4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
22 typedef struct DistinctCtx DistinctCtx
;
24 u8 isTnct
; /* True if the DISTINCT keyword is present */
25 u8 eTnctType
; /* One of the WHERE_DISTINCT_* operators */
26 int tabTnct
; /* Ephemeral table used for DISTINCT processing */
27 int addrTnct
; /* Address of OP_OpenEphemeral opcode for tabTnct */
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
48 typedef struct SortCtx SortCtx
;
50 ExprList
*pOrderBy
; /* The ORDER BY (or GROUP BY clause) */
51 int nOBSat
; /* Number of ORDER BY terms satisfied by indices */
52 int iECursor
; /* Cursor number for the sorter */
53 int regReturn
; /* Register holding block-output return address */
54 int labelBkOut
; /* Start label for the block-output subroutine */
55 int addrSortIndex
; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56 int labelDone
; /* Jump here when done, ex: LIMIT reached */
57 int labelOBLopt
; /* Jump here when sorter is full */
58 u8 sortFlags
; /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60 u8 nDefer
; /* Number of valid entries in aDefer[] */
62 Table
*pTab
; /* Table definition */
63 int iCsr
; /* Cursor number for table */
64 int nKey
; /* Number of PK columns for table pTab (>=1) */
67 struct RowLoadInfo
*pDeferredRowLoad
; /* Deferred row loading info or NULL */
69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
72 ** Delete all the content of a Select structure. Deallocate the structure
73 ** itself depending on the value of bFree
75 ** If bFree==1, call sqlite3DbFree() on the p object.
76 ** If bFree==0, Leave the first Select object unfreed
78 static void clearSelect(sqlite3
*db
, Select
*p
, int bFree
){
80 Select
*pPrior
= p
->pPrior
;
81 sqlite3ExprListDelete(db
, p
->pEList
);
82 sqlite3SrcListDelete(db
, p
->pSrc
);
83 sqlite3ExprDelete(db
, p
->pWhere
);
84 sqlite3ExprListDelete(db
, p
->pGroupBy
);
85 sqlite3ExprDelete(db
, p
->pHaving
);
86 sqlite3ExprListDelete(db
, p
->pOrderBy
);
87 sqlite3ExprDelete(db
, p
->pLimit
);
88 if( OK_IF_ALWAYS_TRUE(p
->pWith
) ) sqlite3WithDelete(db
, p
->pWith
);
89 #ifndef SQLITE_OMIT_WINDOWFUNC
90 if( OK_IF_ALWAYS_TRUE(p
->pWinDefn
) ){
91 sqlite3WindowListDelete(db
, p
->pWinDefn
);
94 assert( p
->pWin
->ppThis
==&p
->pWin
);
95 sqlite3WindowUnlinkFromSelect(p
->pWin
);
98 if( bFree
) sqlite3DbFreeNN(db
, p
);
105 ** Initialize a SelectDest structure.
107 void sqlite3SelectDestInit(SelectDest
*pDest
, int eDest
, int iParm
){
108 pDest
->eDest
= (u8
)eDest
;
109 pDest
->iSDParm
= iParm
;
118 ** Allocate a new Select structure and return a pointer to that
121 Select
*sqlite3SelectNew(
122 Parse
*pParse
, /* Parsing context */
123 ExprList
*pEList
, /* which columns to include in the result */
124 SrcList
*pSrc
, /* the FROM clause -- which tables to scan */
125 Expr
*pWhere
, /* the WHERE clause */
126 ExprList
*pGroupBy
, /* the GROUP BY clause */
127 Expr
*pHaving
, /* the HAVING clause */
128 ExprList
*pOrderBy
, /* the ORDER BY clause */
129 u32 selFlags
, /* Flag parameters, such as SF_Distinct */
130 Expr
*pLimit
/* LIMIT value. NULL means not used */
132 Select
*pNew
, *pAllocated
;
134 pAllocated
= pNew
= sqlite3DbMallocRawNN(pParse
->db
, sizeof(*pNew
) );
136 assert( pParse
->db
->mallocFailed
);
140 pEList
= sqlite3ExprListAppend(pParse
, 0,
141 sqlite3Expr(pParse
->db
,TK_ASTERISK
,0));
143 pNew
->pEList
= pEList
;
144 pNew
->op
= TK_SELECT
;
145 pNew
->selFlags
= selFlags
;
148 pNew
->selId
= ++pParse
->nSelect
;
149 pNew
->addrOpenEphm
[0] = -1;
150 pNew
->addrOpenEphm
[1] = -1;
151 pNew
->nSelectRow
= 0;
152 if( pSrc
==0 ) pSrc
= sqlite3DbMallocZero(pParse
->db
, sizeof(*pSrc
));
154 pNew
->pWhere
= pWhere
;
155 pNew
->pGroupBy
= pGroupBy
;
156 pNew
->pHaving
= pHaving
;
157 pNew
->pOrderBy
= pOrderBy
;
160 pNew
->pLimit
= pLimit
;
162 #ifndef SQLITE_OMIT_WINDOWFUNC
166 if( pParse
->db
->mallocFailed
) {
167 clearSelect(pParse
->db
, pNew
, pNew
!=&standin
);
170 assert( pNew
->pSrc
!=0 || pParse
->nErr
>0 );
177 ** Delete the given Select structure and all of its substructures.
179 void sqlite3SelectDelete(sqlite3
*db
, Select
*p
){
180 if( OK_IF_ALWAYS_TRUE(p
) ) clearSelect(db
, p
, 1);
184 ** Return a pointer to the right-most SELECT statement in a compound.
186 static Select
*findRightmost(Select
*p
){
187 while( p
->pNext
) p
= p
->pNext
;
192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
193 ** type of join. Return an integer constant that expresses that type
194 ** in terms of the following bit values:
203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
205 ** If an illegal or unsupported join type is seen, then still return
206 ** a join type, but put an error in the pParse structure.
208 int sqlite3JoinType(Parse
*pParse
, Token
*pA
, Token
*pB
, Token
*pC
){
212 /* 0123456789 123456789 123456789 123 */
213 static const char zKeyText
[] = "naturaleftouterightfullinnercross";
214 static const struct {
215 u8 i
; /* Beginning of keyword text in zKeyText[] */
216 u8 nChar
; /* Length of the keyword in characters */
217 u8 code
; /* Join type mask */
219 /* natural */ { 0, 7, JT_NATURAL
},
220 /* left */ { 6, 4, JT_LEFT
|JT_OUTER
},
221 /* outer */ { 10, 5, JT_OUTER
},
222 /* right */ { 14, 5, JT_RIGHT
|JT_OUTER
},
223 /* full */ { 19, 4, JT_LEFT
|JT_RIGHT
|JT_OUTER
},
224 /* inner */ { 23, 5, JT_INNER
},
225 /* cross */ { 28, 5, JT_INNER
|JT_CROSS
},
231 for(i
=0; i
<3 && apAll
[i
]; i
++){
233 for(j
=0; j
<ArraySize(aKeyword
); j
++){
234 if( p
->n
==aKeyword
[j
].nChar
235 && sqlite3StrNICmp((char*)p
->z
, &zKeyText
[aKeyword
[j
].i
], p
->n
)==0 ){
236 jointype
|= aKeyword
[j
].code
;
240 testcase( j
==0 || j
==1 || j
==2 || j
==3 || j
==4 || j
==5 || j
==6 );
241 if( j
>=ArraySize(aKeyword
) ){
242 jointype
|= JT_ERROR
;
247 (jointype
& (JT_INNER
|JT_OUTER
))==(JT_INNER
|JT_OUTER
) ||
248 (jointype
& JT_ERROR
)!=0
250 const char *zSp
= " ";
252 if( pC
==0 ){ zSp
++; }
253 sqlite3ErrorMsg(pParse
, "unknown or unsupported join type: "
254 "%T %T%s%T", pA
, pB
, zSp
, pC
);
256 }else if( (jointype
& JT_OUTER
)!=0
257 && (jointype
& (JT_LEFT
|JT_RIGHT
))!=JT_LEFT
){
258 sqlite3ErrorMsg(pParse
,
259 "RIGHT and FULL OUTER JOINs are not currently supported");
266 ** Return the index of a column in a table. Return -1 if the column
267 ** is not contained in the table.
269 int sqlite3ColumnIndex(Table
*pTab
, const char *zCol
){
271 u8 h
= sqlite3StrIHash(zCol
);
273 for(pCol
=pTab
->aCol
, i
=0; i
<pTab
->nCol
; pCol
++, i
++){
274 if( pCol
->hName
==h
&& sqlite3StrICmp(pCol
->zName
, zCol
)==0 ) return i
;
280 ** Search the first N tables in pSrc, from left to right, looking for a
281 ** table that has a column named zCol.
283 ** When found, set *piTab and *piCol to the table index and column index
284 ** of the matching column and return TRUE.
286 ** If not found, return FALSE.
288 static int tableAndColumnIndex(
289 SrcList
*pSrc
, /* Array of tables to search */
290 int N
, /* Number of tables in pSrc->a[] to search */
291 const char *zCol
, /* Name of the column we are looking for */
292 int *piTab
, /* Write index of pSrc->a[] here */
293 int *piCol
, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
294 int bIgnoreHidden
/* True to ignore hidden columns */
296 int i
; /* For looping over tables in pSrc */
297 int iCol
; /* Index of column matching zCol */
299 assert( (piTab
==0)==(piCol
==0) ); /* Both or neither are NULL */
301 iCol
= sqlite3ColumnIndex(pSrc
->a
[i
].pTab
, zCol
);
303 && (bIgnoreHidden
==0 || IsHiddenColumn(&pSrc
->a
[i
].pTab
->aCol
[iCol
])==0)
316 ** This function is used to add terms implied by JOIN syntax to the
317 ** WHERE clause expression of a SELECT statement. The new term, which
318 ** is ANDed with the existing WHERE clause, is of the form:
320 ** (tab1.col1 = tab2.col2)
322 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
323 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
324 ** column iColRight of tab2.
326 static void addWhereTerm(
327 Parse
*pParse
, /* Parsing context */
328 SrcList
*pSrc
, /* List of tables in FROM clause */
329 int iLeft
, /* Index of first table to join in pSrc */
330 int iColLeft
, /* Index of column in first table */
331 int iRight
, /* Index of second table in pSrc */
332 int iColRight
, /* Index of column in second table */
333 int isOuterJoin
, /* True if this is an OUTER join */
334 Expr
**ppWhere
/* IN/OUT: The WHERE clause to add to */
336 sqlite3
*db
= pParse
->db
;
341 assert( iLeft
<iRight
);
342 assert( pSrc
->nSrc
>iRight
);
343 assert( pSrc
->a
[iLeft
].pTab
);
344 assert( pSrc
->a
[iRight
].pTab
);
346 pE1
= sqlite3CreateColumnExpr(db
, pSrc
, iLeft
, iColLeft
);
347 pE2
= sqlite3CreateColumnExpr(db
, pSrc
, iRight
, iColRight
);
349 pEq
= sqlite3PExpr(pParse
, TK_EQ
, pE1
, pE2
);
350 if( pEq
&& isOuterJoin
){
351 ExprSetProperty(pEq
, EP_FromJoin
);
352 assert( !ExprHasProperty(pEq
, EP_TokenOnly
|EP_Reduced
) );
353 ExprSetVVAProperty(pEq
, EP_NoReduce
);
354 pEq
->iRightJoinTable
= pE2
->iTable
;
356 *ppWhere
= sqlite3ExprAnd(pParse
, *ppWhere
, pEq
);
360 ** Set the EP_FromJoin property on all terms of the given expression.
361 ** And set the Expr.iRightJoinTable to iTable for every term in the
364 ** The EP_FromJoin property is used on terms of an expression to tell
365 ** the LEFT OUTER JOIN processing logic that this term is part of the
366 ** join restriction specified in the ON or USING clause and not a part
367 ** of the more general WHERE clause. These terms are moved over to the
368 ** WHERE clause during join processing but we need to remember that they
369 ** originated in the ON or USING clause.
371 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
372 ** expression depends on table iRightJoinTable even if that table is not
373 ** explicitly mentioned in the expression. That information is needed
374 ** for cases like this:
376 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
378 ** The where clause needs to defer the handling of the t1.x=5
379 ** term until after the t2 loop of the join. In that way, a
380 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
381 ** defer the handling of t1.x=5, it will be processed immediately
382 ** after the t1 loop and rows with t1.x!=5 will never appear in
383 ** the output, which is incorrect.
385 void sqlite3SetJoinExpr(Expr
*p
, int iTable
){
387 ExprSetProperty(p
, EP_FromJoin
);
388 assert( !ExprHasProperty(p
, EP_TokenOnly
|EP_Reduced
) );
389 ExprSetVVAProperty(p
, EP_NoReduce
);
390 p
->iRightJoinTable
= iTable
;
391 if( p
->op
==TK_FUNCTION
&& p
->x
.pList
){
393 for(i
=0; i
<p
->x
.pList
->nExpr
; i
++){
394 sqlite3SetJoinExpr(p
->x
.pList
->a
[i
].pExpr
, iTable
);
397 sqlite3SetJoinExpr(p
->pLeft
, iTable
);
402 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every
403 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
404 ** an ordinary term that omits the EP_FromJoin mark.
406 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
408 static void unsetJoinExpr(Expr
*p
, int iTable
){
410 if( ExprHasProperty(p
, EP_FromJoin
)
411 && (iTable
<0 || p
->iRightJoinTable
==iTable
) ){
412 ExprClearProperty(p
, EP_FromJoin
);
414 if( p
->op
==TK_COLUMN
&& p
->iTable
==iTable
){
415 ExprClearProperty(p
, EP_CanBeNull
);
417 if( p
->op
==TK_FUNCTION
&& p
->x
.pList
){
419 for(i
=0; i
<p
->x
.pList
->nExpr
; i
++){
420 unsetJoinExpr(p
->x
.pList
->a
[i
].pExpr
, iTable
);
423 unsetJoinExpr(p
->pLeft
, iTable
);
429 ** This routine processes the join information for a SELECT statement.
430 ** ON and USING clauses are converted into extra terms of the WHERE clause.
431 ** NATURAL joins also create extra WHERE clause terms.
433 ** The terms of a FROM clause are contained in the Select.pSrc structure.
434 ** The left most table is the first entry in Select.pSrc. The right-most
435 ** table is the last entry. The join operator is held in the entry to
436 ** the left. Thus entry 0 contains the join operator for the join between
437 ** entries 0 and 1. Any ON or USING clauses associated with the join are
438 ** also attached to the left entry.
440 ** This routine returns the number of errors encountered.
442 static int sqliteProcessJoin(Parse
*pParse
, Select
*p
){
443 SrcList
*pSrc
; /* All tables in the FROM clause */
444 int i
, j
; /* Loop counters */
445 SrcItem
*pLeft
; /* Left table being joined */
446 SrcItem
*pRight
; /* Right table being joined */
451 for(i
=0; i
<pSrc
->nSrc
-1; i
++, pRight
++, pLeft
++){
452 Table
*pRightTab
= pRight
->pTab
;
455 if( NEVER(pLeft
->pTab
==0 || pRightTab
==0) ) continue;
456 isOuter
= (pRight
->fg
.jointype
& JT_OUTER
)!=0;
458 /* When the NATURAL keyword is present, add WHERE clause terms for
459 ** every column that the two tables have in common.
461 if( pRight
->fg
.jointype
& JT_NATURAL
){
462 if( pRight
->pOn
|| pRight
->pUsing
){
463 sqlite3ErrorMsg(pParse
, "a NATURAL join may not have "
464 "an ON or USING clause", 0);
467 for(j
=0; j
<pRightTab
->nCol
; j
++){
468 char *zName
; /* Name of column in the right table */
469 int iLeft
; /* Matching left table */
470 int iLeftCol
; /* Matching column in the left table */
472 if( IsHiddenColumn(&pRightTab
->aCol
[j
]) ) continue;
473 zName
= pRightTab
->aCol
[j
].zName
;
474 if( tableAndColumnIndex(pSrc
, i
+1, zName
, &iLeft
, &iLeftCol
, 1) ){
475 addWhereTerm(pParse
, pSrc
, iLeft
, iLeftCol
, i
+1, j
,
476 isOuter
, &p
->pWhere
);
481 /* Disallow both ON and USING clauses in the same join
483 if( pRight
->pOn
&& pRight
->pUsing
){
484 sqlite3ErrorMsg(pParse
, "cannot have both ON and USING "
485 "clauses in the same join");
489 /* Add the ON clause to the end of the WHERE clause, connected by
493 if( isOuter
) sqlite3SetJoinExpr(pRight
->pOn
, pRight
->iCursor
);
494 p
->pWhere
= sqlite3ExprAnd(pParse
, p
->pWhere
, pRight
->pOn
);
498 /* Create extra terms on the WHERE clause for each column named
499 ** in the USING clause. Example: If the two tables to be joined are
500 ** A and B and the USING clause names X, Y, and Z, then add this
501 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
502 ** Report an error if any column mentioned in the USING clause is
503 ** not contained in both tables to be joined.
505 if( pRight
->pUsing
){
506 IdList
*pList
= pRight
->pUsing
;
507 for(j
=0; j
<pList
->nId
; j
++){
508 char *zName
; /* Name of the term in the USING clause */
509 int iLeft
; /* Table on the left with matching column name */
510 int iLeftCol
; /* Column number of matching column on the left */
511 int iRightCol
; /* Column number of matching column on the right */
513 zName
= pList
->a
[j
].zName
;
514 iRightCol
= sqlite3ColumnIndex(pRightTab
, zName
);
516 || !tableAndColumnIndex(pSrc
, i
+1, zName
, &iLeft
, &iLeftCol
, 0)
518 sqlite3ErrorMsg(pParse
, "cannot join using column %s - column "
519 "not present in both tables", zName
);
522 addWhereTerm(pParse
, pSrc
, iLeft
, iLeftCol
, i
+1, iRightCol
,
523 isOuter
, &p
->pWhere
);
531 ** An instance of this object holds information (beyond pParse and pSelect)
532 ** needed to load the next result row that is to be added to the sorter.
534 typedef struct RowLoadInfo RowLoadInfo
;
536 int regResult
; /* Store results in array of registers here */
537 u8 ecelFlags
; /* Flag argument to ExprCodeExprList() */
538 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
539 ExprList
*pExtra
; /* Extra columns needed by sorter refs */
540 int regExtraResult
; /* Where to load the extra columns */
545 ** This routine does the work of loading query data into an array of
546 ** registers so that it can be added to the sorter.
548 static void innerLoopLoadRow(
549 Parse
*pParse
, /* Statement under construction */
550 Select
*pSelect
, /* The query being coded */
551 RowLoadInfo
*pInfo
/* Info needed to complete the row load */
553 sqlite3ExprCodeExprList(pParse
, pSelect
->pEList
, pInfo
->regResult
,
554 0, pInfo
->ecelFlags
);
555 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
557 sqlite3ExprCodeExprList(pParse
, pInfo
->pExtra
, pInfo
->regExtraResult
, 0, 0);
558 sqlite3ExprListDelete(pParse
->db
, pInfo
->pExtra
);
564 ** Code the OP_MakeRecord instruction that generates the entry to be
565 ** added into the sorter.
567 ** Return the register in which the result is stored.
569 static int makeSorterRecord(
576 int nOBSat
= pSort
->nOBSat
;
577 Vdbe
*v
= pParse
->pVdbe
;
578 int regOut
= ++pParse
->nMem
;
579 if( pSort
->pDeferredRowLoad
){
580 innerLoopLoadRow(pParse
, pSelect
, pSort
->pDeferredRowLoad
);
582 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regBase
+nOBSat
, nBase
-nOBSat
, regOut
);
587 ** Generate code that will push the record in registers regData
588 ** through regData+nData-1 onto the sorter.
590 static void pushOntoSorter(
591 Parse
*pParse
, /* Parser context */
592 SortCtx
*pSort
, /* Information about the ORDER BY clause */
593 Select
*pSelect
, /* The whole SELECT statement */
594 int regData
, /* First register holding data to be sorted */
595 int regOrigData
, /* First register holding data before packing */
596 int nData
, /* Number of elements in the regData data array */
597 int nPrefixReg
/* No. of reg prior to regData available for use */
599 Vdbe
*v
= pParse
->pVdbe
; /* Stmt under construction */
600 int bSeq
= ((pSort
->sortFlags
& SORTFLAG_UseSorter
)==0);
601 int nExpr
= pSort
->pOrderBy
->nExpr
; /* No. of ORDER BY terms */
602 int nBase
= nExpr
+ bSeq
+ nData
; /* Fields in sorter record */
603 int regBase
; /* Regs for sorter record */
604 int regRecord
= 0; /* Assembled sorter record */
605 int nOBSat
= pSort
->nOBSat
; /* ORDER BY terms to skip */
606 int op
; /* Opcode to add sorter record to sorter */
607 int iLimit
; /* LIMIT counter */
608 int iSkip
= 0; /* End of the sorter insert loop */
610 assert( bSeq
==0 || bSeq
==1 );
613 ** (1) The data to be sorted has already been packed into a Record
614 ** by a prior OP_MakeRecord. In this case nData==1 and regData
615 ** will be completely unrelated to regOrigData.
616 ** (2) All output columns are included in the sort record. In that
617 ** case regData==regOrigData.
618 ** (3) Some output columns are omitted from the sort record due to
619 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
620 ** SQLITE_ECEL_OMITREF optimization, or due to the
621 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases
622 ** regOrigData is 0 to prevent this routine from trying to copy
623 ** values that might not yet exist.
625 assert( nData
==1 || regData
==regOrigData
|| regOrigData
==0 );
628 assert( nPrefixReg
==nExpr
+bSeq
);
629 regBase
= regData
- nPrefixReg
;
631 regBase
= pParse
->nMem
+ 1;
632 pParse
->nMem
+= nBase
;
634 assert( pSelect
->iOffset
==0 || pSelect
->iLimit
!=0 );
635 iLimit
= pSelect
->iOffset
? pSelect
->iOffset
+1 : pSelect
->iLimit
;
636 pSort
->labelDone
= sqlite3VdbeMakeLabel(pParse
);
637 sqlite3ExprCodeExprList(pParse
, pSort
->pOrderBy
, regBase
, regOrigData
,
638 SQLITE_ECEL_DUP
| (regOrigData
? SQLITE_ECEL_REF
: 0));
640 sqlite3VdbeAddOp2(v
, OP_Sequence
, pSort
->iECursor
, regBase
+nExpr
);
642 if( nPrefixReg
==0 && nData
>0 ){
643 sqlite3ExprCodeMove(pParse
, regData
, regBase
+nExpr
+bSeq
, nData
);
646 int regPrevKey
; /* The first nOBSat columns of the previous row */
647 int addrFirst
; /* Address of the OP_IfNot opcode */
648 int addrJmp
; /* Address of the OP_Jump opcode */
649 VdbeOp
*pOp
; /* Opcode that opens the sorter */
650 int nKey
; /* Number of sorting key columns, including OP_Sequence */
651 KeyInfo
*pKI
; /* Original KeyInfo on the sorter table */
653 regRecord
= makeSorterRecord(pParse
, pSort
, pSelect
, regBase
, nBase
);
654 regPrevKey
= pParse
->nMem
+1;
655 pParse
->nMem
+= pSort
->nOBSat
;
656 nKey
= nExpr
- pSort
->nOBSat
+ bSeq
;
658 addrFirst
= sqlite3VdbeAddOp1(v
, OP_IfNot
, regBase
+nExpr
);
660 addrFirst
= sqlite3VdbeAddOp1(v
, OP_SequenceTest
, pSort
->iECursor
);
663 sqlite3VdbeAddOp3(v
, OP_Compare
, regPrevKey
, regBase
, pSort
->nOBSat
);
664 pOp
= sqlite3VdbeGetOp(v
, pSort
->addrSortIndex
);
665 if( pParse
->db
->mallocFailed
) return;
666 pOp
->p2
= nKey
+ nData
;
667 pKI
= pOp
->p4
.pKeyInfo
;
668 memset(pKI
->aSortFlags
, 0, pKI
->nKeyField
); /* Makes OP_Jump testable */
669 sqlite3VdbeChangeP4(v
, -1, (char*)pKI
, P4_KEYINFO
);
670 testcase( pKI
->nAllField
> pKI
->nKeyField
+2 );
671 pOp
->p4
.pKeyInfo
= sqlite3KeyInfoFromExprList(pParse
,pSort
->pOrderBy
,nOBSat
,
672 pKI
->nAllField
-pKI
->nKeyField
-1);
673 pOp
= 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
674 addrJmp
= sqlite3VdbeCurrentAddr(v
);
675 sqlite3VdbeAddOp3(v
, OP_Jump
, addrJmp
+1, 0, addrJmp
+1); VdbeCoverage(v
);
676 pSort
->labelBkOut
= sqlite3VdbeMakeLabel(pParse
);
677 pSort
->regReturn
= ++pParse
->nMem
;
678 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSort
->regReturn
, pSort
->labelBkOut
);
679 sqlite3VdbeAddOp1(v
, OP_ResetSorter
, pSort
->iECursor
);
681 sqlite3VdbeAddOp2(v
, OP_IfNot
, iLimit
, pSort
->labelDone
);
684 sqlite3VdbeJumpHere(v
, addrFirst
);
685 sqlite3ExprCodeMove(pParse
, regBase
, regPrevKey
, pSort
->nOBSat
);
686 sqlite3VdbeJumpHere(v
, addrJmp
);
689 /* At this point the values for the new sorter entry are stored
690 ** in an array of registers. They need to be composed into a record
691 ** and inserted into the sorter if either (a) there are currently
692 ** less than LIMIT+OFFSET items or (b) the new record is smaller than
693 ** the largest record currently in the sorter. If (b) is true and there
694 ** are already LIMIT+OFFSET items in the sorter, delete the largest
695 ** entry before inserting the new one. This way there are never more
696 ** than LIMIT+OFFSET items in the sorter.
698 ** If the new record does not need to be inserted into the sorter,
699 ** jump to the next iteration of the loop. If the pSort->labelOBLopt
700 ** value is not zero, then it is a label of where to jump. Otherwise,
701 ** just bypass the row insert logic. See the header comment on the
702 ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
704 int iCsr
= pSort
->iECursor
;
705 sqlite3VdbeAddOp2(v
, OP_IfNotZero
, iLimit
, sqlite3VdbeCurrentAddr(v
)+4);
707 sqlite3VdbeAddOp2(v
, OP_Last
, iCsr
, 0);
708 iSkip
= sqlite3VdbeAddOp4Int(v
, OP_IdxLE
,
709 iCsr
, 0, regBase
+nOBSat
, nExpr
-nOBSat
);
711 sqlite3VdbeAddOp1(v
, OP_Delete
, iCsr
);
714 regRecord
= makeSorterRecord(pParse
, pSort
, pSelect
, regBase
, nBase
);
716 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
717 op
= OP_SorterInsert
;
721 sqlite3VdbeAddOp4Int(v
, op
, pSort
->iECursor
, regRecord
,
722 regBase
+nOBSat
, nBase
-nOBSat
);
724 sqlite3VdbeChangeP2(v
, iSkip
,
725 pSort
->labelOBLopt
? pSort
->labelOBLopt
: sqlite3VdbeCurrentAddr(v
));
730 ** Add code to implement the OFFSET
732 static void codeOffset(
733 Vdbe
*v
, /* Generate code into this VM */
734 int iOffset
, /* Register holding the offset counter */
735 int iContinue
/* Jump here to skip the current record */
738 sqlite3VdbeAddOp3(v
, OP_IfPos
, iOffset
, iContinue
, 1); VdbeCoverage(v
);
739 VdbeComment((v
, "OFFSET"));
744 ** Add code that will check to make sure the array of registers starting at
745 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
746 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
747 ** are available. Which is used depends on the value of parameter eTnctType,
750 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
751 ** Build an ephemeral table that contains all entries seen before and
752 ** skip entries which have been seen before.
754 ** Parameter iTab is the cursor number of an ephemeral table that must
755 ** be opened before the VM code generated by this routine is executed.
756 ** The ephemeral cursor table is queried for a record identical to the
757 ** record formed by the current array of registers. If one is found,
758 ** jump to VM address addrRepeat. Otherwise, insert a new record into
759 ** the ephemeral cursor and proceed.
761 ** The returned value in this case is a copy of parameter iTab.
763 ** WHERE_DISTINCT_ORDERED:
764 ** In this case rows are being delivered sorted order. The ephermal
765 ** table is not required. Instead, the current set of values
766 ** is compared against previous row. If they match, the new row
767 ** is not distinct and control jumps to VM address addrRepeat. Otherwise,
768 ** the VM program proceeds with processing the new row.
770 ** The returned value in this case is the register number of the first
771 ** in an array of registers used to store the previous result row so that
772 ** it can be compared to the next. The caller must ensure that this
773 ** register is initialized to NULL. (The fixDistinctOpenEph() routine
774 ** will take care of this initialization.)
776 ** WHERE_DISTINCT_UNIQUE:
777 ** In this case it has already been determined that the rows are distinct.
778 ** No special action is required. The return value is zero.
780 ** Parameter pEList is the list of expressions used to generated the
781 ** contents of each row. It is used by this routine to determine (a)
782 ** how many elements there are in the array of registers and (b) the
783 ** collation sequences that should be used for the comparisons if
784 ** eTnctType is WHERE_DISTINCT_ORDERED.
786 static int codeDistinct(
787 Parse
*pParse
, /* Parsing and code generating context */
788 int eTnctType
, /* WHERE_DISTINCT_* value */
789 int iTab
, /* A sorting index used to test for distinctness */
790 int addrRepeat
, /* Jump to here if not distinct */
791 ExprList
*pEList
, /* Expression for each element */
792 int regElem
/* First element */
795 int nResultCol
= pEList
->nExpr
;
796 Vdbe
*v
= pParse
->pVdbe
;
799 case WHERE_DISTINCT_ORDERED
: {
801 int iJump
; /* Jump destination */
802 int regPrev
; /* Previous row content */
804 /* Allocate space for the previous row */
805 iRet
= regPrev
= pParse
->nMem
+1;
806 pParse
->nMem
+= nResultCol
;
808 iJump
= sqlite3VdbeCurrentAddr(v
) + nResultCol
;
809 for(i
=0; i
<nResultCol
; i
++){
810 CollSeq
*pColl
= sqlite3ExprCollSeq(pParse
, pEList
->a
[i
].pExpr
);
811 if( i
<nResultCol
-1 ){
812 sqlite3VdbeAddOp3(v
, OP_Ne
, regElem
+i
, iJump
, regPrev
+i
);
815 sqlite3VdbeAddOp3(v
, OP_Eq
, regElem
+i
, addrRepeat
, regPrev
+i
);
818 sqlite3VdbeChangeP4(v
, -1, (const char *)pColl
, P4_COLLSEQ
);
819 sqlite3VdbeChangeP5(v
, SQLITE_NULLEQ
);
821 assert( sqlite3VdbeCurrentAddr(v
)==iJump
|| pParse
->db
->mallocFailed
);
822 sqlite3VdbeAddOp3(v
, OP_Copy
, regElem
, regPrev
, nResultCol
-1);
826 case WHERE_DISTINCT_UNIQUE
: {
832 int r1
= sqlite3GetTempReg(pParse
);
833 sqlite3VdbeAddOp4Int(v
, OP_Found
, iTab
, addrRepeat
, regElem
, nResultCol
);
835 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regElem
, nResultCol
, r1
);
836 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iTab
, r1
, regElem
, nResultCol
);
837 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
838 sqlite3ReleaseTempReg(pParse
, r1
);
848 ** This routine runs after codeDistinct(). It makes necessary
849 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
850 ** routine made use of. This processing must be done separately since
851 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
854 ** WHERE_DISTINCT_NOOP:
855 ** WHERE_DISTINCT_UNORDERED:
857 ** No adjustments necessary. This function is a no-op.
859 ** WHERE_DISTINCT_UNIQUE:
861 ** The ephemeral table is not needed. So change the
862 ** OP_OpenEphemeral opcode into an OP_Noop.
864 ** WHERE_DISTINCT_ORDERED:
866 ** The ephemeral table is not needed. But we do need register
867 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral
868 ** into an OP_Null on the iVal register.
870 static void fixDistinctOpenEph(
871 Parse
*pParse
, /* Parsing and code generating context */
872 int eTnctType
, /* WHERE_DISTINCT_* value */
873 int iVal
, /* Value returned by codeDistinct() */
874 int iOpenEphAddr
/* Address of OP_OpenEphemeral instruction for iTab */
876 if( eTnctType
==WHERE_DISTINCT_UNIQUE
|| eTnctType
==WHERE_DISTINCT_ORDERED
){
877 Vdbe
*v
= pParse
->pVdbe
;
878 sqlite3VdbeChangeToNoop(v
, iOpenEphAddr
);
879 if( sqlite3VdbeGetOp(v
, iOpenEphAddr
+1)->opcode
==OP_Explain
){
880 sqlite3VdbeChangeToNoop(v
, iOpenEphAddr
+1);
882 if( eTnctType
==WHERE_DISTINCT_ORDERED
){
883 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
884 ** bit on the first register of the previous value. This will cause the
885 ** OP_Ne added in codeDistinct() to always fail on the first iteration of
886 ** the loop even if the first row is all NULLs. */
887 VdbeOp
*pOp
= sqlite3VdbeGetOp(v
, iOpenEphAddr
);
888 pOp
->opcode
= OP_Null
;
895 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
897 ** This function is called as part of inner-loop generation for a SELECT
898 ** statement with an ORDER BY that is not optimized by an index. It
899 ** determines the expressions, if any, that the sorter-reference
900 ** optimization should be used for. The sorter-reference optimization
901 ** is used for SELECT queries like:
903 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
905 ** If the optimization is used for expression "bigblob", then instead of
906 ** storing values read from that column in the sorter records, the PK of
907 ** the row from table t1 is stored instead. Then, as records are extracted from
908 ** the sorter to return to the user, the required value of bigblob is
909 ** retrieved directly from table t1. If the values are very large, this
910 ** can be more efficient than storing them directly in the sorter records.
912 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
913 ** for which the sorter-reference optimization should be enabled.
914 ** Additionally, the pSort->aDefer[] array is populated with entries
915 ** for all cursors required to evaluate all selected expressions. Finally.
916 ** output variable (*ppExtra) is set to an expression list containing
917 ** expressions for all extra PK values that should be stored in the
920 static void selectExprDefer(
921 Parse
*pParse
, /* Leave any error here */
922 SortCtx
*pSort
, /* Sorter context */
923 ExprList
*pEList
, /* Expressions destined for sorter */
924 ExprList
**ppExtra
/* Expressions to append to sorter record */
928 ExprList
*pExtra
= 0;
929 for(i
=0; i
<pEList
->nExpr
; i
++){
930 struct ExprList_item
*pItem
= &pEList
->a
[i
];
931 if( pItem
->u
.x
.iOrderByCol
==0 ){
932 Expr
*pExpr
= pItem
->pExpr
;
933 Table
*pTab
= pExpr
->y
.pTab
;
934 if( pExpr
->op
==TK_COLUMN
&& pExpr
->iColumn
>=0 && pTab
&& !IsVirtual(pTab
)
935 && (pTab
->aCol
[pExpr
->iColumn
].colFlags
& COLFLAG_SORTERREF
)
938 for(j
=0; j
<nDefer
; j
++){
939 if( pSort
->aDefer
[j
].iCsr
==pExpr
->iTable
) break;
942 if( nDefer
==ArraySize(pSort
->aDefer
) ){
948 if( !HasRowid(pTab
) ){
949 pPk
= sqlite3PrimaryKeyIndex(pTab
);
952 for(k
=0; k
<nKey
; k
++){
953 Expr
*pNew
= sqlite3PExpr(pParse
, TK_COLUMN
, 0, 0);
955 pNew
->iTable
= pExpr
->iTable
;
956 pNew
->y
.pTab
= pExpr
->y
.pTab
;
957 pNew
->iColumn
= pPk
? pPk
->aiColumn
[k
] : -1;
958 pExtra
= sqlite3ExprListAppend(pParse
, pExtra
, pNew
);
961 pSort
->aDefer
[nDefer
].pTab
= pExpr
->y
.pTab
;
962 pSort
->aDefer
[nDefer
].iCsr
= pExpr
->iTable
;
963 pSort
->aDefer
[nDefer
].nKey
= nKey
;
967 pItem
->bSorterRef
= 1;
971 pSort
->nDefer
= (u8
)nDefer
;
977 ** This routine generates the code for the inside of the inner loop
980 ** If srcTab is negative, then the p->pEList expressions
981 ** are evaluated in order to get the data for this row. If srcTab is
982 ** zero or more, then data is pulled from srcTab and p->pEList is used only
983 ** to get the number of columns and the collation sequence for each column.
