2 * Marvell MV88W8618 / Freecom MusicPal emulation.
4 * Copyright (c) 2008 Jan Kiszka
6 * This code is licenced under the GNU GPL v2.
16 #include "qemu-timer.h"
20 #include "audio/audio.h"
23 #define MP_MISC_BASE 0x80002000
24 #define MP_MISC_SIZE 0x00001000
26 #define MP_ETH_BASE 0x80008000
27 #define MP_ETH_SIZE 0x00001000
29 #define MP_WLAN_BASE 0x8000C000
30 #define MP_WLAN_SIZE 0x00000800
32 #define MP_UART1_BASE 0x8000C840
33 #define MP_UART2_BASE 0x8000C940
35 #define MP_GPIO_BASE 0x8000D000
36 #define MP_GPIO_SIZE 0x00001000
38 #define MP_FLASHCFG_BASE 0x90006000
39 #define MP_FLASHCFG_SIZE 0x00001000
41 #define MP_AUDIO_BASE 0x90007000
42 #define MP_AUDIO_SIZE 0x00001000
44 #define MP_PIC_BASE 0x90008000
45 #define MP_PIC_SIZE 0x00001000
47 #define MP_PIT_BASE 0x90009000
48 #define MP_PIT_SIZE 0x00001000
50 #define MP_LCD_BASE 0x9000c000
51 #define MP_LCD_SIZE 0x00001000
53 #define MP_SRAM_BASE 0xC0000000
54 #define MP_SRAM_SIZE 0x00020000
56 #define MP_RAM_DEFAULT_SIZE 32*1024*1024
57 #define MP_FLASH_SIZE_MAX 32*1024*1024
59 #define MP_TIMER1_IRQ 4
61 #define MP_TIMER4_IRQ 7
64 #define MP_UART1_IRQ 11
65 #define MP_UART2_IRQ 11
66 #define MP_GPIO_IRQ 12
68 #define MP_AUDIO_IRQ 30
70 static uint32_t gpio_in_state
= 0xffffffff;
71 static uint32_t gpio_isr
;
72 static uint32_t gpio_out_state
;
73 static ram_addr_t sram_off
;
75 /* Address conversion helpers */
76 static void *target2host_addr(uint32_t addr
)
78 if (addr
< MP_SRAM_BASE
) {
79 if (addr
>= MP_RAM_DEFAULT_SIZE
)
81 return (void *)(phys_ram_base
+ addr
);
83 if (addr
>= MP_SRAM_BASE
+ MP_SRAM_SIZE
)
85 return (void *)(phys_ram_base
+ sram_off
+ addr
- MP_SRAM_BASE
);
89 static uint32_t host2target_addr(void *addr
)
91 if (addr
< ((void *)phys_ram_base
) + sram_off
)
92 return (unsigned long)addr
- (unsigned long)phys_ram_base
;
94 return (unsigned long)addr
- (unsigned long)phys_ram_base
-
95 sram_off
+ MP_SRAM_BASE
;
99 typedef enum i2c_state
{
122 typedef struct i2c_interface
{
131 static void i2c_enter_stop(i2c_interface
*i2c
)
133 if (i2c
->current_addr
>= 0)
134 i2c_end_transfer(i2c
->bus
);
135 i2c
->current_addr
= -1;
136 i2c
->state
= STOPPED
;
139 static void i2c_state_update(i2c_interface
*i2c
, int data
, int clock
)
144 switch (i2c
->state
) {
146 if (data
== 0 && i2c
->last_data
== 1 && clock
== 1)
147 i2c
->state
= INITIALIZING
;
151 if (clock
== 0 && i2c
->last_clock
== 1 && data
== 0)
152 i2c
->state
= SENDING_BIT7
;
157 case SENDING_BIT7
... SENDING_BIT0
:
158 if (clock
== 0 && i2c
->last_clock
== 1) {
159 i2c
->buffer
= (i2c
->buffer
<< 1) | data
;
160 i2c
->state
++; /* will end up in WAITING_FOR_ACK */
161 } else if (data
== 1 && i2c
->last_data
== 0 && clock
== 1)
165 case WAITING_FOR_ACK
:
166 if (clock
== 0 && i2c
->last_clock
== 1) {
167 if (i2c
->current_addr
< 0) {
168 i2c
->current_addr
= i2c
->buffer
;
169 i2c_start_transfer(i2c
->bus
, i2c
->current_addr
& 0xfe,
172 i2c_send(i2c
->bus
, i2c
->buffer
);
173 if (i2c
->current_addr
& 1) {
174 i2c
->state
= RECEIVING_BIT7
;
175 i2c
->buffer
= i2c_recv(i2c
->bus
);
177 i2c
->state
= SENDING_BIT7
;
178 } else if (data
== 1 && i2c
->last_data
== 0 && clock
== 1)
182 case RECEIVING_BIT7
... RECEIVING_BIT0
:
183 if (clock
== 0 && i2c
->last_clock
== 1) {
184 i2c
->state
++; /* will end up in SENDING_ACK */
186 } else if (data
== 1 && i2c
->last_data
== 0 && clock
== 1)
191 if (clock
== 0 && i2c
->last_clock
== 1) {
192 i2c
->state
= RECEIVING_BIT7
;
194 i2c
->buffer
= i2c_recv(i2c
->bus
);
197 } else if (data
== 1 && i2c
->last_data
== 0 && clock
== 1)
202 i2c
->last_data
= data
;
203 i2c
->last_clock
= clock
;
206 static int i2c_get_data(i2c_interface
*i2c
)
211 switch (i2c
->state
) {
212 case RECEIVING_BIT7
... RECEIVING_BIT0
:
213 return (i2c
->buffer
>> 7);
215 case WAITING_FOR_ACK
:
221 static i2c_interface
*mixer_i2c
;
225 /* Audio register offsets */
226 #define MP_AUDIO_PLAYBACK_MODE 0x00
227 #define MP_AUDIO_CLOCK_DIV 0x18
228 #define MP_AUDIO_IRQ_STATUS 0x20
