formats: clarify setting of reverse_bytes
[sox.git] / src / effects_i_dsp.c
blob88b1b390b25274793d1dd72ab4de3dae85aef550
1 /* libSoX internal DSP functions.
2 * All public functions & data are prefixed with lsx_ .
4 * Copyright (c) 2008,2012 robs@users.sourceforge.net
6 * This library is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU Lesser General Public License as published by
8 * the Free Software Foundation; either version 2.1 of the License, or (at
9 * your option) any later version.
11 * This library is distributed in the hope that it will be useful, but
12 * WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
14 * General Public License for more details.
16 * You should have received a copy of the GNU Lesser General Public License
17 * along with this library; if not, write to the Free Software Foundation,
18 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 #ifdef NDEBUG /* Enable assert always. */
22 #undef NDEBUG /* Must undef above assert.h or other that might include it. */
23 #endif
25 #include "sox_i.h"
26 #include <assert.h>
27 #include <string.h>
29 /* Concurrent Control with "Readers" and "Writers", P.J. Courtois et al, 1971:*/
31 #if defined HAVE_OPENMP
33 typedef struct {
34 int readcount, writecount; /* initial value = 0 */
35 omp_lock_t mutex_1, mutex_2, mutex_3, w, r; /* initial value = 1 */
36 } ccrw2_t; /* Problem #2: `writers-preference' */
38 #define ccrw2_become_reader(p) do {\
39 omp_set_lock(&p.mutex_3);\
40 omp_set_lock(&p.r);\
41 omp_set_lock(&p.mutex_1);\
42 if (++p.readcount == 1) omp_set_lock(&p.w);\
43 omp_unset_lock(&p.mutex_1);\
44 omp_unset_lock(&p.r);\
45 omp_unset_lock(&p.mutex_3);\
46 } while (0)
47 #define ccrw2_cease_reading(p) do {\
48 omp_set_lock(&p.mutex_1);\
49 if (!--p.readcount) omp_unset_lock(&p.w);\
50 omp_unset_lock(&p.mutex_1);\
51 } while (0)
52 #define ccrw2_become_writer(p) do {\
53 omp_set_lock(&p.mutex_2);\
54 if (++p.writecount == 1) omp_set_lock(&p.r);\
55 omp_unset_lock(&p.mutex_2);\
56 omp_set_lock(&p.w);\
57 } while (0)
58 #define ccrw2_cease_writing(p) do {\
59 omp_unset_lock(&p.w);\
60 omp_set_lock(&p.mutex_2);\
61 if (!--p.writecount) omp_unset_lock(&p.r);\
62 omp_unset_lock(&p.mutex_2);\
63 } while (0)
64 #define ccrw2_init(p) do {\
65 omp_init_lock(&p.mutex_1);\
66 omp_init_lock(&p.mutex_2);\
67 omp_init_lock(&p.mutex_3);\
68 omp_init_lock(&p.w);\
69 omp_init_lock(&p.r);\
70 } while (0)
71 #define ccrw2_clear(p) do {\
72 omp_destroy_lock(&p.r);\
73 omp_destroy_lock(&p.w);\
74 omp_destroy_lock(&p.mutex_3);\
75 omp_destroy_lock(&p.mutex_2);\
76 omp_destroy_lock(&p.mutex_1);\
77 } while (0)
79 #else
81 #define ccrw2_become_reader(x) (void)0
82 #define ccrw2_cease_reading(x) (void)0
83 #define ccrw2_become_writer(x) (void)0
84 #define ccrw2_cease_writing(x) (void)0
85 #define ccrw2_init(x) (void)0
