Updating osxbuild to work with OS X 10.7+/XCode 4.x.
[sox.git] / src / splice.c
blobb18b9b12075c9ed0f2631f8d4e852cf841357a78
1 /* libSoX effect: splice audio Copyright (c) 2008-9 robs@users.sourceforge.net
3 * This library is free software; you can redistribute it and/or modify it
4 * under the terms of the GNU Lesser General Public License as published by
5 * the Free Software Foundation; either version 2.1 of the License, or (at
6 * your option) any later version.
8 * This library is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
11 * General Public License for more details.
13 * You should have received a copy of the GNU Lesser General Public License
14 * along with this library; if not, write to the Free Software Foundation,
15 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 #include "sox_i.h"
20 static double difference(
21 const sox_sample_t * a, const sox_sample_t * b, size_t length)
23 double diff = 0;
24 size_t i = 0;
26 #define _ diff += sqr((double)a[i] - b[i]), ++i; /* Loop optimisation */
27 do {_ _ _ _ _ _ _ _} while (i < length); /* N.B. length ≡ 0 (mod 8) */
28 #undef _
29 return diff;
32 /* Find where the two segments are most alike over the overlap period. */
33 static size_t best_overlap_position(sox_sample_t const * f1,
34 sox_sample_t const * f2, uint64_t overlap, uint64_t search, size_t channels)
36 size_t i, best_pos = 0;
37 double diff, least_diff = difference(f2, f1, (size_t) (channels * overlap));
39 for (i = 1; i < search; ++i) { /* linear search */
40 diff = difference(f2 + channels * i, f1, (size_t) (channels * overlap));
41 if (diff < least_diff)
42 least_diff = diff, best_pos = i;
44 return best_pos;
48 typedef struct {
49 enum {Cosine_2, Cosine_4, Triangular} fade_type;
50 unsigned nsplices; /* Number of splices requested */
51 struct {
52 char * str; /* Command-line argument to parse for this splice */
53 uint64_t overlap; /* Number of samples to overlap */
54 uint64_t search; /* Number of samples to search */
55 uint64_t start; /* Start splicing when in_pos equals this */
56 } * splices;
58 uint64_t in_pos; /* Number of samples read from the input stream */
59 unsigned splices_pos; /* Number of splices completed so far */
60 size_t buffer_pos; /* Number of samples through the current splice */
61 size_t max_buffer_size;
62 sox_sample_t * buffer;
63 unsigned state;
64 } priv_t;
66 static void splice(sox_effect_t * effp, const sox_sample_t * in1, const
67 sox_sample_t * in2, sox_sample_t * output, uint64_t overlap, size_t channels)
69 priv_t * p = (priv_t *)effp->priv;
70 size_t i, j, k = 0;
72 if (p->fade_type == Cosine_4) {
73 double fade_step = M_PI_2 / overlap;
74 for (i = 0; i < overlap; ++i) {
75 double fade_in = sin(i * fade_step);
76 double fade_out = cos(i * fade_step); /* constant RMS level (`power') */
77 for (j = 0; j < channels; ++j, ++k) {
78 double d = in1[k] * fade_out + in2[k] * fade_in;
79 output[k] = SOX_ROUND_CLIP_COUNT(d, effp->clips); /* Might clip */
83 else if (p->fade_type == Cosine_2) {
84 double fade_step = M_PI / overlap;
85 for (i = 0; i < overlap; ++i) {
86 double fade_in = .5 - .5 * cos(i * fade_step);
87 double fade_out = 1 - fade_in; /* constant peak level (`gain') */
88 for (j = 0; j < channels; ++j, ++k) {
89 double d = in1[k] * fade_out + in2[k] * fade_in;
