4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
25 #include "sqliteInt.h"
27 #ifndef SQLITE_OMIT_SHARED_CACHE
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
33 int iDb
; /* The database containing the table to be locked */
34 Pgno iTab
; /* The root page of the table to be locked */
35 u8 isWriteLock
; /* True for write lock. False for a read lock */
36 const char *zLockName
; /* Name of the table */
40 ** Record the fact that we want to lock a table at run-time.
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
45 ** This routine just records the fact that the lock is desired. The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
49 void sqlite3TableLock(
50 Parse
*pParse
, /* Parsing context */
51 int iDb
, /* Index of the database containing the table to lock */
52 Pgno iTab
, /* Root page number of the table to be locked */
53 u8 isWriteLock
, /* True for a write lock */
54 const char *zName
/* Name of the table to be locked */
63 if( !sqlite3BtreeSharable(pParse
->db
->aDb
[iDb
].pBt
) ) return;
64 pToplevel
= sqlite3ParseToplevel(pParse
);
65 for(i
=0; i
<pToplevel
->nTableLock
; i
++){
66 p
= &pToplevel
->aTableLock
[i
];
67 if( p
->iDb
==iDb
&& p
->iTab
==iTab
){
68 p
->isWriteLock
= (p
->isWriteLock
|| isWriteLock
);
73 nBytes
= sizeof(TableLock
) * (pToplevel
->nTableLock
+1);
74 pToplevel
->aTableLock
=
75 sqlite3DbReallocOrFree(pToplevel
->db
, pToplevel
->aTableLock
, nBytes
);
76 if( pToplevel
->aTableLock
){
77 p
= &pToplevel
->aTableLock
[pToplevel
->nTableLock
++];
80 p
->isWriteLock
= isWriteLock
;
83 pToplevel
->nTableLock
= 0;
84 sqlite3OomFault(pToplevel
->db
);
89 ** Code an OP_TableLock instruction for each table locked by the
90 ** statement (configured by calls to sqlite3TableLock()).
92 static void codeTableLocks(Parse
*pParse
){
94 Vdbe
*pVdbe
= pParse
->pVdbe
;
97 for(i
=0; i
<pParse
->nTableLock
; i
++){
98 TableLock
*p
= &pParse
->aTableLock
[i
];
100 sqlite3VdbeAddOp4(pVdbe
, OP_TableLock
, p1
, p
->iTab
, p
->isWriteLock
,
101 p
->zLockName
, P4_STATIC
);
105 #define codeTableLocks(x)
109 ** Return TRUE if the given yDbMask object is empty - if it contains no
110 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
111 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
113 #if SQLITE_MAX_ATTACHED>30
114 int sqlite3DbMaskAllZero(yDbMask m
){
116 for(i
=0; i
<sizeof(yDbMask
); i
++) if( m
[i
] ) return 0;
122 ** This routine is called after a single SQL statement has been
123 ** parsed and a VDBE program to execute that statement has been
124 ** prepared. This routine puts the finishing touches on the
125 ** VDBE program and resets the pParse structure for the next
128 ** Note that if an error occurred, it might be the case that
129 ** no VDBE code was generated.
131 void sqlite3FinishCoding(Parse
*pParse
){
135 assert( pParse
->pToplevel
==0 );
137 if( pParse
->nested
) return;
138 if( db
->mallocFailed
|| pParse
->nErr
){
139 if( pParse
->rc
==SQLITE_OK
) pParse
->rc
= SQLITE_ERROR
;
143 /* Begin by generating some termination code at the end of the
146 v
= sqlite3GetVdbe(pParse
);
147 assert( !pParse
->isMultiWrite
148 || sqlite3VdbeAssertMayAbort(v
, pParse
->mayAbort
));
150 sqlite3VdbeAddOp0(v
, OP_Halt
);
152 #if SQLITE_USER_AUTHENTICATION
153 if( pParse
->nTableLock
>0 && db
->init
.busy
==0 ){
154 sqlite3UserAuthInit(db
);
155 if( db
->auth
.authLevel
<UAUTH_User
){
156 sqlite3ErrorMsg(pParse
, "user not authenticated");
157 pParse
->rc
= SQLITE_AUTH_USER
;
163 /* The cookie mask contains one bit for each database file open.
164 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
165 ** set for each database that is used. Generate code to start a
166 ** transaction on each used database and to verify the schema cookie
167 ** on each used database.
169 if( db
->mallocFailed
==0
170 && (DbMaskNonZero(pParse
->cookieMask
) || pParse
->pConstExpr
)
173 assert( sqlite3VdbeGetOp(v
, 0)->opcode
==OP_Init
);
174 sqlite3VdbeJumpHere(v
, 0);
175 for(iDb
=0; iDb
<db
->nDb
; iDb
++){
177 if( DbMaskTest(pParse
->cookieMask
, iDb
)==0 ) continue;
178 sqlite3VdbeUsesBtree(v
, iDb
);
179 pSchema
= db
->aDb
[iDb
].pSchema
;
180 sqlite3VdbeAddOp4Int(v
,
181 OP_Transaction
, /* Opcode */
183 DbMaskTest(pParse
->writeMask
,iDb
), /* P2 */
184 pSchema
->schema_cookie
, /* P3 */
185 pSchema
->iGeneration
/* P4 */
187 if( db
->init
.busy
==0 ) sqlite3VdbeChangeP5(v
, 1);
189 "usesStmtJournal=%d", pParse
->mayAbort
&& pParse
->isMultiWrite
));
191 #ifndef SQLITE_OMIT_VIRTUALTABLE
192 for(i
=0; i
<pParse
->nVtabLock
; i
++){
193 char *vtab
= (char *)sqlite3GetVTable(db
, pParse
->apVtabLock
[i
]);
194 sqlite3VdbeAddOp4(v
, OP_VBegin
, 0, 0, 0, vtab
, P4_VTAB
);
196 pParse
->nVtabLock
= 0;
199 /* Once all the cookies have been verified and transactions opened,
200 ** obtain the required table-locks. This is a no-op unless the
201 ** shared-cache feature is enabled.
203 codeTableLocks(pParse
);
205 /* Initialize any AUTOINCREMENT data structures required.
207 sqlite3AutoincrementBegin(pParse
);
209 /* Code constant expressions that where factored out of inner loops.
211 ** The pConstExpr list might also contain expressions that we simply
212 ** want to keep around until the Parse object is deleted. Such
213 ** expressions have iConstExprReg==0. Do not generate code for
214 ** those expressions, of course.
216 if( pParse
->pConstExpr
){
217 ExprList
*pEL
= pParse
->pConstExpr
;
218 pParse
->okConstFactor
= 0;
219 for(i
=0; i
<pEL
->nExpr
; i
++){
220 int iReg
= pEL
->a
[i
].u
.iConstExprReg
;
222 sqlite3ExprCode(pParse
, pEL
->a
[i
].pExpr
, iReg
);
227 /* Finally, jump back to the beginning of the executable code. */
228 sqlite3VdbeGoto(v
, 1);
233 /* Get the VDBE program ready for execution
235 if( v
&& pParse
->nErr
==0 && !db
->mallocFailed
){
236 /* A minimum of one cursor is required if autoincrement is used
237 * See ticket [a696379c1f08866] */
238 assert( pParse
->pAinc
==0 || pParse
->nTab
>0 );
239 sqlite3VdbeMakeReady(v
, pParse
);
240 pParse
->rc
= SQLITE_DONE
;
242 pParse
->rc
= SQLITE_ERROR
;
247 ** Run the parser and code generator recursively in order to generate
248 ** code for the SQL statement given onto the end of the pParse context
249 ** currently under construction. When the parser is run recursively
250 ** this way, the final OP_Halt is not appended and other initialization
251 ** and finalization steps are omitted because those are handling by the
254 ** Not everything is nestable. This facility is designed to permit
255 ** INSERT, UPDATE, and DELETE operations against the schema table. Use
256 ** care if you decide to try to use this routine for some other purposes.
258 void sqlite3NestedParse(Parse
*pParse
, const char *zFormat
, ...){
262 sqlite3
*db
= pParse
->db
;
263 char saveBuf
[PARSE_TAIL_SZ
];
265 if( pParse
->nErr
) return;
266 assert( pParse
->nested
<10 ); /* Nesting should only be of limited depth */
267 va_start(ap
, zFormat
);
268 zSql
= sqlite3VMPrintf(db
, zFormat
, ap
);
271 /* This can result either from an OOM or because the formatted string
272 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set
274 if( !db
->mallocFailed
) pParse
->rc
= SQLITE_TOOBIG
;
279 memcpy(saveBuf
, PARSE_TAIL(pParse
), PARSE_TAIL_SZ
);
280 memset(PARSE_TAIL(pParse
), 0, PARSE_TAIL_SZ
);
281 sqlite3RunParser(pParse
, zSql
, &zErrMsg
);
282 sqlite3DbFree(db
, zErrMsg
);
283 sqlite3DbFree(db
, zSql
);
284 memcpy(PARSE_TAIL(pParse
), saveBuf
, PARSE_TAIL_SZ
);
288 #if SQLITE_USER_AUTHENTICATION
290 ** Return TRUE if zTable is the name of the system table that stores the
291 ** list of users and their access credentials.
293 int sqlite3UserAuthTable(const char *zTable
){
294 return sqlite3_stricmp(zTable
, "sqlite_user")==0;
299 ** Locate the in-memory structure that describes a particular database
300 ** table given the name of that table and (optionally) the name of the
301 ** database containing the table. Return NULL if not found.
303 ** If zDatabase is 0, all databases are searched for the table and the
304 ** first matching table is returned. (No checking for duplicate table
305 ** names is done.) The search order is TEMP first, then MAIN, then any
306 ** auxiliary databases added using the ATTACH command.
308 ** See also sqlite3LocateTable().
310 Table
*sqlite3FindTable(sqlite3
*db
, const char *zName
, const char *zDatabase
){
314 /* All mutexes are required for schema access. Make sure we hold them. */
315 assert( zDatabase
!=0 || sqlite3BtreeHoldsAllMutexes(db
) );
316 #if SQLITE_USER_AUTHENTICATION
317 /* Only the admin user is allowed to know that the sqlite_user table
319 if( db
->auth
.authLevel
<UAUTH_Admin
&& sqlite3UserAuthTable(zName
)!=0 ){
324 for(i
=0; i
<db
->nDb
; i
++){
325 if( sqlite3StrICmp(zDatabase
, db
->aDb
[i
].zDbSName
)==0 ) break;
328 /* No match against the official names. But always match "main"
329 ** to schema 0 as a legacy fallback. */
330 if( sqlite3StrICmp(zDatabase
,"main")==0 ){
336 p
= sqlite3HashFind(&db
->aDb
[i
].pSchema
->tblHash
, zName
);
337 if( p
==0 && sqlite3StrNICmp(zName
, "sqlite_", 7)==0 ){
339 if( sqlite3StrICmp(zName
+7, &ALT_TEMP_SCHEMA_TABLE
[7])==0
340 || sqlite3StrICmp(zName
+7, &ALT_SCHEMA_TABLE
[7])==0
341 || sqlite3StrICmp(zName
+7, &DFLT_SCHEMA_TABLE
[7])==0
343 p
= sqlite3HashFind(&db
->aDb
[1].pSchema
->tblHash
,
344 DFLT_TEMP_SCHEMA_TABLE
);
347 if( sqlite3StrICmp(zName
+7, &ALT_SCHEMA_TABLE
[7])==0 ){
348 p
= sqlite3HashFind(&db
->aDb
[i
].pSchema
->tblHash
,
354 /* Match against TEMP first */
355 p
= sqlite3HashFind(&db
->aDb
[1].pSchema
->tblHash
, zName
);
357 /* The main database is second */
358 p
= sqlite3HashFind(&db
->aDb
[0].pSchema
->tblHash
, zName
);
360 /* Attached databases are in order of attachment */
361 for(i
=2; i
<db
->nDb
; i
++){
362 assert( sqlite3SchemaMutexHeld(db
, i
, 0) );
363 p
= sqlite3HashFind(&db
->aDb
[i
].pSchema
->tblHash
, zName
);
366 if( p
==0 && sqlite3StrNICmp(zName
, "sqlite_", 7)==0 ){
367 if( sqlite3StrICmp(zName
+7, &ALT_SCHEMA_TABLE
[7])==0 ){
368 p
= sqlite3HashFind(&db
->aDb
[0].pSchema
->tblHash
, DFLT_SCHEMA_TABLE
);
369 }else if( sqlite3StrICmp(zName
+7, &ALT_TEMP_SCHEMA_TABLE
[7])==0 ){
370 p
= sqlite3HashFind(&db
->aDb
[1].pSchema
->tblHash
,
371 DFLT_TEMP_SCHEMA_TABLE
);
379 ** Locate the in-memory structure that describes a particular database
380 ** table given the name of that table and (optionally) the name of the
381 ** database containing the table. Return NULL if not found. Also leave an
382 ** error message in pParse->zErrMsg.
384 ** The difference between this routine and sqlite3FindTable() is that this
385 ** routine leaves an error message in pParse->zErrMsg where
386 ** sqlite3FindTable() does not.
388 Table
*sqlite3LocateTable(
389 Parse
*pParse
, /* context in which to report errors */
390 u32 flags
, /* LOCATE_VIEW or LOCATE_NOERR */
391 const char *zName
, /* Name of the table we are looking for */
392 const char *zDbase
/* Name of the database. Might be NULL */
395 sqlite3
*db
= pParse
->db
;
397 /* Read the database schema. If an error occurs, leave an error message
398 ** and code in pParse and return NULL. */
399 if( (db
->mDbFlags
& DBFLAG_SchemaKnownOk
)==0
400 && SQLITE_OK
!=sqlite3ReadSchema(pParse
)
405 p
= sqlite3FindTable(db
, zName
, zDbase
);
407 #ifndef SQLITE_OMIT_VIRTUALTABLE
408 /* If zName is the not the name of a table in the schema created using
409 ** CREATE, then check to see if it is the name of an virtual table that
410 ** can be an eponymous virtual table. */
411 if( pParse
->disableVtab
==0 ){
412 Module
*pMod
= (Module
*)sqlite3HashFind(&db
->aModule
, zName
);
413 if( pMod
==0 && sqlite3_strnicmp(zName
, "pragma_", 7)==0 ){
414 pMod
= sqlite3PragmaVtabRegister(db
, zName
);
416 if( pMod
&& sqlite3VtabEponymousTableInit(pParse
, pMod
) ){
417 return pMod
->pEpoTab
;
421 if( flags
& LOCATE_NOERR
) return 0;
422 pParse
->checkSchema
= 1;
423 }else if( IsVirtual(p
) && pParse
->disableVtab
){
428 const char *zMsg
= flags
& LOCATE_VIEW
? "no such view" : "no such table";
430 sqlite3ErrorMsg(pParse
, "%s: %s.%s", zMsg
, zDbase
, zName
);
432 sqlite3ErrorMsg(pParse
, "%s: %s", zMsg
, zName
);
440 ** Locate the table identified by *p.
442 ** This is a wrapper around sqlite3LocateTable(). The difference between
443 ** sqlite3LocateTable() and this function is that this function restricts
444 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
445 ** non-NULL if it is part of a view or trigger program definition. See
446 ** sqlite3FixSrcList() for details.
448 Table
*sqlite3LocateTableItem(
451 struct SrcList_item
*p
454 assert( p
->pSchema
==0 || p
->zDatabase
==0 );
456 int iDb
= sqlite3SchemaToIndex(pParse
->db
, p
->pSchema
);
457 zDb
= pParse
->db
->aDb
[iDb
].zDbSName
;
461 return sqlite3LocateTable(pParse
, flags
, p
->zName
, zDb
);
465 ** Locate the in-memory structure that describes
466 ** a particular index given the name of that index
467 ** and the name of the database that contains the index.
468 ** Return NULL if not found.
470 ** If zDatabase is 0, all databases are searched for the
471 ** table and the first matching index is returned. (No checking
472 ** for duplicate index names is done.) The search order is
473 ** TEMP first, then MAIN, then any auxiliary databases added
474 ** using the ATTACH command.
476 Index
*sqlite3FindIndex(sqlite3
*db
, const char *zName
, const char *zDb
){
479 /* All mutexes are required for schema access. Make sure we hold them. */
480 assert( zDb
!=0 || sqlite3BtreeHoldsAllMutexes(db
) );
481 for(i
=OMIT_TEMPDB
; i
<db
->nDb
; i
++){
482 int j
= (i
<2) ? i
^1 : i
; /* Search TEMP before MAIN */
483 Schema
*pSchema
= db
->aDb
[j
].pSchema
;
485 if( zDb
&& sqlite3DbIsNamed(db
, j
, zDb
)==0 ) continue;
486 assert( sqlite3SchemaMutexHeld(db
, j
, 0) );
487 p
= sqlite3HashFind(&pSchema
->idxHash
, zName
);
494 ** Reclaim the memory used by an index
496 void sqlite3FreeIndex(sqlite3
*db
, Index
*p
){
497 #ifndef SQLITE_OMIT_ANALYZE
498 sqlite3DeleteIndexSamples(db
, p
);
500 sqlite3ExprDelete(db
, p
->pPartIdxWhere
);
501 sqlite3ExprListDelete(db
, p
->aColExpr
);
502 sqlite3DbFree(db
, p
->zColAff
);
503 if( p
->isResized
) sqlite3DbFree(db
, (void *)p
->azColl
);
504 #ifdef SQLITE_ENABLE_STAT4
505 sqlite3_free(p
->aiRowEst
);
507 sqlite3DbFree(db
, p
);
511 ** For the index called zIdxName which is found in the database iDb,
512 ** unlike that index from its Table then remove the index from
513 ** the index hash table and free all memory structures associated
516 void sqlite3UnlinkAndDeleteIndex(sqlite3
*db
, int iDb
, const char *zIdxName
){
520 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
521 pHash
= &db
->aDb
[iDb
].pSchema
->idxHash
;
522 pIndex
= sqlite3HashInsert(pHash
, zIdxName
, 0);
523 if( ALWAYS(pIndex
) ){
524 if( pIndex
->pTable
->pIndex
==pIndex
){
525 pIndex
->pTable
->pIndex
= pIndex
->pNext
;
528 /* Justification of ALWAYS(); The index must be on the list of
530 p
= pIndex
->pTable
->pIndex
;
531 while( ALWAYS(p
) && p
->pNext
!=pIndex
){ p
= p
->pNext
; }
532 if( ALWAYS(p
&& p
->pNext
==pIndex
) ){
533 p
->pNext
= pIndex
->pNext
;
536 sqlite3FreeIndex(db
, pIndex
);
538 db
->mDbFlags
|= DBFLAG_SchemaChange
;
542 ** Look through the list of open database files in db->aDb[] and if
543 ** any have been closed, remove them from the list. Reallocate the
544 ** db->aDb[] structure to a smaller size, if possible.
546 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
547 ** are never candidates for being collapsed.
549 void sqlite3CollapseDatabaseArray(sqlite3
*db
){
551 for(i
=j
=2; i
<db
->nDb
; i
++){
552 struct Db
*pDb
= &db
->aDb
[i
];
554 sqlite3DbFree(db
, pDb
->zDbSName
);
559 db
->aDb
[j
] = db
->aDb
[i
];
564 if( db
->nDb
<=2 && db
->aDb
!=db
->aDbStatic
){
565 memcpy(db
->aDbStatic
, db
->aDb
, 2*sizeof(db
->aDb
[0]));
566 sqlite3DbFree(db
, db
->aDb
);
567 db
->aDb
= db
->aDbStatic
;
572 ** Reset the schema for the database at index iDb. Also reset the
573 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero.
574 ** Deferred resets may be run by calling with iDb<0.
576 void sqlite3ResetOneSchema(sqlite3
*db
, int iDb
){
578 assert( iDb
<db
->nDb
);
581 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
582 DbSetProperty(db
, iDb
, DB_ResetWanted
);
583 DbSetProperty(db
, 1, DB_ResetWanted
);
584 db
->mDbFlags
&= ~DBFLAG_SchemaKnownOk
;
587 if( db
->nSchemaLock
==0 ){
588 for(i
=0; i
<db
->nDb
; i
++){
589 if( DbHasProperty(db
, i
, DB_ResetWanted
) ){
590 sqlite3SchemaClear(db
->aDb
[i
].pSchema
);
597 ** Erase all schema information from all attached databases (including
598 ** "main" and "temp") for a single database connection.
600 void sqlite3ResetAllSchemasOfConnection(sqlite3
*db
){
602 sqlite3BtreeEnterAll(db
);
603 for(i
=0; i
<db
->nDb
; i
++){
604 Db
*pDb
= &db
->aDb
[i
];
606 if( db
->nSchemaLock
==0 ){
607 sqlite3SchemaClear(pDb
->pSchema
);
609 DbSetProperty(db
, i
, DB_ResetWanted
);
613 db
->mDbFlags
&= ~(DBFLAG_SchemaChange
|DBFLAG_SchemaKnownOk
);
614 sqlite3VtabUnlockList(db
);
615 sqlite3BtreeLeaveAll(db
);
616 if( db
->nSchemaLock
==0 ){
617 sqlite3CollapseDatabaseArray(db
);
622 ** This routine is called when a commit occurs.
624 void sqlite3CommitInternalChanges(sqlite3
*db
){
625 db
->mDbFlags
&= ~DBFLAG_SchemaChange
;
629 ** Delete memory allocated for the column names of a table or view (the
630 ** Table.aCol[] array).
632 void sqlite3DeleteColumnNames(sqlite3
*db
, Table
*pTable
){
636 if( (pCol
= pTable
->aCol
)!=0 ){
637 for(i
=0; i
<pTable
->nCol
; i
++, pCol
++){
638 assert( pCol
->zName
==0 || pCol
->hName
==sqlite3StrIHash(pCol
->zName
) );
639 sqlite3DbFree(db
, pCol
->zName
);
640 sqlite3ExprDelete(db
, pCol
->pDflt
);
641 sqlite3DbFree(db
, pCol
->zColl
);
643 sqlite3DbFree(db
, pTable
->aCol
);
648 ** Remove the memory data structures associated with the given
649 ** Table. No changes are made to disk by this routine.
651 ** This routine just deletes the data structure. It does not unlink
652 ** the table data structure from the hash table. But it does destroy
653 ** memory structures of the indices and foreign keys associated with
656 ** The db parameter is optional. It is needed if the Table object
657 ** contains lookaside memory. (Table objects in the schema do not use
658 ** lookaside memory, but some ephemeral Table objects do.) Or the
659 ** db parameter can be used with db->pnBytesFreed to measure the memory
660 ** used by the Table object.
662 static void SQLITE_NOINLINE
deleteTable(sqlite3
*db
, Table
*pTable
){
663 Index
*pIndex
, *pNext
;
666 /* Record the number of outstanding lookaside allocations in schema Tables
667 ** prior to doing any free() operations. Since schema Tables do not use
668 ** lookaside, this number should not change.
670 ** If malloc has already failed, it may be that it failed while allocating
671 ** a Table object that was going to be marked ephemeral. So do not check
672 ** that no lookaside memory is used in this case either. */
674 if( db
&& !db
->mallocFailed
&& (pTable
->tabFlags
& TF_Ephemeral
)==0 ){
675 nLookaside
= sqlite3LookasideUsed(db
, 0);
679 /* Delete all indices associated with this table. */
680 for(pIndex
= pTable
->pIndex
; pIndex
; pIndex
=pNext
){
681 pNext
= pIndex
->pNext
;
682 assert( pIndex
->pSchema
==pTable
->pSchema
683 || (IsVirtual(pTable
) && pIndex
->idxType
!=SQLITE_IDXTYPE_APPDEF
) );
684 if( (db
==0 || db
->pnBytesFreed
==0) && !IsVirtual(pTable
) ){
685 char *zName
= pIndex
->zName
;
686 TESTONLY ( Index
*pOld
= ) sqlite3HashInsert(
687 &pIndex
->pSchema
->idxHash
, zName
, 0
689 assert( db
==0 || sqlite3SchemaMutexHeld(db
, 0, pIndex
->pSchema
) );
690 assert( pOld
==pIndex
|| pOld
==0 );
692 sqlite3FreeIndex(db
, pIndex
);
695 /* Delete any foreign keys attached to this table. */
696 sqlite3FkDelete(db
, pTable
);
698 /* Delete the Table structure itself.
