add logcat option to PRAGMA cipher_profile
[sqlcipher.git] / src / select.c
blob7d8fd5939d82138759ff7b6de6fdfb770780e1ef
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24 u8 isTnct; /* True if the DISTINCT keyword is present */
25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
26 int tabTnct; /* Ephemeral table used for DISTINCT processing */
27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */
51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */
52 int iECursor; /* Cursor number for the sorter */
53 int regReturn; /* Register holding block-output return address */
54 int labelBkOut; /* Start label for the block-output subroutine */
55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56 int labelDone; /* Jump here when done, ex: LIMIT reached */
57 int labelOBLopt; /* Jump here when sorter is full */
58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60 u8 nDefer; /* Number of valid entries in aDefer[] */
61 struct DeferredCsr {
62 Table *pTab; /* Table definition */
63 int iCsr; /* Cursor number for table */
64 int nKey; /* Number of PK columns for table pTab (>=1) */
65 } aDefer[4];
66 #endif
67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */
69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
72 ** Delete all the content of a Select structure. Deallocate the structure
73 ** itself depending on the value of bFree
75 ** If bFree==1, call sqlite3DbFree() on the p object.
76 ** If bFree==0, Leave the first Select object unfreed
78 static void clearSelect(sqlite3 *db, Select *p, int bFree){
79 while( p ){
80 Select *pPrior = p->pPrior;
81 sqlite3ExprListDelete(db, p->pEList);
82 sqlite3SrcListDelete(db, p->pSrc);
83 sqlite3ExprDelete(db, p->pWhere);
84 sqlite3ExprListDelete(db, p->pGroupBy);
85 sqlite3ExprDelete(db, p->pHaving);
86 sqlite3ExprListDelete(db, p->pOrderBy);
87 sqlite3ExprDelete(db, p->pLimit);
88 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
89 #ifndef SQLITE_OMIT_WINDOWFUNC
90 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
91 sqlite3WindowListDelete(db, p->pWinDefn);
93 while( p->pWin ){
94 assert( p->pWin->ppThis==&p->pWin );
95 sqlite3WindowUnlinkFromSelect(p->pWin);
97 #endif
98 if( bFree ) sqlite3DbFreeNN(db, p);
99 p = pPrior;
100 bFree = 1;
105 ** Initialize a SelectDest structure.
107 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
108 pDest->eDest = (u8)eDest;
109 pDest->iSDParm = iParm;
110 pDest->iSDParm2 = 0;
111 pDest->zAffSdst = 0;
112 pDest->iSdst = 0;
113 pDest->nSdst = 0;
118 ** Allocate a new Select structure and return a pointer to that
119 ** structure.
121 Select *sqlite3SelectNew(
122 Parse *pParse, /* Parsing context */
123 ExprList *pEList, /* which columns to include in the result */
124 SrcList *pSrc, /* the FROM clause -- which tables to scan */
125 Expr *pWhere, /* the WHERE clause */
126 ExprList *pGroupBy, /* the GROUP BY clause */
127 Expr *pHaving, /* the HAVING clause */
128 ExprList *pOrderBy, /* the ORDER BY clause */
129 u32 selFlags, /* Flag parameters, such as SF_Distinct */
130 Expr *pLimit /* LIMIT value. NULL means not used */
132 Select *pNew, *pAllocated;
133 Select standin;
134 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
135 if( pNew==0 ){
136 assert( pParse->db->mallocFailed );
137 pNew = &standin;
139 if( pEList==0 ){
140 pEList = sqlite3ExprListAppend(pParse, 0,
141 sqlite3Expr(pParse->db,TK_ASTERISK,0));
143 pNew->pEList = pEList;
144 pNew->op = TK_SELECT;
145 pNew->selFlags = selFlags;
146 pNew->iLimit = 0;
147 pNew->iOffset = 0;
148 pNew->selId = ++pParse->nSelect;
149 pNew->addrOpenEphm[0] = -1;
150 pNew->addrOpenEphm[1] = -1;
151 pNew->nSelectRow = 0;
152 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
153 pNew->pSrc = pSrc;
154 pNew->pWhere = pWhere;
155 pNew->pGroupBy = pGroupBy;
156 pNew->pHaving = pHaving;
157 pNew->pOrderBy = pOrderBy;
158 pNew->pPrior = 0;
159 pNew->pNext = 0;
160 pNew->pLimit = pLimit;
161 pNew->pWith = 0;
162 #ifndef SQLITE_OMIT_WINDOWFUNC
163 pNew->pWin = 0;
164 pNew->pWinDefn = 0;
165 #endif
166 if( pParse->db->mallocFailed ) {
167 clearSelect(pParse->db, pNew, pNew!=&standin);
168 pAllocated = 0;
169 }else{
170 assert( pNew->pSrc!=0 || pParse->nErr>0 );
172 return pAllocated;
177 ** Delete the given Select structure and all of its substructures.
179 void sqlite3SelectDelete(sqlite3 *db, Select *p){
180 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
184 ** Return a pointer to the right-most SELECT statement in a compound.
186 static Select *findRightmost(Select *p){
187 while( p->pNext ) p = p->pNext;
188 return p;
192 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
193 ** type of join. Return an integer constant that expresses that type
194 ** in terms of the following bit values:
196 ** JT_INNER
197 ** JT_CROSS
198 ** JT_OUTER
199 ** JT_NATURAL
200 ** JT_LEFT
201 ** JT_RIGHT
203 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
205 ** If an illegal or unsupported join type is seen, then still return
206 ** a join type, but put an error in the pParse structure.
208 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
209 int jointype = 0;
210 Token *apAll[3];
211 Token *p;
212 /* 0123456789 123456789 123456789 123 */
213 static const char zKeyText[] = "naturaleftouterightfullinnercross";
214 static const struct {
215 u8 i; /* Beginning of keyword text in zKeyText[] */
216 u8 nChar; /* Length of the keyword in characters */
217 u8 code; /* Join type mask */
218 } aKeyword[] = {
219 /* natural */ { 0, 7, JT_NATURAL },
220 /* left */ { 6, 4, JT_LEFT|JT_OUTER },
221 /* outer */ { 10, 5, JT_OUTER },
222 /* right */ { 14, 5, JT_RIGHT|JT_OUTER },
223 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
224 /* inner */ { 23, 5, JT_INNER },
225 /* cross */ { 28, 5, JT_INNER|JT_CROSS },
227 int i, j;
228 apAll[0] = pA;
229 apAll[1] = pB;
230 apAll[2] = pC;
231 for(i=0; i<3 && apAll[i]; i++){
232 p = apAll[i];
233 for(j=0; j<ArraySize(aKeyword); j++){
234 if( p->n==aKeyword[j].nChar
235 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
236 jointype |= aKeyword[j].code;
237 break;
240 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
241 if( j>=ArraySize(aKeyword) ){
242 jointype |= JT_ERROR;
243 break;
247 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
248 (jointype & JT_ERROR)!=0
250 const char *zSp = " ";
251 assert( pB!=0 );
252 if( pC==0 ){ zSp++; }
253 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
254 "%T %T%s%T", pA, pB, zSp, pC);
255 jointype = JT_INNER;
256 }else if( (jointype & JT_OUTER)!=0
257 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
258 sqlite3ErrorMsg(pParse,
259 "RIGHT and FULL OUTER JOINs are not currently supported");
260 jointype = JT_INNER;
262 return jointype;
266 ** Return the index of a column in a table. Return -1 if the column
267 ** is not contained in the table.
269 int sqlite3ColumnIndex(Table *pTab, const char *zCol){
270 int i;
271 u8 h = sqlite3StrIHash(zCol);
272 Column *pCol;
273 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
274 if( pCol->hName==h && sqlite3StrICmp(pCol->zName, zCol)==0 ) return i;
276 return -1;
280 ** Search the first N tables in pSrc, from left to right, looking for a
281 ** table that has a column named zCol.
283 ** When found, set *piTab and *piCol to the table index and column index
284 ** of the matching column and return TRUE.
286 ** If not found, return FALSE.
288 static int tableAndColumnIndex(
289 SrcList *pSrc, /* Array of tables to search */
290 int N, /* Number of tables in pSrc->a[] to search */
291 const char *zCol, /* Name of the column we are looking for */
292 int *piTab, /* Write index of pSrc->a[] here */
293 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
294 int bIgnoreHidden /* True to ignore hidden columns */
296 int i; /* For looping over tables in pSrc */
297 int iCol; /* Index of column matching zCol */
299 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
300 for(i=0; i<N; i++){
301 iCol = sqlite3ColumnIndex(pSrc->a[i].pTab, zCol);
302 if( iCol>=0
303 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
305 if( piTab ){
306 *piTab = i;
307 *piCol = iCol;
309 return 1;
312 return 0;
316 ** This function is used to add terms implied by JOIN syntax to the
317 ** WHERE clause expression of a SELECT statement. The new term, which
318 ** is ANDed with the existing WHERE clause, is of the form:
320 ** (tab1.col1 = tab2.col2)
322 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
323 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
324 ** column iColRight of tab2.
326 static void addWhereTerm(
327 Parse *pParse, /* Parsing context */
328 SrcList *pSrc, /* List of tables in FROM clause */
329 int iLeft, /* Index of first table to join in pSrc */
330 int iColLeft, /* Index of column in first table */
331 int iRight, /* Index of second table in pSrc */
332 int iColRight, /* Index of column in second table */
333 int isOuterJoin, /* True if this is an OUTER join */
334 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */
336 sqlite3 *db = pParse->db;
337 Expr *pE1;
338 Expr *pE2;
339 Expr *pEq;
341 assert( iLeft<iRight );
342 assert( pSrc->nSrc>iRight );
343 assert( pSrc->a[iLeft].pTab );
344 assert( pSrc->a[iRight].pTab );
346 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
347 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
349 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
350 if( pEq && isOuterJoin ){
351 ExprSetProperty(pEq, EP_FromJoin);
352 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
353 ExprSetVVAProperty(pEq, EP_NoReduce);
354 pEq->iRightJoinTable = pE2->iTable;
356 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq);
360 ** Set the EP_FromJoin property on all terms of the given expression.
361 ** And set the Expr.iRightJoinTable to iTable for every term in the
362 ** expression.
364 ** The EP_FromJoin property is used on terms of an expression to tell
365 ** the LEFT OUTER JOIN processing logic that this term is part of the
366 ** join restriction specified in the ON or USING clause and not a part
367 ** of the more general WHERE clause. These terms are moved over to the
368 ** WHERE clause during join processing but we need to remember that they
369 ** originated in the ON or USING clause.
371 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
372 ** expression depends on table iRightJoinTable even if that table is not
373 ** explicitly mentioned in the expression. That information is needed
374 ** for cases like this:
376 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
378 ** The where clause needs to defer the handling of the t1.x=5
379 ** term until after the t2 loop of the join. In that way, a
380 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
381 ** defer the handling of t1.x=5, it will be processed immediately
382 ** after the t1 loop and rows with t1.x!=5 will never appear in
383 ** the output, which is incorrect.
385 void sqlite3SetJoinExpr(Expr *p, int iTable){
386 while( p ){
387 ExprSetProperty(p, EP_FromJoin);
388 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
389 ExprSetVVAProperty(p, EP_NoReduce);
390 p->iRightJoinTable = iTable;
391 if( p->op==TK_FUNCTION && p->x.pList ){
392 int i;
393 for(i=0; i<p->x.pList->nExpr; i++){
394 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable);
397 sqlite3SetJoinExpr(p->pLeft, iTable);
398 p = p->pRight;
402 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every
403 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
404 ** an ordinary term that omits the EP_FromJoin mark.
406 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
408 static void unsetJoinExpr(Expr *p, int iTable){
409 while( p ){
410 if( ExprHasProperty(p, EP_FromJoin)
411 && (iTable<0 || p->iRightJoinTable==iTable) ){
412 ExprClearProperty(p, EP_FromJoin);
414 if( p->op==TK_COLUMN && p->iTable==iTable ){
415 ExprClearProperty(p, EP_CanBeNull);
417 if( p->op==TK_FUNCTION && p->x.pList ){
418 int i;
419 for(i=0; i<p->x.pList->nExpr; i++){
420 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
423 unsetJoinExpr(p->pLeft, iTable);
424 p = p->pRight;
429 ** This routine processes the join information for a SELECT statement.
430 ** ON and USING clauses are converted into extra terms of the WHERE clause.
431 ** NATURAL joins also create extra WHERE clause terms.
433 ** The terms of a FROM clause are contained in the Select.pSrc structure.
434 ** The left most table is the first entry in Select.pSrc. The right-most
435 ** table is the last entry. The join operator is held in the entry to
436 ** the left. Thus entry 0 contains the join operator for the join between
437 ** entries 0 and 1. Any ON or USING clauses associated with the join are
438 ** also attached to the left entry.
440 ** This routine returns the number of errors encountered.
442 static int sqliteProcessJoin(Parse *pParse, Select *p){
443 SrcList *pSrc; /* All tables in the FROM clause */
444 int i, j; /* Loop counters */
445 SrcItem *pLeft; /* Left table being joined */
446 SrcItem *pRight; /* Right table being joined */
448 pSrc = p->pSrc;
449 pLeft = &pSrc->a[0];
450 pRight = &pLeft[1];
451 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
452 Table *pRightTab = pRight->pTab;
453 int isOuter;
455 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
456 isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
458 /* When the NATURAL keyword is present, add WHERE clause terms for
459 ** every column that the two tables have in common.
461 if( pRight->fg.jointype & JT_NATURAL ){
462 if( pRight->pOn || pRight->pUsing ){
463 sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
464 "an ON or USING clause", 0);
465 return 1;
467 for(j=0; j<pRightTab->nCol; j++){
468 char *zName; /* Name of column in the right table */
469 int iLeft; /* Matching left table */
470 int iLeftCol; /* Matching column in the left table */
472 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
473 zName = pRightTab->aCol[j].zName;
474 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){
475 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
476 isOuter, &p->pWhere);
481 /* Disallow both ON and USING clauses in the same join
483 if( pRight->pOn && pRight->pUsing ){
484 sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
485 "clauses in the same join");
486 return 1;
489 /* Add the ON clause to the end of the WHERE clause, connected by
490 ** an AND operator.
492 if( pRight->pOn ){
493 if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor);
494 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn);
495 pRight->pOn = 0;
498 /* Create extra terms on the WHERE clause for each column named
499 ** in the USING clause. Example: If the two tables to be joined are
500 ** A and B and the USING clause names X, Y, and Z, then add this
501 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
502 ** Report an error if any column mentioned in the USING clause is
503 ** not contained in both tables to be joined.
505 if( pRight->pUsing ){
506 IdList *pList = pRight->pUsing;
507 for(j=0; j<pList->nId; j++){
508 char *zName; /* Name of the term in the USING clause */
509 int iLeft; /* Table on the left with matching column name */
510 int iLeftCol; /* Column number of matching column on the left */
511 int iRightCol; /* Column number of matching column on the right */
513 zName = pList->a[j].zName;
514 iRightCol = sqlite3ColumnIndex(pRightTab, zName);
515 if( iRightCol<0
516 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0)
518 sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
519 "not present in both tables", zName);
520 return 1;
522 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
523 isOuter, &p->pWhere);
527 return 0;
531 ** An instance of this object holds information (beyond pParse and pSelect)
532 ** needed to load the next result row that is to be added to the sorter.
534 typedef struct RowLoadInfo RowLoadInfo;
535 struct RowLoadInfo {
536 int regResult; /* Store results in array of registers here */
537 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */
538 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
539 ExprList *pExtra; /* Extra columns needed by sorter refs */
540 int regExtraResult; /* Where to load the extra columns */
541 #endif
545 ** This routine does the work of loading query data into an array of
546 ** registers so that it can be added to the sorter.
548 static void innerLoopLoadRow(
549 Parse *pParse, /* Statement under construction */
550 Select *pSelect, /* The query being coded */
551 RowLoadInfo *pInfo /* Info needed to complete the row load */
553 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
554 0, pInfo->ecelFlags);
555 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
556 if( pInfo->pExtra ){
557 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
558 sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
560 #endif
564 ** Code the OP_MakeRecord instruction that generates the entry to be
565 ** added into the sorter.
567 ** Return the register in which the result is stored.
569 static int makeSorterRecord(
570 Parse *pParse,
571 SortCtx *pSort,
572 Select *pSelect,
573 int regBase,
574 int nBase
576 int nOBSat = pSort->nOBSat;
577 Vdbe *v = pParse->pVdbe;
578 int regOut = ++pParse->nMem;
579 if( pSort->pDeferredRowLoad ){
580 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
582 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
583 return regOut;
587 ** Generate code that will push the record in registers regData
588 ** through regData+nData-1 onto the sorter.
590 static void pushOntoSorter(
591 Parse *pParse, /* Parser context */
592 SortCtx *pSort, /* Information about the ORDER BY clause */
593 Select *pSelect, /* The whole SELECT statement */
594 int regData, /* First register holding data to be sorted */
595 int regOrigData, /* First register holding data before packing */
596 int nData, /* Number of elements in the regData data array */
597 int nPrefixReg /* No. of reg prior to regData available for use */
599 Vdbe *v = pParse->pVdbe; /* Stmt under construction */
600 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
601 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */
602 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */
603 int regBase; /* Regs for sorter record */
604 int regRecord = 0; /* Assembled sorter record */
605 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */
606 int op; /* Opcode to add sorter record to sorter */
607 int iLimit; /* LIMIT counter */
608 int iSkip = 0; /* End of the sorter insert loop */
610 assert( bSeq==0 || bSeq==1 );
612 /* Three cases:
613 ** (1) The data to be sorted has already been packed into a Record
614 ** by a prior OP_MakeRecord. In this case nData==1 and regData
615 ** will be completely unrelated to regOrigData.
616 ** (2) All output columns are included in the sort record. In that
617 ** case regData==regOrigData.
618 ** (3) Some output columns are omitted from the sort record due to
619 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
620 ** SQLITE_ECEL_OMITREF optimization, or due to the
621 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases
622 ** regOrigData is 0 to prevent this routine from trying to copy
623 ** values that might not yet exist.
625 assert( nData==1 || regData==regOrigData || regOrigData==0 );
627 if( nPrefixReg ){
628 assert( nPrefixReg==nExpr+bSeq );
629 regBase = regData - nPrefixReg;
630 }else{
631 regBase = pParse->nMem + 1;
632 pParse->nMem += nBase;
634 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
635 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
636 pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
637 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
638 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
639 if( bSeq ){
640 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
642 if( nPrefixReg==0 && nData>0 ){
643 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
645 if( nOBSat>0 ){
646 int regPrevKey; /* The first nOBSat columns of the previous row */
647 int addrFirst; /* Address of the OP_IfNot opcode */
648 int addrJmp; /* Address of the OP_Jump opcode */
649 VdbeOp *pOp; /* Opcode that opens the sorter */
650 int nKey; /* Number of sorting key columns, including OP_Sequence */
651 KeyInfo *pKI; /* Original KeyInfo on the sorter table */
653 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
654 regPrevKey = pParse->nMem+1;
655 pParse->nMem += pSort->nOBSat;
656 nKey = nExpr - pSort->nOBSat + bSeq;
657 if( bSeq ){
658 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
659 }else{
660 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
662 VdbeCoverage(v);
663 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
664 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
665 if( pParse->db->mallocFailed ) return;
666 pOp->p2 = nKey + nData;
667 pKI = pOp->p4.pKeyInfo;
668 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
669 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
670 testcase( pKI->nAllField > pKI->nKeyField+2 );
671 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
672 pKI->nAllField-pKI->nKeyField-1);
673 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
674 addrJmp = sqlite3VdbeCurrentAddr(v);
675 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
676 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
677 pSort->regReturn = ++pParse->nMem;
678 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
679 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
680 if( iLimit ){
681 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
682 VdbeCoverage(v);
684 sqlite3VdbeJumpHere(v, addrFirst);
685 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
686 sqlite3VdbeJumpHere(v, addrJmp);
688 if( iLimit ){
689 /* At this point the values for the new sorter entry are stored
690 ** in an array of registers. They need to be composed into a record
691 ** and inserted into the sorter if either (a) there are currently
692 ** less than LIMIT+OFFSET items or (b) the new record is smaller than
693 ** the largest record currently in the sorter. If (b) is true and there
694 ** are already LIMIT+OFFSET items in the sorter, delete the largest
695 ** entry before inserting the new one. This way there are never more
696 ** than LIMIT+OFFSET items in the sorter.
698 ** If the new record does not need to be inserted into the sorter,
699 ** jump to the next iteration of the loop. If the pSort->labelOBLopt
700 ** value is not zero, then it is a label of where to jump. Otherwise,
701 ** just bypass the row insert logic. See the header comment on the
702 ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
704 int iCsr = pSort->iECursor;
705 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
706 VdbeCoverage(v);
707 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
708 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
709 iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
710 VdbeCoverage(v);
711 sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
713 if( regRecord==0 ){
714 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
716 if( pSort->sortFlags & SORTFLAG_UseSorter ){
717 op = OP_SorterInsert;
718 }else{
719 op = OP_IdxInsert;
721 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
722 regBase+nOBSat, nBase-nOBSat);
723 if( iSkip ){
724 sqlite3VdbeChangeP2(v, iSkip,
725 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
730 ** Add code to implement the OFFSET
732 static void codeOffset(
733 Vdbe *v, /* Generate code into this VM */
734 int iOffset, /* Register holding the offset counter */
735 int iContinue /* Jump here to skip the current record */
737 if( iOffset>0 ){
738 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
739 VdbeComment((v, "OFFSET"));
744 ** Add code that will check to make sure the array of registers starting at
745 ** iMem form a distinct entry. This is used by both "SELECT DISTINCT ..." and
746 ** distinct aggregates ("SELECT count(DISTINCT <expr>) ..."). Three strategies
747 ** are available. Which is used depends on the value of parameter eTnctType,
748 ** as follows:
750 ** WHERE_DISTINCT_UNORDERED/WHERE_DISTINCT_NOOP:
751 ** Build an ephemeral table that contains all entries seen before and
752 ** skip entries which have been seen before.
754 ** Parameter iTab is the cursor number of an ephemeral table that must
755 ** be opened before the VM code generated by this routine is executed.
756 ** The ephemeral cursor table is queried for a record identical to the
757 ** record formed by the current array of registers. If one is found,
758 ** jump to VM address addrRepeat. Otherwise, insert a new record into
759 ** the ephemeral cursor and proceed.
761 ** The returned value in this case is a copy of parameter iTab.
763 ** WHERE_DISTINCT_ORDERED:
764 ** In this case rows are being delivered sorted order. The ephermal
765 ** table is not required. Instead, the current set of values
766 ** is compared against previous row. If they match, the new row
767 ** is not distinct and control jumps to VM address addrRepeat. Otherwise,
768 ** the VM program proceeds with processing the new row.
770 ** The returned value in this case is the register number of the first
771 ** in an array of registers used to store the previous result row so that
772 ** it can be compared to the next. The caller must ensure that this
773 ** register is initialized to NULL. (The fixDistinctOpenEph() routine
774 ** will take care of this initialization.)
776 ** WHERE_DISTINCT_UNIQUE:
777 ** In this case it has already been determined that the rows are distinct.
778 ** No special action is required. The return value is zero.
780 ** Parameter pEList is the list of expressions used to generated the
781 ** contents of each row. It is used by this routine to determine (a)
782 ** how many elements there are in the array of registers and (b) the
783 ** collation sequences that should be used for the comparisons if
784 ** eTnctType is WHERE_DISTINCT_ORDERED.
786 static int codeDistinct(
787 Parse *pParse, /* Parsing and code generating context */
788 int eTnctType, /* WHERE_DISTINCT_* value */
789 int iTab, /* A sorting index used to test for distinctness */
790 int addrRepeat, /* Jump to here if not distinct */
791 ExprList *pEList, /* Expression for each element */
792 int regElem /* First element */
794 int iRet = 0;
795 int nResultCol = pEList->nExpr;
796 Vdbe *v = pParse->pVdbe;
798 switch( eTnctType ){
799 case WHERE_DISTINCT_ORDERED: {
800 int i;
801 int iJump; /* Jump destination */
802 int regPrev; /* Previous row content */
804 /* Allocate space for the previous row */
805 iRet = regPrev = pParse->nMem+1;
806 pParse->nMem += nResultCol;
808 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
809 for(i=0; i<nResultCol; i++){
810 CollSeq *pColl = sqlite3ExprCollSeq(pParse, pEList->a[i].pExpr);
811 if( i<nResultCol-1 ){
812 sqlite3VdbeAddOp3(v, OP_Ne, regElem+i, iJump, regPrev+i);
813 VdbeCoverage(v);
814 }else{
815 sqlite3VdbeAddOp3(v, OP_Eq, regElem+i, addrRepeat, regPrev+i);
816 VdbeCoverage(v);
818 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
819 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
821 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
822 sqlite3VdbeAddOp3(v, OP_Copy, regElem, regPrev, nResultCol-1);
823 break;
826 case WHERE_DISTINCT_UNIQUE: {
827 /* nothing to do */
828 break;
831 default: {
832 int r1 = sqlite3GetTempReg(pParse);
833 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, regElem, nResultCol);
834 VdbeCoverage(v);
835 sqlite3VdbeAddOp3(v, OP_MakeRecord, regElem, nResultCol, r1);
836 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, regElem, nResultCol);
837 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
838 sqlite3ReleaseTempReg(pParse, r1);
839 iRet = iTab;
840 break;
844 return iRet;
848 ** This routine runs after codeDistinct(). It makes necessary
849 ** adjustments to the OP_OpenEphemeral opcode that the codeDistinct()
850 ** routine made use of. This processing must be done separately since
851 ** sometimes codeDistinct is called before the OP_OpenEphemeral is actually
852 ** laid down.
854 ** WHERE_DISTINCT_NOOP:
855 ** WHERE_DISTINCT_UNORDERED:
857 ** No adjustments necessary. This function is a no-op.
859 ** WHERE_DISTINCT_UNIQUE:
861 ** The ephemeral table is not needed. So change the
862 ** OP_OpenEphemeral opcode into an OP_Noop.
864 ** WHERE_DISTINCT_ORDERED:
866 ** The ephemeral table is not needed. But we do need register
867 ** iVal to be initialized to NULL. So change the OP_OpenEphemeral
868 ** into an OP_Null on the iVal register.
870 static void fixDistinctOpenEph(
871 Parse *pParse, /* Parsing and code generating context */
872 int eTnctType, /* WHERE_DISTINCT_* value */
873 int iVal, /* Value returned by codeDistinct() */
874 int iOpenEphAddr /* Address of OP_OpenEphemeral instruction for iTab */
876 if( eTnctType==WHERE_DISTINCT_UNIQUE || eTnctType==WHERE_DISTINCT_ORDERED ){
877 Vdbe *v = pParse->pVdbe;
878 sqlite3VdbeChangeToNoop(v, iOpenEphAddr);
879 if( sqlite3VdbeGetOp(v, iOpenEphAddr+1)->opcode==OP_Explain ){
880 sqlite3VdbeChangeToNoop(v, iOpenEphAddr+1);
882 if( eTnctType==WHERE_DISTINCT_ORDERED ){
883 /* Change the OP_OpenEphemeral to an OP_Null that sets the MEM_Cleared
884 ** bit on the first register of the previous value. This will cause the
885 ** OP_Ne added in codeDistinct() to always fail on the first iteration of
886 ** the loop even if the first row is all NULLs. */
887 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOpenEphAddr);
888 pOp->opcode = OP_Null;
889 pOp->p1 = 1;
890 pOp->p2 = iVal;
895 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
897 ** This function is called as part of inner-loop generation for a SELECT
898 ** statement with an ORDER BY that is not optimized by an index. It
899 ** determines the expressions, if any, that the sorter-reference
900 ** optimization should be used for. The sorter-reference optimization
901 ** is used for SELECT queries like:
903 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
905 ** If the optimization is used for expression "bigblob", then instead of
906 ** storing values read from that column in the sorter records, the PK of
907 ** the row from table t1 is stored instead. Then, as records are extracted from
908 ** the sorter to return to the user, the required value of bigblob is
909 ** retrieved directly from table t1. If the values are very large, this
910 ** can be more efficient than storing them directly in the sorter records.
912 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
913 ** for which the sorter-reference optimization should be enabled.
914 ** Additionally, the pSort->aDefer[] array is populated with entries
915 ** for all cursors required to evaluate all selected expressions. Finally.
916 ** output variable (*ppExtra) is set to an expression list containing
917 ** expressions for all extra PK values that should be stored in the
918 ** sorter records.
920 static void selectExprDefer(
921 Parse *pParse, /* Leave any error here */
922 SortCtx *pSort, /* Sorter context */
923 ExprList *pEList, /* Expressions destined for sorter */
924 ExprList **ppExtra /* Expressions to append to sorter record */
926 int i;
927 int nDefer = 0;
928 ExprList *pExtra = 0;
929 for(i=0; i<pEList->nExpr; i++){
930 struct ExprList_item *pItem = &pEList->a[i];
931 if( pItem->u.x.iOrderByCol==0 ){
932 Expr *pExpr = pItem->pExpr;
933 Table *pTab = pExpr->y.pTab;
934 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
935 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
937 int j;
938 for(j=0; j<nDefer; j++){
939 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
941 if( j==nDefer ){
942 if( nDefer==ArraySize(pSort->aDefer) ){
943 continue;
944 }else{
945 int nKey = 1;
946 int k;
947 Index *pPk = 0;
948 if( !HasRowid(pTab) ){
949 pPk = sqlite3PrimaryKeyIndex(pTab);
950 nKey = pPk->nKeyCol;
952 for(k=0; k<nKey; k++){
953 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
954 if( pNew ){
955 pNew->iTable = pExpr->iTable;
956 pNew->y.pTab = pExpr->y.pTab;
957 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
958 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
961 pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
962 pSort->aDefer[nDefer].iCsr = pExpr->iTable;
963 pSort->aDefer[nDefer].nKey = nKey;
964 nDefer++;
967 pItem->bSorterRef = 1;
971 pSort->nDefer = (u8)nDefer;
972 *ppExtra = pExtra;
974 #endif
977 ** This routine generates the code for the inside of the inner loop
978 ** of a SELECT.
