update version and change log for 4.4.3
[sqlcipher.git] / src / build.c
blob9779e93732b6d2f50cf5ac3822df1fbe6802eaa6
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
16 ** CREATE TABLE
17 ** DROP TABLE
18 ** CREATE INDEX
19 ** DROP INDEX
20 ** creating ID lists
21 ** BEGIN TRANSACTION
22 ** COMMIT
23 ** ROLLBACK
25 #include "sqliteInt.h"
27 #ifndef SQLITE_OMIT_SHARED_CACHE
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
32 struct TableLock {
33 int iDb; /* The database containing the table to be locked */
34 Pgno iTab; /* The root page of the table to be locked */
35 u8 isWriteLock; /* True for write lock. False for a read lock */
36 const char *zLockName; /* Name of the table */
40 ** Record the fact that we want to lock a table at run-time.
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
45 ** This routine just records the fact that the lock is desired. The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
49 void sqlite3TableLock(
50 Parse *pParse, /* Parsing context */
51 int iDb, /* Index of the database containing the table to lock */
52 Pgno iTab, /* Root page number of the table to be locked */
53 u8 isWriteLock, /* True for a write lock */
54 const char *zName /* Name of the table to be locked */
56 Parse *pToplevel;
57 int i;
58 int nBytes;
59 TableLock *p;
60 assert( iDb>=0 );
62 if( iDb==1 ) return;
63 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
64 pToplevel = sqlite3ParseToplevel(pParse);
65 for(i=0; i<pToplevel->nTableLock; i++){
66 p = &pToplevel->aTableLock[i];
67 if( p->iDb==iDb && p->iTab==iTab ){
68 p->isWriteLock = (p->isWriteLock || isWriteLock);
69 return;
73 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
74 pToplevel->aTableLock =
75 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
76 if( pToplevel->aTableLock ){
77 p = &pToplevel->aTableLock[pToplevel->nTableLock++];
78 p->iDb = iDb;
79 p->iTab = iTab;
80 p->isWriteLock = isWriteLock;
81 p->zLockName = zName;
82 }else{
83 pToplevel->nTableLock = 0;
84 sqlite3OomFault(pToplevel->db);
89 ** Code an OP_TableLock instruction for each table locked by the
90 ** statement (configured by calls to sqlite3TableLock()).
92 static void codeTableLocks(Parse *pParse){
93 int i;
94 Vdbe *pVdbe = pParse->pVdbe;
95 assert( pVdbe!=0 );
97 for(i=0; i<pParse->nTableLock; i++){
98 TableLock *p = &pParse->aTableLock[i];
99 int p1 = p->iDb;
100 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
101 p->zLockName, P4_STATIC);
104 #else
105 #define codeTableLocks(x)
106 #endif
109 ** Return TRUE if the given yDbMask object is empty - if it contains no
110 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
111 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
113 #if SQLITE_MAX_ATTACHED>30
114 int sqlite3DbMaskAllZero(yDbMask m){
115 int i;
116 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
117 return 1;
119 #endif
122 ** This routine is called after a single SQL statement has been
123 ** parsed and a VDBE program to execute that statement has been
124 ** prepared. This routine puts the finishing touches on the
125 ** VDBE program and resets the pParse structure for the next
126 ** parse.
128 ** Note that if an error occurred, it might be the case that
129 ** no VDBE code was generated.
131 void sqlite3FinishCoding(Parse *pParse){
132 sqlite3 *db;
133 Vdbe *v;
135 assert( pParse->pToplevel==0 );
136 db = pParse->db;
137 if( pParse->nested ) return;
138 if( db->mallocFailed || pParse->nErr ){
139 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
140 return;
143 /* Begin by generating some termination code at the end of the
144 ** vdbe program
146 v = sqlite3GetVdbe(pParse);
147 assert( !pParse->isMultiWrite
148 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
149 if( v ){
150 sqlite3VdbeAddOp0(v, OP_Halt);
152 #if SQLITE_USER_AUTHENTICATION
153 if( pParse->nTableLock>0 && db->init.busy==0 ){
154 sqlite3UserAuthInit(db);
155 if( db->auth.authLevel<UAUTH_User ){
156 sqlite3ErrorMsg(pParse, "user not authenticated");
157 pParse->rc = SQLITE_AUTH_USER;
158 return;
161 #endif
163 /* The cookie mask contains one bit for each database file open.
164 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
165 ** set for each database that is used. Generate code to start a
166 ** transaction on each used database and to verify the schema cookie
167 ** on each used database.
169 if( db->mallocFailed==0
170 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
172 int iDb, i;
173 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
174 sqlite3VdbeJumpHere(v, 0);
175 for(iDb=0; iDb<db->nDb; iDb++){
176 Schema *pSchema;
177 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
178 sqlite3VdbeUsesBtree(v, iDb);
179 pSchema = db->aDb[iDb].pSchema;
180 sqlite3VdbeAddOp4Int(v,
181 OP_Transaction, /* Opcode */
182 iDb, /* P1 */
183 DbMaskTest(pParse->writeMask,iDb), /* P2 */
184 pSchema->schema_cookie, /* P3 */
185 pSchema->iGeneration /* P4 */
187 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
188 VdbeComment((v,
189 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
191 #ifndef SQLITE_OMIT_VIRTUALTABLE
192 for(i=0; i<pParse->nVtabLock; i++){
193 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
194 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
196 pParse->nVtabLock = 0;
197 #endif
199 /* Once all the cookies have been verified and transactions opened,
200 ** obtain the required table-locks. This is a no-op unless the
201 ** shared-cache feature is enabled.
203 codeTableLocks(pParse);
205 /* Initialize any AUTOINCREMENT data structures required.
207 sqlite3AutoincrementBegin(pParse);
209 /* Code constant expressions that where factored out of inner loops.
211 ** The pConstExpr list might also contain expressions that we simply
212 ** want to keep around until the Parse object is deleted. Such
213 ** expressions have iConstExprReg==0. Do not generate code for
214 ** those expressions, of course.
216 if( pParse->pConstExpr ){
217 ExprList *pEL = pParse->pConstExpr;
218 pParse->okConstFactor = 0;
219 for(i=0; i<pEL->nExpr; i++){
220 int iReg = pEL->a[i].u.iConstExprReg;
221 if( iReg>0 ){
222 sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg);
227 /* Finally, jump back to the beginning of the executable code. */
228 sqlite3VdbeGoto(v, 1);
233 /* Get the VDBE program ready for execution
235 if( v && pParse->nErr==0 && !db->mallocFailed ){
236 /* A minimum of one cursor is required if autoincrement is used
237 * See ticket [a696379c1f08866] */
238 assert( pParse->pAinc==0 || pParse->nTab>0 );
239 sqlite3VdbeMakeReady(v, pParse);
240 pParse->rc = SQLITE_DONE;
241 }else{
242 pParse->rc = SQLITE_ERROR;
247 ** Run the parser and code generator recursively in order to generate
248 ** code for the SQL statement given onto the end of the pParse context
249 ** currently under construction. When the parser is run recursively
250 ** this way, the final OP_Halt is not appended and other initialization
251 ** and finalization steps are omitted because those are handling by the
252 ** outermost parser.
254 ** Not everything is nestable. This facility is designed to permit
255 ** INSERT, UPDATE, and DELETE operations against the schema table. Use
256 ** care if you decide to try to use this routine for some other purposes.
258 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
259 va_list ap;
260 char *zSql;
261 char *zErrMsg = 0;
262 sqlite3 *db = pParse->db;
263 char saveBuf[PARSE_TAIL_SZ];
265 if( pParse->nErr ) return;
266 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
267 va_start(ap, zFormat);
268 zSql = sqlite3VMPrintf(db, zFormat, ap);
269 va_end(ap);
270 if( zSql==0 ){
271 /* This can result either from an OOM or because the formatted string
272 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set
273 ** an error */
274 if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG;
275 pParse->nErr++;
276 return;
278 pParse->nested++;
279 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
280 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
281 sqlite3RunParser(pParse, zSql, &zErrMsg);
282 sqlite3DbFree(db, zErrMsg);
283 sqlite3DbFree(db, zSql);
284 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
285 pParse->nested--;
288 #if SQLITE_USER_AUTHENTICATION
290 ** Return TRUE if zTable is the name of the system table that stores the
291 ** list of users and their access credentials.
293 int sqlite3UserAuthTable(const char *zTable){
294 return sqlite3_stricmp(zTable, "sqlite_user")==0;
296 #endif
299 ** Locate the in-memory structure that describes a particular database
300 ** table given the name of that table and (optionally) the name of the
301 ** database containing the table. Return NULL if not found.
303 ** If zDatabase is 0, all databases are searched for the table and the
304 ** first matching table is returned. (No checking for duplicate table
305 ** names is done.) The search order is TEMP first, then MAIN, then any
306 ** auxiliary databases added using the ATTACH command.
308 ** See also sqlite3LocateTable().
310 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
311 Table *p = 0;
312 int i;
314 /* All mutexes are required for schema access. Make sure we hold them. */
315 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
316 #if SQLITE_USER_AUTHENTICATION
317 /* Only the admin user is allowed to know that the sqlite_user table
318 ** exists */
319 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
320 return 0;
322 #endif
323 if( zDatabase ){
324 for(i=0; i<db->nDb; i++){
325 if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break;
327 if( i>=db->nDb ){
328 /* No match against the official names. But always match "main"
329 ** to schema 0 as a legacy fallback. */
330 if( sqlite3StrICmp(zDatabase,"main")==0 ){
331 i = 0;
332 }else{
333 return 0;
336 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
337 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
338 if( i==1 ){
339 if( sqlite3StrICmp(zName+7, &ALT_TEMP_SCHEMA_TABLE[7])==0
340 || sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0
341 || sqlite3StrICmp(zName+7, &DFLT_SCHEMA_TABLE[7])==0
343 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
344 DFLT_TEMP_SCHEMA_TABLE);
346 }else{
347 if( sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 ){
348 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash,
349 DFLT_SCHEMA_TABLE);
353 }else{
354 /* Match against TEMP first */
355 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName);
356 if( p ) return p;
357 /* The main database is second */
358 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName);
359 if( p ) return p;
360 /* Attached databases are in order of attachment */
361 for(i=2; i<db->nDb; i++){
362 assert( sqlite3SchemaMutexHeld(db, i, 0) );
363 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
364 if( p ) break;
366 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
367 if( sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 ){
368 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, DFLT_SCHEMA_TABLE);
369 }else if( sqlite3StrICmp(zName+7, &ALT_TEMP_SCHEMA_TABLE[7])==0 ){
370 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
371 DFLT_TEMP_SCHEMA_TABLE);
375 return p;
379 ** Locate the in-memory structure that describes a particular database
380 ** table given the name of that table and (optionally) the name of the
381 ** database containing the table. Return NULL if not found. Also leave an
382 ** error message in pParse->zErrMsg.
384 ** The difference between this routine and sqlite3FindTable() is that this
385 ** routine leaves an error message in pParse->zErrMsg where
386 ** sqlite3FindTable() does not.
388 Table *sqlite3LocateTable(
389 Parse *pParse, /* context in which to report errors */
390 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */
391 const char *zName, /* Name of the table we are looking for */
392 const char *zDbase /* Name of the database. Might be NULL */
394 Table *p;
395 sqlite3 *db = pParse->db;
397 /* Read the database schema. If an error occurs, leave an error message
398 ** and code in pParse and return NULL. */
399 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0
400 && SQLITE_OK!=sqlite3ReadSchema(pParse)
402 return 0;
405 p = sqlite3FindTable(db, zName, zDbase);
406 if( p==0 ){
407 #ifndef SQLITE_OMIT_VIRTUALTABLE
408 /* If zName is the not the name of a table in the schema created using
409 ** CREATE, then check to see if it is the name of an virtual table that
410 ** can be an eponymous virtual table. */
411 if( pParse->disableVtab==0 ){
412 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName);
413 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
414 pMod = sqlite3PragmaVtabRegister(db, zName);
416 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
417 return pMod->pEpoTab;
420 #endif
421 if( flags & LOCATE_NOERR ) return 0;
422 pParse->checkSchema = 1;
423 }else if( IsVirtual(p) && pParse->disableVtab ){
424 p = 0;
427 if( p==0 ){
428 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
429 if( zDbase ){
430 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
431 }else{
432 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
436 return p;
440 ** Locate the table identified by *p.
442 ** This is a wrapper around sqlite3LocateTable(). The difference between
443 ** sqlite3LocateTable() and this function is that this function restricts
444 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
445 ** non-NULL if it is part of a view or trigger program definition. See
446 ** sqlite3FixSrcList() for details.
448 Table *sqlite3LocateTableItem(
449 Parse *pParse,
450 u32 flags,
451 struct SrcList_item *p
453 const char *zDb;
454 assert( p->pSchema==0 || p->zDatabase==0 );
455 if( p->pSchema ){
456 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
457 zDb = pParse->db->aDb[iDb].zDbSName;
458 }else{
459 zDb = p->zDatabase;
461 return sqlite3LocateTable(pParse, flags, p->zName, zDb);
465 ** Locate the in-memory structure that describes
466 ** a particular index given the name of that index
467 ** and the name of the database that contains the index.
468 ** Return NULL if not found.
470 ** If zDatabase is 0, all databases are searched for the
471 ** table and the first matching index is returned. (No checking
472 ** for duplicate index names is done.) The search order is
473 ** TEMP first, then MAIN, then any auxiliary databases added
474 ** using the ATTACH command.
476 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
477 Index *p = 0;
478 int i;
479 /* All mutexes are required for schema access. Make sure we hold them. */
480 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
481 for(i=OMIT_TEMPDB; i<db->nDb; i++){
482 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
483 Schema *pSchema = db->aDb[j].pSchema;
484 assert( pSchema );
485 if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue;
486 assert( sqlite3SchemaMutexHeld(db, j, 0) );
487 p = sqlite3HashFind(&pSchema->idxHash, zName);
488 if( p ) break;
490 return p;
494 ** Reclaim the memory used by an index
496 void sqlite3FreeIndex(sqlite3 *db, Index *p){
497 #ifndef SQLITE_OMIT_ANALYZE
498 sqlite3DeleteIndexSamples(db, p);
499 #endif
500 sqlite3ExprDelete(db, p->pPartIdxWhere);
501 sqlite3ExprListDelete(db, p->aColExpr);
502 sqlite3DbFree(db, p->zColAff);
503 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
504 #ifdef SQLITE_ENABLE_STAT4
505 sqlite3_free(p->aiRowEst);
506 #endif
507 sqlite3DbFree(db, p);
511 ** For the index called zIdxName which is found in the database iDb,
512 ** unlike that index from its Table then remove the index from
513 ** the index hash table and free all memory structures associated
514 ** with the index.
516 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
517 Index *pIndex;
518 Hash *pHash;
520 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
521 pHash = &db->aDb[iDb].pSchema->idxHash;
522 pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
523 if( ALWAYS(pIndex) ){
524 if( pIndex->pTable->pIndex==pIndex ){
525 pIndex->pTable->pIndex = pIndex->pNext;
526 }else{
527 Index *p;
528 /* Justification of ALWAYS(); The index must be on the list of
529 ** indices. */
530 p = pIndex->pTable->pIndex;
531 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
532 if( ALWAYS(p && p->pNext==pIndex) ){
533 p->pNext = pIndex->pNext;
536 sqlite3FreeIndex(db, pIndex);
538 db->mDbFlags |= DBFLAG_SchemaChange;
542 ** Look through the list of open database files in db->aDb[] and if
543 ** any have been closed, remove them from the list. Reallocate the
544 ** db->aDb[] structure to a smaller size, if possible.
546 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
547 ** are never candidates for being collapsed.
549 void sqlite3CollapseDatabaseArray(sqlite3 *db){
550 int i, j;
551 for(i=j=2; i<db->nDb; i++){
552 struct Db *pDb = &db->aDb[i];
553 if( pDb->pBt==0 ){
554 sqlite3DbFree(db, pDb->zDbSName);
555 pDb->zDbSName = 0;
556 continue;
558 if( j<i ){
559 db->aDb[j] = db->aDb[i];
561 j++;
563 db->nDb = j;
564 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
565 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
566 sqlite3DbFree(db, db->aDb);
567 db->aDb = db->aDbStatic;
572 ** Reset the schema for the database at index iDb. Also reset the
573 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero.
574 ** Deferred resets may be run by calling with iDb<0.
576 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
577 int i;
578 assert( iDb<db->nDb );
580 if( iDb>=0 ){
581 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
582 DbSetProperty(db, iDb, DB_ResetWanted);
583 DbSetProperty(db, 1, DB_ResetWanted);
584 db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
587 if( db->nSchemaLock==0 ){
588 for(i=0; i<db->nDb; i++){
589 if( DbHasProperty(db, i, DB_ResetWanted) ){
590 sqlite3SchemaClear(db->aDb[i].pSchema);
597 ** Erase all schema information from all attached databases (including
598 ** "main" and "temp") for a single database connection.
600 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
601 int i;
602 sqlite3BtreeEnterAll(db);
603 for(i=0; i<db->nDb; i++){
604 Db *pDb = &db->aDb[i];
605 if( pDb->pSchema ){
606 if( db->nSchemaLock==0 ){
607 sqlite3SchemaClear(pDb->pSchema);
608 }else{
609 DbSetProperty(db, i, DB_ResetWanted);
613 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk);
614 sqlite3VtabUnlockList(db);
615 sqlite3BtreeLeaveAll(db);
616 if( db->nSchemaLock==0 ){
617 sqlite3CollapseDatabaseArray(db);
622 ** This routine is called when a commit occurs.
624 void sqlite3CommitInternalChanges(sqlite3 *db){
625 db->mDbFlags &= ~DBFLAG_SchemaChange;
629 ** Delete memory allocated for the column names of a table or view (the
630 ** Table.aCol[] array).
632 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
633 int i;
634 Column *pCol;
635 assert( pTable!=0 );
636 if( (pCol = pTable->aCol)!=0 ){
637 for(i=0; i<pTable->nCol; i++, pCol++){
638 assert( pCol->zName==0 || pCol->hName==sqlite3StrIHash(pCol->zName) );
639 sqlite3DbFree(db, pCol->zName);
640 sqlite3ExprDelete(db, pCol->pDflt);
641 sqlite3DbFree(db, pCol->zColl);
643 sqlite3DbFree(db, pTable->aCol);
648 ** Remove the memory data structures associated with the given
649 ** Table. No changes are made to disk by this routine.
651 ** This routine just deletes the data structure. It does not unlink
652 ** the table data structure from the hash table. But it does destroy
653 ** memory structures of the indices and foreign keys associated with
654 ** the table.
656 ** The db parameter is optional. It is needed if the Table object
657 ** contains lookaside memory. (Table objects in the schema do not use
658 ** lookaside memory, but some ephemeral Table objects do.) Or the
659 ** db parameter can be used with db->pnBytesFreed to measure the memory
660 ** used by the Table object.
662 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
663 Index *pIndex, *pNext;
665 #ifdef SQLITE_DEBUG
666 /* Record the number of outstanding lookaside allocations in schema Tables
667 ** prior to doing any free() operations. Since schema Tables do not use
668 ** lookaside, this number should not change.
670 ** If malloc has already failed, it may be that it failed while allocating
671 ** a Table object that was going to be marked ephemeral. So do not check
672 ** that no lookaside memory is used in this case either. */
673 int nLookaside = 0;
674 if( db && !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){
675 nLookaside = sqlite3LookasideUsed(db, 0);
677 #endif
679 /* Delete all indices associated with this table. */
680 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
681 pNext = pIndex->pNext;
682 assert( pIndex->pSchema==pTable->pSchema
683 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
684 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){
685 char *zName = pIndex->zName;
686 TESTONLY ( Index *pOld = ) sqlite3HashInsert(
687 &pIndex->pSchema->idxHash, zName, 0
689 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
690 assert( pOld==pIndex || pOld==0 );
692 sqlite3FreeIndex(db, pIndex);
695 /* Delete any foreign keys attached to this table. */
696 sqlite3FkDelete(db, pTable);
698 /* Delete the Table structure itself.
700 sqlite3DeleteColumnNames(db, pTable);
701 sqlite3DbFree(db, pTable->zName);
702 sqlite3DbFree(db, pTable->zColAff);
703 sqlite3SelectDelete(db, pTable->pSelect);
704 sqlite3ExprListDelete(db, pTable->pCheck);
705 #ifndef SQLITE_OMIT_VIRTUALTABLE
706 sqlite3VtabClear(db, pTable);
707 #endif
708 sqlite3DbFree(db, pTable);
710 /* Verify that no lookaside memory was used by schema tables */
711 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) );
713 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
714 /* Do not delete the table until the reference count reaches zero. */
715 if( !pTable ) return;
716 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return;
717 deleteTable(db, pTable);
722 ** Unlink the given table from the hash tables and the delete the
723 ** table structure with all its indices and foreign keys.
