add logcat option to PRAGMA cipher_profile
[sqlcipher.git] / src / vdbeaux.c
blobd22a6a55923b9d2c0eb12a51eeb1543202fa2096
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef);
20 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
23 ** Create a new virtual database engine.
25 Vdbe *sqlite3VdbeCreate(Parse *pParse){
26 sqlite3 *db = pParse->db;
27 Vdbe *p;
28 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
29 if( p==0 ) return 0;
30 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
31 p->db = db;
32 if( db->pVdbe ){
33 db->pVdbe->pPrev = p;
35 p->pNext = db->pVdbe;
36 p->pPrev = 0;
37 db->pVdbe = p;
38 p->iVdbeMagic = VDBE_MAGIC_INIT;
39 p->pParse = pParse;
40 pParse->pVdbe = p;
41 assert( pParse->aLabel==0 );
42 assert( pParse->nLabel==0 );
43 assert( p->nOpAlloc==0 );
44 assert( pParse->szOpAlloc==0 );
45 sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
46 return p;
50 ** Return the Parse object that owns a Vdbe object.
52 Parse *sqlite3VdbeParser(Vdbe *p){
53 return p->pParse;
57 ** Change the error string stored in Vdbe.zErrMsg
59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
60 va_list ap;
61 sqlite3DbFree(p->db, p->zErrMsg);
62 va_start(ap, zFormat);
63 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
64 va_end(ap);
68 ** Remember the SQL string for a prepared statement.
70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
71 if( p==0 ) return;
72 p->prepFlags = prepFlags;
73 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
74 p->expmask = 0;
76 assert( p->zSql==0 );
77 p->zSql = sqlite3DbStrNDup(p->db, z, n);
80 #ifdef SQLITE_ENABLE_NORMALIZE
82 ** Add a new element to the Vdbe->pDblStr list.
84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){
85 if( p ){
86 int n = sqlite3Strlen30(z);
87 DblquoteStr *pStr = sqlite3DbMallocRawNN(db,
88 sizeof(*pStr)+n+1-sizeof(pStr->z));
89 if( pStr ){
90 pStr->pNextStr = p->pDblStr;
91 p->pDblStr = pStr;
92 memcpy(pStr->z, z, n+1);
96 #endif
98 #ifdef SQLITE_ENABLE_NORMALIZE
100 ** zId of length nId is a double-quoted identifier. Check to see if
101 ** that identifier is really used as a string literal.
103 int sqlite3VdbeUsesDoubleQuotedString(
104 Vdbe *pVdbe, /* The prepared statement */
105 const char *zId /* The double-quoted identifier, already dequoted */
107 DblquoteStr *pStr;
108 assert( zId!=0 );
109 if( pVdbe->pDblStr==0 ) return 0;
110 for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){
111 if( strcmp(zId, pStr->z)==0 ) return 1;
113 return 0;
115 #endif
118 ** Swap all content between two VDBE structures.
120 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
121 Vdbe tmp, *pTmp;
122 char *zTmp;
123 assert( pA->db==pB->db );
124 tmp = *pA;
125 *pA = *pB;
126 *pB = tmp;
127 pTmp = pA->pNext;
128 pA->pNext = pB->pNext;
129 pB->pNext = pTmp;
130 pTmp = pA->pPrev;
131 pA->pPrev = pB->pPrev;
132 pB->pPrev = pTmp;
133 zTmp = pA->zSql;
134 pA->zSql = pB->zSql;
135 pB->zSql = zTmp;
136 #ifdef SQLITE_ENABLE_NORMALIZE
137 zTmp = pA->zNormSql;
138 pA->zNormSql = pB->zNormSql;
139 pB->zNormSql = zTmp;
140 #endif
141 pB->expmask = pA->expmask;
142 pB->prepFlags = pA->prepFlags;
143 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
144 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
148 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
149 ** than its current size. nOp is guaranteed to be less than or equal
150 ** to 1024/sizeof(Op).
152 ** If an out-of-memory error occurs while resizing the array, return
153 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
154 ** unchanged (this is so that any opcodes already allocated can be
155 ** correctly deallocated along with the rest of the Vdbe).
157 static int growOpArray(Vdbe *v, int nOp){
158 VdbeOp *pNew;
159 Parse *p = v->pParse;
161 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
162 ** more frequent reallocs and hence provide more opportunities for
163 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
164 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
165 ** by the minimum* amount required until the size reaches 512. Normal
166 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
167 ** size of the op array or add 1KB of space, whichever is smaller. */
168 #ifdef SQLITE_TEST_REALLOC_STRESS
169 sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
170 : (sqlite3_int64)v->nOpAlloc+nOp);
171 #else
172 sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
173 : (sqlite3_int64)(1024/sizeof(Op)));
174 UNUSED_PARAMETER(nOp);
175 #endif
177 /* Ensure that the size of a VDBE does not grow too large */
178 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
179 sqlite3OomFault(p->db);
180 return SQLITE_NOMEM;
183 assert( nOp<=(1024/sizeof(Op)) );
184 assert( nNew>=(v->nOpAlloc+nOp) );
185 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
186 if( pNew ){
187 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
188 v->nOpAlloc = p->szOpAlloc/sizeof(Op);
189 v->aOp = pNew;
191 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
194 #ifdef SQLITE_DEBUG
195 /* This routine is just a convenient place to set a breakpoint that will
196 ** fire after each opcode is inserted and displayed using
197 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and
198 ** pOp are available to make the breakpoint conditional.
200 ** Other useful labels for breakpoints include:
201 ** test_trace_breakpoint(pc,pOp)
202 ** sqlite3CorruptError(lineno)
203 ** sqlite3MisuseError(lineno)
204 ** sqlite3CantopenError(lineno)
206 static void test_addop_breakpoint(int pc, Op *pOp){
207 static int n = 0;
208 n++;
210 #endif
213 ** Add a new instruction to the list of instructions current in the
214 ** VDBE. Return the address of the new instruction.
216 ** Parameters:
218 ** p Pointer to the VDBE
220 ** op The opcode for this instruction
222 ** p1, p2, p3 Operands
224 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
225 ** the sqlite3VdbeChangeP4() function to change the value of the P4
226 ** operand.
228 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
229 assert( p->nOpAlloc<=p->nOp );
230 if( growOpArray(p, 1) ) return 1;
231 assert( p->nOpAlloc>p->nOp );
232 return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
234 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
235 int i;
236 VdbeOp *pOp;
238 i = p->nOp;
239 assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
240 assert( op>=0 && op<0xff );
241 if( p->nOpAlloc<=i ){
242 return growOp3(p, op, p1, p2, p3);
244 p->nOp++;
245 pOp = &p->aOp[i];
246 pOp->opcode = (u8)op;
247 pOp->p5 = 0;
248 pOp->p1 = p1;
249 pOp->p2 = p2;
250 pOp->p3 = p3;
251 pOp->p4.p = 0;
252 pOp->p4type = P4_NOTUSED;
253 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
254 pOp->zComment = 0;
255 #endif
256 #ifdef SQLITE_DEBUG
257 if( p->db->flags & SQLITE_VdbeAddopTrace ){
258 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
259 test_addop_breakpoint(i, &p->aOp[i]);
261 #endif
262 #ifdef VDBE_PROFILE
263 pOp->cycles = 0;
264 pOp->cnt = 0;
265 #endif
266 #ifdef SQLITE_VDBE_COVERAGE
267 pOp->iSrcLine = 0;
268 #endif
269 return i;
271 int sqlite3VdbeAddOp0(Vdbe *p, int op){
272 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
274 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
275 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
277 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
278 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
281 /* Generate code for an unconditional jump to instruction iDest
283 int sqlite3VdbeGoto(Vdbe *p, int iDest){
284 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
287 /* Generate code to cause the string zStr to be loaded into
288 ** register iDest
290 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
291 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
295 ** Generate code that initializes multiple registers to string or integer
296 ** constants. The registers begin with iDest and increase consecutively.
297 ** One register is initialized for each characgter in zTypes[]. For each
298 ** "s" character in zTypes[], the register is a string if the argument is
299 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character
300 ** in zTypes[], the register is initialized to an integer.
302 ** If the input string does not end with "X" then an OP_ResultRow instruction
303 ** is generated for the values inserted.
305 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
306 va_list ap;
307 int i;
308 char c;
309 va_start(ap, zTypes);
310 for(i=0; (c = zTypes[i])!=0; i++){
311 if( c=='s' ){
312 const char *z = va_arg(ap, const char*);
313 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
314 }else if( c=='i' ){
315 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
316 }else{
317 goto skip_op_resultrow;
320 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
321 skip_op_resultrow:
322 va_end(ap);
326 ** Add an opcode that includes the p4 value as a pointer.
328 int sqlite3VdbeAddOp4(
329 Vdbe *p, /* Add the opcode to this VM */
330 int op, /* The new opcode */
331 int p1, /* The P1 operand */
332 int p2, /* The P2 operand */
333 int p3, /* The P3 operand */
334 const char *zP4, /* The P4 operand */
335 int p4type /* P4 operand type */
337 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
338 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
339 return addr;
343 ** Add an OP_Function or OP_PureFunc opcode.
345 ** The eCallCtx argument is information (typically taken from Expr.op2)
346 ** that describes the calling context of the function. 0 means a general
347 ** function call. NC_IsCheck means called by a check constraint,
348 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx
349 ** means in the WHERE clause of a partial index. NC_GenCol means called
350 ** while computing a generated column value. 0 is the usual case.
352 int sqlite3VdbeAddFunctionCall(
353 Parse *pParse, /* Parsing context */
354 int p1, /* Constant argument mask */
355 int p2, /* First argument register */
356 int p3, /* Register into which results are written */
357 int nArg, /* Number of argument */
358 const FuncDef *pFunc, /* The function to be invoked */
359 int eCallCtx /* Calling context */
361 Vdbe *v = pParse->pVdbe;
362 int nByte;
363 int addr;
364 sqlite3_context *pCtx;
365 assert( v );
366 nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*);
367 pCtx = sqlite3DbMallocRawNN(pParse->db, nByte);
368 if( pCtx==0 ){
369 assert( pParse->db->mallocFailed );
370 freeEphemeralFunction(pParse->db, (FuncDef*)pFunc);
371 return 0;
373 pCtx->pOut = 0;
374 pCtx->pFunc = (FuncDef*)pFunc;
375 pCtx->pVdbe = 0;
376 pCtx->isError = 0;
377 pCtx->argc = nArg;
378 pCtx->iOp = sqlite3VdbeCurrentAddr(v);
379 addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
380 p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
381 sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);
382 return addr;
386 ** Add an opcode that includes the p4 value with a P4_INT64 or
387 ** P4_REAL type.
389 int sqlite3VdbeAddOp4Dup8(
390 Vdbe *p, /* Add the opcode to this VM */
391 int op, /* The new opcode */
392 int p1, /* The P1 operand */
393 int p2, /* The P2 operand */
394 int p3, /* The P3 operand */
395 const u8 *zP4, /* The P4 operand */
396 int p4type /* P4 operand type */
398 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
399 if( p4copy ) memcpy(p4copy, zP4, 8);
400 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
403 #ifndef SQLITE_OMIT_EXPLAIN
405 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
406 ** 0 means "none".
408 int sqlite3VdbeExplainParent(Parse *pParse){
409 VdbeOp *pOp;
410 if( pParse->addrExplain==0 ) return 0;
411 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
412 return pOp->p2;
416 ** Set a debugger breakpoint on the following routine in order to
417 ** monitor the EXPLAIN QUERY PLAN code generation.
419 #if defined(SQLITE_DEBUG)
420 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){
421 (void)z1;
422 (void)z2;
424 #endif
427 ** Add a new OP_Explain opcode.
429 ** If the bPush flag is true, then make this opcode the parent for
430 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
432 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
433 #ifndef SQLITE_DEBUG
434 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
435 ** But omit them (for performance) during production builds */
436 if( pParse->explain==2 )
437 #endif
439 char *zMsg;
440 Vdbe *v;
441 va_list ap;
442 int iThis;
443 va_start(ap, zFmt);
444 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
445 va_end(ap);
446 v = pParse->pVdbe;
447 iThis = v->nOp;
448 sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
449 zMsg, P4_DYNAMIC);
450 sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z);
451 if( bPush){
452 pParse->addrExplain = iThis;
458 ** Pop the EXPLAIN QUERY PLAN stack one level.
460 void sqlite3VdbeExplainPop(Parse *pParse){
461 sqlite3ExplainBreakpoint("POP", 0);
462 pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
464 #endif /* SQLITE_OMIT_EXPLAIN */
467 ** Add an OP_ParseSchema opcode. This routine is broken out from
468 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
469 ** as having been used.
471 ** The zWhere string must have been obtained from sqlite3_malloc().
472 ** This routine will take ownership of the allocated memory.
474 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){
475 int j;
476 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
477 sqlite3VdbeChangeP5(p, p5);
478 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
479 sqlite3MayAbort(p->pParse);
483 ** Add an opcode that includes the p4 value as an integer.
485 int sqlite3VdbeAddOp4Int(
486 Vdbe *p, /* Add the opcode to this VM */
487 int op, /* The new opcode */
488 int p1, /* The P1 operand */
489 int p2, /* The P2 operand */
490 int p3, /* The P3 operand */
491 int p4 /* The P4 operand as an integer */
493 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
494 if( p->db->mallocFailed==0 ){
495 VdbeOp *pOp = &p->aOp[addr];
496 pOp->p4type = P4_INT32;
497 pOp->p4.i = p4;
499 return addr;
502 /* Insert the end of a co-routine
504 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
505 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
507 /* Clear the temporary register cache, thereby ensuring that each
508 ** co-routine has its own independent set of registers, because co-routines
509 ** might expect their registers to be preserved across an OP_Yield, and
510 ** that could cause problems if two or more co-routines are using the same
511 ** temporary register.
513 v->pParse->nTempReg = 0;
514 v->pParse->nRangeReg = 0;
518 ** Create a new symbolic label for an instruction that has yet to be
519 ** coded. The symbolic label is really just a negative number. The
520 ** label can be used as the P2 value of an operation. Later, when
521 ** the label is resolved to a specific address, the VDBE will scan
522 ** through its operation list and change all values of P2 which match
523 ** the label into the resolved address.
525 ** The VDBE knows that a P2 value is a label because labels are
526 ** always negative and P2 values are suppose to be non-negative.
527 ** Hence, a negative P2 value is a label that has yet to be resolved.
528 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
529 ** property.
531 ** Variable usage notes:
533 ** Parse.aLabel[x] Stores the address that the x-th label resolves
534 ** into. For testing (SQLITE_DEBUG), unresolved
535 ** labels stores -1, but that is not required.
536 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[]
537 ** Parse.nLabel The *negative* of the number of labels that have
538 ** been issued. The negative is stored because
539 ** that gives a performance improvement over storing
540 ** the equivalent positive value.
542 int sqlite3VdbeMakeLabel(Parse *pParse){
543 return --pParse->nLabel;
547 ** Resolve label "x" to be the address of the next instruction to
548 ** be inserted. The parameter "x" must have been obtained from
549 ** a prior call to sqlite3VdbeMakeLabel().
551 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){
552 int nNewSize = 10 - p->nLabel;
553 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
554 nNewSize*sizeof(p->aLabel[0]));
555 if( p->aLabel==0 ){
556 p->nLabelAlloc = 0;
557 }else{
558 #ifdef SQLITE_DEBUG
559 int i;
560 for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1;
561 #endif
562 p->nLabelAlloc = nNewSize;
563 p->aLabel[j] = v->nOp;
566 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
567 Parse *p = v->pParse;
568 int j = ADDR(x);
569 assert( v->iVdbeMagic==VDBE_MAGIC_INIT );
570 assert( j<-p->nLabel );
571 assert( j>=0 );
572 #ifdef SQLITE_DEBUG
573 if( p->db->flags & SQLITE_VdbeAddopTrace ){
574 printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
576 #endif
577 if( p->nLabelAlloc + p->nLabel < 0 ){
578 resizeResolveLabel(p,v,j);
579 }else{
580 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
581 p->aLabel[j] = v->nOp;
586 ** Mark the VDBE as one that can only be run one time.
588 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
589 p->runOnlyOnce = 1;
593 ** Mark the VDBE as one that can only be run multiple times.
595 void sqlite3VdbeReusable(Vdbe *p){
596 p->runOnlyOnce = 0;
599 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
602 ** The following type and function are used to iterate through all opcodes
603 ** in a Vdbe main program and each of the sub-programs (triggers) it may
604 ** invoke directly or indirectly. It should be used as follows:
606 ** Op *pOp;
607 ** VdbeOpIter sIter;
609 ** memset(&sIter, 0, sizeof(sIter));
610 ** sIter.v = v; // v is of type Vdbe*
611 ** while( (pOp = opIterNext(&sIter)) ){
612 ** // Do something with pOp
613 ** }
614 ** sqlite3DbFree(v->db, sIter.apSub);
617 typedef struct VdbeOpIter VdbeOpIter;
618 struct VdbeOpIter {
619 Vdbe *v; /* Vdbe to iterate through the opcodes of */
620 SubProgram **apSub; /* Array of subprograms */
621 int nSub; /* Number of entries in apSub */
622 int iAddr; /* Address of next instruction to return */
623 int iSub; /* 0 = main program, 1 = first sub-program etc. */
625 static Op *opIterNext(VdbeOpIter *p){
626 Vdbe *v = p->v;
627 Op *pRet = 0;
628 Op *aOp;
629 int nOp;
631 if( p->iSub<=p->nSub ){
633 if( p->iSub==0 ){
634 aOp = v->aOp;
635 nOp = v->nOp;
636 }else{
637 aOp = p->apSub[p->iSub-1]->aOp;
638 nOp = p->apSub[p->iSub-1]->nOp;
640 assert( p->iAddr<nOp );
642 pRet = &aOp[p->iAddr];
643 p->iAddr++;
644 if( p->iAddr==nOp ){
645 p->iSub++;
646 p->iAddr = 0;
649 if( pRet->p4type==P4_SUBPROGRAM ){
650 int nByte = (p->nSub+1)*sizeof(SubProgram*);
651 int j;
652 for(j=0; j<p->nSub; j++){
653 if( p->apSub[j]==pRet->p4.pProgram ) break;
655 if( j==p->nSub ){
656 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
657 if( !p->apSub ){
658 pRet = 0;
659 }else{
660 p->apSub[p->nSub++] = pRet->p4.pProgram;
666 return pRet;
670 ** Check if the program stored in the VM associated with pParse may
671 ** throw an ABORT exception (causing the statement, but not entire transaction
672 ** to be rolled back). This condition is true if the main program or any
673 ** sub-programs contains any of the following:
675 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
676 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
677 ** * OP_Destroy
678 ** * OP_VUpdate
679 ** * OP_VCreate
680 ** * OP_VRename
681 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
682 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
683 ** (for CREATE TABLE AS SELECT ...)
685 ** Then check that the value of Parse.mayAbort is true if an
686 ** ABORT may be thrown, or false otherwise. Return true if it does
687 ** match, or false otherwise. This function is intended to be used as
688 ** part of an assert statement in the compiler. Similar to:
690 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
692 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
693 int hasAbort = 0;
694 int hasFkCounter = 0;
695 int hasCreateTable = 0;
696 int hasCreateIndex = 0;
697 int hasInitCoroutine = 0;
698 Op *pOp;
699 VdbeOpIter sIter;
700 memset(&sIter, 0, sizeof(sIter));
701 sIter.v = v;
703 while( (pOp = opIterNext(&sIter))!=0 ){
704 int opcode = pOp->opcode;
705 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
706 || opcode==OP_VDestroy
707 || opcode==OP_VCreate
708 || opcode==OP_ParseSchema
709 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
710 && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
712 hasAbort = 1;
713 break;
715 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
716 if( mayAbort ){
717 /* hasCreateIndex may also be set for some DELETE statements that use
718 ** OP_Clear. So this routine may end up returning true in the case
719 ** where a "DELETE FROM tbl" has a statement-journal but does not
720 ** require one. This is not so bad - it is an inefficiency, not a bug. */
721 if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1;
722 if( opcode==OP_Clear ) hasCreateIndex = 1;
724 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
725 #ifndef SQLITE_OMIT_FOREIGN_KEY
726 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
727 hasFkCounter = 1;
729 #endif
731 sqlite3DbFree(v->db, sIter.apSub);
733 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
734 ** If malloc failed, then the while() loop above may not have iterated
735 ** through all opcodes and hasAbort may be set incorrectly. Return
736 ** true for this case to prevent the assert() in the callers frame
737 ** from failing. */
738 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
739 || (hasCreateTable && hasInitCoroutine) || hasCreateIndex
742 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
744 #ifdef SQLITE_DEBUG
746 ** Increment the nWrite counter in the VDBE if the cursor is not an
747 ** ephemeral cursor, or if the cursor argument is NULL.