229 #define MP_AUDIO_IRQ_ENABLE 0x24
230 #define MP_AUDIO_TX_START_LO 0x28
231 #define MP_AUDIO_TX_THRESHOLD 0x2C
232 #define MP_AUDIO_TX_STATUS 0x38
233 #define MP_AUDIO_TX_START_HI 0x40
235 /* Status register and IRQ enable bits */
236 #define MP_AUDIO_TX_HALF (1 << 6)
237 #define MP_AUDIO_TX_FULL (1 << 7)
239 /* Playback mode bits */
240 #define MP_AUDIO_16BIT_SAMPLE (1 << 0)
241 #define MP_AUDIO_PLAYBACK_EN (1 << 7)
242 #define MP_AUDIO_CLOCK_24MHZ (1 << 9)
243 #define MP_AUDIO_MONO (1 << 14)
245 /* Wolfson 8750 I2C address */
246 #define MP_WM_ADDR 0x34
248 static const char audio_name
[] = "mv88w8618";
250 typedef struct musicpal_audio_state
{
252 uint32_t playback_mode
;
255 unsigned long phys_buf
;
256 int8_t *target_buffer
;
257 unsigned int threshold
;
258 unsigned int play_pos
;
259 unsigned int last_free
;
262 } musicpal_audio_state
;
264 static void audio_callback(void *opaque
, int free_out
, int free_in
)
266 musicpal_audio_state
*s
= opaque
;
267 int16_t *codec_buffer
;
271 if (!(s
->playback_mode
& MP_AUDIO_PLAYBACK_EN
))
274 if (s
->playback_mode
& MP_AUDIO_16BIT_SAMPLE
)
277 if (!(s
->playback_mode
& MP_AUDIO_MONO
))
280 block_size
= s
->threshold
/2;
281 if (free_out
- s
->last_free
< block_size
)
284 mem_buffer
= s
->target_buffer
+ s
->play_pos
;
285 if (s
->playback_mode
& MP_AUDIO_16BIT_SAMPLE
) {
286 if (s
->playback_mode
& MP_AUDIO_MONO
) {
287 codec_buffer
= wm8750_dac_buffer(s
->wm
, block_size
>> 1);
288 for (pos
= 0; pos
< block_size
; pos
+= 2) {
289 *codec_buffer
++ = *(int16_t *)mem_buffer
;
290 *codec_buffer
++ = *(int16_t *)mem_buffer
;
294 memcpy(wm8750_dac_buffer(s
->wm
, block_size
>> 2),
295 (uint32_t *)mem_buffer
, block_size
);
297 if (s
->playback_mode
& MP_AUDIO_MONO
) {
298 codec_buffer
= wm8750_dac_buffer(s
->wm
, block_size
);
299 for (pos
= 0; pos
< block_size
; pos
++) {
300 *codec_buffer
++ = cpu_to_le16(256 * *mem_buffer
);
301 *codec_buffer
++ = cpu_to_le16(256 * *mem_buffer
++);
304 codec_buffer
= wm8750_dac_buffer(s
->wm
, block_size
>> 1);
305 for (pos
= 0; pos
< block_size
; pos
+= 2) {
306 *codec_buffer
++ = cpu_to_le16(256 * *mem_buffer
++);
307 *codec_buffer
++ = cpu_to_le16(256 * *mem_buffer
++);
311 wm8750_dac_commit(s
->wm
);
313 s
->last_free
= free_out
- block_size
;
315 if (s
->play_pos
== 0) {
316 s
->status
|= MP_AUDIO_TX_HALF
;
317 s
->play_pos
= block_size
;
319 s
->status
|= MP_AUDIO_TX_FULL
;
323 if (s
->status
& s
->irq_enable
)
324 qemu_irq_raise(s
->irq
);
327 static void musicpal_audio_clock_update(musicpal_audio_state
*s
)
331 if (s
->playback_mode
& MP_AUDIO_CLOCK_24MHZ
)
332 rate
= 24576000 / 64; /* 24.576MHz */
334 rate
= 11289600 / 64; /* 11.2896MHz */
336 rate
/= ((s
->clock_div
>> 8) & 0xff) + 1;
338 wm8750_set_bclk_in(s
->wm
, rate
);
341 static uint32_t musicpal_audio_read(void *opaque
, target_phys_addr_t offset
)
343 musicpal_audio_state
*s
= opaque
;
346 case MP_AUDIO_PLAYBACK_MODE
:
347 return s
->playback_mode
;
349 case MP_AUDIO_CLOCK_DIV
:
352 case MP_AUDIO_IRQ_STATUS
:
355 case MP_AUDIO_IRQ_ENABLE
:
356 return s
->irq_enable
;
358 case MP_AUDIO_TX_STATUS
:
359 return s
->play_pos
>> 2;
366 static void musicpal_audio_write(void *opaque
, target_phys_addr_t offset
,
369 musicpal_audio_state
*s
= opaque
;
372 case MP_AUDIO_PLAYBACK_MODE
:
373 if (value
& MP_AUDIO_PLAYBACK_EN
&&
374 !(s
->playback_mode
& MP_AUDIO_PLAYBACK_EN
)) {
379 s
->playback_mode
= value
;
380 musicpal_audio_clock_update(s
);
383 case MP_AUDIO_CLOCK_DIV
:
384 s
->clock_div
= value
;
387 musicpal_audio_clock_update(s
);
390 case MP_AUDIO_IRQ_STATUS
:
394 case MP_AUDIO_IRQ_ENABLE
:
395 s
->irq_enable
= value
;
396 if (s
->status
& s
->irq_enable
)
397 qemu_irq_raise(s
->irq
);
400 case MP_AUDIO_TX_START_LO
:
401 s
->phys_buf
= (s
->phys_buf
& 0xFFFF0000) | (value
& 0xFFFF);
402 s
->target_buffer
= target2host_addr(s
->phys_buf
);
407 case MP_AUDIO_TX_THRESHOLD
:
408 s
->threshold
= (value
+ 1) * 4;
411 case MP_AUDIO_TX_START_HI
