add logcat option to PRAGMA cipher_profile
[sqlcipher.git] / src / wherecode.c
blob84fa1a14108e8c7cb37f38f44e25e36579f1a33e
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit. This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code. The original where.c
18 ** file retains the code that does query planning and analysis.
20 #include "sqliteInt.h"
21 #include "whereInt.h"
23 #ifndef SQLITE_OMIT_EXPLAIN
26 ** Return the name of the i-th column of the pIdx index.
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29 i = pIdx->aiColumn[i];
30 if( i==XN_EXPR ) return "<expr>";
31 if( i==XN_ROWID ) return "rowid";
32 return pIdx->pTable->aCol[i].zName;
36 ** This routine is a helper for explainIndexRange() below
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time. This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
43 static void explainAppendTerm(
44 StrAccum *pStr, /* The text expression being built */
45 Index *pIdx, /* Index to read column names from */
46 int nTerm, /* Number of terms */
47 int iTerm, /* Zero-based index of first term. */
48 int bAnd, /* Non-zero to append " AND " */
49 const char *zOp /* Name of the operator */
51 int i;
53 assert( nTerm>=1 );
54 if( bAnd ) sqlite3_str_append(pStr, " AND ", 5);
56 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
57 for(i=0; i<nTerm; i++){
58 if( i ) sqlite3_str_append(pStr, ",", 1);
59 sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i));
61 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
63 sqlite3_str_append(pStr, zOp, 1);
65 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
66 for(i=0; i<nTerm; i++){
67 if( i ) sqlite3_str_append(pStr, ",", 1);
68 sqlite3_str_append(pStr, "?", 1);
70 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
78 ** For example, if the query:
80 ** SELECT * FROM t1 WHERE a=1 AND b>2;
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
85 ** "a=? AND b>?"
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88 Index *pIndex = pLoop->u.btree.pIndex;
89 u16 nEq = pLoop->u.btree.nEq;
90 u16 nSkip = pLoop->nSkip;
91 int i, j;
93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94 sqlite3_str_append(pStr, " (", 2);
95 for(i=0; i<nEq; i++){
96 const char *z = explainIndexColumnName(pIndex, i);
97 if( i ) sqlite3_str_append(pStr, " AND ", 5);
98 sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
101 j = i;
102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104 i = 1;
106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
109 sqlite3_str_append(pStr, ")", 1);
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
121 int sqlite3WhereExplainOneScan(
122 Parse *pParse, /* Parse context */
123 SrcList *pTabList, /* Table list this loop refers to */
124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */
125 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */
127 int ret = 0;
128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
129 if( sqlite3ParseToplevel(pParse)->explain==2 )
130 #endif
132 SrcItem *pItem = &pTabList->a[pLevel->iFrom];
133 Vdbe *v = pParse->pVdbe; /* VM being constructed */
134 sqlite3 *db = pParse->db; /* Database handle */
135 int isSearch; /* True for a SEARCH. False for SCAN. */
136 WhereLoop *pLoop; /* The controlling WhereLoop object */
137 u32 flags; /* Flags that describe this loop */
138 char *zMsg; /* Text to add to EQP output */
139 StrAccum str; /* EQP output string */
140 char zBuf[100]; /* Initial space for EQP output string */
142 pLoop = pLevel->pWLoop;
143 flags = pLoop->wsFlags;
144 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
146 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
147 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
148 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
150 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
151 str.printfFlags = SQLITE_PRINTF_INTERNAL;
152 sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem);
153 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
154 const char *zFmt = 0;
155 Index *pIdx;
157 assert( pLoop->u.btree.pIndex!=0 );
158 pIdx = pLoop->u.btree.pIndex;
159 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
160 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
161 if( isSearch ){
162 zFmt = "PRIMARY KEY";
164 }else if( flags & WHERE_PARTIALIDX ){
165 zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
166 }else if( flags & WHERE_AUTO_INDEX ){
167 zFmt = "AUTOMATIC COVERING INDEX";
168 }else if( flags & WHERE_IDX_ONLY ){
169 zFmt = "COVERING INDEX %s";
170 }else{
171 zFmt = "INDEX %s";
173 if( zFmt ){
174 sqlite3_str_append(&str, " USING ", 7);
175 sqlite3_str_appendf(&str, zFmt, pIdx->zName);
176 explainIndexRange(&str, pLoop);
178 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
179 const char *zRangeOp;
180 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
181 zRangeOp = "=";
182 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
183 zRangeOp = ">? AND rowid<";
184 }else if( flags&WHERE_BTM_LIMIT ){
185 zRangeOp = ">";
186 }else{
187 assert( flags&WHERE_TOP_LIMIT);
188 zRangeOp = "<";
190 sqlite3_str_appendf(&str,
191 " USING INTEGER PRIMARY KEY (rowid%s?)",zRangeOp);
193 #ifndef SQLITE_OMIT_VIRTUALTABLE
194 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
195 sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s",
196 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
198 #endif
199 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
200 if( pLoop->nOut>=10 ){
201 sqlite3_str_appendf(&str, " (~%llu rows)",
202 sqlite3LogEstToInt(pLoop->nOut));
203 }else{
204 sqlite3_str_append(&str, " (~1 row)", 9);
206 #endif
207 zMsg = sqlite3StrAccumFinish(&str);
208 sqlite3ExplainBreakpoint("",zMsg);
209 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
210 pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
212 return ret;
214 #endif /* SQLITE_OMIT_EXPLAIN */
216 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
218 ** Configure the VM passed as the first argument with an
219 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
220 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
221 ** clause that the scan reads data from.
223 ** If argument addrExplain is not 0, it must be the address of an
224 ** OP_Explain instruction that describes the same loop.
226 void sqlite3WhereAddScanStatus(
227 Vdbe *v, /* Vdbe to add scanstatus entry to */
228 SrcList *pSrclist, /* FROM clause pLvl reads data from */
229 WhereLevel *pLvl, /* Level to add scanstatus() entry for */
230 int addrExplain /* Address of OP_Explain (or 0) */
232 const char *zObj = 0;
233 WhereLoop *pLoop = pLvl->pWLoop;
234 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){
235 zObj = pLoop->u.btree.pIndex->zName;
236 }else{
237 zObj = pSrclist->a[pLvl->iFrom].zName;
239 sqlite3VdbeScanStatus(
240 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
243 #endif
247 ** Disable a term in the WHERE clause. Except, do not disable the term
248 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
249 ** or USING clause of that join.
251 ** Consider the term t2.z='ok' in the following queries:
253 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
254 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
255 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
257 ** The t2.z='ok' is disabled in the in (2) because it originates
258 ** in the ON clause. The term is disabled in (3) because it is not part
259 ** of a LEFT OUTER JOIN. In (1), the term is not disabled.
261 ** Disabling a term causes that term to not be tested in the inner loop
262 ** of the join. Disabling is an optimization. When terms are satisfied
263 ** by indices, we disable them to prevent redundant tests in the inner
264 ** loop. We would get the correct results if nothing were ever disabled,
265 ** but joins might run a little slower. The trick is to disable as much
266 ** as we can without disabling too much. If we disabled in (1), we'd get
267 ** the wrong answer. See ticket #813.
269 ** If all the children of a term are disabled, then that term is also
270 ** automatically disabled. In this way, terms get disabled if derived
271 ** virtual terms are tested first. For example:
273 ** x GLOB 'abc*' AND x>='abc' AND x<'acd'
274 ** \___________/ \______/ \_____/
275 ** parent child1 child2
277 ** Only the parent term was in the original WHERE clause. The child1
278 ** and child2 terms were added by the LIKE optimization. If both of
279 ** the virtual child terms are valid, then testing of the parent can be
280 ** skipped.
282 ** Usually the parent term is marked as TERM_CODED. But if the parent
283 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
284 ** The TERM_LIKECOND marking indicates that the term should be coded inside
285 ** a conditional such that is only evaluated on the second pass of a
286 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
288 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
289 int nLoop = 0;
290 assert( pTerm!=0 );
291 while( (pTerm->wtFlags & TERM_CODED)==0
292 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_FromJoin))
293 && (pLevel->notReady & pTerm->prereqAll)==0
295 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
296 pTerm->wtFlags |= TERM_LIKECOND;
297 }else{
298 pTerm->wtFlags |= TERM_CODED;
300 #ifdef WHERETRACE_ENABLED
301 if( sqlite3WhereTrace & 0x20000 ){
302 sqlite3DebugPrintf("DISABLE-");
303 sqlite3WhereTermPrint(pTerm, (int)(pTerm - (pTerm->pWC->a)));
305 #endif
306 if( pTerm->iParent<0 ) break;
307 pTerm = &pTerm->pWC->a[pTerm->iParent];
308 assert( pTerm!=0 );
309 pTerm->nChild--;
310 if( pTerm->nChild!=0 ) break;
311 nLoop++;
316 ** Code an OP_Affinity opcode to apply the column affinity string zAff
317 ** to the n registers starting at base.
319 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which
320 ** are no-ops) at the beginning and end of zAff are ignored. If all entries
321 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated.
323 ** This routine makes its own copy of zAff so that the caller is free
324 ** to modify zAff after this routine returns.
326 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
327 Vdbe *v = pParse->pVdbe;
328 if( zAff==0 ){
329 assert( pParse->db->mallocFailed );
330 return;
332 assert( v!=0 );
334 /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE
335 ** entries at the beginning and end of the affinity string.
337 assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB );
338 while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){
339 n--;
340 base++;
341 zAff++;
343 while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){
344 n--;
347 /* Code the OP_Affinity opcode if there is anything left to do. */
348 if( n>0 ){
349 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
354 ** Expression pRight, which is the RHS of a comparison operation, is
355 ** either a vector of n elements or, if n==1, a scalar expression.
356 ** Before the comparison operation, affinity zAff is to be applied
357 ** to the pRight values. This function modifies characters within the
358 ** affinity string to SQLITE_AFF_BLOB if either:
360 ** * the comparison will be performed with no affinity, or
361 ** * the affinity change in zAff is guaranteed not to change the value.
363 static void updateRangeAffinityStr(
364 Expr *pRight, /* RHS of comparison */
365 int n, /* Number of vector elements in comparison */
366 char *zAff /* Affinity string to modify */
368 int i;
369 for(i=0; i<n; i++){
370 Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
371 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
372 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
374 zAff[i] = SQLITE_AFF_BLOB;
381 ** pX is an expression of the form: (vector) IN (SELECT ...)
