4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
15 #include "sqliteInt.h"
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3
*db
, FuncDef
*pDef
);
20 static void vdbeFreeOpArray(sqlite3
*, Op
*, int);
23 ** Create a new virtual database engine.
25 Vdbe
*sqlite3VdbeCreate(Parse
*pParse
){
26 sqlite3
*db
= pParse
->db
;
28 p
= sqlite3DbMallocRawNN(db
, sizeof(Vdbe
) );
30 memset(&p
->aOp
, 0, sizeof(Vdbe
)-offsetof(Vdbe
,aOp
));
38 p
->iVdbeMagic
= VDBE_MAGIC_INIT
;
41 assert( pParse
->aLabel
==0 );
42 assert( pParse
->nLabel
==0 );
43 assert( p
->nOpAlloc
==0 );
44 assert( pParse
->szOpAlloc
==0 );
45 sqlite3VdbeAddOp2(p
, OP_Init
, 0, 1);
50 ** Return the Parse object that owns a Vdbe object.
52 Parse
*sqlite3VdbeParser(Vdbe
*p
){
57 ** Change the error string stored in Vdbe.zErrMsg
59 void sqlite3VdbeError(Vdbe
*p
, const char *zFormat
, ...){
61 sqlite3DbFree(p
->db
, p
->zErrMsg
);
62 va_start(ap
, zFormat
);
63 p
->zErrMsg
= sqlite3VMPrintf(p
->db
, zFormat
, ap
);
68 ** Remember the SQL string for a prepared statement.
70 void sqlite3VdbeSetSql(Vdbe
*p
, const char *z
, int n
, u8 prepFlags
){
72 p
->prepFlags
= prepFlags
;
73 if( (prepFlags
& SQLITE_PREPARE_SAVESQL
)==0 ){
77 p
->zSql
= sqlite3DbStrNDup(p
->db
, z
, n
);
80 #ifdef SQLITE_ENABLE_NORMALIZE
82 ** Add a new element to the Vdbe->pDblStr list.
84 void sqlite3VdbeAddDblquoteStr(sqlite3
*db
, Vdbe
*p
, const char *z
){
86 int n
= sqlite3Strlen30(z
);
87 DblquoteStr
*pStr
= sqlite3DbMallocRawNN(db
,
88 sizeof(*pStr
)+n
+1-sizeof(pStr
->z
));
90 pStr
->pNextStr
= p
->pDblStr
;
92 memcpy(pStr
->z
, z
, n
+1);
98 #ifdef SQLITE_ENABLE_NORMALIZE
100 ** zId of length nId is a double-quoted identifier. Check to see if
101 ** that identifier is really used as a string literal.
103 int sqlite3VdbeUsesDoubleQuotedString(
104 Vdbe
*pVdbe
, /* The prepared statement */
105 const char *zId
/* The double-quoted identifier, already dequoted */
109 if( pVdbe
->pDblStr
==0 ) return 0;
110 for(pStr
=pVdbe
->pDblStr
; pStr
; pStr
=pStr
->pNextStr
){
111 if( strcmp(zId
, pStr
->z
)==0 ) return 1;
118 ** Swap all content between two VDBE structures.
120 void sqlite3VdbeSwap(Vdbe
*pA
, Vdbe
*pB
){
123 assert( pA
->db
==pB
->db
);
128 pA
->pNext
= pB
->pNext
;
131 pA
->pPrev
= pB
->pPrev
;
136 #ifdef SQLITE_ENABLE_NORMALIZE
138 pA
->zNormSql
= pB
->zNormSql
;
141 pB
->expmask
= pA
->expmask
;
142 pB
->prepFlags
= pA
->prepFlags
;
143 memcpy(pB
->aCounter
, pA
->aCounter
, sizeof(pB
->aCounter
));
144 pB
->aCounter
[SQLITE_STMTSTATUS_REPREPARE
]++;
148 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
149 ** than its current size. nOp is guaranteed to be less than or equal
150 ** to 1024/sizeof(Op).
152 ** If an out-of-memory error occurs while resizing the array, return
153 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
154 ** unchanged (this is so that any opcodes already allocated can be
155 ** correctly deallocated along with the rest of the Vdbe).
157 static int growOpArray(Vdbe
*v
, int nOp
){
159 Parse
*p
= v
->pParse
;
161 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
162 ** more frequent reallocs and hence provide more opportunities for
163 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
164 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
165 ** by the minimum* amount required until the size reaches 512. Normal
166 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
167 ** size of the op array or add 1KB of space, whichever is smaller. */
168 #ifdef SQLITE_TEST_REALLOC_STRESS
169 sqlite3_int64 nNew
= (v
->nOpAlloc
>=512 ? 2*(sqlite3_int64
)v
->nOpAlloc
170 : (sqlite3_int64
)v
->nOpAlloc
+nOp
);
172 sqlite3_int64 nNew
= (v
->nOpAlloc
? 2*(sqlite3_int64
)v
->nOpAlloc
173 : (sqlite3_int64
)(1024/sizeof(Op
)));
174 UNUSED_PARAMETER(nOp
);
177 /* Ensure that the size of a VDBE does not grow too large */
178 if( nNew
> p
->db
->aLimit
[SQLITE_LIMIT_VDBE_OP
] ){
179 sqlite3OomFault(p
->db
);
183 assert( nOp
<=(1024/sizeof(Op
)) );
184 assert( nNew
>=(v
->nOpAlloc
+nOp
) );
185 pNew
= sqlite3DbRealloc(p
->db
, v
->aOp
, nNew
*sizeof(Op
));
187 p
->szOpAlloc
= sqlite3DbMallocSize(p
->db
, pNew
);
188 v
->nOpAlloc
= p
->szOpAlloc
/sizeof(Op
);
191 return (pNew
? SQLITE_OK
: SQLITE_NOMEM_BKPT
);
195 /* This routine is just a convenient place to set a breakpoint that will
196 ** fire after each opcode is inserted and displayed using
197 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and
198 ** pOp are available to make the breakpoint conditional.
200 ** Other useful labels for breakpoints include:
201 ** test_trace_breakpoint(pc,pOp)
202 ** sqlite3CorruptError(lineno)
203 ** sqlite3MisuseError(lineno)
204 ** sqlite3CantopenError(lineno)
206 static void test_addop_breakpoint(int pc
, Op
*pOp
){
213 ** Add a new instruction to the list of instructions current in the
214 ** VDBE. Return the address of the new instruction.
218 ** p Pointer to the VDBE
220 ** op The opcode for this instruction
222 ** p1, p2, p3 Operands
224 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
225 ** the sqlite3VdbeChangeP4() function to change the value of the P4
228 static SQLITE_NOINLINE
int growOp3(Vdbe
*p
, int op
, int p1
, int p2
, int p3
){
229 assert( p
->nOpAlloc
<=p
->nOp
);
230 if( growOpArray(p
, 1) ) return 1;
231 assert( p
->nOpAlloc
>p
->nOp
);
232 return sqlite3VdbeAddOp3(p
, op
, p1
, p2
, p3
);
234 int sqlite3VdbeAddOp3(Vdbe
*p
, int op
, int p1
, int p2
, int p3
){
239 assert( p
->iVdbeMagic
==VDBE_MAGIC_INIT
);
240 assert( op
>=0 && op
<0xff );
241 if( p
->nOpAlloc
<=i
){
242 return growOp3(p
, op
, p1
, p2
, p3
);
246 pOp
->opcode
= (u8
)op
;
252 pOp
->p4type
= P4_NOTUSED
;
253 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
257 if( p
->db
->flags
& SQLITE_VdbeAddopTrace
){
258 sqlite3VdbePrintOp(0, i
, &p
->aOp
[i
]);
259 test_addop_breakpoint(i
, &p
->aOp
[i
]);
266 #ifdef SQLITE_VDBE_COVERAGE
271 int sqlite3VdbeAddOp0(Vdbe
*p
, int op
){
272 return sqlite3VdbeAddOp3(p
, op
, 0, 0, 0);
274 int sqlite3VdbeAddOp1(Vdbe
*p
, int op
, int p1
){
275 return sqlite3VdbeAddOp3(p
, op
, p1
, 0, 0);
277 int sqlite3VdbeAddOp2(Vdbe
*p
, int op
, int p1
, int p2
){
278 return sqlite3VdbeAddOp3(p
, op
, p1
, p2
, 0);
281 /* Generate code for an unconditional jump to instruction iDest
283 int sqlite3VdbeGoto(Vdbe
*p
, int iDest
){
284 return sqlite3VdbeAddOp3(p
, OP_Goto
, 0, iDest
, 0);
287 /* Generate code to cause the string zStr to be loaded into
290 int sqlite3VdbeLoadString(Vdbe
*p
, int iDest
, const char *zStr
){
291 return sqlite3VdbeAddOp4(p
, OP_String8
, 0, iDest
, 0, zStr
, 0);
295 ** Generate code that initializes multiple registers to string or integer
296 ** constants. The registers begin with iDest and increase consecutively.
297 ** One register is initialized for each characgter in zTypes[]. For each
298 ** "s" character in zTypes[], the register is a string if the argument is
299 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character
300 ** in zTypes[], the register is initialized to an integer.
302 ** If the input string does not end with "X" then an OP_ResultRow instruction
303 ** is generated for the values inserted.
305 void sqlite3VdbeMultiLoad(Vdbe
*p
, int iDest
, const char *zTypes
, ...){
309 va_start(ap
, zTypes
);
310 for(i
=0; (c
= zTypes
[i
])!=0; i
++){
312 const char *z
= va_arg(ap
, const char*);
313 sqlite3VdbeAddOp4(p
, z
==0 ? OP_Null
: OP_String8
, 0, iDest
+i
, 0, z
, 0);
315 sqlite3VdbeAddOp2(p
, OP_Integer
, va_arg(ap
, int), iDest
+i
);
317 goto skip_op_resultrow
;
320 sqlite3VdbeAddOp2(p
, OP_ResultRow
, iDest
, i
);
326 ** Add an opcode that includes the p4 value as a pointer.
328 int sqlite3VdbeAddOp4(
329 Vdbe
*p
, /* Add the opcode to this VM */
330 int op
, /* The new opcode */
331 int p1
, /* The P1 operand */
332 int p2
, /* The P2 operand */
333 int p3
, /* The P3 operand */
334 const char *zP4
, /* The P4 operand */
335 int p4type
/* P4 operand type */
337 int addr
= sqlite3VdbeAddOp3(p
, op
, p1
, p2
, p3
);
338 sqlite3VdbeChangeP4(p
, addr
, zP4
, p4type
);
343 ** Add an OP_Function or OP_PureFunc opcode.
345 ** The eCallCtx argument is information (typically taken from Expr.op2)
346 ** that describes the calling context of the function. 0 means a general
347 ** function call. NC_IsCheck means called by a check constraint,
348 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx
349 ** means in the WHERE clause of a partial index. NC_GenCol means called
350 ** while computing a generated column value. 0 is the usual case.
352 int sqlite3VdbeAddFunctionCall(
353 Parse
*pParse
, /* Parsing context */
354 int p1
, /* Constant argument mask */
355 int p2
, /* First argument register */
356 int p3
, /* Register into which results are written */
357 int nArg
, /* Number of argument */
358 const FuncDef
*pFunc
, /* The function to be invoked */
359 int eCallCtx
/* Calling context */
361 Vdbe
*v
= pParse
->pVdbe
;
364 sqlite3_context
*pCtx
;
366 nByte
= sizeof(*pCtx
) + (nArg
-1)*sizeof(sqlite3_value
*);
367 pCtx
= sqlite3DbMallocRawNN(pParse
->db
, nByte
);
369 assert( pParse
->db
->mallocFailed
);
370 freeEphemeralFunction(pParse
->db
, (FuncDef
*)pFunc
);
374 pCtx
->pFunc
= (FuncDef
*)pFunc
;
378 pCtx
->iOp
= sqlite3VdbeCurrentAddr(v
);
379 addr
= sqlite3VdbeAddOp4(v
, eCallCtx
? OP_PureFunc
: OP_Function
,
380 p1
, p2
, p3
, (char*)pCtx
, P4_FUNCCTX
);
381 sqlite3VdbeChangeP5(v
, eCallCtx
& NC_SelfRef
);
386 ** Add an opcode that includes the p4 value with a P4_INT64 or
389 int sqlite3VdbeAddOp4Dup8(
390 Vdbe
*p
, /* Add the opcode to this VM */
391 int op
, /* The new opcode */
392 int p1
, /* The P1 operand */
393 int p2
, /* The P2 operand */
394 int p3
, /* The P3 operand */
395 const u8
*zP4
, /* The P4 operand */
396 int p4type
/* P4 operand type */
398 char *p4copy
= sqlite3DbMallocRawNN(sqlite3VdbeDb(p
), 8);
399 if( p4copy
) memcpy(p4copy
, zP4
, 8);
400 return sqlite3VdbeAddOp4(p
, op
, p1
, p2
, p3
, p4copy
, p4type
);
403 #ifndef SQLITE_OMIT_EXPLAIN
405 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
408 int sqlite3VdbeExplainParent(Parse
*pParse
){
410 if( pParse
->addrExplain
==0 ) return 0;
411 pOp
= sqlite3VdbeGetOp(pParse
->pVdbe
, pParse
->addrExplain
);
416 ** Set a debugger breakpoint on the following routine in order to
417 ** monitor the EXPLAIN QUERY PLAN code generation.
419 #if defined(SQLITE_DEBUG)
420 void sqlite3ExplainBreakpoint(const char *z1
, const char *z2
){
427 ** Add a new OP_Explain opcode.
429 ** If the bPush flag is true, then make this opcode the parent for
430 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
432 void sqlite3VdbeExplain(Parse
*pParse
, u8 bPush
, const char *zFmt
, ...){
434 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
435 ** But omit them (for performance) during production builds */
436 if( pParse
->explain
==2 )
444 zMsg
= sqlite3VMPrintf(pParse
->db
, zFmt
, ap
);
448 sqlite3VdbeAddOp4(v
, OP_Explain
, iThis
, pParse
->addrExplain
, 0,
450 sqlite3ExplainBreakpoint(bPush
?"PUSH":"", sqlite3VdbeGetOp(v
,-1)->p4
.z
);
452 pParse
->addrExplain
= iThis
;
458 ** Pop the EXPLAIN QUERY PLAN stack one level.
460 void sqlite3VdbeExplainPop(Parse
*pParse
){
461 sqlite3ExplainBreakpoint("POP", 0);
462 pParse
->addrExplain
= sqlite3VdbeExplainParent(pParse
);
464 #endif /* SQLITE_OMIT_EXPLAIN */
467 ** Add an OP_ParseSchema opcode. This routine is broken out from
468 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
469 ** as having been used.
471 ** The zWhere string must have been obtained from sqlite3_malloc().
472 ** This routine will take ownership of the allocated memory.
474 void sqlite3VdbeAddParseSchemaOp(Vdbe
*p
, int iDb
, char *zWhere
, u16 p5
){
476 sqlite3VdbeAddOp4(p
, OP_ParseSchema
, iDb
, 0, 0, zWhere
, P4_DYNAMIC
);
477 sqlite3VdbeChangeP5(p
, p5
);
478 for(j
=0; j
<p
->db
->nDb
; j
++) sqlite3VdbeUsesBtree(p
, j
);
479 sqlite3MayAbort(p
->pParse
);
483 ** Add an opcode that includes the p4 value as an integer.
485 int sqlite3VdbeAddOp4Int(
486 Vdbe
*p
, /* Add the opcode to this VM */
487 int op
, /* The new opcode */
488 int p1
, /* The P1 operand */
489 int p2
, /* The P2 operand */
490 int p3
, /* The P3 operand */
491 int p4
/* The P4 operand as an integer */
493 int addr
= sqlite3VdbeAddOp3(p
, op
, p1
, p2
, p3
);
494 if( p
->db
->mallocFailed
==0 ){
495 VdbeOp
*pOp
= &p
->aOp
[addr
];
496 pOp
->p4type
= P4_INT32
;
502 /* Insert the end of a co-routine
504 void sqlite3VdbeEndCoroutine(Vdbe
*v
, int regYield
){
505 sqlite3VdbeAddOp1(v
, OP_EndCoroutine
, regYield
);
507 /* Clear the temporary register cache, thereby ensuring that each
508 ** co-routine has its own independent set of registers, because co-routines
509 ** might expect their registers to be preserved across an OP_Yield, and
510 ** that could cause problems if two or more co-routines are using the same
511 ** temporary register.
513 v
->pParse
->nTempReg
= 0;
514 v
->pParse
->nRangeReg
= 0;
518 ** Create a new symbolic label for an instruction that has yet to be
519 ** coded. The symbolic label is really just a negative number. The
520 ** label can be used as the P2 value of an operation. Later, when
521 ** the label is resolved to a specific address, the VDBE will scan
522 ** through its operation list and change all values of P2 which match
523 ** the label into the resolved address.
525 ** The VDBE knows that a P2 value is a label because labels are
526 ** always negative and P2 values are suppose to be non-negative.
527 ** Hence, a negative P2 value is a label that has yet to be resolved.
528 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
531 ** Variable usage notes:
533 ** Parse.aLabel[x] Stores the address that the x-th label resolves
534 ** into. For testing (SQLITE_DEBUG), unresolved
535 ** labels stores -1, but that is not required.
536 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[]
537 ** Parse.nLabel The *negative* of the number of labels that have
538 ** been issued. The negative is stored because
539 ** that gives a performance improvement over storing
540 ** the equivalent positive value.
542 int sqlite3VdbeMakeLabel(Parse
*pParse
){
543 return --pParse
->nLabel
;
547 ** Resolve label "x" to be the address of the next instruction to
548 ** be inserted. The parameter "x" must have been obtained from
549 ** a prior call to sqlite3VdbeMakeLabel().
551 static SQLITE_NOINLINE
void resizeResolveLabel(Parse
*p
, Vdbe
*v
, int j
){
552 int nNewSize
= 10 - p
->nLabel
;
553 p
->aLabel
= sqlite3DbReallocOrFree(p
->db
, p
->aLabel
,
554 nNewSize
*sizeof(p
->aLabel
[0]));
560 for(i
=p
->nLabelAlloc
; i
<nNewSize
; i
++) p
->aLabel
[i
] = -1;
562 p
->nLabelAlloc
= nNewSize
;
563 p
->aLabel
[j
] = v
->nOp
;
566 void sqlite3VdbeResolveLabel(Vdbe
*v
, int x
){
567 Parse
*p
= v
->pParse
;
569 assert( v
->iVdbeMagic
==VDBE_MAGIC_INIT
);
570 assert( j
<-p
->nLabel
);
573 if( p
->db
->flags
& SQLITE_VdbeAddopTrace
){
574 printf("RESOLVE LABEL %d to %d\n", x
, v
->nOp
);
577 if( p
->nLabelAlloc
+ p
->nLabel
< 0 ){
578 resizeResolveLabel(p
,v
,j
);
580 assert( p
->aLabel
[j
]==(-1) ); /* Labels may only be resolved once */
581 p
->aLabel
[j
] = v
->nOp
;
586 ** Mark the VDBE as one that can only be run one time.
588 void sqlite3VdbeRunOnlyOnce(Vdbe
*p
){
593 ** Mark the VDBE as one that can only be run multiple times.
595 void sqlite3VdbeReusable(Vdbe
*p
){
599 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
602 ** The following type and function are used to iterate through all opcodes
603 ** in a Vdbe main program and each of the sub-programs (triggers) it may
604 ** invoke directly or indirectly. It should be used as follows:
609 ** memset(&sIter, 0, sizeof(sIter));
610 ** sIter.v = v; // v is of type Vdbe*
611 ** while( (pOp = opIterNext(&sIter)) ){
612 ** // Do something with pOp
614 ** sqlite3DbFree(v->db, sIter.apSub);
617 typedef struct VdbeOpIter VdbeOpIter
;
619 Vdbe
*v
; /* Vdbe to iterate through the opcodes of */
620 SubProgram
**apSub
; /* Array of subprograms */
621 int nSub
; /* Number of entries in apSub */
622 int iAddr
; /* Address of next instruction to return */
623 int iSub
; /* 0 = main program, 1 = first sub-program etc. */
625 static Op
*opIterNext(VdbeOpIter
*p
){
631 if( p
->iSub
<=p
->nSub
){
637 aOp
= p
->apSub
[p
->iSub
-1]->aOp
;
638 nOp
= p
->apSub
[p
->iSub
-1]->nOp
;
640 assert( p
->iAddr
<nOp
);
642 pRet
= &aOp
[p
->iAddr
];
649 if( pRet
->p4type
==P4_SUBPROGRAM
){
650 int nByte
= (p
->nSub
+1)*sizeof(SubProgram
*);
652 for(j
=0; j
<p
->nSub
; j
++){
653 if( p
->apSub
[j
]==pRet
->p4
.pProgram
) break;
656 p
->apSub
= sqlite3DbReallocOrFree(v
->db
, p
->apSub
, nByte
);
660 p
->apSub
[p
->nSub
++] = pRet
->p4
.pProgram
;
670 ** Check if the program stored in the VM associated with pParse may
671 ** throw an ABORT exception (causing the statement, but not entire transaction
672 ** to be rolled back). This condition is true if the main program or any
673 ** sub-programs contains any of the following:
675 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
676 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
681 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
682 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
683 ** (for CREATE TABLE AS SELECT ...)