:
412 s
->phys_buf
= (s
->phys_buf
& 0xFFFF) | (value
<< 16);
413 s
->target_buffer
= target2host_addr(s
->phys_buf
);
420 static void musicpal_audio_reset(void *opaque
)
422 musicpal_audio_state
*s
= opaque
;
424 s
->playback_mode
= 0;
429 static CPUReadMemoryFunc
*musicpal_audio_readfn
[] = {
435 static CPUWriteMemoryFunc
*musicpal_audio_writefn
[] = {
436 musicpal_audio_write
,
437 musicpal_audio_write
,
441 static i2c_interface
*musicpal_audio_init(qemu_irq irq
)
444 musicpal_audio_state
*s
;
450 AUD_log(audio_name
, "No audio state\n");
454 s
= qemu_mallocz(sizeof(musicpal_audio_state
));
457 i2c
= qemu_mallocz(sizeof(i2c_interface
));
458 i2c
->bus
= i2c_init_bus();
459 i2c
->current_addr
= -1;
461 s
->wm
= wm8750_init(i2c
->bus
, audio
);
464 i2c_set_slave_address(s
->wm
, MP_WM_ADDR
);
465 wm8750_data_req_set(s
->wm
, audio_callback
, s
);
467 iomemtype
= cpu_register_io_memory(0, musicpal_audio_readfn
,
468 musicpal_audio_writefn
, s
);
469 cpu_register_physical_memory(MP_AUDIO_BASE
, MP_AUDIO_SIZE
, iomemtype
);
471 qemu_register_reset(musicpal_audio_reset
, s
);
475 #else /* !HAS_AUDIO */
476 static i2c_interface
*musicpal_audio_init(qemu_irq irq
)
480 #endif /* !HAS_AUDIO */
482 /* Ethernet register offsets */
483 #define MP_ETH_SMIR 0x010
484 #define MP_ETH_PCXR 0x408
485 #define MP_ETH_SDCMR 0x448
486 #define MP_ETH_ICR 0x450
487 #define MP_ETH_IMR 0x458
488 #define MP_ETH_FRDP0 0x480
489 #define MP_ETH_FRDP1 0x484
490 #define MP_ETH_FRDP2 0x488
491 #define MP_ETH_FRDP3 0x48C
492 #define MP_ETH_CRDP0 0x4A0
493 #define MP_ETH_CRDP1 0x4A4
494 #define MP_ETH_CRDP2 0x4A8
495 #define MP_ETH_CRDP3 0x4AC
496 #define MP_ETH_CTDP0 0x4E0
497 #define MP_ETH_CTDP1 0x4E4
498 #define MP_ETH_CTDP2 0x4E8
499 #define MP_ETH_CTDP3 0x4EC
502 #define MP_ETH_SMIR_DATA 0x0000FFFF
503 #define MP_ETH_SMIR_ADDR 0x03FF0000
504 #define MP_ETH_SMIR_OPCODE (1 << 26) /* Read value */
505 #define MP_ETH_SMIR_RDVALID (1 << 27)
508 #define MP_ETH_PHY1_BMSR 0x00210000
509 #define MP_ETH_PHY1_PHYSID1 0x00410000
510 #define MP_ETH_PHY1_PHYSID2 0x00610000
512 #define MP_PHY_BMSR_LINK 0x0004
513 #define MP_PHY_BMSR_AUTONEG 0x0008
515 #define MP_PHY_88E3015 0x01410E20
517 /* TX descriptor status */
518 #define MP_ETH_TX_OWN (1 << 31)
520 /* RX descriptor status */
521 #define MP_ETH_RX_OWN (1 << 31)
523 /* Interrupt cause/mask bits */
524 #define MP_ETH_IRQ_RX_BIT 0
525 #define MP_ETH_IRQ_RX (1 << MP_ETH_IRQ_RX_BIT)
526 #define MP_ETH_IRQ_TXHI_BIT 2
527 #define MP_ETH_IRQ_TXLO_BIT 3
529 /* Port config bits */
530 #define MP_ETH_PCXR_2BSM_BIT 28 /* 2-byte incoming suffix */
532 /* SDMA command bits */
533 #define MP_ETH_CMD_TXHI (1 << 23)
534 #define MP_ETH_CMD_TXLO (1 << 22)
536 typedef struct mv88w8618_tx_desc
{
544 typedef struct mv88w8618_rx_desc
{
547 uint16_t buffer_size
;
552 typedef struct mv88w8618_eth_state
{
558 mv88w8618_tx_desc
*tx_queue
[2];
559 mv88w8618_rx_desc
*rx_queue
[4];
560 mv88w8618_rx_desc
*frx_queue
[4];
561 mv88w8618_rx_desc
*cur_rx
[4];
563 } mv88w8618_eth_state
;
565 static int eth_can_receive(void *opaque
)
570 static void eth_receive(void *opaque
, const uint8_t *buf
, int size
)
572 mv88w8618_eth_state
*s
= opaque
;
573 mv88w8618_rx_desc
*desc
;
576 for (i
= 0; i
< 4; i
++) {
581 if (le32_to_cpu(desc
->cmdstat
) & MP_ETH_RX_OWN
&&
582 le16_to_cpu(desc
->buffer_size
) >= size
) {
583 memcpy(target2host_addr(le32_to_cpu(desc
->buffer
) +
586 desc
->bytes
= cpu_to_le16(size
+ s
->vlan_header
);
587 desc
->cmdstat
&= cpu_to_le32(~MP_ETH_RX_OWN
);
588 s
->cur_rx
[i
] = target2host_addr(le32_to_cpu(desc
->next
));
590 s
->icr
|= MP_ETH_IRQ_RX
;
592 qemu_irq_raise(s
->irq
);
595 desc
= target2host_addr(le32_to_cpu(desc
->next
));
596 } while (desc
!= s
->rx_queue
[i
]);
600 static void eth_send(mv88w8618_eth_state
*s
, int queue_index
)
602 mv88w8618_tx_desc
*desc
= s
->tx_queue
[queue_index
];
605 if (le32_to_cpu(desc
->cmdstat
) & MP_ETH_TX_OWN
) {
606 qemu_send_packet(s
->vc
,