382 ** In other words, it is a vector IN operator with a SELECT clause on the
383 ** LHS. But not all terms in the vector are indexable and the terms might
384 ** not be in the correct order for indexing.
386 ** This routine makes a copy of the input pX expression and then adjusts
387 ** the vector on the LHS with corresponding changes to the SELECT so that
388 ** the vector contains only index terms and those terms are in the correct
389 ** order. The modified IN expression is returned. The caller is responsible
390 ** for deleting the returned expression.
392 ** Example:
394 ** CREATE TABLE t1(a,b,c,d,e,f);
395 ** CREATE INDEX t1x1 ON t1(e,c);
396 ** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
397 ** \_______________________________________/
398 ** The pX expression
400 ** Since only columns e and c can be used with the index, in that order,
401 ** the modified IN expression that is returned will be:
403 ** (e,c) IN (SELECT z,x FROM t2)
405 ** The reduced pX is different from the original (obviously) and thus is
406 ** only used for indexing, to improve performance. The original unaltered
407 ** IN expression must also be run on each output row for correctness.
409 static Expr *removeUnindexableInClauseTerms(
410 Parse *pParse, /* The parsing context */
411 int iEq, /* Look at loop terms starting here */
412 WhereLoop *pLoop, /* The current loop */
413 Expr *pX /* The IN expression to be reduced */
415 sqlite3 *db = pParse->db;
416 Expr *pNew;
417 pNew = sqlite3ExprDup(db, pX, 0);
418 if( db->mallocFailed==0 ){
419 ExprList *pOrigRhs = pNew->x.pSelect->pEList; /* Original unmodified RHS */
420 ExprList *pOrigLhs = pNew->pLeft->x.pList; /* Original unmodified LHS */
421 ExprList *pRhs = 0; /* New RHS after modifications */
422 ExprList *pLhs = 0; /* New LHS after mods */
423 int i; /* Loop counter */
424 Select *pSelect; /* Pointer to the SELECT on the RHS */
426 for(i=iEq; i<pLoop->nLTerm; i++){
427 if( pLoop->aLTerm[i]->pExpr==pX ){
428 int iField = pLoop->aLTerm[i]->u.x.iField - 1;
429 if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */
430 pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
431 pOrigRhs->a[iField].pExpr = 0;
432 assert( pOrigLhs->a[iField].pExpr!=0 );
433 pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
434 pOrigLhs->a[iField].pExpr = 0;
437 sqlite3ExprListDelete(db, pOrigRhs);
438 sqlite3ExprListDelete(db, pOrigLhs);
439 pNew->pLeft->x.pList = pLhs;
440 pNew->x.pSelect->pEList = pRhs;
441 if( pLhs && pLhs->nExpr==1 ){
442 /* Take care here not to generate a TK_VECTOR containing only a
443 ** single value. Since the parser never creates such a vector, some
444 ** of the subroutines do not handle this case. */
445 Expr *p = pLhs->a[0].pExpr;
446 pLhs->a[0].pExpr = 0;
447 sqlite3ExprDelete(db, pNew->pLeft);
448 pNew->pLeft = p;
450 pSelect = pNew->x.pSelect;
451 if( pSelect->pOrderBy ){
452 /* If the SELECT statement has an ORDER BY clause, zero the
453 ** iOrderByCol variables. These are set to non-zero when an
454 ** ORDER BY term exactly matches one of the terms of the
455 ** result-set. Since the result-set of the SELECT statement may
456 ** have been modified or reordered, these variables are no longer
457 ** set correctly. Since setting them is just an optimization,
458 ** it's easiest just to zero them here. */
459 ExprList *pOrderBy = pSelect->pOrderBy;
460 for(i=0; i<pOrderBy->nExpr; i++){
461 pOrderBy->a[i].u.x.iOrderByCol = 0;
465 #if 0
466 printf("For indexing, change the IN expr:\n");
467 sqlite3TreeViewExpr(0, pX, 0);
468 printf("Into:\n");
469 sqlite3TreeViewExpr(0, pNew, 0);
470 #endif
472 return pNew;
477 ** Generate code for a single equality term of the WHERE clause. An equality
478 ** term can be either X=expr or X IN (...). pTerm is the term to be
479 ** coded.
481 ** The current value for the constraint is left in a register, the index
482 ** of which is returned. An attempt is made store the result in iTarget but
483 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the
484 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
485 ** some other register and it is the caller's responsibility to compensate.
487 ** For a constraint of the form X=expr, the expression is evaluated in
488 ** straight-line code. For constraints of the form X IN (...)
489 ** this routine sets up a loop that will iterate over all values of X.
491 static int codeEqualityTerm(
492 Parse *pParse, /* The parsing context */
493 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
494 WhereLevel *pLevel, /* The level of the FROM clause we are working on */
495 int iEq, /* Index of the equality term within this level */
496 int bRev, /* True for reverse-order IN operations */
497 int iTarget /* Attempt to leave results in this register */
499 Expr *pX = pTerm->pExpr;
500 Vdbe *v = pParse->pVdbe;
501 int iReg; /* Register holding results */
503 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
504 assert( iTarget>0 );
505 if( pX->op==TK_EQ || pX->op==TK_IS ){
506 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
507 }else if( pX->op==TK_ISNULL ){
508 iReg = iTarget;
509 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
510 #ifndef SQLITE_OMIT_SUBQUERY
511 }else{
512 int eType = IN_INDEX_NOOP;
513 int iTab;
514 struct InLoop *pIn;
515 WhereLoop *pLoop = pLevel->pWLoop;
516 int i;
517 int nEq = 0;
518 int *aiMap = 0;
520 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
521 && pLoop->u.btree.pIndex!=0
522 && pLoop->u.btree.pIndex->aSortOrder[iEq]
524 testcase( iEq==0 );
525 testcase( bRev );
526 bRev = !bRev;
528 assert( pX->op==TK_IN );
529 iReg = iTarget;
531 for(i=0; i<iEq; i++){
532 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
533 disableTerm(pLevel, pTerm);
534 return iTarget;
537 for(i=iEq;i<pLoop->nLTerm; i++){
538 assert( pLoop->aLTerm[i]!=0 );
539 if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
542 iTab = 0;
543 if( (pX->flags & EP_xIsSelect)==0 || pX->x.pSelect->pEList->nExpr==1 ){
544 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab);
545 }else{
546 sqlite3 *db = pParse->db;
547 pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);
549 if( !db->mallocFailed ){
550 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
551 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab);
552 pTerm->pExpr->iTable = iTab;
554 sqlite3ExprDelete(db, pX);
555 pX = pTerm->pExpr;
558 if( eType==IN_INDEX_INDEX_DESC ){
559 testcase( bRev );
560 bRev = !bRev;
562 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
563 VdbeCoverageIf(v, bRev);
564 VdbeCoverageIf(v, !bRev);
565 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
567 pLoop->wsFlags |= WHERE_IN_ABLE;
568 if( pLevel->u.in.nIn==0 ){
569 pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
571 if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){
572 pLoop->wsFlags |= WHERE_IN_EARLYOUT;
575 i = pLevel->u.in.nIn;
576 pLevel->u.in.nIn += nEq;
577 pLevel->u.in.aInLoop =
578 sqlite3DbReallocOrFree(pParse->db, pLevel->u.in.aInLoop,
579 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
580 pIn = pLevel->u.in.aInLoop;
581 if( pIn ){
582 int iMap = 0; /* Index in aiMap[] */
583 pIn += i;
584 for(i=iEq;i<pLoop->nLTerm; i++){
585 if( pLoop->aLTerm[i]->pExpr==pX ){
586 int iOut = iReg + i - iEq;
587 if( eType==IN_INDEX_ROWID ){
588 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
589 }else{
590 int iCol = aiMap ? aiMap[iMap++] : 0;
591 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
593 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
594 if( i==iEq ){
595 pIn->iCur = iTab;
596 pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
597 if( iEq>0 ){
598 pIn->iBase = iReg - i;
599 pIn->nPrefix = i;
600 }else{
601 pIn->nPrefix = 0;
603 }else{
604 pIn->eEndLoopOp = OP_Noop;
606 pIn++;
609 testcase( iEq>0
610 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
611 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 );
612 if( iEq>0
613 && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0
615 sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq);
617 }else{
618 pLevel->u.in.nIn = 0;
620 sqlite3DbFree(pParse->db, aiMap);
621 #endif
624 /* As an optimization, try to disable the WHERE clause term that is
625 ** driving the index as it will always be true. The correct answer is
626 ** obtained regardless, but we might get the answer with fewer CPU cycles
627 ** by omitting the term.
629 ** But do not disable the term unless we are certain that the term is
630 ** not a transitive constraint. For an example of where that does not
631 ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04)
633 if( (pLevel->pWLoop->wsFlags & WHERE_TRANSCONS)==0
634 || (pTerm->eOperator & WO_EQUIV)==0
636 disableTerm(pLevel, pTerm);
639 return iReg;
643 ** Generate code that will evaluate all == and IN constraints for an
644 ** index scan.
646 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
647 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
648 ** The index has as many as three equality constraints, but in this
649 ** example, the third "c" value is an inequality. So only two
650 ** constraints are coded. This routine will generate code to evaluate
651 ** a==5 and b IN (1,2,3). The current values for a and b will be stored
652 ** in consecutive registers and the index of the first register is returned.
654 ** In the example above nEq==2. But this subroutine works for any value
655 ** of nEq including 0. If nEq==0, this routine is nearly a no-op.
656 ** The only thing it does is allocate the pLevel->iMem memory cell and
657 ** compute the affinity string.
659 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints
660 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is
661 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
662 ** occurs after the nEq quality constraints.
664 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
665 ** the index of the first memory cell in that range. The code that
666 ** calls this routine will use that memory range to store keys for
667 ** start and termination conditions of the loop.
668 ** key value of the loop. If one or more IN operators appear, then
669 ** this routine allocates an additional nEq memory cells for internal
670 ** use.
672 ** Before returning, *pzAff is set to point to a buffer containing a
673 ** copy of the column affinity string of the index allocated using
674 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
675 ** with equality constraints that use BLOB or NONE affinity are set to
676 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
678 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
679 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
681 ** In the example above, the index on t1(a) has TEXT affinity. But since
682 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
683 ** no conversion should be attempted before using a t2.b value as part of
684 ** a key to search the index. Hence the first byte in the returned affinity
685 ** string in this example would be set to SQLITE_AFF_BLOB.
