4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file implements an external (disk-based) database using BTrees.
13 ** See the header comment on "btreeInt.h" for additional information.
14 ** Including a description of file format and an overview of operation.
19 ** The header string that appears at the beginning of every
22 static const char zMagicHeader
[] = SQLITE_FILE_HEADER
;
25 ** Set this global variable to 1 to enable tracing using the TRACE
29 int sqlite3BtreeTrace
=1; /* True to enable tracing */
30 # define TRACE(X) if(sqlite3BtreeTrace){printf X;fflush(stdout);}
36 ** Extract a 2-byte big-endian integer from an array of unsigned bytes.
37 ** But if the value is zero, make it 65536.
39 ** This routine is used to extract the "offset to cell content area" value
40 ** from the header of a btree page. If the page size is 65536 and the page
41 ** is empty, the offset should be 65536, but the 2-byte value stores zero.
42 ** This routine makes the necessary adjustment to 65536.
44 #define get2byteNotZero(X) (((((int)get2byte(X))-1)&0xffff)+1)
47 ** Values passed as the 5th argument to allocateBtreePage()
49 #define BTALLOC_ANY 0 /* Allocate any page */
50 #define BTALLOC_EXACT 1 /* Allocate exact page if possible */
51 #define BTALLOC_LE 2 /* Allocate any page <= the parameter */
54 ** Macro IfNotOmitAV(x) returns (x) if SQLITE_OMIT_AUTOVACUUM is not
55 ** defined, or 0 if it is. For example:
57 ** bIncrVacuum = IfNotOmitAV(pBtShared->incrVacuum);
59 #ifndef SQLITE_OMIT_AUTOVACUUM
60 #define IfNotOmitAV(expr) (expr)
62 #define IfNotOmitAV(expr) 0
65 #ifndef SQLITE_OMIT_SHARED_CACHE
67 ** A list of BtShared objects that are eligible for participation
68 ** in shared cache. This variable has file scope during normal builds,
69 ** but the test harness needs to access it so we make it global for
72 ** Access to this variable is protected by SQLITE_MUTEX_STATIC_MAIN.
75 BtShared
*SQLITE_WSD sqlite3SharedCacheList
= 0;
77 static BtShared
*SQLITE_WSD sqlite3SharedCacheList
= 0;
79 #endif /* SQLITE_OMIT_SHARED_CACHE */
81 #ifndef SQLITE_OMIT_SHARED_CACHE
83 ** Enable or disable the shared pager and schema features.
85 ** This routine has no effect on existing database connections.
86 ** The shared cache setting effects only future calls to
87 ** sqlite3_open(), sqlite3_open16(), or sqlite3_open_v2().
89 int sqlite3_enable_shared_cache(int enable
){
90 sqlite3GlobalConfig
.sharedCacheEnabled
= enable
;
97 #ifdef SQLITE_OMIT_SHARED_CACHE
99 ** The functions querySharedCacheTableLock(), setSharedCacheTableLock(),
100 ** and clearAllSharedCacheTableLocks()
101 ** manipulate entries in the BtShared.pLock linked list used to store
102 ** shared-cache table level locks. If the library is compiled with the
103 ** shared-cache feature disabled, then there is only ever one user
104 ** of each BtShared structure and so this locking is not necessary.
105 ** So define the lock related functions as no-ops.
107 #define querySharedCacheTableLock(a,b,c) SQLITE_OK
108 #define setSharedCacheTableLock(a,b,c) SQLITE_OK
109 #define clearAllSharedCacheTableLocks(a)
110 #define downgradeAllSharedCacheTableLocks(a)
111 #define hasSharedCacheTableLock(a,b,c,d) 1
112 #define hasReadConflicts(a, b) 0
117 ** Return and reset the seek counter for a Btree object.
119 sqlite3_uint64
sqlite3BtreeSeekCount(Btree
*pBt
){
127 ** Implementation of the SQLITE_CORRUPT_PAGE() macro. Takes a single
128 ** (MemPage*) as an argument. The (MemPage*) must not be NULL.
130 ** If SQLITE_DEBUG is not defined, then this macro is equivalent to
131 ** SQLITE_CORRUPT_BKPT. Or, if SQLITE_DEBUG is set, then the log message
132 ** normally produced as a side-effect of SQLITE_CORRUPT_BKPT is augmented
133 ** with the page number and filename associated with the (MemPage*).
136 int corruptPageError(int lineno
, MemPage
*p
){
138 sqlite3BeginBenignMalloc();
139 zMsg
= sqlite3_mprintf("database corruption page %d of %s",
140 (int)p
->pgno
, sqlite3PagerFilename(p
->pBt
->pPager
, 0)
142 sqlite3EndBenignMalloc();
144 sqlite3ReportError(SQLITE_CORRUPT
, lineno
, zMsg
);
147 return SQLITE_CORRUPT_BKPT
;
149 # define SQLITE_CORRUPT_PAGE(pMemPage) corruptPageError(__LINE__, pMemPage)
151 # define SQLITE_CORRUPT_PAGE(pMemPage) SQLITE_CORRUPT_PGNO(pMemPage->pgno)
154 #ifndef SQLITE_OMIT_SHARED_CACHE
158 **** This function is only used as part of an assert() statement. ***
160 ** Check to see if pBtree holds the required locks to read or write to the
161 ** table with root page iRoot. Return 1 if it does and 0 if not.
163 ** For example, when writing to a table with root-page iRoot via
164 ** Btree connection pBtree:
166 ** assert( hasSharedCacheTableLock(pBtree, iRoot, 0, WRITE_LOCK) );
168 ** When writing to an index that resides in a sharable database, the
169 ** caller should have first obtained a lock specifying the root page of
170 ** the corresponding table. This makes things a bit more complicated,
171 ** as this module treats each table as a separate structure. To determine
172 ** the table corresponding to the index being written, this
173 ** function has to search through the database schema.
175 ** Instead of a lock on the table/index rooted at page iRoot, the caller may
176 ** hold a write-lock on the schema table (root page 1). This is also
179 static int hasSharedCacheTableLock(
180 Btree
*pBtree
, /* Handle that must hold lock */
181 Pgno iRoot
, /* Root page of b-tree */
182 int isIndex
, /* True if iRoot is the root of an index b-tree */
183 int eLockType
/* Required lock type (READ_LOCK or WRITE_LOCK) */
185 Schema
*pSchema
= (Schema
*)pBtree
->pBt
->pSchema
;
189 /* If this database is not shareable, or if the client is reading
190 ** and has the read-uncommitted flag set, then no lock is required.
191 ** Return true immediately.
193 if( (pBtree
->sharable
==0)
194 || (eLockType
==READ_LOCK
&& (pBtree
->db
->flags
& SQLITE_ReadUncommit
))
199 /* If the client is reading or writing an index and the schema is
200 ** not loaded, then it is too difficult to actually check to see if
201 ** the correct locks are held. So do not bother - just return true.
202 ** This case does not come up very often anyhow.
204 if( isIndex
&& (!pSchema
|| (pSchema
->schemaFlags
&DB_SchemaLoaded
)==0) ){
208 /* Figure out the root-page that the lock should be held on. For table
209 ** b-trees, this is just the root page of the b-tree being read or
210 ** written. For index b-trees, it is the root page of the associated
215 for(p
=sqliteHashFirst(&pSchema
->idxHash
); p
; p
=sqliteHashNext(p
)){
216 Index
*pIdx
= (Index
*)sqliteHashData(p
);
217 if( pIdx
->tnum
==(int)iRoot
){
219 /* Two or more indexes share the same root page. There must
220 ** be imposter tables. So just return true. The assert is not
221 ** useful in that case. */
224 iTab
= pIdx
->pTable
->tnum
;
232 /* Search for the required lock. Either a write-lock on root-page iTab, a
233 ** write-lock on the schema table, or (if the client is reading) a
234 ** read-lock on iTab will suffice. Return 1 if any of these are found. */
235 for(pLock
=pBtree
->pBt
->pLock
; pLock
; pLock
=pLock
->pNext
){
236 if( pLock
->pBtree
==pBtree
237 && (pLock
->iTable
==iTab
|| (pLock
->eLock
==WRITE_LOCK
&& pLock
->iTable
==1))
238 && pLock
->eLock
>=eLockType
244 /* Failed to find the required lock. */
247 #endif /* SQLITE_DEBUG */
251 **** This function may be used as part of assert() statements only. ****
253 ** Return true if it would be illegal for pBtree to write into the
254 ** table or index rooted at iRoot because other shared connections are
255 ** simultaneously reading that same table or index.
257 ** It is illegal for pBtree to write if some other Btree object that
258 ** shares the same BtShared object is currently reading or writing
259 ** the iRoot table. Except, if the other Btree object has the
260 ** read-uncommitted flag set, then it is OK for the other object to
261 ** have a read cursor.
263 ** For example, before writing to any part of the table or index
264 ** rooted at page iRoot, one should call:
266 ** assert( !hasReadConflicts(pBtree, iRoot) );
268 static int hasReadConflicts(Btree
*pBtree
, Pgno iRoot
){
270 for(p
=pBtree
->pBt
->pCursor
; p
; p
=p
->pNext
){
271 if( p
->pgnoRoot
==iRoot
273 && 0==(p
->pBtree
->db
->flags
& SQLITE_ReadUncommit
)
280 #endif /* #ifdef SQLITE_DEBUG */
283 ** Query to see if Btree handle p may obtain a lock of type eLock
284 ** (READ_LOCK or WRITE_LOCK) on the table with root-page iTab. Return
285 ** SQLITE_OK if the lock may be obtained (by calling
286 ** setSharedCacheTableLock()), or SQLITE_LOCKED if not.
288 static int querySharedCacheTableLock(Btree
*p
, Pgno iTab
, u8 eLock
){
289 BtShared
*pBt
= p
->pBt
;
292 assert( sqlite3BtreeHoldsMutex(p
) );
293 assert( eLock
==READ_LOCK
|| eLock
==WRITE_LOCK
);
295 assert( !(p
->db
->flags
&SQLITE_ReadUncommit
)||eLock
==WRITE_LOCK
||iTab
==1 );
297 /* If requesting a write-lock, then the Btree must have an open write
298 ** transaction on this file. And, obviously, for this to be so there
299 ** must be an open write transaction on the file itself.
301 assert( eLock
==READ_LOCK
|| (p
==pBt
->pWriter
&& p
->inTrans
==TRANS_WRITE
) );
302 assert( eLock
==READ_LOCK
|| pBt
->inTransaction
==TRANS_WRITE
);
304 /* This routine is a no-op if the shared-cache is not enabled */
309 /* If some other connection is holding an exclusive lock, the
310 ** requested lock may not be obtained.
312 if( pBt
->pWriter
!=p
&& (pBt
->btsFlags
& BTS_EXCLUSIVE
)!=0 ){
313 sqlite3ConnectionBlocked(p
->db
, pBt
->pWriter
->db
);
314 return SQLITE_LOCKED_SHAREDCACHE
;
317 for(pIter
=pBt
->pLock
; pIter
; pIter
=pIter
->pNext
){
318 /* The condition (pIter->eLock!=eLock) in the following if(...)
319 ** statement is a simplification of:
321 ** (eLock==WRITE_LOCK || pIter->eLock==WRITE_LOCK)
323 ** since we know that if eLock==WRITE_LOCK, then no other connection
324 ** may hold a WRITE_LOCK on any table in this file (since there can
325 ** only be a single writer).
327 assert( pIter
->eLock
==READ_LOCK
|| pIter
->eLock
==WRITE_LOCK
);
328 assert( eLock
==READ_LOCK
|| pIter
->pBtree
==p
|| pIter
->eLock
==READ_LOCK
);
329 if( pIter
->pBtree
!=p
&& pIter
->iTable
==iTab
&& pIter
->eLock
!=eLock
){
330 sqlite3ConnectionBlocked(p
->db
, pIter
->pBtree
->db
);
331 if( eLock
==WRITE_LOCK
){
332 assert( p
==pBt
->pWriter
);
333 pBt
->btsFlags
|= BTS_PENDING
;
335 return SQLITE_LOCKED_SHAREDCACHE
;
340 #endif /* !SQLITE_OMIT_SHARED_CACHE */
342 #ifndef SQLITE_OMIT_SHARED_CACHE
344 ** Add a lock on the table with root-page iTable to the shared-btree used
345 ** by Btree handle p. Parameter eLock must be either READ_LOCK or
348 ** This function assumes the following:
350 ** (a) The specified Btree object p is connected to a sharable
351 ** database (one with the BtShared.sharable flag set), and
353 ** (b) No other Btree objects hold a lock that conflicts
354 ** with the requested lock (i.e. querySharedCacheTableLock() has
355 ** already been called and returned SQLITE_OK).
357 ** SQLITE_OK is returned if the lock is added successfully. SQLITE_NOMEM
358 ** is returned if a malloc attempt fails.
360 static int setSharedCacheTableLock(Btree
*p
, Pgno iTable
, u8 eLock
){
361 BtShared
*pBt
= p
->pBt
;
365 assert( sqlite3BtreeHoldsMutex(p
) );
366 assert( eLock
==READ_LOCK
|| eLock
==WRITE_LOCK
);
369 /* A connection with the read-uncommitted flag set will never try to
370 ** obtain a read-lock using this function. The only read-lock obtained
371 ** by a connection in read-uncommitted mode is on the sqlite_schema
372 ** table, and that lock is obtained in BtreeBeginTrans(). */
373 assert( 0==(p
->db
->flags
&SQLITE_ReadUncommit
) || eLock
==WRITE_LOCK
);
375 /* This function should only be called on a sharable b-tree after it
376 ** has been determined that no other b-tree holds a conflicting lock. */
377 assert( p
->sharable
);
378 assert( SQLITE_OK
==querySharedCacheTableLock(p
, iTable
, eLock
) );
380 /* First search the list for an existing lock on this table. */
381 for(pIter
=pBt
->pLock
; pIter
; pIter
=pIter
->pNext
){
382 if( pIter
->iTable
==iTable
&& pIter
->pBtree
==p
){
388 /* If the above search did not find a BtLock struct associating Btree p
389 ** with table iTable, allocate one and link it into the list.
392 pLock
= (BtLock
*)sqlite3MallocZero(sizeof(BtLock
));
394 return SQLITE_NOMEM_BKPT
;
396 pLock
->iTable
= iTable
;
398 pLock
->pNext
= pBt
->pLock
;
402 /* Set the BtLock.eLock variable to the maximum of the current lock
403 ** and the requested lock. This means if a write-lock was already held
404 ** and a read-lock requested, we don't incorrectly downgrade the lock.
406 assert( WRITE_LOCK
>READ_LOCK
);
407 if( eLock
>pLock
->eLock
){
408 pLock
->eLock
= eLock
;
413 #endif /* !SQLITE_OMIT_SHARED_CACHE */
415 #ifndef SQLITE_OMIT_SHARED_CACHE
417 ** Release all the table locks (locks obtained via calls to
418 ** the setSharedCacheTableLock() procedure) held by Btree object p.
420 ** This function assumes that Btree p has an open read or write
421 ** transaction. If it does not, then the BTS_PENDING flag
422 ** may be incorrectly cleared.
424 static void clearAllSharedCacheTableLocks(Btree
*p
){
425 BtShared
*pBt
= p
->pBt
;
426 BtLock
**ppIter
= &pBt
->pLock
;
428 assert( sqlite3BtreeHoldsMutex(p
) );
429 assert( p
->sharable
|| 0==*ppIter
);
430 assert( p
->inTrans
>0 );
433 BtLock
*pLock
= *ppIter
;
434 assert( (pBt
->btsFlags
& BTS_EXCLUSIVE
)==0 || pBt
->pWriter
==pLock
->pBtree
);
435 assert( pLock
->pBtree
->inTrans
>=pLock
->eLock
);
436 if( pLock
->pBtree
==p
){
437 *ppIter
= pLock
->pNext
;
438 assert( pLock
->iTable
!=1 || pLock
==&p
->lock
);
439 if( pLock
->iTable
!=1 ){
443 ppIter
= &pLock
->pNext
;
447 assert( (pBt
->btsFlags
& BTS_PENDING
)==0 || pBt
->pWriter
);
448 if( pBt
->pWriter
==p
){
450 pBt
->btsFlags
&= ~(BTS_EXCLUSIVE
|BTS_PENDING
);
451 }else if( pBt
->nTransaction
==2 ){
452 /* This function is called when Btree p is concluding its
453 ** transaction. If there currently exists a writer, and p is not
454 ** that writer, then the number of locks held by connections other
455 ** than the writer must be about to drop to zero. In this case
456 ** set the BTS_PENDING flag to 0.
458 ** If there is not currently a writer, then BTS_PENDING must
459 ** be zero already. So this next line is harmless in that case.
461 pBt
->btsFlags
&= ~BTS_PENDING
;
466 ** This function changes all write-locks held by Btree p into read-locks.
468 static void downgradeAllSharedCacheTableLocks(Btree
*p
){
469 BtShared
*pBt
= p
->pBt
;
470 if( pBt
->pWriter
==p
){
473 pBt
->btsFlags
&= ~(BTS_EXCLUSIVE
|BTS_PENDING
);
474 for(pLock
=pBt
->pLock
; pLock
; pLock
=pLock
->pNext
){
475 assert( pLock
->eLock
==READ_LOCK
|| pLock
->pBtree
==p
);
476 pLock
->eLock
= READ_LOCK
;
481 #endif /* SQLITE_OMIT_SHARED_CACHE */
483 static void releasePage(MemPage
*pPage
); /* Forward reference */
484 static void releasePageOne(MemPage
*pPage
); /* Forward reference */
485 static void releasePageNotNull(MemPage
*pPage
); /* Forward reference */
488 ***** This routine is used inside of assert() only ****
490 ** Verify that the cursor holds the mutex on its BtShared
493 static int cursorHoldsMutex(BtCursor
*p
){
494 return sqlite3_mutex_held(p
->pBt
->mutex
);
497 /* Verify that the cursor and the BtShared agree about what is the current
498 ** database connetion. This is important in shared-cache mode. If the database
499 ** connection pointers get out-of-sync, it is possible for routines like
500 ** btreeInitPage() to reference an stale connection pointer that references a
501 ** a connection that has already closed. This routine is used inside assert()
502 ** statements only and for the purpose of double-checking that the btree code
503 ** does keep the database connection pointers up-to-date.
505 static int cursorOwnsBtShared(BtCursor
*p
){
506 assert( cursorHoldsMutex(p
) );
507 return (p
->pBtree
->db
==p
->pBt
->db
);
512 ** Invalidate the overflow cache of the cursor passed as the first argument.
513 ** on the shared btree structure pBt.
515 #define invalidateOverflowCache(pCur) (pCur->curFlags &= ~BTCF_ValidOvfl)
518 ** Invalidate the overflow page-list cache for all cursors opened
519 ** on the shared btree structure pBt.
521 static void invalidateAllOverflowCache(BtShared
*pBt
){
523 assert( sqlite3_mutex_held(pBt
->mutex
) );
524 for(p
=pBt
->pCursor
; p
; p
=p
->pNext
){
525 invalidateOverflowCache(p
);
529 #ifndef SQLITE_OMIT_INCRBLOB
531 ** This function is called before modifying the contents of a table
532 ** to invalidate any incrblob cursors that are open on the
533 ** row or one of the rows being modified.
535 ** If argument isClearTable is true, then the entire contents of the
536 ** table is about to be deleted. In this case invalidate all incrblob
537 ** cursors open on any row within the table with root-page pgnoRoot.
539 ** Otherwise, if argument isClearTable is false, then the row with
540 ** rowid iRow is being replaced or deleted. In this case invalidate
541 ** only those incrblob cursors open on that specific row.
543 static void invalidateIncrblobCursors(
544 Btree
*pBtree
, /* The database file to check */
545 Pgno pgnoRoot
, /* The table that might be changing */
546 i64 iRow
, /* The rowid that might be changing */
547 int isClearTable
/* True if all rows are being deleted */
550 assert( pBtree
->hasIncrblobCur
);
551 assert( sqlite3BtreeHoldsMutex(pBtree
) );
552 pBtree
->hasIncrblobCur
= 0;
553 for(p
=pBtree
->pBt
->pCursor
; p
; p
=p
->pNext
){
554 if( (p
->curFlags
& BTCF_Incrblob
)!=0 ){
555 pBtree
->hasIncrblobCur
= 1;
556 if( p
->pgnoRoot
==pgnoRoot
&& (isClearTable
|| p
->info
.nKey
==iRow
) ){
557 p
->eState
= CURSOR_INVALID
;
564 /* Stub function when INCRBLOB is omitted */
565 #define invalidateIncrblobCursors(w,x,y,z)
566 #endif /* SQLITE_OMIT_INCRBLOB */
569 ** Set bit pgno of the BtShared.pHasContent bitvec. This is called
570 ** when a page that previously contained data becomes a free-list leaf
573 ** The BtShared.pHasContent bitvec exists to work around an obscure
574 ** bug caused by the interaction of two useful IO optimizations surrounding
575 ** free-list leaf pages:
577 ** 1) When all data is deleted from a page and the page becomes
578 ** a free-list leaf page, the page is not written to the database
579 ** (as free-list leaf pages contain no meaningful data). Sometimes
580 ** such a page is not even journalled (as it will not be modified,
581 ** why bother journalling it?).
583 ** 2) When a free-list leaf page is reused, its content is not read
584 ** from the database or written to the journal file (why should it
585 ** be, if it is not at all meaningful?).
587 ** By themselves, these optimizations work fine and provide a handy
588 ** performance boost to bulk delete or insert operations. However, if
589 ** a page is moved to the free-list and then reused within the same
590 ** transaction, a problem comes up. If the page is not journalled when
591 ** it is moved to the free-list and it is also not journalled when it
592 ** is extracted from the free-list and reused, then the original data
593 ** may be lost. In the event of a rollback, it may not be possible
594 ** to restore the database to its original configuration.
596 ** The solution is the BtShared.pHasContent bitvec. Whenever a page is
597 ** moved to become a free-list leaf page, the corresponding bit is
598 ** set in the bitvec. Whenever a leaf page is extracted from the free-list,
599 ** optimization 2 above is omitted if the corresponding bit is already
600 ** set in BtShared.pHasContent. The contents of the bitvec are cleared
601 ** at the end of every transaction.
603 static int btreeSetHasContent(BtShared
*pBt
, Pgno pgno
){
605 if( !pBt
->pHasContent
){
606 assert( pgno
<=pBt
->nPage
);
607 pBt
->pHasContent
= sqlite3BitvecCreate(pBt
->nPage
);
608 if( !pBt
->pHasContent
){
609 rc
= SQLITE_NOMEM_BKPT
;
612 if( rc
==SQLITE_OK
&& pgno
<=sqlite3BitvecSize(pBt
->pHasContent
) ){
613 rc
= sqlite3BitvecSet(pBt
->pHasContent
, pgno
);
619 ** Query the BtShared.pHasContent vector.
621 ** This function is called when a free-list leaf page is removed from the
622 ** free-list for reuse. It returns false if it is safe to retrieve the
623 ** page from the pager layer with the 'no-content' flag set. True otherwise.
625 static int btreeGetHasContent(BtShared
*pBt
, Pgno pgno
){
626 Bitvec
*p
= pBt
->pHasContent
;
627 return p
&& (pgno
>sqlite3BitvecSize(p
) || sqlite3BitvecTestNotNull(p
, pgno
));
631 ** Clear (destroy) the BtShared.pHasContent bitvec. This should be
632 ** invoked at the conclusion of each write-transaction.
634 static void btreeClearHasContent(BtShared
*pBt
){
635 sqlite3BitvecDestroy(pBt
->pHasContent
);
636 pBt
->pHasContent
= 0;
640 ** Release all of the apPage[] pages for a cursor.
642 static void btreeReleaseAllCursorPages(BtCursor
*pCur
){
644 if( pCur
->iPage
>=0 ){
645 for(i
=0; i
<pCur
->iPage
; i
++){
646 releasePageNotNull(pCur
->apPage
[i
]);
648 releasePageNotNull(pCur
->pPage
);
654 ** The cursor passed as the only argument must point to a valid entry
655 ** when this function is called (i.e. have eState==CURSOR_VALID). This
656 ** function saves the current cursor key in variables pCur->nKey and
657 ** pCur->pKey. SQLITE_OK is returned if successful or an SQLite error
660 ** If the cursor is open on an intkey table, then the integer key
661 ** (the rowid) is stored in pCur->nKey and pCur->pKey is left set to
662 ** NULL. If the cursor is open on a non-intkey table, then pCur->pKey is
663 ** set to point to a malloced buffer pCur->nKey bytes in size containing
666 static int saveCursorKey(BtCursor
*pCur
){
668 assert( CURSOR_VALID
==pCur
->eState
);
669 assert( 0==pCur
->pKey
);
670 assert( cursorHoldsMutex(pCur
) );
672 if( pCur
->curIntKey
){
673 /* Only the rowid is required for a table btree */
674 pCur
->nKey
= sqlite3BtreeIntegerKey(pCur
);
676 /* For an index btree, save the complete key content. It is possible
677 ** that the current key is corrupt. In that case, it is possible that
678 ** the sqlite3VdbeRecordUnpack() function may overread the buffer by
679 ** up to the size of 1 varint plus 1 8-byte value when the cursor
680 ** position is restored. Hence the 17 bytes of padding allocated
683 pCur
->nKey
= sqlite3BtreePayloadSize(pCur
);
684 pKey
= sqlite3Malloc( pCur
->nKey
+ 9 + 8 );
686 rc
= sqlite3BtreePayload(pCur
, 0, (int)pCur
->nKey
, pKey
);
688 memset(((u8
*)pKey
)+pCur
->nKey
, 0, 9+8);
694 rc
= SQLITE_NOMEM_BKPT
;
697 assert( !pCur
->curIntKey
|| !pCur
->pKey
);
702 ** Save the current cursor position in the variables BtCursor.nKey
703 ** and BtCursor.pKey. The cursor's state is set to CURSOR_REQUIRESEEK.
705 ** The caller must ensure that the cursor is valid (has eState==CURSOR_VALID)
706 ** prior to calling this routine.
708 static int saveCursorPosition(BtCursor
*pCur
){
711 assert( CURSOR_VALID
==pCur
->eState
|| CURSOR_SKIPNEXT
==pCur
->eState
);
712 assert( 0==pCur
->pKey
);
713 assert( cursorHoldsMutex(pCur
) );
715 if( pCur
->curFlags
& BTCF_Pinned
){
716 return SQLITE_CONSTRAINT_PINNED
;
718 if( pCur
->eState
==CURSOR_SKIPNEXT
){
719 pCur
->eState
= CURSOR_VALID
;
724 rc
= saveCursorKey(pCur
);
726 btreeReleaseAllCursorPages(pCur
);
727 pCur
->eState
= CURSOR_REQUIRESEEK
;
730 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
|BTCF_AtLast
);
734 /* Forward reference */
735 static int SQLITE_NOINLINE
saveCursorsOnList(BtCursor
*,Pgno
,BtCursor
*);
738 ** Save the positions of all cursors (except pExcept) that are open on
739 ** the table with root-page iRoot. "Saving the cursor position" means that
740 ** the location in the btree is remembered in such a way that it can be
741 ** moved back to the same spot after the btree has been modified. This
742 ** routine is called just before cursor pExcept is used to modify the
743 ** table, for example in BtreeDelete() or BtreeInsert().
745 ** If there are two or more cursors on the same btree, then all such
746 ** cursors should have their BTCF_Multiple flag set. The btreeCursor()
747 ** routine enforces that rule. This routine only needs to be called in
748 ** the uncommon case when pExpect has the BTCF_Multiple flag set.
750 ** If pExpect!=NULL and if no other cursors are found on the same root-page,
751 ** then the BTCF_Multiple flag on pExpect is cleared, to avoid another
752 ** pointless call to this routine.
754 ** Implementation note: This routine merely checks to see if any cursors
755 ** need to be saved. It calls out to saveCursorsOnList() in the (unusual)
756 ** event that cursors are in need to being saved.
758 static int saveAllCursors(BtShared
*pBt
, Pgno iRoot
, BtCursor
*pExcept
){
760 assert( sqlite3_mutex_held(pBt
->mutex
) );
761 assert( pExcept
==0 || pExcept
->pBt
==pBt
);
762 for(p
=pBt
->pCursor
; p
; p
=p
->pNext
){
763 if( p
!=pExcept
&& (0==iRoot
|| p
->pgnoRoot
==iRoot
) ) break;
765 if( p
) return saveCursorsOnList(p
, iRoot
, pExcept
);
766 if( pExcept
) pExcept
->curFlags
&= ~BTCF_Multiple
;
770 /* This helper routine to saveAllCursors does the actual work of saving
771 ** the cursors if and when a cursor is found that actually requires saving.
772 ** The common case is that no cursors need to be saved, so this routine is
773 ** broken out from its caller to avoid unnecessary stack pointer movement.
775 static int SQLITE_NOINLINE
saveCursorsOnList(
776 BtCursor
*p
, /* The first cursor that needs saving */
777 Pgno iRoot
, /* Only save cursor with this iRoot. Save all if zero */
778 BtCursor
*pExcept
/* Do not save this cursor */
781 if( p
!=pExcept
&& (0==iRoot
|| p
->pgnoRoot
==iRoot
) ){
782 if( p
->eState
==CURSOR_VALID
|| p
->eState
==CURSOR_SKIPNEXT
){
783 int rc
= saveCursorPosition(p
);
788 testcase( p
->iPage
>=0 );
789 btreeReleaseAllCursorPages(p
);
798 ** Clear the current cursor position.
800 void sqlite3BtreeClearCursor(BtCursor
*pCur
){
801 assert( cursorHoldsMutex(pCur
) );
802 sqlite3_free(pCur
->pKey
);
804 pCur
->eState
= CURSOR_INVALID
;
808 ** In this version of BtreeMoveto, pKey is a packed index record
809 ** such as is generated by the OP_MakeRecord opcode. Unpack the
810 ** record and then call BtreeMovetoUnpacked() to do the work.
812 static int btreeMoveto(
813 BtCursor
*pCur
, /* Cursor open on the btree to be searched */
814 const void *pKey
, /* Packed key if the btree is an index */
815 i64 nKey
, /* Integer key for tables. Size of pKey for indices */
816 int bias
, /* Bias search to the high end */
817 int *pRes
/* Write search results here */
819 int rc
; /* Status code */
820 UnpackedRecord
*pIdxKey
; /* Unpacked index key */
823 KeyInfo
*pKeyInfo
= pCur
->pKeyInfo
;
824 assert( nKey
==(i64
)(int)nKey
);
825 pIdxKey
= sqlite3VdbeAllocUnpackedRecord(pKeyInfo
);
826 if( pIdxKey
==0 ) return SQLITE_NOMEM_BKPT
;
827 sqlite3VdbeRecordUnpack(pKeyInfo
, (int)nKey
, pKey
, pIdxKey
);
828 if( pIdxKey
->nField
==0 || pIdxKey
->nField
>pKeyInfo
->nAllField
){
829 rc
= SQLITE_CORRUPT_BKPT
;
835 rc
= sqlite3BtreeMovetoUnpacked(pCur
, pIdxKey
, nKey
, bias
, pRes
);
838 sqlite3DbFree(pCur
->pKeyInfo
->db
, pIdxKey
);
844 ** Restore the cursor to the position it was in (or as close to as possible)
845 ** when saveCursorPosition() was called. Note that this call deletes the
846 ** saved position info stored by saveCursorPosition(), so there can be
847 ** at most one effective restoreCursorPosition() call after each
848 ** saveCursorPosition().
850 static int btreeRestoreCursorPosition(BtCursor
*pCur
){
853 assert( cursorOwnsBtShared(pCur
) );
854 assert( pCur
->eState
>=CURSOR_REQUIRESEEK
);
855 if( pCur
->eState
==CURSOR_FAULT
){
856 return pCur
->skipNext
;
858 pCur
->eState
= CURSOR_INVALID
;
859 if( sqlite3FaultSim(410) ){
862 rc
= btreeMoveto(pCur
, pCur
->pKey
, pCur
->nKey
, 0, &skipNext
);
865 sqlite3_free(pCur
->pKey
);
867 assert( pCur
->eState
==CURSOR_VALID
|| pCur
->eState
==CURSOR_INVALID
);
868 if( skipNext
) pCur
->skipNext
= skipNext
;
869 if( pCur
->skipNext
&& pCur
->eState
==CURSOR_VALID
){
870 pCur
->eState
= CURSOR_SKIPNEXT
;
876 #define restoreCursorPosition(p) \
877 (p->eState>=CURSOR_REQUIRESEEK ? \
878 btreeRestoreCursorPosition(p) : \
882 ** Determine whether or not a cursor has moved from the position where
883 ** it was last placed, or has been invalidated for any other reason.
884 ** Cursors can move when the row they are pointing at is deleted out
885 ** from under them, for example. Cursor might also move if a btree
888 ** Calling this routine with a NULL cursor pointer returns false.
890 ** Use the separate sqlite3BtreeCursorRestore() routine to restore a cursor
891 ** back to where it ought to be if this routine returns true.
893 int sqlite3BtreeCursorHasMoved(BtCursor
*pCur
){
894 assert( EIGHT_BYTE_ALIGNMENT(pCur
)
895 || pCur
==sqlite3BtreeFakeValidCursor() );
896 assert( offsetof(BtCursor
, eState
)==0 );
897 assert( sizeof(pCur
->eState
)==1 );
898 return CURSOR_VALID
!= *(u8
*)pCur
;
902 ** Return a pointer to a fake BtCursor object that will always answer
903 ** false to the sqlite3BtreeCursorHasMoved() routine above. The fake
904 ** cursor returned must not be used with any other Btree interface.
906 BtCursor
*sqlite3BtreeFakeValidCursor(void){
907 static u8 fakeCursor
= CURSOR_VALID
;
908 assert( offsetof(BtCursor
, eState
)==0 );
909 return (BtCursor
*)&fakeCursor
;
913 ** This routine restores a cursor back to its original position after it
914 ** has been moved by some outside activity (such as a btree rebalance or
915 ** a row having been deleted out from under the cursor).
917 ** On success, the *pDifferentRow parameter is false if the cursor is left
918 ** pointing at exactly the same row. *pDifferntRow is the row the cursor
919 ** was pointing to has been deleted, forcing the cursor to point to some
922 ** This routine should only be called for a cursor that just returned
923 ** TRUE from sqlite3BtreeCursorHasMoved().
925 int sqlite3BtreeCursorRestore(BtCursor
*pCur
, int *pDifferentRow
){
929 assert( pCur
->eState
!=CURSOR_VALID
);
930 rc
= restoreCursorPosition(pCur
);
935 if( pCur
->eState
!=CURSOR_VALID
){
943 #ifdef SQLITE_ENABLE_CURSOR_HINTS
945 ** Provide hints to the cursor. The particular hint given (and the type
946 ** and number of the varargs parameters) is determined by the eHintType
947 ** parameter. See the definitions of the BTREE_HINT_* macros for details.
949 void sqlite3BtreeCursorHint(BtCursor
*pCur
, int eHintType
, ...){
950 /* Used only by system that substitute their own storage engine */
955 ** Provide flag hints to the cursor.
957 void sqlite3BtreeCursorHintFlags(BtCursor
*pCur
, unsigned x
){
958 assert( x
==BTREE_SEEK_EQ
|| x
==BTREE_BULKLOAD
|| x
==0 );
963 #ifndef SQLITE_OMIT_AUTOVACUUM
965 ** Given a page number of a regular database page, return the page
966 ** number for the pointer-map page that contains the entry for the
967 ** input page number.
969 ** Return 0 (not a valid page) for pgno==1 since there is
970 ** no pointer map associated with page 1. The integrity_check logic
971 ** requires that ptrmapPageno(*,1)!=1.
973 static Pgno
ptrmapPageno(BtShared
*pBt
, Pgno pgno
){
974 int nPagesPerMapPage
;
976 assert( sqlite3_mutex_held(pBt
->mutex
) );
977 if( pgno
<2 ) return 0;
978 nPagesPerMapPage
= (pBt
->usableSize
/5)+1;
979 iPtrMap
= (pgno
-2)/nPagesPerMapPage
;
980 ret
= (iPtrMap
*nPagesPerMapPage
) + 2;
981 if( ret
==PENDING_BYTE_PAGE(pBt
) ){
988 ** Write an entry into the pointer map.
990 ** This routine updates the pointer map entry for page number 'key'
991 ** so that it maps to type 'eType' and parent page number 'pgno'.
993 ** If *pRC is initially non-zero (non-SQLITE_OK) then this routine is
994 ** a no-op. If an error occurs, the appropriate error code is written
997 static void ptrmapPut(BtShared
*pBt
, Pgno key
, u8 eType
, Pgno parent
, int *pRC
){
998 DbPage
*pDbPage
; /* The pointer map page */
999 u8
*pPtrmap
; /* The pointer map data */
1000 Pgno iPtrmap
; /* The pointer map page number */
1001 int offset
; /* Offset in pointer map page */
1002 int rc
; /* Return code from subfunctions */
1006 assert( sqlite3_mutex_held(pBt
->mutex
) );
1007 /* The super-journal page number must never be used as a pointer map page */
1008 assert( 0==PTRMAP_ISPAGE(pBt
, PENDING_BYTE_PAGE(pBt
)) );
1010 assert( pBt
->autoVacuum
);
1012 *pRC
= SQLITE_CORRUPT_BKPT
;
1015 iPtrmap
= PTRMAP_PAGENO(pBt
, key
);
1016 rc
= sqlite3PagerGet(pBt
->pPager
, iPtrmap
, &pDbPage
, 0);
1017 if( rc
!=SQLITE_OK
){
1021 if( ((char*)sqlite3PagerGetExtra(pDbPage
))[0]!=0 ){
1022 /* The first byte of the extra data is the MemPage.isInit byte.
1023 ** If that byte is set, it means this page is also being used
1024 ** as a btree page. */
1025 *pRC
= SQLITE_CORRUPT_BKPT
;
1028 offset
= PTRMAP_PTROFFSET(iPtrmap
, key
);
1030 *pRC
= SQLITE_CORRUPT_BKPT
;
1033 assert( offset
<= (int)pBt
->usableSize
-5 );
1034 pPtrmap
= (u8
*)sqlite3PagerGetData(pDbPage
);
1036 if( eType
!=pPtrmap
[offset
] || get4byte(&pPtrmap
[offset
+1])!=parent
){
1037 TRACE(("PTRMAP_UPDATE: %d->(%d,%d)\n", key
, eType
, parent
));
1038 *pRC
= rc
= sqlite3PagerWrite(pDbPage
);
1039 if( rc
==SQLITE_OK
){
1040 pPtrmap
[offset
] = eType
;
1041 put4byte(&pPtrmap
[offset
+1], parent
);
1046 sqlite3PagerUnref(pDbPage
);
1050 ** Read an entry from the pointer map.
1052 ** This routine retrieves the pointer map entry for page 'key', writing
1053 ** the type and parent page number to *pEType and *pPgno respectively.
1054 ** An error code is returned if something goes wrong, otherwise SQLITE_OK.
1056 static int ptrmapGet(BtShared
*pBt
, Pgno key
, u8
*pEType
, Pgno
*pPgno
){
1057 DbPage
*pDbPage
; /* The pointer map page */
1058 int iPtrmap
; /* Pointer map page index */
1059 u8
*pPtrmap
; /* Pointer map page data */
1060 int offset
; /* Offset of entry in pointer map */
1063 assert( sqlite3_mutex_held(pBt
->mutex
) );
1065 iPtrmap
= PTRMAP_PAGENO(pBt
, key
);
1066 rc
= sqlite3PagerGet(pBt
->pPager
, iPtrmap
, &pDbPage
, 0);
1070 pPtrmap
= (u8
*)sqlite3PagerGetData(pDbPage
);
1072 offset
= PTRMAP_PTROFFSET(iPtrmap
, key
);
1074 sqlite3PagerUnref(pDbPage
);
1075 return SQLITE_CORRUPT_BKPT
;
1077 assert( offset
<= (int)pBt
->usableSize
-5 );
1078 assert( pEType
!=0 );
1079 *pEType
= pPtrmap
[offset
];
1080 if( pPgno
) *pPgno
= get4byte(&pPtrmap
[offset
+1]);
1082 sqlite3PagerUnref(pDbPage
);
1083 if( *pEType
<1 || *pEType
>5 ) return SQLITE_CORRUPT_PGNO(iPtrmap
);
1087 #else /* if defined SQLITE_OMIT_AUTOVACUUM */
1088 #define ptrmapPut(w,x,y,z,rc)
1089 #define ptrmapGet(w,x,y,z) SQLITE_OK
1090 #define ptrmapPutOvflPtr(x, y, z, rc)
1094 ** Given a btree page and a cell index (0 means the first cell on
1095 ** the page, 1 means the second cell, and so forth) return a pointer
1096 ** to the cell content.
1098 ** findCellPastPtr() does the same except it skips past the initial
1099 ** 4-byte child pointer found on interior pages, if there is one.
1101 ** This routine works only for pages that do not contain overflow cells.
1103 #define findCell(P,I) \
1104 ((P)->aData + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1105 #define findCellPastPtr(P,I) \
1106 ((P)->aDataOfst + ((P)->maskPage & get2byteAligned(&(P)->aCellIdx[2*(I)])))
1110 ** This is common tail processing for btreeParseCellPtr() and
1111 ** btreeParseCellPtrIndex() for the case when the cell does not fit entirely
1112 ** on a single B-tree page. Make necessary adjustments to the CellInfo
1115 static SQLITE_NOINLINE
void btreeParseCellAdjustSizeForOverflow(
1116 MemPage
*pPage
, /* Page containing the cell */
1117 u8
*pCell
, /* Pointer to the cell text. */
1118 CellInfo
*pInfo
/* Fill in this structure */
1120 /* If the payload will not fit completely on the local page, we have
1121 ** to decide how much to store locally and how much to spill onto
1122 ** overflow pages. The strategy is to minimize the amount of unused
1123 ** space on overflow pages while keeping the amount of local storage
1124 ** in between minLocal and maxLocal.
1126 ** Warning: changing the way overflow payload is distributed in any
1127 ** way will result in an incompatible file format.
1129 int minLocal
; /* Minimum amount of payload held locally */
1130 int maxLocal
; /* Maximum amount of payload held locally */
1131 int surplus
; /* Overflow payload available for local storage */
1133 minLocal
= pPage
->minLocal
;
1134 maxLocal
= pPage
->maxLocal
;
1135 surplus
= minLocal
+ (pInfo
->nPayload
- minLocal
)%(pPage
->pBt
->usableSize
-4);
1136 testcase( surplus
==maxLocal
);
1137 testcase( surplus
==maxLocal
+1 );
1138 if( surplus
<= maxLocal
){
1139 pInfo
->nLocal
= (u16
)surplus
;
1141 pInfo
->nLocal
= (u16
)minLocal
;
1143 pInfo
->nSize
= (u16
)(&pInfo
->pPayload
[pInfo
->nLocal
] - pCell
) + 4;
1147 ** Given a record with nPayload bytes of payload stored within btree
1148 ** page pPage, return the number of bytes of payload stored locally.
1150 static int btreePayloadToLocal(MemPage
*pPage
, i64 nPayload
){
1151 int maxLocal
; /* Maximum amount of payload held locally */
1152 maxLocal
= pPage
->maxLocal
;
1153 if( nPayload
<=maxLocal
){
1156 int minLocal
; /* Minimum amount of payload held locally */
1157 int surplus
; /* Overflow payload available for local storage */
1158 minLocal
= pPage
->minLocal
;
1159 surplus
= minLocal
+ (nPayload
- minLocal
)%(pPage
->pBt
->usableSize
-4);
1160 return ( surplus
<= maxLocal
) ? surplus
: minLocal
;
1165 ** The following routines are implementations of the MemPage.xParseCell()
1168 ** Parse a cell content block and fill in the CellInfo structure.
1170 ** btreeParseCellPtr() => table btree leaf nodes
1171 ** btreeParseCellNoPayload() => table btree internal nodes
1172 ** btreeParseCellPtrIndex() => index btree nodes
1174 ** There is also a wrapper function btreeParseCell() that works for
1175 ** all MemPage types and that references the cell by index rather than
1178 static void btreeParseCellPtrNoPayload(
1179 MemPage
*pPage
, /* Page containing the cell */
1180 u8
*pCell
, /* Pointer to the cell text. */
1181 CellInfo
*pInfo
/* Fill in this structure */
1183 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1184 assert( pPage
->leaf
==0 );
1185 assert( pPage
->childPtrSize
==4 );
1186 #ifndef SQLITE_DEBUG
1187 UNUSED_PARAMETER(pPage
);
1189 pInfo
->nSize
= 4 + getVarint(&pCell
[4], (u64
*)&pInfo
->nKey
);
1190 pInfo
->nPayload
= 0;
1192 pInfo
->pPayload
= 0;
1195 static void btreeParseCellPtr(
1196 MemPage
*pPage
, /* Page containing the cell */
1197 u8
*pCell
, /* Pointer to the cell text. */
1198 CellInfo
*pInfo
/* Fill in this structure */
1200 u8
*pIter
; /* For scanning through pCell */
1201 u32 nPayload
; /* Number of bytes of cell payload */
1202 u64 iKey
; /* Extracted Key value */
1204 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1205 assert( pPage
->leaf
==0 || pPage
->leaf
==1 );
1206 assert( pPage
->intKeyLeaf
);
1207 assert( pPage
->childPtrSize
==0 );
1210 /* The next block of code is equivalent to:
1212 ** pIter += getVarint32(pIter, nPayload);
1214 ** The code is inlined to avoid a function call.
1217 if( nPayload
>=0x80 ){
1218 u8
*pEnd
= &pIter
[8];
1221 nPayload
= (nPayload
<<7) | (*++pIter
& 0x7f);
1222 }while( (*pIter
)>=0x80 && pIter
<pEnd
);
1226 /* The next block of code is equivalent to:
1228 ** pIter += getVarint(pIter, (u64*)&pInfo->nKey);
1230 ** The code is inlined to avoid a function call.
1234 u8
*pEnd
= &pIter
[7];
1237 iKey
= (iKey
<<7) | (*++pIter
& 0x7f);
1238 if( (*pIter
)<0x80 ) break;
1240 iKey
= (iKey
<<8) | *++pIter
;
1247 pInfo
->nKey
= *(i64
*)&iKey
;
1248 pInfo
->nPayload
= nPayload
;
1249 pInfo
->pPayload
= pIter
;
1250 testcase( nPayload
==pPage
->maxLocal
);
1251 testcase( nPayload
==pPage
->maxLocal
+1 );
1252 if( nPayload
<=pPage
->maxLocal
){
1253 /* This is the (easy) common case where the entire payload fits
1254 ** on the local page. No overflow is required.
1256 pInfo
->nSize
= nPayload
+ (u16
)(pIter
- pCell
);
1257 if( pInfo
->nSize
<4 ) pInfo
->nSize
= 4;
1258 pInfo
->nLocal
= (u16
)nPayload
;
1260 btreeParseCellAdjustSizeForOverflow(pPage
, pCell
, pInfo
);
1263 static void btreeParseCellPtrIndex(
1264 MemPage
*pPage
, /* Page containing the cell */
1265 u8
*pCell
, /* Pointer to the cell text. */
1266 CellInfo
*pInfo
/* Fill in this structure */
1268 u8
*pIter
; /* For scanning through pCell */
1269 u32 nPayload
; /* Number of bytes of cell payload */
1271 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1272 assert( pPage
->leaf
==0 || pPage
->leaf
==1 );
1273 assert( pPage
->intKeyLeaf
==0 );
1274 pIter
= pCell
+ pPage
->childPtrSize
;
1276 if( nPayload
>=0x80 ){
1277 u8
*pEnd
= &pIter
[8];
1280 nPayload
= (nPayload
<<7) | (*++pIter
& 0x7f);
1281 }while( *(pIter
)>=0x80 && pIter
<pEnd
);
1284 pInfo
->nKey
= nPayload
;
1285 pInfo
->nPayload
= nPayload
;
1286 pInfo
->pPayload
= pIter
;
1287 testcase( nPayload
==pPage
->maxLocal
);
1288 testcase( nPayload
==pPage
->maxLocal
+1 );
1289 if( nPayload
<=pPage
->maxLocal
){
1290 /* This is the (easy) common case where the entire payload fits
1291 ** on the local page. No overflow is required.
1293 pInfo
->nSize
= nPayload
+ (u16
)(pIter
- pCell
);
1294 if( pInfo
->nSize
<4 ) pInfo
->nSize
= 4;
1295 pInfo
->nLocal
= (u16
)nPayload
;
1297 btreeParseCellAdjustSizeForOverflow(pPage
, pCell
, pInfo
);
1300 static void btreeParseCell(
1301 MemPage
*pPage
, /* Page containing the cell */
1302 int iCell
, /* The cell index. First cell is 0 */
1303 CellInfo
*pInfo
/* Fill in this structure */
1305 pPage
->xParseCell(pPage
, findCell(pPage
, iCell
), pInfo
);
1309 ** The following routines are implementations of the MemPage.xCellSize
1312 ** Compute the total number of bytes that a Cell needs in the cell
1313 ** data area of the btree-page. The return number includes the cell
1314 ** data header and the local payload, but not any overflow page or
1315 ** the space used by the cell pointer.
1317 ** cellSizePtrNoPayload() => table internal nodes
1318 ** cellSizePtr() => all index nodes & table leaf nodes
1320 static u16
cellSizePtr(MemPage
*pPage
, u8
*pCell
){
1321 u8
*pIter
= pCell
+ pPage
->childPtrSize
; /* For looping over bytes of pCell */
1322 u8
*pEnd
; /* End mark for a varint */
1323 u32 nSize
; /* Size value to return */
1326 /* The value returned by this function should always be the same as
1327 ** the (CellInfo.nSize) value found by doing a full parse of the
1328 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1329 ** this function verifies that this invariant is not violated. */
1331 pPage
->xParseCell(pPage
, pCell
, &debuginfo
);
1339 nSize
= (nSize
<<7) | (*++pIter
& 0x7f);
1340 }while( *(pIter
)>=0x80 && pIter
<pEnd
);
1343 if( pPage
->intKey
){
1344 /* pIter now points at the 64-bit integer key value, a variable length
1345 ** integer. The following block moves pIter to point at the first byte
1346 ** past the end of the key value. */
1348 while( (*pIter
++)&0x80 && pIter
<pEnd
);
1350 testcase( nSize
==pPage
->maxLocal
);
1351 testcase( nSize
==pPage
->maxLocal
+1 );
1352 if( nSize
<=pPage
->maxLocal
){
1353 nSize
+= (u32
)(pIter
- pCell
);
1354 if( nSize
<4 ) nSize
= 4;
1356 int minLocal
= pPage
->minLocal
;
1357 nSize
= minLocal
+ (nSize
- minLocal
) % (pPage
->pBt
->usableSize
- 4);
1358 testcase( nSize
==pPage
->maxLocal
);
1359 testcase( nSize
==pPage
->maxLocal
+1 );
1360 if( nSize
>pPage
->maxLocal
){
1363 nSize
+= 4 + (u16
)(pIter
- pCell
);
1365 assert( nSize
==debuginfo
.nSize
|| CORRUPT_DB
);
1368 static u16
cellSizePtrNoPayload(MemPage
*pPage
, u8
*pCell
){
1369 u8
*pIter
= pCell
+ 4; /* For looping over bytes of pCell */
1370 u8
*pEnd
; /* End mark for a varint */
1373 /* The value returned by this function should always be the same as
1374 ** the (CellInfo.nSize) value found by doing a full parse of the
1375 ** cell. If SQLITE_DEBUG is defined, an assert() at the bottom of
1376 ** this function verifies that this invariant is not violated. */
1378 pPage
->xParseCell(pPage
, pCell
, &debuginfo
);
1380 UNUSED_PARAMETER(pPage
);
1383 assert( pPage
->childPtrSize
==4 );
1385 while( (*pIter
++)&0x80 && pIter
<pEnd
);
1386 assert( debuginfo
.nSize
==(u16
)(pIter
- pCell
) || CORRUPT_DB
);
1387 return (u16
)(pIter
- pCell
);
1392 /* This variation on cellSizePtr() is used inside of assert() statements
1394 static u16
cellSize(MemPage
*pPage
, int iCell
){
1395 return pPage
->xCellSize(pPage
, findCell(pPage
, iCell
));
1399 #ifndef SQLITE_OMIT_AUTOVACUUM
1401 ** The cell pCell is currently part of page pSrc but will ultimately be part
1402 ** of pPage. (pSrc and pPager are often the same.) If pCell contains a
1403 ** pointer to an overflow page, insert an entry into the pointer-map for
1404 ** the overflow page that will be valid after pCell has been moved to pPage.
1406 static void ptrmapPutOvflPtr(MemPage
*pPage
, MemPage
*pSrc
, u8
*pCell
,int *pRC
){
1410 pPage
->xParseCell(pPage
, pCell
, &info
);
1411 if( info
.nLocal
<info
.nPayload
){
1413 if( SQLITE_WITHIN(pSrc
->aDataEnd
, pCell
, pCell
+info
.nLocal
) ){
1414 testcase( pSrc
!=pPage
);
1415 *pRC
= SQLITE_CORRUPT_BKPT
;
1418 ovfl
= get4byte(&pCell
[info
.nSize
-4]);
1419 ptrmapPut(pPage
->pBt
, ovfl
, PTRMAP_OVERFLOW1
, pPage
->pgno
, pRC
);
1426 ** Defragment the page given. This routine reorganizes cells within the
1427 ** page so that there are no free-blocks on the free-block list.
1429 ** Parameter nMaxFrag is the maximum amount of fragmented space that may be
1430 ** present in the page after this routine returns.
1432 ** EVIDENCE-OF: R-44582-60138 SQLite may from time to time reorganize a
1433 ** b-tree page so that there are no freeblocks or fragment bytes, all
1434 ** unused bytes are contained in the unallocated space region, and all
1435 ** cells are packed tightly at the end of the page.
