update version and change log for 4.4.3
[sqlcipher.git] / src / insert.c
blob393cd528f1f90af8d562bb1629c1ef846c1087a5
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle INSERT statements in SQLite.
15 #include "sqliteInt.h"
18 ** Generate code that will
20 ** (1) acquire a lock for table pTab then
21 ** (2) open pTab as cursor iCur.
23 ** If pTab is a WITHOUT ROWID table, then it is the PRIMARY KEY index
24 ** for that table that is actually opened.
26 void sqlite3OpenTable(
27 Parse *pParse, /* Generate code into this VDBE */
28 int iCur, /* The cursor number of the table */
29 int iDb, /* The database index in sqlite3.aDb[] */
30 Table *pTab, /* The table to be opened */
31 int opcode /* OP_OpenRead or OP_OpenWrite */
33 Vdbe *v;
34 assert( !IsVirtual(pTab) );
35 assert( pParse->pVdbe!=0 );
36 v = pParse->pVdbe;
37 assert( opcode==OP_OpenWrite || opcode==OP_OpenRead );
38 sqlite3TableLock(pParse, iDb, pTab->tnum,
39 (opcode==OP_OpenWrite)?1:0, pTab->zName);
40 if( HasRowid(pTab) ){
41 sqlite3VdbeAddOp4Int(v, opcode, iCur, pTab->tnum, iDb, pTab->nNVCol);
42 VdbeComment((v, "%s", pTab->zName));
43 }else{
44 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
45 assert( pPk!=0 );
46 assert( pPk->tnum==pTab->tnum );
47 sqlite3VdbeAddOp3(v, opcode, iCur, pPk->tnum, iDb);
48 sqlite3VdbeSetP4KeyInfo(pParse, pPk);
49 VdbeComment((v, "%s", pTab->zName));
54 ** Return a pointer to the column affinity string associated with index
55 ** pIdx. A column affinity string has one character for each column in
56 ** the table, according to the affinity of the column:
58 ** Character Column affinity
59 ** ------------------------------
60 ** 'A' BLOB
61 ** 'B' TEXT
62 ** 'C' NUMERIC
63 ** 'D' INTEGER
64 ** 'F' REAL
66 ** An extra 'D' is appended to the end of the string to cover the
67 ** rowid that appears as the last column in every index.
69 ** Memory for the buffer containing the column index affinity string
70 ** is managed along with the rest of the Index structure. It will be
71 ** released when sqlite3DeleteIndex() is called.
73 const char *sqlite3IndexAffinityStr(sqlite3 *db, Index *pIdx){
74 if( !pIdx->zColAff ){
75 /* The first time a column affinity string for a particular index is
76 ** required, it is allocated and populated here. It is then stored as
77 ** a member of the Index structure for subsequent use.
79 ** The column affinity string will eventually be deleted by
80 ** sqliteDeleteIndex() when the Index structure itself is cleaned
81 ** up.
83 int n;
84 Table *pTab = pIdx->pTable;
85 pIdx->zColAff = (char *)sqlite3DbMallocRaw(0, pIdx->nColumn+1);
86 if( !pIdx->zColAff ){
87 sqlite3OomFault(db);
88 return 0;
90 for(n=0; n<pIdx->nColumn; n++){
91 i16 x = pIdx->aiColumn[n];
92 char aff;
93 if( x>=0 ){
94 aff = pTab->aCol[x].affinity;
95 }else if( x==XN_ROWID ){
96 aff = SQLITE_AFF_INTEGER;
97 }else{
98 assert( x==XN_EXPR );
99 assert( pIdx->aColExpr!=0 );
100 aff = sqlite3ExprAffinity(pIdx->aColExpr->a[n].pExpr);
102 if( aff<SQLITE_AFF_BLOB ) aff = SQLITE_AFF_BLOB;
103 if( aff>SQLITE_AFF_NUMERIC) aff = SQLITE_AFF_NUMERIC;
104 pIdx->zColAff[n] = aff;
106 pIdx->zColAff[n] = 0;
109 return pIdx->zColAff;
113 ** Compute the affinity string for table pTab, if it has not already been
114 ** computed. As an optimization, omit trailing SQLITE_AFF_BLOB affinities.