687 static int codeAllEqualityTerms(
688 Parse *pParse, /* Parsing context */
689 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
690 int bRev, /* Reverse the order of IN operators */
691 int nExtraReg, /* Number of extra registers to allocate */
692 char **pzAff /* OUT: Set to point to affinity string */
694 u16 nEq; /* The number of == or IN constraints to code */
695 u16 nSkip; /* Number of left-most columns to skip */
696 Vdbe *v = pParse->pVdbe; /* The vm under construction */
697 Index *pIdx; /* The index being used for this loop */
698 WhereTerm *pTerm; /* A single constraint term */
699 WhereLoop *pLoop; /* The WhereLoop object */
700 int j; /* Loop counter */
701 int regBase; /* Base register */
702 int nReg; /* Number of registers to allocate */
703 char *zAff; /* Affinity string to return */
705 /* This module is only called on query plans that use an index. */
706 pLoop = pLevel->pWLoop;
707 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
708 nEq = pLoop->u.btree.nEq;
709 nSkip = pLoop->nSkip;
710 pIdx = pLoop->u.btree.pIndex;
711 assert( pIdx!=0 );
713 /* Figure out how many memory cells we will need then allocate them.
715 regBase = pParse->nMem + 1;
716 nReg = pLoop->u.btree.nEq + nExtraReg;
717 pParse->nMem += nReg;
719 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
720 assert( zAff!=0 || pParse->db->mallocFailed );
722 if( nSkip ){
723 int iIdxCur = pLevel->iIdxCur;
724 sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, regBase+nSkip-1);
725 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
726 VdbeCoverageIf(v, bRev==0);
727 VdbeCoverageIf(v, bRev!=0);
728 VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
729 j = sqlite3VdbeAddOp0(v, OP_Goto);
730 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
731 iIdxCur, 0, regBase, nSkip);
732 VdbeCoverageIf(v, bRev==0);
733 VdbeCoverageIf(v, bRev!=0);
734 sqlite3VdbeJumpHere(v, j);
735 for(j=0; j<nSkip; j++){
736 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
737 testcase( pIdx->aiColumn[j]==XN_EXPR );
738 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
742 /* Evaluate the equality constraints
744 assert( zAff==0 || (int)strlen(zAff)>=nEq );
745 for(j=nSkip; j<nEq; j++){
746 int r1;
747 pTerm = pLoop->aLTerm[j];
748 assert( pTerm!=0 );
749 /* The following testcase is true for indices with redundant columns.
750 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
751 testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
752 testcase( pTerm->wtFlags & TERM_VIRTUAL );
753 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
754 if( r1!=regBase+j ){
755 if( nReg==1 ){
756 sqlite3ReleaseTempReg(pParse, regBase);
757 regBase = r1;
758 }else{
759 sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j);
762 if( pTerm->eOperator & WO_IN ){
763 if( pTerm->pExpr->flags & EP_xIsSelect ){
764 /* No affinity ever needs to be (or should be) applied to a value
765 ** from the RHS of an "? IN (SELECT ...)" expression. The
766 ** sqlite3FindInIndex() routine has already ensured that the
767 ** affinity of the comparison has been applied to the value. */
768 if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
770 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
771 Expr *pRight = pTerm->pExpr->pRight;
772 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
773 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
774 VdbeCoverage(v);
776 if( pParse->db->mallocFailed==0 && pParse->nErr==0 ){
777 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
778 zAff[j] = SQLITE_AFF_BLOB;
780 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
781 zAff[j] = SQLITE_AFF_BLOB;
786 *pzAff = zAff;
787 return regBase;
790 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
792 ** If the most recently coded instruction is a constant range constraint
793 ** (a string literal) that originated from the LIKE optimization, then
794 ** set P3 and P5 on the OP_String opcode so that the string will be cast
795 ** to a BLOB at appropriate times.
797 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
798 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range
799 ** scan loop run twice, once for strings and a second time for BLOBs.
800 ** The OP_String opcodes on the second pass convert the upper and lower
801 ** bound string constants to blobs. This routine makes the necessary changes
802 ** to the OP_String opcodes for that to happen.
804 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
805 ** only the one pass through the string space is required, so this routine
806 ** becomes a no-op.
808 static void whereLikeOptimizationStringFixup(
809 Vdbe *v, /* prepared statement under construction */
810 WhereLevel *pLevel, /* The loop that contains the LIKE operator */
811 WhereTerm *pTerm /* The upper or lower bound just coded */
813 if( pTerm->wtFlags & TERM_LIKEOPT ){
814 VdbeOp *pOp;
815 assert( pLevel->iLikeRepCntr>0 );
816 pOp = sqlite3VdbeGetOp(v, -1);
817 assert( pOp!=0 );
818 assert( pOp->opcode==OP_String8
819 || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
820 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */
821 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */
824 #else
825 # define whereLikeOptimizationStringFixup(A,B,C)
826 #endif
828 #ifdef SQLITE_ENABLE_CURSOR_HINTS
830 ** Information is passed from codeCursorHint() down to individual nodes of
831 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
832 ** structure.
834 struct CCurHint {
835 int iTabCur; /* Cursor for the main table */
836 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */
837 Index *pIdx; /* The index used to access the table */
841 ** This function is called for every node of an expression that is a candidate
842 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference
843 ** the table CCurHint.iTabCur, verify that the same column can be
844 ** accessed through the index. If it cannot, then set pWalker->eCode to 1.
846 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
847 struct CCurHint *pHint = pWalker->u.pCCurHint;
848 assert( pHint->pIdx!=0 );
849 if( pExpr->op==TK_COLUMN
850 && pExpr->iTable==pHint->iTabCur
851 && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0
853 pWalker->eCode = 1;
855 return WRC_Continue;
859 ** Test whether or not expression pExpr, which was part of a WHERE clause,
860 ** should be included in the cursor-hint for a table that is on the rhs
861 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
862 ** expression is not suitable.
864 ** An expression is unsuitable if it might evaluate to non NULL even if
865 ** a TK_COLUMN node that does affect the value of the expression is set
866 ** to NULL. For example:
868 ** col IS NULL
869 ** col IS NOT NULL
870 ** coalesce(col, 1)
871 ** CASE WHEN col THEN 0 ELSE 1 END
873 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
874 if( pExpr->op==TK_IS
875 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
876 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
878 pWalker->eCode = 1;
879 }else if( pExpr->op==TK_FUNCTION ){
880 int d1;
881 char d2[4];
882 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
883 pWalker->eCode = 1;
887 return WRC_Continue;
892 ** This function is called on every node of an expression tree used as an
893 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
894 ** that accesses any table other than the one identified by
895 ** CCurHint.iTabCur, then do the following:
897 ** 1) allocate a register and code an OP_Column instruction to read
898 ** the specified column into the new register, and
900 ** 2) transform the expression node to a TK_REGISTER node that reads
901 ** from the newly populated register.
903 ** Also, if the node is a TK_COLUMN that does access the table idenified
904 ** by pCCurHint.iTabCur, and an index is being used (which we will
905 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
906 ** an access of the index rather than the original table.
908 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
909 int rc = WRC_Continue;
910 struct CCurHint *pHint = pWalker->u.pCCurHint;
911 if( pExpr->op==TK_COLUMN ){
912 if( pExpr->iTable!=pHint->iTabCur ){
913 int reg = ++pWalker->pParse->nMem; /* Register for column value */
914 sqlite3ExprCode(pWalker->pParse, pExpr, reg);
915 pExpr->op = TK_REGISTER;
916 pExpr->iTable = reg;
917 }else if( pHint->pIdx!=0 ){
918 pExpr->iTable = pHint->iIdxCur;
919 pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn);
920 assert( pExpr->iColumn>=0 );
922 }else if( pExpr->op==TK_AGG_FUNCTION ){
923 /* An aggregate function in the WHERE clause of a query means this must
924 ** be a correlated sub-query, and expression pExpr is an aggregate from
925 ** the parent context. Do not walk the function arguments in this case.
927 ** todo: It should be possible to replace this node with a TK_REGISTER
928 ** expression, as the result of the expression must be stored in a
929 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
930 rc = WRC_Prune;
932 return rc;
936 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
938 static void codeCursorHint(
939 SrcItem *pTabItem, /* FROM clause item */
940 WhereInfo *pWInfo, /* The where clause */
941 WhereLevel *pLevel, /* Which loop to provide hints for */
942 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */
944 Parse *pParse = pWInfo->pParse;
945 sqlite3 *db = pParse->db;
946 Vdbe *v = pParse->pVdbe;
947 Expr *pExpr = 0;
948 WhereLoop *pLoop = pLevel->pWLoop;
949 int iCur;
950 WhereClause *pWC;
951 WhereTerm *pTerm;
952 int i, j;
953 struct CCurHint sHint;
954 Walker sWalker;
956 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
957 iCur = pLevel->iTabCur;
958 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
959 sHint.iTabCur = iCur;
960 sHint.iIdxCur = pLevel->iIdxCur;
961 sHint.pIdx = pLoop->u.btree.pIndex;
962 memset(&sWalker, 0, sizeof(sWalker));
963 sWalker.pParse = pParse;
964 sWalker.u.pCCurHint = &sHint;
965 pWC = &pWInfo->sWC;
966 for(i=0; i<pWC->nTerm; i++){
967 pTerm = &pWC->a[i];
968 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
969 if( pTerm->prereqAll & pLevel->notReady ) continue;
971 /* Any terms specified as part of the ON(...) clause for any LEFT
972 ** JOIN for which the current table is not the rhs are omitted
973 ** from the cursor-hint.
975 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
976 ** that were specified as part of the WHERE clause must be excluded.
977 ** This is to address the following:
979 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
981 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
982 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
983 ** pushed down to the cursor, this row is filtered out, causing
984 ** SQLite to synthesize a row of NULL values. Which does match the
985 ** WHERE clause, and so the query returns a row. Which is incorrect.
987 ** For the same reason, WHERE terms such as:
989 ** WHERE 1 = (t2.c IS NULL)
991 ** are also excluded. See codeCursorHintIsOrFunction() for details.
