Merge branch 'mr/build' into pu
[sox/ew.git] / src / mcompand_xover.h
blobcc2889efcaa403572494722324a813032fd028cb
1 /* libSoX Compander Crossover Filter (c) 2008 robs@users.sourceforge.net
3 * This library is free software; you can redistribute it and/or modify it
4 * under the terms of the GNU Lesser General Public License as published by
5 * the Free Software Foundation; either version 2.1 of the License, or (at
6 * your option) any later version.
8 * This library is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser
11 * General Public License for more details.
13 * You should have received a copy of the GNU Lesser General Public License
14 * along with this library; if not, write to the Free Software Foundation,
15 * Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
18 #define N 4 /* 4th order Linkwitz-Riley IIRs */
19 #define CONVOLVE _ _ _ _
21 typedef struct {double in, out_low, out_high;} previous_t[N * 2];
23 typedef struct {
24 previous_t * previous;
25 size_t pos;
26 double coefs[3 *(N+1)];
27 } crossover_t;
29 static void square_quadratic(char const * name, double const * x, double * y)
31 assert(N == 4);
32 y[0] = x[0] * x[0];
33 y[1] = 2 * x[0] * x[1];
34 y[2] = 2 * x[0] * x[2] + x[1] * x[1];
35 y[3] = 2 * x[1] * x[2];
36 y[4] = x[2] * x[2];
37 lsx_debug("%s=[%.16g %.16g %.16g %.16g %.16g];", name,
38 y[0], y[1], y[2], y[3], y[4]);
41 static int crossover_setup(sox_effect_t * effp, crossover_t * p, double frequency)
43 double w0 = 2 * M_PI * frequency / effp->in_signal.rate;
44 double Q = sqrt(.5), alpha = sin(w0)/(2*Q);
45 double x[9], norm;
46 int i;
48 if (w0 > M_PI) {
49 lsx_fail("frequency must not exceed half the sample-rate (Nyquist rate)");
50 return SOX_EOF;
52 x[0] = (1 - cos(w0))/2; /* Cf. filter_LPF in biquads.c */
53 x[1] = 1 - cos(w0);
54 x[2] = (1 - cos(w0))/2;
55 x[3] = (1 + cos(w0))/2; /* Cf. filter_HPF in biquads.c */
56 x[4] = -(1 + cos(w0));
57 x[5] = (1 + cos(w0))/2;
58 x[6] = 1 + alpha;
59 x[7] = -2*cos(w0);
60 x[8] = 1 - alpha;
61 for (norm = x[6], i = 0; i < 9; ++i) x[i] /= norm;
62 square_quadratic("lb", x , p->coefs);
63 square_quadratic("hb", x + 3, p->coefs + 5);
64 square_quadratic("a" , x + 6, p->coefs + 10);
66 p->previous = lsx_calloc(effp->in_signal.channels, sizeof(*p->previous));
67 return SOX_SUCCESS;
70 static int crossover_flow(sox_effect_t * effp, crossover_t * p, sox_sample_t
71 *ibuf, sox_sample_t *obuf_low, sox_sample_t *obuf_high, size_t len0)
73 double out_low, out_high;
74 size_t c, len = len0 / effp->in_signal.channels;
75 assert(len * effp->in_signal.channels == len0);
77 while (len--) {
78 p->pos = p->pos? p->pos - 1 : N - 1;
79 for (c = 0; c < effp->in_signal.channels; ++c) {
80 #define _ out_low += p->coefs[j] * p->previous[c][p->pos + j].in \
81 - p->coefs[2*N+2 + j] * p->previous[c][p->pos + j].out_low, ++j;
83 int j = 1;
84 out_low = p->coefs[0] * *ibuf;
85 CONVOLVE
86 assert(j == N+1);
87 *obuf_low++ = SOX_ROUND_CLIP_COUNT(out_low, effp->clips);
89 #undef _
90 #define _ out_high += p->coefs[j+N+1] * p->previous[c][p->pos + j].in \
91 - p->coefs[2*N+2 + j] * p->previous[c][p->pos + j].out_high, ++j;
93 int j = 1;
94 out_high = p->coefs[N+1] * *ibuf;
95 CONVOLVE
96 assert(j == N+1);
97 *obuf_high++ = SOX_ROUND_CLIP_COUNT(out_high, effp->clips);
99 p->previous[c][p->pos + N].in = p->previous[c][p->pos].in = *ibuf++;
100 p->previous[c][p->pos + N].out_low = p->previous[c][p->pos].out_low = out_low;
101 p->previous[c][p->pos + N].out_high = p->previous[c][p->pos].out_high = out_high;
104 return SOX_SUCCESS;