;
375 struct kvm_msr_entry entries[100];
376 } msr_data;
377 struct kvm_msr_entry *msrs = msr_data.entries;
378 int n = 0;
380 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_CS, env->sysenter_cs);
381 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_ESP, env->sysenter_esp);
382 kvm_msr_entry_set(&msrs[n++], MSR_IA32_SYSENTER_EIP, env->sysenter_eip);
383 if (kvm_has_msr_star(env))
384 kvm_msr_entry_set(&msrs[n++], MSR_STAR, env->star);
385 kvm_msr_entry_set(&msrs[n++], MSR_IA32_TSC, env->tsc);
386 #ifdef TARGET_X86_64
387 /* FIXME if lm capable */
388 kvm_msr_entry_set(&msrs[n++], MSR_CSTAR, env->cstar);
389 kvm_msr_entry_set(&msrs[n++], MSR_KERNELGSBASE, env->kernelgsbase);
390 kvm_msr_entry_set(&msrs[n++], MSR_FMASK, env->fmask);
391 kvm_msr_entry_set(&msrs[n++], MSR_LSTAR, env->lstar);
392 #endif
393 msr_data.info.nmsrs = n;
395 return kvm_vcpu_ioctl(env, KVM_SET_MSRS, &msr_data);
400 static int kvm_get_fpu(CPUState *env)
402 struct kvm_fpu fpu;
403 int i, ret;
405 ret = kvm_vcpu_ioctl(env, KVM_GET_FPU, &fpu);
406 if (ret < 0)
407 return ret;
409 env->fpstt = (fpu.fsw >> 11) & 7;
410 env->fpus = fpu.fsw;
411 env->fpuc = fpu.fcw;
412 for (i = 0; i < 8; ++i)
413 env->fptags[i] = !((fpu.ftwx >> i) & 1);
414 memcpy(env->fpregs, fpu.fpr, sizeof env->fpregs);
415 memcpy(env->xmm_regs, fpu.xmm, sizeof env->xmm_regs);
416 env->mxcsr = fpu.mxcsr;
418 return 0;
421 static int kvm_get_sregs(CPUState *env)
423 struct kvm_sregs sregs;
424 uint32_t hflags;
425 int ret;
427 ret = kvm_vcpu_ioctl(env, KVM_GET_SREGS, &sregs);
428 if (ret < 0)
429 return ret;
431 memcpy(env->interrupt_bitmap,
432 sregs.interrupt_bitmap,
433 sizeof(sregs.interrupt_bitmap));
435 get_seg(&env->segs[R_CS], &sregs.cs);
436 get_seg(&env->segs[R_DS], &sregs.ds);
437 get_seg(&env->segs[R_ES], &sregs.es);
438 get_seg(&env->segs[R_FS], &sregs.fs);
439 get_seg(&env->segs[R_GS], &sregs.gs);
440 get_seg(&env->segs[R_SS], &sregs.ss);
442 get_seg(&env->tr, &sregs.tr);
443 get_seg(&env->ldt, &sregs.ldt);
445 env->idt.limit = sregs.idt.limit;
446 env->idt.base = sregs.idt.base;
447 env->gdt.limit = sregs.gdt.limit;
448 env->gdt.base = sregs.gdt.base;
450 env->cr[0] = sregs.cr0;
451 env->cr[2] = sregs.cr2;
452 env->cr[3] = sregs.cr3;
453 env->cr[4] = sregs.cr4;
455 cpu_set_apic_base(env, sregs.apic_base);
457 env->efer = sregs.efer;
458 //cpu_set_apic_tpr(env, sregs.cr8);
460 #define HFLAG_COPY_MASK ~( \
461 HF_CPL_MASK | HF_PE_MASK | HF_MP_MASK | HF_EM_MASK | \
462 HF_TS_MASK | HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK | \
463 HF_OSFXSR_MASK | HF_LMA_MASK | HF_CS32_MASK | \
464 HF_SS32_MASK | HF_CS64_MASK | HF_ADDSEG_MASK)
468 hflags = (env->segs[R_CS].flags >> DESC_DPL_SHIFT) & HF_CPL_MASK;
469 hflags |= (env->cr[0] & CR0_PE_MASK) << (HF_PE_SHIFT - CR0_PE_SHIFT);
470 hflags |= (env->cr[0] << (HF_MP_SHIFT - CR0_MP_SHIFT)) &
471 (HF_MP_MASK | HF_EM_MASK | HF_TS_MASK);
472 hflags |= (env->eflags & (HF_TF_MASK | HF_VM_MASK | HF_IOPL_MASK));
473 hflags |= (env->cr[4] & CR4_OSFXSR_MASK) <<
474 (HF_OSFXSR_SHIFT - CR4_OSFXSR_SHIFT);