725 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
726 Table *p;
727 Db *pDb;
729 assert( db!=0 );
730 assert( iDb>=0 && iDb<db->nDb );
731 assert( zTabName );
732 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
733 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */
734 pDb = &db->aDb[iDb];
735 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
736 sqlite3DeleteTable(db, p);
737 db->mDbFlags |= DBFLAG_SchemaChange;
741 ** Given a token, return a string that consists of the text of that
742 ** token. Space to hold the returned string
743 ** is obtained from sqliteMalloc() and must be freed by the calling
744 ** function.
746 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
747 ** surround the body of the token are removed.
749 ** Tokens are often just pointers into the original SQL text and so
750 ** are not \000 terminated and are not persistent. The returned string
751 ** is \000 terminated and is persistent.
753 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
754 char *zName;
755 if( pName ){
756 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
757 sqlite3Dequote(zName);
758 }else{
759 zName = 0;
761 return zName;
765 ** Open the sqlite_schema table stored in database number iDb for
766 ** writing. The table is opened using cursor 0.
768 void sqlite3OpenSchemaTable(Parse *p, int iDb){
769 Vdbe *v = sqlite3GetVdbe(p);
770 sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, DFLT_SCHEMA_TABLE);
771 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5);
772 if( p->nTab==0 ){
773 p->nTab = 1;
778 ** Parameter zName points to a nul-terminated buffer containing the name
779 ** of a database ("main", "temp" or the name of an attached db). This
780 ** function returns the index of the named database in db->aDb[], or
781 ** -1 if the named db cannot be found.
783 int sqlite3FindDbName(sqlite3 *db, const char *zName){
784 int i = -1; /* Database number */
785 if( zName ){
786 Db *pDb;
787 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
788 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
789 /* "main" is always an acceptable alias for the primary database
790 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
791 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
794 return i;
798 ** The token *pName contains the name of a database (either "main" or
799 ** "temp" or the name of an attached db). This routine returns the
800 ** index of the named database in db->aDb[], or -1 if the named db
801 ** does not exist.
803 int sqlite3FindDb(sqlite3 *db, Token *pName){
804 int i; /* Database number */
805 char *zName; /* Name we are searching for */
806 zName = sqlite3NameFromToken(db, pName);
807 i = sqlite3FindDbName(db, zName);
808 sqlite3DbFree(db, zName);
809 return i;
812 /* The table or view or trigger name is passed to this routine via tokens
813 ** pName1 and pName2. If the table name was fully qualified, for example:
815 ** CREATE TABLE xxx.yyy (...);
817 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
818 ** the table name is not fully qualified, i.e.:
820 ** CREATE TABLE yyy(...);
822 ** Then pName1 is set to "yyy" and pName2 is "".
824 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
825 ** pName2) that stores the unqualified table name. The index of the
826 ** database "xxx" is returned.
828 int sqlite3TwoPartName(
829 Parse *pParse, /* Parsing and code generating context */
830 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
831 Token *pName2, /* The "yyy" in the name "xxx.yyy" */
832 Token **pUnqual /* Write the unqualified object name here */
834 int iDb; /* Database holding the object */
835 sqlite3 *db = pParse->db;
837 assert( pName2!=0 );
838 if( pName2->n>0 ){
839 if( db->init.busy ) {
840 sqlite3ErrorMsg(pParse, "corrupt database");
841 return -1;
843 *pUnqual = pName2;
844 iDb = sqlite3FindDb(db, pName1);
845 if( iDb<0 ){
846 sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
847 return -1;
849 }else{
850 assert( db->init.iDb==0 || db->init.busy || IN_RENAME_OBJECT
851 || (db->mDbFlags & DBFLAG_Vacuum)!=0);
852 iDb = db->init.iDb;
853 *pUnqual = pName1;
855 return iDb;
859 ** True if PRAGMA writable_schema is ON
861 int sqlite3WritableSchema(sqlite3 *db){
862 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 );
863 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
864 SQLITE_WriteSchema );
865 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
866 SQLITE_Defensive );
867 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
868 (SQLITE_WriteSchema|SQLITE_Defensive) );
869 return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema;
873 ** This routine is used to check if the UTF-8 string zName is a legal
874 ** unqualified name for a new schema object (table, index, view or
875 ** trigger). All names are legal except those that begin with the string
876 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
877 ** is reserved for internal use.
879 ** When parsing the sqlite_schema table, this routine also checks to
880 ** make sure the "type", "name", and "tbl_name" columns are consistent
881 ** with the SQL.
883 int sqlite3CheckObjectName(
884 Parse *pParse, /* Parsing context */
885 const char *zName, /* Name of the object to check */
886 const char *zType, /* Type of this object */
887 const char *zTblName /* Parent table name for triggers and indexes */
889 sqlite3 *db = pParse->db;
890 if( sqlite3WritableSchema(db)
891 || db->init.imposterTable
892 || !sqlite3Config.bExtraSchemaChecks
894 /* Skip these error checks for writable_schema=ON */
895 return SQLITE_OK;
897 if( db->init.busy ){
898 if( sqlite3_stricmp(zType, db->init.azInit[0])
899 || sqlite3_stricmp(zName, db->init.azInit[1])
900 || sqlite3_stricmp(zTblName, db->init.azInit[2])
902 sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */
903 return SQLITE_ERROR;
905 }else{
906 if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7))
907 || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName))
909 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s",
910 zName);
911 return SQLITE_ERROR;
915 return SQLITE_OK;
919 ** Return the PRIMARY KEY index of a table
921 Index *sqlite3PrimaryKeyIndex(Table *pTab){
922 Index *p;
923 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
924 return p;
928 ** Convert an table column number into a index column number. That is,
929 ** for the column iCol in the table (as defined by the CREATE TABLE statement)
930 ** find the (first) offset of that column in index pIdx. Or return -1
931 ** if column iCol is not used in index pIdx.
933 i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){
934 int i;
935 for(i=0; i<pIdx->nColumn; i++){
936 if( iCol==pIdx->aiColumn[i] ) return i;
938 return -1;
941 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
942 /* Convert a storage column number into a table column number.
944 ** The storage column number (0,1,2,....) is the index of the value
945 ** as it appears in the record on disk. The true column number
946 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement.
948 ** The storage column number is less than the table column number if
949 ** and only there are VIRTUAL columns to the left.
951 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro.
953 i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){
954 if( pTab->tabFlags & TF_HasVirtual ){
955 int i;
956 for(i=0; i<=iCol; i++){
957 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++;
960 return iCol;
962 #endif
964 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
965 /* Convert a table column number into a storage column number.
967 ** The storage column number (0,1,2,....) is the index of the value
968 ** as it appears in the record on disk. Or, if the input column is
969 ** the N-th virtual column (zero-based) then the storage number is
970 ** the number of non-virtual columns in the table plus N.
972 ** The true column number is the index (0,1,2,...) of the column in
973 ** the CREATE TABLE statement.
975 ** If the input column is a VIRTUAL column, then it should not appear
976 ** in storage. But the value sometimes is cached in registers that
977 ** follow the range of registers used to construct storage. This
978 ** avoids computing the same VIRTUAL column multiple times, and provides
979 ** values for use by OP_Param opcodes in triggers. Hence, if the
980 ** input column is a VIRTUAL table, put it after all the other columns.
982 ** In the following, N means "normal column", S means STORED, and
983 ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this:
985 ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V);
986 ** -- 0 1 2 3 4 5 6 7 8
988 ** Then the mapping from this function is as follows:
990 ** INPUTS: 0 1 2 3 4 5 6 7 8
991 ** OUTPUTS: 0 1 6 2 3 7 4 5 8
993 ** So, in other words, this routine shifts all the virtual columns to
994 ** the end.
996 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and
997 ** this routine is a no-op macro. If the pTab does not have any virtual
998 ** columns, then this routine is no-op that always return iCol. If iCol
999 ** is negative (indicating the ROWID column) then this routine return iCol.
1001 i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){
1002 int i;
1003 i16 n;
1004 assert( iCol<pTab->nCol );
1005 if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol;
1006 for(i=0, n=0; i<iCol; i++){
1007 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++;
1009 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){
1010 /* iCol is a virtual column itself */
1011 return pTab->nNVCol + i - n;
1012 }else{
1013 /* iCol is a normal or stored column */
1014 return n;
1017 #endif
1020 ** Begin constructing a new table representation in memory. This is
1021 ** the first of several action routines that get called in response
1022 ** to a CREATE TABLE statement. In particular, this routine is called
1023 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
1024 ** flag is true if the table should be stored in the auxiliary database
1025 ** file instead of in the main database file. This is normally the case
1026 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
1027 ** CREATE and TABLE.
1029 ** The new table record is initialized and put in pParse->pNewTable.
1030 ** As more of the CREATE TABLE statement is parsed, additional action
1031 ** routines will be called to add more information to this record.
1032 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
1033 ** is called to complete the construction of the new table record.
1035 void sqlite3StartTable(
1036 Parse *pParse, /* Parser context */
1037 Token *pName1, /* First part of the name of the table or view */
1038 Token *pName2, /* Second part of the name of the table or view */
1039 int isTemp, /* True if this is a TEMP table */
1040 int isView, /* True if this is a VIEW */
1041 int isVirtual, /* True if this is a VIRTUAL table */
1042 int noErr /* Do nothing if table already exists */
1044 Table *pTable;
1045 char *zName = 0; /* The name of the new table */
1046 sqlite3 *db = pParse->db;
1047 Vdbe *v;
1048 int iDb; /* Database number to create the table in */
1049 Token *pName; /* Unqualified name of the table to create */
1051 if( db->init.busy && db->init.newTnum==1 ){
1052 /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */
1053 iDb = db->init.iDb;
1054 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
1055 pName = pName1;
1056 }else{
1057 /* The common case */
1058 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
1059 if( iDb<0 ) return;
1060 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
1061 /* If creating a temp table, the name may not be qualified. Unless
1062 ** the database name is "temp" anyway. */
1063 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
1064 return;
1066 if( !OMIT_TEMPDB && isTemp ) iDb = 1;
1067 zName = sqlite3NameFromToken(db, pName);
1068 if( IN_RENAME_OBJECT ){
1069 sqlite3RenameTokenMap(pParse, (void*)zName, pName);
1072 pParse->sNameToken = *pName;
1073 if( zName==0 ) return;
1074 if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){
1075 goto begin_table_error;
1077 if( db->init.iDb==1 ) isTemp = 1;
1078 #ifndef SQLITE_OMIT_AUTHORIZATION
1079 assert( isTemp==0 || isTemp==1 );
1080 assert( isView==0 || isView==1 );
1082 static const u8 aCode[] = {
1083 SQLITE_CREATE_TABLE,
1084 SQLITE_CREATE_TEMP_TABLE,
1085 SQLITE_CREATE_VIEW,
1086 SQLITE_CREATE_TEMP_VIEW
1088 char *zDb = db->aDb[iDb].zDbSName;
1089 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
1090 goto begin_table_error;
1092 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
1093 zName, 0, zDb) ){
1094 goto begin_table_error;
1097 #endif
1099 /* Make sure the new table name does not collide with an existing
1100 ** index or table name in the same database. Issue an error message if
1101 ** it does. The exception is if the statement being parsed was passed
1102 ** to an sqlite3_declare_vtab() call. In that case only the column names
1103 ** and types will be used, so there is no need to test for namespace
1104 ** collisions.
1106 if( !IN_SPECIAL_PARSE ){
1107 char *zDb = db->aDb[iDb].zDbSName;
1108 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
1109 goto begin_table_error;
1111 pTable = sqlite3FindTable(db, zName, zDb);
1112 if( pTable ){
1113 if( !noErr ){
1114 sqlite3ErrorMsg(pParse, "table %T already exists", pName);
1115 }else{
1116 assert( !db->init.busy || CORRUPT_DB );
1117 sqlite3CodeVerifySchema(pParse, iDb);
1119 goto begin_table_error;
1121 if( sqlite3FindIndex(db, zName, zDb)!=0 ){
1122 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
1123 goto begin_table_error;
1127 pTable = sqlite3DbMallocZero(db, sizeof(Table));
1128 if( pTable==0 ){
1129 assert( db->mallocFailed );
1130 pParse->rc = SQLITE_NOMEM_BKPT;
1131 pParse->nErr++;
1132 goto begin_table_error;
1134 pTable->zName = zName;
1135 pTable->iPKey = -1;
1136 pTable->pSchema = db->aDb[iDb].pSchema;
1137 pTable->nTabRef = 1;
1138 #ifdef SQLITE_DEFAULT_ROWEST
1139 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST);
1140 #else
1141 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1142 #endif
1143 assert( pParse->pNewTable==0 );
1144 pParse->pNewTable = pTable;
1146 /* If this is the magic sqlite_sequence table used by autoincrement,
1147 ** then record a pointer to this table in the main database structure
1148 ** so that INSERT can find the table easily.
1150 #ifndef SQLITE_OMIT_AUTOINCREMENT
1151 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
1152 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1153 pTable->pSchema->pSeqTab = pTable;
1155 #endif
1157 /* Begin generating the code that will insert the table record into
1158 ** the schema table. Note in particular that we must go ahead
1159 ** and allocate the record number for the table entry now. Before any
1160 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
1161 ** indices to be created and the table record must come before the
1162 ** indices. Hence, the record number for the table must be allocated
1163 ** now.
1165 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
1166 int addr1;
1167 int fileFormat;
1168 int reg1, reg2, reg3;
1169 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
1170 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
1171 sqlite3BeginWriteOperation(pParse, 1, iDb);
1173 #ifndef SQLITE_OMIT_VIRTUALTABLE
1174 if( isVirtual ){
1175 sqlite3VdbeAddOp0(v, OP_VBegin);
1177 #endif
1179 /* If the file format and encoding in the database have not been set,
1180 ** set them now.
1182 reg1 = pParse->regRowid = ++pParse->nMem;
1183 reg2 = pParse->regRoot = ++pParse->nMem;
1184 reg3 = ++pParse->nMem;
1185 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
1186 sqlite3VdbeUsesBtree(v, iDb);
1187 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
1188 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
1189 1 : SQLITE_MAX_FILE_FORMAT;
1190 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
1191 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
1192 sqlite3VdbeJumpHere(v, addr1);
1194 /* This just creates a place-holder record in the sqlite_schema table.
1195 ** The record created does not contain anything yet. It will be replaced
1196 ** by the real entry in code generated at sqlite3EndTable().
1198 ** The rowid for the new entry is left in register pParse->regRowid.
1199 ** The root page number of the new table is left in reg pParse->regRoot.
1200 ** The rowid and root page number values are needed by the code that
1201 ** sqlite3EndTable will generate.
1203 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1204 if( isView || isVirtual ){
1205 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1206 }else
1207 #endif
1209 pParse->addrCrTab =
1210 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY);
1212 sqlite3OpenSchemaTable(pParse, iDb);
1213 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1214 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1215 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1216 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1217 sqlite3VdbeAddOp0(v, OP_Close);
1220 /* Normal (non-error) return. */
1221 return;
1223 /* If an error occurs, we jump here */
1224 begin_table_error:
1225 sqlite3DbFree(db, zName);
1226 return;
1229 /* Set properties of a table column based on the (magical)
1230 ** name of the column.
1232 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1233 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1234 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){
1235 pCol->colFlags |= COLFLAG_HIDDEN;
1236 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1237 pTab->tabFlags |= TF_OOOHidden;
1240 #endif
1244 ** Add a new column to the table currently being constructed.
1246 ** The parser calls this routine once for each column declaration
1247 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
1248 ** first to get things going. Then this routine is called for each
1249 ** column.
1251 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){
1252 Table *p;
1253 int i;
1254 char *z;
1255 char *zType;
1256 Column *pCol;
1257 sqlite3 *db = pParse->db;
1258 if( (p = pParse->pNewTable)==0 ) return;
1259 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1260 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1261 return;
1263 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2);
1264 if( z==0 ) return;
1265 if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, pName);
1266 memcpy(z, pName->z, pName->n);
1267 z[pName->n] = 0;
1268 sqlite3Dequote(z);
1269 for(i=0; i<p->nCol; i++){
1270 if( sqlite3_stricmp(z, p->aCol[i].zName)==0 ){
1271 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1272 sqlite3DbFree(db, z);
1273 return;
1276 if( (p->nCol & 0x7)==0 ){
1277 Column *aNew;
1278 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1279 if( aNew==0 ){
1280 sqlite3DbFree(db, z);
1281 return;
1283 p->aCol = aNew;
1285 pCol = &p->aCol[p->nCol];
1286 memset(pCol, 0, sizeof(p->aCol[0]));
1287 pCol->zName = z;
1288 pCol->hName = sqlite3StrIHash(z);
1289 sqlite3ColumnPropertiesFromName(p, pCol);
1291 if( pType->n==0 ){
1292 /* If there is no type specified, columns have the default affinity
1293 ** 'BLOB' with a default size of 4 bytes. */
1294 pCol->affinity = SQLITE_AFF_BLOB;
1295 pCol->szEst = 1;
1296 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1297 if( 4>=sqlite3GlobalConfig.szSorterRef ){
1298 pCol->colFlags |= COLFLAG_SORTERREF;
1300 #endif
1301 }else{
1302 zType = z + sqlite3Strlen30(z) + 1;
1303 memcpy(zType, pType->z, pType->n);
1304 zType[pType->n] = 0;
1305 sqlite3Dequote(zType);
1306 pCol->affinity = sqlite3AffinityType(zType, pCol);
1307 pCol->colFlags |= COLFLAG_HASTYPE;
1309 p->nCol++;
1310 p->nNVCol++;
1311 pParse->constraintName.n = 0;
1315 ** This routine is called by the parser while in the middle of
1316 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
1317 ** been seen on a column. This routine sets the notNull flag on
1318 ** the column currently under construction.
1320 void sqlite3AddNotNull(Parse *pParse, int onError){
1321 Table *p;
1322 Column *pCol;
1323 p = pParse->pNewTable;
1324 if( p==0 || NEVER(p->nCol<1) ) return;
1325 pCol = &p->aCol[p->nCol-1];
1326 pCol->notNull = (u8)onError;
1327 p->tabFlags |= TF_HasNotNull;
1329 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created
1330 ** on this column. */
1331 if( pCol->colFlags & COLFLAG_UNIQUE ){
1332 Index *pIdx;
1333 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1334 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None );
1335 if( pIdx->aiColumn[0]==p->nCol-1 ){
1336 pIdx->uniqNotNull = 1;
1343 ** Scan the column type name zType (length nType) and return the
1344 ** associated affinity type.
1346 ** This routine does a case-independent search of zType for the
1347 ** substrings in the following table. If one of the substrings is
1348 ** found, the corresponding affinity is returned. If zType contains
1349 ** more than one of the substrings, entries toward the top of
1350 ** the table take priority. For example, if zType is 'BLOBINT',
1351 ** SQLITE_AFF_INTEGER is returned.
1353 ** Substring | Affinity
1354 ** --------------------------------
1355 ** 'INT' | SQLITE_AFF_INTEGER
1356 ** 'CHAR' | SQLITE_AFF_TEXT
1357 ** 'CLOB' | SQLITE_AFF_TEXT
1358 ** 'TEXT' | SQLITE_AFF_TEXT
1359 ** 'BLOB' | SQLITE_AFF_BLOB
1360 ** 'REAL' | SQLITE_AFF_REAL
1361 ** 'FLOA' | SQLITE_AFF_REAL
1362 ** 'DOUB' | SQLITE_AFF_REAL
1364 ** If none of the substrings in the above table are found,
1365 ** SQLITE_AFF_NUMERIC is returned.