685 ** Then check that the value of Parse.mayAbort is true if an
686 ** ABORT may be thrown, or false otherwise. Return true if it does
687 ** match, or false otherwise. This function is intended to be used as
688 ** part of an assert statement in the compiler. Similar to:
690 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
692 int sqlite3VdbeAssertMayAbort(Vdbe
*v
, int mayAbort
){
694 int hasFkCounter
= 0;
695 int hasCreateTable
= 0;
696 int hasCreateIndex
= 0;
697 int hasInitCoroutine
= 0;
700 memset(&sIter
, 0, sizeof(sIter
));
703 while( (pOp
= opIterNext(&sIter
))!=0 ){
704 int opcode
= pOp
->opcode
;
705 if( opcode
==OP_Destroy
|| opcode
==OP_VUpdate
|| opcode
==OP_VRename
706 || opcode
==OP_VDestroy
707 || opcode
==OP_VCreate
708 || opcode
==OP_ParseSchema
709 || ((opcode
==OP_Halt
|| opcode
==OP_HaltIfNull
)
710 && ((pOp
->p1
)!=SQLITE_OK
&& pOp
->p2
==OE_Abort
))
715 if( opcode
==OP_CreateBtree
&& pOp
->p3
==BTREE_INTKEY
) hasCreateTable
= 1;
717 /* hasCreateIndex may also be set for some DELETE statements that use
718 ** OP_Clear. So this routine may end up returning true in the case
719 ** where a "DELETE FROM tbl" has a statement-journal but does not
720 ** require one. This is not so bad - it is an inefficiency, not a bug. */
721 if( opcode
==OP_CreateBtree
&& pOp
->p3
==BTREE_BLOBKEY
) hasCreateIndex
= 1;
722 if( opcode
==OP_Clear
) hasCreateIndex
= 1;
724 if( opcode
==OP_InitCoroutine
) hasInitCoroutine
= 1;
725 #ifndef SQLITE_OMIT_FOREIGN_KEY
726 if( opcode
==OP_FkCounter
&& pOp
->p1
==0 && pOp
->p2
==1 ){
731 sqlite3DbFree(v
->db
, sIter
.apSub
);
733 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
734 ** If malloc failed, then the while() loop above may not have iterated
735 ** through all opcodes and hasAbort may be set incorrectly. Return
736 ** true for this case to prevent the assert() in the callers frame
738 return ( v
->db
->mallocFailed
|| hasAbort
==mayAbort
|| hasFkCounter
739 || (hasCreateTable
&& hasInitCoroutine
) || hasCreateIndex
742 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
746 ** Increment the nWrite counter in the VDBE if the cursor is not an
747 ** ephemeral cursor, or if the cursor argument is NULL.
749 void sqlite3VdbeIncrWriteCounter(Vdbe
*p
, VdbeCursor
*pC
){
751 || (pC
->eCurType
!=CURTYPE_SORTER
752 && pC
->eCurType
!=CURTYPE_PSEUDO
762 ** Assert if an Abort at this point in time might result in a corrupt
765 void sqlite3VdbeAssertAbortable(Vdbe
*p
){
766 assert( p
->nWrite
==0 || p
->usesStmtJournal
);
771 ** This routine is called after all opcodes have been inserted. It loops
772 ** through all the opcodes and fixes up some details.
774 ** (1) For each jump instruction with a negative P2 value (a label)
775 ** resolve the P2 value to an actual address.
777 ** (2) Compute the maximum number of arguments used by any SQL function
778 ** and store that value in *pMaxFuncArgs.
780 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
781 ** indicate what the prepared statement actually does.
783 ** (4) Initialize the p4.xAdvance pointer on opcodes that use it.
785 ** (5) Reclaim the memory allocated for storing labels.
787 ** This routine will only function correctly if the mkopcodeh.tcl generator
788 ** script numbers the opcodes correctly. Changes to this routine must be
789 ** coordinated with changes to mkopcodeh.tcl.
791 static void resolveP2Values(Vdbe
*p
, int *pMaxFuncArgs
){
792 int nMaxArgs
= *pMaxFuncArgs
;
794 Parse
*pParse
= p
->pParse
;
795 int *aLabel
= pParse
->aLabel
;
798 pOp
= &p
->aOp
[p
->nOp
-1];
801 /* Only JUMP opcodes and the short list of special opcodes in the switch
802 ** below need to be considered. The mkopcodeh.tcl generator script groups
803 ** all these opcodes together near the front of the opcode list. Skip
804 ** any opcode that does not need processing by virtual of the fact that
805 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
807 if( pOp
->opcode
<=SQLITE_MX_JUMP_OPCODE
){
808 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
809 ** cases from this switch! */
810 switch( pOp
->opcode
){
811 case OP_Transaction
: {
812 if( pOp
->p2
!=0 ) p
->readOnly
= 0;
813 /* no break */ deliberate_fall_through
820 #ifndef SQLITE_OMIT_WAL
824 case OP_JournalMode
: {
830 case OP_SorterNext
: {
831 pOp
->p4
.xAdvance
= sqlite3BtreeNext
;
832 pOp
->p4type
= P4_ADVANCE
;
833 /* The code generator never codes any of these opcodes as a jump
834 ** to a label. They are always coded as a jump backwards to a
836 assert( pOp
->p2
>=0 );
840 pOp
->p4
.xAdvance
= sqlite3BtreePrevious
;
841 pOp
->p4type
= P4_ADVANCE
;
842 /* The code generator never codes any of these opcodes as a jump
843 ** to a label. They are always coded as a jump backwards to a
845 assert( pOp
->p2
>=0 );
848 #ifndef SQLITE_OMIT_VIRTUALTABLE
850 if( pOp
->p2
>nMaxArgs
) nMaxArgs
= pOp
->p2
;
855 assert( (pOp
- p
->aOp
) >= 3 );
856 assert( pOp
[-1].opcode
==OP_Integer
);
858 if( n
>nMaxArgs
) nMaxArgs
= n
;
859 /* Fall through into the default case */
860 /* no break */ deliberate_fall_through
865 /* The mkopcodeh.tcl script has so arranged things that the only
866 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
867 ** have non-negative values for P2. */
868 assert( (sqlite3OpcodeProperty
[pOp
->opcode
] & OPFLG_JUMP
)!=0 );
869 assert( ADDR(pOp
->p2
)<-pParse
->nLabel
);
870 pOp
->p2
= aLabel
[ADDR(pOp
->p2
)];
875 /* The mkopcodeh.tcl script has so arranged things that the only
876 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
877 ** have non-negative values for P2. */
878 assert( (sqlite3OpcodeProperty
[pOp
->opcode
]&OPFLG_JUMP
)==0 || pOp
->p2
>=0);
880 if( pOp
==p
->aOp
) break;
883 sqlite3DbFree(p
->db
, pParse
->aLabel
);
886 *pMaxFuncArgs
= nMaxArgs
;
887 assert( p
->bIsReader
!=0 || DbMaskAllZero(p
->btreeMask
) );
891 ** Return the address of the next instruction to be inserted.
893 int sqlite3VdbeCurrentAddr(Vdbe
*p
){
894 assert( p
->iVdbeMagic
==VDBE_MAGIC_INIT
);
899 ** Verify that at least N opcode slots are available in p without
900 ** having to malloc for more space (except when compiled using
901 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
902 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
903 ** fail due to a OOM fault and hence that the return value from
904 ** sqlite3VdbeAddOpList() will always be non-NULL.
906 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
907 void sqlite3VdbeVerifyNoMallocRequired(Vdbe
*p
, int N
){
908 assert( p
->nOp
+ N
<= p
->nOpAlloc
);
913 ** Verify that the VM passed as the only argument does not contain
914 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
915 ** by code in pragma.c to ensure that the implementation of certain
916 ** pragmas comports with the flags specified in the mkpragmatab.tcl
919 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
920 void sqlite3VdbeVerifyNoResultRow(Vdbe
*p
){
922 for(i
=0; i
<p
->nOp
; i
++){
923 assert( p
->aOp
[i
].opcode
!=OP_ResultRow
);
929 ** Generate code (a single OP_Abortable opcode) that will
930 ** verify that the VDBE program can safely call Abort in the current
933 #if defined(SQLITE_DEBUG)
934 void sqlite3VdbeVerifyAbortable(Vdbe
*p
, int onError
){
935 if( onError
==OE_Abort
) sqlite3VdbeAddOp0(p
, OP_Abortable
);
940 ** This function returns a pointer to the array of opcodes associated with
941 ** the Vdbe passed as the first argument. It is the callers responsibility
942 ** to arrange for the returned array to be eventually freed using the
943 ** vdbeFreeOpArray() function.
945 ** Before returning, *pnOp is set to the number of entries in the returned
946 ** array. Also, *pnMaxArg is set to the larger of its current value and
947 ** the number of entries in the Vdbe.apArg[] array required to execute the
950 VdbeOp
*sqlite3VdbeTakeOpArray(Vdbe
*p
, int *pnOp
, int *pnMaxArg
){
951 VdbeOp
*aOp
= p
->aOp
;
952 assert( aOp
&& !p
->db
->mallocFailed
);
954 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
955 assert( DbMaskAllZero(p
->btreeMask
) );
957 resolveP2Values(p
, pnMaxArg
);
964 ** Add a whole list of operations to the operation stack. Return a
965 ** pointer to the first operation inserted.
967 ** Non-zero P2 arguments to jump instructions are automatically adjusted
968 ** so that the jump target is relative to the first operation inserted.
970 VdbeOp
*sqlite3VdbeAddOpList(
971 Vdbe
*p
, /* Add opcodes to the prepared statement */
972 int nOp
, /* Number of opcodes to add */
973 VdbeOpList
const *aOp
, /* The opcodes to be added */
974 int iLineno
/* Source-file line number of first opcode */
977 VdbeOp
*pOut
, *pFirst
;
979 assert( p
->iVdbeMagic
==VDBE_MAGIC_INIT
);
980 if( p
->nOp
+ nOp
> p
->nOpAlloc
&& growOpArray(p
, nOp
) ){
983 pFirst
= pOut
= &p
->aOp
[p
->nOp
];
984 for(i
=0; i
<nOp
; i
++, aOp
++, pOut
++){
985 pOut
->opcode
= aOp
->opcode
;
988 assert( aOp
->p2
>=0 );
989 if( (sqlite3OpcodeProperty
[aOp
->opcode
] & OPFLG_JUMP
)!=0 && aOp
->p2
>0 ){
993 pOut
->p4type
= P4_NOTUSED
;
996 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
999 #ifdef SQLITE_VDBE_COVERAGE
1000 pOut
->iSrcLine
= iLineno
+i
;
1005 if( p
->db
->flags
& SQLITE_VdbeAddopTrace
){
1006 sqlite3VdbePrintOp(0, i
+p
->nOp
, &p
->aOp
[i
+p
->nOp
]);
1014 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1016 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1018 void sqlite3VdbeScanStatus(
1019 Vdbe
*p
, /* VM to add scanstatus() to */
1020 int addrExplain
, /* Address of OP_Explain (or 0) */
1021 int addrLoop
, /* Address of loop counter */
1022 int addrVisit
, /* Address of rows visited counter */
1023 LogEst nEst
, /* Estimated number of output rows */
1024 const char *zName
/* Name of table or index being scanned */
1026 sqlite3_int64 nByte
= (p
->nScan
+1) * sizeof(ScanStatus
);
1028 aNew
= (ScanStatus
*)sqlite3DbRealloc(p
->db
, p
->aScan
, nByte
);
1030 ScanStatus
*pNew
= &aNew
[p
->nScan
++];
1031 pNew
->addrExplain
= addrExplain
;
1032 pNew
->addrLoop
= addrLoop
;
1033 pNew
->addrVisit
= addrVisit
;
1035 pNew
->zName
= sqlite3DbStrDup(p
->db
, zName
);
1043 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1044 ** for a specific instruction.
1046 void sqlite3VdbeChangeOpcode(Vdbe
*p
, int addr
, u8 iNewOpcode
){
1047 sqlite3VdbeGetOp(p
,addr
)->opcode
= iNewOpcode
;
1049 void sqlite3VdbeChangeP1(Vdbe
*p
, int addr
, int val
){
1050 sqlite3VdbeGetOp(p
,addr
)->p1
= val
;
1052 void sqlite3VdbeChangeP2(Vdbe
*p
, int addr
, int val
){
1053 sqlite3VdbeGetOp(p
,addr
)->p2
= val
;
1055 void sqlite3VdbeChangeP3(Vdbe
*p
, int addr
, int val
){
1056 sqlite3VdbeGetOp(p
,addr
)->p3
= val
;
1058 void sqlite3VdbeChangeP5(Vdbe
*p
, u16 p5
){
1059 assert( p
->nOp
>0 || p
->db
->mallocFailed
);
1060 if( p
->nOp
>0 ) p
->aOp
[p
->nOp
-1].p5
= p5
;
1064 ** Change the P2 operand of instruction addr so that it points to
1065 ** the address of the next instruction to be coded.
1067 void sqlite3VdbeJumpHere(Vdbe
*p
, int addr
){
1068 sqlite3VdbeChangeP2(p
, addr
, p
->nOp
);
1072 ** Change the P2 operand of the jump instruction at addr so that
1073 ** the jump lands on the next opcode. Or if the jump instruction was
1074 ** the previous opcode (and is thus a no-op) then simply back up
1075 ** the next instruction counter by one slot so that the jump is
1076 ** overwritten by the next inserted opcode.
1078 ** This routine is an optimization of sqlite3VdbeJumpHere() that
1079 ** strives to omit useless byte-code like this:
1084 void sqlite3VdbeJumpHereOrPopInst(Vdbe
*p
, int addr
){
1085 if( addr
==p
->nOp
-1 ){
1086 assert( p
->aOp
[addr
].opcode
==OP_Once
1087 || p
->aOp
[addr
].opcode
==OP_If
1088 || p
->aOp
[addr
].opcode
==OP_FkIfZero
);
1089 assert( p
->aOp
[addr
].p4type
==0 );
1090 #ifdef SQLITE_VDBE_COVERAGE
1091 sqlite3VdbeGetOp(p
,-1)->iSrcLine
= 0; /* Erase VdbeCoverage() macros */
1095 sqlite3VdbeChangeP2(p
, addr
, p
->nOp
);
1101 ** If the input FuncDef structure is ephemeral, then free it. If
1102 ** the FuncDef is not ephermal, then do nothing.
1104 static void freeEphemeralFunction(sqlite3
*db
, FuncDef
*pDef
){
1105 if( (pDef
->funcFlags
& SQLITE_FUNC_EPHEM
)!=0 ){
1106 sqlite3DbFreeNN(db
, pDef
);
1111 ** Delete a P4 value if necessary.
1113 static SQLITE_NOINLINE
void freeP4Mem(sqlite3
*db
, Mem
*p
){
1114 if( p
->szMalloc
) sqlite3DbFree(db
, p
->zMalloc
);
1115 sqlite3DbFreeNN(db
, p
);
1117 static SQLITE_NOINLINE
void freeP4FuncCtx(sqlite3
*db
, sqlite3_context
*p
){
1118 freeEphemeralFunction(db
, p
->pFunc
);
1119 sqlite3DbFreeNN(db
, p
);
1121 static void freeP4(sqlite3
*db
, int p4type
, void *p4
){
1125 freeP4FuncCtx(db
, (sqlite3_context
*)p4
);
1133 sqlite3DbFree(db
, p4
);
1137 if( db
->pnBytesFreed
==0 ) sqlite3KeyInfoUnref((KeyInfo
*)p4
);
1140 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1142 sqlite3ExprDelete(db
, (Expr
*)p4
);
1147 freeEphemeralFunction(db
, (FuncDef
*)p4
);
1151 if( db
->pnBytesFreed
==0 ){
1152 sqlite3ValueFree((sqlite3_value
*)p4
);
1154 freeP4Mem(db
, (Mem
*)p4
);
1159 if( db
->pnBytesFreed
==0 ) sqlite3VtabUnlock((VTable
*)p4
);
1166 ** Free the space allocated for aOp and any p4 values allocated for the
1167 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1170 static void vdbeFreeOpArray(sqlite3
*db
, Op
*aOp
, int nOp
){
1173 for(pOp
=&aOp
[nOp
-1]; pOp
>=aOp
; pOp
--){
1174 if( pOp
->p4type
<= P4_FREE_IF_LE
) freeP4(db
, pOp
->p4type
, pOp
->p4
.p
);
1175 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1176 sqlite3DbFree(db
, pOp
->zComment
);
1179 sqlite3DbFreeNN(db
, aOp
);
1184 ** Link the SubProgram object passed as the second argument into the linked
1185 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1186 ** objects when the VM is no longer required.
1188 void sqlite3VdbeLinkSubProgram(Vdbe
*pVdbe
, SubProgram
*p
){
1189 p
->pNext
= pVdbe
->pProgram
;
1190 pVdbe
->pProgram
= p
;
1194 ** Return true if the given Vdbe has any SubPrograms.
1196 int sqlite3VdbeHasSubProgram(Vdbe
*pVdbe
){
1197 return pVdbe
->pProgram
!=0;
1201 ** Change the opcode at addr into OP_Noop
1203 int sqlite3VdbeChangeToNoop(Vdbe
*p
, int addr
){
1205 if( p
->db
->mallocFailed
) return 0;
1206 assert( addr
>=0 && addr
<p
->nOp
);
1207 pOp
= &p
->aOp
[addr
];
1208 freeP4(p
->db
, pOp
->p4type
, pOp
->p4
.p
);
1209 pOp
->p4type
= P4_NOTUSED
;
1211 pOp
->opcode
= OP_Noop
;
1216 ** If the last opcode is "op" and it is not a jump destination,
1217 ** then remove it. Return true if and only if an opcode was removed.
1219 int sqlite3VdbeDeletePriorOpcode(Vdbe
*p
, u8 op
){
1220 if( p
->nOp
>0 && p
->aOp
[p
->nOp
-1].opcode
==op
){
1221 return sqlite3VdbeChangeToNoop(p
, p
->nOp
-1);
1229 ** Generate an OP_ReleaseReg opcode to indicate that a range of
1230 ** registers, except any identified by mask, are no longer in use.
1232 void sqlite3VdbeReleaseRegisters(
1233 Parse
*pParse
, /* Parsing context */
1234 int iFirst
, /* Index of first register to be released */
1235 int N
, /* Number of registers to release */
1236 u32 mask
, /* Mask of registers to NOT release */
1237 int bUndefine
/* If true, mark registers as undefined */
1240 assert( pParse
->pVdbe
);
1241 assert( iFirst
>=1 );
1242 assert( iFirst
+N
-1<=pParse
->nMem
);
1243 if( N
<=31 && mask
!=0 ){
1244 while( N
>0 && (mask
&1)!=0 ){
1249 while( N
>0 && N
<=32 && (mask
& MASKBIT32(N
-1))!=0 ){
1250 mask
&= ~MASKBIT32(N
-1);
1255 sqlite3VdbeAddOp3(pParse
->pVdbe
, OP_ReleaseReg
, iFirst
, N
, *(int*)&mask
);
1256 if( bUndefine
) sqlite3VdbeChangeP5(pParse
->pVdbe
, 1);
1259 #endif /* SQLITE_DEBUG */
1263 ** Change the value of the P4 operand for a specific instruction.
1264 ** This routine is useful when a large program is loaded from a
1265 ** static array using sqlite3VdbeAddOpList but we want to make a
1266 ** few minor changes to the program.
1268 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1269 ** the string is made into memory obtained from sqlite3_malloc().
1270 ** A value of n==0 means copy bytes of zP4 up to and including the
1271 ** first null byte. If n>0 then copy n+1 bytes of zP4.
1273 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1274 ** to a string or structure that is guaranteed to exist for the lifetime of
1275 ** the Vdbe. In these cases we can just copy the pointer.
1277 ** If addr<0 then change P4 on the most recently inserted instruction.
1279 static void SQLITE_NOINLINE
vdbeChangeP4Full(
1286 freeP4(p
->db
, pOp
->p4type
, pOp
->p4
.p
);
1291 sqlite3VdbeChangeP4(p
, (int)(pOp
- p
->aOp
), zP4
, n
);
1293 if( n
==0 ) n
= sqlite3Strlen30(zP4
);
1294 pOp
->p4
.z
= sqlite3DbStrNDup(p
->db
, zP4
, n
);
1295 pOp
->p4type
= P4_DYNAMIC
;
1298 void sqlite3VdbeChangeP4(Vdbe
*p
, int addr
, const char *zP4
, int n
){
1303 assert( p
->iVdbeMagic
==VDBE_MAGIC_INIT
);
1304 assert( p
->aOp
!=0 || db
->mallocFailed
);
1305 if( db
->mallocFailed
){
1306 if( n
!=P4_VTAB
) freeP4(db
, n
, (void*)*(char**)&zP4
);
1310 assert( addr
<p
->nOp
);
1314 pOp
= &p
->aOp
[addr
];
1315 if( n
>=0 || pOp
->p4type
){
1316 vdbeChangeP4Full(p
, pOp
, zP4
, n
);
1320 /* Note: this cast is safe, because the origin data point was an int
1321 ** that was cast to a (const char *). */
1322 pOp
->p4
.i
= SQLITE_PTR_TO_INT(zP4
);
1323 pOp
->p4type
= P4_INT32
;
1326 pOp
->p4
.p
= (void*)zP4
;
1327 pOp
->p4type
= (signed char)n
;
1328 if( n
==P4_VTAB
) sqlite3VtabLock((VTable
*)zP4
);
1333 ** Change the P4 operand of the most recently coded instruction
1334 ** to the value defined by the arguments. This is a high-speed
1335 ** version of sqlite3VdbeChangeP4().
1337 ** The P4 operand must not have been previously defined. And the new
1338 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
1341 void sqlite3VdbeAppendP4(Vdbe
*p
, void *pP4
, int n
){
1343 assert( n
!=P4_INT32
&& n
!=P4_VTAB
);
1345 if( p
->db
->mallocFailed
){
1346 freeP4(p
->db
, n
, pP4
);
1350 pOp
= &p
->aOp
[p
->nOp
-1];
1351 assert( pOp
->p4type
==P4_NOTUSED
);
1358 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1361 void sqlite3VdbeSetP4KeyInfo(Parse
*pParse
, Index
*pIdx
){
1362 Vdbe
*v
= pParse
->pVdbe
;
1366 pKeyInfo
= sqlite3KeyInfoOfIndex(pParse
, pIdx
);
1367 if( pKeyInfo
) sqlite3VdbeAppendP4(v
, pKeyInfo
, P4_KEYINFO
);
1370 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1372 ** Change the comment on the most recently coded instruction. Or
1373 ** insert a No-op and add the comment to that new instruction. This
1374 ** makes the code easier to read during debugging. None of this happens
1375 ** in a production build.
1377 static void vdbeVComment(Vdbe
*p
, const char *zFormat
, va_list ap
){
1378 assert( p
->nOp
>0 || p
->aOp
==0 );
1379 assert( p
->aOp
==0 || p
->aOp
[p
->nOp
-1].zComment
==0 || p
->db
->mallocFailed
1380 || p
->pParse
->nErr
>0 );
1383 sqlite3DbFree(p
->db
, p
->aOp
[p
->nOp
-1].zComment
);
1384 p
->aOp
[p
->nOp
-1].zComment
= sqlite3VMPrintf(p
->db
, zFormat
, ap
);
1387 void sqlite3VdbeComment(Vdbe
*p
, const char *zFormat
, ...){
1390 va_start(ap
, zFormat
);
1391 vdbeVComment(p
, zFormat
, ap
);
1395 void sqlite3VdbeNoopComment(Vdbe
*p
, const char *zFormat
, ...){
1398 sqlite3VdbeAddOp0(p
, OP_Noop
);
1399 va_start(ap
, zFormat
);
1400 vdbeVComment(p
, zFormat
, ap
);
1406 #ifdef SQLITE_VDBE_COVERAGE
1408 ** Set the value if the iSrcLine field for the previously coded instruction.
