4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Generate code that will
20 ** (1) acquire a lock for table pTab then
21 ** (2) open pTab as cursor iCur.
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
26 void sqlite3OpenTable(
27 Parse
*pParse
, /* Generate code into this VDBE */
28 int iCur
, /* The cursor number of the table */
29 int iDb
, /* The database index in sqlite3.aDb[] */
30 Table
*pTab
, /* The table to be opened */
31 int opcode
/* OP_OpenRead or OP_OpenWrite */
34 assert( !IsVirtual(pTab
) );
35 assert( pParse
->pVdbe
!=0 );
37 assert( opcode
==OP_OpenWrite
|| opcode
==OP_OpenRead
);
38 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
,
39 (opcode
==OP_OpenWrite
)?1:0, pTab
->zName
);
41 sqlite3VdbeAddOp4Int(v
, opcode
, iCur
, pTab
->tnum
, iDb
, pTab
->nNVCol
);
42 VdbeComment((v
, "%s", pTab
->zName
));
44 Index
*pPk
= sqlite3PrimaryKeyIndex(pTab
);
46 assert( pPk
->tnum
==pTab
->tnum
);
47 sqlite3VdbeAddOp3(v
, opcode
, iCur
, pPk
->tnum
, iDb
);
48 sqlite3VdbeSetP4KeyInfo(pParse
, pPk
);
49 VdbeComment((v
, "%s", pTab
->zName
));
54 ** Return a pointer to the column affinity string associated with index
55 ** pIdx. A column affinity string has one character for each column in
56 ** the table, according to the affinity of the column:
58 ** Character Column affinity
59 ** ------------------------------
66 ** An extra 'D' is appended to the end of the string to cover the
67 ** rowid that appears as the last column in every index.
69 ** Memory for the buffer containing the column index affinity string
70 ** is managed along with the rest of the Index structure. It will be
71 ** released when sqlite3DeleteIndex() is called.
73 const char *sqlite3IndexAffinityStr(sqlite3
*db
, Index
*pIdx
){
75 /* The first time a column affinity string for a particular index is
76 ** required, it is allocated and populated here. It is then stored as
77 ** a member of the Index structure for subsequent use.
79 ** The column affinity string will eventually be deleted by
80 ** sqliteDeleteIndex() when the Index structure itself is cleaned
84 Table
*pTab
= pIdx
->pTable
;
85 pIdx
->zColAff
= (char *)sqlite3DbMallocRaw(0, pIdx
->nColumn
+1);
90 for(n
=0; n
<pIdx
->nColumn
; n
++){
91 i16 x
= pIdx
->aiColumn
[n
];
94 aff
= pTab
->aCol
[x
].affinity
;
95 }else if( x
==XN_ROWID
){
96 aff
= SQLITE_AFF_INTEGER
;
99 assert( pIdx
->aColExpr
!=0 );
100 aff
= sqlite3ExprAffinity(pIdx
->aColExpr
->a
[n
].pExpr
);
102 if( aff
<SQLITE_AFF_BLOB
) aff
= SQLITE_AFF_BLOB
;
103 if( aff
>SQLITE_AFF_NUMERIC
) aff
= SQLITE_AFF_NUMERIC
;
104 pIdx
->zColAff
[n
] = aff
;
106 pIdx
->zColAff
[n
] = 0;
109 return pIdx
->zColAff
;
113 ** Compute the affinity string for table pTab, if it has not already been
114 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
116 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and
117 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities
118 ** for register iReg and following. Or if affinities exists and iReg==0,
119 ** then just set the P4 operand of the previous opcode (which should be
120 ** an OP_MakeRecord) to the affinity string.
122 ** A column affinity string has one character per column:
124 ** Character Column affinity
125 ** ------------------------------
132 void sqlite3TableAffinity(Vdbe
*v
, Table
*pTab
, int iReg
){
134 char *zColAff
= pTab
->zColAff
;
136 sqlite3
*db
= sqlite3VdbeDb(v
);
137 zColAff
= (char *)sqlite3DbMallocRaw(0, pTab
->nCol
+1);
143 for(i
=j
=0; i
<pTab
->nCol
; i
++){
144 assert( pTab
->aCol
[i
].affinity
!=0 );
145 if( (pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
)==0 ){
146 zColAff
[j
++] = pTab
->aCol
[i
].affinity
;
151 }while( j
>=0 && zColAff
[j
]<=SQLITE_AFF_BLOB
);
152 pTab
->zColAff
= zColAff
;
154 assert( zColAff
!=0 );
155 i
= sqlite3Strlen30NN(zColAff
);
158 sqlite3VdbeAddOp4(v
, OP_Affinity
, iReg
, i
, 0, zColAff
, i
);
160 sqlite3VdbeChangeP4(v
, -1, zColAff
, i
);
166 ** Return non-zero if the table pTab in database iDb or any of its indices
167 ** have been opened at any point in the VDBE program. This is used to see if
168 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
169 ** run without using a temporary table for the results of the SELECT.
171 static int readsTable(Parse
*p
, int iDb
, Table
*pTab
){
172 Vdbe
*v
= sqlite3GetVdbe(p
);
174 int iEnd
= sqlite3VdbeCurrentAddr(v
);
175 #ifndef SQLITE_OMIT_VIRTUALTABLE
176 VTable
*pVTab
= IsVirtual(pTab
) ? sqlite3GetVTable(p
->db
, pTab
) : 0;
179 for(i
=1; i
<iEnd
; i
++){
180 VdbeOp
*pOp
= sqlite3VdbeGetOp(v
, i
);
182 if( pOp
->opcode
==OP_OpenRead
&& pOp
->p3
==iDb
){
185 if( tnum
==pTab
->tnum
){
188 for(pIndex
=pTab
->pIndex
; pIndex
; pIndex
=pIndex
->pNext
){
189 if( tnum
==pIndex
->tnum
){
194 #ifndef SQLITE_OMIT_VIRTUALTABLE
195 if( pOp
->opcode
==OP_VOpen
&& pOp
->p4
.pVtab
==pVTab
){
196 assert( pOp
->p4
.pVtab
!=0 );
197 assert( pOp
->p4type
==P4_VTAB
);
205 /* This walker callback will compute the union of colFlags flags for all
206 ** referenced columns in a CHECK constraint or generated column expression.
208 static int exprColumnFlagUnion(Walker
*pWalker
, Expr
*pExpr
){
209 if( pExpr
->op
==TK_COLUMN
&& pExpr
->iColumn
>=0 ){
210 assert( pExpr
->iColumn
< pWalker
->u
.pTab
->nCol
);
211 pWalker
->eCode
|= pWalker
->u
.pTab
->aCol
[pExpr
->iColumn
].colFlags
;
216 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
218 ** All regular columns for table pTab have been puts into registers
219 ** starting with iRegStore. The registers that correspond to STORED
220 ** or VIRTUAL columns have not yet been initialized. This routine goes
221 ** back and computes the values for those columns based on the previously
222 ** computed normal columns.
224 void sqlite3ComputeGeneratedColumns(
225 Parse
*pParse
, /* Parsing context */
226 int iRegStore
, /* Register holding the first column */
227 Table
*pTab
/* The table */
235 assert( pTab
->tabFlags
& TF_HasGenerated
);
236 testcase( pTab
->tabFlags
& TF_HasVirtual
);
237 testcase( pTab
->tabFlags
& TF_HasStored
);
239 /* Before computing generated columns, first go through and make sure
240 ** that appropriate affinity has been applied to the regular columns
242 sqlite3TableAffinity(pParse
->pVdbe
, pTab
, iRegStore
);
243 if( (pTab
->tabFlags
& TF_HasStored
)!=0
244 && (pOp
= sqlite3VdbeGetOp(pParse
->pVdbe
,-1))->opcode
==OP_Affinity
246 /* Change the OP_Affinity argument to '@' (NONE) for all stored
247 ** columns. '@' is the no-op affinity and those columns have not
248 ** yet been computed. */
250 char *zP4
= pOp
->p4
.z
;
252 assert( pOp
->p4type
==P4_DYNAMIC
);
253 for(ii
=jj
=0; zP4
[jj
]; ii
++){
254 if( pTab
->aCol
[ii
].colFlags
& COLFLAG_VIRTUAL
){
257 if( pTab
->aCol
[ii
].colFlags
& COLFLAG_STORED
){
258 zP4
[jj
] = SQLITE_AFF_NONE
;
264 /* Because there can be multiple generated columns that refer to one another,
265 ** this is a two-pass algorithm. On the first pass, mark all generated
266 ** columns as "not available".
268 for(i
=0; i
<pTab
->nCol
; i
++){
269 if( pTab
->aCol
[i
].colFlags
& COLFLAG_GENERATED
){
270 testcase( pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
);
271 testcase( pTab
->aCol
[i
].colFlags
& COLFLAG_STORED
);
272 pTab
->aCol
[i
].colFlags
|= COLFLAG_NOTAVAIL
;
277 w
.xExprCallback
= exprColumnFlagUnion
;
278 w
.xSelectCallback
= 0;
279 w
.xSelectCallback2
= 0;
281 /* On the second pass, compute the value of each NOT-AVAILABLE column.
282 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will
283 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as
286 pParse
->iSelfTab
= -iRegStore
;
290 for(i
=0; i
<pTab
->nCol
; i
++){
291 Column
*pCol
= pTab
->aCol
+ i
;
292 if( (pCol
->colFlags
& COLFLAG_NOTAVAIL
)!=0 ){
294 pCol
->colFlags
|= COLFLAG_BUSY
;
296 sqlite3WalkExpr(&w
, pCol
->pDflt
);
297 pCol
->colFlags
&= ~COLFLAG_BUSY
;
298 if( w
.eCode
& COLFLAG_NOTAVAIL
){
303 assert( pCol
->colFlags
& COLFLAG_GENERATED
);
304 x
= sqlite3TableColumnToStorage(pTab
, i
) + iRegStore
;
305 sqlite3ExprCodeGeneratedColumn(pParse
, pCol
, x
);
306 pCol
->colFlags
&= ~COLFLAG_NOTAVAIL
;
309 }while( pRedo
&& eProgress
);
311 sqlite3ErrorMsg(pParse
, "generated column loop on \"%s\"", pRedo
->zName
);
313 pParse
->iSelfTab
= 0;
315 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
318 #ifndef SQLITE_OMIT_AUTOINCREMENT
320 ** Locate or create an AutoincInfo structure associated with table pTab
321 ** which is in database iDb. Return the register number for the register
322 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT
323 ** table. (Also return zero when doing a VACUUM since we do not want to
324 ** update the AUTOINCREMENT counters during a VACUUM.)
326 ** There is at most one AutoincInfo structure per table even if the
327 ** same table is autoincremented multiple times due to inserts within
328 ** triggers. A new AutoincInfo structure is created if this is the
329 ** first use of table pTab. On 2nd and subsequent uses, the original
330 ** AutoincInfo structure is used.
332 ** Four consecutive registers are allocated:
334 ** (1) The name of the pTab table.
335 ** (2) The maximum ROWID of pTab.
336 ** (3) The rowid in sqlite_sequence of pTab
337 ** (4) The original value of the max ROWID in pTab, or NULL if none
339 ** The 2nd register is the one that is returned. That is all the
340 ** insert routine needs to know about.
342 static int autoIncBegin(
343 Parse
*pParse
, /* Parsing context */
344 int iDb
, /* Index of the database holding pTab */
345 Table
*pTab
/* The table we are writing to */
347 int memId
= 0; /* Register holding maximum rowid */
348 assert( pParse
->db
->aDb
[iDb
].pSchema
!=0 );
349 if( (pTab
->tabFlags
& TF_Autoincrement
)!=0
350 && (pParse
->db
->mDbFlags
& DBFLAG_Vacuum
)==0
352 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
354 Table
*pSeqTab
= pParse
->db
->aDb
[iDb
].pSchema
->pSeqTab
;
356 /* Verify that the sqlite_sequence table exists and is an ordinary
357 ** rowid table with exactly two columns.
358 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */
360 || !HasRowid(pSeqTab
)
361 || IsVirtual(pSeqTab
)
365 pParse
->rc
= SQLITE_CORRUPT_SEQUENCE
;
369 pInfo
= pToplevel
->pAinc
;
370 while( pInfo
&& pInfo
->pTab
!=pTab
){ pInfo
= pInfo
->pNext
; }
372 pInfo
= sqlite3DbMallocRawNN(pParse
->db
, sizeof(*pInfo
));
373 if( pInfo
==0 ) return 0;
374 pInfo
->pNext
= pToplevel
->pAinc
;
375 pToplevel
->pAinc
= pInfo
;
378 pToplevel
->nMem
++; /* Register to hold name of table */
379 pInfo
->regCtr
= ++pToplevel
->nMem
; /* Max rowid register */
380 pToplevel
->nMem
+=2; /* Rowid in sqlite_sequence + orig max val */
382 memId
= pInfo
->regCtr
;
388 ** This routine generates code that will initialize all of the
389 ** register used by the autoincrement tracker.
391 void sqlite3AutoincrementBegin(Parse
*pParse
){
392 AutoincInfo
*p
; /* Information about an AUTOINCREMENT */
393 sqlite3
*db
= pParse
->db
; /* The database connection */
394 Db
*pDb
; /* Database only autoinc table */
395 int memId
; /* Register holding max rowid */
396 Vdbe
*v
= pParse
->pVdbe
; /* VDBE under construction */
398 /* This routine is never called during trigger-generation. It is
399 ** only called from the top-level */
400 assert( pParse
->pTriggerTab
==0 );
401 assert( sqlite3IsToplevel(pParse
) );
403 assert( v
); /* We failed long ago if this is not so */
404 for(p
= pParse
->pAinc
; p
; p
= p
->pNext
){
405 static const int iLn
= VDBE_OFFSET_LINENO(2);
406 static const VdbeOpList autoInc
[] = {
407 /* 0 */ {OP_Null
, 0, 0, 0},
408 /* 1 */ {OP_Rewind
, 0, 10, 0},
409 /* 2 */ {OP_Column
, 0, 0, 0},
410 /* 3 */ {OP_Ne
, 0, 9, 0},
411 /* 4 */ {OP_Rowid
, 0, 0, 0},
412 /* 5 */ {OP_Column
, 0, 1, 0},
413 /* 6 */ {OP_AddImm
, 0, 0, 0},
414 /* 7 */ {OP_Copy
, 0, 0, 0},
415 /* 8 */ {OP_Goto
, 0, 11, 0},
416 /* 9 */ {OP_Next
, 0, 2, 0},
417 /* 10 */ {OP_Integer
, 0, 0, 0},
418 /* 11 */ {OP_Close
, 0, 0, 0}
421 pDb
= &db
->aDb
[p
->iDb
];
423 assert( sqlite3SchemaMutexHeld(db
, 0, pDb
->pSchema
) );
424 sqlite3OpenTable(pParse
, 0, p
->iDb
, pDb
->pSchema
->pSeqTab
, OP_OpenRead
);
425 sqlite3VdbeLoadString(v
, memId
-1, p
->pTab
->zName
);
426 aOp
= sqlite3VdbeAddOpList(v
, ArraySize(autoInc
), autoInc
, iLn
);
433 aOp
[3].p5
= SQLITE_JUMPIFNULL
;
440 if( pParse
->nTab
==0 ) pParse
->nTab
= 1;
445 ** Update the maximum rowid for an autoincrement calculation.
