fix issue with short page reads causing hmac failures with auto vacuum enabled
[sqlcipher.git] / src / vdbeaux.c
blobcaa2bf6700d3d72ef4475ba3161b263b71da0afd
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.) Prior
14 ** to version 2.8.7, all this code was combined into the vdbe.c source file.
15 ** But that file was getting too big so this subroutines were split out.
17 #include "sqliteInt.h"
18 #include "vdbeInt.h"
23 ** When debugging the code generator in a symbolic debugger, one can
24 ** set the sqlite3VdbeAddopTrace to 1 and all opcodes will be printed
25 ** as they are added to the instruction stream.
27 #ifdef SQLITE_DEBUG
28 int sqlite3VdbeAddopTrace = 0;
29 #endif
33 ** Create a new virtual database engine.
35 Vdbe *sqlite3VdbeCreate(sqlite3 *db){
36 Vdbe *p;
37 p = sqlite3DbMallocZero(db, sizeof(Vdbe) );
38 if( p==0 ) return 0;
39 p->db = db;
40 if( db->pVdbe ){
41 db->pVdbe->pPrev = p;
43 p->pNext = db->pVdbe;
44 p->pPrev = 0;
45 db->pVdbe = p;
46 p->magic = VDBE_MAGIC_INIT;
47 return p;
51 ** Remember the SQL string for a prepared statement.
53 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, int isPrepareV2){
54 assert( isPrepareV2==1 || isPrepareV2==0 );
55 if( p==0 ) return;
56 #ifdef SQLITE_OMIT_TRACE
57 if( !isPrepareV2 ) return;
58 #endif
59 assert( p->zSql==0 );
60 p->zSql = sqlite3DbStrNDup(p->db, z, n);
61 p->isPrepareV2 = (u8)isPrepareV2;
65 ** Return the SQL associated with a prepared statement
67 const char *sqlite3_sql(sqlite3_stmt *pStmt){
68 Vdbe *p = (Vdbe *)pStmt;
69 return (p && p->isPrepareV2) ? p->zSql : 0;
73 ** Swap all content between two VDBE structures.
75 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
76 Vdbe tmp, *pTmp;
77 char *zTmp;
78 tmp = *pA;
79 *pA = *pB;
80 *pB = tmp;
81 pTmp = pA->pNext;
82 pA->pNext = pB->pNext;
83 pB->pNext = pTmp;
84 pTmp = pA->pPrev;
85 pA->pPrev = pB->pPrev;
86 pB->pPrev = pTmp;
87 zTmp = pA->zSql;
88 pA->zSql = pB->zSql;
89 pB->zSql = zTmp;
90 pB->isPrepareV2 = pA->isPrepareV2;
93 #ifdef SQLITE_DEBUG
95 ** Turn tracing on or off
97 void sqlite3VdbeTrace(Vdbe *p, FILE *trace){
98 p->trace = trace;
100 #endif
103 ** Resize the Vdbe.aOp array so that it is at least one op larger than
104 ** it was.
106 ** If an out-of-memory error occurs while resizing the array, return
107 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
108 ** unchanged (this is so that any opcodes already allocated can be
109 ** correctly deallocated along with the rest of the Vdbe).
111 static int growOpArray(Vdbe *p){
112 VdbeOp *pNew;
113 int nNew = (p->nOpAlloc ? p->nOpAlloc*2 : (int)(1024/sizeof(Op)));
114 pNew = sqlite3DbRealloc(p->db, p->aOp, nNew*sizeof(Op));
115 if( pNew ){
116 p->nOpAlloc = sqlite3DbMallocSize(p->db, pNew)/sizeof(Op);
117 p->aOp = pNew;
119 return (pNew ? SQLITE_OK : SQLITE_NOMEM);
123 ** Add a new instruction to the list of instructions current in the
124 ** VDBE. Return the address of the new instruction.
126 ** Parameters:
128 ** p Pointer to the VDBE
130 ** op The opcode for this instruction
132 ** p1, p2, p3 Operands
134 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
135 ** the sqlite3VdbeChangeP4() function to change the value of the P4
136 ** operand.
138 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
139 int i;
140 VdbeOp *pOp;
142 i = p->nOp;
143 assert( p->magic==VDBE_MAGIC_INIT );
144 assert( op>0 && op<0xff );
145 if( p->nOpAlloc<=i ){
146 if( growOpArray(p) ){
147 return 1;
150 p->nOp++;
151 pOp = &p->aOp[i];
152 pOp->opcode = (u8)op;
153 pOp->p5 = 0;
154 pOp->p1 = p1;
155 pOp->p2 = p2;
156 pOp->p3 = p3;
157 pOp->p4.p = 0;
158 pOp->p4type = P4_NOTUSED;
159 #ifdef SQLITE_DEBUG
160 pOp->zComment = 0;
161 if( sqlite3VdbeAddopTrace ) sqlite3VdbePrintOp(0, i, &p->aOp[i]);
162 #endif
163 #ifdef VDBE_PROFILE
164 pOp->cycles = 0;
165 pOp->cnt = 0;
166 #endif
167 return i;
169 int sqlite3VdbeAddOp0(Vdbe *p, int op){
170 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
172 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
173 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
175 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
176 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
181 ** Add an opcode that includes the p4 value as a pointer.
183 int sqlite3VdbeAddOp4(
184 Vdbe *p, /* Add the opcode to this VM */
185 int op, /* The new opcode */
186 int p1, /* The P1 operand */
187 int p2, /* The P2 operand */
188 int p3, /* The P3 operand */
189 const char *zP4, /* The P4 operand */
190 int p4type /* P4 operand type */
192 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
193 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
194 return addr;
198 ** Add an OP_ParseSchema opcode. This routine is broken out from
199 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
200 ** as having been used.
202 ** The zWhere string must have been obtained from sqlite3_malloc().
203 ** This routine will take ownership of the allocated memory.
205 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere){
206 int j;
207 int addr = sqlite3VdbeAddOp3(p, OP_ParseSchema, iDb, 0, 0);
208 sqlite3VdbeChangeP4(p, addr, zWhere, P4_DYNAMIC);
209 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
213 ** Add an opcode that includes the p4 value as an integer.
215 int sqlite3VdbeAddOp4Int(
216 Vdbe *p, /* Add the opcode to this VM */
217 int op, /* The new opcode */
218 int p1, /* The P1 operand */
219 int p2, /* The P2 operand */
220 int p3, /* The P3 operand */
221 int p4 /* The P4 operand as an integer */
223 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
224 sqlite3VdbeChangeP4(p, addr, SQLITE_INT_TO_PTR(p4), P4_INT32);
225 return addr;
229 ** Create a new symbolic label for an instruction that has yet to be
230 ** coded. The symbolic label is really just a negative number. The
231 ** label can be used as the P2 value of an operation. Later, when
232 ** the label is resolved to a specific address, the VDBE will scan
233 ** through its operation list and change all values of P2 which match
234 ** the label into the resolved address.
236 ** The VDBE knows that a P2 value is a label because labels are
237 ** always negative and P2 values are suppose to be non-negative.
238 ** Hence, a negative P2 value is a label that has yet to be resolved.
240 ** Zero is returned if a malloc() fails.
242 int sqlite3VdbeMakeLabel(Vdbe *p){
243 int i = p->nLabel++;
244 assert( p->magic==VDBE_MAGIC_INIT );
245 if( (i & (i-1))==0 ){
246 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
247 (i*2+1)*sizeof(p->aLabel[0]));
249 if( p->aLabel ){
250 p->aLabel[i] = -1;
252 return -1-i;
256 ** Resolve label "x" to be the address of the next instruction to
257 ** be inserted. The parameter "x" must have been obtained from
258 ** a prior call to sqlite3VdbeMakeLabel().
260 void sqlite3VdbeResolveLabel(Vdbe *p, int x){
261 int j = -1-x;
262 assert( p->magic==VDBE_MAGIC_INIT );
263 assert( j>=0 && j<p->nLabel );
264 if( p->aLabel ){
265 p->aLabel[j] = p->nOp;
270 ** Mark the VDBE as one that can only be run one time.
272 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
273 p->runOnlyOnce = 1;
276 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
279 ** The following type and function are used to iterate through all opcodes
280 ** in a Vdbe main program and each of the sub-programs (triggers) it may
281 ** invoke directly or indirectly. It should be used as follows:
283 ** Op *pOp;
284 ** VdbeOpIter sIter;
286 ** memset(&sIter, 0, sizeof(sIter));
287 ** sIter.v = v; // v is of type Vdbe*
288 ** while( (pOp = opIterNext(&sIter)) ){
289 ** // Do something with pOp
290 ** }
291 ** sqlite3DbFree(v->db, sIter.apSub);
294 typedef struct VdbeOpIter VdbeOpIter;
295 struct VdbeOpIter {
296 Vdbe *v; /* Vdbe to iterate through the opcodes of */
297 SubProgram **apSub; /* Array of subprograms */
298 int nSub; /* Number of entries in apSub */
299 int iAddr; /* Address of next instruction to return */
300 int iSub; /* 0 = main program, 1 = first sub-program etc. */
302 static Op *opIterNext(VdbeOpIter *p){
303 Vdbe *v = p->v;
304 Op *pRet = 0;
305 Op *aOp;
306 int nOp;
308 if( p->iSub<=p->nSub ){
310 if( p->iSub==0 ){
311 aOp = v->aOp;
312 nOp = v->nOp;
313 }else{
314 aOp = p->apSub[p->iSub-1]->aOp;
315 nOp = p->apSub[p->iSub-1]->nOp;
317 assert( p->iAddr<nOp );
319 pRet = &aOp[p->iAddr];
320 p->iAddr++;
321 if( p->iAddr==nOp ){
322 p->iSub++;
323 p->iAddr = 0;
326 if( pRet->p4type==P4_SUBPROGRAM ){
327 int nByte = (p->nSub+1)*sizeof(SubProgram*);
328 int j;
329 for(j=0; j<p->nSub; j++){
330 if( p->apSub[j]==pRet->p4.pProgram ) break;
332 if( j==p->nSub ){
333 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
334 if( !p->apSub ){
335 pRet = 0;
336 }else{
337 p->apSub[p->nSub++] = pRet->p4.pProgram;
343 return pRet;
347 ** Check if the program stored in the VM associated with pParse may
348 ** throw an ABORT exception (causing the statement, but not entire transaction
349 ** to be rolled back). This condition is true if the main program or any
350 ** sub-programs contains any of the following:
352 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
353 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
354 ** * OP_Destroy
355 ** * OP_VUpdate
356 ** * OP_VRename
357 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
359 ** Then check that the value of Parse.mayAbort is true if an
360 ** ABORT may be thrown, or false otherwise. Return true if it does
361 ** match, or false otherwise. This function is intended to be used as
362 ** part of an assert statement in the compiler. Similar to:
364 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
366 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
367 int hasAbort = 0;
368 Op *pOp;
369 VdbeOpIter sIter;
370 memset(&sIter, 0, sizeof(sIter));
371 sIter.v = v;
373 while( (pOp = opIterNext(&sIter))!=0 ){
374 int opcode = pOp->opcode;
375 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
376 #ifndef SQLITE_OMIT_FOREIGN_KEY
377 || (opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1)
378 #endif
379 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
380 && (pOp->p1==SQLITE_CONSTRAINT && pOp->p2==OE_Abort))
382 hasAbort = 1;
383 break;
386 sqlite3DbFree(v->db, sIter.apSub);
388 /* Return true if hasAbort==mayAbort. Or if a malloc failure occured.
389 ** If malloc failed, then the while() loop above may not have iterated
390 ** through all opcodes and hasAbort may be set incorrectly. Return
391 ** true for this case to prevent the assert() in the callers frame
392 ** from failing. */
393 return ( v->db->mallocFailed || hasAbort==mayAbort );
395 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
398 ** Loop through the program looking for P2 values that are negative
399 ** on jump instructions. Each such value is a label. Resolve the
400 ** label by setting the P2 value to its correct non-zero value.
402 ** This routine is called once after all opcodes have been inserted.
404 ** Variable *pMaxFuncArgs is set to the maximum value of any P2 argument
405 ** to an OP_Function, OP_AggStep or OP_VFilter opcode. This is used by
406 ** sqlite3VdbeMakeReady() to size the Vdbe.apArg[] array.
408 ** The Op.opflags field is set on all opcodes.
410 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
411 int i;
412 int nMaxArgs = *pMaxFuncArgs;
413 Op *pOp;
414 int *aLabel = p->aLabel;
415 p->readOnly = 1;
416 for(pOp=p->aOp, i=p->nOp-1; i>=0; i--, pOp++){
417 u8 opcode = pOp->opcode;
419 pOp->opflags = sqlite3OpcodeProperty[opcode];
420 if( opcode==OP_Function || opcode==OP_AggStep ){
421 if( pOp->p5>nMaxArgs ) nMaxArgs = pOp->p5;
422 }else if( (opcode==OP_Transaction && pOp->p2!=0) || opcode==OP_Vacuum ){
423 p->readOnly = 0;
424 #ifndef SQLITE_OMIT_VIRTUALTABLE
425 }else if( opcode==OP_VUpdate ){
426 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
427 }else if( opcode==OP_VFilter ){
428 int n;
429 assert( p->nOp - i >= 3 );
430 assert( pOp[-1].opcode==OP_Integer );
431 n = pOp[-1].p1;
432 if( n>nMaxArgs ) nMaxArgs = n;
433 #endif
434 }else if( opcode==OP_Next || opcode==OP_SorterNext ){
435 pOp->p4.xAdvance = sqlite3BtreeNext;
436 pOp->p4type = P4_ADVANCE;
437 }else if( opcode==OP_Prev ){
438 pOp->p4.xAdvance = sqlite3BtreePrevious;
439 pOp->p4type = P4_ADVANCE;
442 if( (pOp->opflags & OPFLG_JUMP)!=0 && pOp->p2<0 ){
443 assert( -1-pOp->p2<p->nLabel );
444 pOp->p2 = aLabel[-1-pOp->p2];
447 sqlite3DbFree(p->db, p->aLabel);
448 p->aLabel = 0;
450 *pMaxFuncArgs = nMaxArgs;
454 ** Return the address of the next instruction to be inserted.