1410 void sqlite3VdbeSetLineNumber(Vdbe
*v
, int iLine
){
1411 sqlite3VdbeGetOp(v
,-1)->iSrcLine
= iLine
;
1413 #endif /* SQLITE_VDBE_COVERAGE */
1416 ** Return the opcode for a given address. If the address is -1, then
1417 ** return the most recently inserted opcode.
1419 ** If a memory allocation error has occurred prior to the calling of this
1420 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
1421 ** is readable but not writable, though it is cast to a writable value.
1422 ** The return of a dummy opcode allows the call to continue functioning
1423 ** after an OOM fault without having to check to see if the return from
1424 ** this routine is a valid pointer. But because the dummy.opcode is 0,
1425 ** dummy will never be written to. This is verified by code inspection and
1426 ** by running with Valgrind.
1428 VdbeOp
*sqlite3VdbeGetOp(Vdbe
*p
, int addr
){
1429 /* C89 specifies that the constant "dummy" will be initialized to all
1430 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
1431 static VdbeOp dummy
; /* Ignore the MSVC warning about no initializer */
1432 assert( p
->iVdbeMagic
==VDBE_MAGIC_INIT
);
1436 assert( (addr
>=0 && addr
<p
->nOp
) || p
->db
->mallocFailed
);
1437 if( p
->db
->mallocFailed
){
1438 return (VdbeOp
*)&dummy
;
1440 return &p
->aOp
[addr
];
1444 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1446 ** Return an integer value for one of the parameters to the opcode pOp
1447 ** determined by character c.
1449 static int translateP(char c
, const Op
*pOp
){
1450 if( c
=='1' ) return pOp
->p1
;
1451 if( c
=='2' ) return pOp
->p2
;
1452 if( c
=='3' ) return pOp
->p3
;
1453 if( c
=='4' ) return pOp
->p4
.i
;
1458 ** Compute a string for the "comment" field of a VDBE opcode listing.
1460 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1461 ** to an extra string that is appended to the sqlite3OpcodeName(). In the
1462 ** absence of other comments, this synopsis becomes the comment on the opcode.
1463 ** Some translation occurs:
1466 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1467 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1468 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
1470 char *sqlite3VdbeDisplayComment(
1471 sqlite3
*db
, /* Optional - Oom error reporting only */
1472 const Op
*pOp
, /* The opcode to be commented */
1473 const char *zP4
/* Previously obtained value for P4 */
1475 const char *zOpName
;
1476 const char *zSynopsis
;
1482 sqlite3StrAccumInit(&x
, 0, 0, 0, SQLITE_MAX_LENGTH
);
1483 zOpName
= sqlite3OpcodeName(pOp
->opcode
);
1484 nOpName
= sqlite3Strlen30(zOpName
);
1485 if( zOpName
[nOpName
+1] ){
1488 zSynopsis
= zOpName
+= nOpName
+ 1;
1489 if( strncmp(zSynopsis
,"IF ",3)==0 ){
1490 sqlite3_snprintf(sizeof(zAlt
), zAlt
, "if %s goto P2", zSynopsis
+3);
1493 for(ii
=0; (c
= zSynopsis
[ii
])!=0; ii
++){
1495 c
= zSynopsis
[++ii
];
1497 sqlite3_str_appendall(&x
, zP4
);
1499 sqlite3_str_appendall(&x
, pOp
->zComment
);
1502 int v1
= translateP(c
, pOp
);
1504 if( strncmp(zSynopsis
+ii
+1, "@P", 2)==0 ){
1506 v2
= translateP(zSynopsis
[ii
], pOp
);
1507 if( strncmp(zSynopsis
+ii
+1,"+1",2)==0 ){
1512 sqlite3_str_appendf(&x
, "%d", v1
);
1514 sqlite3_str_appendf(&x
, "%d..%d", v1
, v1
+v2
-1);
1516 }else if( strncmp(zSynopsis
+ii
+1, "@NP", 3)==0 ){
1517 sqlite3_context
*pCtx
= pOp
->p4
.pCtx
;
1518 if( pOp
->p4type
!=P4_FUNCCTX
|| pCtx
->argc
==1 ){
1519 sqlite3_str_appendf(&x
, "%d", v1
);
1520 }else if( pCtx
->argc
>1 ){
1521 sqlite3_str_appendf(&x
, "%d..%d", v1
, v1
+pCtx
->argc
-1);
1522 }else if( x
.accError
==0 ){
1523 assert( x
.nChar
>2 );
1529 sqlite3_str_appendf(&x
, "%d", v1
);
1530 if( strncmp(zSynopsis
+ii
+1, "..P3", 4)==0 && pOp
->p3
==0 ){
1536 sqlite3_str_appendchar(&x
, 1, c
);
1539 if( !seenCom
&& pOp
->zComment
){
1540 sqlite3_str_appendf(&x
, "; %s", pOp
->zComment
);
1542 }else if( pOp
->zComment
){
1543 sqlite3_str_appendall(&x
, pOp
->zComment
);
1545 if( (x
.accError
& SQLITE_NOMEM
)!=0 && db
!=0 ){
1546 sqlite3OomFault(db
);
1548 return sqlite3StrAccumFinish(&x
);
1550 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
1552 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1554 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1555 ** that can be displayed in the P4 column of EXPLAIN output.
1557 static void displayP4Expr(StrAccum
*p
, Expr
*pExpr
){
1558 const char *zOp
= 0;
1559 switch( pExpr
->op
){
1561 sqlite3_str_appendf(p
, "%Q", pExpr
->u
.zToken
);
1564 sqlite3_str_appendf(p
, "%d", pExpr
->u
.iValue
);
1567 sqlite3_str_appendf(p
, "NULL");
1570 sqlite3_str_appendf(p
, "r[%d]", pExpr
->iTable
);
1574 if( pExpr
->iColumn
<0 ){
1575 sqlite3_str_appendf(p
, "rowid");
1577 sqlite3_str_appendf(p
, "c%d", (int)pExpr
->iColumn
);
1581 case TK_LT
: zOp
= "LT"; break;
1582 case TK_LE
: zOp
= "LE"; break;
1583 case TK_GT
: zOp
= "GT"; break;
1584 case TK_GE
: zOp
= "GE"; break;
1585 case TK_NE
: zOp
= "NE"; break;
1586 case TK_EQ
: zOp
= "EQ"; break;
1587 case TK_IS
: zOp
= "IS"; break;
1588 case TK_ISNOT
: zOp
= "ISNOT"; break;
1589 case TK_AND
: zOp
= "AND"; break;
1590 case TK_OR
: zOp
= "OR"; break;
1591 case TK_PLUS
: zOp
= "ADD"; break;
1592 case TK_STAR
: zOp
= "MUL"; break;
1593 case TK_MINUS
: zOp
= "SUB"; break;
1594 case TK_REM
: zOp
= "REM"; break;
1595 case TK_BITAND
: zOp
= "BITAND"; break;
1596 case TK_BITOR
: zOp
= "BITOR"; break;
1597 case TK_SLASH
: zOp
= "DIV"; break;
1598 case TK_LSHIFT
: zOp
= "LSHIFT"; break;
1599 case TK_RSHIFT
: zOp
= "RSHIFT"; break;
1600 case TK_CONCAT
: zOp
= "CONCAT"; break;
1601 case TK_UMINUS
: zOp
= "MINUS"; break;
1602 case TK_UPLUS
: zOp
= "PLUS"; break;
1603 case TK_BITNOT
: zOp
= "BITNOT"; break;
1604 case TK_NOT
: zOp
= "NOT"; break;
1605 case TK_ISNULL
: zOp
= "ISNULL"; break;
1606 case TK_NOTNULL
: zOp
= "NOTNULL"; break;
1609 sqlite3_str_appendf(p
, "%s", "expr");
1614 sqlite3_str_appendf(p
, "%s(", zOp
);
1615 displayP4Expr(p
, pExpr
->pLeft
);
1616 if( pExpr
->pRight
){
1617 sqlite3_str_append(p
, ",", 1);
1618 displayP4Expr(p
, pExpr
->pRight
);
1620 sqlite3_str_append(p
, ")", 1);
1623 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1628 ** Compute a string that describes the P4 parameter for an opcode.
1629 ** Use zTemp for any required temporary buffer space.
1631 char *sqlite3VdbeDisplayP4(sqlite3
*db
, Op
*pOp
){
1635 sqlite3StrAccumInit(&x
, 0, 0, 0, SQLITE_MAX_LENGTH
);
1636 switch( pOp
->p4type
){
1639 KeyInfo
*pKeyInfo
= pOp
->p4
.pKeyInfo
;
1640 assert( pKeyInfo
->aSortFlags
!=0 );
1641 sqlite3_str_appendf(&x
, "k(%d", pKeyInfo
->nKeyField
);
1642 for(j
=0; j
<pKeyInfo
->nKeyField
; j
++){
1643 CollSeq
*pColl
= pKeyInfo
->aColl
[j
];
1644 const char *zColl
= pColl
? pColl
->zName
: "";
1645 if( strcmp(zColl
, "BINARY")==0 ) zColl
= "B";
1646 sqlite3_str_appendf(&x
, ",%s%s%s",
1647 (pKeyInfo
->aSortFlags
[j
] & KEYINFO_ORDER_DESC
) ? "-" : "",
1648 (pKeyInfo
->aSortFlags
[j
] & KEYINFO_ORDER_BIGNULL
)? "N." : "",
1651 sqlite3_str_append(&x
, ")", 1);
1654 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1656 displayP4Expr(&x
, pOp
->p4
.pExpr
);
1661 static const char *const encnames
[] = {"?", "8", "16LE", "16BE"};
1662 CollSeq
*pColl
= pOp
->p4
.pColl
;
1663 assert( pColl
->enc
>=0 && pColl
->enc
<4 );
1664 sqlite3_str_appendf(&x
, "%.18s-%s", pColl
->zName
,
1665 encnames
[pColl
->enc
]);
1669 FuncDef
*pDef
= pOp
->p4
.pFunc
;
1670 sqlite3_str_appendf(&x
, "%s(%d)", pDef
->zName
, pDef
->nArg
);
1674 FuncDef
*pDef
= pOp
->p4
.pCtx
->pFunc
;
1675 sqlite3_str_appendf(&x
, "%s(%d)", pDef
->zName
, pDef
->nArg
);
1679 sqlite3_str_appendf(&x
, "%lld", *pOp
->p4
.pI64
);
1683 sqlite3_str_appendf(&x
, "%d", pOp
->p4
.i
);
1687 sqlite3_str_appendf(&x
, "%.16g", *pOp
->p4
.pReal
);
1691 Mem
*pMem
= pOp
->p4
.pMem
;
1692 if( pMem
->flags
& MEM_Str
){
1694 }else if( pMem
->flags
& (MEM_Int
|MEM_IntReal
) ){
1695 sqlite3_str_appendf(&x
, "%lld", pMem
->u
.i
);
1696 }else if( pMem
->flags
& MEM_Real
){
1697 sqlite3_str_appendf(&x
, "%.16g", pMem
->u
.r
);
1698 }else if( pMem
->flags
& MEM_Null
){
1701 assert( pMem
->flags
& MEM_Blob
);
1706 #ifndef SQLITE_OMIT_VIRTUALTABLE
1708 sqlite3_vtab
*pVtab
= pOp
->p4
.pVtab
->pVtab
;
1709 sqlite3_str_appendf(&x
, "vtab:%p", pVtab
);
1715 u32
*ai
= pOp
->p4
.ai
;
1716 u32 n
= ai
[0]; /* The first element of an INTARRAY is always the
1717 ** count of the number of elements to follow */
1718 for(i
=1; i
<=n
; i
++){
1719 sqlite3_str_appendf(&x
, "%c%u", (i
==1 ? '[' : ','), ai
[i
]);
1721 sqlite3_str_append(&x
, "]", 1);
1724 case P4_SUBPROGRAM
: {
1733 zP4
= pOp
->p4
.pTab
->zName
;
1740 if( zP4
) sqlite3_str_appendall(&x
, zP4
);
1741 if( (x
.accError
& SQLITE_NOMEM
)!=0 ){
1742 sqlite3OomFault(db
);
1744 return sqlite3StrAccumFinish(&x
);
1746 #endif /* VDBE_DISPLAY_P4 */
1749 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1751 ** The prepared statements need to know in advance the complete set of
1752 ** attached databases that will be use. A mask of these databases
1753 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
1754 ** p->btreeMask of databases that will require a lock.
1756 void sqlite3VdbeUsesBtree(Vdbe
*p
, int i
){
1757 assert( i
>=0 && i
<p
->db
->nDb
&& i
<(int)sizeof(yDbMask
)*8 );
1758 assert( i
<(int)sizeof(p
->btreeMask
)*8 );
1759 DbMaskSet(p
->btreeMask
, i
);
1760 if( i
!=1 && sqlite3BtreeSharable(p
->db
->aDb
[i
].pBt
) ){
1761 DbMaskSet(p
->lockMask
, i
);
1765 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1767 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1768 ** this routine obtains the mutex associated with each BtShared structure
1769 ** that may be accessed by the VM passed as an argument. In doing so it also
1770 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1771 ** that the correct busy-handler callback is invoked if required.
1773 ** If SQLite is not threadsafe but does support shared-cache mode, then
1774 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1775 ** of all of BtShared structures accessible via the database handle
1776 ** associated with the VM.
1778 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1779 ** function is a no-op.
1781 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1782 ** statement p will ever use. Let N be the number of bits in p->btreeMask
1783 ** corresponding to btrees that use shared cache. Then the runtime of
1784 ** this routine is N*N. But as N is rarely more than 1, this should not
1787 void sqlite3VdbeEnter(Vdbe
*p
){
1792 if( DbMaskAllZero(p
->lockMask
) ) return; /* The common case */
1796 for(i
=0; i
<nDb
; i
++){
1797 if( i
!=1 && DbMaskTest(p
->lockMask
,i
) && ALWAYS(aDb
[i
].pBt
!=0) ){
1798 sqlite3BtreeEnter(aDb
[i
].pBt
);
1804 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1806 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1808 static SQLITE_NOINLINE
void vdbeLeave(Vdbe
*p
){
1816 for(i
=0; i
<nDb
; i
++){
1817 if( i
!=1 && DbMaskTest(p
->lockMask
,i
) && ALWAYS(aDb
[i
].pBt
!=0) ){
1818 sqlite3BtreeLeave(aDb
[i
].pBt
);
1822 void sqlite3VdbeLeave(Vdbe
*p
){
1823 if( DbMaskAllZero(p
->lockMask
) ) return; /* The common case */
1828 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1830 ** Print a single opcode. This routine is used for debugging only.
1832 void sqlite3VdbePrintOp(FILE *pOut
, int pc
, VdbeOp
*pOp
){
1836 static const char *zFormat1
= "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1837 if( pOut
==0 ) pOut
= stdout
;
1838 sqlite3BeginBenignMalloc();
1839 dummyDb
.mallocFailed
= 1;
1840 zP4
= sqlite3VdbeDisplayP4(&dummyDb
, pOp
);
1841 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1842 zCom
= sqlite3VdbeDisplayComment(0, pOp
, zP4
);
1846 /* NB: The sqlite3OpcodeName() function is implemented by code created
1847 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1848 ** information from the vdbe.c source text */
1849 fprintf(pOut
, zFormat1
, pc
,
1850 sqlite3OpcodeName(pOp
->opcode
), pOp
->p1
, pOp
->p2
, pOp
->p3
,
1851 zP4
? zP4
: "", pOp
->p5
,
1857 sqlite3EndBenignMalloc();
1862 ** Initialize an array of N Mem element.
1864 static void initMemArray(Mem
*p
, int N
, sqlite3
*db
, u16 flags
){
1877 ** Release an array of N Mem elements
1879 static void releaseMemArray(Mem
*p
, int N
){
1882 sqlite3
*db
= p
->db
;
1883 if( db
->pnBytesFreed
){
1885 if( p
->szMalloc
) sqlite3DbFree(db
, p
->zMalloc
);
1886 }while( (++p
)<pEnd
);
1890 assert( (&p
[1])==pEnd
|| p
[0].db
==p
[1].db
);
1891 assert( sqlite3VdbeCheckMemInvariants(p
) );
1893 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1894 ** that takes advantage of the fact that the memory cell value is
1895 ** being set to NULL after releasing any dynamic resources.
1897 ** The justification for duplicating code is that according to
1898 ** callgrind, this causes a certain test case to hit the CPU 4.7
1899 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1900 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1901 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1902 ** with no indexes using a single prepared INSERT statement, bind()
1903 ** and reset(). Inserts are grouped into a transaction.
1905 testcase( p
->flags
& MEM_Agg
);
1906 testcase( p
->flags
& MEM_Dyn
);
1907 testcase( p
->xDel
==sqlite3VdbeFrameMemDel
);
1908 if( p
->flags
&(MEM_Agg
|MEM_Dyn
) ){
1909 sqlite3VdbeMemRelease(p
);
1910 }else if( p
->szMalloc
){
1911 sqlite3DbFreeNN(db
, p
->zMalloc
);
1915 p
->flags
= MEM_Undefined
;
1916 }while( (++p
)<pEnd
);
1922 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is
1923 ** and false if something is wrong.
1925 ** This routine is intended for use inside of assert() statements only.
1927 int sqlite3VdbeFrameIsValid(VdbeFrame
*pFrame
){
1928 if( pFrame
->iFrameMagic
!=SQLITE_FRAME_MAGIC
) return 0;
1935 ** This is a destructor on a Mem object (which is really an sqlite3_value)
1936 ** that deletes the Frame object that is attached to it as a blob.
1938 ** This routine does not delete the Frame right away. It merely adds the
1939 ** frame to a list of frames to be deleted when the Vdbe halts.
1941 void sqlite3VdbeFrameMemDel(void *pArg
){
1942 VdbeFrame
*pFrame
= (VdbeFrame
*)pArg
;
1943 assert( sqlite3VdbeFrameIsValid(pFrame
) );
1944 pFrame
->pParent
= pFrame
->v
->pDelFrame
;
1945 pFrame
->v
->pDelFrame
= pFrame
;
1948 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
1950 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
1951 ** QUERY PLAN output.
1953 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no
1954 ** more opcodes to be displayed.
1956 int sqlite3VdbeNextOpcode(
1957 Vdbe
*p
, /* The statement being explained */
1958 Mem
*pSub
, /* Storage for keeping track of subprogram nesting */
1959 int eMode
, /* 0: normal. 1: EQP. 2: TablesUsed */
1960 int *piPc
, /* IN/OUT: Current rowid. Overwritten with next rowid */
1961 int *piAddr
, /* OUT: Write index into (*paOp)[] here */
1962 Op
**paOp
/* OUT: Write the opcode array here */
1964 int nRow
; /* Stop when row count reaches this */
1965 int nSub
= 0; /* Number of sub-vdbes seen so far */
1966 SubProgram
**apSub
= 0; /* Array of sub-vdbes */
1967 int i
; /* Next instruction address */
1968 int rc
= SQLITE_OK
; /* Result code */
1969 Op
*aOp
= 0; /* Opcode array */
1970 int iPc
; /* Rowid. Copy of value in *piPc */
1972 /* When the number of output rows reaches nRow, that means the
1973 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1974 ** nRow is the sum of the number of rows in the main program, plus
1975 ** the sum of the number of rows in all trigger subprograms encountered
1976 ** so far. The nRow value will increase as new trigger subprograms are
1977 ** encountered, but p->pc will eventually catch up to nRow.
1981 if( pSub
->flags
&MEM_Blob
){
1982 /* pSub is initiallly NULL. It is initialized to a BLOB by
1983 ** the P4_SUBPROGRAM processing logic below */
1984 nSub
= pSub
->n
/sizeof(Vdbe
*);
1985 apSub
= (SubProgram
**)pSub
->z
;
1987 for(i
=0; i
<nSub
; i
++){
1988 nRow
+= apSub
[i
]->nOp
;
1992 while(1){ /* Loop exits via break */
2000 /* The rowid is small enough that we are still in the
2004 /* We are currently listing subprograms. Figure out which one and
2005 ** pick up the appropriate opcode. */
2010 for(j
=0; i
>=apSub
[j
]->nOp
; j
++){
2012 assert( i
<apSub
[j
]->nOp
|| j
+1<nSub
);
2014 aOp
= apSub
[j
]->aOp
;
2017 /* When an OP_Program opcode is encounter (the only opcode that has
2018 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
2019 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
2020 ** has not already been seen.
2022 if( pSub
!=0 && aOp
[i
].p4type
==P4_SUBPROGRAM
){
2023 int nByte
= (nSub
+1)*sizeof(SubProgram
*);
2025 for(j
=0; j
<nSub
; j
++){
2026 if( apSub
[j
]==aOp
[i
].p4
.pProgram
) break;
2029 p
->rc
= sqlite3VdbeMemGrow(pSub
, nByte
, nSub
!=0);
2030 if( p
->rc
!=SQLITE_OK
){
2034 apSub
= (SubProgram
**)pSub
->z
;
2035 apSub
[nSub
++] = aOp
[i
].p4
.pProgram
;
2036 MemSetTypeFlag(pSub
, MEM_Blob
);
2037 pSub
->n
= nSub
*sizeof(SubProgram
*);
2038 nRow
+= aOp
[i
].p4
.pProgram
->nOp
;
2041 if( eMode
==0 ) break;
2042 #ifdef SQLITE_ENABLE_BYTECODE_VTAB
2045 if( pOp
->opcode
==OP_OpenRead
) break;
2046 if( pOp
->opcode
==OP_OpenWrite
&& (pOp
->p5
& OPFLAG_P2ISREG
)==0 ) break;
2047 if( pOp
->opcode
==OP_ReopenIdx
) break;
2052 if( aOp
[i
].opcode
==OP_Explain
) break;
2053 if( aOp
[i
].opcode
==OP_Init
&& iPc
>1 ) break;
2061 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
2065 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
2066 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
2068 void sqlite3VdbeFrameDelete(VdbeFrame
*p
){
2070 Mem
*aMem
= VdbeFrameMem(p
);
2071 VdbeCursor
**apCsr
= (VdbeCursor
**)&aMem
[p
->nChildMem
];
2072 assert( sqlite3VdbeFrameIsValid(p
) );
2073 for(i
=0; i
<p
->nChildCsr
; i
++){
2074 sqlite3VdbeFreeCursor(p
->v
, apCsr
[i
]);
2076 releaseMemArray(aMem
, p
->nChildMem
);
2077 sqlite3VdbeDeleteAuxData(p
->v
->db
, &p
->pAuxData
, -1, 0);
2078 sqlite3DbFree(p
->v
->db
, p
);
2081 #ifndef SQLITE_OMIT_EXPLAIN
2083 ** Give a listing of the program in the virtual machine.