993 if( pTabItem->fg.jointype & JT_LEFT ){
994 Expr *pExpr = pTerm->pExpr;
995 if( !ExprHasProperty(pExpr, EP_FromJoin)
996 || pExpr->iRightJoinTable!=pTabItem->iCursor
998 sWalker.eCode = 0;
999 sWalker.xExprCallback = codeCursorHintIsOrFunction;
1000 sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1001 if( sWalker.eCode ) continue;
1003 }else{
1004 if( ExprHasProperty(pTerm->pExpr, EP_FromJoin) ) continue;
1007 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
1008 ** the cursor. These terms are not needed as hints for a pure range
1009 ** scan (that has no == terms) so omit them. */
1010 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
1011 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
1012 if( j<pLoop->nLTerm ) continue;
1015 /* No subqueries or non-deterministic functions allowed */
1016 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
1018 /* For an index scan, make sure referenced columns are actually in
1019 ** the index. */
1020 if( sHint.pIdx!=0 ){
1021 sWalker.eCode = 0;
1022 sWalker.xExprCallback = codeCursorHintCheckExpr;
1023 sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1024 if( sWalker.eCode ) continue;
1027 /* If we survive all prior tests, that means this term is worth hinting */
1028 pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
1030 if( pExpr!=0 ){
1031 sWalker.xExprCallback = codeCursorHintFixExpr;
1032 sqlite3WalkExpr(&sWalker, pExpr);
1033 sqlite3VdbeAddOp4(v, OP_CursorHint,
1034 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
1035 (const char*)pExpr, P4_EXPR);
1038 #else
1039 # define codeCursorHint(A,B,C,D) /* No-op */
1040 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
1043 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
1044 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
1045 ** function generates code to do a deferred seek of cursor iCur to the
1046 ** rowid stored in register iRowid.
1048 ** Normally, this is just:
1050 ** OP_DeferredSeek $iCur $iRowid
1052 ** However, if the scan currently being coded is a branch of an OR-loop and
1053 ** the statement currently being coded is a SELECT, then P3 of OP_DeferredSeek
1054 ** is set to iIdxCur and P4 is set to point to an array of integers
1055 ** containing one entry for each column of the table cursor iCur is open
1056 ** on. For each table column, if the column is the i'th column of the
1057 ** index, then the corresponding array entry is set to (i+1). If the column
1058 ** does not appear in the index at all, the array entry is set to 0.
1060 static void codeDeferredSeek(
1061 WhereInfo *pWInfo, /* Where clause context */
1062 Index *pIdx, /* Index scan is using */
1063 int iCur, /* Cursor for IPK b-tree */
1064 int iIdxCur /* Index cursor */
1066 Parse *pParse = pWInfo->pParse; /* Parse context */
1067 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */
1069 assert( iIdxCur>0 );
1070 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
1072 pWInfo->bDeferredSeek = 1;
1073 sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
1074 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1075 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
1077 int i;
1078 Table *pTab = pIdx->pTable;
1079 u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1));
1080 if( ai ){
1081 ai[0] = pTab->nCol;
1082 for(i=0; i<pIdx->nColumn-1; i++){
1083 int x1, x2;
1084 assert( pIdx->aiColumn[i]<pTab->nCol );
1085 x1 = pIdx->aiColumn[i];
1086 x2 = sqlite3TableColumnToStorage(pTab, x1);
1087 testcase( x1!=x2 );
1088 if( x1>=0 ) ai[x2+1] = i+1;
1090 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1096 ** If the expression passed as the second argument is a vector, generate
1097 ** code to write the first nReg elements of the vector into an array
1098 ** of registers starting with iReg.
1100 ** If the expression is not a vector, then nReg must be passed 1. In
1101 ** this case, generate code to evaluate the expression and leave the
1102 ** result in register iReg.
1104 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1105 assert( nReg>0 );
1106 if( p && sqlite3ExprIsVector(p) ){
1107 #ifndef SQLITE_OMIT_SUBQUERY
1108 if( (p->flags & EP_xIsSelect) ){
1109 Vdbe *v = pParse->pVdbe;
1110 int iSelect;
1111 assert( p->op==TK_SELECT );
1112 iSelect = sqlite3CodeSubselect(pParse, p);
1113 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1114 }else
1115 #endif
1117 int i;
1118 ExprList *pList = p->x.pList;
1119 assert( nReg<=pList->nExpr );
1120 for(i=0; i<nReg; i++){
1121 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1124 }else{
1125 assert( nReg==1 || pParse->nErr );
1126 sqlite3ExprCode(pParse, p, iReg);
1130 /* An instance of the IdxExprTrans object carries information about a
1131 ** mapping from an expression on table columns into a column in an index
1132 ** down through the Walker.
1134 typedef struct IdxExprTrans {
1135 Expr *pIdxExpr; /* The index expression */
1136 int iTabCur; /* The cursor of the corresponding table */
1137 int iIdxCur; /* The cursor for the index */
1138 int iIdxCol; /* The column for the index */
1139 int iTabCol; /* The column for the table */
1140 WhereInfo *pWInfo; /* Complete WHERE clause information */
1141 sqlite3 *db; /* Database connection (for malloc()) */
1142 } IdxExprTrans;
1145 ** Preserve pExpr on the WhereETrans list of the WhereInfo.
1147 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){
1148 WhereExprMod *pNew;
1149 pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew));
1150 if( pNew==0 ) return;
1151 pNew->pNext = pTrans->pWInfo->pExprMods;
1152 pTrans->pWInfo->pExprMods = pNew;
1153 pNew->pExpr = pExpr;
1154 memcpy(&pNew->orig, pExpr, sizeof(*pExpr));
1157 /* The walker node callback used to transform matching expressions into
1158 ** a reference to an index column for an index on an expression.
1160 ** If pExpr matches, then transform it into a reference to the index column
1161 ** that contains the value of pExpr.
1163 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
1164 IdxExprTrans *pX = p->u.pIdxTrans;
1165 if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
1166 preserveExpr(pX, pExpr);
1167 pExpr->affExpr = sqlite3ExprAffinity(pExpr);
1168 pExpr->op = TK_COLUMN;
1169 pExpr->iTable = pX->iIdxCur;
1170 pExpr->iColumn = pX->iIdxCol;
1171 pExpr->y.pTab = 0;
1172 testcase( ExprHasProperty(pExpr, EP_Skip) );
1173 testcase( ExprHasProperty(pExpr, EP_Unlikely) );
1174 ExprClearProperty(pExpr, EP_Skip|EP_Unlikely);
1175 return WRC_Prune;
1176 }else{
1177 return WRC_Continue;
1181 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1182 /* A walker node callback that translates a column reference to a table
1183 ** into a corresponding column reference of an index.
1185 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){
1186 if( pExpr->op==TK_COLUMN ){
1187 IdxExprTrans *pX = p->u.pIdxTrans;
1188 if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){
1189 assert( pExpr->y.pTab!=0 );
1190 preserveExpr(pX, pExpr);
1191 pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn);
1192 pExpr->iTable = pX->iIdxCur;
1193 pExpr->iColumn = pX->iIdxCol;
1194 pExpr->y.pTab = 0;
1197 return WRC_Continue;
1199 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1202 ** For an indexes on expression X, locate every instance of expression X
1203 ** in pExpr and change that subexpression into a reference to the appropriate
1204 ** column of the index.
1206 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in
1207 ** the table into references to the corresponding (stored) column of the
1208 ** index.
1210 static void whereIndexExprTrans(
1211 Index *pIdx, /* The Index */
1212 int iTabCur, /* Cursor of the table that is being indexed */
1213 int iIdxCur, /* Cursor of the index itself */
1214 WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
1216 int iIdxCol; /* Column number of the index */
1217 ExprList *aColExpr; /* Expressions that are indexed */
1218 Table *pTab;
1219 Walker w;
1220 IdxExprTrans x;
1221 aColExpr = pIdx->aColExpr;
1222 if( aColExpr==0 && !pIdx->bHasVCol ){
1223 /* The index does not reference any expressions or virtual columns
1224 ** so no translations are needed. */
1225 return;
1227 pTab = pIdx->pTable;
1228 memset(&w, 0, sizeof(w));
1229 w.u.pIdxTrans = &x;
1230 x.iTabCur = iTabCur;
1231 x.iIdxCur = iIdxCur;
1232 x.pWInfo = pWInfo;
1233 x.db = pWInfo->pParse->db;
1234 for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){
1235 i16 iRef = pIdx->aiColumn[iIdxCol];
1236 if( iRef==XN_EXPR ){
1237 assert( aColExpr->a[iIdxCol].pExpr!=0 );
1238 x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
1239 if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue;
1240 w.xExprCallback = whereIndexExprTransNode;
1241 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1242 }else if( iRef>=0
1243 && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0
1244 && (pTab->aCol[iRef].zColl==0
1245 || sqlite3StrICmp(pTab->aCol[iRef].zColl, sqlite3StrBINARY)==0)
1247 /* Check to see if there are direct references to generated columns
1248 ** that are contained in the index. Pulling the generated column
1249 ** out of the index is an optimization only - the main table is always
1250 ** available if the index cannot be used. To avoid unnecessary
1251 ** complication, omit this optimization if the collating sequence for
1252 ** the column is non-standard */
1253 x.iTabCol = iRef;
1254 w.xExprCallback = whereIndexExprTransColumn;
1255 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1256 }else{
1257 continue;
1259 x.iIdxCol = iIdxCol;
1260 sqlite3WalkExpr(&w, pWInfo->pWhere);
1261 sqlite3WalkExprList(&w, pWInfo->pOrderBy);
1262 sqlite3WalkExprList(&w, pWInfo->pResultSet);
1267 ** The pTruth expression is always true because it is the WHERE clause
1268 ** a partial index that is driving a query loop. Look through all of the
1269 ** WHERE clause terms on the query, and if any of those terms must be
1270 ** true because pTruth is true, then mark those WHERE clause terms as
1271 ** coded.
1273 static void whereApplyPartialIndexConstraints(
1274 Expr *pTruth,
1275 int iTabCur,
1276 WhereClause *pWC
1278 int i;
1279 WhereTerm *pTerm;
1280 while( pTruth->op==TK_AND ){
1281 whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC);
1282 pTruth = pTruth->pRight;
1284 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1285 Expr *pExpr;
1286 if( pTerm->wtFlags & TERM_CODED ) continue;
1287 pExpr = pTerm->pExpr;
1288 if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){
1289 pTerm->wtFlags |= TERM_CODED;
1295 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1296 ** implementation described by pWInfo.
1298 Bitmask sqlite3WhereCodeOneLoopStart(
1299 Parse *pParse, /* Parsing context */
1300 Vdbe *v, /* Prepared statement under construction */
1301 WhereInfo *pWInfo, /* Complete information about the WHERE clause */
1302 int iLevel, /* Which level of pWInfo->a[] should be coded */
1303 WhereLevel *pLevel, /* The current level pointer */
1304 Bitmask notReady /* Which tables are currently available */
1306 int j, k; /* Loop counters */
1307 int iCur; /* The VDBE cursor for the table */
1308 int addrNxt; /* Where to jump to continue with the next IN case */
1309 int bRev; /* True if we need to scan in reverse order */
1310 WhereLoop *pLoop; /* The WhereLoop object being coded */
1311 WhereClause *pWC; /* Decomposition of the entire WHERE clause */
1312 WhereTerm *pTerm; /* A WHERE clause term */
1313 sqlite3 *db; /* Database connection */
1314 SrcItem *pTabItem; /* FROM clause term being coded */
1315 int addrBrk; /* Jump here to break out of the loop */
1316 int addrHalt; /* addrBrk for the outermost loop */
1317 int addrCont; /* Jump here to continue with next cycle */
1318 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
1319 int iReleaseReg = 0; /* Temp register to free before returning */
1320 Index *pIdx = 0; /* Index used by loop (if any) */
1321 int iLoop; /* Iteration of constraint generator loop */
1323 pWC = &pWInfo->sWC;
1324 db = pParse->db;
1325 pLoop = pLevel->pWLoop;
1326 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1327 iCur = pTabItem->iCursor;
1328 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1329 bRev = (pWInfo->revMask>>iLevel)&1;
1330 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1331 #if WHERETRACE_ENABLED /* 0x20800 */
1332 if( sqlite3WhereTrace & 0x800 ){
1333 sqlite3DebugPrintf("Coding level %d of %d: notReady=%llx iFrom=%d\n",
1334 iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom);
1335 sqlite3WhereLoopPrint(pLoop, pWC);
1337 if( sqlite3WhereTrace & 0x20000 ){
1338 if( iLevel==0 ){
1339 sqlite3DebugPrintf("WHERE clause being coded:\n");
1340 sqlite3TreeViewExpr(0, pWInfo->pWhere, 0);
1342 sqlite3DebugPrintf("All WHERE-clause terms before coding:\n");
1343 sqlite3WhereClausePrint(pWC);
1345 #endif
1347 /* Create labels for the "break" and "continue" instructions
1348 ** for the current loop. Jump to addrBrk to break out of a loop.
1349 ** Jump to cont to go immediately to the next iteration of the
1350 ** loop.
1352 ** When there is an IN operator, we also have a "addrNxt" label that
1353 ** means to continue with the next IN value combination. When
1354 ** there are no IN operators in the constraints, the "addrNxt" label
1355 ** is the same as "addrBrk".
1357 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
1358 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse);
1360 /* If this is the right table of a LEFT OUTER JOIN, allocate and
1361 ** initialize a memory cell that records if this table matches any
1362 ** row of the left table of the join.
1364 assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)
1365 || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0
1367 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1368 pLevel->iLeftJoin = ++pParse->nMem;
1369 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1370 VdbeComment((v, "init LEFT JOIN no-match flag"));
1373 /* Compute a safe address to jump to if we discover that the table for
1374 ** this loop is empty and can never contribute content. */
1375 for(j=iLevel; j>0 && pWInfo->a[j].iLeftJoin==0; j--){}
1376 addrHalt = pWInfo->a[j].addrBrk;
1378 /* Special case of a FROM clause subquery implemented as a co-routine */
1379 if( pTabItem->fg.viaCoroutine ){
1380 int regYield = pTabItem->regReturn;
1381 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1382 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1383 VdbeCoverage(v);
1384 VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
1385 pLevel->op = OP_Goto;
1386 }else
1388 #ifndef SQLITE_OMIT_VIRTUALTABLE
1389 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1390 /* Case 1: The table is a virtual-table. Use the VFilter and VNext
1391 ** to access the data.
1393 int iReg; /* P3 Value for OP_VFilter */
1394 int addrNotFound;
1395 int nConstraint = pLoop->nLTerm;
1396 int iIn; /* Counter for IN constraints */
1398 iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1399 addrNotFound = pLevel->addrBrk;
1400 for(j=0; j<nConstraint; j++){
1401 int iTarget = iReg+j+2;
1402 pTerm = pLoop->aLTerm[j];
1403 if( NEVER(pTerm==0) ) continue;
1404 if( pTerm->eOperator & WO_IN ){
1405 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1406 addrNotFound = pLevel->addrNxt;
1407 }else{
1408 Expr *pRight = pTerm->pExpr->pRight;
1409 codeExprOrVector(pParse, pRight, iTarget, 1);
1412 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1413 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1414 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1415 pLoop->u.vtab.idxStr,
1416 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1417 VdbeCoverage(v);
1418 pLoop->u.vtab.needFree = 0;
1419 /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed
1420 ** the u.vtab.idxStr. NULL it out to prevent a use-after-free */
1421 if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0;
1422 pLevel->p1 = iCur;
1423 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1424 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1425 iIn = pLevel->u.in.nIn;
1426 for(j=nConstraint-1; j>=0; j--){
1427 pTerm = pLoop->aLTerm[j];
1428 if( (pTerm->eOperator & WO_IN)!=0 ) iIn--;
1429 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1430 disableTerm(pLevel, pTerm);
1431 }else if( (pTerm->eOperator & WO_IN)!=0
1432 && sqlite3ExprVectorSize(pTerm->pExpr->pLeft)==1
1434 Expr *pCompare; /* The comparison operator */
1435 Expr *pRight; /* RHS of the comparison */
1436 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */
1438 /* Reload the constraint value into reg[iReg+j+2]. The same value
1439 ** was loaded into the same register prior to the OP_VFilter, but
1440 ** the xFilter implementation might have changed the datatype or
1441 ** encoding of the value in the register, so it *must* be reloaded. */
1442 assert( pLevel->u.in.aInLoop!=0 || db->mallocFailed );
1443 if( !db->mallocFailed ){
1444 assert( iIn>=0 && iIn<pLevel->u.in.nIn );
1445 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop);
1446 assert( pOp->opcode==OP_Column || pOp->opcode==OP_Rowid );
1447 assert( pOp->opcode!=OP_Column || pOp->p3==iReg+j+2 );
1448 assert( pOp->opcode!=OP_Rowid || pOp->p2==iReg+j+2 );
1449 testcase( pOp->opcode==OP_Rowid );
1450 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1453 /* Generate code that will continue to the next row if
1454 ** the IN constraint is not satisfied */
1455 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1456 assert( pCompare!=0 || db->mallocFailed );
1457 if( pCompare ){
1458 pCompare->pLeft = pTerm->pExpr->pLeft;
1459 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1460 if( pRight ){
1461 pRight->iTable = iReg+j+2;
1462 sqlite3ExprIfFalse(
1463 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL
1466 pCompare->pLeft = 0;
1467 sqlite3ExprDelete(db, pCompare);
1471 assert( iIn==0 || db->mallocFailed );
1472 /* These registers need to be preserved in case there is an IN operator
1473 ** loop. So we could deallocate the registers here (and potentially
1474 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems
1475 ** simpler and safer to simply not reuse the registers.
1477 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1479 }else
1480 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1482 if( (pLoop->wsFlags & WHERE_IPK)!=0
1483 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1485 /* Case 2: We can directly reference a single row using an
1486 ** equality comparison against the ROWID field. Or
1487 ** we reference multiple rows using a "rowid IN (...)"
1488 ** construct.
1490 assert( pLoop->u.btree.nEq==1 );
1491 pTerm = pLoop->aLTerm[0];
1492 assert( pTerm!=0 );
1493 assert( pTerm->pExpr!=0 );
1494 testcase( pTerm->wtFlags & TERM_VIRTUAL );
1495 iReleaseReg = ++pParse->nMem;
1496 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1497 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1498 addrNxt = pLevel->addrNxt;
1499 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1500 VdbeCoverage(v);
1501 pLevel->op = OP_Noop;
1502 if( (pTerm->prereqAll & pLevel->notReady)==0 ){
1503 pTerm->wtFlags |= TERM_CODED;
1505 }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1506 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1508 /* Case 3: We have an inequality comparison against the ROWID field.
1510 int testOp = OP_Noop;
1511 int start;
1512 int memEndValue = 0;
1513 WhereTerm *pStart, *pEnd;
1515 j = 0;
1516 pStart = pEnd = 0;
1517 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1518 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1519 assert( pStart!=0 || pEnd!=0 );
1520 if( bRev ){
1521 pTerm = pStart;
1522 pStart = pEnd;
1523 pEnd = pTerm;
1525 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1526 if( pStart ){
1527 Expr *pX; /* The expression that defines the start bound */
1528 int r1, rTemp; /* Registers for holding the start boundary */
1529 int op; /* Cursor seek operation */
1531 /* The following constant maps TK_xx codes into corresponding
1532 ** seek opcodes. It depends on a particular ordering of TK_xx
1534 const u8 aMoveOp[] = {
1535 /* TK_GT */ OP_SeekGT,
1536 /* TK_LE */ OP_SeekLE,
1537 /* TK_LT */ OP_SeekLT,
1538 /* TK_GE */ OP_SeekGE
1540 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
1541 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
1542 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
1544 assert( (pStart->wtFlags & TERM_VNULL)==0 );
1545 testcase( pStart->wtFlags & TERM_VIRTUAL );
1546 pX = pStart->pExpr;
1547 assert( pX!=0 );
1548 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1549 if( sqlite3ExprIsVector(pX->pRight) ){
1550 r1 = rTemp = sqlite3GetTempReg(pParse);
1551 codeExprOrVector(pParse, pX->pRight, r1, 1);
1552 testcase( pX->op==TK_GT );
1553 testcase( pX->op==TK_GE );
1554 testcase( pX->op==TK_LT );
1555 testcase( pX->op==TK_LE );
1556 op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1];
1557 assert( pX->op!=TK_GT || op==OP_SeekGE );
1558 assert( pX->op!=TK_GE || op==OP_SeekGE );
1559 assert( pX->op!=TK_LT || op==OP_SeekLE );
1560 assert( pX->op!=TK_LE || op==OP_SeekLE );
1561 }else{
1562 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1563 disableTerm(pLevel, pStart);
1564 op = aMoveOp[(pX->op - TK_GT)];
1566 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1567 VdbeComment((v, "pk"));
1568 VdbeCoverageIf(v, pX->op==TK_GT);
1569 VdbeCoverageIf(v, pX->op==TK_LE);
1570 VdbeCoverageIf(v, pX->op==TK_LT);
1571 VdbeCoverageIf(v, pX->op==TK_GE);
1572 sqlite3ReleaseTempReg(pParse, rTemp);
1573 }else{
1574 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1575 VdbeCoverageIf(v, bRev==0);
1576 VdbeCoverageIf(v, bRev!=0);
1578 if( pEnd ){
1579 Expr *pX;
1580 pX = pEnd->pExpr;
1581 assert( pX!=0 );
1582 assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1583 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1584 testcase( pEnd->wtFlags & TERM_VIRTUAL );
1585 memEndValue = ++pParse->nMem;
1586 codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1587 if( 0==sqlite3ExprIsVector(pX->pRight)
1588 && (pX->op==TK_LT || pX->op==TK_GT)
1590 testOp = bRev ? OP_Le : OP_Ge;
1591 }else{
1592 testOp = bRev ? OP_Lt : OP_Gt;
1594 if( 0==sqlite3ExprIsVector(pX->pRight) ){
1595 disableTerm(pLevel, pEnd);
1598 start = sqlite3VdbeCurrentAddr(v);
1599 pLevel->op = bRev ? OP_Prev : OP_Next;
1600 pLevel->p1 = iCur;
1601 pLevel->p2 = start;
1602 assert( pLevel->p5==0 );
1603 if( testOp!=OP_Noop ){
1604 iRowidReg = ++pParse->nMem;
1605 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1606 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1607 VdbeCoverageIf(v, testOp==OP_Le);
1608 VdbeCoverageIf(v, testOp==OP_Lt);
1609 VdbeCoverageIf(v, testOp==OP_Ge);
1610 VdbeCoverageIf(v, testOp==OP_Gt);
1611 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1613 }else if( pLoop->wsFlags & WHERE_INDEXED ){
1614 /* Case 4: A scan using an index.
1616 ** The WHERE clause may contain zero or more equality
1617 ** terms ("==" or "IN" operators) that refer to the N
1618 ** left-most columns of the index. It may also contain
1619 ** inequality constraints (>, <, >= or <=) on the indexed
1620 ** column that immediately follows the N equalities. Only
1621 ** the right-most column can be an inequality - the rest must
1622 ** use the "==" and "IN" operators. For example, if the
1623 ** index is on (x,y,z), then the following clauses are all
1624 ** optimized:
1626 ** x=5
1627 ** x=5 AND y=10
1628 ** x=5 AND y<10
1629 ** x=5 AND y>5 AND y<10
1630 ** x=5 AND y=5 AND z<=10
1632 ** The z<10 term of the following cannot be used, only
1633 ** the x=5 term:
1635 ** x=5 AND z<10
1637 ** N may be zero if there are inequality constraints.
1638 ** If there are no inequality constraints, then N is at
1639 ** least one.
1641 ** This case is also used when there are no WHERE clause
1642 ** constraints but an index is selected anyway, in order
1643 ** to force the output order to conform to an ORDER BY.
1645 static const u8 aStartOp[] = {
1648 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
1649 OP_Last, /* 3: (!start_constraints && startEq && bRev) */
1650 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */
1651 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */
1652 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */
1653 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */
1655 static const u8 aEndOp[] = {
1656 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */
1657 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */
1658 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */
1659 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */
1661 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */
1662 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */
1663 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */
1664 int regBase; /* Base register holding constraint values */
1665 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
1666 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
1667 int startEq; /* True if range start uses ==, >= or <= */
1668 int endEq; /* True if range end uses ==, >= or <= */
1669 int start_constraints; /* Start of range is constrained */
1670 int nConstraint; /* Number of constraint terms */
1671 int iIdxCur; /* The VDBE cursor for the index */
1672 int nExtraReg = 0; /* Number of extra registers needed */
1673 int op; /* Instruction opcode */
1674 char *zStartAff; /* Affinity for start of range constraint */
1675 char *zEndAff = 0; /* Affinity for end of range constraint */
1676 u8 bSeekPastNull = 0; /* True to seek past initial nulls */
1677 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */
1678 int omitTable; /* True if we use the index only */
1679 int regBignull = 0; /* big-null flag register */
1680 int addrSeekScan = 0; /* Opcode of the OP_SeekScan, if any */
1682 pIdx = pLoop->u.btree.pIndex;
1683 iIdxCur = pLevel->iIdxCur;
1684 assert( nEq>=pLoop->nSkip );
1686 /* Find any inequality constraint terms for the start and end
1687 ** of the range.
1689 j = nEq;
1690 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1691 pRangeStart = pLoop->aLTerm[j++];
1692 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1693 /* Like optimization range constraints always occur in pairs */
1694 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1695 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1697 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1698 pRangeEnd = pLoop->aLTerm[j++];
1699 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1700 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1701 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1702 assert( pRangeStart!=0 ); /* LIKE opt constraints */
1703 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */
1704 pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1705 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1706 VdbeComment((v, "LIKE loop counter"));
1707 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1708 /* iLikeRepCntr actually stores 2x the counter register number. The
1709 ** bottom bit indicates whether the search order is ASC or DESC. */
1710 testcase( bRev );
1711 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1712 assert( (bRev & ~1)==0 );
1713 pLevel->iLikeRepCntr <<=1;
1714 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1716 #endif
1717 if( pRangeStart==0 ){
1718 j = pIdx->aiColumn[nEq];
1719 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1720 bSeekPastNull = 1;
1724 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1726 /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses
1727 ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS
1728 ** FIRST). In both cases separate ordered scans are made of those
1729 ** index entries for which the column is null and for those for which
1730 ** it is not. For an ASC sort, the non-NULL entries are scanned first.
1731 ** For DESC, NULL entries are scanned first.
1733 if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0
1734 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0
1736 assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 );
1737 assert( pRangeEnd==0 && pRangeStart==0 );
1738 testcase( pLoop->nSkip>0 );
1739 nExtraReg = 1;
1740 bSeekPastNull = 1;
1741 pLevel->regBignull = regBignull = ++pParse->nMem;
1742 if( pLevel->iLeftJoin ){
1743 sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull);
1745 pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse);
1748 /* If we are doing a reverse order scan on an ascending index, or
1749 ** a forward order scan on a descending index, interchange the
1750 ** start and end terms (pRangeStart and pRangeEnd).
1752 if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) ){
1753 SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1754 SWAP(u8, bSeekPastNull, bStopAtNull);
1755 SWAP(u8, nBtm, nTop);
1758 if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){
1759 /* In case OP_SeekScan is used, ensure that the index cursor does not
1760 ** point to a valid row for the first iteration of this loop. */
1761 sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur);
1764 /* Generate code to evaluate all constraint terms using == or IN
1765 ** and store the values of those terms in an array of registers
1766 ** starting at regBase.
1768 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1769 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1770 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1771 if( zStartAff && nTop ){
1772 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1774 addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt);
1776 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1777 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1778 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1779 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1780 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1781 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1782 start_constraints = pRangeStart || nEq>0;
1784 /* Seek the index cursor to the start of the range. */
1785 nConstraint = nEq;
1786 if( pRangeStart ){
1787 Expr *pRight = pRangeStart->pExpr->pRight;
1788 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1789 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1790 if( (pRangeStart->wtFlags & TERM_VNULL)==0
1791 && sqlite3ExprCanBeNull(pRight)
1793 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1794 VdbeCoverage(v);
1796 if( zStartAff ){
1797 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1799 nConstraint += nBtm;
1800 testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1801 if( sqlite3ExprIsVector(pRight)==0 ){
1802 disableTerm(pLevel, pRangeStart);
1803 }else{
1804 startEq = 1;
1806 bSeekPastNull = 0;
1807 }else if( bSeekPastNull ){
1808 startEq = 0;
1809 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1810 start_constraints = 1;
1811 nConstraint++;
1812 }else if( regBignull ){
1813 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1814 start_constraints = 1;
1815 nConstraint++;
1817 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
1818 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
1819 /* The skip-scan logic inside the call to codeAllEqualityConstraints()
1820 ** above has already left the cursor sitting on the correct row,
1821 ** so no further seeking is needed */
1822 }else{
1823 if( regBignull ){
1824 sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull);
1825 VdbeComment((v, "NULL-scan pass ctr"));
1828 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
1829 assert( op!=0 );
1830 if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){
1831 assert( regBignull==0 );
1832 /* TUNING: The OP_SeekScan opcode seeks to reduce the number
1833 ** of expensive seek operations by replacing a single seek with
1834 ** 1 or more step operations. The question is, how many steps
1835 ** should we try before giving up and going with a seek. The cost
1836 ** of a seek is proportional to the logarithm of the of the number
1837 ** of entries in the tree, so basing the number of steps to try
1838 ** on the estimated number of rows in the btree seems like a good
1839 ** guess. */
1840 addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan,
1841 (pIdx->aiRowLogEst[0]+9)/10);
1842 VdbeCoverage(v);
1844 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1845 VdbeCoverage(v);
1846 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
1847 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
1848 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT );
1849 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
1850 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
1851 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT );
1853 assert( bSeekPastNull==0 || bStopAtNull==0 );
1854 if( regBignull ){
1855 assert( bSeekPastNull==1 || bStopAtNull==1 );
1856 assert( bSeekPastNull==!bStopAtNull );
1857 assert( bStopAtNull==startEq );
1858 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2);
1859 op = aStartOp[(nConstraint>1)*4 + 2 + bRev];
1860 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
1861 nConstraint-startEq);
1862 VdbeCoverage(v);
1863 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
1864 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
1865 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
1866 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
1867 assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE);
1871 /* Load the value for the inequality constraint at the end of the
1872 ** range (if any).
1874 nConstraint = nEq;
1875 if( pRangeEnd ){
1876 Expr *pRight = pRangeEnd->pExpr->pRight;
1877 codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
1878 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
1879 if( (pRangeEnd->wtFlags & TERM_VNULL)==0
1880 && sqlite3ExprCanBeNull(pRight)
1882 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1883 VdbeCoverage(v);
1885 if( zEndAff ){
1886 updateRangeAffinityStr(pRight, nTop, zEndAff);
1887 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
1888 }else{
1889 assert( pParse->db->mallocFailed );
1891 nConstraint += nTop;
1892 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
1894 if( sqlite3ExprIsVector(pRight)==0 ){
1895 disableTerm(pLevel, pRangeEnd);
1896 }else{
1897 endEq = 1;
1899 }else if( bStopAtNull ){
1900 if( regBignull==0 ){
1901 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1902 endEq = 0;
1904 nConstraint++;
1906 sqlite3DbFree(db, zStartAff);
1907 sqlite3DbFree(db, zEndAff);
1909 /* Top of the loop body */
1910 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1912 /* Check if the index cursor is past the end of the range. */
1913 if( nConstraint ){
1914 if( regBignull ){
1915 /* Except, skip the end-of-range check while doing the NULL-scan */
1916 sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3);
1917 VdbeComment((v, "If NULL-scan 2nd pass"));
1918 VdbeCoverage(v);
1920 op = aEndOp[bRev*2 + endEq];
1921 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
1922 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
1923 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
1924 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
1925 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
1926 if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan);
1928 if( regBignull ){
1929 /* During a NULL-scan, check to see if we have reached the end of
1930 ** the NULLs */
1931 assert( bSeekPastNull==!bStopAtNull );
1932 assert( bSeekPastNull+bStopAtNull==1 );
1933 assert( nConstraint+bSeekPastNull>0 );
1934 sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2);
1935 VdbeComment((v, "If NULL-scan 1st pass"));
1936 VdbeCoverage(v);
1937 op = aEndOp[bRev*2 + bSeekPastNull];
1938 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
1939 nConstraint+bSeekPastNull);
1940 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
1941 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
1942 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
1943 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
1946 if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){
1947 sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq);
1950 /* Seek the table cursor, if required */
1951 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
1952 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0;
1953 if( omitTable ){
1954 /* pIdx is a covering index. No need to access the main table. */
1955 }else if( HasRowid(pIdx->pTable) ){
1956 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
1957 }else if( iCur!=iIdxCur ){
1958 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
1959 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
1960 for(j=0; j<pPk->nKeyCol; j++){
1961 k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
1962 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
1964 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
1965 iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
1968 if( pLevel->iLeftJoin==0 ){
1969 /* If pIdx is an index on one or more expressions, then look through
1970 ** all the expressions in pWInfo and try to transform matching expressions
1971 ** into reference to index columns. Also attempt to translate references
1972 ** to virtual columns in the table into references to (stored) columns
1973 ** of the index.
1975 ** Do not do this for the RHS of a LEFT JOIN. This is because the
1976 ** expression may be evaluated after OP_NullRow has been executed on
1977 ** the cursor. In this case it is important to do the full evaluation,
1978 ** as the result of the expression may not be NULL, even if all table
1979 ** column values are. https://www.sqlite.org/src/info/7fa8049685b50b5a
1981 ** Also, do not do this when processing one index an a multi-index
1982 ** OR clause, since the transformation will become invalid once we
1983 ** move forward to the next index.
1984 ** https://sqlite.org/src/info/4e8e4857d32d401f
1986 if( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 ){
1987 whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
1990 /* If a partial index is driving the loop, try to eliminate WHERE clause
1991 ** terms from the query that must be true due to the WHERE clause of
1992 ** the partial index.
1994 ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work
1995 ** for a LEFT JOIN.
1997 if( pIdx->pPartIdxWhere ){
1998 whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC);
2000 }else{
2001 testcase( pIdx->pPartIdxWhere );
2002 /* The following assert() is not a requirement, merely an observation:
2003 ** The OR-optimization doesn't work for the right hand table of
2004 ** a LEFT JOIN: */
2005 assert( (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)==0 );
2008 /* Record the instruction used to terminate the loop. */
2009 if( pLoop->wsFlags & WHERE_ONEROW ){
2010 pLevel->op = OP_Noop;
2011 }else if( bRev ){
2012 pLevel->op = OP_Prev;
2013 }else{
2014 pLevel->op = OP_Next;
2016 pLevel->p1 = iIdxCur;
2017 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
2018 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
2019 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2020 }else{
2021 assert( pLevel->p5==0 );
2023 if( omitTable ) pIdx = 0;
2024 }else
2026 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
2027 if( pLoop->wsFlags & WHERE_MULTI_OR ){
2028 /* Case 5: Two or more separately indexed terms connected by OR
2030 ** Example:
2032 ** CREATE TABLE t1(a,b,c,d);
2033 ** CREATE INDEX i1 ON t1(a);
2034 ** CREATE INDEX i2 ON t1(b);
2035 ** CREATE INDEX i3 ON t1(c);
2037 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
2039 ** In the example, there are three indexed terms connected by OR.
2040 ** The top of the loop looks like this:
2042 ** Null 1 # Zero the rowset in reg 1
2044 ** Then, for each indexed term, the following. The arguments to
2045 ** RowSetTest are such that the rowid of the current row is inserted
2046 ** into the RowSet. If it is already present, control skips the
2047 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
2049 ** sqlite3WhereBegin(<term>)
2050 ** RowSetTest # Insert rowid into rowset
2051 ** Gosub 2 A
2052 ** sqlite3WhereEnd()
2054 ** Following the above, code to terminate the loop. Label A, the target
2055 ** of the Gosub above, jumps to the instruction right after the Goto.
2057 ** Null 1 # Zero the rowset in reg 1
2058 ** Goto B # The loop is finished.
2060 ** A: <loop body> # Return data, whatever.
2062 ** Return 2 # Jump back to the Gosub
2064 ** B: <after the loop>
2066 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
2067 ** use an ephemeral index instead of a RowSet to record the primary
2068 ** keys of the rows we have already seen.
2071 WhereClause *pOrWc; /* The OR-clause broken out into subterms */
2072 SrcList *pOrTab; /* Shortened table list or OR-clause generation */
2073 Index *pCov = 0; /* Potential covering index (or NULL) */
2074 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */
2076 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
2077 int regRowset = 0; /* Register for RowSet object */
2078 int regRowid = 0; /* Register holding rowid */
2079 int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */
2080 int iRetInit; /* Address of regReturn init */
2081 int untestedTerms = 0; /* Some terms not completely tested */
2082 int ii; /* Loop counter */
2083 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */
2084 Table *pTab = pTabItem->pTab;
2086 pTerm = pLoop->aLTerm[0];
2087 assert( pTerm!=0 );
2088 assert( pTerm->eOperator & WO_OR );
2089 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
2090 pOrWc = &pTerm->u.pOrInfo->wc;
2091 pLevel->op = OP_Return;
2092 pLevel->p1 = regReturn;
2094 /* Set up a new SrcList in pOrTab containing the table being scanned
2095 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
2096 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
2098 if( pWInfo->nLevel>1 ){
2099 int nNotReady; /* The number of notReady tables */
2100 SrcItem *origSrc; /* Original list of tables */
2101 nNotReady = pWInfo->nLevel - iLevel - 1;
2102 pOrTab = sqlite3StackAllocRaw(db,
2103 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
2104 if( pOrTab==0 ) return notReady;
2105 pOrTab->nAlloc = (u8)(nNotReady + 1);
2106 pOrTab->nSrc = pOrTab->nAlloc;
2107 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
2108 origSrc = pWInfo->pTabList->a;
2109 for(k=1; k<=nNotReady; k++){
2110 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
2112 }else{
2113 pOrTab = pWInfo->pTabList;
2116 /* Initialize the rowset register to contain NULL. An SQL NULL is
2117 ** equivalent to an empty rowset. Or, create an ephemeral index
2118 ** capable of holding primary keys in the case of a WITHOUT ROWID.
2120 ** Also initialize regReturn to contain the address of the instruction
2121 ** immediately following the OP_Return at the bottom of the loop. This
2122 ** is required in a few obscure LEFT JOIN cases where control jumps
2123 ** over the top of the loop into the body of it. In this case the
2124 ** correct response for the end-of-loop code (the OP_Return) is to
2125 ** fall through to the next instruction, just as an OP_Next does if
2126 ** called on an uninitialized cursor.
2128 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2129 if( HasRowid(pTab) ){
2130 regRowset = ++pParse->nMem;
2131 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
2132 }else{
2133 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2134 regRowset = pParse->nTab++;
2135 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
2136 sqlite3VdbeSetP4KeyInfo(pParse, pPk);
2138 regRowid = ++pParse->nMem;
2140 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
2142 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y
2143 ** Then for every term xN, evaluate as the subexpression: xN AND z
2144 ** That way, terms in y that are factored into the disjunction will
2145 ** be picked up by the recursive calls to sqlite3WhereBegin() below.
2147 ** Actually, each subexpression is converted to "xN AND w" where w is
2148 ** the "interesting" terms of z - terms that did not originate in the
2149 ** ON or USING clause of a LEFT JOIN, and terms that are usable as
2150 ** indices.
2152 ** This optimization also only applies if the (x1 OR x2 OR ...) term
2153 ** is not contained in the ON clause of a LEFT JOIN.
2154 ** See ticket http://www.sqlite.org/src/info/f2369304e4
2156 if( pWC->nTerm>1 ){
2157 int iTerm;
2158 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
2159 Expr *pExpr = pWC->a[iTerm].pExpr;
2160 if( &pWC->a[iTerm] == pTerm ) continue;
2161 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
2162 testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
2163 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED))!=0 ) continue;
2164 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
2165 testcase( pWC->a[iTerm].wtFlags & TERM_ORINFO );
2166 pExpr = sqlite3ExprDup(db, pExpr, 0);
2167 pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr);
2169 if( pAndExpr ){
2170 /* The extra 0x10000 bit on the opcode is masked off and does not
2171 ** become part of the new Expr.op. However, it does make the
2172 ** op==TK_AND comparison inside of sqlite3PExpr() false, and this
2173 ** prevents sqlite3PExpr() from applying the AND short-circuit
2174 ** optimization, which we do not want here. */
2175 pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr);
2179 /* Run a separate WHERE clause for each term of the OR clause. After
2180 ** eliminating duplicates from other WHERE clauses, the action for each
2181 ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
2183 ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
2184 for(ii=0; ii<pOrWc->nTerm; ii++){
2185 WhereTerm *pOrTerm = &pOrWc->a[ii];
2186 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
2187 WhereInfo *pSubWInfo; /* Info for single OR-term scan */
2188 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
2189 Expr *pDelete; /* Local copy of OR clause term */
2190 int jmp1 = 0; /* Address of jump operation */
2191 testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0
2192 && !ExprHasProperty(pOrExpr, EP_FromJoin)
2193 ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */
2194 pDelete = pOrExpr = sqlite3ExprDup(db, pOrExpr, 0);
2195 if( db->mallocFailed ){
2196 sqlite3ExprDelete(db, pDelete);
2197 continue;
2199 if( pAndExpr ){
2200 pAndExpr->pLeft = pOrExpr;
2201 pOrExpr = pAndExpr;
2203 /* Loop through table entries that match term pOrTerm. */
2204 ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1));
2205 WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
2206 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0,
2207 WHERE_OR_SUBCLAUSE, iCovCur);
2208 assert( pSubWInfo || pParse->nErr || db->mallocFailed );
2209 if( pSubWInfo ){
2210 WhereLoop *pSubLoop;
2211 int addrExplain = sqlite3WhereExplainOneScan(
2212 pParse, pOrTab, &pSubWInfo->a[0], 0
2214 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
2216 /* This is the sub-WHERE clause body. First skip over
2217 ** duplicate rows from prior sub-WHERE clauses, and record the
2218 ** rowid (or PRIMARY KEY) for the current row so that the same
2219 ** row will be skipped in subsequent sub-WHERE clauses.