749 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
750 if( pC==0
751 || (pC->eCurType!=CURTYPE_SORTER
752 && pC->eCurType!=CURTYPE_PSEUDO
753 && !pC->isEphemeral)
755 p->nWrite++;
758 #endif
760 #ifdef SQLITE_DEBUG
762 ** Assert if an Abort at this point in time might result in a corrupt
763 ** database.
765 void sqlite3VdbeAssertAbortable(Vdbe *p){
766 assert( p->nWrite==0 || p->usesStmtJournal );
768 #endif
771 ** This routine is called after all opcodes have been inserted. It loops
772 ** through all the opcodes and fixes up some details.
774 ** (1) For each jump instruction with a negative P2 value (a label)
775 ** resolve the P2 value to an actual address.
777 ** (2) Compute the maximum number of arguments used by any SQL function
778 ** and store that value in *pMaxFuncArgs.
780 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
781 ** indicate what the prepared statement actually does.
783 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
785 ** (5) Reclaim the memory allocated for storing labels.
787 ** This routine will only function correctly if the mkopcodeh.tcl generator
788 ** script numbers the opcodes correctly. Changes to this routine must be
789 ** coordinated with changes to mkopcodeh.tcl.
791 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
792 int nMaxArgs = *pMaxFuncArgs;
793 Op *pOp;
794 Parse *pParse = p->pParse;
795 int *aLabel = pParse->aLabel;
796 p->readOnly = 1;
797 p->bIsReader = 0;
798 pOp = &p->aOp[p->nOp-1];
799 while(1){
801 /* Only JUMP opcodes and the short list of special opcodes in the switch
802 ** below need to be considered. The mkopcodeh.tcl generator script groups
803 ** all these opcodes together near the front of the opcode list. Skip
804 ** any opcode that does not need processing by virtual of the fact that
805 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
807 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
808 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
809 ** cases from this switch! */
810 switch( pOp->opcode ){
811 case OP_Transaction: {
812 if( pOp->p2!=0 ) p->readOnly = 0;
813 /* no break */ deliberate_fall_through
815 case OP_AutoCommit:
816 case OP_Savepoint: {
817 p->bIsReader = 1;
818 break;
820 #ifndef SQLITE_OMIT_WAL
821 case OP_Checkpoint:
822 #endif
823 case OP_Vacuum:
824 case OP_JournalMode: {
825 p->readOnly = 0;
826 p->bIsReader = 1;
827 break;
829 case OP_Next:
830 case OP_SorterNext: {
831 pOp->p4.xAdvance = sqlite3BtreeNext;
832 pOp->p4type = P4_ADVANCE;
833 /* The code generator never codes any of these opcodes as a jump
834 ** to a label. They are always coded as a jump backwards to a
835 ** known address */
836 assert( pOp->p2>=0 );
837 break;
839 case OP_Prev: {
840 pOp->p4.xAdvance = sqlite3BtreePrevious;
841 pOp->p4type = P4_ADVANCE;
842 /* The code generator never codes any of these opcodes as a jump
843 ** to a label. They are always coded as a jump backwards to a
844 ** known address */
845 assert( pOp->p2>=0 );
846 break;
848 #ifndef SQLITE_OMIT_VIRTUALTABLE
849 case OP_VUpdate: {
850 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
851 break;
853 case OP_VFilter: {
854 int n;
855 assert( (pOp - p->aOp) >= 3 );
856 assert( pOp[-1].opcode==OP_Integer );
857 n = pOp[-1].p1;
858 if( n>nMaxArgs ) nMaxArgs = n;
859 /* Fall through into the default case */
860 /* no break */ deliberate_fall_through
862 #endif
863 default: {
864 if( pOp->p2<0 ){
865 /* The mkopcodeh.tcl script has so arranged things that the only
866 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
867 ** have non-negative values for P2. */
868 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
869 assert( ADDR(pOp->p2)<-pParse->nLabel );
870 pOp->p2 = aLabel[ADDR(pOp->p2)];
872 break;
875 /* The mkopcodeh.tcl script has so arranged things that the only
876 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
877 ** have non-negative values for P2. */
878 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
880 if( pOp==p->aOp ) break;
881 pOp--;
883 sqlite3DbFree(p->db, pParse->aLabel);
884 pParse->aLabel = 0;
885 pParse->nLabel = 0;
886 *pMaxFuncArgs = nMaxArgs;
887 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
891 ** Return the address of the next instruction to be inserted.
893 int sqlite3VdbeCurrentAddr(Vdbe *p){
894 assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
895 return p->nOp;
899 ** Verify that at least N opcode slots are available in p without
900 ** having to malloc for more space (except when compiled using
901 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
902 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
903 ** fail due to a OOM fault and hence that the return value from
904 ** sqlite3VdbeAddOpList() will always be non-NULL.
906 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
907 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
908 assert( p->nOp + N <= p->nOpAlloc );
910 #endif
913 ** Verify that the VM passed as the only argument does not contain
914 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
915 ** by code in pragma.c to ensure that the implementation of certain
916 ** pragmas comports with the flags specified in the mkpragmatab.tcl
917 ** script.
919 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
920 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
921 int i;
922 for(i=0; i<p->nOp; i++){
923 assert( p->aOp[i].opcode!=OP_ResultRow );
926 #endif
929 ** Generate code (a single OP_Abortable opcode) that will
930 ** verify that the VDBE program can safely call Abort in the current
931 ** context.
933 #if defined(SQLITE_DEBUG)
934 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
935 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
937 #endif
940 ** This function returns a pointer to the array of opcodes associated with
941 ** the Vdbe passed as the first argument. It is the callers responsibility
942 ** to arrange for the returned array to be eventually freed using the
943 ** vdbeFreeOpArray() function.
945 ** Before returning, *pnOp is set to the number of entries in the returned
946 ** array. Also, *pnMaxArg is set to the larger of its current value and
947 ** the number of entries in the Vdbe.apArg[] array required to execute the
948 ** returned program.
950 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
951 VdbeOp *aOp = p->aOp;
952 assert( aOp && !p->db->mallocFailed );
954 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
955 assert( DbMaskAllZero(p->btreeMask) );
957 resolveP2Values(p, pnMaxArg);
958 *pnOp = p->nOp;
959 p->aOp = 0;
960 return aOp;
964 ** Add a whole list of operations to the operation stack. Return a
965 ** pointer to the first operation inserted.
967 ** Non-zero P2 arguments to jump instructions are automatically adjusted
968 ** so that the jump target is relative to the first operation inserted.
970 VdbeOp *sqlite3VdbeAddOpList(
971 Vdbe *p, /* Add opcodes to the prepared statement */
972 int nOp, /* Number of opcodes to add */
973 VdbeOpList const *aOp, /* The opcodes to be added */
974 int iLineno /* Source-file line number of first opcode */
976 int i;
977 VdbeOp *pOut, *pFirst;
978 assert( nOp>0 );
979 assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
980 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){
981 return 0;
983 pFirst = pOut = &p->aOp[p->nOp];
984 for(i=0; i<nOp; i++, aOp++, pOut++){
985 pOut->opcode = aOp->opcode;
986 pOut->p1 = aOp->p1;
987 pOut->p2 = aOp->p2;
988 assert( aOp->p2>=0 );
989 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
990 pOut->p2 += p->nOp;
992 pOut->p3 = aOp->p3;
993 pOut->p4type = P4_NOTUSED;
994 pOut->p4.p = 0;
995 pOut->p5 = 0;
996 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
997 pOut->zComment = 0;
998 #endif
999 #ifdef SQLITE_VDBE_COVERAGE
1000 pOut->iSrcLine = iLineno+i;
1001 #else
1002 (void)iLineno;
1003 #endif
1004 #ifdef SQLITE_DEBUG
1005 if( p->db->flags & SQLITE_VdbeAddopTrace ){
1006 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
1008 #endif
1010 p->nOp += nOp;
1011 return pFirst;
1014 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1016 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1018 void sqlite3VdbeScanStatus(
1019 Vdbe *p, /* VM to add scanstatus() to */
1020 int addrExplain, /* Address of OP_Explain (or 0) */
1021 int addrLoop, /* Address of loop counter */
1022 int addrVisit, /* Address of rows visited counter */
1023 LogEst nEst, /* Estimated number of output rows */
1024 const char *zName /* Name of table or index being scanned */
1026 sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus);
1027 ScanStatus *aNew;
1028 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
1029 if( aNew ){
1030 ScanStatus *pNew = &aNew[p->nScan++];
1031 pNew->addrExplain = addrExplain;
1032 pNew->addrLoop = addrLoop;
1033 pNew->addrVisit = addrVisit;
1034 pNew->nEst = nEst;
1035 pNew->zName = sqlite3DbStrDup(p->db, zName);
1036 p->aScan = aNew;
1039 #endif
1043 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1044 ** for a specific instruction.
1046 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){
1047 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
1049 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
1050 sqlite3VdbeGetOp(p,addr)->p1 = val;
1052 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
1053 sqlite3VdbeGetOp(p,addr)->p2 = val;
1055 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
1056 sqlite3VdbeGetOp(p,addr)->p3 = val;
1058 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
1059 assert( p->nOp>0 || p->db->mallocFailed );
1060 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
1064 ** Change the P2 operand of instruction addr so that it points to
1065 ** the address of the next instruction to be coded.
1067 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
1068 sqlite3VdbeChangeP2(p, addr, p->nOp);
1072 ** Change the P2 operand of the jump instruction at addr so that
1073 ** the jump lands on the next opcode. Or if the jump instruction was
1074 ** the previous opcode (and is thus a no-op) then simply back up
1075 ** the next instruction counter by one slot so that the jump is
1076 ** overwritten by the next inserted opcode.
1078 ** This routine is an optimization of sqlite3VdbeJumpHere() that
1079 ** strives to omit useless byte-code like this:
1081 ** 7 Once 0 8 0
1082 ** 8 ...
1084 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){
1085 if( addr==p->nOp-1 ){
1086 assert( p->aOp[addr].opcode==OP_Once
1087 || p->aOp[addr].opcode==OP_If
1088 || p->aOp[addr].opcode==OP_FkIfZero );
1089 assert( p->aOp[addr].p4type==0 );
1090 #ifdef SQLITE_VDBE_COVERAGE
1091 sqlite3VdbeGetOp(p,-1)->iSrcLine = 0; /* Erase VdbeCoverage() macros */
1092 #endif
1093 p->nOp--;
1094 }else{
1095 sqlite3VdbeChangeP2(p, addr, p->nOp);
1101 ** If the input FuncDef structure is ephemeral, then free it. If
1102 ** the FuncDef is not ephermal, then do nothing.
1104 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
1105 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
1106 sqlite3DbFreeNN(db, pDef);
1111 ** Delete a P4 value if necessary.
1113 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
1114 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1115 sqlite3DbFreeNN(db, p);
1117 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
1118 freeEphemeralFunction(db, p->pFunc);
1119 sqlite3DbFreeNN(db, p);
1121 static void freeP4(sqlite3 *db, int p4type, void *p4){
1122 assert( db );
1123 switch( p4type ){
1124 case P4_FUNCCTX: {
1125 freeP4FuncCtx(db, (sqlite3_context*)p4);
1126 break;
1128 case P4_REAL:
1129 case P4_INT64:
1130 case P4_DYNAMIC:
1131 case P4_DYNBLOB:
1132 case P4_INTARRAY: {
1133 sqlite3DbFree(db, p4);
1134 break;
1136 case P4_KEYINFO: {
1137 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
1138 break;
1140 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1141 case P4_EXPR: {
1142 sqlite3ExprDelete(db, (Expr*)p4);
1143 break;
1145 #endif
1146 case P4_FUNCDEF: {
1147 freeEphemeralFunction(db, (FuncDef*)p4);
1148 break;
1150 case P4_MEM: {
1151 if( db->pnBytesFreed==0 ){
1152 sqlite3ValueFree((sqlite3_value*)p4);
1153 }else{
1154 freeP4Mem(db, (Mem*)p4);
1156 break;
1158 case P4_VTAB : {
1159 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
1160 break;
1166 ** Free the space allocated for aOp and any p4 values allocated for the
1167 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1168 ** nOp entries.
1170 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
1171 if( aOp ){
1172 Op *pOp;
1173 for(pOp=&aOp[nOp-1]; pOp>=aOp; pOp--){
1174 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
1175 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1176 sqlite3DbFree(db, pOp->zComment);
1177 #endif
1179 sqlite3DbFreeNN(db, aOp);
1184 ** Link the SubProgram object passed as the second argument into the linked
1185 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1186 ** objects when the VM is no longer required.
1188 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
1189 p->pNext = pVdbe->pProgram;
1190 pVdbe->pProgram = p;
1194 ** Return true if the given Vdbe has any SubPrograms.
1196 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){
1197 return pVdbe->pProgram!=0;
1201 ** Change the opcode at addr into OP_Noop
1203 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
1204 VdbeOp *pOp;
1205 if( p->db->mallocFailed ) return 0;
1206 assert( addr>=0 && addr<p->nOp );
1207 pOp = &p->aOp[addr];
1208 freeP4(p->db, pOp->p4type, pOp->p4.p);
1209 pOp->p4type = P4_NOTUSED;
1210 pOp->p4.z = 0;
1211 pOp->opcode = OP_Noop;
1212 return 1;
1216 ** If the last opcode is "op" and it is not a jump destination,
1217 ** then remove it. Return true if and only if an opcode was removed.
1219 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
1220 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
1221 return sqlite3VdbeChangeToNoop(p, p->nOp-1);
1222 }else{
1223 return 0;
1227 #ifdef SQLITE_DEBUG
1229 ** Generate an OP_ReleaseReg opcode to indicate that a range of
1230 ** registers, except any identified by mask, are no longer in use.
1232 void sqlite3VdbeReleaseRegisters(
1233 Parse *pParse, /* Parsing context */
1234 int iFirst, /* Index of first register to be released */
1235 int N, /* Number of registers to release */
1236 u32 mask, /* Mask of registers to NOT release */
1237 int bUndefine /* If true, mark registers as undefined */
1239 if( N==0 ) return;
1240 assert( pParse->pVdbe );
1241 assert( iFirst>=1 );
1242 assert( iFirst+N-1<=pParse->nMem );
1243 if( N<=31 && mask!=0 ){
1244 while( N>0 && (mask&1)!=0 ){
1245 mask >>= 1;
1246 iFirst++;
1247 N--;
1249 while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){
1250 mask &= ~MASKBIT32(N-1);
1251 N--;
1254 if( N>0 ){
1255 sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask);
1256 if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1);
1259 #endif /* SQLITE_DEBUG */
1263 ** Change the value of the P4 operand for a specific instruction.
1264 ** This routine is useful when a large program is loaded from a
1265 ** static array using sqlite3VdbeAddOpList but we want to make a
1266 ** few minor changes to the program.
1268 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1269 ** the string is made into memory obtained from sqlite3_malloc().
1270 ** A value of n==0 means copy bytes of zP4 up to and including the
1271 ** first null byte. If n>0 then copy n+1 bytes of zP4.
1273 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1274 ** to a string or structure that is guaranteed to exist for the lifetime of
1275 ** the Vdbe. In these cases we can just copy the pointer.
1277 ** If addr<0 then change P4 on the most recently inserted instruction.
1279 static void SQLITE_NOINLINE vdbeChangeP4Full(
1280 Vdbe *p,
1281 Op *pOp,
1282 const char *zP4,
1283 int n
1285 if( pOp->p4type ){
1286 freeP4(p->db, pOp->p4type, pOp->p4.p);
1287 pOp->p4type = 0;
1288 pOp->p4.p = 0;
1290 if( n<0 ){
1291 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
1292 }else{
1293 if( n==0 ) n = sqlite3Strlen30(zP4);
1294 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
1295 pOp->p4type = P4_DYNAMIC;
1298 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
1299 Op *pOp;
1300 sqlite3 *db;
1301 assert( p!=0 );
1302 db = p->db;
1303 assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
1304 assert( p->aOp!=0 || db->mallocFailed );
1305 if( db->mallocFailed ){
1306 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
1307 return;
1309 assert( p->nOp>0 );
1310 assert( addr<p->nOp );
1311 if( addr<0 ){
1312 addr = p->nOp - 1;
1314 pOp = &p->aOp[addr];
1315 if( n>=0 || pOp->p4type ){
1316 vdbeChangeP4Full(p, pOp, zP4, n);
1317 return;
1319 if( n==P4_INT32 ){
1320 /* Note: this cast is safe, because the origin data point was an int
1321 ** that was cast to a (const char *). */
1322 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1323 pOp->p4type = P4_INT32;
1324 }else if( zP4!=0 ){
1325 assert( n<0 );
1326 pOp->p4.p = (void*)zP4;
1327 pOp->p4type = (signed char)n;
1328 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1333 ** Change the P4 operand of the most recently coded instruction
1334 ** to the value defined by the arguments. This is a high-speed
1335 ** version of sqlite3VdbeChangeP4().
1337 ** The P4 operand must not have been previously defined. And the new
1338 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
1339 ** those cases.
1341 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1342 VdbeOp *pOp;
1343 assert( n!=P4_INT32 && n!=P4_VTAB );
1344 assert( n<=0 );
1345 if( p->db->mallocFailed ){
1346 freeP4(p->db, n, pP4);
1347 }else{
1348 assert( pP4!=0 );
1349 assert( p->nOp>0 );
1350 pOp = &p->aOp[p->nOp-1];
1351 assert( pOp->p4type==P4_NOTUSED );
1352 pOp->p4type = n;
1353 pOp->p4.p = pP4;
1358 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1359 ** index given.
1361 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1362 Vdbe *v = pParse->pVdbe;
1363 KeyInfo *pKeyInfo;
1364 assert( v!=0 );
1365 assert( pIdx!=0 );
1366 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1367 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1370 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1372 ** Change the comment on the most recently coded instruction. Or
1373 ** insert a No-op and add the comment to that new instruction. This
1374 ** makes the code easier to read during debugging. None of this happens
1375 ** in a production build.
1377 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1378 assert( p->nOp>0 || p->aOp==0 );
1379 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed
1380 || p->pParse->nErr>0 );
1381 if( p->nOp ){
1382 assert( p->aOp );
1383 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1384 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1387 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1388 va_list ap;
1389 if( p ){
1390 va_start(ap, zFormat);
1391 vdbeVComment(p, zFormat, ap);
1392 va_end(ap);
1395 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1396 va_list ap;
1397 if( p ){
1398 sqlite3VdbeAddOp0(p, OP_Noop);
1399 va_start(ap, zFormat);
1400 vdbeVComment(p, zFormat, ap);
1401 va_end(ap);
1404 #endif /* NDEBUG */
1406 #ifdef SQLITE_VDBE_COVERAGE
1408 ** Set the value if the iSrcLine field for the previously coded instruction.
1410 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1411 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1413 #endif /* SQLITE_VDBE_COVERAGE */
1416 ** Return the opcode for a given address. If the address is -1, then
1417 ** return the most recently inserted opcode.
1419 ** If a memory allocation error has occurred prior to the calling of this
1420 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
1421 ** is readable but not writable, though it is cast to a writable value.