456 int sqlite3VdbeCurrentAddr(Vdbe *p){
457 assert( p->magic==VDBE_MAGIC_INIT );
458 return p->nOp;
462 ** This function returns a pointer to the array of opcodes associated with
463 ** the Vdbe passed as the first argument. It is the callers responsibility
464 ** to arrange for the returned array to be eventually freed using the
465 ** vdbeFreeOpArray() function.
467 ** Before returning, *pnOp is set to the number of entries in the returned
468 ** array. Also, *pnMaxArg is set to the larger of its current value and
469 ** the number of entries in the Vdbe.apArg[] array required to execute the
470 ** returned program.
472 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
473 VdbeOp *aOp = p->aOp;
474 assert( aOp && !p->db->mallocFailed );
476 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
477 assert( p->btreeMask==0 );
479 resolveP2Values(p, pnMaxArg);
480 *pnOp = p->nOp;
481 p->aOp = 0;
482 return aOp;
486 ** Add a whole list of operations to the operation stack. Return the
487 ** address of the first operation added.
489 int sqlite3VdbeAddOpList(Vdbe *p, int nOp, VdbeOpList const *aOp){
490 int addr;
491 assert( p->magic==VDBE_MAGIC_INIT );
492 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p) ){
493 return 0;
495 addr = p->nOp;
496 if( ALWAYS(nOp>0) ){
497 int i;
498 VdbeOpList const *pIn = aOp;
499 for(i=0; i<nOp; i++, pIn++){
500 int p2 = pIn->p2;
501 VdbeOp *pOut = &p->aOp[i+addr];
502 pOut->opcode = pIn->opcode;
503 pOut->p1 = pIn->p1;
504 if( p2<0 && (sqlite3OpcodeProperty[pOut->opcode] & OPFLG_JUMP)!=0 ){
505 pOut->p2 = addr + ADDR(p2);
506 }else{
507 pOut->p2 = p2;
509 pOut->p3 = pIn->p3;
510 pOut->p4type = P4_NOTUSED;
511 pOut->p4.p = 0;
512 pOut->p5 = 0;
513 #ifdef SQLITE_DEBUG
514 pOut->zComment = 0;
515 if( sqlite3VdbeAddopTrace ){
516 sqlite3VdbePrintOp(0, i+addr, &p->aOp[i+addr]);
518 #endif
520 p->nOp += nOp;
522 return addr;
526 ** Change the value of the P1 operand for a specific instruction.
527 ** This routine is useful when a large program is loaded from a
528 ** static array using sqlite3VdbeAddOpList but we want to make a
529 ** few minor changes to the program.
531 void sqlite3VdbeChangeP1(Vdbe *p, u32 addr, int val){
532 assert( p!=0 );
533 if( ((u32)p->nOp)>addr ){
534 p->aOp[addr].p1 = val;
539 ** Change the value of the P2 operand for a specific instruction.
540 ** This routine is useful for setting a jump destination.
542 void sqlite3VdbeChangeP2(Vdbe *p, u32 addr, int val){
543 assert( p!=0 );
544 if( ((u32)p->nOp)>addr ){
545 p->aOp[addr].p2 = val;
550 ** Change the value of the P3 operand for a specific instruction.
552 void sqlite3VdbeChangeP3(Vdbe *p, u32 addr, int val){
553 assert( p!=0 );
554 if( ((u32)p->nOp)>addr ){
555 p->aOp[addr].p3 = val;
560 ** Change the value of the P5 operand for the most recently
561 ** added operation.
563 void sqlite3VdbeChangeP5(Vdbe *p, u8 val){
564 assert( p!=0 );
565 if( p->aOp ){
566 assert( p->nOp>0 );
567 p->aOp[p->nOp-1].p5 = val;
572 ** Change the P2 operand of instruction addr so that it points to
573 ** the address of the next instruction to be coded.
575 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
576 assert( addr>=0 || p->db->mallocFailed );
577 if( addr>=0 ) sqlite3VdbeChangeP2(p, addr, p->nOp);
582 ** If the input FuncDef structure is ephemeral, then free it. If
583 ** the FuncDef is not ephermal, then do nothing.
585 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
586 if( ALWAYS(pDef) && (pDef->flags & SQLITE_FUNC_EPHEM)!=0 ){
587 sqlite3DbFree(db, pDef);
591 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
594 ** Delete a P4 value if necessary.
596 static void freeP4(sqlite3 *db, int p4type, void *p4){
597 if( p4 ){
598 assert( db );
599 switch( p4type ){
600 case P4_REAL:
601 case P4_INT64:
602 case P4_DYNAMIC:
603 case P4_KEYINFO:
604 case P4_INTARRAY:
605 case P4_KEYINFO_HANDOFF: {
606 sqlite3DbFree(db, p4);
607 break;
609 case P4_MPRINTF: {
610 if( db->pnBytesFreed==0 ) sqlite3_free(p4);
611 break;
613 case P4_VDBEFUNC: {
614 VdbeFunc *pVdbeFunc = (VdbeFunc *)p4;
615 freeEphemeralFunction(db, pVdbeFunc->pFunc);
616 if( db->pnBytesFreed==0 ) sqlite3VdbeDeleteAuxData(pVdbeFunc, 0);
617 sqlite3DbFree(db, pVdbeFunc);
618 break;
620 case P4_FUNCDEF: {
621 freeEphemeralFunction(db, (FuncDef*)p4);
622 break;
624 case P4_MEM: {
625 if( db->pnBytesFreed==0 ){
626 sqlite3ValueFree((sqlite3_value*)p4);
627 }else{
628 Mem *p = (Mem*)p4;
629 sqlite3DbFree(db, p->zMalloc);
630 sqlite3DbFree(db, p);
632 break;
634 case P4_VTAB : {
635 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
636 break;
643 ** Free the space allocated for aOp and any p4 values allocated for the
644 ** opcodes contained within. If aOp is not NULL it is assumed to contain
645 ** nOp entries.
647 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
648 if( aOp ){
649 Op *pOp;
650 for(pOp=aOp; pOp<&aOp[nOp]; pOp++){
651 freeP4(db, pOp->p4type, pOp->p4.p);
652 #ifdef SQLITE_DEBUG
653 sqlite3DbFree(db, pOp->zComment);
654 #endif
657 sqlite3DbFree(db, aOp);
661 ** Link the SubProgram object passed as the second argument into the linked
662 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
663 ** objects when the VM is no longer required.
665 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
666 p->pNext = pVdbe->pProgram;
667 pVdbe->pProgram = p;
671 ** Change the opcode at addr into OP_Noop
673 void sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
674 if( p->aOp ){
675 VdbeOp *pOp = &p->aOp[addr];
676 sqlite3 *db = p->db;
677 freeP4(db, pOp->p4type, pOp->p4.p);
678 memset(pOp, 0, sizeof(pOp[0]));
679 pOp->opcode = OP_Noop;
684 ** Change the value of the P4 operand for a specific instruction.
685 ** This routine is useful when a large program is loaded from a
686 ** static array using sqlite3VdbeAddOpList but we want to make a
687 ** few minor changes to the program.
689 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
690 ** the string is made into memory obtained from sqlite3_malloc().
691 ** A value of n==0 means copy bytes of zP4 up to and including the
692 ** first null byte. If n>0 then copy n+1 bytes of zP4.
694 ** If n==P4_KEYINFO it means that zP4 is a pointer to a KeyInfo structure.
695 ** A copy is made of the KeyInfo structure into memory obtained from
696 ** sqlite3_malloc, to be freed when the Vdbe is finalized.
697 ** n==P4_KEYINFO_HANDOFF indicates that zP4 points to a KeyInfo structure
698 ** stored in memory that the caller has obtained from sqlite3_malloc. The
699 ** caller should not free the allocation, it will be freed when the Vdbe is
700 ** finalized.
702 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
703 ** to a string or structure that is guaranteed to exist for the lifetime of
704 ** the Vdbe. In these cases we can just copy the pointer.
706 ** If addr<0 then change P4 on the most recently inserted instruction.
708 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
709 Op *pOp;
710 sqlite3 *db;
711 assert( p!=0 );
712 db = p->db;
713 assert( p->magic==VDBE_MAGIC_INIT );
714 if( p->aOp==0 || db->mallocFailed ){
715 if ( n!=P4_KEYINFO && n!=P4_VTAB ) {
716 freeP4(db, n, (void*)*(char**)&zP4);
718 return;
720 assert( p->nOp>0 );
721 assert( addr<p->nOp );
722 if( addr<0 ){
723 addr = p->nOp - 1;
725 pOp = &p->aOp[addr];
726 freeP4(db, pOp->p4type, pOp->p4.p);
727 pOp->p4.p = 0;
728 if( n==P4_INT32 ){
729 /* Note: this cast is safe, because the origin data point was an int
730 ** that was cast to a (const char *). */
731 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
732 pOp->p4type = P4_INT32;
733 }else if( zP4==0 ){
734 pOp->p4.p = 0;
735 pOp->p4type = P4_NOTUSED;
736 }else if( n==P4_KEYINFO ){
737 KeyInfo *pKeyInfo;
738 int nField, nByte;
740 nField = ((KeyInfo*)zP4)->nField;
741 nByte = sizeof(*pKeyInfo) + (nField-1)*sizeof(pKeyInfo->aColl[0]) + nField;
742 pKeyInfo = sqlite3DbMallocRaw(0, nByte);
743 pOp->p4.pKeyInfo = pKeyInfo;
744 if( pKeyInfo ){
745 u8 *aSortOrder;
746 memcpy((char*)pKeyInfo, zP4, nByte - nField);
747 aSortOrder = pKeyInfo->aSortOrder;
748 if( aSortOrder ){
749 pKeyInfo->aSortOrder = (unsigned char*)&pKeyInfo->aColl[nField];
750 memcpy(pKeyInfo->aSortOrder, aSortOrder, nField);
752 pOp->p4type = P4_KEYINFO;
753 }else{
754 p->db->mallocFailed = 1;
755 pOp->p4type = P4_NOTUSED;
757 }else if( n==P4_KEYINFO_HANDOFF ){
758 pOp->p4.p = (void*)zP4;
759 pOp->p4type = P4_KEYINFO;
760 }else if( n==P4_VTAB ){
761 pOp->p4.p = (void*)zP4;
762 pOp->p4type = P4_VTAB;
763 sqlite3VtabLock((VTable *)zP4);
764 assert( ((VTable *)zP4)->db==p->db );
765 }else if( n<0 ){
766 pOp->p4.p = (void*)zP4;
767 pOp->p4type = (signed char)n;
768 }else{
769 if( n==0 ) n = sqlite3Strlen30(zP4);
770 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
771 pOp->p4type = P4_DYNAMIC;
775 #ifndef NDEBUG
777 ** Change the comment on the the most recently coded instruction. Or
778 ** insert a No-op and add the comment to that new instruction. This
779 ** makes the code easier to read during debugging. None of this happens
780 ** in a production build.
782 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
783 assert( p->nOp>0 || p->aOp==0 );
784 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->db->mallocFailed );
785 if( p->nOp ){
786 assert( p->aOp );
787 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
788 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
791 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
792 va_list ap;
793 if( p ){
794 va_start(ap, zFormat);
795 vdbeVComment(p, zFormat, ap);
796 va_end(ap);
799 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
800 va_list ap;
801 if( p ){
802 sqlite3VdbeAddOp0(p, OP_Noop);
803 va_start(ap, zFormat);
804 vdbeVComment(p, zFormat, ap);
805 va_end(ap);
808 #endif /* NDEBUG */
811 ** Return the opcode for a given address. If the address is -1, then
812 ** return the most recently inserted opcode.
814 ** If a memory allocation error has occurred prior to the calling of this
815 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
816 ** is readable but not writable, though it is cast to a writable value.
817 ** The return of a dummy opcode allows the call to continue functioning
818 ** after a OOM fault without having to check to see if the return from
819 ** this routine is a valid pointer. But because the dummy.opcode is 0,
820 ** dummy will never be written to. This is verified by code inspection and
821 ** by running with Valgrind.
823 ** About the #ifdef SQLITE_OMIT_TRACE: Normally, this routine is never called
824 ** unless p->nOp>0. This is because in the absense of SQLITE_OMIT_TRACE,
825 ** an OP_Trace instruction is always inserted by sqlite3VdbeGet() as soon as
826 ** a new VDBE is created. So we are free to set addr to p->nOp-1 without
827 ** having to double-check to make sure that the result is non-negative. But
828 ** if SQLITE_OMIT_TRACE is defined, the OP_Trace is omitted and we do need to
829 ** check the value of p->nOp-1 before continuing.
831 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
832 /* C89 specifies that the constant "dummy" will be initialized to all
833 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
834 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
835 assert( p->magic==VDBE_MAGIC_INIT );
836 if( addr<0 ){
837 #ifdef SQLITE_OMIT_TRACE
838 if( p->nOp==0 ) return (VdbeOp*)&dummy;
839 #endif
840 addr = p->nOp - 1;
842 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
843 if( p->db->mallocFailed ){
844 return (VdbeOp*)&dummy;
845 }else{
846 return &p->aOp[addr];
850 #if !defined(SQLITE_OMIT_EXPLAIN) || !defined(NDEBUG) \
851 || defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
853 ** Compute a string that describes the P4 parameter for an opcode.
854 ** Use zTemp for any required temporary buffer space.