700 sqlite3DeleteColumnNames(db
, pTable
);
701 sqlite3DbFree(db
, pTable
->zName
);
702 sqlite3DbFree(db
, pTable
->zColAff
);
703 sqlite3SelectDelete(db
, pTable
->pSelect
);
704 sqlite3ExprListDelete(db
, pTable
->pCheck
);
705 #ifndef SQLITE_OMIT_VIRTUALTABLE
706 sqlite3VtabClear(db
, pTable
);
708 sqlite3DbFree(db
, pTable
);
710 /* Verify that no lookaside memory was used by schema tables */
711 assert( nLookaside
==0 || nLookaside
==sqlite3LookasideUsed(db
,0) );
713 void sqlite3DeleteTable(sqlite3
*db
, Table
*pTable
){
714 /* Do not delete the table until the reference count reaches zero. */
715 if( !pTable
) return;
716 if( ((!db
|| db
->pnBytesFreed
==0) && (--pTable
->nTabRef
)>0) ) return;
717 deleteTable(db
, pTable
);
722 ** Unlink the given table from the hash tables and the delete the
723 ** table structure with all its indices and foreign keys.
725 void sqlite3UnlinkAndDeleteTable(sqlite3
*db
, int iDb
, const char *zTabName
){
730 assert( iDb
>=0 && iDb
<db
->nDb
);
732 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
733 testcase( zTabName
[0]==0 ); /* Zero-length table names are allowed */
735 p
= sqlite3HashInsert(&pDb
->pSchema
->tblHash
, zTabName
, 0);
736 sqlite3DeleteTable(db
, p
);
737 db
->mDbFlags
|= DBFLAG_SchemaChange
;
741 ** Given a token, return a string that consists of the text of that
742 ** token. Space to hold the returned string
743 ** is obtained from sqliteMalloc() and must be freed by the calling
746 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
747 ** surround the body of the token are removed.
749 ** Tokens are often just pointers into the original SQL text and so
750 ** are not \000 terminated and are not persistent. The returned string
751 ** is \000 terminated and is persistent.
753 char *sqlite3NameFromToken(sqlite3
*db
, Token
*pName
){
756 zName
= sqlite3DbStrNDup(db
, (char*)pName
->z
, pName
->n
);
757 sqlite3Dequote(zName
);
765 ** Open the sqlite_schema table stored in database number iDb for
766 ** writing. The table is opened using cursor 0.
768 void sqlite3OpenSchemaTable(Parse
*p
, int iDb
){
769 Vdbe
*v
= sqlite3GetVdbe(p
);
770 sqlite3TableLock(p
, iDb
, SCHEMA_ROOT
, 1, DFLT_SCHEMA_TABLE
);
771 sqlite3VdbeAddOp4Int(v
, OP_OpenWrite
, 0, SCHEMA_ROOT
, iDb
, 5);
778 ** Parameter zName points to a nul-terminated buffer containing the name
779 ** of a database ("main", "temp" or the name of an attached db). This
780 ** function returns the index of the named database in db->aDb[], or
781 ** -1 if the named db cannot be found.
783 int sqlite3FindDbName(sqlite3
*db
, const char *zName
){
784 int i
= -1; /* Database number */
787 for(i
=(db
->nDb
-1), pDb
=&db
->aDb
[i
]; i
>=0; i
--, pDb
--){
788 if( 0==sqlite3_stricmp(pDb
->zDbSName
, zName
) ) break;
789 /* "main" is always an acceptable alias for the primary database
790 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
791 if( i
==0 && 0==sqlite3_stricmp("main", zName
) ) break;
798 ** The token *pName contains the name of a database (either "main" or
799 ** "temp" or the name of an attached db). This routine returns the
800 ** index of the named database in db->aDb[], or -1 if the named db
803 int sqlite3FindDb(sqlite3
*db
, Token
*pName
){
804 int i
; /* Database number */
805 char *zName
; /* Name we are searching for */
806 zName
= sqlite3NameFromToken(db
, pName
);
807 i
= sqlite3FindDbName(db
, zName
);
808 sqlite3DbFree(db
, zName
);
812 /* The table or view or trigger name is passed to this routine via tokens
813 ** pName1 and pName2. If the table name was fully qualified, for example:
815 ** CREATE TABLE xxx.yyy (...);
817 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
818 ** the table name is not fully qualified, i.e.:
820 ** CREATE TABLE yyy(...);
822 ** Then pName1 is set to "yyy" and pName2 is "".
824 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
825 ** pName2) that stores the unqualified table name. The index of the
826 ** database "xxx" is returned.
828 int sqlite3TwoPartName(
829 Parse
*pParse
, /* Parsing and code generating context */
830 Token
*pName1
, /* The "xxx" in the name "xxx.yyy" or "xxx" */
831 Token
*pName2
, /* The "yyy" in the name "xxx.yyy" */
832 Token
**pUnqual
/* Write the unqualified object name here */
834 int iDb
; /* Database holding the object */
835 sqlite3
*db
= pParse
->db
;
839 if( db
->init
.busy
) {
840 sqlite3ErrorMsg(pParse
, "corrupt database");
844 iDb
= sqlite3FindDb(db
, pName1
);
846 sqlite3ErrorMsg(pParse
, "unknown database %T", pName1
);
850 assert( db
->init
.iDb
==0 || db
->init
.busy
|| IN_RENAME_OBJECT
851 || (db
->mDbFlags
& DBFLAG_Vacuum
)!=0);
859 ** True if PRAGMA writable_schema is ON
861 int sqlite3WritableSchema(sqlite3
*db
){
862 testcase( (db
->flags
&(SQLITE_WriteSchema
|SQLITE_Defensive
))==0 );
863 testcase( (db
->flags
&(SQLITE_WriteSchema
|SQLITE_Defensive
))==
864 SQLITE_WriteSchema
);
865 testcase( (db
->flags
&(SQLITE_WriteSchema
|SQLITE_Defensive
))==
867 testcase( (db
->flags
&(SQLITE_WriteSchema
|SQLITE_Defensive
))==
868 (SQLITE_WriteSchema
|SQLITE_Defensive
) );
869 return (db
->flags
&(SQLITE_WriteSchema
|SQLITE_Defensive
))==SQLITE_WriteSchema
;
873 ** This routine is used to check if the UTF-8 string zName is a legal
874 ** unqualified name for a new schema object (table, index, view or
875 ** trigger). All names are legal except those that begin with the string
876 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
877 ** is reserved for internal use.
879 ** When parsing the sqlite_schema table, this routine also checks to
880 ** make sure the "type", "name", and "tbl_name" columns are consistent
883 int sqlite3CheckObjectName(
884 Parse
*pParse
, /* Parsing context */
885 const char *zName
, /* Name of the object to check */
886 const char *zType
, /* Type of this object */
887 const char *zTblName
/* Parent table name for triggers and indexes */
889 sqlite3
*db
= pParse
->db
;
890 if( sqlite3WritableSchema(db
)
891 || db
->init
.imposterTable
892 || !sqlite3Config
.bExtraSchemaChecks
894 /* Skip these error checks for writable_schema=ON */
898 if( sqlite3_stricmp(zType
, db
->init
.azInit
[0])
899 || sqlite3_stricmp(zName
, db
->init
.azInit
[1])
900 || sqlite3_stricmp(zTblName
, db
->init
.azInit
[2])
902 sqlite3ErrorMsg(pParse
, ""); /* corruptSchema() will supply the error */
906 if( (pParse
->nested
==0 && 0==sqlite3StrNICmp(zName
, "sqlite_", 7))
907 || (sqlite3ReadOnlyShadowTables(db
) && sqlite3ShadowTableName(db
, zName
))
909 sqlite3ErrorMsg(pParse
, "object name reserved for internal use: %s",
919 ** Return the PRIMARY KEY index of a table
921 Index
*sqlite3PrimaryKeyIndex(Table
*pTab
){
923 for(p
=pTab
->pIndex
; p
&& !IsPrimaryKeyIndex(p
); p
=p
->pNext
){}
928 ** Convert an table column number into a index column number. That is,
929 ** for the column iCol in the table (as defined by the CREATE TABLE statement)
930 ** find the (first) offset of that column in index pIdx. Or return -1
931 ** if column iCol is not used in index pIdx.
933 i16
sqlite3TableColumnToIndex(Index
*pIdx
, i16 iCol
){
935 for(i
=0; i
<pIdx
->nColumn
; i
++){
936 if( iCol
==pIdx
->aiColumn
[i
] ) return i
;
941 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
942 /* Convert a storage column number into a table column number.
944 ** The storage column number (0,1,2,....) is the index of the value
945 ** as it appears in the record on disk. The true column number
946 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement.
948 ** The storage column number is less than the table column number if
949 ** and only there are VIRTUAL columns to the left.
951 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro.
953 i16
sqlite3StorageColumnToTable(Table
*pTab
, i16 iCol
){
954 if( pTab
->tabFlags
& TF_HasVirtual
){
956 for(i
=0; i
<=iCol
; i
++){
957 if( pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
) iCol
++;
964 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
965 /* Convert a table column number into a storage column number.
967 ** The storage column number (0,1,2,....) is the index of the value
968 ** as it appears in the record on disk. Or, if the input column is
969 ** the N-th virtual column (zero-based) then the storage number is
970 ** the number of non-virtual columns in the table plus N.
972 ** The true column number is the index (0,1,2,...) of the column in
973 ** the CREATE TABLE statement.
975 ** If the input column is a VIRTUAL column, then it should not appear
976 ** in storage. But the value sometimes is cached in registers that
977 ** follow the range of registers used to construct storage. This
978 ** avoids computing the same VIRTUAL column multiple times, and provides
979 ** values for use by OP_Param opcodes in triggers. Hence, if the
980 ** input column is a VIRTUAL table, put it after all the other columns.
982 ** In the following, N means "normal column", S means STORED, and
983 ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this:
985 ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V);
986 ** -- 0 1 2 3 4 5 6 7 8
988 ** Then the mapping from this function is as follows:
990 ** INPUTS: 0 1 2 3 4 5 6 7 8
991 ** OUTPUTS: 0 1 6 2 3 7 4 5 8
993 ** So, in other words, this routine shifts all the virtual columns to
996 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and
997 ** this routine is a no-op macro. If the pTab does not have any virtual
998 ** columns, then this routine is no-op that always return iCol. If iCol
999 ** is negative (indicating the ROWID column) then this routine return iCol.
1001 i16
sqlite3TableColumnToStorage(Table
*pTab
, i16 iCol
){
1004 assert( iCol
<pTab
->nCol
);
1005 if( (pTab
->tabFlags
& TF_HasVirtual
)==0 || iCol
<0 ) return iCol
;
1006 for(i
=0, n
=0; i
<iCol
; i
++){
1007 if( (pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
)==0 ) n
++;
1009 if( pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
){
1010 /* iCol is a virtual column itself */
1011 return pTab
->nNVCol
+ i
- n
;
1013 /* iCol is a normal or stored column */
1020 ** Begin constructing a new table representation in memory. This is
1021 ** the first of several action routines that get called in response
1022 ** to a CREATE TABLE statement. In particular, this routine is called
1023 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
1024 ** flag is true if the table should be stored in the auxiliary database
1025 ** file instead of in the main database file. This is normally the case
1026 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
1027 ** CREATE and TABLE.
1029 ** The new table record is initialized and put in pParse->pNewTable.
1030 ** As more of the CREATE TABLE statement is parsed, additional action
1031 ** routines will be called to add more information to this record.
1032 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
1033 ** is called to complete the construction of the new table record.
1035 void sqlite3StartTable(
1036 Parse
*pParse
, /* Parser context */
1037 Token
*pName1
, /* First part of the name of the table or view */
1038 Token
*pName2
, /* Second part of the name of the table or view */
1039 int isTemp
, /* True if this is a TEMP table */
1040 int isView
, /* True if this is a VIEW */
1041 int isVirtual
, /* True if this is a VIRTUAL table */
1042 int noErr
/* Do nothing if table already exists */
1045 char *zName
= 0; /* The name of the new table */
1046 sqlite3
*db
= pParse
->db
;
1048 int iDb
; /* Database number to create the table in */
1049 Token
*pName
; /* Unqualified name of the table to create */
1051 if( db
->init
.busy
&& db
->init
.newTnum
==1 ){
1052 /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */
1054 zName
= sqlite3DbStrDup(db
, SCHEMA_TABLE(iDb
));
1057 /* The common case */
1058 iDb
= sqlite3TwoPartName(pParse
, pName1
, pName2
, &pName
);
1060 if( !OMIT_TEMPDB
&& isTemp
&& pName2
->n
>0 && iDb
!=1 ){
1061 /* If creating a temp table, the name may not be qualified. Unless
1062 ** the database name is "temp" anyway. */
1063 sqlite3ErrorMsg(pParse
, "temporary table name must be unqualified");
1066 if( !OMIT_TEMPDB
&& isTemp
) iDb
= 1;
1067 zName
= sqlite3NameFromToken(db
, pName
);
1068 if( IN_RENAME_OBJECT
){
1069 sqlite3RenameTokenMap(pParse
, (void*)zName
, pName
);
1072 pParse
->sNameToken
= *pName
;
1073 if( zName
==0 ) return;
1074 if( sqlite3CheckObjectName(pParse
, zName
, isView
?"view":"table", zName
) ){
1075 goto begin_table_error
;
1077 if( db
->init
.iDb
==1 ) isTemp
= 1;
1078 #ifndef SQLITE_OMIT_AUTHORIZATION
1079 assert( isTemp
==0 || isTemp
==1 );
1080 assert( isView
==0 || isView
==1 );
1082 static const u8 aCode
[] = {
1083 SQLITE_CREATE_TABLE
,
1084 SQLITE_CREATE_TEMP_TABLE
,
1086 SQLITE_CREATE_TEMP_VIEW
1088 char *zDb
= db
->aDb
[iDb
].zDbSName
;
1089 if( sqlite3AuthCheck(pParse
, SQLITE_INSERT
, SCHEMA_TABLE(isTemp
), 0, zDb
) ){
1090 goto begin_table_error
;
1092 if( !isVirtual
&& sqlite3AuthCheck(pParse
, (int)aCode
[isTemp
+2*isView
],
1094 goto begin_table_error
;
1099 /* Make sure the new table name does not collide with an existing
1100 ** index or table name in the same database. Issue an error message if
1101 ** it does. The exception is if the statement being parsed was passed
1102 ** to an sqlite3_declare_vtab() call. In that case only the column names
1103 ** and types will be used, so there is no need to test for namespace
1106 if( !IN_SPECIAL_PARSE
){
1107 char *zDb
= db
->aDb
[iDb
].zDbSName
;
1108 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
1109 goto begin_table_error
;
1111 pTable
= sqlite3FindTable(db
, zName
, zDb
);
1114 sqlite3ErrorMsg(pParse
, "table %T already exists", pName
);
1116 assert( !db
->init
.busy
|| CORRUPT_DB
);
1117 sqlite3CodeVerifySchema(pParse
, iDb
);
1119 goto begin_table_error
;
1121 if( sqlite3FindIndex(db
, zName
, zDb
)!=0 ){
1122 sqlite3ErrorMsg(pParse
, "there is already an index named %s", zName
);
1123 goto begin_table_error
;
1127 pTable
= sqlite3DbMallocZero(db
, sizeof(Table
));
1129 assert( db
->mallocFailed
);
1130 pParse
->rc
= SQLITE_NOMEM_BKPT
;
1132 goto begin_table_error
;
1134 pTable
->zName
= zName
;
1136 pTable
->pSchema
= db
->aDb
[iDb
].pSchema
;
1137 pTable
->nTabRef
= 1;
1138 #ifdef SQLITE_DEFAULT_ROWEST
1139 pTable
->nRowLogEst
= sqlite3LogEst(SQLITE_DEFAULT_ROWEST
);
1141 pTable
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
1143 assert( pParse
->pNewTable
==0 );
1144 pParse
->pNewTable
= pTable
;
1146 /* If this is the magic sqlite_sequence table used by autoincrement,
1147 ** then record a pointer to this table in the main database structure
1148 ** so that INSERT can find the table easily.
1150 #ifndef SQLITE_OMIT_AUTOINCREMENT
1151 if( !pParse
->nested
&& strcmp(zName
, "sqlite_sequence")==0 ){
1152 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
1153 pTable
->pSchema
->pSeqTab
= pTable
;
1157 /* Begin generating the code that will insert the table record into
1158 ** the schema table. Note in particular that we must go ahead
1159 ** and allocate the record number for the table entry now. Before any
1160 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
1161 ** indices to be created and the table record must come before the
1162 ** indices. Hence, the record number for the table must be allocated
1165 if( !db
->init
.busy
&& (v
= sqlite3GetVdbe(pParse
))!=0 ){
1168 int reg1
, reg2
, reg3
;
1169 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
1170 static const char nullRow
[] = { 6, 0, 0, 0, 0, 0 };
1171 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
1173 #ifndef SQLITE_OMIT_VIRTUALTABLE
1175 sqlite3VdbeAddOp0(v
, OP_VBegin
);
1179 /* If the file format and encoding in the database have not been set,
1182 reg1
= pParse
->regRowid
= ++pParse
->nMem
;
1183 reg2
= pParse
->regRoot
= ++pParse
->nMem
;
1184 reg3
= ++pParse
->nMem
;
1185 sqlite3VdbeAddOp3(v
, OP_ReadCookie
, iDb
, reg3
, BTREE_FILE_FORMAT
);
1186 sqlite3VdbeUsesBtree(v
, iDb
);
1187 addr1
= sqlite3VdbeAddOp1(v
, OP_If
, reg3
); VdbeCoverage(v
);
1188 fileFormat
= (db
->flags
& SQLITE_LegacyFileFmt
)!=0 ?
1189 1 : SQLITE_MAX_FILE_FORMAT
;
1190 sqlite3VdbeAddOp3(v
, OP_SetCookie
, iDb
, BTREE_FILE_FORMAT
, fileFormat
);
1191 sqlite3VdbeAddOp3(v
, OP_SetCookie
, iDb
, BTREE_TEXT_ENCODING
, ENC(db
));
1192 sqlite3VdbeJumpHere(v
, addr1
);
1194 /* This just creates a place-holder record in the sqlite_schema table.
1195 ** The record created does not contain anything yet. It will be replaced
1196 ** by the real entry in code generated at sqlite3EndTable().
1198 ** The rowid for the new entry is left in register pParse->regRowid.
1199 ** The root page number of the new table is left in reg pParse->regRoot.
1200 ** The rowid and root page number values are needed by the code that
1201 ** sqlite3EndTable will generate.
1203 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1204 if( isView
|| isVirtual
){
1205 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, reg2
);
1210 sqlite3VdbeAddOp3(v
, OP_CreateBtree
, iDb
, reg2
, BTREE_INTKEY
);
1212 sqlite3OpenSchemaTable(pParse
, iDb
);
1213 sqlite3VdbeAddOp2(v
, OP_NewRowid
, 0, reg1
);
1214 sqlite3VdbeAddOp4(v
, OP_Blob
, 6, reg3
, 0, nullRow
, P4_STATIC
);
1215 sqlite3VdbeAddOp3(v
, OP_Insert
, 0, reg3
, reg1
);
1216 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1217 sqlite3VdbeAddOp0(v
, OP_Close
);
1220 /* Normal (non-error) return. */
1223 /* If an error occurs, we jump here */
1225 sqlite3DbFree(db
, zName
);
1229 /* Set properties of a table column based on the (magical)
1230 ** name of the column.
1232 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1233 void sqlite3ColumnPropertiesFromName(Table
*pTab
, Column
*pCol
){
1234 if( sqlite3_strnicmp(pCol
->zName
, "__hidden__", 10)==0 ){
1235 pCol
->colFlags
|= COLFLAG_HIDDEN
;
1236 }else if( pTab
&& pCol
!=pTab
->aCol
&& (pCol
[-1].colFlags
& COLFLAG_HIDDEN
) ){
1237 pTab
->tabFlags
|= TF_OOOHidden
;
1244 ** Add a new column to the table currently being constructed.
1246 ** The parser calls this routine once for each column declaration
1247 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
1248 ** first to get things going. Then this routine is called for each
1251 void sqlite3AddColumn(Parse
*pParse
, Token
*pName
, Token
*pType
){
1257 sqlite3
*db
= pParse
->db
;
1258 if( (p
= pParse
->pNewTable
)==0 ) return;
1259 if( p
->nCol
+1>db
->aLimit
[SQLITE_LIMIT_COLUMN
] ){
1260 sqlite3ErrorMsg(pParse
, "too many columns on %s", p
->zName
);
1263 z
= sqlite3DbMallocRaw(db
, pName
->n
+ pType
->n
+ 2);
1265 if( IN_RENAME_OBJECT
) sqlite3RenameTokenMap(pParse
, (void*)z
, pName
);
1266 memcpy(z
, pName
->z
, pName
->n
);
1269 for(i
=0; i
<p
->nCol
; i
++){
1270 if( sqlite3_stricmp(z
, p
->aCol
[i
].zName
)==0 ){
1271 sqlite3ErrorMsg(pParse
, "duplicate column name: %s", z
);
1272 sqlite3DbFree(db
, z
);
1276 if( (p
->nCol
& 0x7)==0 ){
1278 aNew
= sqlite3DbRealloc(db
,p
->aCol
,(p
->nCol
+8)*sizeof(p
->aCol
[0]));
1280 sqlite3DbFree(db
, z
);
1285 pCol
= &p
->aCol
[p
->nCol
];
1286 memset(pCol
, 0, sizeof(p
->aCol
[0]));
1288 pCol
->hName
= sqlite3StrIHash(z
);
1289 sqlite3ColumnPropertiesFromName(p
, pCol
);
1292 /* If there is no type specified, columns have the default affinity
1293 ** 'BLOB' with a default size of 4 bytes. */
1294 pCol
->affinity
= SQLITE_AFF_BLOB
;
1296 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1297 if( 4>=sqlite3GlobalConfig
.szSorterRef
){
1298 pCol
->colFlags
|= COLFLAG_SORTERREF
;
1302 zType
= z
+ sqlite3Strlen30(z
) + 1;
1303 memcpy(zType
, pType
->z
, pType
->n
);
1304 zType
[pType
->n
] = 0;
1305 sqlite3Dequote(zType
);
1306 pCol
->affinity
= sqlite3AffinityType(zType
, pCol
);
1307 pCol
->colFlags
|= COLFLAG_HASTYPE
;
1311 pParse
->constraintName
.n
= 0;
1315 ** This routine is called by the parser while in the middle of
1316 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
1317 ** been seen on a column. This routine sets the notNull flag on
1318 ** the column currently under construction.
1320 void sqlite3AddNotNull(Parse
*pParse
, int onError
){
1323 p
= pParse
->pNewTable
;
1324 if( p
==0 || NEVER(p
->nCol
<1) ) return;
1325 pCol
= &p
->aCol
[p
->nCol
-1];
1326 pCol
->notNull
= (u8
)onError
;
1327 p
->tabFlags
|= TF_HasNotNull
;
1329 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created
1330 ** on this column. */
1331 if( pCol
->colFlags
& COLFLAG_UNIQUE
){
1333 for(pIdx
=p
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
1334 assert( pIdx
->nKeyCol
==1 && pIdx
->onError
!=OE_None
);
1335 if( pIdx
->aiColumn
[0]==p
->nCol
-1 ){
1336 pIdx
->uniqNotNull
= 1;
1343 ** Scan the column type name zType (length nType) and return the
1344 ** associated affinity type.
1346 ** This routine does a case-independent search of zType for the
1347 ** substrings in the following table. If one of the substrings is
1348 ** found, the corresponding affinity is returned. If zType contains
1349 ** more than one of the substrings, entries toward the top of
1350 ** the table take priority. For example, if zType is 'BLOBINT',
1351 ** SQLITE_AFF_INTEGER is returned.
1353 ** Substring | Affinity
1354 ** --------------------------------
1355 ** 'INT' | SQLITE_AFF_INTEGER
1356 ** 'CHAR' | SQLITE_AFF_TEXT
1357 ** 'CLOB' | SQLITE_AFF_TEXT
1358 ** 'TEXT' | SQLITE_AFF_TEXT
1359 ** 'BLOB' | SQLITE_AFF_BLOB
1360 ** 'REAL' | SQLITE_AFF_REAL
1361 ** 'FLOA' | SQLITE_AFF_REAL
1362 ** 'DOUB' | SQLITE_AFF_REAL
1364 ** If none of the substrings in the above table are found,
1365 ** SQLITE_AFF_NUMERIC is returned.