1422 ** The return of a dummy opcode allows the call to continue functioning
1423 ** after an OOM fault without having to check to see if the return from
1424 ** this routine is a valid pointer. But because the dummy.opcode is 0,
1425 ** dummy will never be written to. This is verified by code inspection and
1426 ** by running with Valgrind.
1428 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1429 /* C89 specifies that the constant "dummy" will be initialized to all
1430 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
1431 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
1432 assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
1433 if( addr<0 ){
1434 addr = p->nOp - 1;
1436 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1437 if( p->db->mallocFailed ){
1438 return (VdbeOp*)&dummy;
1439 }else{
1440 return &p->aOp[addr];
1444 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1446 ** Return an integer value for one of the parameters to the opcode pOp
1447 ** determined by character c.
1449 static int translateP(char c, const Op *pOp){
1450 if( c=='1' ) return pOp->p1;
1451 if( c=='2' ) return pOp->p2;
1452 if( c=='3' ) return pOp->p3;
1453 if( c=='4' ) return pOp->p4.i;
1454 return pOp->p5;
1458 ** Compute a string for the "comment" field of a VDBE opcode listing.
1460 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1461 ** to an extra string that is appended to the sqlite3OpcodeName(). In the
1462 ** absence of other comments, this synopsis becomes the comment on the opcode.
1463 ** Some translation occurs:
1465 ** "PX" -> "r[X]"
1466 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1467 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1468 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
1470 char *sqlite3VdbeDisplayComment(
1471 sqlite3 *db, /* Optional - Oom error reporting only */
1472 const Op *pOp, /* The opcode to be commented */
1473 const char *zP4 /* Previously obtained value for P4 */
1475 const char *zOpName;
1476 const char *zSynopsis;
1477 int nOpName;
1478 int ii;
1479 char zAlt[50];
1480 StrAccum x;
1482 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1483 zOpName = sqlite3OpcodeName(pOp->opcode);
1484 nOpName = sqlite3Strlen30(zOpName);
1485 if( zOpName[nOpName+1] ){
1486 int seenCom = 0;
1487 char c;
1488 zSynopsis = zOpName += nOpName + 1;
1489 if( strncmp(zSynopsis,"IF ",3)==0 ){
1490 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1491 zSynopsis = zAlt;
1493 for(ii=0; (c = zSynopsis[ii])!=0; ii++){
1494 if( c=='P' ){
1495 c = zSynopsis[++ii];
1496 if( c=='4' ){
1497 sqlite3_str_appendall(&x, zP4);
1498 }else if( c=='X' ){
1499 sqlite3_str_appendall(&x, pOp->zComment);
1500 seenCom = 1;
1501 }else{
1502 int v1 = translateP(c, pOp);
1503 int v2;
1504 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1505 ii += 3;
1506 v2 = translateP(zSynopsis[ii], pOp);
1507 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1508 ii += 2;
1509 v2++;
1511 if( v2<2 ){
1512 sqlite3_str_appendf(&x, "%d", v1);
1513 }else{
1514 sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1);
1516 }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){
1517 sqlite3_context *pCtx = pOp->p4.pCtx;
1518 if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){
1519 sqlite3_str_appendf(&x, "%d", v1);
1520 }else if( pCtx->argc>1 ){
1521 sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1);
1522 }else if( x.accError==0 ){
1523 assert( x.nChar>2 );
1524 x.nChar -= 2;
1525 ii++;
1527 ii += 3;
1528 }else{
1529 sqlite3_str_appendf(&x, "%d", v1);
1530 if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1531 ii += 4;
1535 }else{
1536 sqlite3_str_appendchar(&x, 1, c);
1539 if( !seenCom && pOp->zComment ){
1540 sqlite3_str_appendf(&x, "; %s", pOp->zComment);
1542 }else if( pOp->zComment ){
1543 sqlite3_str_appendall(&x, pOp->zComment);
1545 if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){
1546 sqlite3OomFault(db);
1548 return sqlite3StrAccumFinish(&x);
1550 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
1552 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1554 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1555 ** that can be displayed in the P4 column of EXPLAIN output.
1557 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1558 const char *zOp = 0;
1559 switch( pExpr->op ){
1560 case TK_STRING:
1561 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
1562 break;
1563 case TK_INTEGER:
1564 sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
1565 break;
1566 case TK_NULL:
1567 sqlite3_str_appendf(p, "NULL");
1568 break;
1569 case TK_REGISTER: {
1570 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
1571 break;
1573 case TK_COLUMN: {
1574 if( pExpr->iColumn<0 ){
1575 sqlite3_str_appendf(p, "rowid");
1576 }else{
1577 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
1579 break;
1581 case TK_LT: zOp = "LT"; break;
1582 case TK_LE: zOp = "LE"; break;
1583 case TK_GT: zOp = "GT"; break;
1584 case TK_GE: zOp = "GE"; break;
1585 case TK_NE: zOp = "NE"; break;
1586 case TK_EQ: zOp = "EQ"; break;
1587 case TK_IS: zOp = "IS"; break;
1588 case TK_ISNOT: zOp = "ISNOT"; break;
1589 case TK_AND: zOp = "AND"; break;
1590 case TK_OR: zOp = "OR"; break;
1591 case TK_PLUS: zOp = "ADD"; break;
1592 case TK_STAR: zOp = "MUL"; break;
1593 case TK_MINUS: zOp = "SUB"; break;
1594 case TK_REM: zOp = "REM"; break;
1595 case TK_BITAND: zOp = "BITAND"; break;
1596 case TK_BITOR: zOp = "BITOR"; break;
1597 case TK_SLASH: zOp = "DIV"; break;
1598 case TK_LSHIFT: zOp = "LSHIFT"; break;
1599 case TK_RSHIFT: zOp = "RSHIFT"; break;
1600 case TK_CONCAT: zOp = "CONCAT"; break;
1601 case TK_UMINUS: zOp = "MINUS"; break;
1602 case TK_UPLUS: zOp = "PLUS"; break;
1603 case TK_BITNOT: zOp = "BITNOT"; break;
1604 case TK_NOT: zOp = "NOT"; break;
1605 case TK_ISNULL: zOp = "ISNULL"; break;
1606 case TK_NOTNULL: zOp = "NOTNULL"; break;
1608 default:
1609 sqlite3_str_appendf(p, "%s", "expr");
1610 break;
1613 if( zOp ){
1614 sqlite3_str_appendf(p, "%s(", zOp);
1615 displayP4Expr(p, pExpr->pLeft);
1616 if( pExpr->pRight ){
1617 sqlite3_str_append(p, ",", 1);
1618 displayP4Expr(p, pExpr->pRight);
1620 sqlite3_str_append(p, ")", 1);
1623 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1626 #if VDBE_DISPLAY_P4
1628 ** Compute a string that describes the P4 parameter for an opcode.
1629 ** Use zTemp for any required temporary buffer space.
1631 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){
1632 char *zP4 = 0;
1633 StrAccum x;
1635 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1636 switch( pOp->p4type ){
1637 case P4_KEYINFO: {
1638 int j;
1639 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1640 assert( pKeyInfo->aSortFlags!=0 );
1641 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
1642 for(j=0; j<pKeyInfo->nKeyField; j++){
1643 CollSeq *pColl = pKeyInfo->aColl[j];
1644 const char *zColl = pColl ? pColl->zName : "";
1645 if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1646 sqlite3_str_appendf(&x, ",%s%s%s",
1647 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "",
1648 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "",
1649 zColl);
1651 sqlite3_str_append(&x, ")", 1);
1652 break;
1654 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1655 case P4_EXPR: {
1656 displayP4Expr(&x, pOp->p4.pExpr);
1657 break;
1659 #endif
1660 case P4_COLLSEQ: {
1661 static const char *const encnames[] = {"?", "8", "16LE", "16BE"};
1662 CollSeq *pColl = pOp->p4.pColl;
1663 assert( pColl->enc>=0 && pColl->enc<4 );
1664 sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName,
1665 encnames[pColl->enc]);
1666 break;
1668 case P4_FUNCDEF: {
1669 FuncDef *pDef = pOp->p4.pFunc;
1670 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1671 break;
1673 case P4_FUNCCTX: {
1674 FuncDef *pDef = pOp->p4.pCtx->pFunc;
1675 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1676 break;
1678 case P4_INT64: {
1679 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
1680 break;
1682 case P4_INT32: {
1683 sqlite3_str_appendf(&x, "%d", pOp->p4.i);
1684 break;
1686 case P4_REAL: {
1687 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
1688 break;
1690 case P4_MEM: {
1691 Mem *pMem = pOp->p4.pMem;
1692 if( pMem->flags & MEM_Str ){
1693 zP4 = pMem->z;
1694 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1695 sqlite3_str_appendf(&x, "%lld", pMem->u.i);
1696 }else if( pMem->flags & MEM_Real ){
1697 sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
1698 }else if( pMem->flags & MEM_Null ){
1699 zP4 = "NULL";
1700 }else{
1701 assert( pMem->flags & MEM_Blob );
1702 zP4 = "(blob)";
1704 break;
1706 #ifndef SQLITE_OMIT_VIRTUALTABLE
1707 case P4_VTAB: {
1708 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1709 sqlite3_str_appendf(&x, "vtab:%p", pVtab);
1710 break;
1712 #endif
1713 case P4_INTARRAY: {
1714 u32 i;
1715 u32 *ai = pOp->p4.ai;
1716 u32 n = ai[0]; /* The first element of an INTARRAY is always the
1717 ** count of the number of elements to follow */
1718 for(i=1; i<=n; i++){
1719 sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]);
1721 sqlite3_str_append(&x, "]", 1);
1722 break;
1724 case P4_SUBPROGRAM: {
1725 zP4 = "program";
1726 break;
1728 case P4_DYNBLOB:
1729 case P4_ADVANCE: {
1730 break;
1732 case P4_TABLE: {
1733 zP4 = pOp->p4.pTab->zName;
1734 break;
1736 default: {
1737 zP4 = pOp->p4.z;
1740 if( zP4 ) sqlite3_str_appendall(&x, zP4);
1741 if( (x.accError & SQLITE_NOMEM)!=0 ){
1742 sqlite3OomFault(db);
1744 return sqlite3StrAccumFinish(&x);
1746 #endif /* VDBE_DISPLAY_P4 */
1749 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1751 ** The prepared statements need to know in advance the complete set of
1752 ** attached databases that will be use. A mask of these databases
1753 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
1754 ** p->btreeMask of databases that will require a lock.
1756 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1757 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1758 assert( i<(int)sizeof(p->btreeMask)*8 );
1759 DbMaskSet(p->btreeMask, i);
1760 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1761 DbMaskSet(p->lockMask, i);
1765 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1767 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1768 ** this routine obtains the mutex associated with each BtShared structure
1769 ** that may be accessed by the VM passed as an argument. In doing so it also
1770 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1771 ** that the correct busy-handler callback is invoked if required.
1773 ** If SQLite is not threadsafe but does support shared-cache mode, then
1774 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1775 ** of all of BtShared structures accessible via the database handle
1776 ** associated with the VM.
1778 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1779 ** function is a no-op.
1781 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1782 ** statement p will ever use. Let N be the number of bits in p->btreeMask
1783 ** corresponding to btrees that use shared cache. Then the runtime of
1784 ** this routine is N*N. But as N is rarely more than 1, this should not
1785 ** be a problem.
1787 void sqlite3VdbeEnter(Vdbe *p){
1788 int i;
1789 sqlite3 *db;
1790 Db *aDb;
1791 int nDb;
1792 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1793 db = p->db;
1794 aDb = db->aDb;
1795 nDb = db->nDb;
1796 for(i=0; i<nDb; i++){
1797 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1798 sqlite3BtreeEnter(aDb[i].pBt);
1802 #endif
1804 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1806 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1808 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1809 int i;
1810 sqlite3 *db;
1811 Db *aDb;
1812 int nDb;
1813 db = p->db;
1814 aDb = db->aDb;
1815 nDb = db->nDb;
1816 for(i=0; i<nDb; i++){
1817 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1818 sqlite3BtreeLeave(aDb[i].pBt);
1822 void sqlite3VdbeLeave(Vdbe *p){
1823 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1824 vdbeLeave(p);
1826 #endif
1828 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1830 ** Print a single opcode. This routine is used for debugging only.
1832 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
1833 char *zP4;
1834 char *zCom;
1835 sqlite3 dummyDb;
1836 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1837 if( pOut==0 ) pOut = stdout;
1838 sqlite3BeginBenignMalloc();
1839 dummyDb.mallocFailed = 1;
1840 zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp);
1841 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1842 zCom = sqlite3VdbeDisplayComment(0, pOp, zP4);
1843 #else
1844 zCom = 0;
1845 #endif
1846 /* NB: The sqlite3OpcodeName() function is implemented by code created
1847 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1848 ** information from the vdbe.c source text */
1849 fprintf(pOut, zFormat1, pc,
1850 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3,
1851 zP4 ? zP4 : "", pOp->p5,
1852 zCom ? zCom : ""
1854 fflush(pOut);
1855 sqlite3_free(zP4);
1856 sqlite3_free(zCom);
1857 sqlite3EndBenignMalloc();
1859 #endif
1862 ** Initialize an array of N Mem element.
1864 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
1865 while( (N--)>0 ){
1866 p->db = db;
1867 p->flags = flags;
1868 p->szMalloc = 0;
1869 #ifdef SQLITE_DEBUG
1870 p->pScopyFrom = 0;
1871 #endif
1872 p++;
1877 ** Release an array of N Mem elements
1879 static void releaseMemArray(Mem *p, int N){
1880 if( p && N ){
1881 Mem *pEnd = &p[N];
1882 sqlite3 *db = p->db;
1883 if( db->pnBytesFreed ){
1885 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1886 }while( (++p)<pEnd );
1887 return;
1890 assert( (&p[1])==pEnd || p[0].db==p[1].db );
1891 assert( sqlite3VdbeCheckMemInvariants(p) );
1893 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1894 ** that takes advantage of the fact that the memory cell value is
1895 ** being set to NULL after releasing any dynamic resources.
1897 ** The justification for duplicating code is that according to
1898 ** callgrind, this causes a certain test case to hit the CPU 4.7
1899 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1900 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1901 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1902 ** with no indexes using a single prepared INSERT statement, bind()
1903 ** and reset(). Inserts are grouped into a transaction.
1905 testcase( p->flags & MEM_Agg );
1906 testcase( p->flags & MEM_Dyn );
1907 testcase( p->xDel==sqlite3VdbeFrameMemDel );
1908 if( p->flags&(MEM_Agg|MEM_Dyn) ){
1909 sqlite3VdbeMemRelease(p);
1910 }else if( p->szMalloc ){
1911 sqlite3DbFreeNN(db, p->zMalloc);
1912 p->szMalloc = 0;
1915 p->flags = MEM_Undefined;
1916 }while( (++p)<pEnd );
1920 #ifdef SQLITE_DEBUG
1922 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is
1923 ** and false if something is wrong.
1925 ** This routine is intended for use inside of assert() statements only.
1927 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){
1928 if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0;
1929 return 1;
1931 #endif
1935 ** This is a destructor on a Mem object (which is really an sqlite3_value)
1936 ** that deletes the Frame object that is attached to it as a blob.
1938 ** This routine does not delete the Frame right away. It merely adds the
1939 ** frame to a list of frames to be deleted when the Vdbe halts.
1941 void sqlite3VdbeFrameMemDel(void *pArg){
1942 VdbeFrame *pFrame = (VdbeFrame*)pArg;
1943 assert( sqlite3VdbeFrameIsValid(pFrame) );
1944 pFrame->pParent = pFrame->v->pDelFrame;
1945 pFrame->v->pDelFrame = pFrame;
1948 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
1950 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
1951 ** QUERY PLAN output.
1953 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no
1954 ** more opcodes to be displayed.
1956 int sqlite3VdbeNextOpcode(
1957 Vdbe *p, /* The statement being explained */
1958 Mem *pSub, /* Storage for keeping track of subprogram nesting */
1959 int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */
1960 int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */
1961 int *piAddr, /* OUT: Write index into (*paOp)[] here */
1962 Op **paOp /* OUT: Write the opcode array here */
1964 int nRow; /* Stop when row count reaches this */
1965 int nSub = 0; /* Number of sub-vdbes seen so far */
1966 SubProgram **apSub = 0; /* Array of sub-vdbes */
1967 int i; /* Next instruction address */
1968 int rc = SQLITE_OK; /* Result code */
1969 Op *aOp = 0; /* Opcode array */
1970 int iPc; /* Rowid. Copy of value in *piPc */
1972 /* When the number of output rows reaches nRow, that means the
1973 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1974 ** nRow is the sum of the number of rows in the main program, plus
1975 ** the sum of the number of rows in all trigger subprograms encountered
1976 ** so far. The nRow value will increase as new trigger subprograms are
1977 ** encountered, but p->pc will eventually catch up to nRow.
1979 nRow = p->nOp;
1980 if( pSub!=0 ){
1981 if( pSub->flags&MEM_Blob ){
1982 /* pSub is initiallly NULL. It is initialized to a BLOB by
1983 ** the P4_SUBPROGRAM processing logic below */
1984 nSub = pSub->n/sizeof(Vdbe*);
1985 apSub = (SubProgram **)pSub->z;
1987 for(i=0; i<nSub; i++){
1988 nRow += apSub[i]->nOp;
1991 iPc = *piPc;
1992 while(1){ /* Loop exits via break */
1993 i = iPc++;
1994 if( i>=nRow ){
1995 p->rc = SQLITE_OK;
1996 rc = SQLITE_DONE;
1997 break;
1999 if( i<p->nOp ){
2000 /* The rowid is small enough that we are still in the
2001 ** main program. */
2002 aOp = p->aOp;
2003 }else{
2004 /* We are currently listing subprograms. Figure out which one and
2005 ** pick up the appropriate opcode. */
2006 int j;
2007 i -= p->nOp;
2008 assert( apSub!=0 );
2009 assert( nSub>0 );
2010 for(j=0; i>=apSub[j]->nOp; j++){
2011 i -= apSub[j]->nOp;
2012 assert( i<apSub[j]->nOp || j+1<nSub );
2014 aOp = apSub[j]->aOp;
2017 /* When an OP_Program opcode is encounter (the only opcode that has
2018 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
2019 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
2020 ** has not already been seen.
2022 if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){
2023 int nByte = (nSub+1)*sizeof(SubProgram*);
2024 int j;
2025 for(j=0; j<nSub; j++){
2026 if( apSub[j]==aOp[i].p4.pProgram ) break;
2028 if( j==nSub ){
2029 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
2030 if( p->rc!=SQLITE_OK ){
2031 rc = SQLITE_ERROR;
2032 break;
2034 apSub = (SubProgram **)pSub->z;
2035 apSub[nSub++] = aOp[i].p4.pProgram;
2036 MemSetTypeFlag(pSub, MEM_Blob);
2037 pSub->n = nSub*sizeof(SubProgram*);
2038 nRow += aOp[i].p4.pProgram->nOp;
2041 if( eMode==0 ) break;
2042 #ifdef SQLITE_ENABLE_BYTECODE_VTAB
2043 if( eMode==2 ){
2044 Op *pOp = aOp + i;
2045 if( pOp->opcode==OP_OpenRead ) break;
2046 if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break;
2047 if( pOp->opcode==OP_ReopenIdx ) break;
2048 }else
2049 #endif
2051 assert( eMode==1 );
2052 if( aOp[i].opcode==OP_Explain ) break;
2053 if( aOp[i].opcode==OP_Init && iPc>1 ) break;
2056 *piPc = iPc;
2057 *piAddr = i;
2058 *paOp = aOp;
2059 return rc;
2061 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
2065 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
2066 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
2068 void sqlite3VdbeFrameDelete(VdbeFrame *p){
2069 int i;
2070 Mem *aMem = VdbeFrameMem(p);
2071 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
2072 assert( sqlite3VdbeFrameIsValid(p) );
2073 for(i=0; i<p->nChildCsr; i++){
2074 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
2076 releaseMemArray(aMem, p->nChildMem);
2077 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
2078 sqlite3DbFree(p->v->db, p);
2081 #ifndef SQLITE_OMIT_EXPLAIN
2083 ** Give a listing of the program in the virtual machine.