985 static void selectInnerLoop(
986 Parse
*pParse
, /* The parser context */
987 Select
*p
, /* The complete select statement being coded */
988 int srcTab
, /* Pull data from this table if non-negative */
989 SortCtx
*pSort
, /* If not NULL, info on how to process ORDER BY */
990 DistinctCtx
*pDistinct
, /* If not NULL, info on how to process DISTINCT */
991 SelectDest
*pDest
, /* How to dispose of the results */
992 int iContinue
, /* Jump here to continue with next row */
993 int iBreak
/* Jump here to break out of the inner loop */
995 Vdbe
*v
= pParse
->pVdbe
;
997 int hasDistinct
; /* True if the DISTINCT keyword is present */
998 int eDest
= pDest
->eDest
; /* How to dispose of results */
999 int iParm
= pDest
->iSDParm
; /* First argument to disposal method */
1000 int nResultCol
; /* Number of result columns */
1001 int nPrefixReg
= 0; /* Number of extra registers before regResult */
1002 RowLoadInfo sRowLoadInfo
; /* Info for deferred row loading */
1004 /* Usually, regResult is the first cell in an array of memory cells
1005 ** containing the current result row. In this case regOrig is set to the
1006 ** same value. However, if the results are being sent to the sorter, the
1007 ** values for any expressions that are also part of the sort-key are omitted
1008 ** from this array. In this case regOrig is set to zero. */
1009 int regResult
; /* Start of memory holding current results */
1010 int regOrig
; /* Start of memory holding full result (or 0) */
1013 assert( p
->pEList
!=0 );
1014 hasDistinct
= pDistinct
? pDistinct
->eTnctType
: WHERE_DISTINCT_NOOP
;
1015 if( pSort
&& pSort
->pOrderBy
==0 ) pSort
= 0;
1016 if( pSort
==0 && !hasDistinct
){
1017 assert( iContinue
!=0 );
1018 codeOffset(v
, p
->iOffset
, iContinue
);
1021 /* Pull the requested columns.
1023 nResultCol
= p
->pEList
->nExpr
;
1025 if( pDest
->iSdst
==0 ){
1027 nPrefixReg
= pSort
->pOrderBy
->nExpr
;
1028 if( !(pSort
->sortFlags
& SORTFLAG_UseSorter
) ) nPrefixReg
++;
1029 pParse
->nMem
+= nPrefixReg
;
1031 pDest
->iSdst
= pParse
->nMem
+1;
1032 pParse
->nMem
+= nResultCol
;
1033 }else if( pDest
->iSdst
+nResultCol
> pParse
->nMem
){
1034 /* This is an error condition that can result, for example, when a SELECT
1035 ** on the right-hand side of an INSERT contains more result columns than
1036 ** there are columns in the table on the left. The error will be caught
1037 ** and reported later. But we need to make sure enough memory is allocated
1038 ** to avoid other spurious errors in the meantime. */
1039 pParse
->nMem
+= nResultCol
;
1041 pDest
->nSdst
= nResultCol
;
1042 regOrig
= regResult
= pDest
->iSdst
;
1044 for(i
=0; i
<nResultCol
; i
++){
1045 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, i
, regResult
+i
);
1046 VdbeComment((v
, "%s", p
->pEList
->a
[i
].zEName
));
1048 }else if( eDest
!=SRT_Exists
){
1049 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1050 ExprList
*pExtra
= 0;
1052 /* If the destination is an EXISTS(...) expression, the actual
1053 ** values returned by the SELECT are not required.
1055 u8 ecelFlags
; /* "ecel" is an abbreviation of "ExprCodeExprList" */
1057 if( eDest
==SRT_Mem
|| eDest
==SRT_Output
|| eDest
==SRT_Coroutine
){
1058 ecelFlags
= SQLITE_ECEL_DUP
;
1062 if( pSort
&& hasDistinct
==0 && eDest
!=SRT_EphemTab
&& eDest
!=SRT_Table
){
1063 /* For each expression in p->pEList that is a copy of an expression in
1064 ** the ORDER BY clause (pSort->pOrderBy), set the associated
1065 ** iOrderByCol value to one more than the index of the ORDER BY
1066 ** expression within the sort-key that pushOntoSorter() will generate.
1067 ** This allows the p->pEList field to be omitted from the sorted record,
1068 ** saving space and CPU cycles. */
1069 ecelFlags
|= (SQLITE_ECEL_OMITREF
|SQLITE_ECEL_REF
);
1071 for(i
=pSort
->nOBSat
; i
<pSort
->pOrderBy
->nExpr
; i
++){
1073 if( (j
= pSort
->pOrderBy
->a
[i
].u
.x
.iOrderByCol
)>0 ){
1074 p
->pEList
->a
[j
-1].u
.x
.iOrderByCol
= i
+1-pSort
->nOBSat
;
1077 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1078 selectExprDefer(pParse
, pSort
, p
->pEList
, &pExtra
);
1079 if( pExtra
&& pParse
->db
->mallocFailed
==0 ){
1080 /* If there are any extra PK columns to add to the sorter records,
1081 ** allocate extra memory cells and adjust the OpenEphemeral
1082 ** instruction to account for the larger records. This is only
1083 ** required if there are one or more WITHOUT ROWID tables with
1084 ** composite primary keys in the SortCtx.aDefer[] array. */
1085 VdbeOp
*pOp
= sqlite3VdbeGetOp(v
, pSort
->addrSortIndex
);
1086 pOp
->p2
+= (pExtra
->nExpr
- pSort
->nDefer
);
1087 pOp
->p4
.pKeyInfo
->nAllField
+= (pExtra
->nExpr
- pSort
->nDefer
);
1088 pParse
->nMem
+= pExtra
->nExpr
;
1092 /* Adjust nResultCol to account for columns that are omitted
1093 ** from the sorter by the optimizations in this branch */
1095 for(i
=0; i
<pEList
->nExpr
; i
++){
1096 if( pEList
->a
[i
].u
.x
.iOrderByCol
>0
1097 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1098 || pEList
->a
[i
].bSorterRef
1106 testcase( regOrig
);
1107 testcase( eDest
==SRT_Set
);
1108 testcase( eDest
==SRT_Mem
);
1109 testcase( eDest
==SRT_Coroutine
);
1110 testcase( eDest
==SRT_Output
);
1111 assert( eDest
==SRT_Set
|| eDest
==SRT_Mem
1112 || eDest
==SRT_Coroutine
|| eDest
==SRT_Output
1113 || eDest
==SRT_Upfrom
);
1115 sRowLoadInfo
.regResult
= regResult
;
1116 sRowLoadInfo
.ecelFlags
= ecelFlags
;
1117 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1118 sRowLoadInfo
.pExtra
= pExtra
;
1119 sRowLoadInfo
.regExtraResult
= regResult
+ nResultCol
;
1120 if( pExtra
) nResultCol
+= pExtra
->nExpr
;
1123 && (ecelFlags
& SQLITE_ECEL_OMITREF
)!=0
1127 assert( hasDistinct
==0 );
1128 pSort
->pDeferredRowLoad
= &sRowLoadInfo
;
1131 innerLoopLoadRow(pParse
, p
, &sRowLoadInfo
);
1135 /* If the DISTINCT keyword was present on the SELECT statement
1136 ** and this row has been seen before, then do not make this row
1137 ** part of the result.
1140 int eType
= pDistinct
->eTnctType
;
1141 int iTab
= pDistinct
->tabTnct
;
1142 assert( nResultCol
==p
->pEList
->nExpr
);
1143 iTab
= codeDistinct(pParse
, eType
, iTab
, iContinue
, p
->pEList
, regResult
);
1144 fixDistinctOpenEph(pParse
, eType
, iTab
, pDistinct
->addrTnct
);
1146 codeOffset(v
, p
->iOffset
, iContinue
);
1151 /* In this mode, write each query result to the key of the temporary
1154 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1157 r1
= sqlite3GetTempReg(pParse
);
1158 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r1
);
1159 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regResult
, nResultCol
);
1160 sqlite3ReleaseTempReg(pParse
, r1
);
1164 /* Construct a record from the query result, but instead of
1165 ** saving that record, use it as a key to delete elements from
1166 ** the temporary table iParm.
1169 sqlite3VdbeAddOp3(v
, OP_IdxDelete
, iParm
, regResult
, nResultCol
);
1172 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1174 /* Store the result as data using a unique key.
1179 case SRT_EphemTab
: {
1180 int r1
= sqlite3GetTempRange(pParse
, nPrefixReg
+1);
1181 testcase( eDest
==SRT_Table
);
1182 testcase( eDest
==SRT_EphemTab
);
1183 testcase( eDest
==SRT_Fifo
);
1184 testcase( eDest
==SRT_DistFifo
);
1185 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r1
+nPrefixReg
);
1186 #ifndef SQLITE_OMIT_CTE
1187 if( eDest
==SRT_DistFifo
){
1188 /* If the destination is DistFifo, then cursor (iParm+1) is open
1189 ** on an ephemeral index. If the current row is already present
1190 ** in the index, do not write it to the output. If not, add the
1191 ** current row to the index and proceed with writing it to the
1192 ** output table as well. */
1193 int addr
= sqlite3VdbeCurrentAddr(v
) + 4;
1194 sqlite3VdbeAddOp4Int(v
, OP_Found
, iParm
+1, addr
, r1
, 0);
1196 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
+1, r1
,regResult
,nResultCol
);
1201 assert( regResult
==regOrig
);
1202 pushOntoSorter(pParse
, pSort
, p
, r1
+nPrefixReg
, regOrig
, 1, nPrefixReg
);
1204 int r2
= sqlite3GetTempReg(pParse
);
1205 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iParm
, r2
);
1206 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, r1
, r2
);
1207 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1208 sqlite3ReleaseTempReg(pParse
, r2
);
1210 sqlite3ReleaseTempRange(pParse
, r1
, nPrefixReg
+1);
1217 pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
, nPrefixReg
);
1219 int i2
= pDest
->iSDParm2
;
1220 int r1
= sqlite3GetTempReg(pParse
);
1222 /* If the UPDATE FROM join is an aggregate that matches no rows, it
1223 ** might still be trying to return one row, because that is what
1224 ** aggregates do. Don't record that empty row in the output table. */
1225 sqlite3VdbeAddOp2(v
, OP_IsNull
, regResult
, iBreak
); VdbeCoverage(v
);
1227 sqlite3VdbeAddOp3(v
, OP_MakeRecord
,
1228 regResult
+(i2
<0), nResultCol
-(i2
<0), r1
);
1230 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, r1
, regResult
);
1232 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regResult
, i2
);
1238 #ifndef SQLITE_OMIT_SUBQUERY
1239 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1240 ** then there should be a single item on the stack. Write this
1241 ** item into the set table with bogus data.
1245 /* At first glance you would think we could optimize out the
1246 ** ORDER BY in this case since the order of entries in the set
1247 ** does not matter. But there might be a LIMIT clause, in which
1248 ** case the order does matter */
1250 pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
, nPrefixReg
);
1252 int r1
= sqlite3GetTempReg(pParse
);
1253 assert( sqlite3Strlen30(pDest
->zAffSdst
)==nResultCol
);
1254 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regResult
, nResultCol
,
1255 r1
, pDest
->zAffSdst
, nResultCol
);
1256 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regResult
, nResultCol
);
1257 sqlite3ReleaseTempReg(pParse
, r1
);
1263 /* If any row exist in the result set, record that fact and abort.
1266 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iParm
);
1267 /* The LIMIT clause will terminate the loop for us */
1271 /* If this is a scalar select that is part of an expression, then
1272 ** store the results in the appropriate memory cell or array of
1273 ** memory cells and break out of the scan loop.
1277 assert( nResultCol
<=pDest
->nSdst
);
1279 pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
, nPrefixReg
);
1281 assert( nResultCol
==pDest
->nSdst
);
1282 assert( regResult
==iParm
);
1283 /* The LIMIT clause will jump out of the loop for us */
1287 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1289 case SRT_Coroutine
: /* Send data to a co-routine */
1290 case SRT_Output
: { /* Return the results */
1291 testcase( eDest
==SRT_Coroutine
);
1292 testcase( eDest
==SRT_Output
);
1294 pushOntoSorter(pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
,
1296 }else if( eDest
==SRT_Coroutine
){
1297 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
1299 sqlite3VdbeAddOp2(v
, OP_ResultRow
, regResult
, nResultCol
);
1304 #ifndef SQLITE_OMIT_CTE
1305 /* Write the results into a priority queue that is order according to
1306 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
1307 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
1308 ** pSO->nExpr columns, then make sure all keys are unique by adding a
1309 ** final OP_Sequence column. The last column is the record as a blob.
1317 pSO
= pDest
->pOrderBy
;
1320 r1
= sqlite3GetTempReg(pParse
);
1321 r2
= sqlite3GetTempRange(pParse
, nKey
+2);
1323 if( eDest
==SRT_DistQueue
){
1324 /* If the destination is DistQueue, then cursor (iParm+1) is open
1325 ** on a second ephemeral index that holds all values every previously
1326 ** added to the queue. */
1327 addrTest
= sqlite3VdbeAddOp4Int(v
, OP_Found
, iParm
+1, 0,
1328 regResult
, nResultCol
);
1331 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r3
);
1332 if( eDest
==SRT_DistQueue
){
1333 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iParm
+1, r3
);
1334 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
1336 for(i
=0; i
<nKey
; i
++){
1337 sqlite3VdbeAddOp2(v
, OP_SCopy
,
1338 regResult
+ pSO
->a
[i
].u
.x
.iOrderByCol
- 1,
1341 sqlite3VdbeAddOp2(v
, OP_Sequence
, iParm
, r2
+nKey
);
1342 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, r2
, nKey
+2, r1
);
1343 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, r2
, nKey
+2);
1344 if( addrTest
) sqlite3VdbeJumpHere(v
, addrTest
);
1345 sqlite3ReleaseTempReg(pParse
, r1
);
1346 sqlite3ReleaseTempRange(pParse
, r2
, nKey
+2);
1349 #endif /* SQLITE_OMIT_CTE */
1353 #if !defined(SQLITE_OMIT_TRIGGER)
1354 /* Discard the results. This is used for SELECT statements inside
1355 ** the body of a TRIGGER. The purpose of such selects is to call
1356 ** user-defined functions that have side effects. We do not care
1357 ** about the actual results of the select.
1360 assert( eDest
==SRT_Discard
);
1366 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1367 ** there is a sorter, in which case the sorter has already limited
1368 ** the output for us.
1370 if( pSort
==0 && p
->iLimit
){
1371 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, p
->iLimit
, iBreak
); VdbeCoverage(v
);
1376 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1379 KeyInfo
*sqlite3KeyInfoAlloc(sqlite3
*db
, int N
, int X
){
1380 int nExtra
= (N
+X
)*(sizeof(CollSeq
*)+1) - sizeof(CollSeq
*);
1381 KeyInfo
*p
= sqlite3DbMallocRawNN(db
, sizeof(KeyInfo
) + nExtra
);
1383 p
->aSortFlags
= (u8
*)&p
->aColl
[N
+X
];
1384 p
->nKeyField
= (u16
)N
;
1385 p
->nAllField
= (u16
)(N
+X
);
1389 memset(&p
[1], 0, nExtra
);
1391 sqlite3OomFault(db
);
1397 ** Deallocate a KeyInfo object
1399 void sqlite3KeyInfoUnref(KeyInfo
*p
){
1401 assert( p
->nRef
>0 );
1403 if( p
->nRef
==0 ) sqlite3DbFreeNN(p
->db
, p
);
1408 ** Make a new pointer to a KeyInfo object
1410 KeyInfo
*sqlite3KeyInfoRef(KeyInfo
*p
){
1412 assert( p
->nRef
>0 );
1420 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1421 ** can only be changed if this is just a single reference to the object.
1423 ** This routine is used only inside of assert() statements.
1425 int sqlite3KeyInfoIsWriteable(KeyInfo
*p
){ return p
->nRef
==1; }
1426 #endif /* SQLITE_DEBUG */
1429 ** Given an expression list, generate a KeyInfo structure that records
1430 ** the collating sequence for each expression in that expression list.
1432 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1433 ** KeyInfo structure is appropriate for initializing a virtual index to
1434 ** implement that clause. If the ExprList is the result set of a SELECT
1435 ** then the KeyInfo structure is appropriate for initializing a virtual
1436 ** index to implement a DISTINCT test.
1438 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1439 ** function is responsible for seeing that this structure is eventually
1442 KeyInfo
*sqlite3KeyInfoFromExprList(
1443 Parse
*pParse
, /* Parsing context */
1444 ExprList
*pList
, /* Form the KeyInfo object from this ExprList */
1445 int iStart
, /* Begin with this column of pList */
1446 int nExtra
/* Add this many extra columns to the end */
1450 struct ExprList_item
*pItem
;
1451 sqlite3
*db
= pParse
->db
;
1454 nExpr
= pList
->nExpr
;
1455 pInfo
= sqlite3KeyInfoAlloc(db
, nExpr
-iStart
, nExtra
+1);
1457 assert( sqlite3KeyInfoIsWriteable(pInfo
) );
1458 for(i
=iStart
, pItem
=pList
->a
+iStart
; i
<nExpr
; i
++, pItem
++){
1459 pInfo
->aColl
[i
-iStart
] = sqlite3ExprNNCollSeq(pParse
, pItem
->pExpr
);
1460 pInfo
->aSortFlags
[i
-iStart
] = pItem
->sortFlags
;
1467 ** Name of the connection operator, used for error messages.
1469 const char *sqlite3SelectOpName(int id
){
1472 case TK_ALL
: z
= "UNION ALL"; break;
1473 case TK_INTERSECT
: z
= "INTERSECT"; break;
1474 case TK_EXCEPT
: z
= "EXCEPT"; break;
1475 default: z
= "UNION"; break;
1480 #ifndef SQLITE_OMIT_EXPLAIN
1482 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1483 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1484 ** where the caption is of the form:
1486 ** "USE TEMP B-TREE FOR xxx"
1488 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1489 ** is determined by the zUsage argument.
1491 static void explainTempTable(Parse
*pParse
, const char *zUsage
){
1492 ExplainQueryPlan((pParse
, 0, "USE TEMP B-TREE FOR %s", zUsage
));
1496 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1497 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1498 ** in sqlite3Select() to assign values to structure member variables that
1499 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1500 ** code with #ifndef directives.
1502 # define explainSetInteger(a, b) a = b
1505 /* No-op versions of the explainXXX() functions and macros. */
1506 # define explainTempTable(y,z)
1507 # define explainSetInteger(y,z)
1512 ** If the inner loop was generated using a non-null pOrderBy argument,
1513 ** then the results were placed in a sorter. After the loop is terminated
1514 ** we need to run the sorter and output the results. The following
1515 ** routine generates the code needed to do that.
1517 static void generateSortTail(
1518 Parse
*pParse
, /* Parsing context */
1519 Select
*p
, /* The SELECT statement */
1520 SortCtx
*pSort
, /* Information on the ORDER BY clause */
1521 int nColumn
, /* Number of columns of data */
1522 SelectDest
*pDest
/* Write the sorted results here */
1524 Vdbe
*v
= pParse
->pVdbe
; /* The prepared statement */
1525 int addrBreak
= pSort
->labelDone
; /* Jump here to exit loop */
1526 int addrContinue
= sqlite3VdbeMakeLabel(pParse
);/* Jump here for next cycle */
1527 int addr
; /* Top of output loop. Jump for Next. */
1530 ExprList
*pOrderBy
= pSort
->pOrderBy
;
1531 int eDest
= pDest
->eDest
;
1532 int iParm
= pDest
->iSDParm
;
1536 int nKey
; /* Number of key columns in sorter record */
1537 int iSortTab
; /* Sorter cursor to read from */
1539 int bSeq
; /* True if sorter record includes seq. no. */
1541 struct ExprList_item
*aOutEx
= p
->pEList
->a
;
1543 assert( addrBreak
<0 );
1544 if( pSort
->labelBkOut
){
1545 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSort
->regReturn
, pSort
->labelBkOut
);
1546 sqlite3VdbeGoto(v
, addrBreak
);
1547 sqlite3VdbeResolveLabel(v
, pSort
->labelBkOut
);
1550 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1551 /* Open any cursors needed for sorter-reference expressions */
1552 for(i
=0; i
<pSort
->nDefer
; i
++){
1553 Table
*pTab
= pSort
->aDefer
[i
].pTab
;
1554 int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
1555 sqlite3OpenTable(pParse
, pSort
->aDefer
[i
].iCsr
, iDb
, pTab
, OP_OpenRead
);
1556 nRefKey
= MAX(nRefKey
, pSort
->aDefer
[i
].nKey
);
1560 iTab
= pSort
->iECursor
;
1561 if( eDest
==SRT_Output
|| eDest
==SRT_Coroutine
|| eDest
==SRT_Mem
){
1563 regRow
= pDest
->iSdst
;
1565 regRowid
= sqlite3GetTempReg(pParse
);
1566 if( eDest
==SRT_EphemTab
|| eDest
==SRT_Table
){
1567 regRow
= sqlite3GetTempReg(pParse
);
1570 regRow
= sqlite3GetTempRange(pParse
, nColumn
);
1573 nKey
= pOrderBy
->nExpr
- pSort
->nOBSat
;
1574 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
1575 int regSortOut
= ++pParse
->nMem
;
1576 iSortTab
= pParse
->nTab
++;
1577 if( pSort
->labelBkOut
){
1578 addrOnce
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
1580 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, iSortTab
, regSortOut
,
1581 nKey
+1+nColumn
+nRefKey
);
1582 if( addrOnce
) sqlite3VdbeJumpHere(v
, addrOnce
);
1583 addr
= 1 + sqlite3VdbeAddOp2(v
, OP_SorterSort
, iTab
, addrBreak
);
1585 codeOffset(v
, p
->iOffset
, addrContinue
);
1586 sqlite3VdbeAddOp3(v
, OP_SorterData
, iTab
, regSortOut
, iSortTab
);
1589 addr
= 1 + sqlite3VdbeAddOp2(v
, OP_Sort
, iTab
, addrBreak
); VdbeCoverage(v
);
1590 codeOffset(v
, p
->iOffset
, addrContinue
);
1594 for(i
=0, iCol
=nKey
+bSeq
-1; i
<nColumn
; i
++){
1595 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1596 if( aOutEx
[i
].bSorterRef
) continue;
1598 if( aOutEx
[i
].u
.x
.iOrderByCol
==0 ) iCol
++;
1600 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1601 if( pSort
->nDefer
){
1603 int regKey
= sqlite3GetTempRange(pParse
, nRefKey
);
1605 for(i
=0; i
<pSort
->nDefer
; i
++){
1606 int iCsr
= pSort
->aDefer
[i
].iCsr
;
1607 Table
*pTab
= pSort
->aDefer
[i
].pTab
;
1608 int nKey
= pSort
->aDefer
[i
].nKey
;
1610 sqlite3VdbeAddOp1(v
, OP_NullRow
, iCsr
);
1611 if( HasRowid(pTab
) ){
1612 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, iKey
++, regKey
);
1613 sqlite3VdbeAddOp3(v
, OP_SeekRowid
, iCsr
,
1614 sqlite3VdbeCurrentAddr(v
)+1, regKey
);
1618 assert( sqlite3PrimaryKeyIndex(pTab
)->nKeyCol
==nKey
);
1619 for(k
=0; k
<nKey
; k
++){
1620 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, iKey
++, regKey
+k
);
1622 iJmp
= sqlite3VdbeCurrentAddr(v
);
1623 sqlite3VdbeAddOp4Int(v
, OP_SeekGE
, iCsr
, iJmp
+2, regKey
, nKey
);
1624 sqlite3VdbeAddOp4Int(v
, OP_IdxLE
, iCsr
, iJmp
+3, regKey
, nKey
);
1625 sqlite3VdbeAddOp1(v
, OP_NullRow
, iCsr
);
1628 sqlite3ReleaseTempRange(pParse
, regKey
, nRefKey
);
1631 for(i
=nColumn
-1; i
>=0; i
--){
1632 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1633 if( aOutEx
[i
].bSorterRef
){
1634 sqlite3ExprCode(pParse
, aOutEx
[i
].pExpr
, regRow
+i
);
1639 if( aOutEx
[i
].u
.x
.iOrderByCol
){
1640 iRead
= aOutEx
[i
].u
.x
.iOrderByCol
-1;
1644 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, iRead
, regRow
+i
);
1645 VdbeComment((v
, "%s", aOutEx
[i
].zEName
));
1650 case SRT_EphemTab
: {
1651 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, nKey
+bSeq
, regRow
);
1652 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iParm
, regRowid
);
1653 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, regRow
, regRowid
);
1654 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1657 #ifndef SQLITE_OMIT_SUBQUERY
1659 assert( nColumn
==sqlite3Strlen30(pDest
->zAffSdst
) );
1660 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regRow
, nColumn
, regRowid
,
1661 pDest
->zAffSdst
, nColumn
);
1662 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, regRowid
, regRow
, nColumn
);
1666 /* The LIMIT clause will terminate the loop for us */
1671 int i2
= pDest
->iSDParm2
;
1672 int r1
= sqlite3GetTempReg(pParse
);
1673 sqlite3VdbeAddOp3(v
, OP_MakeRecord
,regRow
+(i2
<0),nColumn
-(i2
<0),r1
);
1675 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, r1
, regRow
);
1677 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regRow
, i2
);
1682 assert( eDest
==SRT_Output
|| eDest
==SRT_Coroutine
);
1683 testcase( eDest
==SRT_Output
);
1684 testcase( eDest
==SRT_Coroutine
);
1685 if( eDest
==SRT_Output
){
1686 sqlite3VdbeAddOp2(v
, OP_ResultRow
, pDest
->iSdst
, nColumn
);
1688 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
1694 if( eDest
==SRT_Set
){
1695 sqlite3ReleaseTempRange(pParse
, regRow
, nColumn
);
1697 sqlite3ReleaseTempReg(pParse
, regRow
);
1699 sqlite3ReleaseTempReg(pParse
, regRowid
);
1701 /* The bottom of the loop
1703 sqlite3VdbeResolveLabel(v
, addrContinue
);
1704 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
1705 sqlite3VdbeAddOp2(v
, OP_SorterNext
, iTab
, addr
); VdbeCoverage(v
);
1707 sqlite3VdbeAddOp2(v
, OP_Next
, iTab
, addr
); VdbeCoverage(v
);
1709 if( pSort
->regReturn
) sqlite3VdbeAddOp1(v
, OP_Return
, pSort
->regReturn
);
1710 sqlite3VdbeResolveLabel(v
, addrBreak
);
1714 ** Return a pointer to a string containing the 'declaration type' of the
1715 ** expression pExpr. The string may be treated as static by the caller.
1717 ** Also try to estimate the size of the returned value and return that
1718 ** result in *pEstWidth.
1720 ** The declaration type is the exact datatype definition extracted from the
1721 ** original CREATE TABLE statement if the expression is a column. The
1722 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1723 ** is considered a column can be complex in the presence of subqueries. The
1724 ** result-set expression in all of the following SELECT statements is
1725 ** considered a column by this function.
1727 ** SELECT col FROM tbl;
1728 ** SELECT (SELECT col FROM tbl;
1729 ** SELECT (SELECT col FROM tbl);
1730 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1732 ** The declaration type for any expression other than a column is NULL.
1734 ** This routine has either 3 or 6 parameters depending on whether or not
1735 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1737 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1738 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1739 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1740 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1742 static const char *columnTypeImpl(
1744 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1748 const char **pzOrigDb
,
1749 const char **pzOrigTab
,
1750 const char **pzOrigCol
1753 char const *zType
= 0;
1755 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1756 char const *zOrigDb
= 0;
1757 char const *zOrigTab
= 0;
1758 char const *zOrigCol
= 0;
1762 assert( pNC
->pSrcList
!=0 );
1763 switch( pExpr
->op
){
1765 /* The expression is a column. Locate the table the column is being
1766 ** extracted from in NameContext.pSrcList. This table may be real
1767 ** database table or a subquery.
1769 Table
*pTab
= 0; /* Table structure column is extracted from */
1770 Select
*pS
= 0; /* Select the column is extracted from */
1771 int iCol
= pExpr
->iColumn
; /* Index of column in pTab */
1772 while( pNC
&& !pTab
){
1773 SrcList
*pTabList
= pNC
->pSrcList
;
1774 for(j
=0;j
<pTabList
->nSrc
&& pTabList
->a
[j
].iCursor
!=pExpr
->iTable
;j
++);
1775 if( j
<pTabList
->nSrc
){
1776 pTab
= pTabList
->a
[j
].pTab
;
1777 pS
= pTabList
->a
[j
].pSelect
;
1784 /* At one time, code such as "SELECT new.x" within a trigger would
1785 ** cause this condition to run. Since then, we have restructured how
1786 ** trigger code is generated and so this condition is no longer
1787 ** possible. However, it can still be true for statements like
1790 ** CREATE TABLE t1(col INTEGER);
1791 ** SELECT (SELECT t1.col) FROM FROM t1;
1793 ** when columnType() is called on the expression "t1.col" in the
1794 ** sub-select. In this case, set the column type to NULL, even
1795 ** though it should really be "INTEGER".
1797 ** This is not a problem, as the column type of "t1.col" is never
1798 ** used. When columnType() is called on the expression
1799 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1804 assert( pTab
&& pExpr
->y
.pTab
==pTab
);
1806 /* The "table" is actually a sub-select or a view in the FROM clause
1807 ** of the SELECT statement. Return the declaration type and origin
1808 ** data for the result-set column of the sub-select.
1810 if( iCol
<pS
->pEList
->nExpr
1811 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1817 /* If iCol is less than zero, then the expression requests the
1818 ** rowid of the sub-select or view. This expression is legal (see
1819 ** test case misc2.2.2) - it always evaluates to NULL.
1822 Expr
*p
= pS
->pEList
->a
[iCol
].pExpr
;
1823 sNC
.pSrcList
= pS
->pSrc
;
1825 sNC
.pParse
= pNC
->pParse
;
1826 zType
= columnType(&sNC
, p
,&zOrigDb
,&zOrigTab
,&zOrigCol
);
1829 /* A real table or a CTE table */
1831 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1832 if( iCol
<0 ) iCol
= pTab
->iPKey
;
1833 assert( iCol
==XN_ROWID
|| (iCol
>=0 && iCol
<pTab
->nCol
) );
1838 zOrigCol
= pTab
->aCol
[iCol
].zName
;
1839 zType
= sqlite3ColumnType(&pTab
->aCol
[iCol
],0);
1841 zOrigTab
= pTab
->zName
;
1842 if( pNC
->pParse
&& pTab
->pSchema
){
1843 int iDb
= sqlite3SchemaToIndex(pNC
->pParse
->db
, pTab
->pSchema
);
1844 zOrigDb
= pNC
->pParse
->db
->aDb
[iDb
].zDbSName
;
1847 assert( iCol
==XN_ROWID
|| (iCol
>=0 && iCol
<pTab
->nCol
) );
1851 zType
= sqlite3ColumnType(&pTab
->aCol
[iCol
],0);
1857 #ifndef SQLITE_OMIT_SUBQUERY
1859 /* The expression is a sub-select. Return the declaration type and
1860 ** origin info for the single column in the result set of the SELECT
1864 Select
*pS
= pExpr
->x
.pSelect
;
1865 Expr
*p
= pS
->pEList
->a
[0].pExpr
;
1866 assert( ExprHasProperty(pExpr
, EP_xIsSelect
) );
1867 sNC
.pSrcList
= pS
->pSrc
;
1869 sNC
.pParse
= pNC
->pParse
;
1870 zType
= columnType(&sNC
, p
, &zOrigDb
, &zOrigTab
, &zOrigCol
);
1876 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1878 assert( pzOrigTab
&& pzOrigCol
);
1879 *pzOrigDb
= zOrigDb
;
1880 *pzOrigTab
= zOrigTab
;
1881 *pzOrigCol
= zOrigCol
;
1888 ** Generate code that will tell the VDBE the declaration types of columns
1889 ** in the result set.
1891 static void generateColumnTypes(
1892 Parse
*pParse
, /* Parser context */
1893 SrcList
*pTabList
, /* List of tables */
1894 ExprList
*pEList
/* Expressions defining the result set */
1896 #ifndef SQLITE_OMIT_DECLTYPE
1897 Vdbe
*v
= pParse
->pVdbe
;
1900 sNC
.pSrcList
= pTabList
;
1901 sNC
.pParse
= pParse
;
1903 for(i
=0; i
<pEList
->nExpr
; i
++){
1904 Expr
*p
= pEList
->a
[i
].pExpr
;
1906 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1907 const char *zOrigDb
= 0;
1908 const char *zOrigTab
= 0;
1909 const char *zOrigCol
= 0;
1910 zType
= columnType(&sNC
, p
, &zOrigDb
, &zOrigTab
, &zOrigCol
);
1912 /* The vdbe must make its own copy of the column-type and other
1913 ** column specific strings, in case the schema is reset before this
1914 ** virtual machine is deleted.
1916 sqlite3VdbeSetColName(v
, i
, COLNAME_DATABASE
, zOrigDb
, SQLITE_TRANSIENT
);
1917 sqlite3VdbeSetColName(v
, i
, COLNAME_TABLE
, zOrigTab
, SQLITE_TRANSIENT
);
1918 sqlite3VdbeSetColName(v
, i
, COLNAME_COLUMN
, zOrigCol
, SQLITE_TRANSIENT
);
1920 zType
= columnType(&sNC
, p
, 0, 0, 0);
1922 sqlite3VdbeSetColName(v
, i
, COLNAME_DECLTYPE
, zType
, SQLITE_TRANSIENT
);
1924 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1929 ** Compute the column names for a SELECT statement.
1931 ** The only guarantee that SQLite makes about column names is that if the
1932 ** column has an AS clause assigning it a name, that will be the name used.
1933 ** That is the only documented guarantee. However, countless applications
1934 ** developed over the years have made baseless assumptions about column names
1935 ** and will break if those assumptions changes. Hence, use extreme caution
1936 ** when modifying this routine to avoid breaking legacy.
1938 ** See Also: sqlite3ColumnsFromExprList()
1940 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1941 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
1942 ** applications should operate this way. Nevertheless, we need to support the
1943 ** other modes for legacy:
1945 ** short=OFF, full=OFF: Column name is the text of the expression has it
1946 ** originally appears in the SELECT statement. In
1947 ** other words, the zSpan of the result expression.
1949 ** short=ON, full=OFF: (This is the default setting). If the result
1950 ** refers directly to a table column, then the
1951 ** result column name is just the table column
1952 ** name: COLUMN. Otherwise use zSpan.
1954 ** full=ON, short=ANY: If the result refers directly to a table column,
1955 ** then the result column name with the table name
1956 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
1958 void sqlite3GenerateColumnNames(
1959 Parse
*pParse
, /* Parser context */
1960 Select
*pSelect
/* Generate column names for this SELECT statement */
1962 Vdbe
*v
= pParse
->pVdbe
;
1967 sqlite3
*db
= pParse
->db
;
1968 int fullName
; /* TABLE.COLUMN if no AS clause and is a direct table ref */
1969 int srcName
; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1971 #ifndef SQLITE_OMIT_EXPLAIN
1972 /* If this is an EXPLAIN, skip this step */
1973 if( pParse
->explain
){
1978 if( pParse
->colNamesSet
) return;
1979 /* Column names are determined by the left-most term of a compound select */
1980 while( pSelect
->pPrior
) pSelect
= pSelect
->pPrior
;
1981 SELECTTRACE(1,pParse
,pSelect
,("generating column names\n"));
1982 pTabList
= pSelect
->pSrc
;
1983 pEList
= pSelect
->pEList
;
1985 assert( pTabList
!=0 );
1986 pParse
->colNamesSet
= 1;
1987 fullName
= (db
->flags
& SQLITE_FullColNames
)!=0;
1988 srcName
= (db
->flags
& SQLITE_ShortColNames
)!=0 || fullName
;
1989 sqlite3VdbeSetNumCols(v
, pEList
->nExpr
);
1990 for(i
=0; i
<pEList
->nExpr
; i
++){
1991 Expr
*p
= pEList
->a
[i
].pExpr
;
1994 assert( p
->op
!=TK_AGG_COLUMN
); /* Agg processing has not run yet */
1995 assert( p
->op
!=TK_COLUMN
|| p
->y
.pTab
!=0 ); /* Covering idx not yet coded */
1996 if( pEList
->a
[i
].zEName
&& pEList
->a
[i
].eEName
==ENAME_NAME
){
1997 /* An AS clause always takes first priority */
1998 char *zName
= pEList
->a
[i
].zEName
;
1999 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zName
, SQLITE_TRANSIENT
);
2000 }else if( srcName
&& p
->op
==TK_COLUMN
){
2002 int iCol
= p
->iColumn
;
2005 if( iCol
<0 ) iCol
= pTab
->iPKey
;
2006 assert( iCol
==-1 || (iCol
>=0 && iCol
<pTab
->nCol
) );
2010 zCol
= pTab
->aCol
[iCol
].zName
;
2014 zName
= sqlite3MPrintf(db
, "%s.%s", pTab
->zName
, zCol
);
2015 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zName
, SQLITE_DYNAMIC
);
2017 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zCol
, SQLITE_TRANSIENT
);
2020 const char *z
= pEList
->a
[i
].zEName
;
2021 z
= z
==0 ? sqlite3MPrintf(db
, "column%d", i
+1) : sqlite3DbStrDup(db
, z
);
2022 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, z
, SQLITE_DYNAMIC
);
2025 generateColumnTypes(pParse
, pTabList
, pEList
);
2029 ** Given an expression list (which is really the list of expressions
2030 ** that form the result set of a SELECT statement) compute appropriate
2031 ** column names for a table that would hold the expression list.
2033 ** All column names will be unique.
2035 ** Only the column names are computed. Column.zType, Column.zColl,
2036 ** and other fields of Column are zeroed.
2038 ** Return SQLITE_OK on success. If a memory allocation error occurs,
2039 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
2041 ** The only guarantee that SQLite makes about column names is that if the
2042 ** column has an AS clause assigning it a name, that will be the name used.
2043 ** That is the only documented guarantee. However, countless applications
2044 ** developed over the years have made baseless assumptions about column names
2045 ** and will break if those assumptions changes. Hence, use extreme caution
2046 ** when modifying this routine to avoid breaking legacy.
2048 ** See Also: sqlite3GenerateColumnNames()
2050 int sqlite3ColumnsFromExprList(
2051 Parse
*pParse
, /* Parsing context */
2052 ExprList
*pEList
, /* Expr list from which to derive column names */
2053 i16
*pnCol
, /* Write the number of columns here */
2054 Column
**paCol
/* Write the new column list here */
2056 sqlite3
*db
= pParse
->db
; /* Database connection */
2057 int i
, j
; /* Loop counters */
2058 u32 cnt
; /* Index added to make the name unique */
2059 Column
*aCol
, *pCol
; /* For looping over result columns */
2060 int nCol
; /* Number of columns in the result set */
2061 char *zName
; /* Column name */
2062 int nName
; /* Size of name in zName[] */
2063 Hash ht
; /* Hash table of column names */
2066 sqlite3HashInit(&ht
);
2068 nCol
= pEList
->nExpr
;
2069 aCol
= sqlite3DbMallocZero(db
, sizeof(aCol
[0])*nCol
);
2070 testcase( aCol
==0 );
2071 if( NEVER(nCol
>32767) ) nCol
= 32767;
2076 assert( nCol
==(i16
)nCol
);
2080 for(i
=0, pCol
=aCol
; i
<nCol
&& !db
->mallocFailed
; i
++, pCol
++){
2081 /* Get an appropriate name for the column
2083 if( (zName
= pEList
->a
[i
].zEName
)!=0 && pEList
->a
[i
].eEName
==ENAME_NAME
){
2084 /* If the column contains an "AS <name>" phrase, use <name> as the name */
2086 Expr
*pColExpr
= sqlite3ExprSkipCollateAndLikely(pEList
->a
[i
].pExpr
);
2087 while( ALWAYS(pColExpr
!=0) && pColExpr
->op
==TK_DOT
){
2088 pColExpr
= pColExpr
->pRight
;
2089 assert( pColExpr
!=0 );
2091 if( pColExpr
->op
==TK_COLUMN
&& (pTab
= pColExpr
->y
.pTab
)!=0 ){
2092 /* For columns use the column name name */
2093 int iCol
= pColExpr
->iColumn
;
2094 if( iCol
<0 ) iCol
= pTab
->iPKey
;
2095 zName
= iCol
>=0 ? pTab
->aCol
[iCol
].zName
: "rowid";
2096 }else if( pColExpr
->op
==TK_ID
){
2097 assert( !ExprHasProperty(pColExpr
, EP_IntValue
) );
2098 zName
= pColExpr
->u
.zToken
;
2100 /* Use the original text of the column expression as its name */
2101 zName
= pEList
->a
[i
].zEName
;
2104 if( zName
&& !sqlite3IsTrueOrFalse(zName
) ){
2105 zName
= sqlite3DbStrDup(db
, zName
);
2107 zName
= sqlite3MPrintf(db
,"column%d",i
+1);
2110 /* Make sure the column name is unique. If the name is not unique,
2111 ** append an integer to the name so that it becomes unique.
2114 while( zName
&& sqlite3HashFind(&ht
, zName
)!=0 ){
2115 nName
= sqlite3Strlen30(zName
);
2117 for(j
=nName
-1; j
>0 && sqlite3Isdigit(zName
[j
]); j
--){}
2118 if( zName
[j
]==':' ) nName
= j
;
2120 zName
= sqlite3MPrintf(db
, "%.*z:%u", nName
, zName
, ++cnt
);
2121 if( cnt
>3 ) sqlite3_randomness(sizeof(cnt
), &cnt
);
2123 pCol
->zName
= zName
;
2124 pCol
->hName
= sqlite3StrIHash(zName
);
2125 sqlite3ColumnPropertiesFromName(0, pCol
);
2126 if( zName
&& sqlite3HashInsert(&ht
, zName
, pCol
)==pCol
){
2127 sqlite3OomFault(db
);
2130 sqlite3HashClear(&ht
);
2131 if( db
->mallocFailed
){
2133 sqlite3DbFree(db
, aCol
[j
].zName
);
2135 sqlite3DbFree(db
, aCol
);
2138 return SQLITE_NOMEM_BKPT
;
2144 ** Add type and collation information to a column list based on
2145 ** a SELECT statement.
2147 ** The column list presumably came from selectColumnNamesFromExprList().
2148 ** The column list has only names, not types or collations. This
2149 ** routine goes through and adds the types and collations.
2151 ** This routine requires that all identifiers in the SELECT
2152 ** statement be resolved.
2154 void sqlite3SelectAddColumnTypeAndCollation(
2155 Parse
*pParse
, /* Parsing contexts */
2156 Table
*pTab
, /* Add column type information to this table */
2157 Select
*pSelect
, /* SELECT used to determine types and collations */
2158 char aff
/* Default affinity for columns */
2160 sqlite3
*db
= pParse
->db
;
2166 struct ExprList_item
*a
;
2168 assert( pSelect
!=0 );
2169 assert( (pSelect
->selFlags
& SF_Resolved
)!=0 );
2170 assert( pTab
->nCol
==pSelect
->pEList
->nExpr
|| db
->mallocFailed
);
2171 if( db
->mallocFailed
) return;
2172 memset(&sNC
, 0, sizeof(sNC
));
2173 sNC
.pSrcList
= pSelect
->pSrc
;
2174 a
= pSelect
->pEList
->a
;
2175 for(i
=0, pCol
=pTab
->aCol
; i
<pTab
->nCol
; i
++, pCol
++){
2178 pTab
->tabFlags
|= (pCol
->colFlags
& COLFLAG_NOINSERT
);
2180 zType
= columnType(&sNC
, p
, 0, 0, 0);
2181 /* pCol->szEst = ... // Column size est for SELECT tables never used */
2182 pCol
->affinity
= sqlite3ExprAffinity(p
);
2184 m
= sqlite3Strlen30(zType
);
2185 n
= sqlite3Strlen30(pCol
->zName
);
2186 pCol
->zName
= sqlite3DbReallocOrFree(db
, pCol
->zName
, n
+m
+2);
2188 memcpy(&pCol
->zName
[n
+1], zType
, m
+1);
2189 pCol
->colFlags
|= COLFLAG_HASTYPE
;
2192 if( pCol
->affinity
<=SQLITE_AFF_NONE
) pCol
->affinity
= aff
;
2193 pColl
= sqlite3ExprCollSeq(pParse
, p
);
2194 if( pColl
&& pCol
->zColl
==0 ){
2195 pCol
->zColl
= sqlite3DbStrDup(db
, pColl
->zName
);
2198 pTab
->szTabRow
= 1; /* Any non-zero value works */
2202 ** Given a SELECT statement, generate a Table structure that describes
2203 ** the result set of that SELECT.
2205 Table
*sqlite3ResultSetOfSelect(Parse
*pParse
, Select
*pSelect
, char aff
){
2207 sqlite3
*db
= pParse
->db
;
2210 savedFlags
= db
->flags
;
2211 db
->flags
&= ~(u64
)SQLITE_FullColNames
;
2212 db
->flags
|= SQLITE_ShortColNames
;
2213 sqlite3SelectPrep(pParse
, pSelect
, 0);
2214 db
->flags
= savedFlags
;
2215 if( pParse
->nErr
) return 0;
2216 while( pSelect
->pPrior
) pSelect
= pSelect
->pPrior
;
2217 pTab
= sqlite3DbMallocZero(db
, sizeof(Table
) );
2223 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
2224 sqlite3ColumnsFromExprList(pParse
, pSelect
->pEList
, &pTab
->nCol
, &pTab
->aCol
);
2225 sqlite3SelectAddColumnTypeAndCollation(pParse
, pTab
, pSelect
, aff
);
2227 if( db
->mallocFailed
){
2228 sqlite3DeleteTable(db
, pTab
);
2235 ** Get a VDBE for the given parser context. Create a new one if necessary.
2236 ** If an error occurs, return NULL and leave a message in pParse.
2238 Vdbe
*sqlite3GetVdbe(Parse
*pParse
){
2239 if( pParse
->pVdbe
){
2240 return pParse
->pVdbe
;
2242 if( pParse
->pToplevel
==0
2243 && OptimizationEnabled(pParse
->db
,SQLITE_FactorOutConst
)
2245 pParse
->okConstFactor
= 1;
2247 return sqlite3VdbeCreate(pParse
);
2252 ** Compute the iLimit and iOffset fields of the SELECT based on the
2253 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
2254 ** that appear in the original SQL statement after the LIMIT and OFFSET
2255 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
2256 ** are the integer memory register numbers for counters used to compute
2257 ** the limit and offset. If there is no limit and/or offset, then
2258 ** iLimit and iOffset are negative.
2260 ** This routine changes the values of iLimit and iOffset only if
2261 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
2262 ** and iOffset should have been preset to appropriate default values (zero)
2263 ** prior to calling this routine.
2265 ** The iOffset register (if it exists) is initialized to the value
2266 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
2267 ** iOffset+1 is initialized to LIMIT+OFFSET.
2269 ** Only if pLimit->pLeft!=0 do the limit registers get
2270 ** redefined. The UNION ALL operator uses this property to force
2271 ** the reuse of the same limit and offset registers across multiple
2272 ** SELECT statements.
2274 static void computeLimitRegisters(Parse
*pParse
, Select
*p
, int iBreak
){
2279 Expr
*pLimit
= p
->pLimit
;
2281 if( p
->iLimit
) return;
2284 ** "LIMIT -1" always shows all rows. There is some
2285 ** controversy about what the correct behavior should be.
2286 ** The current implementation interprets "LIMIT 0" to mean
2290 assert( pLimit
->op
==TK_LIMIT
);
2291 assert( pLimit
->pLeft
!=0 );
2292 p
->iLimit
= iLimit
= ++pParse
->nMem
;
2293 v
= sqlite3GetVdbe(pParse
);
2295 if( sqlite3ExprIsInteger(pLimit
->pLeft
, &n
) ){
2296 sqlite3VdbeAddOp2(v
, OP_Integer
, n
, iLimit
);
2297 VdbeComment((v
, "LIMIT counter"));
2299 sqlite3VdbeGoto(v
, iBreak
);
2300 }else if( n
>=0 && p
->nSelectRow
>sqlite3LogEst((u64
)n
) ){
2301 p
->nSelectRow
= sqlite3LogEst((u64
)n
);
2302 p
->selFlags
|= SF_FixedLimit
;
2305 sqlite3ExprCode(pParse
, pLimit
->pLeft
, iLimit
);
2306 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, iLimit
); VdbeCoverage(v
);
2307 VdbeComment((v
, "LIMIT counter"));
2308 sqlite3VdbeAddOp2(v
, OP_IfNot
, iLimit
, iBreak
); VdbeCoverage(v
);
2310 if( pLimit
->pRight
){
2311 p
->iOffset
= iOffset
= ++pParse
->nMem
;
2312 pParse
->nMem
++; /* Allocate an extra register for limit+offset */
2313 sqlite3ExprCode(pParse
, pLimit
->pRight
, iOffset
);
2314 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, iOffset
); VdbeCoverage(v
);
2315 VdbeComment((v
, "OFFSET counter"));
2316 sqlite3VdbeAddOp3(v
, OP_OffsetLimit
, iLimit
, iOffset
+1, iOffset
);
2317 VdbeComment((v
, "LIMIT+OFFSET"));
2322 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2324 ** Return the appropriate collating sequence for the iCol-th column of
2325 ** the result set for the compound-select statement "p". Return NULL if
2326 ** the column has no default collating sequence.
2328 ** The collating sequence for the compound select is taken from the
2329 ** left-most term of the select that has a collating sequence.
2331 static CollSeq
*multiSelectCollSeq(Parse
*pParse
, Select
*p
, int iCol
){
2334 pRet
= multiSelectCollSeq(pParse
, p
->pPrior
, iCol
);
2339 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
2340 ** have been thrown during name resolution and we would not have gotten
2342 if( pRet
==0 && ALWAYS(iCol
<p
->pEList
->nExpr
) ){
2343 pRet
= sqlite3ExprCollSeq(pParse
, p
->pEList
->a
[iCol
].pExpr
);
2349 ** The select statement passed as the second parameter is a compound SELECT
2350 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2351 ** structure suitable for implementing the ORDER BY.
2353 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2354 ** function is responsible for ensuring that this structure is eventually
2357 static KeyInfo
*multiSelectOrderByKeyInfo(Parse
*pParse
, Select
*p
, int nExtra
){
2358 ExprList
*pOrderBy
= p
->pOrderBy
;
2359 int nOrderBy
= p
->pOrderBy
->nExpr
;
2360 sqlite3
*db
= pParse
->db
;
2361 KeyInfo
*pRet
= sqlite3KeyInfoAlloc(db
, nOrderBy
+nExtra
, 1);
2364 for(i
=0; i
<nOrderBy
; i
++){
2365 struct ExprList_item
*pItem
= &pOrderBy
->a
[i
];
2366 Expr
*pTerm
= pItem
->pExpr
;
2369 if( pTerm
->flags
& EP_Collate
){
2370 pColl
= sqlite3ExprCollSeq(pParse
, pTerm
);
2372 pColl
= multiSelectCollSeq(pParse
, p
, pItem
->u
.x
.iOrderByCol
-1);
2373 if( pColl
==0 ) pColl
= db
->pDfltColl
;
2374 pOrderBy
->a
[i
].pExpr
=
2375 sqlite3ExprAddCollateString(pParse
, pTerm
, pColl
->zName
);
2377 assert( sqlite3KeyInfoIsWriteable(pRet
) );
2378 pRet
->aColl
[i
] = pColl
;
2379 pRet
->aSortFlags
[i
] = pOrderBy
->a
[i
].sortFlags
;
2386 #ifndef SQLITE_OMIT_CTE
2388 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2389 ** query of the form:
2391 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2392 ** \___________/ \_______________/
2396 ** There is exactly one reference to the recursive-table in the FROM clause
2397 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2399 ** The setup-query runs once to generate an initial set of rows that go
2400 ** into a Queue table. Rows are extracted from the Queue table one by
2401 ** one. Each row extracted from Queue is output to pDest. Then the single
2402 ** extracted row (now in the iCurrent table) becomes the content of the
2403 ** recursive-table for a recursive-query run. The output of the recursive-query
2404 ** is added back into the Queue table. Then another row is extracted from Queue
2405 ** and the iteration continues until the Queue table is empty.
2407 ** If the compound query operator is UNION then no duplicate rows are ever
2408 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
2409 ** that have ever been inserted into Queue and causes duplicates to be
2410 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
2412 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2413 ** ORDER BY order and the first entry is extracted for each cycle. Without
2414 ** an ORDER BY, the Queue table is just a FIFO.
2416 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2417 ** have been output to pDest. A LIMIT of zero means to output no rows and a
2418 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
2419 ** with a positive value, then the first OFFSET outputs are discarded rather
2420 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
2421 ** rows have been skipped.
2423 static void generateWithRecursiveQuery(
2424 Parse
*pParse
, /* Parsing context */
2425 Select
*p
, /* The recursive SELECT to be coded */
2426 SelectDest
*pDest
/* What to do with query results */
2428 SrcList
*pSrc
= p
->pSrc
; /* The FROM clause of the recursive query */
2429 int nCol
= p
->pEList
->nExpr
; /* Number of columns in the recursive table */
2430 Vdbe
*v
= pParse
->pVdbe
; /* The prepared statement under construction */
2431 Select
*pSetup
= p
->pPrior
; /* The setup query */
2432 Select
*pFirstRec
; /* Left-most recursive term */
2433 int addrTop
; /* Top of the loop */
2434 int addrCont
, addrBreak
; /* CONTINUE and BREAK addresses */
2435 int iCurrent
= 0; /* The Current table */
2436 int regCurrent
; /* Register holding Current table */
2437 int iQueue
; /* The Queue table */
2438 int iDistinct
= 0; /* To ensure unique results if UNION */
2439 int eDest
= SRT_Fifo
; /* How to write to Queue */
2440 SelectDest destQueue
; /* SelectDest targetting the Queue table */
2441 int i
; /* Loop counter */
2442 int rc
; /* Result code */
2443 ExprList
*pOrderBy
; /* The ORDER BY clause */
2444 Expr
*pLimit
; /* Saved LIMIT and OFFSET */
2445 int regLimit
, regOffset
; /* Registers used by LIMIT and OFFSET */
2447 #ifndef SQLITE_OMIT_WINDOWFUNC
2449 sqlite3ErrorMsg(pParse
, "cannot use window functions in recursive queries");
2454 /* Obtain authorization to do a recursive query */
2455 if( sqlite3AuthCheck(pParse
, SQLITE_RECURSIVE
, 0, 0, 0) ) return;
2457 /* Process the LIMIT and OFFSET clauses, if they exist */
2458 addrBreak
= sqlite3VdbeMakeLabel(pParse
);
2459 p
->nSelectRow
= 320; /* 4 billion rows */
2460 computeLimitRegisters(pParse
, p
, addrBreak
);
2462 regLimit
= p
->iLimit
;
2463 regOffset
= p
->iOffset
;
2465 p
->iLimit
= p
->iOffset
= 0;
2466 pOrderBy
= p
->pOrderBy
;
2468 /* Locate the cursor number of the Current table */
2469 for(i
=0; ALWAYS(i
<pSrc
->nSrc
); i
++){
2470 if( pSrc
->a
[i
].fg
.isRecursive
){
2471 iCurrent
= pSrc
->a
[i
].iCursor
;
2476 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2477 ** the Distinct table must be exactly one greater than Queue in order
2478 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2479 iQueue
= pParse
->nTab
++;
2480 if( p
->op
==TK_UNION
){
2481 eDest
= pOrderBy
? SRT_DistQueue
: SRT_DistFifo
;
2482 iDistinct
= pParse
->nTab
++;
2484 eDest
= pOrderBy
? SRT_Queue
: SRT_Fifo
;
2486 sqlite3SelectDestInit(&destQueue
, eDest
, iQueue
);
2488 /* Allocate cursors for Current, Queue, and Distinct. */
2489 regCurrent
= ++pParse
->nMem
;
2490 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, iCurrent
, regCurrent
, nCol
);
2492 KeyInfo
*pKeyInfo
= multiSelectOrderByKeyInfo(pParse
, p
, 1);
2493 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
, iQueue
, pOrderBy
->nExpr
+2, 0,
2494 (char*)pKeyInfo
, P4_KEYINFO
);
2495 destQueue
.pOrderBy
= pOrderBy
;
2497 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, iQueue
, nCol
);
2499 VdbeComment((v
, "Queue table"));
2501 p
->addrOpenEphm
[0] = sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, iDistinct
, 0);
2502 p
->selFlags
|= SF_UsesEphemeral
;
2505 /* Detach the ORDER BY clause from the compound SELECT */
2508 /* Figure out how many elements of the compound SELECT are part of the
2509 ** recursive query. Make sure no recursive elements use aggregate
2510 ** functions. Mark the recursive elements as UNION ALL even if they
2511 ** are really UNION because the distinctness will be enforced by the
2512 ** iDistinct table. pFirstRec is left pointing to the left-most
2513 ** recursive term of the CTE.
2516 for(pFirstRec
=p
; ALWAYS(pFirstRec
!=0); pFirstRec
=pFirstRec
->pPrior
){
2517 if( pFirstRec
->selFlags
& SF_Aggregate
){
2518 sqlite3ErrorMsg(pParse
, "recursive aggregate queries not supported");
2519 goto end_of_recursive_query
;
2521 pFirstRec
->op
= TK_ALL
;
2522 if( (pFirstRec
->pPrior
->selFlags
& SF_Recursive
)==0 ) break;
2525 /* Store the results of the setup-query in Queue. */
2526 pSetup
= pFirstRec
->pPrior
;
2528 ExplainQueryPlan((pParse
, 1, "SETUP"));
2529 rc
= sqlite3Select(pParse
, pSetup
, &destQueue
);
2531 if( rc
) goto end_of_recursive_query
;
2533 /* Find the next row in the Queue and output that row */
2534 addrTop
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iQueue
, addrBreak
); VdbeCoverage(v
);
2536 /* Transfer the next row in Queue over to Current */
2537 sqlite3VdbeAddOp1(v
, OP_NullRow
, iCurrent
); /* To reset column cache */
2539 sqlite3VdbeAddOp3(v
, OP_Column
, iQueue
, pOrderBy
->nExpr
+1, regCurrent
);
2541 sqlite3VdbeAddOp2(v
, OP_RowData
, iQueue
, regCurrent
);
2543 sqlite3VdbeAddOp1(v
, OP_Delete
, iQueue
);
2545 /* Output the single row in Current */
2546 addrCont
= sqlite3VdbeMakeLabel(pParse
);
2547 codeOffset(v
, regOffset
, addrCont
);
2548 selectInnerLoop(pParse
, p
, iCurrent
,
2549 0, 0, pDest
, addrCont
, addrBreak
);
2551 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, regLimit
, addrBreak
);
2554 sqlite3VdbeResolveLabel(v
, addrCont
);
2556 /* Execute the recursive SELECT taking the single row in Current as
2557 ** the value for the recursive-table. Store the results in the Queue.
2559 pFirstRec
->pPrior
= 0;
2560 ExplainQueryPlan((pParse
, 1, "RECURSIVE STEP"));
2561 sqlite3Select(pParse
, p
, &destQueue
);
2562 assert( pFirstRec
->pPrior
==0 );
2563 pFirstRec
->pPrior
= pSetup
;
2565 /* Keep running the loop until the Queue is empty */
2566 sqlite3VdbeGoto(v
, addrTop
);
2567 sqlite3VdbeResolveLabel(v
, addrBreak
);
2569 end_of_recursive_query
:
2570 sqlite3ExprListDelete(pParse
->db
, p
->pOrderBy
);
2571 p
->pOrderBy
= pOrderBy
;
2575 #endif /* SQLITE_OMIT_CTE */
2577 /* Forward references */
2578 static int multiSelectOrderBy(
2579 Parse
*pParse
, /* Parsing context */
2580 Select
*p
, /* The right-most of SELECTs to be coded */
2581 SelectDest
*pDest
/* What to do with query results */
2585 ** Handle the special case of a compound-select that originates from a
2586 ** VALUES clause. By handling this as a special case, we avoid deep
2587 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2588 ** on a VALUES clause.
2590 ** Because the Select object originates from a VALUES clause:
2591 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2592 ** (2) All terms are UNION ALL
2593 ** (3) There is no ORDER BY clause
2595 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2596 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2597 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2598 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2600 static int multiSelectValues(
2601 Parse
*pParse
, /* Parsing context */
2602 Select
*p
, /* The right-most of SELECTs to be coded */
2603 SelectDest
*pDest
/* What to do with query results */
2607 int bShowAll
= p
->pLimit
==0;
2608 assert( p
->selFlags
& SF_MultiValue
);
2610 assert( p
->selFlags
& SF_Values
);
2611 assert( p
->op
==TK_ALL
|| (p
->op
==TK_SELECT
&& p
->pPrior
==0) );
2612 assert( p
->pNext
==0 || p
->pEList
->nExpr
==p
->pNext
->pEList
->nExpr
);
2613 #ifndef SQLITE_OMIT_WINDOWFUNC
2614 if( p
->pWin
) return -1;
2616 if( p
->pPrior
==0 ) break;
2617 assert( p
->pPrior
->pNext
==p
);
2621 ExplainQueryPlan((pParse
, 0, "SCAN %d CONSTANT ROW%s", nRow
,
2622 nRow
==1 ? "" : "S"));
2624 selectInnerLoop(pParse
, p
, -1, 0, 0, pDest
, 1, 1);
2625 if( !bShowAll
) break;
2626 p
->nSelectRow
= nRow
;
2633 ** Return true if the SELECT statement which is known to be the recursive
2634 ** part of a recursive CTE still has its anchor terms attached. If the
2635 ** anchor terms have already been removed, then return false.
2637 static int hasAnchor(Select
*p
){
2638 while( p
&& (p
->selFlags
& SF_Recursive
)!=0 ){ p
= p
->pPrior
; }
2643 ** This routine is called to process a compound query form from
2644 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2647 ** "p" points to the right-most of the two queries. the query on the
2648 ** left is p->pPrior. The left query could also be a compound query
2649 ** in which case this routine will be called recursively.
2651 ** The results of the total query are to be written into a destination
2652 ** of type eDest with parameter iParm.
2654 ** Example 1: Consider a three-way compound SQL statement.
2656 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2658 ** This statement is parsed up as follows:
2662 ** `-----> SELECT b FROM t2
2664 ** `------> SELECT a FROM t1
2666 ** The arrows in the diagram above represent the Select.pPrior pointer.
2667 ** So if this routine is called with p equal to the t3 query, then
2668 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2670 ** Notice that because of the way SQLite parses compound SELECTs, the
2671 ** individual selects always group from left to right.
2673 static int multiSelect(
2674 Parse
*pParse
, /* Parsing context */
2675 Select
*p
, /* The right-most of SELECTs to be coded */
2676 SelectDest
*pDest
/* What to do with query results */
2678 int rc
= SQLITE_OK
; /* Success code from a subroutine */
2679 Select
*pPrior
; /* Another SELECT immediately to our left */
2680 Vdbe
*v
; /* Generate code to this VDBE */
2681 SelectDest dest
; /* Alternative data destination */
2682 Select
*pDelete
= 0; /* Chain of simple selects to delete */
2683 sqlite3
*db
; /* Database connection */
2685 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2686 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2688 assert( p
&& p
->pPrior
); /* Calling function guarantees this much */
2689 assert( (p
->selFlags
& SF_Recursive
)==0 || p
->op
==TK_ALL
|| p
->op
==TK_UNION
);
2690 assert( p
->selFlags
& SF_Compound
);
2694 assert( pPrior
->pOrderBy
==0 );
2695 assert( pPrior
->pLimit
==0 );
2697 v
= sqlite3GetVdbe(pParse
);
2698 assert( v
!=0 ); /* The VDBE already created by calling function */
2700 /* Create the destination temporary table if necessary
2702 if( dest
.eDest
==SRT_EphemTab
){
2703 assert( p
->pEList
);
2704 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, dest
.iSDParm
, p
->pEList
->nExpr
);
2705 dest
.eDest
= SRT_Table
;
2708 /* Special handling for a compound-select that originates as a VALUES clause.
2710 if( p
->selFlags
& SF_MultiValue
){
2711 rc
= multiSelectValues(pParse
, p
, &dest
);
2712 if( rc
>=0 ) goto multi_select_end
;
2716 /* Make sure all SELECTs in the statement have the same number of elements
2717 ** in their result sets.
2719 assert( p
->pEList
&& pPrior
->pEList
);
2720 assert( p
->pEList
->nExpr
==pPrior
->pEList
->nExpr
);
2722 #ifndef SQLITE_OMIT_CTE
2723 if( (p
->selFlags
& SF_Recursive
)!=0 && hasAnchor(p
) ){
2724 generateWithRecursiveQuery(pParse
, p
, &dest
);
2728 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2731 return multiSelectOrderBy(pParse
, p
, pDest
);
2734 #ifndef SQLITE_OMIT_EXPLAIN
2735 if( pPrior
->pPrior
==0 ){
2736 ExplainQueryPlan((pParse
, 1, "COMPOUND QUERY"));
2737 ExplainQueryPlan((pParse
, 1, "LEFT-MOST SUBQUERY"));
2741 /* Generate code for the left and right SELECT statements.
2746 int nLimit
= 0; /* Initialize to suppress harmless compiler warning */
2747 assert( !pPrior
->pLimit
);
2748 pPrior
->iLimit
= p
->iLimit
;
2749 pPrior
->iOffset
= p
->iOffset
;
2750 pPrior
->pLimit
= p
->pLimit
;
2751 SELECTTRACE(1, pParse
, p
, ("multiSelect UNION ALL left...\n"));
2752 rc
= sqlite3Select(pParse
, pPrior
, &dest
);
2755 goto multi_select_end
;
2758 p
->iLimit
= pPrior
->iLimit
;
2759 p
->iOffset
= pPrior
->iOffset
;
2761 addr
= sqlite3VdbeAddOp1(v
, OP_IfNot
, p
->iLimit
); VdbeCoverage(v
);
2762 VdbeComment((v
, "Jump ahead if LIMIT reached"));
2764 sqlite3VdbeAddOp3(v
, OP_OffsetLimit
,
2765 p
->iLimit
, p
->iOffset
+1, p
->iOffset
);
2768 ExplainQueryPlan((pParse
, 1, "UNION ALL"));
2769 SELECTTRACE(1, pParse
, p
, ("multiSelect UNION ALL right...\n"));
2770 rc
= sqlite3Select(pParse
, p
, &dest
);
2771 testcase( rc
!=SQLITE_OK
);
2772 pDelete
= p
->pPrior
;
2774 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
2776 && sqlite3ExprIsInteger(p
->pLimit
->pLeft
, &nLimit
)
2777 && nLimit
>0 && p
->nSelectRow
> sqlite3LogEst((u64
)nLimit
)
2779 p
->nSelectRow
= sqlite3LogEst((u64
)nLimit
);
2782 sqlite3VdbeJumpHere(v
, addr
);
2788 int unionTab
; /* Cursor number of the temp table holding result */
2789 u8 op
= 0; /* One of the SRT_ operations to apply to self */
2790 int priorOp
; /* The SRT_ operation to apply to prior selects */
2791 Expr
*pLimit
; /* Saved values of p->nLimit */
2793 SelectDest uniondest
;
2795 testcase( p
->op
==TK_EXCEPT
);
2796 testcase( p
->op
==TK_UNION
);
2797 priorOp
= SRT_Union
;
2798 if( dest
.eDest
==priorOp
){
2799 /* We can reuse a temporary table generated by a SELECT to our
2802 assert( p
->pLimit
==0 ); /* Not allowed on leftward elements */
2803 unionTab
= dest
.iSDParm
;
2805 /* We will need to create our own temporary table to hold the
2806 ** intermediate results.
2808 unionTab
= pParse
->nTab
++;
2809 assert( p
->pOrderBy
==0 );
2810 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, unionTab
, 0);
2811 assert( p
->addrOpenEphm
[0] == -1 );
2812 p
->addrOpenEphm
[0] = addr
;
2813 findRightmost(p
)->selFlags
|= SF_UsesEphemeral
;
2814 assert( p
->pEList
);
2818 /* Code the SELECT statements to our left
2820 assert( !pPrior
->pOrderBy
);
2821 sqlite3SelectDestInit(&uniondest
, priorOp
, unionTab
);
2822 SELECTTRACE(1, pParse
, p
, ("multiSelect EXCEPT/UNION left...\n"));
2823 rc
= sqlite3Select(pParse
, pPrior
, &uniondest
);
2825 goto multi_select_end
;
2828 /* Code the current SELECT statement
2830 if( p
->op
==TK_EXCEPT
){
2833 assert( p
->op
==TK_UNION
);
2839 uniondest
.eDest
= op
;
2840 ExplainQueryPlan((pParse
, 1, "%s USING TEMP B-TREE",
2841 sqlite3SelectOpName(p
->op
)));
2842 SELECTTRACE(1, pParse
, p
, ("multiSelect EXCEPT/UNION right...\n"));
2843 rc
= sqlite3Select(pParse
, p
, &uniondest
);
2844 testcase( rc
!=SQLITE_OK
);
2845 assert( p
->pOrderBy
==0 );
2846 pDelete
= p
->pPrior
;
2849 if( p
->op
==TK_UNION
){
2850 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
2852 sqlite3ExprDelete(db
, p
->pLimit
);
2857 /* Convert the data in the temporary table into whatever form
2858 ** it is that we currently need.
2860 assert( unionTab
==dest
.iSDParm
|| dest
.eDest
!=priorOp
);
2861 assert( p
->pEList
|| db
->mallocFailed
);
2862 if( dest
.eDest
!=priorOp
&& db
->mallocFailed
==0 ){
2863 int iCont
, iBreak
, iStart
;
2864 iBreak
= sqlite3VdbeMakeLabel(pParse
);
2865 iCont
= sqlite3VdbeMakeLabel(pParse
);
2866 computeLimitRegisters(pParse
, p
, iBreak
);
2867 sqlite3VdbeAddOp2(v
, OP_Rewind
, unionTab
, iBreak
); VdbeCoverage(v
);
2868 iStart
= sqlite3VdbeCurrentAddr(v
);
2869 selectInnerLoop(pParse
, p
, unionTab
,
2870 0, 0, &dest
, iCont
, iBreak
);
2871 sqlite3VdbeResolveLabel(v
, iCont
);
2872 sqlite3VdbeAddOp2(v
, OP_Next
, unionTab
, iStart
); VdbeCoverage(v
);
2873 sqlite3VdbeResolveLabel(v
, iBreak
);
2874 sqlite3VdbeAddOp2(v
, OP_Close
, unionTab
, 0);
2878 default: assert( p
->op
==TK_INTERSECT
); {
2880 int iCont
, iBreak
, iStart
;
2883 SelectDest intersectdest
;
2886 /* INTERSECT is different from the others since it requires
2887 ** two temporary tables. Hence it has its own case. Begin
2888 ** by allocating the tables we will need.
2890 tab1
= pParse
->nTab
++;
2891 tab2
= pParse
->nTab
++;
2892 assert( p
->pOrderBy
==0 );
2894 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, tab1
, 0);
2895 assert( p
->addrOpenEphm
[0] == -1 );
2896 p
->addrOpenEphm
[0] = addr
;
2897 findRightmost(p
)->selFlags
|= SF_UsesEphemeral
;
2898 assert( p
->pEList
);
2900 /* Code the SELECTs to our left into temporary table "tab1".
2902 sqlite3SelectDestInit(&intersectdest
, SRT_Union
, tab1
);
2903 SELECTTRACE(1, pParse
, p
, ("multiSelect INTERSECT left...\n"));
2904 rc
= sqlite3Select(pParse
, pPrior
, &intersectdest
);
2906 goto multi_select_end
;
2909 /* Code the current SELECT into temporary table "tab2"
2911 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, tab2
, 0);
2912 assert( p
->addrOpenEphm
[1] == -1 );
2913 p
->addrOpenEphm
[1] = addr
;
2917 intersectdest
.iSDParm
= tab2
;
2918 ExplainQueryPlan((pParse
, 1, "%s USING TEMP B-TREE",
2919 sqlite3SelectOpName(p
->op
)));
2920 SELECTTRACE(1, pParse
, p
, ("multiSelect INTERSECT right...\n"));
2921 rc
= sqlite3Select(pParse
, p
, &intersectdest
);
2922 testcase( rc
!=SQLITE_OK
);
2923 pDelete
= p
->pPrior
;
2925 if( p
->nSelectRow
>pPrior
->nSelectRow
){
2926 p
->nSelectRow
= pPrior
->nSelectRow
;
2928 sqlite3ExprDelete(db
, p
->pLimit
);
2931 /* Generate code to take the intersection of the two temporary
2935 assert( p
->pEList
);
2936 iBreak
= sqlite3VdbeMakeLabel(pParse
);
2937 iCont
= sqlite3VdbeMakeLabel(pParse
);
2938 computeLimitRegisters(pParse
, p
, iBreak
);
2939 sqlite3VdbeAddOp2(v
, OP_Rewind
, tab1
, iBreak
); VdbeCoverage(v
);
2940 r1
= sqlite3GetTempReg(pParse
);
2941 iStart
= sqlite3VdbeAddOp2(v
, OP_RowData
, tab1
, r1
);
2942 sqlite3VdbeAddOp4Int(v
, OP_NotFound
, tab2
, iCont
, r1
, 0);
2944 sqlite3ReleaseTempReg(pParse
, r1
);
2945 selectInnerLoop(pParse
, p
, tab1
,
2946 0, 0, &dest
, iCont
, iBreak
);
2947 sqlite3VdbeResolveLabel(v
, iCont
);
2948 sqlite3VdbeAddOp2(v
, OP_Next
, tab1
, iStart
); VdbeCoverage(v
);
2949 sqlite3VdbeResolveLabel(v
, iBreak
);
2950 sqlite3VdbeAddOp2(v
, OP_Close
, tab2
, 0);
2951 sqlite3VdbeAddOp2(v
, OP_Close
, tab1
, 0);
2956 #ifndef SQLITE_OMIT_EXPLAIN
2958 ExplainQueryPlanPop(pParse
);
2962 if( pParse
->nErr
) goto multi_select_end
;
2964 /* Compute collating sequences used by
2965 ** temporary tables needed to implement the compound select.
2966 ** Attach the KeyInfo structure to all temporary tables.
2968 ** This section is run by the right-most SELECT statement only.
2969 ** SELECT statements to the left always skip this part. The right-most
2970 ** SELECT might also skip this part if it has no ORDER BY clause and
2971 ** no temp tables are required.
2973 if( p
->selFlags
& SF_UsesEphemeral
){
2974 int i
; /* Loop counter */
2975 KeyInfo
*pKeyInfo
; /* Collating sequence for the result set */
2976 Select
*pLoop
; /* For looping through SELECT statements */
2977 CollSeq
**apColl
; /* For looping through pKeyInfo->aColl[] */
2978 int nCol
; /* Number of columns in result set */
2980 assert( p
->pNext
==0 );
2981 nCol
= p
->pEList
->nExpr
;
2982 pKeyInfo
= sqlite3KeyInfoAlloc(db
, nCol
, 1);
2984 rc
= SQLITE_NOMEM_BKPT
;
2985 goto multi_select_end
;
2987 for(i
=0, apColl
=pKeyInfo
->aColl
; i
<nCol
; i
++, apColl
++){
2988 *apColl
= multiSelectCollSeq(pParse
, p
, i
);
2990 *apColl
= db
->pDfltColl
;
2994 for(pLoop
=p
; pLoop
; pLoop
=pLoop
->pPrior
){
2996 int addr
= pLoop
->addrOpenEphm
[i
];
2998 /* If [0] is unused then [1] is also unused. So we can
2999 ** always safely abort as soon as the first unused slot is found */
3000 assert( pLoop
->addrOpenEphm
[1]<0 );
3003 sqlite3VdbeChangeP2(v
, addr
, nCol
);
3004 sqlite3VdbeChangeP4(v
, addr
, (char*)sqlite3KeyInfoRef(pKeyInfo
),
3006 pLoop
->addrOpenEphm
[i
] = -1;
3009 sqlite3KeyInfoUnref(pKeyInfo
);
3013 pDest
->iSdst
= dest
.iSdst
;
3014 pDest
->nSdst
= dest
.nSdst
;
3015 sqlite3SelectDelete(db
, pDelete
);
3018 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
3021 ** Error message for when two or more terms of a compound select have different
3022 ** size result sets.
3024 void sqlite3SelectWrongNumTermsError(Parse
*pParse
, Select
*p
){
3025 if( p
->selFlags
& SF_Values
){
3026 sqlite3ErrorMsg(pParse
, "all VALUES must have the same number of terms");
3028 sqlite3ErrorMsg(pParse
, "SELECTs to the left and right of %s"
3029 " do not have the same number of result columns",
3030 sqlite3SelectOpName(p
->op
));
3035 ** Code an output subroutine for a coroutine implementation of a
3038 ** The data to be output is contained in pIn->iSdst. There are
3039 ** pIn->nSdst columns to be output. pDest is where the output should
3042 ** regReturn is the number of the register holding the subroutine
3045 ** If regPrev>0 then it is the first register in a vector that
3046 ** records the previous output. mem[regPrev] is a flag that is false
3047 ** if there has been no previous output. If regPrev>0 then code is
3048 ** generated to suppress duplicates. pKeyInfo is used for comparing
3051 ** If the LIMIT found in p->iLimit is reached, jump immediately to
3054 static int generateOutputSubroutine(
3055 Parse
*pParse
, /* Parsing context */
3056 Select
*p
, /* The SELECT statement */
3057 SelectDest
*pIn
, /* Coroutine supplying data */
3058 SelectDest
*pDest
, /* Where to send the data */
3059 int regReturn
, /* The return address register */
3060 int regPrev
, /* Previous result register. No uniqueness if 0 */
3061 KeyInfo
*pKeyInfo
, /* For comparing with previous entry */
3062 int iBreak
/* Jump here if we hit the LIMIT */
3064 Vdbe
*v
= pParse
->pVdbe
;
3068 addr
= sqlite3VdbeCurrentAddr(v
);
3069 iContinue
= sqlite3VdbeMakeLabel(pParse
);
3071 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
3075 addr1
= sqlite3VdbeAddOp1(v
, OP_IfNot
, regPrev
); VdbeCoverage(v
);
3076 addr2
= sqlite3VdbeAddOp4(v
, OP_Compare
, pIn
->iSdst
, regPrev
+1, pIn
->nSdst
,
3077 (char*)sqlite3KeyInfoRef(pKeyInfo
), P4_KEYINFO
);
3078 sqlite3VdbeAddOp3(v
, OP_Jump
, addr2
+2, iContinue
, addr2
+2); VdbeCoverage(v
);
3079 sqlite3VdbeJumpHere(v
, addr1
);
3080 sqlite3VdbeAddOp3(v
, OP_Copy
, pIn
->iSdst
, regPrev
+1, pIn
->nSdst
-1);
3081 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, regPrev
);
3083 if( pParse
->db
->mallocFailed
) return 0;
3085 /* Suppress the first OFFSET entries if there is an OFFSET clause
3087 codeOffset(v
, p
->iOffset
, iContinue
);
3089 assert( pDest
->eDest
!=SRT_Exists
);
3090 assert( pDest
->eDest
!=SRT_Table
);
3091 switch( pDest
->eDest
){
3092 /* Store the result as data using a unique key.
3094 case SRT_EphemTab
: {
3095 int r1
= sqlite3GetTempReg(pParse
);
3096 int r2
= sqlite3GetTempReg(pParse
);
3097 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, pIn
->iSdst
, pIn
->nSdst
, r1
);
3098 sqlite3VdbeAddOp2(v
, OP_NewRowid
, pDest
->iSDParm
, r2
);
3099 sqlite3VdbeAddOp3(v
, OP_Insert
, pDest
->iSDParm
, r1
, r2
);
3100 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
3101 sqlite3ReleaseTempReg(pParse
, r2
);
3102 sqlite3ReleaseTempReg(pParse
, r1
);
3106 #ifndef SQLITE_OMIT_SUBQUERY
3107 /* If we are creating a set for an "expr IN (SELECT ...)".
3111 testcase( pIn
->nSdst
>1 );
3112 r1
= sqlite3GetTempReg(pParse
);
3113 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, pIn
->iSdst
, pIn
->nSdst
,
3114 r1
, pDest
->zAffSdst
, pIn
->nSdst
);
3115 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, pDest
->iSDParm
, r1
,
3116 pIn
->iSdst
, pIn
->nSdst
);
3117 sqlite3ReleaseTempReg(pParse
, r1
);
3121 /* If this is a scalar select that is part of an expression, then
3122 ** store the results in the appropriate memory cell and break out
3123 ** of the scan loop. Note that the select might return multiple columns
3124 ** if it is the RHS of a row-value IN operator.
3127 testcase( pIn
->nSdst
>1 );
3128 sqlite3ExprCodeMove(pParse
, pIn
->iSdst
, pDest
->iSDParm
, pIn
->nSdst
);
3129 /* The LIMIT clause will jump out of the loop for us */
3132 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3134 /* The results are stored in a sequence of registers
3135 ** starting at pDest->iSdst. Then the co-routine yields.
3137 case SRT_Coroutine
: {
3138 if( pDest
->iSdst
==0 ){
3139 pDest
->iSdst
= sqlite3GetTempRange(pParse
, pIn
->nSdst
);
3140 pDest
->nSdst
= pIn
->nSdst
;
3142 sqlite3ExprCodeMove(pParse
, pIn
->iSdst
, pDest
->iSdst
, pIn
->nSdst
);
3143 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
3147 /* If none of the above, then the result destination must be
3148 ** SRT_Output. This routine is never called with any other
3149 ** destination other than the ones handled above or SRT_Output.
3151 ** For SRT_Output, results are stored in a sequence of registers.
3152 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3153 ** return the next row of result.
3156 assert( pDest
->eDest
==SRT_Output
);
3157 sqlite3VdbeAddOp2(v
, OP_ResultRow
, pIn
->iSdst
, pIn
->nSdst
);
3162 /* Jump to the end of the loop if the LIMIT is reached.
3165 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, p
->iLimit
, iBreak
); VdbeCoverage(v
);
3168 /* Generate the subroutine return
3170 sqlite3VdbeResolveLabel(v
, iContinue
);
3171 sqlite3VdbeAddOp1(v
, OP_Return
, regReturn
);
3177 ** Alternative compound select code generator for cases when there
3178 ** is an ORDER BY clause.
3180 ** We assume a query of the following form:
3182 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
3184 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
3185 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3186 ** co-routines. Then run the co-routines in parallel and merge the results
3187 ** into the output. In addition to the two coroutines (called selectA and
3188 ** selectB) there are 7 subroutines:
3190 ** outA: Move the output of the selectA coroutine into the output
3191 ** of the compound query.
3193 ** outB: Move the output of the selectB coroutine into the output
3194 ** of the compound query. (Only generated for UNION and
3195 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
3196 ** appears only in B.)
3198 ** AltB: Called when there is data from both coroutines and A<B.
3200 ** AeqB: Called when there is data from both coroutines and A==B.
3202 ** AgtB: Called when there is data from both coroutines and A>B.
3204 ** EofA: Called when data is exhausted from selectA.
3206 ** EofB: Called when data is exhausted from selectB.
3208 ** The implementation of the latter five subroutines depend on which
3209 ** <operator> is used:
3212 ** UNION ALL UNION EXCEPT INTERSECT
3213 ** ------------- ----------------- -------------- -----------------
3214 ** AltB: outA, nextA outA, nextA outA, nextA nextA
3216 ** AeqB: outA, nextA nextA nextA outA, nextA
3218 ** AgtB: outB, nextB outB, nextB nextB nextB
3220 ** EofA: outB, nextB outB, nextB halt halt
3222 ** EofB: outA, nextA outA, nextA outA, nextA halt
3224 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3225 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3226 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
3227 ** following nextX causes a jump to the end of the select processing.
3229 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3230 ** within the output subroutine. The regPrev register set holds the previously
3231 ** output value. A comparison is made against this value and the output
3232 ** is skipped if the next results would be the same as the previous.
3234 ** The implementation plan is to implement the two coroutines and seven
3235 ** subroutines first, then put the control logic at the bottom. Like this:
3238 ** coA: coroutine for left query (A)
3239 ** coB: coroutine for right query (B)
3240 ** outA: output one row of A
3241 ** outB: output one row of B (UNION and UNION ALL only)
3247 ** Init: initialize coroutine registers
3249 ** if eof(A) goto EofA
3251 ** if eof(B) goto EofB
3252 ** Cmpr: Compare A, B
3253 ** Jump AltB, AeqB, AgtB
3256 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3257 ** actually called using Gosub and they do not Return. EofA and EofB loop
3258 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
3259 ** and AgtB jump to either L2 or to one of EofA or EofB.
3261 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3262 static int multiSelectOrderBy(
3263 Parse
*pParse
, /* Parsing context */
3264 Select
*p
, /* The right-most of SELECTs to be coded */
3265 SelectDest
*pDest
/* What to do with query results */
3267 int i
, j
; /* Loop counters */
3268 Select
*pPrior
; /* Another SELECT immediately to our left */
3269 Vdbe
*v
; /* Generate code to this VDBE */
3270 SelectDest destA
; /* Destination for coroutine A */
3271 SelectDest destB
; /* Destination for coroutine B */
3272 int regAddrA
; /* Address register for select-A coroutine */
3273 int regAddrB
; /* Address register for select-B coroutine */
3274 int addrSelectA
; /* Address of the select-A coroutine */
3275 int addrSelectB
; /* Address of the select-B coroutine */
3276 int regOutA
; /* Address register for the output-A subroutine */
3277 int regOutB
; /* Address register for the output-B subroutine */
3278 int addrOutA
; /* Address of the output-A subroutine */
3279 int addrOutB
= 0; /* Address of the output-B subroutine */
3280 int addrEofA
; /* Address of the select-A-exhausted subroutine */
3281 int addrEofA_noB
; /* Alternate addrEofA if B is uninitialized */
3282 int addrEofB
; /* Address of the select-B-exhausted subroutine */
3283 int addrAltB
; /* Address of the A<B subroutine */
3284 int addrAeqB
; /* Address of the A==B subroutine */
3285 int addrAgtB
; /* Address of the A>B subroutine */
3286 int regLimitA
; /* Limit register for select-A */
3287 int regLimitB
; /* Limit register for select-A */
3288 int regPrev
; /* A range of registers to hold previous output */
3289 int savedLimit
; /* Saved value of p->iLimit */
3290 int savedOffset
; /* Saved value of p->iOffset */
3291 int labelCmpr
; /* Label for the start of the merge algorithm */
3292 int labelEnd
; /* Label for the end of the overall SELECT stmt */
3293 int addr1
; /* Jump instructions that get retargetted */
3294 int op
; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3295 KeyInfo
*pKeyDup
= 0; /* Comparison information for duplicate removal */
3296 KeyInfo
*pKeyMerge
; /* Comparison information for merging rows */
3297 sqlite3
*db
; /* Database connection */
3298 ExprList
*pOrderBy
; /* The ORDER BY clause */
3299 int nOrderBy
; /* Number of terms in the ORDER BY clause */
3300 u32
*aPermute
; /* Mapping from ORDER BY terms to result set columns */
3302 assert( p
->pOrderBy
!=0 );
3303 assert( pKeyDup
==0 ); /* "Managed" code needs this. Ticket #3382. */
3306 assert( v
!=0 ); /* Already thrown the error if VDBE alloc failed */
3307 labelEnd
= sqlite3VdbeMakeLabel(pParse
);
3308 labelCmpr
= sqlite3VdbeMakeLabel(pParse
);
3311 /* Patch up the ORDER BY clause
3315 assert( pPrior
->pOrderBy
==0 );
3316 pOrderBy
= p
->pOrderBy
;
3318 nOrderBy
= pOrderBy
->nExpr
;
3320 /* For operators other than UNION ALL we have to make sure that
3321 ** the ORDER BY clause covers every term of the result set. Add
3322 ** terms to the ORDER BY clause as necessary.
3325 for(i
=1; db
->mallocFailed
==0 && i
<=p
->pEList
->nExpr
; i
++){
3326 struct ExprList_item
*pItem
;
3327 for(j
=0, pItem
=pOrderBy
->a
; j
<nOrderBy
; j
++, pItem
++){
3328 assert( pItem
->u
.x
.iOrderByCol
>0 );
3329 if( pItem
->u
.x
.iOrderByCol
==i
) break;
3332 Expr
*pNew
= sqlite3Expr(db
, TK_INTEGER
, 0);
3333 if( pNew
==0 ) return SQLITE_NOMEM_BKPT
;
3334 pNew
->flags
|= EP_IntValue
;
3336 p
->pOrderBy
= pOrderBy
= sqlite3ExprListAppend(pParse
, pOrderBy
, pNew
);
3337 if( pOrderBy
) pOrderBy
->a
[nOrderBy
++].u
.x
.iOrderByCol
= (u16
)i
;
3342 /* Compute the comparison permutation and keyinfo that is used with
3343 ** the permutation used to determine if the next
3344 ** row of results comes from selectA or selectB. Also add explicit
3345 ** collations to the ORDER BY clause terms so that when the subqueries
3346 ** to the right and the left are evaluated, they use the correct
3349 aPermute
= sqlite3DbMallocRawNN(db
, sizeof(u32
)*(nOrderBy
+ 1));
3351 struct ExprList_item
*pItem
;
3352 aPermute
[0] = nOrderBy
;
3353 for(i
=1, pItem
=pOrderBy
->a
; i
<=nOrderBy
; i
++, pItem
++){
3354 assert( pItem
->u
.x
.iOrderByCol
>0 );
3355 assert( pItem
->u
.x
.iOrderByCol
<=p
->pEList
->nExpr
);
3356 aPermute
[i
] = pItem
->u
.x
.iOrderByCol
- 1;
3358 pKeyMerge
= multiSelectOrderByKeyInfo(pParse
, p
, 1);
3363 /* Reattach the ORDER BY clause to the query.
3365 p
->pOrderBy
= pOrderBy
;
3366 pPrior
->pOrderBy
= sqlite3ExprListDup(pParse
->db
, pOrderBy
, 0);
3368 /* Allocate a range of temporary registers and the KeyInfo needed
3369 ** for the logic that removes duplicate result rows when the
3370 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3375 int nExpr
= p
->pEList
->nExpr
;
3376 assert( nOrderBy
>=nExpr
|| db
->mallocFailed
);
3377 regPrev
= pParse
->nMem
+1;
3378 pParse
->nMem
+= nExpr
+1;
3379 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regPrev
);
3380 pKeyDup
= sqlite3KeyInfoAlloc(db
, nExpr
, 1);
3382 assert( sqlite3KeyInfoIsWriteable(pKeyDup
) );
3383 for(i
=0; i
<nExpr
; i
++){
3384 pKeyDup
->aColl
[i
] = multiSelectCollSeq(pParse
, p
, i
);
3385 pKeyDup
->aSortFlags
[i
] = 0;
3390 /* Separate the left and the right query from one another
3394 sqlite3ResolveOrderGroupBy(pParse
, p
, p
->pOrderBy
, "ORDER");
3395 if( pPrior
->pPrior
==0 ){
3396 sqlite3ResolveOrderGroupBy(pParse
, pPrior
, pPrior
->pOrderBy
, "ORDER");
3399 /* Compute the limit registers */
3400 computeLimitRegisters(pParse
, p
, labelEnd
);
3401 if( p
->iLimit
&& op
==TK_ALL
){
3402 regLimitA
= ++pParse
->nMem
;
3403 regLimitB
= ++pParse
->nMem
;
3404 sqlite3VdbeAddOp2(v
, OP_Copy
, p
->iOffset
? p
->iOffset
+1 : p
->iLimit
,
3406 sqlite3VdbeAddOp2(v
, OP_Copy
, regLimitA
, regLimitB
);
3408 regLimitA
= regLimitB
= 0;
3410 sqlite3ExprDelete(db
, p
->pLimit
);
3413 regAddrA
= ++pParse
->nMem
;
3414 regAddrB
= ++pParse
->nMem
;
3415 regOutA
= ++pParse
->nMem
;
3416 regOutB
= ++pParse
->nMem
;
3417 sqlite3SelectDestInit(&destA
, SRT_Coroutine
, regAddrA
);
3418 sqlite3SelectDestInit(&destB
, SRT_Coroutine
, regAddrB
);
3420 ExplainQueryPlan((pParse
, 1, "MERGE (%s)", sqlite3SelectOpName(p
->op
)));
3422 /* Generate a coroutine to evaluate the SELECT statement to the
3423 ** left of the compound operator - the "A" select.
3425 addrSelectA
= sqlite3VdbeCurrentAddr(v
) + 1;
3426 addr1
= sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regAddrA
, 0, addrSelectA
);
3427 VdbeComment((v
, "left SELECT"));
3428 pPrior
->iLimit
= regLimitA
;
3429 ExplainQueryPlan((pParse
, 1, "LEFT"));
3430 sqlite3Select(pParse
, pPrior
, &destA
);
3431 sqlite3VdbeEndCoroutine(v
, regAddrA
);
3432 sqlite3VdbeJumpHere(v
, addr1
);
3434 /* Generate a coroutine to evaluate the SELECT statement on
3435 ** the right - the "B" select
3437 addrSelectB
= sqlite3VdbeCurrentAddr(v
) + 1;
3438 addr1
= sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regAddrB
, 0, addrSelectB
);
3439 VdbeComment((v
, "right SELECT"));
3440 savedLimit
= p
->iLimit
;
3441 savedOffset
= p
->iOffset
;
3442 p
->iLimit
= regLimitB
;
3444 ExplainQueryPlan((pParse
, 1, "RIGHT"));
3445 sqlite3Select(pParse
, p
, &destB
);
3446 p
->iLimit
= savedLimit
;
3447 p
->iOffset
= savedOffset
;
3448 sqlite3VdbeEndCoroutine(v
, regAddrB
);
3450 /* Generate a subroutine that outputs the current row of the A
3451 ** select as the next output row of the compound select.
3453 VdbeNoopComment((v
, "Output routine for A"));
3454 addrOutA
= generateOutputSubroutine(pParse
,
3455 p
, &destA
, pDest
, regOutA
,
3456 regPrev
, pKeyDup
, labelEnd
);
3458 /* Generate a subroutine that outputs the current row of the B
3459 ** select as the next output row of the compound select.
3461 if( op
==TK_ALL
|| op
==TK_UNION
){
3462 VdbeNoopComment((v
, "Output routine for B"));
3463 addrOutB
= generateOutputSubroutine(pParse
,
3464 p
, &destB
, pDest
, regOutB
,
3465 regPrev
, pKeyDup
, labelEnd
);
3467 sqlite3KeyInfoUnref(pKeyDup
);
3469 /* Generate a subroutine to run when the results from select A
3470 ** are exhausted and only data in select B remains.
3472 if( op
==TK_EXCEPT
|| op
==TK_INTERSECT
){
3473 addrEofA_noB
= addrEofA
= labelEnd
;
3475 VdbeNoopComment((v
, "eof-A subroutine"));
3476 addrEofA
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutB
, addrOutB
);
3477 addrEofA_noB
= sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, labelEnd
);
3479 sqlite3VdbeGoto(v
, addrEofA
);
3480 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
3483 /* Generate a subroutine to run when the results from select B
3484 ** are exhausted and only data in select A remains.
3486 if( op
==TK_INTERSECT
){
3487 addrEofB
= addrEofA
;
3488 if( p
->nSelectRow
> pPrior
->nSelectRow
) p
->nSelectRow
= pPrior
->nSelectRow
;
3490 VdbeNoopComment((v
, "eof-B subroutine"));
3491 addrEofB
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutA
, addrOutA
);
3492 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, labelEnd
); VdbeCoverage(v
);
3493 sqlite3VdbeGoto(v
, addrEofB
);
3496 /* Generate code to handle the case of A<B
3498 VdbeNoopComment((v
, "A-lt-B subroutine"));
3499 addrAltB
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutA
, addrOutA
);
3500 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA
); VdbeCoverage(v
);
3501 sqlite3VdbeGoto(v
, labelCmpr
);
3503 /* Generate code to handle the case of A==B
3506 addrAeqB
= addrAltB
;
3507 }else if( op
==TK_INTERSECT
){
3508 addrAeqB
= addrAltB
;
3511 VdbeNoopComment((v
, "A-eq-B subroutine"));
3513 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA
); VdbeCoverage(v
);
3514 sqlite3VdbeGoto(v
, labelCmpr
);
3517 /* Generate code to handle the case of A>B
3519 VdbeNoopComment((v
, "A-gt-B subroutine"));
3520 addrAgtB
= sqlite3VdbeCurrentAddr(v
);
3521 if( op
==TK_ALL
|| op
==TK_UNION
){
3522 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutB
, addrOutB
);
3524 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, addrEofB
); VdbeCoverage(v
);
3525 sqlite3VdbeGoto(v
, labelCmpr
);
3527 /* This code runs once to initialize everything.
3529 sqlite3VdbeJumpHere(v
, addr1
);
3530 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA_noB
); VdbeCoverage(v
);
3531 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, addrEofB
); VdbeCoverage(v
);
3533 /* Implement the main merge loop
3535 sqlite3VdbeResolveLabel(v
, labelCmpr
);
3536 sqlite3VdbeAddOp4(v
, OP_Permutation
, 0, 0, 0, (char*)aPermute
, P4_INTARRAY
);
3537 sqlite3VdbeAddOp4(v
, OP_Compare
, destA
.iSdst
, destB
.iSdst
, nOrderBy
,
3538 (char*)pKeyMerge
, P4_KEYINFO
);
3539 sqlite3VdbeChangeP5(v
, OPFLAG_PERMUTE
);
3540 sqlite3VdbeAddOp3(v
, OP_Jump
, addrAltB
, addrAeqB
, addrAgtB
); VdbeCoverage(v
);
3542 /* Jump to the this point in order to terminate the query.
3544 sqlite3VdbeResolveLabel(v
, labelEnd
);
3546 /* Reassembly the compound query so that it will be freed correctly
3547 ** by the calling function */
3549 sqlite3SelectDelete(db
, p
->pPrior
);
3554 sqlite3ExprListDelete(db
, pPrior
->pOrderBy
);
3555 pPrior
->pOrderBy
= 0;
3557 /*** TBD: Insert subroutine calls to close cursors on incomplete
3558 **** subqueries ****/
3559 ExplainQueryPlanPop(pParse
);
3560 return pParse
->nErr
!=0;
3564 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3566 /* An instance of the SubstContext object describes an substitution edit
3567 ** to be performed on a parse tree.
3569 ** All references to columns in table iTable are to be replaced by corresponding
3570 ** expressions in pEList.
3572 typedef struct SubstContext
{
3573 Parse
*pParse
; /* The parsing context */
3574 int iTable
; /* Replace references to this table */
3575 int iNewTable
; /* New table number */
3576 int isLeftJoin
; /* Add TK_IF_NULL_ROW opcodes on each replacement */
3577 ExprList
*pEList
; /* Replacement expressions */
3580 /* Forward Declarations */
3581 static void substExprList(SubstContext
*, ExprList
*);
3582 static void substSelect(SubstContext
*, Select
*, int);
3585 ** Scan through the expression pExpr. Replace every reference to
3586 ** a column in table number iTable with a copy of the iColumn-th
3587 ** entry in pEList. (But leave references to the ROWID column
3590 ** This routine is part of the flattening procedure. A subquery
3591 ** whose result set is defined by pEList appears as entry in the
3592 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3593 ** FORM clause entry is iTable. This routine makes the necessary
3594 ** changes to pExpr so that it refers directly to the source table
3595 ** of the subquery rather the result set of the subquery.
3597 static Expr
*substExpr(
3598 SubstContext
*pSubst
, /* Description of the substitution */
3599 Expr
*pExpr
/* Expr in which substitution occurs */
3601 if( pExpr
==0 ) return 0;
3602 if( ExprHasProperty(pExpr
, EP_FromJoin
)
3603 && pExpr
->iRightJoinTable
==pSubst
->iTable
3605 pExpr
->iRightJoinTable
= pSubst
->iNewTable
;
3607 if( pExpr
->op
==TK_COLUMN
3608 && pExpr
->iTable
==pSubst
->iTable
3609 && !ExprHasProperty(pExpr
, EP_FixedCol
)
3611 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
3612 if( pExpr
->iColumn
<0 ){
3613 pExpr
->op
= TK_NULL
;
3618 Expr
*pCopy
= pSubst
->pEList
->a
[pExpr
->iColumn
].pExpr
;
3620 assert( pSubst
->pEList
!=0 && pExpr
->iColumn
<pSubst
->pEList
->nExpr
);
3621 assert( pExpr
->pRight
==0 );
3622 if( sqlite3ExprIsVector(pCopy
) ){
3623 sqlite3VectorErrorMsg(pSubst
->pParse
, pCopy
);
3625 sqlite3
*db
= pSubst
->pParse
->db
;
3626 if( pSubst
->isLeftJoin
&& pCopy
->op
!=TK_COLUMN
){
3627 memset(&ifNullRow
, 0, sizeof(ifNullRow
));
3628 ifNullRow
.op
= TK_IF_NULL_ROW
;
3629 ifNullRow
.pLeft
= pCopy
;
3630 ifNullRow
.iTable
= pSubst
->iNewTable
;
3631 ifNullRow
.flags
= EP_IfNullRow
;
3634 testcase( ExprHasProperty(pCopy
, EP_Subquery
) );
3635 pNew
= sqlite3ExprDup(db
, pCopy
, 0);
3636 if( db
->mallocFailed
){
3637 sqlite3ExprDelete(db
, pNew
);
3640 if( pSubst
->isLeftJoin
){
3641 ExprSetProperty(pNew
, EP_CanBeNull
);
3643 if( ExprHasProperty(pExpr
,EP_FromJoin
) ){
3644 sqlite3SetJoinExpr(pNew
, pExpr
->iRightJoinTable
);
3646 sqlite3ExprDelete(db
, pExpr
);
3649 /* Ensure that the expression now has an implicit collation sequence,
3650 ** just as it did when it was a column of a view or sub-query. */
3651 if( pExpr
->op
!=TK_COLUMN
&& pExpr
->op
!=TK_COLLATE
){
3652 CollSeq
*pColl
= sqlite3ExprCollSeq(pSubst
->pParse
, pExpr
);
3653 pExpr
= sqlite3ExprAddCollateString(pSubst
->pParse
, pExpr
,
3654 (pColl
? pColl
->zName
: "BINARY")
3657 ExprClearProperty(pExpr
, EP_Collate
);
3661 if( pExpr
->op
==TK_IF_NULL_ROW
&& pExpr
->iTable
==pSubst
->iTable
){
3662 pExpr
->iTable
= pSubst
->iNewTable
;
3664 pExpr
->pLeft
= substExpr(pSubst
, pExpr
->pLeft
);
3665 pExpr
->pRight
= substExpr(pSubst
, pExpr
->pRight
);
3666 if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
3667 substSelect(pSubst
, pExpr
->x
.pSelect
, 1);
3669 substExprList(pSubst
, pExpr
->x
.pList
);
3671 #ifndef SQLITE_OMIT_WINDOWFUNC
3672 if( ExprHasProperty(pExpr
, EP_WinFunc
) ){
3673 Window
*pWin
= pExpr
->y
.pWin
;
3674 pWin
->pFilter
= substExpr(pSubst
, pWin
->pFilter
);
3675 substExprList(pSubst
, pWin
->pPartition
);
3676 substExprList(pSubst
, pWin
->pOrderBy
);
3682 static void substExprList(
3683 SubstContext
*pSubst
, /* Description of the substitution */
3684 ExprList
*pList
/* List to scan and in which to make substitutes */
3687 if( pList
==0 ) return;
3688 for(i
=0; i
<pList
->nExpr
; i
++){
3689 pList
->a
[i
].pExpr
= substExpr(pSubst
, pList
->a
[i
].pExpr
);
3692 static void substSelect(
3693 SubstContext
*pSubst
, /* Description of the substitution */
3694 Select
*p
, /* SELECT statement in which to make substitutions */
3695 int doPrior
/* Do substitutes on p->pPrior too */
3702 substExprList(pSubst
, p
->pEList
);
3703 substExprList(pSubst
, p
->pGroupBy
);
3704 substExprList(pSubst
, p
->pOrderBy
);
3705 p
->pHaving
= substExpr(pSubst
, p
->pHaving
);
3706 p
->pWhere
= substExpr(pSubst
, p
->pWhere
);
3709 for(i
=pSrc
->nSrc
, pItem
=pSrc
->a
; i
>0; i
--, pItem
++){
3710 substSelect(pSubst
, pItem
->pSelect
, 1);
3711 if( pItem
->fg
.isTabFunc
){
3712 substExprList(pSubst
, pItem
->u1
.pFuncArg
);
3715 }while( doPrior
&& (p
= p
->pPrior
)!=0 );
3717 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3719 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3721 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3722 ** clause of that SELECT.
3724 ** This routine scans the entire SELECT statement and recomputes the
3725 ** pSrcItem->colUsed mask.
3727 static int recomputeColumnsUsedExpr(Walker
*pWalker
, Expr
*pExpr
){
3729 if( pExpr
->op
!=TK_COLUMN
) return WRC_Continue
;
3730 pItem
= pWalker
->u
.pSrcItem
;
3731 if( pItem
->iCursor
!=pExpr
->iTable
) return WRC_Continue
;
3732 if( pExpr
->iColumn
<0 ) return WRC_Continue
;
3733 pItem
->colUsed
|= sqlite3ExprColUsed(pExpr
);
3734 return WRC_Continue
;
3736 static void recomputeColumnsUsed(
3737 Select
*pSelect
, /* The complete SELECT statement */
3738 SrcItem
*pSrcItem
/* Which FROM clause item to recompute */
3741 if( NEVER(pSrcItem
->pTab
==0) ) return;
3742 memset(&w
, 0, sizeof(w
));
3743 w
.xExprCallback
= recomputeColumnsUsedExpr
;
3744 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
3745 w
.u
.pSrcItem
= pSrcItem
;
3746 pSrcItem
->colUsed
= 0;
3747 sqlite3WalkSelect(&w
, pSelect
);
3749 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3751 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3753 ** Assign new cursor numbers to each of the items in pSrc. For each
3754 ** new cursor number assigned, set an entry in the aCsrMap[] array
3755 ** to map the old cursor number to the new:
3757 ** aCsrMap[iOld] = iNew;
3759 ** The array is guaranteed by the caller to be large enough for all
3760 ** existing cursor numbers in pSrc.
3762 ** If pSrc contains any sub-selects, call this routine recursively
3763 ** on the FROM clause of each such sub-select, with iExcept set to -1.
3765 static void srclistRenumberCursors(
3766 Parse
*pParse
, /* Parse context */
3767 int *aCsrMap
, /* Array to store cursor mappings in */
3768 SrcList
*pSrc
, /* FROM clause to renumber */
3769 int iExcept
/* FROM clause item to skip */
3773 for(i
=0, pItem
=pSrc
->a
; i
<pSrc
->nSrc
; i
++, pItem
++){
3776 if( !pItem
->fg
.isRecursive
|| aCsrMap
[pItem
->iCursor
]==0 ){
3777 aCsrMap
[pItem
->iCursor
] = pParse
->nTab
++;
3779 pItem
->iCursor
= aCsrMap
[pItem
->iCursor
];
3780 for(p
=pItem
->pSelect
; p
; p
=p
->pPrior
){
3781 srclistRenumberCursors(pParse
, aCsrMap
, p
->pSrc
, -1);
3788 ** Expression walker callback used by renumberCursors() to update
3789 ** Expr objects to match newly assigned cursor numbers.
3791 static int renumberCursorsCb(Walker
*pWalker
, Expr
*pExpr
){
3792 int *aCsrMap
= pWalker
->u
.aiCol
;
3794 if( (op
==TK_COLUMN
|| op
==TK_IF_NULL_ROW
) && aCsrMap
[pExpr
->iTable
] ){
3795 pExpr
->iTable
= aCsrMap
[pExpr
->iTable
];
3797 if( ExprHasProperty(pExpr
, EP_FromJoin
) && aCsrMap
[pExpr
->iRightJoinTable
] ){
3798 pExpr
->iRightJoinTable
= aCsrMap
[pExpr
->iRightJoinTable
];
3800 return WRC_Continue
;
3804 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
3805 ** of the SELECT statement passed as the second argument, and to each
3806 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
3807 ** Except, do not assign a new cursor number to the iExcept'th element in
3808 ** the FROM clause of (*p). Update all expressions and other references
3809 ** to refer to the new cursor numbers.
3811 ** Argument aCsrMap is an array that may be used for temporary working
3812 ** space. Two guarantees are made by the caller:
3814 ** * the array is larger than the largest cursor number used within the
3815 ** select statement passed as an argument, and
3817 ** * the array entries for all cursor numbers that do *not* appear in
3818 ** FROM clauses of the select statement as described above are
3819 ** initialized to zero.
3821 static void renumberCursors(
3822 Parse
*pParse
, /* Parse context */
3823 Select
*p
, /* Select to renumber cursors within */
3824 int iExcept
, /* FROM clause item to skip */
3825 int *aCsrMap
/* Working space */
3828 srclistRenumberCursors(pParse
, aCsrMap
, p
->pSrc
, iExcept
);
3829 memset(&w
, 0, sizeof(w
));
3830 w
.u
.aiCol
= aCsrMap
;
3831 w
.xExprCallback
= renumberCursorsCb
;
3832 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
3833 sqlite3WalkSelect(&w
, p
);
3835 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3837 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3839 ** This routine attempts to flatten subqueries as a performance optimization.
3840 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3842 ** To understand the concept of flattening, consider the following
3845 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3847 ** The default way of implementing this query is to execute the
3848 ** subquery first and store the results in a temporary table, then
3849 ** run the outer query on that temporary table. This requires two
3850 ** passes over the data. Furthermore, because the temporary table
3851 ** has no indices, the WHERE clause on the outer query cannot be
3854 ** This routine attempts to rewrite queries such as the above into
3855 ** a single flat select, like this:
3857 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3859 ** The code generated for this simplification gives the same result
3860 ** but only has to scan the data once. And because indices might
3861 ** exist on the table t1, a complete scan of the data might be
3864 ** Flattening is subject to the following constraints:
3866 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3867 ** The subquery and the outer query cannot both be aggregates.
3869 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3870 ** (2) If the subquery is an aggregate then
3871 ** (2a) the outer query must not be a join and
3872 ** (2b) the outer query must not use subqueries
3873 ** other than the one FROM-clause subquery that is a candidate
3874 ** for flattening. (This is due to ticket [2f7170d73bf9abf80]
3875 ** from 2015-02-09.)
3877 ** (3) If the subquery is the right operand of a LEFT JOIN then
3878 ** (3a) the subquery may not be a join and
3879 ** (3b) the FROM clause of the subquery may not contain a virtual
3881 ** (3c) the outer query may not be an aggregate.
3882 ** (3d) the outer query may not be DISTINCT.
3884 ** (4) The subquery can not be DISTINCT.
3886 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
3887 ** sub-queries that were excluded from this optimization. Restriction
3888 ** (4) has since been expanded to exclude all DISTINCT subqueries.
3890 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3891 ** If the subquery is aggregate, the outer query may not be DISTINCT.
3893 ** (7) The subquery must have a FROM clause. TODO: For subqueries without
3894 ** A FROM clause, consider adding a FROM clause with the special
3895 ** table sqlite_once that consists of a single row containing a
3898 ** (8) If the subquery uses LIMIT then the outer query may not be a join.
3900 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
3902 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
3903 ** accidently carried the comment forward until 2014-09-15. Original
3904 ** constraint: "If the subquery is aggregate then the outer query
3905 ** may not use LIMIT."
3907 ** (11) The subquery and the outer query may not both have ORDER BY clauses.
3909 ** (**) Not implemented. Subsumed into restriction (3). Was previously
3910 ** a separate restriction deriving from ticket #350.
3912 ** (13) The subquery and outer query may not both use LIMIT.
3914 ** (14) The subquery may not use OFFSET.
3916 ** (15) If the outer query is part of a compound select, then the
3917 ** subquery may not use LIMIT.
3918 ** (See ticket #2339 and ticket [02a8e81d44]).
3920 ** (16) If the outer query is aggregate, then the subquery may not
3921 ** use ORDER BY. (Ticket #2942) This used to not matter
3922 ** until we introduced the group_concat() function.
3924 ** (17) If the subquery is a compound select, then
3925 ** (17a) all compound operators must be a UNION ALL, and
3926 ** (17b) no terms within the subquery compound may be aggregate
3928 ** (17c) every term within the subquery compound must have a FROM clause
3929 ** (17d) the outer query may not be
3930 ** (17d1) aggregate, or
3932 ** (17e) the subquery may not contain window functions, and
3933 ** (17f) the subquery must not be the RHS of a LEFT JOIN.
3935 ** The parent and sub-query may contain WHERE clauses. Subject to
3936 ** rules (11), (13) and (14), they may also contain ORDER BY,
3937 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
3938 ** operator other than UNION ALL because all the other compound
3939 ** operators have an implied DISTINCT which is disallowed by
3942 ** Also, each component of the sub-query must return the same number
3943 ** of result columns. This is actually a requirement for any compound
3944 ** SELECT statement, but all the code here does is make sure that no
3945 ** such (illegal) sub-query is flattened. The caller will detect the
3946 ** syntax error and return a detailed message.
3948 ** (18) If the sub-query is a compound select, then all terms of the
3949 ** ORDER BY clause of the parent must be copies of a term returned
3950 ** by the parent query.
3952 ** (19) If the subquery uses LIMIT then the outer query may not
3953 ** have a WHERE clause.
3955 ** (20) If the sub-query is a compound select, then it must not use
3956 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
3957 ** somewhat by saying that the terms of the ORDER BY clause must
3958 ** appear as unmodified result columns in the outer query. But we
3959 ** have other optimizations in mind to deal with that case.
3961 ** (21) If the subquery uses LIMIT then the outer query may not be
3962 ** DISTINCT. (See ticket [752e1646fc]).
3964 ** (22) The subquery may not be a recursive CTE.
3966 ** (23) If the outer query is a recursive CTE, then the sub-query may not be
3967 ** a compound query. This restriction is because transforming the
3968 ** parent to a compound query confuses the code that handles
3969 ** recursive queries in multiSelect().
3971 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3972 ** The subquery may not be an aggregate that uses the built-in min() or
3973 ** or max() functions. (Without this restriction, a query like:
3974 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3975 ** return the value X for which Y was maximal.)
3977 ** (25) If either the subquery or the parent query contains a window
3978 ** function in the select list or ORDER BY clause, flattening
3979 ** is not attempted.
3982 ** In this routine, the "p" parameter is a pointer to the outer query.
3983 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
3986 ** If flattening is not attempted, this routine is a no-op and returns 0.
3987 ** If flattening is attempted this routine returns 1.
3989 ** All of the expression analysis must occur on both the outer query and
3990 ** the subquery before this routine runs.
3992 static int flattenSubquery(
3993 Parse
*pParse
, /* Parsing context */
3994 Select
*p
, /* The parent or outer SELECT statement */
3995 int iFrom
, /* Index in p->pSrc->a[] of the inner subquery */
3996 int isAgg
/* True if outer SELECT uses aggregate functions */
3998 const char *zSavedAuthContext
= pParse
->zAuthContext
;
3999 Select
*pParent
; /* Current UNION ALL term of the other query */
4000 Select
*pSub
; /* The inner query or "subquery" */
4001 Select
*pSub1
; /* Pointer to the rightmost select in sub-query */
4002 SrcList
*pSrc
; /* The FROM clause of the outer query */
4003 SrcList
*pSubSrc
; /* The FROM clause of the subquery */
4004 int iParent
; /* VDBE cursor number of the pSub result set temp table */
4005 int iNewParent
= -1;/* Replacement table for iParent */
4006 int isLeftJoin
= 0; /* True if pSub is the right side of a LEFT JOIN */
4007 int i
; /* Loop counter */
4008 Expr
*pWhere
; /* The WHERE clause */
4009 SrcItem
*pSubitem
; /* The subquery */
4010 sqlite3
*db
= pParse
->db
;
4011 Walker w
; /* Walker to persist agginfo data */
4014 /* Check to see if flattening is permitted. Return 0 if not.
4017 assert( p
->pPrior
==0 );
4018 if( OptimizationDisabled(db
, SQLITE_QueryFlattener
) ) return 0;
4020 assert( pSrc
&& iFrom
>=0 && iFrom
<pSrc
->nSrc
);
4021 pSubitem
= &pSrc
->a
[iFrom
];
4022 iParent
= pSubitem
->iCursor
;
4023 pSub
= pSubitem
->pSelect
;
4026 #ifndef SQLITE_OMIT_WINDOWFUNC
4027 if( p
->pWin
|| pSub
->pWin
) return 0; /* Restriction (25) */
4030 pSubSrc
= pSub
->pSrc
;
4032 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
4033 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
4034 ** because they could be computed at compile-time. But when LIMIT and OFFSET
4035 ** became arbitrary expressions, we were forced to add restrictions (13)
4037 if( pSub
->pLimit
&& p
->pLimit
) return 0; /* Restriction (13) */
4038 if( pSub
->pLimit
&& pSub
->pLimit
->pRight
) return 0; /* Restriction (14) */
4039 if( (p
->selFlags
& SF_Compound
)!=0 && pSub
->pLimit
){
4040 return 0; /* Restriction (15) */
4042 if( pSubSrc
->nSrc
==0 ) return 0; /* Restriction (7) */
4043 if( pSub
->selFlags
& SF_Distinct
) return 0; /* Restriction (4) */
4044 if( pSub
->pLimit
&& (pSrc
->nSrc
>1 || isAgg
) ){
4045 return 0; /* Restrictions (8)(9) */
4047 if( p
->pOrderBy
&& pSub
->pOrderBy
){
4048 return 0; /* Restriction (11) */
4050 if( isAgg
&& pSub
->pOrderBy
) return 0; /* Restriction (16) */
4051 if( pSub
->pLimit
&& p
->pWhere
) return 0; /* Restriction (19) */
4052 if( pSub
->pLimit
&& (p
->selFlags
& SF_Distinct
)!=0 ){
4053 return 0; /* Restriction (21) */
4055 if( pSub
->selFlags
& (SF_Recursive
) ){
4056 return 0; /* Restrictions (22) */
4060 ** If the subquery is the right operand of a LEFT JOIN, then the
4061 ** subquery may not be a join itself (3a). Example of why this is not
4064 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
4066 ** If we flatten the above, we would get
4068 ** (t1 LEFT OUTER JOIN t2) JOIN t3
4070 ** which is not at all the same thing.
4072 ** If the subquery is the right operand of a LEFT JOIN, then the outer
4073 ** query cannot be an aggregate. (3c) This is an artifact of the way
4074 ** aggregates are processed - there is no mechanism to determine if
4075 ** the LEFT JOIN table should be all-NULL.
4077 ** See also tickets #306, #350, and #3300.
4079 if( (pSubitem
->fg
.jointype
& JT_OUTER
)!=0 ){
4081 if( pSubSrc
->nSrc
>1 /* (3a) */
4083 || IsVirtual(pSubSrc
->a
[0].pTab
) /* (3c) */
4084 || (p
->selFlags
& SF_Distinct
)!=0 /* (3d) */
4089 #ifdef SQLITE_EXTRA_IFNULLROW
4090 else if( iFrom
>0 && !isAgg
){
4091 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
4092 ** every reference to any result column from subquery in a join, even
4093 ** though they are not necessary. This will stress-test the OP_IfNullRow
4099 /* Restriction (17): If the sub-query is a compound SELECT, then it must
4100 ** use only the UNION ALL operator. And none of the simple select queries
4101 ** that make up the compound SELECT are allowed to be aggregate or distinct
4105 if( pSub
->pOrderBy
){
4106 return 0; /* Restriction (20) */
4108 if( isAgg
|| (p
->selFlags
& SF_Distinct
)!=0 || isLeftJoin
>0 ){
4109 return 0; /* (17d1), (17d2), or (17f) */
4111 for(pSub1
=pSub
; pSub1
; pSub1
=pSub1
->pPrior
){
4112 testcase( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
);
4113 testcase( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Aggregate
);
4114 assert( pSub
->pSrc
!=0 );
4115 assert( (pSub
->selFlags
& SF_Recursive
)==0 );
4116 assert( pSub
->pEList
->nExpr
==pSub1
->pEList
->nExpr
);
4117 if( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))!=0 /* (17b) */
4118 || (pSub1
->pPrior
&& pSub1
->op
!=TK_ALL
) /* (17a) */
4119 || pSub1
->pSrc
->nSrc
<1 /* (17c) */
4120 #ifndef SQLITE_OMIT_WINDOWFUNC
4121 || pSub1
->pWin
/* (17e) */
4126 testcase( pSub1
->pSrc
->nSrc
>1 );
4129 /* Restriction (18). */
4132 for(ii
=0; ii
<p
->pOrderBy
->nExpr
; ii
++){
4133 if( p
->pOrderBy
->a
[ii
].u
.x
.iOrderByCol
==0 ) return 0;
4137 /* Restriction (23) */
4138 if( (p
->selFlags
& SF_Recursive
) ) return 0;
4141 if( pParse
->nSelect
>500 ) return 0;
4142 aCsrMap
= sqlite3DbMallocZero(db
, pParse
->nTab
*sizeof(int));
4146 /***** If we reach this point, flattening is permitted. *****/
4147 SELECTTRACE(1,pParse
,p
,("flatten %u.%p from term %d\n",
4148 pSub
->selId
, pSub
, iFrom
));
4150 /* Authorize the subquery */
4151 pParse
->zAuthContext
= pSubitem
->zName
;
4152 TESTONLY(i
=) sqlite3AuthCheck(pParse
, SQLITE_SELECT
, 0, 0, 0);
4153 testcase( i
==SQLITE_DENY
);
4154 pParse
->zAuthContext
= zSavedAuthContext
;
4156 /* Delete the transient structures associated with thesubquery */
4157 pSub1
= pSubitem
->pSelect
;
4158 sqlite3DbFree(db
, pSubitem
->zDatabase
);
4159 sqlite3DbFree(db
, pSubitem
->zName
);
4160 sqlite3DbFree(db
, pSubitem
->zAlias
);
4161 pSubitem
->zDatabase
= 0;
4162 pSubitem
->zName
= 0;
4163 pSubitem
->zAlias
= 0;
4164 pSubitem
->pSelect
= 0;
4165 assert( pSubitem
->pOn
==0 );
4167 /* If the sub-query is a compound SELECT statement, then (by restrictions
4168 ** 17 and 18 above) it must be a UNION ALL and the parent query must
4171 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
4173 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4174 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4175 ** OFFSET clauses and joins them to the left-hand-side of the original
4176 ** using UNION ALL operators. In this case N is the number of simple
4177 ** select statements in the compound sub-query.
4181 ** SELECT a+1 FROM (
4182 ** SELECT x FROM tab
4184 ** SELECT y FROM tab
4186 ** SELECT abs(z*2) FROM tab2
4187 ** ) WHERE a!=5 ORDER BY 1
4189 ** Transformed into:
4191 ** SELECT x+1 FROM tab WHERE x+1!=5
4193 ** SELECT y+1 FROM tab WHERE y+1!=5
4195 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4198 ** We call this the "compound-subquery flattening".
4200 for(pSub
=pSub
->pPrior
; pSub
; pSub
=pSub
->pPrior
){
4202 ExprList
*pOrderBy
= p
->pOrderBy
;
4203 Expr
*pLimit
= p
->pLimit
;
4204 Select
*pPrior
= p
->pPrior
;
4205 Table
*pItemTab
= pSubitem
->pTab
;
4210 pNew
= sqlite3SelectDup(db
, p
, 0);
4212 p
->pOrderBy
= pOrderBy
;
4214 pSubitem
->pTab
= pItemTab
;
4218 pNew
->selId
= ++pParse
->nSelect
;
4219 if( aCsrMap
&& ALWAYS(db
->mallocFailed
==0) ){
4220 renumberCursors(pParse
, pNew
, iFrom
, aCsrMap
);
4222 pNew
->pPrior
= pPrior
;
4223 if( pPrior
) pPrior
->pNext
= pNew
;
4226 SELECTTRACE(2,pParse
,p
,("compound-subquery flattener"
4227 " creates %u as peer\n",pNew
->selId
));
4229 assert( pSubitem
->pSelect
==0 );
4231 sqlite3DbFree(db
, aCsrMap
);
4232 if( db
->mallocFailed
){
4233 pSubitem
->pSelect
= pSub1
;
4237 /* Defer deleting the Table object associated with the
4238 ** subquery until code generation is
4239 ** complete, since there may still exist Expr.pTab entries that
4240 ** refer to the subquery even after flattening. Ticket #3346.
4242 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4244 if( ALWAYS(pSubitem
->pTab
!=0) ){
4245 Table
*pTabToDel
= pSubitem
->pTab
;
4246 if( pTabToDel
->nTabRef
==1 ){
4247 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
4248 sqlite3ParserAddCleanup(pToplevel
,
4249 (void(*)(sqlite3
*,void*))sqlite3DeleteTable
,
4251 testcase( pToplevel
->earlyCleanup
);
4253 pTabToDel
->nTabRef
--;
4258 /* The following loop runs once for each term in a compound-subquery
4259 ** flattening (as described above). If we are doing a different kind
4260 ** of flattening - a flattening other than a compound-subquery flattening -
4261 ** then this loop only runs once.
4263 ** This loop moves all of the FROM elements of the subquery into the
4264 ** the FROM clause of the outer query. Before doing this, remember
4265 ** the cursor number for the original outer query FROM element in
4266 ** iParent. The iParent cursor will never be used. Subsequent code
4267 ** will scan expressions looking for iParent references and replace
4268 ** those references with expressions that resolve to the subquery FROM
4269 ** elements we are now copying in.
4272 for(pParent
=p
; pParent
; pParent
=pParent
->pPrior
, pSub
=pSub
->pPrior
){
4276 pSubSrc
= pSub
->pSrc
; /* FROM clause of subquery */
4277 nSubSrc
= pSubSrc
->nSrc
; /* Number of terms in subquery FROM clause */
4278 pSrc
= pParent
->pSrc
; /* FROM clause of the outer query */
4281 jointype
= pSubitem
->fg
.jointype
; /* First time through the loop */
4284 /* The subquery uses a single slot of the FROM clause of the outer
4285 ** query. If the subquery has more than one element in its FROM clause,
4286 ** then expand the outer query to make space for it to hold all elements
4291 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4293 ** The outer query has 3 slots in its FROM clause. One slot of the
4294 ** outer query (the middle slot) is used by the subquery. The next
4295 ** block of code will expand the outer query FROM clause to 4 slots.
4296 ** The middle slot is expanded to two slots in order to make space
4297 ** for the two elements in the FROM clause of the subquery.
4300 pSrc
= sqlite3SrcListEnlarge(pParse
, pSrc
, nSubSrc
-1,iFrom
+1);
4301 if( pSrc
==0 ) break;
4302 pParent
->pSrc
= pSrc
;
4305 /* Transfer the FROM clause terms from the subquery into the
4308 for(i
=0; i
<nSubSrc
; i
++){
4309 sqlite3IdListDelete(db
, pSrc
->a
[i
+iFrom
].pUsing
);
4310 assert( pSrc
->a
[i
+iFrom
].fg
.isTabFunc
==0 );
4311 pSrc
->a
[i
+iFrom
] = pSubSrc
->a
[i
];
4312 iNewParent
= pSubSrc
->a
[i
].iCursor
;
4313 memset(&pSubSrc
->a
[i
], 0, sizeof(pSubSrc
->a
[i
]));
4315 pSrc
->a
[iFrom
].fg
.jointype
= jointype
;
4317 /* Now begin substituting subquery result set expressions for
4318 ** references to the iParent in the outer query.
4322 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4323 ** \ \_____________ subquery __________/ /
4324 ** \_____________________ outer query ______________________________/
4326 ** We look at every expression in the outer query and every place we see
4327 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4329 if( pSub
->pOrderBy
&& (pParent
->selFlags
& SF_NoopOrderBy
)==0 ){
4330 /* At this point, any non-zero iOrderByCol values indicate that the
4331 ** ORDER BY column expression is identical to the iOrderByCol'th
4332 ** expression returned by SELECT statement pSub. Since these values
4333 ** do not necessarily correspond to columns in SELECT statement pParent,
4334 ** zero them before transfering the ORDER BY clause.
4336 ** Not doing this may cause an error if a subsequent call to this
4337 ** function attempts to flatten a compound sub-query into pParent
4338 ** (the only way this can happen is if the compound sub-query is
4339 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
4340 ExprList
*pOrderBy
= pSub
->pOrderBy
;
4341 for(i
=0; i
<pOrderBy
->nExpr
; i
++){
4342 pOrderBy
->a
[i
].u
.x
.iOrderByCol
= 0;
4344 assert( pParent
->pOrderBy
==0 );
4345 pParent
->pOrderBy
= pOrderBy
;
4348 pWhere
= pSub
->pWhere
;
4351 sqlite3SetJoinExpr(pWhere
, iNewParent
);
4354 if( pParent
->pWhere
){
4355 pParent
->pWhere
= sqlite3PExpr(pParse
, TK_AND
, pWhere
, pParent
->pWhere
);
4357 pParent
->pWhere
= pWhere
;
4360 if( db
->mallocFailed
==0 ){
4364 x
.iNewTable
= iNewParent
;
4365 x
.isLeftJoin
= isLeftJoin
;
4366 x
.pEList
= pSub
->pEList
;
4367 substSelect(&x
, pParent
, 0);
4370 /* The flattened query is a compound if either the inner or the
4371 ** outer query is a compound. */
4372 pParent
->selFlags
|= pSub
->selFlags
& SF_Compound
;
4373 assert( (pSub
->selFlags
& SF_Distinct
)==0 ); /* restriction (17b) */
4376 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4378 ** One is tempted to try to add a and b to combine the limits. But this
4379 ** does not work if either limit is negative.
4382 pParent
->pLimit
= pSub
->pLimit
;
4386 /* Recompute the SrcList_item.colUsed masks for the flattened
4388 for(i
=0; i
<nSubSrc
; i
++){
4389 recomputeColumnsUsed(pParent
, &pSrc
->a
[i
+iFrom
]);
4393 /* Finially, delete what is left of the subquery and return
4396 sqlite3AggInfoPersistWalkerInit(&w
, pParse
);
4397 sqlite3WalkSelect(&w
,pSub1
);
4398 sqlite3SelectDelete(db
, pSub1
);
4400 #if SELECTTRACE_ENABLED
4401 if( sqlite3SelectTrace
& 0x100 ){
4402 SELECTTRACE(0x100,pParse
,p
,("After flattening:\n"));
4403 sqlite3TreeViewSelect(0, p
, 0);
4409 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4412 ** A structure to keep track of all of the column values that are fixed to
4413 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4415 typedef struct WhereConst WhereConst
;
4417 Parse
*pParse
; /* Parsing context */
4418 u8
*pOomFault
; /* Pointer to pParse->db->mallocFailed */
4419 int nConst
; /* Number for COLUMN=CONSTANT terms */
4420 int nChng
; /* Number of times a constant is propagated */
4421 int bHasAffBlob
; /* At least one column in apExpr[] as affinity BLOB */
4422 Expr
**apExpr
; /* [i*2] is COLUMN and [i*2+1] is VALUE */
4426 ** Add a new entry to the pConst object. Except, do not add duplicate
4427 ** pColumn entires. Also, do not add if doing so would not be appropriate.
4429 ** The caller guarantees the pColumn is a column and pValue is a constant.
4430 ** This routine has to do some additional checks before completing the
4433 static void constInsert(
4434 WhereConst
*pConst
, /* The WhereConst into which we are inserting */
4435 Expr
*pColumn
, /* The COLUMN part of the constraint */
4436 Expr
*pValue
, /* The VALUE part of the constraint */
4437 Expr
*pExpr
/* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4440 assert( pColumn
->op
==TK_COLUMN
);
4441 assert( sqlite3ExprIsConstant(pValue
) );
4443 if( ExprHasProperty(pColumn
, EP_FixedCol
) ) return;
4444 if( sqlite3ExprAffinity(pValue
)!=0 ) return;
4445 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst
->pParse
,pExpr
)) ){
4449 /* 2018-10-25 ticket [cf5ed20f]
4450 ** Make sure the same pColumn is not inserted more than once */
4451 for(i
=0; i
<pConst
->nConst
; i
++){
4452 const Expr
*pE2
= pConst
->apExpr
[i
*2];
4453 assert( pE2
->op
==TK_COLUMN
);
4454 if( pE2
->iTable
==pColumn
->iTable
4455 && pE2
->iColumn
==pColumn
->iColumn
4457 return; /* Already present. Return without doing anything. */
4460 if( sqlite3ExprAffinity(pColumn
)==SQLITE_AFF_BLOB
){
4461 pConst
->bHasAffBlob
= 1;
4465 pConst
->apExpr
= sqlite3DbReallocOrFree(pConst
->pParse
->db
, pConst
->apExpr
,
4466 pConst
->nConst
*2*sizeof(Expr
*));
4467 if( pConst
->apExpr
==0 ){
4470 pConst
->apExpr
[pConst
->nConst
*2-2] = pColumn
;
4471 pConst
->apExpr
[pConst
->nConst
*2-1] = pValue
;
4476 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4477 ** is a constant expression and where the term must be true because it
4478 ** is part of the AND-connected terms of the expression. For each term
4479 ** found, add it to the pConst structure.
4481 static void findConstInWhere(WhereConst
*pConst
, Expr
*pExpr
){
4482 Expr
*pRight
, *pLeft
;
4483 if( NEVER(pExpr
==0) ) return;
4484 if( ExprHasProperty(pExpr
, EP_FromJoin
) ) return;
4485 if( pExpr
->op
==TK_AND
){
4486 findConstInWhere(pConst
, pExpr
->pRight
);
4487 findConstInWhere(pConst
, pExpr
->pLeft
);
4490 if( pExpr
->op
!=TK_EQ
) return;
4491 pRight
= pExpr
->pRight
;
4492 pLeft
= pExpr
->pLeft
;
4493 assert( pRight
!=0 );
4495 if( pRight
->op
==TK_COLUMN
&& sqlite3ExprIsConstant(pLeft
) ){
4496 constInsert(pConst
,pRight
,pLeft
,pExpr
);
4498 if( pLeft
->op
==TK_COLUMN
&& sqlite3ExprIsConstant(pRight
) ){
4499 constInsert(pConst
,pLeft
,pRight
,pExpr
);
4504 ** This is a helper function for Walker callback propagateConstantExprRewrite().
4506 ** Argument pExpr is a candidate expression to be replaced by a value. If
4507 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst,
4508 ** then overwrite it with the corresponding value. Except, do not do so
4509 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
4510 ** is SQLITE_AFF_BLOB.
4512 static int propagateConstantExprRewriteOne(
4518 if( pConst
->pOomFault
[0] ) return WRC_Prune
;
4519 if( pExpr
->op
!=TK_COLUMN
) return WRC_Continue
;
4520 if( ExprHasProperty(pExpr
, EP_FixedCol
|EP_FromJoin
) ){
4521 testcase( ExprHasProperty(pExpr
, EP_FixedCol
) );
4522 testcase( ExprHasProperty(pExpr
, EP_FromJoin
) );
4523 return WRC_Continue
;
4525 for(i
=0; i
<pConst
->nConst
; i
++){
4526 Expr
*pColumn
= pConst
->apExpr
[i
*2];
4527 if( pColumn
==pExpr
) continue;
4528 if( pColumn
->iTable
!=pExpr
->iTable
) continue;
4529 if( pColumn
->iColumn
!=pExpr
->iColumn
) continue;
4530 if( bIgnoreAffBlob
&& sqlite3ExprAffinity(pColumn
)==SQLITE_AFF_BLOB
){
4533 /* A match is found. Add the EP_FixedCol property */
4535 ExprClearProperty(pExpr
, EP_Leaf
);
4536 ExprSetProperty(pExpr
, EP_FixedCol
);
4537 assert( pExpr
->pLeft
==0 );
4538 pExpr
->pLeft
= sqlite3ExprDup(pConst
->pParse
->db
, pConst
->apExpr
[i
*2+1], 0);
4539 if( pConst
->pParse
->db
->mallocFailed
) return WRC_Prune
;
4546 ** This is a Walker expression callback. pExpr is a node from the WHERE
4547 ** clause of a SELECT statement. This function examines pExpr to see if
4548 ** any substitutions based on the contents of pWalker->u.pConst should
4549 ** be made to pExpr or its immediate children.
4551 ** A substitution is made if:
4553 ** + pExpr is a column with an affinity other than BLOB that matches
4554 ** one of the columns in pWalker->u.pConst, or
4556 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that
4557 ** uses an affinity other than TEXT and one of its immediate
4558 ** children is a column that matches one of the columns in
4559 ** pWalker->u.pConst.
4561 static int propagateConstantExprRewrite(Walker
*pWalker
, Expr
*pExpr
){
4562 WhereConst
*pConst
= pWalker
->u
.pConst
;
4563 assert( TK_GT
==TK_EQ
+1 );
4564 assert( TK_LE
==TK_EQ
+2 );
4565 assert( TK_LT
==TK_EQ
+3 );
4566 assert( TK_GE
==TK_EQ
+4 );
4567 if( pConst
->bHasAffBlob
){
4568 if( (pExpr
->op
>=TK_EQ
&& pExpr
->op
<=TK_GE
)
4571 propagateConstantExprRewriteOne(pConst
, pExpr
->pLeft
, 0);
4572 if( pConst
->pOomFault
[0] ) return WRC_Prune
;
4573 if( sqlite3ExprAffinity(pExpr
->pLeft
)!=SQLITE_AFF_TEXT
){
4574 propagateConstantExprRewriteOne(pConst
, pExpr
->pRight
, 0);
4578 return propagateConstantExprRewriteOne(pConst
, pExpr
, pConst
->bHasAffBlob
);
4582 ** The WHERE-clause constant propagation optimization.
4584 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4585 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4586 ** part of a ON clause from a LEFT JOIN, then throughout the query
4587 ** replace all other occurrences of COLUMN with CONSTANT.
4589 ** For example, the query:
4591 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4593 ** Is transformed into
4595 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4597 ** Return true if any transformations where made and false if not.
4599 ** Implementation note: Constant propagation is tricky due to affinity
4600 ** and collating sequence interactions. Consider this example:
4602 ** CREATE TABLE t1(a INT,b TEXT);
4603 ** INSERT INTO t1 VALUES(123,'0123');
4604 ** SELECT * FROM t1 WHERE a=123 AND b=a;
4605 ** SELECT * FROM t1 WHERE a=123 AND b=123;
4607 ** The two SELECT statements above should return different answers. b=a
4608 ** is alway true because the comparison uses numeric affinity, but b=123
4609 ** is false because it uses text affinity and '0123' is not the same as '123'.
4610 ** To work around this, the expression tree is not actually changed from
4611 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4612 ** and the "123" value is hung off of the pLeft pointer. Code generator
4613 ** routines know to generate the constant "123" instead of looking up the
4614 ** column value. Also, to avoid collation problems, this optimization is
4615 ** only attempted if the "a=123" term uses the default BINARY collation.
4617 ** 2021-05-25 forum post 6a06202608: Another troublesome case is...
4619 ** CREATE TABLE t1(x);
4620 ** INSERT INTO t1 VALUES(10.0);
4621 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
4623 ** The query should return no rows, because the t1.x value is '10.0' not '10'
4624 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE
4625 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
4626 ** resulting in a false positive. To avoid this, constant propagation for
4627 ** columns with BLOB affinity is only allowed if the constant is used with
4628 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
4629 ** type conversions to occur. See logic associated with the bHasAffBlob flag
4632 static int propagateConstants(
4633 Parse
*pParse
, /* The parsing context */
4634 Select
*p
/* The query in which to propagate constants */
4640 x
.pOomFault
= &pParse
->db
->mallocFailed
;
4646 findConstInWhere(&x
, p
->pWhere
);
4648 memset(&w
, 0, sizeof(w
));
4650 w
.xExprCallback
= propagateConstantExprRewrite
;
4651 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
4652 w
.xSelectCallback2
= 0;
4655 sqlite3WalkExpr(&w
, p
->pWhere
);
4656 sqlite3DbFree(x
.pParse
->db
, x
.apExpr
);
4663 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4664 # if !defined(SQLITE_OMIT_WINDOWFUNC)
4666 ** This function is called to determine whether or not it is safe to
4667 ** push WHERE clause expression pExpr down to FROM clause sub-query
4668 ** pSubq, which contains at least one window function. Return 1
4669 ** if it is safe and the expression should be pushed down, or 0
4672 ** It is only safe to push the expression down if it consists only
4673 ** of constants and copies of expressions that appear in the PARTITION
4674 ** BY clause of all window function used by the sub-query. It is safe
4675 ** to filter out entire partitions, but not rows within partitions, as
4676 ** this may change the results of the window functions.
4678 ** At the time this function is called it is guaranteed that
4680 ** * the sub-query uses only one distinct window frame, and
4681 ** * that the window frame has a PARTITION BY clase.
4683 static int pushDownWindowCheck(Parse
*pParse
, Select
*pSubq
, Expr
*pExpr
){
4684 assert( pSubq
->pWin
->pPartition
);
4685 assert( (pSubq
->selFlags
& SF_MultiPart
)==0 );
4686 assert( pSubq
->pPrior
==0 );
4687 return sqlite3ExprIsConstantOrGroupBy(pParse
, pExpr
, pSubq
->pWin
->pPartition
);
4689 # endif /* SQLITE_OMIT_WINDOWFUNC */
4690 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4692 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4694 ** Make copies of relevant WHERE clause terms of the outer query into
4695 ** the WHERE clause of subquery. Example:
4697 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4699 ** Transformed into:
4701 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4702 ** WHERE x=5 AND y=10;
4704 ** The hope is that the terms added to the inner query will make it more
4707 ** Do not attempt this optimization if:
4709 ** (1) (** This restriction was removed on 2017-09-29. We used to
4710 ** disallow this optimization for aggregate subqueries, but now
4711 ** it is allowed by putting the extra terms on the HAVING clause.
4712 ** The added HAVING clause is pointless if the subquery lacks
4713 ** a GROUP BY clause. But such a HAVING clause is also harmless
4714 ** so there does not appear to be any reason to add extra logic
4715 ** to suppress it. **)
4717 ** (2) The inner query is the recursive part of a common table expression.
4719 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
4720 ** clause would change the meaning of the LIMIT).
4722 ** (4) The inner query is the right operand of a LEFT JOIN and the
4723 ** expression to be pushed down does not come from the ON clause
4724 ** on that LEFT JOIN.
4726 ** (5) The WHERE clause expression originates in the ON or USING clause
4727 ** of a LEFT JOIN where iCursor is not the right-hand table of that
4728 ** left join. An example:
4731 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4732 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4733 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4735 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9).
4736 ** But if the (b2=2) term were to be pushed down into the bb subquery,
4737 ** then the (1,1,NULL) row would be suppressed.
4739 ** (6) Window functions make things tricky as changes to the WHERE clause
4740 ** of the inner query could change the window over which window
4741 ** functions are calculated. Therefore, do not attempt the optimization
4744 ** (6a) The inner query uses multiple incompatible window partitions.
4746 ** (6b) The inner query is a compound and uses window-functions.
4748 ** (6c) The WHERE clause does not consist entirely of constants and
4749 ** copies of expressions found in the PARTITION BY clause of
4750 ** all window-functions used by the sub-query. It is safe to
4751 ** filter out entire partitions, as this does not change the
4752 ** window over which any window-function is calculated.
4754 ** (7) The inner query is a Common Table Expression (CTE) that should
4755 ** be materialized. (This restriction is implemented in the calling
4758 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4759 ** terms are duplicated into the subquery.
4761 static int pushDownWhereTerms(
4762 Parse
*pParse
, /* Parse context (for malloc() and error reporting) */
4763 Select
*pSubq
, /* The subquery whose WHERE clause is to be augmented */
4764 Expr
*pWhere
, /* The WHERE clause of the outer query */
4765 int iCursor
, /* Cursor number of the subquery */
4766 int isLeftJoin
/* True if pSubq is the right term of a LEFT JOIN */
4770 if( pWhere
==0 ) return 0;
4771 if( pSubq
->selFlags
& (SF_Recursive
|SF_MultiPart
) ) return 0;
4773 #ifndef SQLITE_OMIT_WINDOWFUNC
4774 if( pSubq
->pPrior
){
4776 for(pSel
=pSubq
; pSel
; pSel
=pSel
->pPrior
){
4777 if( pSel
->pWin
) return 0; /* restriction (6b) */
4780 if( pSubq
->pWin
&& pSubq
->pWin
->pPartition
==0 ) return 0;
4785 /* Only the first term of a compound can have a WITH clause. But make
4786 ** sure no other terms are marked SF_Recursive in case something changes
4791 for(pX
=pSubq
; pX
; pX
=pX
->pPrior
){
4792 assert( (pX
->selFlags
& (SF_Recursive
))==0 );
4797 if( pSubq
->pLimit
!=0 ){
4798 return 0; /* restriction (3) */
4800 while( pWhere
->op
==TK_AND
){
4801 nChng
+= pushDownWhereTerms(pParse
, pSubq
, pWhere
->pRight
,
4802 iCursor
, isLeftJoin
);
4803 pWhere
= pWhere
->pLeft
;
4806 && (ExprHasProperty(pWhere
,EP_FromJoin
)==0
4807 || pWhere
->iRightJoinTable
!=iCursor
)
4809 return 0; /* restriction (4) */
4811 if( ExprHasProperty(pWhere
,EP_FromJoin
) && pWhere
->iRightJoinTable
!=iCursor
){
4812 return 0; /* restriction (5) */
4814 if( sqlite3ExprIsTableConstant(pWhere
, iCursor
) ){
4816 pSubq
->selFlags
|= SF_PushDown
;
4819 pNew
= sqlite3ExprDup(pParse
->db
, pWhere
, 0);
4820 unsetJoinExpr(pNew
, -1);
4823 x
.iNewTable
= iCursor
;
4825 x
.pEList
= pSubq
->pEList
;
4826 pNew
= substExpr(&x
, pNew
);
4827 #ifndef SQLITE_OMIT_WINDOWFUNC
4828 if( pSubq
->pWin
&& 0==pushDownWindowCheck(pParse
, pSubq
, pNew
) ){
4829 /* Restriction 6c has prevented push-down in this case */
4830 sqlite3ExprDelete(pParse
->db
, pNew
);
4835 if( pSubq
->selFlags
& SF_Aggregate
){
4836 pSubq
->pHaving
= sqlite3ExprAnd(pParse
, pSubq
->pHaving
, pNew
);
4838 pSubq
->pWhere
= sqlite3ExprAnd(pParse
, pSubq
->pWhere
, pNew
);
4840 pSubq
= pSubq
->pPrior
;
4845 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4848 ** The pFunc is the only aggregate function in the query. Check to see
4849 ** if the query is a candidate for the min/max optimization.
4851 ** If the query is a candidate for the min/max optimization, then set
4852 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4853 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4854 ** whether pFunc is a min() or max() function.
4856 ** If the query is not a candidate for the min/max optimization, return
4857 ** WHERE_ORDERBY_NORMAL (which must be zero).
4859 ** This routine must be called after aggregate functions have been
4860 ** located but before their arguments have been subjected to aggregate
4863 static u8
minMaxQuery(sqlite3
*db
, Expr
*pFunc
, ExprList
**ppMinMax
){
4864 int eRet
= WHERE_ORDERBY_NORMAL
; /* Return value */
4865 ExprList
*pEList
= pFunc
->x
.pList
; /* Arguments to agg function */
4866 const char *zFunc
; /* Name of aggregate function pFunc */
4870 assert( *ppMinMax
==0 );
4871 assert( pFunc
->op
==TK_AGG_FUNCTION
);
4872 assert( !IsWindowFunc(pFunc
) );
4875 || ExprHasProperty(pFunc
, EP_WinFunc
)
4876 || OptimizationDisabled(db
, SQLITE_MinMaxOpt
)
4880 zFunc
= pFunc
->u
.zToken
;
4881 if( sqlite3StrICmp(zFunc
, "min")==0 ){
4882 eRet
= WHERE_ORDERBY_MIN
;
4883 if( sqlite3ExprCanBeNull(pEList
->a
[0].pExpr
) ){
4884 sortFlags
= KEYINFO_ORDER_BIGNULL
;
4886 }else if( sqlite3StrICmp(zFunc
, "max")==0 ){
4887 eRet
= WHERE_ORDERBY_MAX
;
4888 sortFlags
= KEYINFO_ORDER_DESC
;
4892 *ppMinMax
= pOrderBy
= sqlite3ExprListDup(db
, pEList
, 0);
4893 assert( pOrderBy
!=0 || db
->mallocFailed
);
4894 if( pOrderBy
) pOrderBy
->a
[0].sortFlags
= sortFlags
;
4899 ** The select statement passed as the first argument is an aggregate query.
4900 ** The second argument is the associated aggregate-info object. This
4901 ** function tests if the SELECT is of the form:
4903 ** SELECT count(*) FROM <tbl>
4905 ** where table is a database table, not a sub-select or view. If the query
4906 ** does match this pattern, then a pointer to the Table object representing
4907 ** <tbl> is returned. Otherwise, 0 is returned.
4909 static Table
*isSimpleCount(Select
*p
, AggInfo
*pAggInfo
){
4913 assert( !p
->pGroupBy
);
4915 if( p
->pWhere
|| p
->pEList
->nExpr
!=1
4916 || p
->pSrc
->nSrc
!=1 || p
->pSrc
->a
[0].pSelect
4920 pTab
= p
->pSrc
->a
[0].pTab
;
4921 pExpr
= p
->pEList
->a
[0].pExpr
;
4922 assert( pTab
&& !pTab
->pSelect
&& pExpr
);
4924 if( IsVirtual(pTab
) ) return 0;
4925 if( pExpr
->op
!=TK_AGG_FUNCTION
) return 0;
4926 if( NEVER(pAggInfo
->nFunc
==0) ) return 0;
4927 if( (pAggInfo
->aFunc
[0].pFunc
->funcFlags
&SQLITE_FUNC_COUNT
)==0 ) return 0;
4928 if( ExprHasProperty(pExpr
, EP_Distinct
|EP_WinFunc
) ) return 0;
4934 ** If the source-list item passed as an argument was augmented with an
4935 ** INDEXED BY clause, then try to locate the specified index. If there
4936 ** was such a clause and the named index cannot be found, return
4937 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4938 ** pFrom->pIndex and return SQLITE_OK.
4940 int sqlite3IndexedByLookup(Parse
*pParse
, SrcItem
*pFrom
){
4941 Table
*pTab
= pFrom
->pTab
;
4942 char *zIndexedBy
= pFrom
->u1
.zIndexedBy
;
4945 assert( pFrom
->fg
.isIndexedBy
!=0 );
4947 for(pIdx
=pTab
->pIndex
;
4948 pIdx
&& sqlite3StrICmp(pIdx
->zName
, zIndexedBy
);
4952 sqlite3ErrorMsg(pParse
, "no such index: %s", zIndexedBy
, 0);
4953 pParse
->checkSchema
= 1;
4954 return SQLITE_ERROR
;
4956 pFrom
->u2
.pIBIndex
= pIdx
;
4961 ** Detect compound SELECT statements that use an ORDER BY clause with
4962 ** an alternative collating sequence.
4964 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4966 ** These are rewritten as a subquery:
4968 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4969 ** ORDER BY ... COLLATE ...
4971 ** This transformation is necessary because the multiSelectOrderBy() routine
4972 ** above that generates the code for a compound SELECT with an ORDER BY clause
4973 ** uses a merge algorithm that requires the same collating sequence on the
4974 ** result columns as on the ORDER BY clause. See ticket
4975 ** http://www.sqlite.org/src/info/6709574d2a
4977 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4978 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4979 ** there are COLLATE terms in the ORDER BY.
4981 static int convertCompoundSelectToSubquery(Walker
*pWalker
, Select
*p
){
4986 struct ExprList_item
*a
;
4991 if( p
->pPrior
==0 ) return WRC_Continue
;
4992 if( p
->pOrderBy
==0 ) return WRC_Continue
;
4993 for(pX
=p
; pX
&& (pX
->op
==TK_ALL
|| pX
->op
==TK_SELECT
); pX
=pX
->pPrior
){}
4994 if( pX
==0 ) return WRC_Continue
;
4996 #ifndef SQLITE_OMIT_WINDOWFUNC
4997 /* If iOrderByCol is already non-zero, then it has already been matched
4998 ** to a result column of the SELECT statement. This occurs when the
4999 ** SELECT is rewritten for window-functions processing and then passed
5000 ** to sqlite3SelectPrep() and similar a second time. The rewriting done
5001 ** by this function is not required in this case. */
5002 if( a
[0].u
.x
.iOrderByCol
) return WRC_Continue
;
5004 for(i
=p
->pOrderBy
->nExpr
-1; i
>=0; i
--){
5005 if( a
[i
].pExpr
->flags
& EP_Collate
) break;
5007 if( i
<0 ) return WRC_Continue
;
5009 /* If we reach this point, that means the transformation is required. */
5011 pParse
= pWalker
->pParse
;
5013 pNew
= sqlite3DbMallocZero(db
, sizeof(*pNew
) );
5014 if( pNew
==0 ) return WRC_Abort
;
5015 memset(&dummy
, 0, sizeof(dummy
));
5016 pNewSrc
= sqlite3SrcListAppendFromTerm(pParse
,0,0,0,&dummy
,pNew
,0,0);
5017 if( pNewSrc
==0 ) return WRC_Abort
;
5020 p
->pEList
= sqlite3ExprListAppend(pParse
, 0, sqlite3Expr(db
, TK_ASTERISK
, 0));
5029 #ifndef SQLITE_OMIT_WINDOWFUNC
5032 p
->selFlags
&= ~SF_Compound
;
5033 assert( (p
->selFlags
& SF_Converted
)==0 );
5034 p
->selFlags
|= SF_Converted
;
5035 assert( pNew
->pPrior
!=0 );
5036 pNew
->pPrior
->pNext
= pNew
;
5038 return WRC_Continue
;
5042 ** Check to see if the FROM clause term pFrom has table-valued function
5043 ** arguments. If it does, leave an error message in pParse and return
5044 ** non-zero, since pFrom is not allowed to be a table-valued function.
5046 static int cannotBeFunction(Parse
*pParse
, SrcItem
*pFrom
){
5047 if( pFrom
->fg
.isTabFunc
){
5048 sqlite3ErrorMsg(pParse
, "'%s' is not a function", pFrom
->zName
);
5054 #ifndef SQLITE_OMIT_CTE
5056 ** Argument pWith (which may be NULL) points to a linked list of nested
5057 ** WITH contexts, from inner to outermost. If the table identified by
5058 ** FROM clause element pItem is really a common-table-expression (CTE)
5059 ** then return a pointer to the CTE definition for that table. Otherwise
5062 ** If a non-NULL value is returned, set *ppContext to point to the With
5063 ** object that the returned CTE belongs to.
5065 static struct Cte
*searchWith(
5066 With
*pWith
, /* Current innermost WITH clause */
5067 SrcItem
*pItem
, /* FROM clause element to resolve */
5068 With
**ppContext
/* OUT: WITH clause return value belongs to */
5070 const char *zName
= pItem
->zName
;
5072 assert( pItem
->zDatabase
==0 );
5074 for(p
=pWith
; p
; p
=p
->pOuter
){
5076 for(i
=0; i
<p
->nCte
; i
++){
5077 if( sqlite3StrICmp(zName
, p
->a
[i
].zName
)==0 ){
5082 if( p
->bView
) break;
5087 /* The code generator maintains a stack of active WITH clauses
5088 ** with the inner-most WITH clause being at the top of the stack.
5090 ** This routine pushes the WITH clause passed as the second argument
5091 ** onto the top of the stack. If argument bFree is true, then this
5092 ** WITH clause will never be popped from the stack but should instead
5093 ** be freed along with the Parse object. In other cases, when
5094 ** bFree==0, the With object will be freed along with the SELECT
5095 ** statement with which it is associated.
5097 ** This routine returns a copy of pWith. Or, if bFree is true and
5098 ** the pWith object is destroyed immediately due to an OOM condition,
5099 ** then this routine return NULL.
5101 ** If bFree is true, do not continue to use the pWith pointer after
5102 ** calling this routine, Instead, use only the return value.
5104 With
*sqlite3WithPush(Parse
*pParse
, With
*pWith
, u8 bFree
){
5107 pWith
= (With
*)sqlite3ParserAddCleanup(pParse
,
5108 (void(*)(sqlite3
*,void*))sqlite3WithDelete
,
5110 if( pWith
==0 ) return 0;
5112 if( pParse
->nErr
==0 ){
5113 assert( pParse
->pWith
!=pWith
);
5114 pWith
->pOuter
= pParse
->pWith
;
5115 pParse
->pWith
= pWith
;
5122 ** This function checks if argument pFrom refers to a CTE declared by
5123 ** a WITH clause on the stack currently maintained by the parser (on the
5124 ** pParse->pWith linked list). And if currently processing a CTE
5125 ** CTE expression, through routine checks to see if the reference is
5126 ** a recursive reference to the CTE.
5128 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab
5129 ** and other fields are populated accordingly.
5131 ** Return 0 if no match is found.
5132 ** Return 1 if a match is found.
5133 ** Return 2 if an error condition is detected.
5135 static int resolveFromTermToCte(
5136 Parse
*pParse
, /* The parsing context */
5137 Walker
*pWalker
, /* Current tree walker */
5138 SrcItem
*pFrom
/* The FROM clause term to check */
5140 Cte
*pCte
; /* Matched CTE (or NULL if no match) */
5141 With
*pWith
; /* The matching WITH */
5143 assert( pFrom
->pTab
==0 );
5144 if( pParse
->pWith
==0 ){
5145 /* There are no WITH clauses in the stack. No match is possible */
5149 /* Prior errors might have left pParse->pWith in a goofy state, so
5150 ** go no further. */
5153 if( pFrom
->zDatabase
!=0 ){
5154 /* The FROM term contains a schema qualifier (ex: main.t1) and so
5155 ** it cannot possibly be a CTE reference. */
5158 if( pFrom
->fg
.notCte
){
5159 /* The FROM term is specifically excluded from matching a CTE.
5160 ** (1) It is part of a trigger that used to have zDatabase but had
5161 ** zDatabase removed by sqlite3FixTriggerStep().
5162 ** (2) This is the first term in the FROM clause of an UPDATE.
5166 pCte
= searchWith(pParse
->pWith
, pFrom
, &pWith
);
5168 sqlite3
*db
= pParse
->db
;
5172 Select
*pLeft
; /* Left-most SELECT statement */
5173 Select
*pRecTerm
; /* Left-most recursive term */
5174 int bMayRecursive
; /* True if compound joined by UNION [ALL] */
5175 With
*pSavedWith
; /* Initial value of pParse->pWith */
5176 int iRecTab
= -1; /* Cursor for recursive table */
5179 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
5180 ** recursive reference to CTE pCte. Leave an error in pParse and return
5181 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
5182 ** In this case, proceed. */
5183 if( pCte
->zCteErr
){
5184 sqlite3ErrorMsg(pParse
, pCte
->zCteErr
, pCte
->zName
);
5187 if( cannotBeFunction(pParse
, pFrom
) ) return 2;
5189 assert( pFrom
->pTab
==0 );
5190 pTab
= sqlite3DbMallocZero(db
, sizeof(Table
));
5191 if( pTab
==0 ) return 2;
5192 pCteUse
= pCte
->pUse
;
5194 pCte
->pUse
= pCteUse
= sqlite3DbMallocZero(db
, sizeof(pCteUse
[0]));
5196 || sqlite3ParserAddCleanup(pParse
,sqlite3DbFree
,pCteUse
)==0
5198 sqlite3DbFree(db
, pTab
);
5201 pCteUse
->eM10d
= pCte
->eM10d
;
5205 pTab
->zName
= sqlite3DbStrDup(db
, pCte
->zName
);
5207 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
5208 pTab
->tabFlags
|= TF_Ephemeral
| TF_NoVisibleRowid
;
5209 pFrom
->pSelect
= sqlite3SelectDup(db
, pCte
->pSelect
, 0);
5210 if( db
->mallocFailed
) return 2;
5211 pFrom
->pSelect
->selFlags
|= SF_CopyCte
;
5212 assert( pFrom
->pSelect
);
5213 pFrom
->fg
.isCte
= 1;
5214 pFrom
->u2
.pCteUse
= pCteUse
;
5216 if( pCteUse
->nUse
>=2 && pCteUse
->eM10d
==M10d_Any
){
5217 pCteUse
->eM10d
= M10d_Yes
;
5220 /* Check if this is a recursive CTE. */
5221 pRecTerm
= pSel
= pFrom
->pSelect
;
5222 bMayRecursive
= ( pSel
->op
==TK_ALL
|| pSel
->op
==TK_UNION
);
5223 while( bMayRecursive
&& pRecTerm
->op
==pSel
->op
){
5225 SrcList
*pSrc
= pRecTerm
->pSrc
;
5226 assert( pRecTerm
->pPrior
!=0 );
5227 for(i
=0; i
<pSrc
->nSrc
; i
++){
5228 SrcItem
*pItem
= &pSrc
->a
[i
];
5229 if( pItem
->zDatabase
==0
5231 && 0==sqlite3StrICmp(pItem
->zName
, pCte
->zName
)
5235 pItem
->fg
.isRecursive
= 1;
5236 if( pRecTerm
->selFlags
& SF_Recursive
){
5237 sqlite3ErrorMsg(pParse
,
5238 "multiple references to recursive table: %s", pCte
->zName
5242 pRecTerm
->selFlags
|= SF_Recursive
;
5243 if( iRecTab
<0 ) iRecTab
= pParse
->nTab
++;
5244 pItem
->iCursor
= iRecTab
;
5247 if( (pRecTerm
->selFlags
& SF_Recursive
)==0 ) break;
5248 pRecTerm
= pRecTerm
->pPrior
;
5251 pCte
->zCteErr
= "circular reference: %s";
5252 pSavedWith
= pParse
->pWith
;
5253 pParse
->pWith
= pWith
;
5254 if( pSel
->selFlags
& SF_Recursive
){
5256 assert( pRecTerm
!=0 );
5257 assert( (pRecTerm
->selFlags
& SF_Recursive
)==0 );
5258 assert( pRecTerm
->pNext
!=0 );
5259 assert( (pRecTerm
->pNext
->selFlags
& SF_Recursive
)!=0 );
5260 assert( pRecTerm
->pWith
==0 );
5261 pRecTerm
->pWith
= pSel
->pWith
;
5262 rc
= sqlite3WalkSelect(pWalker
, pRecTerm
);
5263 pRecTerm
->pWith
= 0;
5265 pParse
->pWith
= pSavedWith
;
5269 if( sqlite3WalkSelect(pWalker
, pSel
) ){
5270 pParse
->pWith
= pSavedWith
;
5274 pParse
->pWith
= pWith
;
5276 for(pLeft
=pSel
; pLeft
->pPrior
; pLeft
=pLeft
->pPrior
);
5277 pEList
= pLeft
->pEList
;
5279 if( pEList
&& pEList
->nExpr
!=pCte
->pCols
->nExpr
){
5280 sqlite3ErrorMsg(pParse
, "table %s has %d values for %d columns",
5281 pCte
->zName
, pEList
->nExpr
, pCte
->pCols
->nExpr
5283 pParse
->pWith
= pSavedWith
;
5286 pEList
= pCte
->pCols
;
5289 sqlite3ColumnsFromExprList(pParse
, pEList
, &pTab
->nCol
, &pTab
->aCol
);
5290 if( bMayRecursive
){
5291 if( pSel
->selFlags
& SF_Recursive
){
5292 pCte
->zCteErr
= "multiple recursive references: %s";
5294 pCte
->zCteErr
= "recursive reference in a subquery: %s";
5296 sqlite3WalkSelect(pWalker
, pSel
);
5299 pParse
->pWith
= pSavedWith
;
5300 return 1; /* Success */
5302 return 0; /* No match */
5306 #ifndef SQLITE_OMIT_CTE
5308 ** If the SELECT passed as the second argument has an associated WITH
5309 ** clause, pop it from the stack stored as part of the Parse object.
5311 ** This function is used as the xSelectCallback2() callback by
5312 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5313 ** names and other FROM clause elements.
5315 void sqlite3SelectPopWith(Walker
*pWalker
, Select
*p
){
5316 Parse
*pParse
= pWalker
->pParse
;
5317 if( OK_IF_ALWAYS_TRUE(pParse
->pWith
) && p
->pPrior
==0 ){
5318 With
*pWith
= findRightmost(p
)->pWith
;
5320 assert( pParse
->pWith
==pWith
|| pParse
->nErr
);
5321 pParse
->pWith
= pWith
->pOuter
;
5328 ** The SrcList_item structure passed as the second argument represents a
5329 ** sub-query in the FROM clause of a SELECT statement. This function
5330 ** allocates and populates the SrcList_item.pTab object. If successful,
5331 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5334 int sqlite3ExpandSubquery(Parse
*pParse
, SrcItem
*pFrom
){
5335 Select
*pSel
= pFrom
->pSelect
;
5339 pFrom
->pTab
= pTab
= sqlite3DbMallocZero(pParse
->db
, sizeof(Table
));
5340 if( pTab
==0 ) return SQLITE_NOMEM
;
5342 if( pFrom
->zAlias
){
5343 pTab
->zName
= sqlite3DbStrDup(pParse
->db
, pFrom
->zAlias
);
5345 pTab
->zName
= sqlite3MPrintf(pParse
->db
, "subquery_%u", pSel
->selId
);
5347 while( pSel
->pPrior
){ pSel
= pSel
->pPrior
; }
5348 sqlite3ColumnsFromExprList(pParse
, pSel
->pEList
,&pTab
->nCol
,&pTab
->aCol
);
5350 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
5351 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
5352 /* The usual case - do not allow ROWID on a subquery */
5353 pTab
->tabFlags
|= TF_Ephemeral
| TF_NoVisibleRowid
;
5355 pTab
->tabFlags
|= TF_Ephemeral
; /* Legacy compatibility mode */
5359 return pParse
->nErr
? SQLITE_ERROR
: SQLITE_OK
;
5363 ** This routine is a Walker callback for "expanding" a SELECT statement.
5364 ** "Expanding" means to do the following:
5366 ** (1) Make sure VDBE cursor numbers have been assigned to every
5367 ** element of the FROM clause.
5369 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
5370 ** defines FROM clause. When views appear in the FROM clause,
5371 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
5372 ** that implements the view. A copy is made of the view's SELECT
5373 ** statement so that we can freely modify or delete that statement
5374 ** without worrying about messing up the persistent representation
5377 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
5378 ** on joins and the ON and USING clause of joins.
5380 ** (4) Scan the list of columns in the result set (pEList) looking
5381 ** for instances of the "*" operator or the TABLE.* operator.
5382 ** If found, expand each "*" to be every column in every table
5383 ** and TABLE.* to be every column in TABLE.
5386 static int selectExpander(Walker
*pWalker
, Select
*p
){
5387 Parse
*pParse
= pWalker
->pParse
;
5392 sqlite3
*db
= pParse
->db
;
5393 Expr
*pE
, *pRight
, *pExpr
;
5394 u16 selFlags
= p
->selFlags
;
5397 p
->selFlags
|= SF_Expanded
;
5398 if( db
->mallocFailed
){
5401 assert( p
->pSrc
!=0 );
5402 if( (selFlags
& SF_Expanded
)!=0 ){
5405 if( pWalker
->eCode
){
5406 /* Renumber selId because it has been copied from a view */
5407 p
->selId
= ++pParse
->nSelect
;
5411 if( pParse
->pWith
&& (p
->selFlags
& SF_View
) ){
5413 p
->pWith
= (With
*)sqlite3DbMallocZero(db
, sizeof(With
));
5418 p
->pWith
->bView
= 1;
5420 sqlite3WithPush(pParse
, p
->pWith
, 0);
5422 /* Make sure cursor numbers have been assigned to all entries in
5423 ** the FROM clause of the SELECT statement.
5425 sqlite3SrcListAssignCursors(pParse
, pTabList
);
5427 /* Look up every table named in the FROM clause of the select. If
5428 ** an entry of the FROM clause is a subquery instead of a table or view,
5429 ** then create a transient table structure to describe the subquery.
5431 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
5433 assert( pFrom
->fg
.isRecursive
==0 || pFrom
->pTab
!=0 );
5434 if( pFrom
->pTab
) continue;
5435 assert( pFrom
->fg
.isRecursive
==0 );
5436 if( pFrom
->zName
==0 ){
5437 #ifndef SQLITE_OMIT_SUBQUERY
5438 Select
*pSel
= pFrom
->pSelect
;
5439 /* A sub-query in the FROM clause of a SELECT */
5441 assert( pFrom
->pTab
==0 );
5442 if( sqlite3WalkSelect(pWalker
, pSel
) ) return WRC_Abort
;
5443 if( sqlite3ExpandSubquery(pParse
, pFrom
) ) return WRC_Abort
;
5445 #ifndef SQLITE_OMIT_CTE
5446 }else if( (rc
= resolveFromTermToCte(pParse
, pWalker
, pFrom
))!=0 ){
5447 if( rc
>1 ) return WRC_Abort
;
5452 /* An ordinary table or view name in the FROM clause */
5453 assert( pFrom
->pTab
==0 );
5454 pFrom
->pTab
= pTab
= sqlite3LocateTableItem(pParse
, 0, pFrom
);
5455 if( pTab
==0 ) return WRC_Abort
;
5456 if( pTab
->nTabRef
>=0xffff ){
5457 sqlite3ErrorMsg(pParse
, "too many references to \"%s\": max 65535",
5463 if( !IsVirtual(pTab
) && cannotBeFunction(pParse
, pFrom
) ){
5466 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5467 if( IsVirtual(pTab
) || pTab
->pSelect
){
5469 u8 eCodeOrig
= pWalker
->eCode
;
5470 if( sqlite3ViewGetColumnNames(pParse
, pTab
) ) return WRC_Abort
;
5471 assert( pFrom
->pSelect
==0 );
5473 && (db
->flags
& SQLITE_EnableView
)==0
5474 && pTab
->pSchema
!=db
->aDb
[1].pSchema
5476 sqlite3ErrorMsg(pParse
, "access to view \"%s\" prohibited",
5479 #ifndef SQLITE_OMIT_VIRTUALTABLE
5480 assert( SQLITE_VTABRISK_Normal
==1 && SQLITE_VTABRISK_High
==2 );
5482 && pFrom
->fg
.fromDDL
5483 && ALWAYS(pTab
->pVTable
!=0)
5484 && pTab
->pVTable
->eVtabRisk
> ((db
->flags
& SQLITE_TrustedSchema
)!=0)
5486 sqlite3ErrorMsg(pParse
, "unsafe use of virtual table \"%s\"",
5490 pFrom
->pSelect
= sqlite3SelectDup(db
, pTab
->pSelect
, 0);
5493 pWalker
->eCode
= 1; /* Turn on Select.selId renumbering */
5494 sqlite3WalkSelect(pWalker
, pFrom
->pSelect
);
5495 pWalker
->eCode
= eCodeOrig
;
5501 /* Locate the index named by the INDEXED BY clause, if any. */
5502 if( pFrom
->fg
.isIndexedBy
&& sqlite3IndexedByLookup(pParse
, pFrom
) ){
5507 /* Process NATURAL keywords, and ON and USING clauses of joins.
5509 if( pParse
->nErr
|| db
->mallocFailed
|| sqliteProcessJoin(pParse
, p
) ){
5513 /* For every "*" that occurs in the column list, insert the names of
5514 ** all columns in all tables. And for every TABLE.* insert the names
5515 ** of all columns in TABLE. The parser inserted a special expression
5516 ** with the TK_ASTERISK operator for each "*" that it found in the column
5517 ** list. The following code just has to locate the TK_ASTERISK
5518 ** expressions and expand each one to the list of all columns in
5521 ** The first loop just checks to see if there are any "*" operators
5522 ** that need expanding.
5524 for(k
=0; k
<pEList
->nExpr
; k
++){
5525 pE
= pEList
->a
[k
].pExpr
;
5526 if( pE
->op
==TK_ASTERISK
) break;
5527 assert( pE
->op
!=TK_DOT
|| pE
->pRight
!=0 );
5528 assert( pE
->op
!=TK_DOT
|| (pE
->pLeft
!=0 && pE
->pLeft
->op
==TK_ID
) );
5529 if( pE
->op
==TK_DOT
&& pE
->pRight
->op
==TK_ASTERISK
) break;
5530 elistFlags
|= pE
->flags
;
5532 if( k
<pEList
->nExpr
){
5534 ** If we get here it means the result set contains one or more "*"
5535 ** operators that need to be expanded. Loop through each expression
5536 ** in the result set and expand them one by one.
5538 struct ExprList_item
*a
= pEList
->a
;
5540 int flags
= pParse
->db
->flags
;
5541 int longNames
= (flags
& SQLITE_FullColNames
)!=0
5542 && (flags
& SQLITE_ShortColNames
)==0;
5544 for(k
=0; k
<pEList
->nExpr
; k
++){
5546 elistFlags
|= pE
->flags
;
5547 pRight
= pE
->pRight
;
5548 assert( pE
->op
!=TK_DOT
|| pRight
!=0 );
5549 if( pE
->op
!=TK_ASTERISK
5550 && (pE
->op
!=TK_DOT
|| pRight
->op
!=TK_ASTERISK
)
5552 /* This particular expression does not need to be expanded.
5554 pNew
= sqlite3ExprListAppend(pParse
, pNew
, a
[k
].pExpr
);
5556 pNew
->a
[pNew
->nExpr
-1].zEName
= a
[k
].zEName
;
5557 pNew
->a
[pNew
->nExpr
-1].eEName
= a
[k
].eEName
;
5562 /* This expression is a "*" or a "TABLE.*" and needs to be
5564 int tableSeen
= 0; /* Set to 1 when TABLE matches */
5565 char *zTName
= 0; /* text of name of TABLE */
5566 if( pE
->op
==TK_DOT
){
5567 assert( pE
->pLeft
!=0 );
5568 assert( !ExprHasProperty(pE
->pLeft
, EP_IntValue
) );
5569 zTName
= pE
->pLeft
->u
.zToken
;
5571 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
5572 Table
*pTab
= pFrom
->pTab
;
5573 Select
*pSub
= pFrom
->pSelect
;
5574 char *zTabName
= pFrom
->zAlias
;
5575 const char *zSchemaName
= 0;
5578 zTabName
= pTab
->zName
;
5580 if( db
->mallocFailed
) break;
5581 if( pSub
==0 || (pSub
->selFlags
& SF_NestedFrom
)==0 ){
5583 if( zTName
&& sqlite3StrICmp(zTName
, zTabName
)!=0 ){
5586 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
5587 zSchemaName
= iDb
>=0 ? db
->aDb
[iDb
].zDbSName
: "*";
5589 for(j
=0; j
<pTab
->nCol
; j
++){
5590 char *zName
= pTab
->aCol
[j
].zName
;
5591 char *zColname
; /* The computed column name */
5592 char *zToFree
; /* Malloced string that needs to be freed */
5593 Token sColname
; /* Computed column name as a token */
5597 && sqlite3MatchEName(&pSub
->pEList
->a
[j
], 0, zTName
, 0)==0
5602 /* If a column is marked as 'hidden', omit it from the expanded
5603 ** result-set list unless the SELECT has the SF_IncludeHidden
5606 if( (p
->selFlags
& SF_IncludeHidden
)==0
5607 && IsHiddenColumn(&pTab
->aCol
[j
])
5613 if( i
>0 && zTName
==0 ){
5614 if( (pFrom
->fg
.jointype
& JT_NATURAL
)!=0
5615 && tableAndColumnIndex(pTabList
, i
, zName
, 0, 0, 1)
5617 /* In a NATURAL join, omit the join columns from the
5618 ** table to the right of the join */
5621 if( sqlite3IdListIndex(pFrom
->pUsing
, zName
)>=0 ){
5622 /* In a join with a USING clause, omit columns in the
5623 ** using clause from the table on the right. */
5627 pRight
= sqlite3Expr(db
, TK_ID
, zName
);
5630 if( longNames
|| pTabList
->nSrc
>1 ){
5632 pLeft
= sqlite3Expr(db
, TK_ID
, zTabName
);
5633 pExpr
= sqlite3PExpr(pParse
, TK_DOT
, pLeft
, pRight
);
5635 pLeft
= sqlite3Expr(db
, TK_ID
, zSchemaName
);
5636 pExpr
= sqlite3PExpr(pParse
, TK_DOT
, pLeft
, pExpr
);
5639 zColname
= sqlite3MPrintf(db
, "%s.%s", zTabName
, zName
);
5645 pNew
= sqlite3ExprListAppend(pParse
, pNew
, pExpr
);
5646 sqlite3TokenInit(&sColname
, zColname
);
5647 sqlite3ExprListSetName(pParse
, pNew
, &sColname
, 0);
5648 if( pNew
&& (p
->selFlags
& SF_NestedFrom
)!=0 && !IN_RENAME_OBJECT
){
5649 struct ExprList_item
*pX
= &pNew
->a
[pNew
->nExpr
-1];
5650 sqlite3DbFree(db
, pX
->zEName
);
5652 pX
->zEName
= sqlite3DbStrDup(db
, pSub
->pEList
->a
[j
].zEName
);
5653 testcase( pX
->zEName
==0 );
5655 pX
->zEName
= sqlite3MPrintf(db
, "%s.%s.%s",
5656 zSchemaName
, zTabName
, zColname
);
5657 testcase( pX
->zEName
==0 );
5659 pX
->eEName
= ENAME_TAB
;
5661 sqlite3DbFree(db
, zToFree
);
5666 sqlite3ErrorMsg(pParse
, "no such table: %s", zTName
);
5668 sqlite3ErrorMsg(pParse
, "no tables specified");
5673 sqlite3ExprListDelete(db
, pEList
);
5677 if( p
->pEList
->nExpr
>db
->aLimit
[SQLITE_LIMIT_COLUMN
] ){
5678 sqlite3ErrorMsg(pParse
, "too many columns in result set");
5681 if( (elistFlags
& (EP_HasFunc
|EP_Subquery
))!=0 ){
5682 p
->selFlags
|= SF_ComplexResult
;
5685 return WRC_Continue
;
5690 ** Always assert. This xSelectCallback2 implementation proves that the
5691 ** xSelectCallback2 is never invoked.
5693 void sqlite3SelectWalkAssert2(Walker
*NotUsed
, Select
*NotUsed2
){
5694 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
5699 ** This routine "expands" a SELECT statement and all of its subqueries.
5700 ** For additional information on what it means to "expand" a SELECT
5701 ** statement, see the comment on the selectExpand worker callback above.
5703 ** Expanding a SELECT statement is the first step in processing a
5704 ** SELECT statement. The SELECT statement must be expanded before
5705 ** name resolution is performed.
5707 ** If anything goes wrong, an error message is written into pParse.
5708 ** The calling function can detect the problem by looking at pParse->nErr
5709 ** and/or pParse->db->mallocFailed.
5711 static void sqlite3SelectExpand(Parse
*pParse
, Select
*pSelect
){
5713 w
.xExprCallback
= sqlite3ExprWalkNoop
;
5715 if( OK_IF_ALWAYS_TRUE(pParse
->hasCompound
) ){
5716 w
.xSelectCallback
= convertCompoundSelectToSubquery
;
5717 w
.xSelectCallback2
= 0;
5718 sqlite3WalkSelect(&w
, pSelect
);
5720 w
.xSelectCallback
= selectExpander
;
5721 w
.xSelectCallback2
= sqlite3SelectPopWith
;
5723 sqlite3WalkSelect(&w
, pSelect
);
5727 #ifndef SQLITE_OMIT_SUBQUERY
5729 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5732 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5733 ** information to the Table structure that represents the result set
5734 ** of that subquery.
5736 ** The Table structure that represents the result set was constructed
5737 ** by selectExpander() but the type and collation information was omitted
5738 ** at that point because identifiers had not yet been resolved. This
5739 ** routine is called after identifier resolution.
5741 static void selectAddSubqueryTypeInfo(Walker
*pWalker
, Select
*p
){
5747 assert( p
->selFlags
& SF_Resolved
);
5748 if( p
->selFlags
& SF_HasTypeInfo
) return;
5749 p
->selFlags
|= SF_HasTypeInfo
;
5750 pParse
= pWalker
->pParse
;
5752 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
5753 Table
*pTab
= pFrom
->pTab
;
5755 if( (pTab
->tabFlags
& TF_Ephemeral
)!=0 ){
5756 /* A sub-query in the FROM clause of a SELECT */
5757 Select
*pSel
= pFrom
->pSelect
;
5759 while( pSel
->pPrior
) pSel
= pSel
->pPrior
;
5760 sqlite3SelectAddColumnTypeAndCollation(pParse
, pTab
, pSel
,
5770 ** This routine adds datatype and collating sequence information to
5771 ** the Table structures of all FROM-clause subqueries in a
5772 ** SELECT statement.
5774 ** Use this routine after name resolution.
5776 static void sqlite3SelectAddTypeInfo(Parse
*pParse
, Select
*pSelect
){
5777 #ifndef SQLITE_OMIT_SUBQUERY
5779 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
5780 w
.xSelectCallback2
= selectAddSubqueryTypeInfo
;
5781 w
.xExprCallback
= sqlite3ExprWalkNoop
;
5783 sqlite3WalkSelect(&w
, pSelect
);
5789 ** This routine sets up a SELECT statement for processing. The
5790 ** following is accomplished:
5792 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
5793 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
5794 ** * ON and USING clauses are shifted into WHERE statements
5795 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
5796 ** * Identifiers in expression are matched to tables.
5798 ** This routine acts recursively on all subqueries within the SELECT.
5800 void sqlite3SelectPrep(
5801 Parse
*pParse
, /* The parser context */
5802 Select
*p
, /* The SELECT statement being coded. */
5803 NameContext
*pOuterNC
/* Name context for container */
5805 assert( p
!=0 || pParse
->db
->mallocFailed
);
5806 if( pParse
->db
->mallocFailed
) return;
5807 if( p
->selFlags
& SF_HasTypeInfo
) return;
5808 sqlite3SelectExpand(pParse
, p
);
5809 if( pParse
->nErr
|| pParse
->db
->mallocFailed
) return;
5810 sqlite3ResolveSelectNames(pParse
, p
, pOuterNC
);
5811 if( pParse
->nErr
|| pParse
->db
->mallocFailed
) return;
5812 sqlite3SelectAddTypeInfo(pParse
, p
);
5816 ** Reset the aggregate accumulator.
5818 ** The aggregate accumulator is a set of memory cells that hold
5819 ** intermediate results while calculating an aggregate. This
5820 ** routine generates code that stores NULLs in all of those memory
5823 static void resetAccumulator(Parse
*pParse
, AggInfo
*pAggInfo
){
5824 Vdbe
*v
= pParse
->pVdbe
;
5826 struct AggInfo_func
*pFunc
;
5827 int nReg
= pAggInfo
->nFunc
+ pAggInfo
->nColumn
;
5828 if( nReg
==0 ) return;
5829 if( pParse
->nErr
|| pParse
->db
->mallocFailed
) return;
5831 /* Verify that all AggInfo registers are within the range specified by
5832 ** AggInfo.mnReg..AggInfo.mxReg */
5833 assert( nReg
==pAggInfo
->mxReg
-pAggInfo
->mnReg
+1 );
5834 for(i
=0; i
<pAggInfo
->nColumn
; i
++){
5835 assert( pAggInfo
->aCol
[i
].iMem
>=pAggInfo
->mnReg
5836 && pAggInfo
->aCol
[i
].iMem
<=pAggInfo
->mxReg
);
5838 for(i
=0; i
<pAggInfo
->nFunc
; i
++){
5839 assert( pAggInfo
->aFunc
[i
].iMem
>=pAggInfo
->mnReg
5840 && pAggInfo
->aFunc
[i
].iMem
<=pAggInfo
->mxReg
);
5843 sqlite3VdbeAddOp3(v
, OP_Null
, 0, pAggInfo
->mnReg
, pAggInfo
->mxReg
);
5844 for(pFunc
=pAggInfo
->aFunc
, i
=0; i
<pAggInfo
->nFunc
; i
++, pFunc
++){
5845 if( pFunc
->iDistinct
>=0 ){
5846 Expr
*pE
= pFunc
->pFExpr
;
5847 assert( !ExprHasProperty(pE
, EP_xIsSelect
) );
5848 if( pE
->x
.pList
==0 || pE
->x
.pList
->nExpr
!=1 ){
5849 sqlite3ErrorMsg(pParse
, "DISTINCT aggregates must have exactly one "
5851 pFunc
->iDistinct
= -1;
5853 KeyInfo
*pKeyInfo
= sqlite3KeyInfoFromExprList(pParse
, pE
->x
.pList
,0,0);
5854 pFunc
->iDistAddr
= sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
5855 pFunc
->iDistinct
, 0, 0, (char*)pKeyInfo
, P4_KEYINFO
);
5856 ExplainQueryPlan((pParse
, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
5857 pFunc
->pFunc
->zName
));
5864 ** Invoke the OP_AggFinalize opcode for every aggregate function
5865 ** in the AggInfo structure.
5867 static void finalizeAggFunctions(Parse
*pParse
, AggInfo
*pAggInfo
){
5868 Vdbe
*v
= pParse
->pVdbe
;
5870 struct AggInfo_func
*pF
;
5871 for(i
=0, pF
=pAggInfo
->aFunc
; i
<pAggInfo
->nFunc
; i
++, pF
++){
5872 ExprList
*pList
= pF
->pFExpr
->x
.pList
;
5873 assert( !ExprHasProperty(pF
->pFExpr
, EP_xIsSelect
) );
5874 sqlite3VdbeAddOp2(v
, OP_AggFinal
, pF
->iMem
, pList
? pList
->nExpr
: 0);
5875 sqlite3VdbeAppendP4(v
, pF
->pFunc
, P4_FUNCDEF
);
5881 ** Update the accumulator memory cells for an aggregate based on
5882 ** the current cursor position.
5884 ** If regAcc is non-zero and there are no min() or max() aggregates
5885 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5886 ** registers if register regAcc contains 0. The caller will take care
5887 ** of setting and clearing regAcc.
5889 static void updateAccumulator(
5895 Vdbe
*v
= pParse
->pVdbe
;
5898 int addrHitTest
= 0;
5899 struct AggInfo_func
*pF
;
5900 struct AggInfo_col
*pC
;
5902 pAggInfo
->directMode
= 1;
5903 for(i
=0, pF
=pAggInfo
->aFunc
; i
<pAggInfo
->nFunc
; i
++, pF
++){
5907 ExprList
*pList
= pF
->pFExpr
->x
.pList
;
5908 assert( !ExprHasProperty(pF
->pFExpr
, EP_xIsSelect
) );
5909 assert( !IsWindowFunc(pF
->pFExpr
) );
5910 if( ExprHasProperty(pF
->pFExpr
, EP_WinFunc
) ){
5911 Expr
*pFilter
= pF
->pFExpr
->y
.pWin
->pFilter
;
5912 if( pAggInfo
->nAccumulator
5913 && (pF
->pFunc
->funcFlags
& SQLITE_FUNC_NEEDCOLL
)
5916 /* If regAcc==0, there there exists some min() or max() function
5917 ** without a FILTER clause that will ensure the magnet registers
5918 ** are populated. */
5919 if( regHit
==0 ) regHit
= ++pParse
->nMem
;
5920 /* If this is the first row of the group (regAcc contains 0), clear the
5921 ** "magnet" register regHit so that the accumulator registers
5922 ** are populated if the FILTER clause jumps over the the
5923 ** invocation of min() or max() altogether. Or, if this is not
5924 ** the first row (regAcc contains 1), set the magnet register so that
5925 ** the accumulators are not populated unless the min()/max() is invoked
5926 ** and indicates that they should be. */
5927 sqlite3VdbeAddOp2(v
, OP_Copy
, regAcc
, regHit
);
5929 addrNext
= sqlite3VdbeMakeLabel(pParse
);
5930 sqlite3ExprIfFalse(pParse
, pFilter
, addrNext
, SQLITE_JUMPIFNULL
);
5933 nArg
= pList
->nExpr
;
5934 regAgg
= sqlite3GetTempRange(pParse
, nArg
);
5935 sqlite3ExprCodeExprList(pParse
, pList
, regAgg
, 0, SQLITE_ECEL_DUP
);
5940 if( pF
->iDistinct
>=0 && pList
){
5942 addrNext
= sqlite3VdbeMakeLabel(pParse
);
5944 pF
->iDistinct
= codeDistinct(pParse
, eDistinctType
,
5945 pF
->iDistinct
, addrNext
, pList
, regAgg
);
5947 if( pF
->pFunc
->funcFlags
& SQLITE_FUNC_NEEDCOLL
){
5949 struct ExprList_item
*pItem
;
5951 assert( pList
!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
5952 for(j
=0, pItem
=pList
->a
; !pColl
&& j
<nArg
; j
++, pItem
++){
5953 pColl
= sqlite3ExprCollSeq(pParse
, pItem
->pExpr
);
5956 pColl
= pParse
->db
->pDfltColl
;
5958 if( regHit
==0 && pAggInfo
->nAccumulator
) regHit
= ++pParse
->nMem
;
5959 sqlite3VdbeAddOp4(v
, OP_CollSeq
, regHit
, 0, 0, (char *)pColl
, P4_COLLSEQ
);
5961 sqlite3VdbeAddOp3(v
, OP_AggStep
, 0, regAgg
, pF
->iMem
);
5962 sqlite3VdbeAppendP4(v
, pF
->pFunc
, P4_FUNCDEF
);
5963 sqlite3VdbeChangeP5(v
, (u8
)nArg
);
5964 sqlite3ReleaseTempRange(pParse
, regAgg
, nArg
);
5966 sqlite3VdbeResolveLabel(v
, addrNext
);
5969 if( regHit
==0 && pAggInfo
->nAccumulator
){
5973 addrHitTest
= sqlite3VdbeAddOp1(v
, OP_If
, regHit
); VdbeCoverage(v
);
5975 for(i
=0, pC
=pAggInfo
->aCol
; i
<pAggInfo
->nAccumulator
; i
++, pC
++){
5976 sqlite3ExprCode(pParse
, pC
->pCExpr
, pC
->iMem
);
5979 pAggInfo
->directMode
= 0;
5981 sqlite3VdbeJumpHereOrPopInst(v
, addrHitTest
);
5986 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5987 ** count(*) query ("SELECT count(*) FROM pTab").
5989 #ifndef SQLITE_OMIT_EXPLAIN
5990 static void explainSimpleCount(
5991 Parse
*pParse
, /* Parse context */
5992 Table
*pTab
, /* Table being queried */
5993 Index
*pIdx
/* Index used to optimize scan, or NULL */
5995 if( pParse
->explain
==2 ){
5996 int bCover
= (pIdx
!=0 && (HasRowid(pTab
) || !IsPrimaryKeyIndex(pIdx
)));
5997 sqlite3VdbeExplain(pParse
, 0, "SCAN %s%s%s",
5999 bCover
? " USING COVERING INDEX " : "",
6000 bCover
? pIdx
->zName
: ""
6005 # define explainSimpleCount(a,b,c)
6009 ** sqlite3WalkExpr() callback used by havingToWhere().
6011 ** If the node passed to the callback is a TK_AND node, return
6012 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
6014 ** Otherwise, return WRC_Prune. In this case, also check if the
6015 ** sub-expression matches the criteria for being moved to the WHERE
6016 ** clause. If so, add it to the WHERE clause and replace the sub-expression
6017 ** within the HAVING expression with a constant "1".
6019 static int havingToWhereExprCb(Walker
*pWalker
, Expr
*pExpr
){
6020 if( pExpr
->op
!=TK_AND
){
6021 Select
*pS
= pWalker
->u
.pSelect
;
6022 if( sqlite3ExprIsConstantOrGroupBy(pWalker
->pParse
, pExpr
, pS
->pGroupBy
)
6023 && ExprAlwaysFalse(pExpr
)==0
6025 sqlite3
*db
= pWalker
->pParse
->db
;
6026 Expr
*pNew
= sqlite3Expr(db
, TK_INTEGER
, "1");
6028 Expr
*pWhere
= pS
->pWhere
;
6029 SWAP(Expr
, *pNew
, *pExpr
);
6030 pNew
= sqlite3ExprAnd(pWalker
->pParse
, pWhere
, pNew
);
6037 return WRC_Continue
;
6041 ** Transfer eligible terms from the HAVING clause of a query, which is
6042 ** processed after grouping, to the WHERE clause, which is processed before
6043 ** grouping. For example, the query:
6045 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
6047 ** can be rewritten as:
6049 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
6051 ** A term of the HAVING expression is eligible for transfer if it consists
6052 ** entirely of constants and expressions that are also GROUP BY terms that
6053 ** use the "BINARY" collation sequence.
6055 static void havingToWhere(Parse
*pParse
, Select
*p
){
6057 memset(&sWalker
, 0, sizeof(sWalker
));
6058 sWalker
.pParse
= pParse
;
6059 sWalker
.xExprCallback
= havingToWhereExprCb
;
6060 sWalker
.u
.pSelect
= p
;
6061 sqlite3WalkExpr(&sWalker
, p
->pHaving
);
6062 #if SELECTTRACE_ENABLED
6063 if( sWalker
.eCode
&& (sqlite3SelectTrace
& 0x100)!=0 ){
6064 SELECTTRACE(0x100,pParse
,p
,("Move HAVING terms into WHERE:\n"));
6065 sqlite3TreeViewSelect(0, p
, 0);
6071 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
6072 ** If it is, then return the SrcList_item for the prior view. If it is not,
6075 static SrcItem
*isSelfJoinView(
6076 SrcList
*pTabList
, /* Search for self-joins in this FROM clause */
6077 SrcItem
*pThis
/* Search for prior reference to this subquery */
6080 assert( pThis
->pSelect
!=0 );
6081 if( pThis
->pSelect
->selFlags
& SF_PushDown
) return 0;
6082 for(pItem
= pTabList
->a
; pItem
<pThis
; pItem
++){
6084 if( pItem
->pSelect
==0 ) continue;
6085 if( pItem
->fg
.viaCoroutine
) continue;
6086 if( pItem
->zName
==0 ) continue;
6087 assert( pItem
->pTab
!=0 );
6088 assert( pThis
->pTab
!=0 );
6089 if( pItem
->pTab
->pSchema
!=pThis
->pTab
->pSchema
) continue;
6090 if( sqlite3_stricmp(pItem
->zName
, pThis
->zName
)!=0 ) continue;
6091 pS1
= pItem
->pSelect
;
6092 if( pItem
->pTab
->pSchema
==0 && pThis
->pSelect
->selId
!=pS1
->selId
){
6093 /* The query flattener left two different CTE tables with identical
6094 ** names in the same FROM clause. */
6097 if( pItem
->pSelect
->selFlags
& SF_PushDown
){
6098 /* The view was modified by some other optimization such as
6099 ** pushDownWhereTerms() */
6108 ** Deallocate a single AggInfo object
6110 static void agginfoFree(sqlite3
*db
, AggInfo
*p
){
6111 sqlite3DbFree(db
, p
->aCol
);
6112 sqlite3DbFree(db
, p
->aFunc
);
6113 sqlite3DbFreeNN(db
, p
);
6116 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6118 ** Attempt to transform a query of the form
6120 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
6124 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
6126 ** The transformation only works if all of the following are true:
6128 ** * The subquery is a UNION ALL of two or more terms
6129 ** * The subquery does not have a LIMIT clause
6130 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
6131 ** * The outer query is a simple count(*) with no WHERE clause or other
6132 ** extraneous syntax.
6134 ** Return TRUE if the optimization is undertaken.
6136 static int countOfViewOptimization(Parse
*pParse
, Select
*p
){
6137 Select
*pSub
, *pPrior
;
6141 if( (p
->selFlags
& SF_Aggregate
)==0 ) return 0; /* This is an aggregate */
6142 if( p
->pEList
->nExpr
!=1 ) return 0; /* Single result column */
6143 if( p
->pWhere
) return 0;
6144 if( p
->pGroupBy
) return 0;
6145 pExpr
= p
->pEList
->a
[0].pExpr
;
6146 if( pExpr
->op
!=TK_AGG_FUNCTION
) return 0; /* Result is an aggregate */
6147 if( sqlite3_stricmp(pExpr
->u
.zToken
,"count") ) return 0; /* Is count() */
6148 if( pExpr
->x
.pList
!=0 ) return 0; /* Must be count(*) */
6149 if( p
->pSrc
->nSrc
!=1 ) return 0; /* One table in FROM */
6150 pSub
= p
->pSrc
->a
[0].pSelect
;
6151 if( pSub
==0 ) return 0; /* The FROM is a subquery */
6152 if( pSub
->pPrior
==0 ) return 0; /* Must be a compound ry */
6154 if( pSub
->op
!=TK_ALL
&& pSub
->pPrior
) return 0; /* Must be UNION ALL */
6155 if( pSub
->pWhere
) return 0; /* No WHERE clause */
6156 if( pSub
->pLimit
) return 0; /* No LIMIT clause */
6157 if( pSub
->selFlags
& SF_Aggregate
) return 0; /* Not an aggregate */
6158 pSub
= pSub
->pPrior
; /* Repeat over compound */
6161 /* If we reach this point then it is OK to perform the transformation */
6166 pSub
= p
->pSrc
->a
[0].pSelect
;
6167 p
->pSrc
->a
[0].pSelect
= 0;
6168 sqlite3SrcListDelete(db
, p
->pSrc
);
6169 p
->pSrc
= sqlite3DbMallocZero(pParse
->db
, sizeof(*p
->pSrc
));
6172 pPrior
= pSub
->pPrior
;
6175 pSub
->selFlags
|= SF_Aggregate
;
6176 pSub
->selFlags
&= ~SF_Compound
;
6177 pSub
->nSelectRow
= 0;
6178 sqlite3ExprListDelete(db
, pSub
->pEList
);
6179 pTerm
= pPrior
? sqlite3ExprDup(db
, pCount
, 0) : pCount
;
6180 pSub
->pEList
= sqlite3ExprListAppend(pParse
, 0, pTerm
);
6181 pTerm
= sqlite3PExpr(pParse
, TK_SELECT
, 0, 0);
6182 sqlite3PExprAddSelect(pParse
, pTerm
, pSub
);
6186 pExpr
= sqlite3PExpr(pParse
, TK_PLUS
, pTerm
, pExpr
);
6190 p
->pEList
->a
[0].pExpr
= pExpr
;
6191 p
->selFlags
&= ~SF_Aggregate
;
6193 #if SELECTTRACE_ENABLED
6194 if( sqlite3SelectTrace
& 0x400 ){
6195 SELECTTRACE(0x400,pParse
,p
,("After count-of-view optimization:\n"));
6196 sqlite3TreeViewSelect(0, p
, 0);
6201 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
6204 ** Generate code for the SELECT statement given in the p argument.
6206 ** The results are returned according to the SelectDest structure.
6207 ** See comments in sqliteInt.h for further information.
6209 ** This routine returns the number of errors. If any errors are
6210 ** encountered, then an appropriate error message is left in
6213 ** This routine does NOT free the Select structure passed in. The
6214 ** calling function needs to do that.
6217 Parse
*pParse
, /* The parser context */
6218 Select
*p
, /* The SELECT statement being coded. */
6219 SelectDest
*pDest
/* What to do with the query results */
6221 int i
, j
; /* Loop counters */
6222 WhereInfo
*pWInfo
; /* Return from sqlite3WhereBegin() */
6223 Vdbe
*v
; /* The virtual machine under construction */
6224 int isAgg
; /* True for select lists like "count(*)" */
6225 ExprList
*pEList
= 0; /* List of columns to extract. */
6226 SrcList
*pTabList
; /* List of tables to select from */
6227 Expr
*pWhere
; /* The WHERE clause. May be NULL */
6228 ExprList
*pGroupBy
; /* The GROUP BY clause. May be NULL */
6229 Expr
*pHaving
; /* The HAVING clause. May be NULL */
6230 AggInfo
*pAggInfo
= 0; /* Aggregate information */
6231 int rc
= 1; /* Value to return from this function */
6232 DistinctCtx sDistinct
; /* Info on how to code the DISTINCT keyword */
6233 SortCtx sSort
; /* Info on how to code the ORDER BY clause */
6234 int iEnd
; /* Address of the end of the query */
6235 sqlite3
*db
; /* The database connection */
6236 ExprList
*pMinMaxOrderBy
= 0; /* Added ORDER BY for min/max queries */
6237 u8 minMaxFlag
; /* Flag for min/max queries */
6240 v
= sqlite3GetVdbe(pParse
);
6241 if( p
==0 || db
->mallocFailed
|| pParse
->nErr
){
6244 if( sqlite3AuthCheck(pParse
, SQLITE_SELECT
, 0, 0, 0) ) return 1;
6245 #if SELECTTRACE_ENABLED
6246 SELECTTRACE(1,pParse
,p
, ("begin processing:\n", pParse
->addrExplain
));
6247 if( sqlite3SelectTrace
& 0x100 ){
6248 sqlite3TreeViewSelect(0, p
, 0);
6252 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_DistFifo
);
6253 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_Fifo
);
6254 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_DistQueue
);
6255 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_Queue
);
6256 if( IgnorableDistinct(pDest
) ){
6257 assert(pDest
->eDest
==SRT_Exists
|| pDest
->eDest
==SRT_Union
||
6258 pDest
->eDest
==SRT_Except
|| pDest
->eDest
==SRT_Discard
||
6259 pDest
->eDest
==SRT_DistQueue
|| pDest
->eDest
==SRT_DistFifo
);
6260 /* All of these destinations are also able to ignore the ORDER BY clause */
6262 #if SELECTTRACE_ENABLED
6263 SELECTTRACE(1,pParse
,p
, ("dropping superfluous ORDER BY:\n"));
6264 if( sqlite3SelectTrace
& 0x100 ){
6265 sqlite3TreeViewExprList(0, p
->pOrderBy
, 0, "ORDERBY");
6268 sqlite3ParserAddCleanup(pParse
,
6269 (void(*)(sqlite3
*,void*))sqlite3ExprListDelete
,
6271 testcase( pParse
->earlyCleanup
);
6274 p
->selFlags
&= ~SF_Distinct
;
6275 p
->selFlags
|= SF_NoopOrderBy
;
6277 sqlite3SelectPrep(pParse
, p
, 0);
6278 if( pParse
->nErr
|| db
->mallocFailed
){
6281 assert( p
->pEList
!=0 );
6282 #if SELECTTRACE_ENABLED
6283 if( sqlite3SelectTrace
& 0x104 ){
6284 SELECTTRACE(0x104,pParse
,p
, ("after name resolution:\n"));
6285 sqlite3TreeViewSelect(0, p
, 0);
6289 /* If the SF_UpdateFrom flag is set, then this function is being called
6290 ** as part of populating the temp table for an UPDATE...FROM statement.
6291 ** In this case, it is an error if the target object (pSrc->a[0]) name
6292 ** or alias is duplicated within FROM clause (pSrc->a[1..n]). */
6293 if( p
->selFlags
& SF_UpdateFrom
){
6294 SrcItem
*p0
= &p
->pSrc
->a
[0];
6295 for(i
=1; i
<p
->pSrc
->nSrc
; i
++){
6296 SrcItem
*p1
= &p
->pSrc
->a
[i
];
6297 if( p0
->pTab
==p1
->pTab
&& 0==sqlite3_stricmp(p0
->zAlias
, p1
->zAlias
) ){
6298 sqlite3ErrorMsg(pParse
,
6299 "target object/alias may not appear in FROM clause: %s",
6300 p0
->zAlias
? p0
->zAlias
: p0
->pTab
->zName
6307 if( pDest
->eDest
==SRT_Output
){
6308 sqlite3GenerateColumnNames(pParse
, p
);
6311 #ifndef SQLITE_OMIT_WINDOWFUNC
6312 if( sqlite3WindowRewrite(pParse
, p
) ){
6313 assert( db
->mallocFailed
|| pParse
->nErr
>0 );
6316 #if SELECTTRACE_ENABLED
6317 if( p
->pWin
&& (sqlite3SelectTrace
& 0x108)!=0 ){
6318 SELECTTRACE(0x104,pParse
,p
, ("after window rewrite:\n"));
6319 sqlite3TreeViewSelect(0, p
, 0);
6322 #endif /* SQLITE_OMIT_WINDOWFUNC */
6324 isAgg
= (p
->selFlags
& SF_Aggregate
)!=0;
6325 memset(&sSort
, 0, sizeof(sSort
));
6326 sSort
.pOrderBy
= p
->pOrderBy
;
6328 /* Try to do various optimizations (flattening subqueries, and strength
6329 ** reduction of join operators) in the FROM clause up into the main query
6331 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6332 for(i
=0; !p
->pPrior
&& i
<pTabList
->nSrc
; i
++){
6333 SrcItem
*pItem
= &pTabList
->a
[i
];
6334 Select
*pSub
= pItem
->pSelect
;
6335 Table
*pTab
= pItem
->pTab
;
6337 /* The expander should have already created transient Table objects
6338 ** even for FROM clause elements such as subqueries that do not correspond
6339 ** to a real table */
6342 /* Convert LEFT JOIN into JOIN if there are terms of the right table
6343 ** of the LEFT JOIN used in the WHERE clause.
6345 if( (pItem
->fg
.jointype
& JT_LEFT
)!=0
6346 && sqlite3ExprImpliesNonNullRow(p
->pWhere
, pItem
->iCursor
)
6347 && OptimizationEnabled(db
, SQLITE_SimplifyJoin
)
6349 SELECTTRACE(0x100,pParse
,p
,
6350 ("LEFT-JOIN simplifies to JOIN on term %d\n",i
));
6351 pItem
->fg
.jointype
&= ~(JT_LEFT
|JT_OUTER
);
6352 unsetJoinExpr(p
->pWhere
, pItem
->iCursor
);
6355 /* No futher action if this term of the FROM clause is no a subquery */
6356 if( pSub
==0 ) continue;
6358 /* Catch mismatch in the declared columns of a view and the number of
6359 ** columns in the SELECT on the RHS */
6360 if( pTab
->nCol
!=pSub
->pEList
->nExpr
){
6361 sqlite3ErrorMsg(pParse
, "expected %d columns for '%s' but got %d",
6362 pTab
->nCol
, pTab
->zName
, pSub
->pEList
->nExpr
);
6366 /* Do not try to flatten an aggregate subquery.
6368 ** Flattening an aggregate subquery is only possible if the outer query
6369 ** is not a join. But if the outer query is not a join, then the subquery
6370 ** will be implemented as a co-routine and there is no advantage to
6371 ** flattening in that case.
6373 if( (pSub
->selFlags
& SF_Aggregate
)!=0 ) continue;
6374 assert( pSub
->pGroupBy
==0 );
6376 /* If the outer query contains a "complex" result set (that is,
6377 ** if the result set of the outer query uses functions or subqueries)
6378 ** and if the subquery contains an ORDER BY clause and if
6379 ** it will be implemented as a co-routine, then do not flatten. This
6380 ** restriction allows SQL constructs like this:
6382 ** SELECT expensive_function(x)
6383 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6385 ** The expensive_function() is only computed on the 10 rows that
6386 ** are output, rather than every row of the table.
6388 ** The requirement that the outer query have a complex result set
6389 ** means that flattening does occur on simpler SQL constraints without
6390 ** the expensive_function() like:
6392 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6394 if( pSub
->pOrderBy
!=0
6396 && (p
->selFlags
& SF_ComplexResult
)!=0
6397 && (pTabList
->nSrc
==1
6398 || (pTabList
->a
[1].fg
.jointype
&(JT_LEFT
|JT_CROSS
))!=0)
6403 if( flattenSubquery(pParse
, p
, i
, isAgg
) ){
6404 if( pParse
->nErr
) goto select_end
;
6405 /* This subquery can be absorbed into its parent. */
6409 if( db
->mallocFailed
) goto select_end
;
6410 if( !IgnorableOrderby(pDest
) ){
6411 sSort
.pOrderBy
= p
->pOrderBy
;
6416 #ifndef SQLITE_OMIT_COMPOUND_SELECT
6417 /* Handle compound SELECT statements using the separate multiSelect()
6421 rc
= multiSelect(pParse
, p
, pDest
);
6422 #if SELECTTRACE_ENABLED
6423 SELECTTRACE(0x1,pParse
,p
,("end compound-select processing\n"));
6424 if( (sqlite3SelectTrace
& 0x2000)!=0 && ExplainQueryPlanParent(pParse
)==0 ){
6425 sqlite3TreeViewSelect(0, p
, 0);
6428 if( p
->pNext
==0 ) ExplainQueryPlanPop(pParse
);
6433 /* Do the WHERE-clause constant propagation optimization if this is
6434 ** a join. No need to speed time on this operation for non-join queries
6435 ** as the equivalent optimization will be handled by query planner in
6436 ** sqlite3WhereBegin().
6439 && p
->pWhere
->op
==TK_AND
6440 && OptimizationEnabled(db
, SQLITE_PropagateConst
)
6441 && propagateConstants(pParse
, p
)
6443 #if SELECTTRACE_ENABLED
6444 if( sqlite3SelectTrace
& 0x100 ){
6445 SELECTTRACE(0x100,pParse
,p
,("After constant propagation:\n"));
6446 sqlite3TreeViewSelect(0, p
, 0);
6450 SELECTTRACE(0x100,pParse
,p
,("Constant propagation not helpful\n"));
6453 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6454 if( OptimizationEnabled(db
, SQLITE_QueryFlattener
|SQLITE_CountOfView
)
6455 && countOfViewOptimization(pParse
, p
)
6457 if( db
->mallocFailed
) goto select_end
;
6463 /* For each term in the FROM clause, do two things:
6464 ** (1) Authorized unreferenced tables
6465 ** (2) Generate code for all sub-queries
6467 for(i
=0; i
<pTabList
->nSrc
; i
++){
6468 SrcItem
*pItem
= &pTabList
->a
[i
];
6472 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6473 const char *zSavedAuthContext
;
6476 /* Issue SQLITE_READ authorizations with a fake column name for any
6477 ** tables that are referenced but from which no values are extracted.
6478 ** Examples of where these kinds of null SQLITE_READ authorizations
6481 ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
6482 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
6484 ** The fake column name is an empty string. It is possible for a table to
6485 ** have a column named by the empty string, in which case there is no way to
6486 ** distinguish between an unreferenced table and an actual reference to the
6487 ** "" column. The original design was for the fake column name to be a NULL,
6488 ** which would be unambiguous. But legacy authorization callbacks might
6489 ** assume the column name is non-NULL and segfault. The use of an empty
6490 ** string for the fake column name seems safer.
6492 if( pItem
->colUsed
==0 && pItem
->zName
!=0 ){
6493 sqlite3AuthCheck(pParse
, SQLITE_READ
, pItem
->zName
, "", pItem
->zDatabase
);
6496 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6497 /* Generate code for all sub-queries in the FROM clause
6499 pSub
= pItem
->pSelect
;
6500 if( pSub
==0 ) continue;
6502 /* The code for a subquery should only be generated once. */
6503 assert( pItem
->addrFillSub
==0 );
6505 /* Increment Parse.nHeight by the height of the largest expression
6506 ** tree referred to by this, the parent select. The child select
6507 ** may contain expression trees of at most
6508 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
6509 ** more conservative than necessary, but much easier than enforcing
6512 pParse
->nHeight
+= sqlite3SelectExprHeight(p
);
6514 /* Make copies of constant WHERE-clause terms in the outer query down
6515 ** inside the subquery. This can help the subquery to run more efficiently.
6517 if( OptimizationEnabled(db
, SQLITE_PushDown
)
6518 && (pItem
->fg
.isCte
==0 || pItem
->u2
.pCteUse
->eM10d
!=M10d_Yes
)
6519 && pushDownWhereTerms(pParse
, pSub
, p
->pWhere
, pItem
->iCursor
,
6520 (pItem
->fg
.jointype
& JT_OUTER
)!=0)
6522 #if SELECTTRACE_ENABLED
6523 if( sqlite3SelectTrace
& 0x100 ){
6524 SELECTTRACE(0x100,pParse
,p
,
6525 ("After WHERE-clause push-down into subquery %d:\n", pSub
->selId
));
6526 sqlite3TreeViewSelect(0, p
, 0);
6529 assert( pItem
->pSelect
&& (pItem
->pSelect
->selFlags
& SF_PushDown
)!=0 );
6531 SELECTTRACE(0x100,pParse
,p
,("Push-down not possible\n"));
6534 zSavedAuthContext
= pParse
->zAuthContext
;
6535 pParse
->zAuthContext
= pItem
->zName
;
6537 /* Generate code to implement the subquery
6539 ** The subquery is implemented as a co-routine if:
6540 ** (1) the subquery is guaranteed to be the outer loop (so that
6541 ** it does not need to be computed more than once), and
6542 ** (2) the subquery is not a CTE that should be materialized
6544 ** TODO: Are there other reasons beside (1) and (2) to use a co-routine
6548 && (pTabList
->nSrc
==1
6549 || (pTabList
->a
[1].fg
.jointype
&(JT_LEFT
|JT_CROSS
))!=0) /* (1) */
6550 && (pItem
->fg
.isCte
==0 || pItem
->u2
.pCteUse
->eM10d
!=M10d_Yes
) /* (2) */
6552 /* Implement a co-routine that will return a single row of the result
6553 ** set on each invocation.
6555 int addrTop
= sqlite3VdbeCurrentAddr(v
)+1;
6557 pItem
->regReturn
= ++pParse
->nMem
;
6558 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, pItem
->regReturn
, 0, addrTop
);
6559 VdbeComment((v
, "%!S", pItem
));
6560 pItem
->addrFillSub
= addrTop
;
6561 sqlite3SelectDestInit(&dest
, SRT_Coroutine
, pItem
->regReturn
);
6562 ExplainQueryPlan((pParse
, 1, "CO-ROUTINE %!S", pItem
));
6563 sqlite3Select(pParse
, pSub
, &dest
);
6564 pItem
->pTab
->nRowLogEst
= pSub
->nSelectRow
;
6565 pItem
->fg
.viaCoroutine
= 1;
6566 pItem
->regResult
= dest
.iSdst
;
6567 sqlite3VdbeEndCoroutine(v
, pItem
->regReturn
);
6568 sqlite3VdbeJumpHere(v
, addrTop
-1);
6569 sqlite3ClearTempRegCache(pParse
);
6570 }else if( pItem
->fg
.isCte
&& pItem
->u2
.pCteUse
->addrM9e
>0 ){
6571 /* This is a CTE for which materialization code has already been
6572 ** generated. Invoke the subroutine to compute the materialization,
6573 ** the make the pItem->iCursor be a copy of the ephemerial table that
6574 ** holds the result of the materialization. */
6575 CteUse
*pCteUse
= pItem
->u2
.pCteUse
;
6576 sqlite3VdbeAddOp2(v
, OP_Gosub
, pCteUse
->regRtn
, pCteUse
->addrM9e
);
6577 if( pItem
->iCursor
!=pCteUse
->iCur
){
6578 sqlite3VdbeAddOp2(v
, OP_OpenDup
, pItem
->iCursor
, pCteUse
->iCur
);
6580 pSub
->nSelectRow
= pCteUse
->nRowEst
;
6581 }else if( (pPrior
= isSelfJoinView(pTabList
, pItem
))!=0 ){
6582 /* This view has already been materialized by a prior entry in
6583 ** this same FROM clause. Reuse it. */
6584 if( pPrior
->addrFillSub
){
6585 sqlite3VdbeAddOp2(v
, OP_Gosub
, pPrior
->regReturn
, pPrior
->addrFillSub
);
6587 sqlite3VdbeAddOp2(v
, OP_OpenDup
, pItem
->iCursor
, pPrior
->iCursor
);
6588 pSub
->nSelectRow
= pPrior
->pSelect
->nSelectRow
;
6590 /* Materialize the view. If the view is not correlated, generate a
6591 ** subroutine to do the materialization so that subsequent uses of
6592 ** the same view can reuse the materialization. */
6597 pItem
->regReturn
= ++pParse
->nMem
;
6598 topAddr
= sqlite3VdbeAddOp2(v
, OP_Integer
, 0, pItem
->regReturn
);
6599 pItem
->addrFillSub
= topAddr
+1;
6600 if( pItem
->fg
.isCorrelated
==0 ){
6601 /* If the subquery is not correlated and if we are not inside of
6602 ** a trigger, then we only need to compute the value of the subquery
6604 onceAddr
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
6605 VdbeComment((v
, "materialize %!S", pItem
));
6607 VdbeNoopComment((v
, "materialize %!S", pItem
));
6609 sqlite3SelectDestInit(&dest
, SRT_EphemTab
, pItem
->iCursor
);
6610 ExplainQueryPlan((pParse
, 1, "MATERIALIZE %!S", pItem
));
6611 sqlite3Select(pParse
, pSub
, &dest
);
6612 pItem
->pTab
->nRowLogEst
= pSub
->nSelectRow
;
6613 if( onceAddr
) sqlite3VdbeJumpHere(v
, onceAddr
);
6614 retAddr
= sqlite3VdbeAddOp1(v
, OP_Return
, pItem
->regReturn
);
6615 VdbeComment((v
, "end %!S", pItem
));
6616 sqlite3VdbeChangeP1(v
, topAddr
, retAddr
);
6617 sqlite3ClearTempRegCache(pParse
);
6618 if( pItem
->fg
.isCte
&& pItem
->fg
.isCorrelated
==0 ){
6619 CteUse
*pCteUse
= pItem
->u2
.pCteUse
;
6620 pCteUse
->addrM9e
= pItem
->addrFillSub
;
6621 pCteUse
->regRtn
= pItem
->regReturn
;
6622 pCteUse
->iCur
= pItem
->iCursor
;
6623 pCteUse
->nRowEst
= pSub
->nSelectRow
;
6626 if( db
->mallocFailed
) goto select_end
;
6627 pParse
->nHeight
-= sqlite3SelectExprHeight(p
);
6628 pParse
->zAuthContext
= zSavedAuthContext
;
6632 /* Various elements of the SELECT copied into local variables for
6636 pGroupBy
= p
->pGroupBy
;
6637 pHaving
= p
->pHaving
;
6638 sDistinct
.isTnct
= (p
->selFlags
& SF_Distinct
)!=0;
6640 #if SELECTTRACE_ENABLED
6641 if( sqlite3SelectTrace
& 0x400 ){
6642 SELECTTRACE(0x400,pParse
,p
,("After all FROM-clause analysis:\n"));
6643 sqlite3TreeViewSelect(0, p
, 0);
6647 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
6648 ** if the select-list is the same as the ORDER BY list, then this query
6649 ** can be rewritten as a GROUP BY. In other words, this:
6651 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
6653 ** is transformed to:
6655 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
6657 ** The second form is preferred as a single index (or temp-table) may be
6658 ** used for both the ORDER BY and DISTINCT processing. As originally
6659 ** written the query must use a temp-table for at least one of the ORDER
6660 ** BY and DISTINCT, and an index or separate temp-table for the other.