1367 char sqlite3AffinityType(const char *zIn
, Column
*pCol
){
1369 char aff
= SQLITE_AFF_NUMERIC
;
1370 const char *zChar
= 0;
1374 h
= (h
<<8) + sqlite3UpperToLower
[(*zIn
)&0xff];
1376 if( h
==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1377 aff
= SQLITE_AFF_TEXT
;
1379 }else if( h
==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1380 aff
= SQLITE_AFF_TEXT
;
1381 }else if( h
==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1382 aff
= SQLITE_AFF_TEXT
;
1383 }else if( h
==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1384 && (aff
==SQLITE_AFF_NUMERIC
|| aff
==SQLITE_AFF_REAL
) ){
1385 aff
= SQLITE_AFF_BLOB
;
1386 if( zIn
[0]=='(' ) zChar
= zIn
;
1387 #ifndef SQLITE_OMIT_FLOATING_POINT
1388 }else if( h
==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1389 && aff
==SQLITE_AFF_NUMERIC
){
1390 aff
= SQLITE_AFF_REAL
;
1391 }else if( h
==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1392 && aff
==SQLITE_AFF_NUMERIC
){
1393 aff
= SQLITE_AFF_REAL
;
1394 }else if( h
==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1395 && aff
==SQLITE_AFF_NUMERIC
){
1396 aff
= SQLITE_AFF_REAL
;
1398 }else if( (h
&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1399 aff
= SQLITE_AFF_INTEGER
;
1404 /* If pCol is not NULL, store an estimate of the field size. The
1405 ** estimate is scaled so that the size of an integer is 1. */
1407 int v
= 0; /* default size is approx 4 bytes */
1408 if( aff
<SQLITE_AFF_NUMERIC
){
1411 if( sqlite3Isdigit(zChar
[0]) ){
1412 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1413 sqlite3GetInt32(zChar
, &v
);
1419 v
= 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
1422 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1423 if( v
>=sqlite3GlobalConfig
.szSorterRef
){
1424 pCol
->colFlags
|= COLFLAG_SORTERREF
;
1428 if( v
>255 ) v
= 255;
1435 ** The expression is the default value for the most recently added column
1436 ** of the table currently under construction.
1438 ** Default value expressions must be constant. Raise an exception if this
1441 ** This routine is called by the parser while in the middle of
1442 ** parsing a CREATE TABLE statement.
1444 void sqlite3AddDefaultValue(
1445 Parse
*pParse
, /* Parsing context */
1446 Expr
*pExpr
, /* The parsed expression of the default value */
1447 const char *zStart
, /* Start of the default value text */
1448 const char *zEnd
/* First character past end of defaut value text */
1452 sqlite3
*db
= pParse
->db
;
1453 p
= pParse
->pNewTable
;
1455 int isInit
= db
->init
.busy
&& db
->init
.iDb
!=1;
1456 pCol
= &(p
->aCol
[p
->nCol
-1]);
1457 if( !sqlite3ExprIsConstantOrFunction(pExpr
, isInit
) ){
1458 sqlite3ErrorMsg(pParse
, "default value of column [%s] is not constant",
1460 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1461 }else if( pCol
->colFlags
& COLFLAG_GENERATED
){
1462 testcase( pCol
->colFlags
& COLFLAG_VIRTUAL
);
1463 testcase( pCol
->colFlags
& COLFLAG_STORED
);
1464 sqlite3ErrorMsg(pParse
, "cannot use DEFAULT on a generated column");
1467 /* A copy of pExpr is used instead of the original, as pExpr contains
1468 ** tokens that point to volatile memory.
1471 sqlite3ExprDelete(db
, pCol
->pDflt
);
1472 memset(&x
, 0, sizeof(x
));
1474 x
.u
.zToken
= sqlite3DbSpanDup(db
, zStart
, zEnd
);
1477 pCol
->pDflt
= sqlite3ExprDup(db
, &x
, EXPRDUP_REDUCE
);
1478 sqlite3DbFree(db
, x
.u
.zToken
);
1481 if( IN_RENAME_OBJECT
){
1482 sqlite3RenameExprUnmap(pParse
, pExpr
);
1484 sqlite3ExprDelete(db
, pExpr
);
1488 ** Backwards Compatibility Hack:
1490 ** Historical versions of SQLite accepted strings as column names in
1491 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example:
1493 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1494 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1496 ** This is goofy. But to preserve backwards compatibility we continue to
1497 ** accept it. This routine does the necessary conversion. It converts
1498 ** the expression given in its argument from a TK_STRING into a TK_ID
1499 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1500 ** If the expression is anything other than TK_STRING, the expression is
1503 static void sqlite3StringToId(Expr
*p
){
1504 if( p
->op
==TK_STRING
){
1506 }else if( p
->op
==TK_COLLATE
&& p
->pLeft
->op
==TK_STRING
){
1507 p
->pLeft
->op
= TK_ID
;
1512 ** Tag the given column as being part of the PRIMARY KEY
1514 static void makeColumnPartOfPrimaryKey(Parse
*pParse
, Column
*pCol
){
1515 pCol
->colFlags
|= COLFLAG_PRIMKEY
;
1516 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1517 if( pCol
->colFlags
& COLFLAG_GENERATED
){
1518 testcase( pCol
->colFlags
& COLFLAG_VIRTUAL
);
1519 testcase( pCol
->colFlags
& COLFLAG_STORED
);
1520 sqlite3ErrorMsg(pParse
,
1521 "generated columns cannot be part of the PRIMARY KEY");
1527 ** Designate the PRIMARY KEY for the table. pList is a list of names
1528 ** of columns that form the primary key. If pList is NULL, then the
1529 ** most recently added column of the table is the primary key.
1531 ** A table can have at most one primary key. If the table already has
1532 ** a primary key (and this is the second primary key) then create an
1535 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1536 ** then we will try to use that column as the rowid. Set the Table.iPKey
1537 ** field of the table under construction to be the index of the
1538 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1539 ** no INTEGER PRIMARY KEY.
1541 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1542 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1544 void sqlite3AddPrimaryKey(
1545 Parse
*pParse
, /* Parsing context */
1546 ExprList
*pList
, /* List of field names to be indexed */
1547 int onError
, /* What to do with a uniqueness conflict */
1548 int autoInc
, /* True if the AUTOINCREMENT keyword is present */
1549 int sortOrder
/* SQLITE_SO_ASC or SQLITE_SO_DESC */
1551 Table
*pTab
= pParse
->pNewTable
;
1555 if( pTab
==0 ) goto primary_key_exit
;
1556 if( pTab
->tabFlags
& TF_HasPrimaryKey
){
1557 sqlite3ErrorMsg(pParse
,
1558 "table \"%s\" has more than one primary key", pTab
->zName
);
1559 goto primary_key_exit
;
1561 pTab
->tabFlags
|= TF_HasPrimaryKey
;
1563 iCol
= pTab
->nCol
- 1;
1564 pCol
= &pTab
->aCol
[iCol
];
1565 makeColumnPartOfPrimaryKey(pParse
, pCol
);
1568 nTerm
= pList
->nExpr
;
1569 for(i
=0; i
<nTerm
; i
++){
1570 Expr
*pCExpr
= sqlite3ExprSkipCollate(pList
->a
[i
].pExpr
);
1571 assert( pCExpr
!=0 );
1572 sqlite3StringToId(pCExpr
);
1573 if( pCExpr
->op
==TK_ID
){
1574 const char *zCName
= pCExpr
->u
.zToken
;
1575 for(iCol
=0; iCol
<pTab
->nCol
; iCol
++){
1576 if( sqlite3StrICmp(zCName
, pTab
->aCol
[iCol
].zName
)==0 ){
1577 pCol
= &pTab
->aCol
[iCol
];
1578 makeColumnPartOfPrimaryKey(pParse
, pCol
);
1587 && sqlite3StrICmp(sqlite3ColumnType(pCol
,""), "INTEGER")==0
1588 && sortOrder
!=SQLITE_SO_DESC
1590 if( IN_RENAME_OBJECT
&& pList
){
1591 Expr
*pCExpr
= sqlite3ExprSkipCollate(pList
->a
[0].pExpr
);
1592 sqlite3RenameTokenRemap(pParse
, &pTab
->iPKey
, pCExpr
);
1595 pTab
->keyConf
= (u8
)onError
;
1596 assert( autoInc
==0 || autoInc
==1 );
1597 pTab
->tabFlags
|= autoInc
*TF_Autoincrement
;
1598 if( pList
) pParse
->iPkSortOrder
= pList
->a
[0].sortFlags
;
1599 (void)sqlite3HasExplicitNulls(pParse
, pList
);
1600 }else if( autoInc
){
1601 #ifndef SQLITE_OMIT_AUTOINCREMENT
1602 sqlite3ErrorMsg(pParse
, "AUTOINCREMENT is only allowed on an "
1603 "INTEGER PRIMARY KEY");
1606 sqlite3CreateIndex(pParse
, 0, 0, 0, pList
, onError
, 0,
1607 0, sortOrder
, 0, SQLITE_IDXTYPE_PRIMARYKEY
);
1612 sqlite3ExprListDelete(pParse
->db
, pList
);
1617 ** Add a new CHECK constraint to the table currently under construction.
1619 void sqlite3AddCheckConstraint(
1620 Parse
*pParse
, /* Parsing context */
1621 Expr
*pCheckExpr
, /* The check expression */
1622 const char *zStart
, /* Opening "(" */
1623 const char *zEnd
/* Closing ")" */
1625 #ifndef SQLITE_OMIT_CHECK
1626 Table
*pTab
= pParse
->pNewTable
;
1627 sqlite3
*db
= pParse
->db
;
1628 if( pTab
&& !IN_DECLARE_VTAB
1629 && !sqlite3BtreeIsReadonly(db
->aDb
[db
->init
.iDb
].pBt
)
1631 pTab
->pCheck
= sqlite3ExprListAppend(pParse
, pTab
->pCheck
, pCheckExpr
);
1632 if( pParse
->constraintName
.n
){
1633 sqlite3ExprListSetName(pParse
, pTab
->pCheck
, &pParse
->constraintName
, 1);
1636 for(zStart
++; sqlite3Isspace(zStart
[0]); zStart
++){}
1637 while( sqlite3Isspace(zEnd
[-1]) ){ zEnd
--; }
1639 t
.n
= (int)(zEnd
- t
.z
);
1640 sqlite3ExprListSetName(pParse
, pTab
->pCheck
, &t
, 1);
1645 sqlite3ExprDelete(pParse
->db
, pCheckExpr
);
1650 ** Set the collation function of the most recently parsed table column
1651 ** to the CollSeq given.
1653 void sqlite3AddCollateType(Parse
*pParse
, Token
*pToken
){
1656 char *zColl
; /* Dequoted name of collation sequence */
1659 if( (p
= pParse
->pNewTable
)==0 || IN_RENAME_OBJECT
) return;
1662 zColl
= sqlite3NameFromToken(db
, pToken
);
1663 if( !zColl
) return;
1665 if( sqlite3LocateCollSeq(pParse
, zColl
) ){
1667 sqlite3DbFree(db
, p
->aCol
[i
].zColl
);
1668 p
->aCol
[i
].zColl
= zColl
;
1670 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1671 ** then an index may have been created on this column before the
1672 ** collation type was added. Correct this if it is the case.
1674 for(pIdx
=p
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
1675 assert( pIdx
->nKeyCol
==1 );
1676 if( pIdx
->aiColumn
[0]==i
){
1677 pIdx
->azColl
[0] = p
->aCol
[i
].zColl
;
1681 sqlite3DbFree(db
, zColl
);
1685 /* Change the most recently parsed column to be a GENERATED ALWAYS AS
1688 void sqlite3AddGenerated(Parse
*pParse
, Expr
*pExpr
, Token
*pType
){
1689 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1690 u8 eType
= COLFLAG_VIRTUAL
;
1691 Table
*pTab
= pParse
->pNewTable
;
1694 /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */
1695 goto generated_done
;
1697 pCol
= &(pTab
->aCol
[pTab
->nCol
-1]);
1698 if( IN_DECLARE_VTAB
){
1699 sqlite3ErrorMsg(pParse
, "virtual tables cannot use computed columns");
1700 goto generated_done
;
1702 if( pCol
->pDflt
) goto generated_error
;
1704 if( pType
->n
==7 && sqlite3StrNICmp("virtual",pType
->z
,7)==0 ){
1706 }else if( pType
->n
==6 && sqlite3StrNICmp("stored",pType
->z
,6)==0 ){
1707 eType
= COLFLAG_STORED
;
1709 goto generated_error
;
1712 if( eType
==COLFLAG_VIRTUAL
) pTab
->nNVCol
--;
1713 pCol
->colFlags
|= eType
;
1714 assert( TF_HasVirtual
==COLFLAG_VIRTUAL
);
1715 assert( TF_HasStored
==COLFLAG_STORED
);
1716 pTab
->tabFlags
|= eType
;
1717 if( pCol
->colFlags
& COLFLAG_PRIMKEY
){
1718 makeColumnPartOfPrimaryKey(pParse
, pCol
); /* For the error message */
1720 pCol
->pDflt
= pExpr
;
1722 goto generated_done
;
1725 sqlite3ErrorMsg(pParse
, "error in generated column \"%s\"",
1728 sqlite3ExprDelete(pParse
->db
, pExpr
);
1730 /* Throw and error for the GENERATED ALWAYS AS clause if the
1731 ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */
1732 sqlite3ErrorMsg(pParse
, "generated columns not supported");
1733 sqlite3ExprDelete(pParse
->db
, pExpr
);
1738 ** Generate code that will increment the schema cookie.
1740 ** The schema cookie is used to determine when the schema for the
1741 ** database changes. After each schema change, the cookie value
1742 ** changes. When a process first reads the schema it records the
1743 ** cookie. Thereafter, whenever it goes to access the database,
1744 ** it checks the cookie to make sure the schema has not changed
1745 ** since it was last read.
1747 ** This plan is not completely bullet-proof. It is possible for
1748 ** the schema to change multiple times and for the cookie to be
1749 ** set back to prior value. But schema changes are infrequent
1750 ** and the probability of hitting the same cookie value is only
1751 ** 1 chance in 2^32. So we're safe enough.
1753 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
1754 ** the schema-version whenever the schema changes.
1756 void sqlite3ChangeCookie(Parse
*pParse
, int iDb
){
1757 sqlite3
*db
= pParse
->db
;
1758 Vdbe
*v
= pParse
->pVdbe
;
1759 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
1760 sqlite3VdbeAddOp3(v
, OP_SetCookie
, iDb
, BTREE_SCHEMA_VERSION
,
1761 (int)(1+(unsigned)db
->aDb
[iDb
].pSchema
->schema_cookie
));
1765 ** Measure the number of characters needed to output the given
1766 ** identifier. The number returned includes any quotes used
1767 ** but does not include the null terminator.
1769 ** The estimate is conservative. It might be larger that what is
1772 static int identLength(const char *z
){
1774 for(n
=0; *z
; n
++, z
++){
1775 if( *z
=='"' ){ n
++; }
1781 ** The first parameter is a pointer to an output buffer. The second
1782 ** parameter is a pointer to an integer that contains the offset at
1783 ** which to write into the output buffer. This function copies the
1784 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1785 ** to the specified offset in the buffer and updates *pIdx to refer
1786 ** to the first byte after the last byte written before returning.
1788 ** If the string zSignedIdent consists entirely of alpha-numeric
1789 ** characters, does not begin with a digit and is not an SQL keyword,
1790 ** then it is copied to the output buffer exactly as it is. Otherwise,
1791 ** it is quoted using double-quotes.
1793 static void identPut(char *z
, int *pIdx
, char *zSignedIdent
){
1794 unsigned char *zIdent
= (unsigned char*)zSignedIdent
;
1795 int i
, j
, needQuote
;
1798 for(j
=0; zIdent
[j
]; j
++){
1799 if( !sqlite3Isalnum(zIdent
[j
]) && zIdent
[j
]!='_' ) break;
1801 needQuote
= sqlite3Isdigit(zIdent
[0])
1802 || sqlite3KeywordCode(zIdent
, j
)!=TK_ID
1806 if( needQuote
) z
[i
++] = '"';
1807 for(j
=0; zIdent
[j
]; j
++){
1809 if( zIdent
[j
]=='"' ) z
[i
++] = '"';
1811 if( needQuote
) z
[i
++] = '"';
1817 ** Generate a CREATE TABLE statement appropriate for the given
1818 ** table. Memory to hold the text of the statement is obtained
1819 ** from sqliteMalloc() and must be freed by the calling function.
1821 static char *createTableStmt(sqlite3
*db
, Table
*p
){
1824 char *zSep
, *zSep2
, *zEnd
;
1827 for(pCol
= p
->aCol
, i
=0; i
<p
->nCol
; i
++, pCol
++){
1828 n
+= identLength(pCol
->zName
) + 5;
1830 n
+= identLength(p
->zName
);
1840 n
+= 35 + 6*p
->nCol
;
1841 zStmt
= sqlite3DbMallocRaw(0, n
);
1843 sqlite3OomFault(db
);
1846 sqlite3_snprintf(n
, zStmt
, "CREATE TABLE ");
1847 k
= sqlite3Strlen30(zStmt
);
1848 identPut(zStmt
, &k
, p
->zName
);
1850 for(pCol
=p
->aCol
, i
=0; i
<p
->nCol
; i
++, pCol
++){
1851 static const char * const azType
[] = {
1852 /* SQLITE_AFF_BLOB */ "",
1853 /* SQLITE_AFF_TEXT */ " TEXT",
1854 /* SQLITE_AFF_NUMERIC */ " NUM",
1855 /* SQLITE_AFF_INTEGER */ " INT",
1856 /* SQLITE_AFF_REAL */ " REAL"
1861 sqlite3_snprintf(n
-k
, &zStmt
[k
], zSep
);
1862 k
+= sqlite3Strlen30(&zStmt
[k
]);
1864 identPut(zStmt
, &k
, pCol
->zName
);
1865 assert( pCol
->affinity
-SQLITE_AFF_BLOB
>= 0 );
1866 assert( pCol
->affinity
-SQLITE_AFF_BLOB
< ArraySize(azType
) );
1867 testcase( pCol
->affinity
==SQLITE_AFF_BLOB
);
1868 testcase( pCol
->affinity
==SQLITE_AFF_TEXT
);
1869 testcase( pCol
->affinity
==SQLITE_AFF_NUMERIC
);
1870 testcase( pCol
->affinity
==SQLITE_AFF_INTEGER
);
1871 testcase( pCol
->affinity
==SQLITE_AFF_REAL
);
1873 zType
= azType
[pCol
->affinity
- SQLITE_AFF_BLOB
];
1874 len
= sqlite3Strlen30(zType
);
1875 assert( pCol
->affinity
==SQLITE_AFF_BLOB
1876 || pCol
->affinity
==sqlite3AffinityType(zType
, 0) );
1877 memcpy(&zStmt
[k
], zType
, len
);
1881 sqlite3_snprintf(n
-k
, &zStmt
[k
], "%s", zEnd
);
1886 ** Resize an Index object to hold N columns total. Return SQLITE_OK
1887 ** on success and SQLITE_NOMEM on an OOM error.
1889 static int resizeIndexObject(sqlite3
*db
, Index
*pIdx
, int N
){
1892 if( pIdx
->nColumn
>=N
) return SQLITE_OK
;
1893 assert( pIdx
->isResized
==0 );
1894 nByte
= (sizeof(char*) + sizeof(LogEst
) + sizeof(i16
) + 1)*N
;
1895 zExtra
= sqlite3DbMallocZero(db
, nByte
);
1896 if( zExtra
==0 ) return SQLITE_NOMEM_BKPT
;
1897 memcpy(zExtra
, pIdx
->azColl
, sizeof(char*)*pIdx
->nColumn
);
1898 pIdx
->azColl
= (const char**)zExtra
;
1899 zExtra
+= sizeof(char*)*N
;
1900 memcpy(zExtra
, pIdx
->aiRowLogEst
, sizeof(LogEst
)*(pIdx
->nKeyCol
+1));
1901 pIdx
->aiRowLogEst
= (LogEst
*)zExtra
;
1902 zExtra
+= sizeof(LogEst
)*N
;
1903 memcpy(zExtra
, pIdx
->aiColumn
, sizeof(i16
)*pIdx
->nColumn
);
1904 pIdx
->aiColumn
= (i16
*)zExtra
;
1905 zExtra
+= sizeof(i16
)*N
;
1906 memcpy(zExtra
, pIdx
->aSortOrder
, pIdx
->nColumn
);
1907 pIdx
->aSortOrder
= (u8
*)zExtra
;
1909 pIdx
->isResized
= 1;
1914 ** Estimate the total row width for a table.
1916 static void estimateTableWidth(Table
*pTab
){
1917 unsigned wTable
= 0;
1918 const Column
*pTabCol
;
1920 for(i
=pTab
->nCol
, pTabCol
=pTab
->aCol
; i
>0; i
--, pTabCol
++){
1921 wTable
+= pTabCol
->szEst
;
1923 if( pTab
->iPKey
<0 ) wTable
++;
1924 pTab
->szTabRow
= sqlite3LogEst(wTable
*4);
1928 ** Estimate the average size of a row for an index.
1930 static void estimateIndexWidth(Index
*pIdx
){
1931 unsigned wIndex
= 0;
1933 const Column
*aCol
= pIdx
->pTable
->aCol
;
1934 for(i
=0; i
<pIdx
->nColumn
; i
++){
1935 i16 x
= pIdx
->aiColumn
[i
];
1936 assert( x
<pIdx
->pTable
->nCol
);
1937 wIndex
+= x
<0 ? 1 : aCol
[pIdx
->aiColumn
[i
]].szEst
;
1939 pIdx
->szIdxRow
= sqlite3LogEst(wIndex
*4);
1942 /* Return true if column number x is any of the first nCol entries of aiCol[].
1943 ** This is used to determine if the column number x appears in any of the
1944 ** first nCol entries of an index.
1946 static int hasColumn(const i16
*aiCol
, int nCol
, int x
){
1947 while( nCol
-- > 0 ){
1948 assert( aiCol
[0]>=0 );
1949 if( x
==*(aiCol
++) ){
1957 ** Return true if any of the first nKey entries of index pIdx exactly
1958 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID
1959 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may
1960 ** or may not be the same index as pPk.
1962 ** The first nKey entries of pIdx are guaranteed to be ordinary columns,
1963 ** not a rowid or expression.
1965 ** This routine differs from hasColumn() in that both the column and the
1966 ** collating sequence must match for this routine, but for hasColumn() only
1967 ** the column name must match.
1969 static int isDupColumn(Index
*pIdx
, int nKey
, Index
*pPk
, int iCol
){
1971 assert( nKey
<=pIdx
->nColumn
);
1972 assert( iCol
<MAX(pPk
->nColumn
,pPk
->nKeyCol
) );
1973 assert( pPk
->idxType
==SQLITE_IDXTYPE_PRIMARYKEY
);
1974 assert( pPk
->pTable
->tabFlags
& TF_WithoutRowid
);
1975 assert( pPk
->pTable
==pIdx
->pTable
);
1976 testcase( pPk
==pIdx
);
1977 j
= pPk
->aiColumn
[iCol
];
1978 assert( j
!=XN_ROWID
&& j
!=XN_EXPR
);
1979 for(i
=0; i
<nKey
; i
++){
1980 assert( pIdx
->aiColumn
[i
]>=0 || j
>=0 );
1981 if( pIdx
->aiColumn
[i
]==j
1982 && sqlite3StrICmp(pIdx
->azColl
[i
], pPk
->azColl
[iCol
])==0
1990 /* Recompute the colNotIdxed field of the Index.
1992 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed
1993 ** columns that are within the first 63 columns of the table. The
1994 ** high-order bit of colNotIdxed is always 1. All unindexed columns
1995 ** of the table have a 1.
1997 ** 2019-10-24: For the purpose of this computation, virtual columns are
1998 ** not considered to be covered by the index, even if they are in the
1999 ** index, because we do not trust the logic in whereIndexExprTrans() to be
2000 ** able to find all instances of a reference to the indexed table column
2001 ** and convert them into references to the index. Hence we always want
2002 ** the actual table at hand in order to recompute the virtual column, if
2005 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask
2006 ** to determine if the index is covering index.
2008 static void recomputeColumnsNotIndexed(Index
*pIdx
){
2011 Table
*pTab
= pIdx
->pTable
;
2012 for(j
=pIdx
->nColumn
-1; j
>=0; j
--){
2013 int x
= pIdx
->aiColumn
[j
];
2014 if( x
>=0 && (pTab
->aCol
[x
].colFlags
& COLFLAG_VIRTUAL
)==0 ){
2015 testcase( x
==BMS
-1 );
2016 testcase( x
==BMS
-2 );
2017 if( x
<BMS
-1 ) m
|= MASKBIT(x
);
2020 pIdx
->colNotIdxed
= ~m
;
2021 assert( (pIdx
->colNotIdxed
>>63)==1 );
2025 ** This routine runs at the end of parsing a CREATE TABLE statement that
2026 ** has a WITHOUT ROWID clause. The job of this routine is to convert both
2027 ** internal schema data structures and the generated VDBE code so that they
2028 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
2031 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
2032 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
2033 ** into BTREE_BLOBKEY.
2034 ** (3) Bypass the creation of the sqlite_schema table entry
2035 ** for the PRIMARY KEY as the primary key index is now
2036 ** identified by the sqlite_schema table entry of the table itself.