86 #define ccrw2_clear(x) (void)0
88 #endif /* HAVE_OPENMP */
90 /* Numerical Recipes cubic spline: */
92 void lsx_prepare_spline3(double const * x, double const * y, int n,
93 double start_1d, double end_1d, double * y_2d)
95 double p, qn, sig, un, * u = lsx_malloc((n - 1) * sizeof(*u));
96 int i;
98 if (start_1d == HUGE_VAL)
99 y_2d[0] = u[0] = 0; /* Start with natural spline or */
100 else { /* set the start first derivative */
101 y_2d[0] = -.5;
102 u[0] = (3 / (x[1] - x[0])) * ((y[1] - y[0]) / (x[1] - x[0]) - start_1d);
105 for (i = 1; i < n - 1; ++i) {
106 sig = (x[i] - x[i - 1]) / (x[i + 1] - x[i - 1]);
107 p = sig * y_2d[i - 1] + 2;
108 y_2d[i] = (sig - 1) / p;
109 u[i] = (y[i + 1] - y[i]) / (x[i + 1] - x[i]) -
110 (y[i] - y[i - 1]) / (x[i] - x[i - 1]);
111 u[i] = (6 * u[i] / (x[i + 1] - x[i - 1]) - sig * u[i - 1]) / p;
113 if (end_1d == HUGE_VAL)
114 qn = un = 0; /* End with natural spline or */
115 else { /* set the end first derivative */
116 qn = .5;
117 un = 3 / (x[n - 1] - x[n - 2]) * (end_1d - (y[n - 1] - y[n - 2]) / (x[n - 1] - x[n - 2]));
119 y_2d[n - 1] = (un - qn * u[n - 2]) / (qn * y_2d[n - 2] + 1);
120 for (i = n - 2; i >= 0; --i)
121 y_2d[i] = y_2d[i] * y_2d[i + 1] + u[i];
122 free(u);
125 double lsx_spline3(double const * x, double const * y, double const * y_2d,
126 int n, double x1)
128 int t, i[2] = {0, 0};
129 double d, a, b;
131 for (i[1] = n - 1; i[1] - i[0] > 1; t = (i[1] + i[0]) >> 1, i[x[t] > x1] = t);
132 d = x[i[1]] - x[i[0]];
133 assert(d != 0);
134 a = (x[i[1]] - x1) / d;
135 b = (x1 - x[i[0]]) / d;
136 return a * y[i[0]] + b * y[i[1]] +
137 ((a * a * a - a) * y_2d[i[0]] + (b * b * b - b) * y_2d[i[1]]) * d * d / 6;
140 double lsx_bessel_I_0(double x)
142 double term = 1, sum = 1, last_sum, x2 = x / 2;
143 int i = 1;
144 do {
145 double y = x2 / i++;
146 last_sum = sum, sum += term *= y * y;
147 } while (sum != last_sum);
148 return sum;
151 int lsx_set_dft_length(int num_taps) /* Set to 4 x nearest power of 2 */
152 { /* or half of that if danger of causing too many cache misses. */
153 int min = sox_globals.log2_dft_min_size;
154 double d = log((double)num_taps) / log(2.);
155 return 1 << range_limit((int)(d + 2.77), min, max((int)(d + 1.77), 17));
158 #include "fft4g.h"
159 static int * lsx_fft_br;
160 static double * lsx_fft_sc;
161 static int fft_len = -1;
162 #if defined HAVE_OPENMP
163 static ccrw2_t fft_cache_ccrw;
164 #endif
166 void init_fft_cache(void)
168 assert(lsx_fft_br == NULL);
169 assert(lsx_fft_sc == NULL);
170 assert(fft_len == -1);
171 ccrw2_init(fft_cache_ccrw);
172 fft_len = 0;
175 void clear_fft_cache(void)
177 assert(fft_len >= 0);
178 ccrw2_clear(fft_cache_ccrw);
179 free(lsx_fft_br);
180 free(lsx_fft_sc);
181 lsx_fft_sc = NULL;
182 lsx_fft_br = NULL;
183 fft_len = -1;
186 static sox_bool update_fft_cache(int len)