1367 char sqlite3AffinityType(const char *zIn, Column *pCol){
1368 u32 h = 0;
1369 char aff = SQLITE_AFF_NUMERIC;
1370 const char *zChar = 0;
1372 assert( zIn!=0 );
1373 while( zIn[0] ){
1374 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1375 zIn++;
1376 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1377 aff = SQLITE_AFF_TEXT;
1378 zChar = zIn;
1379 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1380 aff = SQLITE_AFF_TEXT;
1381 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1382 aff = SQLITE_AFF_TEXT;
1383 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1384 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1385 aff = SQLITE_AFF_BLOB;
1386 if( zIn[0]=='(' ) zChar = zIn;
1387 #ifndef SQLITE_OMIT_FLOATING_POINT
1388 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1389 && aff==SQLITE_AFF_NUMERIC ){
1390 aff = SQLITE_AFF_REAL;
1391 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1392 && aff==SQLITE_AFF_NUMERIC ){
1393 aff = SQLITE_AFF_REAL;
1394 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1395 && aff==SQLITE_AFF_NUMERIC ){
1396 aff = SQLITE_AFF_REAL;
1397 #endif
1398 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1399 aff = SQLITE_AFF_INTEGER;
1400 break;
1404 /* If pCol is not NULL, store an estimate of the field size. The
1405 ** estimate is scaled so that the size of an integer is 1. */
1406 if( pCol ){
1407 int v = 0; /* default size is approx 4 bytes */
1408 if( aff<SQLITE_AFF_NUMERIC ){
1409 if( zChar ){
1410 while( zChar[0] ){
1411 if( sqlite3Isdigit(zChar[0]) ){
1412 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1413 sqlite3GetInt32(zChar, &v);
1414 break;
1416 zChar++;
1418 }else{
1419 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
1422 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1423 if( v>=sqlite3GlobalConfig.szSorterRef ){
1424 pCol->colFlags |= COLFLAG_SORTERREF;
1426 #endif
1427 v = v/4 + 1;
1428 if( v>255 ) v = 255;
1429 pCol->szEst = v;
1431 return aff;
1435 ** The expression is the default value for the most recently added column
1436 ** of the table currently under construction.
1438 ** Default value expressions must be constant. Raise an exception if this
1439 ** is not the case.
1441 ** This routine is called by the parser while in the middle of
1442 ** parsing a CREATE TABLE statement.
1444 void sqlite3AddDefaultValue(
1445 Parse *pParse, /* Parsing context */
1446 Expr *pExpr, /* The parsed expression of the default value */
1447 const char *zStart, /* Start of the default value text */
1448 const char *zEnd /* First character past end of defaut value text */
1450 Table *p;
1451 Column *pCol;
1452 sqlite3 *db = pParse->db;
1453 p = pParse->pNewTable;
1454 if( p!=0 ){
1455 int isInit = db->init.busy && db->init.iDb!=1;
1456 pCol = &(p->aCol[p->nCol-1]);
1457 if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){
1458 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1459 pCol->zName);
1460 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1461 }else if( pCol->colFlags & COLFLAG_GENERATED ){
1462 testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1463 testcase( pCol->colFlags & COLFLAG_STORED );
1464 sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column");
1465 #endif
1466 }else{
1467 /* A copy of pExpr is used instead of the original, as pExpr contains
1468 ** tokens that point to volatile memory.
1470 Expr x;
1471 sqlite3ExprDelete(db, pCol->pDflt);
1472 memset(&x, 0, sizeof(x));
1473 x.op = TK_SPAN;
1474 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd);
1475 x.pLeft = pExpr;
1476 x.flags = EP_Skip;
1477 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1478 sqlite3DbFree(db, x.u.zToken);
1481 if( IN_RENAME_OBJECT ){
1482 sqlite3RenameExprUnmap(pParse, pExpr);
1484 sqlite3ExprDelete(db, pExpr);
1488 ** Backwards Compatibility Hack:
1490 ** Historical versions of SQLite accepted strings as column names in
1491 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example:
1493 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1494 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1496 ** This is goofy. But to preserve backwards compatibility we continue to
1497 ** accept it. This routine does the necessary conversion. It converts
1498 ** the expression given in its argument from a TK_STRING into a TK_ID
1499 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1500 ** If the expression is anything other than TK_STRING, the expression is
1501 ** unchanged.
1503 static void sqlite3StringToId(Expr *p){
1504 if( p->op==TK_STRING ){
1505 p->op = TK_ID;
1506 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1507 p->pLeft->op = TK_ID;
1512 ** Tag the given column as being part of the PRIMARY KEY
1514 static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){
1515 pCol->colFlags |= COLFLAG_PRIMKEY;
1516 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1517 if( pCol->colFlags & COLFLAG_GENERATED ){
1518 testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1519 testcase( pCol->colFlags & COLFLAG_STORED );
1520 sqlite3ErrorMsg(pParse,
1521 "generated columns cannot be part of the PRIMARY KEY");
1523 #endif
1527 ** Designate the PRIMARY KEY for the table. pList is a list of names
1528 ** of columns that form the primary key. If pList is NULL, then the
1529 ** most recently added column of the table is the primary key.
1531 ** A table can have at most one primary key. If the table already has
1532 ** a primary key (and this is the second primary key) then create an
1533 ** error.
1535 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1536 ** then we will try to use that column as the rowid. Set the Table.iPKey
1537 ** field of the table under construction to be the index of the
1538 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1539 ** no INTEGER PRIMARY KEY.
1541 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1542 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1544 void sqlite3AddPrimaryKey(
1545 Parse *pParse, /* Parsing context */
1546 ExprList *pList, /* List of field names to be indexed */
1547 int onError, /* What to do with a uniqueness conflict */
1548 int autoInc, /* True if the AUTOINCREMENT keyword is present */
1549 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1551 Table *pTab = pParse->pNewTable;
1552 Column *pCol = 0;
1553 int iCol = -1, i;
1554 int nTerm;
1555 if( pTab==0 ) goto primary_key_exit;
1556 if( pTab->tabFlags & TF_HasPrimaryKey ){
1557 sqlite3ErrorMsg(pParse,
1558 "table \"%s\" has more than one primary key", pTab->zName);
1559 goto primary_key_exit;
1561 pTab->tabFlags |= TF_HasPrimaryKey;
1562 if( pList==0 ){
1563 iCol = pTab->nCol - 1;
1564 pCol = &pTab->aCol[iCol];
1565 makeColumnPartOfPrimaryKey(pParse, pCol);
1566 nTerm = 1;
1567 }else{
1568 nTerm = pList->nExpr;
1569 for(i=0; i<nTerm; i++){
1570 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1571 assert( pCExpr!=0 );
1572 sqlite3StringToId(pCExpr);
1573 if( pCExpr->op==TK_ID ){
1574 const char *zCName = pCExpr->u.zToken;
1575 for(iCol=0; iCol<pTab->nCol; iCol++){
1576 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1577 pCol = &pTab->aCol[iCol];
1578 makeColumnPartOfPrimaryKey(pParse, pCol);
1579 break;
1585 if( nTerm==1
1586 && pCol
1587 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0
1588 && sortOrder!=SQLITE_SO_DESC
1590 if( IN_RENAME_OBJECT && pList ){
1591 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr);
1592 sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr);
1594 pTab->iPKey = iCol;
1595 pTab->keyConf = (u8)onError;
1596 assert( autoInc==0 || autoInc==1 );
1597 pTab->tabFlags |= autoInc*TF_Autoincrement;
1598 if( pList ) pParse->iPkSortOrder = pList->a[0].sortFlags;
1599 (void)sqlite3HasExplicitNulls(pParse, pList);
1600 }else if( autoInc ){
1601 #ifndef SQLITE_OMIT_AUTOINCREMENT
1602 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1603 "INTEGER PRIMARY KEY");
1604 #endif
1605 }else{
1606 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1607 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1608 pList = 0;
1611 primary_key_exit:
1612 sqlite3ExprListDelete(pParse->db, pList);
1613 return;
1617 ** Add a new CHECK constraint to the table currently under construction.
1619 void sqlite3AddCheckConstraint(
1620 Parse *pParse, /* Parsing context */
1621 Expr *pCheckExpr, /* The check expression */
1622 const char *zStart, /* Opening "(" */
1623 const char *zEnd /* Closing ")" */
1625 #ifndef SQLITE_OMIT_CHECK
1626 Table *pTab = pParse->pNewTable;
1627 sqlite3 *db = pParse->db;
1628 if( pTab && !IN_DECLARE_VTAB
1629 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1631 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1632 if( pParse->constraintName.n ){
1633 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1634 }else{
1635 Token t;
1636 for(zStart++; sqlite3Isspace(zStart[0]); zStart++){}
1637 while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; }
1638 t.z = zStart;
1639 t.n = (int)(zEnd - t.z);
1640 sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1);
1642 }else
1643 #endif
1645 sqlite3ExprDelete(pParse->db, pCheckExpr);
1650 ** Set the collation function of the most recently parsed table column
1651 ** to the CollSeq given.
1653 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1654 Table *p;
1655 int i;
1656 char *zColl; /* Dequoted name of collation sequence */
1657 sqlite3 *db;
1659 if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return;
1660 i = p->nCol-1;
1661 db = pParse->db;
1662 zColl = sqlite3NameFromToken(db, pToken);
1663 if( !zColl ) return;
1665 if( sqlite3LocateCollSeq(pParse, zColl) ){
1666 Index *pIdx;
1667 sqlite3DbFree(db, p->aCol[i].zColl);
1668 p->aCol[i].zColl = zColl;
1670 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1671 ** then an index may have been created on this column before the
1672 ** collation type was added. Correct this if it is the case.
1674 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1675 assert( pIdx->nKeyCol==1 );
1676 if( pIdx->aiColumn[0]==i ){
1677 pIdx->azColl[0] = p->aCol[i].zColl;
1680 }else{
1681 sqlite3DbFree(db, zColl);
1685 /* Change the most recently parsed column to be a GENERATED ALWAYS AS
1686 ** column.
1688 void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){
1689 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1690 u8 eType = COLFLAG_VIRTUAL;
1691 Table *pTab = pParse->pNewTable;
1692 Column *pCol;
1693 if( pTab==0 ){
1694 /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */
1695 goto generated_done;
1697 pCol = &(pTab->aCol[pTab->nCol-1]);
1698 if( IN_DECLARE_VTAB ){
1699 sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns");
1700 goto generated_done;
1702 if( pCol->pDflt ) goto generated_error;
1703 if( pType ){
1704 if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){
1705 /* no-op */
1706 }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){
1707 eType = COLFLAG_STORED;
1708 }else{
1709 goto generated_error;
1712 if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--;
1713 pCol->colFlags |= eType;
1714 assert( TF_HasVirtual==COLFLAG_VIRTUAL );
1715 assert( TF_HasStored==COLFLAG_STORED );
1716 pTab->tabFlags |= eType;
1717 if( pCol->colFlags & COLFLAG_PRIMKEY ){
1718 makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */
1720 pCol->pDflt = pExpr;
1721 pExpr = 0;
1722 goto generated_done;
1724 generated_error:
1725 sqlite3ErrorMsg(pParse, "error in generated column \"%s\"",
1726 pCol->zName);
1727 generated_done:
1728 sqlite3ExprDelete(pParse->db, pExpr);
1729 #else
1730 /* Throw and error for the GENERATED ALWAYS AS clause if the
1731 ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */
1732 sqlite3ErrorMsg(pParse, "generated columns not supported");
1733 sqlite3ExprDelete(pParse->db, pExpr);
1734 #endif
1738 ** Generate code that will increment the schema cookie.
1740 ** The schema cookie is used to determine when the schema for the
1741 ** database changes. After each schema change, the cookie value
1742 ** changes. When a process first reads the schema it records the
1743 ** cookie. Thereafter, whenever it goes to access the database,
1744 ** it checks the cookie to make sure the schema has not changed
1745 ** since it was last read.
1747 ** This plan is not completely bullet-proof. It is possible for
1748 ** the schema to change multiple times and for the cookie to be
1749 ** set back to prior value. But schema changes are infrequent
1750 ** and the probability of hitting the same cookie value is only
1751 ** 1 chance in 2^32. So we're safe enough.
1753 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
1754 ** the schema-version whenever the schema changes.
1756 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1757 sqlite3 *db = pParse->db;
1758 Vdbe *v = pParse->pVdbe;
1759 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1760 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
1761 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie));
1765 ** Measure the number of characters needed to output the given
1766 ** identifier. The number returned includes any quotes used
1767 ** but does not include the null terminator.
1769 ** The estimate is conservative. It might be larger that what is
1770 ** really needed.
1772 static int identLength(const char *z){
1773 int n;
1774 for(n=0; *z; n++, z++){
1775 if( *z=='"' ){ n++; }
1777 return n + 2;
1781 ** The first parameter is a pointer to an output buffer. The second
1782 ** parameter is a pointer to an integer that contains the offset at
1783 ** which to write into the output buffer. This function copies the
1784 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1785 ** to the specified offset in the buffer and updates *pIdx to refer
1786 ** to the first byte after the last byte written before returning.
1788 ** If the string zSignedIdent consists entirely of alpha-numeric
1789 ** characters, does not begin with a digit and is not an SQL keyword,
1790 ** then it is copied to the output buffer exactly as it is. Otherwise,
1791 ** it is quoted using double-quotes.
1793 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1794 unsigned char *zIdent = (unsigned char*)zSignedIdent;
1795 int i, j, needQuote;
1796 i = *pIdx;
1798 for(j=0; zIdent[j]; j++){
1799 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1801 needQuote = sqlite3Isdigit(zIdent[0])
1802 || sqlite3KeywordCode(zIdent, j)!=TK_ID
1803 || zIdent[j]!=0
1804 || j==0;
1806 if( needQuote ) z[i++] = '"';
1807 for(j=0; zIdent[j]; j++){
1808 z[i++] = zIdent[j];
1809 if( zIdent[j]=='"' ) z[i++] = '"';
1811 if( needQuote ) z[i++] = '"';
1812 z[i] = 0;
1813 *pIdx = i;
1817 ** Generate a CREATE TABLE statement appropriate for the given
1818 ** table. Memory to hold the text of the statement is obtained
1819 ** from sqliteMalloc() and must be freed by the calling function.
1821 static char *createTableStmt(sqlite3 *db, Table *p){
1822 int i, k, n;
1823 char *zStmt;
1824 char *zSep, *zSep2, *zEnd;
1825 Column *pCol;
1826 n = 0;
1827 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1828 n += identLength(pCol->zName) + 5;
1830 n += identLength(p->zName);
1831 if( n<50 ){
1832 zSep = "";
1833 zSep2 = ",";
1834 zEnd = ")";
1835 }else{
1836 zSep = "\n ";
1837 zSep2 = ",\n ";
1838 zEnd = "\n)";
1840 n += 35 + 6*p->nCol;
1841 zStmt = sqlite3DbMallocRaw(0, n);
1842 if( zStmt==0 ){
1843 sqlite3OomFault(db);
1844 return 0;
1846 sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1847 k = sqlite3Strlen30(zStmt);
1848 identPut(zStmt, &k, p->zName);
1849 zStmt[k++] = '(';
1850 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1851 static const char * const azType[] = {
1852 /* SQLITE_AFF_BLOB */ "",
1853 /* SQLITE_AFF_TEXT */ " TEXT",
1854 /* SQLITE_AFF_NUMERIC */ " NUM",
1855 /* SQLITE_AFF_INTEGER */ " INT",
1856 /* SQLITE_AFF_REAL */ " REAL"
1858 int len;
1859 const char *zType;
1861 sqlite3_snprintf(n-k, &zStmt[k], zSep);
1862 k += sqlite3Strlen30(&zStmt[k]);
1863 zSep = zSep2;
1864 identPut(zStmt, &k, pCol->zName);
1865 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
1866 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
1867 testcase( pCol->affinity==SQLITE_AFF_BLOB );
1868 testcase( pCol->affinity==SQLITE_AFF_TEXT );
1869 testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1870 testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1871 testcase( pCol->affinity==SQLITE_AFF_REAL );
1873 zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
1874 len = sqlite3Strlen30(zType);
1875 assert( pCol->affinity==SQLITE_AFF_BLOB
1876 || pCol->affinity==sqlite3AffinityType(zType, 0) );
1877 memcpy(&zStmt[k], zType, len);
1878 k += len;
1879 assert( k<=n );
1881 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1882 return zStmt;
1886 ** Resize an Index object to hold N columns total. Return SQLITE_OK
1887 ** on success and SQLITE_NOMEM on an OOM error.
1889 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
1890 char *zExtra;
1891 int nByte;
1892 if( pIdx->nColumn>=N ) return SQLITE_OK;
1893 assert( pIdx->isResized==0 );
1894 nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N;
1895 zExtra = sqlite3DbMallocZero(db, nByte);
1896 if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
1897 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
1898 pIdx->azColl = (const char**)zExtra;
1899 zExtra += sizeof(char*)*N;
1900 memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1));
1901 pIdx->aiRowLogEst = (LogEst*)zExtra;
1902 zExtra += sizeof(LogEst)*N;
1903 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
1904 pIdx->aiColumn = (i16*)zExtra;
1905 zExtra += sizeof(i16)*N;
1906 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
1907 pIdx->aSortOrder = (u8*)zExtra;
1908 pIdx->nColumn = N;
1909 pIdx->isResized = 1;
1910 return SQLITE_OK;
1914 ** Estimate the total row width for a table.
1916 static void estimateTableWidth(Table *pTab){
1917 unsigned wTable = 0;
1918 const Column *pTabCol;
1919 int i;
1920 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
1921 wTable += pTabCol->szEst;
1923 if( pTab->iPKey<0 ) wTable++;
1924 pTab->szTabRow = sqlite3LogEst(wTable*4);
1928 ** Estimate the average size of a row for an index.
1930 static void estimateIndexWidth(Index *pIdx){
1931 unsigned wIndex = 0;
1932 int i;
1933 const Column *aCol = pIdx->pTable->aCol;
1934 for(i=0; i<pIdx->nColumn; i++){
1935 i16 x = pIdx->aiColumn[i];
1936 assert( x<pIdx->pTable->nCol );
1937 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
1939 pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
1942 /* Return true if column number x is any of the first nCol entries of aiCol[].
1943 ** This is used to determine if the column number x appears in any of the
1944 ** first nCol entries of an index.
1946 static int hasColumn(const i16 *aiCol, int nCol, int x){
1947 while( nCol-- > 0 ){
1948 assert( aiCol[0]>=0 );
1949 if( x==*(aiCol++) ){
1950 return 1;
1953 return 0;
1957 ** Return true if any of the first nKey entries of index pIdx exactly
1958 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID
1959 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may
1960 ** or may not be the same index as pPk.
1962 ** The first nKey entries of pIdx are guaranteed to be ordinary columns,
1963 ** not a rowid or expression.
1965 ** This routine differs from hasColumn() in that both the column and the
1966 ** collating sequence must match for this routine, but for hasColumn() only
1967 ** the column name must match.
1969 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){
1970 int i, j;
1971 assert( nKey<=pIdx->nColumn );
1972 assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) );
1973 assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY );
1974 assert( pPk->pTable->tabFlags & TF_WithoutRowid );
1975 assert( pPk->pTable==pIdx->pTable );
1976 testcase( pPk==pIdx );
1977 j = pPk->aiColumn[iCol];
1978 assert( j!=XN_ROWID && j!=XN_EXPR );
1979 for(i=0; i<nKey; i++){
1980 assert( pIdx->aiColumn[i]>=0 || j>=0 );
1981 if( pIdx->aiColumn[i]==j
1982 && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0
1984 return 1;
1987 return 0;
1990 /* Recompute the colNotIdxed field of the Index.
1992 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed
1993 ** columns that are within the first 63 columns of the table. The
1994 ** high-order bit of colNotIdxed is always 1. All unindexed columns
1995 ** of the table have a 1.
1997 ** 2019-10-24: For the purpose of this computation, virtual columns are
1998 ** not considered to be covered by the index, even if they are in the
1999 ** index, because we do not trust the logic in whereIndexExprTrans() to be
2000 ** able to find all instances of a reference to the indexed table column
2001 ** and convert them into references to the index. Hence we always want
2002 ** the actual table at hand in order to recompute the virtual column, if
2003 ** necessary.
2005 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask
2006 ** to determine if the index is covering index.
2008 static void recomputeColumnsNotIndexed(Index *pIdx){
2009 Bitmask m = 0;
2010 int j;
2011 Table *pTab = pIdx->pTable;
2012 for(j=pIdx->nColumn-1; j>=0; j--){
2013 int x = pIdx->aiColumn[j];
2014 if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){
2015 testcase( x==BMS-1 );
2016 testcase( x==BMS-2 );
2017 if( x<BMS-1 ) m |= MASKBIT(x);
2020 pIdx->colNotIdxed = ~m;
2021 assert( (pIdx->colNotIdxed>>63)==1 );
2025 ** This routine runs at the end of parsing a CREATE TABLE statement that
2026 ** has a WITHOUT ROWID clause. The job of this routine is to convert both
2027 ** internal schema data structures and the generated VDBE code so that they
2028 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
2029 ** Changes include:
2031 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
2032 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
2033 ** into BTREE_BLOBKEY.