2085 ** The interface is the same as sqlite3VdbeExec(). But instead of
2086 ** running the code, it invokes the callback once for each instruction.
2087 ** This feature is used to implement "EXPLAIN".
2089 ** When p->explain==1, each instruction is listed. When
2090 ** p->explain==2, only OP_Explain instructions are listed and these
2091 ** are shown in a different format. p->explain==2 is used to implement
2092 ** EXPLAIN QUERY PLAN.
2093 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers
2094 ** are also shown, so that the boundaries between the main program and
2095 ** each trigger are clear.
2097 ** When p->explain==1, first the main program is listed, then each of
2098 ** the trigger subprograms are listed one by one.
2100 int sqlite3VdbeList(
2101 Vdbe
*p
/* The VDBE */
2103 Mem
*pSub
= 0; /* Memory cell hold array of subprogs */
2104 sqlite3
*db
= p
->db
; /* The database connection */
2105 int i
; /* Loop counter */
2106 int rc
= SQLITE_OK
; /* Return code */
2107 Mem
*pMem
= &p
->aMem
[1]; /* First Mem of result set */
2108 int bListSubprogs
= (p
->explain
==1 || (db
->flags
& SQLITE_TriggerEQP
)!=0);
2109 Op
*aOp
; /* Array of opcodes */
2110 Op
*pOp
; /* Current opcode */
2112 assert( p
->explain
);
2113 assert( p
->iVdbeMagic
==VDBE_MAGIC_RUN
);
2114 assert( p
->rc
==SQLITE_OK
|| p
->rc
==SQLITE_BUSY
|| p
->rc
==SQLITE_NOMEM
);
2116 /* Even though this opcode does not use dynamic strings for
2117 ** the result, result columns may become dynamic if the user calls
2118 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
2120 releaseMemArray(pMem
, 8);
2123 if( p
->rc
==SQLITE_NOMEM
){
2124 /* This happens if a malloc() inside a call to sqlite3_column_text() or
2125 ** sqlite3_column_text16() failed. */
2126 sqlite3OomFault(db
);
2127 return SQLITE_ERROR
;
2130 if( bListSubprogs
){
2131 /* The first 8 memory cells are used for the result set. So we will
2132 ** commandeer the 9th cell to use as storage for an array of pointers
2133 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
2135 assert( p
->nMem
>9 );
2141 /* Figure out which opcode is next to display */
2142 rc
= sqlite3VdbeNextOpcode(p
, pSub
, p
->explain
==2, &p
->pc
, &i
, &aOp
);
2144 if( rc
==SQLITE_OK
){
2146 if( AtomicLoad(&db
->u1
.isInterrupted
) ){
2147 p
->rc
= SQLITE_INTERRUPT
;
2149 sqlite3VdbeError(p
, sqlite3ErrStr(p
->rc
));
2151 char *zP4
= sqlite3VdbeDisplayP4(db
, pOp
);
2152 if( p
->explain
==2 ){
2153 sqlite3VdbeMemSetInt64(pMem
, pOp
->p1
);
2154 sqlite3VdbeMemSetInt64(pMem
+1, pOp
->p2
);
2155 sqlite3VdbeMemSetInt64(pMem
+2, pOp
->p3
);
2156 sqlite3VdbeMemSetStr(pMem
+3, zP4
, -1, SQLITE_UTF8
, sqlite3_free
);
2159 sqlite3VdbeMemSetInt64(pMem
+0, i
);
2160 sqlite3VdbeMemSetStr(pMem
+1, (char*)sqlite3OpcodeName(pOp
->opcode
),
2161 -1, SQLITE_UTF8
, SQLITE_STATIC
);
2162 sqlite3VdbeMemSetInt64(pMem
+2, pOp
->p1
);
2163 sqlite3VdbeMemSetInt64(pMem
+3, pOp
->p2
);
2164 sqlite3VdbeMemSetInt64(pMem
+4, pOp
->p3
);
2165 /* pMem+5 for p4 is done last */
2166 sqlite3VdbeMemSetInt64(pMem
+6, pOp
->p5
);
2167 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2169 char *zCom
= sqlite3VdbeDisplayComment(db
, pOp
, zP4
);
2170 sqlite3VdbeMemSetStr(pMem
+7, zCom
, -1, SQLITE_UTF8
, sqlite3_free
);
2173 sqlite3VdbeMemSetNull(pMem
+7);
2175 sqlite3VdbeMemSetStr(pMem
+5, zP4
, -1, SQLITE_UTF8
, sqlite3_free
);
2178 p
->pResultSet
= pMem
;
2179 if( db
->mallocFailed
){
2180 p
->rc
= SQLITE_NOMEM
;
2190 #endif /* SQLITE_OMIT_EXPLAIN */
2194 ** Print the SQL that was used to generate a VDBE program.
2196 void sqlite3VdbePrintSql(Vdbe
*p
){
2200 }else if( p
->nOp
>=1 ){
2201 const VdbeOp
*pOp
= &p
->aOp
[0];
2202 if( pOp
->opcode
==OP_Init
&& pOp
->p4
.z
!=0 ){
2204 while( sqlite3Isspace(*z
) ) z
++;
2207 if( z
) printf("SQL: [%s]\n", z
);
2211 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2213 ** Print an IOTRACE message showing SQL content.
2215 void sqlite3VdbeIOTraceSql(Vdbe
*p
){
2218 if( sqlite3IoTrace
==0 ) return;
2221 if( pOp
->opcode
==OP_Init
&& pOp
->p4
.z
!=0 ){
2224 sqlite3_snprintf(sizeof(z
), z
, "%s", pOp
->p4
.z
);
2225 for(i
=0; sqlite3Isspace(z
[i
]); i
++){}
2226 for(j
=0; z
[i
]; i
++){
2227 if( sqlite3Isspace(z
[i
]) ){
2236 sqlite3IoTrace("SQL %s\n", z
);
2239 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2241 /* An instance of this object describes bulk memory available for use
2242 ** by subcomponents of a prepared statement. Space is allocated out
2243 ** of a ReusableSpace object by the allocSpace() routine below.
2245 struct ReusableSpace
{
2246 u8
*pSpace
; /* Available memory */
2247 sqlite3_int64 nFree
; /* Bytes of available memory */
2248 sqlite3_int64 nNeeded
; /* Total bytes that could not be allocated */
2251 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2252 ** from the ReusableSpace object. Return a pointer to the allocated
2253 ** memory on success. If insufficient memory is available in the
2254 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2255 ** value by the amount needed and return NULL.
2257 ** If pBuf is not initially NULL, that means that the memory has already
2258 ** been allocated by a prior call to this routine, so just return a copy
2259 ** of pBuf and leave ReusableSpace unchanged.
2261 ** This allocator is employed to repurpose unused slots at the end of the
2262 ** opcode array of prepared state for other memory needs of the prepared
2265 static void *allocSpace(
2266 struct ReusableSpace
*p
, /* Bulk memory available for allocation */
2267 void *pBuf
, /* Pointer to a prior allocation */
2268 sqlite3_int64 nByte
/* Bytes of memory needed */
2270 assert( EIGHT_BYTE_ALIGNMENT(p
->pSpace
) );
2272 nByte
= ROUND8(nByte
);
2273 if( nByte
<= p
->nFree
){
2275 pBuf
= &p
->pSpace
[p
->nFree
];
2277 p
->nNeeded
+= nByte
;
2280 assert( EIGHT_BYTE_ALIGNMENT(pBuf
) );
2285 ** Rewind the VDBE back to the beginning in preparation for
2288 void sqlite3VdbeRewind(Vdbe
*p
){
2289 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
2293 assert( p
->iVdbeMagic
==VDBE_MAGIC_INIT
|| p
->iVdbeMagic
==VDBE_MAGIC_RESET
);
2295 /* There should be at least one opcode.
2299 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
2300 p
->iVdbeMagic
= VDBE_MAGIC_RUN
;
2303 for(i
=0; i
<p
->nMem
; i
++){
2304 assert( p
->aMem
[i
].db
==p
->db
);
2309 p
->errorAction
= OE_Abort
;
2312 p
->minWriteFileFormat
= 255;
2314 p
->nFkConstraint
= 0;
2316 for(i
=0; i
<p
->nOp
; i
++){
2318 p
->aOp
[i
].cycles
= 0;
2324 ** Prepare a virtual machine for execution for the first time after
2325 ** creating the virtual machine. This involves things such
2326 ** as allocating registers and initializing the program counter.
2327 ** After the VDBE has be prepped, it can be executed by one or more
2328 ** calls to sqlite3VdbeExec().
2330 ** This function may be called exactly once on each virtual machine.
2331 ** After this routine is called the VM has been "packaged" and is ready
2332 ** to run. After this routine is called, further calls to
2333 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
2334 ** the Vdbe from the Parse object that helped generate it so that the
2335 ** the Vdbe becomes an independent entity and the Parse object can be
2338 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2339 ** to its initial state after it has been run.
2341 void sqlite3VdbeMakeReady(
2342 Vdbe
*p
, /* The VDBE */
2343 Parse
*pParse
/* Parsing context */
2345 sqlite3
*db
; /* The database connection */
2346 int nVar
; /* Number of parameters */
2347 int nMem
; /* Number of VM memory registers */
2348 int nCursor
; /* Number of cursors required */
2349 int nArg
; /* Number of arguments in subprograms */
2350 int n
; /* Loop counter */
2351 struct ReusableSpace x
; /* Reusable bulk memory */
2355 assert( pParse
!=0 );
2356 assert( p
->iVdbeMagic
==VDBE_MAGIC_INIT
);
2357 assert( pParse
==p
->pParse
);
2358 p
->pVList
= pParse
->pVList
;
2361 assert( db
->mallocFailed
==0 );
2362 nVar
= pParse
->nVar
;
2363 nMem
= pParse
->nMem
;
2364 nCursor
= pParse
->nTab
;
2365 nArg
= pParse
->nMaxArg
;
2367 /* Each cursor uses a memory cell. The first cursor (cursor 0) can
2368 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
2369 ** space at the end of aMem[] for cursors 1 and greater.
2370 ** See also: allocateCursor().
2373 if( nCursor
==0 && nMem
>0 ) nMem
++; /* Space for aMem[0] even if not used */
2375 /* Figure out how much reusable memory is available at the end of the
2376 ** opcode array. This extra memory will be reallocated for other elements
2377 ** of the prepared statement.
2379 n
= ROUND8(sizeof(Op
)*p
->nOp
); /* Bytes of opcode memory used */
2380 x
.pSpace
= &((u8
*)p
->aOp
)[n
]; /* Unused opcode memory */
2381 assert( EIGHT_BYTE_ALIGNMENT(x
.pSpace
) );
2382 x
.nFree
= ROUNDDOWN8(pParse
->szOpAlloc
- n
); /* Bytes of unused memory */
2383 assert( x
.nFree
>=0 );
2384 assert( EIGHT_BYTE_ALIGNMENT(&x
.pSpace
[x
.nFree
]) );
2386 resolveP2Values(p
, &nArg
);
2387 p
->usesStmtJournal
= (u8
)(pParse
->isMultiWrite
&& pParse
->mayAbort
);
2388 if( pParse
->explain
){
2389 static const char * const azColName
[] = {
2390 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
2391 "id", "parent", "notused", "detail"
2394 if( nMem
<10 ) nMem
= 10;
2395 p
->explain
= pParse
->explain
;
2396 if( pParse
->explain
==2 ){
2397 sqlite3VdbeSetNumCols(p
, 4);
2401 sqlite3VdbeSetNumCols(p
, 8);
2405 for(i
=iFirst
; i
<mx
; i
++){
2406 sqlite3VdbeSetColName(p
, i
-iFirst
, COLNAME_NAME
,
2407 azColName
[i
], SQLITE_STATIC
);
2412 /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2413 ** passes. On the first pass, we try to reuse unused memory at the
2414 ** end of the opcode array. If we are unable to satisfy all memory
2415 ** requirements by reusing the opcode array tail, then the second
2416 ** pass will fill in the remainder using a fresh memory allocation.
2418 ** This two-pass approach that reuses as much memory as possible from
2419 ** the leftover memory at the end of the opcode array. This can significantly
2420 ** reduce the amount of memory held by a prepared statement.
2423 p
->aMem
= allocSpace(&x
, 0, nMem
*sizeof(Mem
));
2424 p
->aVar
= allocSpace(&x
, 0, nVar
*sizeof(Mem
));
2425 p
->apArg
= allocSpace(&x
, 0, nArg
*sizeof(Mem
*));
2426 p
->apCsr
= allocSpace(&x
, 0, nCursor
*sizeof(VdbeCursor
*));
2427 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2428 p
->anExec
= allocSpace(&x
, 0, p
->nOp
*sizeof(i64
));
2431 x
.pSpace
= p
->pFree
= sqlite3DbMallocRawNN(db
, x
.nNeeded
);
2432 x
.nFree
= x
.nNeeded
;
2433 if( !db
->mallocFailed
){
2434 p
->aMem
= allocSpace(&x
, p
->aMem
, nMem
*sizeof(Mem
));
2435 p
->aVar
= allocSpace(&x
, p
->aVar
, nVar
*sizeof(Mem
));
2436 p
->apArg
= allocSpace(&x
, p
->apArg
, nArg
*sizeof(Mem
*));
2437 p
->apCsr
= allocSpace(&x
, p
->apCsr
, nCursor
*sizeof(VdbeCursor
*));
2438 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2439 p
->anExec
= allocSpace(&x
, p
->anExec
, p
->nOp
*sizeof(i64
));
2444 if( db
->mallocFailed
){
2449 p
->nCursor
= nCursor
;
2450 p
->nVar
= (ynVar
)nVar
;
2451 initMemArray(p
->aVar
, nVar
, db
, MEM_Null
);
2453 initMemArray(p
->aMem
, nMem
, db
, MEM_Undefined
);
2454 memset(p
->apCsr
, 0, nCursor
*sizeof(VdbeCursor
*));
2455 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2456 memset(p
->anExec
, 0, p
->nOp
*sizeof(i64
));
2459 sqlite3VdbeRewind(p
);
2463 ** Close a VDBE cursor and release all the resources that cursor
2466 void sqlite3VdbeFreeCursor(Vdbe
*p
, VdbeCursor
*pCx
){
2470 assert( pCx
->pBtx
==0 || pCx
->eCurType
==CURTYPE_BTREE
);
2471 assert( pCx
->pBtx
==0 || pCx
->isEphemeral
);
2472 switch( pCx
->eCurType
){
2473 case CURTYPE_SORTER
: {
2474 sqlite3VdbeSorterClose(p
->db
, pCx
);
2477 case CURTYPE_BTREE
: {
2478 assert( pCx
->uc
.pCursor
!=0 );
2479 sqlite3BtreeCloseCursor(pCx
->uc
.pCursor
);
2482 #ifndef SQLITE_OMIT_VIRTUALTABLE
2483 case CURTYPE_VTAB
: {
2484 sqlite3_vtab_cursor
*pVCur
= pCx
->uc
.pVCur
;
2485 const sqlite3_module
*pModule
= pVCur
->pVtab
->pModule
;
2486 assert( pVCur
->pVtab
->nRef
>0 );
2487 pVCur
->pVtab
->nRef
--;
2488 pModule
->xClose(pVCur
);
2496 ** Close all cursors in the current frame.
2498 static void closeCursorsInFrame(Vdbe
*p
){
2501 for(i
=0; i
<p
->nCursor
; i
++){
2502 VdbeCursor
*pC
= p
->apCsr
[i
];
2504 sqlite3VdbeFreeCursor(p
, pC
);
2512 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2513 ** is used, for example, when a trigger sub-program is halted to restore
2514 ** control to the main program.
2516 int sqlite3VdbeFrameRestore(VdbeFrame
*pFrame
){
2517 Vdbe
*v
= pFrame
->v
;
2518 closeCursorsInFrame(v
);
2519 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2520 v
->anExec
= pFrame
->anExec
;
2522 v
->aOp
= pFrame
->aOp
;
2523 v
->nOp
= pFrame
->nOp
;
2524 v
->aMem
= pFrame
->aMem
;
2525 v
->nMem
= pFrame
->nMem
;
2526 v
->apCsr
= pFrame
->apCsr
;
2527 v
->nCursor
= pFrame
->nCursor
;
2528 v
->db
->lastRowid
= pFrame
->lastRowid
;
2529 v
->nChange
= pFrame
->nChange
;
2530 v
->db
->nChange
= pFrame
->nDbChange
;
2531 sqlite3VdbeDeleteAuxData(v
->db
, &v
->pAuxData
, -1, 0);
2532 v
->pAuxData
= pFrame
->pAuxData
;
2533 pFrame
->pAuxData
= 0;
2538 ** Close all cursors.
2540 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2541 ** cell array. This is necessary as the memory cell array may contain
2542 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2545 static void closeAllCursors(Vdbe
*p
){
2548 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
2549 sqlite3VdbeFrameRestore(pFrame
);
2553 assert( p
->nFrame
==0 );
2554 closeCursorsInFrame(p
);
2556 releaseMemArray(p
->aMem
, p
->nMem
);
2558 while( p
->pDelFrame
){
2559 VdbeFrame
*pDel
= p
->pDelFrame
;
2560 p
->pDelFrame
= pDel
->pParent
;
2561 sqlite3VdbeFrameDelete(pDel
);
2564 /* Delete any auxdata allocations made by the VM */
2565 if( p
->pAuxData
) sqlite3VdbeDeleteAuxData(p
->db
, &p
->pAuxData
, -1, 0);
2566 assert( p
->pAuxData
==0 );
2570 ** Set the number of result columns that will be returned by this SQL
2571 ** statement. This is now set at compile time, rather than during
2572 ** execution of the vdbe program so that sqlite3_column_count() can
2573 ** be called on an SQL statement before sqlite3_step().
2575 void sqlite3VdbeSetNumCols(Vdbe
*p
, int nResColumn
){
2577 sqlite3
*db
= p
->db
;
2579 if( p
->nResColumn
){
2580 releaseMemArray(p
->aColName
, p
->nResColumn
*COLNAME_N
);
2581 sqlite3DbFree(db
, p
->aColName
);
2583 n
= nResColumn
*COLNAME_N
;
2584 p
->nResColumn
= (u16
)nResColumn
;
2585 p
->aColName
= (Mem
*)sqlite3DbMallocRawNN(db
, sizeof(Mem
)*n
);
2586 if( p
->aColName
==0 ) return;
2587 initMemArray(p
->aColName
, n
, db
, MEM_Null
);
2591 ** Set the name of the idx'th column to be returned by the SQL statement.
2592 ** zName must be a pointer to a nul terminated string.
2594 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2596 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2597 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2598 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2600 int sqlite3VdbeSetColName(
2601 Vdbe
*p
, /* Vdbe being configured */
2602 int idx
, /* Index of column zName applies to */
2603 int var
, /* One of the COLNAME_* constants */
2604 const char *zName
, /* Pointer to buffer containing name */
2605 void (*xDel
)(void*) /* Memory management strategy for zName */
2609 assert( idx
<p
->nResColumn
);
2610 assert( var
<COLNAME_N
);
2611 if( p
->db
->mallocFailed
){
2612 assert( !zName
|| xDel
!=SQLITE_DYNAMIC
);
2613 return SQLITE_NOMEM_BKPT
;
2615 assert( p
->aColName
!=0 );
2616 pColName
= &(p
->aColName
[idx
+var
*p
->nResColumn
]);
2617 rc
= sqlite3VdbeMemSetStr(pColName
, zName
, -1, SQLITE_UTF8
, xDel
);
2618 assert( rc
!=0 || !zName
|| (pColName
->flags
&MEM_Term
)!=0 );
2623 ** A read or write transaction may or may not be active on database handle
2624 ** db. If a transaction is active, commit it. If there is a
2625 ** write-transaction spanning more than one database file, this routine
2626 ** takes care of the super-journal trickery.
2628 static int vdbeCommit(sqlite3
*db
, Vdbe
*p
){
2630 int nTrans
= 0; /* Number of databases with an active write-transaction
2631 ** that are candidates for a two-phase commit using a
2634 int needXcommit
= 0;
2636 #ifdef SQLITE_OMIT_VIRTUALTABLE
2637 /* With this option, sqlite3VtabSync() is defined to be simply
2638 ** SQLITE_OK so p is not used.
2640 UNUSED_PARAMETER(p
);
2643 /* Before doing anything else, call the xSync() callback for any
2644 ** virtual module tables written in this transaction. This has to
2645 ** be done before determining whether a super-journal file is
2646 ** required, as an xSync() callback may add an attached database
2647 ** to the transaction.
2649 rc
= sqlite3VtabSync(db
, p
);
2651 /* This loop determines (a) if the commit hook should be invoked and
2652 ** (b) how many database files have open write transactions, not
2653 ** including the temp database. (b) is important because if more than
2654 ** one database file has an open write transaction, a super-journal
2655 ** file is required for an atomic commit.