188 assert(lsx_is_power_of_2(len));
189 assert(fft_len >= 0);
190 ccrw2_become_reader(fft_cache_ccrw);
191 if (len > fft_len) {
192 ccrw2_cease_reading(fft_cache_ccrw);
193 ccrw2_become_writer(fft_cache_ccrw);
194 if (len > fft_len) {
195 int old_n = fft_len;
196 fft_len = len;
197 lsx_fft_br = lsx_realloc(lsx_fft_br, dft_br_len(fft_len) * sizeof(*lsx_fft_br));
198 lsx_fft_sc = lsx_realloc(lsx_fft_sc, dft_sc_len(fft_len) * sizeof(*lsx_fft_sc));
199 if (!old_n)
200 lsx_fft_br[0] = 0;
201 return sox_true;
203 ccrw2_cease_writing(fft_cache_ccrw);
204 ccrw2_become_reader(fft_cache_ccrw);
206 return sox_false;
209 static void done_with_fft_cache(sox_bool is_writer)
211 if (is_writer)
212 ccrw2_cease_writing(fft_cache_ccrw);
213 else ccrw2_cease_reading(fft_cache_ccrw);
216 void lsx_safe_rdft(int len, int type, double * d)
218 sox_bool is_writer = update_fft_cache(len);
219 lsx_rdft(len, type, d, lsx_fft_br, lsx_fft_sc);
220 done_with_fft_cache(is_writer);
223 void lsx_safe_cdft(int len, int type, double * d)
225 sox_bool is_writer = update_fft_cache(len);
226 lsx_cdft(len, type, d, lsx_fft_br, lsx_fft_sc);
227 done_with_fft_cache(is_writer);
230 void lsx_power_spectrum(int n, double const * in, double * out)
232 int i;
233 double * work = lsx_memdup(in, n * sizeof(*work));
234 lsx_safe_rdft(n, 1, work);
235 out[0] = sqr(work[0]);
236 for (i = 2; i < n; i += 2)
237 out[i >> 1] = sqr(work[i]) + sqr(work[i + 1]);
238 out[i >> 1] = sqr(work[1]);
239 free(work);
242 void lsx_power_spectrum_f(int n, float const * in, float * out)
244 int i;
245 double * work = lsx_malloc(n * sizeof(*work));
246 for (i = 0; i< n; ++i) work[i] = in[i];
247 lsx_safe_rdft(n, 1, work);
248 out[0] = sqr(work[0]);
249 for (i = 2; i < n; i += 2)
250 out[i >> 1] = sqr(work[i]) + sqr(work[i + 1]);
251 out[i >> 1] = sqr(work[1]);
252 free(work);
255 void lsx_apply_hann_f(float h[], const int num_points)
257 int i, m = num_points - 1;
258 for (i = 0; i < num_points; ++i) {
259 double x = 2 * M_PI * i / m;
260 h[i] *= .5 - .5 * cos(x);
264 void lsx_apply_hann(double h[], const int num_points)
266 int i, m = num_points - 1;
267 for (i = 0; i < num_points; ++i) {
268 double x = 2 * M_PI * i / m;
269 h[i] *= .5 - .5 * cos(x);
273 void lsx_apply_hamming(double h[], const int num_points)
275 int i, m = num_points - 1;
276 for (i = 0; i < num_points; ++i) {
277 double x = 2 * M_PI * i / m;
278 h[i] *= .53836 - .46164 * cos(x);
282 void lsx_apply_bartlett(double h[], const int num_points)
284 int i, m = num_points - 1;
285 for (i = 0; i < num_points; ++i) {
286 h[i] *= 2. / m * (m / 2. - fabs(i - m / 2.));
290 void lsx_apply_blackman(double h[], const int num_points, double alpha /*.16*/)
292 int i, m = num_points - 1;
293 for (i = 0; i < num_points; ++i) {
294 double x = 2 * M_PI * i / m;
295 h[i] *= (1 - alpha) *.5 - .5 * cos(x) + alpha * .5 * cos(2 * x);