2037 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the
2038 ** schema to the rootpage from the main table.
2039 ** (5) Add all table columns to the PRIMARY KEY Index object
2040 ** so that the PRIMARY KEY is a covering index. The surplus
2041 ** columns are part of KeyInfo.nAllField and are not used for
2042 ** sorting or lookup or uniqueness checks.
2043 ** (6) Replace the rowid tail on all automatically generated UNIQUE
2044 ** indices with the PRIMARY KEY columns.
2046 ** For virtual tables, only (1) is performed.
2048 static void convertToWithoutRowidTable(Parse
*pParse
, Table
*pTab
){
2054 sqlite3
*db
= pParse
->db
;
2055 Vdbe
*v
= pParse
->pVdbe
;
2057 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
2059 if( !db
->init
.imposterTable
){
2060 for(i
=0; i
<pTab
->nCol
; i
++){
2061 if( (pTab
->aCol
[i
].colFlags
& COLFLAG_PRIMKEY
)!=0 ){
2062 pTab
->aCol
[i
].notNull
= OE_Abort
;
2065 pTab
->tabFlags
|= TF_HasNotNull
;
2068 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
2069 ** into BTREE_BLOBKEY.
2071 if( pParse
->addrCrTab
){
2073 sqlite3VdbeChangeP3(v
, pParse
->addrCrTab
, BTREE_BLOBKEY
);
2076 /* Locate the PRIMARY KEY index. Or, if this table was originally
2077 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
2079 if( pTab
->iPKey
>=0 ){
2082 sqlite3TokenInit(&ipkToken
, pTab
->aCol
[pTab
->iPKey
].zName
);
2083 pList
= sqlite3ExprListAppend(pParse
, 0,
2084 sqlite3ExprAlloc(db
, TK_ID
, &ipkToken
, 0));
2085 if( pList
==0 ) return;
2086 if( IN_RENAME_OBJECT
){
2087 sqlite3RenameTokenRemap(pParse
, pList
->a
[0].pExpr
, &pTab
->iPKey
);
2089 pList
->a
[0].sortFlags
= pParse
->iPkSortOrder
;
2090 assert( pParse
->pNewTable
==pTab
);
2092 sqlite3CreateIndex(pParse
, 0, 0, 0, pList
, pTab
->keyConf
, 0, 0, 0, 0,
2093 SQLITE_IDXTYPE_PRIMARYKEY
);
2094 if( db
->mallocFailed
|| pParse
->nErr
) return;
2095 pPk
= sqlite3PrimaryKeyIndex(pTab
);
2096 assert( pPk
->nKeyCol
==1 );
2098 pPk
= sqlite3PrimaryKeyIndex(pTab
);
2102 ** Remove all redundant columns from the PRIMARY KEY. For example, change
2103 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later
2104 ** code assumes the PRIMARY KEY contains no repeated columns.
2106 for(i
=j
=1; i
<pPk
->nKeyCol
; i
++){
2107 if( isDupColumn(pPk
, j
, pPk
, i
) ){
2110 testcase( hasColumn(pPk
->aiColumn
, j
, pPk
->aiColumn
[i
]) );
2111 pPk
->azColl
[j
] = pPk
->azColl
[i
];
2112 pPk
->aSortOrder
[j
] = pPk
->aSortOrder
[i
];
2113 pPk
->aiColumn
[j
++] = pPk
->aiColumn
[i
];
2119 pPk
->isCovering
= 1;
2120 if( !db
->init
.imposterTable
) pPk
->uniqNotNull
= 1;
2121 nPk
= pPk
->nColumn
= pPk
->nKeyCol
;
2123 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema
2124 ** table entry. This is only required if currently generating VDBE
2125 ** code for a CREATE TABLE (not when parsing one as part of reading
2126 ** a database schema). */
2127 if( v
&& pPk
->tnum
>0 ){
2128 assert( db
->init
.busy
==0 );
2129 sqlite3VdbeChangeOpcode(v
, (int)pPk
->tnum
, OP_Goto
);
2132 /* The root page of the PRIMARY KEY is the table root page */
2133 pPk
->tnum
= pTab
->tnum
;
2135 /* Update the in-memory representation of all UNIQUE indices by converting
2136 ** the final rowid column into one or more columns of the PRIMARY KEY.
2138 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
2140 if( IsPrimaryKeyIndex(pIdx
) ) continue;
2141 for(i
=n
=0; i
<nPk
; i
++){
2142 if( !isDupColumn(pIdx
, pIdx
->nKeyCol
, pPk
, i
) ){
2143 testcase( hasColumn(pIdx
->aiColumn
, pIdx
->nKeyCol
, pPk
->aiColumn
[i
]) );
2148 /* This index is a superset of the primary key */
2149 pIdx
->nColumn
= pIdx
->nKeyCol
;
2152 if( resizeIndexObject(db
, pIdx
, pIdx
->nKeyCol
+n
) ) return;
2153 for(i
=0, j
=pIdx
->nKeyCol
; i
<nPk
; i
++){
2154 if( !isDupColumn(pIdx
, pIdx
->nKeyCol
, pPk
, i
) ){
2155 testcase( hasColumn(pIdx
->aiColumn
, pIdx
->nKeyCol
, pPk
->aiColumn
[i
]) );
2156 pIdx
->aiColumn
[j
] = pPk
->aiColumn
[i
];
2157 pIdx
->azColl
[j
] = pPk
->azColl
[i
];
2158 if( pPk
->aSortOrder
[i
] ){
2159 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */
2160 pIdx
->bAscKeyBug
= 1;
2165 assert( pIdx
->nColumn
>=pIdx
->nKeyCol
+n
);
2166 assert( pIdx
->nColumn
>=j
);
2169 /* Add all table columns to the PRIMARY KEY index
2172 for(i
=0; i
<pTab
->nCol
; i
++){
2173 if( !hasColumn(pPk
->aiColumn
, nPk
, i
)
2174 && (pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
)==0 ) nExtra
++;
2176 if( resizeIndexObject(db
, pPk
, nPk
+nExtra
) ) return;
2177 for(i
=0, j
=nPk
; i
<pTab
->nCol
; i
++){
2178 if( !hasColumn(pPk
->aiColumn
, j
, i
)
2179 && (pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
)==0
2181 assert( j
<pPk
->nColumn
);
2182 pPk
->aiColumn
[j
] = i
;
2183 pPk
->azColl
[j
] = sqlite3StrBINARY
;
2187 assert( pPk
->nColumn
==j
);
2188 assert( pTab
->nNVCol
<=j
);
2189 recomputeColumnsNotIndexed(pPk
);
2193 #ifndef SQLITE_OMIT_VIRTUALTABLE
2195 ** Return true if pTab is a virtual table and zName is a shadow table name
2196 ** for that virtual table.
2198 int sqlite3IsShadowTableOf(sqlite3
*db
, Table
*pTab
, const char *zName
){
2199 int nName
; /* Length of zName */
2200 Module
*pMod
; /* Module for the virtual table */
2202 if( !IsVirtual(pTab
) ) return 0;
2203 nName
= sqlite3Strlen30(pTab
->zName
);
2204 if( sqlite3_strnicmp(zName
, pTab
->zName
, nName
)!=0 ) return 0;
2205 if( zName
[nName
]!='_' ) return 0;
2206 pMod
= (Module
*)sqlite3HashFind(&db
->aModule
, pTab
->azModuleArg
[0]);
2207 if( pMod
==0 ) return 0;
2208 if( pMod
->pModule
->iVersion
<3 ) return 0;
2209 if( pMod
->pModule
->xShadowName
==0 ) return 0;
2210 return pMod
->pModule
->xShadowName(zName
+nName
+1);
2212 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2214 #ifndef SQLITE_OMIT_VIRTUALTABLE
2216 ** Return true if zName is a shadow table name in the current database
2219 ** zName is temporarily modified while this routine is running, but is
2220 ** restored to its original value prior to this routine returning.
2222 int sqlite3ShadowTableName(sqlite3
*db
, const char *zName
){
2223 char *zTail
; /* Pointer to the last "_" in zName */
2224 Table
*pTab
; /* Table that zName is a shadow of */
2225 zTail
= strrchr(zName
, '_');
2226 if( zTail
==0 ) return 0;
2228 pTab
= sqlite3FindTable(db
, zName
, 0);
2230 if( pTab
==0 ) return 0;
2231 if( !IsVirtual(pTab
) ) return 0;
2232 return sqlite3IsShadowTableOf(db
, pTab
, zName
);
2234 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2239 ** Mark all nodes of an expression as EP_Immutable, indicating that
2240 ** they should not be changed. Expressions attached to a table or
2241 ** index definition are tagged this way to help ensure that we do
2242 ** not pass them into code generator routines by mistake.
2244 static int markImmutableExprStep(Walker
*pWalker
, Expr
*pExpr
){
2245 ExprSetVVAProperty(pExpr
, EP_Immutable
);
2246 return WRC_Continue
;
2248 static void markExprListImmutable(ExprList
*pList
){
2251 memset(&w
, 0, sizeof(w
));
2252 w
.xExprCallback
= markImmutableExprStep
;
2253 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
2254 w
.xSelectCallback2
= 0;
2255 sqlite3WalkExprList(&w
, pList
);
2259 #define markExprListImmutable(X) /* no-op */
2260 #endif /* SQLITE_DEBUG */
2264 ** This routine is called to report the final ")" that terminates
2265 ** a CREATE TABLE statement.
2267 ** The table structure that other action routines have been building
2268 ** is added to the internal hash tables, assuming no errors have
2271 ** An entry for the table is made in the schema table on disk, unless
2272 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
2273 ** it means we are reading the sqlite_schema table because we just
2274 ** connected to the database or because the sqlite_schema table has
2275 ** recently changed, so the entry for this table already exists in
2276 ** the sqlite_schema table. We do not want to create it again.
2278 ** If the pSelect argument is not NULL, it means that this routine
2279 ** was called to create a table generated from a
2280 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
2281 ** the new table will match the result set of the SELECT.
2283 void sqlite3EndTable(
2284 Parse
*pParse
, /* Parse context */
2285 Token
*pCons
, /* The ',' token after the last column defn. */
2286 Token
*pEnd
, /* The ')' before options in the CREATE TABLE */
2287 u8 tabOpts
, /* Extra table options. Usually 0. */
2288 Select
*pSelect
/* Select from a "CREATE ... AS SELECT" */
2290 Table
*p
; /* The new table */
2291 sqlite3
*db
= pParse
->db
; /* The database connection */
2292 int iDb
; /* Database in which the table lives */
2293 Index
*pIdx
; /* An implied index of the table */
2295 if( pEnd
==0 && pSelect
==0 ){
2298 assert( !db
->mallocFailed
);
2299 p
= pParse
->pNewTable
;
2302 if( pSelect
==0 && sqlite3ShadowTableName(db
, p
->zName
) ){
2303 p
->tabFlags
|= TF_Shadow
;
2306 /* If the db->init.busy is 1 it means we are reading the SQL off the
2307 ** "sqlite_schema" or "sqlite_temp_schema" table on the disk.
2308 ** So do not write to the disk again. Extract the root page number
2309 ** for the table from the db->init.newTnum field. (The page number
2310 ** should have been put there by the sqliteOpenCb routine.)
2312 ** If the root page number is 1, that means this is the sqlite_schema
2313 ** table itself. So mark it read-only.
2315 if( db
->init
.busy
){
2317 sqlite3ErrorMsg(pParse
, "");
2320 p
->tnum
= db
->init
.newTnum
;
2321 if( p
->tnum
==1 ) p
->tabFlags
|= TF_Readonly
;
2324 assert( (p
->tabFlags
& TF_HasPrimaryKey
)==0
2325 || p
->iPKey
>=0 || sqlite3PrimaryKeyIndex(p
)!=0 );
2326 assert( (p
->tabFlags
& TF_HasPrimaryKey
)!=0
2327 || (p
->iPKey
<0 && sqlite3PrimaryKeyIndex(p
)==0) );
2329 /* Special processing for WITHOUT ROWID Tables */
2330 if( tabOpts
& TF_WithoutRowid
){
2331 if( (p
->tabFlags
& TF_Autoincrement
) ){
2332 sqlite3ErrorMsg(pParse
,
2333 "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
2336 if( (p
->tabFlags
& TF_HasPrimaryKey
)==0 ){
2337 sqlite3ErrorMsg(pParse
, "PRIMARY KEY missing on table %s", p
->zName
);
2340 p
->tabFlags
|= TF_WithoutRowid
| TF_NoVisibleRowid
;
2341 convertToWithoutRowidTable(pParse
, p
);
2343 iDb
= sqlite3SchemaToIndex(db
, p
->pSchema
);
2345 #ifndef SQLITE_OMIT_CHECK
2346 /* Resolve names in all CHECK constraint expressions.
2349 sqlite3ResolveSelfReference(pParse
, p
, NC_IsCheck
, 0, p
->pCheck
);
2351 /* If errors are seen, delete the CHECK constraints now, else they might
2352 ** actually be used if PRAGMA writable_schema=ON is set. */
2353 sqlite3ExprListDelete(db
, p
->pCheck
);
2356 markExprListImmutable(p
->pCheck
);
2359 #endif /* !defined(SQLITE_OMIT_CHECK) */
2360 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2361 if( p
->tabFlags
& TF_HasGenerated
){
2363 testcase( p
->tabFlags
& TF_HasVirtual
);
2364 testcase( p
->tabFlags
& TF_HasStored
);
2365 for(ii
=0; ii
<p
->nCol
; ii
++){
2366 u32 colFlags
= p
->aCol
[ii
].colFlags
;
2367 if( (colFlags
& COLFLAG_GENERATED
)!=0 ){
2368 Expr
*pX
= p
->aCol
[ii
].pDflt
;
2369 testcase( colFlags
& COLFLAG_VIRTUAL
);
2370 testcase( colFlags
& COLFLAG_STORED
);
2371 if( sqlite3ResolveSelfReference(pParse
, p
, NC_GenCol
, pX
, 0) ){
2372 /* If there are errors in resolving the expression, change the
2373 ** expression to a NULL. This prevents code generators that operate
2374 ** on the expression from inserting extra parts into the expression
2375 ** tree that have been allocated from lookaside memory, which is
2376 ** illegal in a schema and will lead to errors or heap corruption
2377 ** when the database connection closes. */
2378 sqlite3ExprDelete(db
, pX
);
2379 p
->aCol
[ii
].pDflt
= sqlite3ExprAlloc(db
, TK_NULL
, 0, 0);
2386 sqlite3ErrorMsg(pParse
, "must have at least one non-generated column");
2392 /* Estimate the average row size for the table and for all implied indices */
2393 estimateTableWidth(p
);
2394 for(pIdx
=p
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
2395 estimateIndexWidth(pIdx
);
2398 /* If not initializing, then create a record for the new table
2399 ** in the schema table of the database.
2401 ** If this is a TEMPORARY table, write the entry into the auxiliary
2402 ** file instead of into the main database file.
2404 if( !db
->init
.busy
){
2407 char *zType
; /* "view" or "table" */
2408 char *zType2
; /* "VIEW" or "TABLE" */
2409 char *zStmt
; /* Text of the CREATE TABLE or CREATE VIEW statement */
2411 v
= sqlite3GetVdbe(pParse
);
2412 if( NEVER(v
==0) ) return;
2414 sqlite3VdbeAddOp1(v
, OP_Close
, 0);
2417 ** Initialize zType for the new view or table.
2419 if( p
->pSelect
==0 ){
2420 /* A regular table */
2423 #ifndef SQLITE_OMIT_VIEW
2431 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
2432 ** statement to populate the new table. The root-page number for the
2433 ** new table is in register pParse->regRoot.
2435 ** Once the SELECT has been coded by sqlite3Select(), it is in a
2436 ** suitable state to query for the column names and types to be used
2437 ** by the new table.
2439 ** A shared-cache write-lock is not required to write to the new table,
2440 ** as a schema-lock must have already been obtained to create it. Since
2441 ** a schema-lock excludes all other database users, the write-lock would
2445 SelectDest dest
; /* Where the SELECT should store results */
2446 int regYield
; /* Register holding co-routine entry-point */
2447 int addrTop
; /* Top of the co-routine */
2448 int regRec
; /* A record to be insert into the new table */
2449 int regRowid
; /* Rowid of the next row to insert */
2450 int addrInsLoop
; /* Top of the loop for inserting rows */
2451 Table
*pSelTab
; /* A table that describes the SELECT results */
2453 regYield
= ++pParse
->nMem
;
2454 regRec
= ++pParse
->nMem
;
2455 regRowid
= ++pParse
->nMem
;
2456 assert(pParse
->nTab
==1);
2457 sqlite3MayAbort(pParse
);
2458 sqlite3VdbeAddOp3(v
, OP_OpenWrite
, 1, pParse
->regRoot
, iDb
);
2459 sqlite3VdbeChangeP5(v
, OPFLAG_P2ISREG
);
2461 addrTop
= sqlite3VdbeCurrentAddr(v
) + 1;
2462 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regYield
, 0, addrTop
);
2463 if( pParse
->nErr
) return;
2464 pSelTab
= sqlite3ResultSetOfSelect(pParse
, pSelect
, SQLITE_AFF_BLOB
);
2465 if( pSelTab
==0 ) return;
2466 assert( p
->aCol
==0 );
2467 p
->nCol
= p
->nNVCol
= pSelTab
->nCol
;
2468 p
->aCol
= pSelTab
->aCol
;
2471 sqlite3DeleteTable(db
, pSelTab
);
2472 sqlite3SelectDestInit(&dest
, SRT_Coroutine
, regYield
);
2473 sqlite3Select(pParse
, pSelect
, &dest
);
2474 if( pParse
->nErr
) return;
2475 sqlite3VdbeEndCoroutine(v
, regYield
);
2476 sqlite3VdbeJumpHere(v
, addrTop
- 1);
2477 addrInsLoop
= sqlite3VdbeAddOp1(v
, OP_Yield
, dest
.iSDParm
);
2479 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, dest
.iSdst
, dest
.nSdst
, regRec
);
2480 sqlite3TableAffinity(v
, p
, 0);
2481 sqlite3VdbeAddOp2(v
, OP_NewRowid
, 1, regRowid
);
2482 sqlite3VdbeAddOp3(v
, OP_Insert
, 1, regRec
, regRowid
);
2483 sqlite3VdbeGoto(v
, addrInsLoop
);
2484 sqlite3VdbeJumpHere(v
, addrInsLoop
);
2485 sqlite3VdbeAddOp1(v
, OP_Close
, 1);
2488 /* Compute the complete text of the CREATE statement */
2490 zStmt
= createTableStmt(db
, p
);
2492 Token
*pEnd2
= tabOpts
? &pParse
->sLastToken
: pEnd
;
2493 n
= (int)(pEnd2
->z
- pParse
->sNameToken
.z
);
2494 if( pEnd2
->z
[0]!=';' ) n
+= pEnd2
->n
;
2495 zStmt
= sqlite3MPrintf(db
,
2496 "CREATE %s %.*s", zType2
, n
, pParse
->sNameToken
.z
2500 /* A slot for the record has already been allocated in the
2501 ** schema table. We just need to update that slot with all
2502 ** the information we've collected.
2504 sqlite3NestedParse(pParse
,
2505 "UPDATE %Q." DFLT_SCHEMA_TABLE
2506 " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q"
2508 db
->aDb
[iDb
].zDbSName
,
2516 sqlite3DbFree(db
, zStmt
);
2517 sqlite3ChangeCookie(pParse
, iDb
);
2519 #ifndef SQLITE_OMIT_AUTOINCREMENT
2520 /* Check to see if we need to create an sqlite_sequence table for
2521 ** keeping track of autoincrement keys.
2523 if( (p
->tabFlags
& TF_Autoincrement
)!=0 ){
2524 Db
*pDb
= &db
->aDb
[iDb
];
2525 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
2526 if( pDb
->pSchema
->pSeqTab
==0 ){
2527 sqlite3NestedParse(pParse
,
2528 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2535 /* Reparse everything to update our internal data structures */
2536 sqlite3VdbeAddParseSchemaOp(v
, iDb
,
2537 sqlite3MPrintf(db
, "tbl_name='%q' AND type!='trigger'", p
->zName
));
2540 /* Add the table to the in-memory representation of the database.
2542 if( db
->init
.busy
){
2544 Schema
*pSchema
= p
->pSchema
;
2545 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
2546 pOld
= sqlite3HashInsert(&pSchema
->tblHash
, p
->zName
, p
);
2548 assert( p
==pOld
); /* Malloc must have failed inside HashInsert() */
2549 sqlite3OomFault(db
);
2552 pParse
->pNewTable
= 0;
2553 db
->mDbFlags
|= DBFLAG_SchemaChange
;
2555 #ifndef SQLITE_OMIT_ALTERTABLE
2557 const char *zName
= (const char *)pParse
->sNameToken
.z
;
2559 assert( !pSelect
&& pCons
&& pEnd
);
2563 nName
= (int)((const char *)pCons
->z
- zName
);
2564 p
->addColOffset
= 13 + sqlite3Utf8CharLen(zName
, nName
);
2570 #ifndef SQLITE_OMIT_VIEW
2572 ** The parser calls this routine in order to create a new VIEW
2574 void sqlite3CreateView(
2575 Parse
*pParse
, /* The parsing context */
2576 Token
*pBegin
, /* The CREATE token that begins the statement */
2577 Token
*pName1
, /* The token that holds the name of the view */
2578 Token
*pName2
, /* The token that holds the name of the view */
2579 ExprList
*pCNames
, /* Optional list of view column names */
2580 Select
*pSelect
, /* A SELECT statement that will become the new view */
2581 int isTemp
, /* TRUE for a TEMPORARY view */
2582 int noErr
/* Suppress error messages if VIEW already exists */
2591 sqlite3
*db
= pParse
->db
;
2593 if( pParse
->nVar
>0 ){
2594 sqlite3ErrorMsg(pParse
, "parameters are not allowed in views");
2595 goto create_view_fail
;
2597 sqlite3StartTable(pParse
, pName1
, pName2
, isTemp
, 1, 0, noErr
);
2598 p
= pParse
->pNewTable
;
2599 if( p
==0 || pParse
->nErr
) goto create_view_fail
;
2600 sqlite3TwoPartName(pParse
, pName1
, pName2
, &pName
);
2601 iDb
= sqlite3SchemaToIndex(db
, p
->pSchema
);
2602 sqlite3FixInit(&sFix
, pParse
, iDb
, "view", pName
);
2603 if( sqlite3FixSelect(&sFix
, pSelect
) ) goto create_view_fail
;
2605 /* Make a copy of the entire SELECT statement that defines the view.
2606 ** This will force all the Expr.token.z values to be dynamically
2607 ** allocated rather than point to the input string - which means that
2608 ** they will persist after the current sqlite3_exec() call returns.
2610 pSelect
->selFlags
|= SF_View
;
2611 if( IN_RENAME_OBJECT
){
2612 p
->pSelect
= pSelect
;
2615 p
->pSelect
= sqlite3SelectDup(db
, pSelect
, EXPRDUP_REDUCE
);
2617 p
->pCheck
= sqlite3ExprListDup(db
, pCNames
, EXPRDUP_REDUCE
);
2618 if( db
->mallocFailed
) goto create_view_fail
;
2620 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
2623 sEnd
= pParse
->sLastToken
;
2624 assert( sEnd
.z
[0]!=0 || sEnd
.n
==0 );
2625 if( sEnd
.z
[0]!=';' ){
2629 n
= (int)(sEnd
.z
- pBegin
->z
);
2632 while( sqlite3Isspace(z
[n
-1]) ){ n
--; }
2636 /* Use sqlite3EndTable() to add the view to the schema table */
2637 sqlite3EndTable(pParse
, 0, &sEnd
, 0, 0);
2640 sqlite3SelectDelete(db
, pSelect
);
2641 if( IN_RENAME_OBJECT
){
2642 sqlite3RenameExprlistUnmap(pParse
, pCNames
);
2644 sqlite3ExprListDelete(db
, pCNames
);
2647 #endif /* SQLITE_OMIT_VIEW */
2649 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2651 ** The Table structure pTable is really a VIEW. Fill in the names of
2652 ** the columns of the view in the pTable structure. Return the number
2653 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
2655 int sqlite3ViewGetColumnNames(Parse
*pParse
, Table
*pTable
){
2656 Table
*pSelTab
; /* A fake table from which we get the result set */
2657 Select
*pSel
; /* Copy of the SELECT that implements the view */
2658 int nErr
= 0; /* Number of errors encountered */
2659 int n
; /* Temporarily holds the number of cursors assigned */
2660 sqlite3
*db
= pParse
->db
; /* Database connection for malloc errors */
2661 #ifndef SQLITE_OMIT_VIRTUALTABLE
2664 #ifndef SQLITE_OMIT_AUTHORIZATION
2665 sqlite3_xauth xAuth
; /* Saved xAuth pointer */
2670 #ifndef SQLITE_OMIT_VIRTUALTABLE
2672 rc
= sqlite3VtabCallConnect(pParse
, pTable
);
2677 if( IsVirtual(pTable
) ) return 0;
2680 #ifndef SQLITE_OMIT_VIEW
2681 /* A positive nCol means the columns names for this view are
2684 if( pTable
->nCol
>0 ) return 0;
2686 /* A negative nCol is a special marker meaning that we are currently
2687 ** trying to compute the column names. If we enter this routine with
2688 ** a negative nCol, it means two or more views form a loop, like this:
2690 ** CREATE VIEW one AS SELECT * FROM two;
2691 ** CREATE VIEW two AS SELECT * FROM one;
2693 ** Actually, the error above is now caught prior to reaching this point.