476 if (env->efer & MSR_EFER_LMA) {
477 hflags |= HF_LMA_MASK;
480 if ((hflags & HF_LMA_MASK) && (env->segs[R_CS].flags & DESC_L_MASK)) {
481 hflags |= HF_CS32_MASK | HF_SS32_MASK | HF_CS64_MASK;
482 } else {
483 hflags |= (env->segs[R_CS].flags & DESC_B_MASK) >>
484 (DESC_B_SHIFT - HF_CS32_SHIFT);
485 hflags |= (env->segs[R_SS].flags & DESC_B_MASK) >>
486 (DESC_B_SHIFT - HF_SS32_SHIFT);
487 if (!(env->cr[0] & CR0_PE_MASK) ||
488 (env->eflags & VM_MASK) ||
489 !(hflags & HF_CS32_MASK)) {
490 hflags |= HF_ADDSEG_MASK;
491 } else {
492 hflags |= ((env->segs[R_DS].base |
493 env->segs[R_ES].base |
494 env->segs[R_SS].base) != 0) <<
495 HF_ADDSEG_SHIFT;
498 env->hflags = (env->hflags & HFLAG_COPY_MASK) | hflags;
500 return 0;
503 static int kvm_get_msrs(CPUState *env)
505 struct {
506 struct kvm_msrs info;
507 struct kvm_msr_entry entries[100];
508 } msr_data;
509 struct kvm_msr_entry *msrs = msr_data.entries;
510 int ret, i, n;
512 n = 0;
513 msrs[n++].index = MSR_IA32_SYSENTER_CS;
514 msrs[n++].index = MSR_IA32_SYSENTER_ESP;
515 msrs[n++].index = MSR_IA32_SYSENTER_EIP;
516 if (kvm_has_msr_star(env))
517 msrs[n++].index = MSR_STAR;
518 msrs[n++].index = MSR_IA32_TSC;
519 #ifdef TARGET_X86_64
520 /* FIXME lm_capable_kernel */
521 msrs[n++].index = MSR_CSTAR;
522 msrs[n++].index = MSR_KERNELGSBASE;
523 msrs[n++].index = MSR_FMASK;
524 msrs[n++].index = MSR_LSTAR;
525 #endif
526 msr_data.info.nmsrs = n;
527 ret = kvm_vcpu_ioctl(env, KVM_GET_MSRS, &msr_data);
528 if (ret < 0)
529 return ret;
531 for (i = 0; i < ret; i++) {
532 switch (msrs[i].index) {
533 case MSR_IA32_SYSENTER_CS:
534 env->sysenter_cs = msrs[i].data;
535 break;
536 case MSR_IA32_SYSENTER_ESP:
537 env->sysenter_esp = msrs[i].data;
538 break;
539 case MSR_IA32_SYSENTER_EIP:
540 env->sysenter_eip = msrs[i].data;
541 break;
542 case MSR_STAR:
543 env->star = msrs[i].data;
544 break;
545 #ifdef TARGET_X86_64
546 case MSR_CSTAR:
547 env->cstar = msrs[i].data;
548 break;
549 case MSR_KERNELGSBASE:
550 env->kernelgsbase = msrs[i].data;
551 break;
552 case MSR_FMASK:
553 env->fmask = msrs[i].data;
554 break;
555 case MSR_LSTAR:
556 env->lstar = msrs[i].data;
557 break;
558 #endif
559 case MSR_IA32_TSC:
560 env->tsc = msrs[i].data;
561 break;
565 return 0;
568 int kvm_arch_put_registers(CPUState *env)
570 int ret;
572 ret = kvm_getput_regs(env, 1);
573 if (ret < 0)
574 return ret;
576 ret = kvm_put_fpu(env);
577 if (ret < 0)
578 return ret;
580 ret = kvm_put_sregs(env);
581 if (ret < 0)
582 return ret;
584 ret = kvm_put_msrs(env);
585 if (ret < 0)
586 return ret;
588 return 0;
591 int kvm_arch_get_registers(CPUState *env)
593 int ret;
595 ret = kvm_getput_regs(env, 0);
596 if (ret < 0)
597 return ret;
599 ret = kvm_get_fpu(env);
600 if (ret < 0)
601 return ret;
603 ret = kvm_get_sregs(env);
604 if (ret < 0)
605 return ret;
607 ret = kvm_get_msrs(env);
608 if (ret < 0)
609 return ret;
611 return 0;
614 int kvm_arch_pre_run(CPUState *env, struct kvm_run *run)
616 /* Try to inject an interrupt if the guest can accept it */
617 if (run->ready_for_interrupt_injection &&