856 static char *displayP4(Op *pOp, char *zTemp, int nTemp){
857 char *zP4 = zTemp;
858 assert( nTemp>=20 );
859 switch( pOp->p4type ){
860 case P4_KEYINFO_STATIC:
861 case P4_KEYINFO: {
862 int i, j;
863 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
864 sqlite3_snprintf(nTemp, zTemp, "keyinfo(%d", pKeyInfo->nField);
865 i = sqlite3Strlen30(zTemp);
866 for(j=0; j<pKeyInfo->nField; j++){
867 CollSeq *pColl = pKeyInfo->aColl[j];
868 if( pColl ){
869 int n = sqlite3Strlen30(pColl->zName);
870 if( i+n>nTemp-6 ){
871 memcpy(&zTemp[i],",...",4);
872 break;
874 zTemp[i++] = ',';
875 if( pKeyInfo->aSortOrder && pKeyInfo->aSortOrder[j] ){
876 zTemp[i++] = '-';
878 memcpy(&zTemp[i], pColl->zName,n+1);
879 i += n;
880 }else if( i+4<nTemp-6 ){
881 memcpy(&zTemp[i],",nil",4);
882 i += 4;
885 zTemp[i++] = ')';
886 zTemp[i] = 0;
887 assert( i<nTemp );
888 break;
890 case P4_COLLSEQ: {
891 CollSeq *pColl = pOp->p4.pColl;
892 sqlite3_snprintf(nTemp, zTemp, "collseq(%.20s)", pColl->zName);
893 break;
895 case P4_FUNCDEF: {
896 FuncDef *pDef = pOp->p4.pFunc;
897 sqlite3_snprintf(nTemp, zTemp, "%s(%d)", pDef->zName, pDef->nArg);
898 break;
900 case P4_INT64: {
901 sqlite3_snprintf(nTemp, zTemp, "%lld", *pOp->p4.pI64);
902 break;
904 case P4_INT32: {
905 sqlite3_snprintf(nTemp, zTemp, "%d", pOp->p4.i);
906 break;
908 case P4_REAL: {
909 sqlite3_snprintf(nTemp, zTemp, "%.16g", *pOp->p4.pReal);
910 break;
912 case P4_MEM: {
913 Mem *pMem = pOp->p4.pMem;
914 if( pMem->flags & MEM_Str ){
915 zP4 = pMem->z;
916 }else if( pMem->flags & MEM_Int ){
917 sqlite3_snprintf(nTemp, zTemp, "%lld", pMem->u.i);
918 }else if( pMem->flags & MEM_Real ){
919 sqlite3_snprintf(nTemp, zTemp, "%.16g", pMem->r);
920 }else if( pMem->flags & MEM_Null ){
921 sqlite3_snprintf(nTemp, zTemp, "NULL");
922 }else{
923 assert( pMem->flags & MEM_Blob );
924 zP4 = "(blob)";
926 break;
928 #ifndef SQLITE_OMIT_VIRTUALTABLE
929 case P4_VTAB: {
930 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
931 sqlite3_snprintf(nTemp, zTemp, "vtab:%p:%p", pVtab, pVtab->pModule);
932 break;
934 #endif
935 case P4_INTARRAY: {
936 sqlite3_snprintf(nTemp, zTemp, "intarray");
937 break;
939 case P4_SUBPROGRAM: {
940 sqlite3_snprintf(nTemp, zTemp, "program");
941 break;
943 case P4_ADVANCE: {
944 zTemp[0] = 0;
945 break;
947 default: {
948 zP4 = pOp->p4.z;
949 if( zP4==0 ){
950 zP4 = zTemp;
951 zTemp[0] = 0;
955 assert( zP4!=0 );
956 return zP4;
958 #endif
961 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
963 ** The prepared statements need to know in advance the complete set of
964 ** attached databases that will be use. A mask of these databases
965 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
966 ** p->btreeMask of databases that will require a lock.
968 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
969 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
970 assert( i<(int)sizeof(p->btreeMask)*8 );
971 p->btreeMask |= ((yDbMask)1)<<i;
972 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
973 p->lockMask |= ((yDbMask)1)<<i;
977 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
979 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
980 ** this routine obtains the mutex associated with each BtShared structure
981 ** that may be accessed by the VM passed as an argument. In doing so it also
982 ** sets the BtShared.db member of each of the BtShared structures, ensuring
983 ** that the correct busy-handler callback is invoked if required.
985 ** If SQLite is not threadsafe but does support shared-cache mode, then
986 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
987 ** of all of BtShared structures accessible via the database handle
988 ** associated with the VM.
990 ** If SQLite is not threadsafe and does not support shared-cache mode, this
991 ** function is a no-op.
993 ** The p->btreeMask field is a bitmask of all btrees that the prepared
994 ** statement p will ever use. Let N be the number of bits in p->btreeMask
995 ** corresponding to btrees that use shared cache. Then the runtime of
996 ** this routine is N*N. But as N is rarely more than 1, this should not
997 ** be a problem.
999 void sqlite3VdbeEnter(Vdbe *p){
1000 int i;
1001 yDbMask mask;
1002 sqlite3 *db;
1003 Db *aDb;
1004 int nDb;
1005 if( p->lockMask==0 ) return; /* The common case */
1006 db = p->db;
1007 aDb = db->aDb;
1008 nDb = db->nDb;
1009 for(i=0, mask=1; i<nDb; i++, mask += mask){
1010 if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
1011 sqlite3BtreeEnter(aDb[i].pBt);
1015 #endif
1017 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1019 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1021 void sqlite3VdbeLeave(Vdbe *p){
1022 int i;
1023 yDbMask mask;
1024 sqlite3 *db;
1025 Db *aDb;
1026 int nDb;
1027 if( p->lockMask==0 ) return; /* The common case */
1028 db = p->db;
1029 aDb = db->aDb;
1030 nDb = db->nDb;
1031 for(i=0, mask=1; i<nDb; i++, mask += mask){
1032 if( i!=1 && (mask & p->lockMask)!=0 && ALWAYS(aDb[i].pBt!=0) ){
1033 sqlite3BtreeLeave(aDb[i].pBt);
1037 #endif
1039 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1041 ** Print a single opcode. This routine is used for debugging only.
1043 void sqlite3VdbePrintOp(FILE *pOut, int pc, Op *pOp){
1044 char *zP4;
1045 char zPtr[50];
1046 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-4s %.2X %s\n";
1047 if( pOut==0 ) pOut = stdout;
1048 zP4 = displayP4(pOp, zPtr, sizeof(zPtr));
1049 fprintf(pOut, zFormat1, pc,
1050 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3, zP4, pOp->p5,
1051 #ifdef SQLITE_DEBUG
1052 pOp->zComment ? pOp->zComment : ""
1053 #else
1055 #endif
1057 fflush(pOut);
1059 #endif
1062 ** Release an array of N Mem elements
1064 static void releaseMemArray(Mem *p, int N){
1065 if( p && N ){
1066 Mem *pEnd;
1067 sqlite3 *db = p->db;
1068 u8 malloc_failed = db->mallocFailed;
1069 if( db->pnBytesFreed ){
1070 for(pEnd=&p[N]; p<pEnd; p++){
1071 sqlite3DbFree(db, p->zMalloc);
1073 return;
1075 for(pEnd=&p[N]; p<pEnd; p++){
1076 assert( (&p[1])==pEnd || p[0].db==p[1].db );
1078 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1079 ** that takes advantage of the fact that the memory cell value is
1080 ** being set to NULL after releasing any dynamic resources.
1082 ** The justification for duplicating code is that according to
1083 ** callgrind, this causes a certain test case to hit the CPU 4.7
1084 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1085 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1086 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1087 ** with no indexes using a single prepared INSERT statement, bind()
1088 ** and reset(). Inserts are grouped into a transaction.
1090 if( p->flags&(MEM_Agg|MEM_Dyn|MEM_Frame|MEM_RowSet) ){
1091 sqlite3VdbeMemRelease(p);
1092 }else if( p->zMalloc ){
1093 sqlite3DbFree(db, p->zMalloc);
1094 p->zMalloc = 0;
1097 p->flags = MEM_Invalid;
1099 db->mallocFailed = malloc_failed;
1104 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
1105 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
1107 void sqlite3VdbeFrameDelete(VdbeFrame *p){
1108 int i;
1109 Mem *aMem = VdbeFrameMem(p);
1110 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
1111 for(i=0; i<p->nChildCsr; i++){
1112 sqlite3VdbeFreeCursor(p->v, apCsr[i]);
1114 releaseMemArray(aMem, p->nChildMem);
1115 sqlite3DbFree(p->v->db, p);
1118 #ifndef SQLITE_OMIT_EXPLAIN
1120 ** Give a listing of the program in the virtual machine.
1122 ** The interface is the same as sqlite3VdbeExec(). But instead of
1123 ** running the code, it invokes the callback once for each instruction.
1124 ** This feature is used to implement "EXPLAIN".
1126 ** When p->explain==1, each instruction is listed. When
1127 ** p->explain==2, only OP_Explain instructions are listed and these
1128 ** are shown in a different format. p->explain==2 is used to implement
1129 ** EXPLAIN QUERY PLAN.
1131 ** When p->explain==1, first the main program is listed, then each of
1132 ** the trigger subprograms are listed one by one.
1134 int sqlite3VdbeList(
1135 Vdbe *p /* The VDBE */
1137 int nRow; /* Stop when row count reaches this */
1138 int nSub = 0; /* Number of sub-vdbes seen so far */
1139 SubProgram **apSub = 0; /* Array of sub-vdbes */
1140 Mem *pSub = 0; /* Memory cell hold array of subprogs */
1141 sqlite3 *db = p->db; /* The database connection */
1142 int i; /* Loop counter */
1143 int rc = SQLITE_OK; /* Return code */
1144 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
1146 assert( p->explain );
1147 assert( p->magic==VDBE_MAGIC_RUN );
1148 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
1150 /* Even though this opcode does not use dynamic strings for
1151 ** the result, result columns may become dynamic if the user calls
1152 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
1154 releaseMemArray(pMem, 8);
1155 p->pResultSet = 0;
1157 if( p->rc==SQLITE_NOMEM ){
1158 /* This happens if a malloc() inside a call to sqlite3_column_text() or
1159 ** sqlite3_column_text16() failed. */
1160 db->mallocFailed = 1;
1161 return SQLITE_ERROR;
1164 /* When the number of output rows reaches nRow, that means the
1165 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
1166 ** nRow is the sum of the number of rows in the main program, plus
1167 ** the sum of the number of rows in all trigger subprograms encountered
1168 ** so far. The nRow value will increase as new trigger subprograms are
1169 ** encountered, but p->pc will eventually catch up to nRow.
1171 nRow = p->nOp;
1172 if( p->explain==1 ){
1173 /* The first 8 memory cells are used for the result set. So we will
1174 ** commandeer the 9th cell to use as storage for an array of pointers
1175 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
1176 ** cells. */
1177 assert( p->nMem>9 );
1178 pSub = &p->aMem[9];
1179 if( pSub->flags&MEM_Blob ){
1180 /* On the first call to sqlite3_step(), pSub will hold a NULL. It is
1181 ** initialized to a BLOB by the P4_SUBPROGRAM processing logic below */
1182 nSub = pSub->n/sizeof(Vdbe*);
1183 apSub = (SubProgram **)pSub->z;
1185 for(i=0; i<nSub; i++){
1186 nRow += apSub[i]->nOp;
1191 i = p->pc++;
1192 }while( i<nRow && p->explain==2 && p->aOp[i].opcode!=OP_Explain );
1193 if( i>=nRow ){
1194 p->rc = SQLITE_OK;
1195 rc = SQLITE_DONE;
1196 }else if( db->u1.isInterrupted ){
1197 p->rc = SQLITE_INTERRUPT;
1198 rc = SQLITE_ERROR;
1199 sqlite3SetString(&p->zErrMsg, db, "%s", sqlite3ErrStr(p->rc));
1200 }else{
1201 char *z;
1202 Op *pOp;
1203 if( i<p->nOp ){
1204 /* The output line number is small enough that we are still in the
1205 ** main program. */
1206 pOp = &p->aOp[i];
1207 }else{
1208 /* We are currently listing subprograms. Figure out which one and
1209 ** pick up the appropriate opcode. */
1210 int j;
1211 i -= p->nOp;
1212 for(j=0; i>=apSub[j]->nOp; j++){
1213 i -= apSub[j]->nOp;
1215 pOp = &apSub[j]->aOp[i];
1217 if( p->explain==1 ){
1218 pMem->flags = MEM_Int;
1219 pMem->type = SQLITE_INTEGER;
1220 pMem->u.i = i; /* Program counter */
1221 pMem++;
1223 pMem->flags = MEM_Static|MEM_Str|MEM_Term;
1224 pMem->z = (char*)sqlite3OpcodeName(pOp->opcode); /* Opcode */
1225 assert( pMem->z!=0 );
1226 pMem->n = sqlite3Strlen30(pMem->z);
1227 pMem->type = SQLITE_TEXT;
1228 pMem->enc = SQLITE_UTF8;
1229 pMem++;
1231 /* When an OP_Program opcode is encounter (the only opcode that has
1232 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
1233 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
1234 ** has not already been seen.