2657 for(i
=0; rc
==SQLITE_OK
&& i
<db
->nDb
; i
++){
2658 Btree
*pBt
= db
->aDb
[i
].pBt
;
2659 if( sqlite3BtreeTxnState(pBt
)==SQLITE_TXN_WRITE
){
2660 /* Whether or not a database might need a super-journal depends upon
2661 ** its journal mode (among other things). This matrix determines which
2662 ** journal modes use a super-journal and which do not */
2663 static const u8 aMJNeeded
[] = {
2671 Pager
*pPager
; /* Pager associated with pBt */
2673 sqlite3BtreeEnter(pBt
);
2674 pPager
= sqlite3BtreePager(pBt
);
2675 if( db
->aDb
[i
].safety_level
!=PAGER_SYNCHRONOUS_OFF
2676 && aMJNeeded
[sqlite3PagerGetJournalMode(pPager
)]
2677 && sqlite3PagerIsMemdb(pPager
)==0
2682 rc
= sqlite3PagerExclusiveLock(pPager
);
2683 sqlite3BtreeLeave(pBt
);
2686 if( rc
!=SQLITE_OK
){
2690 /* If there are any write-transactions at all, invoke the commit hook */
2691 if( needXcommit
&& db
->xCommitCallback
){
2692 rc
= db
->xCommitCallback(db
->pCommitArg
);
2694 return SQLITE_CONSTRAINT_COMMITHOOK
;
2698 /* The simple case - no more than one database file (not counting the
2699 ** TEMP database) has a transaction active. There is no need for the
2702 ** If the return value of sqlite3BtreeGetFilename() is a zero length
2703 ** string, it means the main database is :memory: or a temp file. In
2704 ** that case we do not support atomic multi-file commits, so use the
2705 ** simple case then too.
2707 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db
->aDb
[0].pBt
))
2710 for(i
=0; rc
==SQLITE_OK
&& i
<db
->nDb
; i
++){
2711 Btree
*pBt
= db
->aDb
[i
].pBt
;
2713 rc
= sqlite3BtreeCommitPhaseOne(pBt
, 0);
2717 /* Do the commit only if all databases successfully complete phase 1.
2718 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2719 ** IO error while deleting or truncating a journal file. It is unlikely,
2720 ** but could happen. In this case abandon processing and return the error.
2722 for(i
=0; rc
==SQLITE_OK
&& i
<db
->nDb
; i
++){
2723 Btree
*pBt
= db
->aDb
[i
].pBt
;
2725 rc
= sqlite3BtreeCommitPhaseTwo(pBt
, 0);
2728 if( rc
==SQLITE_OK
){
2729 sqlite3VtabCommit(db
);
2733 /* The complex case - There is a multi-file write-transaction active.
2734 ** This requires a super-journal file to ensure the transaction is
2735 ** committed atomically.
2737 #ifndef SQLITE_OMIT_DISKIO
2739 sqlite3_vfs
*pVfs
= db
->pVfs
;
2740 char *zSuper
= 0; /* File-name for the super-journal */
2741 char const *zMainFile
= sqlite3BtreeGetFilename(db
->aDb
[0].pBt
);
2742 sqlite3_file
*pSuperJrnl
= 0;
2748 /* Select a super-journal file name */
2749 nMainFile
= sqlite3Strlen30(zMainFile
);
2750 zSuper
= sqlite3MPrintf(db
, "%.4c%s%.16c", 0,zMainFile
,0);
2751 if( zSuper
==0 ) return SQLITE_NOMEM_BKPT
;
2756 if( retryCount
>100 ){
2757 sqlite3_log(SQLITE_FULL
, "MJ delete: %s", zSuper
);
2758 sqlite3OsDelete(pVfs
, zSuper
, 0);
2760 }else if( retryCount
==1 ){
2761 sqlite3_log(SQLITE_FULL
, "MJ collide: %s", zSuper
);
2765 sqlite3_randomness(sizeof(iRandom
), &iRandom
);
2766 sqlite3_snprintf(13, &zSuper
[nMainFile
], "-mj%06X9%02X",
2767 (iRandom
>>8)&0xffffff, iRandom
&0xff);
2768 /* The antipenultimate character of the super-journal name must
2769 ** be "9" to avoid name collisions when using 8+3 filenames. */
2770 assert( zSuper
[sqlite3Strlen30(zSuper
)-3]=='9' );
2771 sqlite3FileSuffix3(zMainFile
, zSuper
);
2772 rc
= sqlite3OsAccess(pVfs
, zSuper
, SQLITE_ACCESS_EXISTS
, &res
);
2773 }while( rc
==SQLITE_OK
&& res
);
2774 if( rc
==SQLITE_OK
){
2775 /* Open the super-journal. */
2776 rc
= sqlite3OsOpenMalloc(pVfs
, zSuper
, &pSuperJrnl
,
2777 SQLITE_OPEN_READWRITE
|SQLITE_OPEN_CREATE
|
2778 SQLITE_OPEN_EXCLUSIVE
|SQLITE_OPEN_SUPER_JOURNAL
, 0
2781 if( rc
!=SQLITE_OK
){
2782 sqlite3DbFree(db
, zSuper
-4);
2786 /* Write the name of each database file in the transaction into the new
2787 ** super-journal file. If an error occurs at this point close
2788 ** and delete the super-journal file. All the individual journal files
2789 ** still have 'null' as the super-journal pointer, so they will roll
2790 ** back independently if a failure occurs.
2792 for(i
=0; i
<db
->nDb
; i
++){
2793 Btree
*pBt
= db
->aDb
[i
].pBt
;
2794 if( sqlite3BtreeTxnState(pBt
)==SQLITE_TXN_WRITE
){
2795 char const *zFile
= sqlite3BtreeGetJournalname(pBt
);
2797 continue; /* Ignore TEMP and :memory: databases */
2799 assert( zFile
[0]!=0 );
2800 rc
= sqlite3OsWrite(pSuperJrnl
, zFile
, sqlite3Strlen30(zFile
)+1,offset
);
2801 offset
+= sqlite3Strlen30(zFile
)+1;
2802 if( rc
!=SQLITE_OK
){
2803 sqlite3OsCloseFree(pSuperJrnl
);
2804 sqlite3OsDelete(pVfs
, zSuper
, 0);
2805 sqlite3DbFree(db
, zSuper
-4);
2811 /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device
2812 ** flag is set this is not required.
2814 if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl
)&SQLITE_IOCAP_SEQUENTIAL
)
2815 && SQLITE_OK
!=(rc
= sqlite3OsSync(pSuperJrnl
, SQLITE_SYNC_NORMAL
))
2817 sqlite3OsCloseFree(pSuperJrnl
);
2818 sqlite3OsDelete(pVfs
, zSuper
, 0);
2819 sqlite3DbFree(db
, zSuper
-4);
2823 /* Sync all the db files involved in the transaction. The same call
2824 ** sets the super-journal pointer in each individual journal. If
2825 ** an error occurs here, do not delete the super-journal file.
2827 ** If the error occurs during the first call to
2828 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2829 ** super-journal file will be orphaned. But we cannot delete it,
2830 ** in case the super-journal file name was written into the journal
2831 ** file before the failure occurred.
2833 for(i
=0; rc
==SQLITE_OK
&& i
<db
->nDb
; i
++){
2834 Btree
*pBt
= db
->aDb
[i
].pBt
;
2836 rc
= sqlite3BtreeCommitPhaseOne(pBt
, zSuper
);
2839 sqlite3OsCloseFree(pSuperJrnl
);
2840 assert( rc
!=SQLITE_BUSY
);
2841 if( rc
!=SQLITE_OK
){
2842 sqlite3DbFree(db
, zSuper
-4);
2846 /* Delete the super-journal file. This commits the transaction. After
2847 ** doing this the directory is synced again before any individual
2848 ** transaction files are deleted.
2850 rc
= sqlite3OsDelete(pVfs
, zSuper
, 1);
2851 sqlite3DbFree(db
, zSuper
-4);
2857 /* All files and directories have already been synced, so the following
2858 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2859 ** deleting or truncating journals. If something goes wrong while
2860 ** this is happening we don't really care. The integrity of the
2861 ** transaction is already guaranteed, but some stray 'cold' journals
2862 ** may be lying around. Returning an error code won't help matters.
2864 disable_simulated_io_errors();
2865 sqlite3BeginBenignMalloc();
2866 for(i
=0; i
<db
->nDb
; i
++){
2867 Btree
*pBt
= db
->aDb
[i
].pBt
;
2869 sqlite3BtreeCommitPhaseTwo(pBt
, 1);
2872 sqlite3EndBenignMalloc();
2873 enable_simulated_io_errors();
2875 sqlite3VtabCommit(db
);
2883 ** This routine checks that the sqlite3.nVdbeActive count variable
2884 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2885 ** currently active. An assertion fails if the two counts do not match.
2886 ** This is an internal self-check only - it is not an essential processing
2889 ** This is a no-op if NDEBUG is defined.
2892 static void checkActiveVdbeCnt(sqlite3
*db
){
2899 if( sqlite3_stmt_busy((sqlite3_stmt
*)p
) ){
2901 if( p
->readOnly
==0 ) nWrite
++;
2902 if( p
->bIsReader
) nRead
++;
2906 assert( cnt
==db
->nVdbeActive
);
2907 assert( nWrite
==db
->nVdbeWrite
);
2908 assert( nRead
==db
->nVdbeRead
);
2911 #define checkActiveVdbeCnt(x)
2915 ** If the Vdbe passed as the first argument opened a statement-transaction,
2916 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2917 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2918 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2919 ** statement transaction is committed.
2921 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2922 ** Otherwise SQLITE_OK.
2924 static SQLITE_NOINLINE
int vdbeCloseStatement(Vdbe
*p
, int eOp
){
2925 sqlite3
*const db
= p
->db
;
2928 const int iSavepoint
= p
->iStatement
-1;
2930 assert( eOp
==SAVEPOINT_ROLLBACK
|| eOp
==SAVEPOINT_RELEASE
);
2931 assert( db
->nStatement
>0 );
2932 assert( p
->iStatement
==(db
->nStatement
+db
->nSavepoint
) );
2934 for(i
=0; i
<db
->nDb
; i
++){
2935 int rc2
= SQLITE_OK
;
2936 Btree
*pBt
= db
->aDb
[i
].pBt
;
2938 if( eOp
==SAVEPOINT_ROLLBACK
){
2939 rc2
= sqlite3BtreeSavepoint(pBt
, SAVEPOINT_ROLLBACK
, iSavepoint
);
2941 if( rc2
==SQLITE_OK
){
2942 rc2
= sqlite3BtreeSavepoint(pBt
, SAVEPOINT_RELEASE
, iSavepoint
);
2944 if( rc
==SQLITE_OK
){
2952 if( rc
==SQLITE_OK
){
2953 if( eOp
==SAVEPOINT_ROLLBACK
){
2954 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_ROLLBACK
, iSavepoint
);
2956 if( rc
==SQLITE_OK
){
2957 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_RELEASE
, iSavepoint
);
2961 /* If the statement transaction is being rolled back, also restore the
2962 ** database handles deferred constraint counter to the value it had when
2963 ** the statement transaction was opened. */
2964 if( eOp
==SAVEPOINT_ROLLBACK
){
2965 db
->nDeferredCons
= p
->nStmtDefCons
;
2966 db
->nDeferredImmCons
= p
->nStmtDefImmCons
;
2970 int sqlite3VdbeCloseStatement(Vdbe
*p
, int eOp
){
2971 if( p
->db
->nStatement
&& p
->iStatement
){
2972 return vdbeCloseStatement(p
, eOp
);
2979 ** This function is called when a transaction opened by the database
2980 ** handle associated with the VM passed as an argument is about to be
2981 ** committed. If there are outstanding deferred foreign key constraint
2982 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2984 ** If there are outstanding FK violations and this function returns
2985 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
2986 ** and write an error message to it. Then return SQLITE_ERROR.
2988 #ifndef SQLITE_OMIT_FOREIGN_KEY
2989 int sqlite3VdbeCheckFk(Vdbe
*p
, int deferred
){
2990 sqlite3
*db
= p
->db
;
2991 if( (deferred
&& (db
->nDeferredCons
+db
->nDeferredImmCons
)>0)
2992 || (!deferred
&& p
->nFkConstraint
>0)
2994 p
->rc
= SQLITE_CONSTRAINT_FOREIGNKEY
;
2995 p
->errorAction
= OE_Abort
;
2996 sqlite3VdbeError(p
, "FOREIGN KEY constraint failed");
2997 return SQLITE_ERROR
;
3004 ** This routine is called the when a VDBE tries to halt. If the VDBE
3005 ** has made changes and is in autocommit mode, then commit those
3006 ** changes. If a rollback is needed, then do the rollback.
3008 ** This routine is the only way to move the state of a VM from
3009 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
3010 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
3012 ** Return an error code. If the commit could not complete because of
3013 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
3014 ** means the close did not happen and needs to be repeated.
3016 int sqlite3VdbeHalt(Vdbe
*p
){
3017 int rc
; /* Used to store transient return codes */
3018 sqlite3
*db
= p
->db
;
3020 /* This function contains the logic that determines if a statement or
3021 ** transaction will be committed or rolled back as a result of the
3022 ** execution of this virtual machine.
3024 ** If any of the following errors occur:
3031 ** Then the internal cache might have been left in an inconsistent
3032 ** state. We need to rollback the statement transaction, if there is
3033 ** one, or the complete transaction if there is no statement transaction.
3036 if( p
->iVdbeMagic
!=VDBE_MAGIC_RUN
){
3039 if( db
->mallocFailed
){
3040 p
->rc
= SQLITE_NOMEM_BKPT
;
3043 checkActiveVdbeCnt(db
);
3045 /* No commit or rollback needed if the program never started or if the
3046 ** SQL statement does not read or write a database file. */
3047 if( p
->pc
>=0 && p
->bIsReader
){
3048 int mrc
; /* Primary error code from p->rc */
3049 int eStatementOp
= 0;
3050 int isSpecialError
; /* Set to true if a 'special' error */
3052 /* Lock all btrees used by the statement */
3053 sqlite3VdbeEnter(p
);
3055 /* Check for one of the special errors */
3057 isSpecialError
= mrc
==SQLITE_NOMEM
|| mrc
==SQLITE_IOERR
3058 || mrc
==SQLITE_INTERRUPT
|| mrc
==SQLITE_FULL
;
3059 if( isSpecialError
){
3060 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
3061 ** no rollback is necessary. Otherwise, at least a savepoint
3062 ** transaction must be rolled back to restore the database to a
3063 ** consistent state.
3065 ** Even if the statement is read-only, it is important to perform
3066 ** a statement or transaction rollback operation. If the error
3067 ** occurred while writing to the journal, sub-journal or database
3068 ** file as part of an effort to free up cache space (see function
3069 ** pagerStress() in pager.c), the rollback is required to restore
3070 ** the pager to a consistent state.
3072 if( !p
->readOnly
|| mrc
!=SQLITE_INTERRUPT
){
3073 if( (mrc
==SQLITE_NOMEM
|| mrc
==SQLITE_FULL
) && p
->usesStmtJournal
){
3074 eStatementOp
= SAVEPOINT_ROLLBACK
;
3076 /* We are forced to roll back the active transaction. Before doing
3077 ** so, abort any other statements this handle currently has active.
3079 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
3080 sqlite3CloseSavepoints(db
);
3087 /* Check for immediate foreign key violations. */
3088 if( p
->rc
==SQLITE_OK
|| (p
->errorAction
==OE_Fail
&& !isSpecialError
) ){
3089 sqlite3VdbeCheckFk(p
, 0);
3092 /* If the auto-commit flag is set and this is the only active writer
3093 ** VM, then we do either a commit or rollback of the current transaction.
3095 ** Note: This block also runs if one of the special errors handled
3096 ** above has occurred.
3098 if( !sqlite3VtabInSync(db
)
3100 && db
->nVdbeWrite
==(p
->readOnly
==0)
3102 if( p
->rc
==SQLITE_OK
|| (p
->errorAction
==OE_Fail
&& !isSpecialError
) ){
3103 rc
= sqlite3VdbeCheckFk(p
, 1);
3104 if( rc
!=SQLITE_OK
){
3105 if( NEVER(p
->readOnly
) ){
3106 sqlite3VdbeLeave(p
);
3107 return SQLITE_ERROR
;
3109 rc
= SQLITE_CONSTRAINT_FOREIGNKEY
;
3111 /* The auto-commit flag is true, the vdbe program was successful
3112 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3113 ** key constraints to hold up the transaction. This means a commit
3115 rc
= vdbeCommit(db
, p
);
3117 if( rc
==SQLITE_BUSY
&& p
->readOnly
){
3118 sqlite3VdbeLeave(p
);
3120 }else if( rc
!=SQLITE_OK
){
3122 sqlite3RollbackAll(db
, SQLITE_OK
);
3125 db
->nDeferredCons
= 0;
3126 db
->nDeferredImmCons
= 0;
3127 db
->flags
&= ~(u64
)SQLITE_DeferFKs
;
3128 sqlite3CommitInternalChanges(db
);
3131 sqlite3RollbackAll(db
, SQLITE_OK
);
3135 }else if( eStatementOp
==0 ){
3136 if( p
->rc
==SQLITE_OK
|| p
->errorAction
==OE_Fail
){
3137 eStatementOp
= SAVEPOINT_RELEASE
;
3138 }else if( p
->errorAction
==OE_Abort
){
3139 eStatementOp
= SAVEPOINT_ROLLBACK
;
3141 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
3142 sqlite3CloseSavepoints(db
);
3148 /* If eStatementOp is non-zero, then a statement transaction needs to
3149 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3150 ** do so. If this operation returns an error, and the current statement
3151 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3152 ** current statement error code.
3155 rc
= sqlite3VdbeCloseStatement(p
, eStatementOp
);
3157 if( p
->rc
==SQLITE_OK
|| (p
->rc
&0xff)==SQLITE_CONSTRAINT
){
3159 sqlite3DbFree(db
, p
->zErrMsg
);
3162 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
3163 sqlite3CloseSavepoints(db
);
3169 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3170 ** has been rolled back, update the database connection change-counter.
3172 if( p
->changeCntOn
){
3173 if( eStatementOp
!=SAVEPOINT_ROLLBACK
){
3174 sqlite3VdbeSetChanges(db
, p
->nChange
);
3176 sqlite3VdbeSetChanges(db
, 0);
3181 /* Release the locks */
3182 sqlite3VdbeLeave(p
);
3185 /* We have successfully halted and closed the VM. Record this fact. */
3188 if( !p
->readOnly
) db
->nVdbeWrite
--;
3189 if( p
->bIsReader
) db
->nVdbeRead
--;
3190 assert( db
->nVdbeActive
>=db
->nVdbeRead
);
3191 assert( db
->nVdbeRead
>=db
->nVdbeWrite
);
3192 assert( db
->nVdbeWrite
>=0 );
3194 p
->iVdbeMagic
= VDBE_MAGIC_HALT
;
3195 checkActiveVdbeCnt(db
);
3196 if( db
->mallocFailed
){
3197 p
->rc
= SQLITE_NOMEM_BKPT
;
3200 /* If the auto-commit flag is set to true, then any locks that were held
3201 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3202 ** to invoke any required unlock-notify callbacks.
3204 if( db
->autoCommit
){
3205 sqlite3ConnectionUnlocked(db
);
3208 assert( db
->nVdbeActive
>0 || db
->autoCommit
==0 || db
->nStatement
==0 );
3209 return (p
->rc
==SQLITE_BUSY
? SQLITE_BUSY
: SQLITE_OK
);
3214 ** Each VDBE holds the result of the most recent sqlite3_step() call
3215 ** in p->rc. This routine sets that result back to SQLITE_OK.
3217 void sqlite3VdbeResetStepResult(Vdbe
*p
){
3222 ** Copy the error code and error message belonging to the VDBE passed
3223 ** as the first argument to its database handle (so that they will be
3224 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3226 ** This function does not clear the VDBE error code or message, just
3227 ** copies them to the database handle.
3229 int sqlite3VdbeTransferError(Vdbe
*p
){
3230 sqlite3
*db
= p
->db
;
3233 db
->bBenignMalloc
++;
3234 sqlite3BeginBenignMalloc();
3235 if( db
->pErr
==0 ) db
->pErr
= sqlite3ValueNew(db
);
3236 sqlite3ValueSetStr(db
->pErr
, -1, p
->zErrMsg
, SQLITE_UTF8
, SQLITE_TRANSIENT
);
3237 sqlite3EndBenignMalloc();
3238 db
->bBenignMalloc
--;
3239 }else if( db
->pErr
){
3240 sqlite3ValueSetNull(db
->pErr
);
3246 #ifdef SQLITE_ENABLE_SQLLOG
3248 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3251 static void vdbeInvokeSqllog(Vdbe
*v
){
3252 if( sqlite3GlobalConfig
.xSqllog
&& v
->rc
==SQLITE_OK
&& v
->zSql
&& v
->pc
>=0 ){
3253 char *zExpanded
= sqlite3VdbeExpandSql(v
, v
->zSql
);
3254 assert( v
->db
->init
.busy
==0 );
3256 sqlite3GlobalConfig
.xSqllog(
3257 sqlite3GlobalConfig
.pSqllogArg
, v
->db
, zExpanded
, 1
3259 sqlite3DbFree(v
->db
, zExpanded
);
3264 # define vdbeInvokeSqllog(x)
3268 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3269 ** Write any error messages into *pzErrMsg. Return the result code.
3271 ** After this routine is run, the VDBE should be ready to be executed
3274 ** To look at it another way, this routine resets the state of the
3275 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
3278 int sqlite3VdbeReset(Vdbe
*p
){
3279 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3286 /* If the VM did not run to completion or if it encountered an
3287 ** error, then it might not have been halted properly. So halt
3292 /* If the VDBE has been run even partially, then transfer the error code
3293 ** and error message from the VDBE into the main database structure. But
3294 ** if the VDBE has just been set to run but has not actually executed any
3295 ** instructions yet, leave the main database error information unchanged.
3298 vdbeInvokeSqllog(p
);
3299 if( db
->pErr
|| p
->zErrMsg
){
3300 sqlite3VdbeTransferError(p
);
3302 db
->errCode
= p
->rc
;
3304 if( p
->runOnlyOnce
) p
->expired
= 1;
3305 }else if( p
->rc
&& p
->expired
){
3306 /* The expired flag was set on the VDBE before the first call
3307 ** to sqlite3_step(). For consistency (since sqlite3_step() was
3308 ** called), set the database error in this case as well.
3310 sqlite3ErrorWithMsg(db
, p
->rc
, p
->zErrMsg
? "%s" : 0, p
->zErrMsg
);
3313 /* Reset register contents and reclaim error message memory.
3316 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3317 ** Vdbe.aMem[] arrays have already been cleaned up. */
3318 if( p
->apCsr
) for(i
=0; i
<p
->nCursor
; i
++) assert( p
->apCsr
[i
]==0 );
3320 for(i
=0; i
<p
->nMem
; i
++) assert( p
->aMem
[i
].flags
==MEM_Undefined
);
3324 sqlite3DbFree(db
, p
->zErrMsg
);
3332 /* Save profiling information from this VDBE run.
3336 FILE *out
= fopen("vdbe_profile.out", "a");
3338 fprintf(out
, "---- ");
3339 for(i
=0; i
<p
->nOp
; i
++){
3340 fprintf(out
, "%02x", p
->aOp
[i
].opcode
);
3345 fprintf(out
, "-- ");
3346 for(i
=0; (c
= p
->zSql
[i
])!=0; i
++){
3347 if( pc
=='\n' ) fprintf(out
, "-- ");
3351 if( pc
!='\n' ) fprintf(out
, "\n");
3353 for(i
=0; i
<p
->nOp
; i
++){
3355 sqlite3_snprintf(sizeof(zHdr
), zHdr
, "%6u %12llu %8llu ",
3358 p
->aOp
[i
].cnt
>0 ? p
->aOp
[i
].cycles
/p
->aOp
[i
].cnt
: 0
3360 fprintf(out
, "%s", zHdr
);
3361 sqlite3VdbePrintOp(out
, i
, &p
->aOp
[i
]);
3367 p
->iVdbeMagic
= VDBE_MAGIC_RESET
;
3368 return p
->rc
& db
->errMask
;
3372 ** Clean up and delete a VDBE after execution. Return an integer which is
3373 ** the result code. Write any error message text into *pzErrMsg.
3375 int sqlite3VdbeFinalize(Vdbe
*p
){
3377 if( p
->iVdbeMagic
==VDBE_MAGIC_RUN
|| p
->iVdbeMagic
==VDBE_MAGIC_HALT
){
3378 rc
= sqlite3VdbeReset(p
);
3379 assert( (rc
& p
->db
->errMask
)==rc
);
3381 sqlite3VdbeDelete(p
);
3386 ** If parameter iOp is less than zero, then invoke the destructor for
3387 ** all auxiliary data pointers currently cached by the VM passed as
3388 ** the first argument.
3390 ** Or, if iOp is greater than or equal to zero, then the destructor is
3391 ** only invoked for those auxiliary data pointers created by the user
3392 ** function invoked by the OP_Function opcode at instruction iOp of
3393 ** VM pVdbe, and only then if:
3395 ** * the associated function parameter is the 32nd or later (counting
3396 ** from left to right), or
3398 ** * the corresponding bit in argument mask is clear (where the first
3399 ** function parameter corresponds to bit 0 etc.).
3401 void sqlite3VdbeDeleteAuxData(sqlite3
*db
, AuxData
**pp
, int iOp
, int mask
){
3403 AuxData
*pAux
= *pp
;
3405 || (pAux
->iAuxOp
==iOp
3407 && (pAux
->iAuxArg
>31 || !(mask
& MASKBIT32(pAux
->iAuxArg
))))
3409 testcase( pAux
->iAuxArg
==31 );
3410 if( pAux
->xDeleteAux
){
3411 pAux
->xDeleteAux(pAux
->pAux
);
3413 *pp
= pAux
->pNextAux
;
3414 sqlite3DbFree(db
, pAux
);
3416 pp
= &pAux
->pNextAux
;
3422 ** Free all memory associated with the Vdbe passed as the second argument,
3423 ** except for object itself, which is preserved.
3425 ** The difference between this function and sqlite3VdbeDelete() is that
3426 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3427 ** the database connection and frees the object itself.
3429 void sqlite3VdbeClearObject(sqlite3
*db
, Vdbe
*p
){
3430 SubProgram
*pSub
, *pNext
;
3431 assert( p
->db
==0 || p
->db
==db
);
3432 releaseMemArray(p
->aColName
, p
->nResColumn
*COLNAME_N
);
3433 for(pSub
=p
->pProgram
; pSub
; pSub
=pNext
){
3434 pNext
= pSub
->pNext
;
3435 vdbeFreeOpArray(db
, pSub
->aOp
, pSub
->nOp
);
3436 sqlite3DbFree(db
, pSub
);
3438 if( p
->iVdbeMagic
!=VDBE_MAGIC_INIT
){
3439 releaseMemArray(p
->aVar
, p
->nVar
);
3440 sqlite3DbFree(db
, p
->pVList
);
3441 sqlite3DbFree(db
, p
->pFree
);
3443 vdbeFreeOpArray(db
, p
->aOp
, p
->nOp
);
3444 sqlite3DbFree(db
, p
->aColName
);
3445 sqlite3DbFree(db
, p
->zSql
);
3446 #ifdef SQLITE_ENABLE_NORMALIZE
3447 sqlite3DbFree(db
, p
->zNormSql
);
3449 DblquoteStr
*pThis
, *pNext
;
3450 for(pThis
=p
->pDblStr
; pThis
; pThis
=pNext
){
3451 pNext
= pThis
->pNextStr
;
3452 sqlite3DbFree(db
, pThis
);
3456 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3459 for(i
=0; i
<p
->nScan
; i
++){
3460 sqlite3DbFree(db
, p
->aScan
[i
].zName
);
3462 sqlite3DbFree(db
, p
->aScan
);
3468 ** Delete an entire VDBE.
3470 void sqlite3VdbeDelete(Vdbe
*p
){
3475 assert( sqlite3_mutex_held(db
->mutex
) );
3476 sqlite3VdbeClearObject(db
, p
);
3478 p
->pPrev
->pNext
= p
->pNext
;
3480 assert( db
->pVdbe
==p
);
3481 db
->pVdbe
= p
->pNext
;
3484 p
->pNext
->pPrev
= p
->pPrev
;
3486 p
->iVdbeMagic
= VDBE_MAGIC_DEAD
;
3488 sqlite3DbFreeNN(db
, p
);
3492 ** The cursor "p" has a pending seek operation that has not yet been
3493 ** carried out. Seek the cursor now. If an error occurs, return
3494 ** the appropriate error code.
3496 int SQLITE_NOINLINE
sqlite3VdbeFinishMoveto(VdbeCursor
*p
){
3499 extern int sqlite3_search_count
;
3501 assert( p
->deferredMoveto
);
3502 assert( p
->isTable
);
3503 assert( p
->eCurType
==CURTYPE_BTREE
);
3504 rc
= sqlite3BtreeMovetoUnpacked(p
->uc
.pCursor
, 0, p
->movetoTarget
, 0, &res
);
3506 if( res
!=0 ) return SQLITE_CORRUPT_BKPT
;
3508 sqlite3_search_count
++;
3510 p
->deferredMoveto
= 0;
3511 p
->cacheStatus
= CACHE_STALE
;
3516 ** Something has moved cursor "p" out of place. Maybe the row it was
3517 ** pointed to was deleted out from under it. Or maybe the btree was
3518 ** rebalanced. Whatever the cause, try to restore "p" to the place it
3519 ** is supposed to be pointing. If the row was deleted out from under the
3520 ** cursor, set the cursor to point to a NULL row.
3522 static int SQLITE_NOINLINE
handleMovedCursor(VdbeCursor
*p
){
3523 int isDifferentRow
, rc
;
3524 assert( p
->eCurType
==CURTYPE_BTREE
);
3525 assert( p
->uc
.pCursor
!=0 );
3526 assert( sqlite3BtreeCursorHasMoved(p
->uc
.pCursor
) );
3527 rc
= sqlite3BtreeCursorRestore(p
->uc
.pCursor
, &isDifferentRow
);
3528 p
->cacheStatus
= CACHE_STALE
;
3529 if( isDifferentRow
) p
->nullRow
= 1;
3534 ** Check to ensure that the cursor is valid. Restore the cursor
3535 ** if need be. Return any I/O error from the restore operation.
3537 int sqlite3VdbeCursorRestore(VdbeCursor
*p
){
3538 assert( p
->eCurType
==CURTYPE_BTREE
);
3539 if( sqlite3BtreeCursorHasMoved(p
->uc
.pCursor
) ){
3540 return handleMovedCursor(p
);
3546 ** Make sure the cursor p is ready to read or write the row to which it
3547 ** was last positioned. Return an error code if an OOM fault or I/O error
3548 ** prevents us from positioning the cursor to its correct position.
3550 ** If a MoveTo operation is pending on the given cursor, then do that
3551 ** MoveTo now. If no move is pending, check to see if the row has been
3552 ** deleted out from under the cursor and if it has, mark the row as
3555 ** If the cursor is already pointing to the correct row and that row has
3556 ** not been deleted out from under the cursor, then this routine is a no-op.
3558 int sqlite3VdbeCursorMoveto(VdbeCursor
**pp
, u32
*piCol
){
3559 VdbeCursor
*p
= *pp
;
3560 assert( p
->eCurType
==CURTYPE_BTREE
|| p
->eCurType
==CURTYPE_PSEUDO
);
3561 if( p
->deferredMoveto
){
3563 assert( !p
->isEphemeral
);
3564 if( p
->aAltMap
&& (iMap
= p
->aAltMap
[1+*piCol
])>0 && !p
->nullRow
){
3565 *pp
= p
->pAltCursor
;
3569 return sqlite3VdbeFinishMoveto(p
);
3571 if( sqlite3BtreeCursorHasMoved(p
->uc
.pCursor
) ){
3572 return handleMovedCursor(p
);
3578 ** The following functions:
3580 ** sqlite3VdbeSerialType()
3581 ** sqlite3VdbeSerialTypeLen()
3582 ** sqlite3VdbeSerialLen()
3583 ** sqlite3VdbeSerialPut()
3584 ** sqlite3VdbeSerialGet()
3586 ** encapsulate the code that serializes values for storage in SQLite
3587 ** data and index records. Each serialized value consists of a
3588 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3589 ** integer, stored as a varint.
3591 ** In an SQLite index record, the serial type is stored directly before
3592 ** the blob of data that it corresponds to. In a table record, all serial
3593 ** types are stored at the start of the record, and the blobs of data at
3594 ** the end. Hence these functions allow the caller to handle the
3595 ** serial-type and data blob separately.
3597 ** The following table describes the various storage classes for data:
3599 ** serial type bytes of data type
3600 ** -------------- --------------- ---------------
3602 ** 1 1 signed integer
3603 ** 2 2 signed integer
3604 ** 3 3 signed integer
3605 ** 4 4 signed integer
3606 ** 5 6 signed integer
3607 ** 6 8 signed integer
3609 ** 8 0 Integer constant 0
3610 ** 9 0 Integer constant 1
3611 ** 10,11 reserved for expansion
3612 ** N>=12 and even (N-12)/2 BLOB
3613 ** N>=13 and odd (N-13)/2 text
3615 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3616 ** of SQLite will not understand those serial types.
3619 #if 0 /* Inlined into the OP_MakeRecord opcode */
3621 ** Return the serial-type for the value stored in pMem.
3623 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3625 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord
3626 ** opcode in the byte-code engine. But by moving this routine in-line, we
3627 ** can omit some redundant tests and make that opcode a lot faster. So
3628 ** this routine is now only used by the STAT3 logic and STAT3 support has
3629 ** ended. The code is kept here for historical reference only.
3631 u32
sqlite3VdbeSerialType(Mem
*pMem
, int file_format
, u32
*pLen
){
3632 int flags
= pMem
->flags
;
3636 if( flags
&MEM_Null
){
3640 if( flags
&(MEM_Int
|MEM_IntReal
) ){
3641 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3642 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3645 testcase( flags
& MEM_Int
);
3646 testcase( flags
& MEM_IntReal
);
3653 if( (i
&1)==i
&& file_format
>=4 ){
3661 if( u
<=32767 ){ *pLen
= 2; return 2; }
3662 if( u
<=8388607 ){ *pLen
= 3; return 3; }
3663 if( u
<=2147483647 ){ *pLen
= 4; return 4; }
3664 if( u
<=MAX_6BYTE
){ *pLen
= 6; return 5; }
3666 if( flags
&MEM_IntReal
){
3667 /* If the value is IntReal and is going to take up 8 bytes to store
3668 ** as an integer, then we might as well make it an 8-byte floating
3670 pMem
->u
.r
= (double)pMem
->u
.i
;
3671 pMem
->flags
&= ~MEM_IntReal
;
3672 pMem
->flags
|= MEM_Real
;
3677 if( flags
&MEM_Real
){
3681 assert( pMem
->db
->mallocFailed
|| flags
&(MEM_Str
|MEM_Blob
) );
3682 assert( pMem
->n
>=0 );
3684 if( flags
& MEM_Zero
){
3688 return ((n
*2) + 12 + ((flags
&MEM_Str
)!=0));
3690 #endif /* inlined into OP_MakeRecord */
3693 ** The sizes for serial types less than 128
3695 static const u8 sqlite3SmallTypeSizes
[] = {
3696 /* 0 1 2 3 4 5 6 7 8 9 */
3697 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3698 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3699 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3700 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3701 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3702 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3703 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3704 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3705 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3706 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3707 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3708 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3709 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
3713 ** Return the length of the data corresponding to the supplied serial-type.
3715 u32
sqlite3VdbeSerialTypeLen(u32 serial_type
){
3716 if( serial_type
>=128 ){
3717 return (serial_type
-12)/2;
3719 assert( serial_type
<12
3720 || sqlite3SmallTypeSizes
[serial_type
]==(serial_type
- 12)/2 );
3721 return sqlite3SmallTypeSizes
[serial_type
];
3724 u8
sqlite3VdbeOneByteSerialTypeLen(u8 serial_type
){
3725 assert( serial_type
<128 );
3726 return sqlite3SmallTypeSizes
[serial_type
];
3730 ** If we are on an architecture with mixed-endian floating
3731 ** points (ex: ARM7) then swap the lower 4 bytes with the
3732 ** upper 4 bytes. Return the result.
3734 ** For most architectures, this is a no-op.
3736 ** (later): It is reported to me that the mixed-endian problem
3737 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3738 ** that early versions of GCC stored the two words of a 64-bit
3739 ** float in the wrong order. And that error has been propagated
3740 ** ever since. The blame is not necessarily with GCC, though.
3741 ** GCC might have just copying the problem from a prior compiler.
3742 ** I am also told that newer versions of GCC that follow a different
3743 ** ABI get the byte order right.
3745 ** Developers using SQLite on an ARM7 should compile and run their
3746 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3747 ** enabled, some asserts below will ensure that the byte order of
3748 ** floating point values is correct.
3750 ** (2007-08-30) Frank van Vugt has studied this problem closely
3751 ** and has send his findings to the SQLite developers. Frank
3752 ** writes that some Linux kernels offer floating point hardware
3753 ** emulation that uses only 32-bit mantissas instead of a full
3754 ** 48-bits as required by the IEEE standard. (This is the
3755 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3756 ** byte swapping becomes very complicated. To avoid problems,
3757 ** the necessary byte swapping is carried out using a 64-bit integer
3758 ** rather than a 64-bit float. Frank assures us that the code here
3759 ** works for him. We, the developers, have no way to independently
3760 ** verify this, but Frank seems to know what he is talking about
3763 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3764 static u64
floatSwap(u64 in
){
3777 # define swapMixedEndianFloat(X) X = floatSwap(X)
3779 # define swapMixedEndianFloat(X)
3783 ** Write the serialized data blob for the value stored in pMem into
3784 ** buf. It is assumed that the caller has allocated sufficient space.
3785 ** Return the number of bytes written.
3787 ** nBuf is the amount of space left in buf[]. The caller is responsible
3788 ** for allocating enough space to buf[] to hold the entire field, exclusive
3789 ** of the pMem->u.nZero bytes for a MEM_Zero value.
3791 ** Return the number of bytes actually written into buf[]. The number
3792 ** of bytes in the zero-filled tail is included in the return value only
3793 ** if those bytes were zeroed in buf[].
3795 u32
sqlite3VdbeSerialPut(u8
*buf
, Mem
*pMem
, u32 serial_type
){
3798 /* Integer and Real */
3799 if( serial_type
<=7 && serial_type
>0 ){
3802 if( serial_type
==7 ){
3803 assert( sizeof(v
)==sizeof(pMem
->u
.r
) );
3804 memcpy(&v
, &pMem
->u
.r
, sizeof(v
));
3805 swapMixedEndianFloat(v
);
3809 len
= i
= sqlite3SmallTypeSizes
[serial_type
];
3812 buf
[--i
] = (u8
)(v
&0xFF);
3818 /* String or blob */
3819 if( serial_type
>=12 ){
3820 assert( pMem
->n
+ ((pMem
->flags
& MEM_Zero
)?pMem
->u
.nZero
:0)
3821 == (int)sqlite3VdbeSerialTypeLen(serial_type
) );
3823 if( len
>0 ) memcpy(buf
, pMem
->z
, len
);
3827 /* NULL or constants 0 or 1 */
3831 /* Input "x" is a sequence of unsigned characters that represent a
3832 ** big-endian integer. Return the equivalent native integer
3834 #define ONE_BYTE_INT(x) ((i8)(x)[0])
3835 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3836 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3837 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3838 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3841 ** Deserialize the data blob pointed to by buf as serial type serial_type
3842 ** and store the result in pMem. Return the number of bytes read.
3844 ** This function is implemented as two separate routines for performance.
3845 ** The few cases that require local variables are broken out into a separate
3846 ** routine so that in most cases the overhead of moving the stack pointer
3849 static u32
serialGet(
3850 const unsigned char *buf
, /* Buffer to deserialize from */
3851 u32 serial_type
, /* Serial type to deserialize */
3852 Mem
*pMem
/* Memory cell to write value into */
3854 u64 x
= FOUR_BYTE_UINT(buf
);
3855 u32 y
= FOUR_BYTE_UINT(buf
+4);
3857 if( serial_type
==6 ){
3858 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3859 ** twos-complement integer. */
3860 pMem
->u
.i
= *(i64
*)&x
;
3861 pMem
->flags
= MEM_Int
;
3862 testcase( pMem
->u
.i
<0 );
3864 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3865 ** floating point number. */
3866 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3867 /* Verify that integers and floating point values use the same
3868 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3869 ** defined that 64-bit floating point values really are mixed
3872 static const u64 t1
= ((u64
)0x3ff00000)<<32;
3873 static const double r1
= 1.0;
3875 swapMixedEndianFloat(t2
);
3876 assert( sizeof(r1
)==sizeof(t2
) && memcmp(&r1
, &t2
, sizeof(r1
))==0 );
3878 assert( sizeof(x
)==8 && sizeof(pMem
->u
.r
)==8 );
3879 swapMixedEndianFloat(x
);
3880 memcpy(&pMem
->u
.r
, &x
, sizeof(x
));
3881 pMem
->flags
= IsNaN(x
) ? MEM_Null
: MEM_Real
;
3885 u32
sqlite3VdbeSerialGet(
3886 const unsigned char *buf
, /* Buffer to deserialize from */
3887 u32 serial_type
, /* Serial type to deserialize */
3888 Mem
*pMem
/* Memory cell to write value into */
3890 switch( serial_type
){
3891 case 10: { /* Internal use only: NULL with virtual table
3892 ** UPDATE no-change flag set */
3893 pMem
->flags
= MEM_Null
|MEM_Zero
;
3898 case 11: /* Reserved for future use */
3899 case 0: { /* Null */
3900 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3901 pMem
->flags
= MEM_Null
;
3905 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3907 pMem
->u
.i
= ONE_BYTE_INT(buf
);
3908 pMem
->flags
= MEM_Int
;
3909 testcase( pMem
->u
.i
<0 );
3912 case 2: { /* 2-byte signed integer */
3913 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3914 ** twos-complement integer. */
3915 pMem
->u
.i
= TWO_BYTE_INT(buf
);
3916 pMem
->flags
= MEM_Int
;
3917 testcase( pMem
->u
.i
<0 );
3920 case 3: { /* 3-byte signed integer */
3921 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3922 ** twos-complement integer. */
3923 pMem
->u
.i
= THREE_BYTE_INT(buf
);
3924 pMem
->flags
= MEM_Int
;
3925 testcase( pMem
->u
.i
<0 );
3928 case 4: { /* 4-byte signed integer */
3929 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3930 ** twos-complement integer. */
3931 pMem
->u
.i
= FOUR_BYTE_INT(buf
);
3933 /* Work around a sign-extension bug in the HP compiler for HP/UX */
3934 if( buf
[0]&0x80 ) pMem
->u
.i
|= 0xffffffff80000000LL
;
3936 pMem
->flags
= MEM_Int
;
3937 testcase( pMem
->u
.i
<0 );
3940 case 5: { /* 6-byte signed integer */
3941 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3942 ** twos-complement integer. */
3943 pMem
->u
.i
= FOUR_BYTE_UINT(buf
+2) + (((i64
)1)<<32)*TWO_BYTE_INT(buf
);
3944 pMem
->flags
= MEM_Int
;
3945 testcase( pMem
->u
.i
<0 );
3948 case 6: /* 8-byte signed integer */
3949 case 7: { /* IEEE floating point */
3950 /* These use local variables, so do them in a separate routine
3951 ** to avoid having to move the frame pointer in the common case */
3952 return serialGet(buf
,serial_type
,pMem
);
3954 case 8: /* Integer 0 */
3955 case 9: { /* Integer 1 */
3956 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3957 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3958 pMem
->u
.i
= serial_type
-8;
3959 pMem
->flags
= MEM_Int
;
3963 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3965 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3966 ** (N-13)/2 bytes in length. */
3967 static const u16 aFlag
[] = { MEM_Blob
|MEM_Ephem
, MEM_Str
|MEM_Ephem
};
3968 pMem
->z
= (char *)buf
;
3969 pMem
->n
= (serial_type
-12)/2;
3970 pMem
->flags
= aFlag
[serial_type
&1];
3977 ** This routine is used to allocate sufficient space for an UnpackedRecord
3978 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3979 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3981 ** The space is either allocated using sqlite3DbMallocRaw() or from within
3982 ** the unaligned buffer passed via the second and third arguments (presumably
3983 ** stack space). If the former, then *ppFree is set to a pointer that should
3984 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
3985 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
3986 ** before returning.
3988 ** If an OOM error occurs, NULL is returned.
3990 UnpackedRecord
*sqlite3VdbeAllocUnpackedRecord(
3991 KeyInfo
*pKeyInfo
/* Description of the record */
3993 UnpackedRecord
*p
; /* Unpacked record to return */
3994 int nByte
; /* Number of bytes required for *p */
3995 nByte
= ROUND8(sizeof(UnpackedRecord
)) + sizeof(Mem
)*(pKeyInfo
->nKeyField
+1);
3996 p
= (UnpackedRecord
*)sqlite3DbMallocRaw(pKeyInfo
->db
, nByte
);
3998 p
->aMem
= (Mem
*)&((char*)p
)[ROUND8(sizeof(UnpackedRecord
))];
3999 assert( pKeyInfo
->aSortFlags
!=0 );
4000 p
->pKeyInfo
= pKeyInfo
;
4001 p
->nField
= pKeyInfo
->nKeyField
+ 1;
4006 ** Given the nKey-byte encoding of a record in pKey[], populate the
4007 ** UnpackedRecord structure indicated by the fourth argument with the
4008 ** contents of the decoded record.