2034 ** (3) Bypass the creation of the sqlite_schema table entry
2035 ** for the PRIMARY KEY as the primary key index is now
2036 ** identified by the sqlite_schema table entry of the table itself.
2037 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the
2038 ** schema to the rootpage from the main table.
2039 ** (5) Add all table columns to the PRIMARY KEY Index object
2040 ** so that the PRIMARY KEY is a covering index. The surplus
2041 ** columns are part of KeyInfo.nAllField and are not used for
2042 ** sorting or lookup or uniqueness checks.
2043 ** (6) Replace the rowid tail on all automatically generated UNIQUE
2044 ** indices with the PRIMARY KEY columns.
2046 ** For virtual tables, only (1) is performed.
2048 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
2049 Index *pIdx;
2050 Index *pPk;
2051 int nPk;
2052 int nExtra;
2053 int i, j;
2054 sqlite3 *db = pParse->db;
2055 Vdbe *v = pParse->pVdbe;
2057 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
2059 if( !db->init.imposterTable ){
2060 for(i=0; i<pTab->nCol; i++){
2061 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){
2062 pTab->aCol[i].notNull = OE_Abort;
2065 pTab->tabFlags |= TF_HasNotNull;
2068 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
2069 ** into BTREE_BLOBKEY.
2071 if( pParse->addrCrTab ){
2072 assert( v );
2073 sqlite3VdbeChangeP3(v, pParse->addrCrTab, BTREE_BLOBKEY);
2076 /* Locate the PRIMARY KEY index. Or, if this table was originally
2077 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
2079 if( pTab->iPKey>=0 ){
2080 ExprList *pList;
2081 Token ipkToken;
2082 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName);
2083 pList = sqlite3ExprListAppend(pParse, 0,
2084 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
2085 if( pList==0 ) return;
2086 if( IN_RENAME_OBJECT ){
2087 sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey);
2089 pList->a[0].sortFlags = pParse->iPkSortOrder;
2090 assert( pParse->pNewTable==pTab );
2091 pTab->iPKey = -1;
2092 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
2093 SQLITE_IDXTYPE_PRIMARYKEY);
2094 if( db->mallocFailed || pParse->nErr ) return;
2095 pPk = sqlite3PrimaryKeyIndex(pTab);
2096 assert( pPk->nKeyCol==1 );
2097 }else{
2098 pPk = sqlite3PrimaryKeyIndex(pTab);
2099 assert( pPk!=0 );
2102 ** Remove all redundant columns from the PRIMARY KEY. For example, change
2103 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later
2104 ** code assumes the PRIMARY KEY contains no repeated columns.
2106 for(i=j=1; i<pPk->nKeyCol; i++){
2107 if( isDupColumn(pPk, j, pPk, i) ){
2108 pPk->nColumn--;
2109 }else{
2110 testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) );
2111 pPk->azColl[j] = pPk->azColl[i];
2112 pPk->aSortOrder[j] = pPk->aSortOrder[i];
2113 pPk->aiColumn[j++] = pPk->aiColumn[i];
2116 pPk->nKeyCol = j;
2118 assert( pPk!=0 );
2119 pPk->isCovering = 1;
2120 if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
2121 nPk = pPk->nColumn = pPk->nKeyCol;
2123 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema
2124 ** table entry. This is only required if currently generating VDBE
2125 ** code for a CREATE TABLE (not when parsing one as part of reading
2126 ** a database schema). */
2127 if( v && pPk->tnum>0 ){
2128 assert( db->init.busy==0 );
2129 sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto);
2132 /* The root page of the PRIMARY KEY is the table root page */
2133 pPk->tnum = pTab->tnum;
2135 /* Update the in-memory representation of all UNIQUE indices by converting
2136 ** the final rowid column into one or more columns of the PRIMARY KEY.
2138 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2139 int n;
2140 if( IsPrimaryKeyIndex(pIdx) ) continue;
2141 for(i=n=0; i<nPk; i++){
2142 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
2143 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
2144 n++;
2147 if( n==0 ){
2148 /* This index is a superset of the primary key */
2149 pIdx->nColumn = pIdx->nKeyCol;
2150 continue;
2152 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
2153 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
2154 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
2155 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
2156 pIdx->aiColumn[j] = pPk->aiColumn[i];
2157 pIdx->azColl[j] = pPk->azColl[i];
2158 if( pPk->aSortOrder[i] ){
2159 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */
2160 pIdx->bAscKeyBug = 1;
2162 j++;
2165 assert( pIdx->nColumn>=pIdx->nKeyCol+n );
2166 assert( pIdx->nColumn>=j );
2169 /* Add all table columns to the PRIMARY KEY index
2171 nExtra = 0;
2172 for(i=0; i<pTab->nCol; i++){
2173 if( !hasColumn(pPk->aiColumn, nPk, i)
2174 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++;
2176 if( resizeIndexObject(db, pPk, nPk+nExtra) ) return;
2177 for(i=0, j=nPk; i<pTab->nCol; i++){
2178 if( !hasColumn(pPk->aiColumn, j, i)
2179 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0
2181 assert( j<pPk->nColumn );
2182 pPk->aiColumn[j] = i;
2183 pPk->azColl[j] = sqlite3StrBINARY;
2184 j++;
2187 assert( pPk->nColumn==j );
2188 assert( pTab->nNVCol<=j );
2189 recomputeColumnsNotIndexed(pPk);
2193 #ifndef SQLITE_OMIT_VIRTUALTABLE
2195 ** Return true if pTab is a virtual table and zName is a shadow table name
2196 ** for that virtual table.
2198 int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){
2199 int nName; /* Length of zName */
2200 Module *pMod; /* Module for the virtual table */
2202 if( !IsVirtual(pTab) ) return 0;
2203 nName = sqlite3Strlen30(pTab->zName);
2204 if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0;
2205 if( zName[nName]!='_' ) return 0;
2206 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->azModuleArg[0]);
2207 if( pMod==0 ) return 0;
2208 if( pMod->pModule->iVersion<3 ) return 0;
2209 if( pMod->pModule->xShadowName==0 ) return 0;
2210 return pMod->pModule->xShadowName(zName+nName+1);
2212 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2214 #ifndef SQLITE_OMIT_VIRTUALTABLE
2216 ** Return true if zName is a shadow table name in the current database
2217 ** connection.
2219 ** zName is temporarily modified while this routine is running, but is
2220 ** restored to its original value prior to this routine returning.
2222 int sqlite3ShadowTableName(sqlite3 *db, const char *zName){
2223 char *zTail; /* Pointer to the last "_" in zName */
2224 Table *pTab; /* Table that zName is a shadow of */
2225 zTail = strrchr(zName, '_');
2226 if( zTail==0 ) return 0;
2227 *zTail = 0;
2228 pTab = sqlite3FindTable(db, zName, 0);
2229 *zTail = '_';
2230 if( pTab==0 ) return 0;
2231 if( !IsVirtual(pTab) ) return 0;
2232 return sqlite3IsShadowTableOf(db, pTab, zName);
2234 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2237 #ifdef SQLITE_DEBUG
2239 ** Mark all nodes of an expression as EP_Immutable, indicating that
2240 ** they should not be changed. Expressions attached to a table or
2241 ** index definition are tagged this way to help ensure that we do
2242 ** not pass them into code generator routines by mistake.
2244 static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){
2245 ExprSetVVAProperty(pExpr, EP_Immutable);
2246 return WRC_Continue;
2248 static void markExprListImmutable(ExprList *pList){
2249 if( pList ){
2250 Walker w;
2251 memset(&w, 0, sizeof(w));
2252 w.xExprCallback = markImmutableExprStep;
2253 w.xSelectCallback = sqlite3SelectWalkNoop;
2254 w.xSelectCallback2 = 0;
2255 sqlite3WalkExprList(&w, pList);
2258 #else
2259 #define markExprListImmutable(X) /* no-op */
2260 #endif /* SQLITE_DEBUG */
2264 ** This routine is called to report the final ")" that terminates
2265 ** a CREATE TABLE statement.
2267 ** The table structure that other action routines have been building
2268 ** is added to the internal hash tables, assuming no errors have
2269 ** occurred.
2271 ** An entry for the table is made in the schema table on disk, unless
2272 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
2273 ** it means we are reading the sqlite_schema table because we just
2274 ** connected to the database or because the sqlite_schema table has
2275 ** recently changed, so the entry for this table already exists in
2276 ** the sqlite_schema table. We do not want to create it again.
2278 ** If the pSelect argument is not NULL, it means that this routine
2279 ** was called to create a table generated from a
2280 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
2281 ** the new table will match the result set of the SELECT.
2283 void sqlite3EndTable(
2284 Parse *pParse, /* Parse context */
2285 Token *pCons, /* The ',' token after the last column defn. */
2286 Token *pEnd, /* The ')' before options in the CREATE TABLE */
2287 u8 tabOpts, /* Extra table options. Usually 0. */
2288 Select *pSelect /* Select from a "CREATE ... AS SELECT" */
2290 Table *p; /* The new table */
2291 sqlite3 *db = pParse->db; /* The database connection */
2292 int iDb; /* Database in which the table lives */
2293 Index *pIdx; /* An implied index of the table */
2295 if( pEnd==0 && pSelect==0 ){
2296 return;
2298 assert( !db->mallocFailed );
2299 p = pParse->pNewTable;
2300 if( p==0 ) return;
2302 if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){
2303 p->tabFlags |= TF_Shadow;
2306 /* If the db->init.busy is 1 it means we are reading the SQL off the
2307 ** "sqlite_schema" or "sqlite_temp_schema" table on the disk.
2308 ** So do not write to the disk again. Extract the root page number
2309 ** for the table from the db->init.newTnum field. (The page number
2310 ** should have been put there by the sqliteOpenCb routine.)
2312 ** If the root page number is 1, that means this is the sqlite_schema
2313 ** table itself. So mark it read-only.
2315 if( db->init.busy ){
2316 if( pSelect ){
2317 sqlite3ErrorMsg(pParse, "");
2318 return;
2320 p->tnum = db->init.newTnum;
2321 if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
2324 assert( (p->tabFlags & TF_HasPrimaryKey)==0
2325 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 );
2326 assert( (p->tabFlags & TF_HasPrimaryKey)!=0
2327 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) );
2329 /* Special processing for WITHOUT ROWID Tables */
2330 if( tabOpts & TF_WithoutRowid ){
2331 if( (p->tabFlags & TF_Autoincrement) ){
2332 sqlite3ErrorMsg(pParse,
2333 "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
2334 return;
2336 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
2337 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
2338 return;
2340 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
2341 convertToWithoutRowidTable(pParse, p);
2343 iDb = sqlite3SchemaToIndex(db, p->pSchema);
2345 #ifndef SQLITE_OMIT_CHECK
2346 /* Resolve names in all CHECK constraint expressions.
2348 if( p->pCheck ){
2349 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
2350 if( pParse->nErr ){
2351 /* If errors are seen, delete the CHECK constraints now, else they might
2352 ** actually be used if PRAGMA writable_schema=ON is set. */
2353 sqlite3ExprListDelete(db, p->pCheck);
2354 p->pCheck = 0;
2355 }else{
2356 markExprListImmutable(p->pCheck);
2359 #endif /* !defined(SQLITE_OMIT_CHECK) */
2360 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2361 if( p->tabFlags & TF_HasGenerated ){
2362 int ii, nNG = 0;
2363 testcase( p->tabFlags & TF_HasVirtual );
2364 testcase( p->tabFlags & TF_HasStored );
2365 for(ii=0; ii<p->nCol; ii++){
2366 u32 colFlags = p->aCol[ii].colFlags;
2367 if( (colFlags & COLFLAG_GENERATED)!=0 ){
2368 Expr *pX = p->aCol[ii].pDflt;
2369 testcase( colFlags & COLFLAG_VIRTUAL );
2370 testcase( colFlags & COLFLAG_STORED );
2371 if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){
2372 /* If there are errors in resolving the expression, change the
2373 ** expression to a NULL. This prevents code generators that operate
2374 ** on the expression from inserting extra parts into the expression
2375 ** tree that have been allocated from lookaside memory, which is
2376 ** illegal in a schema and will lead to errors or heap corruption
2377 ** when the database connection closes. */
2378 sqlite3ExprDelete(db, pX);
2379 p->aCol[ii].pDflt = sqlite3ExprAlloc(db, TK_NULL, 0, 0);
2381 }else{
2382 nNG++;
2385 if( nNG==0 ){
2386 sqlite3ErrorMsg(pParse, "must have at least one non-generated column");
2387 return;
2390 #endif
2392 /* Estimate the average row size for the table and for all implied indices */
2393 estimateTableWidth(p);
2394 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
2395 estimateIndexWidth(pIdx);
2398 /* If not initializing, then create a record for the new table
2399 ** in the schema table of the database.
2401 ** If this is a TEMPORARY table, write the entry into the auxiliary
2402 ** file instead of into the main database file.
2404 if( !db->init.busy ){
2405 int n;
2406 Vdbe *v;
2407 char *zType; /* "view" or "table" */
2408 char *zType2; /* "VIEW" or "TABLE" */
2409 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
2411 v = sqlite3GetVdbe(pParse);
2412 if( NEVER(v==0) ) return;
2414 sqlite3VdbeAddOp1(v, OP_Close, 0);
2417 ** Initialize zType for the new view or table.
2419 if( p->pSelect==0 ){
2420 /* A regular table */
2421 zType = "table";
2422 zType2 = "TABLE";
2423 #ifndef SQLITE_OMIT_VIEW
2424 }else{
2425 /* A view */
2426 zType = "view";
2427 zType2 = "VIEW";
2428 #endif
2431 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
2432 ** statement to populate the new table. The root-page number for the
2433 ** new table is in register pParse->regRoot.
2435 ** Once the SELECT has been coded by sqlite3Select(), it is in a
2436 ** suitable state to query for the column names and types to be used
2437 ** by the new table.
2439 ** A shared-cache write-lock is not required to write to the new table,
2440 ** as a schema-lock must have already been obtained to create it. Since
2441 ** a schema-lock excludes all other database users, the write-lock would
2442 ** be redundant.
2444 if( pSelect ){
2445 SelectDest dest; /* Where the SELECT should store results */
2446 int regYield; /* Register holding co-routine entry-point */
2447 int addrTop; /* Top of the co-routine */
2448 int regRec; /* A record to be insert into the new table */
2449 int regRowid; /* Rowid of the next row to insert */
2450 int addrInsLoop; /* Top of the loop for inserting rows */
2451 Table *pSelTab; /* A table that describes the SELECT results */
2453 regYield = ++pParse->nMem;
2454 regRec = ++pParse->nMem;
2455 regRowid = ++pParse->nMem;
2456 assert(pParse->nTab==1);
2457 sqlite3MayAbort(pParse);
2458 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
2459 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
2460 pParse->nTab = 2;
2461 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
2462 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
2463 if( pParse->nErr ) return;
2464 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB);
2465 if( pSelTab==0 ) return;
2466 assert( p->aCol==0 );
2467 p->nCol = p->nNVCol = pSelTab->nCol;
2468 p->aCol = pSelTab->aCol;
2469 pSelTab->nCol = 0;
2470 pSelTab->aCol = 0;
2471 sqlite3DeleteTable(db, pSelTab);
2472 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
2473 sqlite3Select(pParse, pSelect, &dest);
2474 if( pParse->nErr ) return;
2475 sqlite3VdbeEndCoroutine(v, regYield);
2476 sqlite3VdbeJumpHere(v, addrTop - 1);
2477 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
2478 VdbeCoverage(v);
2479 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
2480 sqlite3TableAffinity(v, p, 0);
2481 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
2482 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
2483 sqlite3VdbeGoto(v, addrInsLoop);
2484 sqlite3VdbeJumpHere(v, addrInsLoop);
2485 sqlite3VdbeAddOp1(v, OP_Close, 1);
2488 /* Compute the complete text of the CREATE statement */
2489 if( pSelect ){
2490 zStmt = createTableStmt(db, p);
2491 }else{
2492 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
2493 n = (int)(pEnd2->z - pParse->sNameToken.z);
2494 if( pEnd2->z[0]!=';' ) n += pEnd2->n;
2495 zStmt = sqlite3MPrintf(db,
2496 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
2500 /* A slot for the record has already been allocated in the
2501 ** schema table. We just need to update that slot with all
2502 ** the information we've collected.
2504 sqlite3NestedParse(pParse,
2505 "UPDATE %Q." DFLT_SCHEMA_TABLE
2506 " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q"
2507 " WHERE rowid=#%d",
2508 db->aDb[iDb].zDbSName,
2509 zType,
2510 p->zName,
2511 p->zName,
2512 pParse->regRoot,
2513 zStmt,
2514 pParse->regRowid
2516 sqlite3DbFree(db, zStmt);
2517 sqlite3ChangeCookie(pParse, iDb);
2519 #ifndef SQLITE_OMIT_AUTOINCREMENT
2520 /* Check to see if we need to create an sqlite_sequence table for
2521 ** keeping track of autoincrement keys.
2523 if( (p->tabFlags & TF_Autoincrement)!=0 ){
2524 Db *pDb = &db->aDb[iDb];
2525 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2526 if( pDb->pSchema->pSeqTab==0 ){
2527 sqlite3NestedParse(pParse,
2528 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2529 pDb->zDbSName
2533 #endif
2535 /* Reparse everything to update our internal data structures */
2536 sqlite3VdbeAddParseSchemaOp(v, iDb,
2537 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName));
2540 /* Add the table to the in-memory representation of the database.
2542 if( db->init.busy ){
2543 Table *pOld;
2544 Schema *pSchema = p->pSchema;
2545 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2546 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2547 if( pOld ){
2548 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
2549 sqlite3OomFault(db);
2550 return;
2552 pParse->pNewTable = 0;
2553 db->mDbFlags |= DBFLAG_SchemaChange;
2555 #ifndef SQLITE_OMIT_ALTERTABLE
2556 if( !p->pSelect ){
2557 const char *zName = (const char *)pParse->sNameToken.z;
2558 int nName;
2559 assert( !pSelect && pCons && pEnd );
2560 if( pCons->z==0 ){
2561 pCons = pEnd;
2563 nName = (int)((const char *)pCons->z - zName);
2564 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
2566 #endif
2570 #ifndef SQLITE_OMIT_VIEW
2572 ** The parser calls this routine in order to create a new VIEW
2574 void sqlite3CreateView(
2575 Parse *pParse, /* The parsing context */
2576 Token *pBegin, /* The CREATE token that begins the statement */
2577 Token *pName1, /* The token that holds the name of the view */
2578 Token *pName2, /* The token that holds the name of the view */
2579 ExprList *pCNames, /* Optional list of view column names */
2580 Select *pSelect, /* A SELECT statement that will become the new view */
2581 int isTemp, /* TRUE for a TEMPORARY view */
2582 int noErr /* Suppress error messages if VIEW already exists */
2584 Table *p;
2585 int n;
2586 const char *z;
2587 Token sEnd;
2588 DbFixer sFix;
2589 Token *pName = 0;
2590 int iDb;
2591 sqlite3 *db = pParse->db;
2593 if( pParse->nVar>0 ){
2594 sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2595 goto create_view_fail;
2597 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2598 p = pParse->pNewTable;
2599 if( p==0 || pParse->nErr ) goto create_view_fail;
2600 sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2601 iDb = sqlite3SchemaToIndex(db, p->pSchema);
2602 sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2603 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2605 /* Make a copy of the entire SELECT statement that defines the view.
2606 ** This will force all the Expr.token.z values to be dynamically
2607 ** allocated rather than point to the input string - which means that
2608 ** they will persist after the current sqlite3_exec() call returns.
2610 pSelect->selFlags |= SF_View;
2611 if( IN_RENAME_OBJECT ){
2612 p->pSelect = pSelect;
2613 pSelect = 0;
2614 }else{
2615 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2617 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
2618 if( db->mallocFailed ) goto create_view_fail;
2620 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
2621 ** the end.
2623 sEnd = pParse->sLastToken;
2624 assert( sEnd.z[0]!=0 || sEnd.n==0 );
2625 if( sEnd.z[0]!=';' ){
2626 sEnd.z += sEnd.n;
2628 sEnd.n = 0;
2629 n = (int)(sEnd.z - pBegin->z);
2630 assert( n>0 );
2631 z = pBegin->z;
2632 while( sqlite3Isspace(z[n-1]) ){ n--; }
2633 sEnd.z = &z[n-1];
2634 sEnd.n = 1;
2636 /* Use sqlite3EndTable() to add the view to the schema table */
2637 sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2639 create_view_fail:
2640 sqlite3SelectDelete(db, pSelect);
2641 if( IN_RENAME_OBJECT ){
2642 sqlite3RenameExprlistUnmap(pParse, pCNames);
2644 sqlite3ExprListDelete(db, pCNames);
2645 return;
2647 #endif /* SQLITE_OMIT_VIEW */
2649 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2651 ** The Table structure pTable is really a VIEW. Fill in the names of
2652 ** the columns of the view in the pTable structure. Return the number
2653 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
2655 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2656 Table *pSelTab; /* A fake table from which we get the result set */
2657 Select *pSel; /* Copy of the SELECT that implements the view */
2658 int nErr = 0; /* Number of errors encountered */
2659 int n; /* Temporarily holds the number of cursors assigned */
2660 sqlite3 *db = pParse->db; /* Database connection for malloc errors */
2661 #ifndef SQLITE_OMIT_VIRTUALTABLE
2662 int rc;
2663 #endif
2664 #ifndef SQLITE_OMIT_AUTHORIZATION
2665 sqlite3_xauth xAuth; /* Saved xAuth pointer */
2666 #endif
2668 assert( pTable );
2670 #ifndef SQLITE_OMIT_VIRTUALTABLE
2671 db->nSchemaLock++;
2672 rc = sqlite3VtabCallConnect(pParse, pTable);
2673 db->nSchemaLock--;
2674 if( rc ){
2675 return 1;
2677 if( IsVirtual(pTable) ) return 0;
2678 #endif
2680 #ifndef SQLITE_OMIT_VIEW
2681 /* A positive nCol means the columns names for this view are
2682 ** already known.
2684 if( pTable->nCol>0 ) return 0;
2686 /* A negative nCol is a special marker meaning that we are currently
2687 ** trying to compute the column names. If we enter this routine with
2688 ** a negative nCol, it means two or more views form a loop, like this:
2690 ** CREATE VIEW one AS SELECT * FROM two;
2691 ** CREATE VIEW two AS SELECT * FROM one;
2693 ** Actually, the error above is now caught prior to reaching this point.
2694 ** But the following test is still important as it does come up
2695 ** in the following:
2697 ** CREATE TABLE main.ex1(a);
2698 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2699 ** SELECT * FROM temp.ex1;
2701 if( pTable->nCol<0 ){
2702 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2703 return 1;
2705 assert( pTable->nCol>=0 );
2707 /* If we get this far, it means we need to compute the table names.
2708 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2709 ** "*" elements in the results set of the view and will assign cursors
2710 ** to the elements of the FROM clause. But we do not want these changes
2711 ** to be permanent. So the computation is done on a copy of the SELECT
2712 ** statement that defines the view.
2714 assert( pTable->pSelect );
2715 pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2716 if( pSel ){
2717 u8 eParseMode = pParse->eParseMode;
2718 pParse->eParseMode = PARSE_MODE_NORMAL;
2719 n = pParse->nTab;
2720 sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2721 pTable->nCol = -1;
2722 DisableLookaside;
2723 #ifndef SQLITE_OMIT_AUTHORIZATION
2724 xAuth = db->xAuth;
2725 db->xAuth = 0;
2726 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
2727 db->xAuth = xAuth;
2728 #else
2729 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
2730 #endif
2731 pParse->nTab = n;
2732 if( pSelTab==0 ){
2733 pTable->nCol = 0;
2734 nErr++;
2735 }else if( pTable->pCheck ){
2736 /* CREATE VIEW name(arglist) AS ...
2737 ** The names of the columns in the table are taken from
2738 ** arglist which is stored in pTable->pCheck. The pCheck field
2739 ** normally holds CHECK constraints on an ordinary table, but for
2740 ** a VIEW it holds the list of column names.
2742 sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2743 &pTable->nCol, &pTable->aCol);
2744 if( db->mallocFailed==0
2745 && pParse->nErr==0
2746 && pTable->nCol==pSel->pEList->nExpr
2748 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel,
2749 SQLITE_AFF_NONE);
2751 }else{
2752 /* CREATE VIEW name AS... without an argument list. Construct
2753 ** the column names from the SELECT statement that defines the view.
2755 assert( pTable->aCol==0 );
2756 pTable->nCol = pSelTab->nCol;
2757 pTable->aCol = pSelTab->aCol;
2758 pSelTab->nCol = 0;
2759 pSelTab->aCol = 0;
2760 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2762 pTable->nNVCol = pTable->nCol;
2763 sqlite3DeleteTable(db, pSelTab);
2764 sqlite3SelectDelete(db, pSel);
2765 EnableLookaside;
2766 pParse->eParseMode = eParseMode;
2767 } else {
2768 nErr++;
2770 pTable->pSchema->schemaFlags |= DB_UnresetViews;
2771 if( db->mallocFailed ){
2772 sqlite3DeleteColumnNames(db, pTable);
2773 pTable->aCol = 0;
2774 pTable->nCol = 0;
2776 #endif /* SQLITE_OMIT_VIEW */
2777 return nErr;
2779 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2781 #ifndef SQLITE_OMIT_VIEW
2783 ** Clear the column names from every VIEW in database idx.
2785 static void sqliteViewResetAll(sqlite3 *db, int idx){
2786 HashElem *i;
2787 assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2788 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2789 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2790 Table *pTab = sqliteHashData(i);
2791 if( pTab->pSelect ){
2792 sqlite3DeleteColumnNames(db, pTab);
2793 pTab->aCol = 0;
2794 pTab->nCol = 0;
2797 DbClearProperty(db, idx, DB_UnresetViews);
2799 #else
2800 # define sqliteViewResetAll(A,B)
2801 #endif /* SQLITE_OMIT_VIEW */
2804 ** This function is called by the VDBE to adjust the internal schema
2805 ** used by SQLite when the btree layer moves a table root page. The
2806 ** root-page of a table or index in database iDb has changed from iFrom
2807 ** to iTo.
2809 ** Ticket #1728: The symbol table might still contain information
2810 ** on tables and/or indices that are the process of being deleted.
2811 ** If you are unlucky, one of those deleted indices or tables might
2812 ** have the same rootpage number as the real table or index that is
2813 ** being moved. So we cannot stop searching after the first match
2814 ** because the first match might be for one of the deleted indices
2815 ** or tables and not the table/index that is actually being moved.
2816 ** We must continue looping until all tables and indices with
2817 ** rootpage==iFrom have been converted to have a rootpage of iTo
2818 ** in order to be certain that we got the right one.
2820 #ifndef SQLITE_OMIT_AUTOVACUUM
2821 void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){
2822 HashElem *pElem;
2823 Hash *pHash;
2824 Db *pDb;
2826 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2827 pDb = &db->aDb[iDb];
2828 pHash = &pDb->pSchema->tblHash;
2829 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2830 Table *pTab = sqliteHashData(pElem);
2831 if( pTab->tnum==iFrom ){
2832 pTab->tnum = iTo;
2835 pHash = &pDb->pSchema->idxHash;
2836 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2837 Index *pIdx = sqliteHashData(pElem);
2838 if( pIdx->tnum==iFrom ){
2839 pIdx->tnum = iTo;
2843 #endif
2846 ** Write code to erase the table with root-page iTable from database iDb.
2847 ** Also write code to modify the sqlite_schema table and internal schema
2848 ** if a root-page of another table is moved by the btree-layer whilst
2849 ** erasing iTable (this can happen with an auto-vacuum database).
2851 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
2852 Vdbe *v = sqlite3GetVdbe(pParse);
2853 int r1 = sqlite3GetTempReg(pParse);
2854 if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema");
2855 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
2856 sqlite3MayAbort(pParse);
2857 #ifndef SQLITE_OMIT_AUTOVACUUM
2858 /* OP_Destroy stores an in integer r1. If this integer
2859 ** is non-zero, then it is the root page number of a table moved to
2860 ** location iTable. The following code modifies the sqlite_schema table to
2861 ** reflect this.
2863 ** The "#NNN" in the SQL is a special constant that means whatever value
2864 ** is in register NNN. See grammar rules associated with the TK_REGISTER
2865 ** token for additional information.
2867 sqlite3NestedParse(pParse,
2868 "UPDATE %Q." DFLT_SCHEMA_TABLE
2869 " SET rootpage=%d WHERE #%d AND rootpage=#%d",
2870 pParse->db->aDb[iDb].zDbSName, iTable, r1, r1);
2871 #endif
2872 sqlite3ReleaseTempReg(pParse, r1);
2876 ** Write VDBE code to erase table pTab and all associated indices on disk.
2877 ** Code to update the sqlite_schema tables and internal schema definitions
2878 ** in case a root-page belonging to another table is moved by the btree layer
2879 ** is also added (this can happen with an auto-vacuum database).
2881 static void destroyTable(Parse *pParse, Table *pTab){
2882 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2883 ** is not defined), then it is important to call OP_Destroy on the
2884 ** table and index root-pages in order, starting with the numerically
2885 ** largest root-page number. This guarantees that none of the root-pages
2886 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2887 ** following were coded:
2889 ** OP_Destroy 4 0
2890 ** ...
2891 ** OP_Destroy 5 0
2893 ** and root page 5 happened to be the largest root-page number in the
2894 ** database, then root page 5 would be moved to page 4 by the
2895 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2896 ** a free-list page.
2898 Pgno iTab = pTab->tnum;
2899 Pgno iDestroyed = 0;
2901 while( 1 ){
2902 Index *pIdx;
2903 Pgno iLargest = 0;
2905 if( iDestroyed==0 || iTab<iDestroyed ){
2906 iLargest = iTab;
2908 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2909 Pgno iIdx = pIdx->tnum;
2910 assert( pIdx->pSchema==pTab->pSchema );
2911 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
2912 iLargest = iIdx;
2915 if( iLargest==0 ){
2916 return;
2917 }else{
2918 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2919 assert( iDb>=0 && iDb<pParse->db->nDb );
2920 destroyRootPage(pParse, iLargest, iDb);
2921 iDestroyed = iLargest;
2927 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2928 ** after a DROP INDEX or DROP TABLE command.
2930 static void sqlite3ClearStatTables(
2931 Parse *pParse, /* The parsing context */
2932 int iDb, /* The database number */
2933 const char *zType, /* "idx" or "tbl" */
2934 const char *zName /* Name of index or table */
2936 int i;
2937 const char *zDbName = pParse->db->aDb[iDb].zDbSName;
2938 for(i=1; i<=4; i++){
2939 char zTab[24];
2940 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
2941 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
2942 sqlite3NestedParse(pParse,
2943 "DELETE FROM %Q.%s WHERE %s=%Q",
2944 zDbName, zTab, zType, zName
2951 ** Generate code to drop a table.
2953 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
2954 Vdbe *v;
2955 sqlite3 *db = pParse->db;
2956 Trigger *pTrigger;
2957 Db *pDb = &db->aDb[iDb];
2959 v = sqlite3GetVdbe(pParse);
2960 assert( v!=0 );
2961 sqlite3BeginWriteOperation(pParse, 1, iDb);
2963 #ifndef SQLITE_OMIT_VIRTUALTABLE
2964 if( IsVirtual(pTab) ){
2965 sqlite3VdbeAddOp0(v, OP_VBegin);
2967 #endif
2969 /* Drop all triggers associated with the table being dropped. Code
2970 ** is generated to remove entries from sqlite_schema and/or
2971 ** sqlite_temp_schema if required.
2973 pTrigger = sqlite3TriggerList(pParse, pTab);
2974 while( pTrigger ){
2975 assert( pTrigger->pSchema==pTab->pSchema ||
2976 pTrigger->pSchema==db->aDb[1].pSchema );
2977 sqlite3DropTriggerPtr(pParse, pTrigger);
2978 pTrigger = pTrigger->pNext;
2981 #ifndef SQLITE_OMIT_AUTOINCREMENT
2982 /* Remove any entries of the sqlite_sequence table associated with
2983 ** the table being dropped. This is done before the table is dropped
2984 ** at the btree level, in case the sqlite_sequence table needs to
2985 ** move as a result of the drop (can happen in auto-vacuum mode).
2987 if( pTab->tabFlags & TF_Autoincrement ){
2988 sqlite3NestedParse(pParse,
2989 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2990 pDb->zDbSName, pTab->zName
2993 #endif
2995 /* Drop all entries in the schema table that refer to the
2996 ** table. The program name loops through the schema table and deletes
2997 ** every row that refers to a table of the same name as the one being
2998 ** dropped. Triggers are handled separately because a trigger can be
2999 ** created in the temp database that refers to a table in another
3000 ** database.
3002 sqlite3NestedParse(pParse,
3003 "DELETE FROM %Q." DFLT_SCHEMA_TABLE
3004 " WHERE tbl_name=%Q and type!='trigger'",
3005 pDb->zDbSName, pTab->zName);
3006 if( !isView && !IsVirtual(pTab) ){
3007 destroyTable(pParse, pTab);
3010 /* Remove the table entry from SQLite's internal schema and modify
3011 ** the schema cookie.
3013 if( IsVirtual(pTab) ){
3014 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
3015 sqlite3MayAbort(pParse);
3017 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
3018 sqlite3ChangeCookie(pParse, iDb);
3019 sqliteViewResetAll(db, iDb);
3023 ** Return TRUE if shadow tables should be read-only in the current
3024 ** context.
3026 int sqlite3ReadOnlyShadowTables(sqlite3 *db){
3027 #ifndef SQLITE_OMIT_VIRTUALTABLE
3028 if( (db->flags & SQLITE_Defensive)!=0
3029 && db->pVtabCtx==0
3030 && db->nVdbeExec==0
3032 return 1;
3034 #endif
3035 return 0;
3039 ** Return true if it is not allowed to drop the given table
3041 static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){
3042 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
3043 if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0;
3044 if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0;
3045 return 1;
3047 if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){
3048 return 1;
3050 return 0;
3054 ** This routine is called to do the work of a DROP TABLE statement.
3055 ** pName is the name of the table to be dropped.
3057 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
3058 Table *pTab;
3059 Vdbe *v;
3060 sqlite3 *db = pParse->db;
3061 int iDb;
3063 if( db->mallocFailed ){
3064 goto exit_drop_table;
3066 assert( pParse->nErr==0 );
3067 assert( pName->nSrc==1 );
3068 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
3069 if( noErr ) db->suppressErr++;
3070 assert( isView==0 || isView==LOCATE_VIEW );
3071 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
3072 if( noErr ) db->suppressErr--;
3074 if( pTab==0 ){
3075 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3076 goto exit_drop_table;
3078 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3079 assert( iDb>=0 && iDb<db->nDb );
3081 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
3082 ** it is initialized.
3084 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
3085 goto exit_drop_table;
3087 #ifndef SQLITE_OMIT_AUTHORIZATION
3089 int code;
3090 const char *zTab = SCHEMA_TABLE(iDb);
3091 const char *zDb = db->aDb[iDb].zDbSName;
3092 const char *zArg2 = 0;
3093 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
3094 goto exit_drop_table;
3096 if( isView ){
3097 if( !OMIT_TEMPDB && iDb==1 ){
3098 code = SQLITE_DROP_TEMP_VIEW;
3099 }else{
3100 code = SQLITE_DROP_VIEW;
3102 #ifndef SQLITE_OMIT_VIRTUALTABLE
3103 }else if( IsVirtual(pTab) ){
3104 code = SQLITE_DROP_VTABLE;
3105 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
3106 #endif
3107 }else{
3108 if( !OMIT_TEMPDB && iDb==1 ){
3109 code = SQLITE_DROP_TEMP_TABLE;
3110 }else{
3111 code = SQLITE_DROP_TABLE;
3114 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
3115 goto exit_drop_table;
3117 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
3118 goto exit_drop_table;
3121 #endif
3122 if( tableMayNotBeDropped(db, pTab) ){
3123 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
3124 goto exit_drop_table;
3127 #ifndef SQLITE_OMIT_VIEW
3128 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
3129 ** on a table.
3131 if( isView && pTab->pSelect==0 ){
3132 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
3133 goto exit_drop_table;
3135 if( !isView && pTab->pSelect ){
3136 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
3137 goto exit_drop_table;
3139 #endif
3141 /* Generate code to remove the table from the schema table
3142 ** on disk.
3144 v = sqlite3GetVdbe(pParse);
3145 if( v ){
3146 sqlite3BeginWriteOperation(pParse, 1, iDb);
3147 if( !isView ){
3148 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
3149 sqlite3FkDropTable(pParse, pName, pTab);
3151 sqlite3CodeDropTable(pParse, pTab, iDb, isView);
3154 exit_drop_table:
3155 sqlite3SrcListDelete(db, pName);
3159 ** This routine is called to create a new foreign key on the table
3160 ** currently under construction. pFromCol determines which columns
3161 ** in the current table point to the foreign key. If pFromCol==0 then
3162 ** connect the key to the last column inserted. pTo is the name of
3163 ** the table referred to (a.k.a the "parent" table). pToCol is a list
3164 ** of tables in the parent pTo table. flags contains all
3165 ** information about the conflict resolution algorithms specified
3166 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
3168 ** An FKey structure is created and added to the table currently
3169 ** under construction in the pParse->pNewTable field.
3171 ** The foreign key is set for IMMEDIATE processing. A subsequent call
3172 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
3174 void sqlite3CreateForeignKey(
3175 Parse *pParse, /* Parsing context */
3176 ExprList *pFromCol, /* Columns in this table that point to other table */
3177 Token *pTo, /* Name of the other table */
3178 ExprList *pToCol, /* Columns in the other table */
3179 int flags /* Conflict resolution algorithms. */
3181 sqlite3 *db = pParse->db;
3182 #ifndef SQLITE_OMIT_FOREIGN_KEY
3183 FKey *pFKey = 0;
3184 FKey *pNextTo;
3185 Table *p = pParse->pNewTable;
3186 int nByte;
3187 int i;
3188 int nCol;
3189 char *z;
3191 assert( pTo!=0 );
3192 if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
3193 if( pFromCol==0 ){
3194 int iCol = p->nCol-1;
3195 if( NEVER(iCol<0) ) goto fk_end;
3196 if( pToCol && pToCol->nExpr!=1 ){
3197 sqlite3ErrorMsg(pParse, "foreign key on %s"
3198 " should reference only one column of table %T",
3199 p->aCol[iCol].zName, pTo);
3200 goto fk_end;
3202 nCol = 1;
3203 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
3204 sqlite3ErrorMsg(pParse,
3205 "number of columns in foreign key does not match the number of "
3206 "columns in the referenced table");
3207 goto fk_end;
3208 }else{
3209 nCol = pFromCol->nExpr;
3211 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
3212 if( pToCol ){
3213 for(i=0; i<pToCol->nExpr; i++){
3214 nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1;
3217 pFKey = sqlite3DbMallocZero(db, nByte );
3218 if( pFKey==0 ){
3219 goto fk_end;
3221 pFKey->pFrom = p;
3222 pFKey->pNextFrom = p->pFKey;
3223 z = (char*)&pFKey->aCol[nCol];
3224 pFKey->zTo = z;
3225 if( IN_RENAME_OBJECT ){
3226 sqlite3RenameTokenMap(pParse, (void*)z, pTo);
3228 memcpy(z, pTo->z, pTo->n);
3229 z[pTo->n] = 0;
3230 sqlite3Dequote(z);
3231 z += pTo->n+1;
3232 pFKey->nCol = nCol;
3233 if( pFromCol==0 ){
3234 pFKey->aCol[0].iFrom = p->nCol-1;
3235 }else{
3236 for(i=0; i<nCol; i++){
3237 int j;
3238 for(j=0; j<p->nCol; j++){
3239 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zEName)==0 ){
3240 pFKey->aCol[i].iFrom = j;
3241 break;
3244 if( j>=p->nCol ){
3245 sqlite3ErrorMsg(pParse,
3246 "unknown column \"%s\" in foreign key definition",
3247 pFromCol->a[i].zEName);
3248 goto fk_end;
3250 if( IN_RENAME_OBJECT ){
3251 sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName);
3255 if( pToCol ){
3256 for(i=0; i<nCol; i++){
3257 int n = sqlite3Strlen30(pToCol->a[i].zEName);
3258 pFKey->aCol[i].zCol = z;
3259 if( IN_RENAME_OBJECT ){
3260 sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName);
3262 memcpy(z, pToCol->a[i].zEName, n);
3263 z[n] = 0;
3264 z += n+1;
3267 pFKey->isDeferred = 0;
3268 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */
3269 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */
3271 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
3272 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
3273 pFKey->zTo, (void *)pFKey
3275 if( pNextTo==pFKey ){
3276 sqlite3OomFault(db);
3277 goto fk_end;
3279 if( pNextTo ){
3280 assert( pNextTo->pPrevTo==0 );
3281 pFKey->pNextTo = pNextTo;
3282 pNextTo->pPrevTo = pFKey;
3285 /* Link the foreign key to the table as the last step.
3287 p->pFKey = pFKey;
3288 pFKey = 0;
3290 fk_end:
3291 sqlite3DbFree(db, pFKey);
3292 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
3293 sqlite3ExprListDelete(db, pFromCol);
3294 sqlite3ExprListDelete(db, pToCol);
3298 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
3299 ** clause is seen as part of a foreign key definition. The isDeferred
3300 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
3301 ** The behavior of the most recently created foreign key is adjusted
3302 ** accordingly.
3304 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
3305 #ifndef SQLITE_OMIT_FOREIGN_KEY
3306 Table *pTab;
3307 FKey *pFKey;
3308 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
3309 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
3310 pFKey->isDeferred = (u8)isDeferred;
3311 #endif
3315 ** Generate code that will erase and refill index *pIdx. This is
3316 ** used to initialize a newly created index or to recompute the
3317 ** content of an index in response to a REINDEX command.
3319 ** if memRootPage is not negative, it means that the index is newly
3320 ** created. The register specified by memRootPage contains the
3321 ** root page number of the index. If memRootPage is negative, then
3322 ** the index already exists and must be cleared before being refilled and
3323 ** the root page number of the index is taken from pIndex->tnum.
3325 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
3326 Table *pTab = pIndex->pTable; /* The table that is indexed */
3327 int iTab = pParse->nTab++; /* Btree cursor used for pTab */
3328 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */
3329 int iSorter; /* Cursor opened by OpenSorter (if in use) */
3330 int addr1; /* Address of top of loop */
3331 int addr2; /* Address to jump to for next iteration */
3332 Pgno tnum; /* Root page of index */
3333 int iPartIdxLabel; /* Jump to this label to skip a row */
3334 Vdbe *v; /* Generate code into this virtual machine */
3335 KeyInfo *pKey; /* KeyInfo for index */
3336 int regRecord; /* Register holding assembled index record */
3337 sqlite3 *db = pParse->db; /* The database connection */
3338 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3340 #ifndef SQLITE_OMIT_AUTHORIZATION
3341 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
3342 db->aDb[iDb].zDbSName ) ){
3343 return;
3345 #endif
3347 /* Require a write-lock on the table to perform this operation */
3348 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
3350 v = sqlite3GetVdbe(pParse);
3351 if( v==0 ) return;
3352 if( memRootPage>=0 ){
3353 tnum = (Pgno)memRootPage;
3354 }else{
3355 tnum = pIndex->tnum;
3357 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
3358 assert( pKey!=0 || db->mallocFailed || pParse->nErr );
3360 /* Open the sorter cursor if we are to use one. */
3361 iSorter = pParse->nTab++;
3362 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
3363 sqlite3KeyInfoRef(pKey), P4_KEYINFO);
3365 /* Open the table. Loop through all rows of the table, inserting index
3366 ** records into the sorter. */
3367 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
3368 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
3369 regRecord = sqlite3GetTempReg(pParse);
3370 sqlite3MultiWrite(pParse);
3372 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
3373 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
3374 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
3375 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
3376 sqlite3VdbeJumpHere(v, addr1);
3377 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
3378 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb,
3379 (char *)pKey, P4_KEYINFO);
3380 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
3382 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
3383 if( IsUniqueIndex(pIndex) ){
3384 int j2 = sqlite3VdbeGoto(v, 1);
3385 addr2 = sqlite3VdbeCurrentAddr(v);
3386 sqlite3VdbeVerifyAbortable(v, OE_Abort);
3387 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
3388 pIndex->nKeyCol); VdbeCoverage(v);
3389 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
3390 sqlite3VdbeJumpHere(v, j2);
3391 }else{
3392 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not
3393 ** abort. The exception is if one of the indexed expressions contains a
3394 ** user function that throws an exception when it is evaluated. But the
3395 ** overhead of adding a statement journal to a CREATE INDEX statement is
3396 ** very small (since most of the pages written do not contain content that
3397 ** needs to be restored if the statement aborts), so we call
3398 ** sqlite3MayAbort() for all CREATE INDEX statements. */
3399 sqlite3MayAbort(pParse);
3400 addr2 = sqlite3VdbeCurrentAddr(v);
3402 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
3403 if( !pIndex->bAscKeyBug ){
3404 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much
3405 ** faster by avoiding unnecessary seeks. But the optimization does
3406 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables
3407 ** with DESC primary keys, since those indexes have there keys in
3408 ** a different order from the main table.
3409 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf
3411 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx);
3413 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
3414 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
3415 sqlite3ReleaseTempReg(pParse, regRecord);
3416 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
3417 sqlite3VdbeJumpHere(v, addr1);
3419 sqlite3VdbeAddOp1(v, OP_Close, iTab);
3420 sqlite3VdbeAddOp1(v, OP_Close, iIdx);
3421 sqlite3VdbeAddOp1(v, OP_Close, iSorter);
3425 ** Allocate heap space to hold an Index object with nCol columns.
3427 ** Increase the allocation size to provide an extra nExtra bytes
3428 ** of 8-byte aligned space after the Index object and return a
3429 ** pointer to this extra space in *ppExtra.
3431 Index *sqlite3AllocateIndexObject(
3432 sqlite3 *db, /* Database connection */
3433 i16 nCol, /* Total number of columns in the index */
3434 int nExtra, /* Number of bytes of extra space to alloc */
3435 char **ppExtra /* Pointer to the "extra" space */
3437 Index *p; /* Allocated index object */
3438 int nByte; /* Bytes of space for Index object + arrays */
3440 nByte = ROUND8(sizeof(Index)) + /* Index structure */
3441 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */
3442 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */
3443 sizeof(i16)*nCol + /* Index.aiColumn */
3444 sizeof(u8)*nCol); /* Index.aSortOrder */
3445 p = sqlite3DbMallocZero(db, nByte + nExtra);
3446 if( p ){
3447 char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
3448 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
3449 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
3450 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol;
3451 p->aSortOrder = (u8*)pExtra;
3452 p->nColumn = nCol;
3453 p->nKeyCol = nCol - 1;
3454 *ppExtra = ((char*)p) + nByte;
3456 return p;
3460 ** If expression list pList contains an expression that was parsed with
3461 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in
3462 ** pParse and return non-zero. Otherwise, return zero.
3464 int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){
3465 if( pList ){
3466 int i;
3467 for(i=0; i<pList->nExpr; i++){
3468 if( pList->a[i].bNulls ){
3469 u8 sf = pList->a[i].sortFlags;
3470 sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s",
3471 (sf==0 || sf==3) ? "FIRST" : "LAST"
3473 return 1;
3477 return 0;
3481 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
3482 ** and pTblList is the name of the table that is to be indexed. Both will
3483 ** be NULL for a primary key or an index that is created to satisfy a
3484 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
3485 ** as the table to be indexed. pParse->pNewTable is a table that is
3486 ** currently being constructed by a CREATE TABLE statement.
3488 ** pList is a list of columns to be indexed. pList will be NULL if this
3489 ** is a primary key or unique-constraint on the most recent column added
3490 ** to the table currently under construction.
3492 void sqlite3CreateIndex(
3493 Parse *pParse, /* All information about this parse */
3494 Token *pName1, /* First part of index name. May be NULL */
3495 Token *pName2, /* Second part of index name. May be NULL */
3496 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
3497 ExprList *pList, /* A list of columns to be indexed */
3498 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
3499 Token *pStart, /* The CREATE token that begins this statement */
3500 Expr *pPIWhere, /* WHERE clause for partial indices */
3501 int sortOrder, /* Sort order of primary key when pList==NULL */
3502 int ifNotExist, /* Omit error if index already exists */
3503 u8 idxType /* The index type */
3505 Table *pTab = 0; /* Table to be indexed */
3506 Index *pIndex = 0; /* The index to be created */
3507 char *zName = 0; /* Name of the index */
3508 int nName; /* Number of characters in zName */
3509 int i, j;
3510 DbFixer sFix; /* For assigning database names to pTable */
3511 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
3512 sqlite3 *db = pParse->db;
3513 Db *pDb; /* The specific table containing the indexed database */
3514 int iDb; /* Index of the database that is being written */
3515 Token *pName = 0; /* Unqualified name of the index to create */
3516 struct ExprList_item *pListItem; /* For looping over pList */
3517 int nExtra = 0; /* Space allocated for zExtra[] */
3518 int nExtraCol; /* Number of extra columns needed */
3519 char *zExtra = 0; /* Extra space after the Index object */
3520 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
3522 if( db->mallocFailed || pParse->nErr>0 ){
3523 goto exit_create_index;
3525 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
3526 goto exit_create_index;
3528 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3529 goto exit_create_index;
3531 if( sqlite3HasExplicitNulls(pParse, pList) ){
3532 goto exit_create_index;
3536 ** Find the table that is to be indexed. Return early if not found.
3538 if( pTblName!=0 ){
3540 /* Use the two-part index name to determine the database
3541 ** to search for the table. 'Fix' the table name to this db
3542 ** before looking up the table.
3544 assert( pName1 && pName2 );
3545 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
3546 if( iDb<0 ) goto exit_create_index;
3547 assert( pName && pName->z );
3549 #ifndef SQLITE_OMIT_TEMPDB
3550 /* If the index name was unqualified, check if the table
3551 ** is a temp table. If so, set the database to 1. Do not do this
3552 ** if initialising a database schema.
3554 if( !db->init.busy ){
3555 pTab = sqlite3SrcListLookup(pParse, pTblName);
3556 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
3557 iDb = 1;
3560 #endif
3562 sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
3563 if( sqlite3FixSrcList(&sFix, pTblName) ){
3564 /* Because the parser constructs pTblName from a single identifier,
3565 ** sqlite3FixSrcList can never fail. */
3566 assert(0);
3568 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
3569 assert( db->mallocFailed==0 || pTab==0 );
3570 if( pTab==0 ) goto exit_create_index;
3571 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
3572 sqlite3ErrorMsg(pParse,
3573 "cannot create a TEMP index on non-TEMP table \"%s\"",
3574 pTab->zName);
3575 goto exit_create_index;
3577 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
3578 }else{
3579 assert( pName==0 );
3580 assert( pStart==0 );
3581 pTab = pParse->pNewTable;
3582 if( !pTab ) goto exit_create_index;
3583 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3585 pDb = &db->aDb[iDb];
3587 assert( pTab!=0 );
3588 assert( pParse->nErr==0 );
3589 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
3590 && db->init.busy==0
3591 && pTblName!=0
3592 #if SQLITE_USER_AUTHENTICATION
3593 && sqlite3UserAuthTable(pTab->zName)==0
3594 #endif
3596 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
3597 goto exit_create_index;
3599 #ifndef SQLITE_OMIT_VIEW
3600 if( pTab->pSelect ){
3601 sqlite3ErrorMsg(pParse, "views may not be indexed");
3602 goto exit_create_index;
3604 #endif
3605 #ifndef SQLITE_OMIT_VIRTUALTABLE
3606 if( IsVirtual(pTab) ){
3607 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
3608 goto exit_create_index;
3610 #endif
3613 ** Find the name of the index. Make sure there is not already another
3614 ** index or table with the same name.
3616 ** Exception: If we are reading the names of permanent indices from the
3617 ** sqlite_schema table (because some other process changed the schema) and
3618 ** one of the index names collides with the name of a temporary table or
3619 ** index, then we will continue to process this index.
3621 ** If pName==0 it means that we are
3622 ** dealing with a primary key or UNIQUE constraint. We have to invent our
3623 ** own name.
3625 if( pName ){
3626 zName = sqlite3NameFromToken(db, pName);
3627 if( zName==0 ) goto exit_create_index;
3628 assert( pName->z!=0 );
3629 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){
3630 goto exit_create_index;
3632 if( !IN_RENAME_OBJECT ){
3633 if( !db->init.busy ){
3634 if( sqlite3FindTable(db, zName, 0)!=0 ){
3635 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
3636 goto exit_create_index;
3639 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
3640 if( !ifNotExist ){
3641 sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3642 }else{
3643 assert( !db->init.busy );
3644 sqlite3CodeVerifySchema(pParse, iDb);
3646 goto exit_create_index;
3649 }else{
3650 int n;
3651 Index *pLoop;
3652 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3653 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3654 if( zName==0 ){
3655 goto exit_create_index;
3658 /* Automatic index names generated from within sqlite3_declare_vtab()
3659 ** must have names that are distinct from normal automatic index names.
3660 ** The following statement converts "sqlite3_autoindex..." into
3661 ** "sqlite3_butoindex..." in order to make the names distinct.
3662 ** The "vtab_err.test" test demonstrates the need of this statement. */
3663 if( IN_SPECIAL_PARSE ) zName[7]++;
3666 /* Check for authorization to create an index.
3668 #ifndef SQLITE_OMIT_AUTHORIZATION
3669 if( !IN_RENAME_OBJECT ){
3670 const char *zDb = pDb->zDbSName;
3671 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3672 goto exit_create_index;
3674 i = SQLITE_CREATE_INDEX;
3675 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3676 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3677 goto exit_create_index;
3680 #endif
3682 /* If pList==0, it means this routine was called to make a primary
3683 ** key out of the last column added to the table under construction.
3684 ** So create a fake list to simulate this.
3686 if( pList==0 ){
3687 Token prevCol;
3688 Column *pCol = &pTab->aCol[pTab->nCol-1];
3689 pCol->colFlags |= COLFLAG_UNIQUE;
3690 sqlite3TokenInit(&prevCol, pCol->zName);
3691 pList = sqlite3ExprListAppend(pParse, 0,
3692 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3693 if( pList==0 ) goto exit_create_index;
3694 assert( pList->nExpr==1 );
3695 sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED);
3696 }else{
3697 sqlite3ExprListCheckLength(pParse, pList, "index");
3698 if( pParse->nErr ) goto exit_create_index;
3701 /* Figure out how many bytes of space are required to store explicitly
3702 ** specified collation sequence names.
3704 for(i=0; i<pList->nExpr; i++){
3705 Expr *pExpr = pList->a[i].pExpr;
3706 assert( pExpr!=0 );
3707 if( pExpr->op==TK_COLLATE ){
3708 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3713 ** Allocate the index structure.
3715 nName = sqlite3Strlen30(zName);
3716 nExtraCol = pPk ? pPk->nKeyCol : 1;
3717 assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ );
3718 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3719 nName + nExtra + 1, &zExtra);
3720 if( db->mallocFailed ){
3721 goto exit_create_index;
3723 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3724 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3725 pIndex->zName = zExtra;
3726 zExtra += nName + 1;
3727 memcpy(pIndex->zName, zName, nName+1);
3728 pIndex->pTable = pTab;
3729 pIndex->onError = (u8)onError;
3730 pIndex->uniqNotNull = onError!=OE_None;
3731 pIndex->idxType = idxType;
3732 pIndex->pSchema = db->aDb[iDb].pSchema;
3733 pIndex->nKeyCol = pList->nExpr;
3734 if( pPIWhere ){
3735 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3736 pIndex->pPartIdxWhere = pPIWhere;
3737 pPIWhere = 0;
3739 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3741 /* Check to see if we should honor DESC requests on index columns
3743 if( pDb->pSchema->file_format>=4 ){
3744 sortOrderMask = -1; /* Honor DESC */
3745 }else{
3746 sortOrderMask = 0; /* Ignore DESC */
3749 /* Analyze the list of expressions that form the terms of the index and
3750 ** report any errors. In the common case where the expression is exactly
3751 ** a table column, store that column in aiColumn[]. For general expressions,
3752 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3754 ** TODO: Issue a warning if two or more columns of the index are identical.
3755 ** TODO: Issue a warning if the table primary key is used as part of the
3756 ** index key.
3758 pListItem = pList->a;
3759 if( IN_RENAME_OBJECT ){
3760 pIndex->aColExpr = pList;
3761 pList = 0;
3763 for(i=0; i<pIndex->nKeyCol; i++, pListItem++){
3764 Expr *pCExpr; /* The i-th index expression */
3765 int requestedSortOrder; /* ASC or DESC on the i-th expression */
3766 const char *zColl; /* Collation sequence name */
3768 sqlite3StringToId(pListItem->pExpr);
3769 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
3770 if( pParse->nErr ) goto exit_create_index;
3771 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
3772 if( pCExpr->op!=TK_COLUMN ){
3773 if( pTab==pParse->pNewTable ){
3774 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
3775 "UNIQUE constraints");
3776 goto exit_create_index;
3778 if( pIndex->aColExpr==0 ){
3779 pIndex->aColExpr = pList;
3780 pList = 0;
3782 j = XN_EXPR;
3783 pIndex->aiColumn[i] = XN_EXPR;
3784 pIndex->uniqNotNull = 0;
3785 }else{
3786 j = pCExpr->iColumn;
3787 assert( j<=0x7fff );
3788 if( j<0 ){
3789 j = pTab->iPKey;
3790 }else{
3791 if( pTab->aCol[j].notNull==0 ){
3792 pIndex->uniqNotNull = 0;
3794 if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){
3795 pIndex->bHasVCol = 1;
3798 pIndex->aiColumn[i] = (i16)j;
3800 zColl = 0;
3801 if( pListItem->pExpr->op==TK_COLLATE ){
3802 int nColl;
3803 zColl = pListItem->pExpr->u.zToken;
3804 nColl = sqlite3Strlen30(zColl) + 1;
3805 assert( nExtra>=nColl );
3806 memcpy(zExtra, zColl, nColl);
3807 zColl = zExtra;
3808 zExtra += nColl;
3809 nExtra -= nColl;
3810 }else if( j>=0 ){
3811 zColl = pTab->aCol[j].zColl;
3813 if( !zColl ) zColl = sqlite3StrBINARY;
3814 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3815 goto exit_create_index;
3817 pIndex->azColl[i] = zColl;
3818 requestedSortOrder = pListItem->sortFlags & sortOrderMask;
3819 pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3822 /* Append the table key to the end of the index. For WITHOUT ROWID
3823 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For
3824 ** normal tables (when pPk==0) this will be the rowid.
3826 if( pPk ){
3827 for(j=0; j<pPk->nKeyCol; j++){
3828 int x = pPk->aiColumn[j];
3829 assert( x>=0 );
3830 if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){
3831 pIndex->nColumn--;
3832 }else{
3833 testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) );
3834 pIndex->aiColumn[i] = x;
3835 pIndex->azColl[i] = pPk->azColl[j];
3836 pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3837 i++;
3840 assert( i==pIndex->nColumn );
3841 }else{
3842 pIndex->aiColumn[i] = XN_ROWID;
3843 pIndex->azColl[i] = sqlite3StrBINARY;
3845 sqlite3DefaultRowEst(pIndex);
3846 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
3848 /* If this index contains every column of its table, then mark
3849 ** it as a covering index */
3850 assert( HasRowid(pTab)
3851 || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 );
3852 recomputeColumnsNotIndexed(pIndex);
3853 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
3854 pIndex->isCovering = 1;
3855 for(j=0; j<pTab->nCol; j++){
3856 if( j==pTab->iPKey ) continue;
3857 if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue;
3858 pIndex->isCovering = 0;
3859 break;
3863 if( pTab==pParse->pNewTable ){
3864 /* This routine has been called to create an automatic index as a
3865 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3866 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3867 ** i.e. one of:
3869 ** CREATE TABLE t(x PRIMARY KEY, y);
3870 ** CREATE TABLE t(x, y, UNIQUE(x, y));
3872 ** Either way, check to see if the table already has such an index. If
3873 ** so, don't bother creating this one. This only applies to
3874 ** automatically created indices. Users can do as they wish with
3875 ** explicit indices.
3877 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3878 ** (and thus suppressing the second one) even if they have different
3879 ** sort orders.
3881 ** If there are different collating sequences or if the columns of
3882 ** the constraint occur in different orders, then the constraints are
3883 ** considered distinct and both result in separate indices.
3885 Index *pIdx;
3886 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3887 int k;
3888 assert( IsUniqueIndex(pIdx) );
3889 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
3890 assert( IsUniqueIndex(pIndex) );
3892 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
3893 for(k=0; k<pIdx->nKeyCol; k++){
3894 const char *z1;
3895 const char *z2;
3896 assert( pIdx->aiColumn[k]>=0 );
3897 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
3898 z1 = pIdx->azColl[k];
3899 z2 = pIndex->azColl[k];
3900 if( sqlite3StrICmp(z1, z2) ) break;
3902 if( k==pIdx->nKeyCol ){
3903 if( pIdx->onError!=pIndex->onError ){
3904 /* This constraint creates the same index as a previous
3905 ** constraint specified somewhere in the CREATE TABLE statement.
3906 ** However the ON CONFLICT clauses are different. If both this
3907 ** constraint and the previous equivalent constraint have explicit
3908 ** ON CONFLICT clauses this is an error. Otherwise, use the
3909 ** explicitly specified behavior for the index.
3911 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
3912 sqlite3ErrorMsg(pParse,
3913 "conflicting ON CONFLICT clauses specified", 0);
3915 if( pIdx->onError==OE_Default ){
3916 pIdx->onError = pIndex->onError;
3919 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
3920 if( IN_RENAME_OBJECT ){
3921 pIndex->pNext = pParse->pNewIndex;
3922 pParse->pNewIndex = pIndex;
3923 pIndex = 0;
3925 goto exit_create_index;
3930 if( !IN_RENAME_OBJECT ){
3932 /* Link the new Index structure to its table and to the other
3933 ** in-memory database structures.
3935 assert( pParse->nErr==0 );
3936 if( db->init.busy ){
3937 Index *p;
3938 assert( !IN_SPECIAL_PARSE );
3939 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
3940 if( pTblName!=0 ){
3941 pIndex->tnum = db->init.newTnum;
3942 if( sqlite3IndexHasDuplicateRootPage(pIndex) ){
3943 sqlite3ErrorMsg(pParse, "invalid rootpage");
3944 pParse->rc = SQLITE_CORRUPT_BKPT;
3945 goto exit_create_index;
3948 p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
3949 pIndex->zName, pIndex);
3950 if( p ){
3951 assert( p==pIndex ); /* Malloc must have failed */
3952 sqlite3OomFault(db);
3953 goto exit_create_index;
3955 db->mDbFlags |= DBFLAG_SchemaChange;
3958 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3959 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3960 ** emit code to allocate the index rootpage on disk and make an entry for
3961 ** the index in the sqlite_schema table and populate the index with
3962 ** content. But, do not do this if we are simply reading the sqlite_schema
3963 ** table to parse the schema, or if this index is the PRIMARY KEY index
3964 ** of a WITHOUT ROWID table.
3966 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3967 ** or UNIQUE index in a CREATE TABLE statement. Since the table
3968 ** has just been created, it contains no data and the index initialization
3969 ** step can be skipped.
3971 else if( HasRowid(pTab) || pTblName!=0 ){
3972 Vdbe *v;
3973 char *zStmt;
3974 int iMem = ++pParse->nMem;
3976 v = sqlite3GetVdbe(pParse);
3977 if( v==0 ) goto exit_create_index;
3979 sqlite3BeginWriteOperation(pParse, 1, iDb);
3981 /* Create the rootpage for the index using CreateIndex. But before
3982 ** doing so, code a Noop instruction and store its address in
3983 ** Index.tnum. This is required in case this index is actually a
3984 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
3985 ** that case the convertToWithoutRowidTable() routine will replace
3986 ** the Noop with a Goto to jump over the VDBE code generated below. */
3987 pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop);
3988 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY);
3990 /* Gather the complete text of the CREATE INDEX statement into
3991 ** the zStmt variable
3993 assert( pName!=0 || pStart==0 );
3994 if( pStart ){
3995 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
3996 if( pName->z[n-1]==';' ) n--;
3997 /* A named index with an explicit CREATE INDEX statement */
3998 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
3999 onError==OE_None ? "" : " UNIQUE", n, pName->z);
4000 }else{
4001 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
4002 /* zStmt = sqlite3MPrintf(""); */
4003 zStmt = 0;
4006 /* Add an entry in sqlite_schema for this index
4008 sqlite3NestedParse(pParse,
4009 "INSERT INTO %Q." DFLT_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);",
4010 db->aDb[iDb].zDbSName,
4011 pIndex->zName,
4012 pTab->zName,
4013 iMem,
4014 zStmt
4016 sqlite3DbFree(db, zStmt);
4018 /* Fill the index with data and reparse the schema. Code an OP_Expire
4019 ** to invalidate all pre-compiled statements.
4021 if( pTblName ){
4022 sqlite3RefillIndex(pParse, pIndex, iMem);
4023 sqlite3ChangeCookie(pParse, iDb);
4024 sqlite3VdbeAddParseSchemaOp(v, iDb,
4025 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName));
4026 sqlite3VdbeAddOp2(v, OP_Expire, 0, 1);
4029 sqlite3VdbeJumpHere(v, (int)pIndex->tnum);
4032 if( db->init.busy || pTblName==0 ){
4033 pIndex->pNext = pTab->pIndex;
4034 pTab->pIndex = pIndex;
4035 pIndex = 0;
4037 else if( IN_RENAME_OBJECT ){
4038 assert( pParse->pNewIndex==0 );
4039 pParse->pNewIndex = pIndex;
4040 pIndex = 0;
4043 /* Clean up before exiting */
4044 exit_create_index:
4045 if( pIndex ) sqlite3FreeIndex(db, pIndex);
4046 if( pTab ){ /* Ensure all REPLACE indexes are at the end of the list */
4047 Index **ppFrom = &pTab->pIndex;
4048 Index *pThis;
4049 for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){
4050 Index *pNext;
4051 if( pThis->onError!=OE_Replace ) continue;
4052 while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){
4053 *ppFrom = pNext;
4054 pThis->pNext = pNext->pNext;
4055 pNext->pNext = pThis;
4056 ppFrom = &pNext->pNext;
4058 break;
4061 sqlite3ExprDelete(db, pPIWhere);
4062 sqlite3ExprListDelete(db, pList);
4063 sqlite3SrcListDelete(db, pTblName);
4064 sqlite3DbFree(db, zName);
4068 ** Fill the Index.aiRowEst[] array with default information - information
4069 ** to be used when we have not run the ANALYZE command.
4071 ** aiRowEst[0] is supposed to contain the number of elements in the index.
4072 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
4073 ** number of rows in the table that match any particular value of the
4074 ** first column of the index. aiRowEst[2] is an estimate of the number
4075 ** of rows that match any particular combination of the first 2 columns
4076 ** of the index. And so forth. It must always be the case that
4078 ** aiRowEst[N]<=aiRowEst[N-1]
4079 ** aiRowEst[N]>=1
4081 ** Apart from that, we have little to go on besides intuition as to
4082 ** how aiRowEst[] should be initialized. The numbers generated here
4083 ** are based on typical values found in actual indices.
4085 void sqlite3DefaultRowEst(Index *pIdx){
4086 /* 10, 9, 8, 7, 6 */
4087 static const LogEst aVal[] = { 33, 32, 30, 28, 26 };
4088 LogEst *a = pIdx->aiRowLogEst;
4089 LogEst x;
4090 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
4091 int i;
4093 /* Indexes with default row estimates should not have stat1 data */
4094 assert( !pIdx->hasStat1 );
4096 /* Set the first entry (number of rows in the index) to the estimated
4097 ** number of rows in the table, or half the number of rows in the table
4098 ** for a partial index.
4100 ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1
4101 ** table but other parts we are having to guess at, then do not let the
4102 ** estimated number of rows in the table be less than 1000 (LogEst 99).
4103 ** Failure to do this can cause the indexes for which we do not have
4104 ** stat1 data to be ignored by the query planner.
4106 x = pIdx->pTable->nRowLogEst;
4107 assert( 99==sqlite3LogEst(1000) );
4108 if( x<99 ){
4109 pIdx->pTable->nRowLogEst = x = 99;
4111 if( pIdx->pPartIdxWhere!=0 ) x -= 10; assert( 10==sqlite3LogEst(2) );
4112 a[0] = x;
4114 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
4115 ** 6 and each subsequent value (if any) is 5. */
4116 memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
4117 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
4118 a[i] = 23; assert( 23==sqlite3LogEst(5) );
4121 assert( 0==sqlite3LogEst(1) );
4122 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
4126 ** This routine will drop an existing named index. This routine
4127 ** implements the DROP INDEX statement.
4129 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
4130 Index *pIndex;
4131 Vdbe *v;
4132 sqlite3 *db = pParse->db;
4133 int iDb;
4135 assert( pParse->nErr==0 ); /* Never called with prior errors */
4136 if( db->mallocFailed ){
4137 goto exit_drop_index;
4139 assert( pName->nSrc==1 );
4140 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4141 goto exit_drop_index;
4143 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
4144 if( pIndex==0 ){
4145 if( !ifExists ){
4146 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
4147 }else{
4148 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
4150 pParse->checkSchema = 1;
4151 goto exit_drop_index;
4153 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
4154 sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
4155 "or PRIMARY KEY constraint cannot be dropped", 0);
4156 goto exit_drop_index;
4158 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
4159 #ifndef SQLITE_OMIT_AUTHORIZATION
4161 int code = SQLITE_DROP_INDEX;
4162 Table *pTab = pIndex->pTable;
4163 const char *zDb = db->aDb[iDb].zDbSName;
4164 const char *zTab = SCHEMA_TABLE(iDb);
4165 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
4166 goto exit_drop_index;
4168 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
4169 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
4170 goto exit_drop_index;
4173 #endif
4175 /* Generate code to remove the index and from the schema table */
4176 v = sqlite3GetVdbe(pParse);
4177 if( v ){
4178 sqlite3BeginWriteOperation(pParse, 1, iDb);
4179 sqlite3NestedParse(pParse,
4180 "DELETE FROM %Q." DFLT_SCHEMA_TABLE " WHERE name=%Q AND type='index'",
4181 db->aDb[iDb].zDbSName, pIndex->zName
4183 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
4184 sqlite3ChangeCookie(pParse, iDb);
4185 destroyRootPage(pParse, pIndex->tnum, iDb);
4186 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
4189 exit_drop_index:
4190 sqlite3SrcListDelete(db, pName);
4194 ** pArray is a pointer to an array of objects. Each object in the
4195 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
4196 ** to extend the array so that there is space for a new object at the end.
4198 ** When this function is called, *pnEntry contains the current size of
4199 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
4200 ** in total).
4202 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
4203 ** space allocated for the new object is zeroed, *pnEntry updated to
4204 ** reflect the new size of the array and a pointer to the new allocation
4205 ** returned. *pIdx is set to the index of the new array entry in this case.
4207 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
4208 ** unchanged and a copy of pArray returned.
4210 void *sqlite3ArrayAllocate(
4211 sqlite3 *db, /* Connection to notify of malloc failures */
4212 void *pArray, /* Array of objects. Might be reallocated */
4213 int szEntry, /* Size of each object in the array */
4214 int *pnEntry, /* Number of objects currently in use */
4215 int *pIdx /* Write the index of a new slot here */
4217 char *z;
4218 sqlite3_int64 n = *pIdx = *pnEntry;
4219 if( (n & (n-1))==0 ){
4220 sqlite3_int64 sz = (n==0) ? 1 : 2*n;
4221 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
4222 if( pNew==0 ){
4223 *pIdx = -1;
4224 return pArray;
4226 pArray = pNew;
4228 z = (char*)pArray;
4229 memset(&z[n * szEntry], 0, szEntry);
4230 ++*pnEntry;
4231 return pArray;
4235 ** Append a new element to the given IdList. Create a new IdList if
4236 ** need be.
4238 ** A new IdList is returned, or NULL if malloc() fails.
4240 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){
4241 sqlite3 *db = pParse->db;
4242 int i;
4243 if( pList==0 ){
4244 pList = sqlite3DbMallocZero(db, sizeof(IdList) );
4245 if( pList==0 ) return 0;
4247 pList->a = sqlite3ArrayAllocate(
4249 pList->a,
4250 sizeof(pList->a[0]),
4251 &pList->nId,
4254 if( i<0 ){
4255 sqlite3IdListDelete(db, pList);
4256 return 0;
4258 pList->a[i].zName = sqlite3NameFromToken(db, pToken);
4259 if( IN_RENAME_OBJECT && pList->a[i].zName ){
4260 sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken);
4262 return pList;
4266 ** Delete an IdList.
4268 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
4269 int i;
4270 if( pList==0 ) return;
4271 for(i=0; i<pList->nId; i++){
4272 sqlite3DbFree(db, pList->a[i].zName);
4274 sqlite3DbFree(db, pList->a);
4275 sqlite3DbFreeNN(db, pList);
4279 ** Return the index in pList of the identifier named zId. Return -1
4280 ** if not found.
4282 int sqlite3IdListIndex(IdList *pList, const char *zName){
4283 int i;
4284 if( pList==0 ) return -1;
4285 for(i=0; i<pList->nId; i++){
4286 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
4288 return -1;
4292 ** Maximum size of a SrcList object.
4293 ** The SrcList object is used to represent the FROM clause of a
4294 ** SELECT statement, and the query planner cannot deal with more
4295 ** than 64 tables in a join. So any value larger than 64 here
4296 ** is sufficient for most uses. Smaller values, like say 10, are
4297 ** appropriate for small and memory-limited applications.
4299 #ifndef SQLITE_MAX_SRCLIST
4300 # define SQLITE_MAX_SRCLIST 200
4301 #endif
4304 ** Expand the space allocated for the given SrcList object by
4305 ** creating nExtra new slots beginning at iStart. iStart is zero based.
4306 ** New slots are zeroed.
4308 ** For example, suppose a SrcList initially contains two entries: A,B.
4309 ** To append 3 new entries onto the end, do this:
4311 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
4313 ** After the call above it would contain: A, B, nil, nil, nil.
4314 ** If the iStart argument had been 1 instead of 2, then the result
4315 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
4316 ** the iStart value would be 0. The result then would
4317 ** be: nil, nil, nil, A, B.
4319 ** If a memory allocation fails or the SrcList becomes too large, leave
4320 ** the original SrcList unchanged, return NULL, and leave an error message
4321 ** in pParse.
4323 SrcList *sqlite3SrcListEnlarge(
4324 Parse *pParse, /* Parsing context into which errors are reported */
4325 SrcList *pSrc, /* The SrcList to be enlarged */
4326 int nExtra, /* Number of new slots to add to pSrc->a[] */
4327 int iStart /* Index in pSrc->a[] of first new slot */
4329 int i;
4331 /* Sanity checking on calling parameters */
4332 assert( iStart>=0 );
4333 assert( nExtra>=1 );
4334 assert( pSrc!=0 );
4335 assert( iStart<=pSrc->nSrc );
4337 /* Allocate additional space if needed */
4338 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
4339 SrcList *pNew;
4340 sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra;
4341 sqlite3 *db = pParse->db;
4343 if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){
4344 sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d",
4345 SQLITE_MAX_SRCLIST);
4346 return 0;
4348 if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST;
4349 pNew = sqlite3DbRealloc(db, pSrc,
4350 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
4351 if( pNew==0 ){
4352 assert( db->mallocFailed );
4353 return 0;
4355 pSrc = pNew;
4356 pSrc->nAlloc = nAlloc;
4359 /* Move existing slots that come after the newly inserted slots
4360 ** out of the way */
4361 for(i=pSrc->nSrc-1; i>=iStart; i--){
4362 pSrc->a[i+nExtra] = pSrc->a[i];
4364 pSrc->nSrc += nExtra;
4366 /* Zero the newly allocated slots */
4367 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
4368 for(i=iStart; i<iStart+nExtra; i++){
4369 pSrc->a[i].iCursor = -1;
4372 /* Return a pointer to the enlarged SrcList */
4373 return pSrc;
4378 ** Append a new table name to the given SrcList. Create a new SrcList if
4379 ** need be. A new entry is created in the SrcList even if pTable is NULL.
4381 ** A SrcList is returned, or NULL if there is an OOM error or if the
4382 ** SrcList grows to large. The returned
4383 ** SrcList might be the same as the SrcList that was input or it might be
4384 ** a new one. If an OOM error does occurs, then the prior value of pList
4385 ** that is input to this routine is automatically freed.
4387 ** If pDatabase is not null, it means that the table has an optional
4388 ** database name prefix. Like this: "database.table". The pDatabase
4389 ** points to the table name and the pTable points to the database name.
4390 ** The SrcList.a[].zName field is filled with the table name which might
4391 ** come from pTable (if pDatabase is NULL) or from pDatabase.
4392 ** SrcList.a[].zDatabase is filled with the database name from pTable,
4393 ** or with NULL if no database is specified.
4395 ** In other words, if call like this:
4397 ** sqlite3SrcListAppend(D,A,B,0);
4399 ** Then B is a table name and the database name is unspecified. If called
4400 ** like this:
4402 ** sqlite3SrcListAppend(D,A,B,C);
4404 ** Then C is the table name and B is the database name. If C is defined
4405 ** then so is B. In other words, we never have a case where:
4407 ** sqlite3SrcListAppend(D,A,0,C);
4409 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
4410 ** before being added to the SrcList.
4412 SrcList *sqlite3SrcListAppend(
4413 Parse *pParse, /* Parsing context, in which errors are reported */
4414 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
4415 Token *pTable, /* Table to append */
4416 Token *pDatabase /* Database of the table */
4418 struct SrcList_item *pItem;
4419 sqlite3 *db;
4420 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
4421 assert( pParse!=0 );
4422 assert( pParse->db!=0 );
4423 db = pParse->db;
4424 if( pList==0 ){
4425 pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) );
4426 if( pList==0 ) return 0;
4427 pList->nAlloc = 1;
4428 pList->nSrc = 1;
4429 memset(&pList->a[0], 0, sizeof(pList->a[0]));
4430 pList->a[0].iCursor = -1;
4431 }else{
4432 SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc);
4433 if( pNew==0 ){
4434 sqlite3SrcListDelete(db, pList);
4435 return 0;
4436 }else{
4437 pList = pNew;
4440 pItem = &pList->a[pList->nSrc-1];
4441 if( pDatabase && pDatabase->z==0 ){
4442 pDatabase = 0;
4444 if( pDatabase ){
4445 pItem->zName = sqlite3NameFromToken(db, pDatabase);
4446 pItem->zDatabase = sqlite3NameFromToken(db, pTable);
4447 }else{
4448 pItem->zName = sqlite3NameFromToken(db, pTable);
4449 pItem->zDatabase = 0;
4451 return pList;
4455 ** Assign VdbeCursor index numbers to all tables in a SrcList
4457 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
4458 int i;
4459 struct SrcList_item *pItem;
4460 assert(pList || pParse->db->mallocFailed );
4461 if( pList ){
4462 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
4463 if( pItem->iCursor>=0 ) continue;
4464 pItem->iCursor = pParse->nTab++;
4465 if( pItem->pSelect ){
4466 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
4473 ** Delete an entire SrcList including all its substructure.
4475 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
4476 int i;
4477 struct SrcList_item *pItem;
4478 if( pList==0 ) return;
4479 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
4480 if( pItem->zDatabase ) sqlite3DbFreeNN(db, pItem->zDatabase);
4481 sqlite3DbFree(db, pItem->zName);
4482 if( pItem->zAlias ) sqlite3DbFreeNN(db, pItem->zAlias);
4483 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
4484 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
4485 sqlite3DeleteTable(db, pItem->pTab);
4486 if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect);
4487 if( pItem->pOn ) sqlite3ExprDelete(db, pItem->pOn);
4488 if( pItem->pUsing ) sqlite3IdListDelete(db, pItem->pUsing);
4490 sqlite3DbFreeNN(db, pList);
4494 ** This routine is called by the parser to add a new term to the
4495 ** end of a growing FROM clause. The "p" parameter is the part of
4496 ** the FROM clause that has already been constructed. "p" is NULL
4497 ** if this is the first term of the FROM clause. pTable and pDatabase
4498 ** are the name of the table and database named in the FROM clause term.
4499 ** pDatabase is NULL if the database name qualifier is missing - the
4500 ** usual case. If the term has an alias, then pAlias points to the
4501 ** alias token. If the term is a subquery, then pSubquery is the
4502 ** SELECT statement that the subquery encodes. The pTable and
4503 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
4504 ** parameters are the content of the ON and USING clauses.
4506 ** Return a new SrcList which encodes is the FROM with the new
4507 ** term added.