116 ** If the affinity exists (if it is no entirely SQLITE_AFF_BLOB values) and
117 ** if iReg>0 then code an OP_Affinity opcode that will set the affinities
118 ** for register iReg and following. Or if affinities exists and iReg==0,
119 ** then just set the P4 operand of the previous opcode (which should be
120 ** an OP_MakeRecord) to the affinity string.
122 ** A column affinity string has one character per column:
124 ** Character Column affinity
125 ** ------------------------------
126 ** 'A' BLOB
127 ** 'B' TEXT
128 ** 'C' NUMERIC
129 ** 'D' INTEGER
130 ** 'E' REAL
132 void sqlite3TableAffinity(Vdbe *v, Table *pTab, int iReg){
133 int i, j;
134 char *zColAff = pTab->zColAff;
135 if( zColAff==0 ){
136 sqlite3 *db = sqlite3VdbeDb(v);
137 zColAff = (char *)sqlite3DbMallocRaw(0, pTab->nCol+1);
138 if( !zColAff ){
139 sqlite3OomFault(db);
140 return;
143 for(i=j=0; i<pTab->nCol; i++){
144 assert( pTab->aCol[i].affinity!=0 );
145 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ){
146 zColAff[j++] = pTab->aCol[i].affinity;
150 zColAff[j--] = 0;
151 }while( j>=0 && zColAff[j]<=SQLITE_AFF_BLOB );
152 pTab->zColAff = zColAff;
154 assert( zColAff!=0 );
155 i = sqlite3Strlen30NN(zColAff);
156 if( i ){
157 if( iReg ){
158 sqlite3VdbeAddOp4(v, OP_Affinity, iReg, i, 0, zColAff, i);
159 }else{
160 sqlite3VdbeChangeP4(v, -1, zColAff, i);
166 ** Return non-zero if the table pTab in database iDb or any of its indices
167 ** have been opened at any point in the VDBE program. This is used to see if
168 ** a statement of the form "INSERT INTO <iDb, pTab> SELECT ..." can
169 ** run without using a temporary table for the results of the SELECT.
171 static int readsTable(Parse *p, int iDb, Table *pTab){
172 Vdbe *v = sqlite3GetVdbe(p);
173 int i;
174 int iEnd = sqlite3VdbeCurrentAddr(v);
175 #ifndef SQLITE_OMIT_VIRTUALTABLE
176 VTable *pVTab = IsVirtual(pTab) ? sqlite3GetVTable(p->db, pTab) : 0;
177 #endif
179 for(i=1; i<iEnd; i++){
180 VdbeOp *pOp = sqlite3VdbeGetOp(v, i);
181 assert( pOp!=0 );
182 if( pOp->opcode==OP_OpenRead && pOp->p3==iDb ){
183 Index *pIndex;
184 Pgno tnum = pOp->p2;
185 if( tnum==pTab->tnum ){
186 return 1;
188 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
189 if( tnum==pIndex->tnum ){
190 return 1;
194 #ifndef SQLITE_OMIT_VIRTUALTABLE
195 if( pOp->opcode==OP_VOpen && pOp->p4.pVtab==pVTab ){
196 assert( pOp->p4.pVtab!=0 );
197 assert( pOp->p4type==P4_VTAB );
198 return 1;
200 #endif
202 return 0;
205 /* This walker callback will compute the union of colFlags flags for all
206 ** referenced columns in a CHECK constraint or generated column expression.
208 static int exprColumnFlagUnion(Walker *pWalker, Expr *pExpr){
209 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 ){
210 assert( pExpr->iColumn < pWalker->u.pTab->nCol );
211 pWalker->eCode |= pWalker->u.pTab->aCol[pExpr->iColumn].colFlags;
213 return WRC_Continue;
216 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
218 ** All regular columns for table pTab have been puts into registers
219 ** starting with iRegStore. The registers that correspond to STORED
220 ** or VIRTUAL columns have not yet been initialized. This routine goes
221 ** back and computes the values for those columns based on the previously
222 ** computed normal columns.