980 ** If srcTab is negative, then the p->pEList expressions
981 ** are evaluated in order to get the data for this row. If srcTab is
982 ** zero or more, then data is pulled from srcTab and p->pEList is used only
983 ** to get the number of columns and the collation sequence for each column.
985 static void selectInnerLoop(
986 Parse *pParse, /* The parser context */
987 Select *p, /* The complete select statement being coded */
988 int srcTab, /* Pull data from this table if non-negative */
989 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */
990 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
991 SelectDest *pDest, /* How to dispose of the results */
992 int iContinue, /* Jump here to continue with next row */
993 int iBreak /* Jump here to break out of the inner loop */
995 Vdbe *v = pParse->pVdbe;
996 int i;
997 int hasDistinct; /* True if the DISTINCT keyword is present */
998 int eDest = pDest->eDest; /* How to dispose of results */
999 int iParm = pDest->iSDParm; /* First argument to disposal method */
1000 int nResultCol; /* Number of result columns */
1001 int nPrefixReg = 0; /* Number of extra registers before regResult */
1002 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */
1004 /* Usually, regResult is the first cell in an array of memory cells
1005 ** containing the current result row. In this case regOrig is set to the
1006 ** same value. However, if the results are being sent to the sorter, the
1007 ** values for any expressions that are also part of the sort-key are omitted
1008 ** from this array. In this case regOrig is set to zero. */
1009 int regResult; /* Start of memory holding current results */
1010 int regOrig; /* Start of memory holding full result (or 0) */
1012 assert( v );
1013 assert( p->pEList!=0 );
1014 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
1015 if( pSort && pSort->pOrderBy==0 ) pSort = 0;
1016 if( pSort==0 && !hasDistinct ){
1017 assert( iContinue!=0 );
1018 codeOffset(v, p->iOffset, iContinue);
1021 /* Pull the requested columns.
1023 nResultCol = p->pEList->nExpr;
1025 if( pDest->iSdst==0 ){
1026 if( pSort ){
1027 nPrefixReg = pSort->pOrderBy->nExpr;
1028 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
1029 pParse->nMem += nPrefixReg;
1031 pDest->iSdst = pParse->nMem+1;
1032 pParse->nMem += nResultCol;
1033 }else if( pDest->iSdst+nResultCol > pParse->nMem ){
1034 /* This is an error condition that can result, for example, when a SELECT
1035 ** on the right-hand side of an INSERT contains more result columns than
1036 ** there are columns in the table on the left. The error will be caught
1037 ** and reported later. But we need to make sure enough memory is allocated
1038 ** to avoid other spurious errors in the meantime. */
1039 pParse->nMem += nResultCol;
1041 pDest->nSdst = nResultCol;
1042 regOrig = regResult = pDest->iSdst;
1043 if( srcTab>=0 ){
1044 for(i=0; i<nResultCol; i++){
1045 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
1046 VdbeComment((v, "%s", p->pEList->a[i].zEName));
1048 }else if( eDest!=SRT_Exists ){
1049 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1050 ExprList *pExtra = 0;
1051 #endif
1052 /* If the destination is an EXISTS(...) expression, the actual
1053 ** values returned by the SELECT are not required.
1055 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */
1056 ExprList *pEList;
1057 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
1058 ecelFlags = SQLITE_ECEL_DUP;
1059 }else{
1060 ecelFlags = 0;
1062 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
1063 /* For each expression in p->pEList that is a copy of an expression in
1064 ** the ORDER BY clause (pSort->pOrderBy), set the associated
1065 ** iOrderByCol value to one more than the index of the ORDER BY
1066 ** expression within the sort-key that pushOntoSorter() will generate.
1067 ** This allows the p->pEList field to be omitted from the sorted record,
1068 ** saving space and CPU cycles. */
1069 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
1071 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
1072 int j;
1073 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
1074 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
1077 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1078 selectExprDefer(pParse, pSort, p->pEList, &pExtra);
1079 if( pExtra && pParse->db->mallocFailed==0 ){
1080 /* If there are any extra PK columns to add to the sorter records,
1081 ** allocate extra memory cells and adjust the OpenEphemeral
1082 ** instruction to account for the larger records. This is only
1083 ** required if there are one or more WITHOUT ROWID tables with
1084 ** composite primary keys in the SortCtx.aDefer[] array. */
1085 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
1086 pOp->p2 += (pExtra->nExpr - pSort->nDefer);
1087 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
1088 pParse->nMem += pExtra->nExpr;
1090 #endif
1092 /* Adjust nResultCol to account for columns that are omitted
1093 ** from the sorter by the optimizations in this branch */
1094 pEList = p->pEList;
1095 for(i=0; i<pEList->nExpr; i++){
1096 if( pEList->a[i].u.x.iOrderByCol>0
1097 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1098 || pEList->a[i].bSorterRef
1099 #endif
1101 nResultCol--;
1102 regOrig = 0;
1106 testcase( regOrig );
1107 testcase( eDest==SRT_Set );
1108 testcase( eDest==SRT_Mem );
1109 testcase( eDest==SRT_Coroutine );
1110 testcase( eDest==SRT_Output );
1111 assert( eDest==SRT_Set || eDest==SRT_Mem
1112 || eDest==SRT_Coroutine || eDest==SRT_Output
1113 || eDest==SRT_Upfrom );
1115 sRowLoadInfo.regResult = regResult;
1116 sRowLoadInfo.ecelFlags = ecelFlags;
1117 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1118 sRowLoadInfo.pExtra = pExtra;
1119 sRowLoadInfo.regExtraResult = regResult + nResultCol;
1120 if( pExtra ) nResultCol += pExtra->nExpr;
1121 #endif
1122 if( p->iLimit
1123 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
1124 && nPrefixReg>0
1126 assert( pSort!=0 );
1127 assert( hasDistinct==0 );
1128 pSort->pDeferredRowLoad = &sRowLoadInfo;
1129 regOrig = 0;
1130 }else{
1131 innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1135 /* If the DISTINCT keyword was present on the SELECT statement
1136 ** and this row has been seen before, then do not make this row
1137 ** part of the result.
1139 if( hasDistinct ){
1140 int eType = pDistinct->eTnctType;
1141 int iTab = pDistinct->tabTnct;
1142 assert( nResultCol==p->pEList->nExpr );
1143 iTab = codeDistinct(pParse, eType, iTab, iContinue, p->pEList, regResult);
1144 fixDistinctOpenEph(pParse, eType, iTab, pDistinct->addrTnct);
1145 if( pSort==0 ){
1146 codeOffset(v, p->iOffset, iContinue);
1150 switch( eDest ){
1151 /* In this mode, write each query result to the key of the temporary
1152 ** table iParm.
1154 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1155 case SRT_Union: {
1156 int r1;
1157 r1 = sqlite3GetTempReg(pParse);
1158 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1159 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1160 sqlite3ReleaseTempReg(pParse, r1);
1161 break;
1164 /* Construct a record from the query result, but instead of
1165 ** saving that record, use it as a key to delete elements from
1166 ** the temporary table iParm.
1168 case SRT_Except: {
1169 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1170 break;
1172 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1174 /* Store the result as data using a unique key.
1176 case SRT_Fifo:
1177 case SRT_DistFifo:
1178 case SRT_Table:
1179 case SRT_EphemTab: {
1180 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1181 testcase( eDest==SRT_Table );
1182 testcase( eDest==SRT_EphemTab );
1183 testcase( eDest==SRT_Fifo );
1184 testcase( eDest==SRT_DistFifo );
1185 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1186 #ifndef SQLITE_OMIT_CTE
1187 if( eDest==SRT_DistFifo ){
1188 /* If the destination is DistFifo, then cursor (iParm+1) is open
1189 ** on an ephemeral index. If the current row is already present
1190 ** in the index, do not write it to the output. If not, add the
1191 ** current row to the index and proceed with writing it to the
1192 ** output table as well. */
1193 int addr = sqlite3VdbeCurrentAddr(v) + 4;
1194 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1195 VdbeCoverage(v);
1196 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1197 assert( pSort==0 );
1199 #endif
1200 if( pSort ){
1201 assert( regResult==regOrig );
1202 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1203 }else{
1204 int r2 = sqlite3GetTempReg(pParse);
1205 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1206 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1207 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1208 sqlite3ReleaseTempReg(pParse, r2);
1210 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1211 break;
1214 case SRT_Upfrom: {
1215 if( pSort ){
1216 pushOntoSorter(
1217 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1218 }else{
1219 int i2 = pDest->iSDParm2;
1220 int r1 = sqlite3GetTempReg(pParse);
1222 /* If the UPDATE FROM join is an aggregate that matches no rows, it
1223 ** might still be trying to return one row, because that is what
1224 ** aggregates do. Don't record that empty row in the output table. */
1225 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1227 sqlite3VdbeAddOp3(v, OP_MakeRecord,
1228 regResult+(i2<0), nResultCol-(i2<0), r1);
1229 if( i2<0 ){
1230 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1231 }else{
1232 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1235 break;
1238 #ifndef SQLITE_OMIT_SUBQUERY
1239 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1240 ** then there should be a single item on the stack. Write this
1241 ** item into the set table with bogus data.
1243 case SRT_Set: {
1244 if( pSort ){
1245 /* At first glance you would think we could optimize out the
1246 ** ORDER BY in this case since the order of entries in the set
1247 ** does not matter. But there might be a LIMIT clause, in which
1248 ** case the order does matter */
1249 pushOntoSorter(
1250 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1251 }else{
1252 int r1 = sqlite3GetTempReg(pParse);
1253 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1254 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1255 r1, pDest->zAffSdst, nResultCol);
1256 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1257 sqlite3ReleaseTempReg(pParse, r1);
1259 break;
1263 /* If any row exist in the result set, record that fact and abort.
1265 case SRT_Exists: {
1266 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1267 /* The LIMIT clause will terminate the loop for us */
1268 break;
1271 /* If this is a scalar select that is part of an expression, then
1272 ** store the results in the appropriate memory cell or array of
1273 ** memory cells and break out of the scan loop.
1275 case SRT_Mem: {
1276 if( pSort ){
1277 assert( nResultCol<=pDest->nSdst );
1278 pushOntoSorter(
1279 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1280 }else{
1281 assert( nResultCol==pDest->nSdst );
1282 assert( regResult==iParm );
1283 /* The LIMIT clause will jump out of the loop for us */
1285 break;
1287 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1289 case SRT_Coroutine: /* Send data to a co-routine */
1290 case SRT_Output: { /* Return the results */
1291 testcase( eDest==SRT_Coroutine );
1292 testcase( eDest==SRT_Output );
1293 if( pSort ){
1294 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1295 nPrefixReg);
1296 }else if( eDest==SRT_Coroutine ){
1297 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1298 }else{
1299 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1301 break;
1304 #ifndef SQLITE_OMIT_CTE
1305 /* Write the results into a priority queue that is order according to
1306 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
1307 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
1308 ** pSO->nExpr columns, then make sure all keys are unique by adding a
1309 ** final OP_Sequence column. The last column is the record as a blob.
1311 case SRT_DistQueue:
1312 case SRT_Queue: {
1313 int nKey;
1314 int r1, r2, r3;
1315 int addrTest = 0;
1316 ExprList *pSO;
1317 pSO = pDest->pOrderBy;
1318 assert( pSO );
1319 nKey = pSO->nExpr;
1320 r1 = sqlite3GetTempReg(pParse);
1321 r2 = sqlite3GetTempRange(pParse, nKey+2);
1322 r3 = r2+nKey+1;
1323 if( eDest==SRT_DistQueue ){
1324 /* If the destination is DistQueue, then cursor (iParm+1) is open
1325 ** on a second ephemeral index that holds all values every previously
1326 ** added to the queue. */
1327 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1328 regResult, nResultCol);
1329 VdbeCoverage(v);
1331 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1332 if( eDest==SRT_DistQueue ){
1333 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1334 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1336 for(i=0; i<nKey; i++){
1337 sqlite3VdbeAddOp2(v, OP_SCopy,
1338 regResult + pSO->a[i].u.x.iOrderByCol - 1,
1339 r2+i);
1341 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1342 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1343 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1344 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1345 sqlite3ReleaseTempReg(pParse, r1);
1346 sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1347 break;
1349 #endif /* SQLITE_OMIT_CTE */
1353 #if !defined(SQLITE_OMIT_TRIGGER)
1354 /* Discard the results. This is used for SELECT statements inside
1355 ** the body of a TRIGGER. The purpose of such selects is to call
1356 ** user-defined functions that have side effects. We do not care
1357 ** about the actual results of the select.
1359 default: {
1360 assert( eDest==SRT_Discard );
1361 break;
1363 #endif
1366 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1367 ** there is a sorter, in which case the sorter has already limited
1368 ** the output for us.
1370 if( pSort==0 && p->iLimit ){
1371 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1376 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1377 ** X extra columns.
1379 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1380 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1381 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1382 if( p ){
1383 p->aSortFlags = (u8*)&p->aColl[N+X];
1384 p->nKeyField = (u16)N;
1385 p->nAllField = (u16)(N+X);
1386 p->enc = ENC(db);
1387 p->db = db;
1388 p->nRef = 1;
1389 memset(&p[1], 0, nExtra);
1390 }else{
1391 sqlite3OomFault(db);
1393 return p;
1397 ** Deallocate a KeyInfo object
1399 void sqlite3KeyInfoUnref(KeyInfo *p){
1400 if( p ){
1401 assert( p->nRef>0 );
1402 p->nRef--;
1403 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1408 ** Make a new pointer to a KeyInfo object
1410 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1411 if( p ){
1412 assert( p->nRef>0 );
1413 p->nRef++;
1415 return p;
1418 #ifdef SQLITE_DEBUG
1420 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1421 ** can only be changed if this is just a single reference to the object.
1423 ** This routine is used only inside of assert() statements.
1425 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1426 #endif /* SQLITE_DEBUG */
1429 ** Given an expression list, generate a KeyInfo structure that records
1430 ** the collating sequence for each expression in that expression list.
1432 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1433 ** KeyInfo structure is appropriate for initializing a virtual index to
1434 ** implement that clause. If the ExprList is the result set of a SELECT
1435 ** then the KeyInfo structure is appropriate for initializing a virtual
1436 ** index to implement a DISTINCT test.
1438 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1439 ** function is responsible for seeing that this structure is eventually
1440 ** freed.
1442 KeyInfo *sqlite3KeyInfoFromExprList(
1443 Parse *pParse, /* Parsing context */
1444 ExprList *pList, /* Form the KeyInfo object from this ExprList */
1445 int iStart, /* Begin with this column of pList */
1446 int nExtra /* Add this many extra columns to the end */
1448 int nExpr;
1449 KeyInfo *pInfo;
1450 struct ExprList_item *pItem;
1451 sqlite3 *db = pParse->db;
1452 int i;
1454 nExpr = pList->nExpr;
1455 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1456 if( pInfo ){
1457 assert( sqlite3KeyInfoIsWriteable(pInfo) );
1458 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1459 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1460 pInfo->aSortFlags[i-iStart] = pItem->sortFlags;
1463 return pInfo;
1467 ** Name of the connection operator, used for error messages.
1469 const char *sqlite3SelectOpName(int id){
1470 char *z;
1471 switch( id ){
1472 case TK_ALL: z = "UNION ALL"; break;
1473 case TK_INTERSECT: z = "INTERSECT"; break;
1474 case TK_EXCEPT: z = "EXCEPT"; break;
1475 default: z = "UNION"; break;
1477 return z;
1480 #ifndef SQLITE_OMIT_EXPLAIN
1482 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1483 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1484 ** where the caption is of the form:
1486 ** "USE TEMP B-TREE FOR xxx"
1488 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1489 ** is determined by the zUsage argument.
1491 static void explainTempTable(Parse *pParse, const char *zUsage){
1492 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1496 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1497 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1498 ** in sqlite3Select() to assign values to structure member variables that
1499 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1500 ** code with #ifndef directives.
1502 # define explainSetInteger(a, b) a = b
1504 #else
1505 /* No-op versions of the explainXXX() functions and macros. */
1506 # define explainTempTable(y,z)
1507 # define explainSetInteger(y,z)
1508 #endif
1512 ** If the inner loop was generated using a non-null pOrderBy argument,
1513 ** then the results were placed in a sorter. After the loop is terminated
1514 ** we need to run the sorter and output the results. The following
1515 ** routine generates the code needed to do that.
1517 static void generateSortTail(
1518 Parse *pParse, /* Parsing context */
1519 Select *p, /* The SELECT statement */
1520 SortCtx *pSort, /* Information on the ORDER BY clause */
1521 int nColumn, /* Number of columns of data */
1522 SelectDest *pDest /* Write the sorted results here */
1524 Vdbe *v = pParse->pVdbe; /* The prepared statement */
1525 int addrBreak = pSort->labelDone; /* Jump here to exit loop */
1526 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1527 int addr; /* Top of output loop. Jump for Next. */
1528 int addrOnce = 0;
1529 int iTab;
1530 ExprList *pOrderBy = pSort->pOrderBy;
1531 int eDest = pDest->eDest;
1532 int iParm = pDest->iSDParm;
1533 int regRow;
1534 int regRowid;
1535 int iCol;
1536 int nKey; /* Number of key columns in sorter record */
1537 int iSortTab; /* Sorter cursor to read from */
1538 int i;
1539 int bSeq; /* True if sorter record includes seq. no. */
1540 int nRefKey = 0;
1541 struct ExprList_item *aOutEx = p->pEList->a;
1543 assert( addrBreak<0 );
1544 if( pSort->labelBkOut ){
1545 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1546 sqlite3VdbeGoto(v, addrBreak);
1547 sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1550 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1551 /* Open any cursors needed for sorter-reference expressions */
1552 for(i=0; i<pSort->nDefer; i++){
1553 Table *pTab = pSort->aDefer[i].pTab;
1554 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1555 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1556 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1558 #endif
1560 iTab = pSort->iECursor;
1561 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1562 regRowid = 0;
1563 regRow = pDest->iSdst;
1564 }else{
1565 regRowid = sqlite3GetTempReg(pParse);
1566 if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1567 regRow = sqlite3GetTempReg(pParse);
1568 nColumn = 0;
1569 }else{
1570 regRow = sqlite3GetTempRange(pParse, nColumn);
1573 nKey = pOrderBy->nExpr - pSort->nOBSat;
1574 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1575 int regSortOut = ++pParse->nMem;
1576 iSortTab = pParse->nTab++;
1577 if( pSort->labelBkOut ){
1578 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1580 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1581 nKey+1+nColumn+nRefKey);
1582 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1583 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1584 VdbeCoverage(v);
1585 codeOffset(v, p->iOffset, addrContinue);
1586 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1587 bSeq = 0;
1588 }else{
1589 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1590 codeOffset(v, p->iOffset, addrContinue);
1591 iSortTab = iTab;
1592 bSeq = 1;
1594 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1595 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1596 if( aOutEx[i].bSorterRef ) continue;
1597 #endif
1598 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1600 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1601 if( pSort->nDefer ){
1602 int iKey = iCol+1;
1603 int regKey = sqlite3GetTempRange(pParse, nRefKey);
1605 for(i=0; i<pSort->nDefer; i++){
1606 int iCsr = pSort->aDefer[i].iCsr;
1607 Table *pTab = pSort->aDefer[i].pTab;
1608 int nKey = pSort->aDefer[i].nKey;
1610 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1611 if( HasRowid(pTab) ){
1612 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1613 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1614 sqlite3VdbeCurrentAddr(v)+1, regKey);
1615 }else{
1616 int k;
1617 int iJmp;
1618 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1619 for(k=0; k<nKey; k++){
1620 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1622 iJmp = sqlite3VdbeCurrentAddr(v);
1623 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1624 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1625 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1628 sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1630 #endif
1631 for(i=nColumn-1; i>=0; i--){
1632 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1633 if( aOutEx[i].bSorterRef ){
1634 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1635 }else
1636 #endif
1638 int iRead;
1639 if( aOutEx[i].u.x.iOrderByCol ){
1640 iRead = aOutEx[i].u.x.iOrderByCol-1;
1641 }else{
1642 iRead = iCol--;
1644 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1645 VdbeComment((v, "%s", aOutEx[i].zEName));
1648 switch( eDest ){
1649 case SRT_Table:
1650 case SRT_EphemTab: {
1651 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1652 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1653 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1654 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1655 break;
1657 #ifndef SQLITE_OMIT_SUBQUERY
1658 case SRT_Set: {
1659 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1660 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1661 pDest->zAffSdst, nColumn);
1662 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1663 break;
1665 case SRT_Mem: {
1666 /* The LIMIT clause will terminate the loop for us */
1667 break;
1669 #endif
1670 case SRT_Upfrom: {
1671 int i2 = pDest->iSDParm2;
1672 int r1 = sqlite3GetTempReg(pParse);
1673 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1674 if( i2<0 ){
1675 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1676 }else{
1677 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1679 break;
1681 default: {
1682 assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1683 testcase( eDest==SRT_Output );
1684 testcase( eDest==SRT_Coroutine );
1685 if( eDest==SRT_Output ){
1686 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1687 }else{
1688 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1690 break;
1693 if( regRowid ){
1694 if( eDest==SRT_Set ){
1695 sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1696 }else{
1697 sqlite3ReleaseTempReg(pParse, regRow);
1699 sqlite3ReleaseTempReg(pParse, regRowid);
1701 /* The bottom of the loop
1703 sqlite3VdbeResolveLabel(v, addrContinue);
1704 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1705 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1706 }else{
1707 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1709 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1710 sqlite3VdbeResolveLabel(v, addrBreak);
1714 ** Return a pointer to a string containing the 'declaration type' of the
1715 ** expression pExpr. The string may be treated as static by the caller.
1717 ** Also try to estimate the size of the returned value and return that
1718 ** result in *pEstWidth.
1720 ** The declaration type is the exact datatype definition extracted from the
1721 ** original CREATE TABLE statement if the expression is a column. The
1722 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1723 ** is considered a column can be complex in the presence of subqueries. The
1724 ** result-set expression in all of the following SELECT statements is
1725 ** considered a column by this function.
1727 ** SELECT col FROM tbl;
1728 ** SELECT (SELECT col FROM tbl;
1729 ** SELECT (SELECT col FROM tbl);
1730 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1732 ** The declaration type for any expression other than a column is NULL.
1734 ** This routine has either 3 or 6 parameters depending on whether or not
1735 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1737 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1738 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1739 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1740 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1741 #endif
1742 static const char *columnTypeImpl(
1743 NameContext *pNC,
1744 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1745 Expr *pExpr
1746 #else
1747 Expr *pExpr,
1748 const char **pzOrigDb,
1749 const char **pzOrigTab,
1750 const char **pzOrigCol
1751 #endif
1753 char const *zType = 0;
1754 int j;
1755 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1756 char const *zOrigDb = 0;
1757 char const *zOrigTab = 0;
1758 char const *zOrigCol = 0;
1759 #endif
1761 assert( pExpr!=0 );
1762 assert( pNC->pSrcList!=0 );
1763 switch( pExpr->op ){
1764 case TK_COLUMN: {
1765 /* The expression is a column. Locate the table the column is being
1766 ** extracted from in NameContext.pSrcList. This table may be real
1767 ** database table or a subquery.
1769 Table *pTab = 0; /* Table structure column is extracted from */
1770 Select *pS = 0; /* Select the column is extracted from */
1771 int iCol = pExpr->iColumn; /* Index of column in pTab */
1772 while( pNC && !pTab ){
1773 SrcList *pTabList = pNC->pSrcList;
1774 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1775 if( j<pTabList->nSrc ){
1776 pTab = pTabList->a[j].pTab;
1777 pS = pTabList->a[j].pSelect;
1778 }else{
1779 pNC = pNC->pNext;
1783 if( pTab==0 ){
1784 /* At one time, code such as "SELECT new.x" within a trigger would
1785 ** cause this condition to run. Since then, we have restructured how
1786 ** trigger code is generated and so this condition is no longer
1787 ** possible. However, it can still be true for statements like
1788 ** the following:
1790 ** CREATE TABLE t1(col INTEGER);
1791 ** SELECT (SELECT t1.col) FROM FROM t1;
1793 ** when columnType() is called on the expression "t1.col" in the
1794 ** sub-select. In this case, set the column type to NULL, even
1795 ** though it should really be "INTEGER".
1797 ** This is not a problem, as the column type of "t1.col" is never
1798 ** used. When columnType() is called on the expression
1799 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1800 ** branch below. */
1801 break;
1804 assert( pTab && pExpr->y.pTab==pTab );
1805 if( pS ){
1806 /* The "table" is actually a sub-select or a view in the FROM clause
1807 ** of the SELECT statement. Return the declaration type and origin
1808 ** data for the result-set column of the sub-select.
1810 if( iCol<pS->pEList->nExpr
1811 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
1812 && iCol>=0
1813 #else
1814 && ALWAYS(iCol>=0)
1815 #endif
1817 /* If iCol is less than zero, then the expression requests the
1818 ** rowid of the sub-select or view. This expression is legal (see
1819 ** test case misc2.2.2) - it always evaluates to NULL.
1821 NameContext sNC;
1822 Expr *p = pS->pEList->a[iCol].pExpr;
1823 sNC.pSrcList = pS->pSrc;
1824 sNC.pNext = pNC;
1825 sNC.pParse = pNC->pParse;
1826 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1828 }else{
1829 /* A real table or a CTE table */
1830 assert( !pS );
1831 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1832 if( iCol<0 ) iCol = pTab->iPKey;
1833 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1834 if( iCol<0 ){
1835 zType = "INTEGER";
1836 zOrigCol = "rowid";
1837 }else{
1838 zOrigCol = pTab->aCol[iCol].zName;
1839 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1841 zOrigTab = pTab->zName;
1842 if( pNC->pParse && pTab->pSchema ){
1843 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1844 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1846 #else
1847 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1848 if( iCol<0 ){
1849 zType = "INTEGER";
1850 }else{
1851 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1853 #endif
1855 break;
1857 #ifndef SQLITE_OMIT_SUBQUERY
1858 case TK_SELECT: {
1859 /* The expression is a sub-select. Return the declaration type and
1860 ** origin info for the single column in the result set of the SELECT
1861 ** statement.
1863 NameContext sNC;
1864 Select *pS = pExpr->x.pSelect;
1865 Expr *p = pS->pEList->a[0].pExpr;
1866 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1867 sNC.pSrcList = pS->pSrc;
1868 sNC.pNext = pNC;
1869 sNC.pParse = pNC->pParse;
1870 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1871 break;
1873 #endif
1876 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1877 if( pzOrigDb ){
1878 assert( pzOrigTab && pzOrigCol );
1879 *pzOrigDb = zOrigDb;
1880 *pzOrigTab = zOrigTab;
1881 *pzOrigCol = zOrigCol;
1883 #endif
1884 return zType;
1888 ** Generate code that will tell the VDBE the declaration types of columns
1889 ** in the result set.
1891 static void generateColumnTypes(
1892 Parse *pParse, /* Parser context */
1893 SrcList *pTabList, /* List of tables */
1894 ExprList *pEList /* Expressions defining the result set */
1896 #ifndef SQLITE_OMIT_DECLTYPE
1897 Vdbe *v = pParse->pVdbe;
1898 int i;
1899 NameContext sNC;
1900 sNC.pSrcList = pTabList;
1901 sNC.pParse = pParse;
1902 sNC.pNext = 0;
1903 for(i=0; i<pEList->nExpr; i++){
1904 Expr *p = pEList->a[i].pExpr;
1905 const char *zType;
1906 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1907 const char *zOrigDb = 0;
1908 const char *zOrigTab = 0;
1909 const char *zOrigCol = 0;
1910 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1912 /* The vdbe must make its own copy of the column-type and other
1913 ** column specific strings, in case the schema is reset before this
1914 ** virtual machine is deleted.
1916 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1917 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1918 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1919 #else
1920 zType = columnType(&sNC, p, 0, 0, 0);
1921 #endif
1922 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1924 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1929 ** Compute the column names for a SELECT statement.
1931 ** The only guarantee that SQLite makes about column names is that if the
1932 ** column has an AS clause assigning it a name, that will be the name used.
1933 ** That is the only documented guarantee. However, countless applications
1934 ** developed over the years have made baseless assumptions about column names
1935 ** and will break if those assumptions changes. Hence, use extreme caution
1936 ** when modifying this routine to avoid breaking legacy.
1938 ** See Also: sqlite3ColumnsFromExprList()
1940 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1941 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
1942 ** applications should operate this way. Nevertheless, we need to support the
1943 ** other modes for legacy:
1945 ** short=OFF, full=OFF: Column name is the text of the expression has it
1946 ** originally appears in the SELECT statement. In
1947 ** other words, the zSpan of the result expression.
1949 ** short=ON, full=OFF: (This is the default setting). If the result
1950 ** refers directly to a table column, then the
1951 ** result column name is just the table column
1952 ** name: COLUMN. Otherwise use zSpan.
1954 ** full=ON, short=ANY: If the result refers directly to a table column,
1955 ** then the result column name with the table name
1956 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
1958 void sqlite3GenerateColumnNames(
1959 Parse *pParse, /* Parser context */
1960 Select *pSelect /* Generate column names for this SELECT statement */
1962 Vdbe *v = pParse->pVdbe;
1963 int i;
1964 Table *pTab;
1965 SrcList *pTabList;
1966 ExprList *pEList;
1967 sqlite3 *db = pParse->db;
1968 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */
1969 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1971 #ifndef SQLITE_OMIT_EXPLAIN
1972 /* If this is an EXPLAIN, skip this step */
1973 if( pParse->explain ){
1974 return;
1976 #endif
1978 if( pParse->colNamesSet ) return;
1979 /* Column names are determined by the left-most term of a compound select */
1980 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1981 SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1982 pTabList = pSelect->pSrc;
1983 pEList = pSelect->pEList;
1984 assert( v!=0 );
1985 assert( pTabList!=0 );
1986 pParse->colNamesSet = 1;
1987 fullName = (db->flags & SQLITE_FullColNames)!=0;
1988 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1989 sqlite3VdbeSetNumCols(v, pEList->nExpr);
1990 for(i=0; i<pEList->nExpr; i++){
1991 Expr *p = pEList->a[i].pExpr;
1993 assert( p!=0 );
1994 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */
1995 assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */
1996 if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){
1997 /* An AS clause always takes first priority */
1998 char *zName = pEList->a[i].zEName;
1999 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
2000 }else if( srcName && p->op==TK_COLUMN ){
2001 char *zCol;
2002 int iCol = p->iColumn;
2003 pTab = p->y.pTab;
2004 assert( pTab!=0 );
2005 if( iCol<0 ) iCol = pTab->iPKey;
2006 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
2007 if( iCol<0 ){
2008 zCol = "rowid";
2009 }else{
2010 zCol = pTab->aCol[iCol].zName;
2012 if( fullName ){
2013 char *zName = 0;
2014 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
2015 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
2016 }else{
2017 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
2019 }else{
2020 const char *z = pEList->a[i].zEName;
2021 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
2022 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
2025 generateColumnTypes(pParse, pTabList, pEList);
2029 ** Given an expression list (which is really the list of expressions
2030 ** that form the result set of a SELECT statement) compute appropriate
2031 ** column names for a table that would hold the expression list.