2085 ** The interface is the same as sqlite3VdbeExec(). But instead of
2086 ** running the code, it invokes the callback once for each instruction.
2087 ** This feature is used to implement "EXPLAIN".
2089 ** When p->explain==1, each instruction is listed. When
2090 ** p->explain==2, only OP_Explain instructions are listed and these
2091 ** are shown in a different format. p->explain==2 is used to implement
2092 ** EXPLAIN QUERY PLAN.
2093 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers
2094 ** are also shown, so that the boundaries between the main program and
2095 ** each trigger are clear.
2097 ** When p->explain==1, first the main program is listed, then each of
2098 ** the trigger subprograms are listed one by one.
2100 int sqlite3VdbeList(
2101 Vdbe *p /* The VDBE */
2103 Mem *pSub = 0; /* Memory cell hold array of subprogs */
2104 sqlite3 *db = p->db; /* The database connection */
2105 int i; /* Loop counter */
2106 int rc = SQLITE_OK; /* Return code */
2107 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
2108 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
2109 Op *aOp; /* Array of opcodes */
2110 Op *pOp; /* Current opcode */
2112 assert( p->explain );
2113 assert( p->iVdbeMagic==VDBE_MAGIC_RUN );
2114 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
2116 /* Even though this opcode does not use dynamic strings for
2117 ** the result, result columns may become dynamic if the user calls
2118 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
2120 releaseMemArray(pMem, 8);
2121 p->pResultSet = 0;
2123 if( p->rc==SQLITE_NOMEM ){
2124 /* This happens if a malloc() inside a call to sqlite3_column_text() or
2125 ** sqlite3_column_text16() failed. */
2126 sqlite3OomFault(db);
2127 return SQLITE_ERROR;
2130 if( bListSubprogs ){
2131 /* The first 8 memory cells are used for the result set. So we will
2132 ** commandeer the 9th cell to use as storage for an array of pointers
2133 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
2134 ** cells. */
2135 assert( p->nMem>9 );
2136 pSub = &p->aMem[9];
2137 }else{
2138 pSub = 0;
2141 /* Figure out which opcode is next to display */
2142 rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp);
2144 if( rc==SQLITE_OK ){
2145 pOp = aOp + i;
2146 if( AtomicLoad(&db->u1.isInterrupted) ){
2147 p->rc = SQLITE_INTERRUPT;
2148 rc = SQLITE_ERROR;
2149 sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
2150 }else{
2151 char *zP4 = sqlite3VdbeDisplayP4(db, pOp);
2152 if( p->explain==2 ){
2153 sqlite3VdbeMemSetInt64(pMem, pOp->p1);
2154 sqlite3VdbeMemSetInt64(pMem+1, pOp->p2);
2155 sqlite3VdbeMemSetInt64(pMem+2, pOp->p3);
2156 sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free);
2157 p->nResColumn = 4;
2158 }else{
2159 sqlite3VdbeMemSetInt64(pMem+0, i);
2160 sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode),
2161 -1, SQLITE_UTF8, SQLITE_STATIC);
2162 sqlite3VdbeMemSetInt64(pMem+2, pOp->p1);
2163 sqlite3VdbeMemSetInt64(pMem+3, pOp->p2);
2164 sqlite3VdbeMemSetInt64(pMem+4, pOp->p3);
2165 /* pMem+5 for p4 is done last */
2166 sqlite3VdbeMemSetInt64(pMem+6, pOp->p5);
2167 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2169 char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4);
2170 sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free);
2172 #else
2173 sqlite3VdbeMemSetNull(pMem+7);
2174 #endif
2175 sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free);
2176 p->nResColumn = 8;
2178 p->pResultSet = pMem;
2179 if( db->mallocFailed ){
2180 p->rc = SQLITE_NOMEM;
2181 rc = SQLITE_ERROR;
2182 }else{
2183 p->rc = SQLITE_OK;
2184 rc = SQLITE_ROW;
2188 return rc;
2190 #endif /* SQLITE_OMIT_EXPLAIN */
2192 #ifdef SQLITE_DEBUG
2194 ** Print the SQL that was used to generate a VDBE program.
2196 void sqlite3VdbePrintSql(Vdbe *p){
2197 const char *z = 0;
2198 if( p->zSql ){
2199 z = p->zSql;
2200 }else if( p->nOp>=1 ){
2201 const VdbeOp *pOp = &p->aOp[0];
2202 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2203 z = pOp->p4.z;
2204 while( sqlite3Isspace(*z) ) z++;
2207 if( z ) printf("SQL: [%s]\n", z);
2209 #endif
2211 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2213 ** Print an IOTRACE message showing SQL content.
2215 void sqlite3VdbeIOTraceSql(Vdbe *p){
2216 int nOp = p->nOp;
2217 VdbeOp *pOp;
2218 if( sqlite3IoTrace==0 ) return;
2219 if( nOp<1 ) return;
2220 pOp = &p->aOp[0];
2221 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2222 int i, j;
2223 char z[1000];
2224 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
2225 for(i=0; sqlite3Isspace(z[i]); i++){}
2226 for(j=0; z[i]; i++){
2227 if( sqlite3Isspace(z[i]) ){
2228 if( z[i-1]!=' ' ){
2229 z[j++] = ' ';
2231 }else{
2232 z[j++] = z[i];
2235 z[j] = 0;
2236 sqlite3IoTrace("SQL %s\n", z);
2239 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2241 /* An instance of this object describes bulk memory available for use
2242 ** by subcomponents of a prepared statement. Space is allocated out
2243 ** of a ReusableSpace object by the allocSpace() routine below.
2245 struct ReusableSpace {
2246 u8 *pSpace; /* Available memory */
2247 sqlite3_int64 nFree; /* Bytes of available memory */
2248 sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
2251 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2252 ** from the ReusableSpace object. Return a pointer to the allocated
2253 ** memory on success. If insufficient memory is available in the
2254 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2255 ** value by the amount needed and return NULL.
2257 ** If pBuf is not initially NULL, that means that the memory has already
2258 ** been allocated by a prior call to this routine, so just return a copy
2259 ** of pBuf and leave ReusableSpace unchanged.
2261 ** This allocator is employed to repurpose unused slots at the end of the
2262 ** opcode array of prepared state for other memory needs of the prepared
2263 ** statement.
2265 static void *allocSpace(
2266 struct ReusableSpace *p, /* Bulk memory available for allocation */
2267 void *pBuf, /* Pointer to a prior allocation */
2268 sqlite3_int64 nByte /* Bytes of memory needed */
2270 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
2271 if( pBuf==0 ){
2272 nByte = ROUND8(nByte);
2273 if( nByte <= p->nFree ){
2274 p->nFree -= nByte;
2275 pBuf = &p->pSpace[p->nFree];
2276 }else{
2277 p->nNeeded += nByte;
2280 assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
2281 return pBuf;
2285 ** Rewind the VDBE back to the beginning in preparation for
2286 ** running it.
2288 void sqlite3VdbeRewind(Vdbe *p){
2289 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
2290 int i;
2291 #endif
2292 assert( p!=0 );
2293 assert( p->iVdbeMagic==VDBE_MAGIC_INIT || p->iVdbeMagic==VDBE_MAGIC_RESET );
2295 /* There should be at least one opcode.
2297 assert( p->nOp>0 );
2299 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
2300 p->iVdbeMagic = VDBE_MAGIC_RUN;
2302 #ifdef SQLITE_DEBUG
2303 for(i=0; i<p->nMem; i++){
2304 assert( p->aMem[i].db==p->db );
2306 #endif
2307 p->pc = -1;
2308 p->rc = SQLITE_OK;
2309 p->errorAction = OE_Abort;
2310 p->nChange = 0;
2311 p->cacheCtr = 1;
2312 p->minWriteFileFormat = 255;
2313 p->iStatement = 0;
2314 p->nFkConstraint = 0;
2315 #ifdef VDBE_PROFILE
2316 for(i=0; i<p->nOp; i++){
2317 p->aOp[i].cnt = 0;
2318 p->aOp[i].cycles = 0;
2320 #endif
2324 ** Prepare a virtual machine for execution for the first time after
2325 ** creating the virtual machine. This involves things such
2326 ** as allocating registers and initializing the program counter.
2327 ** After the VDBE has be prepped, it can be executed by one or more
2328 ** calls to sqlite3VdbeExec().
2330 ** This function may be called exactly once on each virtual machine.
2331 ** After this routine is called the VM has been "packaged" and is ready
2332 ** to run. After this routine is called, further calls to
2333 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
2334 ** the Vdbe from the Parse object that helped generate it so that the
2335 ** the Vdbe becomes an independent entity and the Parse object can be
2336 ** destroyed.
2338 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2339 ** to its initial state after it has been run.
2341 void sqlite3VdbeMakeReady(
2342 Vdbe *p, /* The VDBE */
2343 Parse *pParse /* Parsing context */
2345 sqlite3 *db; /* The database connection */
2346 int nVar; /* Number of parameters */
2347 int nMem; /* Number of VM memory registers */
2348 int nCursor; /* Number of cursors required */
2349 int nArg; /* Number of arguments in subprograms */
2350 int n; /* Loop counter */
2351 struct ReusableSpace x; /* Reusable bulk memory */
2353 assert( p!=0 );
2354 assert( p->nOp>0 );
2355 assert( pParse!=0 );
2356 assert( p->iVdbeMagic==VDBE_MAGIC_INIT );
2357 assert( pParse==p->pParse );
2358 p->pVList = pParse->pVList;
2359 pParse->pVList = 0;
2360 db = p->db;
2361 assert( db->mallocFailed==0 );
2362 nVar = pParse->nVar;
2363 nMem = pParse->nMem;
2364 nCursor = pParse->nTab;
2365 nArg = pParse->nMaxArg;
2367 /* Each cursor uses a memory cell. The first cursor (cursor 0) can
2368 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
2369 ** space at the end of aMem[] for cursors 1 and greater.
2370 ** See also: allocateCursor().
2372 nMem += nCursor;
2373 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */
2375 /* Figure out how much reusable memory is available at the end of the
2376 ** opcode array. This extra memory will be reallocated for other elements
2377 ** of the prepared statement.
2379 n = ROUND8(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */
2380 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */
2381 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
2382 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */
2383 assert( x.nFree>=0 );
2384 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
2386 resolveP2Values(p, &nArg);
2387 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
2388 if( pParse->explain ){
2389 static const char * const azColName[] = {
2390 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
2391 "id", "parent", "notused", "detail"
2393 int iFirst, mx, i;
2394 if( nMem<10 ) nMem = 10;
2395 p->explain = pParse->explain;
2396 if( pParse->explain==2 ){
2397 sqlite3VdbeSetNumCols(p, 4);
2398 iFirst = 8;
2399 mx = 12;
2400 }else{
2401 sqlite3VdbeSetNumCols(p, 8);
2402 iFirst = 0;
2403 mx = 8;
2405 for(i=iFirst; i<mx; i++){
2406 sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME,
2407 azColName[i], SQLITE_STATIC);
2410 p->expired = 0;
2412 /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2413 ** passes. On the first pass, we try to reuse unused memory at the
2414 ** end of the opcode array. If we are unable to satisfy all memory
2415 ** requirements by reusing the opcode array tail, then the second
2416 ** pass will fill in the remainder using a fresh memory allocation.
2418 ** This two-pass approach that reuses as much memory as possible from
2419 ** the leftover memory at the end of the opcode array. This can significantly
2420 ** reduce the amount of memory held by a prepared statement.
2422 x.nNeeded = 0;
2423 p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem));
2424 p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem));
2425 p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*));
2426 p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*));
2427 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2428 p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64));
2429 #endif
2430 if( x.nNeeded ){
2431 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2432 x.nFree = x.nNeeded;
2433 if( !db->mallocFailed ){
2434 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2435 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2436 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2437 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2438 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2439 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
2440 #endif
2444 if( db->mallocFailed ){
2445 p->nVar = 0;
2446 p->nCursor = 0;
2447 p->nMem = 0;
2448 }else{
2449 p->nCursor = nCursor;
2450 p->nVar = (ynVar)nVar;
2451 initMemArray(p->aVar, nVar, db, MEM_Null);
2452 p->nMem = nMem;
2453 initMemArray(p->aMem, nMem, db, MEM_Undefined);
2454 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2455 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2456 memset(p->anExec, 0, p->nOp*sizeof(i64));
2457 #endif
2459 sqlite3VdbeRewind(p);
2463 ** Close a VDBE cursor and release all the resources that cursor
2464 ** happens to hold.
2466 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2467 if( pCx==0 ){
2468 return;
2470 assert( pCx->pBtx==0 || pCx->eCurType==CURTYPE_BTREE );
2471 assert( pCx->pBtx==0 || pCx->isEphemeral );
2472 switch( pCx->eCurType ){
2473 case CURTYPE_SORTER: {
2474 sqlite3VdbeSorterClose(p->db, pCx);
2475 break;
2477 case CURTYPE_BTREE: {
2478 assert( pCx->uc.pCursor!=0 );
2479 sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2480 break;
2482 #ifndef SQLITE_OMIT_VIRTUALTABLE
2483 case CURTYPE_VTAB: {
2484 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2485 const sqlite3_module *pModule = pVCur->pVtab->pModule;
2486 assert( pVCur->pVtab->nRef>0 );
2487 pVCur->pVtab->nRef--;
2488 pModule->xClose(pVCur);
2489 break;
2491 #endif
2496 ** Close all cursors in the current frame.
2498 static void closeCursorsInFrame(Vdbe *p){
2499 if( p->apCsr ){
2500 int i;
2501 for(i=0; i<p->nCursor; i++){
2502 VdbeCursor *pC = p->apCsr[i];
2503 if( pC ){
2504 sqlite3VdbeFreeCursor(p, pC);
2505 p->apCsr[i] = 0;
2512 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2513 ** is used, for example, when a trigger sub-program is halted to restore
2514 ** control to the main program.
2516 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2517 Vdbe *v = pFrame->v;
2518 closeCursorsInFrame(v);
2519 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2520 v->anExec = pFrame->anExec;
2521 #endif
2522 v->aOp = pFrame->aOp;
2523 v->nOp = pFrame->nOp;
2524 v->aMem = pFrame->aMem;
2525 v->nMem = pFrame->nMem;
2526 v->apCsr = pFrame->apCsr;
2527 v->nCursor = pFrame->nCursor;
2528 v->db->lastRowid = pFrame->lastRowid;
2529 v->nChange = pFrame->nChange;
2530 v->db->nChange = pFrame->nDbChange;
2531 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2532 v->pAuxData = pFrame->pAuxData;
2533 pFrame->pAuxData = 0;
2534 return pFrame->pc;
2538 ** Close all cursors.
2540 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2541 ** cell array. This is necessary as the memory cell array may contain
2542 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2543 ** open cursors.
2545 static void closeAllCursors(Vdbe *p){
2546 if( p->pFrame ){
2547 VdbeFrame *pFrame;
2548 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2549 sqlite3VdbeFrameRestore(pFrame);
2550 p->pFrame = 0;
2551 p->nFrame = 0;
2553 assert( p->nFrame==0 );
2554 closeCursorsInFrame(p);
2555 if( p->aMem ){
2556 releaseMemArray(p->aMem, p->nMem);
2558 while( p->pDelFrame ){
2559 VdbeFrame *pDel = p->pDelFrame;
2560 p->pDelFrame = pDel->pParent;
2561 sqlite3VdbeFrameDelete(pDel);
2564 /* Delete any auxdata allocations made by the VM */
2565 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2566 assert( p->pAuxData==0 );
2570 ** Set the number of result columns that will be returned by this SQL
2571 ** statement. This is now set at compile time, rather than during
2572 ** execution of the vdbe program so that sqlite3_column_count() can
2573 ** be called on an SQL statement before sqlite3_step().
2575 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2576 int n;
2577 sqlite3 *db = p->db;
2579 if( p->nResColumn ){
2580 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2581 sqlite3DbFree(db, p->aColName);
2583 n = nResColumn*COLNAME_N;
2584 p->nResColumn = (u16)nResColumn;
2585 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2586 if( p->aColName==0 ) return;
2587 initMemArray(p->aColName, n, db, MEM_Null);
2591 ** Set the name of the idx'th column to be returned by the SQL statement.
2592 ** zName must be a pointer to a nul terminated string.
2594 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2596 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2597 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2598 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2600 int sqlite3VdbeSetColName(
2601 Vdbe *p, /* Vdbe being configured */
2602 int idx, /* Index of column zName applies to */
2603 int var, /* One of the COLNAME_* constants */
2604 const char *zName, /* Pointer to buffer containing name */
2605 void (*xDel)(void*) /* Memory management strategy for zName */
2607 int rc;
2608 Mem *pColName;
2609 assert( idx<p->nResColumn );
2610 assert( var<COLNAME_N );
2611 if( p->db->mallocFailed ){
2612 assert( !zName || xDel!=SQLITE_DYNAMIC );
2613 return SQLITE_NOMEM_BKPT;
2615 assert( p->aColName!=0 );
2616 pColName = &(p->aColName[idx+var*p->nResColumn]);
2617 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2618 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2619 return rc;
2623 ** A read or write transaction may or may not be active on database handle
2624 ** db. If a transaction is active, commit it. If there is a
2625 ** write-transaction spanning more than one database file, this routine
2626 ** takes care of the super-journal trickery.
2628 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2629 int i;
2630 int nTrans = 0; /* Number of databases with an active write-transaction
2631 ** that are candidates for a two-phase commit using a
2632 ** super-journal */
2633 int rc = SQLITE_OK;
2634 int needXcommit = 0;
2636 #ifdef SQLITE_OMIT_VIRTUALTABLE
2637 /* With this option, sqlite3VtabSync() is defined to be simply
2638 ** SQLITE_OK so p is not used.
2640 UNUSED_PARAMETER(p);
2641 #endif
2643 /* Before doing anything else, call the xSync() callback for any
2644 ** virtual module tables written in this transaction. This has to
2645 ** be done before determining whether a super-journal file is
2646 ** required, as an xSync() callback may add an attached database
2647 ** to the transaction.
2649 rc = sqlite3VtabSync(db, p);
2651 /* This loop determines (a) if the commit hook should be invoked and
2652 ** (b) how many database files have open write transactions, not
2653 ** including the temp database. (b) is important because if more than
2654 ** one database file has an open write transaction, a super-journal
2655 ** file is required for an atomic commit.
2657 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2658 Btree *pBt = db->aDb[i].pBt;
2659 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2660 /* Whether or not a database might need a super-journal depends upon
2661 ** its journal mode (among other things). This matrix determines which
2662 ** journal modes use a super-journal and which do not */
2663 static const u8 aMJNeeded[] = {
2664 /* DELETE */ 1,
2665 /* PERSIST */ 1,
2666 /* OFF */ 0,
2667 /* TRUNCATE */ 1,
2668 /* MEMORY */ 0,
2669 /* WAL */ 0
2671 Pager *pPager; /* Pager associated with pBt */
2672 needXcommit = 1;
2673 sqlite3BtreeEnter(pBt);
2674 pPager = sqlite3BtreePager(pBt);
2675 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2676 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2677 && sqlite3PagerIsMemdb(pPager)==0
2679 assert( i!=1 );
2680 nTrans++;
2682 rc = sqlite3PagerExclusiveLock(pPager);
2683 sqlite3BtreeLeave(pBt);
2686 if( rc!=SQLITE_OK ){
2687 return rc;
2690 /* If there are any write-transactions at all, invoke the commit hook */
2691 if( needXcommit && db->xCommitCallback ){
2692 rc = db->xCommitCallback(db->pCommitArg);
2693 if( rc ){
2694 return SQLITE_CONSTRAINT_COMMITHOOK;
2698 /* The simple case - no more than one database file (not counting the
2699 ** TEMP database) has a transaction active. There is no need for the
2700 ** super-journal.