607 target2host_addr(le32_to_cpu(desc
->buffer
)),
608 le16_to_cpu(desc
->bytes
));
609 desc
->cmdstat
&= cpu_to_le32(~MP_ETH_TX_OWN
);
610 s
->icr
|= 1 << (MP_ETH_IRQ_TXLO_BIT
- queue_index
);
612 desc
= target2host_addr(le32_to_cpu(desc
->next
));
613 } while (desc
!= s
->tx_queue
[queue_index
]);
616 static uint32_t mv88w8618_eth_read(void *opaque
, target_phys_addr_t offset
)
618 mv88w8618_eth_state
*s
= opaque
;
622 if (s
->smir
& MP_ETH_SMIR_OPCODE
) {
623 switch (s
->smir
& MP_ETH_SMIR_ADDR
) {
624 case MP_ETH_PHY1_BMSR
:
625 return MP_PHY_BMSR_LINK
| MP_PHY_BMSR_AUTONEG
|
627 case MP_ETH_PHY1_PHYSID1
:
628 return (MP_PHY_88E3015
>> 16) | MP_ETH_SMIR_RDVALID
;
629 case MP_ETH_PHY1_PHYSID2
:
630 return (MP_PHY_88E3015
& 0xFFFF) | MP_ETH_SMIR_RDVALID
;
632 return MP_ETH_SMIR_RDVALID
;
643 case MP_ETH_FRDP0
... MP_ETH_FRDP3
:
644 return host2target_addr(s
->frx_queue
[(offset
- MP_ETH_FRDP0
)/4]);
646 case MP_ETH_CRDP0
... MP_ETH_CRDP3
:
647 return host2target_addr(s
->rx_queue
[(offset
- MP_ETH_CRDP0
)/4]);
649 case MP_ETH_CTDP0
... MP_ETH_CTDP3
:
650 return host2target_addr(s
->tx_queue
[(offset
- MP_ETH_CTDP0
)/4]);
657 static void mv88w8618_eth_write(void *opaque
, target_phys_addr_t offset
,
660 mv88w8618_eth_state
*s
= opaque
;
668 s
->vlan_header
= ((value
>> MP_ETH_PCXR_2BSM_BIT
) & 1) * 2;
672 if (value
& MP_ETH_CMD_TXHI
)
674 if (value
& MP_ETH_CMD_TXLO
)
676 if (value
& (MP_ETH_CMD_TXHI
| MP_ETH_CMD_TXLO
) && s
->icr
& s
->imr
)
677 qemu_irq_raise(s
->irq
);
687 qemu_irq_raise(s
->irq
);
690 case MP_ETH_FRDP0
... MP_ETH_FRDP3
:
691 s
->frx_queue
[(offset
- MP_ETH_FRDP0
)/4] = target2host_addr(value
);
694 case MP_ETH_CRDP0
... MP_ETH_CRDP3
:
695 s
->rx_queue
[(offset
- MP_ETH_CRDP0
)/4] =
696 s
->cur_rx
[(offset
- MP_ETH_CRDP0
)/4] = target2host_addr(value
);
699 case MP_ETH_CTDP0
... MP_ETH_CTDP3
:
700 s
->tx_queue
[(offset
- MP_ETH_CTDP0
)/4] = target2host_addr(value
);
705 static CPUReadMemoryFunc
*mv88w8618_eth_readfn
[] = {
711 static CPUWriteMemoryFunc
*mv88w8618_eth_writefn
[] = {
717 static void mv88w8618_eth_init(NICInfo
*nd
, uint32_t base
, qemu_irq irq
)
719 mv88w8618_eth_state
*s
;
722 qemu_check_nic_model(nd
, "mv88w8618");
724 s
= qemu_mallocz(sizeof(mv88w8618_eth_state
));
726 s
->vc
= qemu_new_vlan_client(nd
->vlan
, nd
->model
, nd
->name
,
727 eth_receive
, eth_can_receive
, s
);
728 iomemtype
= cpu_register_io_memory(0, mv88w8618_eth_readfn
,
729 mv88w8618_eth_writefn
, s
);
730 cpu_register_physical_memory(base
, MP_ETH_SIZE
, iomemtype
);
733 /* LCD register offsets */
734 #define MP_LCD_IRQCTRL 0x180
735 #define MP_LCD_IRQSTAT 0x184
736 #define MP_LCD_SPICTRL 0x1ac
737 #define MP_LCD_INST 0x1bc
738 #define MP_LCD_DATA 0x1c0
741 #define MP_LCD_SPI_DATA 0x00100011
742 #define MP_LCD_SPI_CMD 0x00104011
743 #define MP_LCD_SPI_INVALID 0x00000000
746 #define MP_LCD_INST_SETPAGE0 0xB0
748 #define MP_LCD_INST_SETPAGE7 0xB7
750 #define MP_LCD_TEXTCOLOR 0xe0e0ff /* RRGGBB */
752 typedef struct musicpal_lcd_state
{
758 uint8_t video_ram
[128*64/8];
759 } musicpal_lcd_state
;
761 static uint32_t lcd_brightness
;
763 static uint8_t scale_lcd_color(uint8_t col
)
767 switch (lcd_brightness
) {
768 case 0x00000007: /* 0 */
771 case 0x00020000: /* 1 */
772 return (tmp
* 1) / 7;
774 case 0x00020001: /* 2 */
775 return (tmp
* 2) / 7;
777 case 0x00040000: /* 3 */
778 return (tmp
* 3) / 7;
780 case 0x00010006: /* 4 */
781 return (tmp
* 4) / 7;
783 case 0x00020005: /* 5 */
784 return (tmp
* 5) / 7;
786 case 0x00040003: /* 6 */
787 return (tmp
* 6) / 7;
789 case 0x00030004: /* 7 */
795 #define SET_LCD_PIXEL(depth, type) \
796 static inline void glue(set_lcd_pixel, depth) \
797 (musicpal_lcd_state *s, int x, int y, type col) \
800 type *pixel = &((type *) ds_get_data(s->ds))[(y * 128 * 3 + x) * 3]; \
802 for (dy = 0; dy < 3; dy++, pixel += 127 * 3) \
803 for (dx = 0; dx < 3; dx++, pixel++) \
806 SET_LCD_PIXEL(8, uint8_t)
807 SET_LCD_PIXEL(16, uint16_t)
808 SET_LCD_PIXEL(32, uint32_t)