1437 static int defragmentPage(MemPage
*pPage
, int nMaxFrag
){
1438 int i
; /* Loop counter */
1439 int pc
; /* Address of the i-th cell */
1440 int hdr
; /* Offset to the page header */
1441 int size
; /* Size of a cell */
1442 int usableSize
; /* Number of usable bytes on a page */
1443 int cellOffset
; /* Offset to the cell pointer array */
1444 int cbrk
; /* Offset to the cell content area */
1445 int nCell
; /* Number of cells on the page */
1446 unsigned char *data
; /* The page data */
1447 unsigned char *temp
; /* Temp area for cell content */
1448 unsigned char *src
; /* Source of content */
1449 int iCellFirst
; /* First allowable cell index */
1450 int iCellLast
; /* Last possible cell index */
1451 int iCellStart
; /* First cell offset in input */
1453 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1454 assert( pPage
->pBt
!=0 );
1455 assert( pPage
->pBt
->usableSize
<= SQLITE_MAX_PAGE_SIZE
);
1456 assert( pPage
->nOverflow
==0 );
1457 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1459 src
= data
= pPage
->aData
;
1460 hdr
= pPage
->hdrOffset
;
1461 cellOffset
= pPage
->cellOffset
;
1462 nCell
= pPage
->nCell
;
1463 assert( nCell
==get2byte(&data
[hdr
+3]) || CORRUPT_DB
);
1464 iCellFirst
= cellOffset
+ 2*nCell
;
1465 usableSize
= pPage
->pBt
->usableSize
;
1467 /* This block handles pages with two or fewer free blocks and nMaxFrag
1468 ** or fewer fragmented bytes. In this case it is faster to move the
1469 ** two (or one) blocks of cells using memmove() and add the required
1470 ** offsets to each pointer in the cell-pointer array than it is to
1471 ** reconstruct the entire page. */
1472 if( (int)data
[hdr
+7]<=nMaxFrag
){
1473 int iFree
= get2byte(&data
[hdr
+1]);
1474 if( iFree
>usableSize
-4 ) return SQLITE_CORRUPT_PAGE(pPage
);
1476 int iFree2
= get2byte(&data
[iFree
]);
1477 if( iFree2
>usableSize
-4 ) return SQLITE_CORRUPT_PAGE(pPage
);
1478 if( 0==iFree2
|| (data
[iFree2
]==0 && data
[iFree2
+1]==0) ){
1479 u8
*pEnd
= &data
[cellOffset
+ nCell
*2];
1482 int sz
= get2byte(&data
[iFree
+2]);
1483 int top
= get2byte(&data
[hdr
+5]);
1485 return SQLITE_CORRUPT_PAGE(pPage
);
1488 if( iFree
+sz
>iFree2
) return SQLITE_CORRUPT_PAGE(pPage
);
1489 sz2
= get2byte(&data
[iFree2
+2]);
1490 if( iFree2
+sz2
> usableSize
) return SQLITE_CORRUPT_PAGE(pPage
);
1491 memmove(&data
[iFree
+sz
+sz2
], &data
[iFree
+sz
], iFree2
-(iFree
+sz
));
1493 }else if( iFree
+sz
>usableSize
){
1494 return SQLITE_CORRUPT_PAGE(pPage
);
1498 assert( cbrk
+(iFree
-top
) <= usableSize
);
1499 memmove(&data
[cbrk
], &data
[top
], iFree
-top
);
1500 for(pAddr
=&data
[cellOffset
]; pAddr
<pEnd
; pAddr
+=2){
1501 pc
= get2byte(pAddr
);
1502 if( pc
<iFree
){ put2byte(pAddr
, pc
+sz
); }
1503 else if( pc
<iFree2
){ put2byte(pAddr
, pc
+sz2
); }
1505 goto defragment_out
;
1511 iCellLast
= usableSize
- 4;
1512 iCellStart
= get2byte(&data
[hdr
+5]);
1513 for(i
=0; i
<nCell
; i
++){
1514 u8
*pAddr
; /* The i-th cell pointer */
1515 pAddr
= &data
[cellOffset
+ i
*2];
1516 pc
= get2byte(pAddr
);
1517 testcase( pc
==iCellFirst
);
1518 testcase( pc
==iCellLast
);
1519 /* These conditions have already been verified in btreeInitPage()
1520 ** if PRAGMA cell_size_check=ON.
1522 if( pc
<iCellStart
|| pc
>iCellLast
){
1523 return SQLITE_CORRUPT_PAGE(pPage
);
1525 assert( pc
>=iCellStart
&& pc
<=iCellLast
);
1526 size
= pPage
->xCellSize(pPage
, &src
[pc
]);
1528 if( cbrk
<iCellStart
|| pc
+size
>usableSize
){
1529 return SQLITE_CORRUPT_PAGE(pPage
);
1531 assert( cbrk
+size
<=usableSize
&& cbrk
>=iCellStart
);
1532 testcase( cbrk
+size
==usableSize
);
1533 testcase( pc
+size
==usableSize
);
1534 put2byte(pAddr
, cbrk
);
1536 if( cbrk
==pc
) continue;
1537 temp
= sqlite3PagerTempSpace(pPage
->pBt
->pPager
);
1538 memcpy(&temp
[iCellStart
], &data
[iCellStart
], usableSize
- iCellStart
);
1541 memcpy(&data
[cbrk
], &src
[pc
], size
);
1546 assert( pPage
->nFree
>=0 );
1547 if( data
[hdr
+7]+cbrk
-iCellFirst
!=pPage
->nFree
){
1548 return SQLITE_CORRUPT_PAGE(pPage
);
1550 assert( cbrk
>=iCellFirst
);
1551 put2byte(&data
[hdr
+5], cbrk
);
1554 memset(&data
[iCellFirst
], 0, cbrk
-iCellFirst
);
1555 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1560 ** Search the free-list on page pPg for space to store a cell nByte bytes in
1561 ** size. If one can be found, return a pointer to the space and remove it
1562 ** from the free-list.
1564 ** If no suitable space can be found on the free-list, return NULL.
1566 ** This function may detect corruption within pPg. If corruption is
1567 ** detected then *pRc is set to SQLITE_CORRUPT and NULL is returned.
1569 ** Slots on the free list that are between 1 and 3 bytes larger than nByte
1570 ** will be ignored if adding the extra space to the fragmentation count
1571 ** causes the fragmentation count to exceed 60.
1573 static u8
*pageFindSlot(MemPage
*pPg
, int nByte
, int *pRc
){
1574 const int hdr
= pPg
->hdrOffset
; /* Offset to page header */
1575 u8
* const aData
= pPg
->aData
; /* Page data */
1576 int iAddr
= hdr
+ 1; /* Address of ptr to pc */
1577 int pc
= get2byte(&aData
[iAddr
]); /* Address of a free slot */
1578 int x
; /* Excess size of the slot */
1579 int maxPC
= pPg
->pBt
->usableSize
- nByte
; /* Max address for a usable slot */
1580 int size
; /* Size of the free slot */
1584 /* EVIDENCE-OF: R-22710-53328 The third and fourth bytes of each
1585 ** freeblock form a big-endian integer which is the size of the freeblock
1586 ** in bytes, including the 4-byte header. */
1587 size
= get2byte(&aData
[pc
+2]);
1588 if( (x
= size
- nByte
)>=0 ){
1592 /* EVIDENCE-OF: R-11498-58022 In a well-formed b-tree page, the total
1593 ** number of bytes in fragments may not exceed 60. */
1594 if( aData
[hdr
+7]>57 ) return 0;
1596 /* Remove the slot from the free-list. Update the number of
1597 ** fragmented bytes within the page. */
1598 memcpy(&aData
[iAddr
], &aData
[pc
], 2);
1599 aData
[hdr
+7] += (u8
)x
;
1600 }else if( x
+pc
> maxPC
){
1601 /* This slot extends off the end of the usable part of the page */
1602 *pRc
= SQLITE_CORRUPT_PAGE(pPg
);
1605 /* The slot remains on the free-list. Reduce its size to account
1606 ** for the portion used by the new allocation. */
1607 put2byte(&aData
[pc
+2], x
);
1609 return &aData
[pc
+ x
];
1612 pc
= get2byte(&aData
[pc
]);
1613 if( pc
<=iAddr
+size
){
1615 /* The next slot in the chain is not past the end of the current slot */
1616 *pRc
= SQLITE_CORRUPT_PAGE(pPg
);
1621 if( pc
>maxPC
+nByte
-4 ){
1622 /* The free slot chain extends off the end of the page */
1623 *pRc
= SQLITE_CORRUPT_PAGE(pPg
);
1629 ** Allocate nByte bytes of space from within the B-Tree page passed
1630 ** as the first argument. Write into *pIdx the index into pPage->aData[]
1631 ** of the first byte of allocated space. Return either SQLITE_OK or
1632 ** an error code (usually SQLITE_CORRUPT).
1634 ** The caller guarantees that there is sufficient space to make the
1635 ** allocation. This routine might need to defragment in order to bring
1636 ** all the space together, however. This routine will avoid using
1637 ** the first two bytes past the cell pointer area since presumably this
1638 ** allocation is being made in order to insert a new cell, so we will
1639 ** also end up needing a new cell pointer.
1641 static int allocateSpace(MemPage
*pPage
, int nByte
, int *pIdx
){
1642 const int hdr
= pPage
->hdrOffset
; /* Local cache of pPage->hdrOffset */
1643 u8
* const data
= pPage
->aData
; /* Local cache of pPage->aData */
1644 int top
; /* First byte of cell content area */
1645 int rc
= SQLITE_OK
; /* Integer return code */
1646 int gap
; /* First byte of gap between cell pointers and cell content */
1648 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1649 assert( pPage
->pBt
);
1650 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1651 assert( nByte
>=0 ); /* Minimum cell size is 4 */
1652 assert( pPage
->nFree
>=nByte
);
1653 assert( pPage
->nOverflow
==0 );
1654 assert( nByte
< (int)(pPage
->pBt
->usableSize
-8) );
1656 assert( pPage
->cellOffset
== hdr
+ 12 - 4*pPage
->leaf
);
1657 gap
= pPage
->cellOffset
+ 2*pPage
->nCell
;
1658 assert( gap
<=65536 );
1659 /* EVIDENCE-OF: R-29356-02391 If the database uses a 65536-byte page size
1660 ** and the reserved space is zero (the usual value for reserved space)
1661 ** then the cell content offset of an empty page wants to be 65536.
1662 ** However, that integer is too large to be stored in a 2-byte unsigned
1663 ** integer, so a value of 0 is used in its place. */
1664 top
= get2byte(&data
[hdr
+5]);
1665 assert( top
<=(int)pPage
->pBt
->usableSize
); /* by btreeComputeFreeSpace() */
1667 if( top
==0 && pPage
->pBt
->usableSize
==65536 ){
1670 return SQLITE_CORRUPT_PAGE(pPage
);
1674 /* If there is enough space between gap and top for one more cell pointer,
1675 ** and if the freelist is not empty, then search the
1676 ** freelist looking for a slot big enough to satisfy the request.
1678 testcase( gap
+2==top
);
1679 testcase( gap
+1==top
);
1680 testcase( gap
==top
);
1681 if( (data
[hdr
+2] || data
[hdr
+1]) && gap
+2<=top
){
1682 u8
*pSpace
= pageFindSlot(pPage
, nByte
, &rc
);
1685 assert( pSpace
+nByte
<=data
+pPage
->pBt
->usableSize
);
1686 *pIdx
= g2
= (int)(pSpace
-data
);
1687 if( NEVER(g2
<=gap
) ){
1688 return SQLITE_CORRUPT_PAGE(pPage
);
1697 /* The request could not be fulfilled using a freelist slot. Check
1698 ** to see if defragmentation is necessary.
1700 testcase( gap
+2+nByte
==top
);
1701 if( gap
+2+nByte
>top
){
1702 assert( pPage
->nCell
>0 || CORRUPT_DB
);
1703 assert( pPage
->nFree
>=0 );
1704 rc
= defragmentPage(pPage
, MIN(4, pPage
->nFree
- (2+nByte
)));
1706 top
= get2byteNotZero(&data
[hdr
+5]);
1707 assert( gap
+2+nByte
<=top
);
1711 /* Allocate memory from the gap in between the cell pointer array
1712 ** and the cell content area. The btreeComputeFreeSpace() call has already
1713 ** validated the freelist. Given that the freelist is valid, there
1714 ** is no way that the allocation can extend off the end of the page.
1715 ** The assert() below verifies the previous sentence.
1718 put2byte(&data
[hdr
+5], top
);
1719 assert( top
+nByte
<= (int)pPage
->pBt
->usableSize
);
1725 ** Return a section of the pPage->aData to the freelist.
1726 ** The first byte of the new free block is pPage->aData[iStart]
1727 ** and the size of the block is iSize bytes.
1729 ** Adjacent freeblocks are coalesced.
1731 ** Even though the freeblock list was checked by btreeComputeFreeSpace(),
1732 ** that routine will not detect overlap between cells or freeblocks. Nor
1733 ** does it detect cells or freeblocks that encrouch into the reserved bytes
1734 ** at the end of the page. So do additional corruption checks inside this
1735 ** routine and return SQLITE_CORRUPT if any problems are found.
1737 static int freeSpace(MemPage
*pPage
, u16 iStart
, u16 iSize
){
1738 u16 iPtr
; /* Address of ptr to next freeblock */
1739 u16 iFreeBlk
; /* Address of the next freeblock */
1740 u8 hdr
; /* Page header size. 0 or 100 */
1741 u8 nFrag
= 0; /* Reduction in fragmentation */
1742 u16 iOrigSize
= iSize
; /* Original value of iSize */
1743 u16 x
; /* Offset to cell content area */
1744 u32 iEnd
= iStart
+ iSize
; /* First byte past the iStart buffer */
1745 unsigned char *data
= pPage
->aData
; /* Page content */
1747 assert( pPage
->pBt
!=0 );
1748 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
1749 assert( CORRUPT_DB
|| iStart
>=pPage
->hdrOffset
+6+pPage
->childPtrSize
);
1750 assert( CORRUPT_DB
|| iEnd
<= pPage
->pBt
->usableSize
);
1751 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1752 assert( iSize
>=4 ); /* Minimum cell size is 4 */
1753 assert( iStart
<=pPage
->pBt
->usableSize
-4 );
1755 /* The list of freeblocks must be in ascending order. Find the
1756 ** spot on the list where iStart should be inserted.
1758 hdr
= pPage
->hdrOffset
;
1760 if( data
[iPtr
+1]==0 && data
[iPtr
]==0 ){
1761 iFreeBlk
= 0; /* Shortcut for the case when the freelist is empty */
1763 while( (iFreeBlk
= get2byte(&data
[iPtr
]))<iStart
){
1764 if( iFreeBlk
<iPtr
+4 ){
1765 if( iFreeBlk
==0 ) break; /* TH3: corrupt082.100 */
1766 return SQLITE_CORRUPT_PAGE(pPage
);
1770 if( iFreeBlk
>pPage
->pBt
->usableSize
-4 ){ /* TH3: corrupt081.100 */
1771 return SQLITE_CORRUPT_PAGE(pPage
);
1773 assert( iFreeBlk
>iPtr
|| iFreeBlk
==0 );
1776 ** iFreeBlk: First freeblock after iStart, or zero if none
1777 ** iPtr: The address of a pointer to iFreeBlk
1779 ** Check to see if iFreeBlk should be coalesced onto the end of iStart.
1781 if( iFreeBlk
&& iEnd
+3>=iFreeBlk
){
1782 nFrag
= iFreeBlk
- iEnd
;
1783 if( iEnd
>iFreeBlk
) return SQLITE_CORRUPT_PAGE(pPage
);
1784 iEnd
= iFreeBlk
+ get2byte(&data
[iFreeBlk
+2]);
1785 if( iEnd
> pPage
->pBt
->usableSize
){
1786 return SQLITE_CORRUPT_PAGE(pPage
);
1788 iSize
= iEnd
- iStart
;
1789 iFreeBlk
= get2byte(&data
[iFreeBlk
]);
1792 /* If iPtr is another freeblock (that is, if iPtr is not the freelist
1793 ** pointer in the page header) then check to see if iStart should be
1794 ** coalesced onto the end of iPtr.
1797 int iPtrEnd
= iPtr
+ get2byte(&data
[iPtr
+2]);
1798 if( iPtrEnd
+3>=iStart
){
1799 if( iPtrEnd
>iStart
) return SQLITE_CORRUPT_PAGE(pPage
);
1800 nFrag
+= iStart
- iPtrEnd
;
1801 iSize
= iEnd
- iPtr
;
1805 if( nFrag
>data
[hdr
+7] ) return SQLITE_CORRUPT_PAGE(pPage
);
1806 data
[hdr
+7] -= nFrag
;
1808 x
= get2byte(&data
[hdr
+5]);
1810 /* The new freeblock is at the beginning of the cell content area,
1811 ** so just extend the cell content area rather than create another
1812 ** freelist entry */
1813 if( iStart
<x
) return SQLITE_CORRUPT_PAGE(pPage
);
1814 if( iPtr
!=hdr
+1 ) return SQLITE_CORRUPT_PAGE(pPage
);
1815 put2byte(&data
[hdr
+1], iFreeBlk
);
1816 put2byte(&data
[hdr
+5], iEnd
);
1818 /* Insert the new freeblock into the freelist */
1819 put2byte(&data
[iPtr
], iStart
);
1821 if( pPage
->pBt
->btsFlags
& BTS_FAST_SECURE
){
1822 /* Overwrite deleted information with zeros when the secure_delete
1823 ** option is enabled */
1824 memset(&data
[iStart
], 0, iSize
);
1826 put2byte(&data
[iStart
], iFreeBlk
);
1827 put2byte(&data
[iStart
+2], iSize
);
1828 pPage
->nFree
+= iOrigSize
;
1833 ** Decode the flags byte (the first byte of the header) for a page
1834 ** and initialize fields of the MemPage structure accordingly.
1836 ** Only the following combinations are supported. Anything different
1837 ** indicates a corrupt database files:
1840 ** PTF_ZERODATA | PTF_LEAF
1841 ** PTF_LEAFDATA | PTF_INTKEY
1842 ** PTF_LEAFDATA | PTF_INTKEY | PTF_LEAF
1844 static int decodeFlags(MemPage
*pPage
, int flagByte
){
1845 BtShared
*pBt
; /* A copy of pPage->pBt */
1847 assert( pPage
->hdrOffset
==(pPage
->pgno
==1 ? 100 : 0) );
1848 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1849 pPage
->leaf
= (u8
)(flagByte
>>3); assert( PTF_LEAF
== 1<<3 );
1850 flagByte
&= ~PTF_LEAF
;
1851 pPage
->childPtrSize
= 4-4*pPage
->leaf
;
1852 pPage
->xCellSize
= cellSizePtr
;
1854 if( flagByte
==(PTF_LEAFDATA
| PTF_INTKEY
) ){
1855 /* EVIDENCE-OF: R-07291-35328 A value of 5 (0x05) means the page is an
1856 ** interior table b-tree page. */
1857 assert( (PTF_LEAFDATA
|PTF_INTKEY
)==5 );
1858 /* EVIDENCE-OF: R-26900-09176 A value of 13 (0x0d) means the page is a
1859 ** leaf table b-tree page. */
1860 assert( (PTF_LEAFDATA
|PTF_INTKEY
|PTF_LEAF
)==13 );
1863 pPage
->intKeyLeaf
= 1;
1864 pPage
->xParseCell
= btreeParseCellPtr
;
1866 pPage
->intKeyLeaf
= 0;
1867 pPage
->xCellSize
= cellSizePtrNoPayload
;
1868 pPage
->xParseCell
= btreeParseCellPtrNoPayload
;
1870 pPage
->maxLocal
= pBt
->maxLeaf
;
1871 pPage
->minLocal
= pBt
->minLeaf
;
1872 }else if( flagByte
==PTF_ZERODATA
){
1873 /* EVIDENCE-OF: R-43316-37308 A value of 2 (0x02) means the page is an
1874 ** interior index b-tree page. */
1875 assert( (PTF_ZERODATA
)==2 );
1876 /* EVIDENCE-OF: R-59615-42828 A value of 10 (0x0a) means the page is a
1877 ** leaf index b-tree page. */
1878 assert( (PTF_ZERODATA
|PTF_LEAF
)==10 );
1880 pPage
->intKeyLeaf
= 0;
1881 pPage
->xParseCell
= btreeParseCellPtrIndex
;
1882 pPage
->maxLocal
= pBt
->maxLocal
;
1883 pPage
->minLocal
= pBt
->minLocal
;
1885 /* EVIDENCE-OF: R-47608-56469 Any other value for the b-tree page type is
1887 return SQLITE_CORRUPT_PAGE(pPage
);
1889 pPage
->max1bytePayload
= pBt
->max1bytePayload
;
1894 ** Compute the amount of freespace on the page. In other words, fill
1895 ** in the pPage->nFree field.
1897 static int btreeComputeFreeSpace(MemPage
*pPage
){
1898 int pc
; /* Address of a freeblock within pPage->aData[] */
1899 u8 hdr
; /* Offset to beginning of page header */
1900 u8
*data
; /* Equal to pPage->aData */
1901 int usableSize
; /* Amount of usable space on each page */
1902 int nFree
; /* Number of unused bytes on the page */
1903 int top
; /* First byte of the cell content area */
1904 int iCellFirst
; /* First allowable cell or freeblock offset */
1905 int iCellLast
; /* Last possible cell or freeblock offset */
1907 assert( pPage
->pBt
!=0 );
1908 assert( pPage
->pBt
->db
!=0 );
1909 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
1910 assert( pPage
->pgno
==sqlite3PagerPagenumber(pPage
->pDbPage
) );
1911 assert( pPage
== sqlite3PagerGetExtra(pPage
->pDbPage
) );
1912 assert( pPage
->aData
== sqlite3PagerGetData(pPage
->pDbPage
) );
1913 assert( pPage
->isInit
==1 );
1914 assert( pPage
->nFree
<0 );
1916 usableSize
= pPage
->pBt
->usableSize
;
1917 hdr
= pPage
->hdrOffset
;
1918 data
= pPage
->aData
;
1919 /* EVIDENCE-OF: R-58015-48175 The two-byte integer at offset 5 designates
1920 ** the start of the cell content area. A zero value for this integer is
1921 ** interpreted as 65536. */
1922 top
= get2byteNotZero(&data
[hdr
+5]);
1923 iCellFirst
= hdr
+ 8 + pPage
->childPtrSize
+ 2*pPage
->nCell
;
1924 iCellLast
= usableSize
- 4;
1926 /* Compute the total free space on the page
1927 ** EVIDENCE-OF: R-23588-34450 The two-byte integer at offset 1 gives the
1928 ** start of the first freeblock on the page, or is zero if there are no
1930 pc
= get2byte(&data
[hdr
+1]);
1931 nFree
= data
[hdr
+7] + top
; /* Init nFree to non-freeblock free space */
1935 /* EVIDENCE-OF: R-55530-52930 In a well-formed b-tree page, there will
1936 ** always be at least one cell before the first freeblock.
1938 return SQLITE_CORRUPT_PAGE(pPage
);
1942 /* Freeblock off the end of the page */
1943 return SQLITE_CORRUPT_PAGE(pPage
);
1945 next
= get2byte(&data
[pc
]);
1946 size
= get2byte(&data
[pc
+2]);
1947 nFree
= nFree
+ size
;
1948 if( next
<=pc
+size
+3 ) break;
1952 /* Freeblock not in ascending order */
1953 return SQLITE_CORRUPT_PAGE(pPage
);
1955 if( pc
+size
>(unsigned int)usableSize
){
1956 /* Last freeblock extends past page end */
1957 return SQLITE_CORRUPT_PAGE(pPage
);
1961 /* At this point, nFree contains the sum of the offset to the start
1962 ** of the cell-content area plus the number of free bytes within
1963 ** the cell-content area. If this is greater than the usable-size
1964 ** of the page, then the page must be corrupted. This check also
1965 ** serves to verify that the offset to the start of the cell-content
1966 ** area, according to the page header, lies within the page.
1968 if( nFree
>usableSize
|| nFree
<iCellFirst
){
1969 return SQLITE_CORRUPT_PAGE(pPage
);
1971 pPage
->nFree
= (u16
)(nFree
- iCellFirst
);
1976 ** Do additional sanity check after btreeInitPage() if
1977 ** PRAGMA cell_size_check=ON
1979 static SQLITE_NOINLINE
int btreeCellSizeCheck(MemPage
*pPage
){
1980 int iCellFirst
; /* First allowable cell or freeblock offset */
1981 int iCellLast
; /* Last possible cell or freeblock offset */
1982 int i
; /* Index into the cell pointer array */
1983 int sz
; /* Size of a cell */
1984 int pc
; /* Address of a freeblock within pPage->aData[] */
1985 u8
*data
; /* Equal to pPage->aData */
1986 int usableSize
; /* Maximum usable space on the page */
1987 int cellOffset
; /* Start of cell content area */
1989 iCellFirst
= pPage
->cellOffset
+ 2*pPage
->nCell
;
1990 usableSize
= pPage
->pBt
->usableSize
;
1991 iCellLast
= usableSize
- 4;
1992 data
= pPage
->aData
;
1993 cellOffset
= pPage
->cellOffset
;
1994 if( !pPage
->leaf
) iCellLast
--;
1995 for(i
=0; i
<pPage
->nCell
; i
++){
1996 pc
= get2byteAligned(&data
[cellOffset
+i
*2]);
1997 testcase( pc
==iCellFirst
);
1998 testcase( pc
==iCellLast
);
1999 if( pc
<iCellFirst
|| pc
>iCellLast
){
2000 return SQLITE_CORRUPT_PAGE(pPage
);
2002 sz
= pPage
->xCellSize(pPage
, &data
[pc
]);
2003 testcase( pc
+sz
==usableSize
);
2004 if( pc
+sz
>usableSize
){
2005 return SQLITE_CORRUPT_PAGE(pPage
);
2012 ** Initialize the auxiliary information for a disk block.
2014 ** Return SQLITE_OK on success. If we see that the page does
2015 ** not contain a well-formed database page, then return
2016 ** SQLITE_CORRUPT. Note that a return of SQLITE_OK does not
2017 ** guarantee that the page is well-formed. It only shows that
2018 ** we failed to detect any corruption.
2020 static int btreeInitPage(MemPage
*pPage
){
2021 u8
*data
; /* Equal to pPage->aData */
2022 BtShared
*pBt
; /* The main btree structure */
2024 assert( pPage
->pBt
!=0 );
2025 assert( pPage
->pBt
->db
!=0 );
2026 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2027 assert( pPage
->pgno
==sqlite3PagerPagenumber(pPage
->pDbPage
) );
2028 assert( pPage
== sqlite3PagerGetExtra(pPage
->pDbPage
) );
2029 assert( pPage
->aData
== sqlite3PagerGetData(pPage
->pDbPage
) );
2030 assert( pPage
->isInit
==0 );
2033 data
= pPage
->aData
+ pPage
->hdrOffset
;
2034 /* EVIDENCE-OF: R-28594-02890 The one-byte flag at offset 0 indicating
2035 ** the b-tree page type. */
2036 if( decodeFlags(pPage
, data
[0]) ){
2037 return SQLITE_CORRUPT_PAGE(pPage
);
2039 assert( pBt
->pageSize
>=512 && pBt
->pageSize
<=65536 );
2040 pPage
->maskPage
= (u16
)(pBt
->pageSize
- 1);
2041 pPage
->nOverflow
= 0;
2042 pPage
->cellOffset
= pPage
->hdrOffset
+ 8 + pPage
->childPtrSize
;
2043 pPage
->aCellIdx
= data
+ pPage
->childPtrSize
+ 8;
2044 pPage
->aDataEnd
= pPage
->aData
+ pBt
->usableSize
;
2045 pPage
->aDataOfst
= pPage
->aData
+ pPage
->childPtrSize
;
2046 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
2047 ** number of cells on the page. */
2048 pPage
->nCell
= get2byte(&data
[3]);
2049 if( pPage
->nCell
>MX_CELL(pBt
) ){
2050 /* To many cells for a single page. The page must be corrupt */
2051 return SQLITE_CORRUPT_PAGE(pPage
);
2053 testcase( pPage
->nCell
==MX_CELL(pBt
) );
2054 /* EVIDENCE-OF: R-24089-57979 If a page contains no cells (which is only
2055 ** possible for a root page of a table that contains no rows) then the
2056 ** offset to the cell content area will equal the page size minus the
2057 ** bytes of reserved space. */
2058 assert( pPage
->nCell
>0
2059 || get2byteNotZero(&data
[5])==(int)pBt
->usableSize
2061 pPage
->nFree
= -1; /* Indicate that this value is yet uncomputed */
2063 if( pBt
->db
->flags
& SQLITE_CellSizeCk
){
2064 return btreeCellSizeCheck(pPage
);
2070 ** Set up a raw page so that it looks like a database page holding
2073 static void zeroPage(MemPage
*pPage
, int flags
){
2074 unsigned char *data
= pPage
->aData
;
2075 BtShared
*pBt
= pPage
->pBt
;
2076 u8 hdr
= pPage
->hdrOffset
;
2079 assert( sqlite3PagerPagenumber(pPage
->pDbPage
)==pPage
->pgno
);
2080 assert( sqlite3PagerGetExtra(pPage
->pDbPage
) == (void*)pPage
);
2081 assert( sqlite3PagerGetData(pPage
->pDbPage
) == data
);
2082 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
2083 assert( sqlite3_mutex_held(pBt
->mutex
) );
2084 if( pBt
->btsFlags
& BTS_FAST_SECURE
){
2085 memset(&data
[hdr
], 0, pBt
->usableSize
- hdr
);
2087 data
[hdr
] = (char)flags
;
2088 first
= hdr
+ ((flags
&PTF_LEAF
)==0 ? 12 : 8);
2089 memset(&data
[hdr
+1], 0, 4);
2091 put2byte(&data
[hdr
+5], pBt
->usableSize
);
2092 pPage
->nFree
= (u16
)(pBt
->usableSize
- first
);
2093 decodeFlags(pPage
, flags
);
2094 pPage
->cellOffset
= first
;
2095 pPage
->aDataEnd
= &data
[pBt
->usableSize
];
2096 pPage
->aCellIdx
= &data
[first
];
2097 pPage
->aDataOfst
= &data
[pPage
->childPtrSize
];
2098 pPage
->nOverflow
= 0;
2099 assert( pBt
->pageSize
>=512 && pBt
->pageSize
<=65536 );
2100 pPage
->maskPage
= (u16
)(pBt
->pageSize
- 1);
2107 ** Convert a DbPage obtained from the pager into a MemPage used by
2110 static MemPage
*btreePageFromDbPage(DbPage
*pDbPage
, Pgno pgno
, BtShared
*pBt
){
2111 MemPage
*pPage
= (MemPage
*)sqlite3PagerGetExtra(pDbPage
);
2112 if( pgno
!=pPage
->pgno
){
2113 pPage
->aData
= sqlite3PagerGetData(pDbPage
);
2114 pPage
->pDbPage
= pDbPage
;
2117 pPage
->hdrOffset
= pgno
==1 ? 100 : 0;
2119 assert( pPage
->aData
==sqlite3PagerGetData(pDbPage
) );
2124 ** Get a page from the pager. Initialize the MemPage.pBt and
2125 ** MemPage.aData elements if needed. See also: btreeGetUnusedPage().
2127 ** If the PAGER_GET_NOCONTENT flag is set, it means that we do not care
2128 ** about the content of the page at this time. So do not go to the disk
2129 ** to fetch the content. Just fill in the content with zeros for now.
2130 ** If in the future we call sqlite3PagerWrite() on this page, that
2131 ** means we have started to be concerned about content and the disk
2132 ** read should occur at that point.
2134 static int btreeGetPage(
2135 BtShared
*pBt
, /* The btree */
2136 Pgno pgno
, /* Number of the page to fetch */
2137 MemPage
**ppPage
, /* Return the page in this parameter */
2138 int flags
/* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2143 assert( flags
==0 || flags
==PAGER_GET_NOCONTENT
|| flags
==PAGER_GET_READONLY
);
2144 assert( sqlite3_mutex_held(pBt
->mutex
) );
2145 rc
= sqlite3PagerGet(pBt
->pPager
, pgno
, (DbPage
**)&pDbPage
, flags
);
2147 *ppPage
= btreePageFromDbPage(pDbPage
, pgno
, pBt
);
2152 ** Retrieve a page from the pager cache. If the requested page is not
2153 ** already in the pager cache return NULL. Initialize the MemPage.pBt and
2154 ** MemPage.aData elements if needed.
2156 static MemPage
*btreePageLookup(BtShared
*pBt
, Pgno pgno
){
2158 assert( sqlite3_mutex_held(pBt
->mutex
) );
2159 pDbPage
= sqlite3PagerLookup(pBt
->pPager
, pgno
);
2161 return btreePageFromDbPage(pDbPage
, pgno
, pBt
);
2167 ** Return the size of the database file in pages. If there is any kind of
2168 ** error, return ((unsigned int)-1).
2170 static Pgno
btreePagecount(BtShared
*pBt
){
2173 Pgno
sqlite3BtreeLastPage(Btree
*p
){
2174 assert( sqlite3BtreeHoldsMutex(p
) );
2175 return btreePagecount(p
->pBt
);
2179 ** Get a page from the pager and initialize it.
2181 ** If pCur!=0 then the page is being fetched as part of a moveToChild()
2182 ** call. Do additional sanity checking on the page in this case.
2183 ** And if the fetch fails, this routine must decrement pCur->iPage.
2185 ** The page is fetched as read-write unless pCur is not NULL and is
2186 ** a read-only cursor.
2188 ** If an error occurs, then *ppPage is undefined. It
2189 ** may remain unchanged, or it may be set to an invalid value.
2191 static int getAndInitPage(
2192 BtShared
*pBt
, /* The database file */
2193 Pgno pgno
, /* Number of the page to get */
2194 MemPage
**ppPage
, /* Write the page pointer here */
2195 BtCursor
*pCur
, /* Cursor to receive the page, or NULL */
2196 int bReadOnly
/* True for a read-only page */
2200 assert( sqlite3_mutex_held(pBt
->mutex
) );
2201 assert( pCur
==0 || ppPage
==&pCur
->pPage
);
2202 assert( pCur
==0 || bReadOnly
==pCur
->curPagerFlags
);
2203 assert( pCur
==0 || pCur
->iPage
>0 );
2205 if( pgno
>btreePagecount(pBt
) ){
2206 rc
= SQLITE_CORRUPT_BKPT
;
2207 goto getAndInitPage_error1
;
2209 rc
= sqlite3PagerGet(pBt
->pPager
, pgno
, (DbPage
**)&pDbPage
, bReadOnly
);
2211 goto getAndInitPage_error1
;
2213 *ppPage
= (MemPage
*)sqlite3PagerGetExtra(pDbPage
);
2214 if( (*ppPage
)->isInit
==0 ){
2215 btreePageFromDbPage(pDbPage
, pgno
, pBt
);
2216 rc
= btreeInitPage(*ppPage
);
2217 if( rc
!=SQLITE_OK
){
2218 goto getAndInitPage_error2
;
2221 assert( (*ppPage
)->pgno
==pgno
);
2222 assert( (*ppPage
)->aData
==sqlite3PagerGetData(pDbPage
) );
2224 /* If obtaining a child page for a cursor, we must verify that the page is
2225 ** compatible with the root page. */
2226 if( pCur
&& ((*ppPage
)->nCell
<1 || (*ppPage
)->intKey
!=pCur
->curIntKey
) ){
2227 rc
= SQLITE_CORRUPT_PGNO(pgno
);
2228 goto getAndInitPage_error2
;
2232 getAndInitPage_error2
:
2233 releasePage(*ppPage
);
2234 getAndInitPage_error1
:
2237 pCur
->pPage
= pCur
->apPage
[pCur
->iPage
];
2239 testcase( pgno
==0 );
2240 assert( pgno
!=0 || rc
==SQLITE_CORRUPT
);
2245 ** Release a MemPage. This should be called once for each prior
2246 ** call to btreeGetPage.
2248 ** Page1 is a special case and must be released using releasePageOne().
2250 static void releasePageNotNull(MemPage
*pPage
){
2251 assert( pPage
->aData
);
2252 assert( pPage
->pBt
);
2253 assert( pPage
->pDbPage
!=0 );
2254 assert( sqlite3PagerGetExtra(pPage
->pDbPage
) == (void*)pPage
);
2255 assert( sqlite3PagerGetData(pPage
->pDbPage
)==pPage
->aData
);
2256 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2257 sqlite3PagerUnrefNotNull(pPage
->pDbPage
);
2259 static void releasePage(MemPage
*pPage
){
2260 if( pPage
) releasePageNotNull(pPage
);
2262 static void releasePageOne(MemPage
*pPage
){
2264 assert( pPage
->aData
);
2265 assert( pPage
->pBt
);
2266 assert( pPage
->pDbPage
!=0 );
2267 assert( sqlite3PagerGetExtra(pPage
->pDbPage
) == (void*)pPage
);
2268 assert( sqlite3PagerGetData(pPage
->pDbPage
)==pPage
->aData
);
2269 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2270 sqlite3PagerUnrefPageOne(pPage
->pDbPage
);
2274 ** Get an unused page.
2276 ** This works just like btreeGetPage() with the addition:
2278 ** * If the page is already in use for some other purpose, immediately
2279 ** release it and return an SQLITE_CURRUPT error.
2280 ** * Make sure the isInit flag is clear
2282 static int btreeGetUnusedPage(
2283 BtShared
*pBt
, /* The btree */
2284 Pgno pgno
, /* Number of the page to fetch */
2285 MemPage
**ppPage
, /* Return the page in this parameter */
2286 int flags
/* PAGER_GET_NOCONTENT or PAGER_GET_READONLY */
2288 int rc
= btreeGetPage(pBt
, pgno
, ppPage
, flags
);
2289 if( rc
==SQLITE_OK
){
2290 if( sqlite3PagerPageRefcount((*ppPage
)->pDbPage
)>1 ){
2291 releasePage(*ppPage
);
2293 return SQLITE_CORRUPT_BKPT
;
2295 (*ppPage
)->isInit
= 0;
2304 ** During a rollback, when the pager reloads information into the cache
2305 ** so that the cache is restored to its original state at the start of
2306 ** the transaction, for each page restored this routine is called.
2308 ** This routine needs to reset the extra data section at the end of the
2309 ** page to agree with the restored data.
2311 static void pageReinit(DbPage
*pData
){
2313 pPage
= (MemPage
*)sqlite3PagerGetExtra(pData
);
2314 assert( sqlite3PagerPageRefcount(pData
)>0 );
2315 if( pPage
->isInit
){
2316 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
2318 if( sqlite3PagerPageRefcount(pData
)>1 ){
2319 /* pPage might not be a btree page; it might be an overflow page
2320 ** or ptrmap page or a free page. In those cases, the following
2321 ** call to btreeInitPage() will likely return SQLITE_CORRUPT.
2322 ** But no harm is done by this. And it is very important that
2323 ** btreeInitPage() be called on every btree page so we make
2324 ** the call for every page that comes in for re-initing. */
2325 btreeInitPage(pPage
);
2331 ** Invoke the busy handler for a btree.
2333 static int btreeInvokeBusyHandler(void *pArg
){
2334 BtShared
*pBt
= (BtShared
*)pArg
;
2336 assert( sqlite3_mutex_held(pBt
->db
->mutex
) );
2337 return sqlite3InvokeBusyHandler(&pBt
->db
->busyHandler
);
2341 ** Open a database file.
2343 ** zFilename is the name of the database file. If zFilename is NULL
2344 ** then an ephemeral database is created. The ephemeral database might
2345 ** be exclusively in memory, or it might use a disk-based memory cache.
2346 ** Either way, the ephemeral database will be automatically deleted
2347 ** when sqlite3BtreeClose() is called.
2349 ** If zFilename is ":memory:" then an in-memory database is created
2350 ** that is automatically destroyed when it is closed.
2352 ** The "flags" parameter is a bitmask that might contain bits like
2353 ** BTREE_OMIT_JOURNAL and/or BTREE_MEMORY.
2355 ** If the database is already opened in the same database connection
2356 ** and we are in shared cache mode, then the open will fail with an
2357 ** SQLITE_CONSTRAINT error. We cannot allow two or more BtShared
2358 ** objects in the same database connection since doing so will lead
2359 ** to problems with locking.
2361 int sqlite3BtreeOpen(
2362 sqlite3_vfs
*pVfs
, /* VFS to use for this b-tree */
2363 const char *zFilename
, /* Name of the file containing the BTree database */
2364 sqlite3
*db
, /* Associated database handle */
2365 Btree
**ppBtree
, /* Pointer to new Btree object written here */
2366 int flags
, /* Options */
2367 int vfsFlags
/* Flags passed through to sqlite3_vfs.xOpen() */
2369 BtShared
*pBt
= 0; /* Shared part of btree structure */
2370 Btree
*p
; /* Handle to return */
2371 sqlite3_mutex
*mutexOpen
= 0; /* Prevents a race condition. Ticket #3537 */
2372 int rc
= SQLITE_OK
; /* Result code from this function */
2373 u8 nReserve
; /* Byte of unused space on each page */
2374 unsigned char zDbHeader
[100]; /* Database header content */
2376 /* True if opening an ephemeral, temporary database */
2377 const int isTempDb
= zFilename
==0 || zFilename
[0]==0;
2379 /* Set the variable isMemdb to true for an in-memory database, or
2380 ** false for a file-based database.
2382 #ifdef SQLITE_OMIT_MEMORYDB
2383 const int isMemdb
= 0;
2385 const int isMemdb
= (zFilename
&& strcmp(zFilename
, ":memory:")==0)
2386 || (isTempDb
&& sqlite3TempInMemory(db
))
2387 || (vfsFlags
& SQLITE_OPEN_MEMORY
)!=0;
2392 assert( sqlite3_mutex_held(db
->mutex
) );
2393 assert( (flags
&0xff)==flags
); /* flags fit in 8 bits */
2395 /* Only a BTREE_SINGLE database can be BTREE_UNORDERED */
2396 assert( (flags
& BTREE_UNORDERED
)==0 || (flags
& BTREE_SINGLE
)!=0 );
2398 /* A BTREE_SINGLE database is always a temporary and/or ephemeral */
2399 assert( (flags
& BTREE_SINGLE
)==0 || isTempDb
);
2402 flags
|= BTREE_MEMORY
;
2404 if( (vfsFlags
& SQLITE_OPEN_MAIN_DB
)!=0 && (isMemdb
|| isTempDb
) ){
2405 vfsFlags
= (vfsFlags
& ~SQLITE_OPEN_MAIN_DB
) | SQLITE_OPEN_TEMP_DB
;
2407 p
= sqlite3MallocZero(sizeof(Btree
));
2409 return SQLITE_NOMEM_BKPT
;
2411 p
->inTrans
= TRANS_NONE
;
2413 #ifndef SQLITE_OMIT_SHARED_CACHE
2418 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2420 ** If this Btree is a candidate for shared cache, try to find an
2421 ** existing BtShared object that we can share with
2423 if( isTempDb
==0 && (isMemdb
==0 || (vfsFlags
&SQLITE_OPEN_URI
)!=0) ){
2424 if( vfsFlags
& SQLITE_OPEN_SHAREDCACHE
){
2425 int nFilename
= sqlite3Strlen30(zFilename
)+1;
2426 int nFullPathname
= pVfs
->mxPathname
+1;
2427 char *zFullPathname
= sqlite3Malloc(MAX(nFullPathname
,nFilename
));
2428 MUTEX_LOGIC( sqlite3_mutex
*mutexShared
; )
2431 if( !zFullPathname
){
2433 return SQLITE_NOMEM_BKPT
;
2436 memcpy(zFullPathname
, zFilename
, nFilename
);
2438 rc
= sqlite3OsFullPathname(pVfs
, zFilename
,
2439 nFullPathname
, zFullPathname
);
2441 if( rc
==SQLITE_OK_SYMLINK
){
2444 sqlite3_free(zFullPathname
);
2450 #if SQLITE_THREADSAFE
2451 mutexOpen
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_OPEN
);
2452 sqlite3_mutex_enter(mutexOpen
);
2453 mutexShared
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN
);
2454 sqlite3_mutex_enter(mutexShared
);
2456 for(pBt
=GLOBAL(BtShared
*,sqlite3SharedCacheList
); pBt
; pBt
=pBt
->pNext
){
2457 assert( pBt
->nRef
>0 );
2458 if( 0==strcmp(zFullPathname
, sqlite3PagerFilename(pBt
->pPager
, 0))
2459 && sqlite3PagerVfs(pBt
->pPager
)==pVfs
){
2461 for(iDb
=db
->nDb
-1; iDb
>=0; iDb
--){
2462 Btree
*pExisting
= db
->aDb
[iDb
].pBt
;
2463 if( pExisting
&& pExisting
->pBt
==pBt
){
2464 sqlite3_mutex_leave(mutexShared
);
2465 sqlite3_mutex_leave(mutexOpen
);
2466 sqlite3_free(zFullPathname
);
2468 return SQLITE_CONSTRAINT
;
2476 sqlite3_mutex_leave(mutexShared
);
2477 sqlite3_free(zFullPathname
);
2481 /* In debug mode, we mark all persistent databases as sharable
2482 ** even when they are not. This exercises the locking code and
2483 ** gives more opportunity for asserts(sqlite3_mutex_held())
2484 ** statements to find locking problems.
2493 ** The following asserts make sure that structures used by the btree are
2494 ** the right size. This is to guard against size changes that result
2495 ** when compiling on a different architecture.
2497 assert( sizeof(i64
)==8 );
2498 assert( sizeof(u64
)==8 );
2499 assert( sizeof(u32
)==4 );
2500 assert( sizeof(u16
)==2 );
2501 assert( sizeof(Pgno
)==4 );
2503 pBt
= sqlite3MallocZero( sizeof(*pBt
) );
2505 rc
= SQLITE_NOMEM_BKPT
;
2506 goto btree_open_out
;
2508 rc
= sqlite3PagerOpen(pVfs
, &pBt
->pPager
, zFilename
,
2509 sizeof(MemPage
), flags
, vfsFlags
, pageReinit
);
2510 if( rc
==SQLITE_OK
){
2511 sqlite3PagerSetMmapLimit(pBt
->pPager
, db
->szMmap
);
2512 rc
= sqlite3PagerReadFileheader(pBt
->pPager
,sizeof(zDbHeader
),zDbHeader
);
2514 if( rc
!=SQLITE_OK
){
2515 goto btree_open_out
;
2517 pBt
->openFlags
= (u8
)flags
;
2519 sqlite3PagerSetBusyHandler(pBt
->pPager
, btreeInvokeBusyHandler
, pBt
);
2524 if( sqlite3PagerIsreadonly(pBt
->pPager
) ) pBt
->btsFlags
|= BTS_READ_ONLY
;
2525 #if defined(SQLITE_SECURE_DELETE)
2526 pBt
->btsFlags
|= BTS_SECURE_DELETE
;
2527 #elif defined(SQLITE_FAST_SECURE_DELETE)
2528 pBt
->btsFlags
|= BTS_OVERWRITE
;
2530 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
2531 ** determined by the 2-byte integer located at an offset of 16 bytes from
2532 ** the beginning of the database file. */
2533 pBt
->pageSize
= (zDbHeader
[16]<<8) | (zDbHeader
[17]<<16);
2534 if( pBt
->pageSize
<512 || pBt
->pageSize
>SQLITE_MAX_PAGE_SIZE
2535 || ((pBt
->pageSize
-1)&pBt
->pageSize
)!=0 ){
2537 #ifndef SQLITE_OMIT_AUTOVACUUM
2538 /* If the magic name ":memory:" will create an in-memory database, then
2539 ** leave the autoVacuum mode at 0 (do not auto-vacuum), even if
2540 ** SQLITE_DEFAULT_AUTOVACUUM is true. On the other hand, if
2541 ** SQLITE_OMIT_MEMORYDB has been defined, then ":memory:" is just a
2542 ** regular file-name. In this case the auto-vacuum applies as per normal.
2544 if( zFilename
&& !isMemdb
){
2545 pBt
->autoVacuum
= (SQLITE_DEFAULT_AUTOVACUUM
? 1 : 0);
2546 pBt
->incrVacuum
= (SQLITE_DEFAULT_AUTOVACUUM
==2 ? 1 : 0);
2551 /* EVIDENCE-OF: R-37497-42412 The size of the reserved region is
2552 ** determined by the one-byte unsigned integer found at an offset of 20
2553 ** into the database file header. */
2554 nReserve
= zDbHeader
[20];
2555 pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
2556 #ifndef SQLITE_OMIT_AUTOVACUUM
2557 pBt
->autoVacuum
= (get4byte(&zDbHeader
[36 + 4*4])?1:0);
2558 pBt
->incrVacuum
= (get4byte(&zDbHeader
[36 + 7*4])?1:0);
2561 rc
= sqlite3PagerSetPagesize(pBt
->pPager
, &pBt
->pageSize
, nReserve
);
2562 if( rc
) goto btree_open_out
;
2563 pBt
->usableSize
= pBt
->pageSize
- nReserve
;
2564 assert( (pBt
->pageSize
& 7)==0 ); /* 8-byte alignment of pageSize */
2566 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2567 /* Add the new BtShared object to the linked list sharable BtShareds.
2571 MUTEX_LOGIC( sqlite3_mutex
*mutexShared
; )
2572 MUTEX_LOGIC( mutexShared
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN
);)
2573 if( SQLITE_THREADSAFE
&& sqlite3GlobalConfig
.bCoreMutex
){
2574 pBt
->mutex
= sqlite3MutexAlloc(SQLITE_MUTEX_FAST
);
2575 if( pBt
->mutex
==0 ){
2576 rc
= SQLITE_NOMEM_BKPT
;
2577 goto btree_open_out
;
2580 sqlite3_mutex_enter(mutexShared
);
2581 pBt
->pNext
= GLOBAL(BtShared
*,sqlite3SharedCacheList
);
2582 GLOBAL(BtShared
*,sqlite3SharedCacheList
) = pBt
;
2583 sqlite3_mutex_leave(mutexShared
);
2588 #if !defined(SQLITE_OMIT_SHARED_CACHE) && !defined(SQLITE_OMIT_DISKIO)
2589 /* If the new Btree uses a sharable pBtShared, then link the new
2590 ** Btree into the list of all sharable Btrees for the same connection.
2591 ** The list is kept in ascending order by pBt address.
2596 for(i
=0; i
<db
->nDb
; i
++){
2597 if( (pSib
= db
->aDb
[i
].pBt
)!=0 && pSib
->sharable
){
2598 while( pSib
->pPrev
){ pSib
= pSib
->pPrev
; }
2599 if( (uptr
)p
->pBt
<(uptr
)pSib
->pBt
){
2604 while( pSib
->pNext
&& (uptr
)pSib
->pNext
->pBt
<(uptr
)p
->pBt
){
2607 p
->pNext
= pSib
->pNext
;
2610 p
->pNext
->pPrev
= p
;
2622 if( rc
!=SQLITE_OK
){
2623 if( pBt
&& pBt
->pPager
){
2624 sqlite3PagerClose(pBt
->pPager
, 0);
2630 sqlite3_file
*pFile
;
2632 /* If the B-Tree was successfully opened, set the pager-cache size to the
2633 ** default value. Except, when opening on an existing shared pager-cache,
2634 ** do not change the pager-cache size.
2636 if( sqlite3BtreeSchema(p
, 0, 0)==0 ){
2637 sqlite3BtreeSetCacheSize(p
, SQLITE_DEFAULT_CACHE_SIZE
);
2640 pFile
= sqlite3PagerFile(pBt
->pPager
);
2641 if( pFile
->pMethods
){
2642 sqlite3OsFileControlHint(pFile
, SQLITE_FCNTL_PDB
, (void*)&pBt
->db
);
2646 assert( sqlite3_mutex_held(mutexOpen
) );
2647 sqlite3_mutex_leave(mutexOpen
);
2649 assert( rc
!=SQLITE_OK
|| sqlite3BtreeConnectionCount(*ppBtree
)>0 );
2654 ** Decrement the BtShared.nRef counter. When it reaches zero,
2655 ** remove the BtShared structure from the sharing list. Return
2656 ** true if the BtShared.nRef counter reaches zero and return
2657 ** false if it is still positive.
2659 static int removeFromSharingList(BtShared
*pBt
){
2660 #ifndef SQLITE_OMIT_SHARED_CACHE
2661 MUTEX_LOGIC( sqlite3_mutex
*pMainMtx
; )
2665 assert( sqlite3_mutex_notheld(pBt
->mutex
) );
2666 MUTEX_LOGIC( pMainMtx
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN
); )
2667 sqlite3_mutex_enter(pMainMtx
);
2670 if( GLOBAL(BtShared
*,sqlite3SharedCacheList
)==pBt
){
2671 GLOBAL(BtShared
*,sqlite3SharedCacheList
) = pBt
->pNext
;
2673 pList
= GLOBAL(BtShared
*,sqlite3SharedCacheList
);
2674 while( ALWAYS(pList
) && pList
->pNext
!=pBt
){
2677 if( ALWAYS(pList
) ){
2678 pList
->pNext
= pBt
->pNext
;
2681 if( SQLITE_THREADSAFE
){
2682 sqlite3_mutex_free(pBt
->mutex
);
2686 sqlite3_mutex_leave(pMainMtx
);
2694 ** Make sure pBt->pTmpSpace points to an allocation of
2695 ** MX_CELL_SIZE(pBt) bytes with a 4-byte prefix for a left-child
2698 static void allocateTempSpace(BtShared
*pBt
){
2699 if( !pBt
->pTmpSpace
){
2700 pBt
->pTmpSpace
= sqlite3PageMalloc( pBt
->pageSize
);
2702 /* One of the uses of pBt->pTmpSpace is to format cells before
2703 ** inserting them into a leaf page (function fillInCell()). If
2704 ** a cell is less than 4 bytes in size, it is rounded up to 4 bytes
2705 ** by the various routines that manipulate binary cells. Which
2706 ** can mean that fillInCell() only initializes the first 2 or 3
2707 ** bytes of pTmpSpace, but that the first 4 bytes are copied from
2708 ** it into a database page. This is not actually a problem, but it
2709 ** does cause a valgrind error when the 1 or 2 bytes of unitialized
2710 ** data is passed to system call write(). So to avoid this error,
2711 ** zero the first 4 bytes of temp space here.
2713 ** Also: Provide four bytes of initialized space before the
2714 ** beginning of pTmpSpace as an area available to prepend the
2715 ** left-child pointer to the beginning of a cell.