2702 ** If the return value of sqlite3BtreeGetFilename() is a zero length
2703 ** string, it means the main database is :memory: or a temp file. In
2704 ** that case we do not support atomic multi-file commits, so use the
2705 ** simple case then too.
2707 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2708 || nTrans<=1
2710 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2711 Btree *pBt = db->aDb[i].pBt;
2712 if( pBt ){
2713 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2717 /* Do the commit only if all databases successfully complete phase 1.
2718 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2719 ** IO error while deleting or truncating a journal file. It is unlikely,
2720 ** but could happen. In this case abandon processing and return the error.
2722 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2723 Btree *pBt = db->aDb[i].pBt;
2724 if( pBt ){
2725 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2728 if( rc==SQLITE_OK ){
2729 sqlite3VtabCommit(db);
2733 /* The complex case - There is a multi-file write-transaction active.
2734 ** This requires a super-journal file to ensure the transaction is
2735 ** committed atomically.
2737 #ifndef SQLITE_OMIT_DISKIO
2738 else{
2739 sqlite3_vfs *pVfs = db->pVfs;
2740 char *zSuper = 0; /* File-name for the super-journal */
2741 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2742 sqlite3_file *pSuperJrnl = 0;
2743 i64 offset = 0;
2744 int res;
2745 int retryCount = 0;
2746 int nMainFile;
2748 /* Select a super-journal file name */
2749 nMainFile = sqlite3Strlen30(zMainFile);
2750 zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0);
2751 if( zSuper==0 ) return SQLITE_NOMEM_BKPT;
2752 zSuper += 4;
2753 do {
2754 u32 iRandom;
2755 if( retryCount ){
2756 if( retryCount>100 ){
2757 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper);
2758 sqlite3OsDelete(pVfs, zSuper, 0);
2759 break;
2760 }else if( retryCount==1 ){
2761 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper);
2764 retryCount++;
2765 sqlite3_randomness(sizeof(iRandom), &iRandom);
2766 sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X",
2767 (iRandom>>8)&0xffffff, iRandom&0xff);
2768 /* The antipenultimate character of the super-journal name must
2769 ** be "9" to avoid name collisions when using 8+3 filenames. */
2770 assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' );
2771 sqlite3FileSuffix3(zMainFile, zSuper);
2772 rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res);
2773 }while( rc==SQLITE_OK && res );
2774 if( rc==SQLITE_OK ){
2775 /* Open the super-journal. */
2776 rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl,
2777 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2778 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0
2781 if( rc!=SQLITE_OK ){
2782 sqlite3DbFree(db, zSuper-4);
2783 return rc;
2786 /* Write the name of each database file in the transaction into the new
2787 ** super-journal file. If an error occurs at this point close
2788 ** and delete the super-journal file. All the individual journal files
2789 ** still have 'null' as the super-journal pointer, so they will roll
2790 ** back independently if a failure occurs.
2792 for(i=0; i<db->nDb; i++){
2793 Btree *pBt = db->aDb[i].pBt;
2794 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2795 char const *zFile = sqlite3BtreeGetJournalname(pBt);
2796 if( zFile==0 ){
2797 continue; /* Ignore TEMP and :memory: databases */
2799 assert( zFile[0]!=0 );
2800 rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset);
2801 offset += sqlite3Strlen30(zFile)+1;
2802 if( rc!=SQLITE_OK ){
2803 sqlite3OsCloseFree(pSuperJrnl);
2804 sqlite3OsDelete(pVfs, zSuper, 0);
2805 sqlite3DbFree(db, zSuper-4);
2806 return rc;
2811 /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device
2812 ** flag is set this is not required.
2814 if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL)
2815 && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL))
2817 sqlite3OsCloseFree(pSuperJrnl);
2818 sqlite3OsDelete(pVfs, zSuper, 0);
2819 sqlite3DbFree(db, zSuper-4);
2820 return rc;
2823 /* Sync all the db files involved in the transaction. The same call
2824 ** sets the super-journal pointer in each individual journal. If
2825 ** an error occurs here, do not delete the super-journal file.
2827 ** If the error occurs during the first call to
2828 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2829 ** super-journal file will be orphaned. But we cannot delete it,
2830 ** in case the super-journal file name was written into the journal
2831 ** file before the failure occurred.
2833 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2834 Btree *pBt = db->aDb[i].pBt;
2835 if( pBt ){
2836 rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper);
2839 sqlite3OsCloseFree(pSuperJrnl);
2840 assert( rc!=SQLITE_BUSY );
2841 if( rc!=SQLITE_OK ){
2842 sqlite3DbFree(db, zSuper-4);
2843 return rc;
2846 /* Delete the super-journal file. This commits the transaction. After
2847 ** doing this the directory is synced again before any individual
2848 ** transaction files are deleted.
2850 rc = sqlite3OsDelete(pVfs, zSuper, 1);
2851 sqlite3DbFree(db, zSuper-4);
2852 zSuper = 0;
2853 if( rc ){
2854 return rc;
2857 /* All files and directories have already been synced, so the following
2858 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2859 ** deleting or truncating journals. If something goes wrong while
2860 ** this is happening we don't really care. The integrity of the
2861 ** transaction is already guaranteed, but some stray 'cold' journals
2862 ** may be lying around. Returning an error code won't help matters.
2864 disable_simulated_io_errors();
2865 sqlite3BeginBenignMalloc();
2866 for(i=0; i<db->nDb; i++){
2867 Btree *pBt = db->aDb[i].pBt;
2868 if( pBt ){
2869 sqlite3BtreeCommitPhaseTwo(pBt, 1);
2872 sqlite3EndBenignMalloc();
2873 enable_simulated_io_errors();
2875 sqlite3VtabCommit(db);
2877 #endif
2879 return rc;
2883 ** This routine checks that the sqlite3.nVdbeActive count variable
2884 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2885 ** currently active. An assertion fails if the two counts do not match.
2886 ** This is an internal self-check only - it is not an essential processing
2887 ** step.
2889 ** This is a no-op if NDEBUG is defined.
2891 #ifndef NDEBUG
2892 static void checkActiveVdbeCnt(sqlite3 *db){
2893 Vdbe *p;
2894 int cnt = 0;
2895 int nWrite = 0;
2896 int nRead = 0;
2897 p = db->pVdbe;
2898 while( p ){
2899 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2900 cnt++;
2901 if( p->readOnly==0 ) nWrite++;
2902 if( p->bIsReader ) nRead++;
2904 p = p->pNext;
2906 assert( cnt==db->nVdbeActive );
2907 assert( nWrite==db->nVdbeWrite );
2908 assert( nRead==db->nVdbeRead );
2910 #else
2911 #define checkActiveVdbeCnt(x)
2912 #endif
2915 ** If the Vdbe passed as the first argument opened a statement-transaction,
2916 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2917 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2918 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2919 ** statement transaction is committed.
2921 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2922 ** Otherwise SQLITE_OK.
2924 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
2925 sqlite3 *const db = p->db;
2926 int rc = SQLITE_OK;
2927 int i;
2928 const int iSavepoint = p->iStatement-1;
2930 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2931 assert( db->nStatement>0 );
2932 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2934 for(i=0; i<db->nDb; i++){
2935 int rc2 = SQLITE_OK;
2936 Btree *pBt = db->aDb[i].pBt;
2937 if( pBt ){
2938 if( eOp==SAVEPOINT_ROLLBACK ){
2939 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2941 if( rc2==SQLITE_OK ){
2942 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2944 if( rc==SQLITE_OK ){
2945 rc = rc2;
2949 db->nStatement--;
2950 p->iStatement = 0;
2952 if( rc==SQLITE_OK ){
2953 if( eOp==SAVEPOINT_ROLLBACK ){
2954 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2956 if( rc==SQLITE_OK ){
2957 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2961 /* If the statement transaction is being rolled back, also restore the
2962 ** database handles deferred constraint counter to the value it had when
2963 ** the statement transaction was opened. */
2964 if( eOp==SAVEPOINT_ROLLBACK ){
2965 db->nDeferredCons = p->nStmtDefCons;
2966 db->nDeferredImmCons = p->nStmtDefImmCons;
2968 return rc;
2970 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2971 if( p->db->nStatement && p->iStatement ){
2972 return vdbeCloseStatement(p, eOp);
2974 return SQLITE_OK;
2979 ** This function is called when a transaction opened by the database
2980 ** handle associated with the VM passed as an argument is about to be
2981 ** committed. If there are outstanding deferred foreign key constraint
2982 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2984 ** If there are outstanding FK violations and this function returns
2985 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2986 ** and write an error message to it. Then return SQLITE_ERROR.
2988 #ifndef SQLITE_OMIT_FOREIGN_KEY
2989 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2990 sqlite3 *db = p->db;
2991 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
2992 || (!deferred && p->nFkConstraint>0)
2994 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
2995 p->errorAction = OE_Abort;
2996 sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
2997 return SQLITE_ERROR;
2999 return SQLITE_OK;
3001 #endif
3004 ** This routine is called the when a VDBE tries to halt. If the VDBE
3005 ** has made changes and is in autocommit mode, then commit those
3006 ** changes. If a rollback is needed, then do the rollback.
3008 ** This routine is the only way to move the state of a VM from
3009 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
3010 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
3012 ** Return an error code. If the commit could not complete because of
3013 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
3014 ** means the close did not happen and needs to be repeated.
3016 int sqlite3VdbeHalt(Vdbe *p){
3017 int rc; /* Used to store transient return codes */
3018 sqlite3 *db = p->db;
3020 /* This function contains the logic that determines if a statement or
3021 ** transaction will be committed or rolled back as a result of the
3022 ** execution of this virtual machine.
3024 ** If any of the following errors occur:
3026 ** SQLITE_NOMEM
3027 ** SQLITE_IOERR
3028 ** SQLITE_FULL
3029 ** SQLITE_INTERRUPT
3031 ** Then the internal cache might have been left in an inconsistent
3032 ** state. We need to rollback the statement transaction, if there is
3033 ** one, or the complete transaction if there is no statement transaction.
3036 if( p->iVdbeMagic!=VDBE_MAGIC_RUN ){
3037 return SQLITE_OK;
3039 if( db->mallocFailed ){
3040 p->rc = SQLITE_NOMEM_BKPT;
3042 closeAllCursors(p);
3043 checkActiveVdbeCnt(db);
3045 /* No commit or rollback needed if the program never started or if the
3046 ** SQL statement does not read or write a database file. */
3047 if( p->pc>=0 && p->bIsReader ){
3048 int mrc; /* Primary error code from p->rc */
3049 int eStatementOp = 0;
3050 int isSpecialError; /* Set to true if a 'special' error */
3052 /* Lock all btrees used by the statement */
3053 sqlite3VdbeEnter(p);
3055 /* Check for one of the special errors */
3056 mrc = p->rc & 0xff;
3057 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
3058 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
3059 if( isSpecialError ){
3060 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
3061 ** no rollback is necessary. Otherwise, at least a savepoint
3062 ** transaction must be rolled back to restore the database to a
3063 ** consistent state.
3065 ** Even if the statement is read-only, it is important to perform
3066 ** a statement or transaction rollback operation. If the error
3067 ** occurred while writing to the journal, sub-journal or database
3068 ** file as part of an effort to free up cache space (see function
3069 ** pagerStress() in pager.c), the rollback is required to restore
3070 ** the pager to a consistent state.
3072 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
3073 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
3074 eStatementOp = SAVEPOINT_ROLLBACK;
3075 }else{
3076 /* We are forced to roll back the active transaction. Before doing
3077 ** so, abort any other statements this handle currently has active.
3079 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3080 sqlite3CloseSavepoints(db);
3081 db->autoCommit = 1;
3082 p->nChange = 0;
3087 /* Check for immediate foreign key violations. */
3088 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3089 sqlite3VdbeCheckFk(p, 0);
3092 /* If the auto-commit flag is set and this is the only active writer
3093 ** VM, then we do either a commit or rollback of the current transaction.
3095 ** Note: This block also runs if one of the special errors handled
3096 ** above has occurred.
3098 if( !sqlite3VtabInSync(db)
3099 && db->autoCommit
3100 && db->nVdbeWrite==(p->readOnly==0)
3102 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3103 rc = sqlite3VdbeCheckFk(p, 1);
3104 if( rc!=SQLITE_OK ){
3105 if( NEVER(p->readOnly) ){
3106 sqlite3VdbeLeave(p);
3107 return SQLITE_ERROR;
3109 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3110 }else{
3111 /* The auto-commit flag is true, the vdbe program was successful
3112 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3113 ** key constraints to hold up the transaction. This means a commit
3114 ** is required. */
3115 rc = vdbeCommit(db, p);
3117 if( rc==SQLITE_BUSY && p->readOnly ){
3118 sqlite3VdbeLeave(p);
3119 return SQLITE_BUSY;
3120 }else if( rc!=SQLITE_OK ){
3121 p->rc = rc;
3122 sqlite3RollbackAll(db, SQLITE_OK);
3123 p->nChange = 0;
3124 }else{
3125 db->nDeferredCons = 0;
3126 db->nDeferredImmCons = 0;
3127 db->flags &= ~(u64)SQLITE_DeferFKs;
3128 sqlite3CommitInternalChanges(db);
3130 }else{
3131 sqlite3RollbackAll(db, SQLITE_OK);
3132 p->nChange = 0;
3134 db->nStatement = 0;
3135 }else if( eStatementOp==0 ){
3136 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
3137 eStatementOp = SAVEPOINT_RELEASE;
3138 }else if( p->errorAction==OE_Abort ){
3139 eStatementOp = SAVEPOINT_ROLLBACK;
3140 }else{
3141 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3142 sqlite3CloseSavepoints(db);
3143 db->autoCommit = 1;
3144 p->nChange = 0;
3148 /* If eStatementOp is non-zero, then a statement transaction needs to
3149 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3150 ** do so. If this operation returns an error, and the current statement
3151 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3152 ** current statement error code.
3154 if( eStatementOp ){
3155 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
3156 if( rc ){
3157 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
3158 p->rc = rc;
3159 sqlite3DbFree(db, p->zErrMsg);
3160 p->zErrMsg = 0;
3162 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3163 sqlite3CloseSavepoints(db);
3164 db->autoCommit = 1;
3165 p->nChange = 0;
3169 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3170 ** has been rolled back, update the database connection change-counter.
3172 if( p->changeCntOn ){
3173 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
3174 sqlite3VdbeSetChanges(db, p->nChange);
3175 }else{
3176 sqlite3VdbeSetChanges(db, 0);
3178 p->nChange = 0;
3181 /* Release the locks */
3182 sqlite3VdbeLeave(p);
3185 /* We have successfully halted and closed the VM. Record this fact. */
3186 if( p->pc>=0 ){
3187 db->nVdbeActive--;
3188 if( !p->readOnly ) db->nVdbeWrite--;
3189 if( p->bIsReader ) db->nVdbeRead--;
3190 assert( db->nVdbeActive>=db->nVdbeRead );
3191 assert( db->nVdbeRead>=db->nVdbeWrite );
3192 assert( db->nVdbeWrite>=0 );
3194 p->iVdbeMagic = VDBE_MAGIC_HALT;
3195 checkActiveVdbeCnt(db);
3196 if( db->mallocFailed ){
3197 p->rc = SQLITE_NOMEM_BKPT;
3200 /* If the auto-commit flag is set to true, then any locks that were held
3201 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3202 ** to invoke any required unlock-notify callbacks.
3204 if( db->autoCommit ){
3205 sqlite3ConnectionUnlocked(db);
3208 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
3209 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
3214 ** Each VDBE holds the result of the most recent sqlite3_step() call
3215 ** in p->rc. This routine sets that result back to SQLITE_OK.
3217 void sqlite3VdbeResetStepResult(Vdbe *p){
3218 p->rc = SQLITE_OK;
3222 ** Copy the error code and error message belonging to the VDBE passed
3223 ** as the first argument to its database handle (so that they will be
3224 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3226 ** This function does not clear the VDBE error code or message, just
3227 ** copies them to the database handle.
3229 int sqlite3VdbeTransferError(Vdbe *p){
3230 sqlite3 *db = p->db;
3231 int rc = p->rc;
3232 if( p->zErrMsg ){
3233 db->bBenignMalloc++;
3234 sqlite3BeginBenignMalloc();
3235 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
3236 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
3237 sqlite3EndBenignMalloc();
3238 db->bBenignMalloc--;
3239 }else if( db->pErr ){
3240 sqlite3ValueSetNull(db->pErr);
3242 db->errCode = rc;
3243 return rc;
3246 #ifdef SQLITE_ENABLE_SQLLOG
3248 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3249 ** invoke it.
3251 static void vdbeInvokeSqllog(Vdbe *v){
3252 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
3253 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
3254 assert( v->db->init.busy==0 );
3255 if( zExpanded ){
3256 sqlite3GlobalConfig.xSqllog(
3257 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
3259 sqlite3DbFree(v->db, zExpanded);
3263 #else
3264 # define vdbeInvokeSqllog(x)
3265 #endif
3268 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3269 ** Write any error messages into *pzErrMsg. Return the result code.
3271 ** After this routine is run, the VDBE should be ready to be executed
3272 ** again.
3274 ** To look at it another way, this routine resets the state of the
3275 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
3276 ** VDBE_MAGIC_INIT.
3278 int sqlite3VdbeReset(Vdbe *p){
3279 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3280 int i;
3281 #endif
3283 sqlite3 *db;
3284 db = p->db;
3286 /* If the VM did not run to completion or if it encountered an
3287 ** error, then it might not have been halted properly. So halt
3288 ** it now.
3290 sqlite3VdbeHalt(p);
3292 /* If the VDBE has been run even partially, then transfer the error code
3293 ** and error message from the VDBE into the main database structure. But
3294 ** if the VDBE has just been set to run but has not actually executed any
3295 ** instructions yet, leave the main database error information unchanged.
3297 if( p->pc>=0 ){
3298 vdbeInvokeSqllog(p);
3299 if( db->pErr || p->zErrMsg ){
3300 sqlite3VdbeTransferError(p);
3301 }else{
3302 db->errCode = p->rc;
3304 if( p->runOnlyOnce ) p->expired = 1;
3305 }else if( p->rc && p->expired ){
3306 /* The expired flag was set on the VDBE before the first call
3307 ** to sqlite3_step(). For consistency (since sqlite3_step() was
3308 ** called), set the database error in this case as well.
3310 sqlite3ErrorWithMsg(db, p->rc, p->zErrMsg ? "%s" : 0, p->zErrMsg);
3313 /* Reset register contents and reclaim error message memory.
3315 #ifdef SQLITE_DEBUG
3316 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3317 ** Vdbe.aMem[] arrays have already been cleaned up. */
3318 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
3319 if( p->aMem ){
3320 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
3322 #endif
3323 if( p->zErrMsg ){
3324 sqlite3DbFree(db, p->zErrMsg);
3325 p->zErrMsg = 0;
3327 p->pResultSet = 0;
3328 #ifdef SQLITE_DEBUG
3329 p->nWrite = 0;
3330 #endif
3332 /* Save profiling information from this VDBE run.
3334 #ifdef VDBE_PROFILE
3336 FILE *out = fopen("vdbe_profile.out", "a");
3337 if( out ){
3338 fprintf(out, "---- ");
3339 for(i=0; i<p->nOp; i++){
3340 fprintf(out, "%02x", p->aOp[i].opcode);
3342 fprintf(out, "\n");
3343 if( p->zSql ){
3344 char c, pc = 0;
3345 fprintf(out, "-- ");
3346 for(i=0; (c = p->zSql[i])!=0; i++){
3347 if( pc=='\n' ) fprintf(out, "-- ");
3348 putc(c, out);
3349 pc = c;
3351 if( pc!='\n' ) fprintf(out, "\n");
3353 for(i=0; i<p->nOp; i++){
3354 char zHdr[100];
3355 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
3356 p->aOp[i].cnt,
3357 p->aOp[i].cycles,
3358 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
3360 fprintf(out, "%s", zHdr);
3361 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
3363 fclose(out);
3366 #endif
3367 p->iVdbeMagic = VDBE_MAGIC_RESET;
3368 return p->rc & db->errMask;
3372 ** Clean up and delete a VDBE after execution. Return an integer which is
3373 ** the result code. Write any error message text into *pzErrMsg.