2221 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2222 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
2223 if( HasRowid(pTab) ){
2224 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid);
2225 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
2226 regRowid, iSet);
2227 VdbeCoverage(v);
2228 }else{
2229 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2230 int nPk = pPk->nKeyCol;
2231 int iPk;
2232 int r;
2234 /* Read the PK into an array of temp registers. */
2235 r = sqlite3GetTempRange(pParse, nPk);
2236 for(iPk=0; iPk<nPk; iPk++){
2237 int iCol = pPk->aiColumn[iPk];
2238 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
2241 /* Check if the temp table already contains this key. If so,
2242 ** the row has already been included in the result set and
2243 ** can be ignored (by jumping past the Gosub below). Otherwise,
2244 ** insert the key into the temp table and proceed with processing
2245 ** the row.
2247 ** Use some of the same optimizations as OP_RowSetTest: If iSet
2248 ** is zero, assume that the key cannot already be present in
2249 ** the temp table. And if iSet is -1, assume that there is no
2250 ** need to insert the key into the temp table, as it will never
2251 ** be tested for. */
2252 if( iSet ){
2253 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
2254 VdbeCoverage(v);
2256 if( iSet>=0 ){
2257 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
2258 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
2259 r, nPk);
2260 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2263 /* Release the array of temp registers */
2264 sqlite3ReleaseTempRange(pParse, r, nPk);
2268 /* Invoke the main loop body as a subroutine */
2269 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
2271 /* Jump here (skipping the main loop body subroutine) if the
2272 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
2273 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
2275 /* The pSubWInfo->untestedTerms flag means that this OR term
2276 ** contained one or more AND term from a notReady table. The
2277 ** terms from the notReady table could not be tested and will
2278 ** need to be tested later.
2280 if( pSubWInfo->untestedTerms ) untestedTerms = 1;
2282 /* If all of the OR-connected terms are optimized using the same
2283 ** index, and the index is opened using the same cursor number
2284 ** by each call to sqlite3WhereBegin() made by this loop, it may
2285 ** be possible to use that index as a covering index.
2287 ** If the call to sqlite3WhereBegin() above resulted in a scan that
2288 ** uses an index, and this is either the first OR-connected term
2289 ** processed or the index is the same as that used by all previous
2290 ** terms, set pCov to the candidate covering index. Otherwise, set
2291 ** pCov to NULL to indicate that no candidate covering index will
2292 ** be available.
2294 pSubLoop = pSubWInfo->a[0].pWLoop;
2295 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2296 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
2297 && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
2298 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
2300 assert( pSubWInfo->a[0].iIdxCur==iCovCur );
2301 pCov = pSubLoop->u.btree.pIndex;
2302 }else{
2303 pCov = 0;
2305 if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){
2306 pWInfo->bDeferredSeek = 1;
2309 /* Finish the loop through table entries that match term pOrTerm. */
2310 sqlite3WhereEnd(pSubWInfo);
2311 ExplainQueryPlanPop(pParse);
2313 sqlite3ExprDelete(db, pDelete);
2316 ExplainQueryPlanPop(pParse);
2317 pLevel->u.pCovidx = pCov;
2318 if( pCov ) pLevel->iIdxCur = iCovCur;
2319 if( pAndExpr ){
2320 pAndExpr->pLeft = 0;
2321 sqlite3ExprDelete(db, pAndExpr);
2323 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
2324 sqlite3VdbeGoto(v, pLevel->addrBrk);
2325 sqlite3VdbeResolveLabel(v, iLoopBody);
2327 if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); }
2328 if( !untestedTerms ) disableTerm(pLevel, pTerm);
2329 }else
2330 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2333 /* Case 6: There is no usable index. We must do a complete
2334 ** scan of the entire table.
2336 static const u8 aStep[] = { OP_Next, OP_Prev };
2337 static const u8 aStart[] = { OP_Rewind, OP_Last };
2338 assert( bRev==0 || bRev==1 );
2339 if( pTabItem->fg.isRecursive ){
2340 /* Tables marked isRecursive have only a single row that is stored in
2341 ** a pseudo-cursor. No need to Rewind or Next such cursors. */
2342 pLevel->op = OP_Noop;
2343 }else{
2344 codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2345 pLevel->op = aStep[bRev];
2346 pLevel->p1 = iCur;
2347 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2348 VdbeCoverageIf(v, bRev==0);
2349 VdbeCoverageIf(v, bRev!=0);
2350 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2354 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2355 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2356 #endif
2358 /* Insert code to test every subexpression that can be completely
2359 ** computed using the current set of tables.
2361 ** This loop may run between one and three times, depending on the
2362 ** constraints to be generated. The value of stack variable iLoop
2363 ** determines the constraints coded by each iteration, as follows:
2365 ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2366 ** iLoop==2: Code remaining expressions that do not contain correlated
2367 ** sub-queries.
2368 ** iLoop==3: Code all remaining expressions.
2370 ** An effort is made to skip unnecessary iterations of the loop.
2372 iLoop = (pIdx ? 1 : 2);
2374 int iNext = 0; /* Next value for iLoop */
2375 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2376 Expr *pE;
2377 int skipLikeAddr = 0;
2378 testcase( pTerm->wtFlags & TERM_VIRTUAL );
2379 testcase( pTerm->wtFlags & TERM_CODED );
2380 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2381 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2382 testcase( pWInfo->untestedTerms==0
2383 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2384 pWInfo->untestedTerms = 1;
2385 continue;
2387 pE = pTerm->pExpr;
2388 assert( pE!=0 );
2389 if( (pTabItem->fg.jointype&JT_LEFT) && !ExprHasProperty(pE,EP_FromJoin) ){
2390 continue;
2393 if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2394 iNext = 2;
2395 continue;
2397 if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2398 if( iNext==0 ) iNext = 3;
2399 continue;
2402 if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){
2403 /* If the TERM_LIKECOND flag is set, that means that the range search
2404 ** is sufficient to guarantee that the LIKE operator is true, so we
2405 ** can skip the call to the like(A,B) function. But this only works
2406 ** for strings. So do not skip the call to the function on the pass
2407 ** that compares BLOBs. */
2408 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2409 continue;
2410 #else
2411 u32 x = pLevel->iLikeRepCntr;
2412 if( x>0 ){
2413 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1));
2414 VdbeCoverageIf(v, (x&1)==1);
2415 VdbeCoverageIf(v, (x&1)==0);
2417 #endif
2419 #ifdef WHERETRACE_ENABLED /* 0xffff */
2420 if( sqlite3WhereTrace ){
2421 VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2422 pWC->nTerm-j, pTerm, iLoop));
2424 if( sqlite3WhereTrace & 0x800 ){
2425 sqlite3DebugPrintf("Coding auxiliary constraint:\n");
2426 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2428 #endif
2429 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2430 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2431 pTerm->wtFlags |= TERM_CODED;
2433 iLoop = iNext;
2434 }while( iLoop>0 );
2436 /* Insert code to test for implied constraints based on transitivity
2437 ** of the "==" operator.
2439 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2440 ** and we are coding the t1 loop and the t2 loop has not yet coded,
2441 ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2442 ** the implied "t1.a=123" constraint.
2444 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2445 Expr *pE, sEAlt;
2446 WhereTerm *pAlt;
2447 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2448 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2449 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2450 if( pTerm->leftCursor!=iCur ) continue;
2451 if( pTabItem->fg.jointype & JT_LEFT ) continue;
2452 pE = pTerm->pExpr;
2453 #ifdef WHERETRACE_ENABLED /* 0x800 */
2454 if( sqlite3WhereTrace & 0x800 ){
2455 sqlite3DebugPrintf("Coding transitive constraint:\n");
2456 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2458 #endif
2459 assert( !ExprHasProperty(pE, EP_FromJoin) );
2460 assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2461 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady,
2462 WO_EQ|WO_IN|WO_IS, 0);
2463 if( pAlt==0 ) continue;
2464 if( pAlt->wtFlags & (TERM_CODED) ) continue;
2465 if( (pAlt->eOperator & WO_IN)
2466 && (pAlt->pExpr->flags & EP_xIsSelect)
2467 && (pAlt->pExpr->x.pSelect->pEList->nExpr>1)
2469 continue;
2471 testcase( pAlt->eOperator & WO_EQ );
2472 testcase( pAlt->eOperator & WO_IS );
2473 testcase( pAlt->eOperator & WO_IN );
2474 VdbeModuleComment((v, "begin transitive constraint"));
2475 sEAlt = *pAlt->pExpr;
2476 sEAlt.pLeft = pE->pLeft;
2477 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2478 pAlt->wtFlags |= TERM_CODED;
2481 /* For a LEFT OUTER JOIN, generate code that will record the fact that
2482 ** at least one row of the right table has matched the left table.
2484 if( pLevel->iLeftJoin ){
2485 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2486 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2487 VdbeComment((v, "record LEFT JOIN hit"));
2488 for(pTerm=pWC->a, j=0; j<pWC->nTerm; j++, pTerm++){
2489 testcase( pTerm->wtFlags & TERM_VIRTUAL );
2490 testcase( pTerm->wtFlags & TERM_CODED );
2491 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2492 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2493 assert( pWInfo->untestedTerms );
2494 continue;
2496 assert( pTerm->pExpr );
2497 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2498 pTerm->wtFlags |= TERM_CODED;
2502 #if WHERETRACE_ENABLED /* 0x20800 */
2503 if( sqlite3WhereTrace & 0x20000 ){
2504 sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n",
2505 iLevel);
2506 sqlite3WhereClausePrint(pWC);
2508 if( sqlite3WhereTrace & 0x800 ){
2509 sqlite3DebugPrintf("End Coding level %d: notReady=%llx\n",
2510 iLevel, (u64)pLevel->notReady);
2512 #endif
2513 return pLevel->notReady;