2717 if( pBt
->pTmpSpace
){
2718 memset(pBt
->pTmpSpace
, 0, 8);
2719 pBt
->pTmpSpace
+= 4;
2725 ** Free the pBt->pTmpSpace allocation
2727 static void freeTempSpace(BtShared
*pBt
){
2728 if( pBt
->pTmpSpace
){
2729 pBt
->pTmpSpace
-= 4;
2730 sqlite3PageFree(pBt
->pTmpSpace
);
2736 ** Close an open database and invalidate all cursors.
2738 int sqlite3BtreeClose(Btree
*p
){
2739 BtShared
*pBt
= p
->pBt
;
2741 /* Close all cursors opened via this handle. */
2742 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2743 sqlite3BtreeEnter(p
);
2745 /* Verify that no other cursors have this Btree open */
2748 BtCursor
*pCur
= pBt
->pCursor
;
2750 BtCursor
*pTmp
= pCur
;
2752 assert( pTmp
->pBtree
!=p
);
2758 /* Rollback any active transaction and free the handle structure.
2759 ** The call to sqlite3BtreeRollback() drops any table-locks held by
2762 sqlite3BtreeRollback(p
, SQLITE_OK
, 0);
2763 sqlite3BtreeLeave(p
);
2765 /* If there are still other outstanding references to the shared-btree
2766 ** structure, return now. The remainder of this procedure cleans
2767 ** up the shared-btree.
2769 assert( p
->wantToLock
==0 && p
->locked
==0 );
2770 if( !p
->sharable
|| removeFromSharingList(pBt
) ){
2771 /* The pBt is no longer on the sharing list, so we can access
2772 ** it without having to hold the mutex.
2774 ** Clean out and delete the BtShared object.
2776 assert( !pBt
->pCursor
);
2777 sqlite3PagerClose(pBt
->pPager
, p
->db
);
2778 if( pBt
->xFreeSchema
&& pBt
->pSchema
){
2779 pBt
->xFreeSchema(pBt
->pSchema
);
2781 sqlite3DbFree(0, pBt
->pSchema
);
2786 #ifndef SQLITE_OMIT_SHARED_CACHE
2787 assert( p
->wantToLock
==0 );
2788 assert( p
->locked
==0 );
2789 if( p
->pPrev
) p
->pPrev
->pNext
= p
->pNext
;
2790 if( p
->pNext
) p
->pNext
->pPrev
= p
->pPrev
;
2798 ** Change the "soft" limit on the number of pages in the cache.
2799 ** Unused and unmodified pages will be recycled when the number of
2800 ** pages in the cache exceeds this soft limit. But the size of the
2801 ** cache is allowed to grow larger than this limit if it contains
2802 ** dirty pages or pages still in active use.
2804 int sqlite3BtreeSetCacheSize(Btree
*p
, int mxPage
){
2805 BtShared
*pBt
= p
->pBt
;
2806 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2807 sqlite3BtreeEnter(p
);
2808 sqlite3PagerSetCachesize(pBt
->pPager
, mxPage
);
2809 sqlite3BtreeLeave(p
);
2814 ** Change the "spill" limit on the number of pages in the cache.
2815 ** If the number of pages exceeds this limit during a write transaction,
2816 ** the pager might attempt to "spill" pages to the journal early in
2817 ** order to free up memory.
2819 ** The value returned is the current spill size. If zero is passed
2820 ** as an argument, no changes are made to the spill size setting, so
2821 ** using mxPage of 0 is a way to query the current spill size.
2823 int sqlite3BtreeSetSpillSize(Btree
*p
, int mxPage
){
2824 BtShared
*pBt
= p
->pBt
;
2826 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2827 sqlite3BtreeEnter(p
);
2828 res
= sqlite3PagerSetSpillsize(pBt
->pPager
, mxPage
);
2829 sqlite3BtreeLeave(p
);
2833 #if SQLITE_MAX_MMAP_SIZE>0
2835 ** Change the limit on the amount of the database file that may be
2838 int sqlite3BtreeSetMmapLimit(Btree
*p
, sqlite3_int64 szMmap
){
2839 BtShared
*pBt
= p
->pBt
;
2840 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2841 sqlite3BtreeEnter(p
);
2842 sqlite3PagerSetMmapLimit(pBt
->pPager
, szMmap
);
2843 sqlite3BtreeLeave(p
);
2846 #endif /* SQLITE_MAX_MMAP_SIZE>0 */
2849 ** Change the way data is synced to disk in order to increase or decrease
2850 ** how well the database resists damage due to OS crashes and power
2851 ** failures. Level 1 is the same as asynchronous (no syncs() occur and
2852 ** there is a high probability of damage) Level 2 is the default. There
2853 ** is a very low but non-zero probability of damage. Level 3 reduces the
2854 ** probability of damage to near zero but with a write performance reduction.
2856 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
2857 int sqlite3BtreeSetPagerFlags(
2858 Btree
*p
, /* The btree to set the safety level on */
2859 unsigned pgFlags
/* Various PAGER_* flags */
2861 BtShared
*pBt
= p
->pBt
;
2862 assert( sqlite3_mutex_held(p
->db
->mutex
) );
2863 sqlite3BtreeEnter(p
);
2864 sqlite3PagerSetFlags(pBt
->pPager
, pgFlags
);
2865 sqlite3BtreeLeave(p
);
2871 ** Change the default pages size and the number of reserved bytes per page.
2872 ** Or, if the page size has already been fixed, return SQLITE_READONLY
2873 ** without changing anything.
2875 ** The page size must be a power of 2 between 512 and 65536. If the page
2876 ** size supplied does not meet this constraint then the page size is not
2879 ** Page sizes are constrained to be a power of two so that the region
2880 ** of the database file used for locking (beginning at PENDING_BYTE,
2881 ** the first byte past the 1GB boundary, 0x40000000) needs to occur
2882 ** at the beginning of a page.
2884 ** If parameter nReserve is less than zero, then the number of reserved
2885 ** bytes per page is left unchanged.
2887 ** If the iFix!=0 then the BTS_PAGESIZE_FIXED flag is set so that the page size
2888 ** and autovacuum mode can no longer be changed.
2890 int sqlite3BtreeSetPageSize(Btree
*p
, int pageSize
, int nReserve
, int iFix
){
2893 BtShared
*pBt
= p
->pBt
;
2894 assert( nReserve
>=0 && nReserve
<=255 );
2895 sqlite3BtreeEnter(p
);
2896 pBt
->nReserveWanted
= nReserve
;
2897 x
= pBt
->pageSize
- pBt
->usableSize
;
2898 if( nReserve
<x
) nReserve
= x
;
2899 if( pBt
->btsFlags
& BTS_PAGESIZE_FIXED
){
2900 sqlite3BtreeLeave(p
);
2901 return SQLITE_READONLY
;
2903 assert( nReserve
>=0 && nReserve
<=255 );
2904 if( pageSize
>=512 && pageSize
<=SQLITE_MAX_PAGE_SIZE
&&
2905 ((pageSize
-1)&pageSize
)==0 ){
2906 assert( (pageSize
& 7)==0 );
2907 assert( !pBt
->pCursor
);
2908 if( nReserve
>32 && pageSize
==512 ) pageSize
= 1024;
2909 pBt
->pageSize
= (u32
)pageSize
;
2912 rc
= sqlite3PagerSetPagesize(pBt
->pPager
, &pBt
->pageSize
, nReserve
);
2913 pBt
->usableSize
= pBt
->pageSize
- (u16
)nReserve
;
2914 if( iFix
) pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
2915 sqlite3BtreeLeave(p
);
2920 ** Return the currently defined page size
2922 int sqlite3BtreeGetPageSize(Btree
*p
){
2923 return p
->pBt
->pageSize
;
2927 ** This function is similar to sqlite3BtreeGetReserve(), except that it
2928 ** may only be called if it is guaranteed that the b-tree mutex is already
2931 ** This is useful in one special case in the backup API code where it is
2932 ** known that the shared b-tree mutex is held, but the mutex on the
2933 ** database handle that owns *p is not. In this case if sqlite3BtreeEnter()
2934 ** were to be called, it might collide with some other operation on the
2935 ** database handle that owns *p, causing undefined behavior.
2937 int sqlite3BtreeGetReserveNoMutex(Btree
*p
){
2939 assert( sqlite3_mutex_held(p
->pBt
->mutex
) );
2940 n
= p
->pBt
->pageSize
- p
->pBt
->usableSize
;
2945 ** Return the number of bytes of space at the end of every page that
2946 ** are intentually left unused. This is the "reserved" space that is
2947 ** sometimes used by extensions.
2949 ** The value returned is the larger of the current reserve size and
2950 ** the latest reserve size requested by SQLITE_FILECTRL_RESERVE_BYTES.
2951 ** The amount of reserve can only grow - never shrink.
2953 int sqlite3BtreeGetRequestedReserve(Btree
*p
){
2955 sqlite3BtreeEnter(p
);
2956 n1
= (int)p
->pBt
->nReserveWanted
;
2957 n2
= sqlite3BtreeGetReserveNoMutex(p
);
2958 sqlite3BtreeLeave(p
);
2959 return n1
>n2
? n1
: n2
;
2964 ** Set the maximum page count for a database if mxPage is positive.
2965 ** No changes are made if mxPage is 0 or negative.
2966 ** Regardless of the value of mxPage, return the maximum page count.
2968 Pgno
sqlite3BtreeMaxPageCount(Btree
*p
, Pgno mxPage
){
2970 sqlite3BtreeEnter(p
);
2971 n
= sqlite3PagerMaxPageCount(p
->pBt
->pPager
, mxPage
);
2972 sqlite3BtreeLeave(p
);
2977 ** Change the values for the BTS_SECURE_DELETE and BTS_OVERWRITE flags:
2979 ** newFlag==0 Both BTS_SECURE_DELETE and BTS_OVERWRITE are cleared
2980 ** newFlag==1 BTS_SECURE_DELETE set and BTS_OVERWRITE is cleared
2981 ** newFlag==2 BTS_SECURE_DELETE cleared and BTS_OVERWRITE is set
2982 ** newFlag==(-1) No changes
2984 ** This routine acts as a query if newFlag is less than zero
2986 ** With BTS_OVERWRITE set, deleted content is overwritten by zeros, but
2987 ** freelist leaf pages are not written back to the database. Thus in-page
2988 ** deleted content is cleared, but freelist deleted content is not.
2990 ** With BTS_SECURE_DELETE, operation is like BTS_OVERWRITE with the addition
2991 ** that freelist leaf pages are written back into the database, increasing
2992 ** the amount of disk I/O.
2994 int sqlite3BtreeSecureDelete(Btree
*p
, int newFlag
){
2996 if( p
==0 ) return 0;
2997 sqlite3BtreeEnter(p
);
2998 assert( BTS_OVERWRITE
==BTS_SECURE_DELETE
*2 );
2999 assert( BTS_FAST_SECURE
==(BTS_OVERWRITE
|BTS_SECURE_DELETE
) );
3001 p
->pBt
->btsFlags
&= ~BTS_FAST_SECURE
;
3002 p
->pBt
->btsFlags
|= BTS_SECURE_DELETE
*newFlag
;
3004 b
= (p
->pBt
->btsFlags
& BTS_FAST_SECURE
)/BTS_SECURE_DELETE
;
3005 sqlite3BtreeLeave(p
);
3010 ** Change the 'auto-vacuum' property of the database. If the 'autoVacuum'
3011 ** parameter is non-zero, then auto-vacuum mode is enabled. If zero, it
3012 ** is disabled. The default value for the auto-vacuum property is
3013 ** determined by the SQLITE_DEFAULT_AUTOVACUUM macro.
3015 int sqlite3BtreeSetAutoVacuum(Btree
*p
, int autoVacuum
){
3016 #ifdef SQLITE_OMIT_AUTOVACUUM
3017 return SQLITE_READONLY
;
3019 BtShared
*pBt
= p
->pBt
;
3021 u8 av
= (u8
)autoVacuum
;
3023 sqlite3BtreeEnter(p
);
3024 if( (pBt
->btsFlags
& BTS_PAGESIZE_FIXED
)!=0 && (av
?1:0)!=pBt
->autoVacuum
){
3025 rc
= SQLITE_READONLY
;
3027 pBt
->autoVacuum
= av
?1:0;
3028 pBt
->incrVacuum
= av
==2 ?1:0;
3030 sqlite3BtreeLeave(p
);
3036 ** Return the value of the 'auto-vacuum' property. If auto-vacuum is
3037 ** enabled 1 is returned. Otherwise 0.
3039 int sqlite3BtreeGetAutoVacuum(Btree
*p
){
3040 #ifdef SQLITE_OMIT_AUTOVACUUM
3041 return BTREE_AUTOVACUUM_NONE
;
3044 sqlite3BtreeEnter(p
);
3046 (!p
->pBt
->autoVacuum
)?BTREE_AUTOVACUUM_NONE
:
3047 (!p
->pBt
->incrVacuum
)?BTREE_AUTOVACUUM_FULL
:
3048 BTREE_AUTOVACUUM_INCR
3050 sqlite3BtreeLeave(p
);
3056 ** If the user has not set the safety-level for this database connection
3057 ** using "PRAGMA synchronous", and if the safety-level is not already
3058 ** set to the value passed to this function as the second parameter,
3061 #if SQLITE_DEFAULT_SYNCHRONOUS!=SQLITE_DEFAULT_WAL_SYNCHRONOUS \
3062 && !defined(SQLITE_OMIT_WAL)
3063 static void setDefaultSyncFlag(BtShared
*pBt
, u8 safety_level
){
3066 if( (db
=pBt
->db
)!=0 && (pDb
=db
->aDb
)!=0 ){
3067 while( pDb
->pBt
==0 || pDb
->pBt
->pBt
!=pBt
){ pDb
++; }
3068 if( pDb
->bSyncSet
==0
3069 && pDb
->safety_level
!=safety_level
3072 pDb
->safety_level
= safety_level
;
3073 sqlite3PagerSetFlags(pBt
->pPager
,
3074 pDb
->safety_level
| (db
->flags
& PAGER_FLAGS_MASK
));
3079 # define setDefaultSyncFlag(pBt,safety_level)
3082 /* Forward declaration */
3083 static int newDatabase(BtShared
*);
3087 ** Get a reference to pPage1 of the database file. This will
3088 ** also acquire a readlock on that file.
3090 ** SQLITE_OK is returned on success. If the file is not a
3091 ** well-formed database file, then SQLITE_CORRUPT is returned.
3092 ** SQLITE_BUSY is returned if the database is locked. SQLITE_NOMEM
3093 ** is returned if we run out of memory.
3095 static int lockBtree(BtShared
*pBt
){
3096 int rc
; /* Result code from subfunctions */
3097 MemPage
*pPage1
; /* Page 1 of the database file */
3098 u32 nPage
; /* Number of pages in the database */
3099 u32 nPageFile
= 0; /* Number of pages in the database file */
3100 u32 nPageHeader
; /* Number of pages in the database according to hdr */
3102 assert( sqlite3_mutex_held(pBt
->mutex
) );
3103 assert( pBt
->pPage1
==0 );
3104 rc
= sqlite3PagerSharedLock(pBt
->pPager
);
3105 if( rc
!=SQLITE_OK
) return rc
;
3106 rc
= btreeGetPage(pBt
, 1, &pPage1
, 0);
3107 if( rc
!=SQLITE_OK
) return rc
;
3109 /* Do some checking to help insure the file we opened really is
3110 ** a valid database file.
3112 nPage
= nPageHeader
= get4byte(28+(u8
*)pPage1
->aData
);
3113 sqlite3PagerPagecount(pBt
->pPager
, (int*)&nPageFile
);
3114 if( nPage
==0 || memcmp(24+(u8
*)pPage1
->aData
, 92+(u8
*)pPage1
->aData
,4)!=0 ){
3117 if( (pBt
->db
->flags
& SQLITE_ResetDatabase
)!=0 ){
3123 u8
*page1
= pPage1
->aData
;
3125 /* EVIDENCE-OF: R-43737-39999 Every valid SQLite database file begins
3126 ** with the following 16 bytes (in hex): 53 51 4c 69 74 65 20 66 6f 72 6d
3127 ** 61 74 20 33 00. */
3128 if( memcmp(page1
, zMagicHeader
, 16)!=0 ){
3129 goto page1_init_failed
;
3132 #ifdef SQLITE_OMIT_WAL
3134 pBt
->btsFlags
|= BTS_READ_ONLY
;
3137 goto page1_init_failed
;
3141 pBt
->btsFlags
|= BTS_READ_ONLY
;
3144 goto page1_init_failed
;
3147 /* If the write version is set to 2, this database should be accessed
3148 ** in WAL mode. If the log is not already open, open it now. Then
3149 ** return SQLITE_OK and return without populating BtShared.pPage1.
3150 ** The caller detects this and calls this function again. This is
3151 ** required as the version of page 1 currently in the page1 buffer
3152 ** may not be the latest version - there may be a newer one in the log
3155 if( page1
[19]==2 && (pBt
->btsFlags
& BTS_NO_WAL
)==0 ){
3157 rc
= sqlite3PagerOpenWal(pBt
->pPager
, &isOpen
);
3158 if( rc
!=SQLITE_OK
){
3159 goto page1_init_failed
;
3161 setDefaultSyncFlag(pBt
, SQLITE_DEFAULT_WAL_SYNCHRONOUS
+1);
3163 releasePageOne(pPage1
);
3169 setDefaultSyncFlag(pBt
, SQLITE_DEFAULT_SYNCHRONOUS
+1);
3173 /* EVIDENCE-OF: R-15465-20813 The maximum and minimum embedded payload
3174 ** fractions and the leaf payload fraction values must be 64, 32, and 32.
3176 ** The original design allowed these amounts to vary, but as of
3177 ** version 3.6.0, we require them to be fixed.
3179 if( memcmp(&page1
[21], "\100\040\040",3)!=0 ){
3180 goto page1_init_failed
;
3182 /* EVIDENCE-OF: R-51873-39618 The page size for a database file is
3183 ** determined by the 2-byte integer located at an offset of 16 bytes from
3184 ** the beginning of the database file. */
3185 pageSize
= (page1
[16]<<8) | (page1
[17]<<16);
3186 /* EVIDENCE-OF: R-25008-21688 The size of a page is a power of two
3187 ** between 512 and 65536 inclusive. */
3188 if( ((pageSize
-1)&pageSize
)!=0
3189 || pageSize
>SQLITE_MAX_PAGE_SIZE
3192 goto page1_init_failed
;
3194 pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
3195 assert( (pageSize
& 7)==0 );
3196 /* EVIDENCE-OF: R-59310-51205 The "reserved space" size in the 1-byte
3197 ** integer at offset 20 is the number of bytes of space at the end of
3198 ** each page to reserve for extensions.
3200 ** EVIDENCE-OF: R-37497-42412 The size of the reserved region is
3201 ** determined by the one-byte unsigned integer found at an offset of 20
3202 ** into the database file header. */
3203 usableSize
= pageSize
- page1
[20];
3204 if( (u32
)pageSize
!=pBt
->pageSize
){
3205 /* After reading the first page of the database assuming a page size
3206 ** of BtShared.pageSize, we have discovered that the page-size is
3207 ** actually pageSize. Unlock the database, leave pBt->pPage1 at
3208 ** zero and return SQLITE_OK. The caller will call this function
3209 ** again with the correct page-size.
3211 releasePageOne(pPage1
);
3212 pBt
->usableSize
= usableSize
;
3213 pBt
->pageSize
= pageSize
;
3215 rc
= sqlite3PagerSetPagesize(pBt
->pPager
, &pBt
->pageSize
,
3216 pageSize
-usableSize
);
3219 if( sqlite3WritableSchema(pBt
->db
)==0 && nPage
>nPageFile
){
3220 rc
= SQLITE_CORRUPT_BKPT
;
3221 goto page1_init_failed
;
3223 /* EVIDENCE-OF: R-28312-64704 However, the usable size is not allowed to
3224 ** be less than 480. In other words, if the page size is 512, then the
3225 ** reserved space size cannot exceed 32. */
3226 if( usableSize
<480 ){
3227 goto page1_init_failed
;
3229 pBt
->pageSize
= pageSize
;
3230 pBt
->usableSize
= usableSize
;
3231 #ifndef SQLITE_OMIT_AUTOVACUUM
3232 pBt
->autoVacuum
= (get4byte(&page1
[36 + 4*4])?1:0);
3233 pBt
->incrVacuum
= (get4byte(&page1
[36 + 7*4])?1:0);
3237 /* maxLocal is the maximum amount of payload to store locally for
3238 ** a cell. Make sure it is small enough so that at least minFanout
3239 ** cells can will fit on one page. We assume a 10-byte page header.
3240 ** Besides the payload, the cell must store:
3241 ** 2-byte pointer to the cell
3242 ** 4-byte child pointer
3243 ** 9-byte nKey value
3244 ** 4-byte nData value
3245 ** 4-byte overflow page pointer
3246 ** So a cell consists of a 2-byte pointer, a header which is as much as
3247 ** 17 bytes long, 0 to N bytes of payload, and an optional 4 byte overflow
3250 pBt
->maxLocal
= (u16
)((pBt
->usableSize
-12)*64/255 - 23);
3251 pBt
->minLocal
= (u16
)((pBt
->usableSize
-12)*32/255 - 23);
3252 pBt
->maxLeaf
= (u16
)(pBt
->usableSize
- 35);
3253 pBt
->minLeaf
= (u16
)((pBt
->usableSize
-12)*32/255 - 23);
3254 if( pBt
->maxLocal
>127 ){
3255 pBt
->max1bytePayload
= 127;
3257 pBt
->max1bytePayload
= (u8
)pBt
->maxLocal
;
3259 assert( pBt
->maxLeaf
+ 23 <= MX_CELL_SIZE(pBt
) );
3260 pBt
->pPage1
= pPage1
;
3265 releasePageOne(pPage1
);
3272 ** Return the number of cursors open on pBt. This is for use
3273 ** in assert() expressions, so it is only compiled if NDEBUG is not
3276 ** Only write cursors are counted if wrOnly is true. If wrOnly is
3277 ** false then all cursors are counted.
3279 ** For the purposes of this routine, a cursor is any cursor that
3280 ** is capable of reading or writing to the database. Cursors that
3281 ** have been tripped into the CURSOR_FAULT state are not counted.
3283 static int countValidCursors(BtShared
*pBt
, int wrOnly
){
3286 for(pCur
=pBt
->pCursor
; pCur
; pCur
=pCur
->pNext
){
3287 if( (wrOnly
==0 || (pCur
->curFlags
& BTCF_WriteFlag
)!=0)
3288 && pCur
->eState
!=CURSOR_FAULT
) r
++;
3295 ** If there are no outstanding cursors and we are not in the middle
3296 ** of a transaction but there is a read lock on the database, then
3297 ** this routine unrefs the first page of the database file which
3298 ** has the effect of releasing the read lock.
3300 ** If there is a transaction in progress, this routine is a no-op.
3302 static void unlockBtreeIfUnused(BtShared
*pBt
){
3303 assert( sqlite3_mutex_held(pBt
->mutex
) );
3304 assert( countValidCursors(pBt
,0)==0 || pBt
->inTransaction
>TRANS_NONE
);
3305 if( pBt
->inTransaction
==TRANS_NONE
&& pBt
->pPage1
!=0 ){
3306 MemPage
*pPage1
= pBt
->pPage1
;
3307 assert( pPage1
->aData
);
3308 assert( sqlite3PagerRefcount(pBt
->pPager
)==1 );
3310 releasePageOne(pPage1
);
3315 ** If pBt points to an empty file then convert that empty file
3316 ** into a new empty database by initializing the first page of
3319 static int newDatabase(BtShared
*pBt
){
3321 unsigned char *data
;
3324 assert( sqlite3_mutex_held(pBt
->mutex
) );
3331 rc
= sqlite3PagerWrite(pP1
->pDbPage
);
3333 memcpy(data
, zMagicHeader
, sizeof(zMagicHeader
));
3334 assert( sizeof(zMagicHeader
)==16 );
3335 data
[16] = (u8
)((pBt
->pageSize
>>8)&0xff);
3336 data
[17] = (u8
)((pBt
->pageSize
>>16)&0xff);
3339 assert( pBt
->usableSize
<=pBt
->pageSize
&& pBt
->usableSize
+255>=pBt
->pageSize
);
3340 data
[20] = (u8
)(pBt
->pageSize
- pBt
->usableSize
);
3344 memset(&data
[24], 0, 100-24);
3345 zeroPage(pP1
, PTF_INTKEY
|PTF_LEAF
|PTF_LEAFDATA
);
3346 pBt
->btsFlags
|= BTS_PAGESIZE_FIXED
;
3347 #ifndef SQLITE_OMIT_AUTOVACUUM
3348 assert( pBt
->autoVacuum
==1 || pBt
->autoVacuum
==0 );
3349 assert( pBt
->incrVacuum
==1 || pBt
->incrVacuum
==0 );
3350 put4byte(&data
[36 + 4*4], pBt
->autoVacuum
);
3351 put4byte(&data
[36 + 7*4], pBt
->incrVacuum
);
3359 ** Initialize the first page of the database file (creating a database
3360 ** consisting of a single page and no schema objects). Return SQLITE_OK
3361 ** if successful, or an SQLite error code otherwise.
3363 int sqlite3BtreeNewDb(Btree
*p
){
3365 sqlite3BtreeEnter(p
);
3367 rc
= newDatabase(p
->pBt
);
3368 sqlite3BtreeLeave(p
);
3373 ** Attempt to start a new transaction. A write-transaction
3374 ** is started if the second argument is nonzero, otherwise a read-
3375 ** transaction. If the second argument is 2 or more and exclusive
3376 ** transaction is started, meaning that no other process is allowed
3377 ** to access the database. A preexisting transaction may not be
3378 ** upgraded to exclusive by calling this routine a second time - the
3379 ** exclusivity flag only works for a new transaction.
3381 ** A write-transaction must be started before attempting any
3382 ** changes to the database. None of the following routines
3383 ** will work unless a transaction is started first:
3385 ** sqlite3BtreeCreateTable()
3386 ** sqlite3BtreeCreateIndex()
3387 ** sqlite3BtreeClearTable()
3388 ** sqlite3BtreeDropTable()
3389 ** sqlite3BtreeInsert()
3390 ** sqlite3BtreeDelete()
3391 ** sqlite3BtreeUpdateMeta()
3393 ** If an initial attempt to acquire the lock fails because of lock contention
3394 ** and the database was previously unlocked, then invoke the busy handler
3395 ** if there is one. But if there was previously a read-lock, do not
3396 ** invoke the busy handler - just return SQLITE_BUSY. SQLITE_BUSY is
3397 ** returned when there is already a read-lock in order to avoid a deadlock.
3399 ** Suppose there are two processes A and B. A has a read lock and B has
3400 ** a reserved lock. B tries to promote to exclusive but is blocked because
3401 ** of A's read lock. A tries to promote to reserved but is blocked by B.
3402 ** One or the other of the two processes must give way or there can be
3403 ** no progress. By returning SQLITE_BUSY and not invoking the busy callback
3404 ** when A already has a read lock, we encourage A to give up and let B
3407 int sqlite3BtreeBeginTrans(Btree
*p
, int wrflag
, int *pSchemaVersion
){
3408 BtShared
*pBt
= p
->pBt
;
3409 Pager
*pPager
= pBt
->pPager
;
3412 sqlite3BtreeEnter(p
);
3415 /* If the btree is already in a write-transaction, or it
3416 ** is already in a read-transaction and a read-transaction
3417 ** is requested, this is a no-op.
3419 if( p
->inTrans
==TRANS_WRITE
|| (p
->inTrans
==TRANS_READ
&& !wrflag
) ){
3422 assert( pBt
->inTransaction
==TRANS_WRITE
|| IfNotOmitAV(pBt
->bDoTruncate
)==0 );
3424 if( (p
->db
->flags
& SQLITE_ResetDatabase
)
3425 && sqlite3PagerIsreadonly(pPager
)==0
3427 pBt
->btsFlags
&= ~BTS_READ_ONLY
;
3430 /* Write transactions are not possible on a read-only database */
3431 if( (pBt
->btsFlags
& BTS_READ_ONLY
)!=0 && wrflag
){
3432 rc
= SQLITE_READONLY
;
3436 #ifndef SQLITE_OMIT_SHARED_CACHE
3438 sqlite3
*pBlock
= 0;
3439 /* If another database handle has already opened a write transaction
3440 ** on this shared-btree structure and a second write transaction is
3441 ** requested, return SQLITE_LOCKED.
3443 if( (wrflag
&& pBt
->inTransaction
==TRANS_WRITE
)
3444 || (pBt
->btsFlags
& BTS_PENDING
)!=0
3446 pBlock
= pBt
->pWriter
->db
;
3447 }else if( wrflag
>1 ){
3449 for(pIter
=pBt
->pLock
; pIter
; pIter
=pIter
->pNext
){
3450 if( pIter
->pBtree
!=p
){
3451 pBlock
= pIter
->pBtree
->db
;
3457 sqlite3ConnectionBlocked(p
->db
, pBlock
);
3458 rc
= SQLITE_LOCKED_SHAREDCACHE
;
3464 /* Any read-only or read-write transaction implies a read-lock on
3465 ** page 1. So if some other shared-cache client already has a write-lock
3466 ** on page 1, the transaction cannot be opened. */
3467 rc
= querySharedCacheTableLock(p
, SCHEMA_ROOT
, READ_LOCK
);
3468 if( SQLITE_OK
!=rc
) goto trans_begun
;
3470 pBt
->btsFlags
&= ~BTS_INITIALLY_EMPTY
;
3471 if( pBt
->nPage
==0 ) pBt
->btsFlags
|= BTS_INITIALLY_EMPTY
;
3473 sqlite3PagerWalDb(pPager
, p
->db
);
3475 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3476 /* If transitioning from no transaction directly to a write transaction,
3477 ** block for the WRITER lock first if possible. */
3478 if( pBt
->pPage1
==0 && wrflag
){
3479 assert( pBt
->inTransaction
==TRANS_NONE
);
3480 rc
= sqlite3PagerWalWriteLock(pPager
, 1);
3481 if( rc
!=SQLITE_BUSY
&& rc
!=SQLITE_OK
) break;
3485 /* Call lockBtree() until either pBt->pPage1 is populated or
3486 ** lockBtree() returns something other than SQLITE_OK. lockBtree()
3487 ** may return SQLITE_OK but leave pBt->pPage1 set to 0 if after
3488 ** reading page 1 it discovers that the page-size of the database
3489 ** file is not pBt->pageSize. In this case lockBtree() will update
3490 ** pBt->pageSize to the page-size of the file on disk.
3492 while( pBt
->pPage1
==0 && SQLITE_OK
==(rc
= lockBtree(pBt
)) );
3494 if( rc
==SQLITE_OK
&& wrflag
){
3495 if( (pBt
->btsFlags
& BTS_READ_ONLY
)!=0 ){
3496 rc
= SQLITE_READONLY
;
3498 rc
= sqlite3PagerBegin(pPager
, wrflag
>1, sqlite3TempInMemory(p
->db
));
3499 if( rc
==SQLITE_OK
){
3500 rc
= newDatabase(pBt
);
3501 }else if( rc
==SQLITE_BUSY_SNAPSHOT
&& pBt
->inTransaction
==TRANS_NONE
){
3502 /* if there was no transaction opened when this function was
3503 ** called and SQLITE_BUSY_SNAPSHOT is returned, change the error
3504 ** code to SQLITE_BUSY. */
3510 if( rc
!=SQLITE_OK
){
3511 (void)sqlite3PagerWalWriteLock(pPager
, 0);
3512 unlockBtreeIfUnused(pBt
);
3514 }while( (rc
&0xFF)==SQLITE_BUSY
&& pBt
->inTransaction
==TRANS_NONE
&&
3515 btreeInvokeBusyHandler(pBt
) );
3516 sqlite3PagerWalDb(pPager
, 0);
3517 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3518 if( rc
==SQLITE_BUSY_TIMEOUT
) rc
= SQLITE_BUSY
;
3521 if( rc
==SQLITE_OK
){
3522 if( p
->inTrans
==TRANS_NONE
){
3523 pBt
->nTransaction
++;
3524 #ifndef SQLITE_OMIT_SHARED_CACHE
3526 assert( p
->lock
.pBtree
==p
&& p
->lock
.iTable
==1 );
3527 p
->lock
.eLock
= READ_LOCK
;
3528 p
->lock
.pNext
= pBt
->pLock
;
3529 pBt
->pLock
= &p
->lock
;
3533 p
->inTrans
= (wrflag
?TRANS_WRITE
:TRANS_READ
);
3534 if( p
->inTrans
>pBt
->inTransaction
){
3535 pBt
->inTransaction
= p
->inTrans
;
3538 MemPage
*pPage1
= pBt
->pPage1
;
3539 #ifndef SQLITE_OMIT_SHARED_CACHE
3540 assert( !pBt
->pWriter
);
3542 pBt
->btsFlags
&= ~BTS_EXCLUSIVE
;
3543 if( wrflag
>1 ) pBt
->btsFlags
|= BTS_EXCLUSIVE
;
3546 /* If the db-size header field is incorrect (as it may be if an old
3547 ** client has been writing the database file), update it now. Doing
3548 ** this sooner rather than later means the database size can safely
3549 ** re-read the database size from page 1 if a savepoint or transaction
3550 ** rollback occurs within the transaction.
3552 if( pBt
->nPage
!=get4byte(&pPage1
->aData
[28]) ){
3553 rc
= sqlite3PagerWrite(pPage1
->pDbPage
);
3554 if( rc
==SQLITE_OK
){
3555 put4byte(&pPage1
->aData
[28], pBt
->nPage
);
3562 if( rc
==SQLITE_OK
){
3563 if( pSchemaVersion
){
3564 *pSchemaVersion
= get4byte(&pBt
->pPage1
->aData
[40]);
3567 /* This call makes sure that the pager has the correct number of
3568 ** open savepoints. If the second parameter is greater than 0 and
3569 ** the sub-journal is not already open, then it will be opened here.
3571 rc
= sqlite3PagerOpenSavepoint(pPager
, p
->db
->nSavepoint
);
3576 sqlite3BtreeLeave(p
);
3580 #ifndef SQLITE_OMIT_AUTOVACUUM
3583 ** Set the pointer-map entries for all children of page pPage. Also, if
3584 ** pPage contains cells that point to overflow pages, set the pointer
3585 ** map entries for the overflow pages as well.
3587 static int setChildPtrmaps(MemPage
*pPage
){
3588 int i
; /* Counter variable */
3589 int nCell
; /* Number of cells in page pPage */
3590 int rc
; /* Return code */
3591 BtShared
*pBt
= pPage
->pBt
;
3592 Pgno pgno
= pPage
->pgno
;
3594 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
3595 rc
= pPage
->isInit
? SQLITE_OK
: btreeInitPage(pPage
);
3596 if( rc
!=SQLITE_OK
) return rc
;
3597 nCell
= pPage
->nCell
;
3599 for(i
=0; i
<nCell
; i
++){
3600 u8
*pCell
= findCell(pPage
, i
);
3602 ptrmapPutOvflPtr(pPage
, pPage
, pCell
, &rc
);
3605 Pgno childPgno
= get4byte(pCell
);
3606 ptrmapPut(pBt
, childPgno
, PTRMAP_BTREE
, pgno
, &rc
);
3611 Pgno childPgno
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
3612 ptrmapPut(pBt
, childPgno
, PTRMAP_BTREE
, pgno
, &rc
);
3619 ** Somewhere on pPage is a pointer to page iFrom. Modify this pointer so
3620 ** that it points to iTo. Parameter eType describes the type of pointer to
3621 ** be modified, as follows:
3623 ** PTRMAP_BTREE: pPage is a btree-page. The pointer points at a child
3626 ** PTRMAP_OVERFLOW1: pPage is a btree-page. The pointer points at an overflow
3627 ** page pointed to by one of the cells on pPage.
3629 ** PTRMAP_OVERFLOW2: pPage is an overflow-page. The pointer points at the next
3630 ** overflow page in the list.
3632 static int modifyPagePointer(MemPage
*pPage
, Pgno iFrom
, Pgno iTo
, u8 eType
){
3633 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
3634 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
3635 if( eType
==PTRMAP_OVERFLOW2
){
3636 /* The pointer is always the first 4 bytes of the page in this case. */
3637 if( get4byte(pPage
->aData
)!=iFrom
){
3638 return SQLITE_CORRUPT_PAGE(pPage
);
3640 put4byte(pPage
->aData
, iTo
);
3646 rc
= pPage
->isInit
? SQLITE_OK
: btreeInitPage(pPage
);
3648 nCell
= pPage
->nCell
;
3650 for(i
=0; i
<nCell
; i
++){
3651 u8
*pCell
= findCell(pPage
, i
);
3652 if( eType
==PTRMAP_OVERFLOW1
){
3654 pPage
->xParseCell(pPage
, pCell
, &info
);
3655 if( info
.nLocal
<info
.nPayload
){
3656 if( pCell
+info
.nSize
> pPage
->aData
+pPage
->pBt
->usableSize
){
3657 return SQLITE_CORRUPT_PAGE(pPage
);
3659 if( iFrom
==get4byte(pCell
+info
.nSize
-4) ){
3660 put4byte(pCell
+info
.nSize
-4, iTo
);
3665 if( get4byte(pCell
)==iFrom
){
3666 put4byte(pCell
, iTo
);
3673 if( eType
!=PTRMAP_BTREE
||
3674 get4byte(&pPage
->aData
[pPage
->hdrOffset
+8])!=iFrom
){
3675 return SQLITE_CORRUPT_PAGE(pPage
);
3677 put4byte(&pPage
->aData
[pPage
->hdrOffset
+8], iTo
);
3685 ** Move the open database page pDbPage to location iFreePage in the
3686 ** database. The pDbPage reference remains valid.
3688 ** The isCommit flag indicates that there is no need to remember that
3689 ** the journal needs to be sync()ed before database page pDbPage->pgno
3690 ** can be written to. The caller has already promised not to write to that
3693 static int relocatePage(
3694 BtShared
*pBt
, /* Btree */
3695 MemPage
*pDbPage
, /* Open page to move */
3696 u8 eType
, /* Pointer map 'type' entry for pDbPage */
3697 Pgno iPtrPage
, /* Pointer map 'page-no' entry for pDbPage */
3698 Pgno iFreePage
, /* The location to move pDbPage to */
3699 int isCommit
/* isCommit flag passed to sqlite3PagerMovepage */
3701 MemPage
*pPtrPage
; /* The page that contains a pointer to pDbPage */
3702 Pgno iDbPage
= pDbPage
->pgno
;
3703 Pager
*pPager
= pBt
->pPager
;
3706 assert( eType
==PTRMAP_OVERFLOW2
|| eType
==PTRMAP_OVERFLOW1
||
3707 eType
==PTRMAP_BTREE
|| eType
==PTRMAP_ROOTPAGE
);
3708 assert( sqlite3_mutex_held(pBt
->mutex
) );
3709 assert( pDbPage
->pBt
==pBt
);
3710 if( iDbPage
<3 ) return SQLITE_CORRUPT_BKPT
;
3712 /* Move page iDbPage from its current location to page number iFreePage */
3713 TRACE(("AUTOVACUUM: Moving %d to free page %d (ptr page %d type %d)\n",
3714 iDbPage
, iFreePage
, iPtrPage
, eType
));
3715 rc
= sqlite3PagerMovepage(pPager
, pDbPage
->pDbPage
, iFreePage
, isCommit
);
3716 if( rc
!=SQLITE_OK
){
3719 pDbPage
->pgno
= iFreePage
;
3721 /* If pDbPage was a btree-page, then it may have child pages and/or cells
3722 ** that point to overflow pages. The pointer map entries for all these
3723 ** pages need to be changed.
3725 ** If pDbPage is an overflow page, then the first 4 bytes may store a
3726 ** pointer to a subsequent overflow page. If this is the case, then
3727 ** the pointer map needs to be updated for the subsequent overflow page.
3729 if( eType
==PTRMAP_BTREE
|| eType
==PTRMAP_ROOTPAGE
){
3730 rc
= setChildPtrmaps(pDbPage
);
3731 if( rc
!=SQLITE_OK
){
3735 Pgno nextOvfl
= get4byte(pDbPage
->aData
);
3737 ptrmapPut(pBt
, nextOvfl
, PTRMAP_OVERFLOW2
, iFreePage
, &rc
);
3738 if( rc
!=SQLITE_OK
){
3744 /* Fix the database pointer on page iPtrPage that pointed at iDbPage so
3745 ** that it points at iFreePage. Also fix the pointer map entry for
3748 if( eType
!=PTRMAP_ROOTPAGE
){
3749 rc
= btreeGetPage(pBt
, iPtrPage
, &pPtrPage
, 0);
3750 if( rc
!=SQLITE_OK
){
3753 rc
= sqlite3PagerWrite(pPtrPage
->pDbPage
);
3754 if( rc
!=SQLITE_OK
){
3755 releasePage(pPtrPage
);
3758 rc
= modifyPagePointer(pPtrPage
, iDbPage
, iFreePage
, eType
);
3759 releasePage(pPtrPage
);
3760 if( rc
==SQLITE_OK
){
3761 ptrmapPut(pBt
, iFreePage
, eType
, iPtrPage
, &rc
);
3767 /* Forward declaration required by incrVacuumStep(). */
3768 static int allocateBtreePage(BtShared
*, MemPage
**, Pgno
*, Pgno
, u8
);
3771 ** Perform a single step of an incremental-vacuum. If successful, return
3772 ** SQLITE_OK. If there is no work to do (and therefore no point in
3773 ** calling this function again), return SQLITE_DONE. Or, if an error
3774 ** occurs, return some other error code.
3776 ** More specifically, this function attempts to re-organize the database so
3777 ** that the last page of the file currently in use is no longer in use.
3779 ** Parameter nFin is the number of pages that this database would contain
3780 ** were this function called until it returns SQLITE_DONE.
3782 ** If the bCommit parameter is non-zero, this function assumes that the
3783 ** caller will keep calling incrVacuumStep() until it returns SQLITE_DONE
3784 ** or an error. bCommit is passed true for an auto-vacuum-on-commit
3785 ** operation, or false for an incremental vacuum.
3787 static int incrVacuumStep(BtShared
*pBt
, Pgno nFin
, Pgno iLastPg
, int bCommit
){
3788 Pgno nFreeList
; /* Number of pages still on the free-list */
3791 assert( sqlite3_mutex_held(pBt
->mutex
) );
3792 assert( iLastPg
>nFin
);
3794 if( !PTRMAP_ISPAGE(pBt
, iLastPg
) && iLastPg
!=PENDING_BYTE_PAGE(pBt
) ){
3798 nFreeList
= get4byte(&pBt
->pPage1
->aData
[36]);
3803 rc
= ptrmapGet(pBt
, iLastPg
, &eType
, &iPtrPage
);
3804 if( rc
!=SQLITE_OK
){
3807 if( eType
==PTRMAP_ROOTPAGE
){
3808 return SQLITE_CORRUPT_BKPT
;
3811 if( eType
==PTRMAP_FREEPAGE
){
3813 /* Remove the page from the files free-list. This is not required
3814 ** if bCommit is non-zero. In that case, the free-list will be
3815 ** truncated to zero after this function returns, so it doesn't
3816 ** matter if it still contains some garbage entries.
3820 rc
= allocateBtreePage(pBt
, &pFreePg
, &iFreePg
, iLastPg
, BTALLOC_EXACT
);
3821 if( rc
!=SQLITE_OK
){
3824 assert( iFreePg
==iLastPg
);
3825 releasePage(pFreePg
);
3828 Pgno iFreePg
; /* Index of free page to move pLastPg to */
3830 u8 eMode
= BTALLOC_ANY
; /* Mode parameter for allocateBtreePage() */
3831 Pgno iNear
= 0; /* nearby parameter for allocateBtreePage() */
3833 rc
= btreeGetPage(pBt
, iLastPg
, &pLastPg
, 0);
3834 if( rc
!=SQLITE_OK
){
3838 /* If bCommit is zero, this loop runs exactly once and page pLastPg
3839 ** is swapped with the first free page pulled off the free list.
3841 ** On the other hand, if bCommit is greater than zero, then keep
3842 ** looping until a free-page located within the first nFin pages
3843 ** of the file is found.
3851 rc
= allocateBtreePage(pBt
, &pFreePg
, &iFreePg
, iNear
, eMode
);
3852 if( rc
!=SQLITE_OK
){
3853 releasePage(pLastPg
);
3856 releasePage(pFreePg
);
3857 }while( bCommit
&& iFreePg
>nFin
);
3858 assert( iFreePg
<iLastPg
);
3860 rc
= relocatePage(pBt
, pLastPg
, eType
, iPtrPage
, iFreePg
, bCommit
);
3861 releasePage(pLastPg
);
3862 if( rc
!=SQLITE_OK
){
3871 }while( iLastPg
==PENDING_BYTE_PAGE(pBt
) || PTRMAP_ISPAGE(pBt
, iLastPg
) );
3872 pBt
->bDoTruncate
= 1;
3873 pBt
->nPage
= iLastPg
;
3879 ** The database opened by the first argument is an auto-vacuum database
3880 ** nOrig pages in size containing nFree free pages. Return the expected
3881 ** size of the database in pages following an auto-vacuum operation.
3883 static Pgno
finalDbSize(BtShared
*pBt
, Pgno nOrig
, Pgno nFree
){
3884 int nEntry
; /* Number of entries on one ptrmap page */
3885 Pgno nPtrmap
; /* Number of PtrMap pages to be freed */
3886 Pgno nFin
; /* Return value */
3888 nEntry
= pBt
->usableSize
/5;
3889 nPtrmap
= (nFree
-nOrig
+PTRMAP_PAGENO(pBt
, nOrig
)+nEntry
)/nEntry
;
3890 nFin
= nOrig
- nFree
- nPtrmap
;
3891 if( nOrig
>PENDING_BYTE_PAGE(pBt
) && nFin
<PENDING_BYTE_PAGE(pBt
) ){
3894 while( PTRMAP_ISPAGE(pBt
, nFin
) || nFin
==PENDING_BYTE_PAGE(pBt
) ){
3902 ** A write-transaction must be opened before calling this function.
3903 ** It performs a single unit of work towards an incremental vacuum.
3905 ** If the incremental vacuum is finished after this function has run,
3906 ** SQLITE_DONE is returned. If it is not finished, but no error occurred,
3907 ** SQLITE_OK is returned. Otherwise an SQLite error code.
3909 int sqlite3BtreeIncrVacuum(Btree
*p
){
3911 BtShared
*pBt
= p
->pBt
;
3913 sqlite3BtreeEnter(p
);
3914 assert( pBt
->inTransaction
==TRANS_WRITE
&& p
->inTrans
==TRANS_WRITE
);
3915 if( !pBt
->autoVacuum
){
3918 Pgno nOrig
= btreePagecount(pBt
);
3919 Pgno nFree
= get4byte(&pBt
->pPage1
->aData
[36]);
3920 Pgno nFin
= finalDbSize(pBt
, nOrig
, nFree
);
3922 if( nOrig
<nFin
|| nFree
>=nOrig
){
3923 rc
= SQLITE_CORRUPT_BKPT
;
3924 }else if( nFree
>0 ){
3925 rc
= saveAllCursors(pBt
, 0, 0);
3926 if( rc
==SQLITE_OK
){
3927 invalidateAllOverflowCache(pBt
);
3928 rc
= incrVacuumStep(pBt
, nFin
, nOrig
, 0);
3930 if( rc
==SQLITE_OK
){
3931 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
3932 put4byte(&pBt
->pPage1
->aData
[28], pBt
->nPage
);
3938 sqlite3BtreeLeave(p
);
3943 ** This routine is called prior to sqlite3PagerCommit when a transaction
3944 ** is committed for an auto-vacuum database.
3946 ** If SQLITE_OK is returned, then *pnTrunc is set to the number of pages
3947 ** the database file should be truncated to during the commit process.
3948 ** i.e. the database has been reorganized so that only the first *pnTrunc
3949 ** pages are in use.
3951 static int autoVacuumCommit(BtShared
*pBt
){
3953 Pager
*pPager
= pBt
->pPager
;
3954 VVA_ONLY( int nRef
= sqlite3PagerRefcount(pPager
); )
3956 assert( sqlite3_mutex_held(pBt
->mutex
) );
3957 invalidateAllOverflowCache(pBt
);
3958 assert(pBt
->autoVacuum
);
3959 if( !pBt
->incrVacuum
){
3960 Pgno nFin
; /* Number of pages in database after autovacuuming */
3961 Pgno nFree
; /* Number of pages on the freelist initially */
3962 Pgno iFree
; /* The next page to be freed */
3963 Pgno nOrig
; /* Database size before freeing */
3965 nOrig
= btreePagecount(pBt
);
3966 if( PTRMAP_ISPAGE(pBt
, nOrig
) || nOrig
==PENDING_BYTE_PAGE(pBt
) ){
3967 /* It is not possible to create a database for which the final page
3968 ** is either a pointer-map page or the pending-byte page. If one
3969 ** is encountered, this indicates corruption.
3971 return SQLITE_CORRUPT_BKPT
;
3974 nFree
= get4byte(&pBt
->pPage1
->aData
[36]);
3975 nFin
= finalDbSize(pBt
, nOrig
, nFree
);
3976 if( nFin
>nOrig
) return SQLITE_CORRUPT_BKPT
;
3978 rc
= saveAllCursors(pBt
, 0, 0);
3980 for(iFree
=nOrig
; iFree
>nFin
&& rc
==SQLITE_OK
; iFree
--){
3981 rc
= incrVacuumStep(pBt
, nFin
, iFree
, 1);
3983 if( (rc
==SQLITE_DONE
|| rc
==SQLITE_OK
) && nFree
>0 ){
3984 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
3985 put4byte(&pBt
->pPage1
->aData
[32], 0);
3986 put4byte(&pBt
->pPage1
->aData
[36], 0);
3987 put4byte(&pBt
->pPage1
->aData
[28], nFin
);
3988 pBt
->bDoTruncate
= 1;
3991 if( rc
!=SQLITE_OK
){
3992 sqlite3PagerRollback(pPager
);
3996 assert( nRef
>=sqlite3PagerRefcount(pPager
) );
4000 #else /* ifndef SQLITE_OMIT_AUTOVACUUM */
4001 # define setChildPtrmaps(x) SQLITE_OK
4005 ** This routine does the first phase of a two-phase commit. This routine
4006 ** causes a rollback journal to be created (if it does not already exist)
4007 ** and populated with enough information so that if a power loss occurs
4008 ** the database can be restored to its original state by playing back
4009 ** the journal. Then the contents of the journal are flushed out to
4010 ** the disk. After the journal is safely on oxide, the changes to the
4011 ** database are written into the database file and flushed to oxide.
4012 ** At the end of this call, the rollback journal still exists on the
4013 ** disk and we are still holding all locks, so the transaction has not
4014 ** committed. See sqlite3BtreeCommitPhaseTwo() for the second phase of the
4017 ** This call is a no-op if no write-transaction is currently active on pBt.
4019 ** Otherwise, sync the database file for the btree pBt. zSuperJrnl points to
4020 ** the name of a super-journal file that should be written into the
4021 ** individual journal file, or is NULL, indicating no super-journal file
4022 ** (single database transaction).
4024 ** When this is called, the super-journal should already have been
4025 ** created, populated with this journal pointer and synced to disk.
4027 ** Once this is routine has returned, the only thing required to commit
4028 ** the write-transaction for this database file is to delete the journal.
4030 int sqlite3BtreeCommitPhaseOne(Btree
*p
, const char *zSuperJrnl
){
4032 if( p
->inTrans
==TRANS_WRITE
){
4033 BtShared
*pBt
= p
->pBt
;
4034 sqlite3BtreeEnter(p
);
4035 #ifndef SQLITE_OMIT_AUTOVACUUM
4036 if( pBt
->autoVacuum
){
4037 rc
= autoVacuumCommit(pBt
);
4038 if( rc
!=SQLITE_OK
){
4039 sqlite3BtreeLeave(p
);
4043 if( pBt
->bDoTruncate
){
4044 sqlite3PagerTruncateImage(pBt
->pPager
, pBt
->nPage
);
4047 rc
= sqlite3PagerCommitPhaseOne(pBt
->pPager
, zSuperJrnl
, 0);
4048 sqlite3BtreeLeave(p
);
4054 ** This function is called from both BtreeCommitPhaseTwo() and BtreeRollback()
4055 ** at the conclusion of a transaction.
4057 static void btreeEndTransaction(Btree
*p
){
4058 BtShared
*pBt
= p
->pBt
;
4059 sqlite3
*db
= p
->db
;
4060 assert( sqlite3BtreeHoldsMutex(p
) );
4062 #ifndef SQLITE_OMIT_AUTOVACUUM
4063 pBt
->bDoTruncate
= 0;
4065 if( p
->inTrans
>TRANS_NONE
&& db
->nVdbeRead
>1 ){
4066 /* If there are other active statements that belong to this database
4067 ** handle, downgrade to a read-only transaction. The other statements
4068 ** may still be reading from the database. */
4069 downgradeAllSharedCacheTableLocks(p
);
4070 p
->inTrans
= TRANS_READ
;
4072 /* If the handle had any kind of transaction open, decrement the
4073 ** transaction count of the shared btree. If the transaction count
4074 ** reaches 0, set the shared state to TRANS_NONE. The unlockBtreeIfUnused()
4075 ** call below will unlock the pager. */
4076 if( p
->inTrans
!=TRANS_NONE
){
4077 clearAllSharedCacheTableLocks(p
);
4078 pBt
->nTransaction
--;
4079 if( 0==pBt
->nTransaction
){
4080 pBt
->inTransaction
= TRANS_NONE
;
4084 /* Set the current transaction state to TRANS_NONE and unlock the
4085 ** pager if this call closed the only read or write transaction. */
4086 p
->inTrans
= TRANS_NONE
;
4087 unlockBtreeIfUnused(pBt
);
4094 ** Commit the transaction currently in progress.