447 ** This routine should be called when the regRowid register holds a
448 ** new rowid that is about to be inserted. If that new rowid is
449 ** larger than the maximum rowid in the memId memory cell, then the
450 ** memory cell is updated.
452 static void autoIncStep(Parse
*pParse
, int memId
, int regRowid
){
454 sqlite3VdbeAddOp2(pParse
->pVdbe
, OP_MemMax
, memId
, regRowid
);
459 ** This routine generates the code needed to write autoincrement
460 ** maximum rowid values back into the sqlite_sequence register.
461 ** Every statement that might do an INSERT into an autoincrement
462 ** table (either directly or through triggers) needs to call this
463 ** routine just before the "exit" code.
465 static SQLITE_NOINLINE
void autoIncrementEnd(Parse
*pParse
){
467 Vdbe
*v
= pParse
->pVdbe
;
468 sqlite3
*db
= pParse
->db
;
471 for(p
= pParse
->pAinc
; p
; p
= p
->pNext
){
472 static const int iLn
= VDBE_OFFSET_LINENO(2);
473 static const VdbeOpList autoIncEnd
[] = {
474 /* 0 */ {OP_NotNull
, 0, 2, 0},
475 /* 1 */ {OP_NewRowid
, 0, 0, 0},
476 /* 2 */ {OP_MakeRecord
, 0, 2, 0},
477 /* 3 */ {OP_Insert
, 0, 0, 0},
478 /* 4 */ {OP_Close
, 0, 0, 0}
481 Db
*pDb
= &db
->aDb
[p
->iDb
];
483 int memId
= p
->regCtr
;
485 iRec
= sqlite3GetTempReg(pParse
);
486 assert( sqlite3SchemaMutexHeld(db
, 0, pDb
->pSchema
) );
487 sqlite3VdbeAddOp3(v
, OP_Le
, memId
+2, sqlite3VdbeCurrentAddr(v
)+7, memId
);
489 sqlite3OpenTable(pParse
, 0, p
->iDb
, pDb
->pSchema
->pSeqTab
, OP_OpenWrite
);
490 aOp
= sqlite3VdbeAddOpList(v
, ArraySize(autoIncEnd
), autoIncEnd
, iLn
);
498 aOp
[3].p5
= OPFLAG_APPEND
;
499 sqlite3ReleaseTempReg(pParse
, iRec
);
502 void sqlite3AutoincrementEnd(Parse
*pParse
){
503 if( pParse
->pAinc
) autoIncrementEnd(pParse
);
507 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
508 ** above are all no-ops
510 # define autoIncBegin(A,B,C) (0)
511 # define autoIncStep(A,B,C)
512 #endif /* SQLITE_OMIT_AUTOINCREMENT */
515 /* Forward declaration */
516 static int xferOptimization(
517 Parse
*pParse
, /* Parser context */
518 Table
*pDest
, /* The table we are inserting into */
519 Select
*pSelect
, /* A SELECT statement to use as the data source */
520 int onError
, /* How to handle constraint errors */
521 int iDbDest
/* The database of pDest */
525 ** This routine is called to handle SQL of the following forms:
527 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
528 ** insert into TABLE (IDLIST) select
529 ** insert into TABLE (IDLIST) default values
531 ** The IDLIST following the table name is always optional. If omitted,
532 ** then a list of all (non-hidden) columns for the table is substituted.
533 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST
536 ** For the pSelect parameter holds the values to be inserted for the
537 ** first two forms shown above. A VALUES clause is really just short-hand
538 ** for a SELECT statement that omits the FROM clause and everything else
539 ** that follows. If the pSelect parameter is NULL, that means that the
540 ** DEFAULT VALUES form of the INSERT statement is intended.
542 ** The code generated follows one of four templates. For a simple
543 ** insert with data coming from a single-row VALUES clause, the code executes
544 ** once straight down through. Pseudo-code follows (we call this
545 ** the "1st template"):
547 ** open write cursor to <table> and its indices
548 ** put VALUES clause expressions into registers
549 ** write the resulting record into <table>
552 ** The three remaining templates assume the statement is of the form
554 ** INSERT INTO <table> SELECT ...
556 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
557 ** in other words if the SELECT pulls all columns from a single table
558 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
559 ** if <table2> and <table1> are distinct tables but have identical
560 ** schemas, including all the same indices, then a special optimization
561 ** is invoked that copies raw records from <table2> over to <table1>.
562 ** See the xferOptimization() function for the implementation of this
563 ** template. This is the 2nd template.
565 ** open a write cursor to <table>
566 ** open read cursor on <table2>
567 ** transfer all records in <table2> over to <table>
569 ** foreach index on <table>
570 ** open a write cursor on the <table> index
571 ** open a read cursor on the corresponding <table2> index
572 ** transfer all records from the read to the write cursors
576 ** The 3rd template is for when the second template does not apply
577 ** and the SELECT clause does not read from <table> at any time.
578 ** The generated code follows this template:
582 ** A: setup for the SELECT
583 ** loop over the rows in the SELECT
584 ** load values into registers R..R+n
587 ** cleanup after the SELECT
589 ** B: open write cursor to <table> and its indices
590 ** C: yield X, at EOF goto D
591 ** insert the select result into <table> from R..R+n
595 ** The 4th template is used if the insert statement takes its
596 ** values from a SELECT but the data is being inserted into a table
597 ** that is also read as part of the SELECT. In the third form,
598 ** we have to use an intermediate table to store the results of
599 ** the select. The template is like this:
603 ** A: setup for the SELECT
604 ** loop over the tables in the SELECT
605 ** load value into register R..R+n
608 ** cleanup after the SELECT
610 ** B: open temp table
611 ** L: yield X, at EOF goto M
612 ** insert row from R..R+n into temp table
614 ** M: open write cursor to <table> and its indices
616 ** C: loop over rows of intermediate table
617 ** transfer values form intermediate table into <table>
622 Parse
*pParse
, /* Parser context */
623 SrcList
*pTabList
, /* Name of table into which we are inserting */
624 Select
*pSelect
, /* A SELECT statement to use as the data source */
625 IdList
*pColumn
, /* Column names corresponding to IDLIST, or NULL. */
626 int onError
, /* How to handle constraint errors */
627 Upsert
*pUpsert
/* ON CONFLICT clauses for upsert, or NULL */
629 sqlite3
*db
; /* The main database structure */
630 Table
*pTab
; /* The table to insert into. aka TABLE */
631 int i
, j
; /* Loop counters */
632 Vdbe
*v
; /* Generate code into this virtual machine */
633 Index
*pIdx
; /* For looping over indices of the table */
634 int nColumn
; /* Number of columns in the data */
635 int nHidden
= 0; /* Number of hidden columns if TABLE is virtual */
636 int iDataCur
= 0; /* VDBE cursor that is the main data repository */
637 int iIdxCur
= 0; /* First index cursor */
638 int ipkColumn
= -1; /* Column that is the INTEGER PRIMARY KEY */
639 int endOfLoop
; /* Label for the end of the insertion loop */
640 int srcTab
= 0; /* Data comes from this temporary cursor if >=0 */
641 int addrInsTop
= 0; /* Jump to label "D" */
642 int addrCont
= 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
643 SelectDest dest
; /* Destination for SELECT on rhs of INSERT */
644 int iDb
; /* Index of database holding TABLE */
645 u8 useTempTable
= 0; /* Store SELECT results in intermediate table */
646 u8 appendFlag
= 0; /* True if the insert is likely to be an append */
647 u8 withoutRowid
; /* 0 for normal table. 1 for WITHOUT ROWID table */
648 u8 bIdListInOrder
; /* True if IDLIST is in table order */
649 ExprList
*pList
= 0; /* List of VALUES() to be inserted */
650 int iRegStore
; /* Register in which to store next column */
652 /* Register allocations */
653 int regFromSelect
= 0;/* Base register for data coming from SELECT */
654 int regAutoinc
= 0; /* Register holding the AUTOINCREMENT counter */
655 int regRowCount
= 0; /* Memory cell used for the row counter */
656 int regIns
; /* Block of regs holding rowid+data being inserted */
657 int regRowid
; /* registers holding insert rowid */
658 int regData
; /* register holding first column to insert */
659 int *aRegIdx
= 0; /* One register allocated to each index */
661 #ifndef SQLITE_OMIT_TRIGGER
662 int isView
; /* True if attempting to insert into a view */
663 Trigger
*pTrigger
; /* List of triggers on pTab, if required */
664 int tmask
; /* Mask of trigger times */
668 if( pParse
->nErr
|| db
->mallocFailed
){
671 dest
.iSDParm
= 0; /* Suppress a harmless compiler warning */
673 /* If the Select object is really just a simple VALUES() list with a
674 ** single row (the common case) then keep that one row of values
675 ** and discard the other (unused) parts of the pSelect object
677 if( pSelect
&& (pSelect
->selFlags
& SF_Values
)!=0 && pSelect
->pPrior
==0 ){
678 pList
= pSelect
->pEList
;
680 sqlite3SelectDelete(db
, pSelect
);
684 /* Locate the table into which we will be inserting new information.
686 assert( pTabList
->nSrc
==1 );
687 pTab
= sqlite3SrcListLookup(pParse
, pTabList
);
691 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
692 assert( iDb
<db
->nDb
);
693 if( sqlite3AuthCheck(pParse
, SQLITE_INSERT
, pTab
->zName
, 0,
694 db
->aDb
[iDb
].zDbSName
) ){
697 withoutRowid
= !HasRowid(pTab
);
699 /* Figure out if we have any triggers and if the table being
700 ** inserted into is a view
702 #ifndef SQLITE_OMIT_TRIGGER
703 pTrigger
= sqlite3TriggersExist(pParse
, pTab
, TK_INSERT
, 0, &tmask
);
704 isView
= pTab
->pSelect
!=0;
710 #ifdef SQLITE_OMIT_VIEW
714 assert( (pTrigger
&& tmask
) || (pTrigger
==0 && tmask
==0) );
716 /* If pTab is really a view, make sure it has been initialized.
717 ** ViewGetColumnNames() is a no-op if pTab is not a view.
719 if( sqlite3ViewGetColumnNames(pParse
, pTab
) ){
723 /* Cannot insert into a read-only table.
725 if( sqlite3IsReadOnly(pParse
, pTab
, tmask
) ){
731 v
= sqlite3GetVdbe(pParse
);
732 if( v
==0 ) goto insert_cleanup
;
733 if( pParse
->nested
==0 ) sqlite3VdbeCountChanges(v
);
734 sqlite3BeginWriteOperation(pParse
, pSelect
|| pTrigger
, iDb
);
736 #ifndef SQLITE_OMIT_XFER_OPT
737 /* If the statement is of the form
739 ** INSERT INTO <table1> SELECT * FROM <table2>;
741 ** Then special optimizations can be applied that make the transfer
742 ** very fast and which reduce fragmentation of indices.
744 ** This is the 2nd template.
746 if( pColumn
==0 && xferOptimization(pParse
, pTab
, pSelect
, onError
, iDb
) ){
751 #endif /* SQLITE_OMIT_XFER_OPT */
753 /* If this is an AUTOINCREMENT table, look up the sequence number in the
754 ** sqlite_sequence table and store it in memory cell regAutoinc.
756 regAutoinc
= autoIncBegin(pParse
, iDb
, pTab
);
758 /* Allocate a block registers to hold the rowid and the values
759 ** for all columns of the new row.
761 regRowid
= regIns
= pParse
->nMem
+1;
762 pParse
->nMem
+= pTab
->nCol
+ 1;
763 if( IsVirtual(pTab
) ){
767 regData
= regRowid
+1;
769 /* If the INSERT statement included an IDLIST term, then make sure
770 ** all elements of the IDLIST really are columns of the table and
771 ** remember the column indices.
773 ** If the table has an INTEGER PRIMARY KEY column and that column
774 ** is named in the IDLIST, then record in the ipkColumn variable
775 ** the index into IDLIST of the primary key column. ipkColumn is
776 ** the index of the primary key as it appears in IDLIST, not as
777 ** is appears in the original table. (The index of the INTEGER
778 ** PRIMARY KEY in the original table is pTab->iPKey.) After this
779 ** loop, if ipkColumn==(-1), that means that integer primary key
780 ** is unspecified, and hence the table is either WITHOUT ROWID or
781 ** it will automatically generated an integer primary key.
783 ** bIdListInOrder is true if the columns in IDLIST are in storage
784 ** order. This enables an optimization that avoids shuffling the
785 ** columns into storage order. False negatives are harmless,
786 ** but false positives will cause database corruption.
788 bIdListInOrder
= (pTab
->tabFlags
& (TF_OOOHidden
|TF_HasStored
))==0;
790 for(i
=0; i
<pColumn
->nId
; i
++){
791 pColumn
->a
[i
].idx
= -1;
793 for(i
=0; i
<pColumn
->nId
; i
++){
794 for(j
=0; j
<pTab
->nCol
; j
++){
795 if( sqlite3StrICmp(pColumn
->a
[i
].zName
, pTab
->aCol
[j
].zName
)==0 ){
796 pColumn
->a
[i
].idx
= j
;
797 if( i
!=j
) bIdListInOrder
= 0;
798 if( j
==pTab
->iPKey
){
799 ipkColumn
= i
; assert( !withoutRowid
);
801 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
802 if( pTab
->aCol
[j
].colFlags
& (COLFLAG_STORED
|COLFLAG_VIRTUAL
) ){
803 sqlite3ErrorMsg(pParse
,
804 "cannot INSERT into generated column \"%s\"",
805 pTab
->aCol
[j
].zName
);
813 if( sqlite3IsRowid(pColumn
->a
[i
].zName
) && !withoutRowid
){
817 sqlite3ErrorMsg(pParse
, "table %S has no column named %s",
818 pTabList
, 0, pColumn
->a
[i
].zName
);
819 pParse
->checkSchema
= 1;
826 /* Figure out how many columns of data are supplied. If the data
827 ** is coming from a SELECT statement, then generate a co-routine that
828 ** produces a single row of the SELECT on each invocation. The
829 ** co-routine is the common header to the 3rd and 4th templates.
832 /* Data is coming from a SELECT or from a multi-row VALUES clause.
833 ** Generate a co-routine to run the SELECT. */
834 int regYield
; /* Register holding co-routine entry-point */
835 int addrTop
; /* Top of the co-routine */
836 int rc
; /* Result code */
838 regYield
= ++pParse
->nMem
;
839 addrTop
= sqlite3VdbeCurrentAddr(v
) + 1;
840 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regYield
, 0, addrTop
);
841 sqlite3SelectDestInit(&dest
, SRT_Coroutine
, regYield
);
842 dest
.iSdst
= bIdListInOrder
? regData
: 0;
843 dest
.nSdst
= pTab
->nCol
;
844 rc
= sqlite3Select(pParse
, pSelect
, &dest
);
845 regFromSelect
= dest
.iSdst
;
846 if( rc
|| db
->mallocFailed
|| pParse
->nErr
) goto insert_cleanup
;
847 sqlite3VdbeEndCoroutine(v
, regYield
);
848 sqlite3VdbeJumpHere(v
, addrTop
- 1); /* label B: */
849 assert( pSelect
->pEList
);
850 nColumn
= pSelect
->pEList
->nExpr
;
852 /* Set useTempTable to TRUE if the result of the SELECT statement
853 ** should be written into a temporary table (template 4). Set to
854 ** FALSE if each output row of the SELECT can be written directly into
855 ** the destination table (template 3).
857 ** A temp table must be used if the table being updated is also one
858 ** of the tables being read by the SELECT statement. Also use a
859 ** temp table in the case of row triggers.
861 if( pTrigger
|| readsTable(pParse
, iDb
, pTab
) ){
866 /* Invoke the coroutine to extract information from the SELECT
867 ** and add it to a transient table srcTab. The code generated
868 ** here is from the 4th template:
870 ** B: open temp table
871 ** L: yield X, goto M at EOF
872 ** insert row from R..R+n into temp table
876 int regRec
; /* Register to hold packed record */
877 int regTempRowid
; /* Register to hold temp table ROWID */
878 int addrL
; /* Label "L" */
880 srcTab
= pParse
->nTab
++;
881 regRec
= sqlite3GetTempReg(pParse
);
882 regTempRowid
= sqlite3GetTempReg(pParse
);
883 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, srcTab
, nColumn
);
884 addrL
= sqlite3VdbeAddOp1(v
, OP_Yield
, dest
.iSDParm
); VdbeCoverage(v
);
885 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regFromSelect
, nColumn
, regRec
);
886 sqlite3VdbeAddOp2(v
, OP_NewRowid
, srcTab
, regTempRowid
);
887 sqlite3VdbeAddOp3(v
, OP_Insert
, srcTab
, regRec
, regTempRowid
);
888 sqlite3VdbeGoto(v
, addrL
);
889 sqlite3VdbeJumpHere(v
, addrL
);
890 sqlite3ReleaseTempReg(pParse
, regRec
);
891 sqlite3ReleaseTempReg(pParse
, regTempRowid
);
894 /* This is the case if the data for the INSERT is coming from a
895 ** single-row VALUES clause
898 memset(&sNC
, 0, sizeof(sNC
));
901 assert( useTempTable
==0 );
903 nColumn
= pList
->nExpr
;
904 if( sqlite3ResolveExprListNames(&sNC
, pList
) ){
912 /* If there is no IDLIST term but the table has an integer primary
913 ** key, the set the ipkColumn variable to the integer primary key
914 ** column index in the original table definition.
916 if( pColumn
==0 && nColumn
>0 ){
917 ipkColumn
= pTab
->iPKey
;
918 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
919 if( ipkColumn
>=0 && (pTab
->tabFlags
& TF_HasGenerated
)!=0 ){
920 testcase( pTab
->tabFlags
& TF_HasVirtual
);
921 testcase( pTab
->tabFlags
& TF_HasStored
);
922 for(i
=ipkColumn
-1; i
>=0; i
--){
923 if( pTab
->aCol
[i
].colFlags
& COLFLAG_GENERATED
){
924 testcase( pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
);
925 testcase( pTab
->aCol
[i
].colFlags
& COLFLAG_STORED
);
933 /* Make sure the number of columns in the source data matches the number
934 ** of columns to be inserted into the table.
936 for(i
=0; i
<pTab
->nCol
; i
++){
937 if( pTab
->aCol
[i
].colFlags
& COLFLAG_NOINSERT
) nHidden
++;
939 if( pColumn
==0 && nColumn
&& nColumn
!=(pTab
->nCol
-nHidden
) ){
940 sqlite3ErrorMsg(pParse
,
941 "table %S has %d columns but %d values were supplied",
942 pTabList
, 0, pTab
->nCol
-nHidden
, nColumn
);
945 if( pColumn
!=0 && nColumn
!=pColumn
->nId
){
946 sqlite3ErrorMsg(pParse
, "%d values for %d columns", nColumn
, pColumn
->nId
);
950 /* Initialize the count of rows to be inserted
952 if( (db
->flags
& SQLITE_CountRows
)!=0
954 && !pParse
->pTriggerTab
956 regRowCount
= ++pParse
->nMem
;
957 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regRowCount
);
960 /* If this is not a view, open the table and and all indices */
963 nIdx
= sqlite3OpenTableAndIndices(pParse
, pTab
, OP_OpenWrite
, 0, -1, 0,
964 &iDataCur
, &iIdxCur
);
965 aRegIdx
= sqlite3DbMallocRawNN(db
, sizeof(int)*(nIdx
+2));
969 for(i
=0, pIdx
=pTab
->pIndex
; i
<nIdx
; pIdx
=pIdx
->pNext
, i
++){
971 aRegIdx
[i
] = ++pParse
->nMem
;
972 pParse
->nMem
+= pIdx
->nColumn
;
974 aRegIdx
[i
] = ++pParse
->nMem
; /* Register to store the table record */
976 #ifndef SQLITE_OMIT_UPSERT
978 if( IsVirtual(pTab
) ){
979 sqlite3ErrorMsg(pParse
, "UPSERT not implemented for virtual table \"%s\"",
984 sqlite3ErrorMsg(pParse
, "cannot UPSERT a view");
987 if( sqlite3HasExplicitNulls(pParse
, pUpsert
->pUpsertTarget
) ){
990 pTabList
->a
[0].iCursor
= iDataCur
;
991 pUpsert
->pUpsertSrc
= pTabList
;
992 pUpsert
->regData
= regData
;
993 pUpsert
->iDataCur
= iDataCur
;
994 pUpsert
->iIdxCur
= iIdxCur
;
995 if( pUpsert
->pUpsertTarget
){
996 sqlite3UpsertAnalyzeTarget(pParse
, pTabList
, pUpsert
);
1002 /* This is the top of the main insertion loop */
1004 /* This block codes the top of loop only. The complete loop is the
1005 ** following pseudocode (template 4):
1007 ** rewind temp table, if empty goto D
1008 ** C: loop over rows of intermediate table
1009 ** transfer values form intermediate table into <table>
1013 addrInsTop
= sqlite3VdbeAddOp1(v
, OP_Rewind
, srcTab
); VdbeCoverage(v
);
1014 addrCont
= sqlite3VdbeCurrentAddr(v
);
1015 }else if( pSelect
){
1016 /* This block codes the top of loop only. The complete loop is the
1017 ** following pseudocode (template 3):
1019 ** C: yield X, at EOF goto D
1020 ** insert the select result into <table> from R..R+n
1024 sqlite3VdbeReleaseRegisters(pParse
, regData
, pTab
->nCol
, 0, 0);
1025 addrInsTop
= addrCont
= sqlite3VdbeAddOp1(v
, OP_Yield
, dest
.iSDParm
);
1028 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the
1029 ** SELECT, go ahead and copy the value into the rowid slot now, so that
1030 ** the value does not get overwritten by a NULL at tag-20191021-002. */
1031 sqlite3VdbeAddOp2(v
, OP_Copy
, regFromSelect
+ipkColumn
, regRowid
);
1035 /* Compute data for ordinary columns of the new entry. Values
1036 ** are written in storage order into registers starting with regData.
1037 ** Only ordinary columns are computed in this loop. The rowid
1038 ** (if there is one) is computed later and generated columns are
1039 ** computed after the rowid since they might depend on the value
1043 iRegStore
= regData
; assert( regData
==regRowid
+1 );
1044 for(i
=0; i
<pTab
->nCol
; i
++, iRegStore
++){
1047 assert( i
>=nHidden
);
1048 if( i
==pTab
->iPKey
){
1049 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled
1050 ** using the rowid. So put a NULL in the IPK slot of the record to avoid
1051 ** using excess space. The file format definition requires this extra
1052 ** NULL - we cannot optimize further by skipping the column completely */
1053 sqlite3VdbeAddOp1(v
, OP_SoftNull
, iRegStore
);
1056 if( ((colFlags
= pTab
->aCol
[i
].colFlags
) & COLFLAG_NOINSERT
)!=0 ){
1058 if( (colFlags
& COLFLAG_VIRTUAL
)!=0 ){
1059 /* Virtual columns do not participate in OP_MakeRecord. So back up
1060 ** iRegStore by one slot to compensate for the iRegStore++ in the
1061 ** outer for() loop */
1064 }else if( (colFlags
& COLFLAG_STORED
)!=0 ){
1065 /* Stored columns are computed later. But if there are BEFORE
1066 ** triggers, the slots used for stored columns will be OP_Copy-ed
1067 ** to a second block of registers, so the register needs to be
1068 ** initialized to NULL to avoid an uninitialized register read */
1069 if( tmask
& TRIGGER_BEFORE
){
1070 sqlite3VdbeAddOp1(v
, OP_SoftNull
, iRegStore
);
1073 }else if( pColumn
==0 ){
1074 /* Hidden columns that are not explicitly named in the INSERT
1075 ** get there default value */
1076 sqlite3ExprCodeFactorable(pParse
, pTab
->aCol
[i
].pDflt
, iRegStore
);
1081 for(j
=0; j
<pColumn
->nId
&& pColumn
->a
[j
].idx
!=i
; j
++){}
1082 if( j
>=pColumn
->nId
){
1083 /* A column not named in the insert column list gets its
1085 sqlite3ExprCodeFactorable(pParse
, pTab
->aCol
[i
].pDflt
, iRegStore
);
1089 }else if( nColumn
==0 ){
1090 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */
1091 sqlite3ExprCodeFactorable(pParse
, pTab
->aCol
[i
].pDflt
, iRegStore
);
1098 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, k
, iRegStore
);
1099 }else if( pSelect
){
1100 if( regFromSelect
!=regData
){
1101 sqlite3VdbeAddOp2(v
, OP_SCopy
, regFromSelect
+k
, iRegStore
);
1104 sqlite3ExprCode(pParse
, pList
->a
[k
].pExpr
, iRegStore
);
1109 /* Run the BEFORE and INSTEAD OF triggers, if there are any
1111 endOfLoop
= sqlite3VdbeMakeLabel(pParse
);
1112 if( tmask
& TRIGGER_BEFORE
){
1113 int regCols
= sqlite3GetTempRange(pParse
, pTab
->nCol
+1);
1115 /* build the NEW.* reference row. Note that if there is an INTEGER
1116 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
1117 ** translated into a unique ID for the row. But on a BEFORE trigger,
1118 ** we do not know what the unique ID will be (because the insert has
1119 ** not happened yet) so we substitute a rowid of -1
1122 sqlite3VdbeAddOp2(v
, OP_Integer
, -1, regCols
);
1125 assert( !withoutRowid
);
1127 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, ipkColumn
, regCols
);
1129 assert( pSelect
==0 ); /* Otherwise useTempTable is true */
1130 sqlite3ExprCode(pParse
, pList
->a
[ipkColumn
].pExpr
, regCols
);
1132 addr1
= sqlite3VdbeAddOp1(v
, OP_NotNull
, regCols
); VdbeCoverage(v
);
1133 sqlite3VdbeAddOp2(v
, OP_Integer
, -1, regCols
);
1134 sqlite3VdbeJumpHere(v
, addr1
);
1135 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, regCols
); VdbeCoverage(v
);
1138 /* Cannot have triggers on a virtual table. If it were possible,
1139 ** this block would have to account for hidden column.
1141 assert( !IsVirtual(pTab
) );
1143 /* Copy the new data already generated. */
1144 assert( pTab
->nNVCol
>0 );
1145 sqlite3VdbeAddOp3(v
, OP_Copy
, regRowid
+1, regCols
+1, pTab
->nNVCol
-1);
1147 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1148 /* Compute the new value for generated columns after all other
1149 ** columns have already been computed. This must be done after
1150 ** computing the ROWID in case one of the generated columns
1151 ** refers to the ROWID. */
1152 if( pTab
->tabFlags
& TF_HasGenerated
){
1153 testcase( pTab
->tabFlags
& TF_HasVirtual
);
1154 testcase( pTab
->tabFlags
& TF_HasStored
);
1155 sqlite3ComputeGeneratedColumns(pParse
, regCols
+1, pTab
);
1159 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
1160 ** do not attempt any conversions before assembling the record.
1161 ** If this is a real table, attempt conversions as required by the
1162 ** table column affinities.
1165 sqlite3TableAffinity(v
, pTab
, regCols
+1);
1168 /* Fire BEFORE or INSTEAD OF triggers */
1169 sqlite3CodeRowTrigger(pParse
, pTrigger
, TK_INSERT
, 0, TRIGGER_BEFORE
,
1170 pTab
, regCols
-pTab
->nCol
-1, onError
, endOfLoop
);
1172 sqlite3ReleaseTempRange(pParse
, regCols
, pTab
->nCol
+1);
1176 if( IsVirtual(pTab
) ){
1177 /* The row that the VUpdate opcode will delete: none */
1178 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regIns
);
1181 /* Compute the new rowid */
1183 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, ipkColumn
, regRowid
);
1184 }else if( pSelect
){
1185 /* Rowid already initialized at tag-20191021-001 */
1187 Expr
*pIpk
= pList
->a
[ipkColumn
].pExpr
;
1188 if( pIpk
->op
==TK_NULL
&& !IsVirtual(pTab
) ){
1189 sqlite3VdbeAddOp3(v
, OP_NewRowid
, iDataCur
, regRowid
, regAutoinc
);
1192 sqlite3ExprCode(pParse
, pList
->a
[ipkColumn
].pExpr
, regRowid
);
1195 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
1196 ** to generate a unique primary key value.
1200 if( !IsVirtual(pTab
) ){
1201 addr1
= sqlite3VdbeAddOp1(v
, OP_NotNull
, regRowid
); VdbeCoverage(v
);
1202 sqlite3VdbeAddOp3(v
, OP_NewRowid
, iDataCur
, regRowid
, regAutoinc
);
1203 sqlite3VdbeJumpHere(v
, addr1
);
1205 addr1
= sqlite3VdbeCurrentAddr(v
);
1206 sqlite3VdbeAddOp2(v
, OP_IsNull
, regRowid
, addr1
+2); VdbeCoverage(v
);
1208 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, regRowid
); VdbeCoverage(v
);
1210 }else if( IsVirtual(pTab
) || withoutRowid
){
1211 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regRowid
);
1213 sqlite3VdbeAddOp3(v
, OP_NewRowid
, iDataCur
, regRowid
, regAutoinc
);
1216 autoIncStep(pParse
, regAutoinc
, regRowid
);
1218 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1219 /* Compute the new value for generated columns after all other
1220 ** columns have already been computed. This must be done after
1221 ** computing the ROWID in case one of the generated columns
1222 ** is derived from the INTEGER PRIMARY KEY. */
1223 if( pTab
->tabFlags
& TF_HasGenerated
){
1224 sqlite3ComputeGeneratedColumns(pParse
, regRowid
+1, pTab
);
1228 /* Generate code to check constraints and generate index keys and
1229 ** do the insertion.
1231 #ifndef SQLITE_OMIT_VIRTUALTABLE
1232 if( IsVirtual(pTab
) ){
1233 const char *pVTab
= (const char *)sqlite3GetVTable(db
, pTab
);
1234 sqlite3VtabMakeWritable(pParse
, pTab
);
1235 sqlite3VdbeAddOp4(v
, OP_VUpdate
, 1, pTab
->nCol
+2, regIns
, pVTab
, P4_VTAB
);
1236 sqlite3VdbeChangeP5(v
, onError
==OE_Default
? OE_Abort
: onError
);
1237 sqlite3MayAbort(pParse
);
1241 int isReplace
; /* Set to true if constraints may cause a replace */
1242 int bUseSeek
; /* True to use OPFLAG_SEEKRESULT */
1243 sqlite3GenerateConstraintChecks(pParse
, pTab
, aRegIdx
, iDataCur
, iIdxCur
,
1244 regIns
, 0, ipkColumn
>=0, onError
, endOfLoop
, &isReplace
, 0, pUpsert
1246 sqlite3FkCheck(pParse
, pTab
, 0, regIns
, 0, 0);
1248 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
1249 ** constraints or (b) there are no triggers and this table is not a
1250 ** parent table in a foreign key constraint. It is safe to set the
1251 ** flag in the second case as if any REPLACE constraint is hit, an
1252 ** OP_Delete or OP_IdxDelete instruction will be executed on each
1253 ** cursor that is disturbed. And these instructions both clear the
1254 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT
1255 ** functionality. */
1256 bUseSeek
= (isReplace
==0 || !sqlite3VdbeHasSubProgram(v
));
1257 sqlite3CompleteInsertion(pParse
, pTab
, iDataCur
, iIdxCur
,
1258 regIns
, aRegIdx
, 0, appendFlag
, bUseSeek
1263 /* Update the count of rows that are inserted
1266 sqlite3VdbeAddOp2(v
, OP_AddImm
, regRowCount
, 1);
1270 /* Code AFTER triggers */
1271 sqlite3CodeRowTrigger(pParse
, pTrigger
, TK_INSERT
, 0, TRIGGER_AFTER
,
1272 pTab
, regData
-2-pTab
->nCol
, onError
, endOfLoop
);
1275 /* The bottom of the main insertion loop, if the data source
1276 ** is a SELECT statement.
1278 sqlite3VdbeResolveLabel(v
, endOfLoop
);
1280 sqlite3VdbeAddOp2(v
, OP_Next
, srcTab
, addrCont
); VdbeCoverage(v
);
1281 sqlite3VdbeJumpHere(v
, addrInsTop
);
1282 sqlite3VdbeAddOp1(v
, OP_Close
, srcTab
);
1283 }else if( pSelect
){
1284 sqlite3VdbeGoto(v
, addrCont
);
1286 /* If we are jumping back to an OP_Yield that is preceded by an
1287 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the
1288 ** OP_ReleaseReg will be included in the loop. */
1289 if( sqlite3VdbeGetOp(v
, addrCont
-1)->opcode
==OP_ReleaseReg
){
1290 assert( sqlite3VdbeGetOp(v
, addrCont
)->opcode
==OP_Yield
);
1291 sqlite3VdbeChangeP5(v
, 1);
1294 sqlite3VdbeJumpHere(v
, addrInsTop
);
1298 /* Update the sqlite_sequence table by storing the content of the
1299 ** maximum rowid counter values recorded while inserting into
1300 ** autoincrement tables.
1302 if( pParse
->nested
==0 && pParse
->pTriggerTab
==0 ){
1303 sqlite3AutoincrementEnd(pParse
);
1307 ** Return the number of rows inserted. If this routine is
1308 ** generating code because of a call to sqlite3NestedParse(), do not
1309 ** invoke the callback function.
1312 sqlite3VdbeAddOp2(v
, OP_ResultRow
, regRowCount
, 1);
1313 sqlite3VdbeSetNumCols(v
, 1);
1314 sqlite3VdbeSetColName(v
, 0, COLNAME_NAME
, "rows inserted", SQLITE_STATIC
);
1318 sqlite3SrcListDelete(db
, pTabList
);
1319 sqlite3ExprListDelete(db
, pList
);
1320 sqlite3UpsertDelete(db
, pUpsert
);
1321 sqlite3SelectDelete(db
, pSelect
);
1322 sqlite3IdListDelete(db
, pColumn
);
1323 sqlite3DbFree(db
, aRegIdx
);
1326 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1327 ** they may interfere with compilation of other functions in this file
1328 ** (or in another file, if this file becomes part of the amalgamation). */
1340 ** Meanings of bits in of pWalker->eCode for
1341 ** sqlite3ExprReferencesUpdatedColumn()
1343 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */
1344 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */
1346 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn().
1347 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this
1348 ** expression node references any of the
1349 ** columns that are being modifed by an UPDATE statement.
1351 static int checkConstraintExprNode(Walker
*pWalker
, Expr
*pExpr
){
1352 if( pExpr
->op
==TK_COLUMN
){
1353 assert( pExpr
->iColumn
>=0 || pExpr
->iColumn
==-1 );
1354 if( pExpr
->iColumn
>=0 ){
1355 if( pWalker
->u
.aiCol
[pExpr
->iColumn
]>=0 ){
1356 pWalker
->eCode
|= CKCNSTRNT_COLUMN
;
1359 pWalker
->eCode
|= CKCNSTRNT_ROWID
;
1362 return WRC_Continue
;
1366 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The
1367 ** only columns that are modified by the UPDATE are those for which
1368 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
1370 ** Return true if CHECK constraint pExpr uses any of the
1371 ** changing columns (or the rowid if it is changing). In other words,
1372 ** return true if this CHECK constraint must be validated for
1373 ** the new row in the UPDATE statement.
1375 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions.
1376 ** The operation of this routine is the same - return true if an only if
1377 ** the expression uses one or more of columns identified by the second and
1380 int sqlite3ExprReferencesUpdatedColumn(
1381 Expr
*pExpr
, /* The expression to be checked */
1382 int *aiChng
, /* aiChng[x]>=0 if column x changed by the UPDATE */
1383 int chngRowid
/* True if UPDATE changes the rowid */
1386 memset(&w
, 0, sizeof(w
));
1388 w
.xExprCallback
= checkConstraintExprNode
;
1390 sqlite3WalkExpr(&w
, pExpr
);
1392 testcase( (w
.eCode
& CKCNSTRNT_ROWID
)!=0 );
1393 w
.eCode
&= ~CKCNSTRNT_ROWID
;
1395 testcase( w
.eCode
==0 );
1396 testcase( w
.eCode
==CKCNSTRNT_COLUMN
);
1397 testcase( w
.eCode
==CKCNSTRNT_ROWID
);
1398 testcase( w
.eCode
==(CKCNSTRNT_ROWID
|CKCNSTRNT_COLUMN
) );
1403 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1406 ** The regNewData parameter is the first register in a range that contains
1407 ** the data to be inserted or the data after the update. There will be
1408 ** pTab->nCol+1 registers in this range. The first register (the one
1409 ** that regNewData points to) will contain the new rowid, or NULL in the
1410 ** case of a WITHOUT ROWID table. The second register in the range will
1411 ** contain the content of the first table column. The third register will
1412 ** contain the content of the second table column. And so forth.
1414 ** The regOldData parameter is similar to regNewData except that it contains
1415 ** the data prior to an UPDATE rather than afterwards. regOldData is zero
1416 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by
1417 ** checking regOldData for zero.
1419 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1420 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1421 ** might be modified by the UPDATE. If pkChng is false, then the key of
1422 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1424 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1425 ** was explicitly specified as part of the INSERT statement. If pkChng
1426 ** is zero, it means that the either rowid is computed automatically or
1427 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT,
1428 ** pkChng will only be true if the INSERT statement provides an integer
1429 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1431 ** The code generated by this routine will store new index entries into
1432 ** registers identified by aRegIdx[]. No index entry is created for
1433 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
1434 ** the same as the order of indices on the linked list of indices
1437 ** (2019-05-07) The generated code also creates a new record for the
1438 ** main table, if pTab is a rowid table, and stores that record in the
1439 ** register identified by aRegIdx[nIdx] - in other words in the first
1440 ** entry of aRegIdx[] past the last index. It is important that the
1441 ** record be generated during constraint checks to avoid affinity changes
1442 ** to the register content that occur after constraint checks but before
1443 ** the new record is inserted.
1445 ** The caller must have already opened writeable cursors on the main
1446 ** table and all applicable indices (that is to say, all indices for which
1447 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when
1448 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1449 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor
1450 ** for the first index in the pTab->pIndex list. Cursors for other indices
1451 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1453 ** This routine also generates code to check constraints. NOT NULL,
1454 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
1455 ** then the appropriate action is performed. There are five possible
1456 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1458 ** Constraint type Action What Happens
1459 ** --------------- ---------- ----------------------------------------
1460 ** any ROLLBACK The current transaction is rolled back and
1461 ** sqlite3_step() returns immediately with a
1462 ** return code of SQLITE_CONSTRAINT.
1464 ** any ABORT Back out changes from the current command
1465 ** only (do not do a complete rollback) then
1466 ** cause sqlite3_step() to return immediately
1467 ** with SQLITE_CONSTRAINT.
1469 ** any FAIL Sqlite3_step() returns immediately with a
1470 ** return code of SQLITE_CONSTRAINT. The
1471 ** transaction is not rolled back and any
1472 ** changes to prior rows are retained.
1474 ** any IGNORE The attempt in insert or update the current
1475 ** row is skipped, without throwing an error.
1476 ** Processing continues with the next row.
1477 ** (There is an immediate jump to ignoreDest.)
1479 ** NOT NULL REPLACE The NULL value is replace by the default
1480 ** value for that column. If the default value
1481 ** is NULL, the action is the same as ABORT.
1483 ** UNIQUE REPLACE The other row that conflicts with the row
1484 ** being inserted is removed.
1486 ** CHECK REPLACE Illegal. The results in an exception.
1488 ** Which action to take is determined by the overrideError parameter.
1489 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1490 ** is used. Or if pParse->onError==OE_Default then the onError value
1491 ** for the constraint is used.
1493 void sqlite3GenerateConstraintChecks(
1494 Parse
*pParse
, /* The parser context */
1495 Table
*pTab
, /* The table being inserted or updated */
1496 int *aRegIdx
, /* Use register aRegIdx[i] for index i. 0 for unused */
1497 int iDataCur
, /* Canonical data cursor (main table or PK index) */
1498 int iIdxCur
, /* First index cursor */
1499 int regNewData
, /* First register in a range holding values to insert */
1500 int regOldData
, /* Previous content. 0 for INSERTs */
1501 u8 pkChng
, /* Non-zero if the rowid or PRIMARY KEY changed */
1502 u8 overrideError
, /* Override onError to this if not OE_Default */
1503 int ignoreDest
, /* Jump to this label on an OE_Ignore resolution */
1504 int *pbMayReplace
, /* OUT: Set to true if constraint may cause a replace */
1505 int *aiChng
, /* column i is unchanged if aiChng[i]<0 */
1506 Upsert
*pUpsert
/* ON CONFLICT clauses, if any. NULL otherwise */
1508 Vdbe
*v
; /* VDBE under constrution */
1509 Index
*pIdx
; /* Pointer to one of the indices */
1510 Index
*pPk
= 0; /* The PRIMARY KEY index */
1511 sqlite3
*db
; /* Database connection */
1512 int i
; /* loop counter */
1513 int ix
; /* Index loop counter */
1514 int nCol
; /* Number of columns */
1515 int onError
; /* Conflict resolution strategy */
1516 int seenReplace
= 0; /* True if REPLACE is used to resolve INT PK conflict */
1517 int nPkField
; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1518 Index
*pUpIdx
= 0; /* Index to which to apply the upsert */
1519 u8 isUpdate
; /* True if this is an UPDATE operation */
1520 u8 bAffinityDone
= 0; /* True if the OP_Affinity operation has been run */
1521 int upsertBypass
= 0; /* Address of Goto to bypass upsert subroutine */
1522 int upsertJump
= 0; /* Address of Goto that jumps into upsert subroutine */
1523 int ipkTop
= 0; /* Top of the IPK uniqueness check */
1524 int ipkBottom
= 0; /* OP_Goto at the end of the IPK uniqueness check */
1525 /* Variables associated with retesting uniqueness constraints after
1526 ** replace triggers fire have run */
1527 int regTrigCnt
; /* Register used to count replace trigger invocations */
1528 int addrRecheck
= 0; /* Jump here to recheck all uniqueness constraints */
1529 int lblRecheckOk
= 0; /* Each recheck jumps to this label if it passes */
1530 Trigger
*pTrigger
; /* List of DELETE triggers on the table pTab */
1531 int nReplaceTrig
= 0; /* Number of replace triggers coded */
1533 isUpdate
= regOldData
!=0;
1537 assert( pTab
->pSelect
==0 ); /* This table is not a VIEW */
1540 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1541 ** normal rowid tables. nPkField is the number of key fields in the
1542 ** pPk index or 1 for a rowid table. In other words, nPkField is the
1543 ** number of fields in the true primary key of the table. */
1544 if( HasRowid(pTab
) ){
1548 pPk
= sqlite3PrimaryKeyIndex(pTab
);
1549 nPkField
= pPk
->nKeyCol
;
1552 /* Record that this module has started */
1553 VdbeModuleComment((v
, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1554 iDataCur
, iIdxCur
, regNewData
, regOldData
, pkChng
));
1556 /* Test all NOT NULL constraints.
1558 if( pTab
->tabFlags
& TF_HasNotNull
){
1559 int b2ndPass
= 0; /* True if currently running 2nd pass */
1560 int nSeenReplace
= 0; /* Number of ON CONFLICT REPLACE operations */
1561 int nGenerated
= 0; /* Number of generated columns with NOT NULL */
1562 while(1){ /* Make 2 passes over columns. Exit loop via "break" */
1563 for(i
=0; i
<nCol
; i
++){
1564 int iReg
; /* Register holding column value */
1565 Column
*pCol
= &pTab
->aCol
[i
]; /* The column to check for NOT NULL */
1566 int isGenerated
; /* non-zero if column is generated */
1567 onError
= pCol
->notNull
;
1568 if( onError
==OE_None
) continue; /* No NOT NULL on this column */
1569 if( i
==pTab
->iPKey
){
1570 continue; /* ROWID is never NULL */
1572 isGenerated
= pCol
->colFlags
& COLFLAG_GENERATED
;
1573 if( isGenerated
&& !b2ndPass
){
1575 continue; /* Generated columns processed on 2nd pass */
1577 if( aiChng
&& aiChng
[i
]<0 && !isGenerated
){
1578 /* Do not check NOT NULL on columns that do not change */
1581 if( overrideError
!=OE_Default
){
1582 onError
= overrideError
;
1583 }else if( onError
==OE_Default
){
1586 if( onError
==OE_Replace
){
1587 if( b2ndPass
/* REPLACE becomes ABORT on the 2nd pass */
1588 || pCol
->pDflt
==0 /* REPLACE is ABORT if no DEFAULT value */
1590 testcase( pCol
->colFlags
& COLFLAG_VIRTUAL
);
1591 testcase( pCol
->colFlags
& COLFLAG_STORED
);
1592 testcase( pCol
->colFlags
& COLFLAG_GENERATED
);
1595 assert( !isGenerated
);
1597 }else if( b2ndPass
&& !isGenerated
){
1600 assert( onError
==OE_Rollback
|| onError
==OE_Abort
|| onError
==OE_Fail
1601 || onError
==OE_Ignore
|| onError
==OE_Replace
);
1602 testcase( i
!=sqlite3TableColumnToStorage(pTab
, i
) );
1603 iReg
= sqlite3TableColumnToStorage(pTab
, i
) + regNewData
+ 1;
1606 int addr1
= sqlite3VdbeAddOp1(v
, OP_NotNull
, iReg
);
1608 assert( (pCol
->colFlags
& COLFLAG_GENERATED
)==0 );
1610 sqlite3ExprCodeCopy(pParse
, pCol
->pDflt
, iReg
);
1611 sqlite3VdbeJumpHere(v
, addr1
);
1615 sqlite3MayAbort(pParse
);
1616 /* no break */ deliberate_fall_through
1619 char *zMsg
= sqlite3MPrintf(db
, "%s.%s", pTab
->zName
,
1621 sqlite3VdbeAddOp3(v
, OP_HaltIfNull
, SQLITE_CONSTRAINT_NOTNULL
,
1623 sqlite3VdbeAppendP4(v
, zMsg
, P4_DYNAMIC
);
1624 sqlite3VdbeChangeP5(v
, P5_ConstraintNotNull
);
1629 assert( onError
==OE_Ignore
);
1630 sqlite3VdbeAddOp2(v
, OP_IsNull
, iReg
, ignoreDest
);
1634 } /* end switch(onError) */
1635 } /* end loop i over columns */
1636 if( nGenerated
==0 && nSeenReplace
==0 ){
1637 /* If there are no generated columns with NOT NULL constraints
1638 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single
1639 ** pass is sufficient */
1642 if( b2ndPass
) break; /* Never need more than 2 passes */
1644 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1645 if( nSeenReplace
>0 && (pTab
->tabFlags
& TF_HasGenerated
)!=0 ){
1646 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the
1647 ** first pass, recomputed values for all generated columns, as
1648 ** those values might depend on columns affected by the REPLACE.
1650 sqlite3ComputeGeneratedColumns(pParse
, regNewData
+1, pTab
);
1653 } /* end of 2-pass loop */
1654 } /* end if( has-not-null-constraints ) */
1656 /* Test all CHECK constraints
1658 #ifndef SQLITE_OMIT_CHECK
1659 if( pTab
->pCheck
&& (db
->flags
& SQLITE_IgnoreChecks
)==0 ){
1660 ExprList
*pCheck
= pTab
->pCheck
;
1661 pParse
->iSelfTab
= -(regNewData
+1);
1662 onError
= overrideError
!=OE_Default
? overrideError
: OE_Abort
;
1663 for(i
=0; i
<pCheck
->nExpr
; i
++){
1666 Expr
*pExpr
= pCheck
->a
[i
].pExpr
;
1668 && !sqlite3ExprReferencesUpdatedColumn(pExpr
, aiChng
, pkChng
)
1670 /* The check constraints do not reference any of the columns being
1671 ** updated so there is no point it verifying the check constraint */
1674 if( bAffinityDone
==0 ){
1675 sqlite3TableAffinity(v
, pTab
, regNewData
+1);
1678 allOk
= sqlite3VdbeMakeLabel(pParse
);
1679 sqlite3VdbeVerifyAbortable(v
, onError
);
1680 pCopy
= sqlite3ExprDup(db
, pExpr
, 0);
1681 if( !db
->mallocFailed
){
1682 sqlite3ExprIfTrue(pParse
, pCopy
, allOk
, SQLITE_JUMPIFNULL
);
1684 sqlite3ExprDelete(db
, pCopy
);
1685 if( onError
==OE_Ignore
){
1686 sqlite3VdbeGoto(v
, ignoreDest
);
1688 char *zName
= pCheck
->a
[i
].zEName
;
1689 assert( zName
!=0 || pParse
->db
->mallocFailed
);
1690 if( onError
==OE_Replace
) onError
= OE_Abort
; /* IMP: R-26383-51744 */
1691 sqlite3HaltConstraint(pParse
, SQLITE_CONSTRAINT_CHECK
,
1692 onError
, zName
, P4_TRANSIENT
,
1693 P5_ConstraintCheck
);
1695 sqlite3VdbeResolveLabel(v
, allOk
);
1697 pParse
->iSelfTab
= 0;
1699 #endif /* !defined(SQLITE_OMIT_CHECK) */
1701 /* UNIQUE and PRIMARY KEY constraints should be handled in the following
1705 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore
1708 ** OE_Fail and OE_Ignore must happen before any changes are made.
1709 ** OE_Update guarantees that only a single row will change, so it
1710 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback
1711 ** could happen in any order, but they are grouped up front for
1714 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43
1715 ** The order of constraints used to have OE_Update as (2) and OE_Abort
1716 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update
1717 ** constraint before any others, so it had to be moved.
1719 ** Constraint checking code is generated in this order:
1720 ** (A) The rowid constraint
1721 ** (B) Unique index constraints that do not have OE_Replace as their
1722 ** default conflict resolution strategy
1723 ** (C) Unique index that do use OE_Replace by default.
1725 ** The ordering of (2) and (3) is accomplished by making sure the linked
1726 ** list of indexes attached to a table puts all OE_Replace indexes last
1727 ** in the list. See sqlite3CreateIndex() for where that happens.
1731 if( pUpsert
->pUpsertTarget
==0 ){
1732 /* An ON CONFLICT DO NOTHING clause, without a constraint-target.
1733 ** Make all unique constraint resolution be OE_Ignore */
1734 assert( pUpsert
->pUpsertSet
==0 );
1735 overrideError
= OE_Ignore
;
1737 }else if( (pUpIdx
= pUpsert
->pUpsertIdx
)!=0 ){
1738 /* If the constraint-target uniqueness check must be run first.
1739 ** Jump to that uniqueness check now */
1740 upsertJump
= sqlite3VdbeAddOp0(v
, OP_Goto
);
1741 VdbeComment((v
, "UPSERT constraint goes first"));
1745 /* Determine if it is possible that triggers (either explicitly coded
1746 ** triggers or FK resolution actions) might run as a result of deletes
1747 ** that happen when OE_Replace conflict resolution occurs. (Call these
1748 ** "replace triggers".) If any replace triggers run, we will need to
1749 ** recheck all of the uniqueness constraints after they have all run.
1750 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace.
1752 ** If replace triggers are a possibility, then
1754 ** (1) Allocate register regTrigCnt and initialize it to zero.
1755 ** That register will count the number of replace triggers that
1756 ** fire. Constraint recheck only occurs if the number is positive.
1757 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab.
1758 ** (3) Initialize addrRecheck and lblRecheckOk
1760 ** The uniqueness rechecking code will create a series of tests to run
1761 ** in a second pass. The addrRecheck and lblRecheckOk variables are
1762 ** used to link together these tests which are separated from each other
1763 ** in the generate bytecode.
1765 if( (db
->flags
& (SQLITE_RecTriggers
|SQLITE_ForeignKeys
))==0 ){
1766 /* There are not DELETE triggers nor FK constraints. No constraint
1767 ** rechecks are needed. */
1771 if( db
->flags
&SQLITE_RecTriggers
){
1772 pTrigger
= sqlite3TriggersExist(pParse
, pTab
, TK_DELETE
, 0, 0);
1773 regTrigCnt
= pTrigger
!=0 || sqlite3FkRequired(pParse
, pTab
, 0, 0);
1776 regTrigCnt
= sqlite3FkRequired(pParse
, pTab
, 0, 0);
1779 /* Replace triggers might exist. Allocate the counter and
1780 ** initialize it to zero. */
1781 regTrigCnt
= ++pParse
->nMem
;
1782 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regTrigCnt
);
1783 VdbeComment((v
, "trigger count"));
1784 lblRecheckOk
= sqlite3VdbeMakeLabel(pParse
);
1785 addrRecheck
= lblRecheckOk
;
1789 /* If rowid is changing, make sure the new rowid does not previously
1790 ** exist in the table.
1792 if( pkChng
&& pPk
==0 ){
1793 int addrRowidOk
= sqlite3VdbeMakeLabel(pParse
);
1795 /* Figure out what action to take in case of a rowid collision */
1796 onError
= pTab
->keyConf
;
1797 if( overrideError
!=OE_Default
){
1798 onError
= overrideError
;
1799 }else if( onError
==OE_Default
){
1803 /* figure out whether or not upsert applies in this case */
1804 if( pUpsert
&& pUpsert
->pUpsertIdx
==0 ){
1805 if( pUpsert
->pUpsertSet
==0 ){
1806 onError
= OE_Ignore
; /* DO NOTHING is the same as INSERT OR IGNORE */
1808 onError
= OE_Update
; /* DO UPDATE */
1812 /* If the response to a rowid conflict is REPLACE but the response
1813 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
1814 ** to defer the running of the rowid conflict checking until after
1815 ** the UNIQUE constraints have run.
1817 if( onError
==OE_Replace
/* IPK rule is REPLACE */
1818 && onError
!=overrideError
/* Rules for other contraints are different */
1819 && pTab
->pIndex
/* There exist other constraints */
1821 ipkTop
= sqlite3VdbeAddOp0(v
, OP_Goto
)+1;
1822 VdbeComment((v
, "defer IPK REPLACE until last"));
1826 /* pkChng!=0 does not mean that the rowid has changed, only that
1827 ** it might have changed. Skip the conflict logic below if the rowid
1829 sqlite3VdbeAddOp3(v
, OP_Eq
, regNewData
, addrRowidOk
, regOldData
);
1830 sqlite3VdbeChangeP5(v
, SQLITE_NOTNULL
);
1834 /* Check to see if the new rowid already exists in the table. Skip
1835 ** the following conflict logic if it does not. */
1836 VdbeNoopComment((v
, "uniqueness check for ROWID"));
1837 sqlite3VdbeVerifyAbortable(v
, onError
);
1838 sqlite3VdbeAddOp3(v
, OP_NotExists
, iDataCur
, addrRowidOk
, regNewData
);
1844 /* no break */ deliberate_fall_through
1849 testcase( onError
==OE_Rollback
);
1850 testcase( onError
==OE_Abort
);
1851 testcase( onError
==OE_Fail
);
1852 sqlite3RowidConstraint(pParse
, onError
, pTab
);
1856 /* If there are DELETE triggers on this table and the
1857 ** recursive-triggers flag is set, call GenerateRowDelete() to
1858 ** remove the conflicting row from the table. This will fire
1859 ** the triggers and remove both the table and index b-tree entries.
1861 ** Otherwise, if there are no triggers or the recursive-triggers
1862 ** flag is not set, but the table has one or more indexes, call
1863 ** GenerateRowIndexDelete(). This removes the index b-tree entries
1864 ** only. The table b-tree entry will be replaced by the new entry
1865 ** when it is inserted.
1867 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
1868 ** also invoke MultiWrite() to indicate that this VDBE may require
1869 ** statement rollback (if the statement is aborted after the delete
1870 ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
1871 ** but being more selective here allows statements like:
1873 ** REPLACE INTO t(rowid) VALUES($newrowid)
1875 ** to run without a statement journal if there are no indexes on the
1879 sqlite3MultiWrite(pParse
);
1880 sqlite3GenerateRowDelete(pParse
, pTab
, pTrigger
, iDataCur
, iIdxCur
,
1881 regNewData
, 1, 0, OE_Replace
, 1, -1);
1882 sqlite3VdbeAddOp2(v
, OP_AddImm
, regTrigCnt
, 1); /* incr trigger cnt */
1885 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1886 assert( HasRowid(pTab
) );
1887 /* This OP_Delete opcode fires the pre-update-hook only. It does
1888 ** not modify the b-tree. It is more efficient to let the coming
1889 ** OP_Insert replace the existing entry than it is to delete the
1890 ** existing entry and then insert a new one. */
1891 sqlite3VdbeAddOp2(v
, OP_Delete
, iDataCur
, OPFLAG_ISNOOP
);
1892 sqlite3VdbeAppendP4(v
, pTab
, P4_TABLE
);
1893 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1895 sqlite3MultiWrite(pParse
);
1896 sqlite3GenerateRowIndexDelete(pParse
, pTab
, iDataCur
, iIdxCur
,0,-1);
1902 #ifndef SQLITE_OMIT_UPSERT
1904 sqlite3UpsertDoUpdate(pParse
, pUpsert
, pTab
, 0, iDataCur
);
1905 /* no break */ deliberate_fall_through
1909 testcase( onError
==OE_Ignore
);
1910 sqlite3VdbeGoto(v
, ignoreDest
);
1914 sqlite3VdbeResolveLabel(v
, addrRowidOk
);
1916 ipkBottom
= sqlite3VdbeAddOp0(v
, OP_Goto
);
1917 sqlite3VdbeJumpHere(v
, ipkTop
-1);
1921 /* Test all UNIQUE constraints by creating entries for each UNIQUE
1922 ** index and making sure that duplicate entries do not already exist.
1923 ** Compute the revised record entries for indices as we go.
1925 ** This loop also handles the case of the PRIMARY KEY index for a
1926 ** WITHOUT ROWID table.
1928 for(ix
=0, pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
, ix
++){
1929 int regIdx
; /* Range of registers hold conent for pIdx */
1930 int regR
; /* Range of registers holding conflicting PK */
1931 int iThisCur
; /* Cursor for this UNIQUE index */
1932 int addrUniqueOk
; /* Jump here if the UNIQUE constraint is satisfied */
1933 int addrConflictCk
; /* First opcode in the conflict check logic */
1935 if( aRegIdx
[ix
]==0 ) continue; /* Skip indices that do not change */
1937 addrUniqueOk
= upsertJump
+1;
1938 upsertBypass
= sqlite3VdbeGoto(v
, 0);
1939 VdbeComment((v
, "Skip upsert subroutine"));
1940 sqlite3VdbeJumpHere(v
, upsertJump
);
1942 addrUniqueOk
= sqlite3VdbeMakeLabel(pParse
);
1944 if( bAffinityDone
==0 && (pUpIdx
==0 || pUpIdx
==pIdx
) ){
1945 sqlite3TableAffinity(v
, pTab
, regNewData
+1);
1948 VdbeNoopComment((v
, "prep index %s", pIdx
->zName
));
1949 iThisCur
= iIdxCur
+ix
;
1952 /* Skip partial indices for which the WHERE clause is not true */
1953 if( pIdx
->pPartIdxWhere
){
1954 sqlite3VdbeAddOp2(v
, OP_Null
, 0, aRegIdx
[ix
]);
1955 pParse
->iSelfTab
= -(regNewData
+1);
1956 sqlite3ExprIfFalseDup(pParse
, pIdx
->pPartIdxWhere
, addrUniqueOk
,
1958 pParse
->iSelfTab
= 0;
1961 /* Create a record for this index entry as it should appear after
1962 ** the insert or update. Store that record in the aRegIdx[ix] register
1964 regIdx
= aRegIdx
[ix
]+1;
1965 for(i
=0; i
<pIdx
->nColumn
; i
++){
1966 int iField
= pIdx
->aiColumn
[i
];
1968 if( iField
==XN_EXPR
){
1969 pParse
->iSelfTab
= -(regNewData
+1);
1970 sqlite3ExprCodeCopy(pParse
, pIdx
->aColExpr
->a
[i
].pExpr
, regIdx
+i
);
1971 pParse
->iSelfTab
= 0;
1972 VdbeComment((v
, "%s column %d", pIdx
->zName
, i
));
1973 }else if( iField
==XN_ROWID
|| iField
==pTab
->iPKey
){
1975 sqlite3VdbeAddOp2(v
, OP_IntCopy
, x
, regIdx
+i
);
1976 VdbeComment((v
, "rowid"));
1978 testcase( sqlite3TableColumnToStorage(pTab
, iField
)!=iField
);
1979 x
= sqlite3TableColumnToStorage(pTab
, iField
) + regNewData
+ 1;
1980 sqlite3VdbeAddOp2(v
, OP_SCopy
, x
, regIdx
+i
);
1981 VdbeComment((v
, "%s", pTab
->aCol
[iField
].zName
));
1984 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regIdx
, pIdx
->nColumn
, aRegIdx
[ix
]);
1985 VdbeComment((v
, "for %s", pIdx
->zName
));
1986 #ifdef SQLITE_ENABLE_NULL_TRIM
1987 if( pIdx
->idxType
==SQLITE_IDXTYPE_PRIMARYKEY
){
1988 sqlite3SetMakeRecordP5(v
, pIdx
->pTable
);
1991 sqlite3VdbeReleaseRegisters(pParse
, regIdx
, pIdx
->nColumn
, 0, 0);
1993 /* In an UPDATE operation, if this index is the PRIMARY KEY index
1994 ** of a WITHOUT ROWID table and there has been no change the
1995 ** primary key, then no collision is possible. The collision detection
1996 ** logic below can all be skipped. */
1997 if( isUpdate
&& pPk
==pIdx
&& pkChng
==0 ){
1998 sqlite3VdbeResolveLabel(v
, addrUniqueOk
);
2002 /* Find out what action to take in case there is a uniqueness conflict */
2003 onError
= pIdx
->onError
;
2004 if( onError
==OE_None
){
2005 sqlite3VdbeResolveLabel(v
, addrUniqueOk
);
2006 continue; /* pIdx is not a UNIQUE index */
2008 if( overrideError
!=OE_Default
){
2009 onError
= overrideError
;
2010 }else if( onError
==OE_Default
){
2014 /* Figure out if the upsert clause applies to this index */
2016 if( pUpsert
->pUpsertSet
==0 ){
2017 onError
= OE_Ignore
; /* DO NOTHING is the same as INSERT OR IGNORE */
2019 onError
= OE_Update
; /* DO UPDATE */
2023 /* Collision detection may be omitted if all of the following are true:
2024 ** (1) The conflict resolution algorithm is REPLACE
2025 ** (2) The table is a WITHOUT ROWID table
2026 ** (3) There are no secondary indexes on the table
2027 ** (4) No delete triggers need to be fired if there is a conflict
2028 ** (5) No FK constraint counters need to be updated if a conflict occurs.
2030 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row
2031 ** must be explicitly deleted in order to ensure any pre-update hook
2033 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK
2034 if( (ix
==0 && pIdx
->pNext
==0) /* Condition 3 */
2035 && pPk
==pIdx
/* Condition 2 */
2036 && onError
==OE_Replace
/* Condition 1 */
2037 && ( 0==(db
->flags
&SQLITE_RecTriggers
) || /* Condition 4 */
2038 0==sqlite3TriggersExist(pParse
, pTab
, TK_DELETE
, 0, 0))
2039 && ( 0==(db
->flags
&SQLITE_ForeignKeys
) || /* Condition 5 */
2040 (0==pTab
->pFKey
&& 0==sqlite3FkReferences(pTab
)))
2042 sqlite3VdbeResolveLabel(v
, addrUniqueOk
);
2045 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */
2047 /* Check to see if the new index entry will be unique */
2048 sqlite3VdbeVerifyAbortable(v
, onError
);
2050 sqlite3VdbeAddOp4Int(v
, OP_NoConflict
, iThisCur
, addrUniqueOk
,
2051 regIdx
, pIdx
->nKeyCol
); VdbeCoverage(v
);
2053 /* Generate code to handle collisions */
2054 regR
= (pIdx
==pPk
) ? regIdx
: sqlite3GetTempRange(pParse
, nPkField
);
2055 if( isUpdate
|| onError
==OE_Replace
){
2056 if( HasRowid(pTab
) ){
2057 sqlite3VdbeAddOp2(v
, OP_IdxRowid
, iThisCur
, regR
);
2058 /* Conflict only if the rowid of the existing index entry
2059 ** is different from old-rowid */
2061 sqlite3VdbeAddOp3(v
, OP_Eq
, regR
, addrUniqueOk
, regOldData
);
2062 sqlite3VdbeChangeP5(v
, SQLITE_NOTNULL
);
2067 /* Extract the PRIMARY KEY from the end of the index entry and
2068 ** store it in registers regR..regR+nPk-1 */
2070 for(i
=0; i
<pPk
->nKeyCol
; i
++){
2071 assert( pPk
->aiColumn
[i
]>=0 );
2072 x
= sqlite3TableColumnToIndex(pIdx
, pPk
->aiColumn
[i
]);
2073 sqlite3VdbeAddOp3(v
, OP_Column
, iThisCur
, x
, regR
+i
);
2074 VdbeComment((v
, "%s.%s", pTab
->zName
,
2075 pTab
->aCol
[pPk
->aiColumn
[i
]].zName
));
2079 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
2080 ** table, only conflict if the new PRIMARY KEY values are actually
2081 ** different from the old.
2083 ** For a UNIQUE index, only conflict if the PRIMARY KEY values
2084 ** of the matched index row are different from the original PRIMARY
2085 ** KEY values of this row before the update. */
2086 int addrJump
= sqlite3VdbeCurrentAddr(v
)+pPk
->nKeyCol
;
2088 int regCmp
= (IsPrimaryKeyIndex(pIdx
) ? regIdx
: regR
);
2090 for(i
=0; i
<pPk
->nKeyCol
; i
++){
2091 char *p4
= (char*)sqlite3LocateCollSeq(pParse
, pPk
->azColl
[i
]);
2092 x
= pPk
->aiColumn
[i
];
2094 if( i
==(pPk
->nKeyCol
-1) ){
2095 addrJump
= addrUniqueOk
;
2098 x
= sqlite3TableColumnToStorage(pTab
, x
);
2099 sqlite3VdbeAddOp4(v
, op
,
2100 regOldData
+1+x
, addrJump
, regCmp
+i
, p4
, P4_COLLSEQ
2102 sqlite3VdbeChangeP5(v
, SQLITE_NOTNULL
);
2103 VdbeCoverageIf(v
, op
==OP_Eq
);
2104 VdbeCoverageIf(v
, op
==OP_Ne
);
2110 /* Generate code that executes if the new index entry is not unique */
2111 assert( onError
==OE_Rollback
|| onError
==OE_Abort
|| onError
==OE_Fail
2112 || onError
==OE_Ignore
|| onError
==OE_Replace
|| onError
==OE_Update
);
2117 testcase( onError
==OE_Rollback
);
2118 testcase( onError
==OE_Abort
);
2119 testcase( onError
==OE_Fail
);
2120 sqlite3UniqueConstraint(pParse
, onError
, pIdx
);
2123 #ifndef SQLITE_OMIT_UPSERT
2125 sqlite3UpsertDoUpdate(pParse
, pUpsert
, pTab
, pIdx
, iIdxCur
+ix
);
2126 /* no break */ deliberate_fall_through
2130 testcase( onError
==OE_Ignore
);
2131 sqlite3VdbeGoto(v
, ignoreDest
);
2135 int nConflictCk
; /* Number of opcodes in conflict check logic */
2137 assert( onError
==OE_Replace
);
2138 nConflictCk
= sqlite3VdbeCurrentAddr(v
) - addrConflictCk
;
2139 assert( nConflictCk
>0 );
2140 testcase( nConflictCk
>1 );
2142 sqlite3MultiWrite(pParse
);
2145 if( pTrigger
&& isUpdate
){
2146 sqlite3VdbeAddOp1(v
, OP_CursorLock
, iDataCur
);
2148 sqlite3GenerateRowDelete(pParse
, pTab
, pTrigger
, iDataCur
, iIdxCur
,
2149 regR
, nPkField
, 0, OE_Replace
,
2150 (pIdx
==pPk
? ONEPASS_SINGLE
: ONEPASS_OFF
), iThisCur
);
2151 if( pTrigger
&& isUpdate
){
2152 sqlite3VdbeAddOp1(v
, OP_CursorUnlock
, iDataCur
);
2155 int addrBypass
; /* Jump destination to bypass recheck logic */
2157 sqlite3VdbeAddOp2(v
, OP_AddImm
, regTrigCnt
, 1); /* incr trigger cnt */
2158 addrBypass
= sqlite3VdbeAddOp0(v
, OP_Goto
); /* Bypass recheck */
2159 VdbeComment((v
, "bypass recheck"));
2161 /* Here we insert code that will be invoked after all constraint
2162 ** checks have run, if and only if one or more replace triggers
2164 sqlite3VdbeResolveLabel(v
, lblRecheckOk
);
2165 lblRecheckOk
= sqlite3VdbeMakeLabel(pParse
);
2166 if( pIdx
->pPartIdxWhere
){
2167 /* Bypass the recheck if this partial index is not defined
2168 ** for the current row */
2169 sqlite3VdbeAddOp2(v
, OP_IsNull
, regIdx
-1, lblRecheckOk
);
2172 /* Copy the constraint check code from above, except change
2173 ** the constraint-ok jump destination to be the address of
2174 ** the next retest block */
2175 while( nConflictCk
>0 ){
2176 VdbeOp x
; /* Conflict check opcode to copy */
2177 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array.
2178 ** Hence, make a complete copy of the opcode, rather than using
2179 ** a pointer to the opcode. */
2180 x
= *sqlite3VdbeGetOp(v
, addrConflictCk
);
2181 if( x
.opcode
!=OP_IdxRowid
){
2182 int p2
; /* New P2 value for copied conflict check opcode */
2184 if( sqlite3OpcodeProperty
[x
.opcode
]&OPFLG_JUMP
){
2189 zP4
= x
.p4type
==P4_INT32
? SQLITE_INT_TO_PTR(x
.p4
.i
) : x
.p4
.z
;
2190 sqlite3VdbeAddOp4(v
, x
.opcode
, x
.p1
, p2
, x
.p3
, zP4
, x
.p4type
);
2191 sqlite3VdbeChangeP5(v
, x
.p5
);
2192 VdbeCoverageIf(v
, p2
!=x
.p2
);
2197 /* If the retest fails, issue an abort */
2198 sqlite3UniqueConstraint(pParse
, OE_Abort
, pIdx
);
2200 sqlite3VdbeJumpHere(v
, addrBypass
); /* Terminate the recheck bypass */
2207 sqlite3VdbeGoto(v
, upsertJump
+1);
2208 sqlite3VdbeJumpHere(v
, upsertBypass
);
2210 sqlite3VdbeResolveLabel(v
, addrUniqueOk
);
2212 if( regR
!=regIdx
) sqlite3ReleaseTempRange(pParse
, regR
, nPkField
);
2215 /* If the IPK constraint is a REPLACE, run it last */
2217 sqlite3VdbeGoto(v
, ipkTop
);
2218 VdbeComment((v
, "Do IPK REPLACE"));
2219 sqlite3VdbeJumpHere(v
, ipkBottom
);
2222 /* Recheck all uniqueness constraints after replace triggers have run */
2223 testcase( regTrigCnt
!=0 && nReplaceTrig
==0 );
2224 assert( regTrigCnt
!=0 || nReplaceTrig
==0 );
2226 sqlite3VdbeAddOp2(v
, OP_IfNot
, regTrigCnt
, lblRecheckOk
);VdbeCoverage(v
);
2229 sqlite3VdbeAddOp3(v
, OP_Eq
, regNewData
, addrRecheck
, regOldData
);
2230 sqlite3VdbeChangeP5(v
, SQLITE_NOTNULL
);
2233 sqlite3VdbeAddOp3(v
, OP_NotExists
, iDataCur
, addrRecheck
, regNewData
);
2235 sqlite3RowidConstraint(pParse
, OE_Abort
, pTab
);
2237 sqlite3VdbeGoto(v
, addrRecheck
);
2239 sqlite3VdbeResolveLabel(v
, lblRecheckOk
);
2242 /* Generate the table record */
2243 if( HasRowid(pTab
) ){
2244 int regRec
= aRegIdx
[ix
];
2245 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regNewData
+1, pTab
->nNVCol
, regRec
);
2246 sqlite3SetMakeRecordP5(v
, pTab
);
2247 if( !bAffinityDone
){
2248 sqlite3TableAffinity(v
, pTab
, 0);
2252 *pbMayReplace
= seenReplace
;
2253 VdbeModuleComment((v
, "END: GenCnstCks(%d)", seenReplace
));
2256 #ifdef SQLITE_ENABLE_NULL_TRIM
2258 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
2259 ** to be the number of columns in table pTab that must not be NULL-trimmed.
2261 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
2263 void sqlite3SetMakeRecordP5(Vdbe
*v
, Table
*pTab
){
2266 /* Records with omitted columns are only allowed for schema format
2267 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
2268 if( pTab
->pSchema
->file_format
<2 ) return;
2270 for(i
=pTab
->nCol
-1; i
>0; i
--){
2271 if( pTab
->aCol
[i
].pDflt
!=0 ) break;
2272 if( pTab
->aCol
[i
].colFlags
& COLFLAG_PRIMKEY
) break;
2274 sqlite3VdbeChangeP5(v
, i
+1);
2279 ** This routine generates code to finish the INSERT or UPDATE operation
2280 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
2281 ** A consecutive range of registers starting at regNewData contains the
2282 ** rowid and the content to be inserted.
2284 ** The arguments to this routine should be the same as the first six
2285 ** arguments to sqlite3GenerateConstraintChecks.
2287 void sqlite3CompleteInsertion(
2288 Parse
*pParse
, /* The parser context */
2289 Table
*pTab
, /* the table into which we are inserting */
2290 int iDataCur
, /* Cursor of the canonical data source */
2291 int iIdxCur
, /* First index cursor */
2292 int regNewData
, /* Range of content */
2293 int *aRegIdx
, /* Register used by each index. 0 for unused indices */
2294 int update_flags
, /* True for UPDATE, False for INSERT */
2295 int appendBias
, /* True if this is likely to be an append */
2296 int useSeekResult
/* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
2298 Vdbe
*v
; /* Prepared statements under construction */
2299 Index
*pIdx
; /* An index being inserted or updated */
2300 u8 pik_flags
; /* flag values passed to the btree insert */
2301 int i
; /* Loop counter */
2303 assert( update_flags
==0
2304 || update_flags
==OPFLAG_ISUPDATE
2305 || update_flags
==(OPFLAG_ISUPDATE
|OPFLAG_SAVEPOSITION
)
2310 assert( pTab
->pSelect
==0 ); /* This table is not a VIEW */
2311 for(i
=0, pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
, i
++){
2312 /* All REPLACE indexes are at the end of the list */
2313 assert( pIdx
->onError
!=OE_Replace
2315 || pIdx
->pNext
->onError
==OE_Replace
);
2316 if( aRegIdx
[i
]==0 ) continue;
2317 if( pIdx
->pPartIdxWhere
){
2318 sqlite3VdbeAddOp2(v
, OP_IsNull
, aRegIdx
[i
], sqlite3VdbeCurrentAddr(v
)+2);
2321 pik_flags
= (useSeekResult
? OPFLAG_USESEEKRESULT
: 0);
2322 if( IsPrimaryKeyIndex(pIdx
) && !HasRowid(pTab
) ){
2323 assert( pParse
->nested
==0 );
2324 pik_flags
|= OPFLAG_NCHANGE
;
2325 pik_flags
|= (update_flags
& OPFLAG_SAVEPOSITION
);
2326 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2327 if( update_flags
==0 ){
2328 int r
= sqlite3GetTempReg(pParse
);
2329 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, r
);
2330 sqlite3VdbeAddOp4(v
, OP_Insert
,
2331 iIdxCur
+i
, aRegIdx
[i
], r
, (char*)pTab
, P4_TABLE
2333 sqlite3VdbeChangeP5(v
, OPFLAG_ISNOOP
);
2334 sqlite3ReleaseTempReg(pParse
, r
);
2338 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iIdxCur
+i
, aRegIdx
[i
],
2340 pIdx
->uniqNotNull
? pIdx
->nKeyCol
: pIdx
->nColumn
);
2341 sqlite3VdbeChangeP5(v
, pik_flags
);
2343 if( !HasRowid(pTab
) ) return;
2344 if( pParse
->nested
){
2347 pik_flags
= OPFLAG_NCHANGE
;
2348 pik_flags
|= (update_flags
?update_flags
:OPFLAG_LASTROWID
);
2351 pik_flags
|= OPFLAG_APPEND
;
2353 if( useSeekResult
){
2354 pik_flags
|= OPFLAG_USESEEKRESULT
;
2356 sqlite3VdbeAddOp3(v
, OP_Insert
, iDataCur
, aRegIdx
[i
], regNewData
);
2357 if( !pParse
->nested
){
2358 sqlite3VdbeAppendP4(v
, pTab
, P4_TABLE
);
2360 sqlite3VdbeChangeP5(v
, pik_flags
);
2364 ** Allocate cursors for the pTab table and all its indices and generate
2365 ** code to open and initialized those cursors.
2367 ** The cursor for the object that contains the complete data (normally
2368 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
2369 ** ROWID table) is returned in *piDataCur. The first index cursor is
2370 ** returned in *piIdxCur. The number of indices is returned.
2372 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
2373 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
2374 ** If iBase is negative, then allocate the next available cursor.
2376 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
2377 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
2378 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
2379 ** pTab->pIndex list.
2381 ** If pTab is a virtual table, then this routine is a no-op and the
2382 ** *piDataCur and *piIdxCur values are left uninitialized.
2384 int sqlite3OpenTableAndIndices(
2385 Parse
*pParse
, /* Parsing context */
2386 Table
*pTab
, /* Table to be opened */
2387 int op
, /* OP_OpenRead or OP_OpenWrite */
2388 u8 p5
, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
2389 int iBase
, /* Use this for the table cursor, if there is one */
2390 u8
*aToOpen
, /* If not NULL: boolean for each table and index */
2391 int *piDataCur
, /* Write the database source cursor number here */
2392 int *piIdxCur
/* Write the first index cursor number here */
2400 assert( op
==OP_OpenRead
|| op
==OP_OpenWrite
);
2401 assert( op
==OP_OpenWrite
|| p5
==0 );
2402 if( IsVirtual(pTab
) ){
2403 /* This routine is a no-op for virtual tables. Leave the output
2404 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind
2405 ** can detect if they are used by mistake in the caller. */
2408 iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
2411 if( iBase
<0 ) iBase
= pParse
->nTab
;
2413 if( piDataCur
) *piDataCur
= iDataCur
;
2414 if( HasRowid(pTab
) && (aToOpen
==0 || aToOpen
[0]) ){
2415 sqlite3OpenTable(pParse
, iDataCur
, iDb
, pTab
, op
);
2417 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, op
==OP_OpenWrite
, pTab
->zName
);
2419 if( piIdxCur
) *piIdxCur
= iBase
;
2420 for(i
=0, pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
, i
++){
2421 int iIdxCur
= iBase
++;
2422 assert( pIdx
->pSchema
==pTab
->pSchema
);
2423 if( IsPrimaryKeyIndex(pIdx
) && !HasRowid(pTab
) ){
2424 if( piDataCur
) *piDataCur
= iIdxCur
;
2427 if( aToOpen
==0 || aToOpen
[i
+1] ){
2428 sqlite3VdbeAddOp3(v
, op
, iIdxCur
, pIdx
->tnum
, iDb
);
2429 sqlite3VdbeSetP4KeyInfo(pParse
, pIdx
);
2430 sqlite3VdbeChangeP5(v
, p5
);
2431 VdbeComment((v
, "%s", pIdx
->zName
));
2434 if( iBase
>pParse
->nTab
) pParse
->nTab
= iBase
;
2441 ** The following global variable is incremented whenever the
2442 ** transfer optimization is used. This is used for testing
2443 ** purposes only - to make sure the transfer optimization really
2444 ** is happening when it is supposed to.
2446 int sqlite3_xferopt_count
;
2447 #endif /* SQLITE_TEST */
2450 #ifndef SQLITE_OMIT_XFER_OPT
2452 ** Check to see if index pSrc is compatible as a source of data
2453 ** for index pDest in an insert transfer optimization. The rules
2454 ** for a compatible index:
2456 ** * The index is over the same set of columns
2457 ** * The same DESC and ASC markings occurs on all columns
2458 ** * The same onError processing (OE_Abort, OE_Ignore, etc)
2459 ** * The same collating sequence on each column
2460 ** * The index has the exact same WHERE clause
2462 static int xferCompatibleIndex(Index
*pDest
, Index
*pSrc
){
2464 assert( pDest
&& pSrc
);
2465 assert( pDest
->pTable
!=pSrc
->pTable
);
2466 if( pDest
->nKeyCol
!=pSrc
->nKeyCol
|| pDest
->nColumn
!=pSrc
->nColumn
){
2467 return 0; /* Different number of columns */
2469 if( pDest
->onError
!=pSrc
->onError
){
2470 return 0; /* Different conflict resolution strategies */
2472 for(i
=0; i
<pSrc
->nKeyCol
; i
++){
2473 if( pSrc
->aiColumn
[i
]!=pDest
->aiColumn
[i
] ){
2474 return 0; /* Different columns indexed */
2476 if( pSrc
->aiColumn
[i
]==XN_EXPR
){
2477 assert( pSrc
->aColExpr
!=0 && pDest
->aColExpr
!=0 );
2478 if( sqlite3ExprCompare(0, pSrc
->aColExpr
->a
[i
].pExpr
,
2479 pDest
->aColExpr
->a
[i
].pExpr
, -1)!=0 ){
2480 return 0; /* Different expressions in the index */
2483 if( pSrc
->aSortOrder
[i
]!=pDest
->aSortOrder
[i
] ){
2484 return 0; /* Different sort orders */
2486 if( sqlite3_stricmp(pSrc
->azColl
[i
],pDest
->azColl
[i
])!=0 ){
2487 return 0; /* Different collating sequences */
2490 if( sqlite3ExprCompare(0, pSrc
->pPartIdxWhere
, pDest
->pPartIdxWhere
, -1) ){
2491 return 0; /* Different WHERE clauses */
2494 /* If no test above fails then the indices must be compatible */
2499 ** Attempt the transfer optimization on INSERTs of the form
2501 ** INSERT INTO tab1 SELECT * FROM tab2;
2503 ** The xfer optimization transfers raw records from tab2 over to tab1.
2504 ** Columns are not decoded and reassembled, which greatly improves
2505 ** performance. Raw index records are transferred in the same way.
2507 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
2508 ** There are lots of rules for determining compatibility - see comments
2509 ** embedded in the code for details.
2511 ** This routine returns TRUE if the optimization is guaranteed to be used.
2512 ** Sometimes the xfer optimization will only work if the destination table
2513 ** is empty - a factor that can only be determined at run-time. In that
2514 ** case, this routine generates code for the xfer optimization but also
2515 ** does a test to see if the destination table is empty and jumps over the
2516 ** xfer optimization code if the test fails. In that case, this routine
2517 ** returns FALSE so that the caller will know to go ahead and generate
2518 ** an unoptimized transfer. This routine also returns FALSE if there
2519 ** is no chance that the xfer optimization can be applied.
2521 ** This optimization is particularly useful at making VACUUM run faster.
2523 static int xferOptimization(
2524 Parse
*pParse
, /* Parser context */
2525 Table
*pDest
, /* The table we are inserting into */
2526 Select
*pSelect
, /* A SELECT statement to use as the data source */
2527 int onError
, /* How to handle constraint errors */
2528 int iDbDest
/* The database of pDest */
2530 sqlite3
*db
= pParse
->db
;
2531 ExprList
*pEList
; /* The result set of the SELECT */
2532 Table
*pSrc
; /* The table in the FROM clause of SELECT */
2533 Index
*pSrcIdx
, *pDestIdx
; /* Source and destination indices */
2534 struct SrcList_item
*pItem
; /* An element of pSelect->pSrc */
2535 int i
; /* Loop counter */
2536 int iDbSrc
; /* The database of pSrc */
2537 int iSrc
, iDest
; /* Cursors from source and destination */
2538 int addr1
, addr2
; /* Loop addresses */
2539 int emptyDestTest
= 0; /* Address of test for empty pDest */
2540 int emptySrcTest
= 0; /* Address of test for empty pSrc */
2541 Vdbe
*v
; /* The VDBE we are building */
2542 int regAutoinc
; /* Memory register used by AUTOINC */
2543 int destHasUniqueIdx
= 0; /* True if pDest has a UNIQUE index */
2544 int regData
, regRowid
; /* Registers holding data and rowid */
2547 return 0; /* Must be of the form INSERT INTO ... SELECT ... */
2549 if( pParse
->pWith
|| pSelect
->pWith
){
2550 /* Do not attempt to process this query if there are an WITH clauses
2551 ** attached to it. Proceeding may generate a false "no such table: xxx"
2552 ** error if pSelect reads from a CTE named "xxx". */
2555 if( sqlite3TriggerList(pParse
, pDest
) ){
2556 return 0; /* tab1 must not have triggers */
2558 #ifndef SQLITE_OMIT_VIRTUALTABLE
2559 if( IsVirtual(pDest
) ){
2560 return 0; /* tab1 must not be a virtual table */
2563 if( onError
==OE_Default
){
2564 if( pDest
->iPKey
>=0 ) onError
= pDest
->keyConf
;
2565 if( onError
==OE_Default
) onError
= OE_Abort
;
2567 assert(pSelect
->pSrc
); /* allocated even if there is no FROM clause */
2568 if( pSelect
->pSrc
->nSrc
!=1 ){
2569 return 0; /* FROM clause must have exactly one term */
2571 if( pSelect
->pSrc
->a
[0].pSelect
){
2572 return 0; /* FROM clause cannot contain a subquery */
2574 if( pSelect
->pWhere
){
2575 return 0; /* SELECT may not have a WHERE clause */
2577 if( pSelect
->pOrderBy
){
2578 return 0; /* SELECT may not have an ORDER BY clause */
2580 /* Do not need to test for a HAVING clause. If HAVING is present but
2581 ** there is no ORDER BY, we will get an error. */
2582 if( pSelect
->pGroupBy
){
2583 return 0; /* SELECT may not have a GROUP BY clause */
2585 if( pSelect
->pLimit
){
2586 return 0; /* SELECT may not have a LIMIT clause */
2588 if( pSelect
->pPrior
){
2589 return 0; /* SELECT may not be a compound query */
2591 if( pSelect
->selFlags
& SF_Distinct
){
2592 return 0; /* SELECT may not be DISTINCT */
2594 pEList
= pSelect
->pEList
;
2595 assert( pEList
!=0 );
2596 if( pEList
->nExpr
!=1 ){
2597 return 0; /* The result set must have exactly one column */
2599 assert( pEList
->a
[0].pExpr
);
2600 if( pEList
->a
[0].pExpr
->op
!=TK_ASTERISK
){
2601 return 0; /* The result set must be the special operator "*" */
2604 /* At this point we have established that the statement is of the
2605 ** correct syntactic form to participate in this optimization. Now
2606 ** we have to check the semantics.
