fix issue with short page reads causing hmac failures with auto vacuum enabled
[sqlcipher.git] / src / func.c
blobf2f8d6523eb4c461c91c8fe870416a1e550f36ef
1 /*
2 ** 2002 February 23
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains the C functions that implement various SQL
13 ** functions of SQLite.
15 ** There is only one exported symbol in this file - the function
16 ** sqliteRegisterBuildinFunctions() found at the bottom of the file.
17 ** All other code has file scope.
19 #include "sqliteInt.h"
20 #include <stdlib.h>
21 #include <assert.h>
22 #include "vdbeInt.h"
25 ** Return the collating function associated with a function.
27 static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
28 return context->pColl;
32 ** Indicate that the accumulator load should be skipped on this
33 ** iteration of the aggregate loop.
35 static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){
36 context->skipFlag = 1;
40 ** Implementation of the non-aggregate min() and max() functions
42 static void minmaxFunc(
43 sqlite3_context *context,
44 int argc,
45 sqlite3_value **argv
47 int i;
48 int mask; /* 0 for min() or 0xffffffff for max() */
49 int iBest;
50 CollSeq *pColl;
52 assert( argc>1 );
53 mask = sqlite3_user_data(context)==0 ? 0 : -1;
54 pColl = sqlite3GetFuncCollSeq(context);
55 assert( pColl );
56 assert( mask==-1 || mask==0 );
57 iBest = 0;
58 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
59 for(i=1; i<argc; i++){
60 if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
61 if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
62 testcase( mask==0 );
63 iBest = i;
66 sqlite3_result_value(context, argv[iBest]);
70 ** Return the type of the argument.
72 static void typeofFunc(
73 sqlite3_context *context,
74 int NotUsed,
75 sqlite3_value **argv
77 const char *z = 0;
78 UNUSED_PARAMETER(NotUsed);
79 switch( sqlite3_value_type(argv[0]) ){
80 case SQLITE_INTEGER: z = "integer"; break;
81 case SQLITE_TEXT: z = "text"; break;
82 case SQLITE_FLOAT: z = "real"; break;
83 case SQLITE_BLOB: z = "blob"; break;
84 default: z = "null"; break;
86 sqlite3_result_text(context, z, -1, SQLITE_STATIC);
91 ** Implementation of the length() function
93 static void lengthFunc(
94 sqlite3_context *context,
95 int argc,
96 sqlite3_value **argv
98 int len;
100 assert( argc==1 );
101 UNUSED_PARAMETER(argc);
102 switch( sqlite3_value_type(argv[0]) ){
103 case SQLITE_BLOB:
104 case SQLITE_INTEGER:
105 case SQLITE_FLOAT: {
106 sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
107 break;
109 case SQLITE_TEXT: {
110 const unsigned char *z = sqlite3_value_text(argv[0]);
111 if( z==0 ) return;
112 len = 0;
113 while( *z ){
114 len++;
115 SQLITE_SKIP_UTF8(z);
117 sqlite3_result_int(context, len);
118 break;
120 default: {
121 sqlite3_result_null(context);
122 break;
128 ** Implementation of the abs() function.
130 ** IMP: R-23979-26855 The abs(X) function returns the absolute value of
131 ** the numeric argument X.
133 static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
134 assert( argc==1 );
135 UNUSED_PARAMETER(argc);
136 switch( sqlite3_value_type(argv[0]) ){
137 case SQLITE_INTEGER: {
138 i64 iVal = sqlite3_value_int64(argv[0]);
139 if( iVal<0 ){
140 if( (iVal<<1)==0 ){
141 /* IMP: R-35460-15084 If X is the integer -9223372036854775807 then
142 ** abs(X) throws an integer overflow error since there is no
143 ** equivalent positive 64-bit two complement value. */
144 sqlite3_result_error(context, "integer overflow", -1);
145 return;
147 iVal = -iVal;
149 sqlite3_result_int64(context, iVal);
150 break;
152 case SQLITE_NULL: {
153 /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */
154 sqlite3_result_null(context);
155 break;
157 default: {
158 /* Because sqlite3_value_double() returns 0.0 if the argument is not
159 ** something that can be converted into a number, we have:
160 ** IMP: R-57326-31541 Abs(X) return 0.0 if X is a string or blob that
161 ** cannot be converted to a numeric value.
163 double rVal = sqlite3_value_double(argv[0]);
164 if( rVal<0 ) rVal = -rVal;
165 sqlite3_result_double(context, rVal);
166 break;
172 ** Implementation of the substr() function.
174 ** substr(x,p1,p2) returns p2 characters of x[] beginning with p1.
175 ** p1 is 1-indexed. So substr(x,1,1) returns the first character
176 ** of x. If x is text, then we actually count UTF-8 characters.
177 ** If x is a blob, then we count bytes.
179 ** If p1 is negative, then we begin abs(p1) from the end of x[].
181 ** If p2 is negative, return the p2 characters preceeding p1.
183 static void substrFunc(
184 sqlite3_context *context,
185 int argc,
186 sqlite3_value **argv
188 const unsigned char *z;
189 const unsigned char *z2;
190 int len;
191 int p0type;
192 i64 p1, p2;
193 int negP2 = 0;
195 assert( argc==3 || argc==2 );
196 if( sqlite3_value_type(argv[1])==SQLITE_NULL
197 || (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL)
199 return;
201 p0type = sqlite3_value_type(argv[0]);
202 p1 = sqlite3_value_int(argv[1]);
203 if( p0type==SQLITE_BLOB ){
204 len = sqlite3_value_bytes(argv[0]);
205 z = sqlite3_value_blob(argv[0]);
206 if( z==0 ) return;
207 assert( len==sqlite3_value_bytes(argv[0]) );
208 }else{
209 z = sqlite3_value_text(argv[0]);
210 if( z==0 ) return;
211 len = 0;
212 if( p1<0 ){
213 for(z2=z; *z2; len++){
214 SQLITE_SKIP_UTF8(z2);
218 if( argc==3 ){
219 p2 = sqlite3_value_int(argv[2]);
220 if( p2<0 ){
221 p2 = -p2;
222 negP2 = 1;
224 }else{
225 p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
227 if( p1<0 ){
228 p1 += len;
229 if( p1<0 ){
230 p2 += p1;
231 if( p2<0 ) p2 = 0;
232 p1 = 0;
234 }else if( p1>0 ){
235 p1--;
236 }else if( p2>0 ){
237 p2--;
239 if( negP2 ){
240 p1 -= p2;
241 if( p1<0 ){
242 p2 += p1;
243 p1 = 0;
246 assert( p1>=0 && p2>=0 );
247 if( p0type!=SQLITE_BLOB ){
248 while( *z && p1 ){
249 SQLITE_SKIP_UTF8(z);
250 p1--;
252 for(z2=z; *z2 && p2; p2--){
253 SQLITE_SKIP_UTF8(z2);
255 sqlite3_result_text(context, (char*)z, (int)(z2-z), SQLITE_TRANSIENT);
256 }else{
257 if( p1+p2>len ){
258 p2 = len-p1;
259 if( p2<0 ) p2 = 0;
261 sqlite3_result_blob(context, (char*)&z[p1], (int)p2, SQLITE_TRANSIENT);
266 ** Implementation of the round() function
268 #ifndef SQLITE_OMIT_FLOATING_POINT
269 static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
270 int n = 0;
271 double r;
272 char *zBuf;
273 assert( argc==1 || argc==2 );
274 if( argc==2 ){
275 if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
276 n = sqlite3_value_int(argv[1]);
277 if( n>30 ) n = 30;
278 if( n<0 ) n = 0;
280 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
281 r = sqlite3_value_double(argv[0]);
282 /* If Y==0 and X will fit in a 64-bit int,
283 ** handle the rounding directly,
284 ** otherwise use printf.
286 if( n==0 && r>=0 && r<LARGEST_INT64-1 ){
287 r = (double)((sqlite_int64)(r+0.5));
288 }else if( n==0 && r<0 && (-r)<LARGEST_INT64-1 ){
289 r = -(double)((sqlite_int64)((-r)+0.5));
290 }else{
291 zBuf = sqlite3_mprintf("%.*f",n,r);
292 if( zBuf==0 ){
293 sqlite3_result_error_nomem(context);
294 return;
296 sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8);
297 sqlite3_free(zBuf);
299 sqlite3_result_double(context, r);
301 #endif
304 ** Allocate nByte bytes of space using sqlite3_malloc(). If the
305 ** allocation fails, call sqlite3_result_error_nomem() to notify
306 ** the database handle that malloc() has failed and return NULL.
307 ** If nByte is larger than the maximum string or blob length, then
308 ** raise an SQLITE_TOOBIG exception and return NULL.
310 static void *contextMalloc(sqlite3_context *context, i64 nByte){
311 char *z;
312 sqlite3 *db = sqlite3_context_db_handle(context);
313 assert( nByte>0 );
314 testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] );
315 testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
316 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
317 sqlite3_result_error_toobig(context);
318 z = 0;
319 }else{
320 z = sqlite3Malloc((int)nByte);
321 if( !z ){
322 sqlite3_result_error_nomem(context);
325 return z;
329 ** Implementation of the upper() and lower() SQL functions.
331 static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
332 char *z1;
333 const char *z2;
334 int i, n;
335 UNUSED_PARAMETER(argc);
336 z2 = (char*)sqlite3_value_text(argv[0]);
337 n = sqlite3_value_bytes(argv[0]);
338 /* Verify that the call to _bytes() does not invalidate the _text() pointer */
339 assert( z2==(char*)sqlite3_value_text(argv[0]) );
340 if( z2 ){
341 z1 = contextMalloc(context, ((i64)n)+1);
342 if( z1 ){
343 for(i=0; i<n; i++){
344 z1[i] = (char)sqlite3Toupper(z2[i]);
346 sqlite3_result_text(context, z1, n, sqlite3_free);
350 static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
351 char *z1;
352 const char *z2;
353 int i, n;
354 UNUSED_PARAMETER(argc);
355 z2 = (char*)sqlite3_value_text(argv[0]);
356 n = sqlite3_value_bytes(argv[0]);
357 /* Verify that the call to _bytes() does not invalidate the _text() pointer */
358 assert( z2==(char*)sqlite3_value_text(argv[0]) );
359 if( z2 ){
360 z1 = contextMalloc(context, ((i64)n)+1);
361 if( z1 ){
362 for(i=0; i<n; i++){
363 z1[i] = sqlite3Tolower(z2[i]);
365 sqlite3_result_text(context, z1, n, sqlite3_free);
371 #if 0 /* This function is never used. */
373 ** The COALESCE() and IFNULL() functions used to be implemented as shown
374 ** here. But now they are implemented as VDBE code so that unused arguments
375 ** do not have to be computed. This legacy implementation is retained as
376 ** comment.
379 ** Implementation of the IFNULL(), NVL(), and COALESCE() functions.
380 ** All three do the same thing. They return the first non-NULL
381 ** argument.
383 static void ifnullFunc(
384 sqlite3_context *context,
385 int argc,
386 sqlite3_value **argv
388 int i;
389 for(i=0; i<argc; i++){
390 if( SQLITE_NULL!=sqlite3_value_type(argv[i]) ){
391 sqlite3_result_value(context, argv[i]);
392 break;
396 #endif /* NOT USED */
397 #define ifnullFunc versionFunc /* Substitute function - never called */
400 ** Implementation of random(). Return a random integer.
402 static void randomFunc(
403 sqlite3_context *context,
404 int NotUsed,
405 sqlite3_value **NotUsed2
407 sqlite_int64 r;
408 UNUSED_PARAMETER2(NotUsed, NotUsed2);
409 sqlite3_randomness(sizeof(r), &r);
410 if( r<0 ){
411 /* We need to prevent a random number of 0x8000000000000000
412 ** (or -9223372036854775808) since when you do abs() of that
413 ** number of you get the same value back again. To do this
414 ** in a way that is testable, mask the sign bit off of negative
415 ** values, resulting in a positive value. Then take the
416 ** 2s complement of that positive value. The end result can
417 ** therefore be no less than -9223372036854775807.
419 r = -(r & LARGEST_INT64);
421 sqlite3_result_int64(context, r);
425 ** Implementation of randomblob(N). Return a random blob
426 ** that is N bytes long.
428 static void randomBlob(
429 sqlite3_context *context,
430 int argc,
431 sqlite3_value **argv
433 int n;
434 unsigned char *p;
435 assert( argc==1 );
436 UNUSED_PARAMETER(argc);
437 n = sqlite3_value_int(argv[0]);
438 if( n<1 ){
439 n = 1;
441 p = contextMalloc(context, n);
442 if( p ){
443 sqlite3_randomness(n, p);
444 sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
449 ** Implementation of the last_insert_rowid() SQL function. The return
450 ** value is the same as the sqlite3_last_insert_rowid() API function.
452 static void last_insert_rowid(
453 sqlite3_context *context,
454 int NotUsed,
455 sqlite3_value **NotUsed2
457 sqlite3 *db = sqlite3_context_db_handle(context);
458 UNUSED_PARAMETER2(NotUsed, NotUsed2);
459 /* IMP: R-51513-12026 The last_insert_rowid() SQL function is a
460 ** wrapper around the sqlite3_last_insert_rowid() C/C++ interface
461 ** function. */
462 sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
466 ** Implementation of the changes() SQL function.
468 ** IMP: R-62073-11209 The changes() SQL function is a wrapper
469 ** around the sqlite3_changes() C/C++ function and hence follows the same
470 ** rules for counting changes.
472 static void changes(
473 sqlite3_context *context,
474 int NotUsed,
475 sqlite3_value **NotUsed2
477 sqlite3 *db = sqlite3_context_db_handle(context);
478 UNUSED_PARAMETER2(NotUsed, NotUsed2);
479 sqlite3_result_int(context, sqlite3_changes(db));
483 ** Implementation of the total_changes() SQL function. The return value is
484 ** the same as the sqlite3_total_changes() API function.
486 static void total_changes(
487 sqlite3_context *context,
488 int NotUsed,
489 sqlite3_value **NotUsed2
491 sqlite3 *db = sqlite3_context_db_handle(context);
492 UNUSED_PARAMETER2(NotUsed, NotUsed2);
493 /* IMP: R-52756-41993 This function is a wrapper around the
494 ** sqlite3_total_changes() C/C++ interface. */
495 sqlite3_result_int(context, sqlite3_total_changes(db));
499 ** A structure defining how to do GLOB-style comparisons.
501 struct compareInfo {
502 u8 matchAll;
503 u8 matchOne;
504 u8 matchSet;
505 u8 noCase;
509 ** For LIKE and GLOB matching on EBCDIC machines, assume that every
510 ** character is exactly one byte in size. Also, all characters are
511 ** able to participate in upper-case-to-lower-case mappings in EBCDIC
512 ** whereas only characters less than 0x80 do in ASCII.
514 #if defined(SQLITE_EBCDIC)
515 # define sqlite3Utf8Read(A,C) (*(A++))
516 # define GlogUpperToLower(A) A = sqlite3UpperToLower[A]
517 #else
518 # define GlogUpperToLower(A) if( !((A)&~0x7f) ){ A = sqlite3UpperToLower[A]; }
519 #endif
521 static const struct compareInfo globInfo = { '*', '?', '[', 0 };
522 /* The correct SQL-92 behavior is for the LIKE operator to ignore
523 ** case. Thus 'a' LIKE 'A' would be true. */
524 static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 };
525 /* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
526 ** is case sensitive causing 'a' LIKE 'A' to be false */
527 static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 };
530 ** Compare two UTF-8 strings for equality where the first string can
531 ** potentially be a "glob" expression. Return true (1) if they
532 ** are the same and false (0) if they are different.
534 ** Globbing rules:
536 ** '*' Matches any sequence of zero or more characters.
538 ** '?' Matches exactly one character.
540 ** [...] Matches one character from the enclosed list of
541 ** characters.
543 ** [^...] Matches one character not in the enclosed list.
545 ** With the [...] and [^...] matching, a ']' character can be included
546 ** in the list by making it the first character after '[' or '^'. A
547 ** range of characters can be specified using '-'. Example:
548 ** "[a-z]" matches any single lower-case letter. To match a '-', make
549 ** it the last character in the list.
551 ** This routine is usually quick, but can be N**2 in the worst case.
553 ** Hints: to match '*' or '?', put them in "[]". Like this:
555 ** abc[*]xyz Matches "abc*xyz" only
557 static int patternCompare(
558 const u8 *zPattern, /* The glob pattern */
559 const u8 *zString, /* The string to compare against the glob */
560 const struct compareInfo *pInfo, /* Information about how to do the compare */
561 u32 esc /* The escape character */
563 u32 c, c2;
564 int invert;
565 int seen;
566 u8 matchOne = pInfo->matchOne;
567 u8 matchAll = pInfo->matchAll;
568 u8 matchSet = pInfo->matchSet;
569 u8 noCase = pInfo->noCase;
570 int prevEscape = 0; /* True if the previous character was 'escape' */
572 while( (c = sqlite3Utf8Read(zPattern,&zPattern))!=0 ){
573 if( !prevEscape && c==matchAll ){
574 while( (c=sqlite3Utf8Read(zPattern,&zPattern)) == matchAll
575 || c == matchOne ){
576 if( c==matchOne && sqlite3Utf8Read(zString, &zString)==0 ){
577 return 0;
580 if( c==0 ){
581 return 1;
582 }else if( c==esc ){
583 c = sqlite3Utf8Read(zPattern, &zPattern);
584 if( c==0 ){
585 return 0;
587 }else if( c==matchSet ){
588 assert( esc==0 ); /* This is GLOB, not LIKE */
589 assert( matchSet<0x80 ); /* '[' is a single-byte character */
590 while( *zString && patternCompare(&zPattern[-1],zString,pInfo,esc)==0 ){
591 SQLITE_SKIP_UTF8(zString);
593 return *zString!=0;
595 while( (c2 = sqlite3Utf8Read(zString,&zString))!=0 ){
596 if( noCase ){
597 GlogUpperToLower(c2);
598 GlogUpperToLower(c);
599 while( c2 != 0 && c2 != c ){
600 c2 = sqlite3Utf8Read(zString, &zString);
601 GlogUpperToLower(c2);
603 }else{
604 while( c2 != 0 && c2 != c ){
605 c2 = sqlite3Utf8Read(zString, &zString);
608 if( c2==0 ) return 0;
609 if( patternCompare(zPattern,zString,pInfo,esc) ) return 1;
611 return 0;
612 }else if( !prevEscape && c==matchOne ){
613 if( sqlite3Utf8Read(zString, &zString)==0 ){
614 return 0;
616 }else if( c==matchSet ){
617 u32 prior_c = 0;
618 assert( esc==0 ); /* This only occurs for GLOB, not LIKE */
619 seen = 0;
620 invert = 0;
621 c = sqlite3Utf8Read(zString, &zString);
622 if( c==0 ) return 0;
623 c2 = sqlite3Utf8Read(zPattern, &zPattern);
624 if( c2=='^' ){
625 invert = 1;
626 c2 = sqlite3Utf8Read(zPattern, &zPattern);
628 if( c2==']' ){
629 if( c==']' ) seen = 1;
630 c2 = sqlite3Utf8Read(zPattern, &zPattern);
632 while( c2 && c2!=']' ){
633 if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
634 c2 = sqlite3Utf8Read(zPattern, &zPattern);
635 if( c>=prior_c && c<=c2 ) seen = 1;
636 prior_c = 0;
637 }else{
638 if( c==c2 ){
639 seen = 1;
641 prior_c = c2;
643 c2 = sqlite3Utf8Read(zPattern, &zPattern);
645 if( c2==0 || (seen ^ invert)==0 ){
646 return 0;
648 }else if( esc==c && !prevEscape ){
649 prevEscape = 1;
650 }else{
651 c2 = sqlite3Utf8Read(zString, &zString);
652 if( noCase ){
653 GlogUpperToLower(c);
654 GlogUpperToLower(c2);
656 if( c!=c2 ){
657 return 0;
659 prevEscape = 0;
662 return *zString==0;
666 ** Count the number of times that the LIKE operator (or GLOB which is
667 ** just a variation of LIKE) gets called. This is used for testing
668 ** only.
670 #ifdef SQLITE_TEST
671 int sqlite3_like_count = 0;
672 #endif
676 ** Implementation of the like() SQL function. This function implements
677 ** the build-in LIKE operator. The first argument to the function is the
678 ** pattern and the second argument is the string. So, the SQL statements:
680 ** A LIKE B
682 ** is implemented as like(B,A).
684 ** This same function (with a different compareInfo structure) computes
685 ** the GLOB operator.
687 static void likeFunc(
688 sqlite3_context *context,
689 int argc,
690 sqlite3_value **argv
692 const unsigned char *zA, *zB;
693 u32 escape = 0;
694 int nPat;
695 sqlite3 *db = sqlite3_context_db_handle(context);
697 zB = sqlite3_value_text(argv[0]);
698 zA = sqlite3_value_text(argv[1]);
700 /* Limit the length of the LIKE or GLOB pattern to avoid problems
701 ** of deep recursion and N*N behavior in patternCompare().
703 nPat = sqlite3_value_bytes(argv[0]);
704 testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] );
705 testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 );
706 if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){
707 sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
708 return;
710 assert( zB==sqlite3_value_text(argv[0]) ); /* Encoding did not change */
712 if( argc==3 ){
713 /* The escape character string must consist of a single UTF-8 character.
714 ** Otherwise, return an error.
716 const unsigned char *zEsc = sqlite3_value_text(argv[2]);
717 if( zEsc==0 ) return;
718 if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
719 sqlite3_result_error(context,
720 "ESCAPE expression must be a single character", -1);
721 return;
723 escape = sqlite3Utf8Read(zEsc, &zEsc);
725 if( zA && zB ){
726 struct compareInfo *pInfo = sqlite3_user_data(context);
727 #ifdef SQLITE_TEST
728 sqlite3_like_count++;
729 #endif
731 sqlite3_result_int(context, patternCompare(zB, zA, pInfo, escape));
736 ** Implementation of the NULLIF(x,y) function. The result is the first
737 ** argument if the arguments are different. The result is NULL if the
738 ** arguments are equal to each other.
740 static void nullifFunc(
741 sqlite3_context *context,
742 int NotUsed,
743 sqlite3_value **argv
745 CollSeq *pColl = sqlite3GetFuncCollSeq(context);
746 UNUSED_PARAMETER(NotUsed);
747 if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
748 sqlite3_result_value(context, argv[0]);
753 ** Implementation of the sqlite_version() function. The result is the version
754 ** of the SQLite library that is running.
756 static void versionFunc(
757 sqlite3_context *context,
758 int NotUsed,
759 sqlite3_value **NotUsed2
761 UNUSED_PARAMETER2(NotUsed, NotUsed2);
762 /* IMP: R-48699-48617 This function is an SQL wrapper around the
763 ** sqlite3_libversion() C-interface. */
764 sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC);
768 ** Implementation of the sqlite_source_id() function. The result is a string
769 ** that identifies the particular version of the source code used to build
770 ** SQLite.
772 static void sourceidFunc(
773 sqlite3_context *context,
774 int NotUsed,
775 sqlite3_value **NotUsed2
777 UNUSED_PARAMETER2(NotUsed, NotUsed2);
778 /* IMP: R-24470-31136 This function is an SQL wrapper around the
779 ** sqlite3_sourceid() C interface. */
780 sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC);
784 ** Implementation of the sqlite_log() function. This is a wrapper around
785 ** sqlite3_log(). The return value is NULL. The function exists purely for
786 ** its side-effects.
788 static void errlogFunc(
789 sqlite3_context *context,
790 int argc,
791 sqlite3_value **argv
793 UNUSED_PARAMETER(argc);
794 UNUSED_PARAMETER(context);
795 sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1]));
799 ** Implementation of the sqlite_compileoption_used() function.
800 ** The result is an integer that identifies if the compiler option
801 ** was used to build SQLite.
803 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
804 static void compileoptionusedFunc(
805 sqlite3_context *context,
806 int argc,
807 sqlite3_value **argv
809 const char *zOptName;
810 assert( argc==1 );
811 UNUSED_PARAMETER(argc);
812 /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL
813 ** function is a wrapper around the sqlite3_compileoption_used() C/C++
814 ** function.
816 if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){
817 sqlite3_result_int(context, sqlite3_compileoption_used(zOptName));
820 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
823 ** Implementation of the sqlite_compileoption_get() function.
824 ** The result is a string that identifies the compiler options
825 ** used to build SQLite.
827 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
828 static void compileoptiongetFunc(
829 sqlite3_context *context,
830 int argc,
831 sqlite3_value **argv
833 int n;
834 assert( argc==1 );
835 UNUSED_PARAMETER(argc);
836 /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function
837 ** is a wrapper around the sqlite3_compileoption_get() C/C++ function.
839 n = sqlite3_value_int(argv[0]);
840 sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC);
842 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
844 /* Array for converting from half-bytes (nybbles) into ASCII hex
845 ** digits. */
846 static const char hexdigits[] = {
847 '0', '1', '2', '3', '4', '5', '6', '7',
848 '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
852 ** EXPERIMENTAL - This is not an official function. The interface may
853 ** change. This function may disappear. Do not write code that depends
854 ** on this function.
856 ** Implementation of the QUOTE() function. This function takes a single
857 ** argument. If the argument is numeric, the return value is the same as
858 ** the argument. If the argument is NULL, the return value is the string
859 ** "NULL". Otherwise, the argument is enclosed in single quotes with
860 ** single-quote escapes.
862 static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
863 assert( argc==1 );
864 UNUSED_PARAMETER(argc);
865 switch( sqlite3_value_type(argv[0]) ){
866 case SQLITE_INTEGER:
867 case SQLITE_FLOAT: {
868 sqlite3_result_value(context, argv[0]);
869 break;
871 case SQLITE_BLOB: {
872 char *zText = 0;
873 char const *zBlob = sqlite3_value_blob(argv[0]);
874 int nBlob = sqlite3_value_bytes(argv[0]);
875 assert( zBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
876 zText = (char *)contextMalloc(context, (2*(i64)nBlob)+4);
877 if( zText ){
878 int i;
879 for(i=0; i<nBlob; i++){
880 zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
881 zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
883 zText[(nBlob*2)+2] = '\'';
884 zText[(nBlob*2)+3] = '\0';
885 zText[0] = 'X';
886 zText[1] = '\'';
887 sqlite3_result_text(context, zText, -1, SQLITE_TRANSIENT);
888 sqlite3_free(zText);
890 break;
892 case SQLITE_TEXT: {
893 int i,j;
894 u64 n;
895 const unsigned char *zArg = sqlite3_value_text(argv[0]);
896 char *z;
898 if( zArg==0 ) return;
899 for(i=0, n=0; zArg[i]; i++){ if( zArg[i]=='\'' ) n++; }
900 z = contextMalloc(context, ((i64)i)+((i64)n)+3);
901 if( z ){
902 z[0] = '\'';
903 for(i=0, j=1; zArg[i]; i++){
904 z[j++] = zArg[i];
905 if( zArg[i]=='\'' ){
906 z[j++] = '\'';
909 z[j++] = '\'';
910 z[j] = 0;
911 sqlite3_result_text(context, z, j, sqlite3_free);
913 break;
915 default: {
916 assert( sqlite3_value_type(argv[0])==SQLITE_NULL );
917 sqlite3_result_text(context, "NULL", 4, SQLITE_STATIC);
918 break;
924 ** The hex() function. Interpret the argument as a blob. Return
925 ** a hexadecimal rendering as text.
927 static void hexFunc(
928 sqlite3_context *context,
929 int argc,
930 sqlite3_value **argv
932 int i, n;
933 const unsigned char *pBlob;
934 char *zHex, *z;
935 assert( argc==1 );
936 UNUSED_PARAMETER(argc);
937 pBlob = sqlite3_value_blob(argv[0]);
938 n = sqlite3_value_bytes(argv[0]);
939 assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
940 z = zHex = contextMalloc(context, ((i64)n)*2 + 1);
941 if( zHex ){
942 for(i=0; i<n; i++, pBlob++){
943 unsigned char c = *pBlob;
944 *(z++) = hexdigits[(c>>4)&0xf];
945 *(z++) = hexdigits[c&0xf];
947 *z = 0;
948 sqlite3_result_text(context, zHex, n*2, sqlite3_free);
953 ** The zeroblob(N) function returns a zero-filled blob of size N bytes.
955 static void zeroblobFunc(
956 sqlite3_context *context,
957 int argc,
958 sqlite3_value **argv
960 i64 n;
961 sqlite3 *db = sqlite3_context_db_handle(context);
962 assert( argc==1 );
963 UNUSED_PARAMETER(argc);
964 n = sqlite3_value_int64(argv[0]);
965 testcase( n==db->aLimit[SQLITE_LIMIT_LENGTH] );
966 testcase( n==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
967 if( n>db->aLimit[SQLITE_LIMIT_LENGTH] ){
968 sqlite3_result_error_toobig(context);
969 }else{
970 sqlite3_result_zeroblob(context, (int)n); /* IMP: R-00293-64994 */
975 ** The replace() function. Three arguments are all strings: call
976 ** them A, B, and C. The result is also a string which is derived
977 ** from A by replacing every occurance of B with C. The match
978 ** must be exact. Collating sequences are not used.
980 static void replaceFunc(
981 sqlite3_context *context,
982 int argc,
983 sqlite3_value **argv
985 const unsigned char *zStr; /* The input string A */
986 const unsigned char *zPattern; /* The pattern string B */
987 const unsigned char *zRep; /* The replacement string C */
988 unsigned char *zOut; /* The output */
989 int nStr; /* Size of zStr */
990 int nPattern; /* Size of zPattern */
991 int nRep; /* Size of zRep */
992 i64 nOut; /* Maximum size of zOut */
993 int loopLimit; /* Last zStr[] that might match zPattern[] */
994 int i, j; /* Loop counters */
996 assert( argc==3 );
997 UNUSED_PARAMETER(argc);
998 zStr = sqlite3_value_text(argv[0]);
999 if( zStr==0 ) return;
1000 nStr = sqlite3_value_bytes(argv[0]);
1001 assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */
1002 zPattern = sqlite3_value_text(argv[1]);
1003 if( zPattern==0 ){
1004 assert( sqlite3_value_type(argv[1])==SQLITE_NULL
1005 || sqlite3_context_db_handle(context)->mallocFailed );
1006 return;
1008 if( zPattern[0]==0 ){
1009 assert( sqlite3_value_type(argv[1])!=SQLITE_NULL );
1010 sqlite3_result_value(context, argv[0]);
1011 return;
1013 nPattern = sqlite3_value_bytes(argv[1]);
1014 assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */
1015 zRep = sqlite3_value_text(argv[2]);
1016 if( zRep==0 ) return;
1017 nRep = sqlite3_value_bytes(argv[2]);
1018 assert( zRep==sqlite3_value_text(argv[2]) );
1019 nOut = nStr + 1;
1020 assert( nOut<SQLITE_MAX_LENGTH );
1021 zOut = contextMalloc(context, (i64)nOut);
1022 if( zOut==0 ){
1023 return;
1025 loopLimit = nStr - nPattern;
1026 for(i=j=0; i<=loopLimit; i++){
1027 if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
1028 zOut[j++] = zStr[i];
1029 }else{
1030 u8 *zOld;
1031 sqlite3 *db = sqlite3_context_db_handle(context);
1032 nOut += nRep - nPattern;
1033 testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] );
1034 testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] );
1035 if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1036 sqlite3_result_error_toobig(context);
1037 sqlite3_free(zOut);
1038 return;
1040 zOld = zOut;
1041 zOut = sqlite3_realloc(zOut, (int)nOut);
1042 if( zOut==0 ){
1043 sqlite3_result_error_nomem(context);
1044 sqlite3_free(zOld);
1045 return;
1047 memcpy(&zOut[j], zRep, nRep);
1048 j += nRep;
1049 i += nPattern-1;
1052 assert( j+nStr-i+1==nOut );
1053 memcpy(&zOut[j], &zStr[i], nStr-i);
1054 j += nStr - i;
1055 assert( j<=nOut );
1056 zOut[j] = 0;
1057 sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
1061 ** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
1062 ** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
1064 static void trimFunc(
1065 sqlite3_context *context,
1066 int argc,
1067 sqlite3_value **argv
1069 const unsigned char *zIn; /* Input string */
1070 const unsigned char *zCharSet; /* Set of characters to trim */
1071 int nIn; /* Number of bytes in input */
1072 int flags; /* 1: trimleft 2: trimright 3: trim */
1073 int i; /* Loop counter */
1074 unsigned char *aLen = 0; /* Length of each character in zCharSet */
1075 unsigned char **azChar = 0; /* Individual characters in zCharSet */
1076 int nChar; /* Number of characters in zCharSet */
1078 if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
1079 return;
1081 zIn = sqlite3_value_text(argv[0]);
1082 if( zIn==0 ) return;
1083 nIn = sqlite3_value_bytes(argv[0]);
1084 assert( zIn==sqlite3_value_text(argv[0]) );
1085 if( argc==1 ){
1086 static const unsigned char lenOne[] = { 1 };
1087 static unsigned char * const azOne[] = { (u8*)" " };
1088 nChar = 1;
1089 aLen = (u8*)lenOne;
1090 azChar = (unsigned char **)azOne;
1091 zCharSet = 0;
1092 }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
1093 return;
1094 }else{
1095 const unsigned char *z;
1096 for(z=zCharSet, nChar=0; *z; nChar++){
1097 SQLITE_SKIP_UTF8(z);
1099 if( nChar>0 ){
1100 azChar = contextMalloc(context, ((i64)nChar)*(sizeof(char*)+1));
1101 if( azChar==0 ){
1102 return;
1104 aLen = (unsigned char*)&azChar[nChar];
1105 for(z=zCharSet, nChar=0; *z; nChar++){
1106 azChar[nChar] = (unsigned char *)z;
1107 SQLITE_SKIP_UTF8(z);
1108 aLen[nChar] = (u8)(z - azChar[nChar]);
1112 if( nChar>0 ){
1113 flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context));
1114 if( flags & 1 ){
1115 while( nIn>0 ){
1116 int len = 0;
1117 for(i=0; i<nChar; i++){
1118 len = aLen[i];
1119 if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break;
1121 if( i>=nChar ) break;
1122 zIn += len;
1123 nIn -= len;
1126 if( flags & 2 ){
1127 while( nIn>0 ){
1128 int len = 0;
1129 for(i=0; i<nChar; i++){
1130 len = aLen[i];
1131 if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
1133 if( i>=nChar ) break;
1134 nIn -= len;
1137 if( zCharSet ){
1138 sqlite3_free(azChar);
1141 sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
1145 /* IMP: R-25361-16150 This function is omitted from SQLite by default. It
1146 ** is only available if the SQLITE_SOUNDEX compile-time option is used
1147 ** when SQLite is built.
1149 #ifdef SQLITE_SOUNDEX
1151 ** Compute the soundex encoding of a word.
1153 ** IMP: R-59782-00072 The soundex(X) function returns a string that is the
1154 ** soundex encoding of the string X.
1156 static void soundexFunc(
1157 sqlite3_context *context,
1158 int argc,
1159 sqlite3_value **argv
1161 char zResult[8];
1162 const u8 *zIn;
1163 int i, j;
1164 static const unsigned char iCode[] = {
1165 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1166 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1167 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1168 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1169 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1170 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
1171 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1172 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
1174 assert( argc==1 );
1175 zIn = (u8*)sqlite3_value_text(argv[0]);
1176 if( zIn==0 ) zIn = (u8*)"";
1177 for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){}
1178 if( zIn[i] ){
1179 u8 prevcode = iCode[zIn[i]&0x7f];
1180 zResult[0] = sqlite3Toupper(zIn[i]);
1181 for(j=1; j<4 && zIn[i]; i++){
1182 int code = iCode[zIn[i]&0x7f];
1183 if( code>0 ){
1184 if( code!=prevcode ){
1185 prevcode = code;
1186 zResult[j++] = code + '0';
1188 }else{
1189 prevcode = 0;
1192 while( j<4 ){
1193 zResult[j++] = '0';
1195 zResult[j] = 0;
1196 sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
1197 }else{
1198 /* IMP: R-64894-50321 The string "?000" is returned if the argument
1199 ** is NULL or contains no ASCII alphabetic characters. */
1200 sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
1203 #endif /* SQLITE_SOUNDEX */
1205 #ifndef SQLITE_OMIT_LOAD_EXTENSION
1207 ** A function that loads a shared-library extension then returns NULL.
1209 static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
1210 const char *zFile = (const char *)sqlite3_value_text(argv[0]);
1211 const char *zProc;
1212 sqlite3 *db = sqlite3_context_db_handle(context);
1213 char *zErrMsg = 0;
1215 if( argc==2 ){
1216 zProc = (const char *)sqlite3_value_text(argv[1]);
1217 }else{
1218 zProc = 0;
1220 if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
1221 sqlite3_result_error(context, zErrMsg, -1);
1222 sqlite3_free(zErrMsg);
1225 #endif
1229 ** An instance of the following structure holds the context of a
1230 ** sum() or avg() aggregate computation.
1232 typedef struct SumCtx SumCtx;
1233 struct SumCtx {
1234 double rSum; /* Floating point sum */
1235 i64 iSum; /* Integer sum */
1236 i64 cnt; /* Number of elements summed */
1237 u8 overflow; /* True if integer overflow seen */
1238 u8 approx; /* True if non-integer value was input to the sum */
1242 ** Routines used to compute the sum, average, and total.
1244 ** The SUM() function follows the (broken) SQL standard which means
1245 ** that it returns NULL if it sums over no inputs. TOTAL returns
1246 ** 0.0 in that case. In addition, TOTAL always returns a float where
1247 ** SUM might return an integer if it never encounters a floating point
1248 ** value. TOTAL never fails, but SUM might through an exception if
1249 ** it overflows an integer.
1251 static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
1252 SumCtx *p;
1253 int type;
1254 assert( argc==1 );
1255 UNUSED_PARAMETER(argc);
1256 p = sqlite3_aggregate_context(context, sizeof(*p));
1257 type = sqlite3_value_numeric_type(argv[0]);
1258 if( p && type!=SQLITE_NULL ){
1259 p->cnt++;
1260 if( type==SQLITE_INTEGER ){
1261 i64 v = sqlite3_value_int64(argv[0]);
1262 p->rSum += v;
1263 if( (p->approx|p->overflow)==0 && sqlite3AddInt64(&p->iSum, v) ){
1264 p->overflow = 1;
1266 }else{
1267 p->rSum += sqlite3_value_double(argv[0]);
1268 p->approx = 1;
1272 static void sumFinalize(sqlite3_context *context){
1273 SumCtx *p;
1274 p = sqlite3_aggregate_context(context, 0);
1275 if( p && p->cnt>0 ){
1276 if( p->overflow ){
1277 sqlite3_result_error(context,"integer overflow",-1);
1278 }else if( p->approx ){
1279 sqlite3_result_double(context, p->rSum);
1280 }else{
1281 sqlite3_result_int64(context, p->iSum);
1285 static void avgFinalize(sqlite3_context *context){
1286 SumCtx *p;
1287 p = sqlite3_aggregate_context(context, 0);
1288 if( p && p->cnt>0 ){
1289 sqlite3_result_double(context, p->rSum/(double)p->cnt);
1292 static void totalFinalize(sqlite3_context *context){
1293 SumCtx *p;
1294 p = sqlite3_aggregate_context(context, 0);
1295 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1296 sqlite3_result_double(context, p ? p->rSum : (double)0);
1300 ** The following structure keeps track of state information for the
1301 ** count() aggregate function.
1303 typedef struct CountCtx CountCtx;
1304 struct CountCtx {
1305 i64 n;
1309 ** Routines to implement the count() aggregate function.
1311 static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
1312 CountCtx *p;
1313 p = sqlite3_aggregate_context(context, sizeof(*p));
1314 if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
1315 p->n++;
1318 #ifndef SQLITE_OMIT_DEPRECATED
1319 /* The sqlite3_aggregate_count() function is deprecated. But just to make
1320 ** sure it still operates correctly, verify that its count agrees with our
1321 ** internal count when using count(*) and when the total count can be
1322 ** expressed as a 32-bit integer. */
1323 assert( argc==1 || p==0 || p->n>0x7fffffff
1324 || p->n==sqlite3_aggregate_count(context) );
1325 #endif
1327 static void countFinalize(sqlite3_context *context){
1328 CountCtx *p;
1329 p = sqlite3_aggregate_context(context, 0);
1330 sqlite3_result_int64(context, p ? p->n : 0);
1334 ** Routines to implement min() and max() aggregate functions.
1336 static void minmaxStep(
1337 sqlite3_context *context,
1338 int NotUsed,
1339 sqlite3_value **argv
1341 Mem *pArg = (Mem *)argv[0];
1342 Mem *pBest;
1343 UNUSED_PARAMETER(NotUsed);
1345 pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
1346 if( !pBest ) return;
1348 if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
1349 if( pBest->flags ) sqlite3SkipAccumulatorLoad(context);
1350 }else if( pBest->flags ){
1351 int max;
1352 int cmp;
1353 CollSeq *pColl = sqlite3GetFuncCollSeq(context);
1354 /* This step function is used for both the min() and max() aggregates,
1355 ** the only difference between the two being that the sense of the
1356 ** comparison is inverted. For the max() aggregate, the
1357 ** sqlite3_user_data() function returns (void *)-1. For min() it
1358 ** returns (void *)db, where db is the sqlite3* database pointer.
1359 ** Therefore the next statement sets variable 'max' to 1 for the max()
1360 ** aggregate, or 0 for min().
1362 max = sqlite3_user_data(context)!=0;
1363 cmp = sqlite3MemCompare(pBest, pArg, pColl);
1364 if( (max && cmp<0) || (!max && cmp>0) ){
1365 sqlite3VdbeMemCopy(pBest, pArg);
1366 }else{
1367 sqlite3SkipAccumulatorLoad(context);
1369 }else{
1370 sqlite3VdbeMemCopy(pBest, pArg);
1373 static void minMaxFinalize(sqlite3_context *context){
1374 sqlite3_value *pRes;
1375 pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
1376 if( pRes ){
1377 if( pRes->flags ){
1378 sqlite3_result_value(context, pRes);
1380 sqlite3VdbeMemRelease(pRes);
1385 ** group_concat(EXPR, ?SEPARATOR?)
1387 static void groupConcatStep(
1388 sqlite3_context *context,
1389 int argc,
1390 sqlite3_value **argv
1392 const char *zVal;
1393 StrAccum *pAccum;
1394 const char *zSep;
1395 int nVal, nSep;
1396 assert( argc==1 || argc==2 );
1397 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
1398 pAccum = (StrAccum*)sqlite3_aggregate_context(context, sizeof(*pAccum));
1400 if( pAccum ){
1401 sqlite3 *db = sqlite3_context_db_handle(context);
1402 int firstTerm = pAccum->useMalloc==0;
1403 pAccum->useMalloc = 2;
1404 pAccum->mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
1405 if( !firstTerm ){
1406 if( argc==2 ){
1407 zSep = (char*)sqlite3_value_text(argv[1]);
1408 nSep = sqlite3_value_bytes(argv[1]);
1409 }else{
1410 zSep = ",";
1411 nSep = 1;
1413 sqlite3StrAccumAppend(pAccum, zSep, nSep);
1415 zVal = (char*)sqlite3_value_text(argv[0]);
1416 nVal = sqlite3_value_bytes(argv[0]);
1417 sqlite3StrAccumAppend(pAccum, zVal, nVal);
1420 static void groupConcatFinalize(sqlite3_context *context){
1421 StrAccum *pAccum;
1422 pAccum = sqlite3_aggregate_context(context, 0);
1423 if( pAccum ){
1424 if( pAccum->tooBig ){
1425 sqlite3_result_error_toobig(context);
1426 }else if( pAccum->mallocFailed ){
1427 sqlite3_result_error_nomem(context);
1428 }else{
1429 sqlite3_result_text(context, sqlite3StrAccumFinish(pAccum), -1,
1430 sqlite3_free);
1436 ** This routine does per-connection function registration. Most
1437 ** of the built-in functions above are part of the global function set.
1438 ** This routine only deals with those that are not global.
1440 void sqlite3RegisterBuiltinFunctions(sqlite3 *db){
1441 int rc = sqlite3_overload_function(db, "MATCH", 2);
1442 #ifndef OMIT_EXPORT
1443 extern void sqlcipher_exportFunc(sqlite3_context *, int, sqlite3_value **);
1444 #endif
1445 assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
1446 if( rc==SQLITE_NOMEM ){
1447 db->mallocFailed = 1;
1449 #ifndef OMIT_EXPORT
1450 sqlite3CreateFunc(db, "sqlcipher_export", 1, SQLITE_TEXT, 0, sqlcipher_exportFunc, 0, 0, 0);
1451 #endif
1455 ** Set the LIKEOPT flag on the 2-argument function with the given name.
1457 static void setLikeOptFlag(sqlite3 *db, const char *zName, u8 flagVal){
1458 FuncDef *pDef;
1459 pDef = sqlite3FindFunction(db, zName, sqlite3Strlen30(zName),
1460 2, SQLITE_UTF8, 0);
1461 if( ALWAYS(pDef) ){
1462 pDef->flags = flagVal;
1467 ** Register the built-in LIKE and GLOB functions. The caseSensitive
1468 ** parameter determines whether or not the LIKE operator is case
1469 ** sensitive. GLOB is always case sensitive.
1471 void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
1472 struct compareInfo *pInfo;
1473 if( caseSensitive ){
1474 pInfo = (struct compareInfo*)&likeInfoAlt;
1475 }else{
1476 pInfo = (struct compareInfo*)&likeInfoNorm;
1478 sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0);
1479 sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0);
1480 sqlite3CreateFunc(db, "glob", 2, SQLITE_UTF8,
1481 (struct compareInfo*)&globInfo, likeFunc, 0, 0, 0);
1482 setLikeOptFlag(db, "glob", SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE);
1483 setLikeOptFlag(db, "like",
1484 caseSensitive ? (SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE) : SQLITE_FUNC_LIKE);
1488 ** pExpr points to an expression which implements a function. If
1489 ** it is appropriate to apply the LIKE optimization to that function
1490 ** then set aWc[0] through aWc[2] to the wildcard characters and
1491 ** return TRUE. If the function is not a LIKE-style function then
1492 ** return FALSE.
1494 int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
1495 FuncDef *pDef;
1496 if( pExpr->op!=TK_FUNCTION
1497 || !pExpr->x.pList
1498 || pExpr->x.pList->nExpr!=2
1500 return 0;
1502 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
1503 pDef = sqlite3FindFunction(db, pExpr->u.zToken,
1504 sqlite3Strlen30(pExpr->u.zToken),
1505 2, SQLITE_UTF8, 0);
1506 if( NEVER(pDef==0) || (pDef->flags & SQLITE_FUNC_LIKE)==0 ){
1507 return 0;
1510 /* The memcpy() statement assumes that the wildcard characters are
1511 ** the first three statements in the compareInfo structure. The
1512 ** asserts() that follow verify that assumption
1514 memcpy(aWc, pDef->pUserData, 3);
1515 assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
1516 assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
1517 assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
1518 *pIsNocase = (pDef->flags & SQLITE_FUNC_CASE)==0;
1519 return 1;
1523 ** All all of the FuncDef structures in the aBuiltinFunc[] array above
1524 ** to the global function hash table. This occurs at start-time (as
1525 ** a consequence of calling sqlite3_initialize()).
1527 ** After this routine runs
1529 void sqlite3RegisterGlobalFunctions(void){
1531 ** The following array holds FuncDef structures for all of the functions
1532 ** defined in this file.
1534 ** The array cannot be constant since changes are made to the
1535 ** FuncDef.pHash elements at start-time. The elements of this array
1536 ** are read-only after initialization is complete.
1538 static SQLITE_WSD FuncDef aBuiltinFunc[] = {
1539 FUNCTION(ltrim, 1, 1, 0, trimFunc ),
1540 FUNCTION(ltrim, 2, 1, 0, trimFunc ),
1541 FUNCTION(rtrim, 1, 2, 0, trimFunc ),
1542 FUNCTION(rtrim, 2, 2, 0, trimFunc ),
1543 FUNCTION(trim, 1, 3, 0, trimFunc ),
1544 FUNCTION(trim, 2, 3, 0, trimFunc ),
1545 FUNCTION(min, -1, 0, 1, minmaxFunc ),
1546 FUNCTION(min, 0, 0, 1, 0 ),
1547 AGGREGATE(min, 1, 0, 1, minmaxStep, minMaxFinalize ),
1548 FUNCTION(max, -1, 1, 1, minmaxFunc ),
1549 FUNCTION(max, 0, 1, 1, 0 ),
1550 AGGREGATE(max, 1, 1, 1, minmaxStep, minMaxFinalize ),
1551 FUNCTION2(typeof, 1, 0, 0, typeofFunc, SQLITE_FUNC_TYPEOF),
1552 FUNCTION2(length, 1, 0, 0, lengthFunc, SQLITE_FUNC_LENGTH),
1553 FUNCTION(substr, 2, 0, 0, substrFunc ),
1554 FUNCTION(substr, 3, 0, 0, substrFunc ),
1555 FUNCTION(abs, 1, 0, 0, absFunc ),
1556 #ifndef SQLITE_OMIT_FLOATING_POINT
1557 FUNCTION(round, 1, 0, 0, roundFunc ),
1558 FUNCTION(round, 2, 0, 0, roundFunc ),
1559 #endif
1560 FUNCTION(upper, 1, 0, 0, upperFunc ),
1561 FUNCTION(lower, 1, 0, 0, lowerFunc ),
1562 FUNCTION(coalesce, 1, 0, 0, 0 ),
1563 FUNCTION(coalesce, 0, 0, 0, 0 ),
1564 FUNCTION2(coalesce, -1, 0, 0, ifnullFunc, SQLITE_FUNC_COALESCE),
1565 FUNCTION(hex, 1, 0, 0, hexFunc ),
1566 FUNCTION2(ifnull, 2, 0, 0, ifnullFunc, SQLITE_FUNC_COALESCE),
1567 FUNCTION(random, 0, 0, 0, randomFunc ),
1568 FUNCTION(randomblob, 1, 0, 0, randomBlob ),
1569 FUNCTION(nullif, 2, 0, 1, nullifFunc ),
1570 FUNCTION(sqlite_version, 0, 0, 0, versionFunc ),
1571 FUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ),
1572 FUNCTION(sqlite_log, 2, 0, 0, errlogFunc ),
1573 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
1574 FUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ),
1575 FUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ),
1576 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
1577 FUNCTION(quote, 1, 0, 0, quoteFunc ),
1578 FUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid),
1579 FUNCTION(changes, 0, 0, 0, changes ),
1580 FUNCTION(total_changes, 0, 0, 0, total_changes ),
1581 FUNCTION(replace, 3, 0, 0, replaceFunc ),
1582 FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ),
1583 #ifdef SQLITE_SOUNDEX
1584 FUNCTION(soundex, 1, 0, 0, soundexFunc ),
1585 #endif
1586 #ifndef SQLITE_OMIT_LOAD_EXTENSION
1587 FUNCTION(load_extension, 1, 0, 0, loadExt ),
1588 FUNCTION(load_extension, 2, 0, 0, loadExt ),
1589 #endif
1590 AGGREGATE(sum, 1, 0, 0, sumStep, sumFinalize ),
1591 AGGREGATE(total, 1, 0, 0, sumStep, totalFinalize ),
1592 AGGREGATE(avg, 1, 0, 0, sumStep, avgFinalize ),
1593 /* AGGREGATE(count, 0, 0, 0, countStep, countFinalize ), */
1594 {0,SQLITE_UTF8,SQLITE_FUNC_COUNT,0,0,0,countStep,countFinalize,"count",0,0},
1595 AGGREGATE(count, 1, 0, 0, countStep, countFinalize ),
1596 AGGREGATE(group_concat, 1, 0, 0, groupConcatStep, groupConcatFinalize),
1597 AGGREGATE(group_concat, 2, 0, 0, groupConcatStep, groupConcatFinalize),
1599 LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
1600 #ifdef SQLITE_CASE_SENSITIVE_LIKE
1601 LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
1602 LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
1603 #else
1604 LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE),
1605 LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE),
1606 #endif
1609 int i;
1610 FuncDefHash *pHash = &GLOBAL(FuncDefHash, sqlite3GlobalFunctions);
1611 FuncDef *aFunc = (FuncDef*)&GLOBAL(FuncDef, aBuiltinFunc);
1613 for(i=0; i<ArraySize(aBuiltinFunc); i++){
1614 sqlite3FuncDefInsert(pHash, &aFunc[i]);
1616 sqlite3RegisterDateTimeFunctions();
1617 #ifndef SQLITE_OMIT_ALTERTABLE
1618 sqlite3AlterFunctions();
1619 #endif