2694 ** But the following test is still important as it does come up
2695 ** in the following:
2697 ** CREATE TABLE main.ex1(a);
2698 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2699 ** SELECT * FROM temp.ex1;
2701 if( pTable
->nCol
<0 ){
2702 sqlite3ErrorMsg(pParse
, "view %s is circularly defined", pTable
->zName
);
2705 assert( pTable
->nCol
>=0 );
2707 /* If we get this far, it means we need to compute the table names.
2708 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2709 ** "*" elements in the results set of the view and will assign cursors
2710 ** to the elements of the FROM clause. But we do not want these changes
2711 ** to be permanent. So the computation is done on a copy of the SELECT
2712 ** statement that defines the view.
2714 assert( pTable
->pSelect
);
2715 pSel
= sqlite3SelectDup(db
, pTable
->pSelect
, 0);
2717 u8 eParseMode
= pParse
->eParseMode
;
2718 pParse
->eParseMode
= PARSE_MODE_NORMAL
;
2720 sqlite3SrcListAssignCursors(pParse
, pSel
->pSrc
);
2723 #ifndef SQLITE_OMIT_AUTHORIZATION
2726 pSelTab
= sqlite3ResultSetOfSelect(pParse
, pSel
, SQLITE_AFF_NONE
);
2729 pSelTab
= sqlite3ResultSetOfSelect(pParse
, pSel
, SQLITE_AFF_NONE
);
2735 }else if( pTable
->pCheck
){
2736 /* CREATE VIEW name(arglist) AS ...
2737 ** The names of the columns in the table are taken from
2738 ** arglist which is stored in pTable->pCheck. The pCheck field
2739 ** normally holds CHECK constraints on an ordinary table, but for
2740 ** a VIEW it holds the list of column names.
2742 sqlite3ColumnsFromExprList(pParse
, pTable
->pCheck
,
2743 &pTable
->nCol
, &pTable
->aCol
);
2744 if( db
->mallocFailed
==0
2746 && pTable
->nCol
==pSel
->pEList
->nExpr
2748 sqlite3SelectAddColumnTypeAndCollation(pParse
, pTable
, pSel
,
2752 /* CREATE VIEW name AS... without an argument list. Construct
2753 ** the column names from the SELECT statement that defines the view.
2755 assert( pTable
->aCol
==0 );
2756 pTable
->nCol
= pSelTab
->nCol
;
2757 pTable
->aCol
= pSelTab
->aCol
;
2760 assert( sqlite3SchemaMutexHeld(db
, 0, pTable
->pSchema
) );
2762 pTable
->nNVCol
= pTable
->nCol
;
2763 sqlite3DeleteTable(db
, pSelTab
);
2764 sqlite3SelectDelete(db
, pSel
);
2766 pParse
->eParseMode
= eParseMode
;
2770 pTable
->pSchema
->schemaFlags
|= DB_UnresetViews
;
2771 if( db
->mallocFailed
){
2772 sqlite3DeleteColumnNames(db
, pTable
);
2776 #endif /* SQLITE_OMIT_VIEW */
2779 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2781 #ifndef SQLITE_OMIT_VIEW
2783 ** Clear the column names from every VIEW in database idx.
2785 static void sqliteViewResetAll(sqlite3
*db
, int idx
){
2787 assert( sqlite3SchemaMutexHeld(db
, idx
, 0) );
2788 if( !DbHasProperty(db
, idx
, DB_UnresetViews
) ) return;
2789 for(i
=sqliteHashFirst(&db
->aDb
[idx
].pSchema
->tblHash
); i
;i
=sqliteHashNext(i
)){
2790 Table
*pTab
= sqliteHashData(i
);
2791 if( pTab
->pSelect
){
2792 sqlite3DeleteColumnNames(db
, pTab
);
2797 DbClearProperty(db
, idx
, DB_UnresetViews
);
2800 # define sqliteViewResetAll(A,B)
2801 #endif /* SQLITE_OMIT_VIEW */
2804 ** This function is called by the VDBE to adjust the internal schema
2805 ** used by SQLite when the btree layer moves a table root page. The
2806 ** root-page of a table or index in database iDb has changed from iFrom
2809 ** Ticket #1728: The symbol table might still contain information
2810 ** on tables and/or indices that are the process of being deleted.
2811 ** If you are unlucky, one of those deleted indices or tables might
2812 ** have the same rootpage number as the real table or index that is
2813 ** being moved. So we cannot stop searching after the first match
2814 ** because the first match might be for one of the deleted indices
2815 ** or tables and not the table/index that is actually being moved.
2816 ** We must continue looping until all tables and indices with
2817 ** rootpage==iFrom have been converted to have a rootpage of iTo
2818 ** in order to be certain that we got the right one.
2820 #ifndef SQLITE_OMIT_AUTOVACUUM
2821 void sqlite3RootPageMoved(sqlite3
*db
, int iDb
, Pgno iFrom
, Pgno iTo
){
2826 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
2827 pDb
= &db
->aDb
[iDb
];
2828 pHash
= &pDb
->pSchema
->tblHash
;
2829 for(pElem
=sqliteHashFirst(pHash
); pElem
; pElem
=sqliteHashNext(pElem
)){
2830 Table
*pTab
= sqliteHashData(pElem
);
2831 if( pTab
->tnum
==iFrom
){
2835 pHash
= &pDb
->pSchema
->idxHash
;
2836 for(pElem
=sqliteHashFirst(pHash
); pElem
; pElem
=sqliteHashNext(pElem
)){
2837 Index
*pIdx
= sqliteHashData(pElem
);
2838 if( pIdx
->tnum
==iFrom
){
2846 ** Write code to erase the table with root-page iTable from database iDb.
2847 ** Also write code to modify the sqlite_schema table and internal schema
2848 ** if a root-page of another table is moved by the btree-layer whilst
2849 ** erasing iTable (this can happen with an auto-vacuum database).
2851 static void destroyRootPage(Parse
*pParse
, int iTable
, int iDb
){
2852 Vdbe
*v
= sqlite3GetVdbe(pParse
);
2853 int r1
= sqlite3GetTempReg(pParse
);
2854 if( iTable
<2 ) sqlite3ErrorMsg(pParse
, "corrupt schema");
2855 sqlite3VdbeAddOp3(v
, OP_Destroy
, iTable
, r1
, iDb
);
2856 sqlite3MayAbort(pParse
);
2857 #ifndef SQLITE_OMIT_AUTOVACUUM
2858 /* OP_Destroy stores an in integer r1. If this integer
2859 ** is non-zero, then it is the root page number of a table moved to
2860 ** location iTable. The following code modifies the sqlite_schema table to
2863 ** The "#NNN" in the SQL is a special constant that means whatever value
2864 ** is in register NNN. See grammar rules associated with the TK_REGISTER
2865 ** token for additional information.
2867 sqlite3NestedParse(pParse
,
2868 "UPDATE %Q." DFLT_SCHEMA_TABLE
2869 " SET rootpage=%d WHERE #%d AND rootpage=#%d",
2870 pParse
->db
->aDb
[iDb
].zDbSName
, iTable
, r1
, r1
);
2872 sqlite3ReleaseTempReg(pParse
, r1
);
2876 ** Write VDBE code to erase table pTab and all associated indices on disk.
2877 ** Code to update the sqlite_schema tables and internal schema definitions
2878 ** in case a root-page belonging to another table is moved by the btree layer
2879 ** is also added (this can happen with an auto-vacuum database).
2881 static void destroyTable(Parse
*pParse
, Table
*pTab
){
2882 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
2883 ** is not defined), then it is important to call OP_Destroy on the
2884 ** table and index root-pages in order, starting with the numerically
2885 ** largest root-page number. This guarantees that none of the root-pages
2886 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
2887 ** following were coded:
2893 ** and root page 5 happened to be the largest root-page number in the
2894 ** database, then root page 5 would be moved to page 4 by the
2895 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
2896 ** a free-list page.
2898 Pgno iTab
= pTab
->tnum
;
2899 Pgno iDestroyed
= 0;
2905 if( iDestroyed
==0 || iTab
<iDestroyed
){
2908 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
2909 Pgno iIdx
= pIdx
->tnum
;
2910 assert( pIdx
->pSchema
==pTab
->pSchema
);
2911 if( (iDestroyed
==0 || (iIdx
<iDestroyed
)) && iIdx
>iLargest
){
2918 int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
2919 assert( iDb
>=0 && iDb
<pParse
->db
->nDb
);
2920 destroyRootPage(pParse
, iLargest
, iDb
);
2921 iDestroyed
= iLargest
;
2927 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
2928 ** after a DROP INDEX or DROP TABLE command.
2930 static void sqlite3ClearStatTables(
2931 Parse
*pParse
, /* The parsing context */
2932 int iDb
, /* The database number */
2933 const char *zType
, /* "idx" or "tbl" */
2934 const char *zName
/* Name of index or table */
2937 const char *zDbName
= pParse
->db
->aDb
[iDb
].zDbSName
;
2938 for(i
=1; i
<=4; i
++){
2940 sqlite3_snprintf(sizeof(zTab
),zTab
,"sqlite_stat%d",i
);
2941 if( sqlite3FindTable(pParse
->db
, zTab
, zDbName
) ){
2942 sqlite3NestedParse(pParse
,
2943 "DELETE FROM %Q.%s WHERE %s=%Q",
2944 zDbName
, zTab
, zType
, zName
2951 ** Generate code to drop a table.
2953 void sqlite3CodeDropTable(Parse
*pParse
, Table
*pTab
, int iDb
, int isView
){
2955 sqlite3
*db
= pParse
->db
;
2957 Db
*pDb
= &db
->aDb
[iDb
];
2959 v
= sqlite3GetVdbe(pParse
);
2961 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
2963 #ifndef SQLITE_OMIT_VIRTUALTABLE
2964 if( IsVirtual(pTab
) ){
2965 sqlite3VdbeAddOp0(v
, OP_VBegin
);
2969 /* Drop all triggers associated with the table being dropped. Code
2970 ** is generated to remove entries from sqlite_schema and/or
2971 ** sqlite_temp_schema if required.
2973 pTrigger
= sqlite3TriggerList(pParse
, pTab
);
2975 assert( pTrigger
->pSchema
==pTab
->pSchema
||
2976 pTrigger
->pSchema
==db
->aDb
[1].pSchema
);
2977 sqlite3DropTriggerPtr(pParse
, pTrigger
);
2978 pTrigger
= pTrigger
->pNext
;
2981 #ifndef SQLITE_OMIT_AUTOINCREMENT
2982 /* Remove any entries of the sqlite_sequence table associated with
2983 ** the table being dropped. This is done before the table is dropped
2984 ** at the btree level, in case the sqlite_sequence table needs to
2985 ** move as a result of the drop (can happen in auto-vacuum mode).
2987 if( pTab
->tabFlags
& TF_Autoincrement
){
2988 sqlite3NestedParse(pParse
,
2989 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
2990 pDb
->zDbSName
, pTab
->zName
2995 /* Drop all entries in the schema table that refer to the
2996 ** table. The program name loops through the schema table and deletes
2997 ** every row that refers to a table of the same name as the one being
2998 ** dropped. Triggers are handled separately because a trigger can be
2999 ** created in the temp database that refers to a table in another
3002 sqlite3NestedParse(pParse
,
3003 "DELETE FROM %Q." DFLT_SCHEMA_TABLE
3004 " WHERE tbl_name=%Q and type!='trigger'",
3005 pDb
->zDbSName
, pTab
->zName
);
3006 if( !isView
&& !IsVirtual(pTab
) ){
3007 destroyTable(pParse
, pTab
);
3010 /* Remove the table entry from SQLite's internal schema and modify
3011 ** the schema cookie.
3013 if( IsVirtual(pTab
) ){
3014 sqlite3VdbeAddOp4(v
, OP_VDestroy
, iDb
, 0, 0, pTab
->zName
, 0);
3015 sqlite3MayAbort(pParse
);
3017 sqlite3VdbeAddOp4(v
, OP_DropTable
, iDb
, 0, 0, pTab
->zName
, 0);
3018 sqlite3ChangeCookie(pParse
, iDb
);
3019 sqliteViewResetAll(db
, iDb
);
3023 ** Return TRUE if shadow tables should be read-only in the current
3026 int sqlite3ReadOnlyShadowTables(sqlite3
*db
){
3027 #ifndef SQLITE_OMIT_VIRTUALTABLE
3028 if( (db
->flags
& SQLITE_Defensive
)!=0
3039 ** Return true if it is not allowed to drop the given table
3041 static int tableMayNotBeDropped(sqlite3
*db
, Table
*pTab
){
3042 if( sqlite3StrNICmp(pTab
->zName
, "sqlite_", 7)==0 ){
3043 if( sqlite3StrNICmp(pTab
->zName
+7, "stat", 4)==0 ) return 0;
3044 if( sqlite3StrNICmp(pTab
->zName
+7, "parameters", 10)==0 ) return 0;
3047 if( (pTab
->tabFlags
& TF_Shadow
)!=0 && sqlite3ReadOnlyShadowTables(db
) ){
3054 ** This routine is called to do the work of a DROP TABLE statement.
3055 ** pName is the name of the table to be dropped.
3057 void sqlite3DropTable(Parse
*pParse
, SrcList
*pName
, int isView
, int noErr
){
3060 sqlite3
*db
= pParse
->db
;
3063 if( db
->mallocFailed
){
3064 goto exit_drop_table
;
3066 assert( pParse
->nErr
==0 );
3067 assert( pName
->nSrc
==1 );
3068 if( sqlite3ReadSchema(pParse
) ) goto exit_drop_table
;
3069 if( noErr
) db
->suppressErr
++;
3070 assert( isView
==0 || isView
==LOCATE_VIEW
);
3071 pTab
= sqlite3LocateTableItem(pParse
, isView
, &pName
->a
[0]);
3072 if( noErr
) db
->suppressErr
--;
3075 if( noErr
) sqlite3CodeVerifyNamedSchema(pParse
, pName
->a
[0].zDatabase
);
3076 goto exit_drop_table
;
3078 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
3079 assert( iDb
>=0 && iDb
<db
->nDb
);
3081 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
3082 ** it is initialized.
3084 if( IsVirtual(pTab
) && sqlite3ViewGetColumnNames(pParse
, pTab
) ){
3085 goto exit_drop_table
;
3087 #ifndef SQLITE_OMIT_AUTHORIZATION
3090 const char *zTab
= SCHEMA_TABLE(iDb
);
3091 const char *zDb
= db
->aDb
[iDb
].zDbSName
;
3092 const char *zArg2
= 0;
3093 if( sqlite3AuthCheck(pParse
, SQLITE_DELETE
, zTab
, 0, zDb
)){
3094 goto exit_drop_table
;
3097 if( !OMIT_TEMPDB
&& iDb
==1 ){
3098 code
= SQLITE_DROP_TEMP_VIEW
;
3100 code
= SQLITE_DROP_VIEW
;
3102 #ifndef SQLITE_OMIT_VIRTUALTABLE
3103 }else if( IsVirtual(pTab
) ){
3104 code
= SQLITE_DROP_VTABLE
;
3105 zArg2
= sqlite3GetVTable(db
, pTab
)->pMod
->zName
;
3108 if( !OMIT_TEMPDB
&& iDb
==1 ){
3109 code
= SQLITE_DROP_TEMP_TABLE
;
3111 code
= SQLITE_DROP_TABLE
;
3114 if( sqlite3AuthCheck(pParse
, code
, pTab
->zName
, zArg2
, zDb
) ){
3115 goto exit_drop_table
;
3117 if( sqlite3AuthCheck(pParse
, SQLITE_DELETE
, pTab
->zName
, 0, zDb
) ){
3118 goto exit_drop_table
;
3122 if( tableMayNotBeDropped(db
, pTab
) ){
3123 sqlite3ErrorMsg(pParse
, "table %s may not be dropped", pTab
->zName
);
3124 goto exit_drop_table
;
3127 #ifndef SQLITE_OMIT_VIEW
3128 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
3131 if( isView
&& pTab
->pSelect
==0 ){
3132 sqlite3ErrorMsg(pParse
, "use DROP TABLE to delete table %s", pTab
->zName
);
3133 goto exit_drop_table
;
3135 if( !isView
&& pTab
->pSelect
){
3136 sqlite3ErrorMsg(pParse
, "use DROP VIEW to delete view %s", pTab
->zName
);
3137 goto exit_drop_table
;
3141 /* Generate code to remove the table from the schema table
3144 v
= sqlite3GetVdbe(pParse
);
3146 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
3148 sqlite3ClearStatTables(pParse
, iDb
, "tbl", pTab
->zName
);
3149 sqlite3FkDropTable(pParse
, pName
, pTab
);
3151 sqlite3CodeDropTable(pParse
, pTab
, iDb
, isView
);
3155 sqlite3SrcListDelete(db
, pName
);
3159 ** This routine is called to create a new foreign key on the table
3160 ** currently under construction. pFromCol determines which columns
3161 ** in the current table point to the foreign key. If pFromCol==0 then
3162 ** connect the key to the last column inserted. pTo is the name of
3163 ** the table referred to (a.k.a the "parent" table). pToCol is a list
3164 ** of tables in the parent pTo table. flags contains all
3165 ** information about the conflict resolution algorithms specified
3166 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
3168 ** An FKey structure is created and added to the table currently
3169 ** under construction in the pParse->pNewTable field.
3171 ** The foreign key is set for IMMEDIATE processing. A subsequent call
3172 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
3174 void sqlite3CreateForeignKey(
3175 Parse
*pParse
, /* Parsing context */
3176 ExprList
*pFromCol
, /* Columns in this table that point to other table */
3177 Token
*pTo
, /* Name of the other table */
3178 ExprList
*pToCol
, /* Columns in the other table */
3179 int flags
/* Conflict resolution algorithms. */
3181 sqlite3
*db
= pParse
->db
;
3182 #ifndef SQLITE_OMIT_FOREIGN_KEY
3185 Table
*p
= pParse
->pNewTable
;
3192 if( p
==0 || IN_DECLARE_VTAB
) goto fk_end
;
3194 int iCol
= p
->nCol
-1;
3195 if( NEVER(iCol
<0) ) goto fk_end
;
3196 if( pToCol
&& pToCol
->nExpr
!=1 ){
3197 sqlite3ErrorMsg(pParse
, "foreign key on %s"
3198 " should reference only one column of table %T",
3199 p
->aCol
[iCol
].zName
, pTo
);
3203 }else if( pToCol
&& pToCol
->nExpr
!=pFromCol
->nExpr
){
3204 sqlite3ErrorMsg(pParse
,
3205 "number of columns in foreign key does not match the number of "
3206 "columns in the referenced table");
3209 nCol
= pFromCol
->nExpr
;
3211 nByte
= sizeof(*pFKey
) + (nCol
-1)*sizeof(pFKey
->aCol
[0]) + pTo
->n
+ 1;
3213 for(i
=0; i
<pToCol
->nExpr
; i
++){
3214 nByte
+= sqlite3Strlen30(pToCol
->a
[i
].zEName
) + 1;
3217 pFKey
= sqlite3DbMallocZero(db
, nByte
);
3222 pFKey
->pNextFrom
= p
->pFKey
;
3223 z
= (char*)&pFKey
->aCol
[nCol
];
3225 if( IN_RENAME_OBJECT
){
3226 sqlite3RenameTokenMap(pParse
, (void*)z
, pTo
);
3228 memcpy(z
, pTo
->z
, pTo
->n
);
3234 pFKey
->aCol
[0].iFrom
= p
->nCol
-1;
3236 for(i
=0; i
<nCol
; i
++){
3238 for(j
=0; j
<p
->nCol
; j
++){
3239 if( sqlite3StrICmp(p
->aCol
[j
].zName
, pFromCol
->a
[i
].zEName
)==0 ){
3240 pFKey
->aCol
[i
].iFrom
= j
;
3245 sqlite3ErrorMsg(pParse
,
3246 "unknown column \"%s\" in foreign key definition",
3247 pFromCol
->a
[i
].zEName
);
3250 if( IN_RENAME_OBJECT
){
3251 sqlite3RenameTokenRemap(pParse
, &pFKey
->aCol
[i
], pFromCol
->a
[i
].zEName
);
3256 for(i
=0; i
<nCol
; i
++){
3257 int n
= sqlite3Strlen30(pToCol
->a
[i
].zEName
);
3258 pFKey
->aCol
[i
].zCol
= z
;
3259 if( IN_RENAME_OBJECT
){
3260 sqlite3RenameTokenRemap(pParse
, z
, pToCol
->a
[i
].zEName
);
3262 memcpy(z
, pToCol
->a
[i
].zEName
, n
);
3267 pFKey
->isDeferred
= 0;
3268 pFKey
->aAction
[0] = (u8
)(flags
& 0xff); /* ON DELETE action */
3269 pFKey
->aAction
[1] = (u8
)((flags
>> 8 ) & 0xff); /* ON UPDATE action */
3271 assert( sqlite3SchemaMutexHeld(db
, 0, p
->pSchema
) );
3272 pNextTo
= (FKey
*)sqlite3HashInsert(&p
->pSchema
->fkeyHash
,
3273 pFKey
->zTo
, (void *)pFKey
3275 if( pNextTo
==pFKey
){
3276 sqlite3OomFault(db
);
3280 assert( pNextTo
->pPrevTo
==0 );
3281 pFKey
->pNextTo
= pNextTo
;
3282 pNextTo
->pPrevTo
= pFKey
;
3285 /* Link the foreign key to the table as the last step.
3291 sqlite3DbFree(db
, pFKey
);
3292 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
3293 sqlite3ExprListDelete(db
, pFromCol
);
3294 sqlite3ExprListDelete(db
, pToCol
);
3298 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
3299 ** clause is seen as part of a foreign key definition. The isDeferred
3300 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
3301 ** The behavior of the most recently created foreign key is adjusted
3304 void sqlite3DeferForeignKey(Parse
*pParse
, int isDeferred
){
3305 #ifndef SQLITE_OMIT_FOREIGN_KEY
3308 if( (pTab
= pParse
->pNewTable
)==0 || (pFKey
= pTab
->pFKey
)==0 ) return;
3309 assert( isDeferred
==0 || isDeferred
==1 ); /* EV: R-30323-21917 */
3310 pFKey
->isDeferred
= (u8
)isDeferred
;
3315 ** Generate code that will erase and refill index *pIdx. This is
3316 ** used to initialize a newly created index or to recompute the
3317 ** content of an index in response to a REINDEX command.
3319 ** if memRootPage is not negative, it means that the index is newly
3320 ** created. The register specified by memRootPage contains the
3321 ** root page number of the index. If memRootPage is negative, then
3322 ** the index already exists and must be cleared before being refilled and
3323 ** the root page number of the index is taken from pIndex->tnum.