810 #include "pixel_ops.h"
812 static void lcd_refresh(void *opaque
)
814 musicpal_lcd_state
*s
= opaque
;
817 switch (ds_get_bits_per_pixel(s
->ds
)) {
820 #define LCD_REFRESH(depth, func) \
822 col = func(scale_lcd_color((MP_LCD_TEXTCOLOR >> 16) & 0xff), \
823 scale_lcd_color((MP_LCD_TEXTCOLOR >> 8) & 0xff), \
824 scale_lcd_color(MP_LCD_TEXTCOLOR & 0xff)); \
825 for (x = 0; x < 128; x++) \
826 for (y = 0; y < 64; y++) \
827 if (s->video_ram[x + (y/8)*128] & (1 << (y % 8))) \
828 glue(set_lcd_pixel, depth)(s, x, y, col); \
830 glue(set_lcd_pixel, depth)(s, x, y, 0); \
832 LCD_REFRESH(8, rgb_to_pixel8
)
833 LCD_REFRESH(16, rgb_to_pixel16
)
834 LCD_REFRESH(32, rgb_to_pixel32
)
836 cpu_abort(cpu_single_env
, "unsupported colour depth %i\n",
837 ds_get_bits_per_pixel(s
->ds
));
840 dpy_update(s
->ds
, 0, 0, 128*3, 64*3);
843 static void lcd_invalidate(void *opaque
)
847 static uint32_t musicpal_lcd_read(void *opaque
, target_phys_addr_t offset
)
849 musicpal_lcd_state
*s
= opaque
;
860 static void musicpal_lcd_write(void *opaque
, target_phys_addr_t offset
,
863 musicpal_lcd_state
*s
= opaque
;
871 if (value
== MP_LCD_SPI_DATA
|| value
== MP_LCD_SPI_CMD
)
874 s
->mode
= MP_LCD_SPI_INVALID
;
878 if (value
>= MP_LCD_INST_SETPAGE0
&& value
<= MP_LCD_INST_SETPAGE7
) {
879 s
->page
= value
- MP_LCD_INST_SETPAGE0
;
885 if (s
->mode
== MP_LCD_SPI_CMD
) {
886 if (value
>= MP_LCD_INST_SETPAGE0
&&
887 value
<= MP_LCD_INST_SETPAGE7
) {
888 s
->page
= value
- MP_LCD_INST_SETPAGE0
;
891 } else if (s
->mode
== MP_LCD_SPI_DATA
) {
892 s
->video_ram
[s
->page
*128 + s
->page_off
] = value
;
893 s
->page_off
= (s
->page_off
+ 1) & 127;
899 static CPUReadMemoryFunc
*musicpal_lcd_readfn
[] = {
905 static CPUWriteMemoryFunc
*musicpal_lcd_writefn
[] = {
911 static void musicpal_lcd_init(void)
913 musicpal_lcd_state
*s
;
916 s
= qemu_mallocz(sizeof(musicpal_lcd_state
));
917 iomemtype
= cpu_register_io_memory(0, musicpal_lcd_readfn
,
918 musicpal_lcd_writefn
, s
);
919 cpu_register_physical_memory(MP_LCD_BASE
, MP_LCD_SIZE
, iomemtype
);
921 s
->ds
= graphic_console_init(lcd_refresh
, lcd_invalidate
,
923 qemu_console_resize(s
->ds
, 128*3, 64*3);
926 /* PIC register offsets */
927 #define MP_PIC_STATUS 0x00
928 #define MP_PIC_ENABLE_SET 0x08
929 #define MP_PIC_ENABLE_CLR 0x0C
931 typedef struct mv88w8618_pic_state
936 } mv88w8618_pic_state
;
938 static void mv88w8618_pic_update(mv88w8618_pic_state
*s
)
940 qemu_set_irq(s
->parent_irq
, (s
->level
& s
->enabled
));
943 static void mv88w8618_pic_set_irq(void *opaque
, int irq
, int level
)
945 mv88w8618_pic_state
*s
= opaque
;
948 s
->level
|= 1 << irq
;
950 s
->level
&= ~(1 << irq
);
951 mv88w8618_pic_update(s
);
954 static uint32_t mv88w8618_pic_read(void *opaque
, target_phys_addr_t offset
)
956 mv88w8618_pic_state
*s
= opaque
;
960 return s
->level
& s
->enabled
;
967 static void mv88w8618_pic_write(void *opaque
, target_phys_addr_t offset
,
970 mv88w8618_pic_state
*s
= opaque
;
973 case MP_PIC_ENABLE_SET
:
977 case MP_PIC_ENABLE_CLR
:
978 s
->enabled
&= ~value
;
982 mv88w8618_pic_update(s
);
985 static void mv88w8618_pic_reset(void *opaque
)
987 mv88w8618_pic_state
*s
= opaque
;
993 static CPUReadMemoryFunc
*mv88w8618_pic_readfn
[] = {
999 static CPUWriteMemoryFunc
*mv88w8618_pic_writefn
[] = {
1000 mv88w8618_pic_write
,
1001 mv88w8618_pic_write
,
1005 static qemu_irq
*mv88w8618_pic_init(uint32_t base
, qemu_irq parent_irq
)
1007 mv88w8618_pic_state
*s
;
1011 s
= qemu_mallocz(sizeof(mv88w8618_pic_state
));
1012 qi
= qemu_allocate_irqs(mv88w8618_pic_set_irq
, s
, 32);
1013 s
->parent_irq
= parent_irq
;
1014 iomemtype
= cpu_register_io_memory(0, mv88w8618_pic_readfn
,
1015 mv88w8618_pic_writefn
, s
);
1016 cpu_register_physical_memory(base
, MP_PIC_SIZE
, iomemtype
);
1018 qemu_register_reset(mv88w8618_pic_reset
, s
);
1023 /* PIT register offsets */
1024 #define MP_PIT_TIMER1_LENGTH 0x00
1026 #define MP_PIT_TIMER4_LENGTH 0x0C
1027 #define MP_PIT_CONTROL 0x10