3375 int sqlite3VdbeFinalize(Vdbe *p){
3376 int rc = SQLITE_OK;
3377 if( p->iVdbeMagic==VDBE_MAGIC_RUN || p->iVdbeMagic==VDBE_MAGIC_HALT ){
3378 rc = sqlite3VdbeReset(p);
3379 assert( (rc & p->db->errMask)==rc );
3381 sqlite3VdbeDelete(p);
3382 return rc;
3386 ** If parameter iOp is less than zero, then invoke the destructor for
3387 ** all auxiliary data pointers currently cached by the VM passed as
3388 ** the first argument.
3390 ** Or, if iOp is greater than or equal to zero, then the destructor is
3391 ** only invoked for those auxiliary data pointers created by the user
3392 ** function invoked by the OP_Function opcode at instruction iOp of
3393 ** VM pVdbe, and only then if:
3395 ** * the associated function parameter is the 32nd or later (counting
3396 ** from left to right), or
3398 ** * the corresponding bit in argument mask is clear (where the first
3399 ** function parameter corresponds to bit 0 etc.).
3401 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
3402 while( *pp ){
3403 AuxData *pAux = *pp;
3404 if( (iOp<0)
3405 || (pAux->iAuxOp==iOp
3406 && pAux->iAuxArg>=0
3407 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
3409 testcase( pAux->iAuxArg==31 );
3410 if( pAux->xDeleteAux ){
3411 pAux->xDeleteAux(pAux->pAux);
3413 *pp = pAux->pNextAux;
3414 sqlite3DbFree(db, pAux);
3415 }else{
3416 pp= &pAux->pNextAux;
3422 ** Free all memory associated with the Vdbe passed as the second argument,
3423 ** except for object itself, which is preserved.
3425 ** The difference between this function and sqlite3VdbeDelete() is that
3426 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3427 ** the database connection and frees the object itself.
3429 void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3430 SubProgram *pSub, *pNext;
3431 assert( p->db==0 || p->db==db );
3432 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
3433 for(pSub=p->pProgram; pSub; pSub=pNext){
3434 pNext = pSub->pNext;
3435 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3436 sqlite3DbFree(db, pSub);
3438 if( p->iVdbeMagic!=VDBE_MAGIC_INIT ){
3439 releaseMemArray(p->aVar, p->nVar);
3440 sqlite3DbFree(db, p->pVList);
3441 sqlite3DbFree(db, p->pFree);
3443 vdbeFreeOpArray(db, p->aOp, p->nOp);
3444 sqlite3DbFree(db, p->aColName);
3445 sqlite3DbFree(db, p->zSql);
3446 #ifdef SQLITE_ENABLE_NORMALIZE
3447 sqlite3DbFree(db, p->zNormSql);
3449 DblquoteStr *pThis, *pNext;
3450 for(pThis=p->pDblStr; pThis; pThis=pNext){
3451 pNext = pThis->pNextStr;
3452 sqlite3DbFree(db, pThis);
3455 #endif
3456 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3458 int i;
3459 for(i=0; i<p->nScan; i++){
3460 sqlite3DbFree(db, p->aScan[i].zName);
3462 sqlite3DbFree(db, p->aScan);
3464 #endif
3468 ** Delete an entire VDBE.
3470 void sqlite3VdbeDelete(Vdbe *p){
3471 sqlite3 *db;
3473 assert( p!=0 );
3474 db = p->db;
3475 assert( sqlite3_mutex_held(db->mutex) );
3476 sqlite3VdbeClearObject(db, p);
3477 if( p->pPrev ){
3478 p->pPrev->pNext = p->pNext;
3479 }else{
3480 assert( db->pVdbe==p );
3481 db->pVdbe = p->pNext;
3483 if( p->pNext ){
3484 p->pNext->pPrev = p->pPrev;
3486 p->iVdbeMagic = VDBE_MAGIC_DEAD;
3487 p->db = 0;
3488 sqlite3DbFreeNN(db, p);
3492 ** The cursor "p" has a pending seek operation that has not yet been
3493 ** carried out. Seek the cursor now. If an error occurs, return
3494 ** the appropriate error code.
3496 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){
3497 int res, rc;
3498 #ifdef SQLITE_TEST
3499 extern int sqlite3_search_count;
3500 #endif
3501 assert( p->deferredMoveto );
3502 assert( p->isTable );
3503 assert( p->eCurType==CURTYPE_BTREE );
3504 rc = sqlite3BtreeMovetoUnpacked(p->uc.pCursor, 0, p->movetoTarget, 0, &res);
3505 if( rc ) return rc;
3506 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3507 #ifdef SQLITE_TEST
3508 sqlite3_search_count++;
3509 #endif
3510 p->deferredMoveto = 0;
3511 p->cacheStatus = CACHE_STALE;
3512 return SQLITE_OK;
3516 ** Something has moved cursor "p" out of place. Maybe the row it was
3517 ** pointed to was deleted out from under it. Or maybe the btree was
3518 ** rebalanced. Whatever the cause, try to restore "p" to the place it
3519 ** is supposed to be pointing. If the row was deleted out from under the
3520 ** cursor, set the cursor to point to a NULL row.
3522 static int SQLITE_NOINLINE handleMovedCursor(VdbeCursor *p){
3523 int isDifferentRow, rc;
3524 assert( p->eCurType==CURTYPE_BTREE );
3525 assert( p->uc.pCursor!=0 );
3526 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3527 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3528 p->cacheStatus = CACHE_STALE;
3529 if( isDifferentRow ) p->nullRow = 1;
3530 return rc;
3534 ** Check to ensure that the cursor is valid. Restore the cursor
3535 ** if need be. Return any I/O error from the restore operation.
3537 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3538 assert( p->eCurType==CURTYPE_BTREE );
3539 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3540 return handleMovedCursor(p);
3542 return SQLITE_OK;
3546 ** Make sure the cursor p is ready to read or write the row to which it
3547 ** was last positioned. Return an error code if an OOM fault or I/O error
3548 ** prevents us from positioning the cursor to its correct position.
3550 ** If a MoveTo operation is pending on the given cursor, then do that
3551 ** MoveTo now. If no move is pending, check to see if the row has been
3552 ** deleted out from under the cursor and if it has, mark the row as
3553 ** a NULL row.
3555 ** If the cursor is already pointing to the correct row and that row has
3556 ** not been deleted out from under the cursor, then this routine is a no-op.
3558 int sqlite3VdbeCursorMoveto(VdbeCursor **pp, u32 *piCol){
3559 VdbeCursor *p = *pp;
3560 assert( p->eCurType==CURTYPE_BTREE || p->eCurType==CURTYPE_PSEUDO );
3561 if( p->deferredMoveto ){
3562 u32 iMap;
3563 assert( !p->isEphemeral );
3564 if( p->aAltMap && (iMap = p->aAltMap[1+*piCol])>0 && !p->nullRow ){
3565 *pp = p->pAltCursor;
3566 *piCol = iMap - 1;
3567 return SQLITE_OK;
3569 return sqlite3VdbeFinishMoveto(p);
3571 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3572 return handleMovedCursor(p);
3574 return SQLITE_OK;
3578 ** The following functions:
3580 ** sqlite3VdbeSerialType()
3581 ** sqlite3VdbeSerialTypeLen()
3582 ** sqlite3VdbeSerialLen()
3583 ** sqlite3VdbeSerialPut()
3584 ** sqlite3VdbeSerialGet()
3586 ** encapsulate the code that serializes values for storage in SQLite
3587 ** data and index records. Each serialized value consists of a
3588 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3589 ** integer, stored as a varint.
3591 ** In an SQLite index record, the serial type is stored directly before
3592 ** the blob of data that it corresponds to. In a table record, all serial
3593 ** types are stored at the start of the record, and the blobs of data at
3594 ** the end. Hence these functions allow the caller to handle the
3595 ** serial-type and data blob separately.
3597 ** The following table describes the various storage classes for data:
3599 ** serial type bytes of data type
3600 ** -------------- --------------- ---------------
3601 ** 0 0 NULL
3602 ** 1 1 signed integer
3603 ** 2 2 signed integer
3604 ** 3 3 signed integer
3605 ** 4 4 signed integer
3606 ** 5 6 signed integer
3607 ** 6 8 signed integer
3608 ** 7 8 IEEE float
3609 ** 8 0 Integer constant 0
3610 ** 9 0 Integer constant 1
3611 ** 10,11 reserved for expansion
3612 ** N>=12 and even (N-12)/2 BLOB
3613 ** N>=13 and odd (N-13)/2 text
3615 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3616 ** of SQLite will not understand those serial types.
3619 #if 0 /* Inlined into the OP_MakeRecord opcode */
3621 ** Return the serial-type for the value stored in pMem.
3623 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3625 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord
3626 ** opcode in the byte-code engine. But by moving this routine in-line, we
3627 ** can omit some redundant tests and make that opcode a lot faster. So
3628 ** this routine is now only used by the STAT3 logic and STAT3 support has
3629 ** ended. The code is kept here for historical reference only.
3631 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3632 int flags = pMem->flags;
3633 u32 n;
3635 assert( pLen!=0 );
3636 if( flags&MEM_Null ){
3637 *pLen = 0;
3638 return 0;
3640 if( flags&(MEM_Int|MEM_IntReal) ){
3641 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3642 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3643 i64 i = pMem->u.i;
3644 u64 u;
3645 testcase( flags & MEM_Int );
3646 testcase( flags & MEM_IntReal );
3647 if( i<0 ){
3648 u = ~i;
3649 }else{
3650 u = i;
3652 if( u<=127 ){
3653 if( (i&1)==i && file_format>=4 ){
3654 *pLen = 0;
3655 return 8+(u32)u;
3656 }else{
3657 *pLen = 1;
3658 return 1;
3661 if( u<=32767 ){ *pLen = 2; return 2; }
3662 if( u<=8388607 ){ *pLen = 3; return 3; }
3663 if( u<=2147483647 ){ *pLen = 4; return 4; }
3664 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3665 *pLen = 8;
3666 if( flags&MEM_IntReal ){
3667 /* If the value is IntReal and is going to take up 8 bytes to store
3668 ** as an integer, then we might as well make it an 8-byte floating
3669 ** point value */
3670 pMem->u.r = (double)pMem->u.i;
3671 pMem->flags &= ~MEM_IntReal;
3672 pMem->flags |= MEM_Real;
3673 return 7;
3675 return 6;
3677 if( flags&MEM_Real ){
3678 *pLen = 8;
3679 return 7;
3681 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3682 assert( pMem->n>=0 );
3683 n = (u32)pMem->n;
3684 if( flags & MEM_Zero ){
3685 n += pMem->u.nZero;
3687 *pLen = n;
3688 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3690 #endif /* inlined into OP_MakeRecord */
3693 ** The sizes for serial types less than 128
3695 static const u8 sqlite3SmallTypeSizes[] = {
3696 /* 0 1 2 3 4 5 6 7 8 9 */
3697 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3698 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3699 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3700 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3701 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3702 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3703 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3704 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3705 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3706 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3707 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3708 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3709 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
3713 ** Return the length of the data corresponding to the supplied serial-type.
3715 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3716 if( serial_type>=128 ){
3717 return (serial_type-12)/2;
3718 }else{
3719 assert( serial_type<12
3720 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3721 return sqlite3SmallTypeSizes[serial_type];
3724 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3725 assert( serial_type<128 );
3726 return sqlite3SmallTypeSizes[serial_type];
3730 ** If we are on an architecture with mixed-endian floating
3731 ** points (ex: ARM7) then swap the lower 4 bytes with the
3732 ** upper 4 bytes. Return the result.
3734 ** For most architectures, this is a no-op.
3736 ** (later): It is reported to me that the mixed-endian problem
3737 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3738 ** that early versions of GCC stored the two words of a 64-bit
3739 ** float in the wrong order. And that error has been propagated
3740 ** ever since. The blame is not necessarily with GCC, though.
3741 ** GCC might have just copying the problem from a prior compiler.
3742 ** I am also told that newer versions of GCC that follow a different
3743 ** ABI get the byte order right.
3745 ** Developers using SQLite on an ARM7 should compile and run their
3746 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3747 ** enabled, some asserts below will ensure that the byte order of
3748 ** floating point values is correct.
3750 ** (2007-08-30) Frank van Vugt has studied this problem closely
3751 ** and has send his findings to the SQLite developers. Frank
3752 ** writes that some Linux kernels offer floating point hardware
3753 ** emulation that uses only 32-bit mantissas instead of a full
3754 ** 48-bits as required by the IEEE standard. (This is the
3755 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3756 ** byte swapping becomes very complicated. To avoid problems,
3757 ** the necessary byte swapping is carried out using a 64-bit integer
3758 ** rather than a 64-bit float. Frank assures us that the code here
3759 ** works for him. We, the developers, have no way to independently
3760 ** verify this, but Frank seems to know what he is talking about
3761 ** so we trust him.
3763 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3764 static u64 floatSwap(u64 in){
3765 union {
3766 u64 r;
3767 u32 i[2];
3768 } u;
3769 u32 t;
3771 u.r = in;
3772 t = u.i[0];
3773 u.i[0] = u.i[1];
3774 u.i[1] = t;
3775 return u.r;
3777 # define swapMixedEndianFloat(X) X = floatSwap(X)
3778 #else
3779 # define swapMixedEndianFloat(X)
3780 #endif
3783 ** Write the serialized data blob for the value stored in pMem into
3784 ** buf. It is assumed that the caller has allocated sufficient space.
3785 ** Return the number of bytes written.
3787 ** nBuf is the amount of space left in buf[]. The caller is responsible
3788 ** for allocating enough space to buf[] to hold the entire field, exclusive
3789 ** of the pMem->u.nZero bytes for a MEM_Zero value.
3791 ** Return the number of bytes actually written into buf[]. The number
3792 ** of bytes in the zero-filled tail is included in the return value only
3793 ** if those bytes were zeroed in buf[].
3795 u32 sqlite3VdbeSerialPut(u8 *buf, Mem *pMem, u32 serial_type){
3796 u32 len;
3798 /* Integer and Real */
3799 if( serial_type<=7 && serial_type>0 ){
3800 u64 v;
3801 u32 i;
3802 if( serial_type==7 ){
3803 assert( sizeof(v)==sizeof(pMem->u.r) );
3804 memcpy(&v, &pMem->u.r, sizeof(v));
3805 swapMixedEndianFloat(v);
3806 }else{
3807 v = pMem->u.i;
3809 len = i = sqlite3SmallTypeSizes[serial_type];
3810 assert( i>0 );
3812 buf[--i] = (u8)(v&0xFF);
3813 v >>= 8;
3814 }while( i );
3815 return len;
3818 /* String or blob */
3819 if( serial_type>=12 ){
3820 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
3821 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
3822 len = pMem->n;
3823 if( len>0 ) memcpy(buf, pMem->z, len);
3824 return len;
3827 /* NULL or constants 0 or 1 */
3828 return 0;
3831 /* Input "x" is a sequence of unsigned characters that represent a
3832 ** big-endian integer. Return the equivalent native integer
3834 #define ONE_BYTE_INT(x) ((i8)(x)[0])
3835 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3836 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3837 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3838 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3841 ** Deserialize the data blob pointed to by buf as serial type serial_type
3842 ** and store the result in pMem. Return the number of bytes read.
3844 ** This function is implemented as two separate routines for performance.
3845 ** The few cases that require local variables are broken out into a separate
3846 ** routine so that in most cases the overhead of moving the stack pointer
3847 ** is avoided.
3849 static u32 serialGet(
3850 const unsigned char *buf, /* Buffer to deserialize from */
3851 u32 serial_type, /* Serial type to deserialize */
3852 Mem *pMem /* Memory cell to write value into */
3854 u64 x = FOUR_BYTE_UINT(buf);
3855 u32 y = FOUR_BYTE_UINT(buf+4);
3856 x = (x<<32) + y;
3857 if( serial_type==6 ){
3858 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3859 ** twos-complement integer. */
3860 pMem->u.i = *(i64*)&x;
3861 pMem->flags = MEM_Int;
3862 testcase( pMem->u.i<0 );
3863 }else{
3864 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3865 ** floating point number. */
3866 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3867 /* Verify that integers and floating point values use the same
3868 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3869 ** defined that 64-bit floating point values really are mixed
3870 ** endian.
3872 static const u64 t1 = ((u64)0x3ff00000)<<32;
3873 static const double r1 = 1.0;
3874 u64 t2 = t1;
3875 swapMixedEndianFloat(t2);
3876 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3877 #endif
3878 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3879 swapMixedEndianFloat(x);
3880 memcpy(&pMem->u.r, &x, sizeof(x));
3881 pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
3883 return 8;
3885 u32 sqlite3VdbeSerialGet(
3886 const unsigned char *buf, /* Buffer to deserialize from */
3887 u32 serial_type, /* Serial type to deserialize */
3888 Mem *pMem /* Memory cell to write value into */
3890 switch( serial_type ){
3891 case 10: { /* Internal use only: NULL with virtual table
3892 ** UPDATE no-change flag set */
3893 pMem->flags = MEM_Null|MEM_Zero;
3894 pMem->n = 0;
3895 pMem->u.nZero = 0;
3896 break;
3898 case 11: /* Reserved for future use */
3899 case 0: { /* Null */
3900 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3901 pMem->flags = MEM_Null;
3902 break;
3904 case 1: {
3905 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3906 ** integer. */
3907 pMem->u.i = ONE_BYTE_INT(buf);
3908 pMem->flags = MEM_Int;
3909 testcase( pMem->u.i<0 );
3910 return 1;
3912 case 2: { /* 2-byte signed integer */
3913 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3914 ** twos-complement integer. */
3915 pMem->u.i = TWO_BYTE_INT(buf);
3916 pMem->flags = MEM_Int;
3917 testcase( pMem->u.i<0 );
3918 return 2;
3920 case 3: { /* 3-byte signed integer */
3921 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3922 ** twos-complement integer. */
3923 pMem->u.i = THREE_BYTE_INT(buf);
3924 pMem->flags = MEM_Int;
3925 testcase( pMem->u.i<0 );
3926 return 3;
3928 case 4: { /* 4-byte signed integer */
3929 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3930 ** twos-complement integer. */
3931 pMem->u.i = FOUR_BYTE_INT(buf);
3932 #ifdef __HP_cc
3933 /* Work around a sign-extension bug in the HP compiler for HP/UX */
3934 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3935 #endif
3936 pMem->flags = MEM_Int;
3937 testcase( pMem->u.i<0 );
3938 return 4;
3940 case 5: { /* 6-byte signed integer */
3941 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3942 ** twos-complement integer. */
3943 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3944 pMem->flags = MEM_Int;
3945 testcase( pMem->u.i<0 );
3946 return 6;
3948 case 6: /* 8-byte signed integer */
3949 case 7: { /* IEEE floating point */
3950 /* These use local variables, so do them in a separate routine
3951 ** to avoid having to move the frame pointer in the common case */
3952 return serialGet(buf,serial_type,pMem);
3954 case 8: /* Integer 0 */
3955 case 9: { /* Integer 1 */
3956 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3957 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3958 pMem->u.i = serial_type-8;
3959 pMem->flags = MEM_Int;
3960 return 0;
3962 default: {
3963 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3964 ** length.