1236 if( pOp->p4type==P4_SUBPROGRAM ){
1237 int nByte = (nSub+1)*sizeof(SubProgram*);
1238 int j;
1239 for(j=0; j<nSub; j++){
1240 if( apSub[j]==pOp->p4.pProgram ) break;
1242 if( j==nSub && SQLITE_OK==sqlite3VdbeMemGrow(pSub, nByte, nSub!=0) ){
1243 apSub = (SubProgram **)pSub->z;
1244 apSub[nSub++] = pOp->p4.pProgram;
1245 pSub->flags |= MEM_Blob;
1246 pSub->n = nSub*sizeof(SubProgram*);
1251 pMem->flags = MEM_Int;
1252 pMem->u.i = pOp->p1; /* P1 */
1253 pMem->type = SQLITE_INTEGER;
1254 pMem++;
1256 pMem->flags = MEM_Int;
1257 pMem->u.i = pOp->p2; /* P2 */
1258 pMem->type = SQLITE_INTEGER;
1259 pMem++;
1261 pMem->flags = MEM_Int;
1262 pMem->u.i = pOp->p3; /* P3 */
1263 pMem->type = SQLITE_INTEGER;
1264 pMem++;
1266 if( sqlite3VdbeMemGrow(pMem, 32, 0) ){ /* P4 */
1267 assert( p->db->mallocFailed );
1268 return SQLITE_ERROR;
1270 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
1271 z = displayP4(pOp, pMem->z, 32);
1272 if( z!=pMem->z ){
1273 sqlite3VdbeMemSetStr(pMem, z, -1, SQLITE_UTF8, 0);
1274 }else{
1275 assert( pMem->z!=0 );
1276 pMem->n = sqlite3Strlen30(pMem->z);
1277 pMem->enc = SQLITE_UTF8;
1279 pMem->type = SQLITE_TEXT;
1280 pMem++;
1282 if( p->explain==1 ){
1283 if( sqlite3VdbeMemGrow(pMem, 4, 0) ){
1284 assert( p->db->mallocFailed );
1285 return SQLITE_ERROR;
1287 pMem->flags = MEM_Dyn|MEM_Str|MEM_Term;
1288 pMem->n = 2;
1289 sqlite3_snprintf(3, pMem->z, "%.2x", pOp->p5); /* P5 */
1290 pMem->type = SQLITE_TEXT;
1291 pMem->enc = SQLITE_UTF8;
1292 pMem++;
1294 #ifdef SQLITE_DEBUG
1295 if( pOp->zComment ){
1296 pMem->flags = MEM_Str|MEM_Term;
1297 pMem->z = pOp->zComment;
1298 pMem->n = sqlite3Strlen30(pMem->z);
1299 pMem->enc = SQLITE_UTF8;
1300 pMem->type = SQLITE_TEXT;
1301 }else
1302 #endif
1304 pMem->flags = MEM_Null; /* Comment */
1305 pMem->type = SQLITE_NULL;
1309 p->nResColumn = 8 - 4*(p->explain-1);
1310 p->pResultSet = &p->aMem[1];
1311 p->rc = SQLITE_OK;
1312 rc = SQLITE_ROW;
1314 return rc;
1316 #endif /* SQLITE_OMIT_EXPLAIN */
1318 #ifdef SQLITE_DEBUG
1320 ** Print the SQL that was used to generate a VDBE program.
1322 void sqlite3VdbePrintSql(Vdbe *p){
1323 int nOp = p->nOp;
1324 VdbeOp *pOp;
1325 if( nOp<1 ) return;
1326 pOp = &p->aOp[0];
1327 if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
1328 const char *z = pOp->p4.z;
1329 while( sqlite3Isspace(*z) ) z++;
1330 printf("SQL: [%s]\n", z);
1333 #endif
1335 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
1337 ** Print an IOTRACE message showing SQL content.
1339 void sqlite3VdbeIOTraceSql(Vdbe *p){
1340 int nOp = p->nOp;
1341 VdbeOp *pOp;
1342 if( sqlite3IoTrace==0 ) return;
1343 if( nOp<1 ) return;
1344 pOp = &p->aOp[0];
1345 if( pOp->opcode==OP_Trace && pOp->p4.z!=0 ){
1346 int i, j;
1347 char z[1000];
1348 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
1349 for(i=0; sqlite3Isspace(z[i]); i++){}
1350 for(j=0; z[i]; i++){
1351 if( sqlite3Isspace(z[i]) ){
1352 if( z[i-1]!=' ' ){
1353 z[j++] = ' ';
1355 }else{
1356 z[j++] = z[i];
1359 z[j] = 0;
1360 sqlite3IoTrace("SQL %s\n", z);
1363 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
1366 ** Allocate space from a fixed size buffer and return a pointer to
1367 ** that space. If insufficient space is available, return NULL.
1369 ** The pBuf parameter is the initial value of a pointer which will
1370 ** receive the new memory. pBuf is normally NULL. If pBuf is not
1371 ** NULL, it means that memory space has already been allocated and that
1372 ** this routine should not allocate any new memory. When pBuf is not
1373 ** NULL simply return pBuf. Only allocate new memory space when pBuf
1374 ** is NULL.
1376 ** nByte is the number of bytes of space needed.
1378 ** *ppFrom points to available space and pEnd points to the end of the
1379 ** available space. When space is allocated, *ppFrom is advanced past
1380 ** the end of the allocated space.
1382 ** *pnByte is a counter of the number of bytes of space that have failed
1383 ** to allocate. If there is insufficient space in *ppFrom to satisfy the
1384 ** request, then increment *pnByte by the amount of the request.
1386 static void *allocSpace(
1387 void *pBuf, /* Where return pointer will be stored */
1388 int nByte, /* Number of bytes to allocate */
1389 u8 **ppFrom, /* IN/OUT: Allocate from *ppFrom */
1390 u8 *pEnd, /* Pointer to 1 byte past the end of *ppFrom buffer */
1391 int *pnByte /* If allocation cannot be made, increment *pnByte */
1393 assert( EIGHT_BYTE_ALIGNMENT(*ppFrom) );
1394 if( pBuf ) return pBuf;
1395 nByte = ROUND8(nByte);
1396 if( &(*ppFrom)[nByte] <= pEnd ){
1397 pBuf = (void*)*ppFrom;
1398 *ppFrom += nByte;
1399 }else{
1400 *pnByte += nByte;
1402 return pBuf;
1406 ** Rewind the VDBE back to the beginning in preparation for
1407 ** running it.
1409 void sqlite3VdbeRewind(Vdbe *p){
1410 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
1411 int i;
1412 #endif
1413 assert( p!=0 );
1414 assert( p->magic==VDBE_MAGIC_INIT );
1416 /* There should be at least one opcode.
1418 assert( p->nOp>0 );
1420 /* Set the magic to VDBE_MAGIC_RUN sooner rather than later. */
1421 p->magic = VDBE_MAGIC_RUN;
1423 #ifdef SQLITE_DEBUG
1424 for(i=1; i<p->nMem; i++){
1425 assert( p->aMem[i].db==p->db );
1427 #endif
1428 p->pc = -1;
1429 p->rc = SQLITE_OK;
1430 p->errorAction = OE_Abort;
1431 p->magic = VDBE_MAGIC_RUN;
1432 p->nChange = 0;
1433 p->cacheCtr = 1;
1434 p->minWriteFileFormat = 255;
1435 p->iStatement = 0;
1436 p->nFkConstraint = 0;
1437 #ifdef VDBE_PROFILE
1438 for(i=0; i<p->nOp; i++){
1439 p->aOp[i].cnt = 0;
1440 p->aOp[i].cycles = 0;
1442 #endif
1446 ** Prepare a virtual machine for execution for the first time after
1447 ** creating the virtual machine. This involves things such
1448 ** as allocating stack space and initializing the program counter.
1449 ** After the VDBE has be prepped, it can be executed by one or more
1450 ** calls to sqlite3VdbeExec().
1452 ** This function may be called exact once on a each virtual machine.
1453 ** After this routine is called the VM has been "packaged" and is ready
1454 ** to run. After this routine is called, futher calls to
1455 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
1456 ** the Vdbe from the Parse object that helped generate it so that the
1457 ** the Vdbe becomes an independent entity and the Parse object can be
1458 ** destroyed.
1460 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
1461 ** to its initial state after it has been run.
1463 void sqlite3VdbeMakeReady(
1464 Vdbe *p, /* The VDBE */
1465 Parse *pParse /* Parsing context */
1467 sqlite3 *db; /* The database connection */
1468 int nVar; /* Number of parameters */
1469 int nMem; /* Number of VM memory registers */
1470 int nCursor; /* Number of cursors required */
1471 int nArg; /* Number of arguments in subprograms */
1472 int nOnce; /* Number of OP_Once instructions */
1473 int n; /* Loop counter */
1474 u8 *zCsr; /* Memory available for allocation */
1475 u8 *zEnd; /* First byte past allocated memory */
1476 int nByte; /* How much extra memory is needed */
1478 assert( p!=0 );
1479 assert( p->nOp>0 );
1480 assert( pParse!=0 );
1481 assert( p->magic==VDBE_MAGIC_INIT );
1482 db = p->db;
1483 assert( db->mallocFailed==0 );
1484 nVar = pParse->nVar;
1485 nMem = pParse->nMem;
1486 nCursor = pParse->nTab;
1487 nArg = pParse->nMaxArg;
1488 nOnce = pParse->nOnce;
1489 if( nOnce==0 ) nOnce = 1; /* Ensure at least one byte in p->aOnceFlag[] */
1491 /* For each cursor required, also allocate a memory cell. Memory
1492 ** cells (nMem+1-nCursor)..nMem, inclusive, will never be used by
1493 ** the vdbe program. Instead they are used to allocate space for
1494 ** VdbeCursor/BtCursor structures. The blob of memory associated with
1495 ** cursor 0 is stored in memory cell nMem. Memory cell (nMem-1)
1496 ** stores the blob of memory associated with cursor 1, etc.
1498 ** See also: allocateCursor().
1500 nMem += nCursor;
1502 /* Allocate space for memory registers, SQL variables, VDBE cursors and
1503 ** an array to marshal SQL function arguments in.
1505 zCsr = (u8*)&p->aOp[p->nOp]; /* Memory avaliable for allocation */
1506 zEnd = (u8*)&p->aOp[p->nOpAlloc]; /* First byte past end of zCsr[] */
1508 resolveP2Values(p, &nArg);
1509 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
1510 if( pParse->explain && nMem<10 ){
1511 nMem = 10;
1513 memset(zCsr, 0, zEnd-zCsr);
1514 zCsr += (zCsr - (u8*)0)&7;
1515 assert( EIGHT_BYTE_ALIGNMENT(zCsr) );
1516 p->expired = 0;
1518 /* Memory for registers, parameters, cursor, etc, is allocated in two
1519 ** passes. On the first pass, we try to reuse unused space at the
1520 ** end of the opcode array. If we are unable to satisfy all memory
1521 ** requirements by reusing the opcode array tail, then the second
1522 ** pass will fill in the rest using a fresh allocation.
1524 ** This two-pass approach that reuses as much memory as possible from
1525 ** the leftover space at the end of the opcode array can significantly
1526 ** reduce the amount of memory held by a prepared statement.
1528 do {
1529 nByte = 0;
1530 p->aMem = allocSpace(p->aMem, nMem*sizeof(Mem), &zCsr, zEnd, &nByte);
1531 p->aVar = allocSpace(p->aVar, nVar*sizeof(Mem), &zCsr, zEnd, &nByte);
1532 p->apArg = allocSpace(p->apArg, nArg*sizeof(Mem*), &zCsr, zEnd, &nByte);
1533 p->azVar = allocSpace(p->azVar, nVar*sizeof(char*), &zCsr, zEnd, &nByte);
1534 p->apCsr = allocSpace(p->apCsr, nCursor*sizeof(VdbeCursor*),
1535 &zCsr, zEnd, &nByte);
1536 p->aOnceFlag = allocSpace(p->aOnceFlag, nOnce, &zCsr, zEnd, &nByte);
1537 if( nByte ){
1538 p->pFree = sqlite3DbMallocZero(db, nByte);
1540 zCsr = p->pFree;
1541 zEnd = &zCsr[nByte];
1542 }while( nByte && !db->mallocFailed );
1544 p->nCursor = (u16)nCursor;
1545 p->nOnceFlag = nOnce;
1546 if( p->aVar ){
1547 p->nVar = (ynVar)nVar;
1548 for(n=0; n<nVar; n++){
1549 p->aVar[n].flags = MEM_Null;
1550 p->aVar[n].db = db;
1553 if( p->azVar ){
1554 p->nzVar = pParse->nzVar;
1555 memcpy(p->azVar, pParse->azVar, p->nzVar*sizeof(p->azVar[0]));
1556 memset(pParse->azVar, 0, pParse->nzVar*sizeof(pParse->azVar[0]));
1558 if( p->aMem ){
1559 p->aMem--; /* aMem[] goes from 1..nMem */
1560 p->nMem = nMem; /* not from 0..nMem-1 */
1561 for(n=1; n<=nMem; n++){
1562 p->aMem[n].flags = MEM_Invalid;
1563 p->aMem[n].db = db;
1566 p->explain = pParse->explain;
1567 sqlite3VdbeRewind(p);
1571 ** Close a VDBE cursor and release all the resources that cursor
1572 ** happens to hold.
1574 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
1575 if( pCx==0 ){
1576 return;
1578 sqlite3VdbeSorterClose(p->db, pCx);
1579 if( pCx->pBt ){
1580 sqlite3BtreeClose(pCx->pBt);
1581 /* The pCx->pCursor will be close automatically, if it exists, by
1582 ** the call above. */
1583 }else if( pCx->pCursor ){
1584 sqlite3BtreeCloseCursor(pCx->pCursor);
1586 #ifndef SQLITE_OMIT_VIRTUALTABLE
1587 if( pCx->pVtabCursor ){
1588 sqlite3_vtab_cursor *pVtabCursor = pCx->pVtabCursor;
1589 const sqlite3_module *pModule = pCx->pModule;
1590 p->inVtabMethod = 1;
1591 pModule->xClose(pVtabCursor);
1592 p->inVtabMethod = 0;
1594 #endif
1598 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
1599 ** is used, for example, when a trigger sub-program is halted to restore
1600 ** control to the main program.
1602 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
1603 Vdbe *v = pFrame->v;
1604 v->aOnceFlag = pFrame->aOnceFlag;
1605 v->nOnceFlag = pFrame->nOnceFlag;
1606 v->aOp = pFrame->aOp;
1607 v->nOp = pFrame->nOp;
1608 v->aMem = pFrame->aMem;
1609 v->nMem = pFrame->nMem;
1610 v->apCsr = pFrame->apCsr;
1611 v->nCursor = pFrame->nCursor;
1612 v->db->lastRowid = pFrame->lastRowid;
1613 v->nChange = pFrame->nChange;
1614 return pFrame->pc;
1618 ** Close all cursors.
1620 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
1621 ** cell array. This is necessary as the memory cell array may contain
1622 ** pointers to VdbeFrame objects, which may in turn contain pointers to
1623 ** open cursors.