1028 #define MP_PIT_TIMER1_VALUE 0x14
1030 #define MP_PIT_TIMER4_VALUE 0x20
1031 #define MP_BOARD_RESET 0x34
1033 /* Magic board reset value (probably some watchdog behind it) */
1034 #define MP_BOARD_RESET_MAGIC 0x10000
1036 typedef struct mv88w8618_timer_state
{
1037 ptimer_state
*timer
;
1041 } mv88w8618_timer_state
;
1043 typedef struct mv88w8618_pit_state
{
1046 } mv88w8618_pit_state
;
1048 static void mv88w8618_timer_tick(void *opaque
)
1050 mv88w8618_timer_state
*s
= opaque
;
1052 qemu_irq_raise(s
->irq
);
1055 static void *mv88w8618_timer_init(uint32_t freq
, qemu_irq irq
)
1057 mv88w8618_timer_state
*s
;
1060 s
= qemu_mallocz(sizeof(mv88w8618_timer_state
));
1064 bh
= qemu_bh_new(mv88w8618_timer_tick
, s
);
1065 s
->timer
= ptimer_init(bh
);
1070 static uint32_t mv88w8618_pit_read(void *opaque
, target_phys_addr_t offset
)
1072 mv88w8618_pit_state
*s
= opaque
;
1073 mv88w8618_timer_state
*t
;
1076 case MP_PIT_TIMER1_VALUE
... MP_PIT_TIMER4_VALUE
:
1077 t
= s
->timer
[(offset
-MP_PIT_TIMER1_VALUE
) >> 2];
1078 return ptimer_get_count(t
->timer
);
1085 static void mv88w8618_pit_write(void *opaque
, target_phys_addr_t offset
,
1088 mv88w8618_pit_state
*s
= opaque
;
1089 mv88w8618_timer_state
*t
;
1093 case MP_PIT_TIMER1_LENGTH
... MP_PIT_TIMER4_LENGTH
:
1094 t
= s
->timer
[offset
>> 2];
1096 ptimer_set_limit(t
->timer
, t
->limit
, 1);
1099 case MP_PIT_CONTROL
:
1100 for (i
= 0; i
< 4; i
++) {
1103 ptimer_set_limit(t
->timer
, t
->limit
, 0);
1104 ptimer_set_freq(t
->timer
, t
->freq
);
1105 ptimer_run(t
->timer
, 0);
1111 case MP_BOARD_RESET
:
1112 if (value
== MP_BOARD_RESET_MAGIC
)
1113 qemu_system_reset_request();
1118 static CPUReadMemoryFunc
*mv88w8618_pit_readfn
[] = {
1124 static CPUWriteMemoryFunc
*mv88w8618_pit_writefn
[] = {
1125 mv88w8618_pit_write
,
1126 mv88w8618_pit_write
,
1130 static void mv88w8618_pit_init(uint32_t base
, qemu_irq
*pic
, int irq
)
1133 mv88w8618_pit_state
*s
;
1135 s
= qemu_mallocz(sizeof(mv88w8618_pit_state
));
1137 /* Letting them all run at 1 MHz is likely just a pragmatic
1138 * simplification. */
1139 s
->timer
[0] = mv88w8618_timer_init(1000000, pic
[irq
]);
1140 s
->timer
[1] = mv88w8618_timer_init(1000000, pic
[irq
+ 1]);
1141 s
->timer
[2] = mv88w8618_timer_init(1000000, pic
[irq
+ 2]);
1142 s
->timer
[3] = mv88w8618_timer_init(1000000, pic
[irq
+ 3]);
1144 iomemtype
= cpu_register_io_memory(0, mv88w8618_pit_readfn
,
1145 mv88w8618_pit_writefn
, s
);
1146 cpu_register_physical_memory(base
, MP_PIT_SIZE
, iomemtype
);
1149 /* Flash config register offsets */
1150 #define MP_FLASHCFG_CFGR0 0x04
1152 typedef struct mv88w8618_flashcfg_state
{
1154 } mv88w8618_flashcfg_state
;
1156 static uint32_t mv88w8618_flashcfg_read(void *opaque
,
1157 target_phys_addr_t offset
)
1159 mv88w8618_flashcfg_state
*s
= opaque
;
1162 case MP_FLASHCFG_CFGR0
:
1170 static void mv88w8618_flashcfg_write(void *opaque
, target_phys_addr_t offset
,
1173 mv88w8618_flashcfg_state
*s
= opaque
;
1176 case MP_FLASHCFG_CFGR0
:
1182 static CPUReadMemoryFunc
*mv88w8618_flashcfg_readfn
[] = {
1183 mv88w8618_flashcfg_read
,
1184 mv88w8618_flashcfg_read
,
1185 mv88w8618_flashcfg_read
1188 static CPUWriteMemoryFunc
*mv88w8618_flashcfg_writefn
[] = {
1189 mv88w8618_flashcfg_write
,
1190 mv88w8618_flashcfg_write
,
1191 mv88w8618_flashcfg_write
1194 static void mv88w8618_flashcfg_init(uint32_t base
)
1197 mv88w8618_flashcfg_state
*s
;
1199 s
= qemu_mallocz(sizeof(mv88w8618_flashcfg_state
));
1201 s
->cfgr0
= 0xfffe4285; /* Default as set by U-Boot for 8 MB flash */
1202 iomemtype
= cpu_register_io_memory(0, mv88w8618_flashcfg_readfn
,
1203 mv88w8618_flashcfg_writefn
, s
);
1204 cpu_register_physical_memory(base
, MP_FLASHCFG_SIZE
, iomemtype
);
1207 /* Misc register offsets */
1208 #define MP_MISC_BOARD_REVISION 0x18
1210 #define MP_BOARD_REVISION 0x31
1212 static uint32_t musicpal_misc_read(void *opaque
, target_phys_addr_t offset
)
1215 case MP_MISC_BOARD_REVISION
:
1216 return MP_BOARD_REVISION