3965 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3966 ** (N-13)/2 bytes in length. */
3967 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3968 pMem->z = (char *)buf;
3969 pMem->n = (serial_type-12)/2;
3970 pMem->flags = aFlag[serial_type&1];
3971 return pMem->n;
3974 return 0;
3977 ** This routine is used to allocate sufficient space for an UnpackedRecord
3978 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3979 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3981 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3982 ** the unaligned buffer passed via the second and third arguments (presumably
3983 ** stack space). If the former, then *ppFree is set to a pointer that should
3984 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3985 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3986 ** before returning.
3988 ** If an OOM error occurs, NULL is returned.
3990 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
3991 KeyInfo *pKeyInfo /* Description of the record */
3993 UnpackedRecord *p; /* Unpacked record to return */
3994 int nByte; /* Number of bytes required for *p */
3995 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
3996 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
3997 if( !p ) return 0;
3998 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
3999 assert( pKeyInfo->aSortFlags!=0 );
4000 p->pKeyInfo = pKeyInfo;
4001 p->nField = pKeyInfo->nKeyField + 1;
4002 return p;
4006 ** Given the nKey-byte encoding of a record in pKey[], populate the
4007 ** UnpackedRecord structure indicated by the fourth argument with the
4008 ** contents of the decoded record.
4010 void sqlite3VdbeRecordUnpack(
4011 KeyInfo *pKeyInfo, /* Information about the record format */
4012 int nKey, /* Size of the binary record */
4013 const void *pKey, /* The binary record */
4014 UnpackedRecord *p /* Populate this structure before returning. */
4016 const unsigned char *aKey = (const unsigned char *)pKey;
4017 u32 d;
4018 u32 idx; /* Offset in aKey[] to read from */
4019 u16 u; /* Unsigned loop counter */
4020 u32 szHdr;
4021 Mem *pMem = p->aMem;
4023 p->default_rc = 0;
4024 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
4025 idx = getVarint32(aKey, szHdr);
4026 d = szHdr;
4027 u = 0;
4028 while( idx<szHdr && d<=(u32)nKey ){
4029 u32 serial_type;
4031 idx += getVarint32(&aKey[idx], serial_type);
4032 pMem->enc = pKeyInfo->enc;
4033 pMem->db = pKeyInfo->db;
4034 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
4035 pMem->szMalloc = 0;
4036 pMem->z = 0;
4037 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
4038 pMem++;
4039 if( (++u)>=p->nField ) break;
4041 if( d>(u32)nKey && u ){
4042 assert( CORRUPT_DB );
4043 /* In a corrupt record entry, the last pMem might have been set up using
4044 ** uninitialized memory. Overwrite its value with NULL, to prevent
4045 ** warnings from MSAN. */
4046 sqlite3VdbeMemSetNull(pMem-1);
4048 assert( u<=pKeyInfo->nKeyField + 1 );
4049 p->nField = u;
4052 #ifdef SQLITE_DEBUG
4054 ** This function compares two index or table record keys in the same way
4055 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
4056 ** this function deserializes and compares values using the
4057 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
4058 ** in assert() statements to ensure that the optimized code in
4059 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
4061 ** Return true if the result of comparison is equivalent to desiredResult.
4062 ** Return false if there is a disagreement.
4064 static int vdbeRecordCompareDebug(
4065 int nKey1, const void *pKey1, /* Left key */
4066 const UnpackedRecord *pPKey2, /* Right key */
4067 int desiredResult /* Correct answer */
4069 u32 d1; /* Offset into aKey[] of next data element */
4070 u32 idx1; /* Offset into aKey[] of next header element */
4071 u32 szHdr1; /* Number of bytes in header */
4072 int i = 0;
4073 int rc = 0;
4074 const unsigned char *aKey1 = (const unsigned char *)pKey1;
4075 KeyInfo *pKeyInfo;
4076 Mem mem1;
4078 pKeyInfo = pPKey2->pKeyInfo;
4079 if( pKeyInfo->db==0 ) return 1;
4080 mem1.enc = pKeyInfo->enc;
4081 mem1.db = pKeyInfo->db;
4082 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
4083 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4085 /* Compilers may complain that mem1.u.i is potentially uninitialized.
4086 ** We could initialize it, as shown here, to silence those complaints.
4087 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
4088 ** the unnecessary initialization has a measurable negative performance
4089 ** impact, since this routine is a very high runner. And so, we choose
4090 ** to ignore the compiler warnings and leave this variable uninitialized.
4092 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
4094 idx1 = getVarint32(aKey1, szHdr1);
4095 if( szHdr1>98307 ) return SQLITE_CORRUPT;
4096 d1 = szHdr1;
4097 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
4098 assert( pKeyInfo->aSortFlags!=0 );
4099 assert( pKeyInfo->nKeyField>0 );
4100 assert( idx1<=szHdr1 || CORRUPT_DB );
4102 u32 serial_type1;
4104 /* Read the serial types for the next element in each key. */
4105 idx1 += getVarint32( aKey1+idx1, serial_type1 );
4107 /* Verify that there is enough key space remaining to avoid
4108 ** a buffer overread. The "d1+serial_type1+2" subexpression will
4109 ** always be greater than or equal to the amount of required key space.
4110 ** Use that approximation to avoid the more expensive call to
4111 ** sqlite3VdbeSerialTypeLen() in the common case.
4113 if( d1+(u64)serial_type1+2>(u64)nKey1
4114 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1
4116 break;
4119 /* Extract the values to be compared.
4121 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
4123 /* Do the comparison
4125 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
4126 pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0);
4127 if( rc!=0 ){
4128 assert( mem1.szMalloc==0 ); /* See comment below */
4129 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
4130 && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null))
4132 rc = -rc;
4134 if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){
4135 rc = -rc; /* Invert the result for DESC sort order. */
4137 goto debugCompareEnd;
4139 i++;
4140 }while( idx1<szHdr1 && i<pPKey2->nField );
4142 /* No memory allocation is ever used on mem1. Prove this using
4143 ** the following assert(). If the assert() fails, it indicates a
4144 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4146 assert( mem1.szMalloc==0 );
4148 /* rc==0 here means that one of the keys ran out of fields and
4149 ** all the fields up to that point were equal. Return the default_rc
4150 ** value. */
4151 rc = pPKey2->default_rc;
4153 debugCompareEnd:
4154 if( desiredResult==0 && rc==0 ) return 1;
4155 if( desiredResult<0 && rc<0 ) return 1;
4156 if( desiredResult>0 && rc>0 ) return 1;
4157 if( CORRUPT_DB ) return 1;
4158 if( pKeyInfo->db->mallocFailed ) return 1;
4159 return 0;
4161 #endif
4163 #ifdef SQLITE_DEBUG
4165 ** Count the number of fields (a.k.a. columns) in the record given by
4166 ** pKey,nKey. The verify that this count is less than or equal to the
4167 ** limit given by pKeyInfo->nAllField.
4169 ** If this constraint is not satisfied, it means that the high-speed
4170 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4171 ** not work correctly. If this assert() ever fires, it probably means
4172 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4173 ** incorrectly.
4175 static void vdbeAssertFieldCountWithinLimits(
4176 int nKey, const void *pKey, /* The record to verify */
4177 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
4179 int nField = 0;
4180 u32 szHdr;
4181 u32 idx;
4182 u32 notUsed;
4183 const unsigned char *aKey = (const unsigned char*)pKey;
4185 if( CORRUPT_DB ) return;
4186 idx = getVarint32(aKey, szHdr);
4187 assert( nKey>=0 );
4188 assert( szHdr<=(u32)nKey );
4189 while( idx<szHdr ){
4190 idx += getVarint32(aKey+idx, notUsed);
4191 nField++;
4193 assert( nField <= pKeyInfo->nAllField );
4195 #else
4196 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4197 #endif
4200 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4201 ** using the collation sequence pColl. As usual, return a negative , zero
4202 ** or positive value if *pMem1 is less than, equal to or greater than
4203 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4205 static int vdbeCompareMemString(
4206 const Mem *pMem1,
4207 const Mem *pMem2,
4208 const CollSeq *pColl,
4209 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
4211 if( pMem1->enc==pColl->enc ){
4212 /* The strings are already in the correct encoding. Call the
4213 ** comparison function directly */
4214 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
4215 }else{
4216 int rc;
4217 const void *v1, *v2;
4218 Mem c1;
4219 Mem c2;
4220 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
4221 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
4222 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
4223 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
4224 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
4225 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
4226 if( (v1==0 || v2==0) ){
4227 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
4228 rc = 0;
4229 }else{
4230 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
4232 sqlite3VdbeMemRelease(&c1);
4233 sqlite3VdbeMemRelease(&c2);
4234 return rc;
4239 ** The input pBlob is guaranteed to be a Blob that is not marked
4240 ** with MEM_Zero. Return true if it could be a zero-blob.
4242 static int isAllZero(const char *z, int n){
4243 int i;
4244 for(i=0; i<n; i++){
4245 if( z[i] ) return 0;
4247 return 1;
4251 ** Compare two blobs. Return negative, zero, or positive if the first
4252 ** is less than, equal to, or greater than the second, respectively.
4253 ** If one blob is a prefix of the other, then the shorter is the lessor.
4255 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
4256 int c;
4257 int n1 = pB1->n;
4258 int n2 = pB2->n;
4260 /* It is possible to have a Blob value that has some non-zero content
4261 ** followed by zero content. But that only comes up for Blobs formed
4262 ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4263 ** sqlite3MemCompare(). */
4264 assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
4265 assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
4267 if( (pB1->flags|pB2->flags) & MEM_Zero ){
4268 if( pB1->flags & pB2->flags & MEM_Zero ){
4269 return pB1->u.nZero - pB2->u.nZero;
4270 }else if( pB1->flags & MEM_Zero ){
4271 if( !isAllZero(pB2->z, pB2->n) ) return -1;
4272 return pB1->u.nZero - n2;
4273 }else{
4274 if( !isAllZero(pB1->z, pB1->n) ) return +1;
4275 return n1 - pB2->u.nZero;
4278 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
4279 if( c ) return c;
4280 return n1 - n2;
4284 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4285 ** number. Return negative, zero, or positive if the first (i64) is less than,
4286 ** equal to, or greater than the second (double).
4288 static int sqlite3IntFloatCompare(i64 i, double r){
4289 if( sizeof(LONGDOUBLE_TYPE)>8 ){
4290 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
4291 testcase( x<r );
4292 testcase( x>r );
4293 testcase( x==r );
4294 if( x<r ) return -1;
4295 if( x>r ) return +1; /*NO_TEST*/ /* work around bugs in gcov */
4296 return 0; /*NO_TEST*/ /* work around bugs in gcov */
4297 }else{
4298 i64 y;
4299 double s;
4300 if( r<-9223372036854775808.0 ) return +1;
4301 if( r>=9223372036854775808.0 ) return -1;
4302 y = (i64)r;
4303 if( i<y ) return -1;
4304 if( i>y ) return +1;
4305 s = (double)i;
4306 if( s<r ) return -1;
4307 if( s>r ) return +1;
4308 return 0;
4313 ** Compare the values contained by the two memory cells, returning
4314 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4315 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4316 ** and reals) sorted numerically, followed by text ordered by the collating
4317 ** sequence pColl and finally blob's ordered by memcmp().
4319 ** Two NULL values are considered equal by this function.
4321 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
4322 int f1, f2;
4323 int combined_flags;
4325 f1 = pMem1->flags;
4326 f2 = pMem2->flags;
4327 combined_flags = f1|f2;
4328 assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) );
4330 /* If one value is NULL, it is less than the other. If both values
4331 ** are NULL, return 0.
4333 if( combined_flags&MEM_Null ){
4334 return (f2&MEM_Null) - (f1&MEM_Null);
4337 /* At least one of the two values is a number
4339 if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){
4340 testcase( combined_flags & MEM_Int );
4341 testcase( combined_flags & MEM_Real );
4342 testcase( combined_flags & MEM_IntReal );
4343 if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){
4344 testcase( f1 & f2 & MEM_Int );
4345 testcase( f1 & f2 & MEM_IntReal );
4346 if( pMem1->u.i < pMem2->u.i ) return -1;
4347 if( pMem1->u.i > pMem2->u.i ) return +1;
4348 return 0;
4350 if( (f1 & f2 & MEM_Real)!=0 ){
4351 if( pMem1->u.r < pMem2->u.r ) return -1;
4352 if( pMem1->u.r > pMem2->u.r ) return +1;
4353 return 0;
4355 if( (f1&(MEM_Int|MEM_IntReal))!=0 ){
4356 testcase( f1 & MEM_Int );
4357 testcase( f1 & MEM_IntReal );
4358 if( (f2&MEM_Real)!=0 ){
4359 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
4360 }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4361 if( pMem1->u.i < pMem2->u.i ) return -1;
4362 if( pMem1->u.i > pMem2->u.i ) return +1;
4363 return 0;
4364 }else{
4365 return -1;
4368 if( (f1&MEM_Real)!=0 ){
4369 if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4370 testcase( f2 & MEM_Int );
4371 testcase( f2 & MEM_IntReal );
4372 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
4373 }else{
4374 return -1;
4377 return +1;
4380 /* If one value is a string and the other is a blob, the string is less.
4381 ** If both are strings, compare using the collating functions.
4383 if( combined_flags&MEM_Str ){
4384 if( (f1 & MEM_Str)==0 ){
4385 return 1;
4387 if( (f2 & MEM_Str)==0 ){
4388 return -1;
4391 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
4392 assert( pMem1->enc==SQLITE_UTF8 ||
4393 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
4395 /* The collation sequence must be defined at this point, even if
4396 ** the user deletes the collation sequence after the vdbe program is
4397 ** compiled (this was not always the case).
4399 assert( !pColl || pColl->xCmp );
4401 if( pColl ){
4402 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
4404 /* If a NULL pointer was passed as the collate function, fall through
4405 ** to the blob case and use memcmp(). */
4408 /* Both values must be blobs. Compare using memcmp(). */
4409 return sqlite3BlobCompare(pMem1, pMem2);
4414 ** The first argument passed to this function is a serial-type that
4415 ** corresponds to an integer - all values between 1 and 9 inclusive
4416 ** except 7. The second points to a buffer containing an integer value
4417 ** serialized according to serial_type. This function deserializes
4418 ** and returns the value.
4420 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
4421 u32 y;
4422 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
4423 switch( serial_type ){
4424 case 0:
4425 case 1:
4426 testcase( aKey[0]&0x80 );
4427 return ONE_BYTE_INT(aKey);
4428 case 2:
4429 testcase( aKey[0]&0x80 );
4430 return TWO_BYTE_INT(aKey);
4431 case 3:
4432 testcase( aKey[0]&0x80 );
4433 return THREE_BYTE_INT(aKey);
4434 case 4: {
4435 testcase( aKey[0]&0x80 );
4436 y = FOUR_BYTE_UINT(aKey);
4437 return (i64)*(int*)&y;
4439 case 5: {
4440 testcase( aKey[0]&0x80 );
4441 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4443 case 6: {
4444 u64 x = FOUR_BYTE_UINT(aKey);
4445 testcase( aKey[0]&0x80 );
4446 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4447 return (i64)*(i64*)&x;
4451 return (serial_type - 8);
4455 ** This function compares the two table rows or index records
4456 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
4457 ** or positive integer if key1 is less than, equal to or
4458 ** greater than key2. The {nKey1, pKey1} key must be a blob
4459 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
4460 ** key must be a parsed key such as obtained from
4461 ** sqlite3VdbeParseRecord.
4463 ** If argument bSkip is non-zero, it is assumed that the caller has already
4464 ** determined that the first fields of the keys are equal.
4466 ** Key1 and Key2 do not have to contain the same number of fields. If all
4467 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4468 ** returned.
4470 ** If database corruption is discovered, set pPKey2->errCode to
4471 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4472 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4473 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4475 int sqlite3VdbeRecordCompareWithSkip(
4476 int nKey1, const void *pKey1, /* Left key */
4477 UnpackedRecord *pPKey2, /* Right key */
4478 int bSkip /* If true, skip the first field */
4480 u32 d1; /* Offset into aKey[] of next data element */
4481 int i; /* Index of next field to compare */
4482 u32 szHdr1; /* Size of record header in bytes */
4483 u32 idx1; /* Offset of first type in header */
4484 int rc = 0; /* Return value */
4485 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
4486 KeyInfo *pKeyInfo;
4487 const unsigned char *aKey1 = (const unsigned char *)pKey1;
4488 Mem mem1;
4490 /* If bSkip is true, then the caller has already determined that the first
4491 ** two elements in the keys are equal. Fix the various stack variables so
4492 ** that this routine begins comparing at the second field. */
4493 if( bSkip ){
4494 u32 s1;
4495 idx1 = 1 + getVarint32(&aKey1[1], s1);
4496 szHdr1 = aKey1[0];
4497 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4498 i = 1;
4499 pRhs++;
4500 }else{
4501 idx1 = getVarint32(aKey1, szHdr1);
4502 d1 = szHdr1;
4503 i = 0;
4505 if( d1>(unsigned)nKey1 ){
4506 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4507 return 0; /* Corruption */
4510 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4511 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4512 || CORRUPT_DB );
4513 assert( pPKey2->pKeyInfo->aSortFlags!=0 );
4514 assert( pPKey2->pKeyInfo->nKeyField>0 );
4515 assert( idx1<=szHdr1 || CORRUPT_DB );
4517 u32 serial_type;
4519 /* RHS is an integer */
4520 if( pRhs->flags & (MEM_Int|MEM_IntReal) ){
4521 testcase( pRhs->flags & MEM_Int );
4522 testcase( pRhs->flags & MEM_IntReal );
4523 serial_type = aKey1[idx1];
4524 testcase( serial_type==12 );
4525 if( serial_type>=10 ){
4526 rc = +1;
4527 }else if( serial_type==0 ){
4528 rc = -1;
4529 }else if( serial_type==7 ){
4530 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4531 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4532 }else{
4533 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4534 i64 rhs = pRhs->u.i;
4535 if( lhs<rhs ){
4536 rc = -1;
4537 }else if( lhs>rhs ){
4538 rc = +1;
4543 /* RHS is real */
4544 else if( pRhs->flags & MEM_Real ){
4545 serial_type = aKey1[idx1];
4546 if( serial_type>=10 ){
4547 /* Serial types 12 or greater are strings and blobs (greater than
4548 ** numbers). Types 10 and 11 are currently "reserved for future
4549 ** use", so it doesn't really matter what the results of comparing
4550 ** them to numberic values are. */
4551 rc = +1;
4552 }else if( serial_type==0 ){
4553 rc = -1;
4554 }else{
4555 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4556 if( serial_type==7 ){
4557 if( mem1.u.r<pRhs->u.r ){
4558 rc = -1;
4559 }else if( mem1.u.r>pRhs->u.r ){
4560 rc = +1;
4562 }else{
4563 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4568 /* RHS is a string */
4569 else if( pRhs->flags & MEM_Str ){
4570 getVarint32NR(&aKey1[idx1], serial_type);
4571 testcase( serial_type==12 );
4572 if( serial_type<12 ){
4573 rc = -1;
4574 }else if( !(serial_type & 0x01) ){
4575 rc = +1;
4576 }else{
4577 mem1.n = (serial_type - 12) / 2;
4578 testcase( (d1+mem1.n)==(unsigned)nKey1 );
4579 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4580 if( (d1+mem1.n) > (unsigned)nKey1
4581 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i
4583 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4584 return 0; /* Corruption */
4585 }else if( pKeyInfo->aColl[i] ){
4586 mem1.enc = pKeyInfo->enc;
4587 mem1.db = pKeyInfo->db;
4588 mem1.flags = MEM_Str;
4589 mem1.z = (char*)&aKey1[d1];
4590 rc = vdbeCompareMemString(
4591 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4593 }else{
4594 int nCmp = MIN(mem1.n, pRhs->n);
4595 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4596 if( rc==0 ) rc = mem1.n - pRhs->n;
4601 /* RHS is a blob */
4602 else if( pRhs->flags & MEM_Blob ){
4603 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4604 getVarint32NR(&aKey1[idx1], serial_type);
4605 testcase( serial_type==12 );
4606 if( serial_type<12 || (serial_type & 0x01) ){
4607 rc = -1;
4608 }else{
4609 int nStr = (serial_type - 12) / 2;
4610 testcase( (d1+nStr)==(unsigned)nKey1 );
4611 testcase( (d1+nStr+1)==(unsigned)nKey1 );
4612 if( (d1+nStr) > (unsigned)nKey1 ){
4613 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4614 return 0; /* Corruption */
4615 }else if( pRhs->flags & MEM_Zero ){
4616 if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4617 rc = 1;
4618 }else{
4619 rc = nStr - pRhs->u.nZero;
4621 }else{
4622 int nCmp = MIN(nStr, pRhs->n);
4623 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4624 if( rc==0 ) rc = nStr - pRhs->n;
4629 /* RHS is null */
4630 else{
4631 serial_type = aKey1[idx1];
4632 rc = (serial_type!=0);
4635 if( rc!=0 ){
4636 int sortFlags = pPKey2->pKeyInfo->aSortFlags[i];
4637 if( sortFlags ){
4638 if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0
4639 || ((sortFlags & KEYINFO_ORDER_DESC)
4640 !=(serial_type==0 || (pRhs->flags&MEM_Null)))
4642 rc = -rc;
4645 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4646 assert( mem1.szMalloc==0 ); /* See comment below */
4647 return rc;
4650 i++;
4651 if( i==pPKey2->nField ) break;
4652 pRhs++;
4653 d1 += sqlite3VdbeSerialTypeLen(serial_type);
4654 idx1 += sqlite3VarintLen(serial_type);
4655 }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 );
4657 /* No memory allocation is ever used on mem1. Prove this using
4658 ** the following assert(). If the assert() fails, it indicates a
4659 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
4660 assert( mem1.szMalloc==0 );
4662 /* rc==0 here means that one or both of the keys ran out of fields and
4663 ** all the fields up to that point were equal. Return the default_rc
4664 ** value. */
4665 assert( CORRUPT_DB
4666 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4667 || pPKey2->pKeyInfo->db->mallocFailed
4669 pPKey2->eqSeen = 1;
4670 return pPKey2->default_rc;
4672 int sqlite3VdbeRecordCompare(
4673 int nKey1, const void *pKey1, /* Left key */
4674 UnpackedRecord *pPKey2 /* Right key */
4676 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4681 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4682 ** that (a) the first field of pPKey2 is an integer, and (b) the
4683 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4684 ** byte (i.e. is less than 128).