2033 ** All column names will be unique.
2035 ** Only the column names are computed. Column.zType, Column.zColl,
2036 ** and other fields of Column are zeroed.
2038 ** Return SQLITE_OK on success. If a memory allocation error occurs,
2039 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
2041 ** The only guarantee that SQLite makes about column names is that if the
2042 ** column has an AS clause assigning it a name, that will be the name used.
2043 ** That is the only documented guarantee. However, countless applications
2044 ** developed over the years have made baseless assumptions about column names
2045 ** and will break if those assumptions changes. Hence, use extreme caution
2046 ** when modifying this routine to avoid breaking legacy.
2048 ** See Also: sqlite3GenerateColumnNames()
2050 int sqlite3ColumnsFromExprList(
2051 Parse *pParse, /* Parsing context */
2052 ExprList *pEList, /* Expr list from which to derive column names */
2053 i16 *pnCol, /* Write the number of columns here */
2054 Column **paCol /* Write the new column list here */
2056 sqlite3 *db = pParse->db; /* Database connection */
2057 int i, j; /* Loop counters */
2058 u32 cnt; /* Index added to make the name unique */
2059 Column *aCol, *pCol; /* For looping over result columns */
2060 int nCol; /* Number of columns in the result set */
2061 char *zName; /* Column name */
2062 int nName; /* Size of name in zName[] */
2063 Hash ht; /* Hash table of column names */
2064 Table *pTab;
2066 sqlite3HashInit(&ht);
2067 if( pEList ){
2068 nCol = pEList->nExpr;
2069 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
2070 testcase( aCol==0 );
2071 if( NEVER(nCol>32767) ) nCol = 32767;
2072 }else{
2073 nCol = 0;
2074 aCol = 0;
2076 assert( nCol==(i16)nCol );
2077 *pnCol = nCol;
2078 *paCol = aCol;
2080 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
2081 /* Get an appropriate name for the column
2083 if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){
2084 /* If the column contains an "AS <name>" phrase, use <name> as the name */
2085 }else{
2086 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr);
2087 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
2088 pColExpr = pColExpr->pRight;
2089 assert( pColExpr!=0 );
2091 if( pColExpr->op==TK_COLUMN && (pTab = pColExpr->y.pTab)!=0 ){
2092 /* For columns use the column name name */
2093 int iCol = pColExpr->iColumn;
2094 if( iCol<0 ) iCol = pTab->iPKey;
2095 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
2096 }else if( pColExpr->op==TK_ID ){
2097 assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2098 zName = pColExpr->u.zToken;
2099 }else{
2100 /* Use the original text of the column expression as its name */
2101 zName = pEList->a[i].zEName;
2104 if( zName && !sqlite3IsTrueOrFalse(zName) ){
2105 zName = sqlite3DbStrDup(db, zName);
2106 }else{
2107 zName = sqlite3MPrintf(db,"column%d",i+1);
2110 /* Make sure the column name is unique. If the name is not unique,
2111 ** append an integer to the name so that it becomes unique.
2113 cnt = 0;
2114 while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2115 nName = sqlite3Strlen30(zName);
2116 if( nName>0 ){
2117 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2118 if( zName[j]==':' ) nName = j;
2120 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2121 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2123 pCol->zName = zName;
2124 pCol->hName = sqlite3StrIHash(zName);
2125 sqlite3ColumnPropertiesFromName(0, pCol);
2126 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2127 sqlite3OomFault(db);
2130 sqlite3HashClear(&ht);
2131 if( db->mallocFailed ){
2132 for(j=0; j<i; j++){
2133 sqlite3DbFree(db, aCol[j].zName);
2135 sqlite3DbFree(db, aCol);
2136 *paCol = 0;
2137 *pnCol = 0;
2138 return SQLITE_NOMEM_BKPT;
2140 return SQLITE_OK;
2144 ** Add type and collation information to a column list based on
2145 ** a SELECT statement.
2147 ** The column list presumably came from selectColumnNamesFromExprList().
2148 ** The column list has only names, not types or collations. This
2149 ** routine goes through and adds the types and collations.
2151 ** This routine requires that all identifiers in the SELECT
2152 ** statement be resolved.
2154 void sqlite3SelectAddColumnTypeAndCollation(
2155 Parse *pParse, /* Parsing contexts */
2156 Table *pTab, /* Add column type information to this table */
2157 Select *pSelect, /* SELECT used to determine types and collations */
2158 char aff /* Default affinity for columns */
2160 sqlite3 *db = pParse->db;
2161 NameContext sNC;
2162 Column *pCol;
2163 CollSeq *pColl;
2164 int i;
2165 Expr *p;
2166 struct ExprList_item *a;
2168 assert( pSelect!=0 );
2169 assert( (pSelect->selFlags & SF_Resolved)!=0 );
2170 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2171 if( db->mallocFailed ) return;
2172 memset(&sNC, 0, sizeof(sNC));
2173 sNC.pSrcList = pSelect->pSrc;
2174 a = pSelect->pEList->a;
2175 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2176 const char *zType;
2177 int n, m;
2178 pTab->tabFlags |= (pCol->colFlags & COLFLAG_NOINSERT);
2179 p = a[i].pExpr;
2180 zType = columnType(&sNC, p, 0, 0, 0);
2181 /* pCol->szEst = ... // Column size est for SELECT tables never used */
2182 pCol->affinity = sqlite3ExprAffinity(p);
2183 if( zType ){
2184 m = sqlite3Strlen30(zType);
2185 n = sqlite3Strlen30(pCol->zName);
2186 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2187 if( pCol->zName ){
2188 memcpy(&pCol->zName[n+1], zType, m+1);
2189 pCol->colFlags |= COLFLAG_HASTYPE;
2192 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2193 pColl = sqlite3ExprCollSeq(pParse, p);
2194 if( pColl && pCol->zColl==0 ){
2195 pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2198 pTab->szTabRow = 1; /* Any non-zero value works */
2202 ** Given a SELECT statement, generate a Table structure that describes
2203 ** the result set of that SELECT.
2205 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2206 Table *pTab;
2207 sqlite3 *db = pParse->db;
2208 u64 savedFlags;
2210 savedFlags = db->flags;
2211 db->flags &= ~(u64)SQLITE_FullColNames;
2212 db->flags |= SQLITE_ShortColNames;
2213 sqlite3SelectPrep(pParse, pSelect, 0);
2214 db->flags = savedFlags;
2215 if( pParse->nErr ) return 0;
2216 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2217 pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2218 if( pTab==0 ){
2219 return 0;
2221 pTab->nTabRef = 1;
2222 pTab->zName = 0;
2223 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2224 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2225 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2226 pTab->iPKey = -1;
2227 if( db->mallocFailed ){
2228 sqlite3DeleteTable(db, pTab);
2229 return 0;
2231 return pTab;
2235 ** Get a VDBE for the given parser context. Create a new one if necessary.
2236 ** If an error occurs, return NULL and leave a message in pParse.
2238 Vdbe *sqlite3GetVdbe(Parse *pParse){
2239 if( pParse->pVdbe ){
2240 return pParse->pVdbe;
2242 if( pParse->pToplevel==0
2243 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2245 pParse->okConstFactor = 1;
2247 return sqlite3VdbeCreate(pParse);
2252 ** Compute the iLimit and iOffset fields of the SELECT based on the
2253 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
2254 ** that appear in the original SQL statement after the LIMIT and OFFSET
2255 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
2256 ** are the integer memory register numbers for counters used to compute
2257 ** the limit and offset. If there is no limit and/or offset, then
2258 ** iLimit and iOffset are negative.
2260 ** This routine changes the values of iLimit and iOffset only if
2261 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
2262 ** and iOffset should have been preset to appropriate default values (zero)
2263 ** prior to calling this routine.
2265 ** The iOffset register (if it exists) is initialized to the value
2266 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
2267 ** iOffset+1 is initialized to LIMIT+OFFSET.
2269 ** Only if pLimit->pLeft!=0 do the limit registers get
2270 ** redefined. The UNION ALL operator uses this property to force
2271 ** the reuse of the same limit and offset registers across multiple
2272 ** SELECT statements.
2274 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2275 Vdbe *v = 0;
2276 int iLimit = 0;
2277 int iOffset;
2278 int n;
2279 Expr *pLimit = p->pLimit;
2281 if( p->iLimit ) return;
2284 ** "LIMIT -1" always shows all rows. There is some
2285 ** controversy about what the correct behavior should be.
2286 ** The current implementation interprets "LIMIT 0" to mean
2287 ** no rows.
2289 if( pLimit ){
2290 assert( pLimit->op==TK_LIMIT );
2291 assert( pLimit->pLeft!=0 );
2292 p->iLimit = iLimit = ++pParse->nMem;
2293 v = sqlite3GetVdbe(pParse);
2294 assert( v!=0 );
2295 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2296 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2297 VdbeComment((v, "LIMIT counter"));
2298 if( n==0 ){
2299 sqlite3VdbeGoto(v, iBreak);
2300 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2301 p->nSelectRow = sqlite3LogEst((u64)n);
2302 p->selFlags |= SF_FixedLimit;
2304 }else{
2305 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2306 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2307 VdbeComment((v, "LIMIT counter"));
2308 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2310 if( pLimit->pRight ){
2311 p->iOffset = iOffset = ++pParse->nMem;
2312 pParse->nMem++; /* Allocate an extra register for limit+offset */
2313 sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2314 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2315 VdbeComment((v, "OFFSET counter"));
2316 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2317 VdbeComment((v, "LIMIT+OFFSET"));
2322 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2324 ** Return the appropriate collating sequence for the iCol-th column of
2325 ** the result set for the compound-select statement "p". Return NULL if
2326 ** the column has no default collating sequence.
2328 ** The collating sequence for the compound select is taken from the
2329 ** left-most term of the select that has a collating sequence.
2331 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2332 CollSeq *pRet;
2333 if( p->pPrior ){
2334 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2335 }else{
2336 pRet = 0;
2338 assert( iCol>=0 );
2339 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
2340 ** have been thrown during name resolution and we would not have gotten
2341 ** this far */
2342 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2343 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2345 return pRet;
2349 ** The select statement passed as the second parameter is a compound SELECT
2350 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2351 ** structure suitable for implementing the ORDER BY.
2353 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2354 ** function is responsible for ensuring that this structure is eventually
2355 ** freed.
2357 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2358 ExprList *pOrderBy = p->pOrderBy;
2359 int nOrderBy = p->pOrderBy->nExpr;
2360 sqlite3 *db = pParse->db;
2361 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2362 if( pRet ){
2363 int i;
2364 for(i=0; i<nOrderBy; i++){
2365 struct ExprList_item *pItem = &pOrderBy->a[i];
2366 Expr *pTerm = pItem->pExpr;
2367 CollSeq *pColl;
2369 if( pTerm->flags & EP_Collate ){
2370 pColl = sqlite3ExprCollSeq(pParse, pTerm);
2371 }else{
2372 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2373 if( pColl==0 ) pColl = db->pDfltColl;
2374 pOrderBy->a[i].pExpr =
2375 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2377 assert( sqlite3KeyInfoIsWriteable(pRet) );
2378 pRet->aColl[i] = pColl;
2379 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags;
2383 return pRet;
2386 #ifndef SQLITE_OMIT_CTE
2388 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2389 ** query of the form:
2391 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2392 ** \___________/ \_______________/
2393 ** p->pPrior p
2396 ** There is exactly one reference to the recursive-table in the FROM clause
2397 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2399 ** The setup-query runs once to generate an initial set of rows that go
2400 ** into a Queue table. Rows are extracted from the Queue table one by
2401 ** one. Each row extracted from Queue is output to pDest. Then the single
2402 ** extracted row (now in the iCurrent table) becomes the content of the
2403 ** recursive-table for a recursive-query run. The output of the recursive-query
2404 ** is added back into the Queue table. Then another row is extracted from Queue
2405 ** and the iteration continues until the Queue table is empty.
2407 ** If the compound query operator is UNION then no duplicate rows are ever
2408 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
2409 ** that have ever been inserted into Queue and causes duplicates to be
2410 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
2412 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2413 ** ORDER BY order and the first entry is extracted for each cycle. Without
2414 ** an ORDER BY, the Queue table is just a FIFO.
2416 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2417 ** have been output to pDest. A LIMIT of zero means to output no rows and a
2418 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
2419 ** with a positive value, then the first OFFSET outputs are discarded rather
2420 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
2421 ** rows have been skipped.
2423 static void generateWithRecursiveQuery(
2424 Parse *pParse, /* Parsing context */
2425 Select *p, /* The recursive SELECT to be coded */
2426 SelectDest *pDest /* What to do with query results */
2428 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */
2429 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */
2430 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */
2431 Select *pSetup = p->pPrior; /* The setup query */
2432 Select *pFirstRec; /* Left-most recursive term */
2433 int addrTop; /* Top of the loop */
2434 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */
2435 int iCurrent = 0; /* The Current table */
2436 int regCurrent; /* Register holding Current table */
2437 int iQueue; /* The Queue table */
2438 int iDistinct = 0; /* To ensure unique results if UNION */
2439 int eDest = SRT_Fifo; /* How to write to Queue */
2440 SelectDest destQueue; /* SelectDest targetting the Queue table */
2441 int i; /* Loop counter */
2442 int rc; /* Result code */
2443 ExprList *pOrderBy; /* The ORDER BY clause */
2444 Expr *pLimit; /* Saved LIMIT and OFFSET */
2445 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */
2447 #ifndef SQLITE_OMIT_WINDOWFUNC
2448 if( p->pWin ){
2449 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2450 return;
2452 #endif
2454 /* Obtain authorization to do a recursive query */
2455 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2457 /* Process the LIMIT and OFFSET clauses, if they exist */
2458 addrBreak = sqlite3VdbeMakeLabel(pParse);
2459 p->nSelectRow = 320; /* 4 billion rows */
2460 computeLimitRegisters(pParse, p, addrBreak);
2461 pLimit = p->pLimit;
2462 regLimit = p->iLimit;
2463 regOffset = p->iOffset;
2464 p->pLimit = 0;
2465 p->iLimit = p->iOffset = 0;
2466 pOrderBy = p->pOrderBy;
2468 /* Locate the cursor number of the Current table */
2469 for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2470 if( pSrc->a[i].fg.isRecursive ){
2471 iCurrent = pSrc->a[i].iCursor;
2472 break;
2476 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2477 ** the Distinct table must be exactly one greater than Queue in order
2478 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2479 iQueue = pParse->nTab++;
2480 if( p->op==TK_UNION ){
2481 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2482 iDistinct = pParse->nTab++;
2483 }else{
2484 eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2486 sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2488 /* Allocate cursors for Current, Queue, and Distinct. */
2489 regCurrent = ++pParse->nMem;
2490 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2491 if( pOrderBy ){
2492 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2493 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2494 (char*)pKeyInfo, P4_KEYINFO);
2495 destQueue.pOrderBy = pOrderBy;
2496 }else{
2497 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2499 VdbeComment((v, "Queue table"));
2500 if( iDistinct ){
2501 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2502 p->selFlags |= SF_UsesEphemeral;
2505 /* Detach the ORDER BY clause from the compound SELECT */
2506 p->pOrderBy = 0;
2508 /* Figure out how many elements of the compound SELECT are part of the
2509 ** recursive query. Make sure no recursive elements use aggregate
2510 ** functions. Mark the recursive elements as UNION ALL even if they
2511 ** are really UNION because the distinctness will be enforced by the
2512 ** iDistinct table. pFirstRec is left pointing to the left-most
2513 ** recursive term of the CTE.
2515 pFirstRec = p;
2516 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
2517 if( pFirstRec->selFlags & SF_Aggregate ){
2518 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2519 goto end_of_recursive_query;
2521 pFirstRec->op = TK_ALL;
2522 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
2525 /* Store the results of the setup-query in Queue. */
2526 pSetup = pFirstRec->pPrior;
2527 pSetup->pNext = 0;
2528 ExplainQueryPlan((pParse, 1, "SETUP"));
2529 rc = sqlite3Select(pParse, pSetup, &destQueue);
2530 pSetup->pNext = p;
2531 if( rc ) goto end_of_recursive_query;
2533 /* Find the next row in the Queue and output that row */
2534 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2536 /* Transfer the next row in Queue over to Current */
2537 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2538 if( pOrderBy ){
2539 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2540 }else{
2541 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2543 sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2545 /* Output the single row in Current */
2546 addrCont = sqlite3VdbeMakeLabel(pParse);
2547 codeOffset(v, regOffset, addrCont);
2548 selectInnerLoop(pParse, p, iCurrent,
2549 0, 0, pDest, addrCont, addrBreak);
2550 if( regLimit ){
2551 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2552 VdbeCoverage(v);
2554 sqlite3VdbeResolveLabel(v, addrCont);
2556 /* Execute the recursive SELECT taking the single row in Current as
2557 ** the value for the recursive-table. Store the results in the Queue.
2559 pFirstRec->pPrior = 0;
2560 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2561 sqlite3Select(pParse, p, &destQueue);
2562 assert( pFirstRec->pPrior==0 );
2563 pFirstRec->pPrior = pSetup;
2565 /* Keep running the loop until the Queue is empty */
2566 sqlite3VdbeGoto(v, addrTop);
2567 sqlite3VdbeResolveLabel(v, addrBreak);
2569 end_of_recursive_query:
2570 sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2571 p->pOrderBy = pOrderBy;
2572 p->pLimit = pLimit;
2573 return;
2575 #endif /* SQLITE_OMIT_CTE */
2577 /* Forward references */
2578 static int multiSelectOrderBy(
2579 Parse *pParse, /* Parsing context */
2580 Select *p, /* The right-most of SELECTs to be coded */
2581 SelectDest *pDest /* What to do with query results */
2585 ** Handle the special case of a compound-select that originates from a
2586 ** VALUES clause. By handling this as a special case, we avoid deep
2587 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2588 ** on a VALUES clause.
2590 ** Because the Select object originates from a VALUES clause:
2591 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2592 ** (2) All terms are UNION ALL
2593 ** (3) There is no ORDER BY clause
2595 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2596 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2597 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2598 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2600 static int multiSelectValues(
2601 Parse *pParse, /* Parsing context */
2602 Select *p, /* The right-most of SELECTs to be coded */
2603 SelectDest *pDest /* What to do with query results */
2605 int nRow = 1;
2606 int rc = 0;
2607 int bShowAll = p->pLimit==0;
2608 assert( p->selFlags & SF_MultiValue );
2610 assert( p->selFlags & SF_Values );
2611 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2612 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2613 #ifndef SQLITE_OMIT_WINDOWFUNC
2614 if( p->pWin ) return -1;
2615 #endif
2616 if( p->pPrior==0 ) break;
2617 assert( p->pPrior->pNext==p );
2618 p = p->pPrior;
2619 nRow += bShowAll;
2620 }while(1);
2621 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2622 nRow==1 ? "" : "S"));
2623 while( p ){
2624 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2625 if( !bShowAll ) break;
2626 p->nSelectRow = nRow;
2627 p = p->pNext;
2629 return rc;
2633 ** Return true if the SELECT statement which is known to be the recursive
2634 ** part of a recursive CTE still has its anchor terms attached. If the
2635 ** anchor terms have already been removed, then return false.
2637 static int hasAnchor(Select *p){
2638 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
2639 return p!=0;
2643 ** This routine is called to process a compound query form from
2644 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2645 ** INTERSECT
2647 ** "p" points to the right-most of the two queries. the query on the
2648 ** left is p->pPrior. The left query could also be a compound query
2649 ** in which case this routine will be called recursively.
2651 ** The results of the total query are to be written into a destination
2652 ** of type eDest with parameter iParm.
2654 ** Example 1: Consider a three-way compound SQL statement.
2656 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2658 ** This statement is parsed up as follows:
2660 ** SELECT c FROM t3
2661 ** |
2662 ** `-----> SELECT b FROM t2
2663 ** |
2664 ** `------> SELECT a FROM t1
2666 ** The arrows in the diagram above represent the Select.pPrior pointer.
2667 ** So if this routine is called with p equal to the t3 query, then
2668 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2670 ** Notice that because of the way SQLite parses compound SELECTs, the
2671 ** individual selects always group from left to right.
2673 static int multiSelect(
2674 Parse *pParse, /* Parsing context */
2675 Select *p, /* The right-most of SELECTs to be coded */
2676 SelectDest *pDest /* What to do with query results */
2678 int rc = SQLITE_OK; /* Success code from a subroutine */
2679 Select *pPrior; /* Another SELECT immediately to our left */
2680 Vdbe *v; /* Generate code to this VDBE */
2681 SelectDest dest; /* Alternative data destination */
2682 Select *pDelete = 0; /* Chain of simple selects to delete */
2683 sqlite3 *db; /* Database connection */
2685 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2686 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2688 assert( p && p->pPrior ); /* Calling function guarantees this much */
2689 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2690 assert( p->selFlags & SF_Compound );
2691 db = pParse->db;
2692 pPrior = p->pPrior;
2693 dest = *pDest;
2694 assert( pPrior->pOrderBy==0 );
2695 assert( pPrior->pLimit==0 );
2697 v = sqlite3GetVdbe(pParse);
2698 assert( v!=0 ); /* The VDBE already created by calling function */
2700 /* Create the destination temporary table if necessary
2702 if( dest.eDest==SRT_EphemTab ){
2703 assert( p->pEList );
2704 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2705 dest.eDest = SRT_Table;
2708 /* Special handling for a compound-select that originates as a VALUES clause.
2710 if( p->selFlags & SF_MultiValue ){
2711 rc = multiSelectValues(pParse, p, &dest);
2712 if( rc>=0 ) goto multi_select_end;
2713 rc = SQLITE_OK;
2716 /* Make sure all SELECTs in the statement have the same number of elements
2717 ** in their result sets.
2719 assert( p->pEList && pPrior->pEList );
2720 assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2722 #ifndef SQLITE_OMIT_CTE
2723 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
2724 generateWithRecursiveQuery(pParse, p, &dest);
2725 }else
2726 #endif
2728 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2730 if( p->pOrderBy ){
2731 return multiSelectOrderBy(pParse, p, pDest);
2732 }else{
2734 #ifndef SQLITE_OMIT_EXPLAIN
2735 if( pPrior->pPrior==0 ){
2736 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2737 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2739 #endif
2741 /* Generate code for the left and right SELECT statements.
2743 switch( p->op ){
2744 case TK_ALL: {
2745 int addr = 0;
2746 int nLimit = 0; /* Initialize to suppress harmless compiler warning */
2747 assert( !pPrior->pLimit );
2748 pPrior->iLimit = p->iLimit;
2749 pPrior->iOffset = p->iOffset;
2750 pPrior->pLimit = p->pLimit;
2751 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL left...\n"));
2752 rc = sqlite3Select(pParse, pPrior, &dest);
2753 pPrior->pLimit = 0;
2754 if( rc ){
2755 goto multi_select_end;
2757 p->pPrior = 0;
2758 p->iLimit = pPrior->iLimit;
2759 p->iOffset = pPrior->iOffset;
2760 if( p->iLimit ){
2761 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2762 VdbeComment((v, "Jump ahead if LIMIT reached"));
2763 if( p->iOffset ){
2764 sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2765 p->iLimit, p->iOffset+1, p->iOffset);
2768 ExplainQueryPlan((pParse, 1, "UNION ALL"));
2769 SELECTTRACE(1, pParse, p, ("multiSelect UNION ALL right...\n"));
2770 rc = sqlite3Select(pParse, p, &dest);
2771 testcase( rc!=SQLITE_OK );
2772 pDelete = p->pPrior;
2773 p->pPrior = pPrior;
2774 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2775 if( p->pLimit
2776 && sqlite3ExprIsInteger(p->pLimit->pLeft, &nLimit)
2777 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2779 p->nSelectRow = sqlite3LogEst((u64)nLimit);
2781 if( addr ){
2782 sqlite3VdbeJumpHere(v, addr);
2784 break;
2786 case TK_EXCEPT:
2787 case TK_UNION: {
2788 int unionTab; /* Cursor number of the temp table holding result */
2789 u8 op = 0; /* One of the SRT_ operations to apply to self */
2790 int priorOp; /* The SRT_ operation to apply to prior selects */
2791 Expr *pLimit; /* Saved values of p->nLimit */
2792 int addr;
2793 SelectDest uniondest;
2795 testcase( p->op==TK_EXCEPT );
2796 testcase( p->op==TK_UNION );
2797 priorOp = SRT_Union;
2798 if( dest.eDest==priorOp ){
2799 /* We can reuse a temporary table generated by a SELECT to our
2800 ** right.
2802 assert( p->pLimit==0 ); /* Not allowed on leftward elements */
2803 unionTab = dest.iSDParm;
2804 }else{
2805 /* We will need to create our own temporary table to hold the
2806 ** intermediate results.
2808 unionTab = pParse->nTab++;
2809 assert( p->pOrderBy==0 );
2810 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2811 assert( p->addrOpenEphm[0] == -1 );
2812 p->addrOpenEphm[0] = addr;
2813 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2814 assert( p->pEList );
2818 /* Code the SELECT statements to our left
2820 assert( !pPrior->pOrderBy );
2821 sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2822 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION left...\n"));
2823 rc = sqlite3Select(pParse, pPrior, &uniondest);
2824 if( rc ){
2825 goto multi_select_end;
2828 /* Code the current SELECT statement
2830 if( p->op==TK_EXCEPT ){
2831 op = SRT_Except;
2832 }else{
2833 assert( p->op==TK_UNION );
2834 op = SRT_Union;
2836 p->pPrior = 0;
2837 pLimit = p->pLimit;
2838 p->pLimit = 0;
2839 uniondest.eDest = op;
2840 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2841 sqlite3SelectOpName(p->op)));
2842 SELECTTRACE(1, pParse, p, ("multiSelect EXCEPT/UNION right...\n"));
2843 rc = sqlite3Select(pParse, p, &uniondest);
2844 testcase( rc!=SQLITE_OK );
2845 assert( p->pOrderBy==0 );
2846 pDelete = p->pPrior;
2847 p->pPrior = pPrior;
2848 p->pOrderBy = 0;
2849 if( p->op==TK_UNION ){
2850 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2852 sqlite3ExprDelete(db, p->pLimit);
2853 p->pLimit = pLimit;
2854 p->iLimit = 0;
2855 p->iOffset = 0;
2857 /* Convert the data in the temporary table into whatever form
2858 ** it is that we currently need.
2860 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2861 assert( p->pEList || db->mallocFailed );
2862 if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2863 int iCont, iBreak, iStart;
2864 iBreak = sqlite3VdbeMakeLabel(pParse);
2865 iCont = sqlite3VdbeMakeLabel(pParse);
2866 computeLimitRegisters(pParse, p, iBreak);
2867 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2868 iStart = sqlite3VdbeCurrentAddr(v);
2869 selectInnerLoop(pParse, p, unionTab,
2870 0, 0, &dest, iCont, iBreak);
2871 sqlite3VdbeResolveLabel(v, iCont);
2872 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2873 sqlite3VdbeResolveLabel(v, iBreak);
2874 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2876 break;
2878 default: assert( p->op==TK_INTERSECT ); {
2879 int tab1, tab2;
2880 int iCont, iBreak, iStart;
2881 Expr *pLimit;
2882 int addr;
2883 SelectDest intersectdest;
2884 int r1;
2886 /* INTERSECT is different from the others since it requires
2887 ** two temporary tables. Hence it has its own case. Begin
2888 ** by allocating the tables we will need.
2890 tab1 = pParse->nTab++;
2891 tab2 = pParse->nTab++;
2892 assert( p->pOrderBy==0 );
2894 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2895 assert( p->addrOpenEphm[0] == -1 );
2896 p->addrOpenEphm[0] = addr;
2897 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2898 assert( p->pEList );
2900 /* Code the SELECTs to our left into temporary table "tab1".
2902 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2903 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT left...\n"));
2904 rc = sqlite3Select(pParse, pPrior, &intersectdest);
2905 if( rc ){
2906 goto multi_select_end;
2909 /* Code the current SELECT into temporary table "tab2"
2911 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2912 assert( p->addrOpenEphm[1] == -1 );
2913 p->addrOpenEphm[1] = addr;
2914 p->pPrior = 0;
2915 pLimit = p->pLimit;
2916 p->pLimit = 0;
2917 intersectdest.iSDParm = tab2;
2918 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2919 sqlite3SelectOpName(p->op)));
2920 SELECTTRACE(1, pParse, p, ("multiSelect INTERSECT right...\n"));
2921 rc = sqlite3Select(pParse, p, &intersectdest);
2922 testcase( rc!=SQLITE_OK );
2923 pDelete = p->pPrior;
2924 p->pPrior = pPrior;
2925 if( p->nSelectRow>pPrior->nSelectRow ){
2926 p->nSelectRow = pPrior->nSelectRow;
2928 sqlite3ExprDelete(db, p->pLimit);
2929 p->pLimit = pLimit;
2931 /* Generate code to take the intersection of the two temporary
2932 ** tables.
2934 if( rc ) break;
2935 assert( p->pEList );
2936 iBreak = sqlite3VdbeMakeLabel(pParse);
2937 iCont = sqlite3VdbeMakeLabel(pParse);
2938 computeLimitRegisters(pParse, p, iBreak);
2939 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2940 r1 = sqlite3GetTempReg(pParse);
2941 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2942 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2943 VdbeCoverage(v);
2944 sqlite3ReleaseTempReg(pParse, r1);
2945 selectInnerLoop(pParse, p, tab1,
2946 0, 0, &dest, iCont, iBreak);
2947 sqlite3VdbeResolveLabel(v, iCont);
2948 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2949 sqlite3VdbeResolveLabel(v, iBreak);
2950 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2951 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2952 break;
2956 #ifndef SQLITE_OMIT_EXPLAIN
2957 if( p->pNext==0 ){
2958 ExplainQueryPlanPop(pParse);
2960 #endif
2962 if( pParse->nErr ) goto multi_select_end;
2964 /* Compute collating sequences used by
2965 ** temporary tables needed to implement the compound select.
2966 ** Attach the KeyInfo structure to all temporary tables.
2968 ** This section is run by the right-most SELECT statement only.
2969 ** SELECT statements to the left always skip this part. The right-most
2970 ** SELECT might also skip this part if it has no ORDER BY clause and
2971 ** no temp tables are required.
2973 if( p->selFlags & SF_UsesEphemeral ){
2974 int i; /* Loop counter */
2975 KeyInfo *pKeyInfo; /* Collating sequence for the result set */
2976 Select *pLoop; /* For looping through SELECT statements */
2977 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
2978 int nCol; /* Number of columns in result set */
2980 assert( p->pNext==0 );
2981 nCol = p->pEList->nExpr;
2982 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2983 if( !pKeyInfo ){
2984 rc = SQLITE_NOMEM_BKPT;
2985 goto multi_select_end;
2987 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2988 *apColl = multiSelectCollSeq(pParse, p, i);
2989 if( 0==*apColl ){
2990 *apColl = db->pDfltColl;
2994 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2995 for(i=0; i<2; i++){
2996 int addr = pLoop->addrOpenEphm[i];
2997 if( addr<0 ){
2998 /* If [0] is unused then [1] is also unused. So we can
2999 ** always safely abort as soon as the first unused slot is found */
3000 assert( pLoop->addrOpenEphm[1]<0 );
3001 break;
3003 sqlite3VdbeChangeP2(v, addr, nCol);
3004 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
3005 P4_KEYINFO);
3006 pLoop->addrOpenEphm[i] = -1;
3009 sqlite3KeyInfoUnref(pKeyInfo);
3012 multi_select_end:
3013 pDest->iSdst = dest.iSdst;
3014 pDest->nSdst = dest.nSdst;
3015 sqlite3SelectDelete(db, pDelete);
3016 return rc;
3018 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
3021 ** Error message for when two or more terms of a compound select have different
3022 ** size result sets.
3024 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
3025 if( p->selFlags & SF_Values ){
3026 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
3027 }else{
3028 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
3029 " do not have the same number of result columns",
3030 sqlite3SelectOpName(p->op));
3035 ** Code an output subroutine for a coroutine implementation of a
3036 ** SELECT statment.
3038 ** The data to be output is contained in pIn->iSdst. There are
3039 ** pIn->nSdst columns to be output. pDest is where the output should
3040 ** be sent.
3042 ** regReturn is the number of the register holding the subroutine
3043 ** return address.
3045 ** If regPrev>0 then it is the first register in a vector that
3046 ** records the previous output. mem[regPrev] is a flag that is false
3047 ** if there has been no previous output. If regPrev>0 then code is
3048 ** generated to suppress duplicates. pKeyInfo is used for comparing
3049 ** keys.
3051 ** If the LIMIT found in p->iLimit is reached, jump immediately to
3052 ** iBreak.
3054 static int generateOutputSubroutine(
3055 Parse *pParse, /* Parsing context */
3056 Select *p, /* The SELECT statement */
3057 SelectDest *pIn, /* Coroutine supplying data */
3058 SelectDest *pDest, /* Where to send the data */
3059 int regReturn, /* The return address register */
3060 int regPrev, /* Previous result register. No uniqueness if 0 */
3061 KeyInfo *pKeyInfo, /* For comparing with previous entry */
3062 int iBreak /* Jump here if we hit the LIMIT */
3064 Vdbe *v = pParse->pVdbe;
3065 int iContinue;
3066 int addr;
3068 addr = sqlite3VdbeCurrentAddr(v);
3069 iContinue = sqlite3VdbeMakeLabel(pParse);
3071 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
3073 if( regPrev ){
3074 int addr1, addr2;
3075 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
3076 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
3077 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
3078 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
3079 sqlite3VdbeJumpHere(v, addr1);
3080 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
3081 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
3083 if( pParse->db->mallocFailed ) return 0;
3085 /* Suppress the first OFFSET entries if there is an OFFSET clause
3087 codeOffset(v, p->iOffset, iContinue);
3089 assert( pDest->eDest!=SRT_Exists );
3090 assert( pDest->eDest!=SRT_Table );
3091 switch( pDest->eDest ){
3092 /* Store the result as data using a unique key.
3094 case SRT_EphemTab: {
3095 int r1 = sqlite3GetTempReg(pParse);
3096 int r2 = sqlite3GetTempReg(pParse);
3097 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
3098 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
3099 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
3100 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
3101 sqlite3ReleaseTempReg(pParse, r2);
3102 sqlite3ReleaseTempReg(pParse, r1);
3103 break;
3106 #ifndef SQLITE_OMIT_SUBQUERY
3107 /* If we are creating a set for an "expr IN (SELECT ...)".
3109 case SRT_Set: {
3110 int r1;
3111 testcase( pIn->nSdst>1 );
3112 r1 = sqlite3GetTempReg(pParse);
3113 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
3114 r1, pDest->zAffSdst, pIn->nSdst);
3115 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
3116 pIn->iSdst, pIn->nSdst);
3117 sqlite3ReleaseTempReg(pParse, r1);
3118 break;
3121 /* If this is a scalar select that is part of an expression, then
3122 ** store the results in the appropriate memory cell and break out
3123 ** of the scan loop. Note that the select might return multiple columns
3124 ** if it is the RHS of a row-value IN operator.
3126 case SRT_Mem: {
3127 testcase( pIn->nSdst>1 );
3128 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3129 /* The LIMIT clause will jump out of the loop for us */
3130 break;
3132 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3134 /* The results are stored in a sequence of registers
3135 ** starting at pDest->iSdst. Then the co-routine yields.
3137 case SRT_Coroutine: {
3138 if( pDest->iSdst==0 ){
3139 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3140 pDest->nSdst = pIn->nSdst;
3142 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3143 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3144 break;
3147 /* If none of the above, then the result destination must be
3148 ** SRT_Output. This routine is never called with any other
3149 ** destination other than the ones handled above or SRT_Output.
3151 ** For SRT_Output, results are stored in a sequence of registers.
3152 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3153 ** return the next row of result.
3155 default: {
3156 assert( pDest->eDest==SRT_Output );
3157 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3158 break;
3162 /* Jump to the end of the loop if the LIMIT is reached.
3164 if( p->iLimit ){
3165 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3168 /* Generate the subroutine return
3170 sqlite3VdbeResolveLabel(v, iContinue);
3171 sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3173 return addr;
3177 ** Alternative compound select code generator for cases when there
3178 ** is an ORDER BY clause.
3180 ** We assume a query of the following form:
3182 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
3184 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
3185 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3186 ** co-routines. Then run the co-routines in parallel and merge the results
3187 ** into the output. In addition to the two coroutines (called selectA and
3188 ** selectB) there are 7 subroutines:
3190 ** outA: Move the output of the selectA coroutine into the output
3191 ** of the compound query.
3193 ** outB: Move the output of the selectB coroutine into the output
3194 ** of the compound query. (Only generated for UNION and
3195 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
3196 ** appears only in B.)
3198 ** AltB: Called when there is data from both coroutines and A<B.
3200 ** AeqB: Called when there is data from both coroutines and A==B.
3202 ** AgtB: Called when there is data from both coroutines and A>B.
3204 ** EofA: Called when data is exhausted from selectA.
3206 ** EofB: Called when data is exhausted from selectB.
3208 ** The implementation of the latter five subroutines depend on which
3209 ** <operator> is used:
3212 ** UNION ALL UNION EXCEPT INTERSECT
3213 ** ------------- ----------------- -------------- -----------------
3214 ** AltB: outA, nextA outA, nextA outA, nextA nextA
3216 ** AeqB: outA, nextA nextA nextA outA, nextA
3218 ** AgtB: outB, nextB outB, nextB nextB nextB
3220 ** EofA: outB, nextB outB, nextB halt halt
3222 ** EofB: outA, nextA outA, nextA outA, nextA halt
3224 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3225 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3226 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
3227 ** following nextX causes a jump to the end of the select processing.
3229 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3230 ** within the output subroutine. The regPrev register set holds the previously
3231 ** output value. A comparison is made against this value and the output
3232 ** is skipped if the next results would be the same as the previous.
3234 ** The implementation plan is to implement the two coroutines and seven
3235 ** subroutines first, then put the control logic at the bottom. Like this:
3237 ** goto Init
3238 ** coA: coroutine for left query (A)
3239 ** coB: coroutine for right query (B)
3240 ** outA: output one row of A
3241 ** outB: output one row of B (UNION and UNION ALL only)
3242 ** EofA: ...
3243 ** EofB: ...
3244 ** AltB: ...
3245 ** AeqB: ...
3246 ** AgtB: ...
3247 ** Init: initialize coroutine registers
3248 ** yield coA
3249 ** if eof(A) goto EofA
3250 ** yield coB
3251 ** if eof(B) goto EofB
3252 ** Cmpr: Compare A, B
3253 ** Jump AltB, AeqB, AgtB
3254 ** End: ...
3256 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3257 ** actually called using Gosub and they do not Return. EofA and EofB loop
3258 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
3259 ** and AgtB jump to either L2 or to one of EofA or EofB.
3261 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3262 static int multiSelectOrderBy(
3263 Parse *pParse, /* Parsing context */
3264 Select *p, /* The right-most of SELECTs to be coded */
3265 SelectDest *pDest /* What to do with query results */
3267 int i, j; /* Loop counters */
3268 Select *pPrior; /* Another SELECT immediately to our left */
3269 Vdbe *v; /* Generate code to this VDBE */
3270 SelectDest destA; /* Destination for coroutine A */
3271 SelectDest destB; /* Destination for coroutine B */
3272 int regAddrA; /* Address register for select-A coroutine */
3273 int regAddrB; /* Address register for select-B coroutine */
3274 int addrSelectA; /* Address of the select-A coroutine */
3275 int addrSelectB; /* Address of the select-B coroutine */
3276 int regOutA; /* Address register for the output-A subroutine */
3277 int regOutB; /* Address register for the output-B subroutine */
3278 int addrOutA; /* Address of the output-A subroutine */
3279 int addrOutB = 0; /* Address of the output-B subroutine */
3280 int addrEofA; /* Address of the select-A-exhausted subroutine */
3281 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
3282 int addrEofB; /* Address of the select-B-exhausted subroutine */
3283 int addrAltB; /* Address of the A<B subroutine */
3284 int addrAeqB; /* Address of the A==B subroutine */
3285 int addrAgtB; /* Address of the A>B subroutine */
3286 int regLimitA; /* Limit register for select-A */
3287 int regLimitB; /* Limit register for select-A */
3288 int regPrev; /* A range of registers to hold previous output */
3289 int savedLimit; /* Saved value of p->iLimit */
3290 int savedOffset; /* Saved value of p->iOffset */
3291 int labelCmpr; /* Label for the start of the merge algorithm */
3292 int labelEnd; /* Label for the end of the overall SELECT stmt */
3293 int addr1; /* Jump instructions that get retargetted */
3294 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3295 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3296 KeyInfo *pKeyMerge; /* Comparison information for merging rows */
3297 sqlite3 *db; /* Database connection */
3298 ExprList *pOrderBy; /* The ORDER BY clause */
3299 int nOrderBy; /* Number of terms in the ORDER BY clause */
3300 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */
3302 assert( p->pOrderBy!=0 );
3303 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
3304 db = pParse->db;
3305 v = pParse->pVdbe;
3306 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
3307 labelEnd = sqlite3VdbeMakeLabel(pParse);
3308 labelCmpr = sqlite3VdbeMakeLabel(pParse);
3311 /* Patch up the ORDER BY clause
3313 op = p->op;
3314 pPrior = p->pPrior;
3315 assert( pPrior->pOrderBy==0 );
3316 pOrderBy = p->pOrderBy;
3317 assert( pOrderBy );
3318 nOrderBy = pOrderBy->nExpr;
3320 /* For operators other than UNION ALL we have to make sure that
3321 ** the ORDER BY clause covers every term of the result set. Add
3322 ** terms to the ORDER BY clause as necessary.
3324 if( op!=TK_ALL ){
3325 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3326 struct ExprList_item *pItem;
3327 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3328 assert( pItem->u.x.iOrderByCol>0 );
3329 if( pItem->u.x.iOrderByCol==i ) break;
3331 if( j==nOrderBy ){
3332 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3333 if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3334 pNew->flags |= EP_IntValue;
3335 pNew->u.iValue = i;
3336 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3337 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3342 /* Compute the comparison permutation and keyinfo that is used with
3343 ** the permutation used to determine if the next
3344 ** row of results comes from selectA or selectB. Also add explicit
3345 ** collations to the ORDER BY clause terms so that when the subqueries
3346 ** to the right and the left are evaluated, they use the correct
3347 ** collation.
3349 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3350 if( aPermute ){
3351 struct ExprList_item *pItem;
3352 aPermute[0] = nOrderBy;
3353 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3354 assert( pItem->u.x.iOrderByCol>0 );
3355 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3356 aPermute[i] = pItem->u.x.iOrderByCol - 1;
3358 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3359 }else{
3360 pKeyMerge = 0;
3363 /* Reattach the ORDER BY clause to the query.
3365 p->pOrderBy = pOrderBy;
3366 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3368 /* Allocate a range of temporary registers and the KeyInfo needed
3369 ** for the logic that removes duplicate result rows when the
3370 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3372 if( op==TK_ALL ){
3373 regPrev = 0;
3374 }else{
3375 int nExpr = p->pEList->nExpr;
3376 assert( nOrderBy>=nExpr || db->mallocFailed );
3377 regPrev = pParse->nMem+1;
3378 pParse->nMem += nExpr+1;
3379 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3380 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3381 if( pKeyDup ){
3382 assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3383 for(i=0; i<nExpr; i++){
3384 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3385 pKeyDup->aSortFlags[i] = 0;
3390 /* Separate the left and the right query from one another
3392 p->pPrior = 0;
3393 pPrior->pNext = 0;
3394 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3395 if( pPrior->pPrior==0 ){
3396 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3399 /* Compute the limit registers */
3400 computeLimitRegisters(pParse, p, labelEnd);
3401 if( p->iLimit && op==TK_ALL ){
3402 regLimitA = ++pParse->nMem;
3403 regLimitB = ++pParse->nMem;
3404 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3405 regLimitA);
3406 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3407 }else{
3408 regLimitA = regLimitB = 0;
3410 sqlite3ExprDelete(db, p->pLimit);
3411 p->pLimit = 0;
3413 regAddrA = ++pParse->nMem;
3414 regAddrB = ++pParse->nMem;
3415 regOutA = ++pParse->nMem;
3416 regOutB = ++pParse->nMem;
3417 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3418 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3420 ExplainQueryPlan((pParse, 1, "MERGE (%s)", sqlite3SelectOpName(p->op)));
3422 /* Generate a coroutine to evaluate the SELECT statement to the
3423 ** left of the compound operator - the "A" select.
3425 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3426 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3427 VdbeComment((v, "left SELECT"));
3428 pPrior->iLimit = regLimitA;
3429 ExplainQueryPlan((pParse, 1, "LEFT"));
3430 sqlite3Select(pParse, pPrior, &destA);
3431 sqlite3VdbeEndCoroutine(v, regAddrA);
3432 sqlite3VdbeJumpHere(v, addr1);
3434 /* Generate a coroutine to evaluate the SELECT statement on
3435 ** the right - the "B" select
3437 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3438 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3439 VdbeComment((v, "right SELECT"));
3440 savedLimit = p->iLimit;
3441 savedOffset = p->iOffset;
3442 p->iLimit = regLimitB;
3443 p->iOffset = 0;
3444 ExplainQueryPlan((pParse, 1, "RIGHT"));
3445 sqlite3Select(pParse, p, &destB);
3446 p->iLimit = savedLimit;
3447 p->iOffset = savedOffset;
3448 sqlite3VdbeEndCoroutine(v, regAddrB);
3450 /* Generate a subroutine that outputs the current row of the A
3451 ** select as the next output row of the compound select.
3453 VdbeNoopComment((v, "Output routine for A"));
3454 addrOutA = generateOutputSubroutine(pParse,
3455 p, &destA, pDest, regOutA,
3456 regPrev, pKeyDup, labelEnd);
3458 /* Generate a subroutine that outputs the current row of the B
3459 ** select as the next output row of the compound select.
3461 if( op==TK_ALL || op==TK_UNION ){
3462 VdbeNoopComment((v, "Output routine for B"));
3463 addrOutB = generateOutputSubroutine(pParse,
3464 p, &destB, pDest, regOutB,
3465 regPrev, pKeyDup, labelEnd);
3467 sqlite3KeyInfoUnref(pKeyDup);
3469 /* Generate a subroutine to run when the results from select A
3470 ** are exhausted and only data in select B remains.
3472 if( op==TK_EXCEPT || op==TK_INTERSECT ){
3473 addrEofA_noB = addrEofA = labelEnd;
3474 }else{
3475 VdbeNoopComment((v, "eof-A subroutine"));
3476 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3477 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3478 VdbeCoverage(v);
3479 sqlite3VdbeGoto(v, addrEofA);
3480 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3483 /* Generate a subroutine to run when the results from select B
3484 ** are exhausted and only data in select A remains.
3486 if( op==TK_INTERSECT ){
3487 addrEofB = addrEofA;
3488 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3489 }else{
3490 VdbeNoopComment((v, "eof-B subroutine"));
3491 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3492 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3493 sqlite3VdbeGoto(v, addrEofB);
3496 /* Generate code to handle the case of A<B
3498 VdbeNoopComment((v, "A-lt-B subroutine"));
3499 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3500 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3501 sqlite3VdbeGoto(v, labelCmpr);
3503 /* Generate code to handle the case of A==B
3505 if( op==TK_ALL ){
3506 addrAeqB = addrAltB;
3507 }else if( op==TK_INTERSECT ){
3508 addrAeqB = addrAltB;
3509 addrAltB++;
3510 }else{
3511 VdbeNoopComment((v, "A-eq-B subroutine"));
3512 addrAeqB =
3513 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3514 sqlite3VdbeGoto(v, labelCmpr);
3517 /* Generate code to handle the case of A>B
3519 VdbeNoopComment((v, "A-gt-B subroutine"));
3520 addrAgtB = sqlite3VdbeCurrentAddr(v);
3521 if( op==TK_ALL || op==TK_UNION ){
3522 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3524 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3525 sqlite3VdbeGoto(v, labelCmpr);
3527 /* This code runs once to initialize everything.
3529 sqlite3VdbeJumpHere(v, addr1);
3530 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3531 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3533 /* Implement the main merge loop
3535 sqlite3VdbeResolveLabel(v, labelCmpr);
3536 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3537 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3538 (char*)pKeyMerge, P4_KEYINFO);
3539 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3540 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3542 /* Jump to the this point in order to terminate the query.
3544 sqlite3VdbeResolveLabel(v, labelEnd);
3546 /* Reassembly the compound query so that it will be freed correctly
3547 ** by the calling function */
3548 if( p->pPrior ){
3549 sqlite3SelectDelete(db, p->pPrior);
3551 p->pPrior = pPrior;
3552 pPrior->pNext = p;
3554 sqlite3ExprListDelete(db, pPrior->pOrderBy);
3555 pPrior->pOrderBy = 0;
3557 /*** TBD: Insert subroutine calls to close cursors on incomplete
3558 **** subqueries ****/
3559 ExplainQueryPlanPop(pParse);
3560 return pParse->nErr!=0;
3562 #endif
3564 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3566 /* An instance of the SubstContext object describes an substitution edit
3567 ** to be performed on a parse tree.
3569 ** All references to columns in table iTable are to be replaced by corresponding
3570 ** expressions in pEList.
3572 typedef struct SubstContext {
3573 Parse *pParse; /* The parsing context */
3574 int iTable; /* Replace references to this table */
3575 int iNewTable; /* New table number */
3576 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */
3577 ExprList *pEList; /* Replacement expressions */
3578 } SubstContext;
3580 /* Forward Declarations */
3581 static void substExprList(SubstContext*, ExprList*);
3582 static void substSelect(SubstContext*, Select*, int);
3585 ** Scan through the expression pExpr. Replace every reference to
3586 ** a column in table number iTable with a copy of the iColumn-th
3587 ** entry in pEList. (But leave references to the ROWID column
3588 ** unchanged.)
3590 ** This routine is part of the flattening procedure. A subquery
3591 ** whose result set is defined by pEList appears as entry in the
3592 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3593 ** FORM clause entry is iTable. This routine makes the necessary
3594 ** changes to pExpr so that it refers directly to the source table
3595 ** of the subquery rather the result set of the subquery.
3597 static Expr *substExpr(
3598 SubstContext *pSubst, /* Description of the substitution */
3599 Expr *pExpr /* Expr in which substitution occurs */
3601 if( pExpr==0 ) return 0;
3602 if( ExprHasProperty(pExpr, EP_FromJoin)
3603 && pExpr->iRightJoinTable==pSubst->iTable
3605 pExpr->iRightJoinTable = pSubst->iNewTable;
3607 if( pExpr->op==TK_COLUMN
3608 && pExpr->iTable==pSubst->iTable
3609 && !ExprHasProperty(pExpr, EP_FixedCol)
3611 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
3612 if( pExpr->iColumn<0 ){
3613 pExpr->op = TK_NULL;
3614 }else
3615 #endif
3617 Expr *pNew;
3618 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3619 Expr ifNullRow;
3620 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3621 assert( pExpr->pRight==0 );
3622 if( sqlite3ExprIsVector(pCopy) ){
3623 sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3624 }else{
3625 sqlite3 *db = pSubst->pParse->db;
3626 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3627 memset(&ifNullRow, 0, sizeof(ifNullRow));
3628 ifNullRow.op = TK_IF_NULL_ROW;
3629 ifNullRow.pLeft = pCopy;
3630 ifNullRow.iTable = pSubst->iNewTable;
3631 ifNullRow.flags = EP_IfNullRow;
3632 pCopy = &ifNullRow;
3634 testcase( ExprHasProperty(pCopy, EP_Subquery) );
3635 pNew = sqlite3ExprDup(db, pCopy, 0);
3636 if( db->mallocFailed ){
3637 sqlite3ExprDelete(db, pNew);
3638 return pExpr;
3640 if( pSubst->isLeftJoin ){
3641 ExprSetProperty(pNew, EP_CanBeNull);
3643 if( ExprHasProperty(pExpr,EP_FromJoin) ){
3644 sqlite3SetJoinExpr(pNew, pExpr->iRightJoinTable);
3646 sqlite3ExprDelete(db, pExpr);
3647 pExpr = pNew;
3649 /* Ensure that the expression now has an implicit collation sequence,
3650 ** just as it did when it was a column of a view or sub-query. */
3651 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3652 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3653 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3654 (pColl ? pColl->zName : "BINARY")
3657 ExprClearProperty(pExpr, EP_Collate);
3660 }else{
3661 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3662 pExpr->iTable = pSubst->iNewTable;
3664 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3665 pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3666 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3667 substSelect(pSubst, pExpr->x.pSelect, 1);
3668 }else{
3669 substExprList(pSubst, pExpr->x.pList);
3671 #ifndef SQLITE_OMIT_WINDOWFUNC
3672 if( ExprHasProperty(pExpr, EP_WinFunc) ){
3673 Window *pWin = pExpr->y.pWin;
3674 pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3675 substExprList(pSubst, pWin->pPartition);
3676 substExprList(pSubst, pWin->pOrderBy);
3678 #endif
3680 return pExpr;
3682 static void substExprList(
3683 SubstContext *pSubst, /* Description of the substitution */
3684 ExprList *pList /* List to scan and in which to make substitutes */
3686 int i;
3687 if( pList==0 ) return;
3688 for(i=0; i<pList->nExpr; i++){
3689 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3692 static void substSelect(
3693 SubstContext *pSubst, /* Description of the substitution */
3694 Select *p, /* SELECT statement in which to make substitutions */
3695 int doPrior /* Do substitutes on p->pPrior too */
3697 SrcList *pSrc;
3698 SrcItem *pItem;
3699 int i;
3700 if( !p ) return;
3702 substExprList(pSubst, p->pEList);
3703 substExprList(pSubst, p->pGroupBy);
3704 substExprList(pSubst, p->pOrderBy);
3705 p->pHaving = substExpr(pSubst, p->pHaving);
3706 p->pWhere = substExpr(pSubst, p->pWhere);
3707 pSrc = p->pSrc;
3708 assert( pSrc!=0 );
3709 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3710 substSelect(pSubst, pItem->pSelect, 1);
3711 if( pItem->fg.isTabFunc ){
3712 substExprList(pSubst, pItem->u1.pFuncArg);
3715 }while( doPrior && (p = p->pPrior)!=0 );
3717 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3719 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3721 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3722 ** clause of that SELECT.
3724 ** This routine scans the entire SELECT statement and recomputes the
3725 ** pSrcItem->colUsed mask.
3727 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
3728 SrcItem *pItem;
3729 if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
3730 pItem = pWalker->u.pSrcItem;
3731 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
3732 if( pExpr->iColumn<0 ) return WRC_Continue;
3733 pItem->colUsed |= sqlite3ExprColUsed(pExpr);
3734 return WRC_Continue;
3736 static void recomputeColumnsUsed(
3737 Select *pSelect, /* The complete SELECT statement */
3738 SrcItem *pSrcItem /* Which FROM clause item to recompute */
3740 Walker w;
3741 if( NEVER(pSrcItem->pTab==0) ) return;
3742 memset(&w, 0, sizeof(w));
3743 w.xExprCallback = recomputeColumnsUsedExpr;
3744 w.xSelectCallback = sqlite3SelectWalkNoop;
3745 w.u.pSrcItem = pSrcItem;
3746 pSrcItem->colUsed = 0;
3747 sqlite3WalkSelect(&w, pSelect);
3749 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3751 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3753 ** Assign new cursor numbers to each of the items in pSrc. For each
3754 ** new cursor number assigned, set an entry in the aCsrMap[] array
3755 ** to map the old cursor number to the new:
3757 ** aCsrMap[iOld] = iNew;
3759 ** The array is guaranteed by the caller to be large enough for all
3760 ** existing cursor numbers in pSrc.
3762 ** If pSrc contains any sub-selects, call this routine recursively
3763 ** on the FROM clause of each such sub-select, with iExcept set to -1.
3765 static void srclistRenumberCursors(
3766 Parse *pParse, /* Parse context */
3767 int *aCsrMap, /* Array to store cursor mappings in */
3768 SrcList *pSrc, /* FROM clause to renumber */
3769 int iExcept /* FROM clause item to skip */
3771 int i;
3772 SrcItem *pItem;
3773 for(i=0, pItem=pSrc->a; i<pSrc->nSrc; i++, pItem++){
3774 if( i!=iExcept ){
3775 Select *p;
3776 if( !pItem->fg.isRecursive || aCsrMap[pItem->iCursor]==0 ){
3777 aCsrMap[pItem->iCursor] = pParse->nTab++;
3779 pItem->iCursor = aCsrMap[pItem->iCursor];
3780 for(p=pItem->pSelect; p; p=p->pPrior){
3781 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, -1);
3788 ** Expression walker callback used by renumberCursors() to update
3789 ** Expr objects to match newly assigned cursor numbers.
3791 static int renumberCursorsCb(Walker *pWalker, Expr *pExpr){
3792 int *aCsrMap = pWalker->u.aiCol;
3793 int op = pExpr->op;
3794 if( (op==TK_COLUMN || op==TK_IF_NULL_ROW) && aCsrMap[pExpr->iTable] ){
3795 pExpr->iTable = aCsrMap[pExpr->iTable];
3797 if( ExprHasProperty(pExpr, EP_FromJoin) && aCsrMap[pExpr->iRightJoinTable] ){
3798 pExpr->iRightJoinTable = aCsrMap[pExpr->iRightJoinTable];
3800 return WRC_Continue;
3804 ** Assign a new cursor number to each cursor in the FROM clause (Select.pSrc)
3805 ** of the SELECT statement passed as the second argument, and to each
3806 ** cursor in the FROM clause of any FROM clause sub-selects, recursively.
3807 ** Except, do not assign a new cursor number to the iExcept'th element in
3808 ** the FROM clause of (*p). Update all expressions and other references
3809 ** to refer to the new cursor numbers.
3811 ** Argument aCsrMap is an array that may be used for temporary working
3812 ** space. Two guarantees are made by the caller:
3814 ** * the array is larger than the largest cursor number used within the
3815 ** select statement passed as an argument, and
3817 ** * the array entries for all cursor numbers that do *not* appear in
3818 ** FROM clauses of the select statement as described above are
3819 ** initialized to zero.
3821 static void renumberCursors(
3822 Parse *pParse, /* Parse context */
3823 Select *p, /* Select to renumber cursors within */
3824 int iExcept, /* FROM clause item to skip */
3825 int *aCsrMap /* Working space */
3827 Walker w;
3828 srclistRenumberCursors(pParse, aCsrMap, p->pSrc, iExcept);
3829 memset(&w, 0, sizeof(w));
3830 w.u.aiCol = aCsrMap;
3831 w.xExprCallback = renumberCursorsCb;
3832 w.xSelectCallback = sqlite3SelectWalkNoop;
3833 sqlite3WalkSelect(&w, p);
3835 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3837 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3839 ** This routine attempts to flatten subqueries as a performance optimization.
3840 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3842 ** To understand the concept of flattening, consider the following
3843 ** query:
3845 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3847 ** The default way of implementing this query is to execute the
3848 ** subquery first and store the results in a temporary table, then
3849 ** run the outer query on that temporary table. This requires two
3850 ** passes over the data. Furthermore, because the temporary table
3851 ** has no indices, the WHERE clause on the outer query cannot be
3852 ** optimized.