224 void sqlite3ComputeGeneratedColumns(
225 Parse *pParse, /* Parsing context */
226 int iRegStore, /* Register holding the first column */
227 Table *pTab /* The table */
229 int i;
230 Walker w;
231 Column *pRedo;
232 int eProgress;
233 VdbeOp *pOp;
235 assert( pTab->tabFlags & TF_HasGenerated );
236 testcase( pTab->tabFlags & TF_HasVirtual );
237 testcase( pTab->tabFlags & TF_HasStored );
239 /* Before computing generated columns, first go through and make sure
240 ** that appropriate affinity has been applied to the regular columns
242 sqlite3TableAffinity(pParse->pVdbe, pTab, iRegStore);
243 if( (pTab->tabFlags & TF_HasStored)!=0
244 && (pOp = sqlite3VdbeGetOp(pParse->pVdbe,-1))->opcode==OP_Affinity
246 /* Change the OP_Affinity argument to '@' (NONE) for all stored
247 ** columns. '@' is the no-op affinity and those columns have not
248 ** yet been computed. */
249 int ii, jj;
250 char *zP4 = pOp->p4.z;
251 assert( zP4!=0 );
252 assert( pOp->p4type==P4_DYNAMIC );
253 for(ii=jj=0; zP4[jj]; ii++){
254 if( pTab->aCol[ii].colFlags & COLFLAG_VIRTUAL ){
255 continue;
257 if( pTab->aCol[ii].colFlags & COLFLAG_STORED ){
258 zP4[jj] = SQLITE_AFF_NONE;
260 jj++;
264 /* Because there can be multiple generated columns that refer to one another,
265 ** this is a two-pass algorithm. On the first pass, mark all generated
266 ** columns as "not available".
268 for(i=0; i<pTab->nCol; i++){
269 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
270 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
271 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
272 pTab->aCol[i].colFlags |= COLFLAG_NOTAVAIL;
276 w.u.pTab = pTab;
277 w.xExprCallback = exprColumnFlagUnion;
278 w.xSelectCallback = 0;
279 w.xSelectCallback2 = 0;
281 /* On the second pass, compute the value of each NOT-AVAILABLE column.
282 ** Companion code in the TK_COLUMN case of sqlite3ExprCodeTarget() will
283 ** compute dependencies and mark remove the COLSPAN_NOTAVAIL mark, as
284 ** they are needed.
286 pParse->iSelfTab = -iRegStore;
288 eProgress = 0;
289 pRedo = 0;
290 for(i=0; i<pTab->nCol; i++){
291 Column *pCol = pTab->aCol + i;
292 if( (pCol->colFlags & COLFLAG_NOTAVAIL)!=0 ){
293 int x;
294 pCol->colFlags |= COLFLAG_BUSY;
295 w.eCode = 0;
296 sqlite3WalkExpr(&w, pCol->pDflt);
297 pCol->colFlags &= ~COLFLAG_BUSY;
298 if( w.eCode & COLFLAG_NOTAVAIL ){
299 pRedo = pCol;
300 continue;
302 eProgress = 1;
303 assert( pCol->colFlags & COLFLAG_GENERATED );
304 x = sqlite3TableColumnToStorage(pTab, i) + iRegStore;
305 sqlite3ExprCodeGeneratedColumn(pParse, pCol, x);
306 pCol->colFlags &= ~COLFLAG_NOTAVAIL;
309 }while( pRedo && eProgress );
310 if( pRedo ){
311 sqlite3ErrorMsg(pParse, "generated column loop on \"%s\"", pRedo->zName);
313 pParse->iSelfTab = 0;
315 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
318 #ifndef SQLITE_OMIT_AUTOINCREMENT
320 ** Locate or create an AutoincInfo structure associated with table pTab
321 ** which is in database iDb. Return the register number for the register
322 ** that holds the maximum rowid. Return zero if pTab is not an AUTOINCREMENT
323 ** table. (Also return zero when doing a VACUUM since we do not want to
324 ** update the AUTOINCREMENT counters during a VACUUM.)
326 ** There is at most one AutoincInfo structure per table even if the
327 ** same table is autoincremented multiple times due to inserts within
328 ** triggers. A new AutoincInfo structure is created if this is the
329 ** first use of table pTab. On 2nd and subsequent uses, the original
330 ** AutoincInfo structure is used.
332 ** Four consecutive registers are allocated:
334 ** (1) The name of the pTab table.
335 ** (2) The maximum ROWID of pTab.
336 ** (3) The rowid in sqlite_sequence of pTab
337 ** (4) The original value of the max ROWID in pTab, or NULL if none
339 ** The 2nd register is the one that is returned. That is all the
340 ** insert routine needs to know about.