4096 ** This routine implements the second phase of a 2-phase commit. The
4097 ** sqlite3BtreeCommitPhaseOne() routine does the first phase and should
4098 ** be invoked prior to calling this routine. The sqlite3BtreeCommitPhaseOne()
4099 ** routine did all the work of writing information out to disk and flushing the
4100 ** contents so that they are written onto the disk platter. All this
4101 ** routine has to do is delete or truncate or zero the header in the
4102 ** the rollback journal (which causes the transaction to commit) and
4105 ** Normally, if an error occurs while the pager layer is attempting to
4106 ** finalize the underlying journal file, this function returns an error and
4107 ** the upper layer will attempt a rollback. However, if the second argument
4108 ** is non-zero then this b-tree transaction is part of a multi-file
4109 ** transaction. In this case, the transaction has already been committed
4110 ** (by deleting a super-journal file) and the caller will ignore this
4111 ** functions return code. So, even if an error occurs in the pager layer,
4112 ** reset the b-tree objects internal state to indicate that the write
4113 ** transaction has been closed. This is quite safe, as the pager will have
4114 ** transitioned to the error state.
4116 ** This will release the write lock on the database file. If there
4117 ** are no active cursors, it also releases the read lock.
4119 int sqlite3BtreeCommitPhaseTwo(Btree
*p
, int bCleanup
){
4121 if( p
->inTrans
==TRANS_NONE
) return SQLITE_OK
;
4122 sqlite3BtreeEnter(p
);
4125 /* If the handle has a write-transaction open, commit the shared-btrees
4126 ** transaction and set the shared state to TRANS_READ.
4128 if( p
->inTrans
==TRANS_WRITE
){
4130 BtShared
*pBt
= p
->pBt
;
4131 assert( pBt
->inTransaction
==TRANS_WRITE
);
4132 assert( pBt
->nTransaction
>0 );
4133 rc
= sqlite3PagerCommitPhaseTwo(pBt
->pPager
);
4134 if( rc
!=SQLITE_OK
&& bCleanup
==0 ){
4135 sqlite3BtreeLeave(p
);
4138 p
->iBDataVersion
--; /* Compensate for pPager->iDataVersion++; */
4139 pBt
->inTransaction
= TRANS_READ
;
4140 btreeClearHasContent(pBt
);
4143 btreeEndTransaction(p
);
4144 sqlite3BtreeLeave(p
);
4149 ** Do both phases of a commit.
4151 int sqlite3BtreeCommit(Btree
*p
){
4153 sqlite3BtreeEnter(p
);
4154 rc
= sqlite3BtreeCommitPhaseOne(p
, 0);
4155 if( rc
==SQLITE_OK
){
4156 rc
= sqlite3BtreeCommitPhaseTwo(p
, 0);
4158 sqlite3BtreeLeave(p
);
4163 ** This routine sets the state to CURSOR_FAULT and the error
4164 ** code to errCode for every cursor on any BtShared that pBtree
4165 ** references. Or if the writeOnly flag is set to 1, then only
4166 ** trip write cursors and leave read cursors unchanged.
4168 ** Every cursor is a candidate to be tripped, including cursors
4169 ** that belong to other database connections that happen to be
4170 ** sharing the cache with pBtree.
4172 ** This routine gets called when a rollback occurs. If the writeOnly
4173 ** flag is true, then only write-cursors need be tripped - read-only
4174 ** cursors save their current positions so that they may continue
4175 ** following the rollback. Or, if writeOnly is false, all cursors are
4176 ** tripped. In general, writeOnly is false if the transaction being
4177 ** rolled back modified the database schema. In this case b-tree root
4178 ** pages may be moved or deleted from the database altogether, making
4179 ** it unsafe for read cursors to continue.
4181 ** If the writeOnly flag is true and an error is encountered while
4182 ** saving the current position of a read-only cursor, all cursors,
4183 ** including all read-cursors are tripped.
4185 ** SQLITE_OK is returned if successful, or if an error occurs while
4186 ** saving a cursor position, an SQLite error code.
4188 int sqlite3BtreeTripAllCursors(Btree
*pBtree
, int errCode
, int writeOnly
){
4192 assert( (writeOnly
==0 || writeOnly
==1) && BTCF_WriteFlag
==1 );
4194 sqlite3BtreeEnter(pBtree
);
4195 for(p
=pBtree
->pBt
->pCursor
; p
; p
=p
->pNext
){
4196 if( writeOnly
&& (p
->curFlags
& BTCF_WriteFlag
)==0 ){
4197 if( p
->eState
==CURSOR_VALID
|| p
->eState
==CURSOR_SKIPNEXT
){
4198 rc
= saveCursorPosition(p
);
4199 if( rc
!=SQLITE_OK
){
4200 (void)sqlite3BtreeTripAllCursors(pBtree
, rc
, 0);
4205 sqlite3BtreeClearCursor(p
);
4206 p
->eState
= CURSOR_FAULT
;
4207 p
->skipNext
= errCode
;
4209 btreeReleaseAllCursorPages(p
);
4211 sqlite3BtreeLeave(pBtree
);
4217 ** Set the pBt->nPage field correctly, according to the current
4218 ** state of the database. Assume pBt->pPage1 is valid.
4220 static void btreeSetNPage(BtShared
*pBt
, MemPage
*pPage1
){
4221 int nPage
= get4byte(&pPage1
->aData
[28]);
4222 testcase( nPage
==0 );
4223 if( nPage
==0 ) sqlite3PagerPagecount(pBt
->pPager
, &nPage
);
4224 testcase( pBt
->nPage
!=nPage
);
4229 ** Rollback the transaction in progress.
4231 ** If tripCode is not SQLITE_OK then cursors will be invalidated (tripped).
4232 ** Only write cursors are tripped if writeOnly is true but all cursors are
4233 ** tripped if writeOnly is false. Any attempt to use
4234 ** a tripped cursor will result in an error.
4236 ** This will release the write lock on the database file. If there
4237 ** are no active cursors, it also releases the read lock.
4239 int sqlite3BtreeRollback(Btree
*p
, int tripCode
, int writeOnly
){
4241 BtShared
*pBt
= p
->pBt
;
4244 assert( writeOnly
==1 || writeOnly
==0 );
4245 assert( tripCode
==SQLITE_ABORT_ROLLBACK
|| tripCode
==SQLITE_OK
);
4246 sqlite3BtreeEnter(p
);
4247 if( tripCode
==SQLITE_OK
){
4248 rc
= tripCode
= saveAllCursors(pBt
, 0, 0);
4249 if( rc
) writeOnly
= 0;
4254 int rc2
= sqlite3BtreeTripAllCursors(p
, tripCode
, writeOnly
);
4255 assert( rc
==SQLITE_OK
|| (writeOnly
==0 && rc2
==SQLITE_OK
) );
4256 if( rc2
!=SQLITE_OK
) rc
= rc2
;
4260 if( p
->inTrans
==TRANS_WRITE
){
4263 assert( TRANS_WRITE
==pBt
->inTransaction
);
4264 rc2
= sqlite3PagerRollback(pBt
->pPager
);
4265 if( rc2
!=SQLITE_OK
){
4269 /* The rollback may have destroyed the pPage1->aData value. So
4270 ** call btreeGetPage() on page 1 again to make
4271 ** sure pPage1->aData is set correctly. */
4272 if( btreeGetPage(pBt
, 1, &pPage1
, 0)==SQLITE_OK
){
4273 btreeSetNPage(pBt
, pPage1
);
4274 releasePageOne(pPage1
);
4276 assert( countValidCursors(pBt
, 1)==0 );
4277 pBt
->inTransaction
= TRANS_READ
;
4278 btreeClearHasContent(pBt
);
4281 btreeEndTransaction(p
);
4282 sqlite3BtreeLeave(p
);
4287 ** Start a statement subtransaction. The subtransaction can be rolled
4288 ** back independently of the main transaction. You must start a transaction
4289 ** before starting a subtransaction. The subtransaction is ended automatically
4290 ** if the main transaction commits or rolls back.
4292 ** Statement subtransactions are used around individual SQL statements
4293 ** that are contained within a BEGIN...COMMIT block. If a constraint
4294 ** error occurs within the statement, the effect of that one statement
4295 ** can be rolled back without having to rollback the entire transaction.
4297 ** A statement sub-transaction is implemented as an anonymous savepoint. The
4298 ** value passed as the second parameter is the total number of savepoints,
4299 ** including the new anonymous savepoint, open on the B-Tree. i.e. if there
4300 ** are no active savepoints and no other statement-transactions open,
4301 ** iStatement is 1. This anonymous savepoint can be released or rolled back
4302 ** using the sqlite3BtreeSavepoint() function.
4304 int sqlite3BtreeBeginStmt(Btree
*p
, int iStatement
){
4306 BtShared
*pBt
= p
->pBt
;
4307 sqlite3BtreeEnter(p
);
4308 assert( p
->inTrans
==TRANS_WRITE
);
4309 assert( (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
4310 assert( iStatement
>0 );
4311 assert( iStatement
>p
->db
->nSavepoint
);
4312 assert( pBt
->inTransaction
==TRANS_WRITE
);
4313 /* At the pager level, a statement transaction is a savepoint with
4314 ** an index greater than all savepoints created explicitly using
4315 ** SQL statements. It is illegal to open, release or rollback any
4316 ** such savepoints while the statement transaction savepoint is active.
4318 rc
= sqlite3PagerOpenSavepoint(pBt
->pPager
, iStatement
);
4319 sqlite3BtreeLeave(p
);
4324 ** The second argument to this function, op, is always SAVEPOINT_ROLLBACK
4325 ** or SAVEPOINT_RELEASE. This function either releases or rolls back the
4326 ** savepoint identified by parameter iSavepoint, depending on the value
4329 ** Normally, iSavepoint is greater than or equal to zero. However, if op is
4330 ** SAVEPOINT_ROLLBACK, then iSavepoint may also be -1. In this case the
4331 ** contents of the entire transaction are rolled back. This is different
4332 ** from a normal transaction rollback, as no locks are released and the
4333 ** transaction remains open.
4335 int sqlite3BtreeSavepoint(Btree
*p
, int op
, int iSavepoint
){
4337 if( p
&& p
->inTrans
==TRANS_WRITE
){
4338 BtShared
*pBt
= p
->pBt
;
4339 assert( op
==SAVEPOINT_RELEASE
|| op
==SAVEPOINT_ROLLBACK
);
4340 assert( iSavepoint
>=0 || (iSavepoint
==-1 && op
==SAVEPOINT_ROLLBACK
) );
4341 sqlite3BtreeEnter(p
);
4342 if( op
==SAVEPOINT_ROLLBACK
){
4343 rc
= saveAllCursors(pBt
, 0, 0);
4345 if( rc
==SQLITE_OK
){
4346 rc
= sqlite3PagerSavepoint(pBt
->pPager
, op
, iSavepoint
);
4348 if( rc
==SQLITE_OK
){
4349 if( iSavepoint
<0 && (pBt
->btsFlags
& BTS_INITIALLY_EMPTY
)!=0 ){
4352 rc
= newDatabase(pBt
);
4353 btreeSetNPage(pBt
, pBt
->pPage1
);
4355 /* pBt->nPage might be zero if the database was corrupt when
4356 ** the transaction was started. Otherwise, it must be at least 1. */
4357 assert( CORRUPT_DB
|| pBt
->nPage
>0 );
4359 sqlite3BtreeLeave(p
);
4365 ** Create a new cursor for the BTree whose root is on the page
4366 ** iTable. If a read-only cursor is requested, it is assumed that
4367 ** the caller already has at least a read-only transaction open
4368 ** on the database already. If a write-cursor is requested, then
4369 ** the caller is assumed to have an open write transaction.
4371 ** If the BTREE_WRCSR bit of wrFlag is clear, then the cursor can only
4372 ** be used for reading. If the BTREE_WRCSR bit is set, then the cursor
4373 ** can be used for reading or for writing if other conditions for writing
4374 ** are also met. These are the conditions that must be met in order
4375 ** for writing to be allowed:
4377 ** 1: The cursor must have been opened with wrFlag containing BTREE_WRCSR
4379 ** 2: Other database connections that share the same pager cache
4380 ** but which are not in the READ_UNCOMMITTED state may not have
4381 ** cursors open with wrFlag==0 on the same table. Otherwise
4382 ** the changes made by this write cursor would be visible to
4383 ** the read cursors in the other database connection.
4385 ** 3: The database must be writable (not on read-only media)
4387 ** 4: There must be an active transaction.
4389 ** The BTREE_FORDELETE bit of wrFlag may optionally be set if BTREE_WRCSR
4390 ** is set. If FORDELETE is set, that is a hint to the implementation that
4391 ** this cursor will only be used to seek to and delete entries of an index
4392 ** as part of a larger DELETE statement. The FORDELETE hint is not used by
4393 ** this implementation. But in a hypothetical alternative storage engine
4394 ** in which index entries are automatically deleted when corresponding table
4395 ** rows are deleted, the FORDELETE flag is a hint that all SEEK and DELETE
4396 ** operations on this cursor can be no-ops and all READ operations can
4397 ** return a null row (2-bytes: 0x01 0x00).
4399 ** No checking is done to make sure that page iTable really is the
4400 ** root page of a b-tree. If it is not, then the cursor acquired
4401 ** will not work correctly.
4403 ** It is assumed that the sqlite3BtreeCursorZero() has been called
4404 ** on pCur to initialize the memory space prior to invoking this routine.
4406 static int btreeCursor(
4407 Btree
*p
, /* The btree */
4408 Pgno iTable
, /* Root page of table to open */
4409 int wrFlag
, /* 1 to write. 0 read-only */
4410 struct KeyInfo
*pKeyInfo
, /* First arg to comparison function */
4411 BtCursor
*pCur
/* Space for new cursor */
4413 BtShared
*pBt
= p
->pBt
; /* Shared b-tree handle */
4414 BtCursor
*pX
; /* Looping over other all cursors */
4416 assert( sqlite3BtreeHoldsMutex(p
) );
4418 || wrFlag
==BTREE_WRCSR
4419 || wrFlag
==(BTREE_WRCSR
|BTREE_FORDELETE
)
4422 /* The following assert statements verify that if this is a sharable
4423 ** b-tree database, the connection is holding the required table locks,
4424 ** and that no other connection has any open cursor that conflicts with
4425 ** this lock. The iTable<1 term disables the check for corrupt schemas. */
4426 assert( hasSharedCacheTableLock(p
, iTable
, pKeyInfo
!=0, (wrFlag
?2:1))
4428 assert( wrFlag
==0 || !hasReadConflicts(p
, iTable
) );
4430 /* Assert that the caller has opened the required transaction. */
4431 assert( p
->inTrans
>TRANS_NONE
);
4432 assert( wrFlag
==0 || p
->inTrans
==TRANS_WRITE
);
4433 assert( pBt
->pPage1
&& pBt
->pPage1
->aData
);
4434 assert( wrFlag
==0 || (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
4437 allocateTempSpace(pBt
);
4438 if( pBt
->pTmpSpace
==0 ) return SQLITE_NOMEM_BKPT
;
4442 return SQLITE_CORRUPT_BKPT
;
4443 }else if( btreePagecount(pBt
)==0 ){
4444 assert( wrFlag
==0 );
4449 /* Now that no other errors can occur, finish filling in the BtCursor
4450 ** variables and link the cursor into the BtShared list. */
4451 pCur
->pgnoRoot
= iTable
;
4453 pCur
->pKeyInfo
= pKeyInfo
;
4456 pCur
->curFlags
= wrFlag
? BTCF_WriteFlag
: 0;
4457 pCur
->curPagerFlags
= wrFlag
? 0 : PAGER_GET_READONLY
;
4458 /* If there are two or more cursors on the same btree, then all such
4459 ** cursors *must* have the BTCF_Multiple flag set. */
4460 for(pX
=pBt
->pCursor
; pX
; pX
=pX
->pNext
){
4461 if( pX
->pgnoRoot
==iTable
){
4462 pX
->curFlags
|= BTCF_Multiple
;
4463 pCur
->curFlags
|= BTCF_Multiple
;
4466 pCur
->pNext
= pBt
->pCursor
;
4467 pBt
->pCursor
= pCur
;
4468 pCur
->eState
= CURSOR_INVALID
;
4471 static int btreeCursorWithLock(
4472 Btree
*p
, /* The btree */
4473 Pgno iTable
, /* Root page of table to open */
4474 int wrFlag
, /* 1 to write. 0 read-only */
4475 struct KeyInfo
*pKeyInfo
, /* First arg to comparison function */
4476 BtCursor
*pCur
/* Space for new cursor */
4479 sqlite3BtreeEnter(p
);
4480 rc
= btreeCursor(p
, iTable
, wrFlag
, pKeyInfo
, pCur
);
4481 sqlite3BtreeLeave(p
);
4484 int sqlite3BtreeCursor(
4485 Btree
*p
, /* The btree */
4486 Pgno iTable
, /* Root page of table to open */
4487 int wrFlag
, /* 1 to write. 0 read-only */
4488 struct KeyInfo
*pKeyInfo
, /* First arg to xCompare() */
4489 BtCursor
*pCur
/* Write new cursor here */
4492 return btreeCursorWithLock(p
, iTable
, wrFlag
, pKeyInfo
, pCur
);
4494 return btreeCursor(p
, iTable
, wrFlag
, pKeyInfo
, pCur
);
4499 ** Return the size of a BtCursor object in bytes.
4501 ** This interfaces is needed so that users of cursors can preallocate
4502 ** sufficient storage to hold a cursor. The BtCursor object is opaque
4503 ** to users so they cannot do the sizeof() themselves - they must call
4506 int sqlite3BtreeCursorSize(void){
4507 return ROUND8(sizeof(BtCursor
));
4511 ** Initialize memory that will be converted into a BtCursor object.
4513 ** The simple approach here would be to memset() the entire object
4514 ** to zero. But it turns out that the apPage[] and aiIdx[] arrays
4515 ** do not need to be zeroed and they are large, so we can save a lot
4516 ** of run-time by skipping the initialization of those elements.
4518 void sqlite3BtreeCursorZero(BtCursor
*p
){
4519 memset(p
, 0, offsetof(BtCursor
, BTCURSOR_FIRST_UNINIT
));
4523 ** Close a cursor. The read lock on the database file is released
4524 ** when the last cursor is closed.
4526 int sqlite3BtreeCloseCursor(BtCursor
*pCur
){
4527 Btree
*pBtree
= pCur
->pBtree
;
4529 BtShared
*pBt
= pCur
->pBt
;
4530 sqlite3BtreeEnter(pBtree
);
4531 assert( pBt
->pCursor
!=0 );
4532 if( pBt
->pCursor
==pCur
){
4533 pBt
->pCursor
= pCur
->pNext
;
4535 BtCursor
*pPrev
= pBt
->pCursor
;
4537 if( pPrev
->pNext
==pCur
){
4538 pPrev
->pNext
= pCur
->pNext
;
4541 pPrev
= pPrev
->pNext
;
4542 }while( ALWAYS(pPrev
) );
4544 btreeReleaseAllCursorPages(pCur
);
4545 unlockBtreeIfUnused(pBt
);
4546 sqlite3_free(pCur
->aOverflow
);
4547 sqlite3_free(pCur
->pKey
);
4548 if( (pBt
->openFlags
& BTREE_SINGLE
) && pBt
->pCursor
==0 ){
4549 /* Since the BtShared is not sharable, there is no need to
4550 ** worry about the missing sqlite3BtreeLeave() call here. */
4551 assert( pBtree
->sharable
==0 );
4552 sqlite3BtreeClose(pBtree
);
4554 sqlite3BtreeLeave(pBtree
);
4562 ** Make sure the BtCursor* given in the argument has a valid
4563 ** BtCursor.info structure. If it is not already valid, call
4564 ** btreeParseCell() to fill it in.
4566 ** BtCursor.info is a cache of the information in the current cell.
4567 ** Using this cache reduces the number of calls to btreeParseCell().
4570 static int cellInfoEqual(CellInfo
*a
, CellInfo
*b
){
4571 if( a
->nKey
!=b
->nKey
) return 0;
4572 if( a
->pPayload
!=b
->pPayload
) return 0;
4573 if( a
->nPayload
!=b
->nPayload
) return 0;
4574 if( a
->nLocal
!=b
->nLocal
) return 0;
4575 if( a
->nSize
!=b
->nSize
) return 0;
4578 static void assertCellInfo(BtCursor
*pCur
){
4580 memset(&info
, 0, sizeof(info
));
4581 btreeParseCell(pCur
->pPage
, pCur
->ix
, &info
);
4582 assert( CORRUPT_DB
|| cellInfoEqual(&info
, &pCur
->info
) );
4585 #define assertCellInfo(x)
4587 static SQLITE_NOINLINE
void getCellInfo(BtCursor
*pCur
){
4588 if( pCur
->info
.nSize
==0 ){
4589 pCur
->curFlags
|= BTCF_ValidNKey
;
4590 btreeParseCell(pCur
->pPage
,pCur
->ix
,&pCur
->info
);
4592 assertCellInfo(pCur
);
4596 #ifndef NDEBUG /* The next routine used only within assert() statements */
4598 ** Return true if the given BtCursor is valid. A valid cursor is one
4599 ** that is currently pointing to a row in a (non-empty) table.
4600 ** This is a verification routine is used only within assert() statements.
4602 int sqlite3BtreeCursorIsValid(BtCursor
*pCur
){
4603 return pCur
&& pCur
->eState
==CURSOR_VALID
;
4606 int sqlite3BtreeCursorIsValidNN(BtCursor
*pCur
){
4608 return pCur
->eState
==CURSOR_VALID
;
4612 ** Return the value of the integer key or "rowid" for a table btree.
4613 ** This routine is only valid for a cursor that is pointing into a
4614 ** ordinary table btree. If the cursor points to an index btree or
4615 ** is invalid, the result of this routine is undefined.
4617 i64
sqlite3BtreeIntegerKey(BtCursor
*pCur
){
4618 assert( cursorHoldsMutex(pCur
) );
4619 assert( pCur
->eState
==CURSOR_VALID
);
4620 assert( pCur
->curIntKey
);
4622 return pCur
->info
.nKey
;
4626 ** Pin or unpin a cursor.
4628 void sqlite3BtreeCursorPin(BtCursor
*pCur
){
4629 assert( (pCur
->curFlags
& BTCF_Pinned
)==0 );
4630 pCur
->curFlags
|= BTCF_Pinned
;
4632 void sqlite3BtreeCursorUnpin(BtCursor
*pCur
){
4633 assert( (pCur
->curFlags
& BTCF_Pinned
)!=0 );
4634 pCur
->curFlags
&= ~BTCF_Pinned
;
4637 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
4639 ** Return the offset into the database file for the start of the
4640 ** payload to which the cursor is pointing.
4642 i64
sqlite3BtreeOffset(BtCursor
*pCur
){
4643 assert( cursorHoldsMutex(pCur
) );
4644 assert( pCur
->eState
==CURSOR_VALID
);
4646 return (i64
)pCur
->pBt
->pageSize
*((i64
)pCur
->pPage
->pgno
- 1) +
4647 (i64
)(pCur
->info
.pPayload
- pCur
->pPage
->aData
);
4649 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
4652 ** Return the number of bytes of payload for the entry that pCur is
4653 ** currently pointing to. For table btrees, this will be the amount
4654 ** of data. For index btrees, this will be the size of the key.
4656 ** The caller must guarantee that the cursor is pointing to a non-NULL
4657 ** valid entry. In other words, the calling procedure must guarantee
4658 ** that the cursor has Cursor.eState==CURSOR_VALID.
4660 u32
sqlite3BtreePayloadSize(BtCursor
*pCur
){
4661 assert( cursorHoldsMutex(pCur
) );
4662 assert( pCur
->eState
==CURSOR_VALID
);
4664 return pCur
->info
.nPayload
;
4668 ** Return an upper bound on the size of any record for the table
4669 ** that the cursor is pointing into.
4671 ** This is an optimization. Everything will still work if this
4672 ** routine always returns 2147483647 (which is the largest record
4673 ** that SQLite can handle) or more. But returning a smaller value might
4674 ** prevent large memory allocations when trying to interpret a
4675 ** corrupt datrabase.
4677 ** The current implementation merely returns the size of the underlying
4680 sqlite3_int64
sqlite3BtreeMaxRecordSize(BtCursor
*pCur
){
4681 assert( cursorHoldsMutex(pCur
) );
4682 assert( pCur
->eState
==CURSOR_VALID
);
4683 return pCur
->pBt
->pageSize
* (sqlite3_int64
)pCur
->pBt
->nPage
;
4687 ** Given the page number of an overflow page in the database (parameter
4688 ** ovfl), this function finds the page number of the next page in the
4689 ** linked list of overflow pages. If possible, it uses the auto-vacuum
4690 ** pointer-map data instead of reading the content of page ovfl to do so.
4692 ** If an error occurs an SQLite error code is returned. Otherwise:
4694 ** The page number of the next overflow page in the linked list is
4695 ** written to *pPgnoNext. If page ovfl is the last page in its linked
4696 ** list, *pPgnoNext is set to zero.
4698 ** If ppPage is not NULL, and a reference to the MemPage object corresponding
4699 ** to page number pOvfl was obtained, then *ppPage is set to point to that
4700 ** reference. It is the responsibility of the caller to call releasePage()
4701 ** on *ppPage to free the reference. In no reference was obtained (because
4702 ** the pointer-map was used to obtain the value for *pPgnoNext), then
4703 ** *ppPage is set to zero.
4705 static int getOverflowPage(
4706 BtShared
*pBt
, /* The database file */
4707 Pgno ovfl
, /* Current overflow page number */
4708 MemPage
**ppPage
, /* OUT: MemPage handle (may be NULL) */
4709 Pgno
*pPgnoNext
/* OUT: Next overflow page number */
4715 assert( sqlite3_mutex_held(pBt
->mutex
) );
4718 #ifndef SQLITE_OMIT_AUTOVACUUM
4719 /* Try to find the next page in the overflow list using the
4720 ** autovacuum pointer-map pages. Guess that the next page in
4721 ** the overflow list is page number (ovfl+1). If that guess turns
4722 ** out to be wrong, fall back to loading the data of page
4723 ** number ovfl to determine the next page number.
4725 if( pBt
->autoVacuum
){
4727 Pgno iGuess
= ovfl
+1;
4730 while( PTRMAP_ISPAGE(pBt
, iGuess
) || iGuess
==PENDING_BYTE_PAGE(pBt
) ){
4734 if( iGuess
<=btreePagecount(pBt
) ){
4735 rc
= ptrmapGet(pBt
, iGuess
, &eType
, &pgno
);
4736 if( rc
==SQLITE_OK
&& eType
==PTRMAP_OVERFLOW2
&& pgno
==ovfl
){
4744 assert( next
==0 || rc
==SQLITE_DONE
);
4745 if( rc
==SQLITE_OK
){
4746 rc
= btreeGetPage(pBt
, ovfl
, &pPage
, (ppPage
==0) ? PAGER_GET_READONLY
: 0);
4747 assert( rc
==SQLITE_OK
|| pPage
==0 );
4748 if( rc
==SQLITE_OK
){
4749 next
= get4byte(pPage
->aData
);
4759 return (rc
==SQLITE_DONE
? SQLITE_OK
: rc
);
4763 ** Copy data from a buffer to a page, or from a page to a buffer.
4765 ** pPayload is a pointer to data stored on database page pDbPage.
4766 ** If argument eOp is false, then nByte bytes of data are copied
4767 ** from pPayload to the buffer pointed at by pBuf. If eOp is true,
4768 ** then sqlite3PagerWrite() is called on pDbPage and nByte bytes
4769 ** of data are copied from the buffer pBuf to pPayload.
4771 ** SQLITE_OK is returned on success, otherwise an error code.
4773 static int copyPayload(
4774 void *pPayload
, /* Pointer to page data */
4775 void *pBuf
, /* Pointer to buffer */
4776 int nByte
, /* Number of bytes to copy */
4777 int eOp
, /* 0 -> copy from page, 1 -> copy to page */
4778 DbPage
*pDbPage
/* Page containing pPayload */
4781 /* Copy data from buffer to page (a write operation) */
4782 int rc
= sqlite3PagerWrite(pDbPage
);
4783 if( rc
!=SQLITE_OK
){
4786 memcpy(pPayload
, pBuf
, nByte
);
4788 /* Copy data from page to buffer (a read operation) */
4789 memcpy(pBuf
, pPayload
, nByte
);
4795 ** This function is used to read or overwrite payload information
4796 ** for the entry that the pCur cursor is pointing to. The eOp
4797 ** argument is interpreted as follows:
4799 ** 0: The operation is a read. Populate the overflow cache.
4800 ** 1: The operation is a write. Populate the overflow cache.
4802 ** A total of "amt" bytes are read or written beginning at "offset".
4803 ** Data is read to or from the buffer pBuf.
4805 ** The content being read or written might appear on the main page
4806 ** or be scattered out on multiple overflow pages.
4808 ** If the current cursor entry uses one or more overflow pages
4809 ** this function may allocate space for and lazily populate
4810 ** the overflow page-list cache array (BtCursor.aOverflow).
4811 ** Subsequent calls use this cache to make seeking to the supplied offset
4814 ** Once an overflow page-list cache has been allocated, it must be
4815 ** invalidated if some other cursor writes to the same table, or if
4816 ** the cursor is moved to a different row. Additionally, in auto-vacuum
4817 ** mode, the following events may invalidate an overflow page-list cache.
4819 ** * An incremental vacuum,
4820 ** * A commit in auto_vacuum="full" mode,
4821 ** * Creating a table (may require moving an overflow page).
4823 static int accessPayload(
4824 BtCursor
*pCur
, /* Cursor pointing to entry to read from */
4825 u32 offset
, /* Begin reading this far into payload */
4826 u32 amt
, /* Read this many bytes */
4827 unsigned char *pBuf
, /* Write the bytes into this buffer */
4828 int eOp
/* zero to read. non-zero to write. */
4830 unsigned char *aPayload
;
4833 MemPage
*pPage
= pCur
->pPage
; /* Btree page of current entry */
4834 BtShared
*pBt
= pCur
->pBt
; /* Btree this cursor belongs to */
4835 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4836 unsigned char * const pBufStart
= pBuf
; /* Start of original out buffer */
4840 assert( eOp
==0 || eOp
==1 );
4841 assert( pCur
->eState
==CURSOR_VALID
);
4842 assert( pCur
->ix
<pPage
->nCell
);
4843 assert( cursorHoldsMutex(pCur
) );
4846 aPayload
= pCur
->info
.pPayload
;
4847 assert( offset
+amt
<= pCur
->info
.nPayload
);
4849 assert( aPayload
> pPage
->aData
);
4850 if( (uptr
)(aPayload
- pPage
->aData
) > (pBt
->usableSize
- pCur
->info
.nLocal
) ){
4851 /* Trying to read or write past the end of the data is an error. The
4852 ** conditional above is really:
4853 ** &aPayload[pCur->info.nLocal] > &pPage->aData[pBt->usableSize]
4854 ** but is recast into its current form to avoid integer overflow problems
4856 return SQLITE_CORRUPT_PAGE(pPage
);
4859 /* Check if data must be read/written to/from the btree page itself. */
4860 if( offset
<pCur
->info
.nLocal
){
4862 if( a
+offset
>pCur
->info
.nLocal
){
4863 a
= pCur
->info
.nLocal
- offset
;
4865 rc
= copyPayload(&aPayload
[offset
], pBuf
, a
, eOp
, pPage
->pDbPage
);
4870 offset
-= pCur
->info
.nLocal
;
4874 if( rc
==SQLITE_OK
&& amt
>0 ){
4875 const u32 ovflSize
= pBt
->usableSize
- 4; /* Bytes content per ovfl page */
4878 nextPage
= get4byte(&aPayload
[pCur
->info
.nLocal
]);
4880 /* If the BtCursor.aOverflow[] has not been allocated, allocate it now.
4882 ** The aOverflow[] array is sized at one entry for each overflow page
4883 ** in the overflow chain. The page number of the first overflow page is
4884 ** stored in aOverflow[0], etc. A value of 0 in the aOverflow[] array
4885 ** means "not yet known" (the cache is lazily populated).
4887 if( (pCur
->curFlags
& BTCF_ValidOvfl
)==0 ){
4888 int nOvfl
= (pCur
->info
.nPayload
-pCur
->info
.nLocal
+ovflSize
-1)/ovflSize
;
4889 if( pCur
->aOverflow
==0
4890 || nOvfl
*(int)sizeof(Pgno
) > sqlite3MallocSize(pCur
->aOverflow
)
4892 Pgno
*aNew
= (Pgno
*)sqlite3Realloc(
4893 pCur
->aOverflow
, nOvfl
*2*sizeof(Pgno
)
4896 return SQLITE_NOMEM_BKPT
;
4898 pCur
->aOverflow
= aNew
;
4901 memset(pCur
->aOverflow
, 0, nOvfl
*sizeof(Pgno
));
4902 pCur
->curFlags
|= BTCF_ValidOvfl
;
4904 /* If the overflow page-list cache has been allocated and the
4905 ** entry for the first required overflow page is valid, skip
4908 if( pCur
->aOverflow
[offset
/ovflSize
] ){
4909 iIdx
= (offset
/ovflSize
);
4910 nextPage
= pCur
->aOverflow
[iIdx
];
4911 offset
= (offset
%ovflSize
);
4915 assert( rc
==SQLITE_OK
&& amt
>0 );
4917 /* If required, populate the overflow page-list cache. */
4918 if( nextPage
> pBt
->nPage
) return SQLITE_CORRUPT_BKPT
;
4919 assert( pCur
->aOverflow
[iIdx
]==0
4920 || pCur
->aOverflow
[iIdx
]==nextPage
4922 pCur
->aOverflow
[iIdx
] = nextPage
;
4924 if( offset
>=ovflSize
){
4925 /* The only reason to read this page is to obtain the page
4926 ** number for the next page in the overflow chain. The page
4927 ** data is not required. So first try to lookup the overflow
4928 ** page-list cache, if any, then fall back to the getOverflowPage()
4931 assert( pCur
->curFlags
& BTCF_ValidOvfl
);
4932 assert( pCur
->pBtree
->db
==pBt
->db
);
4933 if( pCur
->aOverflow
[iIdx
+1] ){
4934 nextPage
= pCur
->aOverflow
[iIdx
+1];
4936 rc
= getOverflowPage(pBt
, nextPage
, 0, &nextPage
);
4940 /* Need to read this page properly. It contains some of the
4941 ** range of data that is being read (eOp==0) or written (eOp!=0).
4944 if( a
+ offset
> ovflSize
){
4945 a
= ovflSize
- offset
;
4948 #ifdef SQLITE_DIRECT_OVERFLOW_READ
4949 /* If all the following are true:
4951 ** 1) this is a read operation, and
4952 ** 2) data is required from the start of this overflow page, and
4953 ** 3) there are no dirty pages in the page-cache
4954 ** 4) the database is file-backed, and
4955 ** 5) the page is not in the WAL file
4956 ** 6) at least 4 bytes have already been read into the output buffer
4958 ** then data can be read directly from the database file into the
4959 ** output buffer, bypassing the page-cache altogether. This speeds
4960 ** up loading large records that span many overflow pages.
4962 if( eOp
==0 /* (1) */
4963 && offset
==0 /* (2) */
4964 && sqlite3PagerDirectReadOk(pBt
->pPager
, nextPage
) /* (3,4,5) */
4965 && &pBuf
[-4]>=pBufStart
/* (6) */
4967 sqlite3_file
*fd
= sqlite3PagerFile(pBt
->pPager
);
4969 u8
*aWrite
= &pBuf
[-4];
4970 assert( aWrite
>=pBufStart
); /* due to (6) */
4971 memcpy(aSave
, aWrite
, 4);
4972 rc
= sqlite3OsRead(fd
, aWrite
, a
+4, (i64
)pBt
->pageSize
*(nextPage
-1));
4973 if( rc
&& nextPage
>pBt
->nPage
) rc
= SQLITE_CORRUPT_BKPT
;
4974 nextPage
= get4byte(aWrite
);
4975 memcpy(aWrite
, aSave
, 4);
4981 rc
= sqlite3PagerGet(pBt
->pPager
, nextPage
, &pDbPage
,
4982 (eOp
==0 ? PAGER_GET_READONLY
: 0)
4984 if( rc
==SQLITE_OK
){
4985 aPayload
= sqlite3PagerGetData(pDbPage
);
4986 nextPage
= get4byte(aPayload
);
4987 rc
= copyPayload(&aPayload
[offset
+4], pBuf
, a
, eOp
, pDbPage
);
4988 sqlite3PagerUnref(pDbPage
);
4993 if( amt
==0 ) return rc
;
5001 if( rc
==SQLITE_OK
&& amt
>0 ){
5002 /* Overflow chain ends prematurely */
5003 return SQLITE_CORRUPT_PAGE(pPage
);
5009 ** Read part of the payload for the row at which that cursor pCur is currently
5010 ** pointing. "amt" bytes will be transferred into pBuf[]. The transfer
5011 ** begins at "offset".
5013 ** pCur can be pointing to either a table or an index b-tree.
5014 ** If pointing to a table btree, then the content section is read. If
5015 ** pCur is pointing to an index b-tree then the key section is read.
5017 ** For sqlite3BtreePayload(), the caller must ensure that pCur is pointing
5018 ** to a valid row in the table. For sqlite3BtreePayloadChecked(), the
5019 ** cursor might be invalid or might need to be restored before being read.
5021 ** Return SQLITE_OK on success or an error code if anything goes
5022 ** wrong. An error is returned if "offset+amt" is larger than
5023 ** the available payload.
5025 int sqlite3BtreePayload(BtCursor
*pCur
, u32 offset
, u32 amt
, void *pBuf
){
5026 assert( cursorHoldsMutex(pCur
) );
5027 assert( pCur
->eState
==CURSOR_VALID
);
5028 assert( pCur
->iPage
>=0 && pCur
->pPage
);
5029 assert( pCur
->ix
<pCur
->pPage
->nCell
);
5030 return accessPayload(pCur
, offset
, amt
, (unsigned char*)pBuf
, 0);
5034 ** This variant of sqlite3BtreePayload() works even if the cursor has not
5035 ** in the CURSOR_VALID state. It is only used by the sqlite3_blob_read()
5038 #ifndef SQLITE_OMIT_INCRBLOB
5039 static SQLITE_NOINLINE
int accessPayloadChecked(
5046 if ( pCur
->eState
==CURSOR_INVALID
){
5047 return SQLITE_ABORT
;
5049 assert( cursorOwnsBtShared(pCur
) );
5050 rc
= btreeRestoreCursorPosition(pCur
);
5051 return rc
? rc
: accessPayload(pCur
, offset
, amt
, pBuf
, 0);
5053 int sqlite3BtreePayloadChecked(BtCursor
*pCur
, u32 offset
, u32 amt
, void *pBuf
){
5054 if( pCur
->eState
==CURSOR_VALID
){
5055 assert( cursorOwnsBtShared(pCur
) );
5056 return accessPayload(pCur
, offset
, amt
, pBuf
, 0);
5058 return accessPayloadChecked(pCur
, offset
, amt
, pBuf
);
5061 #endif /* SQLITE_OMIT_INCRBLOB */
5064 ** Return a pointer to payload information from the entry that the
5065 ** pCur cursor is pointing to. The pointer is to the beginning of
5066 ** the key if index btrees (pPage->intKey==0) and is the data for
5067 ** table btrees (pPage->intKey==1). The number of bytes of available
5068 ** key/data is written into *pAmt. If *pAmt==0, then the value
5069 ** returned will not be a valid pointer.
5071 ** This routine is an optimization. It is common for the entire key
5072 ** and data to fit on the local page and for there to be no overflow
5073 ** pages. When that is so, this routine can be used to access the
5074 ** key and data without making a copy. If the key and/or data spills
5075 ** onto overflow pages, then accessPayload() must be used to reassemble
5076 ** the key/data and copy it into a preallocated buffer.
5078 ** The pointer returned by this routine looks directly into the cached
5079 ** page of the database. The data might change or move the next time
5080 ** any btree routine is called.
5082 static const void *fetchPayload(
5083 BtCursor
*pCur
, /* Cursor pointing to entry to read from */
5084 u32
*pAmt
/* Write the number of available bytes here */
5087 assert( pCur
!=0 && pCur
->iPage
>=0 && pCur
->pPage
);
5088 assert( pCur
->eState
==CURSOR_VALID
);
5089 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5090 assert( cursorOwnsBtShared(pCur
) );
5091 assert( pCur
->ix
<pCur
->pPage
->nCell
);
5092 assert( pCur
->info
.nSize
>0 );
5093 assert( pCur
->info
.pPayload
>pCur
->pPage
->aData
|| CORRUPT_DB
);
5094 assert( pCur
->info
.pPayload
<pCur
->pPage
->aDataEnd
||CORRUPT_DB
);
5095 amt
= pCur
->info
.nLocal
;
5096 if( amt
>(int)(pCur
->pPage
->aDataEnd
- pCur
->info
.pPayload
) ){
5097 /* There is too little space on the page for the expected amount
5098 ** of local content. Database must be corrupt. */
5099 assert( CORRUPT_DB
);
5100 amt
= MAX(0, (int)(pCur
->pPage
->aDataEnd
- pCur
->info
.pPayload
));
5103 return (void*)pCur
->info
.pPayload
;
5108 ** For the entry that cursor pCur is point to, return as
5109 ** many bytes of the key or data as are available on the local
5110 ** b-tree page. Write the number of available bytes into *pAmt.
5112 ** The pointer returned is ephemeral. The key/data may move
5113 ** or be destroyed on the next call to any Btree routine,
5114 ** including calls from other threads against the same cache.
5115 ** Hence, a mutex on the BtShared should be held prior to calling
5118 ** These routines is used to get quick access to key and data
5119 ** in the common case where no overflow pages are used.
5121 const void *sqlite3BtreePayloadFetch(BtCursor
*pCur
, u32
*pAmt
){
5122 return fetchPayload(pCur
, pAmt
);
5127 ** Move the cursor down to a new child page. The newPgno argument is the
5128 ** page number of the child page to move to.
5130 ** This function returns SQLITE_CORRUPT if the page-header flags field of
5131 ** the new child page does not match the flags field of the parent (i.e.
5132 ** if an intkey page appears to be the parent of a non-intkey page, or
5135 static int moveToChild(BtCursor
*pCur
, u32 newPgno
){
5136 BtShared
*pBt
= pCur
->pBt
;
5138 assert( cursorOwnsBtShared(pCur
) );
5139 assert( pCur
->eState
==CURSOR_VALID
);
5140 assert( pCur
->iPage
<BTCURSOR_MAX_DEPTH
);
5141 assert( pCur
->iPage
>=0 );
5142 if( pCur
->iPage
>=(BTCURSOR_MAX_DEPTH
-1) ){
5143 return SQLITE_CORRUPT_BKPT
;
5145 pCur
->info
.nSize
= 0;
5146 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
);
5147 pCur
->aiIdx
[pCur
->iPage
] = pCur
->ix
;
5148 pCur
->apPage
[pCur
->iPage
] = pCur
->pPage
;
5151 return getAndInitPage(pBt
, newPgno
, &pCur
->pPage
, pCur
, pCur
->curPagerFlags
);
5156 ** Page pParent is an internal (non-leaf) tree page. This function
5157 ** asserts that page number iChild is the left-child if the iIdx'th
5158 ** cell in page pParent. Or, if iIdx is equal to the total number of
5159 ** cells in pParent, that page number iChild is the right-child of
5162 static void assertParentIndex(MemPage
*pParent
, int iIdx
, Pgno iChild
){
5163 if( CORRUPT_DB
) return; /* The conditions tested below might not be true
5164 ** in a corrupt database */
5165 assert( iIdx
<=pParent
->nCell
);
5166 if( iIdx
==pParent
->nCell
){
5167 assert( get4byte(&pParent
->aData
[pParent
->hdrOffset
+8])==iChild
);
5169 assert( get4byte(findCell(pParent
, iIdx
))==iChild
);
5173 # define assertParentIndex(x,y,z)
5177 ** Move the cursor up to the parent page.
5179 ** pCur->idx is set to the cell index that contains the pointer
5180 ** to the page we are coming from. If we are coming from the
5181 ** right-most child page then pCur->idx is set to one more than
5182 ** the largest cell index.
5184 static void moveToParent(BtCursor
*pCur
){
5186 assert( cursorOwnsBtShared(pCur
) );
5187 assert( pCur
->eState
==CURSOR_VALID
);
5188 assert( pCur
->iPage
>0 );
5189 assert( pCur
->pPage
);
5191 pCur
->apPage
[pCur
->iPage
-1],
5192 pCur
->aiIdx
[pCur
->iPage
-1],
5195 testcase( pCur
->aiIdx
[pCur
->iPage
-1] > pCur
->apPage
[pCur
->iPage
-1]->nCell
);
5196 pCur
->info
.nSize
= 0;
5197 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
);
5198 pCur
->ix
= pCur
->aiIdx
[pCur
->iPage
-1];
5199 pLeaf
= pCur
->pPage
;
5200 pCur
->pPage
= pCur
->apPage
[--pCur
->iPage
];
5201 releasePageNotNull(pLeaf
);
5205 ** Move the cursor to point to the root page of its b-tree structure.
5207 ** If the table has a virtual root page, then the cursor is moved to point
5208 ** to the virtual root page instead of the actual root page. A table has a
5209 ** virtual root page when the actual root page contains no cells and a
5210 ** single child page. This can only happen with the table rooted at page 1.
5212 ** If the b-tree structure is empty, the cursor state is set to
5213 ** CURSOR_INVALID and this routine returns SQLITE_EMPTY. Otherwise,
5214 ** the cursor is set to point to the first cell located on the root
5215 ** (or virtual root) page and the cursor state is set to CURSOR_VALID.
5217 ** If this function returns successfully, it may be assumed that the
5218 ** page-header flags indicate that the [virtual] root-page is the expected
5219 ** kind of b-tree page (i.e. if when opening the cursor the caller did not
5220 ** specify a KeyInfo structure the flags byte is set to 0x05 or 0x0D,
5221 ** indicating a table b-tree, or if the caller did specify a KeyInfo
5222 ** structure the flags byte is set to 0x02 or 0x0A, indicating an index
5225 static int moveToRoot(BtCursor
*pCur
){
5229 assert( cursorOwnsBtShared(pCur
) );
5230 assert( CURSOR_INVALID
< CURSOR_REQUIRESEEK
);
5231 assert( CURSOR_VALID
< CURSOR_REQUIRESEEK
);
5232 assert( CURSOR_FAULT
> CURSOR_REQUIRESEEK
);
5233 assert( pCur
->eState
< CURSOR_REQUIRESEEK
|| pCur
->iPage
<0 );
5234 assert( pCur
->pgnoRoot
>0 || pCur
->iPage
<0 );
5236 if( pCur
->iPage
>=0 ){
5238 releasePageNotNull(pCur
->pPage
);
5239 while( --pCur
->iPage
){
5240 releasePageNotNull(pCur
->apPage
[pCur
->iPage
]);
5242 pCur
->pPage
= pCur
->apPage
[0];
5245 }else if( pCur
->pgnoRoot
==0 ){
5246 pCur
->eState
= CURSOR_INVALID
;
5247 return SQLITE_EMPTY
;
5249 assert( pCur
->iPage
==(-1) );
5250 if( pCur
->eState
>=CURSOR_REQUIRESEEK
){
5251 if( pCur
->eState
==CURSOR_FAULT
){
5252 assert( pCur
->skipNext
!=SQLITE_OK
);
5253 return pCur
->skipNext
;
5255 sqlite3BtreeClearCursor(pCur
);
5257 rc
= getAndInitPage(pCur
->pBtree
->pBt
, pCur
->pgnoRoot
, &pCur
->pPage
,
5258 0, pCur
->curPagerFlags
);
5259 if( rc
!=SQLITE_OK
){
5260 pCur
->eState
= CURSOR_INVALID
;
5264 pCur
->curIntKey
= pCur
->pPage
->intKey
;
5266 pRoot
= pCur
->pPage
;
5267 assert( pRoot
->pgno
==pCur
->pgnoRoot
);
5269 /* If pCur->pKeyInfo is not NULL, then the caller that opened this cursor
5270 ** expected to open it on an index b-tree. Otherwise, if pKeyInfo is
5271 ** NULL, the caller expects a table b-tree. If this is not the case,
5272 ** return an SQLITE_CORRUPT error.
5274 ** Earlier versions of SQLite assumed that this test could not fail
5275 ** if the root page was already loaded when this function was called (i.e.
5276 ** if pCur->iPage>=0). But this is not so if the database is corrupted
5277 ** in such a way that page pRoot is linked into a second b-tree table
5278 ** (or the freelist). */
5279 assert( pRoot
->intKey
==1 || pRoot
->intKey
==0 );
5280 if( pRoot
->isInit
==0 || (pCur
->pKeyInfo
==0)!=pRoot
->intKey
){
5281 return SQLITE_CORRUPT_PAGE(pCur
->pPage
);
5286 pCur
->info
.nSize
= 0;
5287 pCur
->curFlags
&= ~(BTCF_AtLast
|BTCF_ValidNKey
|BTCF_ValidOvfl
);
5289 pRoot
= pCur
->pPage
;
5290 if( pRoot
->nCell
>0 ){
5291 pCur
->eState
= CURSOR_VALID
;
5292 }else if( !pRoot
->leaf
){
5294 if( pRoot
->pgno
!=1 ) return SQLITE_CORRUPT_BKPT
;
5295 subpage
= get4byte(&pRoot
->aData
[pRoot
->hdrOffset
+8]);
5296 pCur
->eState
= CURSOR_VALID
;
5297 rc
= moveToChild(pCur
, subpage
);
5299 pCur
->eState
= CURSOR_INVALID
;
5306 ** Move the cursor down to the left-most leaf entry beneath the
5307 ** entry to which it is currently pointing.
5309 ** The left-most leaf is the one with the smallest key - the first
5310 ** in ascending order.
5312 static int moveToLeftmost(BtCursor
*pCur
){
5317 assert( cursorOwnsBtShared(pCur
) );
5318 assert( pCur
->eState
==CURSOR_VALID
);
5319 while( rc
==SQLITE_OK
&& !(pPage
= pCur
->pPage
)->leaf
){
5320 assert( pCur
->ix
<pPage
->nCell
);
5321 pgno
= get4byte(findCell(pPage
, pCur
->ix
));
5322 rc
= moveToChild(pCur
, pgno
);
5328 ** Move the cursor down to the right-most leaf entry beneath the
5329 ** page to which it is currently pointing. Notice the difference
5330 ** between moveToLeftmost() and moveToRightmost(). moveToLeftmost()
5331 ** finds the left-most entry beneath the *entry* whereas moveToRightmost()
5332 ** finds the right-most entry beneath the *page*.
5334 ** The right-most entry is the one with the largest key - the last
5335 ** key in ascending order.
5337 static int moveToRightmost(BtCursor
*pCur
){
5342 assert( cursorOwnsBtShared(pCur
) );
5343 assert( pCur
->eState
==CURSOR_VALID
);
5344 while( !(pPage
= pCur
->pPage
)->leaf
){
5345 pgno
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
5346 pCur
->ix
= pPage
->nCell
;
5347 rc
= moveToChild(pCur
, pgno
);
5350 pCur
->ix
= pPage
->nCell
-1;
5351 assert( pCur
->info
.nSize
==0 );
5352 assert( (pCur
->curFlags
& BTCF_ValidNKey
)==0 );
5356 /* Move the cursor to the first entry in the table. Return SQLITE_OK
5357 ** on success. Set *pRes to 0 if the cursor actually points to something
5358 ** or set *pRes to 1 if the table is empty.
5360 int sqlite3BtreeFirst(BtCursor
*pCur
, int *pRes
){
5363 assert( cursorOwnsBtShared(pCur
) );
5364 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5365 rc
= moveToRoot(pCur
);
5366 if( rc
==SQLITE_OK
){
5367 assert( pCur
->pPage
->nCell
>0 );
5369 rc
= moveToLeftmost(pCur
);
5370 }else if( rc
==SQLITE_EMPTY
){
5371 assert( pCur
->pgnoRoot
==0 || pCur
->pPage
->nCell
==0 );
5378 /* Move the cursor to the last entry in the table. Return SQLITE_OK
5379 ** on success. Set *pRes to 0 if the cursor actually points to something
5380 ** or set *pRes to 1 if the table is empty.
5382 int sqlite3BtreeLast(BtCursor
*pCur
, int *pRes
){
5385 assert( cursorOwnsBtShared(pCur
) );
5386 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5388 /* If the cursor already points to the last entry, this is a no-op. */
5389 if( CURSOR_VALID
==pCur
->eState
&& (pCur
->curFlags
& BTCF_AtLast
)!=0 ){
5391 /* This block serves to assert() that the cursor really does point
5392 ** to the last entry in the b-tree. */
5394 for(ii
=0; ii
<pCur
->iPage
; ii
++){
5395 assert( pCur
->aiIdx
[ii
]==pCur
->apPage
[ii
]->nCell
);
5397 assert( pCur
->ix
==pCur
->pPage
->nCell
-1 || CORRUPT_DB
);
5398 testcase( pCur
->ix
!=pCur
->pPage
->nCell
-1 );
5399 /* ^-- dbsqlfuzz b92b72e4de80b5140c30ab71372ca719b8feb618 */
5400 assert( pCur
->pPage
->leaf
);
5406 rc
= moveToRoot(pCur
);
5407 if( rc
==SQLITE_OK
){
5408 assert( pCur
->eState
==CURSOR_VALID
);
5410 rc
= moveToRightmost(pCur
);
5411 if( rc
==SQLITE_OK
){
5412 pCur
->curFlags
|= BTCF_AtLast
;
5414 pCur
->curFlags
&= ~BTCF_AtLast
;
5416 }else if( rc
==SQLITE_EMPTY
){
5417 assert( pCur
->pgnoRoot
==0 || pCur
->pPage
->nCell
==0 );
5424 /* Move the cursor so that it points to an entry near the key
5425 ** specified by pIdxKey or intKey. Return a success code.
5427 ** For INTKEY tables, the intKey parameter is used. pIdxKey
5428 ** must be NULL. For index tables, pIdxKey is used and intKey
5431 ** If an exact match is not found, then the cursor is always
5432 ** left pointing at a leaf page which would hold the entry if it
5433 ** were present. The cursor might point to an entry that comes
5434 ** before or after the key.