3854 ** This routine attempts to rewrite queries such as the above into
3855 ** a single flat select, like this:
3857 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3859 ** The code generated for this simplification gives the same result
3860 ** but only has to scan the data once. And because indices might
3861 ** exist on the table t1, a complete scan of the data might be
3862 ** avoided.
3864 ** Flattening is subject to the following constraints:
3866 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3867 ** The subquery and the outer query cannot both be aggregates.
3869 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3870 ** (2) If the subquery is an aggregate then
3871 ** (2a) the outer query must not be a join and
3872 ** (2b) the outer query must not use subqueries
3873 ** other than the one FROM-clause subquery that is a candidate
3874 ** for flattening. (This is due to ticket [2f7170d73bf9abf80]
3875 ** from 2015-02-09.)
3877 ** (3) If the subquery is the right operand of a LEFT JOIN then
3878 ** (3a) the subquery may not be a join and
3879 ** (3b) the FROM clause of the subquery may not contain a virtual
3880 ** table and
3881 ** (3c) the outer query may not be an aggregate.
3882 ** (3d) the outer query may not be DISTINCT.
3884 ** (4) The subquery can not be DISTINCT.
3886 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
3887 ** sub-queries that were excluded from this optimization. Restriction
3888 ** (4) has since been expanded to exclude all DISTINCT subqueries.
3890 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3891 ** If the subquery is aggregate, the outer query may not be DISTINCT.
3893 ** (7) The subquery must have a FROM clause. TODO: For subqueries without
3894 ** A FROM clause, consider adding a FROM clause with the special
3895 ** table sqlite_once that consists of a single row containing a
3896 ** single NULL.
3898 ** (8) If the subquery uses LIMIT then the outer query may not be a join.
3900 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
3902 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
3903 ** accidently carried the comment forward until 2014-09-15. Original
3904 ** constraint: "If the subquery is aggregate then the outer query
3905 ** may not use LIMIT."
3907 ** (11) The subquery and the outer query may not both have ORDER BY clauses.
3909 ** (**) Not implemented. Subsumed into restriction (3). Was previously
3910 ** a separate restriction deriving from ticket #350.
3912 ** (13) The subquery and outer query may not both use LIMIT.
3914 ** (14) The subquery may not use OFFSET.
3916 ** (15) If the outer query is part of a compound select, then the
3917 ** subquery may not use LIMIT.
3918 ** (See ticket #2339 and ticket [02a8e81d44]).
3920 ** (16) If the outer query is aggregate, then the subquery may not
3921 ** use ORDER BY. (Ticket #2942) This used to not matter
3922 ** until we introduced the group_concat() function.
3924 ** (17) If the subquery is a compound select, then
3925 ** (17a) all compound operators must be a UNION ALL, and
3926 ** (17b) no terms within the subquery compound may be aggregate
3927 ** or DISTINCT, and
3928 ** (17c) every term within the subquery compound must have a FROM clause
3929 ** (17d) the outer query may not be
3930 ** (17d1) aggregate, or
3931 ** (17d2) DISTINCT
3932 ** (17e) the subquery may not contain window functions, and
3933 ** (17f) the subquery must not be the RHS of a LEFT JOIN.
3935 ** The parent and sub-query may contain WHERE clauses. Subject to
3936 ** rules (11), (13) and (14), they may also contain ORDER BY,
3937 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
3938 ** operator other than UNION ALL because all the other compound
3939 ** operators have an implied DISTINCT which is disallowed by
3940 ** restriction (4).
3942 ** Also, each component of the sub-query must return the same number
3943 ** of result columns. This is actually a requirement for any compound
3944 ** SELECT statement, but all the code here does is make sure that no
3945 ** such (illegal) sub-query is flattened. The caller will detect the
3946 ** syntax error and return a detailed message.
3948 ** (18) If the sub-query is a compound select, then all terms of the
3949 ** ORDER BY clause of the parent must be copies of a term returned
3950 ** by the parent query.
3952 ** (19) If the subquery uses LIMIT then the outer query may not
3953 ** have a WHERE clause.
3955 ** (20) If the sub-query is a compound select, then it must not use
3956 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
3957 ** somewhat by saying that the terms of the ORDER BY clause must
3958 ** appear as unmodified result columns in the outer query. But we
3959 ** have other optimizations in mind to deal with that case.
3961 ** (21) If the subquery uses LIMIT then the outer query may not be
3962 ** DISTINCT. (See ticket [752e1646fc]).
3964 ** (22) The subquery may not be a recursive CTE.
3966 ** (23) If the outer query is a recursive CTE, then the sub-query may not be
3967 ** a compound query. This restriction is because transforming the
3968 ** parent to a compound query confuses the code that handles
3969 ** recursive queries in multiSelect().
3971 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3972 ** The subquery may not be an aggregate that uses the built-in min() or
3973 ** or max() functions. (Without this restriction, a query like:
3974 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3975 ** return the value X for which Y was maximal.)
3977 ** (25) If either the subquery or the parent query contains a window
3978 ** function in the select list or ORDER BY clause, flattening
3979 ** is not attempted.
3982 ** In this routine, the "p" parameter is a pointer to the outer query.
3983 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
3984 ** uses aggregates.
3986 ** If flattening is not attempted, this routine is a no-op and returns 0.
3987 ** If flattening is attempted this routine returns 1.
3989 ** All of the expression analysis must occur on both the outer query and
3990 ** the subquery before this routine runs.
3992 static int flattenSubquery(
3993 Parse *pParse, /* Parsing context */
3994 Select *p, /* The parent or outer SELECT statement */
3995 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
3996 int isAgg /* True if outer SELECT uses aggregate functions */
3998 const char *zSavedAuthContext = pParse->zAuthContext;
3999 Select *pParent; /* Current UNION ALL term of the other query */
4000 Select *pSub; /* The inner query or "subquery" */
4001 Select *pSub1; /* Pointer to the rightmost select in sub-query */
4002 SrcList *pSrc; /* The FROM clause of the outer query */
4003 SrcList *pSubSrc; /* The FROM clause of the subquery */
4004 int iParent; /* VDBE cursor number of the pSub result set temp table */
4005 int iNewParent = -1;/* Replacement table for iParent */
4006 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
4007 int i; /* Loop counter */
4008 Expr *pWhere; /* The WHERE clause */
4009 SrcItem *pSubitem; /* The subquery */
4010 sqlite3 *db = pParse->db;
4011 Walker w; /* Walker to persist agginfo data */
4012 int *aCsrMap = 0;
4014 /* Check to see if flattening is permitted. Return 0 if not.
4016 assert( p!=0 );
4017 assert( p->pPrior==0 );
4018 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
4019 pSrc = p->pSrc;
4020 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
4021 pSubitem = &pSrc->a[iFrom];
4022 iParent = pSubitem->iCursor;
4023 pSub = pSubitem->pSelect;
4024 assert( pSub!=0 );
4026 #ifndef SQLITE_OMIT_WINDOWFUNC
4027 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */
4028 #endif
4030 pSubSrc = pSub->pSrc;
4031 assert( pSubSrc );
4032 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
4033 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
4034 ** because they could be computed at compile-time. But when LIMIT and OFFSET
4035 ** became arbitrary expressions, we were forced to add restrictions (13)
4036 ** and (14). */
4037 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
4038 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */
4039 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
4040 return 0; /* Restriction (15) */
4042 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
4043 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */
4044 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
4045 return 0; /* Restrictions (8)(9) */
4047 if( p->pOrderBy && pSub->pOrderBy ){
4048 return 0; /* Restriction (11) */
4050 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
4051 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
4052 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
4053 return 0; /* Restriction (21) */
4055 if( pSub->selFlags & (SF_Recursive) ){
4056 return 0; /* Restrictions (22) */
4060 ** If the subquery is the right operand of a LEFT JOIN, then the
4061 ** subquery may not be a join itself (3a). Example of why this is not
4062 ** allowed:
4064 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
4066 ** If we flatten the above, we would get
4068 ** (t1 LEFT OUTER JOIN t2) JOIN t3
4070 ** which is not at all the same thing.
4072 ** If the subquery is the right operand of a LEFT JOIN, then the outer
4073 ** query cannot be an aggregate. (3c) This is an artifact of the way
4074 ** aggregates are processed - there is no mechanism to determine if
4075 ** the LEFT JOIN table should be all-NULL.
4077 ** See also tickets #306, #350, and #3300.
4079 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
4080 isLeftJoin = 1;
4081 if( pSubSrc->nSrc>1 /* (3a) */
4082 || isAgg /* (3b) */
4083 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */
4084 || (p->selFlags & SF_Distinct)!=0 /* (3d) */
4086 return 0;
4089 #ifdef SQLITE_EXTRA_IFNULLROW
4090 else if( iFrom>0 && !isAgg ){
4091 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
4092 ** every reference to any result column from subquery in a join, even
4093 ** though they are not necessary. This will stress-test the OP_IfNullRow
4094 ** opcode. */
4095 isLeftJoin = -1;
4097 #endif
4099 /* Restriction (17): If the sub-query is a compound SELECT, then it must
4100 ** use only the UNION ALL operator. And none of the simple select queries
4101 ** that make up the compound SELECT are allowed to be aggregate or distinct
4102 ** queries.
4104 if( pSub->pPrior ){
4105 if( pSub->pOrderBy ){
4106 return 0; /* Restriction (20) */
4108 if( isAgg || (p->selFlags & SF_Distinct)!=0 || isLeftJoin>0 ){
4109 return 0; /* (17d1), (17d2), or (17f) */
4111 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
4112 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
4113 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
4114 assert( pSub->pSrc!=0 );
4115 assert( (pSub->selFlags & SF_Recursive)==0 );
4116 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
4117 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */
4118 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */
4119 || pSub1->pSrc->nSrc<1 /* (17c) */
4120 #ifndef SQLITE_OMIT_WINDOWFUNC
4121 || pSub1->pWin /* (17e) */
4122 #endif
4124 return 0;
4126 testcase( pSub1->pSrc->nSrc>1 );
4129 /* Restriction (18). */
4130 if( p->pOrderBy ){
4131 int ii;
4132 for(ii=0; ii<p->pOrderBy->nExpr; ii++){
4133 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
4137 /* Restriction (23) */
4138 if( (p->selFlags & SF_Recursive) ) return 0;
4140 if( pSrc->nSrc>1 ){
4141 if( pParse->nSelect>500 ) return 0;
4142 aCsrMap = sqlite3DbMallocZero(db, pParse->nTab*sizeof(int));
4146 /***** If we reach this point, flattening is permitted. *****/
4147 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
4148 pSub->selId, pSub, iFrom));
4150 /* Authorize the subquery */
4151 pParse->zAuthContext = pSubitem->zName;
4152 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
4153 testcase( i==SQLITE_DENY );
4154 pParse->zAuthContext = zSavedAuthContext;
4156 /* Delete the transient structures associated with thesubquery */
4157 pSub1 = pSubitem->pSelect;
4158 sqlite3DbFree(db, pSubitem->zDatabase);
4159 sqlite3DbFree(db, pSubitem->zName);
4160 sqlite3DbFree(db, pSubitem->zAlias);
4161 pSubitem->zDatabase = 0;
4162 pSubitem->zName = 0;
4163 pSubitem->zAlias = 0;
4164 pSubitem->pSelect = 0;
4165 assert( pSubitem->pOn==0 );
4167 /* If the sub-query is a compound SELECT statement, then (by restrictions
4168 ** 17 and 18 above) it must be a UNION ALL and the parent query must
4169 ** be of the form:
4171 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
4173 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
4174 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
4175 ** OFFSET clauses and joins them to the left-hand-side of the original
4176 ** using UNION ALL operators. In this case N is the number of simple
4177 ** select statements in the compound sub-query.
4179 ** Example:
4181 ** SELECT a+1 FROM (
4182 ** SELECT x FROM tab
4183 ** UNION ALL
4184 ** SELECT y FROM tab
4185 ** UNION ALL
4186 ** SELECT abs(z*2) FROM tab2
4187 ** ) WHERE a!=5 ORDER BY 1
4189 ** Transformed into:
4191 ** SELECT x+1 FROM tab WHERE x+1!=5
4192 ** UNION ALL
4193 ** SELECT y+1 FROM tab WHERE y+1!=5
4194 ** UNION ALL
4195 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4196 ** ORDER BY 1
4198 ** We call this the "compound-subquery flattening".
4200 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
4201 Select *pNew;
4202 ExprList *pOrderBy = p->pOrderBy;
4203 Expr *pLimit = p->pLimit;
4204 Select *pPrior = p->pPrior;
4205 Table *pItemTab = pSubitem->pTab;
4206 pSubitem->pTab = 0;
4207 p->pOrderBy = 0;
4208 p->pPrior = 0;
4209 p->pLimit = 0;
4210 pNew = sqlite3SelectDup(db, p, 0);
4211 p->pLimit = pLimit;
4212 p->pOrderBy = pOrderBy;
4213 p->op = TK_ALL;
4214 pSubitem->pTab = pItemTab;
4215 if( pNew==0 ){
4216 p->pPrior = pPrior;
4217 }else{
4218 pNew->selId = ++pParse->nSelect;
4219 if( aCsrMap && ALWAYS(db->mallocFailed==0) ){
4220 renumberCursors(pParse, pNew, iFrom, aCsrMap);
4222 pNew->pPrior = pPrior;
4223 if( pPrior ) pPrior->pNext = pNew;
4224 pNew->pNext = p;
4225 p->pPrior = pNew;
4226 SELECTTRACE(2,pParse,p,("compound-subquery flattener"
4227 " creates %u as peer\n",pNew->selId));
4229 assert( pSubitem->pSelect==0 );
4231 sqlite3DbFree(db, aCsrMap);
4232 if( db->mallocFailed ){
4233 pSubitem->pSelect = pSub1;
4234 return 1;
4237 /* Defer deleting the Table object associated with the
4238 ** subquery until code generation is
4239 ** complete, since there may still exist Expr.pTab entries that
4240 ** refer to the subquery even after flattening. Ticket #3346.
4242 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4244 if( ALWAYS(pSubitem->pTab!=0) ){
4245 Table *pTabToDel = pSubitem->pTab;
4246 if( pTabToDel->nTabRef==1 ){
4247 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4248 sqlite3ParserAddCleanup(pToplevel,
4249 (void(*)(sqlite3*,void*))sqlite3DeleteTable,
4250 pTabToDel);
4251 testcase( pToplevel->earlyCleanup );
4252 }else{
4253 pTabToDel->nTabRef--;
4255 pSubitem->pTab = 0;
4258 /* The following loop runs once for each term in a compound-subquery
4259 ** flattening (as described above). If we are doing a different kind
4260 ** of flattening - a flattening other than a compound-subquery flattening -
4261 ** then this loop only runs once.
4263 ** This loop moves all of the FROM elements of the subquery into the
4264 ** the FROM clause of the outer query. Before doing this, remember
4265 ** the cursor number for the original outer query FROM element in
4266 ** iParent. The iParent cursor will never be used. Subsequent code
4267 ** will scan expressions looking for iParent references and replace
4268 ** those references with expressions that resolve to the subquery FROM
4269 ** elements we are now copying in.
4271 pSub = pSub1;
4272 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4273 int nSubSrc;
4274 u8 jointype = 0;
4275 assert( pSub!=0 );
4276 pSubSrc = pSub->pSrc; /* FROM clause of subquery */
4277 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
4278 pSrc = pParent->pSrc; /* FROM clause of the outer query */
4280 if( pParent==p ){
4281 jointype = pSubitem->fg.jointype; /* First time through the loop */
4284 /* The subquery uses a single slot of the FROM clause of the outer
4285 ** query. If the subquery has more than one element in its FROM clause,
4286 ** then expand the outer query to make space for it to hold all elements
4287 ** of the subquery.
4289 ** Example:
4291 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4293 ** The outer query has 3 slots in its FROM clause. One slot of the
4294 ** outer query (the middle slot) is used by the subquery. The next
4295 ** block of code will expand the outer query FROM clause to 4 slots.
4296 ** The middle slot is expanded to two slots in order to make space
4297 ** for the two elements in the FROM clause of the subquery.
4299 if( nSubSrc>1 ){
4300 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4301 if( pSrc==0 ) break;
4302 pParent->pSrc = pSrc;
4305 /* Transfer the FROM clause terms from the subquery into the
4306 ** outer query.
4308 for(i=0; i<nSubSrc; i++){
4309 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
4310 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
4311 pSrc->a[i+iFrom] = pSubSrc->a[i];
4312 iNewParent = pSubSrc->a[i].iCursor;
4313 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4315 pSrc->a[iFrom].fg.jointype = jointype;
4317 /* Now begin substituting subquery result set expressions for
4318 ** references to the iParent in the outer query.
4320 ** Example:
4322 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4323 ** \ \_____________ subquery __________/ /
4324 ** \_____________________ outer query ______________________________/
4326 ** We look at every expression in the outer query and every place we see
4327 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4329 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4330 /* At this point, any non-zero iOrderByCol values indicate that the
4331 ** ORDER BY column expression is identical to the iOrderByCol'th
4332 ** expression returned by SELECT statement pSub. Since these values
4333 ** do not necessarily correspond to columns in SELECT statement pParent,
4334 ** zero them before transfering the ORDER BY clause.
4336 ** Not doing this may cause an error if a subsequent call to this
4337 ** function attempts to flatten a compound sub-query into pParent
4338 ** (the only way this can happen is if the compound sub-query is
4339 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
4340 ExprList *pOrderBy = pSub->pOrderBy;
4341 for(i=0; i<pOrderBy->nExpr; i++){
4342 pOrderBy->a[i].u.x.iOrderByCol = 0;
4344 assert( pParent->pOrderBy==0 );
4345 pParent->pOrderBy = pOrderBy;
4346 pSub->pOrderBy = 0;
4348 pWhere = pSub->pWhere;
4349 pSub->pWhere = 0;
4350 if( isLeftJoin>0 ){
4351 sqlite3SetJoinExpr(pWhere, iNewParent);
4353 if( pWhere ){
4354 if( pParent->pWhere ){
4355 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4356 }else{
4357 pParent->pWhere = pWhere;
4360 if( db->mallocFailed==0 ){
4361 SubstContext x;
4362 x.pParse = pParse;
4363 x.iTable = iParent;
4364 x.iNewTable = iNewParent;
4365 x.isLeftJoin = isLeftJoin;
4366 x.pEList = pSub->pEList;
4367 substSelect(&x, pParent, 0);
4370 /* The flattened query is a compound if either the inner or the
4371 ** outer query is a compound. */
4372 pParent->selFlags |= pSub->selFlags & SF_Compound;
4373 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4376 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4378 ** One is tempted to try to add a and b to combine the limits. But this
4379 ** does not work if either limit is negative.
4381 if( pSub->pLimit ){
4382 pParent->pLimit = pSub->pLimit;
4383 pSub->pLimit = 0;
4386 /* Recompute the SrcList_item.colUsed masks for the flattened
4387 ** tables. */
4388 for(i=0; i<nSubSrc; i++){
4389 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4393 /* Finially, delete what is left of the subquery and return
4394 ** success.
4396 sqlite3AggInfoPersistWalkerInit(&w, pParse);
4397 sqlite3WalkSelect(&w,pSub1);
4398 sqlite3SelectDelete(db, pSub1);
4400 #if SELECTTRACE_ENABLED
4401 if( sqlite3SelectTrace & 0x100 ){
4402 SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4403 sqlite3TreeViewSelect(0, p, 0);
4405 #endif
4407 return 1;
4409 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4412 ** A structure to keep track of all of the column values that are fixed to
4413 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4415 typedef struct WhereConst WhereConst;
4416 struct WhereConst {
4417 Parse *pParse; /* Parsing context */
4418 u8 *pOomFault; /* Pointer to pParse->db->mallocFailed */
4419 int nConst; /* Number for COLUMN=CONSTANT terms */
4420 int nChng; /* Number of times a constant is propagated */
4421 int bHasAffBlob; /* At least one column in apExpr[] as affinity BLOB */
4422 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */
4426 ** Add a new entry to the pConst object. Except, do not add duplicate
4427 ** pColumn entires. Also, do not add if doing so would not be appropriate.
4429 ** The caller guarantees the pColumn is a column and pValue is a constant.
4430 ** This routine has to do some additional checks before completing the
4431 ** insert.
4433 static void constInsert(
4434 WhereConst *pConst, /* The WhereConst into which we are inserting */
4435 Expr *pColumn, /* The COLUMN part of the constraint */
4436 Expr *pValue, /* The VALUE part of the constraint */
4437 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4439 int i;
4440 assert( pColumn->op==TK_COLUMN );
4441 assert( sqlite3ExprIsConstant(pValue) );
4443 if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4444 if( sqlite3ExprAffinity(pValue)!=0 ) return;
4445 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4446 return;
4449 /* 2018-10-25 ticket [cf5ed20f]
4450 ** Make sure the same pColumn is not inserted more than once */
4451 for(i=0; i<pConst->nConst; i++){
4452 const Expr *pE2 = pConst->apExpr[i*2];
4453 assert( pE2->op==TK_COLUMN );
4454 if( pE2->iTable==pColumn->iTable
4455 && pE2->iColumn==pColumn->iColumn
4457 return; /* Already present. Return without doing anything. */
4460 if( sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4461 pConst->bHasAffBlob = 1;
4464 pConst->nConst++;
4465 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4466 pConst->nConst*2*sizeof(Expr*));
4467 if( pConst->apExpr==0 ){
4468 pConst->nConst = 0;
4469 }else{
4470 pConst->apExpr[pConst->nConst*2-2] = pColumn;
4471 pConst->apExpr[pConst->nConst*2-1] = pValue;
4476 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4477 ** is a constant expression and where the term must be true because it
4478 ** is part of the AND-connected terms of the expression. For each term
4479 ** found, add it to the pConst structure.
4481 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4482 Expr *pRight, *pLeft;
4483 if( NEVER(pExpr==0) ) return;
4484 if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4485 if( pExpr->op==TK_AND ){
4486 findConstInWhere(pConst, pExpr->pRight);
4487 findConstInWhere(pConst, pExpr->pLeft);
4488 return;
4490 if( pExpr->op!=TK_EQ ) return;
4491 pRight = pExpr->pRight;
4492 pLeft = pExpr->pLeft;
4493 assert( pRight!=0 );
4494 assert( pLeft!=0 );
4495 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4496 constInsert(pConst,pRight,pLeft,pExpr);
4498 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4499 constInsert(pConst,pLeft,pRight,pExpr);
4504 ** This is a helper function for Walker callback propagateConstantExprRewrite().
4506 ** Argument pExpr is a candidate expression to be replaced by a value. If
4507 ** pExpr is equivalent to one of the columns named in pWalker->u.pConst,
4508 ** then overwrite it with the corresponding value. Except, do not do so
4509 ** if argument bIgnoreAffBlob is non-zero and the affinity of pExpr
4510 ** is SQLITE_AFF_BLOB.
4512 static int propagateConstantExprRewriteOne(
4513 WhereConst *pConst,
4514 Expr *pExpr,
4515 int bIgnoreAffBlob
4517 int i;
4518 if( pConst->pOomFault[0] ) return WRC_Prune;
4519 if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4520 if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){
4521 testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4522 testcase( ExprHasProperty(pExpr, EP_FromJoin) );
4523 return WRC_Continue;
4525 for(i=0; i<pConst->nConst; i++){
4526 Expr *pColumn = pConst->apExpr[i*2];
4527 if( pColumn==pExpr ) continue;
4528 if( pColumn->iTable!=pExpr->iTable ) continue;
4529 if( pColumn->iColumn!=pExpr->iColumn ) continue;
4530 if( bIgnoreAffBlob && sqlite3ExprAffinity(pColumn)==SQLITE_AFF_BLOB ){
4531 break;
4533 /* A match is found. Add the EP_FixedCol property */
4534 pConst->nChng++;
4535 ExprClearProperty(pExpr, EP_Leaf);
4536 ExprSetProperty(pExpr, EP_FixedCol);
4537 assert( pExpr->pLeft==0 );
4538 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4539 if( pConst->pParse->db->mallocFailed ) return WRC_Prune;
4540 break;
4542 return WRC_Prune;
4546 ** This is a Walker expression callback. pExpr is a node from the WHERE
4547 ** clause of a SELECT statement. This function examines pExpr to see if
4548 ** any substitutions based on the contents of pWalker->u.pConst should
4549 ** be made to pExpr or its immediate children.
4551 ** A substitution is made if:
4553 ** + pExpr is a column with an affinity other than BLOB that matches
4554 ** one of the columns in pWalker->u.pConst, or
4556 ** + pExpr is a binary comparison operator (=, <=, >=, <, >) that
4557 ** uses an affinity other than TEXT and one of its immediate
4558 ** children is a column that matches one of the columns in
4559 ** pWalker->u.pConst.
4561 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4562 WhereConst *pConst = pWalker->u.pConst;
4563 assert( TK_GT==TK_EQ+1 );
4564 assert( TK_LE==TK_EQ+2 );
4565 assert( TK_LT==TK_EQ+3 );
4566 assert( TK_GE==TK_EQ+4 );
4567 if( pConst->bHasAffBlob ){
4568 if( (pExpr->op>=TK_EQ && pExpr->op<=TK_GE)
4569 || pExpr->op==TK_IS
4571 propagateConstantExprRewriteOne(pConst, pExpr->pLeft, 0);
4572 if( pConst->pOomFault[0] ) return WRC_Prune;
4573 if( sqlite3ExprAffinity(pExpr->pLeft)!=SQLITE_AFF_TEXT ){
4574 propagateConstantExprRewriteOne(pConst, pExpr->pRight, 0);
4578 return propagateConstantExprRewriteOne(pConst, pExpr, pConst->bHasAffBlob);
4582 ** The WHERE-clause constant propagation optimization.
4584 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4585 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4586 ** part of a ON clause from a LEFT JOIN, then throughout the query
4587 ** replace all other occurrences of COLUMN with CONSTANT.
4589 ** For example, the query:
4591 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4593 ** Is transformed into
4595 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4597 ** Return true if any transformations where made and false if not.
4599 ** Implementation note: Constant propagation is tricky due to affinity
4600 ** and collating sequence interactions. Consider this example:
4602 ** CREATE TABLE t1(a INT,b TEXT);
4603 ** INSERT INTO t1 VALUES(123,'0123');
4604 ** SELECT * FROM t1 WHERE a=123 AND b=a;
4605 ** SELECT * FROM t1 WHERE a=123 AND b=123;
4607 ** The two SELECT statements above should return different answers. b=a
4608 ** is alway true because the comparison uses numeric affinity, but b=123
4609 ** is false because it uses text affinity and '0123' is not the same as '123'.
4610 ** To work around this, the expression tree is not actually changed from
4611 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4612 ** and the "123" value is hung off of the pLeft pointer. Code generator
4613 ** routines know to generate the constant "123" instead of looking up the
4614 ** column value. Also, to avoid collation problems, this optimization is
4615 ** only attempted if the "a=123" term uses the default BINARY collation.
4617 ** 2021-05-25 forum post 6a06202608: Another troublesome case is...
4619 ** CREATE TABLE t1(x);
4620 ** INSERT INTO t1 VALUES(10.0);
4621 ** SELECT 1 FROM t1 WHERE x=10 AND x LIKE 10;
4623 ** The query should return no rows, because the t1.x value is '10.0' not '10'
4624 ** and '10.0' is not LIKE '10'. But if we are not careful, the first WHERE
4625 ** term "x=10" will cause the second WHERE term to become "10 LIKE 10",
4626 ** resulting in a false positive. To avoid this, constant propagation for
4627 ** columns with BLOB affinity is only allowed if the constant is used with
4628 ** operators ==, <=, <, >=, >, or IS in a way that will cause the correct
4629 ** type conversions to occur. See logic associated with the bHasAffBlob flag
4630 ** for details.
4632 static int propagateConstants(
4633 Parse *pParse, /* The parsing context */
4634 Select *p /* The query in which to propagate constants */
4636 WhereConst x;
4637 Walker w;
4638 int nChng = 0;
4639 x.pParse = pParse;
4640 x.pOomFault = &pParse->db->mallocFailed;
4642 x.nConst = 0;
4643 x.nChng = 0;
4644 x.apExpr = 0;
4645 x.bHasAffBlob = 0;
4646 findConstInWhere(&x, p->pWhere);
4647 if( x.nConst ){
4648 memset(&w, 0, sizeof(w));
4649 w.pParse = pParse;
4650 w.xExprCallback = propagateConstantExprRewrite;
4651 w.xSelectCallback = sqlite3SelectWalkNoop;
4652 w.xSelectCallback2 = 0;
4653 w.walkerDepth = 0;
4654 w.u.pConst = &x;
4655 sqlite3WalkExpr(&w, p->pWhere);
4656 sqlite3DbFree(x.pParse->db, x.apExpr);
4657 nChng += x.nChng;
4659 }while( x.nChng );
4660 return nChng;
4663 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4664 # if !defined(SQLITE_OMIT_WINDOWFUNC)
4666 ** This function is called to determine whether or not it is safe to
4667 ** push WHERE clause expression pExpr down to FROM clause sub-query
4668 ** pSubq, which contains at least one window function. Return 1
4669 ** if it is safe and the expression should be pushed down, or 0
4670 ** otherwise.
4672 ** It is only safe to push the expression down if it consists only
4673 ** of constants and copies of expressions that appear in the PARTITION
4674 ** BY clause of all window function used by the sub-query. It is safe
4675 ** to filter out entire partitions, but not rows within partitions, as
4676 ** this may change the results of the window functions.
4678 ** At the time this function is called it is guaranteed that
4680 ** * the sub-query uses only one distinct window frame, and
4681 ** * that the window frame has a PARTITION BY clase.
4683 static int pushDownWindowCheck(Parse *pParse, Select *pSubq, Expr *pExpr){
4684 assert( pSubq->pWin->pPartition );
4685 assert( (pSubq->selFlags & SF_MultiPart)==0 );
4686 assert( pSubq->pPrior==0 );
4687 return sqlite3ExprIsConstantOrGroupBy(pParse, pExpr, pSubq->pWin->pPartition);
4689 # endif /* SQLITE_OMIT_WINDOWFUNC */
4690 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4692 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4694 ** Make copies of relevant WHERE clause terms of the outer query into
4695 ** the WHERE clause of subquery. Example:
4697 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4699 ** Transformed into:
4701 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4702 ** WHERE x=5 AND y=10;
4704 ** The hope is that the terms added to the inner query will make it more
4705 ** efficient.