342 static int autoIncBegin(
343 Parse *pParse, /* Parsing context */
344 int iDb, /* Index of the database holding pTab */
345 Table *pTab /* The table we are writing to */
347 int memId = 0; /* Register holding maximum rowid */
348 assert( pParse->db->aDb[iDb].pSchema!=0 );
349 if( (pTab->tabFlags & TF_Autoincrement)!=0
350 && (pParse->db->mDbFlags & DBFLAG_Vacuum)==0
352 Parse *pToplevel = sqlite3ParseToplevel(pParse);
353 AutoincInfo *pInfo;
354 Table *pSeqTab = pParse->db->aDb[iDb].pSchema->pSeqTab;
356 /* Verify that the sqlite_sequence table exists and is an ordinary
357 ** rowid table with exactly two columns.
358 ** Ticket d8dc2b3a58cd5dc2918a1d4acb 2018-05-23 */
359 if( pSeqTab==0
360 || !HasRowid(pSeqTab)
361 || IsVirtual(pSeqTab)
362 || pSeqTab->nCol!=2
364 pParse->nErr++;
365 pParse->rc = SQLITE_CORRUPT_SEQUENCE;
366 return 0;
369 pInfo = pToplevel->pAinc;
370 while( pInfo && pInfo->pTab!=pTab ){ pInfo = pInfo->pNext; }
371 if( pInfo==0 ){
372 pInfo = sqlite3DbMallocRawNN(pParse->db, sizeof(*pInfo));
373 if( pInfo==0 ) return 0;
374 pInfo->pNext = pToplevel->pAinc;
375 pToplevel->pAinc = pInfo;
376 pInfo->pTab = pTab;
377 pInfo->iDb = iDb;
378 pToplevel->nMem++; /* Register to hold name of table */
379 pInfo->regCtr = ++pToplevel->nMem; /* Max rowid register */
380 pToplevel->nMem +=2; /* Rowid in sqlite_sequence + orig max val */
382 memId = pInfo->regCtr;
384 return memId;
388 ** This routine generates code that will initialize all of the
389 ** register used by the autoincrement tracker.
391 void sqlite3AutoincrementBegin(Parse *pParse){
392 AutoincInfo *p; /* Information about an AUTOINCREMENT */
393 sqlite3 *db = pParse->db; /* The database connection */
394 Db *pDb; /* Database only autoinc table */
395 int memId; /* Register holding max rowid */
396 Vdbe *v = pParse->pVdbe; /* VDBE under construction */
398 /* This routine is never called during trigger-generation. It is
399 ** only called from the top-level */
400 assert( pParse->pTriggerTab==0 );
401 assert( sqlite3IsToplevel(pParse) );
403 assert( v ); /* We failed long ago if this is not so */
404 for(p = pParse->pAinc; p; p = p->pNext){
405 static const int iLn = VDBE_OFFSET_LINENO(2);
406 static const VdbeOpList autoInc[] = {
407 /* 0 */ {OP_Null, 0, 0, 0},
408 /* 1 */ {OP_Rewind, 0, 10, 0},
409 /* 2 */ {OP_Column, 0, 0, 0},
410 /* 3 */ {OP_Ne, 0, 9, 0},
411 /* 4 */ {OP_Rowid, 0, 0, 0},
412 /* 5 */ {OP_Column, 0, 1, 0},
413 /* 6 */ {OP_AddImm, 0, 0, 0},
414 /* 7 */ {OP_Copy, 0, 0, 0},
415 /* 8 */ {OP_Goto, 0, 11, 0},
416 /* 9 */ {OP_Next, 0, 2, 0},
417 /* 10 */ {OP_Integer, 0, 0, 0},
418 /* 11 */ {OP_Close, 0, 0, 0}
420 VdbeOp *aOp;
421 pDb = &db->aDb[p->iDb];
422 memId = p->regCtr;
423 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
424 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenRead);
425 sqlite3VdbeLoadString(v, memId-1, p->pTab->zName);
426 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoInc), autoInc, iLn);
427 if( aOp==0 ) break;
428 aOp[0].p2 = memId;
429 aOp[0].p3 = memId+2;
430 aOp[2].p3 = memId;
431 aOp[3].p1 = memId-1;
432 aOp[3].p3 = memId;
433 aOp[3].p5 = SQLITE_JUMPIFNULL;
434 aOp[4].p2 = memId+1;
435 aOp[5].p3 = memId;
436 aOp[6].p1 = memId;
437 aOp[7].p2 = memId+2;
438 aOp[7].p1 = memId;
439 aOp[10].p2 = memId;
440 if( pParse->nTab==0 ) pParse->nTab = 1;
445 ** Update the maximum rowid for an autoincrement calculation.
447 ** This routine should be called when the regRowid register holds a
448 ** new rowid that is about to be inserted. If that new rowid is
449 ** larger than the maximum rowid in the memId memory cell, then the
450 ** memory cell is updated.
452 static void autoIncStep(Parse *pParse, int memId, int regRowid){
453 if( memId>0 ){
454 sqlite3VdbeAddOp2(pParse->pVdbe, OP_MemMax, memId, regRowid);
459 ** This routine generates the code needed to write autoincrement
460 ** maximum rowid values back into the sqlite_sequence register.
461 ** Every statement that might do an INSERT into an autoincrement
462 ** table (either directly or through triggers) needs to call this
463 ** routine just before the "exit" code.
465 static SQLITE_NOINLINE void autoIncrementEnd(Parse *pParse){
466 AutoincInfo *p;
467 Vdbe *v = pParse->pVdbe;
468 sqlite3 *db = pParse->db;
470 assert( v );
471 for(p = pParse->pAinc; p; p = p->pNext){
472 static const int iLn = VDBE_OFFSET_LINENO(2);
473 static const VdbeOpList autoIncEnd[] = {
474 /* 0 */ {OP_NotNull, 0, 2, 0},
475 /* 1 */ {OP_NewRowid, 0, 0, 0},
476 /* 2 */ {OP_MakeRecord, 0, 2, 0},
477 /* 3 */ {OP_Insert, 0, 0, 0},
478 /* 4 */ {OP_Close, 0, 0, 0}
480 VdbeOp *aOp;
481 Db *pDb = &db->aDb[p->iDb];
482 int iRec;
483 int memId = p->regCtr;
485 iRec = sqlite3GetTempReg(pParse);
486 assert( sqlite3SchemaMutexHeld(db, 0, pDb->pSchema) );
487 sqlite3VdbeAddOp3(v, OP_Le, memId+2, sqlite3VdbeCurrentAddr(v)+7, memId);
488 VdbeCoverage(v);
489 sqlite3OpenTable(pParse, 0, p->iDb, pDb->pSchema->pSeqTab, OP_OpenWrite);
490 aOp = sqlite3VdbeAddOpList(v, ArraySize(autoIncEnd), autoIncEnd, iLn);
491 if( aOp==0 ) break;
492 aOp[0].p1 = memId+1;
493 aOp[1].p2 = memId+1;
494 aOp[2].p1 = memId-1;
495 aOp[2].p3 = iRec;
496 aOp[3].p2 = iRec;
497 aOp[3].p3 = memId+1;
498 aOp[3].p5 = OPFLAG_APPEND;
499 sqlite3ReleaseTempReg(pParse, iRec);
502 void sqlite3AutoincrementEnd(Parse *pParse){
503 if( pParse->pAinc ) autoIncrementEnd(pParse);
505 #else
507 ** If SQLITE_OMIT_AUTOINCREMENT is defined, then the three routines
508 ** above are all no-ops
510 # define autoIncBegin(A,B,C) (0)
511 # define autoIncStep(A,B,C)
512 #endif /* SQLITE_OMIT_AUTOINCREMENT */
515 /* Forward declaration */
516 static int xferOptimization(
517 Parse *pParse, /* Parser context */
518 Table *pDest, /* The table we are inserting into */
519 Select *pSelect, /* A SELECT statement to use as the data source */
520 int onError, /* How to handle constraint errors */
521 int iDbDest /* The database of pDest */
525 ** This routine is called to handle SQL of the following forms:
527 ** insert into TABLE (IDLIST) values(EXPRLIST),(EXPRLIST),...
528 ** insert into TABLE (IDLIST) select
529 ** insert into TABLE (IDLIST) default values
531 ** The IDLIST following the table name is always optional. If omitted,
532 ** then a list of all (non-hidden) columns for the table is substituted.
533 ** The IDLIST appears in the pColumn parameter. pColumn is NULL if IDLIST
534 ** is omitted.
536 ** For the pSelect parameter holds the values to be inserted for the
537 ** first two forms shown above. A VALUES clause is really just short-hand
538 ** for a SELECT statement that omits the FROM clause and everything else
539 ** that follows. If the pSelect parameter is NULL, that means that the
540 ** DEFAULT VALUES form of the INSERT statement is intended.
542 ** The code generated follows one of four templates. For a simple
543 ** insert with data coming from a single-row VALUES clause, the code executes
544 ** once straight down through. Pseudo-code follows (we call this
545 ** the "1st template"):
547 ** open write cursor to <table> and its indices
548 ** put VALUES clause expressions into registers
549 ** write the resulting record into <table>
550 ** cleanup
552 ** The three remaining templates assume the statement is of the form
554 ** INSERT INTO <table> SELECT ...
556 ** If the SELECT clause is of the restricted form "SELECT * FROM <table2>" -
557 ** in other words if the SELECT pulls all columns from a single table
558 ** and there is no WHERE or LIMIT or GROUP BY or ORDER BY clauses, and
559 ** if <table2> and <table1> are distinct tables but have identical
560 ** schemas, including all the same indices, then a special optimization
561 ** is invoked that copies raw records from <table2> over to <table1>.
562 ** See the xferOptimization() function for the implementation of this
563 ** template. This is the 2nd template.
565 ** open a write cursor to <table>
566 ** open read cursor on <table2>
567 ** transfer all records in <table2> over to <table>
568 ** close cursors
569 ** foreach index on <table>
570 ** open a write cursor on the <table> index
571 ** open a read cursor on the corresponding <table2> index
572 ** transfer all records from the read to the write cursors
573 ** close cursors
574 ** end foreach
576 ** The 3rd template is for when the second template does not apply
577 ** and the SELECT clause does not read from <table> at any time.
578 ** The generated code follows this template:
580 ** X <- A
581 ** goto B
582 ** A: setup for the SELECT
583 ** loop over the rows in the SELECT
584 ** load values into registers R..R+n
585 ** yield X
586 ** end loop
587 ** cleanup after the SELECT
588 ** end-coroutine X
589 ** B: open write cursor to <table> and its indices
590 ** C: yield X, at EOF goto D
591 ** insert the select result into <table> from R..R+n
592 ** goto C
593 ** D: cleanup
595 ** The 4th template is used if the insert statement takes its
596 ** values from a SELECT but the data is being inserted into a table
597 ** that is also read as part of the SELECT. In the third form,
598 ** we have to use an intermediate table to store the results of
599 ** the select. The template is like this:
601 ** X <- A
602 ** goto B
603 ** A: setup for the SELECT
604 ** loop over the tables in the SELECT
605 ** load value into register R..R+n
606 ** yield X
607 ** end loop
608 ** cleanup after the SELECT
609 ** end co-routine R
610 ** B: open temp table
611 ** L: yield X, at EOF goto M
612 ** insert row from R..R+n into temp table
613 ** goto L
614 ** M: open write cursor to <table> and its indices
615 ** rewind temp table
616 ** C: loop over rows of intermediate table
617 ** transfer values form intermediate table into <table>
618 ** end loop
619 ** D: cleanup
621 void sqlite3Insert(
622 Parse *pParse, /* Parser context */
623 SrcList *pTabList, /* Name of table into which we are inserting */
624 Select *pSelect, /* A SELECT statement to use as the data source */
625 IdList *pColumn, /* Column names corresponding to IDLIST, or NULL. */
626 int onError, /* How to handle constraint errors */
627 Upsert *pUpsert /* ON CONFLICT clauses for upsert, or NULL */
629 sqlite3 *db; /* The main database structure */
630 Table *pTab; /* The table to insert into. aka TABLE */
631 int i, j; /* Loop counters */
632 Vdbe *v; /* Generate code into this virtual machine */
633 Index *pIdx; /* For looping over indices of the table */
634 int nColumn; /* Number of columns in the data */
635 int nHidden = 0; /* Number of hidden columns if TABLE is virtual */
636 int iDataCur = 0; /* VDBE cursor that is the main data repository */
637 int iIdxCur = 0; /* First index cursor */
638 int ipkColumn = -1; /* Column that is the INTEGER PRIMARY KEY */
639 int endOfLoop; /* Label for the end of the insertion loop */
640 int srcTab = 0; /* Data comes from this temporary cursor if >=0 */
641 int addrInsTop = 0; /* Jump to label "D" */
642 int addrCont = 0; /* Top of insert loop. Label "C" in templates 3 and 4 */
643 SelectDest dest; /* Destination for SELECT on rhs of INSERT */
644 int iDb; /* Index of database holding TABLE */
645 u8 useTempTable = 0; /* Store SELECT results in intermediate table */
646 u8 appendFlag = 0; /* True if the insert is likely to be an append */
647 u8 withoutRowid; /* 0 for normal table. 1 for WITHOUT ROWID table */
648 u8 bIdListInOrder; /* True if IDLIST is in table order */
649 ExprList *pList = 0; /* List of VALUES() to be inserted */
650 int iRegStore; /* Register in which to store next column */
652 /* Register allocations */
653 int regFromSelect = 0;/* Base register for data coming from SELECT */
654 int regAutoinc = 0; /* Register holding the AUTOINCREMENT counter */
655 int regRowCount = 0; /* Memory cell used for the row counter */
656 int regIns; /* Block of regs holding rowid+data being inserted */
657 int regRowid; /* registers holding insert rowid */
658 int regData; /* register holding first column to insert */
659 int *aRegIdx = 0; /* One register allocated to each index */
661 #ifndef SQLITE_OMIT_TRIGGER
662 int isView; /* True if attempting to insert into a view */
663 Trigger *pTrigger; /* List of triggers on pTab, if required */
664 int tmask; /* Mask of trigger times */
665 #endif
667 db = pParse->db;
668 if( pParse->nErr || db->mallocFailed ){
669 goto insert_cleanup;
671 dest.iSDParm = 0; /* Suppress a harmless compiler warning */
673 /* If the Select object is really just a simple VALUES() list with a
674 ** single row (the common case) then keep that one row of values
675 ** and discard the other (unused) parts of the pSelect object
677 if( pSelect && (pSelect->selFlags & SF_Values)!=0 && pSelect->pPrior==0 ){
678 pList = pSelect->pEList;
679 pSelect->pEList = 0;
680 sqlite3SelectDelete(db, pSelect);
681 pSelect = 0;
684 /* Locate the table into which we will be inserting new information.
686 assert( pTabList->nSrc==1 );
687 pTab = sqlite3SrcListLookup(pParse, pTabList);
688 if( pTab==0 ){
689 goto insert_cleanup;
691 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
692 assert( iDb<db->nDb );
693 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, pTab->zName, 0,
694 db->aDb[iDb].zDbSName) ){
695 goto insert_cleanup;
697 withoutRowid = !HasRowid(pTab);
699 /* Figure out if we have any triggers and if the table being
700 ** inserted into is a view
702 #ifndef SQLITE_OMIT_TRIGGER
703 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_INSERT, 0, &tmask);
704 isView = pTab->pSelect!=0;
705 #else
706 # define pTrigger 0
707 # define tmask 0
708 # define isView 0
709 #endif
710 #ifdef SQLITE_OMIT_VIEW
711 # undef isView
712 # define isView 0
713 #endif
714 assert( (pTrigger && tmask) || (pTrigger==0 && tmask==0) );
716 /* If pTab is really a view, make sure it has been initialized.
717 ** ViewGetColumnNames() is a no-op if pTab is not a view.
719 if( sqlite3ViewGetColumnNames(pParse, pTab) ){
720 goto insert_cleanup;
723 /* Cannot insert into a read-only table.
725 if( sqlite3IsReadOnly(pParse, pTab, tmask) ){
726 goto insert_cleanup;
729 /* Allocate a VDBE
731 v = sqlite3GetVdbe(pParse);
732 if( v==0 ) goto insert_cleanup;
733 if( pParse->nested==0 ) sqlite3VdbeCountChanges(v);
734 sqlite3BeginWriteOperation(pParse, pSelect || pTrigger, iDb);
736 #ifndef SQLITE_OMIT_XFER_OPT
737 /* If the statement is of the form
739 ** INSERT INTO <table1> SELECT * FROM <table2>;
741 ** Then special optimizations can be applied that make the transfer
742 ** very fast and which reduce fragmentation of indices.
744 ** This is the 2nd template.