5436 ** An integer is written into *pRes which is the result of
5437 ** comparing the key with the entry to which the cursor is
5438 ** pointing. The meaning of the integer written into
5439 ** *pRes is as follows:
5441 ** *pRes<0 The cursor is left pointing at an entry that
5442 ** is smaller than intKey/pIdxKey or if the table is empty
5443 ** and the cursor is therefore left point to nothing.
5445 ** *pRes==0 The cursor is left pointing at an entry that
5446 ** exactly matches intKey/pIdxKey.
5448 ** *pRes>0 The cursor is left pointing at an entry that
5449 ** is larger than intKey/pIdxKey.
5451 ** For index tables, the pIdxKey->eqSeen field is set to 1 if there
5452 ** exists an entry in the table that exactly matches pIdxKey.
5454 int sqlite3BtreeMovetoUnpacked(
5455 BtCursor
*pCur
, /* The cursor to be moved */
5456 UnpackedRecord
*pIdxKey
, /* Unpacked index key */
5457 i64 intKey
, /* The table key */
5458 int biasRight
, /* If true, bias the search to the high end */
5459 int *pRes
/* Write search results here */
5462 RecordCompare xRecordCompare
;
5464 assert( cursorOwnsBtShared(pCur
) );
5465 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5467 assert( (pIdxKey
==0)==(pCur
->pKeyInfo
==0) );
5468 assert( pCur
->eState
!=CURSOR_VALID
|| (pIdxKey
==0)==(pCur
->curIntKey
!=0) );
5470 /* If the cursor is already positioned at the point we are trying
5471 ** to move to, then just return without doing any work */
5473 && pCur
->eState
==CURSOR_VALID
&& (pCur
->curFlags
& BTCF_ValidNKey
)!=0
5475 if( pCur
->info
.nKey
==intKey
){
5479 if( pCur
->info
.nKey
<intKey
){
5480 if( (pCur
->curFlags
& BTCF_AtLast
)!=0 ){
5484 /* If the requested key is one more than the previous key, then
5485 ** try to get there using sqlite3BtreeNext() rather than a full
5486 ** binary search. This is an optimization only. The correct answer
5487 ** is still obtained without this case, only a little more slowely */
5488 if( pCur
->info
.nKey
+1==intKey
){
5490 rc
= sqlite3BtreeNext(pCur
, 0);
5491 if( rc
==SQLITE_OK
){
5493 if( pCur
->info
.nKey
==intKey
){
5496 }else if( rc
==SQLITE_DONE
){
5506 pCur
->pBtree
->nSeek
++; /* Performance measurement during testing */
5510 xRecordCompare
= sqlite3VdbeFindCompare(pIdxKey
);
5511 pIdxKey
->errCode
= 0;
5512 assert( pIdxKey
->default_rc
==1
5513 || pIdxKey
->default_rc
==0
5514 || pIdxKey
->default_rc
==-1
5517 xRecordCompare
= 0; /* All keys are integers */
5520 rc
= moveToRoot(pCur
);
5522 if( rc
==SQLITE_EMPTY
){
5523 assert( pCur
->pgnoRoot
==0 || pCur
->pPage
->nCell
==0 );
5529 assert( pCur
->pPage
);
5530 assert( pCur
->pPage
->isInit
);
5531 assert( pCur
->eState
==CURSOR_VALID
);
5532 assert( pCur
->pPage
->nCell
> 0 );
5533 assert( pCur
->iPage
==0 || pCur
->apPage
[0]->intKey
==pCur
->curIntKey
);
5534 assert( pCur
->curIntKey
|| pIdxKey
);
5536 int lwr
, upr
, idx
, c
;
5538 MemPage
*pPage
= pCur
->pPage
;
5539 u8
*pCell
; /* Pointer to current cell in pPage */
5541 /* pPage->nCell must be greater than zero. If this is the root-page
5542 ** the cursor would have been INVALID above and this for(;;) loop
5543 ** not run. If this is not the root-page, then the moveToChild() routine
5544 ** would have already detected db corruption. Similarly, pPage must
5545 ** be the right kind (index or table) of b-tree page. Otherwise
5546 ** a moveToChild() or moveToRoot() call would have detected corruption. */
5547 assert( pPage
->nCell
>0 );
5548 assert( pPage
->intKey
==(pIdxKey
==0) );
5550 upr
= pPage
->nCell
-1;
5551 assert( biasRight
==0 || biasRight
==1 );
5552 idx
= upr
>>(1-biasRight
); /* idx = biasRight ? upr : (lwr+upr)/2; */
5553 pCur
->ix
= (u16
)idx
;
5554 if( xRecordCompare
==0 ){
5557 pCell
= findCellPastPtr(pPage
, idx
);
5558 if( pPage
->intKeyLeaf
){
5559 while( 0x80 <= *(pCell
++) ){
5560 if( pCell
>=pPage
->aDataEnd
){
5561 return SQLITE_CORRUPT_PAGE(pPage
);
5565 getVarint(pCell
, (u64
*)&nCellKey
);
5566 if( nCellKey
<intKey
){
5568 if( lwr
>upr
){ c
= -1; break; }
5569 }else if( nCellKey
>intKey
){
5571 if( lwr
>upr
){ c
= +1; break; }
5573 assert( nCellKey
==intKey
);
5574 pCur
->ix
= (u16
)idx
;
5577 goto moveto_next_layer
;
5579 pCur
->curFlags
|= BTCF_ValidNKey
;
5580 pCur
->info
.nKey
= nCellKey
;
5581 pCur
->info
.nSize
= 0;
5586 assert( lwr
+upr
>=0 );
5587 idx
= (lwr
+upr
)>>1; /* idx = (lwr+upr)/2; */
5591 int nCell
; /* Size of the pCell cell in bytes */
5592 pCell
= findCellPastPtr(pPage
, idx
);
5594 /* The maximum supported page-size is 65536 bytes. This means that
5595 ** the maximum number of record bytes stored on an index B-Tree
5596 ** page is less than 16384 bytes and may be stored as a 2-byte
5597 ** varint. This information is used to attempt to avoid parsing
5598 ** the entire cell by checking for the cases where the record is
5599 ** stored entirely within the b-tree page by inspecting the first
5600 ** 2 bytes of the cell.
5603 if( nCell
<=pPage
->max1bytePayload
){
5604 /* This branch runs if the record-size field of the cell is a
5605 ** single byte varint and the record fits entirely on the main
5607 testcase( pCell
+nCell
+1==pPage
->aDataEnd
);
5608 c
= xRecordCompare(nCell
, (void*)&pCell
[1], pIdxKey
);
5609 }else if( !(pCell
[1] & 0x80)
5610 && (nCell
= ((nCell
&0x7f)<<7) + pCell
[1])<=pPage
->maxLocal
5612 /* The record-size field is a 2 byte varint and the record
5613 ** fits entirely on the main b-tree page. */
5614 testcase( pCell
+nCell
+2==pPage
->aDataEnd
);
5615 c
= xRecordCompare(nCell
, (void*)&pCell
[2], pIdxKey
);
5617 /* The record flows over onto one or more overflow pages. In
5618 ** this case the whole cell needs to be parsed, a buffer allocated
5619 ** and accessPayload() used to retrieve the record into the
5620 ** buffer before VdbeRecordCompare() can be called.
5622 ** If the record is corrupt, the xRecordCompare routine may read
5623 ** up to two varints past the end of the buffer. An extra 18
5624 ** bytes of padding is allocated at the end of the buffer in
5625 ** case this happens. */
5627 u8
* const pCellBody
= pCell
- pPage
->childPtrSize
;
5628 const int nOverrun
= 18; /* Size of the overrun padding */
5629 pPage
->xParseCell(pPage
, pCellBody
, &pCur
->info
);
5630 nCell
= (int)pCur
->info
.nKey
;
5631 testcase( nCell
<0 ); /* True if key size is 2^32 or more */
5632 testcase( nCell
==0 ); /* Invalid key size: 0x80 0x80 0x00 */
5633 testcase( nCell
==1 ); /* Invalid key size: 0x80 0x80 0x01 */
5634 testcase( nCell
==2 ); /* Minimum legal index key size */
5635 if( nCell
<2 || nCell
/pCur
->pBt
->usableSize
>pCur
->pBt
->nPage
){
5636 rc
= SQLITE_CORRUPT_PAGE(pPage
);
5639 pCellKey
= sqlite3Malloc( nCell
+nOverrun
);
5641 rc
= SQLITE_NOMEM_BKPT
;
5644 pCur
->ix
= (u16
)idx
;
5645 rc
= accessPayload(pCur
, 0, nCell
, (unsigned char*)pCellKey
, 0);
5646 memset(((u8
*)pCellKey
)+nCell
,0,nOverrun
); /* Fix uninit warnings */
5647 pCur
->curFlags
&= ~BTCF_ValidOvfl
;
5649 sqlite3_free(pCellKey
);
5652 c
= sqlite3VdbeRecordCompare(nCell
, pCellKey
, pIdxKey
);
5653 sqlite3_free(pCellKey
);
5656 (pIdxKey
->errCode
!=SQLITE_CORRUPT
|| c
==0)
5657 && (pIdxKey
->errCode
!=SQLITE_NOMEM
|| pCur
->pBtree
->db
->mallocFailed
)
5667 pCur
->ix
= (u16
)idx
;
5668 if( pIdxKey
->errCode
) rc
= SQLITE_CORRUPT_BKPT
;
5671 if( lwr
>upr
) break;
5672 assert( lwr
+upr
>=0 );
5673 idx
= (lwr
+upr
)>>1; /* idx = (lwr+upr)/2 */
5676 assert( lwr
==upr
+1 || (pPage
->intKey
&& !pPage
->leaf
) );
5677 assert( pPage
->isInit
);
5679 assert( pCur
->ix
<pCur
->pPage
->nCell
);
5680 pCur
->ix
= (u16
)idx
;
5686 if( lwr
>=pPage
->nCell
){
5687 chldPg
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
5689 chldPg
= get4byte(findCell(pPage
, lwr
));
5691 pCur
->ix
= (u16
)lwr
;
5692 rc
= moveToChild(pCur
, chldPg
);
5696 pCur
->info
.nSize
= 0;
5697 assert( (pCur
->curFlags
& BTCF_ValidOvfl
)==0 );
5703 ** Return TRUE if the cursor is not pointing at an entry of the table.
5705 ** TRUE will be returned after a call to sqlite3BtreeNext() moves
5706 ** past the last entry in the table or sqlite3BtreePrev() moves past
5707 ** the first entry. TRUE is also returned if the table is empty.
5709 int sqlite3BtreeEof(BtCursor
*pCur
){
5710 /* TODO: What if the cursor is in CURSOR_REQUIRESEEK but all table entries
5711 ** have been deleted? This API will need to change to return an error code
5712 ** as well as the boolean result value.
5714 return (CURSOR_VALID
!=pCur
->eState
);
5718 ** Return an estimate for the number of rows in the table that pCur is
5719 ** pointing to. Return a negative number if no estimate is currently
5722 i64
sqlite3BtreeRowCountEst(BtCursor
*pCur
){
5726 assert( cursorOwnsBtShared(pCur
) );
5727 assert( sqlite3_mutex_held(pCur
->pBtree
->db
->mutex
) );
5729 /* Currently this interface is only called by the OP_IfSmaller
5730 ** opcode, and it that case the cursor will always be valid and
5731 ** will always point to a leaf node. */
5732 if( NEVER(pCur
->eState
!=CURSOR_VALID
) ) return -1;
5733 if( NEVER(pCur
->pPage
->leaf
==0) ) return -1;
5735 n
= pCur
->pPage
->nCell
;
5736 for(i
=0; i
<pCur
->iPage
; i
++){
5737 n
*= pCur
->apPage
[i
]->nCell
;
5743 ** Advance the cursor to the next entry in the database.
5746 ** SQLITE_OK success
5747 ** SQLITE_DONE cursor is already pointing at the last element
5748 ** otherwise some kind of error occurred
5750 ** The main entry point is sqlite3BtreeNext(). That routine is optimized
5751 ** for the common case of merely incrementing the cell counter BtCursor.aiIdx
5752 ** to the next cell on the current page. The (slower) btreeNext() helper
5753 ** routine is called when it is necessary to move to a different page or
5754 ** to restore the cursor.
5756 ** If bit 0x01 of the F argument in sqlite3BtreeNext(C,F) is 1, then the
5757 ** cursor corresponds to an SQL index and this routine could have been
5758 ** skipped if the SQL index had been a unique index. The F argument
5759 ** is a hint to the implement. SQLite btree implementation does not use
5760 ** this hint, but COMDB2 does.
5762 static SQLITE_NOINLINE
int btreeNext(BtCursor
*pCur
){
5767 assert( cursorOwnsBtShared(pCur
) );
5768 if( pCur
->eState
!=CURSOR_VALID
){
5769 assert( (pCur
->curFlags
& BTCF_ValidOvfl
)==0 );
5770 rc
= restoreCursorPosition(pCur
);
5771 if( rc
!=SQLITE_OK
){
5774 if( CURSOR_INVALID
==pCur
->eState
){
5777 if( pCur
->eState
==CURSOR_SKIPNEXT
){
5778 pCur
->eState
= CURSOR_VALID
;
5779 if( pCur
->skipNext
>0 ) return SQLITE_OK
;
5783 pPage
= pCur
->pPage
;
5785 if( !pPage
->isInit
|| sqlite3FaultSim(412) ){
5786 /* The only known way for this to happen is for there to be a
5787 ** recursive SQL function that does a DELETE operation as part of a
5788 ** SELECT which deletes content out from under an active cursor
5789 ** in a corrupt database file where the table being DELETE-ed from
5790 ** has pages in common with the table being queried. See TH3
5791 ** module cov1/btree78.test testcase 220 (2018-06-08) for an
5793 return SQLITE_CORRUPT_BKPT
;
5796 /* If the database file is corrupt, it is possible for the value of idx
5797 ** to be invalid here. This can only occur if a second cursor modifies
5798 ** the page while cursor pCur is holding a reference to it. Which can
5799 ** only happen if the database is corrupt in such a way as to link the
5800 ** page into more than one b-tree structure.
5802 ** Update 2019-12-23: appears to long longer be possible after the
5803 ** addition of anotherValidCursor() condition on balance_deeper(). */
5804 harmless( idx
>pPage
->nCell
);
5806 if( idx
>=pPage
->nCell
){
5808 rc
= moveToChild(pCur
, get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]));
5810 return moveToLeftmost(pCur
);
5813 if( pCur
->iPage
==0 ){
5814 pCur
->eState
= CURSOR_INVALID
;
5818 pPage
= pCur
->pPage
;
5819 }while( pCur
->ix
>=pPage
->nCell
);
5820 if( pPage
->intKey
){
5821 return sqlite3BtreeNext(pCur
, 0);
5829 return moveToLeftmost(pCur
);
5832 int sqlite3BtreeNext(BtCursor
*pCur
, int flags
){
5834 UNUSED_PARAMETER( flags
); /* Used in COMDB2 but not native SQLite */
5835 assert( cursorOwnsBtShared(pCur
) );
5836 assert( flags
==0 || flags
==1 );
5837 pCur
->info
.nSize
= 0;
5838 pCur
->curFlags
&= ~(BTCF_ValidNKey
|BTCF_ValidOvfl
);
5839 if( pCur
->eState
!=CURSOR_VALID
) return btreeNext(pCur
);
5840 pPage
= pCur
->pPage
;
5841 if( (++pCur
->ix
)>=pPage
->nCell
){
5843 return btreeNext(pCur
);
5848 return moveToLeftmost(pCur
);
5853 ** Step the cursor to the back to the previous entry in the database.
5856 ** SQLITE_OK success
5857 ** SQLITE_DONE the cursor is already on the first element of the table
5858 ** otherwise some kind of error occurred
5860 ** The main entry point is sqlite3BtreePrevious(). That routine is optimized
5861 ** for the common case of merely decrementing the cell counter BtCursor.aiIdx
5862 ** to the previous cell on the current page. The (slower) btreePrevious()
5863 ** helper routine is called when it is necessary to move to a different page
5864 ** or to restore the cursor.
5866 ** If bit 0x01 of the F argument to sqlite3BtreePrevious(C,F) is 1, then
5867 ** the cursor corresponds to an SQL index and this routine could have been
5868 ** skipped if the SQL index had been a unique index. The F argument is a
5869 ** hint to the implement. The native SQLite btree implementation does not
5870 ** use this hint, but COMDB2 does.
5872 static SQLITE_NOINLINE
int btreePrevious(BtCursor
*pCur
){
5876 assert( cursorOwnsBtShared(pCur
) );
5877 assert( (pCur
->curFlags
& (BTCF_AtLast
|BTCF_ValidOvfl
|BTCF_ValidNKey
))==0 );
5878 assert( pCur
->info
.nSize
==0 );
5879 if( pCur
->eState
!=CURSOR_VALID
){
5880 rc
= restoreCursorPosition(pCur
);
5881 if( rc
!=SQLITE_OK
){
5884 if( CURSOR_INVALID
==pCur
->eState
){
5887 if( CURSOR_SKIPNEXT
==pCur
->eState
){
5888 pCur
->eState
= CURSOR_VALID
;
5889 if( pCur
->skipNext
<0 ) return SQLITE_OK
;
5893 pPage
= pCur
->pPage
;
5894 assert( pPage
->isInit
);
5897 rc
= moveToChild(pCur
, get4byte(findCell(pPage
, idx
)));
5899 rc
= moveToRightmost(pCur
);
5901 while( pCur
->ix
==0 ){
5902 if( pCur
->iPage
==0 ){
5903 pCur
->eState
= CURSOR_INVALID
;
5908 assert( pCur
->info
.nSize
==0 );
5909 assert( (pCur
->curFlags
& (BTCF_ValidOvfl
))==0 );
5912 pPage
= pCur
->pPage
;
5913 if( pPage
->intKey
&& !pPage
->leaf
){
5914 rc
= sqlite3BtreePrevious(pCur
, 0);
5921 int sqlite3BtreePrevious(BtCursor
*pCur
, int flags
){
5922 assert( cursorOwnsBtShared(pCur
) );
5923 assert( flags
==0 || flags
==1 );
5924 UNUSED_PARAMETER( flags
); /* Used in COMDB2 but not native SQLite */
5925 pCur
->curFlags
&= ~(BTCF_AtLast
|BTCF_ValidOvfl
|BTCF_ValidNKey
);
5926 pCur
->info
.nSize
= 0;
5927 if( pCur
->eState
!=CURSOR_VALID
5929 || pCur
->pPage
->leaf
==0
5931 return btreePrevious(pCur
);
5938 ** Allocate a new page from the database file.
5940 ** The new page is marked as dirty. (In other words, sqlite3PagerWrite()
5941 ** has already been called on the new page.) The new page has also
5942 ** been referenced and the calling routine is responsible for calling
5943 ** sqlite3PagerUnref() on the new page when it is done.
5945 ** SQLITE_OK is returned on success. Any other return value indicates
5946 ** an error. *ppPage is set to NULL in the event of an error.
5948 ** If the "nearby" parameter is not 0, then an effort is made to
5949 ** locate a page close to the page number "nearby". This can be used in an
5950 ** attempt to keep related pages close to each other in the database file,
5951 ** which in turn can make database access faster.
5953 ** If the eMode parameter is BTALLOC_EXACT and the nearby page exists
5954 ** anywhere on the free-list, then it is guaranteed to be returned. If
5955 ** eMode is BTALLOC_LT then the page returned will be less than or equal
5956 ** to nearby if any such page exists. If eMode is BTALLOC_ANY then there
5957 ** are no restrictions on which page is returned.
5959 static int allocateBtreePage(
5960 BtShared
*pBt
, /* The btree */
5961 MemPage
**ppPage
, /* Store pointer to the allocated page here */
5962 Pgno
*pPgno
, /* Store the page number here */
5963 Pgno nearby
, /* Search for a page near this one */
5964 u8 eMode
/* BTALLOC_EXACT, BTALLOC_LT, or BTALLOC_ANY */
5968 u32 n
; /* Number of pages on the freelist */
5969 u32 k
; /* Number of leaves on the trunk of the freelist */
5970 MemPage
*pTrunk
= 0;
5971 MemPage
*pPrevTrunk
= 0;
5972 Pgno mxPage
; /* Total size of the database file */
5974 assert( sqlite3_mutex_held(pBt
->mutex
) );
5975 assert( eMode
==BTALLOC_ANY
|| (nearby
>0 && IfNotOmitAV(pBt
->autoVacuum
)) );
5976 pPage1
= pBt
->pPage1
;
5977 mxPage
= btreePagecount(pBt
);
5978 /* EVIDENCE-OF: R-05119-02637 The 4-byte big-endian integer at offset 36
5979 ** stores stores the total number of pages on the freelist. */
5980 n
= get4byte(&pPage1
->aData
[36]);
5981 testcase( n
==mxPage
-1 );
5983 return SQLITE_CORRUPT_BKPT
;
5986 /* There are pages on the freelist. Reuse one of those pages. */
5988 u8 searchList
= 0; /* If the free-list must be searched for 'nearby' */
5989 u32 nSearch
= 0; /* Count of the number of search attempts */
5991 /* If eMode==BTALLOC_EXACT and a query of the pointer-map
5992 ** shows that the page 'nearby' is somewhere on the free-list, then
5993 ** the entire-list will be searched for that page.
5995 #ifndef SQLITE_OMIT_AUTOVACUUM
5996 if( eMode
==BTALLOC_EXACT
){
5997 if( nearby
<=mxPage
){
6000 assert( pBt
->autoVacuum
);
6001 rc
= ptrmapGet(pBt
, nearby
, &eType
, 0);
6003 if( eType
==PTRMAP_FREEPAGE
){
6007 }else if( eMode
==BTALLOC_LE
){
6012 /* Decrement the free-list count by 1. Set iTrunk to the index of the
6013 ** first free-list trunk page. iPrevTrunk is initially 1.
6015 rc
= sqlite3PagerWrite(pPage1
->pDbPage
);
6017 put4byte(&pPage1
->aData
[36], n
-1);
6019 /* The code within this loop is run only once if the 'searchList' variable
6020 ** is not true. Otherwise, it runs once for each trunk-page on the
6021 ** free-list until the page 'nearby' is located (eMode==BTALLOC_EXACT)
6022 ** or until a page less than 'nearby' is located (eMode==BTALLOC_LT)
6025 pPrevTrunk
= pTrunk
;
6027 /* EVIDENCE-OF: R-01506-11053 The first integer on a freelist trunk page
6028 ** is the page number of the next freelist trunk page in the list or
6029 ** zero if this is the last freelist trunk page. */
6030 iTrunk
= get4byte(&pPrevTrunk
->aData
[0]);
6032 /* EVIDENCE-OF: R-59841-13798 The 4-byte big-endian integer at offset 32
6033 ** stores the page number of the first page of the freelist, or zero if
6034 ** the freelist is empty. */
6035 iTrunk
= get4byte(&pPage1
->aData
[32]);
6037 testcase( iTrunk
==mxPage
);
6038 if( iTrunk
>mxPage
|| nSearch
++ > n
){
6039 rc
= SQLITE_CORRUPT_PGNO(pPrevTrunk
? pPrevTrunk
->pgno
: 1);
6041 rc
= btreeGetUnusedPage(pBt
, iTrunk
, &pTrunk
, 0);
6045 goto end_allocate_page
;
6047 assert( pTrunk
!=0 );
6048 assert( pTrunk
->aData
!=0 );
6049 /* EVIDENCE-OF: R-13523-04394 The second integer on a freelist trunk page
6050 ** is the number of leaf page pointers to follow. */
6051 k
= get4byte(&pTrunk
->aData
[4]);
6052 if( k
==0 && !searchList
){
6053 /* The trunk has no leaves and the list is not being searched.
6054 ** So extract the trunk page itself and use it as the newly
6055 ** allocated page */
6056 assert( pPrevTrunk
==0 );
6057 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
6059 goto end_allocate_page
;
6062 memcpy(&pPage1
->aData
[32], &pTrunk
->aData
[0], 4);
6065 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno
, n
-1));
6066 }else if( k
>(u32
)(pBt
->usableSize
/4 - 2) ){
6067 /* Value of k is out of range. Database corruption */
6068 rc
= SQLITE_CORRUPT_PGNO(iTrunk
);
6069 goto end_allocate_page
;
6070 #ifndef SQLITE_OMIT_AUTOVACUUM
6071 }else if( searchList
6072 && (nearby
==iTrunk
|| (iTrunk
<nearby
&& eMode
==BTALLOC_LE
))
6074 /* The list is being searched and this trunk page is the page
6075 ** to allocate, regardless of whether it has leaves.
6080 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
6082 goto end_allocate_page
;
6086 memcpy(&pPage1
->aData
[32], &pTrunk
->aData
[0], 4);
6088 rc
= sqlite3PagerWrite(pPrevTrunk
->pDbPage
);
6089 if( rc
!=SQLITE_OK
){
6090 goto end_allocate_page
;
6092 memcpy(&pPrevTrunk
->aData
[0], &pTrunk
->aData
[0], 4);
6095 /* The trunk page is required by the caller but it contains
6096 ** pointers to free-list leaves. The first leaf becomes a trunk
6097 ** page in this case.
6100 Pgno iNewTrunk
= get4byte(&pTrunk
->aData
[8]);
6101 if( iNewTrunk
>mxPage
){
6102 rc
= SQLITE_CORRUPT_PGNO(iTrunk
);
6103 goto end_allocate_page
;
6105 testcase( iNewTrunk
==mxPage
);
6106 rc
= btreeGetUnusedPage(pBt
, iNewTrunk
, &pNewTrunk
, 0);
6107 if( rc
!=SQLITE_OK
){
6108 goto end_allocate_page
;
6110 rc
= sqlite3PagerWrite(pNewTrunk
->pDbPage
);
6111 if( rc
!=SQLITE_OK
){
6112 releasePage(pNewTrunk
);
6113 goto end_allocate_page
;
6115 memcpy(&pNewTrunk
->aData
[0], &pTrunk
->aData
[0], 4);
6116 put4byte(&pNewTrunk
->aData
[4], k
-1);
6117 memcpy(&pNewTrunk
->aData
[8], &pTrunk
->aData
[12], (k
-1)*4);
6118 releasePage(pNewTrunk
);
6120 assert( sqlite3PagerIswriteable(pPage1
->pDbPage
) );
6121 put4byte(&pPage1
->aData
[32], iNewTrunk
);
6123 rc
= sqlite3PagerWrite(pPrevTrunk
->pDbPage
);
6125 goto end_allocate_page
;
6127 put4byte(&pPrevTrunk
->aData
[0], iNewTrunk
);
6131 TRACE(("ALLOCATE: %d trunk - %d free pages left\n", *pPgno
, n
-1));
6134 /* Extract a leaf from the trunk */
6137 unsigned char *aData
= pTrunk
->aData
;
6141 if( eMode
==BTALLOC_LE
){
6143 iPage
= get4byte(&aData
[8+i
*4]);
6144 if( iPage
<=nearby
){
6151 dist
= sqlite3AbsInt32(get4byte(&aData
[8]) - nearby
);
6153 int d2
= sqlite3AbsInt32(get4byte(&aData
[8+i
*4]) - nearby
);
6164 iPage
= get4byte(&aData
[8+closest
*4]);
6165 testcase( iPage
==mxPage
);
6166 if( iPage
>mxPage
|| iPage
<2 ){
6167 rc
= SQLITE_CORRUPT_PGNO(iTrunk
);
6168 goto end_allocate_page
;
6170 testcase( iPage
==mxPage
);
6172 || (iPage
==nearby
|| (iPage
<nearby
&& eMode
==BTALLOC_LE
))
6176 TRACE(("ALLOCATE: %d was leaf %d of %d on trunk %d"
6177 ": %d more free pages\n",
6178 *pPgno
, closest
+1, k
, pTrunk
->pgno
, n
-1));
6179 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
6180 if( rc
) goto end_allocate_page
;
6182 memcpy(&aData
[8+closest
*4], &aData
[4+k
*4], 4);
6184 put4byte(&aData
[4], k
-1);
6185 noContent
= !btreeGetHasContent(pBt
, *pPgno
)? PAGER_GET_NOCONTENT
: 0;
6186 rc
= btreeGetUnusedPage(pBt
, *pPgno
, ppPage
, noContent
);
6187 if( rc
==SQLITE_OK
){
6188 rc
= sqlite3PagerWrite((*ppPage
)->pDbPage
);
6189 if( rc
!=SQLITE_OK
){
6190 releasePage(*ppPage
);
6197 releasePage(pPrevTrunk
);
6199 }while( searchList
);
6201 /* There are no pages on the freelist, so append a new page to the
6204 ** Normally, new pages allocated by this block can be requested from the
6205 ** pager layer with the 'no-content' flag set. This prevents the pager
6206 ** from trying to read the pages content from disk. However, if the
6207 ** current transaction has already run one or more incremental-vacuum
6208 ** steps, then the page we are about to allocate may contain content
6209 ** that is required in the event of a rollback. In this case, do
6210 ** not set the no-content flag. This causes the pager to load and journal
6211 ** the current page content before overwriting it.
6213 ** Note that the pager will not actually attempt to load or journal
6214 ** content for any page that really does lie past the end of the database
6215 ** file on disk. So the effects of disabling the no-content optimization
6216 ** here are confined to those pages that lie between the end of the
6217 ** database image and the end of the database file.
6219 int bNoContent
= (0==IfNotOmitAV(pBt
->bDoTruncate
))? PAGER_GET_NOCONTENT
:0;
6221 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
6224 if( pBt
->nPage
==PENDING_BYTE_PAGE(pBt
) ) pBt
->nPage
++;
6226 #ifndef SQLITE_OMIT_AUTOVACUUM
6227 if( pBt
->autoVacuum
&& PTRMAP_ISPAGE(pBt
, pBt
->nPage
) ){
6228 /* If *pPgno refers to a pointer-map page, allocate two new pages
6229 ** at the end of the file instead of one. The first allocated page
6230 ** becomes a new pointer-map page, the second is used by the caller.
6233 TRACE(("ALLOCATE: %d from end of file (pointer-map page)\n", pBt
->nPage
));
6234 assert( pBt
->nPage
!=PENDING_BYTE_PAGE(pBt
) );
6235 rc
= btreeGetUnusedPage(pBt
, pBt
->nPage
, &pPg
, bNoContent
);
6236 if( rc
==SQLITE_OK
){
6237 rc
= sqlite3PagerWrite(pPg
->pDbPage
);
6242 if( pBt
->nPage
==PENDING_BYTE_PAGE(pBt
) ){ pBt
->nPage
++; }
6245 put4byte(28 + (u8
*)pBt
->pPage1
->aData
, pBt
->nPage
);
6246 *pPgno
= pBt
->nPage
;
6248 assert( *pPgno
!=PENDING_BYTE_PAGE(pBt
) );
6249 rc
= btreeGetUnusedPage(pBt
, *pPgno
, ppPage
, bNoContent
);
6251 rc
= sqlite3PagerWrite((*ppPage
)->pDbPage
);
6252 if( rc
!=SQLITE_OK
){
6253 releasePage(*ppPage
);
6256 TRACE(("ALLOCATE: %d from end of file\n", *pPgno
));
6259 assert( CORRUPT_DB
|| *pPgno
!=PENDING_BYTE_PAGE(pBt
) );
6262 releasePage(pTrunk
);
6263 releasePage(pPrevTrunk
);
6264 assert( rc
!=SQLITE_OK
|| sqlite3PagerPageRefcount((*ppPage
)->pDbPage
)<=1 );
6265 assert( rc
!=SQLITE_OK
|| (*ppPage
)->isInit
==0 );
6270 ** This function is used to add page iPage to the database file free-list.
6271 ** It is assumed that the page is not already a part of the free-list.
6273 ** The value passed as the second argument to this function is optional.
6274 ** If the caller happens to have a pointer to the MemPage object
6275 ** corresponding to page iPage handy, it may pass it as the second value.
6276 ** Otherwise, it may pass NULL.
6278 ** If a pointer to a MemPage object is passed as the second argument,
6279 ** its reference count is not altered by this function.
6281 static int freePage2(BtShared
*pBt
, MemPage
*pMemPage
, Pgno iPage
){
6282 MemPage
*pTrunk
= 0; /* Free-list trunk page */
6283 Pgno iTrunk
= 0; /* Page number of free-list trunk page */
6284 MemPage
*pPage1
= pBt
->pPage1
; /* Local reference to page 1 */
6285 MemPage
*pPage
; /* Page being freed. May be NULL. */
6286 int rc
; /* Return Code */
6287 u32 nFree
; /* Initial number of pages on free-list */
6289 assert( sqlite3_mutex_held(pBt
->mutex
) );
6290 assert( CORRUPT_DB
|| iPage
>1 );
6291 assert( !pMemPage
|| pMemPage
->pgno
==iPage
);
6293 if( iPage
<2 || iPage
>pBt
->nPage
){
6294 return SQLITE_CORRUPT_BKPT
;
6298 sqlite3PagerRef(pPage
->pDbPage
);
6300 pPage
= btreePageLookup(pBt
, iPage
);
6303 /* Increment the free page count on pPage1 */
6304 rc
= sqlite3PagerWrite(pPage1
->pDbPage
);
6305 if( rc
) goto freepage_out
;
6306 nFree
= get4byte(&pPage1
->aData
[36]);
6307 put4byte(&pPage1
->aData
[36], nFree
+1);
6309 if( pBt
->btsFlags
& BTS_SECURE_DELETE
){
6310 /* If the secure_delete option is enabled, then
6311 ** always fully overwrite deleted information with zeros.
6313 if( (!pPage
&& ((rc
= btreeGetPage(pBt
, iPage
, &pPage
, 0))!=0) )
6314 || ((rc
= sqlite3PagerWrite(pPage
->pDbPage
))!=0)
6318 memset(pPage
->aData
, 0, pPage
->pBt
->pageSize
);
6321 /* If the database supports auto-vacuum, write an entry in the pointer-map
6322 ** to indicate that the page is free.
6325 ptrmapPut(pBt
, iPage
, PTRMAP_FREEPAGE
, 0, &rc
);
6326 if( rc
) goto freepage_out
;
6329 /* Now manipulate the actual database free-list structure. There are two
6330 ** possibilities. If the free-list is currently empty, or if the first
6331 ** trunk page in the free-list is full, then this page will become a
6332 ** new free-list trunk page. Otherwise, it will become a leaf of the
6333 ** first trunk page in the current free-list. This block tests if it
6334 ** is possible to add the page as a new free-list leaf.
6337 u32 nLeaf
; /* Initial number of leaf cells on trunk page */
6339 iTrunk
= get4byte(&pPage1
->aData
[32]);
6340 if( iTrunk
>btreePagecount(pBt
) ){
6341 rc
= SQLITE_CORRUPT_BKPT
;
6344 rc
= btreeGetPage(pBt
, iTrunk
, &pTrunk
, 0);
6345 if( rc
!=SQLITE_OK
){
6349 nLeaf
= get4byte(&pTrunk
->aData
[4]);
6350 assert( pBt
->usableSize
>32 );
6351 if( nLeaf
> (u32
)pBt
->usableSize
/4 - 2 ){
6352 rc
= SQLITE_CORRUPT_BKPT
;
6355 if( nLeaf
< (u32
)pBt
->usableSize
/4 - 8 ){
6356 /* In this case there is room on the trunk page to insert the page
6357 ** being freed as a new leaf.
6359 ** Note that the trunk page is not really full until it contains
6360 ** usableSize/4 - 2 entries, not usableSize/4 - 8 entries as we have
6361 ** coded. But due to a coding error in versions of SQLite prior to
6362 ** 3.6.0, databases with freelist trunk pages holding more than
6363 ** usableSize/4 - 8 entries will be reported as corrupt. In order
6364 ** to maintain backwards compatibility with older versions of SQLite,
6365 ** we will continue to restrict the number of entries to usableSize/4 - 8
6366 ** for now. At some point in the future (once everyone has upgraded
6367 ** to 3.6.0 or later) we should consider fixing the conditional above
6368 ** to read "usableSize/4-2" instead of "usableSize/4-8".
6370 ** EVIDENCE-OF: R-19920-11576 However, newer versions of SQLite still
6371 ** avoid using the last six entries in the freelist trunk page array in
6372 ** order that database files created by newer versions of SQLite can be
6373 ** read by older versions of SQLite.
6375 rc
= sqlite3PagerWrite(pTrunk
->pDbPage
);
6376 if( rc
==SQLITE_OK
){
6377 put4byte(&pTrunk
->aData
[4], nLeaf
+1);
6378 put4byte(&pTrunk
->aData
[8+nLeaf
*4], iPage
);
6379 if( pPage
&& (pBt
->btsFlags
& BTS_SECURE_DELETE
)==0 ){
6380 sqlite3PagerDontWrite(pPage
->pDbPage
);
6382 rc
= btreeSetHasContent(pBt
, iPage
);
6384 TRACE(("FREE-PAGE: %d leaf on trunk page %d\n",pPage
->pgno
,pTrunk
->pgno
));
6389 /* If control flows to this point, then it was not possible to add the
6390 ** the page being freed as a leaf page of the first trunk in the free-list.
6391 ** Possibly because the free-list is empty, or possibly because the
6392 ** first trunk in the free-list is full. Either way, the page being freed
6393 ** will become the new first trunk page in the free-list.
6395 if( pPage
==0 && SQLITE_OK
!=(rc
= btreeGetPage(pBt
, iPage
, &pPage
, 0)) ){
6398 rc
= sqlite3PagerWrite(pPage
->pDbPage
);
6399 if( rc
!=SQLITE_OK
){
6402 put4byte(pPage
->aData
, iTrunk
);
6403 put4byte(&pPage
->aData
[4], 0);
6404 put4byte(&pPage1
->aData
[32], iPage
);
6405 TRACE(("FREE-PAGE: %d new trunk page replacing %d\n", pPage
->pgno
, iTrunk
));
6412 releasePage(pTrunk
);
6415 static void freePage(MemPage
*pPage
, int *pRC
){
6416 if( (*pRC
)==SQLITE_OK
){
6417 *pRC
= freePage2(pPage
->pBt
, pPage
, pPage
->pgno
);
6422 ** Free the overflow pages associated with the given Cell.
6424 static SQLITE_NOINLINE
int clearCellOverflow(
6425 MemPage
*pPage
, /* The page that contains the Cell */
6426 unsigned char *pCell
, /* First byte of the Cell */
6427 CellInfo
*pInfo
/* Size information about the cell */
6435 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
6436 assert( pInfo
->nLocal
!=pInfo
->nPayload
);
6437 testcase( pCell
+ pInfo
->nSize
== pPage
->aDataEnd
);
6438 testcase( pCell
+ (pInfo
->nSize
-1) == pPage
->aDataEnd
);
6439 if( pCell
+ pInfo
->nSize
> pPage
->aDataEnd
){
6440 /* Cell extends past end of page */
6441 return SQLITE_CORRUPT_PAGE(pPage
);
6443 ovflPgno
= get4byte(pCell
+ pInfo
->nSize
- 4);
6445 assert( pBt
->usableSize
> 4 );
6446 ovflPageSize
= pBt
->usableSize
- 4;
6447 nOvfl
= (pInfo
->nPayload
- pInfo
->nLocal
+ ovflPageSize
- 1)/ovflPageSize
;
6449 (CORRUPT_DB
&& (pInfo
->nPayload
+ ovflPageSize
)<ovflPageSize
)
6454 if( ovflPgno
<2 || ovflPgno
>btreePagecount(pBt
) ){
6455 /* 0 is not a legal page number and page 1 cannot be an
6456 ** overflow page. Therefore if ovflPgno<2 or past the end of the
6457 ** file the database must be corrupt. */
6458 return SQLITE_CORRUPT_BKPT
;
6461 rc
= getOverflowPage(pBt
, ovflPgno
, &pOvfl
, &iNext
);
6465 if( ( pOvfl
|| ((pOvfl
= btreePageLookup(pBt
, ovflPgno
))!=0) )
6466 && sqlite3PagerPageRefcount(pOvfl
->pDbPage
)!=1
6468 /* There is no reason any cursor should have an outstanding reference
6469 ** to an overflow page belonging to a cell that is being deleted/updated.
6470 ** So if there exists more than one reference to this page, then it
6471 ** must not really be an overflow page and the database must be corrupt.
6472 ** It is helpful to detect this before calling freePage2(), as
6473 ** freePage2() may zero the page contents if secure-delete mode is
6474 ** enabled. If this 'overflow' page happens to be a page that the
6475 ** caller is iterating through or using in some other way, this
6476 ** can be problematic.
6478 rc
= SQLITE_CORRUPT_BKPT
;
6480 rc
= freePage2(pBt
, pOvfl
, ovflPgno
);
6484 sqlite3PagerUnref(pOvfl
->pDbPage
);
6492 /* Call xParseCell to compute the size of a cell. If the cell contains
6493 ** overflow, then invoke cellClearOverflow to clear out that overflow.
6494 ** STore the result code (SQLITE_OK or some error code) in rc.
6496 ** Implemented as macro to force inlining for performance.
6498 #define BTREE_CLEAR_CELL(rc, pPage, pCell, sInfo) \
6499 pPage->xParseCell(pPage, pCell, &sInfo); \
6500 if( sInfo.nLocal!=sInfo.nPayload ){ \
6501 rc = clearCellOverflow(pPage, pCell, &sInfo); \
6508 ** Create the byte sequence used to represent a cell on page pPage
6509 ** and write that byte sequence into pCell[]. Overflow pages are
6510 ** allocated and filled in as necessary. The calling procedure
6511 ** is responsible for making sure sufficient space has been allocated
6514 ** Note that pCell does not necessary need to point to the pPage->aData
6515 ** area. pCell might point to some temporary storage. The cell will
6516 ** be constructed in this temporary area then copied into pPage->aData
6519 static int fillInCell(
6520 MemPage
*pPage
, /* The page that contains the cell */
6521 unsigned char *pCell
, /* Complete text of the cell */
6522 const BtreePayload
*pX
, /* Payload with which to construct the cell */
6523 int *pnSize
/* Write cell size here */
6527 int nSrc
, n
, rc
, mn
;
6529 MemPage
*pToRelease
;
6530 unsigned char *pPrior
;
6531 unsigned char *pPayload
;
6536 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
6538 /* pPage is not necessarily writeable since pCell might be auxiliary
6539 ** buffer space that is separate from the pPage buffer area */
6540 assert( pCell
<pPage
->aData
|| pCell
>=&pPage
->aData
[pPage
->pBt
->pageSize
]
6541 || sqlite3PagerIswriteable(pPage
->pDbPage
) );
6543 /* Fill in the header. */
6544 nHeader
= pPage
->childPtrSize
;
6545 if( pPage
->intKey
){
6546 nPayload
= pX
->nData
+ pX
->nZero
;
6549 assert( pPage
->intKeyLeaf
); /* fillInCell() only called for leaves */
6550 nHeader
+= putVarint32(&pCell
[nHeader
], nPayload
);
6551 nHeader
+= putVarint(&pCell
[nHeader
], *(u64
*)&pX
->nKey
);
6553 assert( pX
->nKey
<=0x7fffffff && pX
->pKey
!=0 );
6554 nSrc
= nPayload
= (int)pX
->nKey
;
6556 nHeader
+= putVarint32(&pCell
[nHeader
], nPayload
);
6559 /* Fill in the payload */
6560 pPayload
= &pCell
[nHeader
];
6561 if( nPayload
<=pPage
->maxLocal
){
6562 /* This is the common case where everything fits on the btree page
6563 ** and no overflow pages are required. */
6564 n
= nHeader
+ nPayload
;
6569 assert( nSrc
<=nPayload
);
6570 testcase( nSrc
<nPayload
);
6571 memcpy(pPayload
, pSrc
, nSrc
);
6572 memset(pPayload
+nSrc
, 0, nPayload
-nSrc
);
6576 /* If we reach this point, it means that some of the content will need
6577 ** to spill onto overflow pages.
6579 mn
= pPage
->minLocal
;
6580 n
= mn
+ (nPayload
- mn
) % (pPage
->pBt
->usableSize
- 4);
6581 testcase( n
==pPage
->maxLocal
);
6582 testcase( n
==pPage
->maxLocal
+1 );
6583 if( n
> pPage
->maxLocal
) n
= mn
;
6585 *pnSize
= n
+ nHeader
+ 4;
6586 pPrior
= &pCell
[nHeader
+n
];
6591 /* At this point variables should be set as follows:
6593 ** nPayload Total payload size in bytes
6594 ** pPayload Begin writing payload here
6595 ** spaceLeft Space available at pPayload. If nPayload>spaceLeft,
6596 ** that means content must spill into overflow pages.
6597 ** *pnSize Size of the local cell (not counting overflow pages)
6598 ** pPrior Where to write the pgno of the first overflow page
6600 ** Use a call to btreeParseCellPtr() to verify that the values above
6601 ** were computed correctly.
6606 pPage
->xParseCell(pPage
, pCell
, &info
);
6607 assert( nHeader
==(int)(info
.pPayload
- pCell
) );
6608 assert( info
.nKey
==pX
->nKey
);
6609 assert( *pnSize
== info
.nSize
);
6610 assert( spaceLeft
== info
.nLocal
);
6614 /* Write the payload into the local Cell and any extra into overflow pages */
6617 if( n
>spaceLeft
) n
= spaceLeft
;
6619 /* If pToRelease is not zero than pPayload points into the data area
6620 ** of pToRelease. Make sure pToRelease is still writeable. */
6621 assert( pToRelease
==0 || sqlite3PagerIswriteable(pToRelease
->pDbPage
) );
6623 /* If pPayload is part of the data area of pPage, then make sure pPage
6624 ** is still writeable */
6625 assert( pPayload
<pPage
->aData
|| pPayload
>=&pPage
->aData
[pBt
->pageSize
]
6626 || sqlite3PagerIswriteable(pPage
->pDbPage
) );
6629 memcpy(pPayload
, pSrc
, n
);
6632 memcpy(pPayload
, pSrc
, n
);
6634 memset(pPayload
, 0, n
);
6637 if( nPayload
<=0 ) break;
6644 #ifndef SQLITE_OMIT_AUTOVACUUM
6645 Pgno pgnoPtrmap
= pgnoOvfl
; /* Overflow page pointer-map entry page */
6646 if( pBt
->autoVacuum
){
6650 PTRMAP_ISPAGE(pBt
, pgnoOvfl
) || pgnoOvfl
==PENDING_BYTE_PAGE(pBt
)
6654 rc
= allocateBtreePage(pBt
, &pOvfl
, &pgnoOvfl
, pgnoOvfl
, 0);
6655 #ifndef SQLITE_OMIT_AUTOVACUUM
6656 /* If the database supports auto-vacuum, and the second or subsequent
6657 ** overflow page is being allocated, add an entry to the pointer-map
6658 ** for that page now.
6660 ** If this is the first overflow page, then write a partial entry
6661 ** to the pointer-map. If we write nothing to this pointer-map slot,
6662 ** then the optimistic overflow chain processing in clearCell()
6663 ** may misinterpret the uninitialized values and delete the
6664 ** wrong pages from the database.
6666 if( pBt
->autoVacuum
&& rc
==SQLITE_OK
){
6667 u8 eType
= (pgnoPtrmap
?PTRMAP_OVERFLOW2
:PTRMAP_OVERFLOW1
);
6668 ptrmapPut(pBt
, pgnoOvfl
, eType
, pgnoPtrmap
, &rc
);
6675 releasePage(pToRelease
);
6679 /* If pToRelease is not zero than pPrior points into the data area
6680 ** of pToRelease. Make sure pToRelease is still writeable. */
6681 assert( pToRelease
==0 || sqlite3PagerIswriteable(pToRelease
->pDbPage
) );
6683 /* If pPrior is part of the data area of pPage, then make sure pPage
6684 ** is still writeable */
6685 assert( pPrior
<pPage
->aData
|| pPrior
>=&pPage
->aData
[pBt
->pageSize
]
6686 || sqlite3PagerIswriteable(pPage
->pDbPage
) );
6688 put4byte(pPrior
, pgnoOvfl
);
6689 releasePage(pToRelease
);
6691 pPrior
= pOvfl
->aData
;
6692 put4byte(pPrior
, 0);
6693 pPayload
= &pOvfl
->aData
[4];
6694 spaceLeft
= pBt
->usableSize
- 4;
6697 releasePage(pToRelease
);
6702 ** Remove the i-th cell from pPage. This routine effects pPage only.
6703 ** The cell content is not freed or deallocated. It is assumed that
6704 ** the cell content has been copied someplace else. This routine just
6705 ** removes the reference to the cell from pPage.
6707 ** "sz" must be the number of bytes in the cell.
6709 static void dropCell(MemPage
*pPage
, int idx
, int sz
, int *pRC
){
6710 u32 pc
; /* Offset to cell content of cell being deleted */
6711 u8
*data
; /* pPage->aData */
6712 u8
*ptr
; /* Used to move bytes around within data[] */
6713 int rc
; /* The return code */
6714 int hdr
; /* Beginning of the header. 0 most pages. 100 page 1 */
6717 assert( idx
>=0 && idx
<pPage
->nCell
);
6718 assert( CORRUPT_DB
|| sz
==cellSize(pPage
, idx
) );
6719 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
6720 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
6721 assert( pPage
->nFree
>=0 );
6722 data
= pPage
->aData
;
6723 ptr
= &pPage
->aCellIdx
[2*idx
];
6725 hdr
= pPage
->hdrOffset
;
6726 testcase( pc
==get2byte(&data
[hdr
+5]) );
6727 testcase( pc
+sz
==pPage
->pBt
->usableSize
);
6728 if( pc
+sz
> pPage
->pBt
->usableSize
){
6729 *pRC
= SQLITE_CORRUPT_BKPT
;
6732 rc
= freeSpace(pPage
, pc
, sz
);
6738 if( pPage
->nCell
==0 ){
6739 memset(&data
[hdr
+1], 0, 4);
6741 put2byte(&data
[hdr
+5], pPage
->pBt
->usableSize
);
6742 pPage
->nFree
= pPage
->pBt
->usableSize
- pPage
->hdrOffset
6743 - pPage
->childPtrSize
- 8;
6745 memmove(ptr
, ptr
+2, 2*(pPage
->nCell
- idx
));
6746 put2byte(&data
[hdr
+3], pPage
->nCell
);
6752 ** Insert a new cell on pPage at cell index "i". pCell points to the
6753 ** content of the cell.
6755 ** If the cell content will fit on the page, then put it there. If it
6756 ** will not fit, then make a copy of the cell content into pTemp if
6757 ** pTemp is not null. Regardless of pTemp, allocate a new entry
6758 ** in pPage->apOvfl[] and make it point to the cell content (either
6759 ** in pTemp or the original pCell) and also record its index.
6760 ** Allocating a new entry in pPage->aCell[] implies that
6761 ** pPage->nOverflow is incremented.
6763 ** *pRC must be SQLITE_OK when this routine is called.
6765 static void insertCell(
6766 MemPage
*pPage
, /* Page into which we are copying */
6767 int i
, /* New cell becomes the i-th cell of the page */
6768 u8
*pCell
, /* Content of the new cell */
6769 int sz
, /* Bytes of content in pCell */
6770 u8
*pTemp
, /* Temp storage space for pCell, if needed */
6771 Pgno iChild
, /* If non-zero, replace first 4 bytes with this value */
6772 int *pRC
/* Read and write return code from here */
6774 int idx
= 0; /* Where to write new cell content in data[] */
6775 int j
; /* Loop counter */
6776 u8
*data
; /* The content of the whole page */
6777 u8
*pIns
; /* The point in pPage->aCellIdx[] where no cell inserted */
6779 assert( *pRC
==SQLITE_OK
);
6780 assert( i
>=0 && i
<=pPage
->nCell
+pPage
->nOverflow
);
6781 assert( MX_CELL(pPage
->pBt
)<=10921 );
6782 assert( pPage
->nCell
<=MX_CELL(pPage
->pBt
) || CORRUPT_DB
);
6783 assert( pPage
->nOverflow
<=ArraySize(pPage
->apOvfl
) );
6784 assert( ArraySize(pPage
->apOvfl
)==ArraySize(pPage
->aiOvfl
) );
6785 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
6786 assert( sz
==pPage
->xCellSize(pPage
, pCell
) || CORRUPT_DB
);
6787 assert( pPage
->nFree
>=0 );
6788 if( pPage
->nOverflow
|| sz
+2>pPage
->nFree
){
6790 memcpy(pTemp
, pCell
, sz
);
6794 put4byte(pCell
, iChild
);
6796 j
= pPage
->nOverflow
++;
6797 /* Comparison against ArraySize-1 since we hold back one extra slot
6798 ** as a contingency. In other words, never need more than 3 overflow
6799 ** slots but 4 are allocated, just to be safe. */
6800 assert( j
< ArraySize(pPage
->apOvfl
)-1 );
6801 pPage
->apOvfl
[j
] = pCell
;
6802 pPage
->aiOvfl
[j
] = (u16
)i
;
6804 /* When multiple overflows occur, they are always sequential and in
6805 ** sorted order. This invariants arise because multiple overflows can
6806 ** only occur when inserting divider cells into the parent page during
6807 ** balancing, and the dividers are adjacent and sorted.