90 output[k] = SOX_ROUND_CLIP_COUNT(d, effp->clips); /* Should not clip */
94 else /* Triangular */ {
95 double fade_step = 1. / overlap;
96 for (i = 0; i < overlap; ++i) {
97 double fade_in = fade_step * i;
98 double fade_out = 1 - fade_in; /* constant peak level (`gain') */
99 for (j = 0; j < channels; ++j, ++k) {
100 double d = in1[k] * fade_out + in2[k] * fade_in;
101 output[k] = SOX_ROUND_CLIP_COUNT(d, effp->clips); /* Should not clip */
107 static uint64_t do_splice(sox_effect_t * effp,
108 sox_sample_t * f, uint64_t overlap, uint64_t search, size_t channels)
110 uint64_t offset = search? best_overlap_position(
111 f, f + overlap * channels, overlap, search, channels) : 0;
112 splice(effp, f, f + (overlap + offset) * channels,
113 f + (overlap + offset) * channels, overlap, channels);
114 return overlap + offset;
117 static int parse(sox_effect_t * effp, char * * argv, sox_rate_t rate)
119 priv_t * p = (priv_t *)effp->priv;
120 char const * next;
121 size_t i, buffer_size;
123 p->max_buffer_size = 0;
124 for (i = 0; i < p->nsplices; ++i) {
125 if (argv) /* 1st parse only */
126 p->splices[i].str = lsx_strdup(argv[i]);
128 p->splices[i].overlap = rate * 0.01 + .5;
129 p->splices[i].search = p->fade_type == Cosine_4? 0 : p->splices[i].overlap;
131 next = lsx_parsesamples(rate, p->splices[i].str, &p->splices[i].start, 't');
132 if (next == NULL) break;
134 if (*next == ',') {
135 next = lsx_parsesamples(rate, next + 1, &p->splices[i].overlap, 't');
136 if (next == NULL) break;
137 p->splices[i].overlap *= 2;
138 if (*next == ',') {
139 next = lsx_parsesamples(rate, next + 1, &p->splices[i].search, 't');
140 if (next == NULL) break;
141 p->splices[i].search *= 2;
144 if (*next != '\0') break;
145 p->splices[i].overlap = max(p->splices[i].overlap + 4, 16);
146 p->splices[i].overlap &= ~7; /* Make divisible by 8 for loop optimisation */
148 if (i > 0 && p->splices[i].start <= p->splices[i-1].start) break;
149 if (p->splices[i].start < p->splices[i].overlap) break;
150 p->splices[i].start -= p->splices[i].overlap;
151 buffer_size = 2 * p->splices[i].overlap + p->splices[i].search;
152 p->max_buffer_size = max(p->max_buffer_size, buffer_size);
154 if (i < p->nsplices)
155 return lsx_usage(effp);
156 return SOX_SUCCESS;
159 static int create(sox_effect_t * effp, int argc, char * * argv)
161 priv_t * p = (priv_t *)effp->priv;
162 --argc, ++argv;
163 if (argc) {
164 if (!strcmp(*argv, "-t")) p->fade_type = Triangular, --argc, ++argv;
165 else if (!strcmp(*argv, "-q")) p->fade_type = Cosine_4 , --argc, ++argv;
166 else if (!strcmp(*argv, "-h")) p->fade_type = Cosine_2 , --argc, ++argv;
168 p->nsplices = argc;
169 p->splices = lsx_calloc(p->nsplices, sizeof(*p->splices));
170 return parse(effp, argv, 1e5); /* No rate yet; parse with dummy */
173 static int start(sox_effect_t * effp)
175 priv_t * p = (priv_t *)effp->priv;
176 unsigned i;
178 parse(effp, 0, effp->in_signal.rate); /* Re-parse now rate is known */
179 p->buffer = lsx_calloc(p->max_buffer_size * effp->in_signal.channels, sizeof(*p->buffer));
180 p->in_pos = p->buffer_pos = p->splices_pos = 0;
181 p->state = p->splices_pos != p->nsplices && p->in_pos == p->splices[p->splices_pos].start;
182 effp->out_signal.length = SOX_UNKNOWN_LEN; /* depends on input data */
183 for (i = 0; i < p->nsplices; ++i)
184 if (p->splices[i].overlap) {
