Revert r6408
[sniper_test.git] / hw / sparc32_dma.c
blobb1495dd953bf9fdfe4892c996924bed6bfa63ab8
1 /*
2 * QEMU Sparc32 DMA controller emulation
4 * Copyright (c) 2006 Fabrice Bellard
6 * Permission is hereby granted, free of charge, to any person obtaining a copy
7 * of this software and associated documentation files (the "Software"), to deal
8 * in the Software without restriction, including without limitation the rights
9 * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10 * copies of the Software, and to permit persons to whom the Software is
11 * furnished to do so, subject to the following conditions:
13 * The above copyright notice and this permission notice shall be included in
14 * all copies or substantial portions of the Software.
16 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22 * THE SOFTWARE.
24 #include "hw.h"
25 #include "sparc32_dma.h"
26 #include "sun4m.h"
28 /* debug DMA */
29 //#define DEBUG_DMA
32 * This is the DMA controller part of chip STP2000 (Master I/O), also
33 * produced as NCR89C100. See
34 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/NCR89C100.txt
35 * and
36 * http://www.ibiblio.org/pub/historic-linux/early-ports/Sparc/NCR/DMA2.txt
39 #ifdef DEBUG_DMA
40 #define DPRINTF(fmt, args...) \
41 do { printf("DMA: " fmt , ##args); } while (0)
42 #else
43 #define DPRINTF(fmt, args...)
44 #endif
46 #define DMA_REGS 4
47 #define DMA_SIZE (4 * sizeof(uint32_t))
48 /* We need the mask, because one instance of the device is not page
49 aligned (ledma, start address 0x0010) */
50 #define DMA_MASK (DMA_SIZE - 1)
52 #define DMA_VER 0xa0000000
53 #define DMA_INTR 1
54 #define DMA_INTREN 0x10
55 #define DMA_WRITE_MEM 0x100
56 #define DMA_LOADED 0x04000000
57 #define DMA_DRAIN_FIFO 0x40
58 #define DMA_RESET 0x80
60 typedef struct DMAState DMAState;
62 struct DMAState {
63 uint32_t dmaregs[DMA_REGS];
64 qemu_irq irq;
65 void *iommu;
66 qemu_irq dev_reset;
69 /* Note: on sparc, the lance 16 bit bus is swapped */
70 void ledma_memory_read(void *opaque, target_phys_addr_t addr,
71 uint8_t *buf, int len, int do_bswap)
73 DMAState *s = opaque;
74 int i;
76 DPRINTF("DMA write, direction: %c, addr 0x%8.8x\n",
77 s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
78 addr |= s->dmaregs[3];
79 if (do_bswap) {
80 sparc_iommu_memory_read(s->iommu, addr, buf, len);
81 } else {
82 addr &= ~1;
83 len &= ~1;
84 sparc_iommu_memory_read(s->iommu, addr, buf, len);
85 for(i = 0; i < len; i += 2) {
86 bswap16s((uint16_t *)(buf + i));
91 void ledma_memory_write(void *opaque, target_phys_addr_t addr,
92 uint8_t *buf, int len, int do_bswap)
94 DMAState *s = opaque;
95 int l, i;
96 uint16_t tmp_buf[32];
98 DPRINTF("DMA read, direction: %c, addr 0x%8.8x\n",
99 s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
100 addr |= s->dmaregs[3];
101 if (do_bswap) {
102 sparc_iommu_memory_write(s->iommu, addr, buf, len);
103 } else {
104 addr &= ~1;
105 len &= ~1;
106 while (len > 0) {
107 l = len;
108 if (l > sizeof(tmp_buf))
109 l = sizeof(tmp_buf);
110 for(i = 0; i < l; i += 2) {
111 tmp_buf[i >> 1] = bswap16(*(uint16_t *)(buf + i));
113 sparc_iommu_memory_write(s->iommu, addr, (uint8_t *)tmp_buf, l);
114 len -= l;
115 buf += l;
116 addr += l;
121 static void dma_set_irq(void *opaque, int irq, int level)