6809 assert( j
==0 || pPage
->aiOvfl
[j
-1]<(u16
)i
); /* Overflows in sorted order */
6810 assert( j
==0 || i
==pPage
->aiOvfl
[j
-1]+1 ); /* Overflows are sequential */
6812 int rc
= sqlite3PagerWrite(pPage
->pDbPage
);
6813 if( rc
!=SQLITE_OK
){
6817 assert( sqlite3PagerIswriteable(pPage
->pDbPage
) );
6818 data
= pPage
->aData
;
6819 assert( &data
[pPage
->cellOffset
]==pPage
->aCellIdx
);
6820 rc
= allocateSpace(pPage
, sz
, &idx
);
6821 if( rc
){ *pRC
= rc
; return; }
6822 /* The allocateSpace() routine guarantees the following properties
6823 ** if it returns successfully */
6825 assert( idx
>= pPage
->cellOffset
+2*pPage
->nCell
+2 || CORRUPT_DB
);
6826 assert( idx
+sz
<= (int)pPage
->pBt
->usableSize
);
6827 pPage
->nFree
-= (u16
)(2 + sz
);
6829 /* In a corrupt database where an entry in the cell index section of
6830 ** a btree page has a value of 3 or less, the pCell value might point
6831 ** as many as 4 bytes in front of the start of the aData buffer for
6832 ** the source page. Make sure this does not cause problems by not
6833 ** reading the first 4 bytes */
6834 memcpy(&data
[idx
+4], pCell
+4, sz
-4);
6835 put4byte(&data
[idx
], iChild
);
6837 memcpy(&data
[idx
], pCell
, sz
);
6839 pIns
= pPage
->aCellIdx
+ i
*2;
6840 memmove(pIns
+2, pIns
, 2*(pPage
->nCell
- i
));
6841 put2byte(pIns
, idx
);
6843 /* increment the cell count */
6844 if( (++data
[pPage
->hdrOffset
+4])==0 ) data
[pPage
->hdrOffset
+3]++;
6845 assert( get2byte(&data
[pPage
->hdrOffset
+3])==pPage
->nCell
|| CORRUPT_DB
);
6846 #ifndef SQLITE_OMIT_AUTOVACUUM
6847 if( pPage
->pBt
->autoVacuum
){
6848 /* The cell may contain a pointer to an overflow page. If so, write
6849 ** the entry for the overflow page into the pointer map.
6851 ptrmapPutOvflPtr(pPage
, pPage
, pCell
, pRC
);
6858 ** The following parameters determine how many adjacent pages get involved
6859 ** in a balancing operation. NN is the number of neighbors on either side
6860 ** of the page that participate in the balancing operation. NB is the
6861 ** total number of pages that participate, including the target page and
6862 ** NN neighbors on either side.
6864 ** The minimum value of NN is 1 (of course). Increasing NN above 1
6865 ** (to 2 or 3) gives a modest improvement in SELECT and DELETE performance
6866 ** in exchange for a larger degradation in INSERT and UPDATE performance.
6867 ** The value of NN appears to give the best results overall.
6869 ** (Later:) The description above makes it seem as if these values are
6870 ** tunable - as if you could change them and recompile and it would all work.
6871 ** But that is unlikely. NB has been 3 since the inception of SQLite and
6872 ** we have never tested any other value.
6874 #define NN 1 /* Number of neighbors on either side of pPage */
6875 #define NB 3 /* (NN*2+1): Total pages involved in the balance */
6878 ** A CellArray object contains a cache of pointers and sizes for a
6879 ** consecutive sequence of cells that might be held on multiple pages.
6881 ** The cells in this array are the divider cell or cells from the pParent
6882 ** page plus up to three child pages. There are a total of nCell cells.
6884 ** pRef is a pointer to one of the pages that contributes cells. This is
6885 ** used to access information such as MemPage.intKey and MemPage.pBt->pageSize
6886 ** which should be common to all pages that contribute cells to this array.
6888 ** apCell[] and szCell[] hold, respectively, pointers to the start of each
6889 ** cell and the size of each cell. Some of the apCell[] pointers might refer
6890 ** to overflow cells. In other words, some apCel[] pointers might not point
6891 ** to content area of the pages.
6893 ** A szCell[] of zero means the size of that cell has not yet been computed.
6895 ** The cells come from as many as four different pages:
6902 ** --------- --------- ---------
6903 ** |Child-1| |Child-2| |Child-3|
6904 ** --------- --------- ---------
6906 ** The order of cells is in the array is for an index btree is:
6908 ** 1. All cells from Child-1 in order
6909 ** 2. The first divider cell from Parent
6910 ** 3. All cells from Child-2 in order
6911 ** 4. The second divider cell from Parent
6912 ** 5. All cells from Child-3 in order
6914 ** For a table-btree (with rowids) the items 2 and 4 are empty because
6915 ** content exists only in leaves and there are no divider cells.
6917 ** For an index btree, the apEnd[] array holds pointer to the end of page
6918 ** for Child-1, the Parent, Child-2, the Parent (again), and Child-3,
6919 ** respectively. The ixNx[] array holds the number of cells contained in
6920 ** each of these 5 stages, and all stages to the left. Hence:
6922 ** ixNx[0] = Number of cells in Child-1.
6923 ** ixNx[1] = Number of cells in Child-1 plus 1 for first divider.
6924 ** ixNx[2] = Number of cells in Child-1 and Child-2 + 1 for 1st divider.
6925 ** ixNx[3] = Number of cells in Child-1 and Child-2 + both divider cells
6926 ** ixNx[4] = Total number of cells.
6928 ** For a table-btree, the concept is similar, except only apEnd[0]..apEnd[2]
6929 ** are used and they point to the leaf pages only, and the ixNx value are:
6931 ** ixNx[0] = Number of cells in Child-1.
6932 ** ixNx[1] = Number of cells in Child-1 and Child-2.
6933 ** ixNx[2] = Total number of cells.
6935 ** Sometimes when deleting, a child page can have zero cells. In those
6936 ** cases, ixNx[] entries with higher indexes, and the corresponding apEnd[]
6937 ** entries, shift down. The end result is that each ixNx[] entry should
6938 ** be larger than the previous
6940 typedef struct CellArray CellArray
;
6942 int nCell
; /* Number of cells in apCell[] */
6943 MemPage
*pRef
; /* Reference page */
6944 u8
**apCell
; /* All cells begin balanced */
6945 u16
*szCell
; /* Local size of all cells in apCell[] */
6946 u8
*apEnd
[NB
*2]; /* MemPage.aDataEnd values */
6947 int ixNx
[NB
*2]; /* Index of at which we move to the next apEnd[] */
6951 ** Make sure the cell sizes at idx, idx+1, ..., idx+N-1 have been
6954 static void populateCellCache(CellArray
*p
, int idx
, int N
){
6955 assert( idx
>=0 && idx
+N
<=p
->nCell
);
6957 assert( p
->apCell
[idx
]!=0 );
6958 if( p
->szCell
[idx
]==0 ){
6959 p
->szCell
[idx
] = p
->pRef
->xCellSize(p
->pRef
, p
->apCell
[idx
]);
6961 assert( CORRUPT_DB
||
6962 p
->szCell
[idx
]==p
->pRef
->xCellSize(p
->pRef
, p
->apCell
[idx
]) );
6970 ** Return the size of the Nth element of the cell array
6972 static SQLITE_NOINLINE u16
computeCellSize(CellArray
*p
, int N
){
6973 assert( N
>=0 && N
<p
->nCell
);
6974 assert( p
->szCell
[N
]==0 );
6975 p
->szCell
[N
] = p
->pRef
->xCellSize(p
->pRef
, p
->apCell
[N
]);
6976 return p
->szCell
[N
];
6978 static u16
cachedCellSize(CellArray
*p
, int N
){
6979 assert( N
>=0 && N
<p
->nCell
);
6980 if( p
->szCell
[N
] ) return p
->szCell
[N
];
6981 return computeCellSize(p
, N
);
6985 ** Array apCell[] contains pointers to nCell b-tree page cells. The
6986 ** szCell[] array contains the size in bytes of each cell. This function
6987 ** replaces the current contents of page pPg with the contents of the cell
6990 ** Some of the cells in apCell[] may currently be stored in pPg. This
6991 ** function works around problems caused by this by making a copy of any
6992 ** such cells before overwriting the page data.
6994 ** The MemPage.nFree field is invalidated by this function. It is the
6995 ** responsibility of the caller to set it correctly.
6997 static int rebuildPage(
6998 CellArray
*pCArray
, /* Content to be added to page pPg */
6999 int iFirst
, /* First cell in pCArray to use */
7000 int nCell
, /* Final number of cells on page */
7001 MemPage
*pPg
/* The page to be reconstructed */
7003 const int hdr
= pPg
->hdrOffset
; /* Offset of header on pPg */
7004 u8
* const aData
= pPg
->aData
; /* Pointer to data for pPg */
7005 const int usableSize
= pPg
->pBt
->usableSize
;
7006 u8
* const pEnd
= &aData
[usableSize
];
7007 int i
= iFirst
; /* Which cell to copy from pCArray*/
7008 u32 j
; /* Start of cell content area */
7009 int iEnd
= i
+nCell
; /* Loop terminator */
7010 u8
*pCellptr
= pPg
->aCellIdx
;
7011 u8
*pTmp
= sqlite3PagerTempSpace(pPg
->pBt
->pPager
);
7013 int k
; /* Current slot in pCArray->apEnd[] */
7014 u8
*pSrcEnd
; /* Current pCArray->apEnd[k] value */
7017 j
= get2byte(&aData
[hdr
+5]);
7018 if( NEVER(j
>(u32
)usableSize
) ){ j
= 0; }
7019 memcpy(&pTmp
[j
], &aData
[j
], usableSize
- j
);
7021 for(k
=0; pCArray
->ixNx
[k
]<=i
&& ALWAYS(k
<NB
*2); k
++){}
7022 pSrcEnd
= pCArray
->apEnd
[k
];
7025 while( 1/*exit by break*/ ){
7026 u8
*pCell
= pCArray
->apCell
[i
];
7027 u16 sz
= pCArray
->szCell
[i
];
7029 if( SQLITE_WITHIN(pCell
,aData
+j
,pEnd
) ){
7030 if( ((uptr
)(pCell
+sz
))>(uptr
)pEnd
) return SQLITE_CORRUPT_BKPT
;
7031 pCell
= &pTmp
[pCell
- aData
];
7032 }else if( (uptr
)(pCell
+sz
)>(uptr
)pSrcEnd
7033 && (uptr
)(pCell
)<(uptr
)pSrcEnd
7035 return SQLITE_CORRUPT_BKPT
;
7039 put2byte(pCellptr
, (pData
- aData
));
7041 if( pData
< pCellptr
) return SQLITE_CORRUPT_BKPT
;
7042 memmove(pData
, pCell
, sz
);
7043 assert( sz
==pPg
->xCellSize(pPg
, pCell
) || CORRUPT_DB
);
7045 if( i
>=iEnd
) break;
7046 if( pCArray
->ixNx
[k
]<=i
){
7048 pSrcEnd
= pCArray
->apEnd
[k
];
7052 /* The pPg->nFree field is now set incorrectly. The caller will fix it. */
7056 put2byte(&aData
[hdr
+1], 0);
7057 put2byte(&aData
[hdr
+3], pPg
->nCell
);
7058 put2byte(&aData
[hdr
+5], pData
- aData
);
7059 aData
[hdr
+7] = 0x00;
7064 ** The pCArray objects contains pointers to b-tree cells and the cell sizes.
7065 ** This function attempts to add the cells stored in the array to page pPg.
7066 ** If it cannot (because the page needs to be defragmented before the cells
7067 ** will fit), non-zero is returned. Otherwise, if the cells are added
7068 ** successfully, zero is returned.
7070 ** Argument pCellptr points to the first entry in the cell-pointer array
7071 ** (part of page pPg) to populate. After cell apCell[0] is written to the
7072 ** page body, a 16-bit offset is written to pCellptr. And so on, for each
7073 ** cell in the array. It is the responsibility of the caller to ensure
7074 ** that it is safe to overwrite this part of the cell-pointer array.
7076 ** When this function is called, *ppData points to the start of the
7077 ** content area on page pPg. If the size of the content area is extended,
7078 ** *ppData is updated to point to the new start of the content area
7079 ** before returning.
7081 ** Finally, argument pBegin points to the byte immediately following the
7082 ** end of the space required by this page for the cell-pointer area (for
7083 ** all cells - not just those inserted by the current call). If the content
7084 ** area must be extended to before this point in order to accomodate all
7085 ** cells in apCell[], then the cells do not fit and non-zero is returned.
7087 static int pageInsertArray(
7088 MemPage
*pPg
, /* Page to add cells to */
7089 u8
*pBegin
, /* End of cell-pointer array */
7090 u8
**ppData
, /* IN/OUT: Page content-area pointer */
7091 u8
*pCellptr
, /* Pointer to cell-pointer area */
7092 int iFirst
, /* Index of first cell to add */
7093 int nCell
, /* Number of cells to add to pPg */
7094 CellArray
*pCArray
/* Array of cells */
7096 int i
= iFirst
; /* Loop counter - cell index to insert */
7097 u8
*aData
= pPg
->aData
; /* Complete page */
7098 u8
*pData
= *ppData
; /* Content area. A subset of aData[] */
7099 int iEnd
= iFirst
+ nCell
; /* End of loop. One past last cell to ins */
7100 int k
; /* Current slot in pCArray->apEnd[] */
7101 u8
*pEnd
; /* Maximum extent of cell data */
7102 assert( CORRUPT_DB
|| pPg
->hdrOffset
==0 ); /* Never called on page 1 */
7103 if( iEnd
<=iFirst
) return 0;
7104 for(k
=0; pCArray
->ixNx
[k
]<=i
&& ALWAYS(k
<NB
*2); k
++){}
7105 pEnd
= pCArray
->apEnd
[k
];
7106 while( 1 /*Exit by break*/ ){
7109 assert( pCArray
->szCell
[i
]!=0 );
7110 sz
= pCArray
->szCell
[i
];
7111 if( (aData
[1]==0 && aData
[2]==0) || (pSlot
= pageFindSlot(pPg
,sz
,&rc
))==0 ){
7112 if( (pData
- pBegin
)<sz
) return 1;
7116 /* pSlot and pCArray->apCell[i] will never overlap on a well-formed
7117 ** database. But they might for a corrupt database. Hence use memmove()
7118 ** since memcpy() sends SIGABORT with overlapping buffers on OpenBSD */
7119 assert( (pSlot
+sz
)<=pCArray
->apCell
[i
]
7120 || pSlot
>=(pCArray
->apCell
[i
]+sz
)
7122 if( (uptr
)(pCArray
->apCell
[i
]+sz
)>(uptr
)pEnd
7123 && (uptr
)(pCArray
->apCell
[i
])<(uptr
)pEnd
7125 assert( CORRUPT_DB
);
7126 (void)SQLITE_CORRUPT_BKPT
;
7129 memmove(pSlot
, pCArray
->apCell
[i
], sz
);
7130 put2byte(pCellptr
, (pSlot
- aData
));
7133 if( i
>=iEnd
) break;
7134 if( pCArray
->ixNx
[k
]<=i
){
7136 pEnd
= pCArray
->apEnd
[k
];
7144 ** The pCArray object contains pointers to b-tree cells and their sizes.
7146 ** This function adds the space associated with each cell in the array
7147 ** that is currently stored within the body of pPg to the pPg free-list.
7148 ** The cell-pointers and other fields of the page are not updated.
7150 ** This function returns the total number of cells added to the free-list.
7152 static int pageFreeArray(
7153 MemPage
*pPg
, /* Page to edit */
7154 int iFirst
, /* First cell to delete */
7155 int nCell
, /* Cells to delete */
7156 CellArray
*pCArray
/* Array of cells */
7158 u8
* const aData
= pPg
->aData
;
7159 u8
* const pEnd
= &aData
[pPg
->pBt
->usableSize
];
7160 u8
* const pStart
= &aData
[pPg
->hdrOffset
+ 8 + pPg
->childPtrSize
];
7163 int iEnd
= iFirst
+ nCell
;
7167 for(i
=iFirst
; i
<iEnd
; i
++){
7168 u8
*pCell
= pCArray
->apCell
[i
];
7169 if( SQLITE_WITHIN(pCell
, pStart
, pEnd
) ){
7171 /* No need to use cachedCellSize() here. The sizes of all cells that
7172 ** are to be freed have already been computing while deciding which
7173 ** cells need freeing */
7174 sz
= pCArray
->szCell
[i
]; assert( sz
>0 );
7175 if( pFree
!=(pCell
+ sz
) ){
7177 assert( pFree
>aData
&& (pFree
- aData
)<65536 );
7178 freeSpace(pPg
, (u16
)(pFree
- aData
), szFree
);
7182 if( pFree
+sz
>pEnd
){
7193 assert( pFree
>aData
&& (pFree
- aData
)<65536 );
7194 freeSpace(pPg
, (u16
)(pFree
- aData
), szFree
);
7200 ** pCArray contains pointers to and sizes of all cells in the page being
7201 ** balanced. The current page, pPg, has pPg->nCell cells starting with
7202 ** pCArray->apCell[iOld]. After balancing, this page should hold nNew cells
7203 ** starting at apCell[iNew].
7205 ** This routine makes the necessary adjustments to pPg so that it contains
7206 ** the correct cells after being balanced.
7208 ** The pPg->nFree field is invalid when this function returns. It is the
7209 ** responsibility of the caller to set it correctly.
7211 static int editPage(
7212 MemPage
*pPg
, /* Edit this page */
7213 int iOld
, /* Index of first cell currently on page */
7214 int iNew
, /* Index of new first cell on page */
7215 int nNew
, /* Final number of cells on page */
7216 CellArray
*pCArray
/* Array of cells and sizes */
7218 u8
* const aData
= pPg
->aData
;
7219 const int hdr
= pPg
->hdrOffset
;
7220 u8
*pBegin
= &pPg
->aCellIdx
[nNew
* 2];
7221 int nCell
= pPg
->nCell
; /* Cells stored on pPg */
7225 int iOldEnd
= iOld
+ pPg
->nCell
+ pPg
->nOverflow
;
7226 int iNewEnd
= iNew
+ nNew
;
7229 u8
*pTmp
= sqlite3PagerTempSpace(pPg
->pBt
->pPager
);
7230 memcpy(pTmp
, aData
, pPg
->pBt
->usableSize
);
7233 /* Remove cells from the start and end of the page */
7236 int nShift
= pageFreeArray(pPg
, iOld
, iNew
-iOld
, pCArray
);
7237 if( NEVER(nShift
>nCell
) ) return SQLITE_CORRUPT_BKPT
;
7238 memmove(pPg
->aCellIdx
, &pPg
->aCellIdx
[nShift
*2], nCell
*2);
7241 if( iNewEnd
< iOldEnd
){
7242 int nTail
= pageFreeArray(pPg
, iNewEnd
, iOldEnd
- iNewEnd
, pCArray
);
7243 assert( nCell
>=nTail
);
7247 pData
= &aData
[get2byteNotZero(&aData
[hdr
+5])];
7248 if( pData
<pBegin
) goto editpage_fail
;
7250 /* Add cells to the start of the page */
7252 int nAdd
= MIN(nNew
,iOld
-iNew
);
7253 assert( (iOld
-iNew
)<nNew
|| nCell
==0 || CORRUPT_DB
);
7255 pCellptr
= pPg
->aCellIdx
;
7256 memmove(&pCellptr
[nAdd
*2], pCellptr
, nCell
*2);
7257 if( pageInsertArray(
7258 pPg
, pBegin
, &pData
, pCellptr
,
7260 ) ) goto editpage_fail
;
7264 /* Add any overflow cells */
7265 for(i
=0; i
<pPg
->nOverflow
; i
++){
7266 int iCell
= (iOld
+ pPg
->aiOvfl
[i
]) - iNew
;
7267 if( iCell
>=0 && iCell
<nNew
){
7268 pCellptr
= &pPg
->aCellIdx
[iCell
* 2];
7270 memmove(&pCellptr
[2], pCellptr
, (nCell
- iCell
) * 2);
7273 cachedCellSize(pCArray
, iCell
+iNew
);
7274 if( pageInsertArray(
7275 pPg
, pBegin
, &pData
, pCellptr
,
7276 iCell
+iNew
, 1, pCArray
7277 ) ) goto editpage_fail
;
7281 /* Append cells to the end of the page */
7283 pCellptr
= &pPg
->aCellIdx
[nCell
*2];
7284 if( pageInsertArray(
7285 pPg
, pBegin
, &pData
, pCellptr
,
7286 iNew
+nCell
, nNew
-nCell
, pCArray
7287 ) ) goto editpage_fail
;
7292 put2byte(&aData
[hdr
+3], pPg
->nCell
);
7293 put2byte(&aData
[hdr
+5], pData
- aData
);
7296 for(i
=0; i
<nNew
&& !CORRUPT_DB
; i
++){
7297 u8
*pCell
= pCArray
->apCell
[i
+iNew
];
7298 int iOff
= get2byteAligned(&pPg
->aCellIdx
[i
*2]);
7299 if( SQLITE_WITHIN(pCell
, aData
, &aData
[pPg
->pBt
->usableSize
]) ){
7300 pCell
= &pTmp
[pCell
- aData
];
7302 assert( 0==memcmp(pCell
, &aData
[iOff
],
7303 pCArray
->pRef
->xCellSize(pCArray
->pRef
, pCArray
->apCell
[i
+iNew
])) );
7309 /* Unable to edit this page. Rebuild it from scratch instead. */
7310 populateCellCache(pCArray
, iNew
, nNew
);
7311 return rebuildPage(pCArray
, iNew
, nNew
, pPg
);
7315 #ifndef SQLITE_OMIT_QUICKBALANCE
7317 ** This version of balance() handles the common special case where
7318 ** a new entry is being inserted on the extreme right-end of the
7319 ** tree, in other words, when the new entry will become the largest
7320 ** entry in the tree.
7322 ** Instead of trying to balance the 3 right-most leaf pages, just add
7323 ** a new page to the right-hand side and put the one new entry in
7324 ** that page. This leaves the right side of the tree somewhat
7325 ** unbalanced. But odds are that we will be inserting new entries
7326 ** at the end soon afterwards so the nearly empty page will quickly
7327 ** fill up. On average.
7329 ** pPage is the leaf page which is the right-most page in the tree.
7330 ** pParent is its parent. pPage must have a single overflow entry
7331 ** which is also the right-most entry on the page.
7333 ** The pSpace buffer is used to store a temporary copy of the divider
7334 ** cell that will be inserted into pParent. Such a cell consists of a 4
7335 ** byte page number followed by a variable length integer. In other
7336 ** words, at most 13 bytes. Hence the pSpace buffer must be at
7337 ** least 13 bytes in size.
7339 static int balance_quick(MemPage
*pParent
, MemPage
*pPage
, u8
*pSpace
){
7340 BtShared
*const pBt
= pPage
->pBt
; /* B-Tree Database */
7341 MemPage
*pNew
; /* Newly allocated page */
7342 int rc
; /* Return Code */
7343 Pgno pgnoNew
; /* Page number of pNew */
7345 assert( sqlite3_mutex_held(pPage
->pBt
->mutex
) );
7346 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
7347 assert( pPage
->nOverflow
==1 );
7349 if( pPage
->nCell
==0 ) return SQLITE_CORRUPT_BKPT
; /* dbfuzz001.test */
7350 assert( pPage
->nFree
>=0 );
7351 assert( pParent
->nFree
>=0 );
7353 /* Allocate a new page. This page will become the right-sibling of
7354 ** pPage. Make the parent page writable, so that the new divider cell
7355 ** may be inserted. If both these operations are successful, proceed.
7357 rc
= allocateBtreePage(pBt
, &pNew
, &pgnoNew
, 0, 0);
7359 if( rc
==SQLITE_OK
){
7361 u8
*pOut
= &pSpace
[4];
7362 u8
*pCell
= pPage
->apOvfl
[0];
7363 u16 szCell
= pPage
->xCellSize(pPage
, pCell
);
7367 assert( sqlite3PagerIswriteable(pNew
->pDbPage
) );
7368 assert( CORRUPT_DB
|| pPage
->aData
[0]==(PTF_INTKEY
|PTF_LEAFDATA
|PTF_LEAF
) );
7369 zeroPage(pNew
, PTF_INTKEY
|PTF_LEAFDATA
|PTF_LEAF
);
7374 b
.apEnd
[0] = pPage
->aDataEnd
;
7376 rc
= rebuildPage(&b
, 0, 1, pNew
);
7381 pNew
->nFree
= pBt
->usableSize
- pNew
->cellOffset
- 2 - szCell
;
7383 /* If this is an auto-vacuum database, update the pointer map
7384 ** with entries for the new page, and any pointer from the
7385 ** cell on the page to an overflow page. If either of these
7386 ** operations fails, the return code is set, but the contents
7387 ** of the parent page are still manipulated by thh code below.
7388 ** That is Ok, at this point the parent page is guaranteed to
7389 ** be marked as dirty. Returning an error code will cause a
7390 ** rollback, undoing any changes made to the parent page.
7393 ptrmapPut(pBt
, pgnoNew
, PTRMAP_BTREE
, pParent
->pgno
, &rc
);
7394 if( szCell
>pNew
->minLocal
){
7395 ptrmapPutOvflPtr(pNew
, pNew
, pCell
, &rc
);
7399 /* Create a divider cell to insert into pParent. The divider cell
7400 ** consists of a 4-byte page number (the page number of pPage) and
7401 ** a variable length key value (which must be the same value as the
7402 ** largest key on pPage).
7404 ** To find the largest key value on pPage, first find the right-most
7405 ** cell on pPage. The first two fields of this cell are the
7406 ** record-length (a variable length integer at most 32-bits in size)
7407 ** and the key value (a variable length integer, may have any value).
7408 ** The first of the while(...) loops below skips over the record-length
7409 ** field. The second while(...) loop copies the key value from the
7410 ** cell on pPage into the pSpace buffer.
7412 pCell
= findCell(pPage
, pPage
->nCell
-1);
7414 while( (*(pCell
++)&0x80) && pCell
<pStop
);
7416 while( ((*(pOut
++) = *(pCell
++))&0x80) && pCell
<pStop
);
7418 /* Insert the new divider cell into pParent. */
7419 if( rc
==SQLITE_OK
){
7420 insertCell(pParent
, pParent
->nCell
, pSpace
, (int)(pOut
-pSpace
),
7421 0, pPage
->pgno
, &rc
);
7424 /* Set the right-child pointer of pParent to point to the new page. */
7425 put4byte(&pParent
->aData
[pParent
->hdrOffset
+8], pgnoNew
);
7427 /* Release the reference to the new page. */
7433 #endif /* SQLITE_OMIT_QUICKBALANCE */
7437 ** This function does not contribute anything to the operation of SQLite.
7438 ** it is sometimes activated temporarily while debugging code responsible
7439 ** for setting pointer-map entries.
7441 static int ptrmapCheckPages(MemPage
**apPage
, int nPage
){
7443 for(i
=0; i
<nPage
; i
++){
7446 MemPage
*pPage
= apPage
[i
];
7447 BtShared
*pBt
= pPage
->pBt
;
7448 assert( pPage
->isInit
);
7450 for(j
=0; j
<pPage
->nCell
; j
++){
7454 z
= findCell(pPage
, j
);
7455 pPage
->xParseCell(pPage
, z
, &info
);
7456 if( info
.nLocal
<info
.nPayload
){
7457 Pgno ovfl
= get4byte(&z
[info
.nSize
-4]);
7458 ptrmapGet(pBt
, ovfl
, &e
, &n
);
7459 assert( n
==pPage
->pgno
&& e
==PTRMAP_OVERFLOW1
);
7462 Pgno child
= get4byte(z
);
7463 ptrmapGet(pBt
, child
, &e
, &n
);
7464 assert( n
==pPage
->pgno
&& e
==PTRMAP_BTREE
);
7468 Pgno child
= get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]);
7469 ptrmapGet(pBt
, child
, &e
, &n
);
7470 assert( n
==pPage
->pgno
&& e
==PTRMAP_BTREE
);
7478 ** This function is used to copy the contents of the b-tree node stored
7479 ** on page pFrom to page pTo. If page pFrom was not a leaf page, then
7480 ** the pointer-map entries for each child page are updated so that the
7481 ** parent page stored in the pointer map is page pTo. If pFrom contained
7482 ** any cells with overflow page pointers, then the corresponding pointer
7483 ** map entries are also updated so that the parent page is page pTo.
7485 ** If pFrom is currently carrying any overflow cells (entries in the
7486 ** MemPage.apOvfl[] array), they are not copied to pTo.
7488 ** Before returning, page pTo is reinitialized using btreeInitPage().
7490 ** The performance of this function is not critical. It is only used by
7491 ** the balance_shallower() and balance_deeper() procedures, neither of
7492 ** which are called often under normal circumstances.
7494 static void copyNodeContent(MemPage
*pFrom
, MemPage
*pTo
, int *pRC
){
7495 if( (*pRC
)==SQLITE_OK
){
7496 BtShared
* const pBt
= pFrom
->pBt
;
7497 u8
* const aFrom
= pFrom
->aData
;
7498 u8
* const aTo
= pTo
->aData
;
7499 int const iFromHdr
= pFrom
->hdrOffset
;
7500 int const iToHdr
= ((pTo
->pgno
==1) ? 100 : 0);
7505 assert( pFrom
->isInit
);
7506 assert( pFrom
->nFree
>=iToHdr
);
7507 assert( get2byte(&aFrom
[iFromHdr
+5]) <= (int)pBt
->usableSize
);
7509 /* Copy the b-tree node content from page pFrom to page pTo. */
7510 iData
= get2byte(&aFrom
[iFromHdr
+5]);
7511 memcpy(&aTo
[iData
], &aFrom
[iData
], pBt
->usableSize
-iData
);
7512 memcpy(&aTo
[iToHdr
], &aFrom
[iFromHdr
], pFrom
->cellOffset
+ 2*pFrom
->nCell
);
7514 /* Reinitialize page pTo so that the contents of the MemPage structure
7515 ** match the new data. The initialization of pTo can actually fail under
7516 ** fairly obscure circumstances, even though it is a copy of initialized
7520 rc
= btreeInitPage(pTo
);
7521 if( rc
==SQLITE_OK
) rc
= btreeComputeFreeSpace(pTo
);
7522 if( rc
!=SQLITE_OK
){
7527 /* If this is an auto-vacuum database, update the pointer-map entries
7528 ** for any b-tree or overflow pages that pTo now contains the pointers to.
7531 *pRC
= setChildPtrmaps(pTo
);
7537 ** This routine redistributes cells on the iParentIdx'th child of pParent
7538 ** (hereafter "the page") and up to 2 siblings so that all pages have about the
7539 ** same amount of free space. Usually a single sibling on either side of the
7540 ** page are used in the balancing, though both siblings might come from one
7541 ** side if the page is the first or last child of its parent. If the page
7542 ** has fewer than 2 siblings (something which can only happen if the page
7543 ** is a root page or a child of a root page) then all available siblings
7544 ** participate in the balancing.
7546 ** The number of siblings of the page might be increased or decreased by
7547 ** one or two in an effort to keep pages nearly full but not over full.
7549 ** Note that when this routine is called, some of the cells on the page
7550 ** might not actually be stored in MemPage.aData[]. This can happen
7551 ** if the page is overfull. This routine ensures that all cells allocated
7552 ** to the page and its siblings fit into MemPage.aData[] before returning.
7554 ** In the course of balancing the page and its siblings, cells may be
7555 ** inserted into or removed from the parent page (pParent). Doing so
7556 ** may cause the parent page to become overfull or underfull. If this
7557 ** happens, it is the responsibility of the caller to invoke the correct
7558 ** balancing routine to fix this problem (see the balance() routine).
7560 ** If this routine fails for any reason, it might leave the database
7561 ** in a corrupted state. So if this routine fails, the database should
7564 ** The third argument to this function, aOvflSpace, is a pointer to a
7565 ** buffer big enough to hold one page. If while inserting cells into the parent
7566 ** page (pParent) the parent page becomes overfull, this buffer is
7567 ** used to store the parent's overflow cells. Because this function inserts
7568 ** a maximum of four divider cells into the parent page, and the maximum
7569 ** size of a cell stored within an internal node is always less than 1/4
7570 ** of the page-size, the aOvflSpace[] buffer is guaranteed to be large
7571 ** enough for all overflow cells.
7573 ** If aOvflSpace is set to a null pointer, this function returns
7576 static int balance_nonroot(
7577 MemPage
*pParent
, /* Parent page of siblings being balanced */
7578 int iParentIdx
, /* Index of "the page" in pParent */
7579 u8
*aOvflSpace
, /* page-size bytes of space for parent ovfl */
7580 int isRoot
, /* True if pParent is a root-page */
7581 int bBulk
/* True if this call is part of a bulk load */
7583 BtShared
*pBt
; /* The whole database */
7584 int nMaxCells
= 0; /* Allocated size of apCell, szCell, aFrom. */
7585 int nNew
= 0; /* Number of pages in apNew[] */
7586 int nOld
; /* Number of pages in apOld[] */
7587 int i
, j
, k
; /* Loop counters */
7588 int nxDiv
; /* Next divider slot in pParent->aCell[] */
7589 int rc
= SQLITE_OK
; /* The return code */
7590 u16 leafCorrection
; /* 4 if pPage is a leaf. 0 if not */
7591 int leafData
; /* True if pPage is a leaf of a LEAFDATA tree */
7592 int usableSpace
; /* Bytes in pPage beyond the header */
7593 int pageFlags
; /* Value of pPage->aData[0] */
7594 int iSpace1
= 0; /* First unused byte of aSpace1[] */
7595 int iOvflSpace
= 0; /* First unused byte of aOvflSpace[] */
7596 int szScratch
; /* Size of scratch memory requested */
7597 MemPage
*apOld
[NB
]; /* pPage and up to two siblings */
7598 MemPage
*apNew
[NB
+2]; /* pPage and up to NB siblings after balancing */
7599 u8
*pRight
; /* Location in parent of right-sibling pointer */
7600 u8
*apDiv
[NB
-1]; /* Divider cells in pParent */
7601 int cntNew
[NB
+2]; /* Index in b.paCell[] of cell after i-th page */
7602 int cntOld
[NB
+2]; /* Old index in b.apCell[] */
7603 int szNew
[NB
+2]; /* Combined size of cells placed on i-th page */
7604 u8
*aSpace1
; /* Space for copies of dividers cells */
7605 Pgno pgno
; /* Temp var to store a page number in */
7606 u8 abDone
[NB
+2]; /* True after i'th new page is populated */
7607 Pgno aPgno
[NB
+2]; /* Page numbers of new pages before shuffling */
7608 Pgno aPgOrder
[NB
+2]; /* Copy of aPgno[] used for sorting pages */
7609 u16 aPgFlags
[NB
+2]; /* flags field of new pages before shuffling */
7610 CellArray b
; /* Parsed information on cells being balanced */
7612 memset(abDone
, 0, sizeof(abDone
));
7616 assert( sqlite3_mutex_held(pBt
->mutex
) );
7617 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
7619 /* At this point pParent may have at most one overflow cell. And if
7620 ** this overflow cell is present, it must be the cell with
7621 ** index iParentIdx. This scenario comes about when this function
7622 ** is called (indirectly) from sqlite3BtreeDelete().
7624 assert( pParent
->nOverflow
==0 || pParent
->nOverflow
==1 );
7625 assert( pParent
->nOverflow
==0 || pParent
->aiOvfl
[0]==iParentIdx
);
7628 return SQLITE_NOMEM_BKPT
;
7630 assert( pParent
->nFree
>=0 );
7632 /* Find the sibling pages to balance. Also locate the cells in pParent
7633 ** that divide the siblings. An attempt is made to find NN siblings on
7634 ** either side of pPage. More siblings are taken from one side, however,
7635 ** if there are fewer than NN siblings on the other side. If pParent
7636 ** has NB or fewer children then all children of pParent are taken.
7638 ** This loop also drops the divider cells from the parent page. This
7639 ** way, the remainder of the function does not have to deal with any
7640 ** overflow cells in the parent page, since if any existed they will
7641 ** have already been removed.
7643 i
= pParent
->nOverflow
+ pParent
->nCell
;
7647 assert( bBulk
==0 || bBulk
==1 );
7648 if( iParentIdx
==0 ){
7650 }else if( iParentIdx
==i
){
7653 nxDiv
= iParentIdx
-1;
7658 if( (i
+nxDiv
-pParent
->nOverflow
)==pParent
->nCell
){
7659 pRight
= &pParent
->aData
[pParent
->hdrOffset
+8];
7661 pRight
= findCell(pParent
, i
+nxDiv
-pParent
->nOverflow
);
7663 pgno
= get4byte(pRight
);
7665 if( rc
==SQLITE_OK
){
7666 rc
= getAndInitPage(pBt
, pgno
, &apOld
[i
], 0, 0);
7669 memset(apOld
, 0, (i
+1)*sizeof(MemPage
*));
7670 goto balance_cleanup
;
7672 if( apOld
[i
]->nFree
<0 ){
7673 rc
= btreeComputeFreeSpace(apOld
[i
]);
7675 memset(apOld
, 0, (i
)*sizeof(MemPage
*));
7676 goto balance_cleanup
;
7679 if( (i
--)==0 ) break;
7681 if( pParent
->nOverflow
&& i
+nxDiv
==pParent
->aiOvfl
[0] ){
7682 apDiv
[i
] = pParent
->apOvfl
[0];
7683 pgno
= get4byte(apDiv
[i
]);
7684 szNew
[i
] = pParent
->xCellSize(pParent
, apDiv
[i
]);
7685 pParent
->nOverflow
= 0;
7687 apDiv
[i
] = findCell(pParent
, i
+nxDiv
-pParent
->nOverflow
);
7688 pgno
= get4byte(apDiv
[i
]);
7689 szNew
[i
] = pParent
->xCellSize(pParent
, apDiv
[i
]);
7691 /* Drop the cell from the parent page. apDiv[i] still points to
7692 ** the cell within the parent, even though it has been dropped.
7693 ** This is safe because dropping a cell only overwrites the first
7694 ** four bytes of it, and this function does not need the first
7695 ** four bytes of the divider cell. So the pointer is safe to use
7698 ** But not if we are in secure-delete mode. In secure-delete mode,
7699 ** the dropCell() routine will overwrite the entire cell with zeroes.
7700 ** In this case, temporarily copy the cell into the aOvflSpace[]
7701 ** buffer. It will be copied out again as soon as the aSpace[] buffer
7703 if( pBt
->btsFlags
& BTS_FAST_SECURE
){
7706 /* If the following if() condition is not true, the db is corrupted.
7707 ** The call to dropCell() below will detect this. */
7708 iOff
= SQLITE_PTR_TO_INT(apDiv
[i
]) - SQLITE_PTR_TO_INT(pParent
->aData
);
7709 if( (iOff
+szNew
[i
])<=(int)pBt
->usableSize
){
7710 memcpy(&aOvflSpace
[iOff
], apDiv
[i
], szNew
[i
]);
7711 apDiv
[i
] = &aOvflSpace
[apDiv
[i
]-pParent
->aData
];
7714 dropCell(pParent
, i
+nxDiv
-pParent
->nOverflow
, szNew
[i
], &rc
);
7718 /* Make nMaxCells a multiple of 4 in order to preserve 8-byte
7720 nMaxCells
= nOld
*(MX_CELL(pBt
) + ArraySize(pParent
->apOvfl
));
7721 nMaxCells
= (nMaxCells
+ 3)&~3;
7724 ** Allocate space for memory structures
7727 nMaxCells
*sizeof(u8
*) /* b.apCell */
7728 + nMaxCells
*sizeof(u16
) /* b.szCell */
7729 + pBt
->pageSize
; /* aSpace1 */
7731 assert( szScratch
<=7*(int)pBt
->pageSize
);
7732 b
.apCell
= sqlite3StackAllocRaw(0, szScratch
);
7734 rc
= SQLITE_NOMEM_BKPT
;
7735 goto balance_cleanup
;
7737 b
.szCell
= (u16
*)&b
.apCell
[nMaxCells
];
7738 aSpace1
= (u8
*)&b
.szCell
[nMaxCells
];
7739 assert( EIGHT_BYTE_ALIGNMENT(aSpace1
) );
7742 ** Load pointers to all cells on sibling pages and the divider cells
7743 ** into the local b.apCell[] array. Make copies of the divider cells
7744 ** into space obtained from aSpace1[]. The divider cells have already
7745 ** been removed from pParent.
7747 ** If the siblings are on leaf pages, then the child pointers of the
7748 ** divider cells are stripped from the cells before they are copied
7749 ** into aSpace1[]. In this way, all cells in b.apCell[] are without
7750 ** child pointers. If siblings are not leaves, then all cell in
7751 ** b.apCell[] include child pointers. Either way, all cells in b.apCell[]
7754 ** leafCorrection: 4 if pPage is a leaf. 0 if pPage is not a leaf.
7755 ** leafData: 1 if pPage holds key+data and pParent holds only keys.
7758 leafCorrection
= b
.pRef
->leaf
*4;
7759 leafData
= b
.pRef
->intKeyLeaf
;
7760 for(i
=0; i
<nOld
; i
++){
7761 MemPage
*pOld
= apOld
[i
];
7762 int limit
= pOld
->nCell
;
7763 u8
*aData
= pOld
->aData
;
7764 u16 maskPage
= pOld
->maskPage
;
7765 u8
*piCell
= aData
+ pOld
->cellOffset
;
7767 VVA_ONLY( int nCellAtStart
= b
.nCell
; )
7769 /* Verify that all sibling pages are of the same "type" (table-leaf,
7770 ** table-interior, index-leaf, or index-interior).
7772 if( pOld
->aData
[0]!=apOld
[0]->aData
[0] ){
7773 rc
= SQLITE_CORRUPT_BKPT
;
7774 goto balance_cleanup
;
7777 /* Load b.apCell[] with pointers to all cells in pOld. If pOld
7778 ** contains overflow cells, include them in the b.apCell[] array
7779 ** in the correct spot.
7781 ** Note that when there are multiple overflow cells, it is always the
7782 ** case that they are sequential and adjacent. This invariant arises
7783 ** because multiple overflows can only occurs when inserting divider
7784 ** cells into a parent on a prior balance, and divider cells are always
7785 ** adjacent and are inserted in order. There is an assert() tagged
7786 ** with "NOTE 1" in the overflow cell insertion loop to prove this
7789 ** This must be done in advance. Once the balance starts, the cell
7790 ** offset section of the btree page will be overwritten and we will no
7791 ** long be able to find the cells if a pointer to each cell is not saved
7794 memset(&b
.szCell
[b
.nCell
], 0, sizeof(b
.szCell
[0])*(limit
+pOld
->nOverflow
));
7795 if( pOld
->nOverflow
>0 ){
7796 if( NEVER(limit
<pOld
->aiOvfl
[0]) ){
7797 rc
= SQLITE_CORRUPT_BKPT
;
7798 goto balance_cleanup
;
7800 limit
= pOld
->aiOvfl
[0];
7801 for(j
=0; j
<limit
; j
++){
7802 b
.apCell
[b
.nCell
] = aData
+ (maskPage
& get2byteAligned(piCell
));
7806 for(k
=0; k
<pOld
->nOverflow
; k
++){
7807 assert( k
==0 || pOld
->aiOvfl
[k
-1]+1==pOld
->aiOvfl
[k
] );/* NOTE 1 */
7808 b
.apCell
[b
.nCell
] = pOld
->apOvfl
[k
];
7812 piEnd
= aData
+ pOld
->cellOffset
+ 2*pOld
->nCell
;
7813 while( piCell
<piEnd
){
7814 assert( b
.nCell
<nMaxCells
);
7815 b
.apCell
[b
.nCell
] = aData
+ (maskPage
& get2byteAligned(piCell
));
7819 assert( (b
.nCell
-nCellAtStart
)==(pOld
->nCell
+pOld
->nOverflow
) );
7821 cntOld
[i
] = b
.nCell
;
7822 if( i
<nOld
-1 && !leafData
){
7823 u16 sz
= (u16
)szNew
[i
];
7825 assert( b
.nCell
<nMaxCells
);
7826 b
.szCell
[b
.nCell
] = sz
;
7827 pTemp
= &aSpace1
[iSpace1
];
7829 assert( sz
<=pBt
->maxLocal
+23 );
7830 assert( iSpace1
<= (int)pBt
->pageSize
);
7831 memcpy(pTemp
, apDiv
[i
], sz
);
7832 b
.apCell
[b
.nCell
] = pTemp
+leafCorrection
;
7833 assert( leafCorrection
==0 || leafCorrection
==4 );
7834 b
.szCell
[b
.nCell
] = b
.szCell
[b
.nCell
] - leafCorrection
;
7836 assert( leafCorrection
==0 );
7837 assert( pOld
->hdrOffset
==0 || CORRUPT_DB
);
7838 /* The right pointer of the child page pOld becomes the left
7839 ** pointer of the divider cell */
7840 memcpy(b
.apCell
[b
.nCell
], &pOld
->aData
[8], 4);
7842 assert( leafCorrection
==4 );
7843 while( b
.szCell
[b
.nCell
]<4 ){
7844 /* Do not allow any cells smaller than 4 bytes. If a smaller cell
7845 ** does exist, pad it with 0x00 bytes. */
7846 assert( b
.szCell
[b
.nCell
]==3 || CORRUPT_DB
);
7847 assert( b
.apCell
[b
.nCell
]==&aSpace1
[iSpace1
-3] || CORRUPT_DB
);
7848 aSpace1
[iSpace1
++] = 0x00;
7849 b
.szCell
[b
.nCell
]++;
7857 ** Figure out the number of pages needed to hold all b.nCell cells.
7858 ** Store this number in "k". Also compute szNew[] which is the total
7859 ** size of all cells on the i-th page and cntNew[] which is the index
7860 ** in b.apCell[] of the cell that divides page i from page i+1.
7861 ** cntNew[k] should equal b.nCell.
7863 ** Values computed by this block:
7865 ** k: The total number of sibling pages
7866 ** szNew[i]: Spaced used on the i-th sibling page.
7867 ** cntNew[i]: Index in b.apCell[] and b.szCell[] for the first cell to
7868 ** the right of the i-th sibling page.
7869 ** usableSpace: Number of bytes of space available on each sibling.
7872 usableSpace
= pBt
->usableSize
- 12 + leafCorrection
;
7873 for(i
=k
=0; i
<nOld
; i
++, k
++){
7874 MemPage
*p
= apOld
[i
];
7875 b
.apEnd
[k
] = p
->aDataEnd
;
7876 b
.ixNx
[k
] = cntOld
[i
];
7877 if( k
&& b
.ixNx
[k
]==b
.ixNx
[k
-1] ){
7878 k
--; /* Omit b.ixNx[] entry for child pages with no cells */
7882 b
.apEnd
[k
] = pParent
->aDataEnd
;
7883 b
.ixNx
[k
] = cntOld
[i
]+1;
7885 assert( p
->nFree
>=0 );
7886 szNew
[i
] = usableSpace
- p
->nFree
;
7887 for(j
=0; j
<p
->nOverflow
; j
++){
7888 szNew
[i
] += 2 + p
->xCellSize(p
, p
->apOvfl
[j
]);
7890 cntNew
[i
] = cntOld
[i
];
7895 while( szNew
[i
]>usableSpace
){
7898 if( k
>NB
+2 ){ rc
= SQLITE_CORRUPT_BKPT
; goto balance_cleanup
; }
7900 cntNew
[k
-1] = b
.nCell
;
7902 sz
= 2 + cachedCellSize(&b
, cntNew
[i
]-1);
7905 if( cntNew
[i
]<b
.nCell
){
7906 sz
= 2 + cachedCellSize(&b
, cntNew
[i
]);
7914 while( cntNew
[i
]<b
.nCell
){
7915 sz
= 2 + cachedCellSize(&b
, cntNew
[i
]);
7916 if( szNew
[i
]+sz
>usableSpace
) break;
7920 if( cntNew
[i
]<b
.nCell
){
7921 sz
= 2 + cachedCellSize(&b
, cntNew
[i
]);
7928 if( cntNew
[i
]>=b
.nCell
){
7930 }else if( cntNew
[i
] <= (i
>0 ? cntNew
[i
-1] : 0) ){
7931 rc
= SQLITE_CORRUPT_BKPT
;
7932 goto balance_cleanup
;
7937 ** The packing computed by the previous block is biased toward the siblings
7938 ** on the left side (siblings with smaller keys). The left siblings are
7939 ** always nearly full, while the right-most sibling might be nearly empty.
7940 ** The next block of code attempts to adjust the packing of siblings to
7941 ** get a better balance.
7943 ** This adjustment is more than an optimization. The packing above might
7944 ** be so out of balance as to be illegal. For example, the right-most
7945 ** sibling might be completely empty. This adjustment is not optional.
7947 for(i
=k
-1; i
>0; i
--){
7948 int szRight
= szNew
[i
]; /* Size of sibling on the right */
7949 int szLeft
= szNew
[i
-1]; /* Size of sibling on the left */
7950 int r
; /* Index of right-most cell in left sibling */
7951 int d
; /* Index of first cell to the left of right sibling */
7953 r
= cntNew
[i
-1] - 1;
7954 d
= r
+ 1 - leafData
;
7955 (void)cachedCellSize(&b
, d
);
7957 assert( d
<nMaxCells
);
7958 assert( r
<nMaxCells
);
7959 (void)cachedCellSize(&b
, r
);
7961 && (bBulk
|| szRight
+b
.szCell
[d
]+2 > szLeft
-(b
.szCell
[r
]+(i
==k
-1?0:2)))){
7964 szRight
+= b
.szCell
[d
] + 2;
7965 szLeft
-= b
.szCell
[r
] + 2;
7971 szNew
[i
-1] = szLeft
;
7972 if( cntNew
[i
-1] <= (i
>1 ? cntNew
[i
-2] : 0) ){
7973 rc
= SQLITE_CORRUPT_BKPT
;
7974 goto balance_cleanup
;
7978 /* Sanity check: For a non-corrupt database file one of the follwing
7980 ** (1) We found one or more cells (cntNew[0])>0), or
7981 ** (2) pPage is a virtual root page. A virtual root page is when
7982 ** the real root page is page 1 and we are the only child of
7985 assert( cntNew
[0]>0 || (pParent
->pgno
==1 && pParent
->nCell
==0) || CORRUPT_DB
);
7986 TRACE(("BALANCE: old: %d(nc=%d) %d(nc=%d) %d(nc=%d)\n",
7987 apOld
[0]->pgno
, apOld
[0]->nCell
,
7988 nOld
>=2 ? apOld
[1]->pgno
: 0, nOld
>=2 ? apOld
[1]->nCell
: 0,
7989 nOld
>=3 ? apOld
[2]->pgno
: 0, nOld
>=3 ? apOld
[2]->nCell
: 0
7993 ** Allocate k new pages. Reuse old pages where possible.
7995 pageFlags
= apOld
[0]->aData
[0];
7999 pNew
= apNew
[i
] = apOld
[i
];
8001 rc
= sqlite3PagerWrite(pNew
->pDbPage
);
8003 if( sqlite3PagerPageRefcount(pNew
->pDbPage
)!=1+(i
==(iParentIdx
-nxDiv
)) ){
8004 rc
= SQLITE_CORRUPT_BKPT
;
8006 if( rc
) goto balance_cleanup
;
8009 rc
= allocateBtreePage(pBt
, &pNew
, &pgno
, (bBulk
? 1 : pgno
), 0);
8010 if( rc
) goto balance_cleanup
;
8011 zeroPage(pNew
, pageFlags
);
8014 cntOld
[i
] = b
.nCell
;
8016 /* Set the pointer-map entry for the new sibling page. */
8018 ptrmapPut(pBt
, pNew
->pgno
, PTRMAP_BTREE
, pParent
->pgno
, &rc
);
8019 if( rc
!=SQLITE_OK
){
8020 goto balance_cleanup
;
8027 ** Reassign page numbers so that the new pages are in ascending order.
8028 ** This helps to keep entries in the disk file in order so that a scan
8029 ** of the table is closer to a linear scan through the file. That in turn
8030 ** helps the operating system to deliver pages from the disk more rapidly.
8032 ** An O(n^2) insertion sort algorithm is used, but since n is never more
8033 ** than (NB+2) (a small constant), that should not be a problem.
8035 ** When NB==3, this one optimization makes the database about 25% faster
8036 ** for large insertions and deletions.
8038 for(i
=0; i
<nNew
; i
++){
8039 aPgOrder
[i
] = aPgno
[i
] = apNew
[i
]->pgno
;
8040 aPgFlags
[i
] = apNew
[i
]->pDbPage
->flags
;
8042 if( NEVER(aPgno
[j
]==aPgno
[i
]) ){
8043 /* This branch is taken if the set of sibling pages somehow contains
8044 ** duplicate entries. This can happen if the database is corrupt.
8045 ** It would be simpler to detect this as part of the loop below, but
8046 ** we do the detection here in order to avoid populating the pager
8047 ** cache with two separate objects associated with the same
8049 assert( CORRUPT_DB
);
8050 rc
= SQLITE_CORRUPT_BKPT
;
8051 goto balance_cleanup
;
8055 for(i
=0; i
<nNew
; i
++){
8056 int iBest
= 0; /* aPgno[] index of page number to use */
8057 for(j
=1; j
<nNew
; j
++){
8058 if( aPgOrder
[j
]<aPgOrder
[iBest
] ) iBest
= j
;
8060 pgno
= aPgOrder
[iBest
];
8061 aPgOrder
[iBest
] = 0xffffffff;
8064 sqlite3PagerRekey(apNew
[iBest
]->pDbPage
, pBt
->nPage
+iBest
+1, 0);
8066 sqlite3PagerRekey(apNew
[i
]->pDbPage
, pgno
, aPgFlags
[iBest
]);
8067 apNew
[i
]->pgno
= pgno
;
8071 TRACE(("BALANCE: new: %d(%d nc=%d) %d(%d nc=%d) %d(%d nc=%d) "
8072 "%d(%d nc=%d) %d(%d nc=%d)\n",
8073 apNew
[0]->pgno
, szNew
[0], cntNew
[0],
8074 nNew
>=2 ? apNew
[1]->pgno
: 0, nNew
>=2 ? szNew
[1] : 0,
8075 nNew
>=2 ? cntNew
[1] - cntNew
[0] - !leafData
: 0,
8076 nNew
>=3 ? apNew
[2]->pgno
: 0, nNew
>=3 ? szNew
[2] : 0,
8077 nNew
>=3 ? cntNew
[2] - cntNew
[1] - !leafData
: 0,
8078 nNew
>=4 ? apNew
[3]->pgno
: 0, nNew
>=4 ? szNew
[3] : 0,
8079 nNew
>=4 ? cntNew
[3] - cntNew
[2] - !leafData
: 0,
8080 nNew
>=5 ? apNew
[4]->pgno
: 0, nNew
>=5 ? szNew
[4] : 0,
8081 nNew
>=5 ? cntNew
[4] - cntNew
[3] - !leafData
: 0
8084 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
8085 assert( nNew
>=1 && nNew
<=ArraySize(apNew
) );
8086 assert( apNew
[nNew
-1]!=0 );
8087 put4byte(pRight
, apNew
[nNew
-1]->pgno
);
8089 /* If the sibling pages are not leaves, ensure that the right-child pointer
8090 ** of the right-most new sibling page is set to the value that was
8091 ** originally in the same field of the right-most old sibling page. */
8092 if( (pageFlags
& PTF_LEAF
)==0 && nOld
!=nNew
){
8093 MemPage
*pOld
= (nNew
>nOld
? apNew
: apOld
)[nOld
-1];
8094 memcpy(&apNew
[nNew
-1]->aData
[8], &pOld
->aData
[8], 4);
8097 /* Make any required updates to pointer map entries associated with
8098 ** cells stored on sibling pages following the balance operation. Pointer
8099 ** map entries associated with divider cells are set by the insertCell()
8100 ** routine. The associated pointer map entries are:
8102 ** a) if the cell contains a reference to an overflow chain, the
8103 ** entry associated with the first page in the overflow chain, and
8105 ** b) if the sibling pages are not leaves, the child page associated
8108 ** If the sibling pages are not leaves, then the pointer map entry
8109 ** associated with the right-child of each sibling may also need to be
8110 ** updated. This happens below, after the sibling pages have been
8111 ** populated, not here.