4686 ** To avoid concerns about buffer overreads, this routine is only used
4687 ** on schemas where the maximum valid header size is 63 bytes or less.
4689 static int vdbeRecordCompareInt(
4690 int nKey1, const void *pKey1, /* Left key */
4691 UnpackedRecord *pPKey2 /* Right key */
4693 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4694 int serial_type = ((const u8*)pKey1)[1];
4695 int res;
4696 u32 y;
4697 u64 x;
4698 i64 v;
4699 i64 lhs;
4701 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4702 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4703 switch( serial_type ){
4704 case 1: { /* 1-byte signed integer */
4705 lhs = ONE_BYTE_INT(aKey);
4706 testcase( lhs<0 );
4707 break;
4709 case 2: { /* 2-byte signed integer */
4710 lhs = TWO_BYTE_INT(aKey);
4711 testcase( lhs<0 );
4712 break;
4714 case 3: { /* 3-byte signed integer */
4715 lhs = THREE_BYTE_INT(aKey);
4716 testcase( lhs<0 );
4717 break;
4719 case 4: { /* 4-byte signed integer */
4720 y = FOUR_BYTE_UINT(aKey);
4721 lhs = (i64)*(int*)&y;
4722 testcase( lhs<0 );
4723 break;
4725 case 5: { /* 6-byte signed integer */
4726 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4727 testcase( lhs<0 );
4728 break;
4730 case 6: { /* 8-byte signed integer */
4731 x = FOUR_BYTE_UINT(aKey);
4732 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4733 lhs = *(i64*)&x;
4734 testcase( lhs<0 );
4735 break;
4737 case 8:
4738 lhs = 0;
4739 break;
4740 case 9:
4741 lhs = 1;
4742 break;
4744 /* This case could be removed without changing the results of running
4745 ** this code. Including it causes gcc to generate a faster switch
4746 ** statement (since the range of switch targets now starts at zero and
4747 ** is contiguous) but does not cause any duplicate code to be generated
4748 ** (as gcc is clever enough to combine the two like cases). Other
4749 ** compilers might be similar. */
4750 case 0: case 7:
4751 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4753 default:
4754 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4757 v = pPKey2->aMem[0].u.i;
4758 if( v>lhs ){
4759 res = pPKey2->r1;
4760 }else if( v<lhs ){
4761 res = pPKey2->r2;
4762 }else if( pPKey2->nField>1 ){
4763 /* The first fields of the two keys are equal. Compare the trailing
4764 ** fields. */
4765 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4766 }else{
4767 /* The first fields of the two keys are equal and there are no trailing
4768 ** fields. Return pPKey2->default_rc in this case. */
4769 res = pPKey2->default_rc;
4770 pPKey2->eqSeen = 1;
4773 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4774 return res;
4778 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4779 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4780 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4781 ** at the start of (pKey1/nKey1) fits in a single byte.
4783 static int vdbeRecordCompareString(
4784 int nKey1, const void *pKey1, /* Left key */
4785 UnpackedRecord *pPKey2 /* Right key */
4787 const u8 *aKey1 = (const u8*)pKey1;
4788 int serial_type;
4789 int res;
4791 assert( pPKey2->aMem[0].flags & MEM_Str );
4792 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4793 serial_type = (u8)(aKey1[1]);
4794 if( serial_type >= 0x80 ){
4795 sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type);
4797 if( serial_type<12 ){
4798 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
4799 }else if( !(serial_type & 0x01) ){
4800 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
4801 }else{
4802 int nCmp;
4803 int nStr;
4804 int szHdr = aKey1[0];
4806 nStr = (serial_type-12) / 2;
4807 if( (szHdr + nStr) > nKey1 ){
4808 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4809 return 0; /* Corruption */
4811 nCmp = MIN( pPKey2->aMem[0].n, nStr );
4812 res = memcmp(&aKey1[szHdr], pPKey2->aMem[0].z, nCmp);
4814 if( res>0 ){
4815 res = pPKey2->r2;
4816 }else if( res<0 ){
4817 res = pPKey2->r1;
4818 }else{
4819 res = nStr - pPKey2->aMem[0].n;
4820 if( res==0 ){
4821 if( pPKey2->nField>1 ){
4822 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4823 }else{
4824 res = pPKey2->default_rc;
4825 pPKey2->eqSeen = 1;
4827 }else if( res>0 ){
4828 res = pPKey2->r2;
4829 }else{
4830 res = pPKey2->r1;
4835 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4836 || CORRUPT_DB
4837 || pPKey2->pKeyInfo->db->mallocFailed
4839 return res;
4843 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4844 ** suitable for comparing serialized records to the unpacked record passed
4845 ** as the only argument.
4847 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4848 /* varintRecordCompareInt() and varintRecordCompareString() both assume
4849 ** that the size-of-header varint that occurs at the start of each record
4850 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4851 ** also assumes that it is safe to overread a buffer by at least the
4852 ** maximum possible legal header size plus 8 bytes. Because there is
4853 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4854 ** buffer passed to varintRecordCompareInt() this makes it convenient to
4855 ** limit the size of the header to 64 bytes in cases where the first field
4856 ** is an integer.
4858 ** The easiest way to enforce this limit is to consider only records with
4859 ** 13 fields or less. If the first field is an integer, the maximum legal
4860 ** header size is (12*5 + 1 + 1) bytes. */
4861 if( p->pKeyInfo->nAllField<=13 ){
4862 int flags = p->aMem[0].flags;
4863 if( p->pKeyInfo->aSortFlags[0] ){
4864 if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){
4865 return sqlite3VdbeRecordCompare;
4867 p->r1 = 1;
4868 p->r2 = -1;
4869 }else{
4870 p->r1 = -1;
4871 p->r2 = 1;
4873 if( (flags & MEM_Int) ){
4874 return vdbeRecordCompareInt;
4876 testcase( flags & MEM_Real );
4877 testcase( flags & MEM_Null );
4878 testcase( flags & MEM_Blob );
4879 if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0
4880 && p->pKeyInfo->aColl[0]==0
4882 assert( flags & MEM_Str );
4883 return vdbeRecordCompareString;
4887 return sqlite3VdbeRecordCompare;
4891 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4892 ** Read the rowid (the last field in the record) and store it in *rowid.
4893 ** Return SQLITE_OK if everything works, or an error code otherwise.
4895 ** pCur might be pointing to text obtained from a corrupt database file.
4896 ** So the content cannot be trusted. Do appropriate checks on the content.
4898 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4899 i64 nCellKey = 0;
4900 int rc;
4901 u32 szHdr; /* Size of the header */
4902 u32 typeRowid; /* Serial type of the rowid */
4903 u32 lenRowid; /* Size of the rowid */
4904 Mem m, v;
4906 /* Get the size of the index entry. Only indices entries of less
4907 ** than 2GiB are support - anything large must be database corruption.
4908 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4909 ** this code can safely assume that nCellKey is 32-bits
4911 assert( sqlite3BtreeCursorIsValid(pCur) );
4912 nCellKey = sqlite3BtreePayloadSize(pCur);
4913 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4915 /* Read in the complete content of the index entry */
4916 sqlite3VdbeMemInit(&m, db, 0);
4917 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
4918 if( rc ){
4919 return rc;
4922 /* The index entry must begin with a header size */
4923 getVarint32NR((u8*)m.z, szHdr);
4924 testcase( szHdr==3 );
4925 testcase( szHdr==m.n );
4926 testcase( szHdr>0x7fffffff );
4927 assert( m.n>=0 );
4928 if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
4929 goto idx_rowid_corruption;
4932 /* The last field of the index should be an integer - the ROWID.
4933 ** Verify that the last entry really is an integer. */
4934 getVarint32NR((u8*)&m.z[szHdr-1], typeRowid);
4935 testcase( typeRowid==1 );
4936 testcase( typeRowid==2 );
4937 testcase( typeRowid==3 );
4938 testcase( typeRowid==4 );
4939 testcase( typeRowid==5 );
4940 testcase( typeRowid==6 );
4941 testcase( typeRowid==8 );
4942 testcase( typeRowid==9 );
4943 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4944 goto idx_rowid_corruption;
4946 lenRowid = sqlite3SmallTypeSizes[typeRowid];
4947 testcase( (u32)m.n==szHdr+lenRowid );
4948 if( unlikely((u32)m.n<szHdr+lenRowid) ){
4949 goto idx_rowid_corruption;
4952 /* Fetch the integer off the end of the index record */
4953 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4954 *rowid = v.u.i;
4955 sqlite3VdbeMemRelease(&m);
4956 return SQLITE_OK;
4958 /* Jump here if database corruption is detected after m has been
4959 ** allocated. Free the m object and return SQLITE_CORRUPT. */
4960 idx_rowid_corruption:
4961 testcase( m.szMalloc!=0 );
4962 sqlite3VdbeMemRelease(&m);
4963 return SQLITE_CORRUPT_BKPT;
4967 ** Compare the key of the index entry that cursor pC is pointing to against
4968 ** the key string in pUnpacked. Write into *pRes a number
4969 ** that is negative, zero, or positive if pC is less than, equal to,
4970 ** or greater than pUnpacked. Return SQLITE_OK on success.
4972 ** pUnpacked is either created without a rowid or is truncated so that it
4973 ** omits the rowid at the end. The rowid at the end of the index entry
4974 ** is ignored as well. Hence, this routine only compares the prefixes
4975 ** of the keys prior to the final rowid, not the entire key.
4977 int sqlite3VdbeIdxKeyCompare(
4978 sqlite3 *db, /* Database connection */
4979 VdbeCursor *pC, /* The cursor to compare against */
4980 UnpackedRecord *pUnpacked, /* Unpacked version of key */
4981 int *res /* Write the comparison result here */
4983 i64 nCellKey = 0;
4984 int rc;
4985 BtCursor *pCur;
4986 Mem m;
4988 assert( pC->eCurType==CURTYPE_BTREE );
4989 pCur = pC->uc.pCursor;
4990 assert( sqlite3BtreeCursorIsValid(pCur) );
4991 nCellKey = sqlite3BtreePayloadSize(pCur);
4992 /* nCellKey will always be between 0 and 0xffffffff because of the way
4993 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
4994 if( nCellKey<=0 || nCellKey>0x7fffffff ){
4995 *res = 0;
4996 return SQLITE_CORRUPT_BKPT;
4998 sqlite3VdbeMemInit(&m, db, 0);
4999 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
5000 if( rc ){
5001 return rc;
5003 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
5004 sqlite3VdbeMemRelease(&m);
5005 return SQLITE_OK;
5009 ** This routine sets the value to be returned by subsequent calls to
5010 ** sqlite3_changes() on the database handle 'db'.
5012 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
5013 assert( sqlite3_mutex_held(db->mutex) );
5014 db->nChange = nChange;
5015 db->nTotalChange += nChange;
5019 ** Set a flag in the vdbe to update the change counter when it is finalised
5020 ** or reset.
5022 void sqlite3VdbeCountChanges(Vdbe *v){
5023 v->changeCntOn = 1;
5027 ** Mark every prepared statement associated with a database connection
5028 ** as expired.
5030 ** An expired statement means that recompilation of the statement is
5031 ** recommend. Statements expire when things happen that make their
5032 ** programs obsolete. Removing user-defined functions or collating
5033 ** sequences, or changing an authorization function are the types of
5034 ** things that make prepared statements obsolete.
5036 ** If iCode is 1, then expiration is advisory. The statement should
5037 ** be reprepared before being restarted, but if it is already running
5038 ** it is allowed to run to completion.
5040 ** Internally, this function just sets the Vdbe.expired flag on all
5041 ** prepared statements. The flag is set to 1 for an immediate expiration
5042 ** and set to 2 for an advisory expiration.
5044 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
5045 Vdbe *p;
5046 for(p = db->pVdbe; p; p=p->pNext){
5047 p->expired = iCode+1;
5052 ** Return the database associated with the Vdbe.
5054 sqlite3 *sqlite3VdbeDb(Vdbe *v){
5055 return v->db;
5059 ** Return the SQLITE_PREPARE flags for a Vdbe.
5061 u8 sqlite3VdbePrepareFlags(Vdbe *v){
5062 return v->prepFlags;
5066 ** Return a pointer to an sqlite3_value structure containing the value bound
5067 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
5068 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
5069 ** constants) to the value before returning it.
5071 ** The returned value must be freed by the caller using sqlite3ValueFree().
5073 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
5074 assert( iVar>0 );
5075 if( v ){
5076 Mem *pMem = &v->aVar[iVar-1];
5077 assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5078 if( 0==(pMem->flags & MEM_Null) ){
5079 sqlite3_value *pRet = sqlite3ValueNew(v->db);
5080 if( pRet ){
5081 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
5082 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
5084 return pRet;
5087 return 0;
5091 ** Configure SQL variable iVar so that binding a new value to it signals
5092 ** to sqlite3_reoptimize() that re-preparing the statement may result
5093 ** in a better query plan.
5095 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
5096 assert( iVar>0 );
5097 assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5098 if( iVar>=32 ){
5099 v->expmask |= 0x80000000;
5100 }else{
5101 v->expmask |= ((u32)1 << (iVar-1));
5106 ** Cause a function to throw an error if it was call from OP_PureFunc
5107 ** rather than OP_Function.
5109 ** OP_PureFunc means that the function must be deterministic, and should
5110 ** throw an error if it is given inputs that would make it non-deterministic.
5111 ** This routine is invoked by date/time functions that use non-deterministic
5112 ** features such as 'now'.
5114 int sqlite3NotPureFunc(sqlite3_context *pCtx){
5115 const VdbeOp *pOp;
5116 #ifdef SQLITE_ENABLE_STAT4
5117 if( pCtx->pVdbe==0 ) return 1;
5118 #endif
5119 pOp = pCtx->pVdbe->aOp + pCtx->iOp;
5120 if( pOp->opcode==OP_PureFunc ){
5121 const char *zContext;
5122 char *zMsg;
5123 if( pOp->p5 & NC_IsCheck ){
5124 zContext = "a CHECK constraint";
5125 }else if( pOp->p5 & NC_GenCol ){
5126 zContext = "a generated column";
5127 }else{
5128 zContext = "an index";
5130 zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s",
5131 pCtx->pFunc->zName, zContext);
5132 sqlite3_result_error(pCtx, zMsg, -1);
5133 sqlite3_free(zMsg);
5134 return 0;
5136 return 1;
5139 #ifndef SQLITE_OMIT_VIRTUALTABLE
5141 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5142 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5143 ** in memory obtained from sqlite3DbMalloc).
5145 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
5146 if( pVtab->zErrMsg ){
5147 sqlite3 *db = p->db;
5148 sqlite3DbFree(db, p->zErrMsg);
5149 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
5150 sqlite3_free(pVtab->zErrMsg);
5151 pVtab->zErrMsg = 0;
5154 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5156 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5159 ** If the second argument is not NULL, release any allocations associated
5160 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5161 ** structure itself, using sqlite3DbFree().
5163 ** This function is used to free UnpackedRecord structures allocated by
5164 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5166 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
5167 if( p ){
5168 int i;
5169 for(i=0; i<nField; i++){
5170 Mem *pMem = &p->aMem[i];
5171 if( pMem->zMalloc ) sqlite3VdbeMemRelease(pMem);
5173 sqlite3DbFreeNN(db, p);
5176 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5178 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5180 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5181 ** then cursor passed as the second argument should point to the row about
5182 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5183 ** the required value will be read from the row the cursor points to.
5185 void sqlite3VdbePreUpdateHook(
5186 Vdbe *v, /* Vdbe pre-update hook is invoked by */
5187 VdbeCursor *pCsr, /* Cursor to grab old.* values from */
5188 int op, /* SQLITE_INSERT, UPDATE or DELETE */
5189 const char *zDb, /* Database name */
5190 Table *pTab, /* Modified table */
5191 i64 iKey1, /* Initial key value */
5192 int iReg, /* Register for new.* record */
5193 int iBlobWrite
5195 sqlite3 *db = v->db;
5196 i64 iKey2;
5197 PreUpdate preupdate;
5198 const char *zTbl = pTab->zName;
5199 static const u8 fakeSortOrder = 0;
5201 assert( db->pPreUpdate==0 );
5202 memset(&preupdate, 0, sizeof(PreUpdate));
5203 if( HasRowid(pTab)==0 ){
5204 iKey1 = iKey2 = 0;
5205 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
5206 }else{
5207 if( op==SQLITE_UPDATE ){
5208 iKey2 = v->aMem[iReg].u.i;
5209 }else{
5210 iKey2 = iKey1;
5214 assert( pCsr->nField==pTab->nCol
5215 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
5218 preupdate.v = v;
5219 preupdate.pCsr = pCsr;
5220 preupdate.op = op;
5221 preupdate.iNewReg = iReg;
5222 preupdate.keyinfo.db = db;
5223 preupdate.keyinfo.enc = ENC(db);
5224 preupdate.keyinfo.nKeyField = pTab->nCol;
5225 preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder;
5226 preupdate.iKey1 = iKey1;
5227 preupdate.iKey2 = iKey2;
5228 preupdate.pTab = pTab;
5229 preupdate.iBlobWrite = iBlobWrite;
5231 db->pPreUpdate = &preupdate;
5232 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
5233 db->pPreUpdate = 0;
5234 sqlite3DbFree(db, preupdate.aRecord);
5235 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
5236 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
5237 if( preupdate.aNew ){
5238 int i;
5239 for(i=0; i<pCsr->nField; i++){
5240 sqlite3VdbeMemRelease(&preupdate.aNew[i]);
5242 sqlite3DbFreeNN(db, preupdate.aNew);
5245 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */