4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit. This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code. The original where.c
18 ** file retains the code that does query planning and analysis.
20 #include "sqliteInt.h"
23 #ifndef SQLITE_OMIT_EXPLAIN
26 ** Return the name of the i-th column of the pIdx index.
28 static const char *explainIndexColumnName(Index
*pIdx
, int i
){
29 i
= pIdx
->aiColumn
[i
];
30 if( i
==XN_EXPR
) return "<expr>";
31 if( i
==XN_ROWID
) return "rowid";
32 return pIdx
->pTable
->aCol
[i
].zName
;
36 ** This routine is a helper for explainIndexRange() below
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time. This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
43 static void explainAppendTerm(
44 StrAccum
*pStr
, /* The text expression being built */
45 Index
*pIdx
, /* Index to read column names from */
46 int nTerm
, /* Number of terms */
47 int iTerm
, /* Zero-based index of first term. */
48 int bAnd
, /* Non-zero to append " AND " */
49 const char *zOp
/* Name of the operator */
54 if( bAnd
) sqlite3_str_append(pStr
, " AND ", 5);
56 if( nTerm
>1 ) sqlite3_str_append(pStr
, "(", 1);
57 for(i
=0; i
<nTerm
; i
++){
58 if( i
) sqlite3_str_append(pStr
, ",", 1);
59 sqlite3_str_appendall(pStr
, explainIndexColumnName(pIdx
, iTerm
+i
));
61 if( nTerm
>1 ) sqlite3_str_append(pStr
, ")", 1);
63 sqlite3_str_append(pStr
, zOp
, 1);
65 if( nTerm
>1 ) sqlite3_str_append(pStr
, "(", 1);
66 for(i
=0; i
<nTerm
; i
++){
67 if( i
) sqlite3_str_append(pStr
, ",", 1);
68 sqlite3_str_append(pStr
, "?", 1);
70 if( nTerm
>1 ) sqlite3_str_append(pStr
, ")", 1);
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
78 ** For example, if the query:
80 ** SELECT * FROM t1 WHERE a=1 AND b>2;
82 ** is run and there is an index on (a, b), then this function returns a
87 static void explainIndexRange(StrAccum
*pStr
, WhereLoop
*pLoop
){
88 Index
*pIndex
= pLoop
->u
.btree
.pIndex
;
89 u16 nEq
= pLoop
->u
.btree
.nEq
;
90 u16 nSkip
= pLoop
->nSkip
;
93 if( nEq
==0 && (pLoop
->wsFlags
&(WHERE_BTM_LIMIT
|WHERE_TOP_LIMIT
))==0 ) return;
94 sqlite3_str_append(pStr
, " (", 2);
96 const char *z
= explainIndexColumnName(pIndex
, i
);
97 if( i
) sqlite3_str_append(pStr
, " AND ", 5);
98 sqlite3_str_appendf(pStr
, i
>=nSkip
? "%s=?" : "ANY(%s)", z
);
102 if( pLoop
->wsFlags
&WHERE_BTM_LIMIT
){
103 explainAppendTerm(pStr
, pIndex
, pLoop
->u
.btree
.nBtm
, j
, i
, ">");
106 if( pLoop
->wsFlags
&WHERE_TOP_LIMIT
){
107 explainAppendTerm(pStr
, pIndex
, pLoop
->u
.btree
.nTop
, j
, i
, "<");
109 sqlite3_str_append(pStr
, ")", 1);
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
121 int sqlite3WhereExplainOneScan(
122 Parse
*pParse
, /* Parse context */
123 SrcList
*pTabList
, /* Table list this loop refers to */
124 WhereLevel
*pLevel
, /* Scan to write OP_Explain opcode for */
125 u16 wctrlFlags
/* Flags passed to sqlite3WhereBegin() */
128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
129 if( sqlite3ParseToplevel(pParse
)->explain
==2 )
132 SrcItem
*pItem
= &pTabList
->a
[pLevel
->iFrom
];
133 Vdbe
*v
= pParse
->pVdbe
; /* VM being constructed */
134 sqlite3
*db
= pParse
->db
; /* Database handle */
135 int isSearch
; /* True for a SEARCH. False for SCAN. */
136 WhereLoop
*pLoop
; /* The controlling WhereLoop object */
137 u32 flags
; /* Flags that describe this loop */
138 char *zMsg
; /* Text to add to EQP output */
139 StrAccum str
; /* EQP output string */
140 char zBuf
[100]; /* Initial space for EQP output string */
142 pLoop
= pLevel
->pWLoop
;
143 flags
= pLoop
->wsFlags
;
144 if( (flags
&WHERE_MULTI_OR
) || (wctrlFlags
&WHERE_OR_SUBCLAUSE
) ) return 0;
146 isSearch
= (flags
&(WHERE_BTM_LIMIT
|WHERE_TOP_LIMIT
))!=0
147 || ((flags
&WHERE_VIRTUALTABLE
)==0 && (pLoop
->u
.btree
.nEq
>0))
148 || (wctrlFlags
&(WHERE_ORDERBY_MIN
|WHERE_ORDERBY_MAX
));
150 sqlite3StrAccumInit(&str
, db
, zBuf
, sizeof(zBuf
), SQLITE_MAX_LENGTH
);
151 str
.printfFlags
= SQLITE_PRINTF_INTERNAL
;
152 sqlite3_str_appendf(&str
, "%s %S", isSearch
? "SEARCH" : "SCAN", pItem
);
153 if( (flags
& (WHERE_IPK
|WHERE_VIRTUALTABLE
))==0 ){
154 const char *zFmt
= 0;
157 assert( pLoop
->u
.btree
.pIndex
!=0 );
158 pIdx
= pLoop
->u
.btree
.pIndex
;
159 assert( !(flags
&WHERE_AUTO_INDEX
) || (flags
&WHERE_IDX_ONLY
) );
160 if( !HasRowid(pItem
->pTab
) && IsPrimaryKeyIndex(pIdx
) ){
162 zFmt
= "PRIMARY KEY";
164 }else if( flags
& WHERE_PARTIALIDX
){
165 zFmt
= "AUTOMATIC PARTIAL COVERING INDEX";
166 }else if( flags
& WHERE_AUTO_INDEX
){
167 zFmt
= "AUTOMATIC COVERING INDEX";
168 }else if( flags
& WHERE_IDX_ONLY
){
169 zFmt
= "COVERING INDEX %s";
174 sqlite3_str_append(&str
, " USING ", 7);
175 sqlite3_str_appendf(&str
, zFmt
, pIdx
->zName
);
176 explainIndexRange(&str
, pLoop
);
178 }else if( (flags
& WHERE_IPK
)!=0 && (flags
& WHERE_CONSTRAINT
)!=0 ){
179 const char *zRangeOp
;
180 if( flags
&(WHERE_COLUMN_EQ
|WHERE_COLUMN_IN
) ){
182 }else if( (flags
&WHERE_BOTH_LIMIT
)==WHERE_BOTH_LIMIT
){
183 zRangeOp
= ">? AND rowid<";
184 }else if( flags
&WHERE_BTM_LIMIT
){
187 assert( flags
&WHERE_TOP_LIMIT
);
190 sqlite3_str_appendf(&str
,
191 " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp
);
193 #ifndef SQLITE_OMIT_VIRTUALTABLE
194 else if( (flags
& WHERE_VIRTUALTABLE
)!=0 ){
195 sqlite3_str_appendf(&str
, " VIRTUAL TABLE INDEX %d:%s",
196 pLoop
->u
.vtab
.idxNum
, pLoop
->u
.vtab
.idxStr
);
199 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
200 if( pLoop
->nOut
>=10 ){
201 sqlite3_str_appendf(&str
, " (~%llu rows)",
202 sqlite3LogEstToInt(pLoop
->nOut
));
204 sqlite3_str_append(&str
, " (~1 row)", 9);
207 zMsg
= sqlite3StrAccumFinish(&str
);
208 sqlite3ExplainBreakpoint("",zMsg
);
209 ret
= sqlite3VdbeAddOp4(v
, OP_Explain
, sqlite3VdbeCurrentAddr(v
),
210 pParse
->addrExplain
, 0, zMsg
,P4_DYNAMIC
);
214 #endif /* SQLITE_OMIT_EXPLAIN */
216 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
218 ** Configure the VM passed as the first argument with an
219 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
220 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
221 ** clause that the scan reads data from.
223 ** If argument addrExplain is not 0, it must be the address of an
224 ** OP_Explain instruction that describes the same loop.
226 void sqlite3WhereAddScanStatus(
227 Vdbe
*v
, /* Vdbe to add scanstatus entry to */
228 SrcList
*pSrclist
, /* FROM clause pLvl reads data from */
229 WhereLevel
*pLvl
, /* Level to add scanstatus() entry for */
230 int addrExplain
/* Address of OP_Explain (or 0) */
232 const char *zObj
= 0;
233 WhereLoop
*pLoop
= pLvl
->pWLoop
;
234 if( (pLoop
->wsFlags
& WHERE_VIRTUALTABLE
)==0 && pLoop
->u
.btree
.pIndex
!=0 ){
235 zObj
= pLoop
->u
.btree
.pIndex
->zName
;
237 zObj
= pSrclist
->a
[pLvl
->iFrom
].zName
;
239 sqlite3VdbeScanStatus(
240 v
, addrExplain
, pLvl
->addrBody
, pLvl
->addrVisit
, pLoop
->nOut
, zObj
247 ** Disable a term in the WHERE clause. Except, do not disable the term
248 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
249 ** or USING clause of that join.
251 ** Consider the term t2.z='ok' in the following queries:
253 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
254 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
255 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
257 ** The t2.z='ok' is disabled in the in (2) because it originates
258 ** in the ON clause. The term is disabled in (3) because it is not part
259 ** of a LEFT OUTER JOIN. In (1), the term is not disabled.
261 ** Disabling a term causes that term to not be tested in the inner loop
262 ** of the join. Disabling is an optimization. When terms are satisfied
263 ** by indices, we disable them to prevent redundant tests in the inner
264 ** loop. We would get the correct results if nothing were ever disabled,
265 ** but joins might run a little slower. The trick is to disable as much
266 ** as we can without disabling too much. If we disabled in (1), we'd get
267 ** the wrong answer. See ticket #813.
269 ** If all the children of a term are disabled, then that term is also
270 ** automatically disabled. In this way, terms get disabled if derived
271 ** virtual terms are tested first. For example:
273 ** x GLOB 'abc*' AND x>='abc' AND x<'acd'
274 ** \___________/ \______/ \_____/
275 ** parent child1 child2
277 ** Only the parent term was in the original WHERE clause. The child1
278 ** and child2 terms were added by the LIKE optimization. If both of
279 ** the virtual child terms are valid, then testing of the parent can be
282 ** Usually the parent term is marked as TERM_CODED. But if the parent
283 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
284 ** The TERM_LIKECOND marking indicates that the term should be coded inside
285 ** a conditional such that is only evaluated on the second pass of a
286 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
288 static void disableTerm(WhereLevel
*pLevel
, WhereTerm
*pTerm
){
291 while( (pTerm
->wtFlags
& TERM_CODED
)==0
292 && (pLevel
->iLeftJoin
==0 || ExprHasProperty(pTerm
->pExpr
, EP_FromJoin
))
293 && (pLevel
->notReady
& pTerm
->prereqAll
)==0
295 if( nLoop
&& (pTerm
->wtFlags
& TERM_LIKE
)!=0 ){
296 pTerm
->wtFlags
|= TERM_LIKECOND
;
298 pTerm
->wtFlags
|= TERM_CODED
;
300 #ifdef WHERETRACE_ENABLED
301 if( sqlite3WhereTrace
& 0x20000 ){
302 sqlite3DebugPrintf("DISABLE-");
303 sqlite3WhereTermPrint(pTerm
, (int)(pTerm
- (pTerm
->pWC
->a
)));
306 if( pTerm
->iParent
<0 ) break;
307 pTerm
= &pTerm
->pWC
->a
[pTerm
->iParent
];
310 if( pTerm
->nChild
!=0 ) break;
316 ** Code an OP_Affinity opcode to apply the column affinity string zAff
317 ** to the n registers starting at base.
319 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which
320 ** are no-ops) at the beginning and end of zAff are ignored. If all entries
321 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated.
323 ** This routine makes its own copy of zAff so that the caller is free
324 ** to modify zAff after this routine returns.
326 static void codeApplyAffinity(Parse
*pParse
, int base
, int n
, char *zAff
){
327 Vdbe
*v
= pParse
->pVdbe
;
329 assert( pParse
->db
->mallocFailed
);
334 /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE
335 ** entries at the beginning and end of the affinity string.
337 assert( SQLITE_AFF_NONE
<SQLITE_AFF_BLOB
);
338 while( n
>0 && zAff
[0]<=SQLITE_AFF_BLOB
){
343 while( n
>1 && zAff
[n
-1]<=SQLITE_AFF_BLOB
){
347 /* Code the OP_Affinity opcode if there is anything left to do. */
349 sqlite3VdbeAddOp4(v
, OP_Affinity
, base
, n
, 0, zAff
, n
);
354 ** Expression pRight, which is the RHS of a comparison operation, is
355 ** either a vector of n elements or, if n==1, a scalar expression.
356 ** Before the comparison operation, affinity zAff is to be applied
357 ** to the pRight values. This function modifies characters within the
358 ** affinity string to SQLITE_AFF_BLOB if either:
360 ** * the comparison will be performed with no affinity, or
361 ** * the affinity change in zAff is guaranteed not to change the value.
363 static void updateRangeAffinityStr(
364 Expr
*pRight
, /* RHS of comparison */
365 int n
, /* Number of vector elements in comparison */
366 char *zAff
/* Affinity string to modify */
370 Expr
*p
= sqlite3VectorFieldSubexpr(pRight
, i
);
371 if( sqlite3CompareAffinity(p
, zAff
[i
])==SQLITE_AFF_BLOB
372 || sqlite3ExprNeedsNoAffinityChange(p
, zAff
[i
])
374 zAff
[i
] = SQLITE_AFF_BLOB
;
381 ** pX is an expression of the form: (vector) IN (SELECT ...)
382 ** In other words, it is a vector IN operator with a SELECT clause on the
383 ** LHS. But not all terms in the vector are indexable and the terms might
384 ** not be in the correct order for indexing.
386 ** This routine makes a copy of the input pX expression and then adjusts
387 ** the vector on the LHS with corresponding changes to the SELECT so that
388 ** the vector contains only index terms and those terms are in the correct
389 ** order. The modified IN expression is returned. The caller is responsible
390 ** for deleting the returned expression.
394 ** CREATE TABLE t1(a,b,c,d,e,f);
395 ** CREATE INDEX t1x1 ON t1(e,c);
396 ** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
397 ** \_______________________________________/
400 ** Since only columns e and c can be used with the index, in that order,
401 ** the modified IN expression that is returned will be:
403 ** (e,c) IN (SELECT z,x FROM t2)
405 ** The reduced pX is different from the original (obviously) and thus is
406 ** only used for indexing, to improve performance. The original unaltered
407 ** IN expression must also be run on each output row for correctness.
409 static Expr
*removeUnindexableInClauseTerms(
410 Parse
*pParse
, /* The parsing context */
411 int iEq
, /* Look at loop terms starting here */
412 WhereLoop
*pLoop
, /* The current loop */
413 Expr
*pX
/* The IN expression to be reduced */
415 sqlite3
*db
= pParse
->db
;
417 pNew
= sqlite3ExprDup(db
, pX
, 0);
418 if( db
->mallocFailed
==0 ){
419 ExprList
*pOrigRhs
= pNew
->x
.pSelect
->pEList
; /* Original unmodified RHS */
420 ExprList
*pOrigLhs
= pNew
->pLeft
->x
.pList
; /* Original unmodified LHS */
421 ExprList
*pRhs
= 0; /* New RHS after modifications */
422 ExprList
*pLhs
= 0; /* New LHS after mods */
423 int i
; /* Loop counter */
424 Select
*pSelect
; /* Pointer to the SELECT on the RHS */
426 for(i
=iEq
; i
<pLoop
->nLTerm
; i
++){
427 if( pLoop
->aLTerm
[i
]->pExpr
==pX
){
428 int iField
= pLoop
->aLTerm
[i
]->u
.x
.iField
- 1;
429 if( pOrigRhs
->a
[iField
].pExpr
==0 ) continue; /* Duplicate PK column */
430 pRhs
= sqlite3ExprListAppend(pParse
, pRhs
, pOrigRhs
->a
[iField
].pExpr
);
431 pOrigRhs
->a
[iField
].pExpr
= 0;
432 assert( pOrigLhs
->a
[iField
].pExpr
!=0 );
433 pLhs
= sqlite3ExprListAppend(pParse
, pLhs
, pOrigLhs
->a
[iField
].pExpr
);
434 pOrigLhs
->a
[iField
].pExpr
= 0;
437 sqlite3ExprListDelete(db
, pOrigRhs
);
438 sqlite3ExprListDelete(db
, pOrigLhs
);
439 pNew
->pLeft
->x
.pList
= pLhs
;
440 pNew
->x
.pSelect
->pEList
= pRhs
;
441 if( pLhs
&& pLhs
->nExpr
==1 ){
442 /* Take care here not to generate a TK_VECTOR containing only a
443 ** single value. Since the parser never creates such a vector, some
444 ** of the subroutines do not handle this case. */
445 Expr
*p
= pLhs
->a
[0].pExpr
;
446 pLhs
->a
[0].pExpr
= 0;
447 sqlite3ExprDelete(db
, pNew
->pLeft
);
450 pSelect
= pNew
->x
.pSelect
;
451 if( pSelect
->pOrderBy
){
452 /* If the SELECT statement has an ORDER BY clause, zero the
453 ** iOrderByCol variables. These are set to non-zero when an
454 ** ORDER BY term exactly matches one of the terms of the
455 ** result-set. Since the result-set of the SELECT statement may
456 ** have been modified or reordered, these variables are no longer
457 ** set correctly. Since setting them is just an optimization,
458 ** it's easiest just to zero them here. */
459 ExprList
*pOrderBy
= pSelect
->pOrderBy
;
460 for(i
=0; i
<pOrderBy
->nExpr
; i
++){
461 pOrderBy
->a
[i
].u
.x
.iOrderByCol
= 0;
466 printf("For indexing, change the IN expr:\n");
467 sqlite3TreeViewExpr(0, pX
, 0);
469 sqlite3TreeViewExpr(0, pNew
, 0);
477 ** Generate code for a single equality term of the WHERE clause. An equality
478 ** term can be either X=expr or X IN (...). pTerm is the term to be
481 ** The current value for the constraint is left in a register, the index
482 ** of which is returned. An attempt is made store the result in iTarget but
483 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the
484 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
485 ** some other register and it is the caller's responsibility to compensate.
487 ** For a constraint of the form X=expr, the expression is evaluated in
488 ** straight-line code. For constraints of the form X IN (...)
489 ** this routine sets up a loop that will iterate over all values of X.
491 static int codeEqualityTerm(
492 Parse
*pParse
, /* The parsing context */
493 WhereTerm
*pTerm
, /* The term of the WHERE clause to be coded */
494 WhereLevel
*pLevel
, /* The level of the FROM clause we are working on */
495 int iEq
, /* Index of the equality term within this level */
496 int bRev
, /* True for reverse-order IN operations */
497 int iTarget
/* Attempt to leave results in this register */
499 Expr
*pX
= pTerm
->pExpr
;
500 Vdbe
*v
= pParse
->pVdbe
;
501 int iReg
; /* Register holding results */
503 assert( pLevel
->pWLoop
->aLTerm
[iEq
]==pTerm
);
505 if( pX
->op
==TK_EQ
|| pX
->op
==TK_IS
){
506 iReg
= sqlite3ExprCodeTarget(pParse
, pX
->pRight
, iTarget
);
507 }else if( pX
->op
==TK_ISNULL
){
509 sqlite3VdbeAddOp2(v
, OP_Null
, 0, iReg
);
510 #ifndef SQLITE_OMIT_SUBQUERY
512 int eType
= IN_INDEX_NOOP
;
515 WhereLoop
*pLoop
= pLevel
->pWLoop
;
520 if( (pLoop
->wsFlags
& WHERE_VIRTUALTABLE
)==0
521 && pLoop
->u
.btree
.pIndex
!=0
522 && pLoop
->u
.btree
.pIndex
->aSortOrder
[iEq
]
528 assert( pX
->op
==TK_IN
);
531 for(i
=0; i
<iEq
; i
++){
532 if( pLoop
->aLTerm
[i
] && pLoop
->aLTerm
[i
]->pExpr
==pX
){
533 disableTerm(pLevel
, pTerm
);
537 for(i
=iEq
;i
<pLoop
->nLTerm
; i
++){
538 assert( pLoop
->aLTerm
[i
]!=0 );
539 if( pLoop
->aLTerm
[i
]->pExpr
==pX
) nEq
++;
543 if( (pX
->flags
& EP_xIsSelect
)==0 || pX
->x
.pSelect
->pEList
->nExpr
==1 ){
544 eType
= sqlite3FindInIndex(pParse
, pX
, IN_INDEX_LOOP
, 0, 0, &iTab
);
546 sqlite3
*db
= pParse
->db
;
547 pX
= removeUnindexableInClauseTerms(pParse
, iEq
, pLoop
, pX
);
549 if( !db
->mallocFailed
){
550 aiMap
= (int*)sqlite3DbMallocZero(pParse
->db
, sizeof(int)*nEq
);
551 eType
= sqlite3FindInIndex(pParse
, pX
, IN_INDEX_LOOP
, 0, aiMap
, &iTab
);
552 pTerm
->pExpr
->iTable
= iTab
;
554 sqlite3ExprDelete(db
, pX
);
558 if( eType
==IN_INDEX_INDEX_DESC
){
562 sqlite3VdbeAddOp2(v
, bRev
? OP_Last
: OP_Rewind
, iTab
, 0);
563 VdbeCoverageIf(v
, bRev
);
564 VdbeCoverageIf(v
, !bRev
);
565 assert( (pLoop
->wsFlags
& WHERE_MULTI_OR
)==0 );
567 pLoop
->wsFlags
|= WHERE_IN_ABLE
;
568 if( pLevel
->u
.in
.nIn
==0 ){
569 pLevel
->addrNxt
= sqlite3VdbeMakeLabel(pParse
);
571 if( iEq
>0 && (pLoop
->wsFlags
& WHERE_IN_SEEKSCAN
)==0 ){
572 pLoop
->wsFlags
|= WHERE_IN_EARLYOUT
;
575 i
= pLevel
->u
.in
.nIn
;
576 pLevel
->u
.in
.nIn
+= nEq
;
577 pLevel
->u
.in
.aInLoop
=
578 sqlite3DbReallocOrFree(pParse
->db
, pLevel
->u
.in
.aInLoop
,
579 sizeof(pLevel
->u
.in
.aInLoop
[0])*pLevel
->u
.in
.nIn
);
580 pIn
= pLevel
->u
.in
.aInLoop
;
582 int iMap
= 0; /* Index in aiMap[] */
584 for(i
=iEq
;i
<pLoop
->nLTerm
; i
++){
585 if( pLoop
->aLTerm
[i
]->pExpr
==pX
){
586 int iOut
= iReg
+ i
- iEq
;
587 if( eType
==IN_INDEX_ROWID
){
588 pIn
->addrInTop
= sqlite3VdbeAddOp2(v
, OP_Rowid
, iTab
, iOut
);
590 int iCol
= aiMap
? aiMap
[iMap
++] : 0;
591 pIn
->addrInTop
= sqlite3VdbeAddOp3(v
,OP_Column
,iTab
, iCol
, iOut
);
593 sqlite3VdbeAddOp1(v
, OP_IsNull
, iOut
); VdbeCoverage(v
);
596 pIn
->eEndLoopOp
= bRev
? OP_Prev
: OP_Next
;
598 pIn
->iBase
= iReg
- i
;
604 pIn
->eEndLoopOp
= OP_Noop
;
610 && (pLoop
->wsFlags
& WHERE_IN_SEEKSCAN
)==0
611 && (pLoop
->wsFlags
& WHERE_VIRTUALTABLE
)!=0 );
613 && (pLoop
->wsFlags
& (WHERE_IN_SEEKSCAN
|WHERE_VIRTUALTABLE
))==0
615 sqlite3VdbeAddOp3(v
, OP_SeekHit
, pLevel
->iIdxCur
, 0, iEq
);
618 pLevel
->u
.in
.nIn
= 0;
620 sqlite3DbFree(pParse
->db
, aiMap
);
624 /* As an optimization, try to disable the WHERE clause term that is
625 ** driving the index as it will always be true. The correct answer is
626 ** obtained regardless, but we might get the answer with fewer CPU cycles
627 ** by omitting the term.
629 ** But do not disable the term unless we are certain that the term is
630 ** not a transitive constraint. For an example of where that does not
631 ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04)
633 if( (pLevel
->pWLoop
->wsFlags
& WHERE_TRANSCONS
)==0
634 || (pTerm
->eOperator
& WO_EQUIV
)==0
636 disableTerm(pLevel
, pTerm
);
643 ** Generate code that will evaluate all == and IN constraints for an
646 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
647 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
648 ** The index has as many as three equality constraints, but in this
649 ** example, the third "c" value is an inequality. So only two
650 ** constraints are coded. This routine will generate code to evaluate
651 ** a==5 and b IN (1,2,3). The current values for a and b will be stored
652 ** in consecutive registers and the index of the first register is returned.
654 ** In the example above nEq==2. But this subroutine works for any value
655 ** of nEq including 0. If nEq==0, this routine is nearly a no-op.
656 ** The only thing it does is allocate the pLevel->iMem memory cell and
657 ** compute the affinity string.
659 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints
660 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is
661 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
662 ** occurs after the nEq quality constraints.
664 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
665 ** the index of the first memory cell in that range. The code that
666 ** calls this routine will use that memory range to store keys for
667 ** start and termination conditions of the loop.
668 ** key value of the loop. If one or more IN operators appear, then
669 ** this routine allocates an additional nEq memory cells for internal
672 ** Before returning, *pzAff is set to point to a buffer containing a
673 ** copy of the column affinity string of the index allocated using
674 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
675 ** with equality constraints that use BLOB or NONE affinity are set to
676 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
678 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
679 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
681 ** In the example above, the index on t1(a) has TEXT affinity. But since
682 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
683 ** no conversion should be attempted before using a t2.b value as part of
684 ** a key to search the index. Hence the first byte in the returned affinity
685 ** string in this example would be set to SQLITE_AFF_BLOB.
687 static int codeAllEqualityTerms(
688 Parse
*pParse
, /* Parsing context */
689 WhereLevel
*pLevel
, /* Which nested loop of the FROM we are coding */
690 int bRev
, /* Reverse the order of IN operators */
691 int nExtraReg
, /* Number of extra registers to allocate */
692 char **pzAff
/* OUT: Set to point to affinity string */
694 u16 nEq
; /* The number of == or IN constraints to code */
695 u16 nSkip
; /* Number of left-most columns to skip */
696 Vdbe
*v
= pParse
->pVdbe
; /* The vm under construction */
697 Index
*pIdx
; /* The index being used for this loop */
698 WhereTerm
*pTerm
; /* A single constraint term */
699 WhereLoop
*pLoop
; /* The WhereLoop object */
700 int j
; /* Loop counter */
701 int regBase
; /* Base register */
702 int nReg
; /* Number of registers to allocate */
703 char *zAff
; /* Affinity string to return */
705 /* This module is only called on query plans that use an index. */
706 pLoop
= pLevel
->pWLoop
;
707 assert( (pLoop
->wsFlags
& WHERE_VIRTUALTABLE
)==0 );
708 nEq
= pLoop
->u
.btree
.nEq
;
709 nSkip
= pLoop
->nSkip
;
710 pIdx
= pLoop
->u
.btree
.pIndex
;
713 /* Figure out how many memory cells we will need then allocate them.
715 regBase
= pParse
->nMem
+ 1;
716 nReg
= pLoop
->u
.btree
.nEq
+ nExtraReg
;
717 pParse
->nMem
+= nReg
;
719 zAff
= sqlite3DbStrDup(pParse
->db
,sqlite3IndexAffinityStr(pParse
->db
,pIdx
));
720 assert( zAff
!=0 || pParse
->db
->mallocFailed
);
723 int iIdxCur
= pLevel
->iIdxCur
;
724 sqlite3VdbeAddOp3(v
, OP_Null
, 0, regBase
, regBase
+nSkip
-1);
725 sqlite3VdbeAddOp1(v
, (bRev
?OP_Last
:OP_Rewind
), iIdxCur
);
726 VdbeCoverageIf(v
, bRev
==0);
727 VdbeCoverageIf(v
, bRev
!=0);
728 VdbeComment((v
, "begin skip-scan on %s", pIdx
->zName
));
729 j
= sqlite3VdbeAddOp0(v
, OP_Goto
);
730 pLevel
->addrSkip
= sqlite3VdbeAddOp4Int(v
, (bRev
?OP_SeekLT
:OP_SeekGT
),
731 iIdxCur
, 0, regBase
, nSkip
);
732 VdbeCoverageIf(v
, bRev
==0);
733 VdbeCoverageIf(v
, bRev
!=0);
734 sqlite3VdbeJumpHere(v
, j
);
735 for(j
=0; j
<nSkip
; j
++){
736 sqlite3VdbeAddOp3(v
, OP_Column
, iIdxCur
, j
, regBase
+j
);
737 testcase( pIdx
->aiColumn
[j
]==XN_EXPR
);
738 VdbeComment((v
, "%s", explainIndexColumnName(pIdx
, j
)));
742 /* Evaluate the equality constraints
744 assert( zAff
==0 || (int)strlen(zAff
)>=nEq
);
745 for(j
=nSkip
; j
<nEq
; j
++){
747 pTerm
= pLoop
->aLTerm
[j
];
749 /* The following testcase is true for indices with redundant columns.
750 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
751 testcase( (pTerm
->wtFlags
& TERM_CODED
)!=0 );
752 testcase( pTerm
->wtFlags
& TERM_VIRTUAL
);
753 r1
= codeEqualityTerm(pParse
, pTerm
, pLevel
, j
, bRev
, regBase
+j
);
756 sqlite3ReleaseTempReg(pParse
, regBase
);
759 sqlite3VdbeAddOp2(v
, OP_Copy
, r1
, regBase
+j
);
762 if( pTerm
->eOperator
& WO_IN
){
763 if( pTerm
->pExpr
->flags
& EP_xIsSelect
){
764 /* No affinity ever needs to be (or should be) applied to a value
765 ** from the RHS of an "? IN (SELECT ...)" expression. The
766 ** sqlite3FindInIndex() routine has already ensured that the
767 ** affinity of the comparison has been applied to the value. */
768 if( zAff
) zAff
[j
] = SQLITE_AFF_BLOB
;
770 }else if( (pTerm
->eOperator
& WO_ISNULL
)==0 ){
771 Expr
*pRight
= pTerm
->pExpr
->pRight
;
772 if( (pTerm
->wtFlags
& TERM_IS
)==0 && sqlite3ExprCanBeNull(pRight
) ){
773 sqlite3VdbeAddOp2(v
, OP_IsNull
, regBase
+j
, pLevel
->addrBrk
);
776 if( pParse
->db
->mallocFailed
==0 && pParse
->nErr
==0 ){
777 if( sqlite3CompareAffinity(pRight
, zAff
[j
])==SQLITE_AFF_BLOB
){
778 zAff
[j
] = SQLITE_AFF_BLOB
;
780 if( sqlite3ExprNeedsNoAffinityChange(pRight
, zAff
[j
]) ){
781 zAff
[j
] = SQLITE_AFF_BLOB
;
790 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
792 ** If the most recently coded instruction is a constant range constraint
793 ** (a string literal) that originated from the LIKE optimization, then
794 ** set P3 and P5 on the OP_String opcode so that the string will be cast
795 ** to a BLOB at appropriate times.
797 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
798 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range
799 ** scan loop run twice, once for strings and a second time for BLOBs.
800 ** The OP_String opcodes on the second pass convert the upper and lower
801 ** bound string constants to blobs. This routine makes the necessary changes
802 ** to the OP_String opcodes for that to happen.
804 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
805 ** only the one pass through the string space is required, so this routine
808 static void whereLikeOptimizationStringFixup(
809 Vdbe
*v
, /* prepared statement under construction */
810 WhereLevel
*pLevel
, /* The loop that contains the LIKE operator */
811 WhereTerm
*pTerm
/* The upper or lower bound just coded */
813 if( pTerm
->wtFlags
& TERM_LIKEOPT
){
815 assert( pLevel
->iLikeRepCntr
>0 );
816 pOp
= sqlite3VdbeGetOp(v
, -1);
818 assert( pOp
->opcode
==OP_String8
819 || pTerm
->pWC
->pWInfo
->pParse
->db
->mallocFailed
);
820 pOp
->p3
= (int)(pLevel
->iLikeRepCntr
>>1); /* Register holding counter */
821 pOp
->p5
= (u8
)(pLevel
->iLikeRepCntr
&1); /* ASC or DESC */
825 # define whereLikeOptimizationStringFixup(A,B,C)
828 #ifdef SQLITE_ENABLE_CURSOR_HINTS
830 ** Information is passed from codeCursorHint() down to individual nodes of
831 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
835 int iTabCur
; /* Cursor for the main table */
836 int iIdxCur
; /* Cursor for the index, if pIdx!=0. Unused otherwise */
837 Index
*pIdx
; /* The index used to access the table */
841 ** This function is called for every node of an expression that is a candidate
842 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference
843 ** the table CCurHint.iTabCur, verify that the same column can be
844 ** accessed through the index. If it cannot, then set pWalker->eCode to 1.
846 static int codeCursorHintCheckExpr(Walker
*pWalker
, Expr
*pExpr
){
847 struct CCurHint
*pHint
= pWalker
->u
.pCCurHint
;
848 assert( pHint
->pIdx
!=0 );
849 if( pExpr
->op
==TK_COLUMN
850 && pExpr
->iTable
==pHint
->iTabCur
851 && sqlite3TableColumnToIndex(pHint
->pIdx
, pExpr
->iColumn
)<0
859 ** Test whether or not expression pExpr, which was part of a WHERE clause,
860 ** should be included in the cursor-hint for a table that is on the rhs
861 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
862 ** expression is not suitable.
864 ** An expression is unsuitable if it might evaluate to non NULL even if
865 ** a TK_COLUMN node that does affect the value of the expression is set
866 ** to NULL. For example:
871 ** CASE WHEN col THEN 0 ELSE 1 END
873 static int codeCursorHintIsOrFunction(Walker
*pWalker
, Expr
*pExpr
){
875 || pExpr
->op
==TK_ISNULL
|| pExpr
->op
==TK_ISNOT
876 || pExpr
->op
==TK_NOTNULL
|| pExpr
->op
==TK_CASE
879 }else if( pExpr
->op
==TK_FUNCTION
){
882 if( 0==sqlite3IsLikeFunction(pWalker
->pParse
->db
, pExpr
, &d1
, d2
) ){
892 ** This function is called on every node of an expression tree used as an
893 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
894 ** that accesses any table other than the one identified by
895 ** CCurHint.iTabCur, then do the following:
897 ** 1) allocate a register and code an OP_Column instruction to read
898 ** the specified column into the new register, and
900 ** 2) transform the expression node to a TK_REGISTER node that reads
901 ** from the newly populated register.
903 ** Also, if the node is a TK_COLUMN that does access the table idenified
904 ** by pCCurHint.iTabCur, and an index is being used (which we will
905 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
906 ** an access of the index rather than the original table.
908 static int codeCursorHintFixExpr(Walker
*pWalker
, Expr
*pExpr
){
909 int rc
= WRC_Continue
;
910 struct CCurHint
*pHint
= pWalker
->u
.pCCurHint
;
911 if( pExpr
->op
==TK_COLUMN
){
912 if( pExpr
->iTable
!=pHint
->iTabCur
){
913 int reg
= ++pWalker
->pParse
->nMem
; /* Register for column value */
914 sqlite3ExprCode(pWalker
->pParse
, pExpr
, reg
);
915 pExpr
->op
= TK_REGISTER
;
917 }else if( pHint
->pIdx
!=0 ){
918 pExpr
->iTable
= pHint
->iIdxCur
;
919 pExpr
->iColumn
= sqlite3TableColumnToIndex(pHint
->pIdx
, pExpr
->iColumn
);
920 assert( pExpr
->iColumn
>=0 );
922 }else if( pExpr
->op
==TK_AGG_FUNCTION
){
923 /* An aggregate function in the WHERE clause of a query means this must
924 ** be a correlated sub-query, and expression pExpr is an aggregate from
925 ** the parent context. Do not walk the function arguments in this case.
927 ** todo: It should be possible to replace this node with a TK_REGISTER
928 ** expression, as the result of the expression must be stored in a
929 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
936 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
938 static void codeCursorHint(
939 SrcItem
*pTabItem
, /* FROM clause item */
940 WhereInfo
*pWInfo
, /* The where clause */
941 WhereLevel
*pLevel
, /* Which loop to provide hints for */
942 WhereTerm
*pEndRange
/* Hint this end-of-scan boundary term if not NULL */
944 Parse
*pParse
= pWInfo
->pParse
;
945 sqlite3
*db
= pParse
->db
;
946 Vdbe
*v
= pParse
->pVdbe
;
948 WhereLoop
*pLoop
= pLevel
->pWLoop
;
953 struct CCurHint sHint
;
956 if( OptimizationDisabled(db
, SQLITE_CursorHints
) ) return;
957 iCur
= pLevel
->iTabCur
;
958 assert( iCur
==pWInfo
->pTabList
->a
[pLevel
->iFrom
].iCursor
);
959 sHint
.iTabCur
= iCur
;
960 sHint
.iIdxCur
= pLevel
->iIdxCur
;
961 sHint
.pIdx
= pLoop
->u
.btree
.pIndex
;
962 memset(&sWalker
, 0, sizeof(sWalker
));
963 sWalker
.pParse
= pParse
;
964 sWalker
.u
.pCCurHint
= &sHint
;
966 for(i
=0; i
<pWC
->nTerm
; i
++){
968 if( pTerm
->wtFlags
& (TERM_VIRTUAL
|TERM_CODED
) ) continue;
969 if( pTerm
->prereqAll
& pLevel
->notReady
) continue;
971 /* Any terms specified as part of the ON(...) clause for any LEFT
972 ** JOIN for which the current table is not the rhs are omitted
973 ** from the cursor-hint.
975 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
976 ** that were specified as part of the WHERE clause must be excluded.
977 ** This is to address the following:
979 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
981 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
982 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
983 ** pushed down to the cursor, this row is filtered out, causing
984 ** SQLite to synthesize a row of NULL values. Which does match the
985 ** WHERE clause, and so the query returns a row. Which is incorrect.
987 ** For the same reason, WHERE terms such as:
989 ** WHERE 1 = (t2.c IS NULL)
991 ** are also excluded. See codeCursorHintIsOrFunction() for details.
993 if( pTabItem
->fg
.jointype
& JT_LEFT
){
994 Expr
*pExpr
= pTerm
->pExpr
;
995 if( !ExprHasProperty(pExpr
, EP_FromJoin
)
996 || pExpr
->iRightJoinTable
!=pTabItem
->iCursor
999 sWalker
.xExprCallback
= codeCursorHintIsOrFunction
;
1000 sqlite3WalkExpr(&sWalker
, pTerm
->pExpr
);
1001 if( sWalker
.eCode
) continue;
1004 if( ExprHasProperty(pTerm
->pExpr
, EP_FromJoin
) ) continue;
1007 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
1008 ** the cursor. These terms are not needed as hints for a pure range
1009 ** scan (that has no == terms) so omit them. */
1010 if( pLoop
->u
.btree
.nEq
==0 && pTerm
!=pEndRange
){
1011 for(j
=0; j
<pLoop
->nLTerm
&& pLoop
->aLTerm
[j
]!=pTerm
; j
++){}
1012 if( j
<pLoop
->nLTerm
) continue;
1015 /* No subqueries or non-deterministic functions allowed */
1016 if( sqlite3ExprContainsSubquery(pTerm
->pExpr
) ) continue;
1018 /* For an index scan, make sure referenced columns are actually in
1020 if( sHint
.pIdx
!=0 ){
1022 sWalker
.xExprCallback
= codeCursorHintCheckExpr
;
1023 sqlite3WalkExpr(&sWalker
, pTerm
->pExpr
);
1024 if( sWalker
.eCode
) continue;
1027 /* If we survive all prior tests, that means this term is worth hinting */
1028 pExpr
= sqlite3ExprAnd(pParse
, pExpr
, sqlite3ExprDup(db
, pTerm
->pExpr
, 0));
1031 sWalker
.xExprCallback
= codeCursorHintFixExpr
;
1032 sqlite3WalkExpr(&sWalker
, pExpr
);
1033 sqlite3VdbeAddOp4(v
, OP_CursorHint
,
1034 (sHint
.pIdx
? sHint
.iIdxCur
: sHint
.iTabCur
), 0, 0,
1035 (const char*)pExpr
, P4_EXPR
);
1039 # define codeCursorHint(A,B,C,D) /* No-op */
1040 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
1043 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
1044 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
1045 ** function generates code to do a deferred seek of cursor iCur to the
1046 ** rowid stored in register iRowid.
1048 ** Normally, this is just:
1050 ** OP_DeferredSeek $iCur $iRowid
1052 ** However, if the scan currently being coded is a branch of an OR-loop and
1053 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek
1054 ** is set to iIdxCur and P4 is set to point to an array of integers
1055 ** containing one entry for each column of the table cursor iCur is open
1056 ** on. For each table column, if the column is the i'th column of the
1057 ** index, then the corresponding array entry is set to (i+1). If the column
1058 ** does not appear in the index at all, the array entry is set to 0.
1060 static void codeDeferredSeek(
1061 WhereInfo
*pWInfo
, /* Where clause context */
1062 Index
*pIdx
, /* Index scan is using */
1063 int iCur
, /* Cursor for IPK b-tree */
1064 int iIdxCur
/* Index cursor */
1066 Parse
*pParse
= pWInfo
->pParse
; /* Parse context */
1067 Vdbe
*v
= pParse
->pVdbe
; /* Vdbe to generate code within */
1069 assert( iIdxCur
>0 );
1070 assert( pIdx
->aiColumn
[pIdx
->nColumn
-1]==-1 );
1072 pWInfo
->bDeferredSeek
= 1;
1073 sqlite3VdbeAddOp3(v
, OP_DeferredSeek
, iIdxCur
, 0, iCur
);
1074 if( (pWInfo
->wctrlFlags
& WHERE_OR_SUBCLAUSE
)
1075 && DbMaskAllZero(sqlite3ParseToplevel(pParse
)->writeMask
)
1078 Table
*pTab
= pIdx
->pTable
;
1079 u32
*ai
= (u32
*)sqlite3DbMallocZero(pParse
->db
, sizeof(u32
)*(pTab
->nCol
+1));
1082 for(i
=0; i
<pIdx
->nColumn
-1; i
++){
1084 assert( pIdx
->aiColumn
[i
]<pTab
->nCol
);
1085 x1
= pIdx
->aiColumn
[i
];
1086 x2
= sqlite3TableColumnToStorage(pTab
, x1
);
1088 if( x1
>=0 ) ai
[x2
+1] = i
+1;
1090 sqlite3VdbeChangeP4(v
, -1, (char*)ai
, P4_INTARRAY
);
1096 ** If the expression passed as the second argument is a vector, generate
1097 ** code to write the first nReg elements of the vector into an array
1098 ** of registers starting with iReg.
1100 ** If the expression is not a vector, then nReg must be passed 1. In
1101 ** this case, generate code to evaluate the expression and leave the
1102 ** result in register iReg.
1104 static void codeExprOrVector(Parse
*pParse
, Expr
*p
, int iReg
, int nReg
){
1106 if( p
&& sqlite3ExprIsVector(p
) ){
1107 #ifndef SQLITE_OMIT_SUBQUERY
1108 if( (p
->flags
& EP_xIsSelect
) ){
1109 Vdbe
*v
= pParse
->pVdbe
;
1111 assert( p
->op
==TK_SELECT
);
1112 iSelect
= sqlite3CodeSubselect(pParse
, p
);
1113 sqlite3VdbeAddOp3(v
, OP_Copy
, iSelect
, iReg
, nReg
-1);
1118 ExprList
*pList
= p
->x
.pList
;
1119 assert( nReg
<=pList
->nExpr
);
1120 for(i
=0; i
<nReg
; i
++){
1121 sqlite3ExprCode(pParse
, pList
->a
[i
].pExpr
, iReg
+i
);
1125 assert( nReg
==1 || pParse
->nErr
);
1126 sqlite3ExprCode(pParse
, p
, iReg
);
1130 /* An instance of the IdxExprTrans object carries information about a
1131 ** mapping from an expression on table columns into a column in an index
1132 ** down through the Walker.
1134 typedef struct IdxExprTrans
{
1135 Expr
*pIdxExpr
; /* The index expression */
1136 int iTabCur
; /* The cursor of the corresponding table */
1137 int iIdxCur
; /* The cursor for the index */
1138 int iIdxCol
; /* The column for the index */
1139 int iTabCol
; /* The column for the table */
1140 WhereInfo
*pWInfo
; /* Complete WHERE clause information */
1141 sqlite3
*db
; /* Database connection (for malloc()) */
1145 ** Preserve pExpr on the WhereETrans list of the WhereInfo.
1147 static void preserveExpr(IdxExprTrans
*pTrans
, Expr
*pExpr
){
1149 pNew
= sqlite3DbMallocRaw(pTrans
->db
, sizeof(*pNew
));
1150 if( pNew
==0 ) return;
1151 pNew
->pNext
= pTrans
->pWInfo
->pExprMods
;
1152 pTrans
->pWInfo
->pExprMods
= pNew
;
1153 pNew
->pExpr
= pExpr
;
1154 memcpy(&pNew
->orig
, pExpr
, sizeof(*pExpr
));
1157 /* The walker node callback used to transform matching expressions into
1158 ** a reference to an index column for an index on an expression.
1160 ** If pExpr matches, then transform it into a reference to the index column
1161 ** that contains the value of pExpr.
1163 static int whereIndexExprTransNode(Walker
*p
, Expr
*pExpr
){
1164 IdxExprTrans
*pX
= p
->u
.pIdxTrans
;
1165 if( sqlite3ExprCompare(0, pExpr
, pX
->pIdxExpr
, pX
->iTabCur
)==0 ){
1166 preserveExpr(pX
, pExpr
);
1167 pExpr
->affExpr
= sqlite3ExprAffinity(pExpr
);
1168 pExpr
->op
= TK_COLUMN
;
1169 pExpr
->iTable
= pX
->iIdxCur
;
1170 pExpr
->iColumn
= pX
->iIdxCol
;
1172 testcase( ExprHasProperty(pExpr
, EP_Skip
) );
1173 testcase( ExprHasProperty(pExpr
, EP_Unlikely
) );
1174 ExprClearProperty(pExpr
, EP_Skip
|EP_Unlikely
);
1177 return WRC_Continue
;
1181 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1182 /* A walker node callback that translates a column reference to a table
1183 ** into a corresponding column reference of an index.
1185 static int whereIndexExprTransColumn(Walker
*p
, Expr
*pExpr
){
1186 if( pExpr
->op
==TK_COLUMN
){
1187 IdxExprTrans
*pX
= p
->u
.pIdxTrans
;
1188 if( pExpr
->iTable
==pX
->iTabCur
&& pExpr
->iColumn
==pX
->iTabCol
){
1189 assert( pExpr
->y
.pTab
!=0 );
1190 preserveExpr(pX
, pExpr
);
1191 pExpr
->affExpr
= sqlite3TableColumnAffinity(pExpr
->y
.pTab
,pExpr
->iColumn
);
1192 pExpr
->iTable
= pX
->iIdxCur
;
1193 pExpr
->iColumn
= pX
->iIdxCol
;
1197 return WRC_Continue
;
1199 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1202 ** For an indexes on expression X, locate every instance of expression X
1203 ** in pExpr and change that subexpression into a reference to the appropriate
1204 ** column of the index.
1206 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in
1207 ** the table into references to the corresponding (stored) column of the
1210 static void whereIndexExprTrans(
1211 Index
*pIdx
, /* The Index */
1212 int iTabCur
, /* Cursor of the table that is being indexed */
1213 int iIdxCur
, /* Cursor of the index itself */
1214 WhereInfo
*pWInfo
/* Transform expressions in this WHERE clause */
1216 int iIdxCol
; /* Column number of the index */
1217 ExprList
*aColExpr
; /* Expressions that are indexed */
1221 aColExpr
= pIdx
->aColExpr
;
1222 if( aColExpr
==0 && !pIdx
->bHasVCol
){
1223 /* The index does not reference any expressions or virtual columns
1224 ** so no translations are needed. */
1227 pTab
= pIdx
->pTable
;
1228 memset(&w
, 0, sizeof(w
));
1230 x
.iTabCur
= iTabCur
;
1231 x
.iIdxCur
= iIdxCur
;
1233 x
.db
= pWInfo
->pParse
->db
;
1234 for(iIdxCol
=0; iIdxCol
<pIdx
->nColumn
; iIdxCol
++){
1235 i16 iRef
= pIdx
->aiColumn
[iIdxCol
];
1236 if( iRef
==XN_EXPR
){
1237 assert( aColExpr
->a
[iIdxCol
].pExpr
!=0 );
1238 x
.pIdxExpr
= aColExpr
->a
[iIdxCol
].pExpr
;
1239 if( sqlite3ExprIsConstant(x
.pIdxExpr
) ) continue;
1240 w
.xExprCallback
= whereIndexExprTransNode
;
1241 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1243 && (pTab
->aCol
[iRef
].colFlags
& COLFLAG_VIRTUAL
)!=0
1244 && (pTab
->aCol
[iRef
].zColl
==0
1245 || sqlite3StrICmp(pTab
->aCol
[iRef
].zColl
, sqlite3StrBINARY
)==0)
1247 /* Check to see if there are direct references to generated columns
1248 ** that are contained in the index. Pulling the generated column
1249 ** out of the index is an optimization only - the main table is always
1250 ** available if the index cannot be used. To avoid unnecessary
1251 ** complication, omit this optimization if the collating sequence for
1252 ** the column is non-standard */
1254 w
.xExprCallback
= whereIndexExprTransColumn
;
1255 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1259 x
.iIdxCol
= iIdxCol
;
1260 sqlite3WalkExpr(&w
, pWInfo
->pWhere
);
1261 sqlite3WalkExprList(&w
, pWInfo
->pOrderBy
);
1262 sqlite3WalkExprList(&w
, pWInfo
->pResultSet
);
1267 ** The pTruth expression is always true because it is the WHERE clause
1268 ** a partial index that is driving a query loop. Look through all of the
1269 ** WHERE clause terms on the query, and if any of those terms must be
1270 ** true because pTruth is true, then mark those WHERE clause terms as
1273 static void whereApplyPartialIndexConstraints(
1280 while( pTruth
->op
==TK_AND
){
1281 whereApplyPartialIndexConstraints(pTruth
->pLeft
, iTabCur
, pWC
);
1282 pTruth
= pTruth
->pRight
;
1284 for(i
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
1286 if( pTerm
->wtFlags
& TERM_CODED
) continue;
1287 pExpr
= pTerm
->pExpr
;
1288 if( sqlite3ExprCompare(0, pExpr
, pTruth
, iTabCur
)==0 ){
1289 pTerm
->wtFlags
|= TERM_CODED
;
1295 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1296 ** implementation described by pWInfo.
1298 Bitmask
sqlite3WhereCodeOneLoopStart(
1299 Parse
*pParse
, /* Parsing context */
1300 Vdbe
*v
, /* Prepared statement under construction */
1301 WhereInfo
*pWInfo
, /* Complete information about the WHERE clause */
1302 int iLevel
, /* Which level of pWInfo->a[] should be coded */
1303 WhereLevel
*pLevel
, /* The current level pointer */
1304 Bitmask notReady
/* Which tables are currently available */
1306 int j
, k
; /* Loop counters */
1307 int iCur
; /* The VDBE cursor for the table */
1308 int addrNxt
; /* Where to jump to continue with the next IN case */
1309 int bRev
; /* True if we need to scan in reverse order */
1310 WhereLoop
*pLoop
; /* The WhereLoop object being coded */
1311 WhereClause
*pWC
; /* Decomposition of the entire WHERE clause */
1312 WhereTerm
*pTerm
; /* A WHERE clause term */
1313 sqlite3
*db
; /* Database connection */
1314 SrcItem
*pTabItem
; /* FROM clause term being coded */
1315 int addrBrk
; /* Jump here to break out of the loop */
1316 int addrHalt
; /* addrBrk for the outermost loop */
1317 int addrCont
; /* Jump here to continue with next cycle */
1318 int iRowidReg
= 0; /* Rowid is stored in this register, if not zero */
1319 int iReleaseReg
= 0; /* Temp register to free before returning */
1320 Index
*pIdx
= 0; /* Index used by loop (if any) */
1321 int iLoop
; /* Iteration of constraint generator loop */
1325 pLoop
= pLevel
->pWLoop
;
1326 pTabItem
= &pWInfo
->pTabList
->a
[pLevel
->iFrom
];
1327 iCur
= pTabItem
->iCursor
;
1328 pLevel
->notReady
= notReady
& ~sqlite3WhereGetMask(&pWInfo
->sMaskSet
, iCur
);
1329 bRev
= (pWInfo
->revMask
>>iLevel
)&1;
1330 VdbeModuleComment((v
, "Begin WHERE-loop%d: %s",iLevel
,pTabItem
->pTab
->zName
));
1331 #if WHERETRACE_ENABLED /* 0x20800 */
1332 if( sqlite3WhereTrace
& 0x800 ){
1333 sqlite3DebugPrintf("Coding level %d of %d: notReady=%llx iFrom=%d\n",
1334 iLevel
, pWInfo
->nLevel
, (u64
)notReady
, pLevel
->iFrom
);
1335 sqlite3WhereLoopPrint(pLoop
, pWC
);
1337 if( sqlite3WhereTrace
& 0x20000 ){
1339 sqlite3DebugPrintf("WHERE clause being coded:\n");
1340 sqlite3TreeViewExpr(0, pWInfo
->pWhere
, 0);
1342 sqlite3DebugPrintf("All WHERE-clause terms before coding:\n");
1343 sqlite3WhereClausePrint(pWC
);
1347 /* Create labels for the "break" and "continue" instructions
1348 ** for the current loop. Jump to addrBrk to break out of a loop.
1349 ** Jump to cont to go immediately to the next iteration of the
1352 ** When there is an IN operator, we also have a "addrNxt" label that
1353 ** means to continue with the next IN value combination. When
1354 ** there are no IN operators in the constraints, the "addrNxt" label
1355 ** is the same as "addrBrk".
1357 addrBrk
= pLevel
->addrBrk
= pLevel
->addrNxt
= sqlite3VdbeMakeLabel(pParse
);
1358 addrCont
= pLevel
->addrCont
= sqlite3VdbeMakeLabel(pParse
);
1360 /* If this is the right table of a LEFT OUTER JOIN, allocate and
1361 ** initialize a memory cell that records if this table matches any
1362 ** row of the left table of the join.
1364 assert( (pWInfo
->wctrlFlags
& WHERE_OR_SUBCLAUSE
)
1365 || pLevel
->iFrom
>0 || (pTabItem
[0].fg
.jointype
& JT_LEFT
)==0
1367 if( pLevel
->iFrom
>0 && (pTabItem
[0].fg
.jointype
& JT_LEFT
)!=0 ){
1368 pLevel
->iLeftJoin
= ++pParse
->nMem
;
1369 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, pLevel
->iLeftJoin
);
1370 VdbeComment((v
, "init LEFT JOIN no-match flag"));
1373 /* Compute a safe address to jump to if we discover that the table for
1374 ** this loop is empty and can never contribute content. */
1375 for(j
=iLevel
; j
>0 && pWInfo
->a
[j
].iLeftJoin
==0; j
--){}
1376 addrHalt
= pWInfo
->a
[j
].addrBrk
;
1378 /* Special case of a FROM clause subquery implemented as a co-routine */
1379 if( pTabItem
->fg
.viaCoroutine
){
1380 int regYield
= pTabItem
->regReturn
;
1381 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regYield
, 0, pTabItem
->addrFillSub
);
1382 pLevel
->p2
= sqlite3VdbeAddOp2(v
, OP_Yield
, regYield
, addrBrk
);
1384 VdbeComment((v
, "next row of %s", pTabItem
->pTab
->zName
));
1385 pLevel
->op
= OP_Goto
;
1388 #ifndef SQLITE_OMIT_VIRTUALTABLE
1389 if( (pLoop
->wsFlags
& WHERE_VIRTUALTABLE
)!=0 ){
1390 /* Case 1: The table is a virtual-table. Use the VFilter and VNext
1391 ** to access the data.
1393 int iReg
; /* P3 Value for OP_VFilter */
1395 int nConstraint
= pLoop
->nLTerm
;
1396 int iIn
; /* Counter for IN constraints */
1398 iReg
= sqlite3GetTempRange(pParse
, nConstraint
+2);
1399 addrNotFound
= pLevel
->addrBrk
;
1400 for(j
=0; j
<nConstraint
; j
++){
1401 int iTarget
= iReg
+j
+2;
1402 pTerm
= pLoop
->aLTerm
[j
];
1403 if( NEVER(pTerm
==0) ) continue;
1404 if( pTerm
->eOperator
& WO_IN
){
1405 codeEqualityTerm(pParse
, pTerm
, pLevel
, j
, bRev
, iTarget
);
1406 addrNotFound
= pLevel
->addrNxt
;
1408 Expr
*pRight
= pTerm
->pExpr
->pRight
;
1409 codeExprOrVector(pParse
, pRight
, iTarget
, 1);
1412 sqlite3VdbeAddOp2(v
, OP_Integer
, pLoop
->u
.vtab
.idxNum
, iReg
);
1413 sqlite3VdbeAddOp2(v
, OP_Integer
, nConstraint
, iReg
+1);
1414 sqlite3VdbeAddOp4(v
, OP_VFilter
, iCur
, addrNotFound
, iReg
,
1415 pLoop
->u
.vtab
.idxStr
,
1416 pLoop
->u
.vtab
.needFree
? P4_DYNAMIC
: P4_STATIC
);
1418 pLoop
->u
.vtab
.needFree
= 0;
1419 /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed
1420 ** the u.vtab.idxStr. NULL it out to prevent a use-after-free */
1421 if( db
->mallocFailed
) pLoop
->u
.vtab
.idxStr
= 0;
1423 pLevel
->op
= pWInfo
->eOnePass
? OP_Noop
: OP_VNext
;
1424 pLevel
->p2
= sqlite3VdbeCurrentAddr(v
);
1425 iIn
= pLevel
->u
.in
.nIn
;
1426 for(j
=nConstraint
-1; j
>=0; j
--){
1427 pTerm
= pLoop
->aLTerm
[j
];
1428 if( (pTerm
->eOperator
& WO_IN
)!=0 ) iIn
--;
1429 if( j
<16 && (pLoop
->u
.vtab
.omitMask
>>j
)&1 ){
1430 disableTerm(pLevel
, pTerm
);
1431 }else if( (pTerm
->eOperator
& WO_IN
)!=0
1432 && sqlite3ExprVectorSize(pTerm
->pExpr
->pLeft
)==1
1434 Expr
*pCompare
; /* The comparison operator */
1435 Expr
*pRight
; /* RHS of the comparison */
1436 VdbeOp
*pOp
; /* Opcode to access the value of the IN constraint */
1438 /* Reload the constraint value into reg[iReg+j+2]. The same value
1439 ** was loaded into the same register prior to the OP_VFilter, but
1440 ** the xFilter implementation might have changed the datatype or
1441 ** encoding of the value in the register, so it *must* be reloaded. */
1442 assert( pLevel
->u
.in
.aInLoop
!=0 || db
->mallocFailed
);
1443 if( !db
->mallocFailed
){
1444 assert( iIn
>=0 && iIn
<pLevel
->u
.in
.nIn
);
1445 pOp
= sqlite3VdbeGetOp(v
, pLevel
->u
.in
.aInLoop
[iIn
].addrInTop
);
1446 assert( pOp
->opcode
==OP_Column
|| pOp
->opcode
==OP_Rowid
);
1447 assert( pOp
->opcode
!=OP_Column
|| pOp
->p3
==iReg
+j
+2 );
1448 assert( pOp
->opcode
!=OP_Rowid
|| pOp
->p2
==iReg
+j
+2 );
1449 testcase( pOp
->opcode
==OP_Rowid
);
1450 sqlite3VdbeAddOp3(v
, pOp
->opcode
, pOp
->p1
, pOp
->p2
, pOp
->p3
);
1453 /* Generate code that will continue to the next row if
1454 ** the IN constraint is not satisfied */
1455 pCompare
= sqlite3PExpr(pParse
, TK_EQ
, 0, 0);
1456 assert( pCompare
!=0 || db
->mallocFailed
);
1458 pCompare
->pLeft
= pTerm
->pExpr
->pLeft
;
1459 pCompare
->pRight
= pRight
= sqlite3Expr(db
, TK_REGISTER
, 0);
1461 pRight
->iTable
= iReg
+j
+2;
1463 pParse
, pCompare
, pLevel
->addrCont
, SQLITE_JUMPIFNULL
1466 pCompare
->pLeft
= 0;
1467 sqlite3ExprDelete(db
, pCompare
);
1471 assert( iIn
==0 || db
->mallocFailed
);
1472 /* These registers need to be preserved in case there is an IN operator
1473 ** loop. So we could deallocate the registers here (and potentially
1474 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems
1475 ** simpler and safer to simply not reuse the registers.
1477 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1480 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1482 if( (pLoop
->wsFlags
& WHERE_IPK
)!=0
1483 && (pLoop
->wsFlags
& (WHERE_COLUMN_IN
|WHERE_COLUMN_EQ
))!=0
1485 /* Case 2: We can directly reference a single row using an
1486 ** equality comparison against the ROWID field. Or
1487 ** we reference multiple rows using a "rowid IN (...)"
1490 assert( pLoop
->u
.btree
.nEq
==1 );
1491 pTerm
= pLoop
->aLTerm
[0];
1493 assert( pTerm
->pExpr
!=0 );
1494 testcase( pTerm
->wtFlags
& TERM_VIRTUAL
);
1495 iReleaseReg
= ++pParse
->nMem
;
1496 iRowidReg
= codeEqualityTerm(pParse
, pTerm
, pLevel
, 0, bRev
, iReleaseReg
);
1497 if( iRowidReg
!=iReleaseReg
) sqlite3ReleaseTempReg(pParse
, iReleaseReg
);
1498 addrNxt
= pLevel
->addrNxt
;
1499 sqlite3VdbeAddOp3(v
, OP_SeekRowid
, iCur
, addrNxt
, iRowidReg
);
1501 pLevel
->op
= OP_Noop
;
1502 if( (pTerm
->prereqAll
& pLevel
->notReady
)==0 ){
1503 pTerm
->wtFlags
|= TERM_CODED
;
1505 }else if( (pLoop
->wsFlags
& WHERE_IPK
)!=0
1506 && (pLoop
->wsFlags
& WHERE_COLUMN_RANGE
)!=0
1508 /* Case 3: We have an inequality comparison against the ROWID field.
1510 int testOp
= OP_Noop
;
1512 int memEndValue
= 0;
1513 WhereTerm
*pStart
, *pEnd
;
1517 if( pLoop
->wsFlags
& WHERE_BTM_LIMIT
) pStart
= pLoop
->aLTerm
[j
++];
1518 if( pLoop
->wsFlags
& WHERE_TOP_LIMIT
) pEnd
= pLoop
->aLTerm
[j
++];
1519 assert( pStart
!=0 || pEnd
!=0 );
1525 codeCursorHint(pTabItem
, pWInfo
, pLevel
, pEnd
);
1527 Expr
*pX
; /* The expression that defines the start bound */
1528 int r1
, rTemp
; /* Registers for holding the start boundary */
1529 int op
; /* Cursor seek operation */
1531 /* The following constant maps TK_xx codes into corresponding
1532 ** seek opcodes. It depends on a particular ordering of TK_xx
1534 const u8 aMoveOp
[] = {
1535 /* TK_GT */ OP_SeekGT
,
1536 /* TK_LE */ OP_SeekLE
,
1537 /* TK_LT */ OP_SeekLT
,
1538 /* TK_GE */ OP_SeekGE
1540 assert( TK_LE
==TK_GT
+1 ); /* Make sure the ordering.. */
1541 assert( TK_LT
==TK_GT
+2 ); /* ... of the TK_xx values... */
1542 assert( TK_GE
==TK_GT
+3 ); /* ... is correcct. */
1544 assert( (pStart
->wtFlags
& TERM_VNULL
)==0 );
1545 testcase( pStart
->wtFlags
& TERM_VIRTUAL
);
1548 testcase( pStart
->leftCursor
!=iCur
); /* transitive constraints */
1549 if( sqlite3ExprIsVector(pX
->pRight
) ){
1550 r1
= rTemp
= sqlite3GetTempReg(pParse
);
1551 codeExprOrVector(pParse
, pX
->pRight
, r1
, 1);
1552 testcase( pX
->op
==TK_GT
);
1553 testcase( pX
->op
==TK_GE
);
1554 testcase( pX
->op
==TK_LT
);
1555 testcase( pX
->op
==TK_LE
);
1556 op
= aMoveOp
[((pX
->op
- TK_GT
- 1) & 0x3) | 0x1];
1557 assert( pX
->op
!=TK_GT
|| op
==OP_SeekGE
);
1558 assert( pX
->op
!=TK_GE
|| op
==OP_SeekGE
);
1559 assert( pX
->op
!=TK_LT
|| op
==OP_SeekLE
);
1560 assert( pX
->op
!=TK_LE
|| op
==OP_SeekLE
);
1562 r1
= sqlite3ExprCodeTemp(pParse
, pX
->pRight
, &rTemp
);
1563 disableTerm(pLevel
, pStart
);
1564 op
= aMoveOp
[(pX
->op
- TK_GT
)];
1566 sqlite3VdbeAddOp3(v
, op
, iCur
, addrBrk
, r1
);
1567 VdbeComment((v
, "pk"));
1568 VdbeCoverageIf(v
, pX
->op
==TK_GT
);
1569 VdbeCoverageIf(v
, pX
->op
==TK_LE
);
1570 VdbeCoverageIf(v
, pX
->op
==TK_LT
);
1571 VdbeCoverageIf(v
, pX
->op
==TK_GE
);
1572 sqlite3ReleaseTempReg(pParse
, rTemp
);
1574 sqlite3VdbeAddOp2(v
, bRev
? OP_Last
: OP_Rewind
, iCur
, addrHalt
);
1575 VdbeCoverageIf(v
, bRev
==0);
1576 VdbeCoverageIf(v
, bRev
!=0);
1582 assert( (pEnd
->wtFlags
& TERM_VNULL
)==0 );
1583 testcase( pEnd
->leftCursor
!=iCur
); /* Transitive constraints */
1584 testcase( pEnd
->wtFlags
& TERM_VIRTUAL
);
1585 memEndValue
= ++pParse
->nMem
;
1586 codeExprOrVector(pParse
, pX
->pRight
, memEndValue
, 1);
1587 if( 0==sqlite3ExprIsVector(pX
->pRight
)
1588 && (pX
->op
==TK_LT
|| pX
->op
==TK_GT
)
1590 testOp
= bRev
? OP_Le
: OP_Ge
;
1592 testOp
= bRev
? OP_Lt
: OP_Gt
;
1594 if( 0==sqlite3ExprIsVector(pX
->pRight
) ){
1595 disableTerm(pLevel
, pEnd
);
1598 start
= sqlite3VdbeCurrentAddr(v
);
1599 pLevel
->op
= bRev
? OP_Prev
: OP_Next
;
1602 assert( pLevel
->p5
==0 );
1603 if( testOp
!=OP_Noop
){
1604 iRowidReg
= ++pParse
->nMem
;
1605 sqlite3VdbeAddOp2(v
, OP_Rowid
, iCur
, iRowidReg
);
1606 sqlite3VdbeAddOp3(v
, testOp
, memEndValue
, addrBrk
, iRowidReg
);
1607 VdbeCoverageIf(v
, testOp
==OP_Le
);
1608 VdbeCoverageIf(v
, testOp
==OP_Lt
);
1609 VdbeCoverageIf(v
, testOp
==OP_Ge
);
1610 VdbeCoverageIf(v
, testOp
==OP_Gt
);
1611 sqlite3VdbeChangeP5(v
, SQLITE_AFF_NUMERIC
| SQLITE_JUMPIFNULL
);
1613 }else if( pLoop
->wsFlags
& WHERE_INDEXED
){
1614 /* Case 4: A scan using an index.
1616 ** The WHERE clause may contain zero or more equality
1617 ** terms ("==" or "IN" operators) that refer to the N
1618 ** left-most columns of the index. It may also contain
1619 ** inequality constraints (>, <, >= or <=) on the indexed
1620 ** column that immediately follows the N equalities. Only
1621 ** the right-most column can be an inequality - the rest must
1622 ** use the "==" and "IN" operators. For example, if the
1623 ** index is on (x,y,z), then the following clauses are all
1629 ** x=5 AND y>5 AND y<10
1630 ** x=5 AND y=5 AND z<=10
1632 ** The z<10 term of the following cannot be used, only
1637 ** N may be zero if there are inequality constraints.
1638 ** If there are no inequality constraints, then N is at
1641 ** This case is also used when there are no WHERE clause
1642 ** constraints but an index is selected anyway, in order
1643 ** to force the output order to conform to an ORDER BY.
1645 static const u8 aStartOp
[] = {
1648 OP_Rewind
, /* 2: (!start_constraints && startEq && !bRev) */
1649 OP_Last
, /* 3: (!start_constraints && startEq && bRev) */
1650 OP_SeekGT
, /* 4: (start_constraints && !startEq && !bRev) */
1651 OP_SeekLT
, /* 5: (start_constraints && !startEq && bRev) */
1652 OP_SeekGE
, /* 6: (start_constraints && startEq && !bRev) */
1653 OP_SeekLE
/* 7: (start_constraints && startEq && bRev) */
1655 static const u8 aEndOp
[] = {
1656 OP_IdxGE
, /* 0: (end_constraints && !bRev && !endEq) */
1657 OP_IdxGT
, /* 1: (end_constraints && !bRev && endEq) */
1658 OP_IdxLE
, /* 2: (end_constraints && bRev && !endEq) */
1659 OP_IdxLT
, /* 3: (end_constraints && bRev && endEq) */
1661 u16 nEq
= pLoop
->u
.btree
.nEq
; /* Number of == or IN terms */
1662 u16 nBtm
= pLoop
->u
.btree
.nBtm
; /* Length of BTM vector */
1663 u16 nTop
= pLoop
->u
.btree
.nTop
; /* Length of TOP vector */
1664 int regBase
; /* Base register holding constraint values */
1665 WhereTerm
*pRangeStart
= 0; /* Inequality constraint at range start */
1666 WhereTerm
*pRangeEnd
= 0; /* Inequality constraint at range end */
1667 int startEq
; /* True if range start uses ==, >= or <= */
1668 int endEq
; /* True if range end uses ==, >= or <= */
1669 int start_constraints
; /* Start of range is constrained */
1670 int nConstraint
; /* Number of constraint terms */
1671 int iIdxCur
; /* The VDBE cursor for the index */
1672 int nExtraReg
= 0; /* Number of extra registers needed */
1673 int op
; /* Instruction opcode */
1674 char *zStartAff
; /* Affinity for start of range constraint */
1675 char *zEndAff
= 0; /* Affinity for end of range constraint */
1676 u8 bSeekPastNull
= 0; /* True to seek past initial nulls */
1677 u8 bStopAtNull
= 0; /* Add condition to terminate at NULLs */
1678 int omitTable
; /* True if we use the index only */
1679 int regBignull
= 0; /* big-null flag register */
1680 int addrSeekScan
= 0; /* Opcode of the OP_SeekScan, if any */
1682 pIdx
= pLoop
->u
.btree
.pIndex
;
1683 iIdxCur
= pLevel
->iIdxCur
;
1684 assert( nEq
>=pLoop
->nSkip
);
1686 /* Find any inequality constraint terms for the start and end
1690 if( pLoop
->wsFlags
& WHERE_BTM_LIMIT
){
1691 pRangeStart
= pLoop
->aLTerm
[j
++];
1692 nExtraReg
= MAX(nExtraReg
, pLoop
->u
.btree
.nBtm
);
1693 /* Like optimization range constraints always occur in pairs */
1694 assert( (pRangeStart
->wtFlags
& TERM_LIKEOPT
)==0 ||
1695 (pLoop
->wsFlags
& WHERE_TOP_LIMIT
)!=0 );
1697 if( pLoop
->wsFlags
& WHERE_TOP_LIMIT
){
1698 pRangeEnd
= pLoop
->aLTerm
[j
++];
1699 nExtraReg
= MAX(nExtraReg
, pLoop
->u
.btree
.nTop
);
1700 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1701 if( (pRangeEnd
->wtFlags
& TERM_LIKEOPT
)!=0 ){
1702 assert( pRangeStart
!=0 ); /* LIKE opt constraints */
1703 assert( pRangeStart
->wtFlags
& TERM_LIKEOPT
); /* occur in pairs */
1704 pLevel
->iLikeRepCntr
= (u32
)++pParse
->nMem
;
1705 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, (int)pLevel
->iLikeRepCntr
);
1706 VdbeComment((v
, "LIKE loop counter"));
1707 pLevel
->addrLikeRep
= sqlite3VdbeCurrentAddr(v
);
1708 /* iLikeRepCntr actually stores 2x the counter register number. The
1709 ** bottom bit indicates whether the search order is ASC or DESC. */
1711 testcase( pIdx
->aSortOrder
[nEq
]==SQLITE_SO_DESC
);
1712 assert( (bRev
& ~1)==0 );
1713 pLevel
->iLikeRepCntr
<<=1;
1714 pLevel
->iLikeRepCntr
|= bRev
^ (pIdx
->aSortOrder
[nEq
]==SQLITE_SO_DESC
);
1717 if( pRangeStart
==0 ){
1718 j
= pIdx
->aiColumn
[nEq
];
1719 if( (j
>=0 && pIdx
->pTable
->aCol
[j
].notNull
==0) || j
==XN_EXPR
){
1724 assert( pRangeEnd
==0 || (pRangeEnd
->wtFlags
& TERM_VNULL
)==0 );
1726 /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses
1727 ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS
1728 ** FIRST). In both cases separate ordered scans are made of those
1729 ** index entries for which the column is null and for those for which
1730 ** it is not. For an ASC sort, the non-NULL entries are scanned first.
1731 ** For DESC, NULL entries are scanned first.
1733 if( (pLoop
->wsFlags
& (WHERE_TOP_LIMIT
|WHERE_BTM_LIMIT
))==0
1734 && (pLoop
->wsFlags
& WHERE_BIGNULL_SORT
)!=0
1736 assert( bSeekPastNull
==0 && nExtraReg
==0 && nBtm
==0 && nTop
==0 );
1737 assert( pRangeEnd
==0 && pRangeStart
==0 );
1738 testcase( pLoop
->nSkip
>0 );
1741 pLevel
->regBignull
= regBignull
= ++pParse
->nMem
;
1742 if( pLevel
->iLeftJoin
){
1743 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regBignull
);
1745 pLevel
->addrBignull
= sqlite3VdbeMakeLabel(pParse
);
1748 /* If we are doing a reverse order scan on an ascending index, or
1749 ** a forward order scan on a descending index, interchange the
1750 ** start and end terms (pRangeStart and pRangeEnd).
1752 if( (nEq
<pIdx
->nColumn
&& bRev
==(pIdx
->aSortOrder
[nEq
]==SQLITE_SO_ASC
)) ){
1753 SWAP(WhereTerm
*, pRangeEnd
, pRangeStart
);
1754 SWAP(u8
, bSeekPastNull
, bStopAtNull
);
1755 SWAP(u8
, nBtm
, nTop
);
1758 if( iLevel
>0 && (pLoop
->wsFlags
& WHERE_IN_SEEKSCAN
)!=0 ){
1759 /* In case OP_SeekScan is used, ensure that the index cursor does not
1760 ** point to a valid row for the first iteration of this loop. */
1761 sqlite3VdbeAddOp1(v
, OP_NullRow
, iIdxCur
);
1764 /* Generate code to evaluate all constraint terms using == or IN
1765 ** and store the values of those terms in an array of registers
1766 ** starting at regBase.
1768 codeCursorHint(pTabItem
, pWInfo
, pLevel
, pRangeEnd
);
1769 regBase
= codeAllEqualityTerms(pParse
,pLevel
,bRev
,nExtraReg
,&zStartAff
);
1770 assert( zStartAff
==0 || sqlite3Strlen30(zStartAff
)>=nEq
);
1771 if( zStartAff
&& nTop
){
1772 zEndAff
= sqlite3DbStrDup(db
, &zStartAff
[nEq
]);
1774 addrNxt
= (regBignull
? pLevel
->addrBignull
: pLevel
->addrNxt
);
1776 testcase( pRangeStart
&& (pRangeStart
->eOperator
& WO_LE
)!=0 );
1777 testcase( pRangeStart
&& (pRangeStart
->eOperator
& WO_GE
)!=0 );
1778 testcase( pRangeEnd
&& (pRangeEnd
->eOperator
& WO_LE
)!=0 );
1779 testcase( pRangeEnd
&& (pRangeEnd
->eOperator
& WO_GE
)!=0 );
1780 startEq
= !pRangeStart
|| pRangeStart
->eOperator
& (WO_LE
|WO_GE
);
1781 endEq
= !pRangeEnd
|| pRangeEnd
->eOperator
& (WO_LE
|WO_GE
);
1782 start_constraints
= pRangeStart
|| nEq
>0;
1784 /* Seek the index cursor to the start of the range. */
1787 Expr
*pRight
= pRangeStart
->pExpr
->pRight
;
1788 codeExprOrVector(pParse
, pRight
, regBase
+nEq
, nBtm
);
1789 whereLikeOptimizationStringFixup(v
, pLevel
, pRangeStart
);
1790 if( (pRangeStart
->wtFlags
& TERM_VNULL
)==0
1791 && sqlite3ExprCanBeNull(pRight
)
1793 sqlite3VdbeAddOp2(v
, OP_IsNull
, regBase
+nEq
, addrNxt
);
1797 updateRangeAffinityStr(pRight
, nBtm
, &zStartAff
[nEq
]);
1799 nConstraint
+= nBtm
;
1800 testcase( pRangeStart
->wtFlags
& TERM_VIRTUAL
);
1801 if( sqlite3ExprIsVector(pRight
)==0 ){
1802 disableTerm(pLevel
, pRangeStart
);
1807 }else if( bSeekPastNull
){
1809 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regBase
+nEq
);
1810 start_constraints
= 1;
1812 }else if( regBignull
){
1813 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regBase
+nEq
);
1814 start_constraints
= 1;
1817 codeApplyAffinity(pParse
, regBase
, nConstraint
- bSeekPastNull
, zStartAff
);
1818 if( pLoop
->nSkip
>0 && nConstraint
==pLoop
->nSkip
){
1819 /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1820 ** above has already left the cursor sitting on the correct row,
1821 ** so no further seeking is needed */
1824 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, regBignull
);
1825 VdbeComment((v
, "NULL-scan pass ctr"));
1828 op
= aStartOp
[(start_constraints
<<2) + (startEq
<<1) + bRev
];
1830 if( (pLoop
->wsFlags
& WHERE_IN_SEEKSCAN
)!=0 && op
==OP_SeekGE
){
1831 assert( regBignull
==0 );
1832 /* TUNING: The OP_SeekScan opcode seeks to reduce the number
1833 ** of expensive seek operations by replacing a single seek with
1834 ** 1 or more step operations. The question is, how many steps
1835 ** should we try before giving up and going with a seek. The cost
1836 ** of a seek is proportional to the logarithm of the of the number
1837 ** of entries in the tree, so basing the number of steps to try
1838 ** on the estimated number of rows in the btree seems like a good
1840 addrSeekScan
= sqlite3VdbeAddOp1(v
, OP_SeekScan
,
1841 (pIdx
->aiRowLogEst
[0]+9)/10);
1844 sqlite3VdbeAddOp4Int(v
, op
, iIdxCur
, addrNxt
, regBase
, nConstraint
);
1846 VdbeCoverageIf(v
, op
==OP_Rewind
); testcase( op
==OP_Rewind
);
1847 VdbeCoverageIf(v
, op
==OP_Last
); testcase( op
==OP_Last
);
1848 VdbeCoverageIf(v
, op
==OP_SeekGT
); testcase( op
==OP_SeekGT
);
1849 VdbeCoverageIf(v
, op
==OP_SeekGE
); testcase( op
==OP_SeekGE
);
1850 VdbeCoverageIf(v
, op
==OP_SeekLE
); testcase( op
==OP_SeekLE
);
1851 VdbeCoverageIf(v
, op
==OP_SeekLT
); testcase( op
==OP_SeekLT
);
1853 assert( bSeekPastNull
==0 || bStopAtNull
==0 );
1855 assert( bSeekPastNull
==1 || bStopAtNull
==1 );
1856 assert( bSeekPastNull
==!bStopAtNull
);
1857 assert( bStopAtNull
==startEq
);
1858 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, sqlite3VdbeCurrentAddr(v
)+2);
1859 op
= aStartOp
[(nConstraint
>1)*4 + 2 + bRev
];
1860 sqlite3VdbeAddOp4Int(v
, op
, iIdxCur
, addrNxt
, regBase
,
1861 nConstraint
-startEq
);
1863 VdbeCoverageIf(v
, op
==OP_Rewind
); testcase( op
==OP_Rewind
);
1864 VdbeCoverageIf(v
, op
==OP_Last
); testcase( op
==OP_Last
);
1865 VdbeCoverageIf(v
, op
==OP_SeekGE
); testcase( op
==OP_SeekGE
);
1866 VdbeCoverageIf(v
, op
==OP_SeekLE
); testcase( op
==OP_SeekLE
);
1867 assert( op
==OP_Rewind
|| op
==OP_Last
|| op
==OP_SeekGE
|| op
==OP_SeekLE
);
1871 /* Load the value for the inequality constraint at the end of the
1876 Expr
*pRight
= pRangeEnd
->pExpr
->pRight
;
1877 codeExprOrVector(pParse
, pRight
, regBase
+nEq
, nTop
);
1878 whereLikeOptimizationStringFixup(v
, pLevel
, pRangeEnd
);
1879 if( (pRangeEnd
->wtFlags
& TERM_VNULL
)==0
1880 && sqlite3ExprCanBeNull(pRight
)
1882 sqlite3VdbeAddOp2(v
, OP_IsNull
, regBase
+nEq
, addrNxt
);
1886 updateRangeAffinityStr(pRight
, nTop
, zEndAff
);
1887 codeApplyAffinity(pParse
, regBase
+nEq
, nTop
, zEndAff
);
1889 assert( pParse
->db
->mallocFailed
);
1891 nConstraint
+= nTop
;
1892 testcase( pRangeEnd
->wtFlags
& TERM_VIRTUAL
);
1894 if( sqlite3ExprIsVector(pRight
)==0 ){
1895 disableTerm(pLevel
, pRangeEnd
);
1899 }else if( bStopAtNull
){
1900 if( regBignull
==0 ){
1901 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regBase
+nEq
);
1906 sqlite3DbFree(db
, zStartAff
);
1907 sqlite3DbFree(db
, zEndAff
);
1909 /* Top of the loop body */
1910 pLevel
->p2
= sqlite3VdbeCurrentAddr(v
);
1912 /* Check if the index cursor is past the end of the range. */
1915 /* Except, skip the end-of-range check while doing the NULL-scan */
1916 sqlite3VdbeAddOp2(v
, OP_IfNot
, regBignull
, sqlite3VdbeCurrentAddr(v
)+3);
1917 VdbeComment((v
, "If NULL-scan 2nd pass"));
1920 op
= aEndOp
[bRev
*2 + endEq
];
1921 sqlite3VdbeAddOp4Int(v
, op
, iIdxCur
, addrNxt
, regBase
, nConstraint
);
1922 testcase( op
==OP_IdxGT
); VdbeCoverageIf(v
, op
==OP_IdxGT
);
1923 testcase( op
==OP_IdxGE
); VdbeCoverageIf(v
, op
==OP_IdxGE
);
1924 testcase( op
==OP_IdxLT
); VdbeCoverageIf(v
, op
==OP_IdxLT
);
1925 testcase( op
==OP_IdxLE
); VdbeCoverageIf(v
, op
==OP_IdxLE
);
1926 if( addrSeekScan
) sqlite3VdbeJumpHere(v
, addrSeekScan
);
1929 /* During a NULL-scan, check to see if we have reached the end of
1931 assert( bSeekPastNull
==!bStopAtNull
);
1932 assert( bSeekPastNull
+bStopAtNull
==1 );
1933 assert( nConstraint
+bSeekPastNull
>0 );
1934 sqlite3VdbeAddOp2(v
, OP_If
, regBignull
, sqlite3VdbeCurrentAddr(v
)+2);
1935 VdbeComment((v
, "If NULL-scan 1st pass"));
1937 op
= aEndOp
[bRev
*2 + bSeekPastNull
];
1938 sqlite3VdbeAddOp4Int(v
, op
, iIdxCur
, addrNxt
, regBase
,
1939 nConstraint
+bSeekPastNull
);
1940 testcase( op
==OP_IdxGT
); VdbeCoverageIf(v
, op
==OP_IdxGT
);
1941 testcase( op
==OP_IdxGE
); VdbeCoverageIf(v
, op
==OP_IdxGE
);
1942 testcase( op
==OP_IdxLT
); VdbeCoverageIf(v
, op
==OP_IdxLT
);
1943 testcase( op
==OP_IdxLE
); VdbeCoverageIf(v
, op
==OP_IdxLE
);
1946 if( (pLoop
->wsFlags
& WHERE_IN_EARLYOUT
)!=0 ){
1947 sqlite3VdbeAddOp3(v
, OP_SeekHit
, iIdxCur
, nEq
, nEq
);
1950 /* Seek the table cursor, if required */
1951 omitTable
= (pLoop
->wsFlags
& WHERE_IDX_ONLY
)!=0
1952 && (pWInfo
->wctrlFlags
& WHERE_OR_SUBCLAUSE
)==0;
1954 /* pIdx is a covering index. No need to access the main table. */
1955 }else if( HasRowid(pIdx
->pTable
) ){
1956 codeDeferredSeek(pWInfo
, pIdx
, iCur
, iIdxCur
);
1957 }else if( iCur
!=iIdxCur
){
1958 Index
*pPk
= sqlite3PrimaryKeyIndex(pIdx
->pTable
);
1959 iRowidReg
= sqlite3GetTempRange(pParse
, pPk
->nKeyCol
);
1960 for(j
=0; j
<pPk
->nKeyCol
; j
++){
1961 k
= sqlite3TableColumnToIndex(pIdx
, pPk
->aiColumn
[j
]);
1962 sqlite3VdbeAddOp3(v
, OP_Column
, iIdxCur
, k
, iRowidReg
+j
);
1964 sqlite3VdbeAddOp4Int(v
, OP_NotFound
, iCur
, addrCont
,
1965 iRowidReg
, pPk
->nKeyCol
); VdbeCoverage(v
);
1968 if( pLevel
->iLeftJoin
==0 ){
1969 /* If pIdx is an index on one or more expressions, then look through
1970 ** all the expressions in pWInfo and try to transform matching expressions
1971 ** into reference to index columns. Also attempt to translate references
1972 ** to virtual columns in the table into references to (stored) columns
1975 ** Do not do this for the RHS of a LEFT JOIN. This is because the
1976 ** expression may be evaluated after OP_NullRow has been executed on
1977 ** the cursor. In this case it is important to do the full evaluation,
1978 ** as the result of the expression may not be NULL, even if all table
1979 ** column values are. https://www.sqlite.org/src/info/7fa8049685b50b5a
1981 ** Also, do not do this when processing one index an a multi-index
1982 ** OR clause, since the transformation will become invalid once we
1983 ** move forward to the next index.
1984 ** https://sqlite.org/src/info/4e8e4857d32d401f
1986 if( (pWInfo
->wctrlFlags
& WHERE_OR_SUBCLAUSE
)==0 ){
1987 whereIndexExprTrans(pIdx
, iCur
, iIdxCur
, pWInfo
);
1990 /* If a partial index is driving the loop, try to eliminate WHERE clause
1991 ** terms from the query that must be true due to the WHERE clause of
1992 ** the partial index.
1994 ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work
1997 if( pIdx
->pPartIdxWhere
){
1998 whereApplyPartialIndexConstraints(pIdx
->pPartIdxWhere
, iCur
, pWC
);
2001 testcase( pIdx
->pPartIdxWhere
);
2002 /* The following assert() is not a requirement, merely an observation:
2003 ** The OR-optimization doesn't work for the right hand table of
2005 assert( (pWInfo
->wctrlFlags
& WHERE_OR_SUBCLAUSE
)==0 );
2008 /* Record the instruction used to terminate the loop. */
2009 if( pLoop
->wsFlags
& WHERE_ONEROW
){
2010 pLevel
->op
= OP_Noop
;
2012 pLevel
->op
= OP_Prev
;
2014 pLevel
->op
= OP_Next
;
2016 pLevel
->p1
= iIdxCur
;
2017 pLevel
->p3
= (pLoop
->wsFlags
&WHERE_UNQ_WANTED
)!=0 ? 1:0;
2018 if( (pLoop
->wsFlags
& WHERE_CONSTRAINT
)==0 ){
2019 pLevel
->p5
= SQLITE_STMTSTATUS_FULLSCAN_STEP
;
2021 assert( pLevel
->p5
==0 );
2023 if( omitTable
) pIdx
= 0;
2026 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
2027 if( pLoop
->wsFlags
& WHERE_MULTI_OR
){
2028 /* Case 5: Two or more separately indexed terms connected by OR
2032 ** CREATE TABLE t1(a,b,c,d);
2033 ** CREATE INDEX i1 ON t1(a);
2034 ** CREATE INDEX i2 ON t1(b);
2035 ** CREATE INDEX i3 ON t1(c);
2037 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
2039 ** In the example, there are three indexed terms connected by OR.
2040 ** The top of the loop looks like this:
2042 ** Null 1 # Zero the rowset in reg 1
2044 ** Then, for each indexed term, the following. The arguments to
2045 ** RowSetTest are such that the rowid of the current row is inserted
2046 ** into the RowSet. If it is already present, control skips the
2047 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
2049 ** sqlite3WhereBegin(<term>)
2050 ** RowSetTest # Insert rowid into rowset
2052 ** sqlite3WhereEnd()
2054 ** Following the above, code to terminate the loop. Label A, the target
2055 ** of the Gosub above, jumps to the instruction right after the Goto.
2057 ** Null 1 # Zero the rowset in reg 1
2058 ** Goto B # The loop is finished.
2060 ** A: <loop body> # Return data, whatever.
2062 ** Return 2 # Jump back to the Gosub
2064 ** B: <after the loop>
2066 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
2067 ** use an ephemeral index instead of a RowSet to record the primary
2068 ** keys of the rows we have already seen.
2071 WhereClause
*pOrWc
; /* The OR-clause broken out into subterms */
2072 SrcList
*pOrTab
; /* Shortened table list or OR-clause generation */
2073 Index
*pCov
= 0; /* Potential covering index (or NULL) */
2074 int iCovCur
= pParse
->nTab
++; /* Cursor used for index scans (if any) */
2076 int regReturn
= ++pParse
->nMem
; /* Register used with OP_Gosub */
2077 int regRowset
= 0; /* Register for RowSet object */
2078 int regRowid
= 0; /* Register holding rowid */
2079 int iLoopBody
= sqlite3VdbeMakeLabel(pParse
);/* Start of loop body */
2080 int iRetInit
; /* Address of regReturn init */
2081 int untestedTerms
= 0; /* Some terms not completely tested */
2082 int ii
; /* Loop counter */
2083 Expr
*pAndExpr
= 0; /* An ".. AND (...)" expression */
2084 Table
*pTab
= pTabItem
->pTab
;
2086 pTerm
= pLoop
->aLTerm
[0];
2088 assert( pTerm
->eOperator
& WO_OR
);
2089 assert( (pTerm
->wtFlags
& TERM_ORINFO
)!=0 );
2090 pOrWc
= &pTerm
->u
.pOrInfo
->wc
;
2091 pLevel
->op
= OP_Return
;
2092 pLevel
->p1
= regReturn
;
2094 /* Set up a new SrcList in pOrTab containing the table being scanned
2095 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
2096 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
2098 if( pWInfo
->nLevel
>1 ){
2099 int nNotReady
; /* The number of notReady tables */
2100 SrcItem
*origSrc
; /* Original list of tables */
2101 nNotReady
= pWInfo
->nLevel
- iLevel
- 1;
2102 pOrTab
= sqlite3StackAllocRaw(db
,
2103 sizeof(*pOrTab
)+ nNotReady
*sizeof(pOrTab
->a
[0]));
2104 if( pOrTab
==0 ) return notReady
;
2105 pOrTab
->nAlloc
= (u8
)(nNotReady
+ 1);
2106 pOrTab
->nSrc
= pOrTab
->nAlloc
;
2107 memcpy(pOrTab
->a
, pTabItem
, sizeof(*pTabItem
));
2108 origSrc
= pWInfo
->pTabList
->a
;
2109 for(k
=1; k
<=nNotReady
; k
++){
2110 memcpy(&pOrTab
->a
[k
], &origSrc
[pLevel
[k
].iFrom
], sizeof(pOrTab
->a
[k
]));
2113 pOrTab
= pWInfo
->pTabList
;
2116 /* Initialize the rowset register to contain NULL. An SQL NULL is
2117 ** equivalent to an empty rowset. Or, create an ephemeral index
2118 ** capable of holding primary keys in the case of a WITHOUT ROWID.
2120 ** Also initialize regReturn to contain the address of the instruction
2121 ** immediately following the OP_Return at the bottom of the loop. This
2122 ** is required in a few obscure LEFT JOIN cases where control jumps
2123 ** over the top of the loop into the body of it. In this case the
2124 ** correct response for the end-of-loop code (the OP_Return) is to
2125 ** fall through to the next instruction, just as an OP_Next does if
2126 ** called on an uninitialized cursor.
2128 if( (pWInfo
->wctrlFlags
& WHERE_DUPLICATES_OK
)==0 ){
2129 if( HasRowid(pTab
) ){
2130 regRowset
= ++pParse
->nMem
;
2131 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regRowset
);
2133 Index
*pPk
= sqlite3PrimaryKeyIndex(pTab
);
2134 regRowset
= pParse
->nTab
++;
2135 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, regRowset
, pPk
->nKeyCol
);
2136 sqlite3VdbeSetP4KeyInfo(pParse
, pPk
);
2138 regRowid
= ++pParse
->nMem
;
2140 iRetInit
= sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regReturn
);
2142 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y
2143 ** Then for every term xN, evaluate as the subexpression: xN AND z
2144 ** That way, terms in y that are factored into the disjunction will
2145 ** be picked up by the recursive calls to sqlite3WhereBegin() below.
2147 ** Actually, each subexpression is converted to "xN AND w" where w is
2148 ** the "interesting" terms of z - terms that did not originate in the
2149 ** ON or USING clause of a LEFT JOIN, and terms that are usable as
2152 ** This optimization also only applies if the (x1 OR x2 OR ...) term
2153 ** is not contained in the ON clause of a LEFT JOIN.
2154 ** See ticket http://www.sqlite.org/src/info/f2369304e4
2158 for(iTerm
=0; iTerm
<pWC
->nTerm
; iTerm
++){
2159 Expr
*pExpr
= pWC
->a
[iTerm
].pExpr
;
2160 if( &pWC
->a
[iTerm
] == pTerm
) continue;
2161 testcase( pWC
->a
[iTerm
].wtFlags
& TERM_VIRTUAL
);
2162 testcase( pWC
->a
[iTerm
].wtFlags
& TERM_CODED
);
2163 if( (pWC
->a
[iTerm
].wtFlags
& (TERM_VIRTUAL
|TERM_CODED
))!=0 ) continue;
2164 if( (pWC
->a
[iTerm
].eOperator
& WO_ALL
)==0 ) continue;
2165 testcase( pWC
->a
[iTerm
].wtFlags
& TERM_ORINFO
);
2166 pExpr
= sqlite3ExprDup(db
, pExpr
, 0);
2167 pAndExpr
= sqlite3ExprAnd(pParse
, pAndExpr
, pExpr
);
2170 /* The extra 0x10000 bit on the opcode is masked off and does not
2171 ** become part of the new Expr.op. However, it does make the
2172 ** op==TK_AND comparison inside of sqlite3PExpr() false, and this
2173 ** prevents sqlite3PExpr() from applying the AND short-circuit
2174 ** optimization, which we do not want here. */
2175 pAndExpr
= sqlite3PExpr(pParse
, TK_AND
|0x10000, 0, pAndExpr
);
2179 /* Run a separate WHERE clause for each term of the OR clause. After
2180 ** eliminating duplicates from other WHERE clauses, the action for each
2181 ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
2183 ExplainQueryPlan((pParse
, 1, "MULTI-INDEX OR"));
2184 for(ii
=0; ii
<pOrWc
->nTerm
; ii
++){
2185 WhereTerm
*pOrTerm
= &pOrWc
->a
[ii
];
2186 if( pOrTerm
->leftCursor
==iCur
|| (pOrTerm
->eOperator
& WO_AND
)!=0 ){
2187 WhereInfo
*pSubWInfo
; /* Info for single OR-term scan */
2188 Expr
*pOrExpr
= pOrTerm
->pExpr
; /* Current OR clause term */
2189 Expr
*pDelete
; /* Local copy of OR clause term */
2190 int jmp1
= 0; /* Address of jump operation */
2191 testcase( (pTabItem
[0].fg
.jointype
& JT_LEFT
)!=0
2192 && !ExprHasProperty(pOrExpr
, EP_FromJoin
)
2193 ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */
2194 pDelete
= pOrExpr
= sqlite3ExprDup(db
, pOrExpr
, 0);
2195 if( db
->mallocFailed
){
2196 sqlite3ExprDelete(db
, pDelete
);
2200 pAndExpr
->pLeft
= pOrExpr
;
2203 /* Loop through table entries that match term pOrTerm. */
2204 ExplainQueryPlan((pParse
, 1, "INDEX %d", ii
+1));
2205 WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
2206 pSubWInfo
= sqlite3WhereBegin(pParse
, pOrTab
, pOrExpr
, 0, 0,
2207 WHERE_OR_SUBCLAUSE
, iCovCur
);
2208 assert( pSubWInfo
|| pParse
->nErr
|| db
->mallocFailed
);
2210 WhereLoop
*pSubLoop
;
2211 int addrExplain
= sqlite3WhereExplainOneScan(
2212 pParse
, pOrTab
, &pSubWInfo
->a
[0], 0
2214 sqlite3WhereAddScanStatus(v
, pOrTab
, &pSubWInfo
->a
[0], addrExplain
);
2216 /* This is the sub-WHERE clause body. First skip over
2217 ** duplicate rows from prior sub-WHERE clauses, and record the
2218 ** rowid (or PRIMARY KEY) for the current row so that the same
2219 ** row will be skipped in subsequent sub-WHERE clauses.
2221 if( (pWInfo
->wctrlFlags
& WHERE_DUPLICATES_OK
)==0 ){
2222 int iSet
= ((ii
==pOrWc
->nTerm
-1)?-1:ii
);
2223 if( HasRowid(pTab
) ){
2224 sqlite3ExprCodeGetColumnOfTable(v
, pTab
, iCur
, -1, regRowid
);
2225 jmp1
= sqlite3VdbeAddOp4Int(v
, OP_RowSetTest
, regRowset
, 0,
2229 Index
*pPk
= sqlite3PrimaryKeyIndex(pTab
);
2230 int nPk
= pPk
->nKeyCol
;
2234 /* Read the PK into an array of temp registers. */
2235 r
= sqlite3GetTempRange(pParse
, nPk
);
2236 for(iPk
=0; iPk
<nPk
; iPk
++){
2237 int iCol
= pPk
->aiColumn
[iPk
];
2238 sqlite3ExprCodeGetColumnOfTable(v
, pTab
, iCur
, iCol
,r
+iPk
);
2241 /* Check if the temp table already contains this key. If so,
2242 ** the row has already been included in the result set and
2243 ** can be ignored (by jumping past the Gosub below). Otherwise,
2244 ** insert the key into the temp table and proceed with processing
2247 ** Use some of the same optimizations as OP_RowSetTest: If iSet
2248 ** is zero, assume that the key cannot already be present in
2249 ** the temp table. And if iSet is -1, assume that there is no
2250 ** need to insert the key into the temp table, as it will never
2251 ** be tested for. */
2253 jmp1
= sqlite3VdbeAddOp4Int(v
, OP_Found
, regRowset
, 0, r
, nPk
);
2257 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, r
, nPk
, regRowid
);
2258 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, regRowset
, regRowid
,
2260 if( iSet
) sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
2263 /* Release the array of temp registers */
2264 sqlite3ReleaseTempRange(pParse
, r
, nPk
);
2268 /* Invoke the main loop body as a subroutine */
2269 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReturn
, iLoopBody
);
2271 /* Jump here (skipping the main loop body subroutine) if the
2272 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
2273 if( jmp1
) sqlite3VdbeJumpHere(v
, jmp1
);
2275 /* The pSubWInfo->untestedTerms flag means that this OR term
2276 ** contained one or more AND term from a notReady table. The
2277 ** terms from the notReady table could not be tested and will
2278 ** need to be tested later.
2280 if( pSubWInfo
->untestedTerms
) untestedTerms
= 1;
2282 /* If all of the OR-connected terms are optimized using the same
2283 ** index, and the index is opened using the same cursor number
2284 ** by each call to sqlite3WhereBegin() made by this loop, it may
2285 ** be possible to use that index as a covering index.
2287 ** If the call to sqlite3WhereBegin() above resulted in a scan that
2288 ** uses an index, and this is either the first OR-connected term
2289 ** processed or the index is the same as that used by all previous
2290 ** terms, set pCov to the candidate covering index. Otherwise, set
2291 ** pCov to NULL to indicate that no candidate covering index will
2294 pSubLoop
= pSubWInfo
->a
[0].pWLoop
;
2295 assert( (pSubLoop
->wsFlags
& WHERE_AUTO_INDEX
)==0 );
2296 if( (pSubLoop
->wsFlags
& WHERE_INDEXED
)!=0
2297 && (ii
==0 || pSubLoop
->u
.btree
.pIndex
==pCov
)
2298 && (HasRowid(pTab
) || !IsPrimaryKeyIndex(pSubLoop
->u
.btree
.pIndex
))
2300 assert( pSubWInfo
->a
[0].iIdxCur
==iCovCur
);
2301 pCov
= pSubLoop
->u
.btree
.pIndex
;
2305 if( sqlite3WhereUsesDeferredSeek(pSubWInfo
) ){
2306 pWInfo
->bDeferredSeek
= 1;
2309 /* Finish the loop through table entries that match term pOrTerm. */
2310 sqlite3WhereEnd(pSubWInfo
);
2311 ExplainQueryPlanPop(pParse
);
2313 sqlite3ExprDelete(db
, pDelete
);
2316 ExplainQueryPlanPop(pParse
);
2317 pLevel
->u
.pCovidx
= pCov
;
2318 if( pCov
) pLevel
->iIdxCur
= iCovCur
;
2320 pAndExpr
->pLeft
= 0;
2321 sqlite3ExprDelete(db
, pAndExpr
);
2323 sqlite3VdbeChangeP1(v
, iRetInit
, sqlite3VdbeCurrentAddr(v
));
2324 sqlite3VdbeGoto(v
, pLevel
->addrBrk
);
2325 sqlite3VdbeResolveLabel(v
, iLoopBody
);
2327 if( pWInfo
->nLevel
>1 ){ sqlite3StackFree(db
, pOrTab
); }
2328 if( !untestedTerms
) disableTerm(pLevel
, pTerm
);
2330 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2333 /* Case 6: There is no usable index. We must do a complete
2334 ** scan of the entire table.
2336 static const u8 aStep
[] = { OP_Next
, OP_Prev
};
2337 static const u8 aStart
[] = { OP_Rewind
, OP_Last
};
2338 assert( bRev
==0 || bRev
==1 );
2339 if( pTabItem
->fg
.isRecursive
){
2340 /* Tables marked isRecursive have only a single row that is stored in
2341 ** a pseudo-cursor. No need to Rewind or Next such cursors. */
2342 pLevel
->op
= OP_Noop
;
2344 codeCursorHint(pTabItem
, pWInfo
, pLevel
, 0);
2345 pLevel
->op
= aStep
[bRev
];
2347 pLevel
->p2
= 1 + sqlite3VdbeAddOp2(v
, aStart
[bRev
], iCur
, addrHalt
);
2348 VdbeCoverageIf(v
, bRev
==0);
2349 VdbeCoverageIf(v
, bRev
!=0);
2350 pLevel
->p5
= SQLITE_STMTSTATUS_FULLSCAN_STEP
;
2354 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2355 pLevel
->addrVisit
= sqlite3VdbeCurrentAddr(v
);
2358 /* Insert code to test every subexpression that can be completely
2359 ** computed using the current set of tables.
2361 ** This loop may run between one and three times, depending on the
2362 ** constraints to be generated. The value of stack variable iLoop
2363 ** determines the constraints coded by each iteration, as follows:
2365 ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2366 ** iLoop==2: Code remaining expressions that do not contain correlated
2368 ** iLoop==3: Code all remaining expressions.
2370 ** An effort is made to skip unnecessary iterations of the loop.
2372 iLoop
= (pIdx
? 1 : 2);
2374 int iNext
= 0; /* Next value for iLoop */
2375 for(pTerm
=pWC
->a
, j
=pWC
->nTerm
; j
>0; j
--, pTerm
++){
2377 int skipLikeAddr
= 0;
2378 testcase( pTerm
->wtFlags
& TERM_VIRTUAL
);
2379 testcase( pTerm
->wtFlags
& TERM_CODED
);
2380 if( pTerm
->wtFlags
& (TERM_VIRTUAL
|TERM_CODED
) ) continue;
2381 if( (pTerm
->prereqAll
& pLevel
->notReady
)!=0 ){
2382 testcase( pWInfo
->untestedTerms
==0
2383 && (pWInfo
->wctrlFlags
& WHERE_OR_SUBCLAUSE
)!=0 );
2384 pWInfo
->untestedTerms
= 1;
2389 if( (pTabItem
->fg
.jointype
&JT_LEFT
) && !ExprHasProperty(pE
,EP_FromJoin
) ){
2393 if( iLoop
==1 && !sqlite3ExprCoveredByIndex(pE
, pLevel
->iTabCur
, pIdx
) ){
2397 if( iLoop
<3 && (pTerm
->wtFlags
& TERM_VARSELECT
) ){
2398 if( iNext
==0 ) iNext
= 3;
2402 if( (pTerm
->wtFlags
& TERM_LIKECOND
)!=0 ){
2403 /* If the TERM_LIKECOND flag is set, that means that the range search
2404 ** is sufficient to guarantee that the LIKE operator is true, so we
2405 ** can skip the call to the like(A,B) function. But this only works
2406 ** for strings. So do not skip the call to the function on the pass
2407 ** that compares BLOBs. */
2408 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2411 u32 x
= pLevel
->iLikeRepCntr
;
2413 skipLikeAddr
= sqlite3VdbeAddOp1(v
, (x
&1)?OP_IfNot
:OP_If
,(int)(x
>>1));
2414 VdbeCoverageIf(v
, (x
&1)==1);
2415 VdbeCoverageIf(v
, (x
&1)==0);
2419 #ifdef WHERETRACE_ENABLED /* 0xffff */
2420 if( sqlite3WhereTrace
){
2421 VdbeNoopComment((v
, "WhereTerm[%d] (%p) priority=%d",
2422 pWC
->nTerm
-j
, pTerm
, iLoop
));
2424 if( sqlite3WhereTrace
& 0x800 ){
2425 sqlite3DebugPrintf("Coding auxiliary constraint:\n");
2426 sqlite3WhereTermPrint(pTerm
, pWC
->nTerm
-j
);
2429 sqlite3ExprIfFalse(pParse
, pE
, addrCont
, SQLITE_JUMPIFNULL
);
2430 if( skipLikeAddr
) sqlite3VdbeJumpHere(v
, skipLikeAddr
);
2431 pTerm
->wtFlags
|= TERM_CODED
;
2436 /* Insert code to test for implied constraints based on transitivity
2437 ** of the "==" operator.
2439 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2440 ** and we are coding the t1 loop and the t2 loop has not yet coded,
2441 ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2442 ** the implied "t1.a=123" constraint.
2444 for(pTerm
=pWC
->a
, j
=pWC
->nTerm
; j
>0; j
--, pTerm
++){
2447 if( pTerm
->wtFlags
& (TERM_VIRTUAL
|TERM_CODED
) ) continue;
2448 if( (pTerm
->eOperator
& (WO_EQ
|WO_IS
))==0 ) continue;
2449 if( (pTerm
->eOperator
& WO_EQUIV
)==0 ) continue;
2450 if( pTerm
->leftCursor
!=iCur
) continue;
2451 if( pTabItem
->fg
.jointype
& JT_LEFT
) continue;
2453 #ifdef WHERETRACE_ENABLED /* 0x800 */
2454 if( sqlite3WhereTrace
& 0x800 ){
2455 sqlite3DebugPrintf("Coding transitive constraint:\n");
2456 sqlite3WhereTermPrint(pTerm
, pWC
->nTerm
-j
);
2459 assert( !ExprHasProperty(pE
, EP_FromJoin
) );
2460 assert( (pTerm
->prereqRight
& pLevel
->notReady
)!=0 );
2461 pAlt
= sqlite3WhereFindTerm(pWC
, iCur
, pTerm
->u
.x
.leftColumn
, notReady
,
2462 WO_EQ
|WO_IN
|WO_IS
, 0);
2463 if( pAlt
==0 ) continue;
2464 if( pAlt
->wtFlags
& (TERM_CODED
) ) continue;
2465 if( (pAlt
->eOperator
& WO_IN
)
2466 && (pAlt
->pExpr
->flags
& EP_xIsSelect
)
2467 && (pAlt
->pExpr
->x
.pSelect
->pEList
->nExpr
>1)
2471 testcase( pAlt
->eOperator
& WO_EQ
);
2472 testcase( pAlt
->eOperator
& WO_IS
);
2473 testcase( pAlt
->eOperator
& WO_IN
);
2474 VdbeModuleComment((v
, "begin transitive constraint"));
2475 sEAlt
= *pAlt
->pExpr
;
2476 sEAlt
.pLeft
= pE
->pLeft
;
2477 sqlite3ExprIfFalse(pParse
, &sEAlt
, addrCont
, SQLITE_JUMPIFNULL
);
2478 pAlt
->wtFlags
|= TERM_CODED
;
2481 /* For a LEFT OUTER JOIN, generate code that will record the fact that
2482 ** at least one row of the right table has matched the left table.
2484 if( pLevel
->iLeftJoin
){
2485 pLevel
->addrFirst
= sqlite3VdbeCurrentAddr(v
);
2486 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, pLevel
->iLeftJoin
);
2487 VdbeComment((v
, "record LEFT JOIN hit"));
2488 for(pTerm
=pWC
->a
, j
=0; j
<pWC
->nTerm
; j
++, pTerm
++){
2489 testcase( pTerm
->wtFlags
& TERM_VIRTUAL
);
2490 testcase( pTerm
->wtFlags
& TERM_CODED
);
2491 if( pTerm
->wtFlags
& (TERM_VIRTUAL
|TERM_CODED
) ) continue;
2492 if( (pTerm
->prereqAll
& pLevel
->notReady
)!=0 ){
2493 assert( pWInfo
->untestedTerms
);
2496 assert( pTerm
->pExpr
);
2497 sqlite3ExprIfFalse(pParse
, pTerm
->pExpr
, addrCont
, SQLITE_JUMPIFNULL
);
2498 pTerm
->wtFlags
|= TERM_CODED
;
2502 #if WHERETRACE_ENABLED /* 0x20800 */
2503 if( sqlite3WhereTrace
& 0x20000 ){
2504 sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n",
2506 sqlite3WhereClausePrint(pWC
);
2508 if( sqlite3WhereTrace
& 0x800 ){
2509 sqlite3DebugPrintf("End Coding level %d: notReady=%llx\n",
2510 iLevel
, (u64
)pLevel
->notReady
);
2513 return pLevel
->notReady
;