4707 ** Do not attempt this optimization if:
4709 ** (1) (** This restriction was removed on 2017-09-29. We used to
4710 ** disallow this optimization for aggregate subqueries, but now
4711 ** it is allowed by putting the extra terms on the HAVING clause.
4712 ** The added HAVING clause is pointless if the subquery lacks
4713 ** a GROUP BY clause. But such a HAVING clause is also harmless
4714 ** so there does not appear to be any reason to add extra logic
4715 ** to suppress it. **)
4717 ** (2) The inner query is the recursive part of a common table expression.
4719 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
4720 ** clause would change the meaning of the LIMIT).
4722 ** (4) The inner query is the right operand of a LEFT JOIN and the
4723 ** expression to be pushed down does not come from the ON clause
4724 ** on that LEFT JOIN.
4726 ** (5) The WHERE clause expression originates in the ON or USING clause
4727 ** of a LEFT JOIN where iCursor is not the right-hand table of that
4728 ** left join. An example:
4730 ** SELECT *
4731 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4732 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4733 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4735 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9).
4736 ** But if the (b2=2) term were to be pushed down into the bb subquery,
4737 ** then the (1,1,NULL) row would be suppressed.
4739 ** (6) Window functions make things tricky as changes to the WHERE clause
4740 ** of the inner query could change the window over which window
4741 ** functions are calculated. Therefore, do not attempt the optimization
4742 ** if:
4744 ** (6a) The inner query uses multiple incompatible window partitions.
4746 ** (6b) The inner query is a compound and uses window-functions.
4748 ** (6c) The WHERE clause does not consist entirely of constants and
4749 ** copies of expressions found in the PARTITION BY clause of
4750 ** all window-functions used by the sub-query. It is safe to
4751 ** filter out entire partitions, as this does not change the
4752 ** window over which any window-function is calculated.
4754 ** (7) The inner query is a Common Table Expression (CTE) that should
4755 ** be materialized. (This restriction is implemented in the calling
4756 ** routine.)
4758 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4759 ** terms are duplicated into the subquery.
4761 static int pushDownWhereTerms(
4762 Parse *pParse, /* Parse context (for malloc() and error reporting) */
4763 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */
4764 Expr *pWhere, /* The WHERE clause of the outer query */
4765 int iCursor, /* Cursor number of the subquery */
4766 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */
4768 Expr *pNew;
4769 int nChng = 0;
4770 if( pWhere==0 ) return 0;
4771 if( pSubq->selFlags & (SF_Recursive|SF_MultiPart) ) return 0;
4773 #ifndef SQLITE_OMIT_WINDOWFUNC
4774 if( pSubq->pPrior ){
4775 Select *pSel;
4776 for(pSel=pSubq; pSel; pSel=pSel->pPrior){
4777 if( pSel->pWin ) return 0; /* restriction (6b) */
4779 }else{
4780 if( pSubq->pWin && pSubq->pWin->pPartition==0 ) return 0;
4782 #endif
4784 #ifdef SQLITE_DEBUG
4785 /* Only the first term of a compound can have a WITH clause. But make
4786 ** sure no other terms are marked SF_Recursive in case something changes
4787 ** in the future.
4790 Select *pX;
4791 for(pX=pSubq; pX; pX=pX->pPrior){
4792 assert( (pX->selFlags & (SF_Recursive))==0 );
4795 #endif
4797 if( pSubq->pLimit!=0 ){
4798 return 0; /* restriction (3) */
4800 while( pWhere->op==TK_AND ){
4801 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4802 iCursor, isLeftJoin);
4803 pWhere = pWhere->pLeft;
4805 if( isLeftJoin
4806 && (ExprHasProperty(pWhere,EP_FromJoin)==0
4807 || pWhere->iRightJoinTable!=iCursor)
4809 return 0; /* restriction (4) */
4811 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4812 return 0; /* restriction (5) */
4814 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4815 nChng++;
4816 pSubq->selFlags |= SF_PushDown;
4817 while( pSubq ){
4818 SubstContext x;
4819 pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4820 unsetJoinExpr(pNew, -1);
4821 x.pParse = pParse;
4822 x.iTable = iCursor;
4823 x.iNewTable = iCursor;
4824 x.isLeftJoin = 0;
4825 x.pEList = pSubq->pEList;
4826 pNew = substExpr(&x, pNew);
4827 #ifndef SQLITE_OMIT_WINDOWFUNC
4828 if( pSubq->pWin && 0==pushDownWindowCheck(pParse, pSubq, pNew) ){
4829 /* Restriction 6c has prevented push-down in this case */
4830 sqlite3ExprDelete(pParse->db, pNew);
4831 nChng--;
4832 break;
4834 #endif
4835 if( pSubq->selFlags & SF_Aggregate ){
4836 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
4837 }else{
4838 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
4840 pSubq = pSubq->pPrior;
4843 return nChng;
4845 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4848 ** The pFunc is the only aggregate function in the query. Check to see
4849 ** if the query is a candidate for the min/max optimization.
4851 ** If the query is a candidate for the min/max optimization, then set
4852 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4853 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4854 ** whether pFunc is a min() or max() function.
4856 ** If the query is not a candidate for the min/max optimization, return
4857 ** WHERE_ORDERBY_NORMAL (which must be zero).
4859 ** This routine must be called after aggregate functions have been
4860 ** located but before their arguments have been subjected to aggregate
4861 ** analysis.
4863 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4864 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
4865 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */
4866 const char *zFunc; /* Name of aggregate function pFunc */
4867 ExprList *pOrderBy;
4868 u8 sortFlags = 0;
4870 assert( *ppMinMax==0 );
4871 assert( pFunc->op==TK_AGG_FUNCTION );
4872 assert( !IsWindowFunc(pFunc) );
4873 if( pEList==0
4874 || pEList->nExpr!=1
4875 || ExprHasProperty(pFunc, EP_WinFunc)
4876 || OptimizationDisabled(db, SQLITE_MinMaxOpt)
4878 return eRet;
4880 zFunc = pFunc->u.zToken;
4881 if( sqlite3StrICmp(zFunc, "min")==0 ){
4882 eRet = WHERE_ORDERBY_MIN;
4883 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
4884 sortFlags = KEYINFO_ORDER_BIGNULL;
4886 }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4887 eRet = WHERE_ORDERBY_MAX;
4888 sortFlags = KEYINFO_ORDER_DESC;
4889 }else{
4890 return eRet;
4892 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4893 assert( pOrderBy!=0 || db->mallocFailed );
4894 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags;
4895 return eRet;
4899 ** The select statement passed as the first argument is an aggregate query.
4900 ** The second argument is the associated aggregate-info object. This
4901 ** function tests if the SELECT is of the form:
4903 ** SELECT count(*) FROM <tbl>
4905 ** where table is a database table, not a sub-select or view. If the query
4906 ** does match this pattern, then a pointer to the Table object representing
4907 ** <tbl> is returned. Otherwise, 0 is returned.
4909 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4910 Table *pTab;
4911 Expr *pExpr;
4913 assert( !p->pGroupBy );
4915 if( p->pWhere || p->pEList->nExpr!=1
4916 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4918 return 0;
4920 pTab = p->pSrc->a[0].pTab;
4921 pExpr = p->pEList->a[0].pExpr;
4922 assert( pTab && !pTab->pSelect && pExpr );
4924 if( IsVirtual(pTab) ) return 0;
4925 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4926 if( NEVER(pAggInfo->nFunc==0) ) return 0;
4927 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4928 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
4930 return pTab;
4934 ** If the source-list item passed as an argument was augmented with an
4935 ** INDEXED BY clause, then try to locate the specified index. If there
4936 ** was such a clause and the named index cannot be found, return
4937 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4938 ** pFrom->pIndex and return SQLITE_OK.
4940 int sqlite3IndexedByLookup(Parse *pParse, SrcItem *pFrom){
4941 Table *pTab = pFrom->pTab;
4942 char *zIndexedBy = pFrom->u1.zIndexedBy;
4943 Index *pIdx;
4944 assert( pTab!=0 );
4945 assert( pFrom->fg.isIndexedBy!=0 );
4947 for(pIdx=pTab->pIndex;
4948 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4949 pIdx=pIdx->pNext
4951 if( !pIdx ){
4952 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4953 pParse->checkSchema = 1;
4954 return SQLITE_ERROR;
4956 pFrom->u2.pIBIndex = pIdx;
4957 return SQLITE_OK;
4961 ** Detect compound SELECT statements that use an ORDER BY clause with
4962 ** an alternative collating sequence.
4964 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4966 ** These are rewritten as a subquery:
4968 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4969 ** ORDER BY ... COLLATE ...
4971 ** This transformation is necessary because the multiSelectOrderBy() routine
4972 ** above that generates the code for a compound SELECT with an ORDER BY clause
4973 ** uses a merge algorithm that requires the same collating sequence on the
4974 ** result columns as on the ORDER BY clause. See ticket
4975 ** http://www.sqlite.org/src/info/6709574d2a
4977 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4978 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4979 ** there are COLLATE terms in the ORDER BY.
4981 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4982 int i;
4983 Select *pNew;
4984 Select *pX;
4985 sqlite3 *db;
4986 struct ExprList_item *a;
4987 SrcList *pNewSrc;
4988 Parse *pParse;
4989 Token dummy;
4991 if( p->pPrior==0 ) return WRC_Continue;
4992 if( p->pOrderBy==0 ) return WRC_Continue;
4993 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4994 if( pX==0 ) return WRC_Continue;
4995 a = p->pOrderBy->a;
4996 #ifndef SQLITE_OMIT_WINDOWFUNC
4997 /* If iOrderByCol is already non-zero, then it has already been matched
4998 ** to a result column of the SELECT statement. This occurs when the
4999 ** SELECT is rewritten for window-functions processing and then passed
5000 ** to sqlite3SelectPrep() and similar a second time. The rewriting done
5001 ** by this function is not required in this case. */
5002 if( a[0].u.x.iOrderByCol ) return WRC_Continue;
5003 #endif
5004 for(i=p->pOrderBy->nExpr-1; i>=0; i--){
5005 if( a[i].pExpr->flags & EP_Collate ) break;
5007 if( i<0 ) return WRC_Continue;
5009 /* If we reach this point, that means the transformation is required. */
5011 pParse = pWalker->pParse;
5012 db = pParse->db;
5013 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
5014 if( pNew==0 ) return WRC_Abort;
5015 memset(&dummy, 0, sizeof(dummy));
5016 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
5017 if( pNewSrc==0 ) return WRC_Abort;
5018 *pNew = *p;
5019 p->pSrc = pNewSrc;
5020 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
5021 p->op = TK_SELECT;
5022 p->pWhere = 0;
5023 pNew->pGroupBy = 0;
5024 pNew->pHaving = 0;
5025 pNew->pOrderBy = 0;
5026 p->pPrior = 0;
5027 p->pNext = 0;
5028 p->pWith = 0;
5029 #ifndef SQLITE_OMIT_WINDOWFUNC
5030 p->pWinDefn = 0;
5031 #endif
5032 p->selFlags &= ~SF_Compound;
5033 assert( (p->selFlags & SF_Converted)==0 );
5034 p->selFlags |= SF_Converted;
5035 assert( pNew->pPrior!=0 );
5036 pNew->pPrior->pNext = pNew;
5037 pNew->pLimit = 0;
5038 return WRC_Continue;
5042 ** Check to see if the FROM clause term pFrom has table-valued function
5043 ** arguments. If it does, leave an error message in pParse and return
5044 ** non-zero, since pFrom is not allowed to be a table-valued function.
5046 static int cannotBeFunction(Parse *pParse, SrcItem *pFrom){
5047 if( pFrom->fg.isTabFunc ){
5048 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
5049 return 1;
5051 return 0;
5054 #ifndef SQLITE_OMIT_CTE
5056 ** Argument pWith (which may be NULL) points to a linked list of nested
5057 ** WITH contexts, from inner to outermost. If the table identified by
5058 ** FROM clause element pItem is really a common-table-expression (CTE)
5059 ** then return a pointer to the CTE definition for that table. Otherwise
5060 ** return NULL.
5062 ** If a non-NULL value is returned, set *ppContext to point to the With
5063 ** object that the returned CTE belongs to.
5065 static struct Cte *searchWith(
5066 With *pWith, /* Current innermost WITH clause */
5067 SrcItem *pItem, /* FROM clause element to resolve */
5068 With **ppContext /* OUT: WITH clause return value belongs to */
5070 const char *zName = pItem->zName;
5071 With *p;
5072 assert( pItem->zDatabase==0 );
5073 assert( zName!=0 );
5074 for(p=pWith; p; p=p->pOuter){
5075 int i;
5076 for(i=0; i<p->nCte; i++){
5077 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
5078 *ppContext = p;
5079 return &p->a[i];
5082 if( p->bView ) break;
5084 return 0;
5087 /* The code generator maintains a stack of active WITH clauses
5088 ** with the inner-most WITH clause being at the top of the stack.
5090 ** This routine pushes the WITH clause passed as the second argument
5091 ** onto the top of the stack. If argument bFree is true, then this
5092 ** WITH clause will never be popped from the stack but should instead
5093 ** be freed along with the Parse object. In other cases, when
5094 ** bFree==0, the With object will be freed along with the SELECT
5095 ** statement with which it is associated.
5097 ** This routine returns a copy of pWith. Or, if bFree is true and
5098 ** the pWith object is destroyed immediately due to an OOM condition,
5099 ** then this routine return NULL.
5101 ** If bFree is true, do not continue to use the pWith pointer after
5102 ** calling this routine, Instead, use only the return value.
5104 With *sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
5105 if( pWith ){
5106 if( bFree ){
5107 pWith = (With*)sqlite3ParserAddCleanup(pParse,
5108 (void(*)(sqlite3*,void*))sqlite3WithDelete,
5109 pWith);
5110 if( pWith==0 ) return 0;
5112 if( pParse->nErr==0 ){
5113 assert( pParse->pWith!=pWith );
5114 pWith->pOuter = pParse->pWith;
5115 pParse->pWith = pWith;
5118 return pWith;
5122 ** This function checks if argument pFrom refers to a CTE declared by
5123 ** a WITH clause on the stack currently maintained by the parser (on the
5124 ** pParse->pWith linked list). And if currently processing a CTE
5125 ** CTE expression, through routine checks to see if the reference is
5126 ** a recursive reference to the CTE.
5128 ** If pFrom matches a CTE according to either of these two above, pFrom->pTab
5129 ** and other fields are populated accordingly.
5131 ** Return 0 if no match is found.
5132 ** Return 1 if a match is found.
5133 ** Return 2 if an error condition is detected.
5135 static int resolveFromTermToCte(
5136 Parse *pParse, /* The parsing context */
5137 Walker *pWalker, /* Current tree walker */
5138 SrcItem *pFrom /* The FROM clause term to check */
5140 Cte *pCte; /* Matched CTE (or NULL if no match) */
5141 With *pWith; /* The matching WITH */
5143 assert( pFrom->pTab==0 );
5144 if( pParse->pWith==0 ){
5145 /* There are no WITH clauses in the stack. No match is possible */
5146 return 0;
5148 if( pParse->nErr ){
5149 /* Prior errors might have left pParse->pWith in a goofy state, so
5150 ** go no further. */
5151 return 0;
5153 if( pFrom->zDatabase!=0 ){
5154 /* The FROM term contains a schema qualifier (ex: main.t1) and so
5155 ** it cannot possibly be a CTE reference. */
5156 return 0;
5158 if( pFrom->fg.notCte ){
5159 /* The FROM term is specifically excluded from matching a CTE.
5160 ** (1) It is part of a trigger that used to have zDatabase but had
5161 ** zDatabase removed by sqlite3FixTriggerStep().
5162 ** (2) This is the first term in the FROM clause of an UPDATE.
5164 return 0;
5166 pCte = searchWith(pParse->pWith, pFrom, &pWith);
5167 if( pCte ){
5168 sqlite3 *db = pParse->db;
5169 Table *pTab;
5170 ExprList *pEList;
5171 Select *pSel;
5172 Select *pLeft; /* Left-most SELECT statement */
5173 Select *pRecTerm; /* Left-most recursive term */
5174 int bMayRecursive; /* True if compound joined by UNION [ALL] */
5175 With *pSavedWith; /* Initial value of pParse->pWith */
5176 int iRecTab = -1; /* Cursor for recursive table */
5177 CteUse *pCteUse;
5179 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
5180 ** recursive reference to CTE pCte. Leave an error in pParse and return
5181 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
5182 ** In this case, proceed. */
5183 if( pCte->zCteErr ){
5184 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
5185 return 2;
5187 if( cannotBeFunction(pParse, pFrom) ) return 2;
5189 assert( pFrom->pTab==0 );
5190 pTab = sqlite3DbMallocZero(db, sizeof(Table));
5191 if( pTab==0 ) return 2;
5192 pCteUse = pCte->pUse;
5193 if( pCteUse==0 ){
5194 pCte->pUse = pCteUse = sqlite3DbMallocZero(db, sizeof(pCteUse[0]));
5195 if( pCteUse==0
5196 || sqlite3ParserAddCleanup(pParse,sqlite3DbFree,pCteUse)==0
5198 sqlite3DbFree(db, pTab);
5199 return 2;
5201 pCteUse->eM10d = pCte->eM10d;
5203 pFrom->pTab = pTab;
5204 pTab->nTabRef = 1;
5205 pTab->zName = sqlite3DbStrDup(db, pCte->zName);
5206 pTab->iPKey = -1;
5207 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5208 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5209 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
5210 if( db->mallocFailed ) return 2;
5211 pFrom->pSelect->selFlags |= SF_CopyCte;
5212 assert( pFrom->pSelect );
5213 pFrom->fg.isCte = 1;
5214 pFrom->u2.pCteUse = pCteUse;
5215 pCteUse->nUse++;
5216 if( pCteUse->nUse>=2 && pCteUse->eM10d==M10d_Any ){
5217 pCteUse->eM10d = M10d_Yes;
5220 /* Check if this is a recursive CTE. */
5221 pRecTerm = pSel = pFrom->pSelect;
5222 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
5223 while( bMayRecursive && pRecTerm->op==pSel->op ){
5224 int i;
5225 SrcList *pSrc = pRecTerm->pSrc;
5226 assert( pRecTerm->pPrior!=0 );
5227 for(i=0; i<pSrc->nSrc; i++){
5228 SrcItem *pItem = &pSrc->a[i];
5229 if( pItem->zDatabase==0
5230 && pItem->zName!=0
5231 && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
5233 pItem->pTab = pTab;
5234 pTab->nTabRef++;
5235 pItem->fg.isRecursive = 1;
5236 if( pRecTerm->selFlags & SF_Recursive ){
5237 sqlite3ErrorMsg(pParse,
5238 "multiple references to recursive table: %s", pCte->zName
5240 return 2;
5242 pRecTerm->selFlags |= SF_Recursive;
5243 if( iRecTab<0 ) iRecTab = pParse->nTab++;
5244 pItem->iCursor = iRecTab;
5247 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
5248 pRecTerm = pRecTerm->pPrior;
5251 pCte->zCteErr = "circular reference: %s";
5252 pSavedWith = pParse->pWith;
5253 pParse->pWith = pWith;
5254 if( pSel->selFlags & SF_Recursive ){
5255 int rc;
5256 assert( pRecTerm!=0 );
5257 assert( (pRecTerm->selFlags & SF_Recursive)==0 );
5258 assert( pRecTerm->pNext!=0 );
5259 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
5260 assert( pRecTerm->pWith==0 );
5261 pRecTerm->pWith = pSel->pWith;
5262 rc = sqlite3WalkSelect(pWalker, pRecTerm);
5263 pRecTerm->pWith = 0;
5264 if( rc ){
5265 pParse->pWith = pSavedWith;
5266 return 2;
5268 }else{
5269 if( sqlite3WalkSelect(pWalker, pSel) ){
5270 pParse->pWith = pSavedWith;
5271 return 2;
5274 pParse->pWith = pWith;
5276 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
5277 pEList = pLeft->pEList;
5278 if( pCte->pCols ){
5279 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
5280 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
5281 pCte->zName, pEList->nExpr, pCte->pCols->nExpr
5283 pParse->pWith = pSavedWith;
5284 return 2;
5286 pEList = pCte->pCols;
5289 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
5290 if( bMayRecursive ){
5291 if( pSel->selFlags & SF_Recursive ){
5292 pCte->zCteErr = "multiple recursive references: %s";
5293 }else{
5294 pCte->zCteErr = "recursive reference in a subquery: %s";
5296 sqlite3WalkSelect(pWalker, pSel);
5298 pCte->zCteErr = 0;
5299 pParse->pWith = pSavedWith;
5300 return 1; /* Success */
5302 return 0; /* No match */
5304 #endif
5306 #ifndef SQLITE_OMIT_CTE
5308 ** If the SELECT passed as the second argument has an associated WITH
5309 ** clause, pop it from the stack stored as part of the Parse object.
5311 ** This function is used as the xSelectCallback2() callback by
5312 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
5313 ** names and other FROM clause elements.
5315 void sqlite3SelectPopWith(Walker *pWalker, Select *p){
5316 Parse *pParse = pWalker->pParse;
5317 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
5318 With *pWith = findRightmost(p)->pWith;
5319 if( pWith!=0 ){
5320 assert( pParse->pWith==pWith || pParse->nErr );
5321 pParse->pWith = pWith->pOuter;
5325 #endif
5328 ** The SrcList_item structure passed as the second argument represents a
5329 ** sub-query in the FROM clause of a SELECT statement. This function
5330 ** allocates and populates the SrcList_item.pTab object. If successful,
5331 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
5332 ** SQLITE_NOMEM.
5334 int sqlite3ExpandSubquery(Parse *pParse, SrcItem *pFrom){
5335 Select *pSel = pFrom->pSelect;
5336 Table *pTab;
5338 assert( pSel );
5339 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
5340 if( pTab==0 ) return SQLITE_NOMEM;
5341 pTab->nTabRef = 1;
5342 if( pFrom->zAlias ){
5343 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
5344 }else{
5345 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
5347 while( pSel->pPrior ){ pSel = pSel->pPrior; }
5348 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
5349 pTab->iPKey = -1;
5350 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
5351 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
5352 /* The usual case - do not allow ROWID on a subquery */
5353 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
5354 #else
5355 pTab->tabFlags |= TF_Ephemeral; /* Legacy compatibility mode */
5356 #endif
5359 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
5363 ** This routine is a Walker callback for "expanding" a SELECT statement.
5364 ** "Expanding" means to do the following:
5366 ** (1) Make sure VDBE cursor numbers have been assigned to every
5367 ** element of the FROM clause.
5369 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
5370 ** defines FROM clause. When views appear in the FROM clause,
5371 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
5372 ** that implements the view. A copy is made of the view's SELECT
5373 ** statement so that we can freely modify or delete that statement
5374 ** without worrying about messing up the persistent representation
5375 ** of the view.
5377 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
5378 ** on joins and the ON and USING clause of joins.
5380 ** (4) Scan the list of columns in the result set (pEList) looking
5381 ** for instances of the "*" operator or the TABLE.* operator.
5382 ** If found, expand each "*" to be every column in every table
5383 ** and TABLE.* to be every column in TABLE.
5386 static int selectExpander(Walker *pWalker, Select *p){
5387 Parse *pParse = pWalker->pParse;
5388 int i, j, k, rc;
5389 SrcList *pTabList;
5390 ExprList *pEList;
5391 SrcItem *pFrom;
5392 sqlite3 *db = pParse->db;
5393 Expr *pE, *pRight, *pExpr;
5394 u16 selFlags = p->selFlags;
5395 u32 elistFlags = 0;
5397 p->selFlags |= SF_Expanded;
5398 if( db->mallocFailed ){
5399 return WRC_Abort;
5401 assert( p->pSrc!=0 );
5402 if( (selFlags & SF_Expanded)!=0 ){
5403 return WRC_Prune;
5405 if( pWalker->eCode ){
5406 /* Renumber selId because it has been copied from a view */
5407 p->selId = ++pParse->nSelect;
5409 pTabList = p->pSrc;
5410 pEList = p->pEList;
5411 if( pParse->pWith && (p->selFlags & SF_View) ){
5412 if( p->pWith==0 ){
5413 p->pWith = (With*)sqlite3DbMallocZero(db, sizeof(With));
5414 if( p->pWith==0 ){
5415 return WRC_Abort;
5418 p->pWith->bView = 1;
5420 sqlite3WithPush(pParse, p->pWith, 0);
5422 /* Make sure cursor numbers have been assigned to all entries in
5423 ** the FROM clause of the SELECT statement.
5425 sqlite3SrcListAssignCursors(pParse, pTabList);
5427 /* Look up every table named in the FROM clause of the select. If
5428 ** an entry of the FROM clause is a subquery instead of a table or view,
5429 ** then create a transient table structure to describe the subquery.
5431 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5432 Table *pTab;
5433 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
5434 if( pFrom->pTab ) continue;
5435 assert( pFrom->fg.isRecursive==0 );
5436 if( pFrom->zName==0 ){
5437 #ifndef SQLITE_OMIT_SUBQUERY
5438 Select *pSel = pFrom->pSelect;
5439 /* A sub-query in the FROM clause of a SELECT */
5440 assert( pSel!=0 );
5441 assert( pFrom->pTab==0 );
5442 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
5443 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
5444 #endif
5445 #ifndef SQLITE_OMIT_CTE
5446 }else if( (rc = resolveFromTermToCte(pParse, pWalker, pFrom))!=0 ){
5447 if( rc>1 ) return WRC_Abort;
5448 pTab = pFrom->pTab;
5449 assert( pTab!=0 );
5450 #endif
5451 }else{
5452 /* An ordinary table or view name in the FROM clause */
5453 assert( pFrom->pTab==0 );
5454 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
5455 if( pTab==0 ) return WRC_Abort;
5456 if( pTab->nTabRef>=0xffff ){
5457 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
5458 pTab->zName);
5459 pFrom->pTab = 0;
5460 return WRC_Abort;
5462 pTab->nTabRef++;
5463 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
5464 return WRC_Abort;
5466 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5467 if( IsVirtual(pTab) || pTab->pSelect ){
5468 i16 nCol;
5469 u8 eCodeOrig = pWalker->eCode;
5470 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
5471 assert( pFrom->pSelect==0 );
5472 if( pTab->pSelect
5473 && (db->flags & SQLITE_EnableView)==0
5474 && pTab->pSchema!=db->aDb[1].pSchema
5476 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
5477 pTab->zName);
5479 #ifndef SQLITE_OMIT_VIRTUALTABLE
5480 assert( SQLITE_VTABRISK_Normal==1 && SQLITE_VTABRISK_High==2 );
5481 if( IsVirtual(pTab)
5482 && pFrom->fg.fromDDL
5483 && ALWAYS(pTab->pVTable!=0)
5484 && pTab->pVTable->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
5486 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
5487 pTab->zName);
5489 #endif
5490 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
5491 nCol = pTab->nCol;
5492 pTab->nCol = -1;
5493 pWalker->eCode = 1; /* Turn on Select.selId renumbering */
5494 sqlite3WalkSelect(pWalker, pFrom->pSelect);
5495 pWalker->eCode = eCodeOrig;
5496 pTab->nCol = nCol;
5498 #endif
5501 /* Locate the index named by the INDEXED BY clause, if any. */
5502 if( pFrom->fg.isIndexedBy && sqlite3IndexedByLookup(pParse, pFrom) ){
5503 return WRC_Abort;
5507 /* Process NATURAL keywords, and ON and USING clauses of joins.
5509 if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){
5510 return WRC_Abort;
5513 /* For every "*" that occurs in the column list, insert the names of
5514 ** all columns in all tables. And for every TABLE.* insert the names
5515 ** of all columns in TABLE. The parser inserted a special expression
5516 ** with the TK_ASTERISK operator for each "*" that it found in the column
5517 ** list. The following code just has to locate the TK_ASTERISK
5518 ** expressions and expand each one to the list of all columns in
5519 ** all tables.
5521 ** The first loop just checks to see if there are any "*" operators
5522 ** that need expanding.
5524 for(k=0; k<pEList->nExpr; k++){
5525 pE = pEList->a[k].pExpr;
5526 if( pE->op==TK_ASTERISK ) break;
5527 assert( pE->op!=TK_DOT || pE->pRight!=0 );
5528 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5529 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5530 elistFlags |= pE->flags;
5532 if( k<pEList->nExpr ){
5534 ** If we get here it means the result set contains one or more "*"
5535 ** operators that need to be expanded. Loop through each expression
5536 ** in the result set and expand them one by one.
5538 struct ExprList_item *a = pEList->a;
5539 ExprList *pNew = 0;
5540 int flags = pParse->db->flags;
5541 int longNames = (flags & SQLITE_FullColNames)!=0
5542 && (flags & SQLITE_ShortColNames)==0;
5544 for(k=0; k<pEList->nExpr; k++){
5545 pE = a[k].pExpr;
5546 elistFlags |= pE->flags;
5547 pRight = pE->pRight;
5548 assert( pE->op!=TK_DOT || pRight!=0 );
5549 if( pE->op!=TK_ASTERISK
5550 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5552 /* This particular expression does not need to be expanded.