8115 MemPage
*pNew
= pOld
= apNew
[0];
8116 int cntOldNext
= pNew
->nCell
+ pNew
->nOverflow
;
8120 for(i
=0; i
<b
.nCell
; i
++){
8121 u8
*pCell
= b
.apCell
[i
];
8122 while( i
==cntOldNext
){
8124 assert( iOld
<nNew
|| iOld
<nOld
);
8125 assert( iOld
>=0 && iOld
<NB
);
8126 pOld
= iOld
<nNew
? apNew
[iOld
] : apOld
[iOld
];
8127 cntOldNext
+= pOld
->nCell
+ pOld
->nOverflow
+ !leafData
;
8129 if( i
==cntNew
[iNew
] ){
8130 pNew
= apNew
[++iNew
];
8131 if( !leafData
) continue;
8134 /* Cell pCell is destined for new sibling page pNew. Originally, it
8135 ** was either part of sibling page iOld (possibly an overflow cell),
8136 ** or else the divider cell to the left of sibling page iOld. So,
8137 ** if sibling page iOld had the same page number as pNew, and if
8138 ** pCell really was a part of sibling page iOld (not a divider or
8139 ** overflow cell), we can skip updating the pointer map entries. */
8141 || pNew
->pgno
!=aPgno
[iOld
]
8142 || !SQLITE_WITHIN(pCell
,pOld
->aData
,pOld
->aDataEnd
)
8144 if( !leafCorrection
){
8145 ptrmapPut(pBt
, get4byte(pCell
), PTRMAP_BTREE
, pNew
->pgno
, &rc
);
8147 if( cachedCellSize(&b
,i
)>pNew
->minLocal
){
8148 ptrmapPutOvflPtr(pNew
, pOld
, pCell
, &rc
);
8150 if( rc
) goto balance_cleanup
;
8155 /* Insert new divider cells into pParent. */
8156 for(i
=0; i
<nNew
-1; i
++){
8161 MemPage
*pNew
= apNew
[i
];
8164 assert( j
<nMaxCells
);
8165 assert( b
.apCell
[j
]!=0 );
8166 pCell
= b
.apCell
[j
];
8167 sz
= b
.szCell
[j
] + leafCorrection
;
8168 pTemp
= &aOvflSpace
[iOvflSpace
];
8170 memcpy(&pNew
->aData
[8], pCell
, 4);
8171 }else if( leafData
){
8172 /* If the tree is a leaf-data tree, and the siblings are leaves,
8173 ** then there is no divider cell in b.apCell[]. Instead, the divider
8174 ** cell consists of the integer key for the right-most cell of
8175 ** the sibling-page assembled above only.
8179 pNew
->xParseCell(pNew
, b
.apCell
[j
], &info
);
8181 sz
= 4 + putVarint(&pCell
[4], info
.nKey
);
8185 /* Obscure case for non-leaf-data trees: If the cell at pCell was
8186 ** previously stored on a leaf node, and its reported size was 4
8187 ** bytes, then it may actually be smaller than this
8188 ** (see btreeParseCellPtr(), 4 bytes is the minimum size of
8189 ** any cell). But it is important to pass the correct size to
8190 ** insertCell(), so reparse the cell now.
8192 ** This can only happen for b-trees used to evaluate "IN (SELECT ...)"
8193 ** and WITHOUT ROWID tables with exactly one column which is the
8196 if( b
.szCell
[j
]==4 ){
8197 assert(leafCorrection
==4);
8198 sz
= pParent
->xCellSize(pParent
, pCell
);
8202 assert( sz
<=pBt
->maxLocal
+23 );
8203 assert( iOvflSpace
<= (int)pBt
->pageSize
);
8204 for(k
=0; b
.ixNx
[k
]<=i
&& ALWAYS(k
<NB
*2); k
++){}
8205 pSrcEnd
= b
.apEnd
[k
];
8206 if( SQLITE_WITHIN(pSrcEnd
, pCell
, pCell
+sz
) ){
8207 rc
= SQLITE_CORRUPT_BKPT
;
8208 goto balance_cleanup
;
8210 insertCell(pParent
, nxDiv
+i
, pCell
, sz
, pTemp
, pNew
->pgno
, &rc
);
8211 if( rc
!=SQLITE_OK
) goto balance_cleanup
;
8212 assert( sqlite3PagerIswriteable(pParent
->pDbPage
) );
8215 /* Now update the actual sibling pages. The order in which they are updated
8216 ** is important, as this code needs to avoid disrupting any page from which
8217 ** cells may still to be read. In practice, this means:
8219 ** (1) If cells are moving left (from apNew[iPg] to apNew[iPg-1])
8220 ** then it is not safe to update page apNew[iPg] until after
8221 ** the left-hand sibling apNew[iPg-1] has been updated.
8223 ** (2) If cells are moving right (from apNew[iPg] to apNew[iPg+1])
8224 ** then it is not safe to update page apNew[iPg] until after
8225 ** the right-hand sibling apNew[iPg+1] has been updated.
8227 ** If neither of the above apply, the page is safe to update.
8229 ** The iPg value in the following loop starts at nNew-1 goes down
8230 ** to 0, then back up to nNew-1 again, thus making two passes over
8231 ** the pages. On the initial downward pass, only condition (1) above
8232 ** needs to be tested because (2) will always be true from the previous
8233 ** step. On the upward pass, both conditions are always true, so the
8234 ** upwards pass simply processes pages that were missed on the downward
8237 for(i
=1-nNew
; i
<nNew
; i
++){
8238 int iPg
= i
<0 ? -i
: i
;
8239 assert( iPg
>=0 && iPg
<nNew
);
8240 if( abDone
[iPg
] ) continue; /* Skip pages already processed */
8241 if( i
>=0 /* On the upwards pass, or... */
8242 || cntOld
[iPg
-1]>=cntNew
[iPg
-1] /* Condition (1) is true */
8248 /* Verify condition (1): If cells are moving left, update iPg
8249 ** only after iPg-1 has already been updated. */
8250 assert( iPg
==0 || cntOld
[iPg
-1]>=cntNew
[iPg
-1] || abDone
[iPg
-1] );
8252 /* Verify condition (2): If cells are moving right, update iPg
8253 ** only after iPg+1 has already been updated. */
8254 assert( cntNew
[iPg
]>=cntOld
[iPg
] || abDone
[iPg
+1] );
8258 nNewCell
= cntNew
[0];
8260 iOld
= iPg
<nOld
? (cntOld
[iPg
-1] + !leafData
) : b
.nCell
;
8261 iNew
= cntNew
[iPg
-1] + !leafData
;
8262 nNewCell
= cntNew
[iPg
] - iNew
;
8265 rc
= editPage(apNew
[iPg
], iOld
, iNew
, nNewCell
, &b
);
8266 if( rc
) goto balance_cleanup
;
8268 apNew
[iPg
]->nFree
= usableSpace
-szNew
[iPg
];
8269 assert( apNew
[iPg
]->nOverflow
==0 );
8270 assert( apNew
[iPg
]->nCell
==nNewCell
);
8274 /* All pages have been processed exactly once */
8275 assert( memcmp(abDone
, "\01\01\01\01\01", nNew
)==0 );
8280 if( isRoot
&& pParent
->nCell
==0 && pParent
->hdrOffset
<=apNew
[0]->nFree
){
8281 /* The root page of the b-tree now contains no cells. The only sibling
8282 ** page is the right-child of the parent. Copy the contents of the
8283 ** child page into the parent, decreasing the overall height of the
8284 ** b-tree structure by one. This is described as the "balance-shallower"
8285 ** sub-algorithm in some documentation.
8287 ** If this is an auto-vacuum database, the call to copyNodeContent()
8288 ** sets all pointer-map entries corresponding to database image pages
8289 ** for which the pointer is stored within the content being copied.
8291 ** It is critical that the child page be defragmented before being
8292 ** copied into the parent, because if the parent is page 1 then it will
8293 ** by smaller than the child due to the database header, and so all the
8294 ** free space needs to be up front.
8296 assert( nNew
==1 || CORRUPT_DB
);
8297 rc
= defragmentPage(apNew
[0], -1);
8298 testcase( rc
!=SQLITE_OK
);
8299 assert( apNew
[0]->nFree
==
8300 (get2byteNotZero(&apNew
[0]->aData
[5]) - apNew
[0]->cellOffset
8301 - apNew
[0]->nCell
*2)
8304 copyNodeContent(apNew
[0], pParent
, &rc
);
8305 freePage(apNew
[0], &rc
);
8306 }else if( ISAUTOVACUUM
&& !leafCorrection
){
8307 /* Fix the pointer map entries associated with the right-child of each
8308 ** sibling page. All other pointer map entries have already been taken
8310 for(i
=0; i
<nNew
; i
++){
8311 u32 key
= get4byte(&apNew
[i
]->aData
[8]);
8312 ptrmapPut(pBt
, key
, PTRMAP_BTREE
, apNew
[i
]->pgno
, &rc
);
8316 assert( pParent
->isInit
);
8317 TRACE(("BALANCE: finished: old=%d new=%d cells=%d\n",
8318 nOld
, nNew
, b
.nCell
));
8320 /* Free any old pages that were not reused as new pages.
8322 for(i
=nNew
; i
<nOld
; i
++){
8323 freePage(apOld
[i
], &rc
);
8327 if( ISAUTOVACUUM
&& rc
==SQLITE_OK
&& apNew
[0]->isInit
){
8328 /* The ptrmapCheckPages() contains assert() statements that verify that
8329 ** all pointer map pages are set correctly. This is helpful while
8330 ** debugging. This is usually disabled because a corrupt database may
8331 ** cause an assert() statement to fail. */
8332 ptrmapCheckPages(apNew
, nNew
);
8333 ptrmapCheckPages(&pParent
, 1);
8338 ** Cleanup before returning.
8341 sqlite3StackFree(0, b
.apCell
);
8342 for(i
=0; i
<nOld
; i
++){
8343 releasePage(apOld
[i
]);
8345 for(i
=0; i
<nNew
; i
++){
8346 releasePage(apNew
[i
]);
8354 ** This function is called when the root page of a b-tree structure is
8355 ** overfull (has one or more overflow pages).
8357 ** A new child page is allocated and the contents of the current root
8358 ** page, including overflow cells, are copied into the child. The root
8359 ** page is then overwritten to make it an empty page with the right-child
8360 ** pointer pointing to the new page.
8362 ** Before returning, all pointer-map entries corresponding to pages
8363 ** that the new child-page now contains pointers to are updated. The
8364 ** entry corresponding to the new right-child pointer of the root
8365 ** page is also updated.
8367 ** If successful, *ppChild is set to contain a reference to the child
8368 ** page and SQLITE_OK is returned. In this case the caller is required
8369 ** to call releasePage() on *ppChild exactly once. If an error occurs,
8370 ** an error code is returned and *ppChild is set to 0.
8372 static int balance_deeper(MemPage
*pRoot
, MemPage
**ppChild
){
8373 int rc
; /* Return value from subprocedures */
8374 MemPage
*pChild
= 0; /* Pointer to a new child page */
8375 Pgno pgnoChild
= 0; /* Page number of the new child page */
8376 BtShared
*pBt
= pRoot
->pBt
; /* The BTree */
8378 assert( pRoot
->nOverflow
>0 );
8379 assert( sqlite3_mutex_held(pBt
->mutex
) );
8381 /* Make pRoot, the root page of the b-tree, writable. Allocate a new
8382 ** page that will become the new right-child of pPage. Copy the contents
8383 ** of the node stored on pRoot into the new child page.
8385 rc
= sqlite3PagerWrite(pRoot
->pDbPage
);
8386 if( rc
==SQLITE_OK
){
8387 rc
= allocateBtreePage(pBt
,&pChild
,&pgnoChild
,pRoot
->pgno
,0);
8388 copyNodeContent(pRoot
, pChild
, &rc
);
8390 ptrmapPut(pBt
, pgnoChild
, PTRMAP_BTREE
, pRoot
->pgno
, &rc
);
8395 releasePage(pChild
);
8398 assert( sqlite3PagerIswriteable(pChild
->pDbPage
) );
8399 assert( sqlite3PagerIswriteable(pRoot
->pDbPage
) );
8400 assert( pChild
->nCell
==pRoot
->nCell
|| CORRUPT_DB
);
8402 TRACE(("BALANCE: copy root %d into %d\n", pRoot
->pgno
, pChild
->pgno
));
8404 /* Copy the overflow cells from pRoot to pChild */
8405 memcpy(pChild
->aiOvfl
, pRoot
->aiOvfl
,
8406 pRoot
->nOverflow
*sizeof(pRoot
->aiOvfl
[0]));
8407 memcpy(pChild
->apOvfl
, pRoot
->apOvfl
,
8408 pRoot
->nOverflow
*sizeof(pRoot
->apOvfl
[0]));
8409 pChild
->nOverflow
= pRoot
->nOverflow
;
8411 /* Zero the contents of pRoot. Then install pChild as the right-child. */
8412 zeroPage(pRoot
, pChild
->aData
[0] & ~PTF_LEAF
);
8413 put4byte(&pRoot
->aData
[pRoot
->hdrOffset
+8], pgnoChild
);
8420 ** Return SQLITE_CORRUPT if any cursor other than pCur is currently valid
8421 ** on the same B-tree as pCur.
8423 ** This can if a database is corrupt with two or more SQL tables
8424 ** pointing to the same b-tree. If an insert occurs on one SQL table
8425 ** and causes a BEFORE TRIGGER to do a secondary insert on the other SQL
8426 ** table linked to the same b-tree. If the secondary insert causes a
8427 ** rebalance, that can change content out from under the cursor on the
8428 ** first SQL table, violating invariants on the first insert.
8430 static int anotherValidCursor(BtCursor
*pCur
){
8432 for(pOther
=pCur
->pBt
->pCursor
; pOther
; pOther
=pOther
->pNext
){
8434 && pOther
->eState
==CURSOR_VALID
8435 && pOther
->pPage
==pCur
->pPage
8437 return SQLITE_CORRUPT_BKPT
;
8444 ** The page that pCur currently points to has just been modified in
8445 ** some way. This function figures out if this modification means the
8446 ** tree needs to be balanced, and if so calls the appropriate balancing
8447 ** routine. Balancing routines are:
8451 ** balance_nonroot()
8453 static int balance(BtCursor
*pCur
){
8455 const int nMin
= pCur
->pBt
->usableSize
* 2 / 3;
8456 u8 aBalanceQuickSpace
[13];
8459 VVA_ONLY( int balance_quick_called
= 0 );
8460 VVA_ONLY( int balance_deeper_called
= 0 );
8464 MemPage
*pPage
= pCur
->pPage
;
8466 if( NEVER(pPage
->nFree
<0) && btreeComputeFreeSpace(pPage
) ) break;
8467 if( pPage
->nOverflow
==0 && pPage
->nFree
<=nMin
){
8469 }else if( (iPage
= pCur
->iPage
)==0 ){
8470 if( pPage
->nOverflow
&& (rc
= anotherValidCursor(pCur
))==SQLITE_OK
){
8471 /* The root page of the b-tree is overfull. In this case call the
8472 ** balance_deeper() function to create a new child for the root-page
8473 ** and copy the current contents of the root-page to it. The
8474 ** next iteration of the do-loop will balance the child page.
8476 assert( balance_deeper_called
==0 );
8477 VVA_ONLY( balance_deeper_called
++ );
8478 rc
= balance_deeper(pPage
, &pCur
->apPage
[1]);
8479 if( rc
==SQLITE_OK
){
8483 pCur
->apPage
[0] = pPage
;
8484 pCur
->pPage
= pCur
->apPage
[1];
8485 assert( pCur
->pPage
->nOverflow
);
8491 MemPage
* const pParent
= pCur
->apPage
[iPage
-1];
8492 int const iIdx
= pCur
->aiIdx
[iPage
-1];
8494 rc
= sqlite3PagerWrite(pParent
->pDbPage
);
8495 if( rc
==SQLITE_OK
&& pParent
->nFree
<0 ){
8496 rc
= btreeComputeFreeSpace(pParent
);
8498 if( rc
==SQLITE_OK
){
8499 #ifndef SQLITE_OMIT_QUICKBALANCE
8500 if( pPage
->intKeyLeaf
8501 && pPage
->nOverflow
==1
8502 && pPage
->aiOvfl
[0]==pPage
->nCell
8504 && pParent
->nCell
==iIdx
8506 /* Call balance_quick() to create a new sibling of pPage on which
8507 ** to store the overflow cell. balance_quick() inserts a new cell
8508 ** into pParent, which may cause pParent overflow. If this
8509 ** happens, the next iteration of the do-loop will balance pParent
8510 ** use either balance_nonroot() or balance_deeper(). Until this
8511 ** happens, the overflow cell is stored in the aBalanceQuickSpace[]
8514 ** The purpose of the following assert() is to check that only a
8515 ** single call to balance_quick() is made for each call to this
8516 ** function. If this were not verified, a subtle bug involving reuse
8517 ** of the aBalanceQuickSpace[] might sneak in.
8519 assert( balance_quick_called
==0 );
8520 VVA_ONLY( balance_quick_called
++ );
8521 rc
= balance_quick(pParent
, pPage
, aBalanceQuickSpace
);
8525 /* In this case, call balance_nonroot() to redistribute cells
8526 ** between pPage and up to 2 of its sibling pages. This involves
8527 ** modifying the contents of pParent, which may cause pParent to
8528 ** become overfull or underfull. The next iteration of the do-loop
8529 ** will balance the parent page to correct this.
8531 ** If the parent page becomes overfull, the overflow cell or cells
8532 ** are stored in the pSpace buffer allocated immediately below.
8533 ** A subsequent iteration of the do-loop will deal with this by
8534 ** calling balance_nonroot() (balance_deeper() may be called first,
8535 ** but it doesn't deal with overflow cells - just moves them to a
8536 ** different page). Once this subsequent call to balance_nonroot()
8537 ** has completed, it is safe to release the pSpace buffer used by
8538 ** the previous call, as the overflow cell data will have been
8539 ** copied either into the body of a database page or into the new
8540 ** pSpace buffer passed to the latter call to balance_nonroot().
8542 u8
*pSpace
= sqlite3PageMalloc(pCur
->pBt
->pageSize
);
8543 rc
= balance_nonroot(pParent
, iIdx
, pSpace
, iPage
==1,
8544 pCur
->hints
&BTREE_BULKLOAD
);
8546 /* If pFree is not NULL, it points to the pSpace buffer used
8547 ** by a previous call to balance_nonroot(). Its contents are
8548 ** now stored either on real database pages or within the
8549 ** new pSpace buffer, so it may be safely freed here. */
8550 sqlite3PageFree(pFree
);
8553 /* The pSpace buffer will be freed after the next call to
8554 ** balance_nonroot(), or just before this function returns, whichever
8560 pPage
->nOverflow
= 0;
8562 /* The next iteration of the do-loop balances the parent page. */
8565 assert( pCur
->iPage
>=0 );
8566 pCur
->pPage
= pCur
->apPage
[pCur
->iPage
];
8568 }while( rc
==SQLITE_OK
);
8571 sqlite3PageFree(pFree
);
8576 /* Overwrite content from pX into pDest. Only do the write if the
8577 ** content is different from what is already there.
8579 static int btreeOverwriteContent(
8580 MemPage
*pPage
, /* MemPage on which writing will occur */
8581 u8
*pDest
, /* Pointer to the place to start writing */
8582 const BtreePayload
*pX
, /* Source of data to write */
8583 int iOffset
, /* Offset of first byte to write */
8584 int iAmt
/* Number of bytes to be written */
8586 int nData
= pX
->nData
- iOffset
;
8588 /* Overwritting with zeros */
8590 for(i
=0; i
<iAmt
&& pDest
[i
]==0; i
++){}
8592 int rc
= sqlite3PagerWrite(pPage
->pDbPage
);
8594 memset(pDest
+ i
, 0, iAmt
- i
);
8598 /* Mixed read data and zeros at the end. Make a recursive call
8599 ** to write the zeros then fall through to write the real data */
8600 int rc
= btreeOverwriteContent(pPage
, pDest
+nData
, pX
, iOffset
+nData
,
8605 if( memcmp(pDest
, ((u8
*)pX
->pData
) + iOffset
, iAmt
)!=0 ){
8606 int rc
= sqlite3PagerWrite(pPage
->pDbPage
);
8608 /* In a corrupt database, it is possible for the source and destination
8609 ** buffers to overlap. This is harmless since the database is already
8610 ** corrupt but it does cause valgrind and ASAN warnings. So use
8612 memmove(pDest
, ((u8
*)pX
->pData
) + iOffset
, iAmt
);
8619 ** Overwrite the cell that cursor pCur is pointing to with fresh content
8622 static int btreeOverwriteCell(BtCursor
*pCur
, const BtreePayload
*pX
){
8623 int iOffset
; /* Next byte of pX->pData to write */
8624 int nTotal
= pX
->nData
+ pX
->nZero
; /* Total bytes of to write */
8625 int rc
; /* Return code */
8626 MemPage
*pPage
= pCur
->pPage
; /* Page being written */
8627 BtShared
*pBt
; /* Btree */
8628 Pgno ovflPgno
; /* Next overflow page to write */
8629 u32 ovflPageSize
; /* Size to write on overflow page */
8631 if( pCur
->info
.pPayload
+ pCur
->info
.nLocal
> pPage
->aDataEnd
8632 || pCur
->info
.pPayload
< pPage
->aData
+ pPage
->cellOffset
8634 return SQLITE_CORRUPT_BKPT
;
8636 /* Overwrite the local portion first */
8637 rc
= btreeOverwriteContent(pPage
, pCur
->info
.pPayload
, pX
,
8638 0, pCur
->info
.nLocal
);
8640 if( pCur
->info
.nLocal
==nTotal
) return SQLITE_OK
;
8642 /* Now overwrite the overflow pages */
8643 iOffset
= pCur
->info
.nLocal
;
8644 assert( nTotal
>=0 );
8645 assert( iOffset
>=0 );
8646 ovflPgno
= get4byte(pCur
->info
.pPayload
+ iOffset
);
8648 ovflPageSize
= pBt
->usableSize
- 4;
8650 rc
= btreeGetPage(pBt
, ovflPgno
, &pPage
, 0);
8652 if( sqlite3PagerPageRefcount(pPage
->pDbPage
)!=1 ){
8653 rc
= SQLITE_CORRUPT_BKPT
;
8655 if( iOffset
+ovflPageSize
<(u32
)nTotal
){
8656 ovflPgno
= get4byte(pPage
->aData
);
8658 ovflPageSize
= nTotal
- iOffset
;
8660 rc
= btreeOverwriteContent(pPage
, pPage
->aData
+4, pX
,
8661 iOffset
, ovflPageSize
);
8663 sqlite3PagerUnref(pPage
->pDbPage
);
8665 iOffset
+= ovflPageSize
;
8666 }while( iOffset
<nTotal
);
8672 ** Insert a new record into the BTree. The content of the new record
8673 ** is described by the pX object. The pCur cursor is used only to
8674 ** define what table the record should be inserted into, and is left
8675 ** pointing at a random location.
8677 ** For a table btree (used for rowid tables), only the pX.nKey value of
8678 ** the key is used. The pX.pKey value must be NULL. The pX.nKey is the
8679 ** rowid or INTEGER PRIMARY KEY of the row. The pX.nData,pData,nZero fields
8680 ** hold the content of the row.
8682 ** For an index btree (used for indexes and WITHOUT ROWID tables), the
8683 ** key is an arbitrary byte sequence stored in pX.pKey,nKey. The
8684 ** pX.pData,nData,nZero fields must be zero.
8686 ** If the seekResult parameter is non-zero, then a successful call to
8687 ** MovetoUnpacked() to seek cursor pCur to (pKey,nKey) has already
8688 ** been performed. In other words, if seekResult!=0 then the cursor
8689 ** is currently pointing to a cell that will be adjacent to the cell
8690 ** to be inserted. If seekResult<0 then pCur points to a cell that is
8691 ** smaller then (pKey,nKey). If seekResult>0 then pCur points to a cell
8692 ** that is larger than (pKey,nKey).
8694 ** If seekResult==0, that means pCur is pointing at some unknown location.
8695 ** In that case, this routine must seek the cursor to the correct insertion
8696 ** point for (pKey,nKey) before doing the insertion. For index btrees,
8697 ** if pX->nMem is non-zero, then pX->aMem contains pointers to the unpacked
8698 ** key values and pX->aMem can be used instead of pX->pKey to avoid having
8699 ** to decode the key.
8701 int sqlite3BtreeInsert(
8702 BtCursor
*pCur
, /* Insert data into the table of this cursor */
8703 const BtreePayload
*pX
, /* Content of the row to be inserted */
8704 int flags
, /* True if this is likely an append */
8705 int seekResult
/* Result of prior MovetoUnpacked() call */
8708 int loc
= seekResult
; /* -1: before desired location +1: after */
8712 Btree
*p
= pCur
->pBtree
;
8713 BtShared
*pBt
= p
->pBt
;
8714 unsigned char *oldCell
;
8715 unsigned char *newCell
= 0;
8717 assert( (flags
& (BTREE_SAVEPOSITION
|BTREE_APPEND
|BTREE_PREFORMAT
))==flags
);
8718 assert( (flags
& BTREE_PREFORMAT
)==0 || seekResult
|| pCur
->pKeyInfo
==0 );
8720 if( pCur
->eState
==CURSOR_FAULT
){
8721 assert( pCur
->skipNext
!=SQLITE_OK
);
8722 return pCur
->skipNext
;
8725 assert( cursorOwnsBtShared(pCur
) );
8726 assert( (pCur
->curFlags
& BTCF_WriteFlag
)!=0
8727 && pBt
->inTransaction
==TRANS_WRITE
8728 && (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
8729 assert( hasSharedCacheTableLock(p
, pCur
->pgnoRoot
, pCur
->pKeyInfo
!=0, 2) );
8731 /* Assert that the caller has been consistent. If this cursor was opened
8732 ** expecting an index b-tree, then the caller should be inserting blob
8733 ** keys with no associated data. If the cursor was opened expecting an
8734 ** intkey table, the caller should be inserting integer keys with a
8735 ** blob of associated data. */
8736 assert( (flags
& BTREE_PREFORMAT
) || (pX
->pKey
==0)==(pCur
->pKeyInfo
==0) );
8738 /* Save the positions of any other cursors open on this table.
8740 ** In some cases, the call to btreeMoveto() below is a no-op. For
8741 ** example, when inserting data into a table with auto-generated integer
8742 ** keys, the VDBE layer invokes sqlite3BtreeLast() to figure out the
8743 ** integer key to use. It then calls this function to actually insert the
8744 ** data into the intkey B-Tree. In this case btreeMoveto() recognizes
8745 ** that the cursor is already where it needs to be and returns without
8746 ** doing any work. To avoid thwarting these optimizations, it is important
8747 ** not to clear the cursor here.
8749 if( pCur
->curFlags
& BTCF_Multiple
){
8750 rc
= saveAllCursors(pBt
, pCur
->pgnoRoot
, pCur
);
8752 if( loc
&& pCur
->iPage
<0 ){
8753 /* This can only happen if the schema is corrupt such that there is more
8754 ** than one table or index with the same root page as used by the cursor.
8755 ** Which can only happen if the SQLITE_NoSchemaError flag was set when
8756 ** the schema was loaded. This cannot be asserted though, as a user might
8757 ** set the flag, load the schema, and then unset the flag. */
8758 return SQLITE_CORRUPT_BKPT
;
8762 if( pCur
->pKeyInfo
==0 ){
8763 assert( pX
->pKey
==0 );
8764 /* If this is an insert into a table b-tree, invalidate any incrblob
8765 ** cursors open on the row being replaced */
8766 if( p
->hasIncrblobCur
){
8767 invalidateIncrblobCursors(p
, pCur
->pgnoRoot
, pX
->nKey
, 0);
8770 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8771 ** to a row with the same key as the new entry being inserted.
8774 if( flags
& BTREE_SAVEPOSITION
){
8775 assert( pCur
->curFlags
& BTCF_ValidNKey
);
8776 assert( pX
->nKey
==pCur
->info
.nKey
);
8781 /* On the other hand, BTREE_SAVEPOSITION==0 does not imply
8782 ** that the cursor is not pointing to a row to be overwritten.
8783 ** So do a complete check.
8785 if( (pCur
->curFlags
&BTCF_ValidNKey
)!=0 && pX
->nKey
==pCur
->info
.nKey
){
8786 /* The cursor is pointing to the entry that is to be
8788 assert( pX
->nData
>=0 && pX
->nZero
>=0 );
8789 if( pCur
->info
.nSize
!=0
8790 && pCur
->info
.nPayload
==(u32
)pX
->nData
+pX
->nZero
8792 /* New entry is the same size as the old. Do an overwrite */
8793 return btreeOverwriteCell(pCur
, pX
);
8797 /* The cursor is *not* pointing to the cell to be overwritten, nor
8798 ** to an adjacent cell. Move the cursor so that it is pointing either
8799 ** to the cell to be overwritten or an adjacent cell.
8801 rc
= sqlite3BtreeMovetoUnpacked(pCur
, 0, pX
->nKey
, flags
!=0, &loc
);
8805 /* This is an index or a WITHOUT ROWID table */
8807 /* If BTREE_SAVEPOSITION is set, the cursor must already be pointing
8808 ** to a row with the same key as the new entry being inserted.
8810 assert( (flags
& BTREE_SAVEPOSITION
)==0 || loc
==0 );
8812 /* If the cursor is not already pointing either to the cell to be
8813 ** overwritten, or if a new cell is being inserted, if the cursor is
8814 ** not pointing to an immediately adjacent cell, then move the cursor
8817 if( loc
==0 && (flags
& BTREE_SAVEPOSITION
)==0 ){
8820 r
.pKeyInfo
= pCur
->pKeyInfo
;
8822 r
.nField
= pX
->nMem
;
8828 rc
= sqlite3BtreeMovetoUnpacked(pCur
, &r
, 0, flags
!=0, &loc
);
8830 rc
= btreeMoveto(pCur
, pX
->pKey
, pX
->nKey
, flags
!=0, &loc
);
8835 /* If the cursor is currently pointing to an entry to be overwritten
8836 ** and the new content is the same as as the old, then use the
8837 ** overwrite optimization.
8841 if( pCur
->info
.nKey
==pX
->nKey
){
8843 x2
.pData
= pX
->pKey
;
8844 x2
.nData
= pX
->nKey
;
8846 return btreeOverwriteCell(pCur
, &x2
);
8850 assert( pCur
->eState
==CURSOR_VALID
8851 || (pCur
->eState
==CURSOR_INVALID
&& loc
)
8854 pPage
= pCur
->pPage
;
8855 assert( pPage
->intKey
|| pX
->nKey
>=0 || (flags
& BTREE_PREFORMAT
) );
8856 assert( pPage
->leaf
|| !pPage
->intKey
);
8857 if( pPage
->nFree
<0 ){
8858 if( NEVER(pCur
->eState
>CURSOR_INVALID
) ){
8859 rc
= SQLITE_CORRUPT_BKPT
;
8861 rc
= btreeComputeFreeSpace(pPage
);
8866 TRACE(("INSERT: table=%d nkey=%lld ndata=%d page=%d %s\n",
8867 pCur
->pgnoRoot
, pX
->nKey
, pX
->nData
, pPage
->pgno
,
8868 loc
==0 ? "overwrite" : "new entry"));
8869 assert( pPage
->isInit
);
8870 newCell
= pBt
->pTmpSpace
;
8871 assert( newCell
!=0 );
8872 if( flags
& BTREE_PREFORMAT
){
8874 szNew
= pBt
->nPreformatSize
;
8875 if( szNew
<4 ) szNew
= 4;
8876 if( ISAUTOVACUUM
&& szNew
>pPage
->maxLocal
){
8878 pPage
->xParseCell(pPage
, newCell
, &info
);
8879 if( info
.nPayload
!=info
.nLocal
){
8880 Pgno ovfl
= get4byte(&newCell
[szNew
-4]);
8881 ptrmapPut(pBt
, ovfl
, PTRMAP_OVERFLOW1
, pPage
->pgno
, &rc
);
8885 rc
= fillInCell(pPage
, newCell
, pX
, &szNew
);
8887 if( rc
) goto end_insert
;
8888 assert( szNew
==pPage
->xCellSize(pPage
, newCell
) );
8889 assert( szNew
<= MX_CELL_SIZE(pBt
) );
8893 assert( idx
<pPage
->nCell
);
8894 rc
= sqlite3PagerWrite(pPage
->pDbPage
);
8898 oldCell
= findCell(pPage
, idx
);
8900 memcpy(newCell
, oldCell
, 4);
8902 BTREE_CLEAR_CELL(rc
, pPage
, oldCell
, info
);
8903 testcase( pCur
->curFlags
& BTCF_ValidOvfl
);
8904 invalidateOverflowCache(pCur
);
8905 if( info
.nSize
==szNew
&& info
.nLocal
==info
.nPayload
8906 && (!ISAUTOVACUUM
|| szNew
<pPage
->minLocal
)
8908 /* Overwrite the old cell with the new if they are the same size.
8909 ** We could also try to do this if the old cell is smaller, then add
8910 ** the leftover space to the free list. But experiments show that
8911 ** doing that is no faster then skipping this optimization and just
8912 ** calling dropCell() and insertCell().
8914 ** This optimization cannot be used on an autovacuum database if the
8915 ** new entry uses overflow pages, as the insertCell() call below is
8916 ** necessary to add the PTRMAP_OVERFLOW1 pointer-map entry. */
8917 assert( rc
==SQLITE_OK
); /* clearCell never fails when nLocal==nPayload */
8918 if( oldCell
< pPage
->aData
+pPage
->hdrOffset
+10 ){
8919 return SQLITE_CORRUPT_BKPT
;
8921 if( oldCell
+szNew
> pPage
->aDataEnd
){
8922 return SQLITE_CORRUPT_BKPT
;
8924 memcpy(oldCell
, newCell
, szNew
);
8927 dropCell(pPage
, idx
, info
.nSize
, &rc
);
8928 if( rc
) goto end_insert
;
8929 }else if( loc
<0 && pPage
->nCell
>0 ){
8930 assert( pPage
->leaf
);
8932 pCur
->curFlags
&= ~BTCF_ValidNKey
;
8934 assert( pPage
->leaf
);
8936 insertCell(pPage
, idx
, newCell
, szNew
, 0, 0, &rc
);
8937 assert( pPage
->nOverflow
==0 || rc
==SQLITE_OK
);
8938 assert( rc
!=SQLITE_OK
|| pPage
->nCell
>0 || pPage
->nOverflow
>0 );
8940 /* If no error has occurred and pPage has an overflow cell, call balance()
8941 ** to redistribute the cells within the tree. Since balance() may move
8942 ** the cursor, zero the BtCursor.info.nSize and BTCF_ValidNKey
8945 ** Previous versions of SQLite called moveToRoot() to move the cursor
8946 ** back to the root page as balance() used to invalidate the contents
8947 ** of BtCursor.apPage[] and BtCursor.aiIdx[]. Instead of doing that,
8948 ** set the cursor state to "invalid". This makes common insert operations
8951 ** There is a subtle but important optimization here too. When inserting
8952 ** multiple records into an intkey b-tree using a single cursor (as can
8953 ** happen while processing an "INSERT INTO ... SELECT" statement), it
8954 ** is advantageous to leave the cursor pointing to the last entry in
8955 ** the b-tree if possible. If the cursor is left pointing to the last
8956 ** entry in the table, and the next row inserted has an integer key
8957 ** larger than the largest existing key, it is possible to insert the
8958 ** row without seeking the cursor. This can be a big performance boost.
8960 pCur
->info
.nSize
= 0;
8961 if( pPage
->nOverflow
){
8962 assert( rc
==SQLITE_OK
);
8963 pCur
->curFlags
&= ~(BTCF_ValidNKey
);
8966 /* Must make sure nOverflow is reset to zero even if the balance()
8967 ** fails. Internal data structure corruption will result otherwise.
8968 ** Also, set the cursor state to invalid. This stops saveCursorPosition()
8969 ** from trying to save the current position of the cursor. */
8970 pCur
->pPage
->nOverflow
= 0;
8971 pCur
->eState
= CURSOR_INVALID
;
8972 if( (flags
& BTREE_SAVEPOSITION
) && rc
==SQLITE_OK
){
8973 btreeReleaseAllCursorPages(pCur
);
8974 if( pCur
->pKeyInfo
){
8975 assert( pCur
->pKey
==0 );
8976 pCur
->pKey
= sqlite3Malloc( pX
->nKey
);
8977 if( pCur
->pKey
==0 ){
8980 memcpy(pCur
->pKey
, pX
->pKey
, pX
->nKey
);
8983 pCur
->eState
= CURSOR_REQUIRESEEK
;
8984 pCur
->nKey
= pX
->nKey
;
8987 assert( pCur
->iPage
<0 || pCur
->pPage
->nOverflow
==0 );
8994 ** This function is used as part of copying the current row from cursor
8995 ** pSrc into cursor pDest. If the cursors are open on intkey tables, then
8996 ** parameter iKey is used as the rowid value when the record is copied
8997 ** into pDest. Otherwise, the record is copied verbatim.
8999 ** This function does not actually write the new value to cursor pDest.
9000 ** Instead, it creates and populates any required overflow pages and
9001 ** writes the data for the new cell into the BtShared.pTmpSpace buffer
9002 ** for the destination database. The size of the cell, in bytes, is left
9003 ** in BtShared.nPreformatSize. The caller completes the insertion by
9004 ** calling sqlite3BtreeInsert() with the BTREE_PREFORMAT flag specified.
9006 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
9008 int sqlite3BtreeTransferRow(BtCursor
*pDest
, BtCursor
*pSrc
, i64 iKey
){
9010 BtShared
*pBt
= pDest
->pBt
;
9011 u8
*aOut
= pBt
->pTmpSpace
; /* Pointer to next output buffer */
9012 const u8
*aIn
; /* Pointer to next input buffer */
9013 u32 nIn
; /* Size of input buffer aIn[] */
9014 u32 nRem
; /* Bytes of data still to copy */
9017 aOut
+= putVarint32(aOut
, pSrc
->info
.nPayload
);
9018 if( pDest
->pKeyInfo
==0 ) aOut
+= putVarint(aOut
, iKey
);
9019 nIn
= pSrc
->info
.nLocal
;
9020 aIn
= pSrc
->info
.pPayload
;
9021 if( aIn
+nIn
>pSrc
->pPage
->aDataEnd
){
9022 return SQLITE_CORRUPT_BKPT
;
9024 nRem
= pSrc
->info
.nPayload
;
9025 if( nIn
==nRem
&& nIn
<pDest
->pPage
->maxLocal
){
9026 memcpy(aOut
, aIn
, nIn
);
9027 pBt
->nPreformatSize
= nIn
+ (aOut
- pBt
->pTmpSpace
);
9029 Pager
*pSrcPager
= pSrc
->pBt
->pPager
;
9032 DbPage
*pPageIn
= 0;
9033 MemPage
*pPageOut
= 0;
9034 u32 nOut
; /* Size of output buffer aOut[] */
9036 nOut
= btreePayloadToLocal(pDest
->pPage
, pSrc
->info
.nPayload
);
9037 pBt
->nPreformatSize
= nOut
+ (aOut
- pBt
->pTmpSpace
);
9038 if( nOut
<pSrc
->info
.nPayload
){
9039 pPgnoOut
= &aOut
[nOut
];
9040 pBt
->nPreformatSize
+= 4;
9044 if( aIn
+nIn
+4>pSrc
->pPage
->aDataEnd
){
9045 return SQLITE_CORRUPT_BKPT
;
9047 ovflIn
= get4byte(&pSrc
->info
.pPayload
[nIn
]);
9055 int nCopy
= MIN(nOut
, nIn
);
9056 memcpy(aOut
, aIn
, nCopy
);
9063 sqlite3PagerUnref(pPageIn
);
9065 rc
= sqlite3PagerGet(pSrcPager
, ovflIn
, &pPageIn
, PAGER_GET_READONLY
);
9066 if( rc
==SQLITE_OK
){
9067 aIn
= (const u8
*)sqlite3PagerGetData(pPageIn
);
9068 ovflIn
= get4byte(aIn
);
9070 nIn
= pSrc
->pBt
->usableSize
- 4;
9073 }while( rc
==SQLITE_OK
&& nOut
>0 );
9075 if( rc
==SQLITE_OK
&& nRem
>0 ){
9078 rc
= allocateBtreePage(pBt
, &pNew
, &pgnoNew
, 0, 0);
9079 put4byte(pPgnoOut
, pgnoNew
);
9080 if( ISAUTOVACUUM
&& pPageOut
){
9081 ptrmapPut(pBt
, pgnoNew
, PTRMAP_OVERFLOW2
, pPageOut
->pgno
, &rc
);
9083 releasePage(pPageOut
);
9086 pPgnoOut
= pPageOut
->aData
;
9087 put4byte(pPgnoOut
, 0);
9088 aOut
= &pPgnoOut
[4];
9089 nOut
= MIN(pBt
->usableSize
- 4, nRem
);
9092 }while( nRem
>0 && rc
==SQLITE_OK
);
9094 releasePage(pPageOut
);
9095 sqlite3PagerUnref(pPageIn
);
9102 ** Delete the entry that the cursor is pointing to.
9104 ** If the BTREE_SAVEPOSITION bit of the flags parameter is zero, then
9105 ** the cursor is left pointing at an arbitrary location after the delete.
9106 ** But if that bit is set, then the cursor is left in a state such that
9107 ** the next call to BtreeNext() or BtreePrev() moves it to the same row
9108 ** as it would have been on if the call to BtreeDelete() had been omitted.
9110 ** The BTREE_AUXDELETE bit of flags indicates that is one of several deletes
9111 ** associated with a single table entry and its indexes. Only one of those
9112 ** deletes is considered the "primary" delete. The primary delete occurs
9113 ** on a cursor that is not a BTREE_FORDELETE cursor. All but one delete
9114 ** operation on non-FORDELETE cursors is tagged with the AUXDELETE flag.
9115 ** The BTREE_AUXDELETE bit is a hint that is not used by this implementation,
9116 ** but which might be used by alternative storage engines.
9118 int sqlite3BtreeDelete(BtCursor
*pCur
, u8 flags
){
9119 Btree
*p
= pCur
->pBtree
;
9120 BtShared
*pBt
= p
->pBt
;
9121 int rc
; /* Return code */
9122 MemPage
*pPage
; /* Page to delete cell from */
9123 unsigned char *pCell
; /* Pointer to cell to delete */
9124 int iCellIdx
; /* Index of cell to delete */
9125 int iCellDepth
; /* Depth of node containing pCell */
9126 CellInfo info
; /* Size of the cell being deleted */
9127 int bSkipnext
= 0; /* Leaf cursor in SKIPNEXT state */
9128 u8 bPreserve
= flags
& BTREE_SAVEPOSITION
; /* Keep cursor valid */
9130 assert( cursorOwnsBtShared(pCur
) );
9131 assert( pBt
->inTransaction
==TRANS_WRITE
);
9132 assert( (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
9133 assert( pCur
->curFlags
& BTCF_WriteFlag
);
9134 assert( hasSharedCacheTableLock(p
, pCur
->pgnoRoot
, pCur
->pKeyInfo
!=0, 2) );
9135 assert( !hasReadConflicts(p
, pCur
->pgnoRoot
) );
9136 assert( (flags
& ~(BTREE_SAVEPOSITION
| BTREE_AUXDELETE
))==0 );
9137 if( pCur
->eState
==CURSOR_REQUIRESEEK
){
9138 rc
= btreeRestoreCursorPosition(pCur
);
9139 assert( rc
!=SQLITE_OK
|| CORRUPT_DB
|| pCur
->eState
==CURSOR_VALID
);
9140 if( rc
|| pCur
->eState
!=CURSOR_VALID
) return rc
;
9142 assert( CORRUPT_DB
|| pCur
->eState
==CURSOR_VALID
);
9144 iCellDepth
= pCur
->iPage
;
9145 iCellIdx
= pCur
->ix
;
9146 pPage
= pCur
->pPage
;
9147 pCell
= findCell(pPage
, iCellIdx
);
9148 if( pPage
->nFree
<0 && btreeComputeFreeSpace(pPage
) ) return SQLITE_CORRUPT
;
9150 /* If the bPreserve flag is set to true, then the cursor position must
9151 ** be preserved following this delete operation. If the current delete
9152 ** will cause a b-tree rebalance, then this is done by saving the cursor
9153 ** key and leaving the cursor in CURSOR_REQUIRESEEK state before
9156 ** Or, if the current delete will not cause a rebalance, then the cursor
9157 ** will be left in CURSOR_SKIPNEXT state pointing to the entry immediately
9158 ** before or after the deleted entry. In this case set bSkipnext to true. */
9161 || (pPage
->nFree
+cellSizePtr(pPage
,pCell
)+2)>(int)(pBt
->usableSize
*2/3)
9162 || pPage
->nCell
==1 /* See dbfuzz001.test for a test case */
9164 /* A b-tree rebalance will be required after deleting this entry.
9165 ** Save the cursor key. */
9166 rc
= saveCursorKey(pCur
);
9173 /* If the page containing the entry to delete is not a leaf page, move
9174 ** the cursor to the largest entry in the tree that is smaller than
9175 ** the entry being deleted. This cell will replace the cell being deleted
9176 ** from the internal node. The 'previous' entry is used for this instead
9177 ** of the 'next' entry, as the previous entry is always a part of the
9178 ** sub-tree headed by the child page of the cell being deleted. This makes
9179 ** balancing the tree following the delete operation easier. */
9181 rc
= sqlite3BtreePrevious(pCur
, 0);
9182 assert( rc
!=SQLITE_DONE
);
9186 /* Save the positions of any other cursors open on this table before
9187 ** making any modifications. */
9188 if( pCur
->curFlags
& BTCF_Multiple
){
9189 rc
= saveAllCursors(pBt
, pCur
->pgnoRoot
, pCur
);
9193 /* If this is a delete operation to remove a row from a table b-tree,
9194 ** invalidate any incrblob cursors open on the row being deleted. */
9195 if( pCur
->pKeyInfo
==0 && p
->hasIncrblobCur
){
9196 invalidateIncrblobCursors(p
, pCur
->pgnoRoot
, pCur
->info
.nKey
, 0);
9199 /* Make the page containing the entry to be deleted writable. Then free any
9200 ** overflow pages associated with the entry and finally remove the cell
9201 ** itself from within the page. */
9202 rc
= sqlite3PagerWrite(pPage
->pDbPage
);
9204 BTREE_CLEAR_CELL(rc
, pPage
, pCell
, info
);
9205 dropCell(pPage
, iCellIdx
, info
.nSize
, &rc
);
9208 /* If the cell deleted was not located on a leaf page, then the cursor
9209 ** is currently pointing to the largest entry in the sub-tree headed
9210 ** by the child-page of the cell that was just deleted from an internal
9211 ** node. The cell from the leaf node needs to be moved to the internal
9212 ** node to replace the deleted cell. */
9214 MemPage
*pLeaf
= pCur
->pPage
;
9217 unsigned char *pTmp
;
9219 if( pLeaf
->nFree
<0 ){
9220 rc
= btreeComputeFreeSpace(pLeaf
);
9223 if( iCellDepth
<pCur
->iPage
-1 ){
9224 n
= pCur
->apPage
[iCellDepth
+1]->pgno
;
9226 n
= pCur
->pPage
->pgno
;
9228 pCell
= findCell(pLeaf
, pLeaf
->nCell
-1);
9229 if( pCell
<&pLeaf
->aData
[4] ) return SQLITE_CORRUPT_BKPT
;
9230 nCell
= pLeaf
->xCellSize(pLeaf
, pCell
);
9231 assert( MX_CELL_SIZE(pBt
) >= nCell
);
9232 pTmp
= pBt
->pTmpSpace
;
9234 rc
= sqlite3PagerWrite(pLeaf
->pDbPage
);
9235 if( rc
==SQLITE_OK
){
9236 insertCell(pPage
, iCellIdx
, pCell
-4, nCell
+4, pTmp
, n
, &rc
);
9238 dropCell(pLeaf
, pLeaf
->nCell
-1, nCell
, &rc
);
9242 /* Balance the tree. If the entry deleted was located on a leaf page,
9243 ** then the cursor still points to that page. In this case the first
9244 ** call to balance() repairs the tree, and the if(...) condition is
9247 ** Otherwise, if the entry deleted was on an internal node page, then
9248 ** pCur is pointing to the leaf page from which a cell was removed to
9249 ** replace the cell deleted from the internal node. This is slightly
9250 ** tricky as the leaf node may be underfull, and the internal node may
9251 ** be either under or overfull. In this case run the balancing algorithm
9252 ** on the leaf node first. If the balance proceeds far enough up the
9253 ** tree that we can be sure that any problem in the internal node has
9254 ** been corrected, so be it. Otherwise, after balancing the leaf node,
9255 ** walk the cursor up the tree to the internal node and balance it as
9258 if( rc
==SQLITE_OK
&& pCur
->iPage
>iCellDepth
){
9259 releasePageNotNull(pCur
->pPage
);
9261 while( pCur
->iPage
>iCellDepth
){
9262 releasePage(pCur
->apPage
[pCur
->iPage
--]);
9264 pCur
->pPage
= pCur
->apPage
[pCur
->iPage
];
9268 if( rc
==SQLITE_OK
){
9270 assert( bPreserve
&& (pCur
->iPage
==iCellDepth
|| CORRUPT_DB
) );
9271 assert( pPage
==pCur
->pPage
|| CORRUPT_DB
);
9272 assert( (pPage
->nCell
>0 || CORRUPT_DB
) && iCellIdx
<=pPage
->nCell
);
9273 pCur
->eState
= CURSOR_SKIPNEXT
;
9274 if( iCellIdx
>=pPage
->nCell
){
9275 pCur
->skipNext
= -1;
9276 pCur
->ix
= pPage
->nCell
-1;
9281 rc
= moveToRoot(pCur
);
9283 btreeReleaseAllCursorPages(pCur
);
9284 pCur
->eState
= CURSOR_REQUIRESEEK
;
9286 if( rc
==SQLITE_EMPTY
) rc
= SQLITE_OK
;
9293 ** Create a new BTree table. Write into *piTable the page
9294 ** number for the root page of the new table.
9296 ** The type of type is determined by the flags parameter. Only the
9297 ** following values of flags are currently in use. Other values for
9298 ** flags might not work:
9300 ** BTREE_INTKEY|BTREE_LEAFDATA Used for SQL tables with rowid keys
9301 ** BTREE_ZERODATA Used for SQL indices
9303 static int btreeCreateTable(Btree
*p
, Pgno
*piTable
, int createTabFlags
){
9304 BtShared
*pBt
= p
->pBt
;
9308 int ptfFlags
; /* Page-type flage for the root page of new table */
9310 assert( sqlite3BtreeHoldsMutex(p
) );
9311 assert( pBt
->inTransaction
==TRANS_WRITE
);
9312 assert( (pBt
->btsFlags
& BTS_READ_ONLY
)==0 );
9314 #ifdef SQLITE_OMIT_AUTOVACUUM
9315 rc
= allocateBtreePage(pBt
, &pRoot
, &pgnoRoot
, 1, 0);
9320 if( pBt
->autoVacuum
){
9321 Pgno pgnoMove
; /* Move a page here to make room for the root-page */
9322 MemPage
*pPageMove
; /* The page to move to. */
9324 /* Creating a new table may probably require moving an existing database
9325 ** to make room for the new tables root page. In case this page turns
9326 ** out to be an overflow page, delete all overflow page-map caches
9327 ** held by open cursors.
9329 invalidateAllOverflowCache(pBt
);
9331 /* Read the value of meta[3] from the database to determine where the
9332 ** root page of the new table should go. meta[3] is the largest root-page
9333 ** created so far, so the new root-page is (meta[3]+1).
9335 sqlite3BtreeGetMeta(p
, BTREE_LARGEST_ROOT_PAGE
, &pgnoRoot
);
9336 if( pgnoRoot
>btreePagecount(pBt
) ){
9337 return SQLITE_CORRUPT_BKPT
;
9341 /* The new root-page may not be allocated on a pointer-map page, or the
9342 ** PENDING_BYTE page.
9344 while( pgnoRoot
==PTRMAP_PAGENO(pBt
, pgnoRoot
) ||
9345 pgnoRoot
==PENDING_BYTE_PAGE(pBt
) ){
9348 assert( pgnoRoot
>=3 );
9350 /* Allocate a page. The page that currently resides at pgnoRoot will
9351 ** be moved to the allocated page (unless the allocated page happens
9352 ** to reside at pgnoRoot).
9354 rc
= allocateBtreePage(pBt
, &pPageMove
, &pgnoMove
, pgnoRoot
, BTALLOC_EXACT
);
9355 if( rc
!=SQLITE_OK
){
9359 if( pgnoMove
!=pgnoRoot
){
9360 /* pgnoRoot is the page that will be used for the root-page of
9361 ** the new table (assuming an error did not occur). But we were
9362 ** allocated pgnoMove. If required (i.e. if it was not allocated
9363 ** by extending the file), the current page at position pgnoMove
9364 ** is already journaled.