4010 void sqlite3VdbeRecordUnpack(
4011 KeyInfo
*pKeyInfo
, /* Information about the record format */
4012 int nKey
, /* Size of the binary record */
4013 const void *pKey
, /* The binary record */
4014 UnpackedRecord
*p
/* Populate this structure before returning. */
4016 const unsigned char *aKey
= (const unsigned char *)pKey
;
4018 u32 idx
; /* Offset in aKey[] to read from */
4019 u16 u
; /* Unsigned loop counter */
4021 Mem
*pMem
= p
->aMem
;
4024 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
4025 idx
= getVarint32(aKey
, szHdr
);
4028 while( idx
<szHdr
&& d
<=(u32
)nKey
){
4031 idx
+= getVarint32(&aKey
[idx
], serial_type
);
4032 pMem
->enc
= pKeyInfo
->enc
;
4033 pMem
->db
= pKeyInfo
->db
;
4034 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
4037 d
+= sqlite3VdbeSerialGet(&aKey
[d
], serial_type
, pMem
);
4039 if( (++u
)>=p
->nField
) break;
4041 if( d
>(u32
)nKey
&& u
){
4042 assert( CORRUPT_DB
);
4043 /* In a corrupt record entry, the last pMem might have been set up using
4044 ** uninitialized memory. Overwrite its value with NULL, to prevent
4045 ** warnings from MSAN. */
4046 sqlite3VdbeMemSetNull(pMem
-1);
4048 assert( u
<=pKeyInfo
->nKeyField
+ 1 );
4054 ** This function compares two index or table record keys in the same way
4055 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
4056 ** this function deserializes and compares values using the
4057 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
4058 ** in assert() statements to ensure that the optimized code in
4059 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
4061 ** Return true if the result of comparison is equivalent to desiredResult.
4062 ** Return false if there is a disagreement.
4064 static int vdbeRecordCompareDebug(
4065 int nKey1
, const void *pKey1
, /* Left key */
4066 const UnpackedRecord
*pPKey2
, /* Right key */
4067 int desiredResult
/* Correct answer */
4069 u32 d1
; /* Offset into aKey[] of next data element */
4070 u32 idx1
; /* Offset into aKey[] of next header element */
4071 u32 szHdr1
; /* Number of bytes in header */
4074 const unsigned char *aKey1
= (const unsigned char *)pKey1
;
4078 pKeyInfo
= pPKey2
->pKeyInfo
;
4079 if( pKeyInfo
->db
==0 ) return 1;
4080 mem1
.enc
= pKeyInfo
->enc
;
4081 mem1
.db
= pKeyInfo
->db
;
4082 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
4083 VVA_ONLY( mem1
.szMalloc
= 0; ) /* Only needed by assert() statements */
4085 /* Compilers may complain that mem1.u.i is potentially uninitialized.
4086 ** We could initialize it, as shown here, to silence those complaints.
4087 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
4088 ** the unnecessary initialization has a measurable negative performance
4089 ** impact, since this routine is a very high runner. And so, we choose
4090 ** to ignore the compiler warnings and leave this variable uninitialized.
4092 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
4094 idx1
= getVarint32(aKey1
, szHdr1
);
4095 if( szHdr1
>98307 ) return SQLITE_CORRUPT
;
4097 assert( pKeyInfo
->nAllField
>=pPKey2
->nField
|| CORRUPT_DB
);
4098 assert( pKeyInfo
->aSortFlags
!=0 );
4099 assert( pKeyInfo
->nKeyField
>0 );
4100 assert( idx1
<=szHdr1
|| CORRUPT_DB
);
4104 /* Read the serial types for the next element in each key. */
4105 idx1
+= getVarint32( aKey1
+idx1
, serial_type1
);
4107 /* Verify that there is enough key space remaining to avoid
4108 ** a buffer overread. The "d1+serial_type1+2" subexpression will
4109 ** always be greater than or equal to the amount of required key space.
4110 ** Use that approximation to avoid the more expensive call to
4111 ** sqlite3VdbeSerialTypeLen() in the common case.
4113 if( d1
+(u64
)serial_type1
+2>(u64
)nKey1
4114 && d1
+(u64
)sqlite3VdbeSerialTypeLen(serial_type1
)>(u64
)nKey1
4119 /* Extract the values to be compared.
4121 d1
+= sqlite3VdbeSerialGet(&aKey1
[d1
], serial_type1
, &mem1
);
4123 /* Do the comparison
4125 rc
= sqlite3MemCompare(&mem1
, &pPKey2
->aMem
[i
],
4126 pKeyInfo
->nAllField
>i
? pKeyInfo
->aColl
[i
] : 0);
4128 assert( mem1
.szMalloc
==0 ); /* See comment below */
4129 if( (pKeyInfo
->aSortFlags
[i
] & KEYINFO_ORDER_BIGNULL
)
4130 && ((mem1
.flags
& MEM_Null
) || (pPKey2
->aMem
[i
].flags
& MEM_Null
))
4134 if( pKeyInfo
->aSortFlags
[i
] & KEYINFO_ORDER_DESC
){
4135 rc
= -rc
; /* Invert the result for DESC sort order. */
4137 goto debugCompareEnd
;
4140 }while( idx1
<szHdr1
&& i
<pPKey2
->nField
);
4142 /* No memory allocation is ever used on mem1. Prove this using
4143 ** the following assert(). If the assert() fails, it indicates a
4144 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4146 assert( mem1
.szMalloc
==0 );
4148 /* rc==0 here means that one of the keys ran out of fields and
4149 ** all the fields up to that point were equal. Return the default_rc
4151 rc
= pPKey2
->default_rc
;
4154 if( desiredResult
==0 && rc
==0 ) return 1;
4155 if( desiredResult
<0 && rc
<0 ) return 1;
4156 if( desiredResult
>0 && rc
>0 ) return 1;
4157 if( CORRUPT_DB
) return 1;
4158 if( pKeyInfo
->db
->mallocFailed
) return 1;
4165 ** Count the number of fields (a.k.a. columns) in the record given by
4166 ** pKey,nKey. The verify that this count is less than or equal to the
4167 ** limit given by pKeyInfo->nAllField.
4169 ** If this constraint is not satisfied, it means that the high-speed
4170 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4171 ** not work correctly. If this assert() ever fires, it probably means
4172 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4175 static void vdbeAssertFieldCountWithinLimits(
4176 int nKey
, const void *pKey
, /* The record to verify */
4177 const KeyInfo
*pKeyInfo
/* Compare size with this KeyInfo */
4183 const unsigned char *aKey
= (const unsigned char*)pKey
;
4185 if( CORRUPT_DB
) return;
4186 idx
= getVarint32(aKey
, szHdr
);
4188 assert( szHdr
<=(u32
)nKey
);
4190 idx
+= getVarint32(aKey
+idx
, notUsed
);
4193 assert( nField
<= pKeyInfo
->nAllField
);
4196 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4200 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4201 ** using the collation sequence pColl. As usual, return a negative , zero
4202 ** or positive value if *pMem1 is less than, equal to or greater than
4203 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4205 static int vdbeCompareMemString(
4208 const CollSeq
*pColl
,
4209 u8
*prcErr
/* If an OOM occurs, set to SQLITE_NOMEM */
4211 if( pMem1
->enc
==pColl
->enc
){
4212 /* The strings are already in the correct encoding. Call the
4213 ** comparison function directly */
4214 return pColl
->xCmp(pColl
->pUser
,pMem1
->n
,pMem1
->z
,pMem2
->n
,pMem2
->z
);
4217 const void *v1
, *v2
;
4220 sqlite3VdbeMemInit(&c1
, pMem1
->db
, MEM_Null
);
4221 sqlite3VdbeMemInit(&c2
, pMem1
->db
, MEM_Null
);
4222 sqlite3VdbeMemShallowCopy(&c1
, pMem1
, MEM_Ephem
);
4223 sqlite3VdbeMemShallowCopy(&c2
, pMem2
, MEM_Ephem
);
4224 v1
= sqlite3ValueText((sqlite3_value
*)&c1
, pColl
->enc
);
4225 v2
= sqlite3ValueText((sqlite3_value
*)&c2
, pColl
->enc
);
4226 if( (v1
==0 || v2
==0) ){
4227 if( prcErr
) *prcErr
= SQLITE_NOMEM_BKPT
;
4230 rc
= pColl
->xCmp(pColl
->pUser
, c1
.n
, v1
, c2
.n
, v2
);
4232 sqlite3VdbeMemRelease(&c1
);
4233 sqlite3VdbeMemRelease(&c2
);
4239 ** The input pBlob is guaranteed to be a Blob that is not marked
4240 ** with MEM_Zero. Return true if it could be a zero-blob.
4242 static int isAllZero(const char *z
, int n
){
4245 if( z
[i
] ) return 0;
4251 ** Compare two blobs. Return negative, zero, or positive if the first
4252 ** is less than, equal to, or greater than the second, respectively.
4253 ** If one blob is a prefix of the other, then the shorter is the lessor.
4255 SQLITE_NOINLINE
int sqlite3BlobCompare(const Mem
*pB1
, const Mem
*pB2
){
4260 /* It is possible to have a Blob value that has some non-zero content
4261 ** followed by zero content. But that only comes up for Blobs formed
4262 ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4263 ** sqlite3MemCompare(). */
4264 assert( (pB1
->flags
& MEM_Zero
)==0 || n1
==0 );
4265 assert( (pB2
->flags
& MEM_Zero
)==0 || n2
==0 );
4267 if( (pB1
->flags
|pB2
->flags
) & MEM_Zero
){
4268 if( pB1
->flags
& pB2
->flags
& MEM_Zero
){
4269 return pB1
->u
.nZero
- pB2
->u
.nZero
;
4270 }else if( pB1
->flags
& MEM_Zero
){
4271 if( !isAllZero(pB2
->z
, pB2
->n
) ) return -1;
4272 return pB1
->u
.nZero
- n2
;
4274 if( !isAllZero(pB1
->z
, pB1
->n
) ) return +1;
4275 return n1
- pB2
->u
.nZero
;
4278 c
= memcmp(pB1
->z
, pB2
->z
, n1
>n2
? n2
: n1
);
4284 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4285 ** number. Return negative, zero, or positive if the first (i64) is less than,
4286 ** equal to, or greater than the second (double).
4288 static int sqlite3IntFloatCompare(i64 i
, double r
){
4289 if( sizeof(LONGDOUBLE_TYPE
)>8 ){
4290 LONGDOUBLE_TYPE x
= (LONGDOUBLE_TYPE
)i
;
4294 if( x
<r
) return -1;
4295 if( x
>r
) return +1; /*NO_TEST*/ /* work around bugs in gcov */
4296 return 0; /*NO_TEST*/ /* work around bugs in gcov */
4300 if( r
<-9223372036854775808.0 ) return +1;
4301 if( r
>=9223372036854775808.0 ) return -1;
4303 if( i
<y
) return -1;
4304 if( i
>y
) return +1;
4306 if( s
<r
) return -1;
4307 if( s
>r
) return +1;
4313 ** Compare the values contained by the two memory cells, returning
4314 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4315 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4316 ** and reals) sorted numerically, followed by text ordered by the collating
4317 ** sequence pColl and finally blob's ordered by memcmp().
4319 ** Two NULL values are considered equal by this function.
4321 int sqlite3MemCompare(const Mem
*pMem1
, const Mem
*pMem2
, const CollSeq
*pColl
){
4327 combined_flags
= f1
|f2
;
4328 assert( !sqlite3VdbeMemIsRowSet(pMem1
) && !sqlite3VdbeMemIsRowSet(pMem2
) );
4330 /* If one value is NULL, it is less than the other. If both values
4331 ** are NULL, return 0.
4333 if( combined_flags
&MEM_Null
){
4334 return (f2
&MEM_Null
) - (f1
&MEM_Null
);
4337 /* At least one of the two values is a number
4339 if( combined_flags
&(MEM_Int
|MEM_Real
|MEM_IntReal
) ){
4340 testcase( combined_flags
& MEM_Int
);
4341 testcase( combined_flags
& MEM_Real
);
4342 testcase( combined_flags
& MEM_IntReal
);
4343 if( (f1
& f2
& (MEM_Int
|MEM_IntReal
))!=0 ){
4344 testcase( f1
& f2
& MEM_Int
);
4345 testcase( f1
& f2
& MEM_IntReal
);
4346 if( pMem1
->u
.i
< pMem2
->u
.i
) return -1;
4347 if( pMem1
->u
.i
> pMem2
->u
.i
) return +1;
4350 if( (f1
& f2
& MEM_Real
)!=0 ){
4351 if( pMem1
->u
.r
< pMem2
->u
.r
) return -1;
4352 if( pMem1
->u
.r
> pMem2
->u
.r
) return +1;
4355 if( (f1
&(MEM_Int
|MEM_IntReal
))!=0 ){
4356 testcase( f1
& MEM_Int
);
4357 testcase( f1
& MEM_IntReal
);
4358 if( (f2
&MEM_Real
)!=0 ){
4359 return sqlite3IntFloatCompare(pMem1
->u
.i
, pMem2
->u
.r
);
4360 }else if( (f2
&(MEM_Int
|MEM_IntReal
))!=0 ){
4361 if( pMem1
->u
.i
< pMem2
->u
.i
) return -1;
4362 if( pMem1
->u
.i
> pMem2
->u
.i
) return +1;
4368 if( (f1
&MEM_Real
)!=0 ){
4369 if( (f2
&(MEM_Int
|MEM_IntReal
))!=0 ){
4370 testcase( f2
& MEM_Int
);
4371 testcase( f2
& MEM_IntReal
);
4372 return -sqlite3IntFloatCompare(pMem2
->u
.i
, pMem1
->u
.r
);
4380 /* If one value is a string and the other is a blob, the string is less.
4381 ** If both are strings, compare using the collating functions.
4383 if( combined_flags
&MEM_Str
){
4384 if( (f1
& MEM_Str
)==0 ){
4387 if( (f2
& MEM_Str
)==0 ){
4391 assert( pMem1
->enc
==pMem2
->enc
|| pMem1
->db
->mallocFailed
);
4392 assert( pMem1
->enc
==SQLITE_UTF8
||
4393 pMem1
->enc
==SQLITE_UTF16LE
|| pMem1
->enc
==SQLITE_UTF16BE
);
4395 /* The collation sequence must be defined at this point, even if
4396 ** the user deletes the collation sequence after the vdbe program is
4397 ** compiled (this was not always the case).
4399 assert( !pColl
|| pColl
->xCmp
);
4402 return vdbeCompareMemString(pMem1
, pMem2
, pColl
, 0);
4404 /* If a NULL pointer was passed as the collate function, fall through
4405 ** to the blob case and use memcmp(). */
4408 /* Both values must be blobs. Compare using memcmp(). */
4409 return sqlite3BlobCompare(pMem1
, pMem2
);
4414 ** The first argument passed to this function is a serial-type that
4415 ** corresponds to an integer - all values between 1 and 9 inclusive
4416 ** except 7. The second points to a buffer containing an integer value
4417 ** serialized according to serial_type. This function deserializes
4418 ** and returns the value.
4420 static i64
vdbeRecordDecodeInt(u32 serial_type
, const u8
*aKey
){
4422 assert( CORRUPT_DB
|| (serial_type
>=1 && serial_type
<=9 && serial_type
!=7) );
4423 switch( serial_type
){
4426 testcase( aKey
[0]&0x80 );
4427 return ONE_BYTE_INT(aKey
);
4429 testcase( aKey
[0]&0x80 );
4430 return TWO_BYTE_INT(aKey
);
4432 testcase( aKey
[0]&0x80 );
4433 return THREE_BYTE_INT(aKey
);
4435 testcase( aKey
[0]&0x80 );
4436 y
= FOUR_BYTE_UINT(aKey
);
4437 return (i64
)*(int*)&y
;
4440 testcase( aKey
[0]&0x80 );
4441 return FOUR_BYTE_UINT(aKey
+2) + (((i64
)1)<<32)*TWO_BYTE_INT(aKey
);
4444 u64 x
= FOUR_BYTE_UINT(aKey
);
4445 testcase( aKey
[0]&0x80 );
4446 x
= (x
<<32) | FOUR_BYTE_UINT(aKey
+4);
4447 return (i64
)*(i64
*)&x
;
4451 return (serial_type
- 8);
4455 ** This function compares the two table rows or index records
4456 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
4457 ** or positive integer if key1 is less than, equal to or
4458 ** greater than key2. The {nKey1, pKey1} key must be a blob
4459 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
4460 ** key must be a parsed key such as obtained from
4461 ** sqlite3VdbeParseRecord.
4463 ** If argument bSkip is non-zero, it is assumed that the caller has already
4464 ** determined that the first fields of the keys are equal.
4466 ** Key1 and Key2 do not have to contain the same number of fields. If all
4467 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4470 ** If database corruption is discovered, set pPKey2->errCode to
4471 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4472 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4473 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4475 int sqlite3VdbeRecordCompareWithSkip(
4476 int nKey1
, const void *pKey1
, /* Left key */
4477 UnpackedRecord
*pPKey2
, /* Right key */
4478 int bSkip
/* If true, skip the first field */
4480 u32 d1
; /* Offset into aKey[] of next data element */
4481 int i
; /* Index of next field to compare */
4482 u32 szHdr1
; /* Size of record header in bytes */
4483 u32 idx1
; /* Offset of first type in header */
4484 int rc
= 0; /* Return value */
4485 Mem
*pRhs
= pPKey2
->aMem
; /* Next field of pPKey2 to compare */
4487 const unsigned char *aKey1
= (const unsigned char *)pKey1
;
4490 /* If bSkip is true, then the caller has already determined that the first
4491 ** two elements in the keys are equal. Fix the various stack variables so
4492 ** that this routine begins comparing at the second field. */
4495 idx1
= 1 + getVarint32(&aKey1
[1], s1
);
4497 d1
= szHdr1
+ sqlite3VdbeSerialTypeLen(s1
);
4501 idx1
= getVarint32(aKey1
, szHdr1
);
4505 if( d1
>(unsigned)nKey1
){
4506 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
4507 return 0; /* Corruption */
4510 VVA_ONLY( mem1
.szMalloc
= 0; ) /* Only needed by assert() statements */
4511 assert( pPKey2
->pKeyInfo
->nAllField
>=pPKey2
->nField
4513 assert( pPKey2
->pKeyInfo
->aSortFlags
!=0 );
4514 assert( pPKey2
->pKeyInfo
->nKeyField
>0 );
4515 assert( idx1
<=szHdr1
|| CORRUPT_DB
);
4519 /* RHS is an integer */
4520 if( pRhs
->flags
& (MEM_Int
|MEM_IntReal
) ){
4521 testcase( pRhs
->flags
& MEM_Int
);
4522 testcase( pRhs
->flags
& MEM_IntReal
);
4523 serial_type
= aKey1
[idx1
];
4524 testcase( serial_type
==12 );
4525 if( serial_type
>=10 ){
4527 }else if( serial_type
==0 ){
4529 }else if( serial_type
==7 ){
4530 sqlite3VdbeSerialGet(&aKey1
[d1
], serial_type
, &mem1
);
4531 rc
= -sqlite3IntFloatCompare(pRhs
->u
.i
, mem1
.u
.r
);
4533 i64 lhs
= vdbeRecordDecodeInt(serial_type
, &aKey1
[d1
]);
4534 i64 rhs
= pRhs
->u
.i
;
4537 }else if( lhs
>rhs
){
4544 else if( pRhs
->flags
& MEM_Real
){
4545 serial_type
= aKey1
[idx1
];
4546 if( serial_type
>=10 ){
4547 /* Serial types 12 or greater are strings and blobs (greater than
4548 ** numbers). Types 10 and 11 are currently "reserved for future
4549 ** use", so it doesn't really matter what the results of comparing
4550 ** them to numberic values are. */
4552 }else if( serial_type
==0 ){
4555 sqlite3VdbeSerialGet(&aKey1
[d1
], serial_type
, &mem1
);
4556 if( serial_type
==7 ){
4557 if( mem1
.u
.r
<pRhs
->u
.r
){
4559 }else if( mem1
.u
.r
>pRhs
->u
.r
){
4563 rc
= sqlite3IntFloatCompare(mem1
.u
.i
, pRhs
->u
.r
);
4568 /* RHS is a string */
4569 else if( pRhs
->flags
& MEM_Str
){
4570 getVarint32NR(&aKey1
[idx1
], serial_type
);
4571 testcase( serial_type
==12 );
4572 if( serial_type
<12 ){
4574 }else if( !(serial_type
& 0x01) ){
4577 mem1
.n
= (serial_type
- 12) / 2;
4578 testcase( (d1
+mem1
.n
)==(unsigned)nKey1
);
4579 testcase( (d1
+mem1
.n
+1)==(unsigned)nKey1
);
4580 if( (d1
+mem1
.n
) > (unsigned)nKey1
4581 || (pKeyInfo
= pPKey2
->pKeyInfo
)->nAllField
<=i
4583 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
4584 return 0; /* Corruption */
4585 }else if( pKeyInfo
->aColl
[i
] ){
4586 mem1
.enc
= pKeyInfo
->enc
;
4587 mem1
.db
= pKeyInfo
->db
;
4588 mem1
.flags
= MEM_Str
;
4589 mem1
.z
= (char*)&aKey1
[d1
];
4590 rc
= vdbeCompareMemString(
4591 &mem1
, pRhs
, pKeyInfo
->aColl
[i
], &pPKey2
->errCode
4594 int nCmp
= MIN(mem1
.n
, pRhs
->n
);
4595 rc
= memcmp(&aKey1
[d1
], pRhs
->z
, nCmp
);
4596 if( rc
==0 ) rc
= mem1
.n
- pRhs
->n
;
4602 else if( pRhs
->flags
& MEM_Blob
){
4603 assert( (pRhs
->flags
& MEM_Zero
)==0 || pRhs
->n
==0 );
4604 getVarint32NR(&aKey1
[idx1
], serial_type
);
4605 testcase( serial_type
==12 );
4606 if( serial_type
<12 || (serial_type
& 0x01) ){
4609 int nStr
= (serial_type
- 12) / 2;
4610 testcase( (d1
+nStr
)==(unsigned)nKey1
);
4611 testcase( (d1
+nStr
+1)==(unsigned)nKey1
);
4612 if( (d1
+nStr
) > (unsigned)nKey1
){
4613 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
4614 return 0; /* Corruption */
4615 }else if( pRhs
->flags
& MEM_Zero
){
4616 if( !isAllZero((const char*)&aKey1
[d1
],nStr
) ){
4619 rc
= nStr
- pRhs
->u
.nZero
;
4622 int nCmp
= MIN(nStr
, pRhs
->n
);
4623 rc
= memcmp(&aKey1
[d1
], pRhs
->z
, nCmp
);
4624 if( rc
==0 ) rc
= nStr
- pRhs
->n
;
4631 serial_type
= aKey1
[idx1
];
4632 rc
= (serial_type
!=0);
4636 int sortFlags
= pPKey2
->pKeyInfo
->aSortFlags
[i
];
4638 if( (sortFlags
& KEYINFO_ORDER_BIGNULL
)==0
4639 || ((sortFlags
& KEYINFO_ORDER_DESC
)
4640 !=(serial_type
==0 || (pRhs
->flags
&MEM_Null
)))
4645 assert( vdbeRecordCompareDebug(nKey1
, pKey1
, pPKey2
, rc
) );
4646 assert( mem1
.szMalloc
==0 ); /* See comment below */
4651 if( i
==pPKey2
->nField
) break;
4653 d1
+= sqlite3VdbeSerialTypeLen(serial_type
);
4654 idx1
+= sqlite3VarintLen(serial_type
);
4655 }while( idx1
<(unsigned)szHdr1
&& d1
<=(unsigned)nKey1
);
4657 /* No memory allocation is ever used on mem1. Prove this using
4658 ** the following assert(). If the assert() fails, it indicates a
4659 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
4660 assert( mem1
.szMalloc
==0 );
4662 /* rc==0 here means that one or both of the keys ran out of fields and
4663 ** all the fields up to that point were equal. Return the default_rc
4666 || vdbeRecordCompareDebug(nKey1
, pKey1
, pPKey2
, pPKey2
->default_rc
)
4667 || pPKey2
->pKeyInfo
->db
->mallocFailed
4670 return pPKey2
->default_rc
;
4672 int sqlite3VdbeRecordCompare(
4673 int nKey1
, const void *pKey1
, /* Left key */
4674 UnpackedRecord
*pPKey2
/* Right key */
4676 return sqlite3VdbeRecordCompareWithSkip(nKey1
, pKey1
, pPKey2
, 0);
4681 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4682 ** that (a) the first field of pPKey2 is an integer, and (b) the
4683 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4684 ** byte (i.e. is less than 128).