6662 if( (p
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
6663 && sqlite3ExprListCompare(sSort
.pOrderBy
, pEList
, -1)==0
6664 #ifndef SQLITE_OMIT_WINDOWFUNC
6668 p
->selFlags
&= ~SF_Distinct
;
6669 pGroupBy
= p
->pGroupBy
= sqlite3ExprListDup(db
, pEList
, 0);
6670 p
->selFlags
|= SF_Aggregate
;
6671 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
6672 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
6673 ** original setting of the SF_Distinct flag, not the current setting */
6674 assert( sDistinct
.isTnct
);
6676 #if SELECTTRACE_ENABLED
6677 if( sqlite3SelectTrace
& 0x400 ){
6678 SELECTTRACE(0x400,pParse
,p
,("Transform DISTINCT into GROUP BY:\n"));
6679 sqlite3TreeViewSelect(0, p
, 0);
6684 /* If there is an ORDER BY clause, then create an ephemeral index to
6685 ** do the sorting. But this sorting ephemeral index might end up
6686 ** being unused if the data can be extracted in pre-sorted order.
6687 ** If that is the case, then the OP_OpenEphemeral instruction will be
6688 ** changed to an OP_Noop once we figure out that the sorting index is
6689 ** not needed. The sSort.addrSortIndex variable is used to facilitate
6692 if( sSort
.pOrderBy
){
6694 pKeyInfo
= sqlite3KeyInfoFromExprList(
6695 pParse
, sSort
.pOrderBy
, 0, pEList
->nExpr
);
6696 sSort
.iECursor
= pParse
->nTab
++;
6697 sSort
.addrSortIndex
=
6698 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
6699 sSort
.iECursor
, sSort
.pOrderBy
->nExpr
+1+pEList
->nExpr
, 0,
6700 (char*)pKeyInfo
, P4_KEYINFO
6703 sSort
.addrSortIndex
= -1;
6706 /* If the output is destined for a temporary table, open that table.
6708 if( pDest
->eDest
==SRT_EphemTab
){
6709 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pDest
->iSDParm
, pEList
->nExpr
);
6714 iEnd
= sqlite3VdbeMakeLabel(pParse
);
6715 if( (p
->selFlags
& SF_FixedLimit
)==0 ){
6716 p
->nSelectRow
= 320; /* 4 billion rows */
6718 computeLimitRegisters(pParse
, p
, iEnd
);
6719 if( p
->iLimit
==0 && sSort
.addrSortIndex
>=0 ){
6720 sqlite3VdbeChangeOpcode(v
, sSort
.addrSortIndex
, OP_SorterOpen
);
6721 sSort
.sortFlags
|= SORTFLAG_UseSorter
;
6724 /* Open an ephemeral index to use for the distinct set.
6726 if( p
->selFlags
& SF_Distinct
){
6727 sDistinct
.tabTnct
= pParse
->nTab
++;
6728 sDistinct
.addrTnct
= sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
6729 sDistinct
.tabTnct
, 0, 0,
6730 (char*)sqlite3KeyInfoFromExprList(pParse
, p
->pEList
,0,0),
6732 sqlite3VdbeChangeP5(v
, BTREE_UNORDERED
);
6733 sDistinct
.eTnctType
= WHERE_DISTINCT_UNORDERED
;
6735 sDistinct
.eTnctType
= WHERE_DISTINCT_NOOP
;
6738 if( !isAgg
&& pGroupBy
==0 ){
6739 /* No aggregate functions and no GROUP BY clause */
6740 u16 wctrlFlags
= (sDistinct
.isTnct
? WHERE_WANT_DISTINCT
: 0)
6741 | (p
->selFlags
& SF_FixedLimit
);
6742 #ifndef SQLITE_OMIT_WINDOWFUNC
6743 Window
*pWin
= p
->pWin
; /* Main window object (or NULL) */
6745 sqlite3WindowCodeInit(pParse
, p
);
6748 assert( WHERE_USE_LIMIT
==SF_FixedLimit
);
6751 /* Begin the database scan. */
6752 SELECTTRACE(1,pParse
,p
,("WhereBegin\n"));
6753 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, sSort
.pOrderBy
,
6754 p
->pEList
, wctrlFlags
, p
->nSelectRow
);
6755 if( pWInfo
==0 ) goto select_end
;
6756 if( sqlite3WhereOutputRowCount(pWInfo
) < p
->nSelectRow
){
6757 p
->nSelectRow
= sqlite3WhereOutputRowCount(pWInfo
);
6759 if( sDistinct
.isTnct
&& sqlite3WhereIsDistinct(pWInfo
) ){
6760 sDistinct
.eTnctType
= sqlite3WhereIsDistinct(pWInfo
);
6762 if( sSort
.pOrderBy
){
6763 sSort
.nOBSat
= sqlite3WhereIsOrdered(pWInfo
);
6764 sSort
.labelOBLopt
= sqlite3WhereOrderByLimitOptLabel(pWInfo
);
6765 if( sSort
.nOBSat
==sSort
.pOrderBy
->nExpr
){
6769 SELECTTRACE(1,pParse
,p
,("WhereBegin returns\n"));
6771 /* If sorting index that was created by a prior OP_OpenEphemeral
6772 ** instruction ended up not being needed, then change the OP_OpenEphemeral
6775 if( sSort
.addrSortIndex
>=0 && sSort
.pOrderBy
==0 ){
6776 sqlite3VdbeChangeToNoop(v
, sSort
.addrSortIndex
);
6779 assert( p
->pEList
==pEList
);
6780 #ifndef SQLITE_OMIT_WINDOWFUNC
6782 int addrGosub
= sqlite3VdbeMakeLabel(pParse
);
6783 int iCont
= sqlite3VdbeMakeLabel(pParse
);
6784 int iBreak
= sqlite3VdbeMakeLabel(pParse
);
6785 int regGosub
= ++pParse
->nMem
;
6787 sqlite3WindowCodeStep(pParse
, p
, pWInfo
, regGosub
, addrGosub
);
6789 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, iBreak
);
6790 sqlite3VdbeResolveLabel(v
, addrGosub
);
6791 VdbeNoopComment((v
, "inner-loop subroutine"));
6792 sSort
.labelOBLopt
= 0;
6793 selectInnerLoop(pParse
, p
, -1, &sSort
, &sDistinct
, pDest
, iCont
, iBreak
);
6794 sqlite3VdbeResolveLabel(v
, iCont
);
6795 sqlite3VdbeAddOp1(v
, OP_Return
, regGosub
);
6796 VdbeComment((v
, "end inner-loop subroutine"));
6797 sqlite3VdbeResolveLabel(v
, iBreak
);
6799 #endif /* SQLITE_OMIT_WINDOWFUNC */
6801 /* Use the standard inner loop. */
6802 selectInnerLoop(pParse
, p
, -1, &sSort
, &sDistinct
, pDest
,
6803 sqlite3WhereContinueLabel(pWInfo
),
6804 sqlite3WhereBreakLabel(pWInfo
));
6806 /* End the database scan loop.
6808 SELECTTRACE(1,pParse
,p
,("WhereEnd\n"));
6809 sqlite3WhereEnd(pWInfo
);
6812 /* This case when there exist aggregate functions or a GROUP BY clause
6814 NameContext sNC
; /* Name context for processing aggregate information */
6815 int iAMem
; /* First Mem address for storing current GROUP BY */
6816 int iBMem
; /* First Mem address for previous GROUP BY */
6817 int iUseFlag
; /* Mem address holding flag indicating that at least
6818 ** one row of the input to the aggregator has been
6820 int iAbortFlag
; /* Mem address which causes query abort if positive */
6821 int groupBySort
; /* Rows come from source in GROUP BY order */
6822 int addrEnd
; /* End of processing for this SELECT */
6823 int sortPTab
= 0; /* Pseudotable used to decode sorting results */
6824 int sortOut
= 0; /* Output register from the sorter */
6825 int orderByGrp
= 0; /* True if the GROUP BY and ORDER BY are the same */
6827 /* Remove any and all aliases between the result set and the
6831 int k
; /* Loop counter */
6832 struct ExprList_item
*pItem
; /* For looping over expression in a list */
6834 for(k
=p
->pEList
->nExpr
, pItem
=p
->pEList
->a
; k
>0; k
--, pItem
++){
6835 pItem
->u
.x
.iAlias
= 0;
6837 for(k
=pGroupBy
->nExpr
, pItem
=pGroupBy
->a
; k
>0; k
--, pItem
++){
6838 pItem
->u
.x
.iAlias
= 0;
6840 assert( 66==sqlite3LogEst(100) );
6841 if( p
->nSelectRow
>66 ) p
->nSelectRow
= 66;
6843 /* If there is both a GROUP BY and an ORDER BY clause and they are
6844 ** identical, then it may be possible to disable the ORDER BY clause
6845 ** on the grounds that the GROUP BY will cause elements to come out
6846 ** in the correct order. It also may not - the GROUP BY might use a
6847 ** database index that causes rows to be grouped together as required
6848 ** but not actually sorted. Either way, record the fact that the
6849 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6851 if( sSort
.pOrderBy
&& pGroupBy
->nExpr
==sSort
.pOrderBy
->nExpr
){
6853 /* The GROUP BY processing doesn't care whether rows are delivered in
6854 ** ASC or DESC order - only that each group is returned contiguously.
6855 ** So set the ASC/DESC flags in the GROUP BY to match those in the
6856 ** ORDER BY to maximize the chances of rows being delivered in an
6857 ** order that makes the ORDER BY redundant. */
6858 for(ii
=0; ii
<pGroupBy
->nExpr
; ii
++){
6859 u8 sortFlags
= sSort
.pOrderBy
->a
[ii
].sortFlags
& KEYINFO_ORDER_DESC
;
6860 pGroupBy
->a
[ii
].sortFlags
= sortFlags
;
6862 if( sqlite3ExprListCompare(pGroupBy
, sSort
.pOrderBy
, -1)==0 ){
6867 assert( 0==sqlite3LogEst(1) );
6871 /* Create a label to jump to when we want to abort the query */
6872 addrEnd
= sqlite3VdbeMakeLabel(pParse
);
6874 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6875 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6876 ** SELECT statement.
6878 pAggInfo
= sqlite3DbMallocZero(db
, sizeof(*pAggInfo
) );
6880 sqlite3ParserAddCleanup(pParse
,
6881 (void(*)(sqlite3
*,void*))agginfoFree
, pAggInfo
);
6882 testcase( pParse
->earlyCleanup
);
6884 if( db
->mallocFailed
){
6887 pAggInfo
->selId
= p
->selId
;
6888 memset(&sNC
, 0, sizeof(sNC
));
6889 sNC
.pParse
= pParse
;
6890 sNC
.pSrcList
= pTabList
;
6891 sNC
.uNC
.pAggInfo
= pAggInfo
;
6892 VVA_ONLY( sNC
.ncFlags
= NC_UAggInfo
; )
6893 pAggInfo
->mnReg
= pParse
->nMem
+1;
6894 pAggInfo
->nSortingColumn
= pGroupBy
? pGroupBy
->nExpr
: 0;
6895 pAggInfo
->pGroupBy
= pGroupBy
;
6896 sqlite3ExprAnalyzeAggList(&sNC
, pEList
);
6897 sqlite3ExprAnalyzeAggList(&sNC
, sSort
.pOrderBy
);
6900 assert( pWhere
==p
->pWhere
);
6901 assert( pHaving
==p
->pHaving
);
6902 assert( pGroupBy
==p
->pGroupBy
);
6903 havingToWhere(pParse
, p
);
6906 sqlite3ExprAnalyzeAggregates(&sNC
, pHaving
);
6908 pAggInfo
->nAccumulator
= pAggInfo
->nColumn
;
6909 if( p
->pGroupBy
==0 && p
->pHaving
==0 && pAggInfo
->nFunc
==1 ){
6910 minMaxFlag
= minMaxQuery(db
, pAggInfo
->aFunc
[0].pFExpr
, &pMinMaxOrderBy
);
6912 minMaxFlag
= WHERE_ORDERBY_NORMAL
;
6914 for(i
=0; i
<pAggInfo
->nFunc
; i
++){
6915 Expr
*pExpr
= pAggInfo
->aFunc
[i
].pFExpr
;
6916 assert( !ExprHasProperty(pExpr
, EP_xIsSelect
) );
6917 sNC
.ncFlags
|= NC_InAggFunc
;
6918 sqlite3ExprAnalyzeAggList(&sNC
, pExpr
->x
.pList
);
6919 #ifndef SQLITE_OMIT_WINDOWFUNC
6920 assert( !IsWindowFunc(pExpr
) );
6921 if( ExprHasProperty(pExpr
, EP_WinFunc
) ){
6922 sqlite3ExprAnalyzeAggregates(&sNC
, pExpr
->y
.pWin
->pFilter
);
6925 sNC
.ncFlags
&= ~NC_InAggFunc
;
6927 pAggInfo
->mxReg
= pParse
->nMem
;
6928 if( db
->mallocFailed
) goto select_end
;
6929 #if SELECTTRACE_ENABLED
6930 if( sqlite3SelectTrace
& 0x400 ){
6932 SELECTTRACE(0x400,pParse
,p
,("After aggregate analysis %p:\n", pAggInfo
));
6933 sqlite3TreeViewSelect(0, p
, 0);
6935 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag
);
6936 sqlite3TreeViewExprList(0, pMinMaxOrderBy
, 0, "ORDERBY");
6938 for(ii
=0; ii
<pAggInfo
->nColumn
; ii
++){
6939 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6940 ii
, pAggInfo
->aCol
[ii
].iMem
);
6941 sqlite3TreeViewExpr(0, pAggInfo
->aCol
[ii
].pCExpr
, 0);
6943 for(ii
=0; ii
<pAggInfo
->nFunc
; ii
++){
6944 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6945 ii
, pAggInfo
->aFunc
[ii
].iMem
);
6946 sqlite3TreeViewExpr(0, pAggInfo
->aFunc
[ii
].pFExpr
, 0);
6952 /* Processing for aggregates with GROUP BY is very different and
6953 ** much more complex than aggregates without a GROUP BY.
6956 KeyInfo
*pKeyInfo
; /* Keying information for the group by clause */
6957 int addr1
; /* A-vs-B comparision jump */
6958 int addrOutputRow
; /* Start of subroutine that outputs a result row */
6959 int regOutputRow
; /* Return address register for output subroutine */
6960 int addrSetAbort
; /* Set the abort flag and return */
6961 int addrTopOfLoop
; /* Top of the input loop */
6962 int addrSortingIdx
; /* The OP_OpenEphemeral for the sorting index */
6963 int addrReset
; /* Subroutine for resetting the accumulator */
6964 int regReset
; /* Return address register for reset subroutine */
6965 ExprList
*pDistinct
= 0;
6967 int eDist
= WHERE_DISTINCT_NOOP
;
6969 if( pAggInfo
->nFunc
==1
6970 && pAggInfo
->aFunc
[0].iDistinct
>=0
6971 && pAggInfo
->aFunc
[0].pFExpr
->x
.pList
6973 Expr
*pExpr
= pAggInfo
->aFunc
[0].pFExpr
->x
.pList
->a
[0].pExpr
;
6974 pExpr
= sqlite3ExprDup(db
, pExpr
, 0);
6975 pDistinct
= sqlite3ExprListDup(db
, pGroupBy
, 0);
6976 pDistinct
= sqlite3ExprListAppend(pParse
, pDistinct
, pExpr
);
6977 distFlag
= pDistinct
? (WHERE_WANT_DISTINCT
|WHERE_AGG_DISTINCT
) : 0;
6980 /* If there is a GROUP BY clause we might need a sorting index to
6981 ** implement it. Allocate that sorting index now. If it turns out
6982 ** that we do not need it after all, the OP_SorterOpen instruction
6983 ** will be converted into a Noop.
6985 pAggInfo
->sortingIdx
= pParse
->nTab
++;
6986 pKeyInfo
= sqlite3KeyInfoFromExprList(pParse
, pGroupBy
,
6987 0, pAggInfo
->nColumn
);
6988 addrSortingIdx
= sqlite3VdbeAddOp4(v
, OP_SorterOpen
,
6989 pAggInfo
->sortingIdx
, pAggInfo
->nSortingColumn
,
6990 0, (char*)pKeyInfo
, P4_KEYINFO
);
6992 /* Initialize memory locations used by GROUP BY aggregate processing
6994 iUseFlag
= ++pParse
->nMem
;
6995 iAbortFlag
= ++pParse
->nMem
;
6996 regOutputRow
= ++pParse
->nMem
;
6997 addrOutputRow
= sqlite3VdbeMakeLabel(pParse
);
6998 regReset
= ++pParse
->nMem
;
6999 addrReset
= sqlite3VdbeMakeLabel(pParse
);
7000 iAMem
= pParse
->nMem
+ 1;
7001 pParse
->nMem
+= pGroupBy
->nExpr
;
7002 iBMem
= pParse
->nMem
+ 1;
7003 pParse
->nMem
+= pGroupBy
->nExpr
;
7004 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, iAbortFlag
);
7005 VdbeComment((v
, "clear abort flag"));
7006 sqlite3VdbeAddOp3(v
, OP_Null
, 0, iAMem
, iAMem
+pGroupBy
->nExpr
-1);
7008 /* Begin a loop that will extract all source rows in GROUP BY order.
7009 ** This might involve two separate loops with an OP_Sort in between, or
7010 ** it might be a single loop that uses an index to extract information
7011 ** in the right order to begin with.
7013 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReset
, addrReset
);
7014 SELECTTRACE(1,pParse
,p
,("WhereBegin\n"));
7015 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, pGroupBy
, pDistinct
,
7016 WHERE_GROUPBY
| (orderByGrp
? WHERE_SORTBYGROUP
: 0) | distFlag
, 0
7019 sqlite3ExprListDelete(db
, pDistinct
);
7022 eDist
= sqlite3WhereIsDistinct(pWInfo
);
7023 SELECTTRACE(1,pParse
,p
,("WhereBegin returns\n"));
7024 if( sqlite3WhereIsOrdered(pWInfo
)==pGroupBy
->nExpr
){
7025 /* The optimizer is able to deliver rows in group by order so
7026 ** we do not have to sort. The OP_OpenEphemeral table will be
7027 ** cancelled later because we still need to use the pKeyInfo
7031 /* Rows are coming out in undetermined order. We have to push
7032 ** each row into a sorting index, terminate the first loop,
7033 ** then loop over the sorting index in order to get the output
7041 explainTempTable(pParse
,
7042 (sDistinct
.isTnct
&& (p
->selFlags
&SF_Distinct
)==0) ?
7043 "DISTINCT" : "GROUP BY");
7046 nGroupBy
= pGroupBy
->nExpr
;
7049 for(i
=0; i
<pAggInfo
->nColumn
; i
++){
7050 if( pAggInfo
->aCol
[i
].iSorterColumn
>=j
){
7055 regBase
= sqlite3GetTempRange(pParse
, nCol
);
7056 sqlite3ExprCodeExprList(pParse
, pGroupBy
, regBase
, 0, 0);
7058 for(i
=0; i
<pAggInfo
->nColumn
; i
++){
7059 struct AggInfo_col
*pCol
= &pAggInfo
->aCol
[i
];
7060 if( pCol
->iSorterColumn
>=j
){
7061 int r1
= j
+ regBase
;
7062 sqlite3ExprCodeGetColumnOfTable(v
,
7063 pCol
->pTab
, pCol
->iTable
, pCol
->iColumn
, r1
);
7067 regRecord
= sqlite3GetTempReg(pParse
);
7068 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regBase
, nCol
, regRecord
);
7069 sqlite3VdbeAddOp2(v
, OP_SorterInsert
, pAggInfo
->sortingIdx
, regRecord
);
7070 sqlite3ReleaseTempReg(pParse
, regRecord
);
7071 sqlite3ReleaseTempRange(pParse
, regBase
, nCol
);
7072 SELECTTRACE(1,pParse
,p
,("WhereEnd\n"));
7073 sqlite3WhereEnd(pWInfo
);
7074 pAggInfo
->sortingIdxPTab
= sortPTab
= pParse
->nTab
++;
7075 sortOut
= sqlite3GetTempReg(pParse
);
7076 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, sortPTab
, sortOut
, nCol
);
7077 sqlite3VdbeAddOp2(v
, OP_SorterSort
, pAggInfo
->sortingIdx
, addrEnd
);
7078 VdbeComment((v
, "GROUP BY sort")); VdbeCoverage(v
);
7079 pAggInfo
->useSortingIdx
= 1;
7082 /* If the index or temporary table used by the GROUP BY sort
7083 ** will naturally deliver rows in the order required by the ORDER BY
7084 ** clause, cancel the ephemeral table open coded earlier.
7086 ** This is an optimization - the correct answer should result regardless.
7087 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
7088 ** disable this optimization for testing purposes. */
7089 if( orderByGrp
&& OptimizationEnabled(db
, SQLITE_GroupByOrder
)
7090 && (groupBySort
|| sqlite3WhereIsSorted(pWInfo
))
7093 sqlite3VdbeChangeToNoop(v
, sSort
.addrSortIndex
);
7096 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
7097 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
7098 ** Then compare the current GROUP BY terms against the GROUP BY terms
7099 ** from the previous row currently stored in a0, a1, a2...
7101 addrTopOfLoop
= sqlite3VdbeCurrentAddr(v
);
7103 sqlite3VdbeAddOp3(v
, OP_SorterData
, pAggInfo
->sortingIdx
,
7106 for(j
=0; j
<pGroupBy
->nExpr
; j
++){
7108 sqlite3VdbeAddOp3(v
, OP_Column
, sortPTab
, j
, iBMem
+j
);
7110 pAggInfo
->directMode
= 1;
7111 sqlite3ExprCode(pParse
, pGroupBy
->a
[j
].pExpr
, iBMem
+j
);
7114 sqlite3VdbeAddOp4(v
, OP_Compare
, iAMem
, iBMem
, pGroupBy
->nExpr
,
7115 (char*)sqlite3KeyInfoRef(pKeyInfo
), P4_KEYINFO
);
7116 addr1
= sqlite3VdbeCurrentAddr(v
);
7117 sqlite3VdbeAddOp3(v
, OP_Jump
, addr1
+1, 0, addr1
+1); VdbeCoverage(v
);
7119 /* Generate code that runs whenever the GROUP BY changes.
7120 ** Changes in the GROUP BY are detected by the previous code
7121 ** block. If there were no changes, this block is skipped.
7123 ** This code copies current group by terms in b0,b1,b2,...
7124 ** over to a0,a1,a2. It then calls the output subroutine
7125 ** and resets the aggregate accumulator registers in preparation
7126 ** for the next GROUP BY batch.
7128 sqlite3ExprCodeMove(pParse
, iBMem
, iAMem
, pGroupBy
->nExpr
);
7129 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutputRow
, addrOutputRow
);
7130 VdbeComment((v
, "output one row"));
7131 sqlite3VdbeAddOp2(v
, OP_IfPos
, iAbortFlag
, addrEnd
); VdbeCoverage(v
);
7132 VdbeComment((v
, "check abort flag"));
7133 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReset
, addrReset
);
7134 VdbeComment((v
, "reset accumulator"));
7136 /* Update the aggregate accumulators based on the content of
7139 sqlite3VdbeJumpHere(v
, addr1
);
7140 updateAccumulator(pParse
, iUseFlag
, pAggInfo
, eDist
);
7141 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iUseFlag
);
7142 VdbeComment((v
, "indicate data in accumulator"));
7147 sqlite3VdbeAddOp2(v
, OP_SorterNext
, pAggInfo
->sortingIdx
,addrTopOfLoop
);
7150 SELECTTRACE(1,pParse
,p
,("WhereEnd\n"));
7151 sqlite3WhereEnd(pWInfo
);
7152 sqlite3VdbeChangeToNoop(v
, addrSortingIdx
);
7154 sqlite3ExprListDelete(db
, pDistinct
);
7156 /* Output the final row of result
7158 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutputRow
, addrOutputRow
);
7159 VdbeComment((v
, "output final row"));
7161 /* Jump over the subroutines
7163 sqlite3VdbeGoto(v
, addrEnd
);
7165 /* Generate a subroutine that outputs a single row of the result
7166 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
7167 ** is less than or equal to zero, the subroutine is a no-op. If
7168 ** the processing calls for the query to abort, this subroutine
7169 ** increments the iAbortFlag memory location before returning in
7170 ** order to signal the caller to abort.
7172 addrSetAbort
= sqlite3VdbeCurrentAddr(v
);
7173 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iAbortFlag
);
7174 VdbeComment((v
, "set abort flag"));
7175 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
7176 sqlite3VdbeResolveLabel(v
, addrOutputRow
);
7177 addrOutputRow
= sqlite3VdbeCurrentAddr(v
);
7178 sqlite3VdbeAddOp2(v
, OP_IfPos
, iUseFlag
, addrOutputRow
+2);
7180 VdbeComment((v
, "Groupby result generator entry point"));
7181 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
7182 finalizeAggFunctions(pParse
, pAggInfo
);
7183 sqlite3ExprIfFalse(pParse
, pHaving
, addrOutputRow
+1, SQLITE_JUMPIFNULL
);
7184 selectInnerLoop(pParse
, p
, -1, &sSort
,
7186 addrOutputRow
+1, addrSetAbort
);
7187 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
7188 VdbeComment((v
, "end groupby result generator"));
7190 /* Generate a subroutine that will reset the group-by accumulator
7192 sqlite3VdbeResolveLabel(v
, addrReset
);
7193 resetAccumulator(pParse
, pAggInfo
);
7194 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, iUseFlag
);
7195 VdbeComment((v
, "indicate accumulator empty"));
7196 sqlite3VdbeAddOp1(v
, OP_Return
, regReset
);
7198 if( eDist
!=WHERE_DISTINCT_NOOP
){
7199 struct AggInfo_func
*pF
= &pAggInfo
->aFunc
[0];
7200 fixDistinctOpenEph(pParse
, eDist
, pF
->iDistinct
, pF
->iDistAddr
);
7202 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
7205 if( (pTab
= isSimpleCount(p
, pAggInfo
))!=0 ){
7206 /* If isSimpleCount() returns a pointer to a Table structure, then
7207 ** the SQL statement is of the form:
7209 ** SELECT count(*) FROM <tbl>
7211 ** where the Table structure returned represents table <tbl>.
7213 ** This statement is so common that it is optimized specially. The
7214 ** OP_Count instruction is executed either on the intkey table that
7215 ** contains the data for table <tbl> or on one of its indexes. It
7216 ** is better to execute the op on an index, as indexes are almost
7217 ** always spread across less pages than their corresponding tables.
7219 const int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
7220 const int iCsr
= pParse
->nTab
++; /* Cursor to scan b-tree */
7221 Index
*pIdx
; /* Iterator variable */
7222 KeyInfo
*pKeyInfo
= 0; /* Keyinfo for scanned index */
7223 Index
*pBest
= 0; /* Best index found so far */
7224 Pgno iRoot
= pTab
->tnum
; /* Root page of scanned b-tree */
7226 sqlite3CodeVerifySchema(pParse
, iDb
);
7227 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
7229 /* Search for the index that has the lowest scan cost.
7231 ** (2011-04-15) Do not do a full scan of an unordered index.
7233 ** (2013-10-03) Do not count the entries in a partial index.
7235 ** In practice the KeyInfo structure will not be used. It is only
7236 ** passed to keep OP_OpenRead happy.
7238 if( !HasRowid(pTab
) ) pBest
= sqlite3PrimaryKeyIndex(pTab
);
7239 if( !p
->pSrc
->a
[0].fg
.notIndexed
){
7240 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
7241 if( pIdx
->bUnordered
==0
7242 && pIdx
->szIdxRow
<pTab
->szTabRow
7243 && pIdx
->pPartIdxWhere
==0
7244 && (!pBest
|| pIdx
->szIdxRow
<pBest
->szIdxRow
)
7251 iRoot
= pBest
->tnum
;
7252 pKeyInfo
= sqlite3KeyInfoOfIndex(pParse
, pBest
);
7255 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
7256 sqlite3VdbeAddOp4Int(v
, OP_OpenRead
, iCsr
, (int)iRoot
, iDb
, 1);
7258 sqlite3VdbeChangeP4(v
, -1, (char *)pKeyInfo
, P4_KEYINFO
);
7260 sqlite3VdbeAddOp2(v
, OP_Count
, iCsr
, pAggInfo
->aFunc
[0].iMem
);
7261 sqlite3VdbeAddOp1(v
, OP_Close
, iCsr
);
7262 explainSimpleCount(pParse
, pTab
, pBest
);
7264 int regAcc
= 0; /* "populate accumulators" flag */
7265 ExprList
*pDistinct
= 0;
7269 /* If there are accumulator registers but no min() or max() functions
7270 ** without FILTER clauses, allocate register regAcc. Register regAcc
7271 ** will contain 0 the first time the inner loop runs, and 1 thereafter.
7272 ** The code generated by updateAccumulator() uses this to ensure
7273 ** that the accumulator registers are (a) updated only once if
7274 ** there are no min() or max functions or (b) always updated for the
7275 ** first row visited by the aggregate, so that they are updated at
7276 ** least once even if the FILTER clause means the min() or max()
7277 ** function visits zero rows. */
7278 if( pAggInfo
->nAccumulator
){
7279 for(i
=0; i
<pAggInfo
->nFunc
; i
++){
7280 if( ExprHasProperty(pAggInfo
->aFunc
[i
].pFExpr
, EP_WinFunc
) ){
7283 if( pAggInfo
->aFunc
[i
].pFunc
->funcFlags
&SQLITE_FUNC_NEEDCOLL
){
7287 if( i
==pAggInfo
->nFunc
){
7288 regAcc
= ++pParse
->nMem
;
7289 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regAcc
);
7291 }else if( pAggInfo
->nFunc
==1 && pAggInfo
->aFunc
[0].iDistinct
>=0 ){
7292 pDistinct
= pAggInfo
->aFunc
[0].pFExpr
->x
.pList
;
7293 distFlag
= pDistinct
? (WHERE_WANT_DISTINCT
|WHERE_AGG_DISTINCT
) : 0;
7296 /* This case runs if the aggregate has no GROUP BY clause. The
7297 ** processing is much simpler since there is only a single row
7300 assert( p
->pGroupBy
==0 );
7301 resetAccumulator(pParse
, pAggInfo
);
7303 /* If this query is a candidate for the min/max optimization, then
7304 ** minMaxFlag will have been previously set to either
7305 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
7306 ** be an appropriate ORDER BY expression for the optimization.
7308 assert( minMaxFlag
==WHERE_ORDERBY_NORMAL
|| pMinMaxOrderBy
!=0 );
7309 assert( pMinMaxOrderBy
==0 || pMinMaxOrderBy
->nExpr
==1 );
7311 SELECTTRACE(1,pParse
,p
,("WhereBegin\n"));
7312 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, pMinMaxOrderBy
,
7313 pDistinct
, minMaxFlag
|distFlag
, 0);
7317 SELECTTRACE(1,pParse
,p
,("WhereBegin returns\n"));
7318 eDist
= sqlite3WhereIsDistinct(pWInfo
);
7319 updateAccumulator(pParse
, regAcc
, pAggInfo
, eDist
);
7320 if( eDist
!=WHERE_DISTINCT_NOOP
){
7321 struct AggInfo_func
*pF
= &pAggInfo
->aFunc
[0];
7322 fixDistinctOpenEph(pParse
, eDist
, pF
->iDistinct
, pF
->iDistAddr
);
7325 if( regAcc
) sqlite3VdbeAddOp2(v
, OP_Integer
, 1, regAcc
);
7327 sqlite3WhereMinMaxOptEarlyOut(v
, pWInfo
);
7329 SELECTTRACE(1,pParse
,p
,("WhereEnd\n"));
7330 sqlite3WhereEnd(pWInfo
);
7331 finalizeAggFunctions(pParse
, pAggInfo
);
7335 sqlite3ExprIfFalse(pParse
, pHaving
, addrEnd
, SQLITE_JUMPIFNULL
);
7336 selectInnerLoop(pParse
, p
, -1, 0, 0,
7337 pDest
, addrEnd
, addrEnd
);
7339 sqlite3VdbeResolveLabel(v
, addrEnd
);
7341 } /* endif aggregate query */
7343 if( sDistinct
.eTnctType
==WHERE_DISTINCT_UNORDERED
){
7344 explainTempTable(pParse
, "DISTINCT");
7347 /* If there is an ORDER BY clause, then we need to sort the results
7348 ** and send them to the callback one by one.
7350 if( sSort
.pOrderBy
){
7351 explainTempTable(pParse
,
7352 sSort
.nOBSat
>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
7353 assert( p
->pEList
==pEList
);
7354 generateSortTail(pParse
, p
, &sSort
, pEList
->nExpr
, pDest
);
7357 /* Jump here to skip this query
7359 sqlite3VdbeResolveLabel(v
, iEnd
);
7361 /* The SELECT has been coded. If there is an error in the Parse structure,
7362 ** set the return code to 1. Otherwise 0. */
7363 rc
= (pParse
->nErr
>0);
7365 /* Control jumps to here if an error is encountered above, or upon
7366 ** successful coding of the SELECT.
7369 assert( db
->mallocFailed
==0 || db
->mallocFailed
==1 );
7370 pParse
->nErr
+= db
->mallocFailed
;
7371 sqlite3ExprListDelete(db
, pMinMaxOrderBy
);
7373 if( pAggInfo
&& !db
->mallocFailed
){
7374 for(i
=0; i
<pAggInfo
->nColumn
; i
++){
7375 Expr
*pExpr
= pAggInfo
->aCol
[i
].pCExpr
;
7377 assert( pExpr
->pAggInfo
==pAggInfo
);
7378 assert( pExpr
->iAgg
==i
);
7380 for(i
=0; i
<pAggInfo
->nFunc
; i
++){
7381 Expr
*pExpr
= pAggInfo
->aFunc
[i
].pFExpr
;
7383 assert( pExpr
->pAggInfo
==pAggInfo
);
7384 assert( pExpr
->iAgg
==i
);
7389 #if SELECTTRACE_ENABLED
7390 SELECTTRACE(0x1,pParse
,p
,("end processing\n"));
7391 if( (sqlite3SelectTrace
& 0x2000)!=0 && ExplainQueryPlanParent(pParse
)==0 ){
7392 sqlite3TreeViewSelect(0, p
, 0);
7395 ExplainQueryPlanPop(pParse
);