4509 SrcList *sqlite3SrcListAppendFromTerm(
4510 Parse *pParse, /* Parsing context */
4511 SrcList *p, /* The left part of the FROM clause already seen */
4512 Token *pTable, /* Name of the table to add to the FROM clause */
4513 Token *pDatabase, /* Name of the database containing pTable */
4514 Token *pAlias, /* The right-hand side of the AS subexpression */
4515 Select *pSubquery, /* A subquery used in place of a table name */
4516 Expr *pOn, /* The ON clause of a join */
4517 IdList *pUsing /* The USING clause of a join */
4519 struct SrcList_item *pItem;
4520 sqlite3 *db = pParse->db;
4521 if( !p && (pOn || pUsing) ){
4522 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
4523 (pOn ? "ON" : "USING")
4525 goto append_from_error;
4527 p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase);
4528 if( p==0 ){
4529 goto append_from_error;
4531 assert( p->nSrc>0 );
4532 pItem = &p->a[p->nSrc-1];
4533 assert( (pTable==0)==(pDatabase==0) );
4534 assert( pItem->zName==0 || pDatabase!=0 );
4535 if( IN_RENAME_OBJECT && pItem->zName ){
4536 Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable;
4537 sqlite3RenameTokenMap(pParse, pItem->zName, pToken);
4539 assert( pAlias!=0 );
4540 if( pAlias->n ){
4541 pItem->zAlias = sqlite3NameFromToken(db, pAlias);
4543 pItem->pSelect = pSubquery;
4544 pItem->pOn = pOn;
4545 pItem->pUsing = pUsing;
4546 return p;
4548 append_from_error:
4549 assert( p==0 );
4550 sqlite3ExprDelete(db, pOn);
4551 sqlite3IdListDelete(db, pUsing);
4552 sqlite3SelectDelete(db, pSubquery);
4553 return 0;
4557 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
4558 ** element of the source-list passed as the second argument.
4560 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
4561 assert( pIndexedBy!=0 );
4562 if( p && pIndexedBy->n>0 ){
4563 struct SrcList_item *pItem;
4564 assert( p->nSrc>0 );
4565 pItem = &p->a[p->nSrc-1];
4566 assert( pItem->fg.notIndexed==0 );
4567 assert( pItem->fg.isIndexedBy==0 );
4568 assert( pItem->fg.isTabFunc==0 );
4569 if( pIndexedBy->n==1 && !pIndexedBy->z ){
4570 /* A "NOT INDEXED" clause was supplied. See parse.y
4571 ** construct "indexed_opt" for details. */
4572 pItem->fg.notIndexed = 1;
4573 }else{
4574 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
4575 pItem->fg.isIndexedBy = 1;
4581 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting
4582 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2
4583 ** are deleted by this function.
4585 SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){
4586 assert( p1 && p1->nSrc==1 );
4587 if( p2 ){
4588 SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1);
4589 if( pNew==0 ){
4590 sqlite3SrcListDelete(pParse->db, p2);
4591 }else{
4592 p1 = pNew;
4593 memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(struct SrcList_item));
4594 sqlite3DbFree(pParse->db, p2);
4597 return p1;
4601 ** Add the list of function arguments to the SrcList entry for a
4602 ** table-valued-function.
4604 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
4605 if( p ){
4606 struct SrcList_item *pItem = &p->a[p->nSrc-1];
4607 assert( pItem->fg.notIndexed==0 );
4608 assert( pItem->fg.isIndexedBy==0 );
4609 assert( pItem->fg.isTabFunc==0 );
4610 pItem->u1.pFuncArg = pList;
4611 pItem->fg.isTabFunc = 1;
4612 }else{
4613 sqlite3ExprListDelete(pParse->db, pList);
4618 ** When building up a FROM clause in the parser, the join operator
4619 ** is initially attached to the left operand. But the code generator
4620 ** expects the join operator to be on the right operand. This routine
4621 ** Shifts all join operators from left to right for an entire FROM
4622 ** clause.
4624 ** Example: Suppose the join is like this:
4626 ** A natural cross join B
4628 ** The operator is "natural cross join". The A and B operands are stored
4629 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
4630 ** operator with A. This routine shifts that operator over to B.
4632 void sqlite3SrcListShiftJoinType(SrcList *p){
4633 if( p ){
4634 int i;
4635 for(i=p->nSrc-1; i>0; i--){
4636 p->a[i].fg.jointype = p->a[i-1].fg.jointype;
4638 p->a[0].fg.jointype = 0;
4643 ** Generate VDBE code for a BEGIN statement.
4645 void sqlite3BeginTransaction(Parse *pParse, int type){
4646 sqlite3 *db;
4647 Vdbe *v;
4648 int i;
4650 assert( pParse!=0 );
4651 db = pParse->db;
4652 assert( db!=0 );
4653 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
4654 return;
4656 v = sqlite3GetVdbe(pParse);
4657 if( !v ) return;
4658 if( type!=TK_DEFERRED ){
4659 for(i=0; i<db->nDb; i++){
4660 int eTxnType;
4661 Btree *pBt = db->aDb[i].pBt;
4662 if( pBt && sqlite3BtreeIsReadonly(pBt) ){
4663 eTxnType = 0; /* Read txn */
4664 }else if( type==TK_EXCLUSIVE ){
4665 eTxnType = 2; /* Exclusive txn */
4666 }else{
4667 eTxnType = 1; /* Write txn */
4669 sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType);
4670 sqlite3VdbeUsesBtree(v, i);
4673 sqlite3VdbeAddOp0(v, OP_AutoCommit);
4677 ** Generate VDBE code for a COMMIT or ROLLBACK statement.
4678 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise
4679 ** code is generated for a COMMIT.
4681 void sqlite3EndTransaction(Parse *pParse, int eType){
4682 Vdbe *v;
4683 int isRollback;
4685 assert( pParse!=0 );
4686 assert( pParse->db!=0 );
4687 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK );
4688 isRollback = eType==TK_ROLLBACK;
4689 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION,
4690 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){
4691 return;
4693 v = sqlite3GetVdbe(pParse);
4694 if( v ){
4695 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback);
4700 ** This function is called by the parser when it parses a command to create,
4701 ** release or rollback an SQL savepoint.
4703 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
4704 char *zName = sqlite3NameFromToken(pParse->db, pName);
4705 if( zName ){
4706 Vdbe *v = sqlite3GetVdbe(pParse);
4707 #ifndef SQLITE_OMIT_AUTHORIZATION
4708 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
4709 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
4710 #endif
4711 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
4712 sqlite3DbFree(pParse->db, zName);
4713 return;
4715 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
4720 ** Make sure the TEMP database is open and available for use. Return
4721 ** the number of errors. Leave any error messages in the pParse structure.
4723 int sqlite3OpenTempDatabase(Parse *pParse){
4724 sqlite3 *db = pParse->db;
4725 if( db->aDb[1].pBt==0 && !pParse->explain ){
4726 int rc;
4727 Btree *pBt;
4728 static const int flags =
4729 SQLITE_OPEN_READWRITE |
4730 SQLITE_OPEN_CREATE |
4731 SQLITE_OPEN_EXCLUSIVE |
4732 SQLITE_OPEN_DELETEONCLOSE |
4733 SQLITE_OPEN_TEMP_DB;
4735 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
4736 if( rc!=SQLITE_OK ){
4737 sqlite3ErrorMsg(pParse, "unable to open a temporary database "
4738 "file for storing temporary tables");
4739 pParse->rc = rc;
4740 return 1;
4742 db->aDb[1].pBt = pBt;
4743 assert( db->aDb[1].pSchema );
4744 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){
4745 sqlite3OomFault(db);
4746 return 1;
4749 return 0;
4753 ** Record the fact that the schema cookie will need to be verified
4754 ** for database iDb. The code to actually verify the schema cookie
4755 ** will occur at the end of the top-level VDBE and will be generated
4756 ** later, by sqlite3FinishCoding().
4758 static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){
4759 assert( iDb>=0 && iDb<pToplevel->db->nDb );
4760 assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 );
4761 assert( iDb<SQLITE_MAX_ATTACHED+2 );
4762 assert( sqlite3SchemaMutexHeld(pToplevel->db, iDb, 0) );
4763 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4764 DbMaskSet(pToplevel->cookieMask, iDb);
4765 if( !OMIT_TEMPDB && iDb==1 ){
4766 sqlite3OpenTempDatabase(pToplevel);
4770 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4771 sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb);
4776 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4777 ** attached database. Otherwise, invoke it for the database named zDb only.
4779 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4780 sqlite3 *db = pParse->db;
4781 int i;
4782 for(i=0; i<db->nDb; i++){
4783 Db *pDb = &db->aDb[i];
4784 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
4785 sqlite3CodeVerifySchema(pParse, i);
4791 ** Generate VDBE code that prepares for doing an operation that
4792 ** might change the database.
4794 ** This routine starts a new transaction if we are not already within
4795 ** a transaction. If we are already within a transaction, then a checkpoint
4796 ** is set if the setStatement parameter is true. A checkpoint should
4797 ** be set for operations that might fail (due to a constraint) part of
4798 ** the way through and which will need to undo some writes without having to
4799 ** rollback the whole transaction. For operations where all constraints
4800 ** can be checked before any changes are made to the database, it is never
4801 ** necessary to undo a write and the checkpoint should not be set.
4803 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
4804 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4805 sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb);
4806 DbMaskSet(pToplevel->writeMask, iDb);
4807 pToplevel->isMultiWrite |= setStatement;
4811 ** Indicate that the statement currently under construction might write
4812 ** more than one entry (example: deleting one row then inserting another,
4813 ** inserting multiple rows in a table, or inserting a row and index entries.)
4814 ** If an abort occurs after some of these writes have completed, then it will
4815 ** be necessary to undo the completed writes.
4817 void sqlite3MultiWrite(Parse *pParse){
4818 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4819 pToplevel->isMultiWrite = 1;
4823 ** The code generator calls this routine if is discovers that it is
4824 ** possible to abort a statement prior to completion. In order to
4825 ** perform this abort without corrupting the database, we need to make
4826 ** sure that the statement is protected by a statement transaction.
4828 ** Technically, we only need to set the mayAbort flag if the
4829 ** isMultiWrite flag was previously set. There is a time dependency
4830 ** such that the abort must occur after the multiwrite. This makes
4831 ** some statements involving the REPLACE conflict resolution algorithm
4832 ** go a little faster. But taking advantage of this time dependency
4833 ** makes it more difficult to prove that the code is correct (in
4834 ** particular, it prevents us from writing an effective
4835 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
4836 ** to take the safe route and skip the optimization.
4838 void sqlite3MayAbort(Parse *pParse){
4839 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4840 pToplevel->mayAbort = 1;
4844 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
4845 ** error. The onError parameter determines which (if any) of the statement
4846 ** and/or current transaction is rolled back.
4848 void sqlite3HaltConstraint(
4849 Parse *pParse, /* Parsing context */
4850 int errCode, /* extended error code */
4851 int onError, /* Constraint type */
4852 char *p4, /* Error message */
4853 i8 p4type, /* P4_STATIC or P4_TRANSIENT */
4854 u8 p5Errmsg /* P5_ErrMsg type */
4856 Vdbe *v;
4857 assert( pParse->pVdbe!=0 );
4858 v = sqlite3GetVdbe(pParse);
4859 assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested );
4860 if( onError==OE_Abort ){
4861 sqlite3MayAbort(pParse);
4863 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
4864 sqlite3VdbeChangeP5(v, p5Errmsg);
4868 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4870 void sqlite3UniqueConstraint(
4871 Parse *pParse, /* Parsing context */
4872 int onError, /* Constraint type */
4873 Index *pIdx /* The index that triggers the constraint */
4875 char *zErr;
4876 int j;
4877 StrAccum errMsg;
4878 Table *pTab = pIdx->pTable;
4880 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0,
4881 pParse->db->aLimit[SQLITE_LIMIT_LENGTH]);
4882 if( pIdx->aColExpr ){
4883 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName);
4884 }else{
4885 for(j=0; j<pIdx->nKeyCol; j++){
4886 char *zCol;
4887 assert( pIdx->aiColumn[j]>=0 );
4888 zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
4889 if( j ) sqlite3_str_append(&errMsg, ", ", 2);
4890 sqlite3_str_appendall(&errMsg, pTab->zName);
4891 sqlite3_str_append(&errMsg, ".", 1);
4892 sqlite3_str_appendall(&errMsg, zCol);
4895 zErr = sqlite3StrAccumFinish(&errMsg);
4896 sqlite3HaltConstraint(pParse,
4897 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
4898 : SQLITE_CONSTRAINT_UNIQUE,
4899 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
4904 ** Code an OP_Halt due to non-unique rowid.
4906 void sqlite3RowidConstraint(
4907 Parse *pParse, /* Parsing context */
4908 int onError, /* Conflict resolution algorithm */
4909 Table *pTab /* The table with the non-unique rowid */
4911 char *zMsg;
4912 int rc;
4913 if( pTab->iPKey>=0 ){
4914 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
4915 pTab->aCol[pTab->iPKey].zName);
4916 rc = SQLITE_CONSTRAINT_PRIMARYKEY;
4917 }else{
4918 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
4919 rc = SQLITE_CONSTRAINT_ROWID;
4921 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
4922 P5_ConstraintUnique);
4926 ** Check to see if pIndex uses the collating sequence pColl. Return
4927 ** true if it does and false if it does not.
4929 #ifndef SQLITE_OMIT_REINDEX
4930 static int collationMatch(const char *zColl, Index *pIndex){
4931 int i;
4932 assert( zColl!=0 );
4933 for(i=0; i<pIndex->nColumn; i++){
4934 const char *z = pIndex->azColl[i];
4935 assert( z!=0 || pIndex->aiColumn[i]<0 );
4936 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
4937 return 1;
4940 return 0;
4942 #endif
4945 ** Recompute all indices of pTab that use the collating sequence pColl.
4946 ** If pColl==0 then recompute all indices of pTab.
4948 #ifndef SQLITE_OMIT_REINDEX
4949 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
4950 if( !IsVirtual(pTab) ){
4951 Index *pIndex; /* An index associated with pTab */
4953 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
4954 if( zColl==0 || collationMatch(zColl, pIndex) ){
4955 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
4956 sqlite3BeginWriteOperation(pParse, 0, iDb);
4957 sqlite3RefillIndex(pParse, pIndex, -1);
4962 #endif
4965 ** Recompute all indices of all tables in all databases where the
4966 ** indices use the collating sequence pColl. If pColl==0 then recompute
4967 ** all indices everywhere.
4969 #ifndef SQLITE_OMIT_REINDEX
4970 static void reindexDatabases(Parse *pParse, char const *zColl){
4971 Db *pDb; /* A single database */
4972 int iDb; /* The database index number */
4973 sqlite3 *db = pParse->db; /* The database connection */
4974 HashElem *k; /* For looping over tables in pDb */
4975 Table *pTab; /* A table in the database */
4977 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */
4978 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
4979 assert( pDb!=0 );
4980 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
4981 pTab = (Table*)sqliteHashData(k);
4982 reindexTable(pParse, pTab, zColl);
4986 #endif
4989 ** Generate code for the REINDEX command.
4991 ** REINDEX -- 1
4992 ** REINDEX <collation> -- 2
4993 ** REINDEX ?<database>.?<tablename> -- 3
4994 ** REINDEX ?<database>.?<indexname> -- 4
4996 ** Form 1 causes all indices in all attached databases to be rebuilt.
4997 ** Form 2 rebuilds all indices in all databases that use the named
4998 ** collating function. Forms 3 and 4 rebuild the named index or all
4999 ** indices associated with the named table.
5001 #ifndef SQLITE_OMIT_REINDEX
5002 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
5003 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
5004 char *z; /* Name of a table or index */
5005 const char *zDb; /* Name of the database */
5006 Table *pTab; /* A table in the database */
5007 Index *pIndex; /* An index associated with pTab */
5008 int iDb; /* The database index number */
5009 sqlite3 *db = pParse->db; /* The database connection */
5010 Token *pObjName; /* Name of the table or index to be reindexed */
5012 /* Read the database schema. If an error occurs, leave an error message
5013 ** and code in pParse and return NULL. */
5014 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
5015 return;
5018 if( pName1==0 ){
5019 reindexDatabases(pParse, 0);
5020 return;
5021 }else if( NEVER(pName2==0) || pName2->z==0 ){
5022 char *zColl;
5023 assert( pName1->z );
5024 zColl = sqlite3NameFromToken(pParse->db, pName1);
5025 if( !zColl ) return;
5026 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
5027 if( pColl ){
5028 reindexDatabases(pParse, zColl);
5029 sqlite3DbFree(db, zColl);
5030 return;
5032 sqlite3DbFree(db, zColl);
5034 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
5035 if( iDb<0 ) return;
5036 z = sqlite3NameFromToken(db, pObjName);
5037 if( z==0 ) return;
5038 zDb = db->aDb[iDb].zDbSName;
5039 pTab = sqlite3FindTable(db, z, zDb);
5040 if( pTab ){
5041 reindexTable(pParse, pTab, 0);
5042 sqlite3DbFree(db, z);
5043 return;
5045 pIndex = sqlite3FindIndex(db, z, zDb);
5046 sqlite3DbFree(db, z);
5047 if( pIndex ){
5048 sqlite3BeginWriteOperation(pParse, 0, iDb);
5049 sqlite3RefillIndex(pParse, pIndex, -1);
5050 return;
5052 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
5054 #endif
5057 ** Return a KeyInfo structure that is appropriate for the given Index.
5059 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
5060 ** when it has finished using it.
5062 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
5063 int i;
5064 int nCol = pIdx->nColumn;
5065 int nKey = pIdx->nKeyCol;
5066 KeyInfo *pKey;
5067 if( pParse->nErr ) return 0;
5068 if( pIdx->uniqNotNull ){
5069 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
5070 }else{
5071 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
5073 if( pKey ){
5074 assert( sqlite3KeyInfoIsWriteable(pKey) );
5075 for(i=0; i<nCol; i++){
5076 const char *zColl = pIdx->azColl[i];
5077 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
5078 sqlite3LocateCollSeq(pParse, zColl);
5079 pKey->aSortFlags[i] = pIdx->aSortOrder[i];
5080 assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) );
5082 if( pParse->nErr ){
5083 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ );
5084 if( pIdx->bNoQuery==0 ){
5085 /* Deactivate the index because it contains an unknown collating
5086 ** sequence. The only way to reactive the index is to reload the
5087 ** schema. Adding the missing collating sequence later does not
5088 ** reactive the index. The application had the chance to register
5089 ** the missing index using the collation-needed callback. For
5090 ** simplicity, SQLite will not give the application a second chance.
5092 pIdx->bNoQuery = 1;
5093 pParse->rc = SQLITE_ERROR_RETRY;
5095 sqlite3KeyInfoUnref(pKey);
5096 pKey = 0;
5099 return pKey;
5102 #ifndef SQLITE_OMIT_CTE
5104 ** This routine is invoked once per CTE by the parser while parsing a
5105 ** WITH clause.
5107 With *sqlite3WithAdd(
5108 Parse *pParse, /* Parsing context */
5109 With *pWith, /* Existing WITH clause, or NULL */
5110 Token *pName, /* Name of the common-table */
5111 ExprList *pArglist, /* Optional column name list for the table */
5112 Select *pQuery /* Query used to initialize the table */
5114 sqlite3 *db = pParse->db;
5115 With *pNew;
5116 char *zName;
5118 /* Check that the CTE name is unique within this WITH clause. If
5119 ** not, store an error in the Parse structure. */
5120 zName = sqlite3NameFromToken(pParse->db, pName);
5121 if( zName && pWith ){
5122 int i;
5123 for(i=0; i<pWith->nCte; i++){
5124 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
5125 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
5130 if( pWith ){
5131 sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
5132 pNew = sqlite3DbRealloc(db, pWith, nByte);
5133 }else{
5134 pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
5136 assert( (pNew!=0 && zName!=0) || db->mallocFailed );
5138 if( db->mallocFailed ){
5139 sqlite3ExprListDelete(db, pArglist);
5140 sqlite3SelectDelete(db, pQuery);
5141 sqlite3DbFree(db, zName);
5142 pNew = pWith;
5143 }else{
5144 pNew->a[pNew->nCte].pSelect = pQuery;
5145 pNew->a[pNew->nCte].pCols = pArglist;
5146 pNew->a[pNew->nCte].zName = zName;
5147 pNew->a[pNew->nCte].zCteErr = 0;
5148 pNew->nCte++;
5151 return pNew;
5155 ** Free the contents of the With object passed as the second argument.
5157 void sqlite3WithDelete(sqlite3 *db, With *pWith){
5158 if( pWith ){
5159 int i;
5160 for(i=0; i<pWith->nCte; i++){
5161 struct Cte *pCte = &pWith->a[i];
5162 sqlite3ExprListDelete(db, pCte->pCols);
5163 sqlite3SelectDelete(db, pCte->pSelect);
5164 sqlite3DbFree(db, pCte->zName);
5166 sqlite3DbFree(db, pWith);
5169 #endif /* !defined(SQLITE_OMIT_CTE) */