4686 ** To avoid concerns about buffer overreads, this routine is only used
4687 ** on schemas where the maximum valid header size is 63 bytes or less.
4689 static int vdbeRecordCompareInt(
4690 int nKey1
, const void *pKey1
, /* Left key */
4691 UnpackedRecord
*pPKey2
/* Right key */
4693 const u8
*aKey
= &((const u8
*)pKey1
)[*(const u8
*)pKey1
& 0x3F];
4694 int serial_type
= ((const u8
*)pKey1
)[1];
4701 vdbeAssertFieldCountWithinLimits(nKey1
, pKey1
, pPKey2
->pKeyInfo
);
4702 assert( (*(u8
*)pKey1
)<=0x3F || CORRUPT_DB
);
4703 switch( serial_type
){
4704 case 1: { /* 1-byte signed integer */
4705 lhs
= ONE_BYTE_INT(aKey
);
4709 case 2: { /* 2-byte signed integer */
4710 lhs
= TWO_BYTE_INT(aKey
);
4714 case 3: { /* 3-byte signed integer */
4715 lhs
= THREE_BYTE_INT(aKey
);
4719 case 4: { /* 4-byte signed integer */
4720 y
= FOUR_BYTE_UINT(aKey
);
4721 lhs
= (i64
)*(int*)&y
;
4725 case 5: { /* 6-byte signed integer */
4726 lhs
= FOUR_BYTE_UINT(aKey
+2) + (((i64
)1)<<32)*TWO_BYTE_INT(aKey
);
4730 case 6: { /* 8-byte signed integer */
4731 x
= FOUR_BYTE_UINT(aKey
);
4732 x
= (x
<<32) | FOUR_BYTE_UINT(aKey
+4);
4744 /* This case could be removed without changing the results of running
4745 ** this code. Including it causes gcc to generate a faster switch
4746 ** statement (since the range of switch targets now starts at zero and
4747 ** is contiguous) but does not cause any duplicate code to be generated
4748 ** (as gcc is clever enough to combine the two like cases). Other
4749 ** compilers might be similar. */
4751 return sqlite3VdbeRecordCompare(nKey1
, pKey1
, pPKey2
);
4754 return sqlite3VdbeRecordCompare(nKey1
, pKey1
, pPKey2
);
4757 v
= pPKey2
->aMem
[0].u
.i
;
4762 }else if( pPKey2
->nField
>1 ){
4763 /* The first fields of the two keys are equal. Compare the trailing
4765 res
= sqlite3VdbeRecordCompareWithSkip(nKey1
, pKey1
, pPKey2
, 1);
4767 /* The first fields of the two keys are equal and there are no trailing
4768 ** fields. Return pPKey2->default_rc in this case. */
4769 res
= pPKey2
->default_rc
;
4773 assert( vdbeRecordCompareDebug(nKey1
, pKey1
, pPKey2
, res
) );
4778 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4779 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4780 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4781 ** at the start of (pKey1/nKey1) fits in a single byte.
4783 static int vdbeRecordCompareString(
4784 int nKey1
, const void *pKey1
, /* Left key */
4785 UnpackedRecord
*pPKey2
/* Right key */
4787 const u8
*aKey1
= (const u8
*)pKey1
;
4791 assert( pPKey2
->aMem
[0].flags
& MEM_Str
);
4792 vdbeAssertFieldCountWithinLimits(nKey1
, pKey1
, pPKey2
->pKeyInfo
);
4793 serial_type
= (u8
)(aKey1
[1]);
4794 if( serial_type
>= 0x80 ){
4795 sqlite3GetVarint32(&aKey1
[1], (u32
*)&serial_type
);
4797 if( serial_type
<12 ){
4798 res
= pPKey2
->r1
; /* (pKey1/nKey1) is a number or a null */
4799 }else if( !(serial_type
& 0x01) ){
4800 res
= pPKey2
->r2
; /* (pKey1/nKey1) is a blob */
4804 int szHdr
= aKey1
[0];
4806 nStr
= (serial_type
-12) / 2;
4807 if( (szHdr
+ nStr
) > nKey1
){
4808 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
4809 return 0; /* Corruption */
4811 nCmp
= MIN( pPKey2
->aMem
[0].n
, nStr
);
4812 res
= memcmp(&aKey1
[szHdr
], pPKey2
->aMem
[0].z
, nCmp
);
4819 res
= nStr
- pPKey2
->aMem
[0].n
;
4821 if( pPKey2
->nField
>1 ){
4822 res
= sqlite3VdbeRecordCompareWithSkip(nKey1
, pKey1
, pPKey2
, 1);
4824 res
= pPKey2
->default_rc
;
4835 assert( vdbeRecordCompareDebug(nKey1
, pKey1
, pPKey2
, res
)
4837 || pPKey2
->pKeyInfo
->db
->mallocFailed
4843 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4844 ** suitable for comparing serialized records to the unpacked record passed
4845 ** as the only argument.
4847 RecordCompare
sqlite3VdbeFindCompare(UnpackedRecord
*p
){
4848 /* varintRecordCompareInt() and varintRecordCompareString() both assume
4849 ** that the size-of-header varint that occurs at the start of each record
4850 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4851 ** also assumes that it is safe to overread a buffer by at least the
4852 ** maximum possible legal header size plus 8 bytes. Because there is
4853 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4854 ** buffer passed to varintRecordCompareInt() this makes it convenient to
4855 ** limit the size of the header to 64 bytes in cases where the first field
4858 ** The easiest way to enforce this limit is to consider only records with
4859 ** 13 fields or less. If the first field is an integer, the maximum legal
4860 ** header size is (12*5 + 1 + 1) bytes. */
4861 if( p
->pKeyInfo
->nAllField
<=13 ){
4862 int flags
= p
->aMem
[0].flags
;
4863 if( p
->pKeyInfo
->aSortFlags
[0] ){
4864 if( p
->pKeyInfo
->aSortFlags
[0] & KEYINFO_ORDER_BIGNULL
){
4865 return sqlite3VdbeRecordCompare
;
4873 if( (flags
& MEM_Int
) ){
4874 return vdbeRecordCompareInt
;
4876 testcase( flags
& MEM_Real
);
4877 testcase( flags
& MEM_Null
);
4878 testcase( flags
& MEM_Blob
);
4879 if( (flags
& (MEM_Real
|MEM_IntReal
|MEM_Null
|MEM_Blob
))==0
4880 && p
->pKeyInfo
->aColl
[0]==0
4882 assert( flags
& MEM_Str
);
4883 return vdbeRecordCompareString
;
4887 return sqlite3VdbeRecordCompare
;
4891 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4892 ** Read the rowid (the last field in the record) and store it in *rowid.
4893 ** Return SQLITE_OK if everything works, or an error code otherwise.
4895 ** pCur might be pointing to text obtained from a corrupt database file.
4896 ** So the content cannot be trusted. Do appropriate checks on the content.
4898 int sqlite3VdbeIdxRowid(sqlite3
*db
, BtCursor
*pCur
, i64
*rowid
){
4901 u32 szHdr
; /* Size of the header */
4902 u32 typeRowid
; /* Serial type of the rowid */
4903 u32 lenRowid
; /* Size of the rowid */
4906 /* Get the size of the index entry. Only indices entries of less
4907 ** than 2GiB are support - anything large must be database corruption.
4908 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4909 ** this code can safely assume that nCellKey is 32-bits
4911 assert( sqlite3BtreeCursorIsValid(pCur
) );
4912 nCellKey
= sqlite3BtreePayloadSize(pCur
);
4913 assert( (nCellKey
& SQLITE_MAX_U32
)==(u64
)nCellKey
);
4915 /* Read in the complete content of the index entry */
4916 sqlite3VdbeMemInit(&m
, db
, 0);
4917 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pCur
, (u32
)nCellKey
, &m
);
4922 /* The index entry must begin with a header size */
4923 getVarint32NR((u8
*)m
.z
, szHdr
);
4924 testcase( szHdr
==3 );
4925 testcase( szHdr
==m
.n
);
4926 testcase( szHdr
>0x7fffffff );
4928 if( unlikely(szHdr
<3 || szHdr
>(unsigned)m
.n
) ){
4929 goto idx_rowid_corruption
;
4932 /* The last field of the index should be an integer - the ROWID.
4933 ** Verify that the last entry really is an integer. */
4934 getVarint32NR((u8
*)&m
.z
[szHdr
-1], typeRowid
);
4935 testcase( typeRowid
==1 );
4936 testcase( typeRowid
==2 );
4937 testcase( typeRowid
==3 );
4938 testcase( typeRowid
==4 );
4939 testcase( typeRowid
==5 );
4940 testcase( typeRowid
==6 );
4941 testcase( typeRowid
==8 );
4942 testcase( typeRowid
==9 );
4943 if( unlikely(typeRowid
<1 || typeRowid
>9 || typeRowid
==7) ){
4944 goto idx_rowid_corruption
;
4946 lenRowid
= sqlite3SmallTypeSizes
[typeRowid
];
4947 testcase( (u32
)m
.n
==szHdr
+lenRowid
);
4948 if( unlikely((u32
)m
.n
<szHdr
+lenRowid
) ){
4949 goto idx_rowid_corruption
;
4952 /* Fetch the integer off the end of the index record */
4953 sqlite3VdbeSerialGet((u8
*)&m
.z
[m
.n
-lenRowid
], typeRowid
, &v
);
4955 sqlite3VdbeMemRelease(&m
);
4958 /* Jump here if database corruption is detected after m has been
4959 ** allocated. Free the m object and return SQLITE_CORRUPT. */
4960 idx_rowid_corruption
:
4961 testcase( m
.szMalloc
!=0 );
4962 sqlite3VdbeMemRelease(&m
);
4963 return SQLITE_CORRUPT_BKPT
;
4967 ** Compare the key of the index entry that cursor pC is pointing to against
4968 ** the key string in pUnpacked. Write into *pRes a number
4969 ** that is negative, zero, or positive if pC is less than, equal to,
4970 ** or greater than pUnpacked. Return SQLITE_OK on success.
4972 ** pUnpacked is either created without a rowid or is truncated so that it
4973 ** omits the rowid at the end. The rowid at the end of the index entry
4974 ** is ignored as well. Hence, this routine only compares the prefixes
4975 ** of the keys prior to the final rowid, not the entire key.
4977 int sqlite3VdbeIdxKeyCompare(
4978 sqlite3
*db
, /* Database connection */
4979 VdbeCursor
*pC
, /* The cursor to compare against */
4980 UnpackedRecord
*pUnpacked
, /* Unpacked version of key */
4981 int *res
/* Write the comparison result here */
4988 assert( pC
->eCurType
==CURTYPE_BTREE
);
4989 pCur
= pC
->uc
.pCursor
;
4990 assert( sqlite3BtreeCursorIsValid(pCur
) );
4991 nCellKey
= sqlite3BtreePayloadSize(pCur
);
4992 /* nCellKey will always be between 0 and 0xffffffff because of the way
4993 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
4994 if( nCellKey
<=0 || nCellKey
>0x7fffffff ){
4996 return SQLITE_CORRUPT_BKPT
;
4998 sqlite3VdbeMemInit(&m
, db
, 0);
4999 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pCur
, (u32
)nCellKey
, &m
);
5003 *res
= sqlite3VdbeRecordCompareWithSkip(m
.n
, m
.z
, pUnpacked
, 0);
5004 sqlite3VdbeMemRelease(&m
);
5009 ** This routine sets the value to be returned by subsequent calls to
5010 ** sqlite3_changes() on the database handle 'db'.
5012 void sqlite3VdbeSetChanges(sqlite3
*db
, int nChange
){
5013 assert( sqlite3_mutex_held(db
->mutex
) );
5014 db
->nChange
= nChange
;
5015 db
->nTotalChange
+= nChange
;
5019 ** Set a flag in the vdbe to update the change counter when it is finalised
5022 void sqlite3VdbeCountChanges(Vdbe
*v
){
5027 ** Mark every prepared statement associated with a database connection
5030 ** An expired statement means that recompilation of the statement is
5031 ** recommend. Statements expire when things happen that make their
5032 ** programs obsolete. Removing user-defined functions or collating
5033 ** sequences, or changing an authorization function are the types of
5034 ** things that make prepared statements obsolete.
5036 ** If iCode is 1, then expiration is advisory. The statement should
5037 ** be reprepared before being restarted, but if it is already running
5038 ** it is allowed to run to completion.
5040 ** Internally, this function just sets the Vdbe.expired flag on all
5041 ** prepared statements. The flag is set to 1 for an immediate expiration
5042 ** and set to 2 for an advisory expiration.
5044 void sqlite3ExpirePreparedStatements(sqlite3
*db
, int iCode
){
5046 for(p
= db
->pVdbe
; p
; p
=p
->pNext
){
5047 p
->expired
= iCode
+1;
5052 ** Return the database associated with the Vdbe.
5054 sqlite3
*sqlite3VdbeDb(Vdbe
*v
){
5059 ** Return the SQLITE_PREPARE flags for a Vdbe.
5061 u8
sqlite3VdbePrepareFlags(Vdbe
*v
){
5062 return v
->prepFlags
;
5066 ** Return a pointer to an sqlite3_value structure containing the value bound
5067 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
5068 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
5069 ** constants) to the value before returning it.
5071 ** The returned value must be freed by the caller using sqlite3ValueFree().
5073 sqlite3_value
*sqlite3VdbeGetBoundValue(Vdbe
*v
, int iVar
, u8 aff
){
5076 Mem
*pMem
= &v
->aVar
[iVar
-1];
5077 assert( (v
->db
->flags
& SQLITE_EnableQPSG
)==0 );
5078 if( 0==(pMem
->flags
& MEM_Null
) ){
5079 sqlite3_value
*pRet
= sqlite3ValueNew(v
->db
);
5081 sqlite3VdbeMemCopy((Mem
*)pRet
, pMem
);
5082 sqlite3ValueApplyAffinity(pRet
, aff
, SQLITE_UTF8
);
5091 ** Configure SQL variable iVar so that binding a new value to it signals
5092 ** to sqlite3_reoptimize() that re-preparing the statement may result
5093 ** in a better query plan.
5095 void sqlite3VdbeSetVarmask(Vdbe
*v
, int iVar
){
5097 assert( (v
->db
->flags
& SQLITE_EnableQPSG
)==0 );
5099 v
->expmask
|= 0x80000000;
5101 v
->expmask
|= ((u32
)1 << (iVar
-1));
5106 ** Cause a function to throw an error if it was call from OP_PureFunc
5107 ** rather than OP_Function.
5109 ** OP_PureFunc means that the function must be deterministic, and should
5110 ** throw an error if it is given inputs that would make it non-deterministic.
5111 ** This routine is invoked by date/time functions that use non-deterministic
5112 ** features such as 'now'.
5114 int sqlite3NotPureFunc(sqlite3_context
*pCtx
){
5116 #ifdef SQLITE_ENABLE_STAT4
5117 if( pCtx
->pVdbe
==0 ) return 1;
5119 pOp
= pCtx
->pVdbe
->aOp
+ pCtx
->iOp
;
5120 if( pOp
->opcode
==OP_PureFunc
){
5121 const char *zContext
;
5123 if( pOp
->p5
& NC_IsCheck
){
5124 zContext
= "a CHECK constraint";
5125 }else if( pOp
->p5
& NC_GenCol
){
5126 zContext
= "a generated column";
5128 zContext
= "an index";
5130 zMsg
= sqlite3_mprintf("non-deterministic use of %s() in %s",
5131 pCtx
->pFunc
->zName
, zContext
);
5132 sqlite3_result_error(pCtx
, zMsg
, -1);
5139 #ifndef SQLITE_OMIT_VIRTUALTABLE
5141 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5142 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5143 ** in memory obtained from sqlite3DbMalloc).
5145 void sqlite3VtabImportErrmsg(Vdbe
*p
, sqlite3_vtab
*pVtab
){
5146 if( pVtab
->zErrMsg
){
5147 sqlite3
*db
= p
->db
;
5148 sqlite3DbFree(db
, p
->zErrMsg
);
5149 p
->zErrMsg
= sqlite3DbStrDup(db
, pVtab
->zErrMsg
);
5150 sqlite3_free(pVtab
->zErrMsg
);
5154 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5156 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5159 ** If the second argument is not NULL, release any allocations associated
5160 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5161 ** structure itself, using sqlite3DbFree().
5163 ** This function is used to free UnpackedRecord structures allocated by
5164 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5166 static void vdbeFreeUnpacked(sqlite3
*db
, int nField
, UnpackedRecord
*p
){
5169 for(i
=0; i
<nField
; i
++){
5170 Mem
*pMem
= &p
->aMem
[i
];
5171 if( pMem
->zMalloc
) sqlite3VdbeMemRelease(pMem
);
5173 sqlite3DbFreeNN(db
, p
);
5176 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5178 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5180 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5181 ** then cursor passed as the second argument should point to the row about
5182 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5183 ** the required value will be read from the row the cursor points to.
5185 void sqlite3VdbePreUpdateHook(
5186 Vdbe
*v
, /* Vdbe pre-update hook is invoked by */
5187 VdbeCursor
*pCsr
, /* Cursor to grab old.* values from */
5188 int op
, /* SQLITE_INSERT, UPDATE or DELETE */
5189 const char *zDb
, /* Database name */
5190 Table
*pTab
, /* Modified table */
5191 i64 iKey1
, /* Initial key value */
5192 int iReg
, /* Register for new.* record */
5195 sqlite3
*db
= v
->db
;
5197 PreUpdate preupdate
;
5198 const char *zTbl
= pTab
->zName
;
5199 static const u8 fakeSortOrder
= 0;
5201 assert( db
->pPreUpdate
==0 );
5202 memset(&preupdate
, 0, sizeof(PreUpdate
));
5203 if( HasRowid(pTab
)==0 ){
5205 preupdate
.pPk
= sqlite3PrimaryKeyIndex(pTab
);
5207 if( op
==SQLITE_UPDATE
){
5208 iKey2
= v
->aMem
[iReg
].u
.i
;
5214 assert( pCsr
->nField
==pTab
->nCol
5215 || (pCsr
->nField
==pTab
->nCol
+1 && op
==SQLITE_DELETE
&& iReg
==-1)
5219 preupdate
.pCsr
= pCsr
;
5221 preupdate
.iNewReg
= iReg
;
5222 preupdate
.keyinfo
.db
= db
;
5223 preupdate
.keyinfo
.enc
= ENC(db
);
5224 preupdate
.keyinfo
.nKeyField
= pTab
->nCol
;
5225 preupdate
.keyinfo
.aSortFlags
= (u8
*)&fakeSortOrder
;
5226 preupdate
.iKey1
= iKey1
;
5227 preupdate
.iKey2
= iKey2
;
5228 preupdate
.pTab
= pTab
;
5229 preupdate
.iBlobWrite
= iBlobWrite
;
5231 db
->pPreUpdate
= &preupdate
;
5232 db
->xPreUpdateCallback(db
->pPreUpdateArg
, db
, op
, zDb
, zTbl
, iKey1
, iKey2
);
5234 sqlite3DbFree(db
, preupdate
.aRecord
);
5235 vdbeFreeUnpacked(db
, preupdate
.keyinfo
.nKeyField
+1, preupdate
.pUnpacked
);
5236 vdbeFreeUnpacked(db
, preupdate
.keyinfo
.nKeyField
+1, preupdate
.pNewUnpacked
);
5237 if( preupdate
.aNew
){
5239 for(i
=0; i
<pCsr
->nField
; i
++){
5240 sqlite3VdbeMemRelease(&preupdate
.aNew
[i
]);
5242 sqlite3DbFreeNN(db
, preupdate
.aNew
);
5245 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */