2 * Copyright 1992 by Jutta Degener and Carsten Bormann, Technische
3 * Universitaet Berlin. See the accompanying file "COPYRIGHT" for
4 * details. THERE IS ABSOLUTELY NO WARRANTY FOR THIS SOFTWARE.
7 /* $Header: /cvsroot/sox/sox/libgsm/add.c,v 1.1 2007/09/06 16:50:55 cbagwell Exp $ */
10 * See private.h for the more commonly used macro versions.
20 ((x) < MIN_WORD ? MIN_WORD : (x) > MAX_WORD ? MAX_WORD: (x))
22 word
gsm_add (word a
, word b
)
24 longword sum
= (longword
)a
+ (longword
)b
;
28 word
gsm_sub (word a
, word b
)
30 longword diff
= (longword
)a
- (longword
)b
;
31 return saturate(diff
);
34 word
gsm_mult (word a
, word b
)
36 if (a
== MIN_WORD
&& b
== MIN_WORD
) return MAX_WORD
;
37 else return SASR( (longword
)a
* (longword
)b
, 15 );
40 word
gsm_mult_r (word a
, word b
)
42 if (b
== MIN_WORD
&& a
== MIN_WORD
) return MAX_WORD
;
44 longword prod
= (longword
)a
* (longword
)b
+ 16384;
52 return a
< 0 ? (a
== MIN_WORD
? MAX_WORD
: -a
) : a
;
55 longword
gsm_L_mult (word a
, word b
)
57 assert( a
!= MIN_WORD
|| b
!= MIN_WORD
);
58 return ((longword
)a
* (longword
)b
) << 1;
61 longword
gsm_L_add (longword a
, longword b
)
64 if (b
>= 0) return a
+ b
;
66 ulongword A
= (ulongword
)-(a
+ 1) + (ulongword
)-(b
+ 1);
67 return A
>= MAX_LONGWORD
? MIN_LONGWORD
:-(longword
)A
-2;
70 else if (b
<= 0) return a
+ b
;
72 ulongword A
= (ulongword
)a
+ (ulongword
)b
;
73 return A
> MAX_LONGWORD
? MAX_LONGWORD
: A
;
77 longword
gsm_L_sub (longword a
, longword b
)
80 if (b
>= 0) return a
- b
;
84 ulongword A
= (ulongword
)a
+ -(b
+ 1);
85 return A
>= MAX_LONGWORD
? MAX_LONGWORD
: (A
+ 1);
88 else if (b
<= 0) return a
- b
;
92 ulongword A
= (ulongword
)-(a
+ 1) + b
;
93 return A
>= MAX_LONGWORD
? MIN_LONGWORD
: -(longword
)A
- 1;
97 static unsigned char const bitoff
[ 256 ] = {
98 8, 7, 6, 6, 5, 5, 5, 5, 4, 4, 4, 4, 4, 4, 4, 4,
99 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
100 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
101 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
102 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
103 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
104 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
105 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
106 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
107 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
108 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
109 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
110 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
111 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
112 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
113 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
116 word
gsm_norm (longword a
)
118 * the number of left shifts needed to normalize the 32 bit
119 * variable L_var1 for positive values on the interval
122 * minimum of 1073741824 (01000000000000000000000000000000) and
123 * maximum of 2147483647 (01111111111111111111111111111111)
126 * and for negative values on the interval with
127 * minimum of -2147483648 (-10000000000000000000000000000000) and
128 * maximum of -1073741824 ( -1000000000000000000000000000000).
130 * in order to normalize the result, the following
131 * operation must be done: L_norm_var1 = L_var1 << norm( L_var1 );
133 * (That's 'ffs', only from the left, not the right..)
139 if (a
<= -1073741824) return 0;
143 return a
& 0xffff0000
145 ? -1 + bitoff
[ 0xFF & (a
>> 24) ]
146 : 7 + bitoff
[ 0xFF & (a
>> 16) ] )
148 ? 15 + bitoff
[ 0xFF & (a
>> 8) ]
149 : 23 + bitoff
[ 0xFF & a
] );
152 longword
gsm_L_asl (longword a
, int n
)
154 if (n
>= 32) return 0;
155 if (n
<= -32) return -(a
< 0);
156 if (n
< 0) return gsm_L_asr(a
, -n
);
160 word
gsm_asl (word a
, int n
)
162 if (n
>= 16) return 0;
163 if (n
<= -16) return -(a
< 0);
164 if (n
< 0) return gsm_asr(a
, -n
);
168 longword
gsm_L_asr (longword a
, int n
)
170 if (n
>= 32) return -(a
< 0);
171 if (n
<= -32) return 0;
172 if (n
< 0) return a
<< -n
;
177 if (a
>= 0) return a
>> n
;
178 else return -(longword
)( -(ulongword
)a
>> n
);
182 word
gsm_asr (word a
, int n
)
184 if (n
>= 16) return -(a
< 0);
185 if (n
<= -16) return 0;
186 if (n
< 0) return a
<< -n
;
191 if (a
>= 0) return a
>> n
;
192 else return -(word
)( -(uword
)a
>> n
);
197 * (From p. 46, end of section 4.2.5)
199 * NOTE: The following lines gives [sic] one correct implementation
200 * of the div(num, denum) arithmetic operation. Compute div
201 * which is the integer division of num by denum: with denum
205 word
gsm_div (word num
, word denum
)
207 longword L_num
= num
;
208 longword L_denum
= denum
;
212 /* The parameter num sometimes becomes zero.
213 * Although this is explicitly guarded against in 4.2.5,
214 * we assume that the result should then be zero as well.
217 /* assert(num != 0); */
219 assert(num
>= 0 && denum
>= num
);
227 if (L_num
>= L_denum
) {