3325 static void sqlite3RefillIndex(Parse
*pParse
, Index
*pIndex
, int memRootPage
){
3326 Table
*pTab
= pIndex
->pTable
; /* The table that is indexed */
3327 int iTab
= pParse
->nTab
++; /* Btree cursor used for pTab */
3328 int iIdx
= pParse
->nTab
++; /* Btree cursor used for pIndex */
3329 int iSorter
; /* Cursor opened by OpenSorter (if in use) */
3330 int addr1
; /* Address of top of loop */
3331 int addr2
; /* Address to jump to for next iteration */
3332 Pgno tnum
; /* Root page of index */
3333 int iPartIdxLabel
; /* Jump to this label to skip a row */
3334 Vdbe
*v
; /* Generate code into this virtual machine */
3335 KeyInfo
*pKey
; /* KeyInfo for index */
3336 int regRecord
; /* Register holding assembled index record */
3337 sqlite3
*db
= pParse
->db
; /* The database connection */
3338 int iDb
= sqlite3SchemaToIndex(db
, pIndex
->pSchema
);
3340 #ifndef SQLITE_OMIT_AUTHORIZATION
3341 if( sqlite3AuthCheck(pParse
, SQLITE_REINDEX
, pIndex
->zName
, 0,
3342 db
->aDb
[iDb
].zDbSName
) ){
3347 /* Require a write-lock on the table to perform this operation */
3348 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 1, pTab
->zName
);
3350 v
= sqlite3GetVdbe(pParse
);
3352 if( memRootPage
>=0 ){
3353 tnum
= (Pgno
)memRootPage
;
3355 tnum
= pIndex
->tnum
;
3357 pKey
= sqlite3KeyInfoOfIndex(pParse
, pIndex
);
3358 assert( pKey
!=0 || db
->mallocFailed
|| pParse
->nErr
);
3360 /* Open the sorter cursor if we are to use one. */
3361 iSorter
= pParse
->nTab
++;
3362 sqlite3VdbeAddOp4(v
, OP_SorterOpen
, iSorter
, 0, pIndex
->nKeyCol
, (char*)
3363 sqlite3KeyInfoRef(pKey
), P4_KEYINFO
);
3365 /* Open the table. Loop through all rows of the table, inserting index
3366 ** records into the sorter. */
3367 sqlite3OpenTable(pParse
, iTab
, iDb
, pTab
, OP_OpenRead
);
3368 addr1
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iTab
, 0); VdbeCoverage(v
);
3369 regRecord
= sqlite3GetTempReg(pParse
);
3370 sqlite3MultiWrite(pParse
);
3372 sqlite3GenerateIndexKey(pParse
,pIndex
,iTab
,regRecord
,0,&iPartIdxLabel
,0,0);
3373 sqlite3VdbeAddOp2(v
, OP_SorterInsert
, iSorter
, regRecord
);
3374 sqlite3ResolvePartIdxLabel(pParse
, iPartIdxLabel
);
3375 sqlite3VdbeAddOp2(v
, OP_Next
, iTab
, addr1
+1); VdbeCoverage(v
);
3376 sqlite3VdbeJumpHere(v
, addr1
);
3377 if( memRootPage
<0 ) sqlite3VdbeAddOp2(v
, OP_Clear
, tnum
, iDb
);
3378 sqlite3VdbeAddOp4(v
, OP_OpenWrite
, iIdx
, (int)tnum
, iDb
,
3379 (char *)pKey
, P4_KEYINFO
);
3380 sqlite3VdbeChangeP5(v
, OPFLAG_BULKCSR
|((memRootPage
>=0)?OPFLAG_P2ISREG
:0));
3382 addr1
= sqlite3VdbeAddOp2(v
, OP_SorterSort
, iSorter
, 0); VdbeCoverage(v
);
3383 if( IsUniqueIndex(pIndex
) ){
3384 int j2
= sqlite3VdbeGoto(v
, 1);
3385 addr2
= sqlite3VdbeCurrentAddr(v
);
3386 sqlite3VdbeVerifyAbortable(v
, OE_Abort
);
3387 sqlite3VdbeAddOp4Int(v
, OP_SorterCompare
, iSorter
, j2
, regRecord
,
3388 pIndex
->nKeyCol
); VdbeCoverage(v
);
3389 sqlite3UniqueConstraint(pParse
, OE_Abort
, pIndex
);
3390 sqlite3VdbeJumpHere(v
, j2
);
3392 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not
3393 ** abort. The exception is if one of the indexed expressions contains a
3394 ** user function that throws an exception when it is evaluated. But the
3395 ** overhead of adding a statement journal to a CREATE INDEX statement is
3396 ** very small (since most of the pages written do not contain content that
3397 ** needs to be restored if the statement aborts), so we call
3398 ** sqlite3MayAbort() for all CREATE INDEX statements. */
3399 sqlite3MayAbort(pParse
);
3400 addr2
= sqlite3VdbeCurrentAddr(v
);
3402 sqlite3VdbeAddOp3(v
, OP_SorterData
, iSorter
, regRecord
, iIdx
);
3403 if( !pIndex
->bAscKeyBug
){
3404 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much
3405 ** faster by avoiding unnecessary seeks. But the optimization does
3406 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables
3407 ** with DESC primary keys, since those indexes have there keys in
3408 ** a different order from the main table.
3409 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf
3411 sqlite3VdbeAddOp1(v
, OP_SeekEnd
, iIdx
);
3413 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iIdx
, regRecord
);
3414 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
3415 sqlite3ReleaseTempReg(pParse
, regRecord
);
3416 sqlite3VdbeAddOp2(v
, OP_SorterNext
, iSorter
, addr2
); VdbeCoverage(v
);
3417 sqlite3VdbeJumpHere(v
, addr1
);
3419 sqlite3VdbeAddOp1(v
, OP_Close
, iTab
);
3420 sqlite3VdbeAddOp1(v
, OP_Close
, iIdx
);
3421 sqlite3VdbeAddOp1(v
, OP_Close
, iSorter
);
3425 ** Allocate heap space to hold an Index object with nCol columns.
3427 ** Increase the allocation size to provide an extra nExtra bytes
3428 ** of 8-byte aligned space after the Index object and return a
3429 ** pointer to this extra space in *ppExtra.
3431 Index
*sqlite3AllocateIndexObject(
3432 sqlite3
*db
, /* Database connection */
3433 i16 nCol
, /* Total number of columns in the index */
3434 int nExtra
, /* Number of bytes of extra space to alloc */
3435 char **ppExtra
/* Pointer to the "extra" space */
3437 Index
*p
; /* Allocated index object */
3438 int nByte
; /* Bytes of space for Index object + arrays */
3440 nByte
= ROUND8(sizeof(Index
)) + /* Index structure */
3441 ROUND8(sizeof(char*)*nCol
) + /* Index.azColl */
3442 ROUND8(sizeof(LogEst
)*(nCol
+1) + /* Index.aiRowLogEst */
3443 sizeof(i16
)*nCol
+ /* Index.aiColumn */
3444 sizeof(u8
)*nCol
); /* Index.aSortOrder */
3445 p
= sqlite3DbMallocZero(db
, nByte
+ nExtra
);
3447 char *pExtra
= ((char*)p
)+ROUND8(sizeof(Index
));
3448 p
->azColl
= (const char**)pExtra
; pExtra
+= ROUND8(sizeof(char*)*nCol
);
3449 p
->aiRowLogEst
= (LogEst
*)pExtra
; pExtra
+= sizeof(LogEst
)*(nCol
+1);
3450 p
->aiColumn
= (i16
*)pExtra
; pExtra
+= sizeof(i16
)*nCol
;
3451 p
->aSortOrder
= (u8
*)pExtra
;
3453 p
->nKeyCol
= nCol
- 1;
3454 *ppExtra
= ((char*)p
) + nByte
;
3460 ** If expression list pList contains an expression that was parsed with
3461 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in
3462 ** pParse and return non-zero. Otherwise, return zero.
3464 int sqlite3HasExplicitNulls(Parse
*pParse
, ExprList
*pList
){
3467 for(i
=0; i
<pList
->nExpr
; i
++){
3468 if( pList
->a
[i
].bNulls
){
3469 u8 sf
= pList
->a
[i
].sortFlags
;
3470 sqlite3ErrorMsg(pParse
, "unsupported use of NULLS %s",
3471 (sf
==0 || sf
==3) ? "FIRST" : "LAST"
3481 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
3482 ** and pTblList is the name of the table that is to be indexed. Both will
3483 ** be NULL for a primary key or an index that is created to satisfy a
3484 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
3485 ** as the table to be indexed. pParse->pNewTable is a table that is
3486 ** currently being constructed by a CREATE TABLE statement.
3488 ** pList is a list of columns to be indexed. pList will be NULL if this
3489 ** is a primary key or unique-constraint on the most recent column added
3490 ** to the table currently under construction.
3492 void sqlite3CreateIndex(
3493 Parse
*pParse
, /* All information about this parse */
3494 Token
*pName1
, /* First part of index name. May be NULL */
3495 Token
*pName2
, /* Second part of index name. May be NULL */
3496 SrcList
*pTblName
, /* Table to index. Use pParse->pNewTable if 0 */
3497 ExprList
*pList
, /* A list of columns to be indexed */
3498 int onError
, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
3499 Token
*pStart
, /* The CREATE token that begins this statement */
3500 Expr
*pPIWhere
, /* WHERE clause for partial indices */
3501 int sortOrder
, /* Sort order of primary key when pList==NULL */
3502 int ifNotExist
, /* Omit error if index already exists */
3503 u8 idxType
/* The index type */
3505 Table
*pTab
= 0; /* Table to be indexed */
3506 Index
*pIndex
= 0; /* The index to be created */
3507 char *zName
= 0; /* Name of the index */
3508 int nName
; /* Number of characters in zName */
3510 DbFixer sFix
; /* For assigning database names to pTable */
3511 int sortOrderMask
; /* 1 to honor DESC in index. 0 to ignore. */
3512 sqlite3
*db
= pParse
->db
;
3513 Db
*pDb
; /* The specific table containing the indexed database */
3514 int iDb
; /* Index of the database that is being written */
3515 Token
*pName
= 0; /* Unqualified name of the index to create */
3516 struct ExprList_item
*pListItem
; /* For looping over pList */
3517 int nExtra
= 0; /* Space allocated for zExtra[] */
3518 int nExtraCol
; /* Number of extra columns needed */
3519 char *zExtra
= 0; /* Extra space after the Index object */
3520 Index
*pPk
= 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
3522 if( db
->mallocFailed
|| pParse
->nErr
>0 ){
3523 goto exit_create_index
;
3525 if( IN_DECLARE_VTAB
&& idxType
!=SQLITE_IDXTYPE_PRIMARYKEY
){
3526 goto exit_create_index
;
3528 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
3529 goto exit_create_index
;
3531 if( sqlite3HasExplicitNulls(pParse
, pList
) ){
3532 goto exit_create_index
;
3536 ** Find the table that is to be indexed. Return early if not found.
3540 /* Use the two-part index name to determine the database
3541 ** to search for the table. 'Fix' the table name to this db
3542 ** before looking up the table.
3544 assert( pName1
&& pName2
);
3545 iDb
= sqlite3TwoPartName(pParse
, pName1
, pName2
, &pName
);
3546 if( iDb
<0 ) goto exit_create_index
;
3547 assert( pName
&& pName
->z
);
3549 #ifndef SQLITE_OMIT_TEMPDB
3550 /* If the index name was unqualified, check if the table
3551 ** is a temp table. If so, set the database to 1. Do not do this
3552 ** if initialising a database schema.
3554 if( !db
->init
.busy
){
3555 pTab
= sqlite3SrcListLookup(pParse
, pTblName
);
3556 if( pName2
->n
==0 && pTab
&& pTab
->pSchema
==db
->aDb
[1].pSchema
){
3562 sqlite3FixInit(&sFix
, pParse
, iDb
, "index", pName
);
3563 if( sqlite3FixSrcList(&sFix
, pTblName
) ){
3564 /* Because the parser constructs pTblName from a single identifier,
3565 ** sqlite3FixSrcList can never fail. */
3568 pTab
= sqlite3LocateTableItem(pParse
, 0, &pTblName
->a
[0]);
3569 assert( db
->mallocFailed
==0 || pTab
==0 );
3570 if( pTab
==0 ) goto exit_create_index
;
3571 if( iDb
==1 && db
->aDb
[iDb
].pSchema
!=pTab
->pSchema
){
3572 sqlite3ErrorMsg(pParse
,
3573 "cannot create a TEMP index on non-TEMP table \"%s\"",
3575 goto exit_create_index
;
3577 if( !HasRowid(pTab
) ) pPk
= sqlite3PrimaryKeyIndex(pTab
);
3580 assert( pStart
==0 );
3581 pTab
= pParse
->pNewTable
;
3582 if( !pTab
) goto exit_create_index
;
3583 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
3585 pDb
= &db
->aDb
[iDb
];
3588 assert( pParse
->nErr
==0 );
3589 if( sqlite3StrNICmp(pTab
->zName
, "sqlite_", 7)==0
3592 #if SQLITE_USER_AUTHENTICATION
3593 && sqlite3UserAuthTable(pTab
->zName
)==0
3596 sqlite3ErrorMsg(pParse
, "table %s may not be indexed", pTab
->zName
);
3597 goto exit_create_index
;
3599 #ifndef SQLITE_OMIT_VIEW
3600 if( pTab
->pSelect
){
3601 sqlite3ErrorMsg(pParse
, "views may not be indexed");
3602 goto exit_create_index
;
3605 #ifndef SQLITE_OMIT_VIRTUALTABLE
3606 if( IsVirtual(pTab
) ){
3607 sqlite3ErrorMsg(pParse
, "virtual tables may not be indexed");
3608 goto exit_create_index
;
3613 ** Find the name of the index. Make sure there is not already another
3614 ** index or table with the same name.
3616 ** Exception: If we are reading the names of permanent indices from the
3617 ** sqlite_schema table (because some other process changed the schema) and
3618 ** one of the index names collides with the name of a temporary table or
3619 ** index, then we will continue to process this index.
3621 ** If pName==0 it means that we are
3622 ** dealing with a primary key or UNIQUE constraint. We have to invent our
3626 zName
= sqlite3NameFromToken(db
, pName
);
3627 if( zName
==0 ) goto exit_create_index
;
3628 assert( pName
->z
!=0 );
3629 if( SQLITE_OK
!=sqlite3CheckObjectName(pParse
, zName
,"index",pTab
->zName
) ){
3630 goto exit_create_index
;
3632 if( !IN_RENAME_OBJECT
){
3633 if( !db
->init
.busy
){
3634 if( sqlite3FindTable(db
, zName
, 0)!=0 ){
3635 sqlite3ErrorMsg(pParse
, "there is already a table named %s", zName
);
3636 goto exit_create_index
;
3639 if( sqlite3FindIndex(db
, zName
, pDb
->zDbSName
)!=0 ){
3641 sqlite3ErrorMsg(pParse
, "index %s already exists", zName
);
3643 assert( !db
->init
.busy
);
3644 sqlite3CodeVerifySchema(pParse
, iDb
);
3646 goto exit_create_index
;
3652 for(pLoop
=pTab
->pIndex
, n
=1; pLoop
; pLoop
=pLoop
->pNext
, n
++){}
3653 zName
= sqlite3MPrintf(db
, "sqlite_autoindex_%s_%d", pTab
->zName
, n
);
3655 goto exit_create_index
;
3658 /* Automatic index names generated from within sqlite3_declare_vtab()
3659 ** must have names that are distinct from normal automatic index names.
3660 ** The following statement converts "sqlite3_autoindex..." into
3661 ** "sqlite3_butoindex..." in order to make the names distinct.
3662 ** The "vtab_err.test" test demonstrates the need of this statement. */
3663 if( IN_SPECIAL_PARSE
) zName
[7]++;
3666 /* Check for authorization to create an index.
3668 #ifndef SQLITE_OMIT_AUTHORIZATION
3669 if( !IN_RENAME_OBJECT
){
3670 const char *zDb
= pDb
->zDbSName
;
3671 if( sqlite3AuthCheck(pParse
, SQLITE_INSERT
, SCHEMA_TABLE(iDb
), 0, zDb
) ){
3672 goto exit_create_index
;
3674 i
= SQLITE_CREATE_INDEX
;
3675 if( !OMIT_TEMPDB
&& iDb
==1 ) i
= SQLITE_CREATE_TEMP_INDEX
;
3676 if( sqlite3AuthCheck(pParse
, i
, zName
, pTab
->zName
, zDb
) ){
3677 goto exit_create_index
;
3682 /* If pList==0, it means this routine was called to make a primary
3683 ** key out of the last column added to the table under construction.
3684 ** So create a fake list to simulate this.
3688 Column
*pCol
= &pTab
->aCol
[pTab
->nCol
-1];
3689 pCol
->colFlags
|= COLFLAG_UNIQUE
;
3690 sqlite3TokenInit(&prevCol
, pCol
->zName
);
3691 pList
= sqlite3ExprListAppend(pParse
, 0,
3692 sqlite3ExprAlloc(db
, TK_ID
, &prevCol
, 0));
3693 if( pList
==0 ) goto exit_create_index
;
3694 assert( pList
->nExpr
==1 );
3695 sqlite3ExprListSetSortOrder(pList
, sortOrder
, SQLITE_SO_UNDEFINED
);
3697 sqlite3ExprListCheckLength(pParse
, pList
, "index");
3698 if( pParse
->nErr
) goto exit_create_index
;
3701 /* Figure out how many bytes of space are required to store explicitly
3702 ** specified collation sequence names.
3704 for(i
=0; i
<pList
->nExpr
; i
++){
3705 Expr
*pExpr
= pList
->a
[i
].pExpr
;
3707 if( pExpr
->op
==TK_COLLATE
){
3708 nExtra
+= (1 + sqlite3Strlen30(pExpr
->u
.zToken
));
3713 ** Allocate the index structure.
3715 nName
= sqlite3Strlen30(zName
);
3716 nExtraCol
= pPk
? pPk
->nKeyCol
: 1;
3717 assert( pList
->nExpr
+ nExtraCol
<= 32767 /* Fits in i16 */ );
3718 pIndex
= sqlite3AllocateIndexObject(db
, pList
->nExpr
+ nExtraCol
,
3719 nName
+ nExtra
+ 1, &zExtra
);
3720 if( db
->mallocFailed
){
3721 goto exit_create_index
;
3723 assert( EIGHT_BYTE_ALIGNMENT(pIndex
->aiRowLogEst
) );
3724 assert( EIGHT_BYTE_ALIGNMENT(pIndex
->azColl
) );
3725 pIndex
->zName
= zExtra
;
3726 zExtra
+= nName
+ 1;
3727 memcpy(pIndex
->zName
, zName
, nName
+1);
3728 pIndex
->pTable
= pTab
;
3729 pIndex
->onError
= (u8
)onError
;
3730 pIndex
->uniqNotNull
= onError
!=OE_None
;
3731 pIndex
->idxType
= idxType
;
3732 pIndex
->pSchema
= db
->aDb
[iDb
].pSchema
;
3733 pIndex
->nKeyCol
= pList
->nExpr
;
3735 sqlite3ResolveSelfReference(pParse
, pTab
, NC_PartIdx
, pPIWhere
, 0);
3736 pIndex
->pPartIdxWhere
= pPIWhere
;
3739 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
3741 /* Check to see if we should honor DESC requests on index columns
3743 if( pDb
->pSchema
->file_format
>=4 ){
3744 sortOrderMask
= -1; /* Honor DESC */
3746 sortOrderMask
= 0; /* Ignore DESC */
3749 /* Analyze the list of expressions that form the terms of the index and
3750 ** report any errors. In the common case where the expression is exactly
3751 ** a table column, store that column in aiColumn[]. For general expressions,
3752 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3754 ** TODO: Issue a warning if two or more columns of the index are identical.
3755 ** TODO: Issue a warning if the table primary key is used as part of the
3758 pListItem
= pList
->a
;
3759 if( IN_RENAME_OBJECT
){
3760 pIndex
->aColExpr
= pList
;
3763 for(i
=0; i
<pIndex
->nKeyCol
; i
++, pListItem
++){
3764 Expr
*pCExpr
; /* The i-th index expression */
3765 int requestedSortOrder
; /* ASC or DESC on the i-th expression */
3766 const char *zColl
; /* Collation sequence name */
3768 sqlite3StringToId(pListItem
->pExpr
);
3769 sqlite3ResolveSelfReference(pParse
, pTab
, NC_IdxExpr
, pListItem
->pExpr
, 0);
3770 if( pParse
->nErr
) goto exit_create_index
;
3771 pCExpr
= sqlite3ExprSkipCollate(pListItem
->pExpr
);
3772 if( pCExpr
->op
!=TK_COLUMN
){
3773 if( pTab
==pParse
->pNewTable
){
3774 sqlite3ErrorMsg(pParse
, "expressions prohibited in PRIMARY KEY and "
3775 "UNIQUE constraints");
3776 goto exit_create_index
;
3778 if( pIndex
->aColExpr
==0 ){
3779 pIndex
->aColExpr
= pList
;
3783 pIndex
->aiColumn
[i
] = XN_EXPR
;
3784 pIndex
->uniqNotNull
= 0;
3786 j
= pCExpr
->iColumn
;
3787 assert( j
<=0x7fff );
3791 if( pTab
->aCol
[j
].notNull
==0 ){
3792 pIndex
->uniqNotNull
= 0;
3794 if( pTab
->aCol
[j
].colFlags
& COLFLAG_VIRTUAL
){
3795 pIndex
->bHasVCol
= 1;
3798 pIndex
->aiColumn
[i
] = (i16
)j
;
3801 if( pListItem
->pExpr
->op
==TK_COLLATE
){
3803 zColl
= pListItem
->pExpr
->u
.zToken
;
3804 nColl
= sqlite3Strlen30(zColl
) + 1;
3805 assert( nExtra
>=nColl
);
3806 memcpy(zExtra
, zColl
, nColl
);
3811 zColl
= pTab
->aCol
[j
].zColl
;
3813 if( !zColl
) zColl
= sqlite3StrBINARY
;
3814 if( !db
->init
.busy
&& !sqlite3LocateCollSeq(pParse
, zColl
) ){
3815 goto exit_create_index
;
3817 pIndex
->azColl
[i
] = zColl
;
3818 requestedSortOrder
= pListItem
->sortFlags
& sortOrderMask
;
3819 pIndex
->aSortOrder
[i
] = (u8
)requestedSortOrder
;
3822 /* Append the table key to the end of the index. For WITHOUT ROWID
3823 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For
3824 ** normal tables (when pPk==0) this will be the rowid.
3827 for(j
=0; j
<pPk
->nKeyCol
; j
++){
3828 int x
= pPk
->aiColumn
[j
];
3830 if( isDupColumn(pIndex
, pIndex
->nKeyCol
, pPk
, j
) ){
3833 testcase( hasColumn(pIndex
->aiColumn
,pIndex
->nKeyCol
,x
) );
3834 pIndex
->aiColumn
[i
] = x
;
3835 pIndex
->azColl
[i
] = pPk
->azColl
[j
];
3836 pIndex
->aSortOrder
[i
] = pPk
->aSortOrder
[j
];
3840 assert( i
==pIndex
->nColumn
);
3842 pIndex
->aiColumn
[i
] = XN_ROWID
;
3843 pIndex
->azColl
[i
] = sqlite3StrBINARY
;
3845 sqlite3DefaultRowEst(pIndex
);
3846 if( pParse
->pNewTable
==0 ) estimateIndexWidth(pIndex
);
3848 /* If this index contains every column of its table, then mark
3849 ** it as a covering index */
3850 assert( HasRowid(pTab
)
3851 || pTab
->iPKey
<0 || sqlite3TableColumnToIndex(pIndex
, pTab
->iPKey
)>=0 );
3852 recomputeColumnsNotIndexed(pIndex
);
3853 if( pTblName
!=0 && pIndex
->nColumn
>=pTab
->nCol
){
3854 pIndex
->isCovering
= 1;
3855 for(j
=0; j
<pTab
->nCol
; j
++){
3856 if( j
==pTab
->iPKey
) continue;
3857 if( sqlite3TableColumnToIndex(pIndex
,j
)>=0 ) continue;
3858 pIndex
->isCovering
= 0;
3863 if( pTab
==pParse
->pNewTable
){
3864 /* This routine has been called to create an automatic index as a
3865 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
3866 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
3869 ** CREATE TABLE t(x PRIMARY KEY, y);
3870 ** CREATE TABLE t(x, y, UNIQUE(x, y));
3872 ** Either way, check to see if the table already has such an index. If
3873 ** so, don't bother creating this one. This only applies to
3874 ** automatically created indices. Users can do as they wish with
3875 ** explicit indices.
3877 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
3878 ** (and thus suppressing the second one) even if they have different
3881 ** If there are different collating sequences or if the columns of
3882 ** the constraint occur in different orders, then the constraints are
3883 ** considered distinct and both result in separate indices.
3886 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
3888 assert( IsUniqueIndex(pIdx
) );
3889 assert( pIdx
->idxType
!=SQLITE_IDXTYPE_APPDEF
);
3890 assert( IsUniqueIndex(pIndex
) );
3892 if( pIdx
->nKeyCol
!=pIndex
->nKeyCol
) continue;
3893 for(k
=0; k
<pIdx
->nKeyCol
; k
++){
3896 assert( pIdx
->aiColumn
[k
]>=0 );
3897 if( pIdx
->aiColumn
[k
]!=pIndex
->aiColumn
[k
] ) break;
3898 z1
= pIdx
->azColl
[k
];
3899 z2
= pIndex
->azColl
[k
];
3900 if( sqlite3StrICmp(z1
, z2
) ) break;
3902 if( k
==pIdx
->nKeyCol
){
3903 if( pIdx
->onError
!=pIndex
->onError
){
3904 /* This constraint creates the same index as a previous
3905 ** constraint specified somewhere in the CREATE TABLE statement.