1625 static void closeAllCursors(Vdbe *p){
1626 if( p->pFrame ){
1627 VdbeFrame *pFrame;
1628 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
1629 sqlite3VdbeFrameRestore(pFrame);
1631 p->pFrame = 0;
1632 p->nFrame = 0;
1634 if( p->apCsr ){
1635 int i;
1636 for(i=0; i<p->nCursor; i++){
1637 VdbeCursor *pC = p->apCsr[i];
1638 if( pC ){
1639 sqlite3VdbeFreeCursor(p, pC);
1640 p->apCsr[i] = 0;
1644 if( p->aMem ){
1645 releaseMemArray(&p->aMem[1], p->nMem);
1647 while( p->pDelFrame ){
1648 VdbeFrame *pDel = p->pDelFrame;
1649 p->pDelFrame = pDel->pParent;
1650 sqlite3VdbeFrameDelete(pDel);
1655 ** Clean up the VM after execution.
1657 ** This routine will automatically close any cursors, lists, and/or
1658 ** sorters that were left open. It also deletes the values of
1659 ** variables in the aVar[] array.
1661 static void Cleanup(Vdbe *p){
1662 sqlite3 *db = p->db;
1664 #ifdef SQLITE_DEBUG
1665 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
1666 ** Vdbe.aMem[] arrays have already been cleaned up. */
1667 int i;
1668 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
1669 if( p->aMem ){
1670 for(i=1; i<=p->nMem; i++) assert( p->aMem[i].flags==MEM_Invalid );
1672 #endif
1674 sqlite3DbFree(db, p->zErrMsg);
1675 p->zErrMsg = 0;
1676 p->pResultSet = 0;
1680 ** Set the number of result columns that will be returned by this SQL
1681 ** statement. This is now set at compile time, rather than during
1682 ** execution of the vdbe program so that sqlite3_column_count() can
1683 ** be called on an SQL statement before sqlite3_step().
1685 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
1686 Mem *pColName;
1687 int n;
1688 sqlite3 *db = p->db;
1690 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
1691 sqlite3DbFree(db, p->aColName);
1692 n = nResColumn*COLNAME_N;
1693 p->nResColumn = (u16)nResColumn;
1694 p->aColName = pColName = (Mem*)sqlite3DbMallocZero(db, sizeof(Mem)*n );
1695 if( p->aColName==0 ) return;
1696 while( n-- > 0 ){
1697 pColName->flags = MEM_Null;
1698 pColName->db = p->db;
1699 pColName++;
1704 ** Set the name of the idx'th column to be returned by the SQL statement.
1705 ** zName must be a pointer to a nul terminated string.
1707 ** This call must be made after a call to sqlite3VdbeSetNumCols().
1709 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
1710 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
1711 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
1713 int sqlite3VdbeSetColName(
1714 Vdbe *p, /* Vdbe being configured */
1715 int idx, /* Index of column zName applies to */
1716 int var, /* One of the COLNAME_* constants */
1717 const char *zName, /* Pointer to buffer containing name */
1718 void (*xDel)(void*) /* Memory management strategy for zName */
1720 int rc;
1721 Mem *pColName;
1722 assert( idx<p->nResColumn );
1723 assert( var<COLNAME_N );
1724 if( p->db->mallocFailed ){
1725 assert( !zName || xDel!=SQLITE_DYNAMIC );
1726 return SQLITE_NOMEM;
1728 assert( p->aColName!=0 );
1729 pColName = &(p->aColName[idx+var*p->nResColumn]);
1730 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
1731 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
1732 return rc;
1736 ** A read or write transaction may or may not be active on database handle
1737 ** db. If a transaction is active, commit it. If there is a
1738 ** write-transaction spanning more than one database file, this routine
1739 ** takes care of the master journal trickery.
1741 static int vdbeCommit(sqlite3 *db, Vdbe *p){
1742 int i;
1743 int nTrans = 0; /* Number of databases with an active write-transaction */
1744 int rc = SQLITE_OK;
1745 int needXcommit = 0;
1747 #ifdef SQLITE_OMIT_VIRTUALTABLE
1748 /* With this option, sqlite3VtabSync() is defined to be simply
1749 ** SQLITE_OK so p is not used.
1751 UNUSED_PARAMETER(p);
1752 #endif
1754 /* Before doing anything else, call the xSync() callback for any
1755 ** virtual module tables written in this transaction. This has to
1756 ** be done before determining whether a master journal file is
1757 ** required, as an xSync() callback may add an attached database
1758 ** to the transaction.
1760 rc = sqlite3VtabSync(db, &p->zErrMsg);
1762 /* This loop determines (a) if the commit hook should be invoked and
1763 ** (b) how many database files have open write transactions, not
1764 ** including the temp database. (b) is important because if more than
1765 ** one database file has an open write transaction, a master journal
1766 ** file is required for an atomic commit.
1768 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1769 Btree *pBt = db->aDb[i].pBt;
1770 if( sqlite3BtreeIsInTrans(pBt) ){
1771 needXcommit = 1;
1772 if( i!=1 ) nTrans++;
1773 rc = sqlite3PagerExclusiveLock(sqlite3BtreePager(pBt));
1776 if( rc!=SQLITE_OK ){
1777 return rc;
1780 /* If there are any write-transactions at all, invoke the commit hook */
1781 if( needXcommit && db->xCommitCallback ){
1782 rc = db->xCommitCallback(db->pCommitArg);
1783 if( rc ){
1784 return SQLITE_CONSTRAINT;
1788 /* The simple case - no more than one database file (not counting the
1789 ** TEMP database) has a transaction active. There is no need for the
1790 ** master-journal.
1792 ** If the return value of sqlite3BtreeGetFilename() is a zero length
1793 ** string, it means the main database is :memory: or a temp file. In
1794 ** that case we do not support atomic multi-file commits, so use the
1795 ** simple case then too.
1797 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
1798 || nTrans<=1
1800 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1801 Btree *pBt = db->aDb[i].pBt;
1802 if( pBt ){
1803 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
1807 /* Do the commit only if all databases successfully complete phase 1.
1808 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
1809 ** IO error while deleting or truncating a journal file. It is unlikely,
1810 ** but could happen. In this case abandon processing and return the error.
1812 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1813 Btree *pBt = db->aDb[i].pBt;
1814 if( pBt ){
1815 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
1818 if( rc==SQLITE_OK ){
1819 sqlite3VtabCommit(db);
1823 /* The complex case - There is a multi-file write-transaction active.
1824 ** This requires a master journal file to ensure the transaction is
1825 ** committed atomicly.
1827 #ifndef SQLITE_OMIT_DISKIO
1828 else{
1829 sqlite3_vfs *pVfs = db->pVfs;
1830 int needSync = 0;
1831 char *zMaster = 0; /* File-name for the master journal */
1832 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
1833 sqlite3_file *pMaster = 0;
1834 i64 offset = 0;
1835 int res;
1836 int retryCount = 0;
1837 int nMainFile;
1839 /* Select a master journal file name */
1840 nMainFile = sqlite3Strlen30(zMainFile);
1841 zMaster = sqlite3MPrintf(db, "%s-mjXXXXXX9XXz", zMainFile);
1842 if( zMaster==0 ) return SQLITE_NOMEM;
1843 do {
1844 u32 iRandom;
1845 if( retryCount ){
1846 if( retryCount>100 ){
1847 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zMaster);
1848 sqlite3OsDelete(pVfs, zMaster, 0);
1849 break;
1850 }else if( retryCount==1 ){
1851 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zMaster);
1854 retryCount++;
1855 sqlite3_randomness(sizeof(iRandom), &iRandom);
1856 sqlite3_snprintf(13, &zMaster[nMainFile], "-mj%06X9%02X",
1857 (iRandom>>8)&0xffffff, iRandom&0xff);
1858 /* The antipenultimate character of the master journal name must
1859 ** be "9" to avoid name collisions when using 8+3 filenames. */
1860 assert( zMaster[sqlite3Strlen30(zMaster)-3]=='9' );
1861 sqlite3FileSuffix3(zMainFile, zMaster);
1862 rc = sqlite3OsAccess(pVfs, zMaster, SQLITE_ACCESS_EXISTS, &res);
1863 }while( rc==SQLITE_OK && res );
1864 if( rc==SQLITE_OK ){
1865 /* Open the master journal. */
1866 rc = sqlite3OsOpenMalloc(pVfs, zMaster, &pMaster,
1867 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
1868 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_MASTER_JOURNAL, 0
1871 if( rc!=SQLITE_OK ){
1872 sqlite3DbFree(db, zMaster);
1873 return rc;
1876 /* Write the name of each database file in the transaction into the new
1877 ** master journal file. If an error occurs at this point close
1878 ** and delete the master journal file. All the individual journal files
1879 ** still have 'null' as the master journal pointer, so they will roll
1880 ** back independently if a failure occurs.
1882 for(i=0; i<db->nDb; i++){
1883 Btree *pBt = db->aDb[i].pBt;
1884 if( sqlite3BtreeIsInTrans(pBt) ){
1885 char const *zFile = sqlite3BtreeGetJournalname(pBt);
1886 if( zFile==0 ){
1887 continue; /* Ignore TEMP and :memory: databases */
1889 assert( zFile[0]!=0 );
1890 if( !needSync && !sqlite3BtreeSyncDisabled(pBt) ){
1891 needSync = 1;
1893 rc = sqlite3OsWrite(pMaster, zFile, sqlite3Strlen30(zFile)+1, offset);
1894 offset += sqlite3Strlen30(zFile)+1;
1895 if( rc!=SQLITE_OK ){
1896 sqlite3OsCloseFree(pMaster);
1897 sqlite3OsDelete(pVfs, zMaster, 0);
1898 sqlite3DbFree(db, zMaster);
1899 return rc;
1904 /* Sync the master journal file. If the IOCAP_SEQUENTIAL device
1905 ** flag is set this is not required.
1907 if( needSync
1908 && 0==(sqlite3OsDeviceCharacteristics(pMaster)&SQLITE_IOCAP_SEQUENTIAL)
1909 && SQLITE_OK!=(rc = sqlite3OsSync(pMaster, SQLITE_SYNC_NORMAL))
1911 sqlite3OsCloseFree(pMaster);
1912 sqlite3OsDelete(pVfs, zMaster, 0);
1913 sqlite3DbFree(db, zMaster);
1914 return rc;
1917 /* Sync all the db files involved in the transaction. The same call
1918 ** sets the master journal pointer in each individual journal. If
1919 ** an error occurs here, do not delete the master journal file.
1921 ** If the error occurs during the first call to
1922 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
1923 ** master journal file will be orphaned. But we cannot delete it,
1924 ** in case the master journal file name was written into the journal
1925 ** file before the failure occurred.
1927 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
1928 Btree *pBt = db->aDb[i].pBt;
1929 if( pBt ){
1930 rc = sqlite3BtreeCommitPhaseOne(pBt, zMaster);
1933 sqlite3OsCloseFree(pMaster);
1934 assert( rc!=SQLITE_BUSY );
1935 if( rc!=SQLITE_OK ){
1936 sqlite3DbFree(db, zMaster);
1937 return rc;
1940 /* Delete the master journal file. This commits the transaction. After
1941 ** doing this the directory is synced again before any individual
1942 ** transaction files are deleted.
1944 rc = sqlite3OsDelete(pVfs, zMaster, 1);
1945 sqlite3DbFree(db, zMaster);
1946 zMaster = 0;
1947 if( rc ){
1948 return rc;
1951 /* All files and directories have already been synced, so the following
1952 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
1953 ** deleting or truncating journals. If something goes wrong while
1954 ** this is happening we don't really care. The integrity of the
1955 ** transaction is already guaranteed, but some stray 'cold' journals
1956 ** may be lying around. Returning an error code won't help matters.
1958 disable_simulated_io_errors();
1959 sqlite3BeginBenignMalloc();
1960 for(i=0; i<db->nDb; i++){
1961 Btree *pBt = db->aDb[i].pBt;
1962 if( pBt ){
1963 sqlite3BtreeCommitPhaseTwo(pBt, 1);
1966 sqlite3EndBenignMalloc();
1967 enable_simulated_io_errors();
1969 sqlite3VtabCommit(db);
1971 #endif
1973 return rc;
1977 ** This routine checks that the sqlite3.activeVdbeCnt count variable
1978 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
1979 ** currently active. An assertion fails if the two counts do not match.
1980 ** This is an internal self-check only - it is not an essential processing
1981 ** step.
1983 ** This is a no-op if NDEBUG is defined.
1985 #ifndef NDEBUG
1986 static void checkActiveVdbeCnt(sqlite3 *db){
1987 Vdbe *p;
1988 int cnt = 0;
1989 int nWrite = 0;
1990 p = db->pVdbe;
1991 while( p ){
1992 if( p->magic==VDBE_MAGIC_RUN && p->pc>=0 ){
1993 cnt++;
1994 if( p->readOnly==0 ) nWrite++;
1996 p = p->pNext;
1998 assert( cnt==db->activeVdbeCnt );
1999 assert( nWrite==db->writeVdbeCnt );
2001 #else
2002 #define checkActiveVdbeCnt(x)
2003 #endif
2006 ** If the Vdbe passed as the first argument opened a statement-transaction,
2007 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
2008 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
2009 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
2010 ** statement transaction is commtted.
2012 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
2013 ** Otherwise SQLITE_OK.
2015 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
2016 sqlite3 *const db = p->db;
2017 int rc = SQLITE_OK;
2019 /* If p->iStatement is greater than zero, then this Vdbe opened a
2020 ** statement transaction that should be closed here. The only exception
2021 ** is that an IO error may have occured, causing an emergency rollback.
2022 ** In this case (db->nStatement==0), and there is nothing to do.
2024 if( db->nStatement && p->iStatement ){
2025 int i;
2026 const int iSavepoint = p->iStatement-1;
2028 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
2029 assert( db->nStatement>0 );
2030 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
2032 for(i=0; i<db->nDb; i++){
2033 int rc2 = SQLITE_OK;
2034 Btree *pBt = db->aDb[i].pBt;
2035 if( pBt ){
2036 if( eOp==SAVEPOINT_ROLLBACK ){
2037 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
2039 if( rc2==SQLITE_OK ){
2040 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
2042 if( rc==SQLITE_OK ){
2043 rc = rc2;
2047 db->nStatement--;
2048 p->iStatement = 0;
2050 if( rc==SQLITE_OK ){
2051 if( eOp==SAVEPOINT_ROLLBACK ){
2052 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
2054 if( rc==SQLITE_OK ){
2055 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
2059 /* If the statement transaction is being rolled back, also restore the
2060 ** database handles deferred constraint counter to the value it had when
2061 ** the statement transaction was opened. */
2062 if( eOp==SAVEPOINT_ROLLBACK ){
2063 db->nDeferredCons = p->nStmtDefCons;
2066 return rc;
2070 ** This function is called when a transaction opened by the database
2071 ** handle associated with the VM passed as an argument is about to be
2072 ** committed. If there are outstanding deferred foreign key constraint
2073 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
2075 ** If there are outstanding FK violations and this function returns
2076 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT and write
2077 ** an error message to it. Then return SQLITE_ERROR.