5554 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5555 if( pNew ){
5556 pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5557 pNew->a[pNew->nExpr-1].eEName = a[k].eEName;
5558 a[k].zEName = 0;
5560 a[k].pExpr = 0;
5561 }else{
5562 /* This expression is a "*" or a "TABLE.*" and needs to be
5563 ** expanded. */
5564 int tableSeen = 0; /* Set to 1 when TABLE matches */
5565 char *zTName = 0; /* text of name of TABLE */
5566 if( pE->op==TK_DOT ){
5567 assert( pE->pLeft!=0 );
5568 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5569 zTName = pE->pLeft->u.zToken;
5571 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5572 Table *pTab = pFrom->pTab;
5573 Select *pSub = pFrom->pSelect;
5574 char *zTabName = pFrom->zAlias;
5575 const char *zSchemaName = 0;
5576 int iDb;
5577 if( zTabName==0 ){
5578 zTabName = pTab->zName;
5580 if( db->mallocFailed ) break;
5581 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
5582 pSub = 0;
5583 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5584 continue;
5586 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5587 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5589 for(j=0; j<pTab->nCol; j++){
5590 char *zName = pTab->aCol[j].zName;
5591 char *zColname; /* The computed column name */
5592 char *zToFree; /* Malloced string that needs to be freed */
5593 Token sColname; /* Computed column name as a token */
5595 assert( zName );
5596 if( zTName && pSub
5597 && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0
5599 continue;
5602 /* If a column is marked as 'hidden', omit it from the expanded
5603 ** result-set list unless the SELECT has the SF_IncludeHidden
5604 ** bit set.
5606 if( (p->selFlags & SF_IncludeHidden)==0
5607 && IsHiddenColumn(&pTab->aCol[j])
5609 continue;
5611 tableSeen = 1;
5613 if( i>0 && zTName==0 ){
5614 if( (pFrom->fg.jointype & JT_NATURAL)!=0
5615 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1)
5617 /* In a NATURAL join, omit the join columns from the
5618 ** table to the right of the join */
5619 continue;
5621 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5622 /* In a join with a USING clause, omit columns in the
5623 ** using clause from the table on the right. */
5624 continue;
5627 pRight = sqlite3Expr(db, TK_ID, zName);
5628 zColname = zName;
5629 zToFree = 0;
5630 if( longNames || pTabList->nSrc>1 ){
5631 Expr *pLeft;
5632 pLeft = sqlite3Expr(db, TK_ID, zTabName);
5633 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5634 if( zSchemaName ){
5635 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5636 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5638 if( longNames ){
5639 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5640 zToFree = zColname;
5642 }else{
5643 pExpr = pRight;
5645 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5646 sqlite3TokenInit(&sColname, zColname);
5647 sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5648 if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
5649 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5650 sqlite3DbFree(db, pX->zEName);
5651 if( pSub ){
5652 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName);
5653 testcase( pX->zEName==0 );
5654 }else{
5655 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
5656 zSchemaName, zTabName, zColname);
5657 testcase( pX->zEName==0 );
5659 pX->eEName = ENAME_TAB;
5661 sqlite3DbFree(db, zToFree);
5664 if( !tableSeen ){
5665 if( zTName ){
5666 sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5667 }else{
5668 sqlite3ErrorMsg(pParse, "no tables specified");
5673 sqlite3ExprListDelete(db, pEList);
5674 p->pEList = pNew;
5676 if( p->pEList ){
5677 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5678 sqlite3ErrorMsg(pParse, "too many columns in result set");
5679 return WRC_Abort;
5681 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5682 p->selFlags |= SF_ComplexResult;
5685 return WRC_Continue;
5688 #if SQLITE_DEBUG
5690 ** Always assert. This xSelectCallback2 implementation proves that the
5691 ** xSelectCallback2 is never invoked.
5693 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5694 UNUSED_PARAMETER2(NotUsed, NotUsed2);
5695 assert( 0 );
5697 #endif
5699 ** This routine "expands" a SELECT statement and all of its subqueries.
5700 ** For additional information on what it means to "expand" a SELECT
5701 ** statement, see the comment on the selectExpand worker callback above.
5703 ** Expanding a SELECT statement is the first step in processing a
5704 ** SELECT statement. The SELECT statement must be expanded before
5705 ** name resolution is performed.
5707 ** If anything goes wrong, an error message is written into pParse.
5708 ** The calling function can detect the problem by looking at pParse->nErr
5709 ** and/or pParse->db->mallocFailed.
5711 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5712 Walker w;
5713 w.xExprCallback = sqlite3ExprWalkNoop;
5714 w.pParse = pParse;
5715 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5716 w.xSelectCallback = convertCompoundSelectToSubquery;
5717 w.xSelectCallback2 = 0;
5718 sqlite3WalkSelect(&w, pSelect);
5720 w.xSelectCallback = selectExpander;
5721 w.xSelectCallback2 = sqlite3SelectPopWith;
5722 w.eCode = 0;
5723 sqlite3WalkSelect(&w, pSelect);
5727 #ifndef SQLITE_OMIT_SUBQUERY
5729 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5730 ** interface.
5732 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5733 ** information to the Table structure that represents the result set
5734 ** of that subquery.
5736 ** The Table structure that represents the result set was constructed
5737 ** by selectExpander() but the type and collation information was omitted
5738 ** at that point because identifiers had not yet been resolved. This
5739 ** routine is called after identifier resolution.
5741 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5742 Parse *pParse;
5743 int i;
5744 SrcList *pTabList;
5745 SrcItem *pFrom;
5747 assert( p->selFlags & SF_Resolved );
5748 if( p->selFlags & SF_HasTypeInfo ) return;
5749 p->selFlags |= SF_HasTypeInfo;
5750 pParse = pWalker->pParse;
5751 pTabList = p->pSrc;
5752 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5753 Table *pTab = pFrom->pTab;
5754 assert( pTab!=0 );
5755 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5756 /* A sub-query in the FROM clause of a SELECT */
5757 Select *pSel = pFrom->pSelect;
5758 if( pSel ){
5759 while( pSel->pPrior ) pSel = pSel->pPrior;
5760 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
5761 SQLITE_AFF_NONE);
5766 #endif
5770 ** This routine adds datatype and collating sequence information to
5771 ** the Table structures of all FROM-clause subqueries in a
5772 ** SELECT statement.
5774 ** Use this routine after name resolution.
5776 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5777 #ifndef SQLITE_OMIT_SUBQUERY
5778 Walker w;
5779 w.xSelectCallback = sqlite3SelectWalkNoop;
5780 w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5781 w.xExprCallback = sqlite3ExprWalkNoop;
5782 w.pParse = pParse;
5783 sqlite3WalkSelect(&w, pSelect);
5784 #endif
5789 ** This routine sets up a SELECT statement for processing. The
5790 ** following is accomplished:
5792 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
5793 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
5794 ** * ON and USING clauses are shifted into WHERE statements
5795 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
5796 ** * Identifiers in expression are matched to tables.
5798 ** This routine acts recursively on all subqueries within the SELECT.
5800 void sqlite3SelectPrep(
5801 Parse *pParse, /* The parser context */
5802 Select *p, /* The SELECT statement being coded. */
5803 NameContext *pOuterNC /* Name context for container */
5805 assert( p!=0 || pParse->db->mallocFailed );
5806 if( pParse->db->mallocFailed ) return;
5807 if( p->selFlags & SF_HasTypeInfo ) return;
5808 sqlite3SelectExpand(pParse, p);
5809 if( pParse->nErr || pParse->db->mallocFailed ) return;
5810 sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5811 if( pParse->nErr || pParse->db->mallocFailed ) return;
5812 sqlite3SelectAddTypeInfo(pParse, p);
5816 ** Reset the aggregate accumulator.
5818 ** The aggregate accumulator is a set of memory cells that hold
5819 ** intermediate results while calculating an aggregate. This
5820 ** routine generates code that stores NULLs in all of those memory
5821 ** cells.
5823 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5824 Vdbe *v = pParse->pVdbe;
5825 int i;
5826 struct AggInfo_func *pFunc;
5827 int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5828 if( nReg==0 ) return;
5829 if( pParse->nErr || pParse->db->mallocFailed ) return;
5830 #ifdef SQLITE_DEBUG
5831 /* Verify that all AggInfo registers are within the range specified by
5832 ** AggInfo.mnReg..AggInfo.mxReg */
5833 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5834 for(i=0; i<pAggInfo->nColumn; i++){
5835 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5836 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5838 for(i=0; i<pAggInfo->nFunc; i++){
5839 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5840 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5842 #endif
5843 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5844 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5845 if( pFunc->iDistinct>=0 ){
5846 Expr *pE = pFunc->pFExpr;
5847 assert( !ExprHasProperty(pE, EP_xIsSelect) );
5848 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5849 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5850 "argument");
5851 pFunc->iDistinct = -1;
5852 }else{
5853 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5854 pFunc->iDistAddr = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
5855 pFunc->iDistinct, 0, 0, (char*)pKeyInfo, P4_KEYINFO);
5856 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s(DISTINCT)",
5857 pFunc->pFunc->zName));
5864 ** Invoke the OP_AggFinalize opcode for every aggregate function
5865 ** in the AggInfo structure.
5867 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5868 Vdbe *v = pParse->pVdbe;
5869 int i;
5870 struct AggInfo_func *pF;
5871 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5872 ExprList *pList = pF->pFExpr->x.pList;
5873 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) );
5874 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5875 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5881 ** Update the accumulator memory cells for an aggregate based on
5882 ** the current cursor position.
5884 ** If regAcc is non-zero and there are no min() or max() aggregates
5885 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5886 ** registers if register regAcc contains 0. The caller will take care
5887 ** of setting and clearing regAcc.
5889 static void updateAccumulator(
5890 Parse *pParse,
5891 int regAcc,
5892 AggInfo *pAggInfo,
5893 int eDistinctType
5895 Vdbe *v = pParse->pVdbe;
5896 int i;
5897 int regHit = 0;
5898 int addrHitTest = 0;
5899 struct AggInfo_func *pF;
5900 struct AggInfo_col *pC;
5902 pAggInfo->directMode = 1;
5903 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5904 int nArg;
5905 int addrNext = 0;
5906 int regAgg;
5907 ExprList *pList = pF->pFExpr->x.pList;
5908 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) );
5909 assert( !IsWindowFunc(pF->pFExpr) );
5910 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
5911 Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
5912 if( pAggInfo->nAccumulator
5913 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
5914 && regAcc
5916 /* If regAcc==0, there there exists some min() or max() function
5917 ** without a FILTER clause that will ensure the magnet registers
5918 ** are populated. */
5919 if( regHit==0 ) regHit = ++pParse->nMem;
5920 /* If this is the first row of the group (regAcc contains 0), clear the
5921 ** "magnet" register regHit so that the accumulator registers
5922 ** are populated if the FILTER clause jumps over the the
5923 ** invocation of min() or max() altogether. Or, if this is not
5924 ** the first row (regAcc contains 1), set the magnet register so that
5925 ** the accumulators are not populated unless the min()/max() is invoked
5926 ** and indicates that they should be. */
5927 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
5929 addrNext = sqlite3VdbeMakeLabel(pParse);
5930 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
5932 if( pList ){
5933 nArg = pList->nExpr;
5934 regAgg = sqlite3GetTempRange(pParse, nArg);
5935 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5936 }else{
5937 nArg = 0;
5938 regAgg = 0;
5940 if( pF->iDistinct>=0 && pList ){
5941 if( addrNext==0 ){
5942 addrNext = sqlite3VdbeMakeLabel(pParse);
5944 pF->iDistinct = codeDistinct(pParse, eDistinctType,
5945 pF->iDistinct, addrNext, pList, regAgg);
5947 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5948 CollSeq *pColl = 0;
5949 struct ExprList_item *pItem;
5950 int j;
5951 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
5952 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5953 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5955 if( !pColl ){
5956 pColl = pParse->db->pDfltColl;
5958 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5959 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5961 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5962 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5963 sqlite3VdbeChangeP5(v, (u8)nArg);
5964 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5965 if( addrNext ){
5966 sqlite3VdbeResolveLabel(v, addrNext);
5969 if( regHit==0 && pAggInfo->nAccumulator ){
5970 regHit = regAcc;
5972 if( regHit ){
5973 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5975 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5976 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem);
5979 pAggInfo->directMode = 0;
5980 if( addrHitTest ){
5981 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
5986 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5987 ** count(*) query ("SELECT count(*) FROM pTab").
5989 #ifndef SQLITE_OMIT_EXPLAIN
5990 static void explainSimpleCount(
5991 Parse *pParse, /* Parse context */
5992 Table *pTab, /* Table being queried */
5993 Index *pIdx /* Index used to optimize scan, or NULL */
5995 if( pParse->explain==2 ){
5996 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5997 sqlite3VdbeExplain(pParse, 0, "SCAN %s%s%s",
5998 pTab->zName,
5999 bCover ? " USING COVERING INDEX " : "",
6000 bCover ? pIdx->zName : ""
6004 #else
6005 # define explainSimpleCount(a,b,c)
6006 #endif
6009 ** sqlite3WalkExpr() callback used by havingToWhere().
6011 ** If the node passed to the callback is a TK_AND node, return
6012 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
6014 ** Otherwise, return WRC_Prune. In this case, also check if the
6015 ** sub-expression matches the criteria for being moved to the WHERE
6016 ** clause. If so, add it to the WHERE clause and replace the sub-expression
6017 ** within the HAVING expression with a constant "1".
6019 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
6020 if( pExpr->op!=TK_AND ){
6021 Select *pS = pWalker->u.pSelect;
6022 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
6023 && ExprAlwaysFalse(pExpr)==0
6025 sqlite3 *db = pWalker->pParse->db;
6026 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
6027 if( pNew ){
6028 Expr *pWhere = pS->pWhere;
6029 SWAP(Expr, *pNew, *pExpr);
6030 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
6031 pS->pWhere = pNew;
6032 pWalker->eCode = 1;
6035 return WRC_Prune;
6037 return WRC_Continue;
6041 ** Transfer eligible terms from the HAVING clause of a query, which is
6042 ** processed after grouping, to the WHERE clause, which is processed before
6043 ** grouping. For example, the query:
6045 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
6047 ** can be rewritten as:
6049 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
6051 ** A term of the HAVING expression is eligible for transfer if it consists
6052 ** entirely of constants and expressions that are also GROUP BY terms that
6053 ** use the "BINARY" collation sequence.
6055 static void havingToWhere(Parse *pParse, Select *p){
6056 Walker sWalker;
6057 memset(&sWalker, 0, sizeof(sWalker));
6058 sWalker.pParse = pParse;
6059 sWalker.xExprCallback = havingToWhereExprCb;
6060 sWalker.u.pSelect = p;
6061 sqlite3WalkExpr(&sWalker, p->pHaving);
6062 #if SELECTTRACE_ENABLED
6063 if( sWalker.eCode && (sqlite3SelectTrace & 0x100)!=0 ){
6064 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
6065 sqlite3TreeViewSelect(0, p, 0);
6067 #endif
6071 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
6072 ** If it is, then return the SrcList_item for the prior view. If it is not,
6073 ** then return 0.
6075 static SrcItem *isSelfJoinView(
6076 SrcList *pTabList, /* Search for self-joins in this FROM clause */
6077 SrcItem *pThis /* Search for prior reference to this subquery */
6079 SrcItem *pItem;
6080 assert( pThis->pSelect!=0 );
6081 if( pThis->pSelect->selFlags & SF_PushDown ) return 0;
6082 for(pItem = pTabList->a; pItem<pThis; pItem++){
6083 Select *pS1;
6084 if( pItem->pSelect==0 ) continue;
6085 if( pItem->fg.viaCoroutine ) continue;
6086 if( pItem->zName==0 ) continue;
6087 assert( pItem->pTab!=0 );
6088 assert( pThis->pTab!=0 );
6089 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
6090 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
6091 pS1 = pItem->pSelect;
6092 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
6093 /* The query flattener left two different CTE tables with identical
6094 ** names in the same FROM clause. */
6095 continue;
6097 if( pItem->pSelect->selFlags & SF_PushDown ){
6098 /* The view was modified by some other optimization such as
6099 ** pushDownWhereTerms() */
6100 continue;
6102 return pItem;
6104 return 0;
6108 ** Deallocate a single AggInfo object
6110 static void agginfoFree(sqlite3 *db, AggInfo *p){
6111 sqlite3DbFree(db, p->aCol);
6112 sqlite3DbFree(db, p->aFunc);
6113 sqlite3DbFreeNN(db, p);
6116 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6118 ** Attempt to transform a query of the form
6120 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
6122 ** Into this:
6124 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
6126 ** The transformation only works if all of the following are true:
6128 ** * The subquery is a UNION ALL of two or more terms
6129 ** * The subquery does not have a LIMIT clause
6130 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
6131 ** * The outer query is a simple count(*) with no WHERE clause or other
6132 ** extraneous syntax.
6134 ** Return TRUE if the optimization is undertaken.
6136 static int countOfViewOptimization(Parse *pParse, Select *p){
6137 Select *pSub, *pPrior;
6138 Expr *pExpr;
6139 Expr *pCount;
6140 sqlite3 *db;
6141 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */
6142 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */
6143 if( p->pWhere ) return 0;
6144 if( p->pGroupBy ) return 0;
6145 pExpr = p->pEList->a[0].pExpr;
6146 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */
6147 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */
6148 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */
6149 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */
6150 pSub = p->pSrc->a[0].pSelect;
6151 if( pSub==0 ) return 0; /* The FROM is a subquery */
6152 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */
6154 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */
6155 if( pSub->pWhere ) return 0; /* No WHERE clause */
6156 if( pSub->pLimit ) return 0; /* No LIMIT clause */
6157 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */
6158 pSub = pSub->pPrior; /* Repeat over compound */
6159 }while( pSub );
6161 /* If we reach this point then it is OK to perform the transformation */
6163 db = pParse->db;
6164 pCount = pExpr;
6165 pExpr = 0;
6166 pSub = p->pSrc->a[0].pSelect;
6167 p->pSrc->a[0].pSelect = 0;
6168 sqlite3SrcListDelete(db, p->pSrc);
6169 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
6170 while( pSub ){
6171 Expr *pTerm;
6172 pPrior = pSub->pPrior;
6173 pSub->pPrior = 0;
6174 pSub->pNext = 0;
6175 pSub->selFlags |= SF_Aggregate;
6176 pSub->selFlags &= ~SF_Compound;
6177 pSub->nSelectRow = 0;
6178 sqlite3ExprListDelete(db, pSub->pEList);
6179 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
6180 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
6181 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
6182 sqlite3PExprAddSelect(pParse, pTerm, pSub);
6183 if( pExpr==0 ){
6184 pExpr = pTerm;
6185 }else{
6186 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
6188 pSub = pPrior;
6190 p->pEList->a[0].pExpr = pExpr;
6191 p->selFlags &= ~SF_Aggregate;
6193 #if SELECTTRACE_ENABLED
6194 if( sqlite3SelectTrace & 0x400 ){
6195 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
6196 sqlite3TreeViewSelect(0, p, 0);
6198 #endif
6199 return 1;
6201 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
6204 ** Generate code for the SELECT statement given in the p argument.
6206 ** The results are returned according to the SelectDest structure.
6207 ** See comments in sqliteInt.h for further information.
6209 ** This routine returns the number of errors. If any errors are
6210 ** encountered, then an appropriate error message is left in
6211 ** pParse->zErrMsg.
6213 ** This routine does NOT free the Select structure passed in. The
6214 ** calling function needs to do that.
6216 int sqlite3Select(
6217 Parse *pParse, /* The parser context */
6218 Select *p, /* The SELECT statement being coded. */
6219 SelectDest *pDest /* What to do with the query results */
6221 int i, j; /* Loop counters */
6222 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
6223 Vdbe *v; /* The virtual machine under construction */
6224 int isAgg; /* True for select lists like "count(*)" */
6225 ExprList *pEList = 0; /* List of columns to extract. */
6226 SrcList *pTabList; /* List of tables to select from */
6227 Expr *pWhere; /* The WHERE clause. May be NULL */
6228 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
6229 Expr *pHaving; /* The HAVING clause. May be NULL */
6230 AggInfo *pAggInfo = 0; /* Aggregate information */
6231 int rc = 1; /* Value to return from this function */
6232 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
6233 SortCtx sSort; /* Info on how to code the ORDER BY clause */
6234 int iEnd; /* Address of the end of the query */
6235 sqlite3 *db; /* The database connection */
6236 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */
6237 u8 minMaxFlag; /* Flag for min/max queries */
6239 db = pParse->db;
6240 v = sqlite3GetVdbe(pParse);
6241 if( p==0 || db->mallocFailed || pParse->nErr ){
6242 return 1;
6244 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
6245 #if SELECTTRACE_ENABLED
6246 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
6247 if( sqlite3SelectTrace & 0x100 ){
6248 sqlite3TreeViewSelect(0, p, 0);
6250 #endif
6252 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
6253 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
6254 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
6255 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
6256 if( IgnorableDistinct(pDest) ){
6257 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
6258 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
6259 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo );
6260 /* All of these destinations are also able to ignore the ORDER BY clause */
6261 if( p->pOrderBy ){
6262 #if SELECTTRACE_ENABLED
6263 SELECTTRACE(1,pParse,p, ("dropping superfluous ORDER BY:\n"));
6264 if( sqlite3SelectTrace & 0x100 ){
6265 sqlite3TreeViewExprList(0, p->pOrderBy, 0, "ORDERBY");
6267 #endif
6268 sqlite3ParserAddCleanup(pParse,
6269 (void(*)(sqlite3*,void*))sqlite3ExprListDelete,
6270 p->pOrderBy);
6271 testcase( pParse->earlyCleanup );
6272 p->pOrderBy = 0;
6274 p->selFlags &= ~SF_Distinct;
6275 p->selFlags |= SF_NoopOrderBy;
6277 sqlite3SelectPrep(pParse, p, 0);
6278 if( pParse->nErr || db->mallocFailed ){
6279 goto select_end;
6281 assert( p->pEList!=0 );
6282 #if SELECTTRACE_ENABLED
6283 if( sqlite3SelectTrace & 0x104 ){
6284 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
6285 sqlite3TreeViewSelect(0, p, 0);
6287 #endif
6289 /* If the SF_UpdateFrom flag is set, then this function is being called
6290 ** as part of populating the temp table for an UPDATE...FROM statement.
6291 ** In this case, it is an error if the target object (pSrc->a[0]) name
6292 ** or alias is duplicated within FROM clause (pSrc->a[1..n]). */
6293 if( p->selFlags & SF_UpdateFrom ){
6294 SrcItem *p0 = &p->pSrc->a[0];
6295 for(i=1; i<p->pSrc->nSrc; i++){
6296 SrcItem *p1 = &p->pSrc->a[i];
6297 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
6298 sqlite3ErrorMsg(pParse,
6299 "target object/alias may not appear in FROM clause: %s",
6300 p0->zAlias ? p0->zAlias : p0->pTab->zName
6302 goto select_end;
6307 if( pDest->eDest==SRT_Output ){
6308 sqlite3GenerateColumnNames(pParse, p);
6311 #ifndef SQLITE_OMIT_WINDOWFUNC
6312 if( sqlite3WindowRewrite(pParse, p) ){
6313 assert( db->mallocFailed || pParse->nErr>0 );
6314 goto select_end;
6316 #if SELECTTRACE_ENABLED
6317 if( p->pWin && (sqlite3SelectTrace & 0x108)!=0 ){
6318 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
6319 sqlite3TreeViewSelect(0, p, 0);
6321 #endif
6322 #endif /* SQLITE_OMIT_WINDOWFUNC */
6323 pTabList = p->pSrc;
6324 isAgg = (p->selFlags & SF_Aggregate)!=0;
6325 memset(&sSort, 0, sizeof(sSort));
6326 sSort.pOrderBy = p->pOrderBy;
6328 /* Try to do various optimizations (flattening subqueries, and strength
6329 ** reduction of join operators) in the FROM clause up into the main query
6331 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6332 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
6333 SrcItem *pItem = &pTabList->a[i];
6334 Select *pSub = pItem->pSelect;
6335 Table *pTab = pItem->pTab;
6337 /* The expander should have already created transient Table objects
6338 ** even for FROM clause elements such as subqueries that do not correspond
6339 ** to a real table */
6340 assert( pTab!=0 );
6342 /* Convert LEFT JOIN into JOIN if there are terms of the right table
6343 ** of the LEFT JOIN used in the WHERE clause.
6345 if( (pItem->fg.jointype & JT_LEFT)!=0
6346 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
6347 && OptimizationEnabled(db, SQLITE_SimplifyJoin)
6349 SELECTTRACE(0x100,pParse,p,
6350 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
6351 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
6352 unsetJoinExpr(p->pWhere, pItem->iCursor);
6355 /* No futher action if this term of the FROM clause is no a subquery */
6356 if( pSub==0 ) continue;
6358 /* Catch mismatch in the declared columns of a view and the number of
6359 ** columns in the SELECT on the RHS */
6360 if( pTab->nCol!=pSub->pEList->nExpr ){
6361 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
6362 pTab->nCol, pTab->zName, pSub->pEList->nExpr);
6363 goto select_end;
6366 /* Do not try to flatten an aggregate subquery.
6368 ** Flattening an aggregate subquery is only possible if the outer query
6369 ** is not a join. But if the outer query is not a join, then the subquery
6370 ** will be implemented as a co-routine and there is no advantage to
6371 ** flattening in that case.
6373 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
6374 assert( pSub->pGroupBy==0 );
6376 /* If the outer query contains a "complex" result set (that is,
6377 ** if the result set of the outer query uses functions or subqueries)
6378 ** and if the subquery contains an ORDER BY clause and if
6379 ** it will be implemented as a co-routine, then do not flatten. This
6380 ** restriction allows SQL constructs like this:
6382 ** SELECT expensive_function(x)
6383 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6385 ** The expensive_function() is only computed on the 10 rows that
6386 ** are output, rather than every row of the table.
6388 ** The requirement that the outer query have a complex result set
6389 ** means that flattening does occur on simpler SQL constraints without
6390 ** the expensive_function() like:
6392 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
6394 if( pSub->pOrderBy!=0
6395 && i==0
6396 && (p->selFlags & SF_ComplexResult)!=0
6397 && (pTabList->nSrc==1
6398 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
6400 continue;
6403 if( flattenSubquery(pParse, p, i, isAgg) ){
6404 if( pParse->nErr ) goto select_end;
6405 /* This subquery can be absorbed into its parent. */
6406 i = -1;
6408 pTabList = p->pSrc;
6409 if( db->mallocFailed ) goto select_end;
6410 if( !IgnorableOrderby(pDest) ){
6411 sSort.pOrderBy = p->pOrderBy;
6414 #endif
6416 #ifndef SQLITE_OMIT_COMPOUND_SELECT
6417 /* Handle compound SELECT statements using the separate multiSelect()
6418 ** procedure.
6420 if( p->pPrior ){
6421 rc = multiSelect(pParse, p, pDest);
6422 #if SELECTTRACE_ENABLED
6423 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
6424 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6425 sqlite3TreeViewSelect(0, p, 0);
6427 #endif
6428 if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
6429 return rc;
6431 #endif
6433 /* Do the WHERE-clause constant propagation optimization if this is
6434 ** a join. No need to speed time on this operation for non-join queries
6435 ** as the equivalent optimization will be handled by query planner in
6436 ** sqlite3WhereBegin().
6438 if( p->pWhere!=0
6439 && p->pWhere->op==TK_AND
6440 && OptimizationEnabled(db, SQLITE_PropagateConst)
6441 && propagateConstants(pParse, p)
6443 #if SELECTTRACE_ENABLED
6444 if( sqlite3SelectTrace & 0x100 ){
6445 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
6446 sqlite3TreeViewSelect(0, p, 0);
6448 #endif
6449 }else{
6450 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
6453 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6454 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
6455 && countOfViewOptimization(pParse, p)
6457 if( db->mallocFailed ) goto select_end;
6458 pEList = p->pEList;
6459 pTabList = p->pSrc;
6461 #endif
6463 /* For each term in the FROM clause, do two things:
6464 ** (1) Authorized unreferenced tables
6465 ** (2) Generate code for all sub-queries
6467 for(i=0; i<pTabList->nSrc; i++){
6468 SrcItem *pItem = &pTabList->a[i];
6469 SrcItem *pPrior;
6470 SelectDest dest;
6471 Select *pSub;
6472 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6473 const char *zSavedAuthContext;
6474 #endif
6476 /* Issue SQLITE_READ authorizations with a fake column name for any
6477 ** tables that are referenced but from which no values are extracted.
6478 ** Examples of where these kinds of null SQLITE_READ authorizations
6479 ** would occur:
6481 ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
6482 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
6484 ** The fake column name is an empty string. It is possible for a table to
6485 ** have a column named by the empty string, in which case there is no way to
6486 ** distinguish between an unreferenced table and an actual reference to the
6487 ** "" column. The original design was for the fake column name to be a NULL,
6488 ** which would be unambiguous. But legacy authorization callbacks might
6489 ** assume the column name is non-NULL and segfault. The use of an empty
6490 ** string for the fake column name seems safer.
6492 if( pItem->colUsed==0 && pItem->zName!=0 ){
6493 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
6496 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6497 /* Generate code for all sub-queries in the FROM clause
6499 pSub = pItem->pSelect;
6500 if( pSub==0 ) continue;
6502 /* The code for a subquery should only be generated once. */
6503 assert( pItem->addrFillSub==0 );
6505 /* Increment Parse.nHeight by the height of the largest expression
6506 ** tree referred to by this, the parent select. The child select
6507 ** may contain expression trees of at most
6508 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
6509 ** more conservative than necessary, but much easier than enforcing
6510 ** an exact limit.
6512 pParse->nHeight += sqlite3SelectExprHeight(p);
6514 /* Make copies of constant WHERE-clause terms in the outer query down
6515 ** inside the subquery. This can help the subquery to run more efficiently.
6517 if( OptimizationEnabled(db, SQLITE_PushDown)
6518 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes)
6519 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
6520 (pItem->fg.jointype & JT_OUTER)!=0)
6522 #if SELECTTRACE_ENABLED
6523 if( sqlite3SelectTrace & 0x100 ){
6524 SELECTTRACE(0x100,pParse,p,
6525 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
6526 sqlite3TreeViewSelect(0, p, 0);
6528 #endif
6529 assert( pItem->pSelect && (pItem->pSelect->selFlags & SF_PushDown)!=0 );
6530 }else{
6531 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
6534 zSavedAuthContext = pParse->zAuthContext;
6535 pParse->zAuthContext = pItem->zName;
6537 /* Generate code to implement the subquery
6539 ** The subquery is implemented as a co-routine if:
6540 ** (1) the subquery is guaranteed to be the outer loop (so that
6541 ** it does not need to be computed more than once), and
6542 ** (2) the subquery is not a CTE that should be materialized
6544 ** TODO: Are there other reasons beside (1) and (2) to use a co-routine
6545 ** implementation?