618 (env->interrupt_request & CPU_INTERRUPT_HARD) &&
619 (env->eflags & IF_MASK)) {
620 int irq;
622 env->interrupt_request &= ~CPU_INTERRUPT_HARD;
623 irq = cpu_get_pic_interrupt(env);
624 if (irq >= 0) {
625 struct kvm_interrupt intr;
626 intr.irq = irq;
627 /* FIXME: errors */
628 dprintf("injected interrupt %d\n", irq);
629 kvm_vcpu_ioctl(env, KVM_INTERRUPT, &intr);
633 /* If we have an interrupt but the guest is not ready to receive an
634 * interrupt, request an interrupt window exit. This will
635 * cause a return to userspace as soon as the guest is ready to
636 * receive interrupts. */
637 if ((env->interrupt_request & CPU_INTERRUPT_HARD))
638 run->request_interrupt_window = 1;
639 else
640 run->request_interrupt_window = 0;
642 dprintf("setting tpr\n");
643 run->cr8 = cpu_get_apic_tpr(env);
645 return 0;
648 int kvm_arch_post_run(CPUState *env, struct kvm_run *run)
650 if (run->if_flag)
651 env->eflags |= IF_MASK;
652 else
653 env->eflags &= ~IF_MASK;
655 cpu_set_apic_tpr(env, run->cr8);
656 cpu_set_apic_base(env, run->apic_base);
658 return 0;
661 static int kvm_handle_halt(CPUState *env)
663 if (!((env->interrupt_request & CPU_INTERRUPT_HARD) &&
664 (env->eflags & IF_MASK)) &&
665 !(env->interrupt_request & CPU_INTERRUPT_NMI)) {
666 env->halted = 1;
667 env->exception_index = EXCP_HLT;
668 return 0;
671 return 1;
674 int kvm_arch_handle_exit(CPUState *env, struct kvm_run *run)
676 int ret = 0;
678 switch (run->exit_reason) {
679 case KVM_EXIT_HLT:
680 dprintf("handle_hlt\n");
681 ret = kvm_handle_halt(env);
682 break;
685 return ret;
688 #ifdef KVM_CAP_SET_GUEST_DEBUG
689 static int kvm_patch_opcode_byte(CPUState *env, target_ulong addr, uint8_t val)
691 target_phys_addr_t phys_page_addr;
692 unsigned long pd;
693 uint8_t *ptr;
695 phys_page_addr = cpu_get_phys_page_debug(env, addr & TARGET_PAGE_MASK);
696 if (phys_page_addr == -1)
697 return -EINVAL;
699 pd = cpu_get_physical_page_desc(phys_page_addr);
700 if ((pd & ~TARGET_PAGE_MASK) != IO_MEM_RAM &&
701 (pd & ~TARGET_PAGE_MASK) != IO_MEM_ROM && !(pd & IO_MEM_ROMD))
702 return -EINVAL;
704 ptr = phys_ram_base + (pd & TARGET_PAGE_MASK)
705 + (addr & ~TARGET_PAGE_MASK);
706 *ptr = val;
707 return 0;
710 int kvm_arch_insert_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
712 if (cpu_memory_rw_debug(env, bp->pc, (uint8_t *)&bp->saved_insn, 1, 0) ||
713 kvm_patch_opcode_byte(env, bp->pc, 0xcc))
714 return -EINVAL;
715 return 0;
718 int kvm_arch_remove_sw_breakpoint(CPUState *env, struct kvm_sw_breakpoint *bp)
720 uint8_t int3;
722 if (cpu_memory_rw_debug(env, bp->pc, &int3, 1, 0) || int3 != 0xcc ||
723 kvm_patch_opcode_byte(env, bp->pc, bp->saved_insn))
724 return -EINVAL;
725 return 0;
728 static struct {
729 target_ulong addr;
730 int len;
731 int type;
732 } hw_breakpoint[4];
734 static int nb_hw_breakpoint;
736 static int find_hw_breakpoint(target_ulong addr, int len, int type)
738 int n;
740 for (n = 0; n < nb_hw_breakpoint; n++)
741 if (hw_breakpoint[n].addr == addr && hw_breakpoint[n].type == type &&
742 (hw_breakpoint[n].len == len || len == -1))