9369 /* Save the positions of any open cursors. This is required in
9370 ** case they are holding a reference to an xFetch reference
9371 ** corresponding to page pgnoRoot. */
9372 rc
= saveAllCursors(pBt
, 0, 0);
9373 releasePage(pPageMove
);
9374 if( rc
!=SQLITE_OK
){
9378 /* Move the page currently at pgnoRoot to pgnoMove. */
9379 rc
= btreeGetPage(pBt
, pgnoRoot
, &pRoot
, 0);
9380 if( rc
!=SQLITE_OK
){
9383 rc
= ptrmapGet(pBt
, pgnoRoot
, &eType
, &iPtrPage
);
9384 if( eType
==PTRMAP_ROOTPAGE
|| eType
==PTRMAP_FREEPAGE
){
9385 rc
= SQLITE_CORRUPT_BKPT
;
9387 if( rc
!=SQLITE_OK
){
9391 assert( eType
!=PTRMAP_ROOTPAGE
);
9392 assert( eType
!=PTRMAP_FREEPAGE
);
9393 rc
= relocatePage(pBt
, pRoot
, eType
, iPtrPage
, pgnoMove
, 0);
9396 /* Obtain the page at pgnoRoot */
9397 if( rc
!=SQLITE_OK
){
9400 rc
= btreeGetPage(pBt
, pgnoRoot
, &pRoot
, 0);
9401 if( rc
!=SQLITE_OK
){
9404 rc
= sqlite3PagerWrite(pRoot
->pDbPage
);
9405 if( rc
!=SQLITE_OK
){
9413 /* Update the pointer-map and meta-data with the new root-page number. */
9414 ptrmapPut(pBt
, pgnoRoot
, PTRMAP_ROOTPAGE
, 0, &rc
);
9420 /* When the new root page was allocated, page 1 was made writable in
9421 ** order either to increase the database filesize, or to decrement the
9422 ** freelist count. Hence, the sqlite3BtreeUpdateMeta() call cannot fail.
9424 assert( sqlite3PagerIswriteable(pBt
->pPage1
->pDbPage
) );
9425 rc
= sqlite3BtreeUpdateMeta(p
, 4, pgnoRoot
);
9432 rc
= allocateBtreePage(pBt
, &pRoot
, &pgnoRoot
, 1, 0);
9436 assert( sqlite3PagerIswriteable(pRoot
->pDbPage
) );
9437 if( createTabFlags
& BTREE_INTKEY
){
9438 ptfFlags
= PTF_INTKEY
| PTF_LEAFDATA
| PTF_LEAF
;
9440 ptfFlags
= PTF_ZERODATA
| PTF_LEAF
;
9442 zeroPage(pRoot
, ptfFlags
);
9443 sqlite3PagerUnref(pRoot
->pDbPage
);
9444 assert( (pBt
->openFlags
& BTREE_SINGLE
)==0 || pgnoRoot
==2 );
9445 *piTable
= pgnoRoot
;
9448 int sqlite3BtreeCreateTable(Btree
*p
, Pgno
*piTable
, int flags
){
9450 sqlite3BtreeEnter(p
);
9451 rc
= btreeCreateTable(p
, piTable
, flags
);
9452 sqlite3BtreeLeave(p
);
9457 ** Erase the given database page and all its children. Return
9458 ** the page to the freelist.
9460 static int clearDatabasePage(
9461 BtShared
*pBt
, /* The BTree that contains the table */
9462 Pgno pgno
, /* Page number to clear */
9463 int freePageFlag
, /* Deallocate page if true */
9464 int *pnChange
/* Add number of Cells freed to this counter */
9468 unsigned char *pCell
;
9473 assert( sqlite3_mutex_held(pBt
->mutex
) );
9474 if( pgno
>btreePagecount(pBt
) ){
9475 return SQLITE_CORRUPT_BKPT
;
9477 rc
= getAndInitPage(pBt
, pgno
, &pPage
, 0, 0);
9480 rc
= SQLITE_CORRUPT_BKPT
;
9481 goto cleardatabasepage_out
;
9484 hdr
= pPage
->hdrOffset
;
9485 for(i
=0; i
<pPage
->nCell
; i
++){
9486 pCell
= findCell(pPage
, i
);
9488 rc
= clearDatabasePage(pBt
, get4byte(pCell
), 1, pnChange
);
9489 if( rc
) goto cleardatabasepage_out
;
9491 BTREE_CLEAR_CELL(rc
, pPage
, pCell
, info
);
9492 if( rc
) goto cleardatabasepage_out
;
9495 rc
= clearDatabasePage(pBt
, get4byte(&pPage
->aData
[hdr
+8]), 1, pnChange
);
9496 if( rc
) goto cleardatabasepage_out
;
9499 testcase( !pPage
->intKey
);
9500 *pnChange
+= pPage
->nCell
;
9503 freePage(pPage
, &rc
);
9504 }else if( (rc
= sqlite3PagerWrite(pPage
->pDbPage
))==0 ){
9505 zeroPage(pPage
, pPage
->aData
[hdr
] | PTF_LEAF
);
9508 cleardatabasepage_out
:
9515 ** Delete all information from a single table in the database. iTable is
9516 ** the page number of the root of the table. After this routine returns,
9517 ** the root page is empty, but still exists.
9519 ** This routine will fail with SQLITE_LOCKED if there are any open
9520 ** read cursors on the table. Open write cursors are moved to the
9521 ** root of the table.
9523 ** If pnChange is not NULL, then the integer value pointed to by pnChange
9524 ** is incremented by the number of entries in the table.
9526 int sqlite3BtreeClearTable(Btree
*p
, int iTable
, int *pnChange
){
9528 BtShared
*pBt
= p
->pBt
;
9529 sqlite3BtreeEnter(p
);
9530 assert( p
->inTrans
==TRANS_WRITE
);
9532 rc
= saveAllCursors(pBt
, (Pgno
)iTable
, 0);
9534 if( SQLITE_OK
==rc
){
9535 /* Invalidate all incrblob cursors open on table iTable (assuming iTable
9536 ** is the root of a table b-tree - if it is not, the following call is
9538 if( p
->hasIncrblobCur
){
9539 invalidateIncrblobCursors(p
, (Pgno
)iTable
, 0, 1);
9541 rc
= clearDatabasePage(pBt
, (Pgno
)iTable
, 0, pnChange
);
9543 sqlite3BtreeLeave(p
);
9548 ** Delete all information from the single table that pCur is open on.
9550 ** This routine only work for pCur on an ephemeral table.
9552 int sqlite3BtreeClearTableOfCursor(BtCursor
*pCur
){
9553 return sqlite3BtreeClearTable(pCur
->pBtree
, pCur
->pgnoRoot
, 0);
9557 ** Erase all information in a table and add the root of the table to
9558 ** the freelist. Except, the root of the principle table (the one on
9559 ** page 1) is never added to the freelist.
9561 ** This routine will fail with SQLITE_LOCKED if there are any open
9562 ** cursors on the table.
9564 ** If AUTOVACUUM is enabled and the page at iTable is not the last
9565 ** root page in the database file, then the last root page
9566 ** in the database file is moved into the slot formerly occupied by
9567 ** iTable and that last slot formerly occupied by the last root page
9568 ** is added to the freelist instead of iTable. In this say, all
9569 ** root pages are kept at the beginning of the database file, which
9570 ** is necessary for AUTOVACUUM to work right. *piMoved is set to the
9571 ** page number that used to be the last root page in the file before
9572 ** the move. If no page gets moved, *piMoved is set to 0.
9573 ** The last root page is recorded in meta[3] and the value of
9574 ** meta[3] is updated by this procedure.
9576 static int btreeDropTable(Btree
*p
, Pgno iTable
, int *piMoved
){
9579 BtShared
*pBt
= p
->pBt
;
9581 assert( sqlite3BtreeHoldsMutex(p
) );
9582 assert( p
->inTrans
==TRANS_WRITE
);
9583 assert( iTable
>=2 );
9584 if( iTable
>btreePagecount(pBt
) ){
9585 return SQLITE_CORRUPT_BKPT
;
9588 rc
= btreeGetPage(pBt
, (Pgno
)iTable
, &pPage
, 0);
9590 rc
= sqlite3BtreeClearTable(p
, iTable
, 0);
9598 #ifdef SQLITE_OMIT_AUTOVACUUM
9599 freePage(pPage
, &rc
);
9602 if( pBt
->autoVacuum
){
9604 sqlite3BtreeGetMeta(p
, BTREE_LARGEST_ROOT_PAGE
, &maxRootPgno
);
9606 if( iTable
==maxRootPgno
){
9607 /* If the table being dropped is the table with the largest root-page
9608 ** number in the database, put the root page on the free list.
9610 freePage(pPage
, &rc
);
9612 if( rc
!=SQLITE_OK
){
9616 /* The table being dropped does not have the largest root-page
9617 ** number in the database. So move the page that does into the
9618 ** gap left by the deleted root-page.
9622 rc
= btreeGetPage(pBt
, maxRootPgno
, &pMove
, 0);
9623 if( rc
!=SQLITE_OK
){
9626 rc
= relocatePage(pBt
, pMove
, PTRMAP_ROOTPAGE
, 0, iTable
, 0);
9628 if( rc
!=SQLITE_OK
){
9632 rc
= btreeGetPage(pBt
, maxRootPgno
, &pMove
, 0);
9633 freePage(pMove
, &rc
);
9635 if( rc
!=SQLITE_OK
){
9638 *piMoved
= maxRootPgno
;
9641 /* Set the new 'max-root-page' value in the database header. This
9642 ** is the old value less one, less one more if that happens to
9643 ** be a root-page number, less one again if that is the
9644 ** PENDING_BYTE_PAGE.
9647 while( maxRootPgno
==PENDING_BYTE_PAGE(pBt
)
9648 || PTRMAP_ISPAGE(pBt
, maxRootPgno
) ){
9651 assert( maxRootPgno
!=PENDING_BYTE_PAGE(pBt
) );
9653 rc
= sqlite3BtreeUpdateMeta(p
, 4, maxRootPgno
);
9655 freePage(pPage
, &rc
);
9661 int sqlite3BtreeDropTable(Btree
*p
, int iTable
, int *piMoved
){
9663 sqlite3BtreeEnter(p
);
9664 rc
= btreeDropTable(p
, iTable
, piMoved
);
9665 sqlite3BtreeLeave(p
);
9671 ** This function may only be called if the b-tree connection already
9672 ** has a read or write transaction open on the database.
9674 ** Read the meta-information out of a database file. Meta[0]
9675 ** is the number of free pages currently in the database. Meta[1]
9676 ** through meta[15] are available for use by higher layers. Meta[0]
9677 ** is read-only, the others are read/write.
9679 ** The schema layer numbers meta values differently. At the schema
9680 ** layer (and the SetCookie and ReadCookie opcodes) the number of
9681 ** free pages is not visible. So Cookie[0] is the same as Meta[1].
9683 ** This routine treats Meta[BTREE_DATA_VERSION] as a special case. Instead
9684 ** of reading the value out of the header, it instead loads the "DataVersion"
9685 ** from the pager. The BTREE_DATA_VERSION value is not actually stored in the
9686 ** database file. It is a number computed by the pager. But its access
9687 ** pattern is the same as header meta values, and so it is convenient to
9688 ** read it from this routine.
9690 void sqlite3BtreeGetMeta(Btree
*p
, int idx
, u32
*pMeta
){
9691 BtShared
*pBt
= p
->pBt
;
9693 sqlite3BtreeEnter(p
);
9694 assert( p
->inTrans
>TRANS_NONE
);
9695 assert( SQLITE_OK
==querySharedCacheTableLock(p
, SCHEMA_ROOT
, READ_LOCK
) );
9696 assert( pBt
->pPage1
);
9697 assert( idx
>=0 && idx
<=15 );
9699 if( idx
==BTREE_DATA_VERSION
){
9700 *pMeta
= sqlite3PagerDataVersion(pBt
->pPager
) + p
->iBDataVersion
;
9702 *pMeta
= get4byte(&pBt
->pPage1
->aData
[36 + idx
*4]);
9705 /* If auto-vacuum is disabled in this build and this is an auto-vacuum
9706 ** database, mark the database as read-only. */
9707 #ifdef SQLITE_OMIT_AUTOVACUUM
9708 if( idx
==BTREE_LARGEST_ROOT_PAGE
&& *pMeta
>0 ){
9709 pBt
->btsFlags
|= BTS_READ_ONLY
;
9713 sqlite3BtreeLeave(p
);
9717 ** Write meta-information back into the database. Meta[0] is
9718 ** read-only and may not be written.
9720 int sqlite3BtreeUpdateMeta(Btree
*p
, int idx
, u32 iMeta
){
9721 BtShared
*pBt
= p
->pBt
;
9724 assert( idx
>=1 && idx
<=15 );
9725 sqlite3BtreeEnter(p
);
9726 assert( p
->inTrans
==TRANS_WRITE
);
9727 assert( pBt
->pPage1
!=0 );
9728 pP1
= pBt
->pPage1
->aData
;
9729 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
9730 if( rc
==SQLITE_OK
){
9731 put4byte(&pP1
[36 + idx
*4], iMeta
);
9732 #ifndef SQLITE_OMIT_AUTOVACUUM
9733 if( idx
==BTREE_INCR_VACUUM
){
9734 assert( pBt
->autoVacuum
|| iMeta
==0 );
9735 assert( iMeta
==0 || iMeta
==1 );
9736 pBt
->incrVacuum
= (u8
)iMeta
;
9740 sqlite3BtreeLeave(p
);
9745 ** The first argument, pCur, is a cursor opened on some b-tree. Count the
9746 ** number of entries in the b-tree and write the result to *pnEntry.
9748 ** SQLITE_OK is returned if the operation is successfully executed.
9749 ** Otherwise, if an error is encountered (i.e. an IO error or database
9750 ** corruption) an SQLite error code is returned.
9752 int sqlite3BtreeCount(sqlite3
*db
, BtCursor
*pCur
, i64
*pnEntry
){
9753 i64 nEntry
= 0; /* Value to return in *pnEntry */
9754 int rc
; /* Return code */
9756 rc
= moveToRoot(pCur
);
9757 if( rc
==SQLITE_EMPTY
){
9762 /* Unless an error occurs, the following loop runs one iteration for each
9763 ** page in the B-Tree structure (not including overflow pages).
9765 while( rc
==SQLITE_OK
&& !AtomicLoad(&db
->u1
.isInterrupted
) ){
9766 int iIdx
; /* Index of child node in parent */
9767 MemPage
*pPage
; /* Current page of the b-tree */
9769 /* If this is a leaf page or the tree is not an int-key tree, then
9770 ** this page contains countable entries. Increment the entry counter
9773 pPage
= pCur
->pPage
;
9774 if( pPage
->leaf
|| !pPage
->intKey
){
9775 nEntry
+= pPage
->nCell
;
9778 /* pPage is a leaf node. This loop navigates the cursor so that it
9779 ** points to the first interior cell that it points to the parent of
9780 ** the next page in the tree that has not yet been visited. The
9781 ** pCur->aiIdx[pCur->iPage] value is set to the index of the parent cell
9782 ** of the page, or to the number of cells in the page if the next page
9783 ** to visit is the right-child of its parent.
9785 ** If all pages in the tree have been visited, return SQLITE_OK to the
9790 if( pCur
->iPage
==0 ){
9791 /* All pages of the b-tree have been visited. Return successfully. */
9793 return moveToRoot(pCur
);
9796 }while ( pCur
->ix
>=pCur
->pPage
->nCell
);
9799 pPage
= pCur
->pPage
;
9802 /* Descend to the child node of the cell that the cursor currently
9803 ** points at. This is the right-child if (iIdx==pPage->nCell).
9806 if( iIdx
==pPage
->nCell
){
9807 rc
= moveToChild(pCur
, get4byte(&pPage
->aData
[pPage
->hdrOffset
+8]));
9809 rc
= moveToChild(pCur
, get4byte(findCell(pPage
, iIdx
)));
9813 /* An error has occurred. Return an error code. */
9818 ** Return the pager associated with a BTree. This routine is used for
9819 ** testing and debugging only.
9821 Pager
*sqlite3BtreePager(Btree
*p
){
9822 return p
->pBt
->pPager
;
9825 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9827 ** Append a message to the error message string.
9829 static void checkAppendMsg(
9830 IntegrityCk
*pCheck
,
9831 const char *zFormat
,
9835 if( !pCheck
->mxErr
) return;
9838 va_start(ap
, zFormat
);
9839 if( pCheck
->errMsg
.nChar
){
9840 sqlite3_str_append(&pCheck
->errMsg
, "\n", 1);
9843 sqlite3_str_appendf(&pCheck
->errMsg
, pCheck
->zPfx
, pCheck
->v1
, pCheck
->v2
);
9845 sqlite3_str_vappendf(&pCheck
->errMsg
, zFormat
, ap
);
9847 if( pCheck
->errMsg
.accError
==SQLITE_NOMEM
){
9848 pCheck
->bOomFault
= 1;
9851 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9853 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
9856 ** Return non-zero if the bit in the IntegrityCk.aPgRef[] array that
9857 ** corresponds to page iPg is already set.
9859 static int getPageReferenced(IntegrityCk
*pCheck
, Pgno iPg
){
9860 assert( iPg
<=pCheck
->nPage
&& sizeof(pCheck
->aPgRef
[0])==1 );
9861 return (pCheck
->aPgRef
[iPg
/8] & (1 << (iPg
& 0x07)));
9865 ** Set the bit in the IntegrityCk.aPgRef[] array that corresponds to page iPg.
9867 static void setPageReferenced(IntegrityCk
*pCheck
, Pgno iPg
){
9868 assert( iPg
<=pCheck
->nPage
&& sizeof(pCheck
->aPgRef
[0])==1 );
9869 pCheck
->aPgRef
[iPg
/8] |= (1 << (iPg
& 0x07));
9874 ** Add 1 to the reference count for page iPage. If this is the second
9875 ** reference to the page, add an error message to pCheck->zErrMsg.
9876 ** Return 1 if there are 2 or more references to the page and 0 if
9877 ** if this is the first reference to the page.
9879 ** Also check that the page number is in bounds.
9881 static int checkRef(IntegrityCk
*pCheck
, Pgno iPage
){
9882 if( iPage
>pCheck
->nPage
|| iPage
==0 ){
9883 checkAppendMsg(pCheck
, "invalid page number %d", iPage
);
9886 if( getPageReferenced(pCheck
, iPage
) ){
9887 checkAppendMsg(pCheck
, "2nd reference to page %d", iPage
);
9890 if( AtomicLoad(&pCheck
->db
->u1
.isInterrupted
) ) return 1;
9891 setPageReferenced(pCheck
, iPage
);
9895 #ifndef SQLITE_OMIT_AUTOVACUUM
9897 ** Check that the entry in the pointer-map for page iChild maps to
9898 ** page iParent, pointer type ptrType. If not, append an error message
9901 static void checkPtrmap(
9902 IntegrityCk
*pCheck
, /* Integrity check context */
9903 Pgno iChild
, /* Child page number */
9904 u8 eType
, /* Expected pointer map type */
9905 Pgno iParent
/* Expected pointer map parent page number */
9911 rc
= ptrmapGet(pCheck
->pBt
, iChild
, &ePtrmapType
, &iPtrmapParent
);
9912 if( rc
!=SQLITE_OK
){
9913 if( rc
==SQLITE_NOMEM
|| rc
==SQLITE_IOERR_NOMEM
) pCheck
->bOomFault
= 1;
9914 checkAppendMsg(pCheck
, "Failed to read ptrmap key=%d", iChild
);
9918 if( ePtrmapType
!=eType
|| iPtrmapParent
!=iParent
){
9919 checkAppendMsg(pCheck
,
9920 "Bad ptr map entry key=%d expected=(%d,%d) got=(%d,%d)",
9921 iChild
, eType
, iParent
, ePtrmapType
, iPtrmapParent
);
9927 ** Check the integrity of the freelist or of an overflow page list.
9928 ** Verify that the number of pages on the list is N.
9930 static void checkList(
9931 IntegrityCk
*pCheck
, /* Integrity checking context */
9932 int isFreeList
, /* True for a freelist. False for overflow page list */
9933 Pgno iPage
, /* Page number for first page in the list */
9934 u32 N
/* Expected number of pages in the list */
9938 int nErrAtStart
= pCheck
->nErr
;
9939 while( iPage
!=0 && pCheck
->mxErr
){
9941 unsigned char *pOvflData
;
9942 if( checkRef(pCheck
, iPage
) ) break;
9944 if( sqlite3PagerGet(pCheck
->pPager
, (Pgno
)iPage
, &pOvflPage
, 0) ){
9945 checkAppendMsg(pCheck
, "failed to get page %d", iPage
);
9948 pOvflData
= (unsigned char *)sqlite3PagerGetData(pOvflPage
);
9950 u32 n
= (u32
)get4byte(&pOvflData
[4]);
9951 #ifndef SQLITE_OMIT_AUTOVACUUM
9952 if( pCheck
->pBt
->autoVacuum
){
9953 checkPtrmap(pCheck
, iPage
, PTRMAP_FREEPAGE
, 0);
9956 if( n
>pCheck
->pBt
->usableSize
/4-2 ){
9957 checkAppendMsg(pCheck
,
9958 "freelist leaf count too big on page %d", iPage
);
9961 for(i
=0; i
<(int)n
; i
++){
9962 Pgno iFreePage
= get4byte(&pOvflData
[8+i
*4]);
9963 #ifndef SQLITE_OMIT_AUTOVACUUM
9964 if( pCheck
->pBt
->autoVacuum
){
9965 checkPtrmap(pCheck
, iFreePage
, PTRMAP_FREEPAGE
, 0);
9968 checkRef(pCheck
, iFreePage
);
9973 #ifndef SQLITE_OMIT_AUTOVACUUM
9975 /* If this database supports auto-vacuum and iPage is not the last
9976 ** page in this overflow list, check that the pointer-map entry for
9977 ** the following page matches iPage.
9979 if( pCheck
->pBt
->autoVacuum
&& N
>0 ){
9980 i
= get4byte(pOvflData
);
9981 checkPtrmap(pCheck
, i
, PTRMAP_OVERFLOW2
, iPage
);
9985 iPage
= get4byte(pOvflData
);
9986 sqlite3PagerUnref(pOvflPage
);
9988 if( N
&& nErrAtStart
==pCheck
->nErr
){
9989 checkAppendMsg(pCheck
,
9990 "%s is %d but should be %d",
9991 isFreeList
? "size" : "overflow list length",
9992 expected
-N
, expected
);
9995 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
9998 ** An implementation of a min-heap.
10000 ** aHeap[0] is the number of elements on the heap. aHeap[1] is the
10001 ** root element. The daughter nodes of aHeap[N] are aHeap[N*2]
10002 ** and aHeap[N*2+1].
10004 ** The heap property is this: Every node is less than or equal to both
10005 ** of its daughter nodes. A consequence of the heap property is that the
10006 ** root node aHeap[1] is always the minimum value currently in the heap.
10008 ** The btreeHeapInsert() routine inserts an unsigned 32-bit number onto
10009 ** the heap, preserving the heap property. The btreeHeapPull() routine
10010 ** removes the root element from the heap (the minimum value in the heap)
10011 ** and then moves other nodes around as necessary to preserve the heap
10014 ** This heap is used for cell overlap and coverage testing. Each u32
10015 ** entry represents the span of a cell or freeblock on a btree page.
10016 ** The upper 16 bits are the index of the first byte of a range and the
10017 ** lower 16 bits are the index of the last byte of that range.
10019 static void btreeHeapInsert(u32
*aHeap
, u32 x
){
10020 u32 j
, i
= ++aHeap
[0];
10022 while( (j
= i
/2)>0 && aHeap
[j
]>aHeap
[i
] ){
10024 aHeap
[j
] = aHeap
[i
];
10029 static int btreeHeapPull(u32
*aHeap
, u32
*pOut
){
10031 if( (x
= aHeap
[0])==0 ) return 0;
10033 aHeap
[1] = aHeap
[x
];
10034 aHeap
[x
] = 0xffffffff;
10037 while( (j
= i
*2)<=aHeap
[0] ){
10038 if( aHeap
[j
]>aHeap
[j
+1] ) j
++;
10039 if( aHeap
[i
]<aHeap
[j
] ) break;
10041 aHeap
[i
] = aHeap
[j
];
10048 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10050 ** Do various sanity checks on a single page of a tree. Return
10051 ** the tree depth. Root pages return 0. Parents of root pages
10052 ** return 1, and so forth.
10054 ** These checks are done:
10056 ** 1. Make sure that cells and freeblocks do not overlap
10057 ** but combine to completely cover the page.
10058 ** 2. Make sure integer cell keys are in order.
10059 ** 3. Check the integrity of overflow pages.
10060 ** 4. Recursively call checkTreePage on all children.
10061 ** 5. Verify that the depth of all children is the same.
10063 static int checkTreePage(
10064 IntegrityCk
*pCheck
, /* Context for the sanity check */
10065 Pgno iPage
, /* Page number of the page to check */
10066 i64
*piMinKey
, /* Write minimum integer primary key here */
10067 i64 maxKey
/* Error if integer primary key greater than this */
10069 MemPage
*pPage
= 0; /* The page being analyzed */
10070 int i
; /* Loop counter */
10071 int rc
; /* Result code from subroutine call */
10072 int depth
= -1, d2
; /* Depth of a subtree */
10073 int pgno
; /* Page number */
10074 int nFrag
; /* Number of fragmented bytes on the page */
10075 int hdr
; /* Offset to the page header */
10076 int cellStart
; /* Offset to the start of the cell pointer array */
10077 int nCell
; /* Number of cells */
10078 int doCoverageCheck
= 1; /* True if cell coverage checking should be done */
10079 int keyCanBeEqual
= 1; /* True if IPK can be equal to maxKey
10080 ** False if IPK must be strictly less than maxKey */
10081 u8
*data
; /* Page content */
10082 u8
*pCell
; /* Cell content */
10083 u8
*pCellIdx
; /* Next element of the cell pointer array */
10084 BtShared
*pBt
; /* The BtShared object that owns pPage */
10085 u32 pc
; /* Address of a cell */
10086 u32 usableSize
; /* Usable size of the page */
10087 u32 contentOffset
; /* Offset to the start of the cell content area */
10088 u32
*heap
= 0; /* Min-heap used for checking cell coverage */
10089 u32 x
, prev
= 0; /* Next and previous entry on the min-heap */
10090 const char *saved_zPfx
= pCheck
->zPfx
;
10091 int saved_v1
= pCheck
->v1
;
10092 int saved_v2
= pCheck
->v2
;
10093 u8 savedIsInit
= 0;
10095 /* Check that the page exists
10098 usableSize
= pBt
->usableSize
;
10099 if( iPage
==0 ) return 0;
10100 if( checkRef(pCheck
, iPage
) ) return 0;
10101 pCheck
->zPfx
= "Page %u: ";
10102 pCheck
->v1
= iPage
;
10103 if( (rc
= btreeGetPage(pBt
, iPage
, &pPage
, 0))!=0 ){
10104 checkAppendMsg(pCheck
,
10105 "unable to get the page. error code=%d", rc
);
10109 /* Clear MemPage.isInit to make sure the corruption detection code in
10110 ** btreeInitPage() is executed. */
10111 savedIsInit
= pPage
->isInit
;
10113 if( (rc
= btreeInitPage(pPage
))!=0 ){
10114 assert( rc
==SQLITE_CORRUPT
); /* The only possible error from InitPage */
10115 checkAppendMsg(pCheck
,
10116 "btreeInitPage() returns error code %d", rc
);
10119 if( (rc
= btreeComputeFreeSpace(pPage
))!=0 ){
10120 assert( rc
==SQLITE_CORRUPT
);
10121 checkAppendMsg(pCheck
, "free space corruption", rc
);
10124 data
= pPage
->aData
;
10125 hdr
= pPage
->hdrOffset
;
10127 /* Set up for cell analysis */
10128 pCheck
->zPfx
= "On tree page %u cell %d: ";
10129 contentOffset
= get2byteNotZero(&data
[hdr
+5]);
10130 assert( contentOffset
<=usableSize
); /* Enforced by btreeInitPage() */
10132 /* EVIDENCE-OF: R-37002-32774 The two-byte integer at offset 3 gives the
10133 ** number of cells on the page. */
10134 nCell
= get2byte(&data
[hdr
+3]);
10135 assert( pPage
->nCell
==nCell
);
10137 /* EVIDENCE-OF: R-23882-45353 The cell pointer array of a b-tree page
10138 ** immediately follows the b-tree page header. */
10139 cellStart
= hdr
+ 12 - 4*pPage
->leaf
;
10140 assert( pPage
->aCellIdx
==&data
[cellStart
] );
10141 pCellIdx
= &data
[cellStart
+ 2*(nCell
-1)];
10143 if( !pPage
->leaf
){
10144 /* Analyze the right-child page of internal pages */
10145 pgno
= get4byte(&data
[hdr
+8]);
10146 #ifndef SQLITE_OMIT_AUTOVACUUM
10147 if( pBt
->autoVacuum
){
10148 pCheck
->zPfx
= "On page %u at right child: ";
10149 checkPtrmap(pCheck
, pgno
, PTRMAP_BTREE
, iPage
);
10152 depth
= checkTreePage(pCheck
, pgno
, &maxKey
, maxKey
);
10155 /* For leaf pages, the coverage check will occur in the same loop
10156 ** as the other cell checks, so initialize the heap. */
10157 heap
= pCheck
->heap
;
10161 /* EVIDENCE-OF: R-02776-14802 The cell pointer array consists of K 2-byte
10162 ** integer offsets to the cell contents. */
10163 for(i
=nCell
-1; i
>=0 && pCheck
->mxErr
; i
--){
10166 /* Check cell size */
10168 assert( pCellIdx
==&data
[cellStart
+ i
*2] );
10169 pc
= get2byteAligned(pCellIdx
);
10171 if( pc
<contentOffset
|| pc
>usableSize
-4 ){
10172 checkAppendMsg(pCheck
, "Offset %d out of range %d..%d",
10173 pc
, contentOffset
, usableSize
-4);
10174 doCoverageCheck
= 0;
10178 pPage
->xParseCell(pPage
, pCell
, &info
);
10179 if( pc
+info
.nSize
>usableSize
){
10180 checkAppendMsg(pCheck
, "Extends off end of page");
10181 doCoverageCheck
= 0;
10185 /* Check for integer primary key out of range */
10186 if( pPage
->intKey
){
10187 if( keyCanBeEqual
? (info
.nKey
> maxKey
) : (info
.nKey
>= maxKey
) ){
10188 checkAppendMsg(pCheck
, "Rowid %lld out of order", info
.nKey
);
10190 maxKey
= info
.nKey
;
10191 keyCanBeEqual
= 0; /* Only the first key on the page may ==maxKey */
10194 /* Check the content overflow list */
10195 if( info
.nPayload
>info
.nLocal
){
10196 u32 nPage
; /* Number of pages on the overflow chain */
10197 Pgno pgnoOvfl
; /* First page of the overflow chain */
10198 assert( pc
+ info
.nSize
- 4 <= usableSize
);
10199 nPage
= (info
.nPayload
- info
.nLocal
+ usableSize
- 5)/(usableSize
- 4);
10200 pgnoOvfl
= get4byte(&pCell
[info
.nSize
- 4]);
10201 #ifndef SQLITE_OMIT_AUTOVACUUM
10202 if( pBt
->autoVacuum
){
10203 checkPtrmap(pCheck
, pgnoOvfl
, PTRMAP_OVERFLOW1
, iPage
);
10206 checkList(pCheck
, 0, pgnoOvfl
, nPage
);
10209 if( !pPage
->leaf
){
10210 /* Check sanity of left child page for internal pages */
10211 pgno
= get4byte(pCell
);
10212 #ifndef SQLITE_OMIT_AUTOVACUUM
10213 if( pBt
->autoVacuum
){
10214 checkPtrmap(pCheck
, pgno
, PTRMAP_BTREE
, iPage
);
10217 d2
= checkTreePage(pCheck
, pgno
, &maxKey
, maxKey
);
10220 checkAppendMsg(pCheck
, "Child page depth differs");
10224 /* Populate the coverage-checking heap for leaf pages */
10225 btreeHeapInsert(heap
, (pc
<<16)|(pc
+info
.nSize
-1));
10228 *piMinKey
= maxKey
;
10230 /* Check for complete coverage of the page
10233 if( doCoverageCheck
&& pCheck
->mxErr
>0 ){
10234 /* For leaf pages, the min-heap has already been initialized and the
10235 ** cells have already been inserted. But for internal pages, that has
10236 ** not yet been done, so do it now */
10237 if( !pPage
->leaf
){
10238 heap
= pCheck
->heap
;
10240 for(i
=nCell
-1; i
>=0; i
--){
10242 pc
= get2byteAligned(&data
[cellStart
+i
*2]);
10243 size
= pPage
->xCellSize(pPage
, &data
[pc
]);
10244 btreeHeapInsert(heap
, (pc
<<16)|(pc
+size
-1));
10247 /* Add the freeblocks to the min-heap
10249 ** EVIDENCE-OF: R-20690-50594 The second field of the b-tree page header
10250 ** is the offset of the first freeblock, or zero if there are no
10251 ** freeblocks on the page.
10253 i
= get2byte(&data
[hdr
+1]);
10256 assert( (u32
)i
<=usableSize
-4 ); /* Enforced by btreeComputeFreeSpace() */
10257 size
= get2byte(&data
[i
+2]);
10258 assert( (u32
)(i
+size
)<=usableSize
); /* due to btreeComputeFreeSpace() */
10259 btreeHeapInsert(heap
, (((u32
)i
)<<16)|(i
+size
-1));
10260 /* EVIDENCE-OF: R-58208-19414 The first 2 bytes of a freeblock are a
10261 ** big-endian integer which is the offset in the b-tree page of the next
10262 ** freeblock in the chain, or zero if the freeblock is the last on the
10264 j
= get2byte(&data
[i
]);
10265 /* EVIDENCE-OF: R-06866-39125 Freeblocks are always connected in order of
10266 ** increasing offset. */
10267 assert( j
==0 || j
>i
+size
); /* Enforced by btreeComputeFreeSpace() */
10268 assert( (u32
)j
<=usableSize
-4 ); /* Enforced by btreeComputeFreeSpace() */
10271 /* Analyze the min-heap looking for overlap between cells and/or
10272 ** freeblocks, and counting the number of untracked bytes in nFrag.
10274 ** Each min-heap entry is of the form: (start_address<<16)|end_address.
10275 ** There is an implied first entry the covers the page header, the cell
10276 ** pointer index, and the gap between the cell pointer index and the start
10277 ** of cell content.
10279 ** The loop below pulls entries from the min-heap in order and compares
10280 ** the start_address against the previous end_address. If there is an
10281 ** overlap, that means bytes are used multiple times. If there is a gap,
10282 ** that gap is added to the fragmentation count.
10285 prev
= contentOffset
- 1; /* Implied first min-heap entry */
10286 while( btreeHeapPull(heap
,&x
) ){
10287 if( (prev
&0xffff)>=(x
>>16) ){
10288 checkAppendMsg(pCheck
,
10289 "Multiple uses for byte %u of page %u", x
>>16, iPage
);
10292 nFrag
+= (x
>>16) - (prev
&0xffff) - 1;
10296 nFrag
+= usableSize
- (prev
&0xffff) - 1;
10297 /* EVIDENCE-OF: R-43263-13491 The total number of bytes in all fragments
10298 ** is stored in the fifth field of the b-tree page header.
10299 ** EVIDENCE-OF: R-07161-27322 The one-byte integer at offset 7 gives the
10300 ** number of fragmented free bytes within the cell content area.
10302 if( heap
[0]==0 && nFrag
!=data
[hdr
+7] ){
10303 checkAppendMsg(pCheck
,
10304 "Fragmentation of %d bytes reported as %d on page %u",
10305 nFrag
, data
[hdr
+7], iPage
);
10310 if( !doCoverageCheck
) pPage
->isInit
= savedIsInit
;
10311 releasePage(pPage
);
10312 pCheck
->zPfx
= saved_zPfx
;
10313 pCheck
->v1
= saved_v1
;
10314 pCheck
->v2
= saved_v2
;
10317 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10319 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
10321 ** This routine does a complete check of the given BTree file. aRoot[] is
10322 ** an array of pages numbers were each page number is the root page of
10323 ** a table. nRoot is the number of entries in aRoot.
10325 ** A read-only or read-write transaction must be opened before calling
10328 ** Write the number of error seen in *pnErr. Except for some memory
10329 ** allocation errors, an error message held in memory obtained from
10330 ** malloc is returned if *pnErr is non-zero. If *pnErr==0 then NULL is
10331 ** returned. If a memory allocation error occurs, NULL is returned.
10333 ** If the first entry in aRoot[] is 0, that indicates that the list of
10334 ** root pages is incomplete. This is a "partial integrity-check". This
10335 ** happens when performing an integrity check on a single table. The
10336 ** zero is skipped, of course. But in addition, the freelist checks
10337 ** and the checks to make sure every page is referenced are also skipped,
10338 ** since obviously it is not possible to know which pages are covered by
10339 ** the unverified btrees. Except, if aRoot[1] is 1, then the freelist
10340 ** checks are still performed.
10342 char *sqlite3BtreeIntegrityCheck(
10343 sqlite3
*db
, /* Database connection that is running the check */
10344 Btree
*p
, /* The btree to be checked */
10345 Pgno
*aRoot
, /* An array of root pages numbers for individual trees */
10346 int nRoot
, /* Number of entries in aRoot[] */
10347 int mxErr
, /* Stop reporting errors after this many */
10348 int *pnErr
/* Write number of errors seen to this variable */
10351 IntegrityCk sCheck
;
10352 BtShared
*pBt
= p
->pBt
;
10353 u64 savedDbFlags
= pBt
->db
->flags
;
10355 int bPartial
= 0; /* True if not checking all btrees */
10356 int bCkFreelist
= 1; /* True to scan the freelist */
10357 VVA_ONLY( int nRef
);
10360 /* aRoot[0]==0 means this is a partial check */
10364 if( aRoot
[1]!=1 ) bCkFreelist
= 0;
10367 sqlite3BtreeEnter(p
);
10368 assert( p
->inTrans
>TRANS_NONE
&& pBt
->inTransaction
>TRANS_NONE
);
10369 VVA_ONLY( nRef
= sqlite3PagerRefcount(pBt
->pPager
) );
10373 sCheck
.pPager
= pBt
->pPager
;
10374 sCheck
.nPage
= btreePagecount(sCheck
.pBt
);
10375 sCheck
.mxErr
= mxErr
;
10377 sCheck
.bOomFault
= 0;
10383 sqlite3StrAccumInit(&sCheck
.errMsg
, 0, zErr
, sizeof(zErr
), SQLITE_MAX_LENGTH
);
10384 sCheck
.errMsg
.printfFlags
= SQLITE_PRINTF_INTERNAL
;
10385 if( sCheck
.nPage
==0 ){
10386 goto integrity_ck_cleanup
;
10389 sCheck
.aPgRef
= sqlite3MallocZero((sCheck
.nPage
/ 8)+ 1);
10390 if( !sCheck
.aPgRef
){
10391 sCheck
.bOomFault
= 1;
10392 goto integrity_ck_cleanup
;
10394 sCheck
.heap
= (u32
*)sqlite3PageMalloc( pBt
->pageSize
);
10395 if( sCheck
.heap
==0 ){
10396 sCheck
.bOomFault
= 1;
10397 goto integrity_ck_cleanup
;
10400 i
= PENDING_BYTE_PAGE(pBt
);
10401 if( i
<=sCheck
.nPage
) setPageReferenced(&sCheck
, i
);
10403 /* Check the integrity of the freelist
10406 sCheck
.zPfx
= "Main freelist: ";
10407 checkList(&sCheck
, 1, get4byte(&pBt
->pPage1
->aData
[32]),
10408 get4byte(&pBt
->pPage1
->aData
[36]));
10412 /* Check all the tables.
10414 #ifndef SQLITE_OMIT_AUTOVACUUM
10416 if( pBt
->autoVacuum
){
10419 for(i
=0; (int)i
<nRoot
; i
++) if( mx
<aRoot
[i
] ) mx
= aRoot
[i
];
10420 mxInHdr
= get4byte(&pBt
->pPage1
->aData
[52]);
10422 checkAppendMsg(&sCheck
,
10423 "max rootpage (%d) disagrees with header (%d)",
10427 }else if( get4byte(&pBt
->pPage1
->aData
[64])!=0 ){
10428 checkAppendMsg(&sCheck
,
10429 "incremental_vacuum enabled with a max rootpage of zero"
10434 testcase( pBt
->db
->flags
& SQLITE_CellSizeCk
);
10435 pBt
->db
->flags
&= ~(u64
)SQLITE_CellSizeCk
;
10436 for(i
=0; (int)i
<nRoot
&& sCheck
.mxErr
; i
++){
10438 if( aRoot
[i
]==0 ) continue;
10439 #ifndef SQLITE_OMIT_AUTOVACUUM
10440 if( pBt
->autoVacuum
&& aRoot
[i
]>1 && !bPartial
){
10441 checkPtrmap(&sCheck
, aRoot
[i
], PTRMAP_ROOTPAGE
, 0);
10444 checkTreePage(&sCheck
, aRoot
[i
], ¬Used
, LARGEST_INT64
);
10446 pBt
->db
->flags
= savedDbFlags
;
10448 /* Make sure every page in the file is referenced
10451 for(i
=1; i
<=sCheck
.nPage
&& sCheck
.mxErr
; i
++){
10452 #ifdef SQLITE_OMIT_AUTOVACUUM
10453 if( getPageReferenced(&sCheck
, i
)==0 ){
10454 checkAppendMsg(&sCheck
, "Page %d is never used", i
);
10457 /* If the database supports auto-vacuum, make sure no tables contain
10458 ** references to pointer-map pages.
10460 if( getPageReferenced(&sCheck
, i
)==0 &&
10461 (PTRMAP_PAGENO(pBt
, i
)!=i
|| !pBt
->autoVacuum
) ){
10462 checkAppendMsg(&sCheck
, "Page %d is never used", i
);
10464 if( getPageReferenced(&sCheck
, i
)!=0 &&
10465 (PTRMAP_PAGENO(pBt
, i
)==i
&& pBt
->autoVacuum
) ){
10466 checkAppendMsg(&sCheck
, "Pointer map page %d is referenced", i
);
10472 /* Clean up and report errors.
10474 integrity_ck_cleanup
:
10475 sqlite3PageFree(sCheck
.heap
);
10476 sqlite3_free(sCheck
.aPgRef
);
10477 if( sCheck
.bOomFault
){
10478 sqlite3_str_reset(&sCheck
.errMsg
);
10481 *pnErr
= sCheck
.nErr
;
10482 if( sCheck
.nErr
==0 ) sqlite3_str_reset(&sCheck
.errMsg
);
10483 /* Make sure this analysis did not leave any unref() pages. */
10484 assert( nRef
==sqlite3PagerRefcount(pBt
->pPager
) );
10485 sqlite3BtreeLeave(p
);
10486 return sqlite3StrAccumFinish(&sCheck
.errMsg
);
10488 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
10491 ** Return the full pathname of the underlying database file. Return
10492 ** an empty string if the database is in-memory or a TEMP database.
10494 ** The pager filename is invariant as long as the pager is
10495 ** open so it is safe to access without the BtShared mutex.
10497 const char *sqlite3BtreeGetFilename(Btree
*p
){
10498 assert( p
->pBt
->pPager
!=0 );
10499 return sqlite3PagerFilename(p
->pBt
->pPager
, 1);
10503 ** Return the pathname of the journal file for this database. The return
10504 ** value of this routine is the same regardless of whether the journal file
10505 ** has been created or not.
10507 ** The pager journal filename is invariant as long as the pager is
10508 ** open so it is safe to access without the BtShared mutex.
10510 const char *sqlite3BtreeGetJournalname(Btree
*p
){
10511 assert( p
->pBt
->pPager
!=0 );
10512 return sqlite3PagerJournalname(p
->pBt
->pPager
);
10516 ** Return one of SQLITE_TXN_NONE, SQLITE_TXN_READ, or SQLITE_TXN_WRITE
10517 ** to describe the current transaction state of Btree p.
10519 int sqlite3BtreeTxnState(Btree
*p
){
10520 assert( p
==0 || sqlite3_mutex_held(p
->db
->mutex
) );
10521 return p
? p
->inTrans
: 0;
10524 #ifndef SQLITE_OMIT_WAL
10526 ** Run a checkpoint on the Btree passed as the first argument.
10528 ** Return SQLITE_LOCKED if this or any other connection has an open
10529 ** transaction on the shared-cache the argument Btree is connected to.
10531 ** Parameter eMode is one of SQLITE_CHECKPOINT_PASSIVE, FULL or RESTART.
10533 int sqlite3BtreeCheckpoint(Btree
*p
, int eMode
, int *pnLog
, int *pnCkpt
){
10534 int rc
= SQLITE_OK
;
10536 BtShared
*pBt
= p
->pBt
;
10537 sqlite3BtreeEnter(p
);
10538 if( pBt
->inTransaction
!=TRANS_NONE
){
10539 rc
= SQLITE_LOCKED
;
10541 rc
= sqlite3PagerCheckpoint(pBt
->pPager
, p
->db
, eMode
, pnLog
, pnCkpt
);
10543 sqlite3BtreeLeave(p
);
10550 ** Return true if there is currently a backup running on Btree p.
10552 int sqlite3BtreeIsInBackup(Btree
*p
){
10554 assert( sqlite3_mutex_held(p
->db
->mutex
) );
10555 return p
->nBackup
!=0;
10559 ** This function returns a pointer to a blob of memory associated with
10560 ** a single shared-btree. The memory is used by client code for its own
10561 ** purposes (for example, to store a high-level schema associated with
10562 ** the shared-btree). The btree layer manages reference counting issues.
10564 ** The first time this is called on a shared-btree, nBytes bytes of memory
10565 ** are allocated, zeroed, and returned to the caller. For each subsequent
10566 ** call the nBytes parameter is ignored and a pointer to the same blob
10567 ** of memory returned.
10569 ** If the nBytes parameter is 0 and the blob of memory has not yet been
10570 ** allocated, a null pointer is returned. If the blob has already been
10571 ** allocated, it is returned as normal.
10573 ** Just before the shared-btree is closed, the function passed as the
10574 ** xFree argument when the memory allocation was made is invoked on the
10575 ** blob of allocated memory. The xFree function should not call sqlite3_free()
10576 ** on the memory, the btree layer does that.
10578 void *sqlite3BtreeSchema(Btree
*p
, int nBytes
, void(*xFree
)(void *)){
10579 BtShared
*pBt
= p
->pBt
;
10580 sqlite3BtreeEnter(p
);
10581 if( !pBt
->pSchema
&& nBytes
){
10582 pBt
->pSchema
= sqlite3DbMallocZero(0, nBytes
);
10583 pBt
->xFreeSchema
= xFree
;
10585 sqlite3BtreeLeave(p
);
10586 return pBt
->pSchema
;
10590 ** Return SQLITE_LOCKED_SHAREDCACHE if another user of the same shared
10591 ** btree as the argument handle holds an exclusive lock on the
10592 ** sqlite_schema table. Otherwise SQLITE_OK.
10594 int sqlite3BtreeSchemaLocked(Btree
*p
){
10596 assert( sqlite3_mutex_held(p
->db
->mutex
) );
10597 sqlite3BtreeEnter(p
);
10598 rc
= querySharedCacheTableLock(p
, SCHEMA_ROOT
, READ_LOCK
);
10599 assert( rc
==SQLITE_OK
|| rc
==SQLITE_LOCKED_SHAREDCACHE
);
10600 sqlite3BtreeLeave(p
);
10605 #ifndef SQLITE_OMIT_SHARED_CACHE
10607 ** Obtain a lock on the table whose root page is iTab. The
10608 ** lock is a write lock if isWritelock is true or a read lock
10611 int sqlite3BtreeLockTable(Btree
*p
, int iTab
, u8 isWriteLock
){
10612 int rc
= SQLITE_OK
;
10613 assert( p
->inTrans
!=TRANS_NONE
);
10615 u8 lockType
= READ_LOCK
+ isWriteLock
;
10616 assert( READ_LOCK
+1==WRITE_LOCK
);
10617 assert( isWriteLock
==0 || isWriteLock
==1 );
10619 sqlite3BtreeEnter(p
);
10620 rc
= querySharedCacheTableLock(p
, iTab
, lockType
);
10621 if( rc
==SQLITE_OK
){
10622 rc
= setSharedCacheTableLock(p
, iTab
, lockType
);
10624 sqlite3BtreeLeave(p
);
10630 #ifndef SQLITE_OMIT_INCRBLOB
10632 ** Argument pCsr must be a cursor opened for writing on an
10633 ** INTKEY table currently pointing at a valid table entry.
10634 ** This function modifies the data stored as part of that entry.
10636 ** Only the data content may only be modified, it is not possible to
10637 ** change the length of the data stored. If this function is called with
10638 ** parameters that attempt to write past the end of the existing data,
10639 ** no modifications are made and SQLITE_CORRUPT is returned.
10641 int sqlite3BtreePutData(BtCursor
*pCsr
, u32 offset
, u32 amt
, void *z
){
10643 assert( cursorOwnsBtShared(pCsr
) );
10644 assert( sqlite3_mutex_held(pCsr
->pBtree
->db
->mutex
) );
10645 assert( pCsr
->curFlags
& BTCF_Incrblob
);
10647 rc
= restoreCursorPosition(pCsr
);
10648 if( rc
!=SQLITE_OK
){
10651 assert( pCsr
->eState
!=CURSOR_REQUIRESEEK
);
10652 if( pCsr
->eState
!=CURSOR_VALID
){
10653 return SQLITE_ABORT
;
10656 /* Save the positions of all other cursors open on this table. This is
10657 ** required in case any of them are holding references to an xFetch
10658 ** version of the b-tree page modified by the accessPayload call below.
10660 ** Note that pCsr must be open on a INTKEY table and saveCursorPosition()
10661 ** and hence saveAllCursors() cannot fail on a BTREE_INTKEY table, hence
10662 ** saveAllCursors can only return SQLITE_OK.
10664 VVA_ONLY(rc
=) saveAllCursors(pCsr
->pBt
, pCsr
->pgnoRoot
, pCsr
);
10665 assert( rc
==SQLITE_OK
);
10667 /* Check some assumptions:
10668 ** (a) the cursor is open for writing,
10669 ** (b) there is a read/write transaction open,
10670 ** (c) the connection holds a write-lock on the table (if required),
10671 ** (d) there are no conflicting read-locks, and
10672 ** (e) the cursor points at a valid row of an intKey table.
10674 if( (pCsr
->curFlags
& BTCF_WriteFlag
)==0 ){
10675 return SQLITE_READONLY
;
10677 assert( (pCsr
->pBt
->btsFlags
& BTS_READ_ONLY
)==0
10678 && pCsr
->pBt
->inTransaction
==TRANS_WRITE
);
10679 assert( hasSharedCacheTableLock(pCsr
->pBtree
, pCsr
->pgnoRoot
, 0, 2) );
10680 assert( !hasReadConflicts(pCsr
->pBtree
, pCsr
->pgnoRoot
) );
10681 assert( pCsr
->pPage
->intKey
);
10683 return accessPayload(pCsr
, offset
, amt
, (unsigned char *)z
, 1);
10687 ** Mark this cursor as an incremental blob cursor.
10689 void sqlite3BtreeIncrblobCursor(BtCursor
*pCur
){
10690 pCur
->curFlags
|= BTCF_Incrblob
;
10691 pCur
->pBtree
->hasIncrblobCur
= 1;
10696 ** Set both the "read version" (single byte at byte offset 18) and
10697 ** "write version" (single byte at byte offset 19) fields in the database
10698 ** header to iVersion.
10700 int sqlite3BtreeSetVersion(Btree
*pBtree
, int iVersion
){
10701 BtShared
*pBt
= pBtree
->pBt
;
10702 int rc
; /* Return code */
10704 assert( iVersion
==1 || iVersion
==2 );
10706 /* If setting the version fields to 1, do not automatically open the
10707 ** WAL connection, even if the version fields are currently set to 2.
10709 pBt
->btsFlags
&= ~BTS_NO_WAL
;
10710 if( iVersion
==1 ) pBt
->btsFlags
|= BTS_NO_WAL
;
10712 rc
= sqlite3BtreeBeginTrans(pBtree
, 0, 0);
10713 if( rc
==SQLITE_OK
){
10714 u8
*aData
= pBt
->pPage1
->aData
;
10715 if( aData
[18]!=(u8
)iVersion
|| aData
[19]!=(u8
)iVersion
){
10716 rc
= sqlite3BtreeBeginTrans(pBtree
, 2, 0);
10717 if( rc
==SQLITE_OK
){
10718 rc
= sqlite3PagerWrite(pBt
->pPage1
->pDbPage
);
10719 if( rc
==SQLITE_OK
){
10720 aData
[18] = (u8
)iVersion
;
10721 aData
[19] = (u8
)iVersion
;
10727 pBt
->btsFlags
&= ~BTS_NO_WAL
;
10732 ** Return true if the cursor has a hint specified. This routine is
10733 ** only used from within assert() statements
10735 int sqlite3BtreeCursorHasHint(BtCursor
*pCsr
, unsigned int mask
){
10736 return (pCsr
->hints
& mask
)!=0;
10740 ** Return true if the given Btree is read-only.
10742 int sqlite3BtreeIsReadonly(Btree
*p
){
10743 return (p
->pBt
->btsFlags
& BTS_READ_ONLY
)!=0;
10747 ** Return the size of the header added to each page by this module.
10749 int sqlite3HeaderSizeBtree(void){ return ROUND8(sizeof(MemPage
)); }
10751 #if !defined(SQLITE_OMIT_SHARED_CACHE)
10753 ** Return true if the Btree passed as the only argument is sharable.
10755 int sqlite3BtreeSharable(Btree
*p
){
10756 return p
->sharable
;
10760 ** Return the number of connections to the BtShared object accessed by
10761 ** the Btree handle passed as the only argument. For private caches
10762 ** this is always 1. For shared caches it may be 1 or greater.
10764 int sqlite3BtreeConnectionCount(Btree
*p
){
10765 testcase( p
->sharable
);
10766 return p
->pBt
->nRef
;