3906 ** However the ON CONFLICT clauses are different. If both this
3907 ** constraint and the previous equivalent constraint have explicit
3908 ** ON CONFLICT clauses this is an error. Otherwise, use the
3909 ** explicitly specified behavior for the index.
3911 if( !(pIdx
->onError
==OE_Default
|| pIndex
->onError
==OE_Default
) ){
3912 sqlite3ErrorMsg(pParse
,
3913 "conflicting ON CONFLICT clauses specified", 0);
3915 if( pIdx
->onError
==OE_Default
){
3916 pIdx
->onError
= pIndex
->onError
;
3919 if( idxType
==SQLITE_IDXTYPE_PRIMARYKEY
) pIdx
->idxType
= idxType
;
3920 if( IN_RENAME_OBJECT
){
3921 pIndex
->pNext
= pParse
->pNewIndex
;
3922 pParse
->pNewIndex
= pIndex
;
3925 goto exit_create_index
;
3930 if( !IN_RENAME_OBJECT
){
3932 /* Link the new Index structure to its table and to the other
3933 ** in-memory database structures.
3935 assert( pParse
->nErr
==0 );
3936 if( db
->init
.busy
){
3938 assert( !IN_SPECIAL_PARSE
);
3939 assert( sqlite3SchemaMutexHeld(db
, 0, pIndex
->pSchema
) );
3941 pIndex
->tnum
= db
->init
.newTnum
;
3942 if( sqlite3IndexHasDuplicateRootPage(pIndex
) ){
3943 sqlite3ErrorMsg(pParse
, "invalid rootpage");
3944 pParse
->rc
= SQLITE_CORRUPT_BKPT
;
3945 goto exit_create_index
;
3948 p
= sqlite3HashInsert(&pIndex
->pSchema
->idxHash
,
3949 pIndex
->zName
, pIndex
);
3951 assert( p
==pIndex
); /* Malloc must have failed */
3952 sqlite3OomFault(db
);
3953 goto exit_create_index
;
3955 db
->mDbFlags
|= DBFLAG_SchemaChange
;
3958 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
3959 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
3960 ** emit code to allocate the index rootpage on disk and make an entry for
3961 ** the index in the sqlite_schema table and populate the index with
3962 ** content. But, do not do this if we are simply reading the sqlite_schema
3963 ** table to parse the schema, or if this index is the PRIMARY KEY index
3964 ** of a WITHOUT ROWID table.
3966 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
3967 ** or UNIQUE index in a CREATE TABLE statement. Since the table
3968 ** has just been created, it contains no data and the index initialization
3969 ** step can be skipped.
3971 else if( HasRowid(pTab
) || pTblName
!=0 ){
3974 int iMem
= ++pParse
->nMem
;
3976 v
= sqlite3GetVdbe(pParse
);
3977 if( v
==0 ) goto exit_create_index
;
3979 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
3981 /* Create the rootpage for the index using CreateIndex. But before
3982 ** doing so, code a Noop instruction and store its address in
3983 ** Index.tnum. This is required in case this index is actually a
3984 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
3985 ** that case the convertToWithoutRowidTable() routine will replace
3986 ** the Noop with a Goto to jump over the VDBE code generated below. */
3987 pIndex
->tnum
= (Pgno
)sqlite3VdbeAddOp0(v
, OP_Noop
);
3988 sqlite3VdbeAddOp3(v
, OP_CreateBtree
, iDb
, iMem
, BTREE_BLOBKEY
);
3990 /* Gather the complete text of the CREATE INDEX statement into
3991 ** the zStmt variable
3993 assert( pName
!=0 || pStart
==0 );
3995 int n
= (int)(pParse
->sLastToken
.z
- pName
->z
) + pParse
->sLastToken
.n
;
3996 if( pName
->z
[n
-1]==';' ) n
--;
3997 /* A named index with an explicit CREATE INDEX statement */
3998 zStmt
= sqlite3MPrintf(db
, "CREATE%s INDEX %.*s",
3999 onError
==OE_None
? "" : " UNIQUE", n
, pName
->z
);
4001 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
4002 /* zStmt = sqlite3MPrintf(""); */
4006 /* Add an entry in sqlite_schema for this index
4008 sqlite3NestedParse(pParse
,
4009 "INSERT INTO %Q." DFLT_SCHEMA_TABLE
" VALUES('index',%Q,%Q,#%d,%Q);",
4010 db
->aDb
[iDb
].zDbSName
,
4016 sqlite3DbFree(db
, zStmt
);
4018 /* Fill the index with data and reparse the schema. Code an OP_Expire
4019 ** to invalidate all pre-compiled statements.
4022 sqlite3RefillIndex(pParse
, pIndex
, iMem
);
4023 sqlite3ChangeCookie(pParse
, iDb
);
4024 sqlite3VdbeAddParseSchemaOp(v
, iDb
,
4025 sqlite3MPrintf(db
, "name='%q' AND type='index'", pIndex
->zName
));
4026 sqlite3VdbeAddOp2(v
, OP_Expire
, 0, 1);
4029 sqlite3VdbeJumpHere(v
, (int)pIndex
->tnum
);
4032 if( db
->init
.busy
|| pTblName
==0 ){
4033 pIndex
->pNext
= pTab
->pIndex
;
4034 pTab
->pIndex
= pIndex
;
4037 else if( IN_RENAME_OBJECT
){
4038 assert( pParse
->pNewIndex
==0 );
4039 pParse
->pNewIndex
= pIndex
;
4043 /* Clean up before exiting */
4045 if( pIndex
) sqlite3FreeIndex(db
, pIndex
);
4046 if( pTab
){ /* Ensure all REPLACE indexes are at the end of the list */
4047 Index
**ppFrom
= &pTab
->pIndex
;
4049 for(ppFrom
=&pTab
->pIndex
; (pThis
= *ppFrom
)!=0; ppFrom
=&pThis
->pNext
){
4051 if( pThis
->onError
!=OE_Replace
) continue;
4052 while( (pNext
= pThis
->pNext
)!=0 && pNext
->onError
!=OE_Replace
){
4054 pThis
->pNext
= pNext
->pNext
;
4055 pNext
->pNext
= pThis
;
4056 ppFrom
= &pNext
->pNext
;
4061 sqlite3ExprDelete(db
, pPIWhere
);
4062 sqlite3ExprListDelete(db
, pList
);
4063 sqlite3SrcListDelete(db
, pTblName
);
4064 sqlite3DbFree(db
, zName
);
4068 ** Fill the Index.aiRowEst[] array with default information - information
4069 ** to be used when we have not run the ANALYZE command.
4071 ** aiRowEst[0] is supposed to contain the number of elements in the index.
4072 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
4073 ** number of rows in the table that match any particular value of the
4074 ** first column of the index. aiRowEst[2] is an estimate of the number
4075 ** of rows that match any particular combination of the first 2 columns
4076 ** of the index. And so forth. It must always be the case that
4078 ** aiRowEst[N]<=aiRowEst[N-1]
4081 ** Apart from that, we have little to go on besides intuition as to
4082 ** how aiRowEst[] should be initialized. The numbers generated here
4083 ** are based on typical values found in actual indices.
4085 void sqlite3DefaultRowEst(Index
*pIdx
){
4086 /* 10, 9, 8, 7, 6 */
4087 static const LogEst aVal
[] = { 33, 32, 30, 28, 26 };
4088 LogEst
*a
= pIdx
->aiRowLogEst
;
4090 int nCopy
= MIN(ArraySize(aVal
), pIdx
->nKeyCol
);
4093 /* Indexes with default row estimates should not have stat1 data */
4094 assert( !pIdx
->hasStat1
);
4096 /* Set the first entry (number of rows in the index) to the estimated
4097 ** number of rows in the table, or half the number of rows in the table
4098 ** for a partial index.
4100 ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1
4101 ** table but other parts we are having to guess at, then do not let the
4102 ** estimated number of rows in the table be less than 1000 (LogEst 99).
4103 ** Failure to do this can cause the indexes for which we do not have
4104 ** stat1 data to be ignored by the query planner.
4106 x
= pIdx
->pTable
->nRowLogEst
;
4107 assert( 99==sqlite3LogEst(1000) );
4109 pIdx
->pTable
->nRowLogEst
= x
= 99;
4111 if( pIdx
->pPartIdxWhere
!=0 ) x
-= 10; assert( 10==sqlite3LogEst(2) );
4114 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
4115 ** 6 and each subsequent value (if any) is 5. */
4116 memcpy(&a
[1], aVal
, nCopy
*sizeof(LogEst
));
4117 for(i
=nCopy
+1; i
<=pIdx
->nKeyCol
; i
++){
4118 a
[i
] = 23; assert( 23==sqlite3LogEst(5) );
4121 assert( 0==sqlite3LogEst(1) );
4122 if( IsUniqueIndex(pIdx
) ) a
[pIdx
->nKeyCol
] = 0;
4126 ** This routine will drop an existing named index. This routine
4127 ** implements the DROP INDEX statement.
4129 void sqlite3DropIndex(Parse
*pParse
, SrcList
*pName
, int ifExists
){
4132 sqlite3
*db
= pParse
->db
;
4135 assert( pParse
->nErr
==0 ); /* Never called with prior errors */
4136 if( db
->mallocFailed
){
4137 goto exit_drop_index
;
4139 assert( pName
->nSrc
==1 );
4140 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
4141 goto exit_drop_index
;
4143 pIndex
= sqlite3FindIndex(db
, pName
->a
[0].zName
, pName
->a
[0].zDatabase
);
4146 sqlite3ErrorMsg(pParse
, "no such index: %S", pName
, 0);
4148 sqlite3CodeVerifyNamedSchema(pParse
, pName
->a
[0].zDatabase
);
4150 pParse
->checkSchema
= 1;
4151 goto exit_drop_index
;
4153 if( pIndex
->idxType
!=SQLITE_IDXTYPE_APPDEF
){
4154 sqlite3ErrorMsg(pParse
, "index associated with UNIQUE "
4155 "or PRIMARY KEY constraint cannot be dropped", 0);
4156 goto exit_drop_index
;
4158 iDb
= sqlite3SchemaToIndex(db
, pIndex
->pSchema
);
4159 #ifndef SQLITE_OMIT_AUTHORIZATION
4161 int code
= SQLITE_DROP_INDEX
;
4162 Table
*pTab
= pIndex
->pTable
;
4163 const char *zDb
= db
->aDb
[iDb
].zDbSName
;
4164 const char *zTab
= SCHEMA_TABLE(iDb
);
4165 if( sqlite3AuthCheck(pParse
, SQLITE_DELETE
, zTab
, 0, zDb
) ){
4166 goto exit_drop_index
;
4168 if( !OMIT_TEMPDB
&& iDb
) code
= SQLITE_DROP_TEMP_INDEX
;
4169 if( sqlite3AuthCheck(pParse
, code
, pIndex
->zName
, pTab
->zName
, zDb
) ){
4170 goto exit_drop_index
;
4175 /* Generate code to remove the index and from the schema table */
4176 v
= sqlite3GetVdbe(pParse
);
4178 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
4179 sqlite3NestedParse(pParse
,
4180 "DELETE FROM %Q." DFLT_SCHEMA_TABLE
" WHERE name=%Q AND type='index'",
4181 db
->aDb
[iDb
].zDbSName
, pIndex
->zName
4183 sqlite3ClearStatTables(pParse
, iDb
, "idx", pIndex
->zName
);
4184 sqlite3ChangeCookie(pParse
, iDb
);
4185 destroyRootPage(pParse
, pIndex
->tnum
, iDb
);
4186 sqlite3VdbeAddOp4(v
, OP_DropIndex
, iDb
, 0, 0, pIndex
->zName
, 0);
4190 sqlite3SrcListDelete(db
, pName
);
4194 ** pArray is a pointer to an array of objects. Each object in the
4195 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
4196 ** to extend the array so that there is space for a new object at the end.
4198 ** When this function is called, *pnEntry contains the current size of
4199 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
4202 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
4203 ** space allocated for the new object is zeroed, *pnEntry updated to
4204 ** reflect the new size of the array and a pointer to the new allocation
4205 ** returned. *pIdx is set to the index of the new array entry in this case.
4207 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
4208 ** unchanged and a copy of pArray returned.
4210 void *sqlite3ArrayAllocate(
4211 sqlite3
*db
, /* Connection to notify of malloc failures */
4212 void *pArray
, /* Array of objects. Might be reallocated */
4213 int szEntry
, /* Size of each object in the array */
4214 int *pnEntry
, /* Number of objects currently in use */
4215 int *pIdx
/* Write the index of a new slot here */
4218 sqlite3_int64 n
= *pIdx
= *pnEntry
;
4219 if( (n
& (n
-1))==0 ){
4220 sqlite3_int64 sz
= (n
==0) ? 1 : 2*n
;
4221 void *pNew
= sqlite3DbRealloc(db
, pArray
, sz
*szEntry
);
4229 memset(&z
[n
* szEntry
], 0, szEntry
);
4235 ** Append a new element to the given IdList. Create a new IdList if
4238 ** A new IdList is returned, or NULL if malloc() fails.
4240 IdList
*sqlite3IdListAppend(Parse
*pParse
, IdList
*pList
, Token
*pToken
){
4241 sqlite3
*db
= pParse
->db
;
4244 pList
= sqlite3DbMallocZero(db
, sizeof(IdList
) );
4245 if( pList
==0 ) return 0;
4247 pList
->a
= sqlite3ArrayAllocate(
4250 sizeof(pList
->a
[0]),
4255 sqlite3IdListDelete(db
, pList
);
4258 pList
->a
[i
].zName
= sqlite3NameFromToken(db
, pToken
);
4259 if( IN_RENAME_OBJECT
&& pList
->a
[i
].zName
){
4260 sqlite3RenameTokenMap(pParse
, (void*)pList
->a
[i
].zName
, pToken
);
4266 ** Delete an IdList.
4268 void sqlite3IdListDelete(sqlite3
*db
, IdList
*pList
){
4270 if( pList
==0 ) return;
4271 for(i
=0; i
<pList
->nId
; i
++){
4272 sqlite3DbFree(db
, pList
->a
[i
].zName
);
4274 sqlite3DbFree(db
, pList
->a
);
4275 sqlite3DbFreeNN(db
, pList
);
4279 ** Return the index in pList of the identifier named zId. Return -1
4282 int sqlite3IdListIndex(IdList
*pList
, const char *zName
){
4284 if( pList
==0 ) return -1;
4285 for(i
=0; i
<pList
->nId
; i
++){
4286 if( sqlite3StrICmp(pList
->a
[i
].zName
, zName
)==0 ) return i
;
4292 ** Maximum size of a SrcList object.
4293 ** The SrcList object is used to represent the FROM clause of a
4294 ** SELECT statement, and the query planner cannot deal with more
4295 ** than 64 tables in a join. So any value larger than 64 here
4296 ** is sufficient for most uses. Smaller values, like say 10, are
4297 ** appropriate for small and memory-limited applications.
4299 #ifndef SQLITE_MAX_SRCLIST
4300 # define SQLITE_MAX_SRCLIST 200
4304 ** Expand the space allocated for the given SrcList object by
4305 ** creating nExtra new slots beginning at iStart. iStart is zero based.
4306 ** New slots are zeroed.
4308 ** For example, suppose a SrcList initially contains two entries: A,B.
4309 ** To append 3 new entries onto the end, do this:
4311 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
4313 ** After the call above it would contain: A, B, nil, nil, nil.
4314 ** If the iStart argument had been 1 instead of 2, then the result
4315 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
4316 ** the iStart value would be 0. The result then would
4317 ** be: nil, nil, nil, A, B.
4319 ** If a memory allocation fails or the SrcList becomes too large, leave
4320 ** the original SrcList unchanged, return NULL, and leave an error message
4323 SrcList
*sqlite3SrcListEnlarge(
4324 Parse
*pParse
, /* Parsing context into which errors are reported */
4325 SrcList
*pSrc
, /* The SrcList to be enlarged */
4326 int nExtra
, /* Number of new slots to add to pSrc->a[] */
4327 int iStart
/* Index in pSrc->a[] of first new slot */
4331 /* Sanity checking on calling parameters */
4332 assert( iStart
>=0 );
4333 assert( nExtra
>=1 );
4335 assert( iStart
<=pSrc
->nSrc
);
4337 /* Allocate additional space if needed */
4338 if( (u32
)pSrc
->nSrc
+nExtra
>pSrc
->nAlloc
){
4340 sqlite3_int64 nAlloc
= 2*(sqlite3_int64
)pSrc
->nSrc
+nExtra
;
4341 sqlite3
*db
= pParse
->db
;
4343 if( pSrc
->nSrc
+nExtra
>=SQLITE_MAX_SRCLIST
){
4344 sqlite3ErrorMsg(pParse
, "too many FROM clause terms, max: %d",
4345 SQLITE_MAX_SRCLIST
);
4348 if( nAlloc
>SQLITE_MAX_SRCLIST
) nAlloc
= SQLITE_MAX_SRCLIST
;
4349 pNew
= sqlite3DbRealloc(db
, pSrc
,
4350 sizeof(*pSrc
) + (nAlloc
-1)*sizeof(pSrc
->a
[0]) );
4352 assert( db
->mallocFailed
);
4356 pSrc
->nAlloc
= nAlloc
;
4359 /* Move existing slots that come after the newly inserted slots
4360 ** out of the way */
4361 for(i
=pSrc
->nSrc
-1; i
>=iStart
; i
--){
4362 pSrc
->a
[i
+nExtra
] = pSrc
->a
[i
];
4364 pSrc
->nSrc
+= nExtra
;
4366 /* Zero the newly allocated slots */
4367 memset(&pSrc
->a
[iStart
], 0, sizeof(pSrc
->a
[0])*nExtra
);
4368 for(i
=iStart
; i
<iStart
+nExtra
; i
++){
4369 pSrc
->a
[i
].iCursor
= -1;
4372 /* Return a pointer to the enlarged SrcList */
4378 ** Append a new table name to the given SrcList. Create a new SrcList if
4379 ** need be. A new entry is created in the SrcList even if pTable is NULL.
4381 ** A SrcList is returned, or NULL if there is an OOM error or if the
4382 ** SrcList grows to large. The returned
4383 ** SrcList might be the same as the SrcList that was input or it might be
4384 ** a new one. If an OOM error does occurs, then the prior value of pList
4385 ** that is input to this routine is automatically freed.
4387 ** If pDatabase is not null, it means that the table has an optional
4388 ** database name prefix. Like this: "database.table". The pDatabase
4389 ** points to the table name and the pTable points to the database name.
4390 ** The SrcList.a[].zName field is filled with the table name which might
4391 ** come from pTable (if pDatabase is NULL) or from pDatabase.
4392 ** SrcList.a[].zDatabase is filled with the database name from pTable,
4393 ** or with NULL if no database is specified.
4395 ** In other words, if call like this:
4397 ** sqlite3SrcListAppend(D,A,B,0);
4399 ** Then B is a table name and the database name is unspecified. If called
4402 ** sqlite3SrcListAppend(D,A,B,C);
4404 ** Then C is the table name and B is the database name. If C is defined
4405 ** then so is B. In other words, we never have a case where:
4407 ** sqlite3SrcListAppend(D,A,0,C);
4409 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
4410 ** before being added to the SrcList.
4412 SrcList
*sqlite3SrcListAppend(
4413 Parse
*pParse
, /* Parsing context, in which errors are reported */
4414 SrcList
*pList
, /* Append to this SrcList. NULL creates a new SrcList */
4415 Token
*pTable
, /* Table to append */
4416 Token
*pDatabase
/* Database of the table */
4418 struct SrcList_item
*pItem
;
4420 assert( pDatabase
==0 || pTable
!=0 ); /* Cannot have C without B */
4421 assert( pParse
!=0 );
4422 assert( pParse
->db
!=0 );
4425 pList
= sqlite3DbMallocRawNN(pParse
->db
, sizeof(SrcList
) );
4426 if( pList
==0 ) return 0;
4429 memset(&pList
->a
[0], 0, sizeof(pList
->a
[0]));
4430 pList
->a
[0].iCursor
= -1;
4432 SrcList
*pNew
= sqlite3SrcListEnlarge(pParse
, pList
, 1, pList
->nSrc
);
4434 sqlite3SrcListDelete(db
, pList
);
4440 pItem
= &pList
->a
[pList
->nSrc
-1];
4441 if( pDatabase
&& pDatabase
->z
==0 ){
4445 pItem
->zName
= sqlite3NameFromToken(db
, pDatabase
);
4446 pItem
->zDatabase
= sqlite3NameFromToken(db
, pTable
);
4448 pItem
->zName
= sqlite3NameFromToken(db
, pTable
);
4449 pItem
->zDatabase
= 0;
4455 ** Assign VdbeCursor index numbers to all tables in a SrcList
4457 void sqlite3SrcListAssignCursors(Parse
*pParse
, SrcList
*pList
){
4459 struct SrcList_item
*pItem
;
4460 assert(pList
|| pParse
->db
->mallocFailed
);
4462 for(i
=0, pItem
=pList
->a
; i
<pList
->nSrc
; i
++, pItem
++){
4463 if( pItem
->iCursor
>=0 ) continue;
4464 pItem
->iCursor
= pParse
->nTab
++;
4465 if( pItem
->pSelect
){
4466 sqlite3SrcListAssignCursors(pParse
, pItem
->pSelect
->pSrc
);
4473 ** Delete an entire SrcList including all its substructure.
4475 void sqlite3SrcListDelete(sqlite3
*db
, SrcList
*pList
){
4477 struct SrcList_item
*pItem
;
4478 if( pList
==0 ) return;
4479 for(pItem
=pList
->a
, i
=0; i
<pList
->nSrc
; i
++, pItem
++){
4480 if( pItem
->zDatabase
) sqlite3DbFreeNN(db
, pItem
->zDatabase
);
4481 sqlite3DbFree(db
, pItem
->zName
);
4482 if( pItem
->zAlias
) sqlite3DbFreeNN(db
, pItem
->zAlias
);
4483 if( pItem
->fg
.isIndexedBy
) sqlite3DbFree(db
, pItem
->u1
.zIndexedBy
);
4484 if( pItem
->fg
.isTabFunc
) sqlite3ExprListDelete(db
, pItem
->u1
.pFuncArg
);
4485 sqlite3DeleteTable(db
, pItem
->pTab
);
4486 if( pItem
->pSelect
) sqlite3SelectDelete(db
, pItem
->pSelect
);
4487 if( pItem
->pOn
) sqlite3ExprDelete(db
, pItem
->pOn
);
4488 if( pItem
->pUsing
) sqlite3IdListDelete(db
, pItem
->pUsing
);
4490 sqlite3DbFreeNN(db
, pList
);
4494 ** This routine is called by the parser to add a new term to the
4495 ** end of a growing FROM clause. The "p" parameter is the part of
4496 ** the FROM clause that has already been constructed. "p" is NULL
4497 ** if this is the first term of the FROM clause. pTable and pDatabase
4498 ** are the name of the table and database named in the FROM clause term.
4499 ** pDatabase is NULL if the database name qualifier is missing - the
4500 ** usual case. If the term has an alias, then pAlias points to the
4501 ** alias token. If the term is a subquery, then pSubquery is the
4502 ** SELECT statement that the subquery encodes. The pTable and
4503 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
4504 ** parameters are the content of the ON and USING clauses.
4506 ** Return a new SrcList which encodes is the FROM with the new
4509 SrcList
*sqlite3SrcListAppendFromTerm(
4510 Parse
*pParse
, /* Parsing context */
4511 SrcList
*p
, /* The left part of the FROM clause already seen */
4512 Token
*pTable
, /* Name of the table to add to the FROM clause */
4513 Token
*pDatabase
, /* Name of the database containing pTable */
4514 Token
*pAlias
, /* The right-hand side of the AS subexpression */
4515 Select
*pSubquery
, /* A subquery used in place of a table name */
4516 Expr
*pOn
, /* The ON clause of a join */
4517 IdList
*pUsing
/* The USING clause of a join */
4519 struct SrcList_item
*pItem
;
4520 sqlite3
*db
= pParse
->db
;
4521 if( !p
&& (pOn
|| pUsing
) ){
4522 sqlite3ErrorMsg(pParse
, "a JOIN clause is required before %s",
4523 (pOn
? "ON" : "USING")
4525 goto append_from_error
;
4527 p
= sqlite3SrcListAppend(pParse
, p
, pTable
, pDatabase
);
4529 goto append_from_error
;
4531 assert( p
->nSrc
>0 );
4532 pItem
= &p
->a
[p
->nSrc
-1];
4533 assert( (pTable
==0)==(pDatabase
==0) );
4534 assert( pItem
->zName
==0 || pDatabase
!=0 );
4535 if( IN_RENAME_OBJECT
&& pItem
->zName
){
4536 Token
*pToken
= (ALWAYS(pDatabase
) && pDatabase
->z
) ? pDatabase
: pTable
;
4537 sqlite3RenameTokenMap(pParse
, pItem
->zName
, pToken
);
4539 assert( pAlias
!=0 );
4541 pItem
->zAlias
= sqlite3NameFromToken(db
, pAlias
);
4543 pItem
->pSelect
= pSubquery
;
4545 pItem
->pUsing
= pUsing
;
4550 sqlite3ExprDelete(db
, pOn
);
4551 sqlite3IdListDelete(db
, pUsing
);
4552 sqlite3SelectDelete(db
, pSubquery
);
4557 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
4558 ** element of the source-list passed as the second argument.