123 DMAState *s = opaque;
124 if (level) {
125 DPRINTF("Raise IRQ\n");
126 s->dmaregs[0] |= DMA_INTR;
127 qemu_irq_raise(s->irq);
128 } else {
129 s->dmaregs[0] &= ~DMA_INTR;
130 DPRINTF("Lower IRQ\n");
131 qemu_irq_lower(s->irq);
135 void espdma_memory_read(void *opaque, uint8_t *buf, int len)
137 DMAState *s = opaque;
139 DPRINTF("DMA read, direction: %c, addr 0x%8.8x\n",
140 s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
141 sparc_iommu_memory_read(s->iommu, s->dmaregs[1], buf, len);
142 s->dmaregs[0] |= DMA_INTR;
143 s->dmaregs[1] += len;
146 void espdma_memory_write(void *opaque, uint8_t *buf, int len)
148 DMAState *s = opaque;
150 DPRINTF("DMA write, direction: %c, addr 0x%8.8x\n",
151 s->dmaregs[0] & DMA_WRITE_MEM ? 'w': 'r', s->dmaregs[1]);
152 sparc_iommu_memory_write(s->iommu, s->dmaregs[1], buf, len);
153 s->dmaregs[0] |= DMA_INTR;
154 s->dmaregs[1] += len;
157 static uint32_t dma_mem_readl(void *opaque, target_phys_addr_t addr)
159 DMAState *s = opaque;
160 uint32_t saddr;
162 saddr = (addr & DMA_MASK) >> 2;
163 DPRINTF("read dmareg " TARGET_FMT_plx ": 0x%8.8x\n", addr,
164 s->dmaregs[saddr]);
166 return s->dmaregs[saddr];
169 static void dma_mem_writel(void *opaque, target_phys_addr_t addr, uint32_t val)
171 DMAState *s = opaque;
172 uint32_t saddr;
174 saddr = (addr & DMA_MASK) >> 2;
175 DPRINTF("write dmareg " TARGET_FMT_plx ": 0x%8.8x -> 0x%8.8x\n", addr,
176 s->dmaregs[saddr], val);
177 switch (saddr) {
178 case 0:
179 if (!(val & DMA_INTREN)) {
180 DPRINTF("Lower IRQ\n");
181 qemu_irq_lower(s->irq);
183 if (val & DMA_RESET) {
184 qemu_irq_raise(s->dev_reset);
185 qemu_irq_lower(s->dev_reset);
186 } else if (val & DMA_DRAIN_FIFO) {
187 val &= ~DMA_DRAIN_FIFO;
188 } else if (val == 0)
189 val = DMA_DRAIN_FIFO;
190 val &= 0x0fffffff;
191 val |= DMA_VER;
192 break;
193 case 1:
194 s->dmaregs[0] |= DMA_LOADED;
195 break;
196 default:
197 break;
199 s->dmaregs[saddr] = val;
202 static CPUReadMemoryFunc *dma_mem_read[3] = {
203 NULL,
204 NULL,
205 dma_mem_readl,
208 static CPUWriteMemoryFunc *dma_mem_write[3] = {
209 NULL,
210 NULL,
211 dma_mem_writel,
214 static void dma_reset(void *opaque)
216 DMAState *s = opaque;
218 memset(s->dmaregs, 0, DMA_SIZE);
219 s->dmaregs[0] = DMA_VER;
222 static void dma_save(QEMUFile *f, void *opaque)
224 DMAState *s = opaque;
225 unsigned int i;
227 for (i = 0; i < DMA_REGS; i++)
228 qemu_put_be32s(f, &s->dmaregs[i]);
231 static int dma_load(QEMUFile *f, void *opaque, int version_id)
233 DMAState *s = opaque;
234 unsigned int i;
236 if (version_id != 2)
237 return -EINVAL;
238 for (i = 0; i < DMA_REGS; i++)
239 qemu_get_be32s(f, &s->dmaregs[i]);
241 return 0;
244 void *sparc32_dma_init(target_phys_addr_t daddr, qemu_irq parent_irq,
245 void *iommu, qemu_irq **dev_irq, qemu_irq **reset)
247 DMAState *s;
248 int dma_io_memory;
250 s = qemu_mallocz(sizeof(DMAState));
252 s->irq = parent_irq;
253 s->iommu = iommu;
255 dma_io_memory = cpu_register_io_memory(0, dma_mem_read, dma_mem_write, s);
256 cpu_register_physical_memory(daddr, DMA_SIZE, dma_io_memory);
258 register_savevm("sparc32_dma", daddr, 2, dma_save, dma_load, s);
259 qemu_register_reset(dma_reset, s);
260 *dev_irq = qemu_allocate_irqs(dma_set_irq, s, 1);
262 *reset = &s->dev_reset;
264 return s;