185 if (p->fade_type == Cosine_4 && effp->in_signal.mult)
186 *effp->in_signal.mult *= pow(.5, .5);
187 return SOX_SUCCESS;
189 return SOX_EFF_NULL;
192 static int flow(sox_effect_t * effp, const sox_sample_t * ibuf,
193 sox_sample_t * obuf, size_t * isamp, size_t * osamp)
195 priv_t * p = (priv_t *)effp->priv;
196 size_t c, idone = 0, odone = 0;
197 *isamp /= effp->in_signal.channels;
198 *osamp /= effp->in_signal.channels;
200 while (sox_true) {
201 copying:
202 if (p->state == 0) {
203 for (; idone < *isamp && odone < *osamp; ++idone, ++odone, ++p->in_pos) {
204 if (p->splices_pos != p->nsplices && p->in_pos == p->splices[p->splices_pos].start) {
205 p->state = 1;
206 goto buffering;
208 for (c = 0; c < effp->in_signal.channels; ++c)
209 *obuf++ = *ibuf++;
211 break;
214 buffering:
215 if (p->state == 1) {
216 size_t buffer_size = (2 * p->splices[p->splices_pos].overlap + p->splices[p->splices_pos].search) * effp->in_signal.channels;
217 for (; idone < *isamp; ++idone, ++p->in_pos) {
218 if (p->buffer_pos == buffer_size) {
219 p->buffer_pos = do_splice(effp, p->buffer,
220 p->splices[p->splices_pos].overlap,
221 p->splices[p->splices_pos].search,
222 (size_t)effp->in_signal.channels) * effp->in_signal.channels;
223 p->state = 2;
224 goto flushing;
225 break;
227 for (c = 0; c < effp->in_signal.channels; ++c)
228 p->buffer[p->buffer_pos++] = *ibuf++;
230 break;
233 flushing:
234 if (p->state == 2) {
235 size_t buffer_size = (2 * p->splices[p->splices_pos].overlap + p->splices[p->splices_pos].search) * effp->in_signal.channels;
236 for (; odone < *osamp; ++odone) {
237 if (p->buffer_pos == buffer_size) {
238 p->buffer_pos = 0;
239 ++p->splices_pos;
240 p->state = p->splices_pos != p->nsplices && p->in_pos == p->splices[p->splices_pos].start;
241 goto copying;
243 for (c = 0; c < effp->in_signal.channels; ++c)
244 *obuf++ = p->buffer[p->buffer_pos++];
246 break;
250 *isamp = idone * effp->in_signal.channels;
251 *osamp = odone * effp->in_signal.channels;
252 return SOX_SUCCESS;
255 static int drain(sox_effect_t * effp, sox_sample_t * obuf, size_t * osamp)
257 size_t isamp = 0;
258 return flow(effp, 0, obuf, &isamp, osamp);
261 static int stop(sox_effect_t * effp)
263 priv_t * p = (priv_t *)effp->priv;
264 if (p->splices_pos != p->nsplices)
265 lsx_warn("Input audio too short; splices not made: %u", p->nsplices - p->splices_pos);
266 free(p->buffer);
267 return SOX_SUCCESS;
270 static int lsx_kill(sox_effect_t * effp)
272 priv_t * p = (priv_t *)effp->priv;
273 unsigned i;
274 for (i = 0; i < p->nsplices; ++i)
275 free(p->splices[i].str);
276 free(p->splices);
277 return SOX_SUCCESS;
280 sox_effect_handler_t const * lsx_splice_effect_fn(void)
282 static sox_effect_handler_t handler = {
283 "splice", "[-h|-t|-q] {position[,excess[,leeway]]}"
284 "\n -h Half sine fade (default); constant gain (for correlated audio)"
285 "\n -t Triangular (linear) fade; constant gain (for correlated audio)"
286 "\n -q Quarter sine fade; constant power (for correlated audio e.g. x-fade)"
287 "\n position The length of part 1 (including the excess)"
288 "\n excess At the end of part 1 & the start of part2 (default 0.005)"
289 "\n leeway Before part2 (default 0.005; set to 0 for cross-fade)",
290 SOX_EFF_MCHAN | SOX_EFF_LENGTH,
291 create, start, flow, drain, stop, lsx_kill, sizeof(priv_t)
293 return &handler;