743 return n;
744 return -1;
747 int kvm_arch_insert_hw_breakpoint(target_ulong addr,
748 target_ulong len, int type)
750 switch (type) {
751 case GDB_BREAKPOINT_HW:
752 len = 1;
753 break;
754 case GDB_WATCHPOINT_WRITE:
755 case GDB_WATCHPOINT_ACCESS:
756 switch (len) {
757 case 1:
758 break;
759 case 2:
760 case 4:
761 case 8:
762 if (addr & (len - 1))
763 return -EINVAL;
764 break;
765 default:
766 return -EINVAL;
768 break;
769 default:
770 return -ENOSYS;
773 if (nb_hw_breakpoint == 4)
774 return -ENOBUFS;
776 if (find_hw_breakpoint(addr, len, type) >= 0)
777 return -EEXIST;
779 hw_breakpoint[nb_hw_breakpoint].addr = addr;
780 hw_breakpoint[nb_hw_breakpoint].len = len;
781 hw_breakpoint[nb_hw_breakpoint].type = type;
782 nb_hw_breakpoint++;
784 return 0;
787 int kvm_arch_remove_hw_breakpoint(target_ulong addr,
788 target_ulong len, int type)
790 int n;
792 n = find_hw_breakpoint(addr, (type == GDB_BREAKPOINT_HW) ? 1 : len, type);
793 if (n < 0)
794 return -ENOENT;
796 nb_hw_breakpoint--;
797 hw_breakpoint[n] = hw_breakpoint[nb_hw_breakpoint];
799 return 0;
802 void kvm_arch_remove_all_hw_breakpoints(void)
804 nb_hw_breakpoint = 0;
807 static CPUWatchpoint hw_watchpoint;
809 int kvm_arch_debug(struct kvm_debug_exit_arch *arch_info)
811 int handle = 0;
812 int n;
814 if (arch_info->exception == 1) {
815 if (arch_info->dr6 & (1 << 14)) {
816 if (cpu_single_env->singlestep_enabled)
817 handle = 1;
818 } else {
819 for (n = 0; n < 4; n++)
820 if (arch_info->dr6 & (1 << n))
821 switch ((arch_info->dr7 >> (16 + n*4)) & 0x3) {
822 case 0x0:
823 handle = 1;
824 break;
825 case 0x1:
826 handle = 1;
827 cpu_single_env->watchpoint_hit = &hw_watchpoint;
828 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
829 hw_watchpoint.flags = BP_MEM_WRITE;
830 break;
831 case 0x3:
832 handle = 1;
833 cpu_single_env->watchpoint_hit = &hw_watchpoint;
834 hw_watchpoint.vaddr = hw_breakpoint[n].addr;
835 hw_watchpoint.flags = BP_MEM_ACCESS;
836 break;
839 } else if (kvm_find_sw_breakpoint(cpu_single_env, arch_info->pc))
840 handle = 1;
842 if (!handle)
843 kvm_update_guest_debug(cpu_single_env,
844 (arch_info->exception == 1) ?
845 KVM_GUESTDBG_INJECT_DB : KVM_GUESTDBG_INJECT_BP);
847 return handle;
850 void kvm_arch_update_guest_debug(CPUState *env, struct kvm_guest_debug *dbg)
852 const uint8_t type_code[] = {
853 [GDB_BREAKPOINT_HW] = 0x0,
854 [GDB_WATCHPOINT_WRITE] = 0x1,
855 [GDB_WATCHPOINT_ACCESS] = 0x3
857 const uint8_t len_code[] = {
858 [1] = 0x0, [2] = 0x1, [4] = 0x3, [8] = 0x2
860 int n;
862 if (kvm_sw_breakpoints_active(env))
863 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP;
865 if (nb_hw_breakpoint > 0) {
866 dbg->control |= KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_HW_BP;
867 dbg->arch.debugreg[7] = 0x0600;
868 for (n = 0; n < nb_hw_breakpoint; n++) {
869 dbg->arch.debugreg[n] = hw_breakpoint[n].addr;
870 dbg->arch.debugreg[7] |= (2 << (n * 2)) |
871 (type_code[hw_breakpoint[n].type] << (16 + n*4)) |
872 (len_code[hw_breakpoint[n].len] << (18 + n*4));
876 #endif /* KVM_CAP_SET_GUEST_DEBUG */