2608 pItem
= pSelect
->pSrc
->a
;
2609 pSrc
= sqlite3LocateTableItem(pParse
, 0, pItem
);
2611 return 0; /* FROM clause does not contain a real table */
2613 if( pSrc
->tnum
==pDest
->tnum
&& pSrc
->pSchema
==pDest
->pSchema
){
2614 testcase( pSrc
!=pDest
); /* Possible due to bad sqlite_schema.rootpage */
2615 return 0; /* tab1 and tab2 may not be the same table */
2617 if( HasRowid(pDest
)!=HasRowid(pSrc
) ){
2618 return 0; /* source and destination must both be WITHOUT ROWID or not */
2620 #ifndef SQLITE_OMIT_VIRTUALTABLE
2621 if( IsVirtual(pSrc
) ){
2622 return 0; /* tab2 must not be a virtual table */
2625 if( pSrc
->pSelect
){
2626 return 0; /* tab2 may not be a view */
2628 if( pDest
->nCol
!=pSrc
->nCol
){
2629 return 0; /* Number of columns must be the same in tab1 and tab2 */
2631 if( pDest
->iPKey
!=pSrc
->iPKey
){
2632 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
2634 for(i
=0; i
<pDest
->nCol
; i
++){
2635 Column
*pDestCol
= &pDest
->aCol
[i
];
2636 Column
*pSrcCol
= &pSrc
->aCol
[i
];
2637 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
2638 if( (db
->mDbFlags
& DBFLAG_Vacuum
)==0
2639 && (pDestCol
->colFlags
| pSrcCol
->colFlags
) & COLFLAG_HIDDEN
2641 return 0; /* Neither table may have __hidden__ columns */
2644 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2645 /* Even if tables t1 and t2 have identical schemas, if they contain
2646 ** generated columns, then this statement is semantically incorrect:
2648 ** INSERT INTO t2 SELECT * FROM t1;
2650 ** The reason is that generated column values are returned by the
2651 ** the SELECT statement on the right but the INSERT statement on the
2652 ** left wants them to be omitted.
2654 ** Nevertheless, this is a useful notational shorthand to tell SQLite
2655 ** to do a bulk transfer all of the content from t1 over to t2.
2657 ** We could, in theory, disable this (except for internal use by the
2658 ** VACUUM command where it is actually needed). But why do that? It
2659 ** seems harmless enough, and provides a useful service.
2661 if( (pDestCol
->colFlags
& COLFLAG_GENERATED
) !=
2662 (pSrcCol
->colFlags
& COLFLAG_GENERATED
) ){
2663 return 0; /* Both columns have the same generated-column type */
2665 /* But the transfer is only allowed if both the source and destination
2666 ** tables have the exact same expressions for generated columns.
2667 ** This requirement could be relaxed for VIRTUAL columns, I suppose.
2669 if( (pDestCol
->colFlags
& COLFLAG_GENERATED
)!=0 ){
2670 if( sqlite3ExprCompare(0, pSrcCol
->pDflt
, pDestCol
->pDflt
, -1)!=0 ){
2671 testcase( pDestCol
->colFlags
& COLFLAG_VIRTUAL
);
2672 testcase( pDestCol
->colFlags
& COLFLAG_STORED
);
2673 return 0; /* Different generator expressions */
2677 if( pDestCol
->affinity
!=pSrcCol
->affinity
){
2678 return 0; /* Affinity must be the same on all columns */
2680 if( sqlite3_stricmp(pDestCol
->zColl
, pSrcCol
->zColl
)!=0 ){
2681 return 0; /* Collating sequence must be the same on all columns */
2683 if( pDestCol
->notNull
&& !pSrcCol
->notNull
){
2684 return 0; /* tab2 must be NOT NULL if tab1 is */
2686 /* Default values for second and subsequent columns need to match. */
2687 if( (pDestCol
->colFlags
& COLFLAG_GENERATED
)==0 && i
>0 ){
2688 assert( pDestCol
->pDflt
==0 || pDestCol
->pDflt
->op
==TK_SPAN
);
2689 assert( pSrcCol
->pDflt
==0 || pSrcCol
->pDflt
->op
==TK_SPAN
);
2690 if( (pDestCol
->pDflt
==0)!=(pSrcCol
->pDflt
==0)
2691 || (pDestCol
->pDflt
&& strcmp(pDestCol
->pDflt
->u
.zToken
,
2692 pSrcCol
->pDflt
->u
.zToken
)!=0)
2694 return 0; /* Default values must be the same for all columns */
2698 for(pDestIdx
=pDest
->pIndex
; pDestIdx
; pDestIdx
=pDestIdx
->pNext
){
2699 if( IsUniqueIndex(pDestIdx
) ){
2700 destHasUniqueIdx
= 1;
2702 for(pSrcIdx
=pSrc
->pIndex
; pSrcIdx
; pSrcIdx
=pSrcIdx
->pNext
){
2703 if( xferCompatibleIndex(pDestIdx
, pSrcIdx
) ) break;
2706 return 0; /* pDestIdx has no corresponding index in pSrc */
2708 if( pSrcIdx
->tnum
==pDestIdx
->tnum
&& pSrc
->pSchema
==pDest
->pSchema
2709 && sqlite3FaultSim(411)==SQLITE_OK
){
2710 /* The sqlite3FaultSim() call allows this corruption test to be
2711 ** bypassed during testing, in order to exercise other corruption tests
2712 ** further downstream. */
2713 return 0; /* Corrupt schema - two indexes on the same btree */
2716 #ifndef SQLITE_OMIT_CHECK
2717 if( pDest
->pCheck
&& sqlite3ExprListCompare(pSrc
->pCheck
,pDest
->pCheck
,-1) ){
2718 return 0; /* Tables have different CHECK constraints. Ticket #2252 */
2721 #ifndef SQLITE_OMIT_FOREIGN_KEY
2722 /* Disallow the transfer optimization if the destination table constains
2723 ** any foreign key constraints. This is more restrictive than necessary.
2724 ** But the main beneficiary of the transfer optimization is the VACUUM
2725 ** command, and the VACUUM command disables foreign key constraints. So
2726 ** the extra complication to make this rule less restrictive is probably
2727 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
2729 if( (db
->flags
& SQLITE_ForeignKeys
)!=0 && pDest
->pFKey
!=0 ){
2733 if( (db
->flags
& SQLITE_CountRows
)!=0 ){
2734 return 0; /* xfer opt does not play well with PRAGMA count_changes */
2737 /* If we get this far, it means that the xfer optimization is at
2738 ** least a possibility, though it might only work if the destination
2739 ** table (tab1) is initially empty.
2742 sqlite3_xferopt_count
++;
2744 iDbSrc
= sqlite3SchemaToIndex(db
, pSrc
->pSchema
);
2745 v
= sqlite3GetVdbe(pParse
);
2746 sqlite3CodeVerifySchema(pParse
, iDbSrc
);
2747 iSrc
= pParse
->nTab
++;
2748 iDest
= pParse
->nTab
++;
2749 regAutoinc
= autoIncBegin(pParse
, iDbDest
, pDest
);
2750 regData
= sqlite3GetTempReg(pParse
);
2751 regRowid
= sqlite3GetTempReg(pParse
);
2752 sqlite3OpenTable(pParse
, iDest
, iDbDest
, pDest
, OP_OpenWrite
);
2753 assert( HasRowid(pDest
) || destHasUniqueIdx
);
2754 if( (db
->mDbFlags
& DBFLAG_Vacuum
)==0 && (
2755 (pDest
->iPKey
<0 && pDest
->pIndex
!=0) /* (1) */
2756 || destHasUniqueIdx
/* (2) */
2757 || (onError
!=OE_Abort
&& onError
!=OE_Rollback
) /* (3) */
2759 /* In some circumstances, we are able to run the xfer optimization
2760 ** only if the destination table is initially empty. Unless the
2761 ** DBFLAG_Vacuum flag is set, this block generates code to make
2762 ** that determination. If DBFLAG_Vacuum is set, then the destination
2763 ** table is always empty.
2765 ** Conditions under which the destination must be empty:
2767 ** (1) There is no INTEGER PRIMARY KEY but there are indices.
2768 ** (If the destination is not initially empty, the rowid fields
2769 ** of index entries might need to change.)
2771 ** (2) The destination has a unique index. (The xfer optimization
2772 ** is unable to test uniqueness.)
2774 ** (3) onError is something other than OE_Abort and OE_Rollback.
2776 addr1
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iDest
, 0); VdbeCoverage(v
);
2777 emptyDestTest
= sqlite3VdbeAddOp0(v
, OP_Goto
);
2778 sqlite3VdbeJumpHere(v
, addr1
);
2780 if( HasRowid(pSrc
) ){
2782 sqlite3OpenTable(pParse
, iSrc
, iDbSrc
, pSrc
, OP_OpenRead
);
2783 emptySrcTest
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iSrc
, 0); VdbeCoverage(v
);
2784 if( pDest
->iPKey
>=0 ){
2785 addr1
= sqlite3VdbeAddOp2(v
, OP_Rowid
, iSrc
, regRowid
);
2786 sqlite3VdbeVerifyAbortable(v
, onError
);
2787 addr2
= sqlite3VdbeAddOp3(v
, OP_NotExists
, iDest
, 0, regRowid
);
2789 sqlite3RowidConstraint(pParse
, onError
, pDest
);
2790 sqlite3VdbeJumpHere(v
, addr2
);
2791 autoIncStep(pParse
, regAutoinc
, regRowid
);
2792 }else if( pDest
->pIndex
==0 && !(db
->mDbFlags
& DBFLAG_VacuumInto
) ){
2793 addr1
= sqlite3VdbeAddOp2(v
, OP_NewRowid
, iDest
, regRowid
);
2795 addr1
= sqlite3VdbeAddOp2(v
, OP_Rowid
, iSrc
, regRowid
);
2796 assert( (pDest
->tabFlags
& TF_Autoincrement
)==0 );
2798 if( db
->mDbFlags
& DBFLAG_Vacuum
){
2799 sqlite3VdbeAddOp1(v
, OP_SeekEnd
, iDest
);
2800 insFlags
= OPFLAG_APPEND
|OPFLAG_USESEEKRESULT
;
2802 insFlags
= OPFLAG_NCHANGE
|OPFLAG_LASTROWID
|OPFLAG_APPEND
;
2804 sqlite3VdbeAddOp3(v
, OP_RowData
, iSrc
, regData
, 1);
2805 sqlite3VdbeAddOp4(v
, OP_Insert
, iDest
, regData
, regRowid
,
2806 (char*)pDest
, P4_TABLE
);
2807 sqlite3VdbeChangeP5(v
, insFlags
);
2808 sqlite3VdbeAddOp2(v
, OP_Next
, iSrc
, addr1
); VdbeCoverage(v
);
2809 sqlite3VdbeAddOp2(v
, OP_Close
, iSrc
, 0);
2810 sqlite3VdbeAddOp2(v
, OP_Close
, iDest
, 0);
2812 sqlite3TableLock(pParse
, iDbDest
, pDest
->tnum
, 1, pDest
->zName
);
2813 sqlite3TableLock(pParse
, iDbSrc
, pSrc
->tnum
, 0, pSrc
->zName
);
2815 for(pDestIdx
=pDest
->pIndex
; pDestIdx
; pDestIdx
=pDestIdx
->pNext
){
2817 for(pSrcIdx
=pSrc
->pIndex
; ALWAYS(pSrcIdx
); pSrcIdx
=pSrcIdx
->pNext
){
2818 if( xferCompatibleIndex(pDestIdx
, pSrcIdx
) ) break;
2821 sqlite3VdbeAddOp3(v
, OP_OpenRead
, iSrc
, pSrcIdx
->tnum
, iDbSrc
);
2822 sqlite3VdbeSetP4KeyInfo(pParse
, pSrcIdx
);
2823 VdbeComment((v
, "%s", pSrcIdx
->zName
));
2824 sqlite3VdbeAddOp3(v
, OP_OpenWrite
, iDest
, pDestIdx
->tnum
, iDbDest
);
2825 sqlite3VdbeSetP4KeyInfo(pParse
, pDestIdx
);
2826 sqlite3VdbeChangeP5(v
, OPFLAG_BULKCSR
);
2827 VdbeComment((v
, "%s", pDestIdx
->zName
));
2828 addr1
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iSrc
, 0); VdbeCoverage(v
);
2829 if( db
->mDbFlags
& DBFLAG_Vacuum
){
2830 /* This INSERT command is part of a VACUUM operation, which guarantees
2831 ** that the destination table is empty. If all indexed columns use
2832 ** collation sequence BINARY, then it can also be assumed that the
2833 ** index will be populated by inserting keys in strictly sorted
2834 ** order. In this case, instead of seeking within the b-tree as part
2835 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the
2836 ** OP_IdxInsert to seek to the point within the b-tree where each key
2837 ** should be inserted. This is faster.
2839 ** If any of the indexed columns use a collation sequence other than
2840 ** BINARY, this optimization is disabled. This is because the user
2841 ** might change the definition of a collation sequence and then run
2842 ** a VACUUM command. In that case keys may not be written in strictly
2844 for(i
=0; i
<pSrcIdx
->nColumn
; i
++){
2845 const char *zColl
= pSrcIdx
->azColl
[i
];
2846 if( sqlite3_stricmp(sqlite3StrBINARY
, zColl
) ) break;
2848 if( i
==pSrcIdx
->nColumn
){
2849 idxInsFlags
= OPFLAG_USESEEKRESULT
;
2850 sqlite3VdbeAddOp1(v
, OP_SeekEnd
, iDest
);
2852 }else if( !HasRowid(pSrc
) && pDestIdx
->idxType
==SQLITE_IDXTYPE_PRIMARYKEY
){
2853 idxInsFlags
|= OPFLAG_NCHANGE
;
2855 sqlite3VdbeAddOp3(v
, OP_RowData
, iSrc
, regData
, 1);
2856 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iDest
, regData
);
2857 sqlite3VdbeChangeP5(v
, idxInsFlags
|OPFLAG_APPEND
);
2858 sqlite3VdbeAddOp2(v
, OP_Next
, iSrc
, addr1
+1); VdbeCoverage(v
);
2859 sqlite3VdbeJumpHere(v
, addr1
);
2860 sqlite3VdbeAddOp2(v
, OP_Close
, iSrc
, 0);
2861 sqlite3VdbeAddOp2(v
, OP_Close
, iDest
, 0);
2863 if( emptySrcTest
) sqlite3VdbeJumpHere(v
, emptySrcTest
);
2864 sqlite3ReleaseTempReg(pParse
, regRowid
);
2865 sqlite3ReleaseTempReg(pParse
, regData
);
2866 if( emptyDestTest
){
2867 sqlite3AutoincrementEnd(pParse
);
2868 sqlite3VdbeAddOp2(v
, OP_Halt
, SQLITE_OK
, 0);
2869 sqlite3VdbeJumpHere(v
, emptyDestTest
);
2870 sqlite3VdbeAddOp2(v
, OP_Close
, iDest
, 0);
2876 #endif /* SQLITE_OMIT_XFER_OPT */