2079 #ifndef SQLITE_OMIT_FOREIGN_KEY
2080 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
2081 sqlite3 *db = p->db;
2082 if( (deferred && db->nDeferredCons>0) || (!deferred && p->nFkConstraint>0) ){
2083 p->rc = SQLITE_CONSTRAINT;
2084 p->errorAction = OE_Abort;
2085 sqlite3SetString(&p->zErrMsg, db, "foreign key constraint failed");
2086 return SQLITE_ERROR;
2088 return SQLITE_OK;
2090 #endif
2093 ** This routine is called the when a VDBE tries to halt. If the VDBE
2094 ** has made changes and is in autocommit mode, then commit those
2095 ** changes. If a rollback is needed, then do the rollback.
2097 ** This routine is the only way to move the state of a VM from
2098 ** SQLITE_MAGIC_RUN to SQLITE_MAGIC_HALT. It is harmless to
2099 ** call this on a VM that is in the SQLITE_MAGIC_HALT state.
2101 ** Return an error code. If the commit could not complete because of
2102 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
2103 ** means the close did not happen and needs to be repeated.
2105 int sqlite3VdbeHalt(Vdbe *p){
2106 int rc; /* Used to store transient return codes */
2107 sqlite3 *db = p->db;
2109 /* This function contains the logic that determines if a statement or
2110 ** transaction will be committed or rolled back as a result of the
2111 ** execution of this virtual machine.
2113 ** If any of the following errors occur:
2115 ** SQLITE_NOMEM
2116 ** SQLITE_IOERR
2117 ** SQLITE_FULL
2118 ** SQLITE_INTERRUPT
2120 ** Then the internal cache might have been left in an inconsistent
2121 ** state. We need to rollback the statement transaction, if there is
2122 ** one, or the complete transaction if there is no statement transaction.
2125 if( p->db->mallocFailed ){
2126 p->rc = SQLITE_NOMEM;
2128 if( p->aOnceFlag ) memset(p->aOnceFlag, 0, p->nOnceFlag);
2129 closeAllCursors(p);
2130 if( p->magic!=VDBE_MAGIC_RUN ){
2131 return SQLITE_OK;
2133 checkActiveVdbeCnt(db);
2135 /* No commit or rollback needed if the program never started */
2136 if( p->pc>=0 ){
2137 int mrc; /* Primary error code from p->rc */
2138 int eStatementOp = 0;
2139 int isSpecialError; /* Set to true if a 'special' error */
2141 /* Lock all btrees used by the statement */
2142 sqlite3VdbeEnter(p);
2144 /* Check for one of the special errors */
2145 mrc = p->rc & 0xff;
2146 assert( p->rc!=SQLITE_IOERR_BLOCKED ); /* This error no longer exists */
2147 isSpecialError = mrc==SQLITE_NOMEM || mrc==SQLITE_IOERR
2148 || mrc==SQLITE_INTERRUPT || mrc==SQLITE_FULL;
2149 if( isSpecialError ){
2150 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
2151 ** no rollback is necessary. Otherwise, at least a savepoint
2152 ** transaction must be rolled back to restore the database to a
2153 ** consistent state.
2155 ** Even if the statement is read-only, it is important to perform
2156 ** a statement or transaction rollback operation. If the error
2157 ** occured while writing to the journal, sub-journal or database
2158 ** file as part of an effort to free up cache space (see function
2159 ** pagerStress() in pager.c), the rollback is required to restore
2160 ** the pager to a consistent state.
2162 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
2163 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
2164 eStatementOp = SAVEPOINT_ROLLBACK;
2165 }else{
2166 /* We are forced to roll back the active transaction. Before doing
2167 ** so, abort any other statements this handle currently has active.
2169 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2170 sqlite3CloseSavepoints(db);
2171 db->autoCommit = 1;
2176 /* Check for immediate foreign key violations. */
2177 if( p->rc==SQLITE_OK ){
2178 sqlite3VdbeCheckFk(p, 0);
2181 /* If the auto-commit flag is set and this is the only active writer
2182 ** VM, then we do either a commit or rollback of the current transaction.
2184 ** Note: This block also runs if one of the special errors handled
2185 ** above has occurred.
2187 if( !sqlite3VtabInSync(db)
2188 && db->autoCommit
2189 && db->writeVdbeCnt==(p->readOnly==0)
2191 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
2192 rc = sqlite3VdbeCheckFk(p, 1);
2193 if( rc!=SQLITE_OK ){
2194 if( NEVER(p->readOnly) ){
2195 sqlite3VdbeLeave(p);
2196 return SQLITE_ERROR;
2198 rc = SQLITE_CONSTRAINT;
2199 }else{
2200 /* The auto-commit flag is true, the vdbe program was successful
2201 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
2202 ** key constraints to hold up the transaction. This means a commit
2203 ** is required. */
2204 rc = vdbeCommit(db, p);
2206 if( rc==SQLITE_BUSY && p->readOnly ){
2207 sqlite3VdbeLeave(p);
2208 return SQLITE_BUSY;
2209 }else if( rc!=SQLITE_OK ){
2210 p->rc = rc;
2211 sqlite3RollbackAll(db, SQLITE_OK);
2212 }else{
2213 db->nDeferredCons = 0;
2214 sqlite3CommitInternalChanges(db);
2216 }else{
2217 sqlite3RollbackAll(db, SQLITE_OK);
2219 db->nStatement = 0;
2220 }else if( eStatementOp==0 ){
2221 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
2222 eStatementOp = SAVEPOINT_RELEASE;
2223 }else if( p->errorAction==OE_Abort ){
2224 eStatementOp = SAVEPOINT_ROLLBACK;
2225 }else{
2226 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2227 sqlite3CloseSavepoints(db);
2228 db->autoCommit = 1;
2232 /* If eStatementOp is non-zero, then a statement transaction needs to
2233 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
2234 ** do so. If this operation returns an error, and the current statement
2235 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
2236 ** current statement error code.
2238 if( eStatementOp ){
2239 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
2240 if( rc ){
2241 if( p->rc==SQLITE_OK || p->rc==SQLITE_CONSTRAINT ){
2242 p->rc = rc;
2243 sqlite3DbFree(db, p->zErrMsg);
2244 p->zErrMsg = 0;
2246 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
2247 sqlite3CloseSavepoints(db);
2248 db->autoCommit = 1;
2252 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
2253 ** has been rolled back, update the database connection change-counter.
2255 if( p->changeCntOn ){
2256 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
2257 sqlite3VdbeSetChanges(db, p->nChange);
2258 }else{
2259 sqlite3VdbeSetChanges(db, 0);
2261 p->nChange = 0;
2264 /* Release the locks */
2265 sqlite3VdbeLeave(p);
2268 /* We have successfully halted and closed the VM. Record this fact. */
2269 if( p->pc>=0 ){
2270 db->activeVdbeCnt--;
2271 if( !p->readOnly ){
2272 db->writeVdbeCnt--;
2274 assert( db->activeVdbeCnt>=db->writeVdbeCnt );
2276 p->magic = VDBE_MAGIC_HALT;
2277 checkActiveVdbeCnt(db);
2278 if( p->db->mallocFailed ){
2279 p->rc = SQLITE_NOMEM;
2282 /* If the auto-commit flag is set to true, then any locks that were held
2283 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
2284 ** to invoke any required unlock-notify callbacks.
2286 if( db->autoCommit ){
2287 sqlite3ConnectionUnlocked(db);
2290 assert( db->activeVdbeCnt>0 || db->autoCommit==0 || db->nStatement==0 );
2291 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
2296 ** Each VDBE holds the result of the most recent sqlite3_step() call
2297 ** in p->rc. This routine sets that result back to SQLITE_OK.
2299 void sqlite3VdbeResetStepResult(Vdbe *p){
2300 p->rc = SQLITE_OK;
2304 ** Copy the error code and error message belonging to the VDBE passed
2305 ** as the first argument to its database handle (so that they will be
2306 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
2308 ** This function does not clear the VDBE error code or message, just
2309 ** copies them to the database handle.
2311 int sqlite3VdbeTransferError(Vdbe *p){
2312 sqlite3 *db = p->db;
2313 int rc = p->rc;
2314 if( p->zErrMsg ){
2315 u8 mallocFailed = db->mallocFailed;
2316 sqlite3BeginBenignMalloc();
2317 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2318 sqlite3EndBenignMalloc();
2319 db->mallocFailed = mallocFailed;
2320 db->errCode = rc;
2321 }else{
2322 sqlite3Error(db, rc, 0);
2324 return rc;
2328 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
2329 ** Write any error messages into *pzErrMsg. Return the result code.
2331 ** After this routine is run, the VDBE should be ready to be executed
2332 ** again.
2334 ** To look at it another way, this routine resets the state of the
2335 ** virtual machine from VDBE_MAGIC_RUN or VDBE_MAGIC_HALT back to
2336 ** VDBE_MAGIC_INIT.
2338 int sqlite3VdbeReset(Vdbe *p){
2339 sqlite3 *db;
2340 db = p->db;
2342 /* If the VM did not run to completion or if it encountered an
2343 ** error, then it might not have been halted properly. So halt
2344 ** it now.
2346 sqlite3VdbeHalt(p);
2348 /* If the VDBE has be run even partially, then transfer the error code
2349 ** and error message from the VDBE into the main database structure. But
2350 ** if the VDBE has just been set to run but has not actually executed any
2351 ** instructions yet, leave the main database error information unchanged.
2353 if( p->pc>=0 ){
2354 sqlite3VdbeTransferError(p);
2355 sqlite3DbFree(db, p->zErrMsg);
2356 p->zErrMsg = 0;
2357 if( p->runOnlyOnce ) p->expired = 1;
2358 }else if( p->rc && p->expired ){
2359 /* The expired flag was set on the VDBE before the first call
2360 ** to sqlite3_step(). For consistency (since sqlite3_step() was
2361 ** called), set the database error in this case as well.
2363 sqlite3Error(db, p->rc, 0);
2364 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
2365 sqlite3DbFree(db, p->zErrMsg);
2366 p->zErrMsg = 0;
2369 /* Reclaim all memory used by the VDBE
2371 Cleanup(p);
2373 /* Save profiling information from this VDBE run.
2375 #ifdef VDBE_PROFILE
2377 FILE *out = fopen("vdbe_profile.out", "a");
2378 if( out ){
2379 int i;
2380 fprintf(out, "---- ");
2381 for(i=0; i<p->nOp; i++){
2382 fprintf(out, "%02x", p->aOp[i].opcode);
2384 fprintf(out, "\n");
2385 for(i=0; i<p->nOp; i++){
2386 fprintf(out, "%6d %10lld %8lld ",
2387 p->aOp[i].cnt,
2388 p->aOp[i].cycles,
2389 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
2391 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
2393 fclose(out);
2396 #endif
2397 p->magic = VDBE_MAGIC_INIT;
2398 return p->rc & db->errMask;
2402 ** Clean up and delete a VDBE after execution. Return an integer which is
2403 ** the result code. Write any error message text into *pzErrMsg.
2405 int sqlite3VdbeFinalize(Vdbe *p){
2406 int rc = SQLITE_OK;
2407 if( p->magic==VDBE_MAGIC_RUN || p->magic==VDBE_MAGIC_HALT ){
2408 rc = sqlite3VdbeReset(p);
2409 assert( (rc & p->db->errMask)==rc );
2411 sqlite3VdbeDelete(p);
2412 return rc;
2416 ** Call the destructor for each auxdata entry in pVdbeFunc for which
2417 ** the corresponding bit in mask is clear. Auxdata entries beyond 31
2418 ** are always destroyed. To destroy all auxdata entries, call this
2419 ** routine with mask==0.
2421 void sqlite3VdbeDeleteAuxData(VdbeFunc *pVdbeFunc, int mask){
2422 int i;
2423 for(i=0; i<pVdbeFunc->nAux; i++){
2424 struct AuxData *pAux = &pVdbeFunc->apAux[i];
2425 if( (i>31 || !(mask&(((u32)1)<<i))) && pAux->pAux ){
2426 if( pAux->xDelete ){
2427 pAux->xDelete(pAux->pAux);
2429 pAux->pAux = 0;
2435 ** Free all memory associated with the Vdbe passed as the second argument.
2436 ** The difference between this function and sqlite3VdbeDelete() is that
2437 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
2438 ** the database connection.
2440 void sqlite3VdbeDeleteObject(sqlite3 *db, Vdbe *p){
2441 SubProgram *pSub, *pNext;
2442 int i;
2443 assert( p->db==0 || p->db==db );
2444 releaseMemArray(p->aVar, p->nVar);
2445 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2446 for(pSub=p->pProgram; pSub; pSub=pNext){
2447 pNext = pSub->pNext;
2448 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
2449 sqlite3DbFree(db, pSub);
2451 for(i=p->nzVar-1; i>=0; i--) sqlite3DbFree(db, p->azVar[i]);
2452 vdbeFreeOpArray(db, p->aOp, p->nOp);
2453 sqlite3DbFree(db, p->aLabel);
2454 sqlite3DbFree(db, p->aColName);
2455 sqlite3DbFree(db, p->zSql);
2456 sqlite3DbFree(db, p->pFree);
2457 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
2458 sqlite3DbFree(db, p->zExplain);
2459 sqlite3DbFree(db, p->pExplain);
2460 #endif
2461 sqlite3DbFree(db, p);
2465 ** Delete an entire VDBE.
2467 void sqlite3VdbeDelete(Vdbe *p){
2468 sqlite3 *db;
2470 if( NEVER(p==0) ) return;
2471 db = p->db;
2472 if( p->pPrev ){
2473 p->pPrev->pNext = p->pNext;
2474 }else{
2475 assert( db->pVdbe==p );
2476 db->pVdbe = p->pNext;
2478 if( p->pNext ){
2479 p->pNext->pPrev = p->pPrev;
2481 p->magic = VDBE_MAGIC_DEAD;
2482 p->db = 0;
2483 sqlite3VdbeDeleteObject(db, p);
2487 ** Make sure the cursor p is ready to read or write the row to which it
2488 ** was last positioned. Return an error code if an OOM fault or I/O error
2489 ** prevents us from positioning the cursor to its correct position.
2491 ** If a MoveTo operation is pending on the given cursor, then do that
2492 ** MoveTo now. If no move is pending, check to see if the row has been
2493 ** deleted out from under the cursor and if it has, mark the row as
2494 ** a NULL row.
2496 ** If the cursor is already pointing to the correct row and that row has
2497 ** not been deleted out from under the cursor, then this routine is a no-op.
2499 int sqlite3VdbeCursorMoveto(VdbeCursor *p){
2500 if( p->deferredMoveto ){
2501 int res, rc;
2502 #ifdef SQLITE_TEST
2503 extern int sqlite3_search_count;
2504 #endif
2505 assert( p->isTable );
2506 rc = sqlite3BtreeMovetoUnpacked(p->pCursor, 0, p->movetoTarget, 0, &res);
2507 if( rc ) return rc;
2508 p->lastRowid = p->movetoTarget;
2509 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
2510 p->rowidIsValid = 1;
2511 #ifdef SQLITE_TEST
2512 sqlite3_search_count++;
2513 #endif
2514 p->deferredMoveto = 0;
2515 p->cacheStatus = CACHE_STALE;
2516 }else if( ALWAYS(p->pCursor) ){
2517 int hasMoved;
2518 int rc = sqlite3BtreeCursorHasMoved(p->pCursor, &hasMoved);
2519 if( rc ) return rc;
2520 if( hasMoved ){
2521 p->cacheStatus = CACHE_STALE;
2522 p->nullRow = 1;
2525 return SQLITE_OK;
2529 ** The following functions:
2531 ** sqlite3VdbeSerialType()
2532 ** sqlite3VdbeSerialTypeLen()
2533 ** sqlite3VdbeSerialLen()
2534 ** sqlite3VdbeSerialPut()
2535 ** sqlite3VdbeSerialGet()
2537 ** encapsulate the code that serializes values for storage in SQLite
2538 ** data and index records. Each serialized value consists of a
2539 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
2540 ** integer, stored as a varint.
2542 ** In an SQLite index record, the serial type is stored directly before
2543 ** the blob of data that it corresponds to. In a table record, all serial
2544 ** types are stored at the start of the record, and the blobs of data at
2545 ** the end. Hence these functions allow the caller to handle the
2546 ** serial-type and data blob seperately.
2548 ** The following table describes the various storage classes for data:
2550 ** serial type bytes of data type
2551 ** -------------- --------------- ---------------
2552 ** 0 0 NULL
2553 ** 1 1 signed integer
2554 ** 2 2 signed integer
2555 ** 3 3 signed integer
2556 ** 4 4 signed integer
2557 ** 5 6 signed integer
2558 ** 6 8 signed integer
2559 ** 7 8 IEEE float
2560 ** 8 0 Integer constant 0
2561 ** 9 0 Integer constant 1
2562 ** 10,11 reserved for expansion
2563 ** N>=12 and even (N-12)/2 BLOB
2564 ** N>=13 and odd (N-13)/2 text
2566 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
2567 ** of SQLite will not understand those serial types.
2571 ** Return the serial-type for the value stored in pMem.
2573 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format){
2574 int flags = pMem->flags;
2575 int n;
2577 if( flags&MEM_Null ){
2578 return 0;
2580 if( flags&MEM_Int ){
2581 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
2582 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
2583 i64 i = pMem->u.i;
2584 u64 u;
2585 if( file_format>=4 && (i&1)==i ){
2586 return 8+(u32)i;
2588 if( i<0 ){
2589 if( i<(-MAX_6BYTE) ) return 6;
2590 /* Previous test prevents: u = -(-9223372036854775808) */
2591 u = -i;
2592 }else{
2593 u = i;
2595 if( u<=127 ) return 1;
2596 if( u<=32767 ) return 2;
2597 if( u<=8388607 ) return 3;
2598 if( u<=2147483647 ) return 4;
2599 if( u<=MAX_6BYTE ) return 5;
2600 return 6;
2602 if( flags&MEM_Real ){
2603 return 7;
2605 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
2606 n = pMem->n;
2607 if( flags & MEM_Zero ){
2608 n += pMem->u.nZero;
2610 assert( n>=0 );
2611 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
2615 ** Return the length of the data corresponding to the supplied serial-type.
2617 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
2618 if( serial_type>=12 ){
2619 return (serial_type-12)/2;
2620 }else{
2621 static const u8 aSize[] = { 0, 1, 2, 3, 4, 6, 8, 8, 0, 0, 0, 0 };
2622 return aSize[serial_type];
2627 ** If we are on an architecture with mixed-endian floating
2628 ** points (ex: ARM7) then swap the lower 4 bytes with the
2629 ** upper 4 bytes. Return the result.
2631 ** For most architectures, this is a no-op.
2633 ** (later): It is reported to me that the mixed-endian problem
2634 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
2635 ** that early versions of GCC stored the two words of a 64-bit
2636 ** float in the wrong order. And that error has been propagated
2637 ** ever since. The blame is not necessarily with GCC, though.
2638 ** GCC might have just copying the problem from a prior compiler.
2639 ** I am also told that newer versions of GCC that follow a different
2640 ** ABI get the byte order right.
2642 ** Developers using SQLite on an ARM7 should compile and run their
2643 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
2644 ** enabled, some asserts below will ensure that the byte order of
2645 ** floating point values is correct.
2647 ** (2007-08-30) Frank van Vugt has studied this problem closely
2648 ** and has send his findings to the SQLite developers. Frank
2649 ** writes that some Linux kernels offer floating point hardware
2650 ** emulation that uses only 32-bit mantissas instead of a full
2651 ** 48-bits as required by the IEEE standard. (This is the
2652 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
2653 ** byte swapping becomes very complicated. To avoid problems,
2654 ** the necessary byte swapping is carried out using a 64-bit integer
2655 ** rather than a 64-bit float. Frank assures us that the code here
2656 ** works for him. We, the developers, have no way to independently
2657 ** verify this, but Frank seems to know what he is talking about
2658 ** so we trust him.
2660 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
2661 static u64 floatSwap(u64 in){
2662 union {
2663 u64 r;
2664 u32 i[2];
2665 } u;
2666 u32 t;
2668 u.r = in;
2669 t = u.i[0];
2670 u.i[0] = u.i[1];
2671 u.i[1] = t;
2672 return u.r;
2674 # define swapMixedEndianFloat(X) X = floatSwap(X)
2675 #else
2676 # define swapMixedEndianFloat(X)
2677 #endif
2680 ** Write the serialized data blob for the value stored in pMem into
2681 ** buf. It is assumed that the caller has allocated sufficient space.
2682 ** Return the number of bytes written.
2684 ** nBuf is the amount of space left in buf[]. nBuf must always be
2685 ** large enough to hold the entire field. Except, if the field is
2686 ** a blob with a zero-filled tail, then buf[] might be just the right
2687 ** size to hold everything except for the zero-filled tail. If buf[]
2688 ** is only big enough to hold the non-zero prefix, then only write that
2689 ** prefix into buf[]. But if buf[] is large enough to hold both the
2690 ** prefix and the tail then write the prefix and set the tail to all
2691 ** zeros.
2693 ** Return the number of bytes actually written into buf[]. The number
2694 ** of bytes in the zero-filled tail is included in the return value only
2695 ** if those bytes were zeroed in buf[].
2697 u32 sqlite3VdbeSerialPut(u8 *buf, int nBuf, Mem *pMem, int file_format){
2698 u32 serial_type = sqlite3VdbeSerialType(pMem, file_format);
2699 u32 len;
2701 /* Integer and Real */
2702 if( serial_type<=7 && serial_type>0 ){
2703 u64 v;
2704 u32 i;
2705 if( serial_type==7 ){
2706 assert( sizeof(v)==sizeof(pMem->r) );
2707 memcpy(&v, &pMem->r, sizeof(v));
2708 swapMixedEndianFloat(v);
2709 }else{
2710 v = pMem->u.i;
2712 len = i = sqlite3VdbeSerialTypeLen(serial_type);
2713 assert( len<=(u32)nBuf );
2714 while( i-- ){
2715 buf[i] = (u8)(v&0xFF);
2716 v >>= 8;
2718 return len;
2721 /* String or blob */
2722 if( serial_type>=12 ){
2723 assert( pMem->n + ((pMem->flags & MEM_Zero)?pMem->u.nZero:0)
2724 == (int)sqlite3VdbeSerialTypeLen(serial_type) );
2725 assert( pMem->n<=nBuf );
2726 len = pMem->n;
2727 memcpy(buf, pMem->z, len);
2728 if( pMem->flags & MEM_Zero ){
2729 len += pMem->u.nZero;
2730 assert( nBuf>=0 );
2731 if( len > (u32)nBuf ){
2732 len = (u32)nBuf;
2734 memset(&buf[pMem->n], 0, len-pMem->n);
2736 return len;
2739 /* NULL or constants 0 or 1 */
2740 return 0;
2744 ** Deserialize the data blob pointed to by buf as serial type serial_type
2745 ** and store the result in pMem. Return the number of bytes read.
2747 u32 sqlite3VdbeSerialGet(
2748 const unsigned char *buf, /* Buffer to deserialize from */
2749 u32 serial_type, /* Serial type to deserialize */
2750 Mem *pMem /* Memory cell to write value into */
2752 switch( serial_type ){
2753 case 10: /* Reserved for future use */
2754 case 11: /* Reserved for future use */
2755 case 0: { /* NULL */
2756 pMem->flags = MEM_Null;
2757 break;
2759 case 1: { /* 1-byte signed integer */
2760 pMem->u.i = (signed char)buf[0];
2761 pMem->flags = MEM_Int;
2762 return 1;
2764 case 2: { /* 2-byte signed integer */
2765 pMem->u.i = (((signed char)buf[0])<<8) | buf[1];
2766 pMem->flags = MEM_Int;
2767 return 2;
2769 case 3: { /* 3-byte signed integer */
2770 pMem->u.i = (((signed char)buf[0])<<16) | (buf[1]<<8) | buf[2];
2771 pMem->flags = MEM_Int;
2772 return 3;
2774 case 4: { /* 4-byte signed integer */
2775 pMem->u.i = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
2776 pMem->flags = MEM_Int;
2777 return 4;
2779 case 5: { /* 6-byte signed integer */
2780 u64 x = (((signed char)buf[0])<<8) | buf[1];
2781 u32 y = (buf[2]<<24) | (buf[3]<<16) | (buf[4]<<8) | buf[5];
2782 x = (x<<32) | y;
2783 pMem->u.i = *(i64*)&x;
2784 pMem->flags = MEM_Int;
2785 return 6;
2787 case 6: /* 8-byte signed integer */
2788 case 7: { /* IEEE floating point */
2789 u64 x;
2790 u32 y;
2791 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
2792 /* Verify that integers and floating point values use the same
2793 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
2794 ** defined that 64-bit floating point values really are mixed
2795 ** endian.
2797 static const u64 t1 = ((u64)0x3ff00000)<<32;
2798 static const double r1 = 1.0;
2799 u64 t2 = t1;
2800 swapMixedEndianFloat(t2);
2801 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
2802 #endif
2804 x = (buf[0]<<24) | (buf[1]<<16) | (buf[2]<<8) | buf[3];
2805 y = (buf[4]<<24) | (buf[5]<<16) | (buf[6]<<8) | buf[7];
2806 x = (x<<32) | y;
2807 if( serial_type==6 ){
2808 pMem->u.i = *(i64*)&x;
2809 pMem->flags = MEM_Int;
2810 }else{
2811 assert( sizeof(x)==8 && sizeof(pMem->r)==8 );
2812 swapMixedEndianFloat(x);
2813 memcpy(&pMem->r, &x, sizeof(x));
2814 pMem->flags = sqlite3IsNaN(pMem->r) ? MEM_Null : MEM_Real;
2816 return 8;
2818 case 8: /* Integer 0 */
2819 case 9: { /* Integer 1 */
2820 pMem->u.i = serial_type-8;
2821 pMem->flags = MEM_Int;
2822 return 0;
2824 default: {
2825 u32 len = (serial_type-12)/2;
2826 pMem->z = (char *)buf;
2827 pMem->n = len;
2828 pMem->xDel = 0;
2829 if( serial_type&0x01 ){
2830 pMem->flags = MEM_Str | MEM_Ephem;
2831 }else{
2832 pMem->flags = MEM_Blob | MEM_Ephem;
2834 return len;
2837 return 0;
2841 ** This routine is used to allocate sufficient space for an UnpackedRecord
2842 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
2843 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
2845 ** The space is either allocated using sqlite3DbMallocRaw() or from within
2846 ** the unaligned buffer passed via the second and third arguments (presumably
2847 ** stack space). If the former, then *ppFree is set to a pointer that should
2848 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
2849 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
2850 ** before returning.
2852 ** If an OOM error occurs, NULL is returned.
2854 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
2855 KeyInfo *pKeyInfo, /* Description of the record */
2856 char *pSpace, /* Unaligned space available */
2857 int szSpace, /* Size of pSpace[] in bytes */
2858 char **ppFree /* OUT: Caller should free this pointer */
2860 UnpackedRecord *p; /* Unpacked record to return */
2861 int nOff; /* Increment pSpace by nOff to align it */
2862 int nByte; /* Number of bytes required for *p */
2864 /* We want to shift the pointer pSpace up such that it is 8-byte aligned.
2865 ** Thus, we need to calculate a value, nOff, between 0 and 7, to shift
2866 ** it by. If pSpace is already 8-byte aligned, nOff should be zero.
2868 nOff = (8 - (SQLITE_PTR_TO_INT(pSpace) & 7)) & 7;
2869 nByte = ROUND8(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nField+1);
2870 if( nByte>szSpace+nOff ){
2871 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
2872 *ppFree = (char *)p;
2873 if( !p ) return 0;
2874 }else{
2875 p = (UnpackedRecord*)&pSpace[nOff];
2876 *ppFree = 0;
2879 p->aMem = (Mem*)&((char*)p)[ROUND8(sizeof(UnpackedRecord))];
2880 p->pKeyInfo = pKeyInfo;
2881 p->nField = pKeyInfo->nField + 1;
2882 return p;
2886 ** Given the nKey-byte encoding of a record in pKey[], populate the
2887 ** UnpackedRecord structure indicated by the fourth argument with the
2888 ** contents of the decoded record.
2890 void sqlite3VdbeRecordUnpack(
2891 KeyInfo *pKeyInfo, /* Information about the record format */
2892 int nKey, /* Size of the binary record */
2893 const void *pKey, /* The binary record */
2894 UnpackedRecord *p /* Populate this structure before returning. */
2896 const unsigned char *aKey = (const unsigned char *)pKey;
2897 int d;
2898 u32 idx; /* Offset in aKey[] to read from */
2899 u16 u; /* Unsigned loop counter */
2900 u32 szHdr;
2901 Mem *pMem = p->aMem;
2903 p->flags = 0;
2904 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
2905 idx = getVarint32(aKey, szHdr);
2906 d = szHdr;
2907 u = 0;
2908 while( idx<szHdr && u<p->nField && d<=nKey ){
2909 u32 serial_type;
2911 idx += getVarint32(&aKey[idx], serial_type);
2912 pMem->enc = pKeyInfo->enc;
2913 pMem->db = pKeyInfo->db;
2914 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
2915 pMem->zMalloc = 0;
2916 d += sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
2917 pMem++;
2918 u++;
2920 assert( u<=pKeyInfo->nField + 1 );
2921 p->nField = u;
2925 ** This function compares the two table rows or index records
2926 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
2927 ** or positive integer if key1 is less than, equal to or
2928 ** greater than key2. The {nKey1, pKey1} key must be a blob
2929 ** created by th OP_MakeRecord opcode of the VDBE. The pPKey2
2930 ** key must be a parsed key such as obtained from
2931 ** sqlite3VdbeParseRecord.
2933 ** Key1 and Key2 do not have to contain the same number of fields.
2934 ** The key with fewer fields is usually compares less than the
2935 ** longer key. However if the UNPACKED_INCRKEY flags in pPKey2 is set
2936 ** and the common prefixes are equal, then key1 is less than key2.
2937 ** Or if the UNPACKED_MATCH_PREFIX flag is set and the prefixes are
2938 ** equal, then the keys are considered to be equal and
2939 ** the parts beyond the common prefix are ignored.
2941 int sqlite3VdbeRecordCompare(
2942 int nKey1, const void *pKey1, /* Left key */
2943 UnpackedRecord *pPKey2 /* Right key */
2945 int d1; /* Offset into aKey[] of next data element */
2946 u32 idx1; /* Offset into aKey[] of next header element */
2947 u32 szHdr1; /* Number of bytes in header */
2948 int i = 0;
2949 int nField;
2950 int rc = 0;
2951 const unsigned char *aKey1 = (const unsigned char *)pKey1;
2952 KeyInfo *pKeyInfo;
2953 Mem mem1;
2955 pKeyInfo = pPKey2->pKeyInfo;
2956 mem1.enc = pKeyInfo->enc;
2957 mem1.db = pKeyInfo->db;
2958 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
2959 VVA_ONLY( mem1.zMalloc = 0; ) /* Only needed by assert() statements */
2961 /* Compilers may complain that mem1.u.i is potentially uninitialized.
2962 ** We could initialize it, as shown here, to silence those complaints.
2963 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
2964 ** the unnecessary initialization has a measurable negative performance
2965 ** impact, since this routine is a very high runner. And so, we choose
2966 ** to ignore the compiler warnings and leave this variable uninitialized.
2968 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
2970 idx1 = getVarint32(aKey1, szHdr1);
2971 d1 = szHdr1;
2972 nField = pKeyInfo->nField;
2973 while( idx1<szHdr1 && i<pPKey2->nField ){
2974 u32 serial_type1;
2976 /* Read the serial types for the next element in each key. */
2977 idx1 += getVarint32( aKey1+idx1, serial_type1 );
2978 if( d1>=nKey1 && sqlite3VdbeSerialTypeLen(serial_type1)>0 ) break;
2980 /* Extract the values to be compared.
2982 d1 += sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
2984 /* Do the comparison
2986 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
2987 i<nField ? pKeyInfo->aColl[i] : 0);
2988 if( rc!=0 ){
2989 assert( mem1.zMalloc==0 ); /* See comment below */
2991 /* Invert the result if we are using DESC sort order. */
2992 if( pKeyInfo->aSortOrder && i<nField && pKeyInfo->aSortOrder[i] ){
2993 rc = -rc;
2996 /* If the PREFIX_SEARCH flag is set and all fields except the final
2997 ** rowid field were equal, then clear the PREFIX_SEARCH flag and set
2998 ** pPKey2->rowid to the value of the rowid field in (pKey1, nKey1).
2999 ** This is used by the OP_IsUnique opcode.
3001 if( (pPKey2->flags & UNPACKED_PREFIX_SEARCH) && i==(pPKey2->nField-1) ){
3002 assert( idx1==szHdr1 && rc );
3003 assert( mem1.flags & MEM_Int );
3004 pPKey2->flags &= ~UNPACKED_PREFIX_SEARCH;
3005 pPKey2->rowid = mem1.u.i;
3008 return rc;
3010 i++;
3013 /* No memory allocation is ever used on mem1. Prove this using
3014 ** the following assert(). If the assert() fails, it indicates a
3015 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
3017 assert( mem1.zMalloc==0 );
3019 /* rc==0 here means that one of the keys ran out of fields and
3020 ** all the fields up to that point were equal. If the UNPACKED_INCRKEY
3021 ** flag is set, then break the tie by treating key2 as larger.
3022 ** If the UPACKED_PREFIX_MATCH flag is set, then keys with common prefixes
3023 ** are considered to be equal. Otherwise, the longer key is the
3024 ** larger. As it happens, the pPKey2 will always be the longer
3025 ** if there is a difference.
3027 assert( rc==0 );
3028 if( pPKey2->flags & UNPACKED_INCRKEY ){
3029 rc = -1;
3030 }else if( pPKey2->flags & UNPACKED_PREFIX_MATCH ){
3031 /* Leave rc==0 */
3032 }else if( idx1<szHdr1 ){
3033 rc = 1;
3035 return rc;
3040 ** pCur points at an index entry created using the OP_MakeRecord opcode.
3041 ** Read the rowid (the last field in the record) and store it in *rowid.
3042 ** Return SQLITE_OK if everything works, or an error code otherwise.
3044 ** pCur might be pointing to text obtained from a corrupt database file.
3045 ** So the content cannot be trusted. Do appropriate checks on the content.
3047 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
3048 i64 nCellKey = 0;
3049 int rc;
3050 u32 szHdr; /* Size of the header */
3051 u32 typeRowid; /* Serial type of the rowid */
3052 u32 lenRowid; /* Size of the rowid */
3053 Mem m, v;
3055 UNUSED_PARAMETER(db);
3057 /* Get the size of the index entry. Only indices entries of less
3058 ** than 2GiB are support - anything large must be database corruption.
3059 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
3060 ** this code can safely assume that nCellKey is 32-bits
3062 assert( sqlite3BtreeCursorIsValid(pCur) );
3063 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
3064 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
3065 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
3067 /* Read in the complete content of the index entry */
3068 memset(&m, 0, sizeof(m));
3069 rc = sqlite3VdbeMemFromBtree(pCur, 0, (int)nCellKey, 1, &m);
3070 if( rc ){
3071 return rc;
3074 /* The index entry must begin with a header size */
3075 (void)getVarint32((u8*)m.z, szHdr);
3076 testcase( szHdr==3 );
3077 testcase( szHdr==m.n );
3078 if( unlikely(szHdr<3 || (int)szHdr>m.n) ){
3079 goto idx_rowid_corruption;
3082 /* The last field of the index should be an integer - the ROWID.
3083 ** Verify that the last entry really is an integer. */
3084 (void)getVarint32((u8*)&m.z[szHdr-1], typeRowid);
3085 testcase( typeRowid==1 );
3086 testcase( typeRowid==2 );
3087 testcase( typeRowid==3 );
3088 testcase( typeRowid==4 );
3089 testcase( typeRowid==5 );
3090 testcase( typeRowid==6 );
3091 testcase( typeRowid==8 );
3092 testcase( typeRowid==9 );
3093 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
3094 goto idx_rowid_corruption;
3096 lenRowid = sqlite3VdbeSerialTypeLen(typeRowid);
3097 testcase( (u32)m.n==szHdr+lenRowid );
3098 if( unlikely((u32)m.n<szHdr+lenRowid) ){
3099 goto idx_rowid_corruption;
3102 /* Fetch the integer off the end of the index record */
3103 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
3104 *rowid = v.u.i;
3105 sqlite3VdbeMemRelease(&m);
3106 return SQLITE_OK;
3108 /* Jump here if database corruption is detected after m has been
3109 ** allocated. Free the m object and return SQLITE_CORRUPT. */
3110 idx_rowid_corruption:
3111 testcase( m.zMalloc!=0 );
3112 sqlite3VdbeMemRelease(&m);
3113 return SQLITE_CORRUPT_BKPT;
3117 ** Compare the key of the index entry that cursor pC is pointing to against
3118 ** the key string in pUnpacked. Write into *pRes a number
3119 ** that is negative, zero, or positive if pC is less than, equal to,
3120 ** or greater than pUnpacked. Return SQLITE_OK on success.
3122 ** pUnpacked is either created without a rowid or is truncated so that it
3123 ** omits the rowid at the end. The rowid at the end of the index entry
3124 ** is ignored as well. Hence, this routine only compares the prefixes
3125 ** of the keys prior to the final rowid, not the entire key.
3127 int sqlite3VdbeIdxKeyCompare(
3128 VdbeCursor *pC, /* The cursor to compare against */
3129 UnpackedRecord *pUnpacked, /* Unpacked version of key to compare against */
3130 int *res /* Write the comparison result here */
3132 i64 nCellKey = 0;
3133 int rc;
3134 BtCursor *pCur = pC->pCursor;
3135 Mem m;
3137 assert( sqlite3BtreeCursorIsValid(pCur) );
3138 VVA_ONLY(rc =) sqlite3BtreeKeySize(pCur, &nCellKey);
3139 assert( rc==SQLITE_OK ); /* pCur is always valid so KeySize cannot fail */
3140 /* nCellKey will always be between 0 and 0xffffffff because of the say
3141 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
3142 if( nCellKey<=0 || nCellKey>0x7fffffff ){
3143 *res = 0;
3144 return SQLITE_CORRUPT_BKPT;
3146 memset(&m, 0, sizeof(m));
3147 rc = sqlite3VdbeMemFromBtree(pC->pCursor, 0, (int)nCellKey, 1, &m);
3148 if( rc ){
3149 return rc;
3151 assert( pUnpacked->flags & UNPACKED_PREFIX_MATCH );
3152 *res = sqlite3VdbeRecordCompare(m.n, m.z, pUnpacked);
3153 sqlite3VdbeMemRelease(&m);
3154 return SQLITE_OK;
3158 ** This routine sets the value to be returned by subsequent calls to
3159 ** sqlite3_changes() on the database handle 'db'.
3161 void sqlite3VdbeSetChanges(sqlite3 *db, int nChange){
3162 assert( sqlite3_mutex_held(db->mutex) );
3163 db->nChange = nChange;
3164 db->nTotalChange += nChange;
3168 ** Set a flag in the vdbe to update the change counter when it is finalised
3169 ** or reset.
3171 void sqlite3VdbeCountChanges(Vdbe *v){
3172 v->changeCntOn = 1;
3176 ** Mark every prepared statement associated with a database connection
3177 ** as expired.
3179 ** An expired statement means that recompilation of the statement is
3180 ** recommend. Statements expire when things happen that make their
3181 ** programs obsolete. Removing user-defined functions or collating
3182 ** sequences, or changing an authorization function are the types of
3183 ** things that make prepared statements obsolete.
3185 void sqlite3ExpirePreparedStatements(sqlite3 *db){
3186 Vdbe *p;
3187 for(p = db->pVdbe; p; p=p->pNext){
3188 p->expired = 1;
3193 ** Return the database associated with the Vdbe.
3195 sqlite3 *sqlite3VdbeDb(Vdbe *v){
3196 return v->db;
3200 ** Return a pointer to an sqlite3_value structure containing the value bound
3201 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
3202 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
3203 ** constants) to the value before returning it.
3205 ** The returned value must be freed by the caller using sqlite3ValueFree().
3207 sqlite3_value *sqlite3VdbeGetValue(Vdbe *v, int iVar, u8 aff){
3208 assert( iVar>0 );
3209 if( v ){
3210 Mem *pMem = &v->aVar[iVar-1];
3211 if( 0==(pMem->flags & MEM_Null) ){
3212 sqlite3_value *pRet = sqlite3ValueNew(v->db);
3213 if( pRet ){
3214 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
3215 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
3216 sqlite3VdbeMemStoreType((Mem *)pRet);
3218 return pRet;
3221 return 0;
3225 ** Configure SQL variable iVar so that binding a new value to it signals
3226 ** to sqlite3_reoptimize() that re-preparing the statement may result
3227 ** in a better query plan.
3229 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
3230 assert( iVar>0 );
3231 if( iVar>32 ){
3232 v->expmask = 0xffffffff;
3233 }else{
3234 v->expmask |= ((u32)1 << (iVar-1));