299 void lsx_apply_blackman_nutall(double h[], const int num_points)
301 int i, m = num_points - 1;
302 for (i = 0; i < num_points; ++i) {
303 double x = 2 * M_PI * i / m;
304 h[i] *= .3635819 - .4891775 * cos(x) + .1365995 * cos(2 * x) - .0106411 * cos(3 * x);
308 double lsx_kaiser_beta(double att, double tr_bw)
310 if (att >= 60) {
311 static const double coefs[][4] = {
312 {-6.784957e-10,1.02856e-05,0.1087556,-0.8988365+.001},
313 {-6.897885e-10,1.027433e-05,0.10876,-0.8994658+.002},
314 {-1.000683e-09,1.030092e-05,0.1087677,-0.9007898+.003},
315 {-3.654474e-10,1.040631e-05,0.1087085,-0.8977766+.006},
316 {8.106988e-09,6.983091e-06,0.1091387,-0.9172048+.015},
317 {9.519571e-09,7.272678e-06,0.1090068,-0.9140768+.025},
318 {-5.626821e-09,1.342186e-05,0.1083999,-0.9065452+.05},
319 {-9.965946e-08,5.073548e-05,0.1040967,-0.7672778+.085},
320 {1.604808e-07,-5.856462e-05,0.1185998,-1.34824+.1},
321 {-1.511964e-07,6.363034e-05,0.1064627,-0.9876665+.18},
323 double realm = log(tr_bw/.0005)/log(2.);
324 double const * c0 = coefs[range_limit( (int)realm, 0, (int)array_length(coefs)-1)];
325 double const * c1 = coefs[range_limit(1+(int)realm, 0, (int)array_length(coefs)-1)];
326 double b0 = ((c0[0]*att + c0[1])*att + c0[2])*att + c0[3];
327 double b1 = ((c1[0]*att + c1[1])*att + c1[2])*att + c1[3];
328 return b0 + (b1 - b0) * (realm - (int)realm);
330 if (att > 50 ) return .1102 * (att - 8.7);
331 if (att > 20.96) return .58417 * pow(att -20.96, .4) + .07886 * (att - 20.96);
332 return 0;
335 void lsx_apply_kaiser(double h[], const int num_points, double beta)
337 int i, m = num_points - 1;
338 for (i = 0; i <= m; ++i) {
339 double x = 2. * i / m - 1;
340 h[i] *= lsx_bessel_I_0(beta * sqrt(1 - x * x)) / lsx_bessel_I_0(beta);
344 void lsx_apply_dolph(double h[], const int N, double att)
346 double b = cosh(acosh(pow(10., att/20)) / (N-1)), sum, t, c, norm = 0;
347 int i, j;
348 for (c = 1 - 1 / (b*b), i = (N-1) / 2; i >= 0; --i) {
349 for (sum = !i, b = t = j = 1; j <= i && sum != t; b *= (i-j) * (1./j), ++j)
350 t = sum, sum += (b *= c * (N - i - j) * (1./j));
351 sum /= (N - 1 - i), sum /= (norm = norm? norm : sum);
352 h[i] *= sum, h[N - 1 - i] *= sum;
356 double * lsx_make_lpf(int num_taps, double Fc, double beta, double rho,
357 double scale, sox_bool dc_norm)
359 int i, m = num_taps - 1;
360 double * h = calloc(num_taps, sizeof(*h)), sum = 0;
361 double mult = scale / lsx_bessel_I_0(beta), mult1 = 1 / (.5 * m + rho);
362 assert(Fc >= 0 && Fc <= 1);
363 lsx_debug("make_lpf(n=%i Fc=%.7g β=%g ρ=%g dc-norm=%i scale=%g)", num_taps, Fc, beta, rho, dc_norm, scale);
365 if (!h)
366 return NULL;
368 for (i = 0; i <= m / 2; ++i) {
369 double z = i - .5 * m, x = z * M_PI, y = z * mult1;
370 h[i] = x? sin(Fc * x) / x : Fc;
371 sum += h[i] *= lsx_bessel_I_0(beta * sqrt(1 - y * y)) * mult;
372 if (m - i != i)
373 sum += h[m - i] = h[i];
375 for (i = 0; dc_norm && i < num_taps; ++i) h[i] *= scale / sum;
376 return h;
379 void lsx_kaiser_params(double att, double Fc, double tr_bw, double * beta, int * num_taps)
381 *beta = *beta < 0? lsx_kaiser_beta(att, tr_bw * .5 / Fc): *beta;
382 att = att < 60? (att - 7.95) / (2.285 * M_PI * 2) :
383 ((.0007528358-1.577737e-05**beta)**beta+.6248022)**beta+.06186902;
384 *num_taps = !*num_taps? ceil(att/tr_bw + 1) : *num_taps;
387 double * lsx_design_lpf(
388 double Fp, /* End of pass-band */
389 double Fs, /* Start of stop-band */
390 double Fn, /* Nyquist freq; e.g. 0.5, 1, PI */
391 double att, /* Stop-band attenuation in dB */
392 int * num_taps, /* 0: value will be estimated */
393 int k, /* >0: number of phases; <0: num_taps ≡ 1 (mod -k) */
394 double beta) /* <0: value will be estimated */
396 int n = *num_taps, phases = max(k, 1), modulo = max(-k, 1);
397 double tr_bw, Fc, rho = phases == 1? .5 : att < 120? .63 : .75;
399 Fp /= fabs(Fn), Fs /= fabs(Fn); /* Normalise to Fn = 1 */
400 tr_bw = .5 * (Fs - Fp); /* Transition band-width: 6dB to stop points */
401 tr_bw /= phases, Fs /= phases;
402 tr_bw = min(tr_bw, .5 * Fs);
403 Fc = Fs - tr_bw;
404 assert(Fc - tr_bw >= 0);
405 lsx_kaiser_params(att, Fc, tr_bw, &beta, num_taps);
406 if (!n)
407 *num_taps = phases > 1? *num_taps / phases * phases + phases - 1 : (*num_taps + modulo - 2) / modulo * modulo + 1;
408 return Fn < 0? 0 : lsx_make_lpf(
409 *num_taps, Fc, beta, rho, (double)phases, sox_false);
412 static double safe_log(double x)
414 assert(x >= 0);
415 if (x)
416 return log(x);
417 lsx_debug("log(0)");
418 return -26;
421 void lsx_fir_to_phase(double * * h, int * len, int * post_len, double phase)
423 double * pi_wraps, * work, phase1 = (phase > 50 ? 100 - phase : phase) / 50;
424 int i, work_len, begin, end, imp_peak = 0, peak = 0;
425 double imp_sum = 0, peak_imp_sum = 0;
426 double prev_angle2 = 0, cum_2pi = 0, prev_angle1 = 0, cum_1pi = 0;
428 for (i = *len, work_len = 2 * 2 * 8; i > 1; work_len <<= 1, i >>= 1);
430 work = lsx_calloc((size_t)work_len + 2, sizeof(*work)); /* +2: (UN)PACK */
431 pi_wraps = lsx_malloc((((size_t)work_len + 2) / 2) * sizeof(*pi_wraps));
433 memcpy(work, *h, *len * sizeof(*work));
434 lsx_safe_rdft(work_len, 1, work); /* Cepstral: */
435 LSX_UNPACK(work, work_len);
437 for (i = 0; i <= work_len; i += 2) {
438 double angle = atan2(work[i + 1], work[i]);
439 double detect = 2 * M_PI;
440 double delta = angle - prev_angle2;
441 double adjust = detect * ((delta < -detect * .7) - (delta > detect * .7));
442 prev_angle2 = angle;
443 cum_2pi += adjust;
444 angle += cum_2pi;
445 detect = M_PI;
446 delta = angle - prev_angle1;
447 adjust = detect * ((delta < -detect * .7) - (delta > detect * .7));
448 prev_angle1 = angle;
449 cum_1pi += fabs(adjust); /* fabs for when 2pi and 1pi have combined */
450 pi_wraps[i >> 1] = cum_1pi;
452 work[i] = safe_log(sqrt(sqr(work[i]) + sqr(work[i + 1])));
453 work[i + 1] = 0;
455 LSX_PACK(work, work_len);
456 lsx_safe_rdft(work_len, -1, work);
457 for (i = 0; i < work_len; ++i) work[i] *= 2. / work_len;
459 for (i = 1; i < work_len / 2; ++i) { /* Window to reject acausal components */
460 work[i] *= 2;
461 work[i + work_len / 2] = 0;
463 lsx_safe_rdft(work_len, 1, work);
465 for (i = 2; i < work_len; i += 2) /* Interpolate between linear & min phase */
466 work[i + 1] = phase1 * i / work_len * pi_wraps[work_len >> 1] +
467 (1 - phase1) * (work[i + 1] + pi_wraps[i >> 1]) - pi_wraps[i >> 1];
469 work[0] = exp(work[0]), work[1] = exp(work[1]);
470 for (i = 2; i < work_len; i += 2) {
471 double x = exp(work[i]);
472 work[i ] = x * cos(work[i + 1]);
473 work[i + 1] = x * sin(work[i + 1]);
476 lsx_safe_rdft(work_len, -1, work);
477 for (i = 0; i < work_len; ++i) work[i] *= 2. / work_len;
479 /* Find peak pos. */
480 for (i = 0; i <= (int)(pi_wraps[work_len >> 1] / M_PI + .5); ++i) {
481 imp_sum += work[i];
482 if (fabs(imp_sum) > fabs(peak_imp_sum)) {
483 peak_imp_sum = imp_sum;
484 peak = i;
486 if (work[i] > work[imp_peak]) /* For debug check only */
487 imp_peak = i;
489 while (peak && fabs(work[peak-1]) > fabs(work[peak]) && work[peak-1] * work[peak] > 0)
490 --peak;
492 if (!phase1)
493 begin = 0;
494 else if (phase1 == 1)
495 begin = peak - *len / 2;
496 else {
497 begin = (.997 - (2 - phase1) * .22) * *len + .5;
498 end = (.997 + (0 - phase1) * .22) * *len + .5;
499 begin = peak - (begin & ~3);
500 end = peak + 1 + ((end + 3) & ~3);
501 *len = end - begin;
502 *h = lsx_realloc(*h, *len * sizeof(**h));
504 for (i = 0; i < *len; ++i) (*h)[i] =
505 work[(begin + (phase > 50 ? *len - 1 - i : i) + work_len) & (work_len - 1)];
506 *post_len = phase > 50 ? peak - begin : begin + *len - (peak + 1);
508 lsx_debug("nPI=%g peak-sum@%i=%g (val@%i=%g); len=%i post=%i (%g%%)",
509 pi_wraps[work_len >> 1] / M_PI, peak, peak_imp_sum, imp_peak,
510 work[imp_peak], *len, *post_len, 100 - 100. * *post_len / (*len - 1));
511 free(pi_wraps), free(work);
514 void lsx_plot_fir(double * h, int num_points, sox_rate_t rate, sox_plot_t type, char const * title, double y1, double y2)
516 int i, N = lsx_set_dft_length(num_points);
517 if (type == sox_plot_gnuplot) {
518 double * h1 = lsx_calloc(N, sizeof(*h1));
519 double * H = lsx_malloc((N / 2 + 1) * sizeof(*H));
520 memcpy(h1, h, sizeof(*h1) * num_points);
521 lsx_power_spectrum(N, h1, H);
522 printf(
523 "# gnuplot file\n"
524 "set title '%s'\n"
525 "set xlabel 'Frequency (Hz)'\n"
526 "set ylabel 'Amplitude Response (dB)'\n"
527 "set grid xtics ytics\n"
528 "set key off\n"
529 "plot '-' with lines\n"
530 , title);
531 for (i = 0; i <= N/2; ++i)
532 printf("%g %g\n", i * rate / N, 10 * log10(H[i]));
533 printf(
534 "e\n"
535 "pause -1 'Hit return to continue'\n");
536 free(H);
537 free(h1);
539 else if (type == sox_plot_octave) {
540 printf("%% GNU Octave file (may also work with MATLAB(R) )\nb=[");
541 for (i = 0; i < num_points; ++i)
542 printf("%24.16e\n", h[i]);
543 printf("];\n"
544 "[h,w]=freqz(b,1,%i);\n"
545 "plot(%g*w/pi,20*log10(h))\n"
546 "title('%s')\n"
547 "xlabel('Frequency (Hz)')\n"
548 "ylabel('Amplitude Response (dB)')\n"
549 "grid on\n"
550 "axis([0 %g %g %g])\n"
551 "disp('Hit return to continue')\n"
552 "pause\n"
553 , N, rate * .5, title, rate * .5, y1, y2);
555 else if (type == sox_plot_data) {
556 printf("# %s\n"
557 "# FIR filter\n"
558 "# rate: %g\n"
559 "# name: b\n"
560 "# type: matrix\n"
561 "# rows: %i\n"
562 "# columns: 1\n", title, rate, num_points);
563 for (i = 0; i < num_points; ++i)
564 printf("%24.16e\n", h[i]);
568 #if HAVE_FENV_H
569 #include <fenv.h>
570 #if defined FE_INVALID
571 #if HAVE_LRINT && LONG_MAX == 2147483647
572 #define lrint32 lrint
573 #elif defined __GNUC__ && defined __x86_64__
574 #define lrint32 lrint32
575 static __inline sox_int32_t lrint32(double input) {
576 sox_int32_t result;
577 __asm__ __volatile__("fistpl %0": "=m"(result): "t"(input): "st");
578 return result;
580 #endif
581 #endif
582 #endif
584 #if defined lrint32
585 #define _ dest[i] = lrint32(src[i]), ++i,
586 #pragma STDC FENV_ACCESS ON
588 static void rint_clip(sox_sample_t * const dest, double const * const src,
589 size_t i, size_t const n, sox_uint64_t * const clips)
591 for (; i < n; ++i) {
592 dest[i] = lrint32(src[i]);
593 if (fetestexcept(FE_INVALID)) {
594 feclearexcept(FE_INVALID);
595 dest[i] = src[i] > 0? SOX_SAMPLE_MAX : SOX_SAMPLE_MIN;
596 ++*clips;
601 void lsx_save_samples(sox_sample_t * const dest, double const * const src,
602 size_t const n, sox_uint64_t * const clips)
604 size_t i;
605 feclearexcept(FE_INVALID);
606 for (i = 0; i < (n & ~7);) {
607 _ _ _ _ _ _ _ _ 0;
608 if (fetestexcept(FE_INVALID)) {
609 feclearexcept(FE_INVALID);
610 rint_clip(dest, src, i - 8, i, clips);
613 rint_clip(dest, src, i, n, clips);
616 void lsx_load_samples(double * const dest, sox_sample_t const * const src,
617 size_t const n)
619 size_t i;
620 for (i = 0; i < n; ++i)
621 dest[i] = src[i];
624 #pragma STDC FENV_ACCESS OFF
625 #undef _
626 #else
628 void lsx_save_samples(sox_sample_t * const dest, double const * const src,
629 size_t const n, sox_uint64_t * const clips)
631 SOX_SAMPLE_LOCALS;
632 size_t i;
633 for (i = 0; i < n; ++i)
634 dest[i] = SOX_FLOAT_64BIT_TO_SAMPLE(src[i], *clips);
637 void lsx_load_samples(double * const dest, sox_sample_t const * const src,
638 size_t const n)
640 size_t i;
641 for (i = 0; i < n; ++i)
642 dest[i] = SOX_SAMPLE_TO_FLOAT_64BIT(src[i],);
645 #endif