6547 if( i==0
6548 && (pTabList->nSrc==1
6549 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */
6550 && (pItem->fg.isCte==0 || pItem->u2.pCteUse->eM10d!=M10d_Yes) /* (2) */
6552 /* Implement a co-routine that will return a single row of the result
6553 ** set on each invocation.
6555 int addrTop = sqlite3VdbeCurrentAddr(v)+1;
6557 pItem->regReturn = ++pParse->nMem;
6558 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
6559 VdbeComment((v, "%!S", pItem));
6560 pItem->addrFillSub = addrTop;
6561 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
6562 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %!S", pItem));
6563 sqlite3Select(pParse, pSub, &dest);
6564 pItem->pTab->nRowLogEst = pSub->nSelectRow;
6565 pItem->fg.viaCoroutine = 1;
6566 pItem->regResult = dest.iSdst;
6567 sqlite3VdbeEndCoroutine(v, pItem->regReturn);
6568 sqlite3VdbeJumpHere(v, addrTop-1);
6569 sqlite3ClearTempRegCache(pParse);
6570 }else if( pItem->fg.isCte && pItem->u2.pCteUse->addrM9e>0 ){
6571 /* This is a CTE for which materialization code has already been
6572 ** generated. Invoke the subroutine to compute the materialization,
6573 ** the make the pItem->iCursor be a copy of the ephemerial table that
6574 ** holds the result of the materialization. */
6575 CteUse *pCteUse = pItem->u2.pCteUse;
6576 sqlite3VdbeAddOp2(v, OP_Gosub, pCteUse->regRtn, pCteUse->addrM9e);
6577 if( pItem->iCursor!=pCteUse->iCur ){
6578 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pCteUse->iCur);
6580 pSub->nSelectRow = pCteUse->nRowEst;
6581 }else if( (pPrior = isSelfJoinView(pTabList, pItem))!=0 ){
6582 /* This view has already been materialized by a prior entry in
6583 ** this same FROM clause. Reuse it. */
6584 if( pPrior->addrFillSub ){
6585 sqlite3VdbeAddOp2(v, OP_Gosub, pPrior->regReturn, pPrior->addrFillSub);
6587 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
6588 pSub->nSelectRow = pPrior->pSelect->nSelectRow;
6589 }else{
6590 /* Materialize the view. If the view is not correlated, generate a
6591 ** subroutine to do the materialization so that subsequent uses of
6592 ** the same view can reuse the materialization. */
6593 int topAddr;
6594 int onceAddr = 0;
6595 int retAddr;
6597 pItem->regReturn = ++pParse->nMem;
6598 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
6599 pItem->addrFillSub = topAddr+1;
6600 if( pItem->fg.isCorrelated==0 ){
6601 /* If the subquery is not correlated and if we are not inside of
6602 ** a trigger, then we only need to compute the value of the subquery
6603 ** once. */
6604 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
6605 VdbeComment((v, "materialize %!S", pItem));
6606 }else{
6607 VdbeNoopComment((v, "materialize %!S", pItem));
6609 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
6610 ExplainQueryPlan((pParse, 1, "MATERIALIZE %!S", pItem));
6611 sqlite3Select(pParse, pSub, &dest);
6612 pItem->pTab->nRowLogEst = pSub->nSelectRow;
6613 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
6614 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
6615 VdbeComment((v, "end %!S", pItem));
6616 sqlite3VdbeChangeP1(v, topAddr, retAddr);
6617 sqlite3ClearTempRegCache(pParse);
6618 if( pItem->fg.isCte && pItem->fg.isCorrelated==0 ){
6619 CteUse *pCteUse = pItem->u2.pCteUse;
6620 pCteUse->addrM9e = pItem->addrFillSub;
6621 pCteUse->regRtn = pItem->regReturn;
6622 pCteUse->iCur = pItem->iCursor;
6623 pCteUse->nRowEst = pSub->nSelectRow;
6626 if( db->mallocFailed ) goto select_end;
6627 pParse->nHeight -= sqlite3SelectExprHeight(p);
6628 pParse->zAuthContext = zSavedAuthContext;
6629 #endif
6632 /* Various elements of the SELECT copied into local variables for
6633 ** convenience */
6634 pEList = p->pEList;
6635 pWhere = p->pWhere;
6636 pGroupBy = p->pGroupBy;
6637 pHaving = p->pHaving;
6638 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
6640 #if SELECTTRACE_ENABLED
6641 if( sqlite3SelectTrace & 0x400 ){
6642 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
6643 sqlite3TreeViewSelect(0, p, 0);
6645 #endif
6647 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
6648 ** if the select-list is the same as the ORDER BY list, then this query
6649 ** can be rewritten as a GROUP BY. In other words, this:
6651 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
6653 ** is transformed to:
6655 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
6657 ** The second form is preferred as a single index (or temp-table) may be
6658 ** used for both the ORDER BY and DISTINCT processing. As originally
6659 ** written the query must use a temp-table for at least one of the ORDER
6660 ** BY and DISTINCT, and an index or separate temp-table for the other.
6662 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
6663 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
6664 #ifndef SQLITE_OMIT_WINDOWFUNC
6665 && p->pWin==0
6666 #endif
6668 p->selFlags &= ~SF_Distinct;
6669 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
6670 p->selFlags |= SF_Aggregate;
6671 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
6672 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
6673 ** original setting of the SF_Distinct flag, not the current setting */
6674 assert( sDistinct.isTnct );
6676 #if SELECTTRACE_ENABLED
6677 if( sqlite3SelectTrace & 0x400 ){
6678 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
6679 sqlite3TreeViewSelect(0, p, 0);
6681 #endif
6684 /* If there is an ORDER BY clause, then create an ephemeral index to
6685 ** do the sorting. But this sorting ephemeral index might end up
6686 ** being unused if the data can be extracted in pre-sorted order.
6687 ** If that is the case, then the OP_OpenEphemeral instruction will be
6688 ** changed to an OP_Noop once we figure out that the sorting index is
6689 ** not needed. The sSort.addrSortIndex variable is used to facilitate
6690 ** that change.
6692 if( sSort.pOrderBy ){
6693 KeyInfo *pKeyInfo;
6694 pKeyInfo = sqlite3KeyInfoFromExprList(
6695 pParse, sSort.pOrderBy, 0, pEList->nExpr);
6696 sSort.iECursor = pParse->nTab++;
6697 sSort.addrSortIndex =
6698 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6699 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6700 (char*)pKeyInfo, P4_KEYINFO
6702 }else{
6703 sSort.addrSortIndex = -1;
6706 /* If the output is destined for a temporary table, open that table.
6708 if( pDest->eDest==SRT_EphemTab ){
6709 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6712 /* Set the limiter.
6714 iEnd = sqlite3VdbeMakeLabel(pParse);
6715 if( (p->selFlags & SF_FixedLimit)==0 ){
6716 p->nSelectRow = 320; /* 4 billion rows */
6718 computeLimitRegisters(pParse, p, iEnd);
6719 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6720 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6721 sSort.sortFlags |= SORTFLAG_UseSorter;
6724 /* Open an ephemeral index to use for the distinct set.
6726 if( p->selFlags & SF_Distinct ){
6727 sDistinct.tabTnct = pParse->nTab++;
6728 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6729 sDistinct.tabTnct, 0, 0,
6730 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6731 P4_KEYINFO);
6732 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6733 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6734 }else{
6735 sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6738 if( !isAgg && pGroupBy==0 ){
6739 /* No aggregate functions and no GROUP BY clause */
6740 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6741 | (p->selFlags & SF_FixedLimit);
6742 #ifndef SQLITE_OMIT_WINDOWFUNC
6743 Window *pWin = p->pWin; /* Main window object (or NULL) */
6744 if( pWin ){
6745 sqlite3WindowCodeInit(pParse, p);
6747 #endif
6748 assert( WHERE_USE_LIMIT==SF_FixedLimit );
6751 /* Begin the database scan. */
6752 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6753 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6754 p->pEList, wctrlFlags, p->nSelectRow);
6755 if( pWInfo==0 ) goto select_end;
6756 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6757 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6759 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6760 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6762 if( sSort.pOrderBy ){
6763 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6764 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6765 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6766 sSort.pOrderBy = 0;
6769 SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
6771 /* If sorting index that was created by a prior OP_OpenEphemeral
6772 ** instruction ended up not being needed, then change the OP_OpenEphemeral
6773 ** into an OP_Noop.
6775 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6776 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6779 assert( p->pEList==pEList );
6780 #ifndef SQLITE_OMIT_WINDOWFUNC
6781 if( pWin ){
6782 int addrGosub = sqlite3VdbeMakeLabel(pParse);
6783 int iCont = sqlite3VdbeMakeLabel(pParse);
6784 int iBreak = sqlite3VdbeMakeLabel(pParse);
6785 int regGosub = ++pParse->nMem;
6787 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6789 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6790 sqlite3VdbeResolveLabel(v, addrGosub);
6791 VdbeNoopComment((v, "inner-loop subroutine"));
6792 sSort.labelOBLopt = 0;
6793 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6794 sqlite3VdbeResolveLabel(v, iCont);
6795 sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6796 VdbeComment((v, "end inner-loop subroutine"));
6797 sqlite3VdbeResolveLabel(v, iBreak);
6798 }else
6799 #endif /* SQLITE_OMIT_WINDOWFUNC */
6801 /* Use the standard inner loop. */
6802 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6803 sqlite3WhereContinueLabel(pWInfo),
6804 sqlite3WhereBreakLabel(pWInfo));
6806 /* End the database scan loop.
6808 SELECTTRACE(1,pParse,p,("WhereEnd\n"));
6809 sqlite3WhereEnd(pWInfo);
6811 }else{
6812 /* This case when there exist aggregate functions or a GROUP BY clause
6813 ** or both */
6814 NameContext sNC; /* Name context for processing aggregate information */
6815 int iAMem; /* First Mem address for storing current GROUP BY */
6816 int iBMem; /* First Mem address for previous GROUP BY */
6817 int iUseFlag; /* Mem address holding flag indicating that at least
6818 ** one row of the input to the aggregator has been
6819 ** processed */
6820 int iAbortFlag; /* Mem address which causes query abort if positive */
6821 int groupBySort; /* Rows come from source in GROUP BY order */
6822 int addrEnd; /* End of processing for this SELECT */
6823 int sortPTab = 0; /* Pseudotable used to decode sorting results */
6824 int sortOut = 0; /* Output register from the sorter */
6825 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6827 /* Remove any and all aliases between the result set and the
6828 ** GROUP BY clause.
6830 if( pGroupBy ){
6831 int k; /* Loop counter */
6832 struct ExprList_item *pItem; /* For looping over expression in a list */
6834 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6835 pItem->u.x.iAlias = 0;
6837 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6838 pItem->u.x.iAlias = 0;
6840 assert( 66==sqlite3LogEst(100) );
6841 if( p->nSelectRow>66 ) p->nSelectRow = 66;
6843 /* If there is both a GROUP BY and an ORDER BY clause and they are
6844 ** identical, then it may be possible to disable the ORDER BY clause
6845 ** on the grounds that the GROUP BY will cause elements to come out
6846 ** in the correct order. It also may not - the GROUP BY might use a
6847 ** database index that causes rows to be grouped together as required
6848 ** but not actually sorted. Either way, record the fact that the
6849 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6850 ** variable. */
6851 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
6852 int ii;
6853 /* The GROUP BY processing doesn't care whether rows are delivered in
6854 ** ASC or DESC order - only that each group is returned contiguously.
6855 ** So set the ASC/DESC flags in the GROUP BY to match those in the
6856 ** ORDER BY to maximize the chances of rows being delivered in an
6857 ** order that makes the ORDER BY redundant. */
6858 for(ii=0; ii<pGroupBy->nExpr; ii++){
6859 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC;
6860 pGroupBy->a[ii].sortFlags = sortFlags;
6862 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6863 orderByGrp = 1;
6866 }else{
6867 assert( 0==sqlite3LogEst(1) );
6868 p->nSelectRow = 0;
6871 /* Create a label to jump to when we want to abort the query */
6872 addrEnd = sqlite3VdbeMakeLabel(pParse);
6874 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6875 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6876 ** SELECT statement.
6878 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
6879 if( pAggInfo ){
6880 sqlite3ParserAddCleanup(pParse,
6881 (void(*)(sqlite3*,void*))agginfoFree, pAggInfo);
6882 testcase( pParse->earlyCleanup );
6884 if( db->mallocFailed ){
6885 goto select_end;
6887 pAggInfo->selId = p->selId;
6888 memset(&sNC, 0, sizeof(sNC));
6889 sNC.pParse = pParse;
6890 sNC.pSrcList = pTabList;
6891 sNC.uNC.pAggInfo = pAggInfo;
6892 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6893 pAggInfo->mnReg = pParse->nMem+1;
6894 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6895 pAggInfo->pGroupBy = pGroupBy;
6896 sqlite3ExprAnalyzeAggList(&sNC, pEList);
6897 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6898 if( pHaving ){
6899 if( pGroupBy ){
6900 assert( pWhere==p->pWhere );
6901 assert( pHaving==p->pHaving );
6902 assert( pGroupBy==p->pGroupBy );
6903 havingToWhere(pParse, p);
6904 pWhere = p->pWhere;
6906 sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6908 pAggInfo->nAccumulator = pAggInfo->nColumn;
6909 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
6910 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
6911 }else{
6912 minMaxFlag = WHERE_ORDERBY_NORMAL;
6914 for(i=0; i<pAggInfo->nFunc; i++){
6915 Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
6916 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6917 sNC.ncFlags |= NC_InAggFunc;
6918 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
6919 #ifndef SQLITE_OMIT_WINDOWFUNC
6920 assert( !IsWindowFunc(pExpr) );
6921 if( ExprHasProperty(pExpr, EP_WinFunc) ){
6922 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
6924 #endif
6925 sNC.ncFlags &= ~NC_InAggFunc;
6927 pAggInfo->mxReg = pParse->nMem;
6928 if( db->mallocFailed ) goto select_end;
6929 #if SELECTTRACE_ENABLED
6930 if( sqlite3SelectTrace & 0x400 ){
6931 int ii;
6932 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
6933 sqlite3TreeViewSelect(0, p, 0);
6934 if( minMaxFlag ){
6935 sqlite3DebugPrintf("MIN/MAX Optimization (0x%02x) adds:\n", minMaxFlag);
6936 sqlite3TreeViewExprList(0, pMinMaxOrderBy, 0, "ORDERBY");
6938 for(ii=0; ii<pAggInfo->nColumn; ii++){
6939 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6940 ii, pAggInfo->aCol[ii].iMem);
6941 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
6943 for(ii=0; ii<pAggInfo->nFunc; ii++){
6944 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6945 ii, pAggInfo->aFunc[ii].iMem);
6946 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
6949 #endif
6952 /* Processing for aggregates with GROUP BY is very different and
6953 ** much more complex than aggregates without a GROUP BY.
6955 if( pGroupBy ){
6956 KeyInfo *pKeyInfo; /* Keying information for the group by clause */
6957 int addr1; /* A-vs-B comparision jump */
6958 int addrOutputRow; /* Start of subroutine that outputs a result row */
6959 int regOutputRow; /* Return address register for output subroutine */
6960 int addrSetAbort; /* Set the abort flag and return */
6961 int addrTopOfLoop; /* Top of the input loop */
6962 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
6963 int addrReset; /* Subroutine for resetting the accumulator */
6964 int regReset; /* Return address register for reset subroutine */
6965 ExprList *pDistinct = 0;
6966 u16 distFlag = 0;
6967 int eDist = WHERE_DISTINCT_NOOP;
6969 if( pAggInfo->nFunc==1
6970 && pAggInfo->aFunc[0].iDistinct>=0
6971 && pAggInfo->aFunc[0].pFExpr->x.pList
6973 Expr *pExpr = pAggInfo->aFunc[0].pFExpr->x.pList->a[0].pExpr;
6974 pExpr = sqlite3ExprDup(db, pExpr, 0);
6975 pDistinct = sqlite3ExprListDup(db, pGroupBy, 0);
6976 pDistinct = sqlite3ExprListAppend(pParse, pDistinct, pExpr);
6977 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
6980 /* If there is a GROUP BY clause we might need a sorting index to
6981 ** implement it. Allocate that sorting index now. If it turns out
6982 ** that we do not need it after all, the OP_SorterOpen instruction
6983 ** will be converted into a Noop.
6985 pAggInfo->sortingIdx = pParse->nTab++;
6986 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
6987 0, pAggInfo->nColumn);
6988 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6989 pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
6990 0, (char*)pKeyInfo, P4_KEYINFO);
6992 /* Initialize memory locations used by GROUP BY aggregate processing
6994 iUseFlag = ++pParse->nMem;
6995 iAbortFlag = ++pParse->nMem;
6996 regOutputRow = ++pParse->nMem;
6997 addrOutputRow = sqlite3VdbeMakeLabel(pParse);
6998 regReset = ++pParse->nMem;
6999 addrReset = sqlite3VdbeMakeLabel(pParse);
7000 iAMem = pParse->nMem + 1;
7001 pParse->nMem += pGroupBy->nExpr;
7002 iBMem = pParse->nMem + 1;
7003 pParse->nMem += pGroupBy->nExpr;
7004 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
7005 VdbeComment((v, "clear abort flag"));
7006 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
7008 /* Begin a loop that will extract all source rows in GROUP BY order.
7009 ** This might involve two separate loops with an OP_Sort in between, or
7010 ** it might be a single loop that uses an index to extract information
7011 ** in the right order to begin with.
7013 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7014 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7015 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, pDistinct,
7016 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0) | distFlag, 0
7018 if( pWInfo==0 ){
7019 sqlite3ExprListDelete(db, pDistinct);
7020 goto select_end;
7022 eDist = sqlite3WhereIsDistinct(pWInfo);
7023 SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7024 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
7025 /* The optimizer is able to deliver rows in group by order so
7026 ** we do not have to sort. The OP_OpenEphemeral table will be
7027 ** cancelled later because we still need to use the pKeyInfo
7029 groupBySort = 0;
7030 }else{
7031 /* Rows are coming out in undetermined order. We have to push
7032 ** each row into a sorting index, terminate the first loop,
7033 ** then loop over the sorting index in order to get the output
7034 ** in sorted order
7036 int regBase;
7037 int regRecord;
7038 int nCol;
7039 int nGroupBy;
7041 explainTempTable(pParse,
7042 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
7043 "DISTINCT" : "GROUP BY");
7045 groupBySort = 1;
7046 nGroupBy = pGroupBy->nExpr;
7047 nCol = nGroupBy;
7048 j = nGroupBy;
7049 for(i=0; i<pAggInfo->nColumn; i++){
7050 if( pAggInfo->aCol[i].iSorterColumn>=j ){
7051 nCol++;
7052 j++;
7055 regBase = sqlite3GetTempRange(pParse, nCol);
7056 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
7057 j = nGroupBy;
7058 for(i=0; i<pAggInfo->nColumn; i++){
7059 struct AggInfo_col *pCol = &pAggInfo->aCol[i];
7060 if( pCol->iSorterColumn>=j ){
7061 int r1 = j + regBase;
7062 sqlite3ExprCodeGetColumnOfTable(v,
7063 pCol->pTab, pCol->iTable, pCol->iColumn, r1);
7064 j++;
7067 regRecord = sqlite3GetTempReg(pParse);
7068 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
7069 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
7070 sqlite3ReleaseTempReg(pParse, regRecord);
7071 sqlite3ReleaseTempRange(pParse, regBase, nCol);
7072 SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7073 sqlite3WhereEnd(pWInfo);
7074 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
7075 sortOut = sqlite3GetTempReg(pParse);
7076 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
7077 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
7078 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
7079 pAggInfo->useSortingIdx = 1;
7082 /* If the index or temporary table used by the GROUP BY sort
7083 ** will naturally deliver rows in the order required by the ORDER BY
7084 ** clause, cancel the ephemeral table open coded earlier.
7086 ** This is an optimization - the correct answer should result regardless.
7087 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
7088 ** disable this optimization for testing purposes. */
7089 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
7090 && (groupBySort || sqlite3WhereIsSorted(pWInfo))
7092 sSort.pOrderBy = 0;
7093 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
7096 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
7097 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
7098 ** Then compare the current GROUP BY terms against the GROUP BY terms
7099 ** from the previous row currently stored in a0, a1, a2...
7101 addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
7102 if( groupBySort ){
7103 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
7104 sortOut, sortPTab);
7106 for(j=0; j<pGroupBy->nExpr; j++){
7107 if( groupBySort ){
7108 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
7109 }else{
7110 pAggInfo->directMode = 1;
7111 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
7114 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
7115 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
7116 addr1 = sqlite3VdbeCurrentAddr(v);
7117 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
7119 /* Generate code that runs whenever the GROUP BY changes.
7120 ** Changes in the GROUP BY are detected by the previous code
7121 ** block. If there were no changes, this block is skipped.
7123 ** This code copies current group by terms in b0,b1,b2,...
7124 ** over to a0,a1,a2. It then calls the output subroutine
7125 ** and resets the aggregate accumulator registers in preparation
7126 ** for the next GROUP BY batch.
7128 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
7129 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7130 VdbeComment((v, "output one row"));
7131 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
7132 VdbeComment((v, "check abort flag"));
7133 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
7134 VdbeComment((v, "reset accumulator"));
7136 /* Update the aggregate accumulators based on the content of
7137 ** the current row
7139 sqlite3VdbeJumpHere(v, addr1);
7140 updateAccumulator(pParse, iUseFlag, pAggInfo, eDist);
7141 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
7142 VdbeComment((v, "indicate data in accumulator"));
7144 /* End of the loop
7146 if( groupBySort ){
7147 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx,addrTopOfLoop);
7148 VdbeCoverage(v);
7149 }else{
7150 SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7151 sqlite3WhereEnd(pWInfo);
7152 sqlite3VdbeChangeToNoop(v, addrSortingIdx);
7154 sqlite3ExprListDelete(db, pDistinct);
7156 /* Output the final row of result
7158 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
7159 VdbeComment((v, "output final row"));
7161 /* Jump over the subroutines
7163 sqlite3VdbeGoto(v, addrEnd);
7165 /* Generate a subroutine that outputs a single row of the result
7166 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
7167 ** is less than or equal to zero, the subroutine is a no-op. If
7168 ** the processing calls for the query to abort, this subroutine
7169 ** increments the iAbortFlag memory location before returning in
7170 ** order to signal the caller to abort.
7172 addrSetAbort = sqlite3VdbeCurrentAddr(v);
7173 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
7174 VdbeComment((v, "set abort flag"));
7175 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7176 sqlite3VdbeResolveLabel(v, addrOutputRow);
7177 addrOutputRow = sqlite3VdbeCurrentAddr(v);
7178 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
7179 VdbeCoverage(v);
7180 VdbeComment((v, "Groupby result generator entry point"));
7181 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7182 finalizeAggFunctions(pParse, pAggInfo);
7183 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
7184 selectInnerLoop(pParse, p, -1, &sSort,
7185 &sDistinct, pDest,
7186 addrOutputRow+1, addrSetAbort);
7187 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
7188 VdbeComment((v, "end groupby result generator"));
7190 /* Generate a subroutine that will reset the group-by accumulator
7192 sqlite3VdbeResolveLabel(v, addrReset);
7193 resetAccumulator(pParse, pAggInfo);
7194 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
7195 VdbeComment((v, "indicate accumulator empty"));
7196 sqlite3VdbeAddOp1(v, OP_Return, regReset);
7198 if( eDist!=WHERE_DISTINCT_NOOP ){
7199 struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7200 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7202 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
7203 else {
7204 Table *pTab;
7205 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
7206 /* If isSimpleCount() returns a pointer to a Table structure, then
7207 ** the SQL statement is of the form:
7209 ** SELECT count(*) FROM <tbl>
7211 ** where the Table structure returned represents table <tbl>.
7213 ** This statement is so common that it is optimized specially. The
7214 ** OP_Count instruction is executed either on the intkey table that
7215 ** contains the data for table <tbl> or on one of its indexes. It
7216 ** is better to execute the op on an index, as indexes are almost
7217 ** always spread across less pages than their corresponding tables.
7219 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
7220 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
7221 Index *pIdx; /* Iterator variable */
7222 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
7223 Index *pBest = 0; /* Best index found so far */
7224 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */
7226 sqlite3CodeVerifySchema(pParse, iDb);
7227 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
7229 /* Search for the index that has the lowest scan cost.
7231 ** (2011-04-15) Do not do a full scan of an unordered index.
7233 ** (2013-10-03) Do not count the entries in a partial index.
7235 ** In practice the KeyInfo structure will not be used. It is only
7236 ** passed to keep OP_OpenRead happy.
7238 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
7239 if( !p->pSrc->a[0].fg.notIndexed ){
7240 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
7241 if( pIdx->bUnordered==0
7242 && pIdx->szIdxRow<pTab->szTabRow
7243 && pIdx->pPartIdxWhere==0
7244 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
7246 pBest = pIdx;
7250 if( pBest ){
7251 iRoot = pBest->tnum;
7252 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
7255 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
7256 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
7257 if( pKeyInfo ){
7258 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
7260 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
7261 sqlite3VdbeAddOp1(v, OP_Close, iCsr);
7262 explainSimpleCount(pParse, pTab, pBest);
7263 }else{
7264 int regAcc = 0; /* "populate accumulators" flag */
7265 ExprList *pDistinct = 0;
7266 u16 distFlag = 0;
7267 int eDist;
7269 /* If there are accumulator registers but no min() or max() functions
7270 ** without FILTER clauses, allocate register regAcc. Register regAcc
7271 ** will contain 0 the first time the inner loop runs, and 1 thereafter.
7272 ** The code generated by updateAccumulator() uses this to ensure
7273 ** that the accumulator registers are (a) updated only once if
7274 ** there are no min() or max functions or (b) always updated for the
7275 ** first row visited by the aggregate, so that they are updated at
7276 ** least once even if the FILTER clause means the min() or max()
7277 ** function visits zero rows. */
7278 if( pAggInfo->nAccumulator ){
7279 for(i=0; i<pAggInfo->nFunc; i++){
7280 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
7281 continue;
7283 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
7284 break;
7287 if( i==pAggInfo->nFunc ){
7288 regAcc = ++pParse->nMem;
7289 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
7291 }else if( pAggInfo->nFunc==1 && pAggInfo->aFunc[0].iDistinct>=0 ){
7292 pDistinct = pAggInfo->aFunc[0].pFExpr->x.pList;
7293 distFlag = pDistinct ? (WHERE_WANT_DISTINCT|WHERE_AGG_DISTINCT) : 0;
7296 /* This case runs if the aggregate has no GROUP BY clause. The
7297 ** processing is much simpler since there is only a single row
7298 ** of output.
7300 assert( p->pGroupBy==0 );
7301 resetAccumulator(pParse, pAggInfo);
7303 /* If this query is a candidate for the min/max optimization, then
7304 ** minMaxFlag will have been previously set to either
7305 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
7306 ** be an appropriate ORDER BY expression for the optimization.
7308 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
7309 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
7311 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
7312 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
7313 pDistinct, minMaxFlag|distFlag, 0);
7314 if( pWInfo==0 ){
7315 goto select_end;
7317 SELECTTRACE(1,pParse,p,("WhereBegin returns\n"));
7318 eDist = sqlite3WhereIsDistinct(pWInfo);
7319 updateAccumulator(pParse, regAcc, pAggInfo, eDist);
7320 if( eDist!=WHERE_DISTINCT_NOOP ){
7321 struct AggInfo_func *pF = &pAggInfo->aFunc[0];
7322 fixDistinctOpenEph(pParse, eDist, pF->iDistinct, pF->iDistAddr);
7325 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
7326 if( minMaxFlag ){
7327 sqlite3WhereMinMaxOptEarlyOut(v, pWInfo);
7329 SELECTTRACE(1,pParse,p,("WhereEnd\n"));
7330 sqlite3WhereEnd(pWInfo);
7331 finalizeAggFunctions(pParse, pAggInfo);
7334 sSort.pOrderBy = 0;
7335 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
7336 selectInnerLoop(pParse, p, -1, 0, 0,
7337 pDest, addrEnd, addrEnd);
7339 sqlite3VdbeResolveLabel(v, addrEnd);
7341 } /* endif aggregate query */
7343 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
7344 explainTempTable(pParse, "DISTINCT");
7347 /* If there is an ORDER BY clause, then we need to sort the results
7348 ** and send them to the callback one by one.
7350 if( sSort.pOrderBy ){
7351 explainTempTable(pParse,
7352 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
7353 assert( p->pEList==pEList );
7354 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
7357 /* Jump here to skip this query
7359 sqlite3VdbeResolveLabel(v, iEnd);
7361 /* The SELECT has been coded. If there is an error in the Parse structure,
7362 ** set the return code to 1. Otherwise 0. */
7363 rc = (pParse->nErr>0);
7365 /* Control jumps to here if an error is encountered above, or upon
7366 ** successful coding of the SELECT.
7368 select_end:
7369 assert( db->mallocFailed==0 || db->mallocFailed==1 );
7370 pParse->nErr += db->mallocFailed;
7371 sqlite3ExprListDelete(db, pMinMaxOrderBy);
7372 #ifdef SQLITE_DEBUG
7373 if( pAggInfo && !db->mallocFailed ){
7374 for(i=0; i<pAggInfo->nColumn; i++){
7375 Expr *pExpr = pAggInfo->aCol[i].pCExpr;
7376 assert( pExpr!=0 );
7377 assert( pExpr->pAggInfo==pAggInfo );
7378 assert( pExpr->iAgg==i );
7380 for(i=0; i<pAggInfo->nFunc; i++){
7381 Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
7382 assert( pExpr!=0 );
7383 assert( pExpr->pAggInfo==pAggInfo );
7384 assert( pExpr->iAgg==i );
7387 #endif
7389 #if SELECTTRACE_ENABLED
7390 SELECTTRACE(0x1,pParse,p,("end processing\n"));
7391 if( (sqlite3SelectTrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
7392 sqlite3TreeViewSelect(0, p, 0);
7394 #endif
7395 ExplainQueryPlanPop(pParse);
7396 return rc;