;
1223 static void musicpal_misc_write(void *opaque
, target_phys_addr_t offset
,
1228 static CPUReadMemoryFunc
*musicpal_misc_readfn
[] = {
1234 static CPUWriteMemoryFunc
*musicpal_misc_writefn
[] = {
1235 musicpal_misc_write
,
1236 musicpal_misc_write
,
1237 musicpal_misc_write
,
1240 static void musicpal_misc_init(void)
1244 iomemtype
= cpu_register_io_memory(0, musicpal_misc_readfn
,
1245 musicpal_misc_writefn
, NULL
);
1246 cpu_register_physical_memory(MP_MISC_BASE
, MP_MISC_SIZE
, iomemtype
);
1249 /* WLAN register offsets */
1250 #define MP_WLAN_MAGIC1 0x11c
1251 #define MP_WLAN_MAGIC2 0x124
1253 static uint32_t mv88w8618_wlan_read(void *opaque
, target_phys_addr_t offset
)
1256 /* Workaround to allow loading the binary-only wlandrv.ko crap
1257 * from the original Freecom firmware. */
1258 case MP_WLAN_MAGIC1
:
1260 case MP_WLAN_MAGIC2
:
1268 static void mv88w8618_wlan_write(void *opaque
, target_phys_addr_t offset
,
1273 static CPUReadMemoryFunc
*mv88w8618_wlan_readfn
[] = {
1274 mv88w8618_wlan_read
,
1275 mv88w8618_wlan_read
,
1276 mv88w8618_wlan_read
,
1279 static CPUWriteMemoryFunc
*mv88w8618_wlan_writefn
[] = {
1280 mv88w8618_wlan_write
,
1281 mv88w8618_wlan_write
,
1282 mv88w8618_wlan_write
,
1285 static void mv88w8618_wlan_init(uint32_t base
)
1289 iomemtype
= cpu_register_io_memory(0, mv88w8618_wlan_readfn
,
1290 mv88w8618_wlan_writefn
, NULL
);
1291 cpu_register_physical_memory(base
, MP_WLAN_SIZE
, iomemtype
);
1294 /* GPIO register offsets */
1295 #define MP_GPIO_OE_LO 0x008
1296 #define MP_GPIO_OUT_LO 0x00c
1297 #define MP_GPIO_IN_LO 0x010
1298 #define MP_GPIO_ISR_LO 0x020
1299 #define MP_GPIO_OE_HI 0x508
1300 #define MP_GPIO_OUT_HI 0x50c
1301 #define MP_GPIO_IN_HI 0x510
1302 #define MP_GPIO_ISR_HI 0x520
1304 /* GPIO bits & masks */
1305 #define MP_GPIO_WHEEL_VOL (1 << 8)
1306 #define MP_GPIO_WHEEL_VOL_INV (1 << 9)
1307 #define MP_GPIO_WHEEL_NAV (1 << 10)
1308 #define MP_GPIO_WHEEL_NAV_INV (1 << 11)
1309 #define MP_GPIO_LCD_BRIGHTNESS 0x00070000
1310 #define MP_GPIO_BTN_FAVORITS (1 << 19)
1311 #define MP_GPIO_BTN_MENU (1 << 20)
1312 #define MP_GPIO_BTN_VOLUME (1 << 21)
1313 #define MP_GPIO_BTN_NAVIGATION (1 << 22)
1314 #define MP_GPIO_I2C_DATA_BIT 29
1315 #define MP_GPIO_I2C_DATA (1 << MP_GPIO_I2C_DATA_BIT)
1316 #define MP_GPIO_I2C_CLOCK_BIT 30
1318 /* LCD brightness bits in GPIO_OE_HI */
1319 #define MP_OE_LCD_BRIGHTNESS 0x0007
1321 static uint32_t musicpal_gpio_read(void *opaque
, target_phys_addr_t offset
)
1324 case MP_GPIO_OE_HI
: /* used for LCD brightness control */
1325 return lcd_brightness
& MP_OE_LCD_BRIGHTNESS
;
1327 case MP_GPIO_OUT_LO
:
1328 return gpio_out_state
& 0xFFFF;
1329 case MP_GPIO_OUT_HI
:
1330 return gpio_out_state
>> 16;
1333 return gpio_in_state
& 0xFFFF;
1335 /* Update received I2C data */
1336 gpio_in_state
= (gpio_in_state
& ~MP_GPIO_I2C_DATA
) |
1337 (i2c_get_data(mixer_i2c
) << MP_GPIO_I2C_DATA_BIT
);
1338 return gpio_in_state
>> 16;
1340 case MP_GPIO_ISR_LO
:
1341 return gpio_isr
& 0xFFFF;
1342 case MP_GPIO_ISR_HI
:
1343 return gpio_isr
>> 16;
1350 static void musicpal_gpio_write(void *opaque
, target_phys_addr_t offset
,
1354 case MP_GPIO_OE_HI
: /* used for LCD brightness control */
1355 lcd_brightness
= (lcd_brightness
& MP_GPIO_LCD_BRIGHTNESS
) |
1356 (value
& MP_OE_LCD_BRIGHTNESS
);
1359 case MP_GPIO_OUT_LO
:
1360 gpio_out_state
= (gpio_out_state
& 0xFFFF0000) | (value
& 0xFFFF);
1362 case MP_GPIO_OUT_HI
:
1363 gpio_out_state
= (gpio_out_state
& 0xFFFF) | (value
<< 16);
1364 lcd_brightness
= (lcd_brightness
& 0xFFFF) |
1365 (gpio_out_state
& MP_GPIO_LCD_BRIGHTNESS
);
1366 i2c_state_update(mixer_i2c
,
1367 (gpio_out_state
>> MP_GPIO_I2C_DATA_BIT
) & 1,
1368 (gpio_out_state
>> MP_GPIO_I2C_CLOCK_BIT
) & 1);
1374 static CPUReadMemoryFunc
*musicpal_gpio_readfn
[] = {
1380 static CPUWriteMemoryFunc
*musicpal_gpio_writefn
[] = {
1381 musicpal_gpio_write
,
1382 musicpal_gpio_write
,
1383 musicpal_gpio_write
,
1386 static void musicpal_gpio_init(void)