4560 void sqlite3SrcListIndexedBy(Parse
*pParse
, SrcList
*p
, Token
*pIndexedBy
){
4561 assert( pIndexedBy
!=0 );
4562 if( p
&& pIndexedBy
->n
>0 ){
4563 struct SrcList_item
*pItem
;
4564 assert( p
->nSrc
>0 );
4565 pItem
= &p
->a
[p
->nSrc
-1];
4566 assert( pItem
->fg
.notIndexed
==0 );
4567 assert( pItem
->fg
.isIndexedBy
==0 );
4568 assert( pItem
->fg
.isTabFunc
==0 );
4569 if( pIndexedBy
->n
==1 && !pIndexedBy
->z
){
4570 /* A "NOT INDEXED" clause was supplied. See parse.y
4571 ** construct "indexed_opt" for details. */
4572 pItem
->fg
.notIndexed
= 1;
4574 pItem
->u1
.zIndexedBy
= sqlite3NameFromToken(pParse
->db
, pIndexedBy
);
4575 pItem
->fg
.isIndexedBy
= 1;
4581 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting
4582 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2
4583 ** are deleted by this function.
4585 SrcList
*sqlite3SrcListAppendList(Parse
*pParse
, SrcList
*p1
, SrcList
*p2
){
4586 assert( p1
&& p1
->nSrc
==1 );
4588 SrcList
*pNew
= sqlite3SrcListEnlarge(pParse
, p1
, p2
->nSrc
, 1);
4590 sqlite3SrcListDelete(pParse
->db
, p2
);
4593 memcpy(&p1
->a
[1], p2
->a
, p2
->nSrc
*sizeof(struct SrcList_item
));
4594 sqlite3DbFree(pParse
->db
, p2
);
4601 ** Add the list of function arguments to the SrcList entry for a
4602 ** table-valued-function.
4604 void sqlite3SrcListFuncArgs(Parse
*pParse
, SrcList
*p
, ExprList
*pList
){
4606 struct SrcList_item
*pItem
= &p
->a
[p
->nSrc
-1];
4607 assert( pItem
->fg
.notIndexed
==0 );
4608 assert( pItem
->fg
.isIndexedBy
==0 );
4609 assert( pItem
->fg
.isTabFunc
==0 );
4610 pItem
->u1
.pFuncArg
= pList
;
4611 pItem
->fg
.isTabFunc
= 1;
4613 sqlite3ExprListDelete(pParse
->db
, pList
);
4618 ** When building up a FROM clause in the parser, the join operator
4619 ** is initially attached to the left operand. But the code generator
4620 ** expects the join operator to be on the right operand. This routine
4621 ** Shifts all join operators from left to right for an entire FROM
4624 ** Example: Suppose the join is like this:
4626 ** A natural cross join B
4628 ** The operator is "natural cross join". The A and B operands are stored
4629 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
4630 ** operator with A. This routine shifts that operator over to B.
4632 void sqlite3SrcListShiftJoinType(SrcList
*p
){
4635 for(i
=p
->nSrc
-1; i
>0; i
--){
4636 p
->a
[i
].fg
.jointype
= p
->a
[i
-1].fg
.jointype
;
4638 p
->a
[0].fg
.jointype
= 0;
4643 ** Generate VDBE code for a BEGIN statement.
4645 void sqlite3BeginTransaction(Parse
*pParse
, int type
){
4650 assert( pParse
!=0 );
4653 if( sqlite3AuthCheck(pParse
, SQLITE_TRANSACTION
, "BEGIN", 0, 0) ){
4656 v
= sqlite3GetVdbe(pParse
);
4658 if( type
!=TK_DEFERRED
){
4659 for(i
=0; i
<db
->nDb
; i
++){
4661 Btree
*pBt
= db
->aDb
[i
].pBt
;
4662 if( pBt
&& sqlite3BtreeIsReadonly(pBt
) ){
4663 eTxnType
= 0; /* Read txn */
4664 }else if( type
==TK_EXCLUSIVE
){
4665 eTxnType
= 2; /* Exclusive txn */
4667 eTxnType
= 1; /* Write txn */
4669 sqlite3VdbeAddOp2(v
, OP_Transaction
, i
, eTxnType
);
4670 sqlite3VdbeUsesBtree(v
, i
);
4673 sqlite3VdbeAddOp0(v
, OP_AutoCommit
);
4677 ** Generate VDBE code for a COMMIT or ROLLBACK statement.
4678 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise
4679 ** code is generated for a COMMIT.
4681 void sqlite3EndTransaction(Parse
*pParse
, int eType
){
4685 assert( pParse
!=0 );
4686 assert( pParse
->db
!=0 );
4687 assert( eType
==TK_COMMIT
|| eType
==TK_END
|| eType
==TK_ROLLBACK
);
4688 isRollback
= eType
==TK_ROLLBACK
;
4689 if( sqlite3AuthCheck(pParse
, SQLITE_TRANSACTION
,
4690 isRollback
? "ROLLBACK" : "COMMIT", 0, 0) ){
4693 v
= sqlite3GetVdbe(pParse
);
4695 sqlite3VdbeAddOp2(v
, OP_AutoCommit
, 1, isRollback
);
4700 ** This function is called by the parser when it parses a command to create,
4701 ** release or rollback an SQL savepoint.
4703 void sqlite3Savepoint(Parse
*pParse
, int op
, Token
*pName
){
4704 char *zName
= sqlite3NameFromToken(pParse
->db
, pName
);
4706 Vdbe
*v
= sqlite3GetVdbe(pParse
);
4707 #ifndef SQLITE_OMIT_AUTHORIZATION
4708 static const char * const az
[] = { "BEGIN", "RELEASE", "ROLLBACK" };
4709 assert( !SAVEPOINT_BEGIN
&& SAVEPOINT_RELEASE
==1 && SAVEPOINT_ROLLBACK
==2 );
4711 if( !v
|| sqlite3AuthCheck(pParse
, SQLITE_SAVEPOINT
, az
[op
], zName
, 0) ){
4712 sqlite3DbFree(pParse
->db
, zName
);
4715 sqlite3VdbeAddOp4(v
, OP_Savepoint
, op
, 0, 0, zName
, P4_DYNAMIC
);
4720 ** Make sure the TEMP database is open and available for use. Return
4721 ** the number of errors. Leave any error messages in the pParse structure.
4723 int sqlite3OpenTempDatabase(Parse
*pParse
){
4724 sqlite3
*db
= pParse
->db
;
4725 if( db
->aDb
[1].pBt
==0 && !pParse
->explain
){
4728 static const int flags
=
4729 SQLITE_OPEN_READWRITE
|
4730 SQLITE_OPEN_CREATE
|
4731 SQLITE_OPEN_EXCLUSIVE
|
4732 SQLITE_OPEN_DELETEONCLOSE
|
4733 SQLITE_OPEN_TEMP_DB
;
4735 rc
= sqlite3BtreeOpen(db
->pVfs
, 0, db
, &pBt
, 0, flags
);
4736 if( rc
!=SQLITE_OK
){
4737 sqlite3ErrorMsg(pParse
, "unable to open a temporary database "
4738 "file for storing temporary tables");
4742 db
->aDb
[1].pBt
= pBt
;
4743 assert( db
->aDb
[1].pSchema
);
4744 if( SQLITE_NOMEM
==sqlite3BtreeSetPageSize(pBt
, db
->nextPagesize
, 0, 0) ){
4745 sqlite3OomFault(db
);
4753 ** Record the fact that the schema cookie will need to be verified
4754 ** for database iDb. The code to actually verify the schema cookie
4755 ** will occur at the end of the top-level VDBE and will be generated
4756 ** later, by sqlite3FinishCoding().
4758 static void sqlite3CodeVerifySchemaAtToplevel(Parse
*pToplevel
, int iDb
){
4759 assert( iDb
>=0 && iDb
<pToplevel
->db
->nDb
);
4760 assert( pToplevel
->db
->aDb
[iDb
].pBt
!=0 || iDb
==1 );
4761 assert( iDb
<SQLITE_MAX_ATTACHED
+2 );
4762 assert( sqlite3SchemaMutexHeld(pToplevel
->db
, iDb
, 0) );
4763 if( DbMaskTest(pToplevel
->cookieMask
, iDb
)==0 ){
4764 DbMaskSet(pToplevel
->cookieMask
, iDb
);
4765 if( !OMIT_TEMPDB
&& iDb
==1 ){
4766 sqlite3OpenTempDatabase(pToplevel
);
4770 void sqlite3CodeVerifySchema(Parse
*pParse
, int iDb
){
4771 sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse
), iDb
);
4776 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4777 ** attached database. Otherwise, invoke it for the database named zDb only.
4779 void sqlite3CodeVerifyNamedSchema(Parse
*pParse
, const char *zDb
){
4780 sqlite3
*db
= pParse
->db
;
4782 for(i
=0; i
<db
->nDb
; i
++){
4783 Db
*pDb
= &db
->aDb
[i
];
4784 if( pDb
->pBt
&& (!zDb
|| 0==sqlite3StrICmp(zDb
, pDb
->zDbSName
)) ){
4785 sqlite3CodeVerifySchema(pParse
, i
);
4791 ** Generate VDBE code that prepares for doing an operation that
4792 ** might change the database.
4794 ** This routine starts a new transaction if we are not already within
4795 ** a transaction. If we are already within a transaction, then a checkpoint
4796 ** is set if the setStatement parameter is true. A checkpoint should
4797 ** be set for operations that might fail (due to a constraint) part of
4798 ** the way through and which will need to undo some writes without having to
4799 ** rollback the whole transaction. For operations where all constraints
4800 ** can be checked before any changes are made to the database, it is never
4801 ** necessary to undo a write and the checkpoint should not be set.
4803 void sqlite3BeginWriteOperation(Parse
*pParse
, int setStatement
, int iDb
){
4804 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
4805 sqlite3CodeVerifySchemaAtToplevel(pToplevel
, iDb
);
4806 DbMaskSet(pToplevel
->writeMask
, iDb
);
4807 pToplevel
->isMultiWrite
|= setStatement
;
4811 ** Indicate that the statement currently under construction might write
4812 ** more than one entry (example: deleting one row then inserting another,
4813 ** inserting multiple rows in a table, or inserting a row and index entries.)
4814 ** If an abort occurs after some of these writes have completed, then it will
4815 ** be necessary to undo the completed writes.
4817 void sqlite3MultiWrite(Parse
*pParse
){
4818 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
4819 pToplevel
->isMultiWrite
= 1;
4823 ** The code generator calls this routine if is discovers that it is
4824 ** possible to abort a statement prior to completion. In order to
4825 ** perform this abort without corrupting the database, we need to make
4826 ** sure that the statement is protected by a statement transaction.
4828 ** Technically, we only need to set the mayAbort flag if the
4829 ** isMultiWrite flag was previously set. There is a time dependency
4830 ** such that the abort must occur after the multiwrite. This makes
4831 ** some statements involving the REPLACE conflict resolution algorithm
4832 ** go a little faster. But taking advantage of this time dependency
4833 ** makes it more difficult to prove that the code is correct (in
4834 ** particular, it prevents us from writing an effective
4835 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
4836 ** to take the safe route and skip the optimization.
4838 void sqlite3MayAbort(Parse
*pParse
){
4839 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
4840 pToplevel
->mayAbort
= 1;
4844 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
4845 ** error. The onError parameter determines which (if any) of the statement
4846 ** and/or current transaction is rolled back.
4848 void sqlite3HaltConstraint(
4849 Parse
*pParse
, /* Parsing context */
4850 int errCode
, /* extended error code */
4851 int onError
, /* Constraint type */
4852 char *p4
, /* Error message */
4853 i8 p4type
, /* P4_STATIC or P4_TRANSIENT */
4854 u8 p5Errmsg
/* P5_ErrMsg type */
4857 assert( pParse
->pVdbe
!=0 );
4858 v
= sqlite3GetVdbe(pParse
);
4859 assert( (errCode
&0xff)==SQLITE_CONSTRAINT
|| pParse
->nested
);
4860 if( onError
==OE_Abort
){
4861 sqlite3MayAbort(pParse
);
4863 sqlite3VdbeAddOp4(v
, OP_Halt
, errCode
, onError
, 0, p4
, p4type
);
4864 sqlite3VdbeChangeP5(v
, p5Errmsg
);
4868 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
4870 void sqlite3UniqueConstraint(
4871 Parse
*pParse
, /* Parsing context */
4872 int onError
, /* Constraint type */
4873 Index
*pIdx
/* The index that triggers the constraint */
4878 Table
*pTab
= pIdx
->pTable
;
4880 sqlite3StrAccumInit(&errMsg
, pParse
->db
, 0, 0,
4881 pParse
->db
->aLimit
[SQLITE_LIMIT_LENGTH
]);
4882 if( pIdx
->aColExpr
){
4883 sqlite3_str_appendf(&errMsg
, "index '%q'", pIdx
->zName
);
4885 for(j
=0; j
<pIdx
->nKeyCol
; j
++){
4887 assert( pIdx
->aiColumn
[j
]>=0 );
4888 zCol
= pTab
->aCol
[pIdx
->aiColumn
[j
]].zName
;
4889 if( j
) sqlite3_str_append(&errMsg
, ", ", 2);
4890 sqlite3_str_appendall(&errMsg
, pTab
->zName
);
4891 sqlite3_str_append(&errMsg
, ".", 1);
4892 sqlite3_str_appendall(&errMsg
, zCol
);
4895 zErr
= sqlite3StrAccumFinish(&errMsg
);
4896 sqlite3HaltConstraint(pParse
,
4897 IsPrimaryKeyIndex(pIdx
) ? SQLITE_CONSTRAINT_PRIMARYKEY
4898 : SQLITE_CONSTRAINT_UNIQUE
,
4899 onError
, zErr
, P4_DYNAMIC
, P5_ConstraintUnique
);
4904 ** Code an OP_Halt due to non-unique rowid.
4906 void sqlite3RowidConstraint(
4907 Parse
*pParse
, /* Parsing context */
4908 int onError
, /* Conflict resolution algorithm */
4909 Table
*pTab
/* The table with the non-unique rowid */
4913 if( pTab
->iPKey
>=0 ){
4914 zMsg
= sqlite3MPrintf(pParse
->db
, "%s.%s", pTab
->zName
,
4915 pTab
->aCol
[pTab
->iPKey
].zName
);
4916 rc
= SQLITE_CONSTRAINT_PRIMARYKEY
;
4918 zMsg
= sqlite3MPrintf(pParse
->db
, "%s.rowid", pTab
->zName
);
4919 rc
= SQLITE_CONSTRAINT_ROWID
;
4921 sqlite3HaltConstraint(pParse
, rc
, onError
, zMsg
, P4_DYNAMIC
,
4922 P5_ConstraintUnique
);
4926 ** Check to see if pIndex uses the collating sequence pColl. Return
4927 ** true if it does and false if it does not.
4929 #ifndef SQLITE_OMIT_REINDEX
4930 static int collationMatch(const char *zColl
, Index
*pIndex
){
4933 for(i
=0; i
<pIndex
->nColumn
; i
++){
4934 const char *z
= pIndex
->azColl
[i
];
4935 assert( z
!=0 || pIndex
->aiColumn
[i
]<0 );
4936 if( pIndex
->aiColumn
[i
]>=0 && 0==sqlite3StrICmp(z
, zColl
) ){
4945 ** Recompute all indices of pTab that use the collating sequence pColl.
4946 ** If pColl==0 then recompute all indices of pTab.
4948 #ifndef SQLITE_OMIT_REINDEX
4949 static void reindexTable(Parse
*pParse
, Table
*pTab
, char const *zColl
){
4950 if( !IsVirtual(pTab
) ){
4951 Index
*pIndex
; /* An index associated with pTab */
4953 for(pIndex
=pTab
->pIndex
; pIndex
; pIndex
=pIndex
->pNext
){
4954 if( zColl
==0 || collationMatch(zColl
, pIndex
) ){
4955 int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
4956 sqlite3BeginWriteOperation(pParse
, 0, iDb
);
4957 sqlite3RefillIndex(pParse
, pIndex
, -1);
4965 ** Recompute all indices of all tables in all databases where the
4966 ** indices use the collating sequence pColl. If pColl==0 then recompute
4967 ** all indices everywhere.
4969 #ifndef SQLITE_OMIT_REINDEX
4970 static void reindexDatabases(Parse
*pParse
, char const *zColl
){
4971 Db
*pDb
; /* A single database */
4972 int iDb
; /* The database index number */
4973 sqlite3
*db
= pParse
->db
; /* The database connection */
4974 HashElem
*k
; /* For looping over tables in pDb */
4975 Table
*pTab
; /* A table in the database */
4977 assert( sqlite3BtreeHoldsAllMutexes(db
) ); /* Needed for schema access */
4978 for(iDb
=0, pDb
=db
->aDb
; iDb
<db
->nDb
; iDb
++, pDb
++){
4980 for(k
=sqliteHashFirst(&pDb
->pSchema
->tblHash
); k
; k
=sqliteHashNext(k
)){
4981 pTab
= (Table
*)sqliteHashData(k
);
4982 reindexTable(pParse
, pTab
, zColl
);
4989 ** Generate code for the REINDEX command.
4992 ** REINDEX <collation> -- 2
4993 ** REINDEX ?<database>.?<tablename> -- 3
4994 ** REINDEX ?<database>.?<indexname> -- 4
4996 ** Form 1 causes all indices in all attached databases to be rebuilt.
4997 ** Form 2 rebuilds all indices in all databases that use the named
4998 ** collating function. Forms 3 and 4 rebuild the named index or all
4999 ** indices associated with the named table.
5001 #ifndef SQLITE_OMIT_REINDEX
5002 void sqlite3Reindex(Parse
*pParse
, Token
*pName1
, Token
*pName2
){
5003 CollSeq
*pColl
; /* Collating sequence to be reindexed, or NULL */
5004 char *z
; /* Name of a table or index */
5005 const char *zDb
; /* Name of the database */
5006 Table
*pTab
; /* A table in the database */
5007 Index
*pIndex
; /* An index associated with pTab */
5008 int iDb
; /* The database index number */
5009 sqlite3
*db
= pParse
->db
; /* The database connection */
5010 Token
*pObjName
; /* Name of the table or index to be reindexed */
5012 /* Read the database schema. If an error occurs, leave an error message
5013 ** and code in pParse and return NULL. */
5014 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
5019 reindexDatabases(pParse
, 0);
5021 }else if( NEVER(pName2
==0) || pName2
->z
==0 ){
5023 assert( pName1
->z
);
5024 zColl
= sqlite3NameFromToken(pParse
->db
, pName1
);
5025 if( !zColl
) return;
5026 pColl
= sqlite3FindCollSeq(db
, ENC(db
), zColl
, 0);
5028 reindexDatabases(pParse
, zColl
);
5029 sqlite3DbFree(db
, zColl
);
5032 sqlite3DbFree(db
, zColl
);
5034 iDb
= sqlite3TwoPartName(pParse
, pName1
, pName2
, &pObjName
);
5036 z
= sqlite3NameFromToken(db
, pObjName
);
5038 zDb
= db
->aDb
[iDb
].zDbSName
;
5039 pTab
= sqlite3FindTable(db
, z
, zDb
);
5041 reindexTable(pParse
, pTab
, 0);
5042 sqlite3DbFree(db
, z
);
5045 pIndex
= sqlite3FindIndex(db
, z
, zDb
);
5046 sqlite3DbFree(db
, z
);
5048 sqlite3BeginWriteOperation(pParse
, 0, iDb
);
5049 sqlite3RefillIndex(pParse
, pIndex
, -1);
5052 sqlite3ErrorMsg(pParse
, "unable to identify the object to be reindexed");
5057 ** Return a KeyInfo structure that is appropriate for the given Index.
5059 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
5060 ** when it has finished using it.
5062 KeyInfo
*sqlite3KeyInfoOfIndex(Parse
*pParse
, Index
*pIdx
){
5064 int nCol
= pIdx
->nColumn
;
5065 int nKey
= pIdx
->nKeyCol
;
5067 if( pParse
->nErr
) return 0;
5068 if( pIdx
->uniqNotNull
){
5069 pKey
= sqlite3KeyInfoAlloc(pParse
->db
, nKey
, nCol
-nKey
);
5071 pKey
= sqlite3KeyInfoAlloc(pParse
->db
, nCol
, 0);
5074 assert( sqlite3KeyInfoIsWriteable(pKey
) );
5075 for(i
=0; i
<nCol
; i
++){
5076 const char *zColl
= pIdx
->azColl
[i
];
5077 pKey
->aColl
[i
] = zColl
==sqlite3StrBINARY
? 0 :
5078 sqlite3LocateCollSeq(pParse
, zColl
);
5079 pKey
->aSortFlags
[i
] = pIdx
->aSortOrder
[i
];
5080 assert( 0==(pKey
->aSortFlags
[i
] & KEYINFO_ORDER_BIGNULL
) );
5083 assert( pParse
->rc
==SQLITE_ERROR_MISSING_COLLSEQ
);
5084 if( pIdx
->bNoQuery
==0 ){
5085 /* Deactivate the index because it contains an unknown collating
5086 ** sequence. The only way to reactive the index is to reload the
5087 ** schema. Adding the missing collating sequence later does not
5088 ** reactive the index. The application had the chance to register
5089 ** the missing index using the collation-needed callback. For
5090 ** simplicity, SQLite will not give the application a second chance.
5093 pParse
->rc
= SQLITE_ERROR_RETRY
;
5095 sqlite3KeyInfoUnref(pKey
);
5102 #ifndef SQLITE_OMIT_CTE
5104 ** This routine is invoked once per CTE by the parser while parsing a
5107 With
*sqlite3WithAdd(
5108 Parse
*pParse
, /* Parsing context */
5109 With
*pWith
, /* Existing WITH clause, or NULL */
5110 Token
*pName
, /* Name of the common-table */
5111 ExprList
*pArglist
, /* Optional column name list for the table */
5112 Select
*pQuery
/* Query used to initialize the table */
5114 sqlite3
*db
= pParse
->db
;
5118 /* Check that the CTE name is unique within this WITH clause. If
5119 ** not, store an error in the Parse structure. */
5120 zName
= sqlite3NameFromToken(pParse
->db
, pName
);
5121 if( zName
&& pWith
){
5123 for(i
=0; i
<pWith
->nCte
; i
++){
5124 if( sqlite3StrICmp(zName
, pWith
->a
[i
].zName
)==0 ){
5125 sqlite3ErrorMsg(pParse
, "duplicate WITH table name: %s", zName
);
5131 sqlite3_int64 nByte
= sizeof(*pWith
) + (sizeof(pWith
->a
[1]) * pWith
->nCte
);
5132 pNew
= sqlite3DbRealloc(db
, pWith
, nByte
);
5134 pNew
= sqlite3DbMallocZero(db
, sizeof(*pWith
));
5136 assert( (pNew
!=0 && zName
!=0) || db
->mallocFailed
);
5138 if( db
->mallocFailed
){
5139 sqlite3ExprListDelete(db
, pArglist
);
5140 sqlite3SelectDelete(db
, pQuery
);
5141 sqlite3DbFree(db
, zName
);
5144 pNew
->a
[pNew
->nCte
].pSelect
= pQuery
;
5145 pNew
->a
[pNew
->nCte
].pCols
= pArglist
;
5146 pNew
->a
[pNew
->nCte
].zName
= zName
;
5147 pNew
->a
[pNew
->nCte
].zCteErr
= 0;
5155 ** Free the contents of the With object passed as the second argument.
5157 void sqlite3WithDelete(sqlite3
*db
, With
*pWith
){
5160 for(i
=0; i
<pWith
->nCte
; i
++){
5161 struct Cte
*pCte
= &pWith
->a
[i
];
5162 sqlite3ExprListDelete(db
, pCte
->pCols
);
5163 sqlite3SelectDelete(db
, pCte
->pSelect
);
5164 sqlite3DbFree(db
, pCte
->zName
);
5166 sqlite3DbFree(db
, pWith
);
5169 #endif /* !defined(SQLITE_OMIT_CTE) */