1390 iomemtype
= cpu_register_io_memory(0, musicpal_gpio_readfn
,
1391 musicpal_gpio_writefn
, NULL
);
1392 cpu_register_physical_memory(MP_GPIO_BASE
, MP_GPIO_SIZE
, iomemtype
);
1395 /* Keyboard codes & masks */
1396 #define KEY_RELEASED 0x80
1397 #define KEY_CODE 0x7f
1399 #define KEYCODE_TAB 0x0f
1400 #define KEYCODE_ENTER 0x1c
1401 #define KEYCODE_F 0x21
1402 #define KEYCODE_M 0x32
1404 #define KEYCODE_EXTENDED 0xe0
1405 #define KEYCODE_UP 0x48
1406 #define KEYCODE_DOWN 0x50
1407 #define KEYCODE_LEFT 0x4b
1408 #define KEYCODE_RIGHT 0x4d
1410 static void musicpal_key_event(void *opaque
, int keycode
)
1412 qemu_irq irq
= opaque
;
1414 static int kbd_extended
;
1416 if (keycode
== KEYCODE_EXTENDED
) {
1422 switch (keycode
& KEY_CODE
) {
1424 event
= MP_GPIO_WHEEL_NAV
| MP_GPIO_WHEEL_NAV_INV
;
1428 event
= MP_GPIO_WHEEL_NAV
;
1432 event
= MP_GPIO_WHEEL_VOL
| MP_GPIO_WHEEL_VOL_INV
;
1436 event
= MP_GPIO_WHEEL_VOL
;
1440 switch (keycode
& KEY_CODE
) {
1442 event
= MP_GPIO_BTN_FAVORITS
;
1446 event
= MP_GPIO_BTN_VOLUME
;
1450 event
= MP_GPIO_BTN_NAVIGATION
;
1454 event
= MP_GPIO_BTN_MENU
;
1457 /* Do not repeat already pressed buttons */
1458 if (!(keycode
& KEY_RELEASED
) && !(gpio_in_state
& event
))
1463 if (keycode
& KEY_RELEASED
) {
1464 gpio_in_state
|= event
;
1466 gpio_in_state
&= ~event
;
1468 qemu_irq_raise(irq
);
1475 static struct arm_boot_info musicpal_binfo
= {
1476 .loader_start
= 0x0,
1480 static void musicpal_init(ram_addr_t ram_size
, int vga_ram_size
,
1481 const char *boot_device
,
1482 const char *kernel_filename
, const char *kernel_cmdline
,
1483 const char *initrd_filename
, const char *cpu_model
)
1488 unsigned long flash_size
;
1491 cpu_model
= "arm926";
1493 env
= cpu_init(cpu_model
);
1495 fprintf(stderr
, "Unable to find CPU definition\n");
1498 pic
= arm_pic_init_cpu(env
);
1500 /* For now we use a fixed - the original - RAM size */
1501 cpu_register_physical_memory(0, MP_RAM_DEFAULT_SIZE
,
1502 qemu_ram_alloc(MP_RAM_DEFAULT_SIZE
));
1504 sram_off
= qemu_ram_alloc(MP_SRAM_SIZE
);
1505 cpu_register_physical_memory(MP_SRAM_BASE
, MP_SRAM_SIZE
, sram_off
);
1507 pic
= mv88w8618_pic_init(MP_PIC_BASE
, pic
[ARM_PIC_CPU_IRQ
]);
1508 mv88w8618_pit_init(MP_PIT_BASE
, pic
, MP_TIMER1_IRQ
);
1511 serial_mm_init(MP_UART1_BASE
, 2, pic
[MP_UART1_IRQ
], 1825000,
1514 serial_mm_init(MP_UART2_BASE
, 2, pic
[MP_UART2_IRQ
], 1825000,
1517 /* Register flash */
1518 index
= drive_get_index(IF_PFLASH
, 0, 0);
1520 flash_size
= bdrv_getlength(drives_table
[index
].bdrv
);
1521 if (flash_size
!= 8*1024*1024 && flash_size
!= 16*1024*1024 &&
1522 flash_size
!= 32*1024*1024) {
1523 fprintf(stderr
, "Invalid flash image size\n");
1528 * The original U-Boot accesses the flash at 0xFE000000 instead of
1529 * 0xFF800000 (if there is 8 MB flash). So remap flash access if the
1530 * image is smaller than 32 MB.
1532 pflash_cfi02_register(0-MP_FLASH_SIZE_MAX
, qemu_ram_alloc(flash_size
),
1533 drives_table
[index
].bdrv
, 0x10000,
1534 (flash_size
+ 0xffff) >> 16,
1535 MP_FLASH_SIZE_MAX
/ flash_size
,
1536 2, 0x00BF, 0x236D, 0x0000, 0x0000,
1539 mv88w8618_flashcfg_init(MP_FLASHCFG_BASE
);
1541 musicpal_lcd_init();
1543 qemu_add_kbd_event_handler(musicpal_key_event
, pic
[MP_GPIO_IRQ
]);
1545 mv88w8618_eth_init(&nd_table
[0], MP_ETH_BASE
, pic
[MP_ETH_IRQ
]);
1547 mixer_i2c
= musicpal_audio_init(pic
[MP_AUDIO_IRQ
]);
1549 mv88w8618_wlan_init(MP_WLAN_BASE
);
1551 musicpal_misc_init();
1552 musicpal_gpio_init();
1554 musicpal_binfo
.ram_size
= MP_RAM_DEFAULT_SIZE
;
1555 musicpal_binfo
.kernel_filename
= kernel_filename
;
1556 musicpal_binfo
.kernel_cmdline
= kernel_cmdline
;
1557 musicpal_binfo
.initrd_filename
= initrd_filename
;
1558 arm_load_kernel(env
, &musicpal_binfo
);
1561 QEMUMachine musicpal_machine
= {
1563 .desc
= "Marvell 88w8618 / MusicPal (ARM926EJ-S)",
1564 .init
= musicpal_init
,
1565 .ram_require
= MP_RAM_DEFAULT_SIZE
+ MP_SRAM_SIZE
+
1566 MP_FLASH_SIZE_MAX
+ RAMSIZE_FIXED
,