746 if( pColumn==0 && xferOptimization(pParse, pTab, pSelect, onError, iDb) ){
747 assert( !pTrigger );
748 assert( pList==0 );
749 goto insert_end;
751 #endif /* SQLITE_OMIT_XFER_OPT */
753 /* If this is an AUTOINCREMENT table, look up the sequence number in the
754 ** sqlite_sequence table and store it in memory cell regAutoinc.
756 regAutoinc = autoIncBegin(pParse, iDb, pTab);
758 /* Allocate a block registers to hold the rowid and the values
759 ** for all columns of the new row.
761 regRowid = regIns = pParse->nMem+1;
762 pParse->nMem += pTab->nCol + 1;
763 if( IsVirtual(pTab) ){
764 regRowid++;
765 pParse->nMem++;
767 regData = regRowid+1;
769 /* If the INSERT statement included an IDLIST term, then make sure
770 ** all elements of the IDLIST really are columns of the table and
771 ** remember the column indices.
773 ** If the table has an INTEGER PRIMARY KEY column and that column
774 ** is named in the IDLIST, then record in the ipkColumn variable
775 ** the index into IDLIST of the primary key column. ipkColumn is
776 ** the index of the primary key as it appears in IDLIST, not as
777 ** is appears in the original table. (The index of the INTEGER
778 ** PRIMARY KEY in the original table is pTab->iPKey.) After this
779 ** loop, if ipkColumn==(-1), that means that integer primary key
780 ** is unspecified, and hence the table is either WITHOUT ROWID or
781 ** it will automatically generated an integer primary key.
783 ** bIdListInOrder is true if the columns in IDLIST are in storage
784 ** order. This enables an optimization that avoids shuffling the
785 ** columns into storage order. False negatives are harmless,
786 ** but false positives will cause database corruption.
788 bIdListInOrder = (pTab->tabFlags & (TF_OOOHidden|TF_HasStored))==0;
789 if( pColumn ){
790 for(i=0; i<pColumn->nId; i++){
791 pColumn->a[i].idx = -1;
793 for(i=0; i<pColumn->nId; i++){
794 for(j=0; j<pTab->nCol; j++){
795 if( sqlite3StrICmp(pColumn->a[i].zName, pTab->aCol[j].zName)==0 ){
796 pColumn->a[i].idx = j;
797 if( i!=j ) bIdListInOrder = 0;
798 if( j==pTab->iPKey ){
799 ipkColumn = i; assert( !withoutRowid );
801 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
802 if( pTab->aCol[j].colFlags & (COLFLAG_STORED|COLFLAG_VIRTUAL) ){
803 sqlite3ErrorMsg(pParse,
804 "cannot INSERT into generated column \"%s\"",
805 pTab->aCol[j].zName);
806 goto insert_cleanup;
808 #endif
809 break;
812 if( j>=pTab->nCol ){
813 if( sqlite3IsRowid(pColumn->a[i].zName) && !withoutRowid ){
814 ipkColumn = i;
815 bIdListInOrder = 0;
816 }else{
817 sqlite3ErrorMsg(pParse, "table %S has no column named %s",
818 pTabList, 0, pColumn->a[i].zName);
819 pParse->checkSchema = 1;
820 goto insert_cleanup;
826 /* Figure out how many columns of data are supplied. If the data
827 ** is coming from a SELECT statement, then generate a co-routine that
828 ** produces a single row of the SELECT on each invocation. The
829 ** co-routine is the common header to the 3rd and 4th templates.
831 if( pSelect ){
832 /* Data is coming from a SELECT or from a multi-row VALUES clause.
833 ** Generate a co-routine to run the SELECT. */
834 int regYield; /* Register holding co-routine entry-point */
835 int addrTop; /* Top of the co-routine */
836 int rc; /* Result code */
838 regYield = ++pParse->nMem;
839 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
840 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
841 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
842 dest.iSdst = bIdListInOrder ? regData : 0;
843 dest.nSdst = pTab->nCol;
844 rc = sqlite3Select(pParse, pSelect, &dest);
845 regFromSelect = dest.iSdst;
846 if( rc || db->mallocFailed || pParse->nErr ) goto insert_cleanup;
847 sqlite3VdbeEndCoroutine(v, regYield);
848 sqlite3VdbeJumpHere(v, addrTop - 1); /* label B: */
849 assert( pSelect->pEList );
850 nColumn = pSelect->pEList->nExpr;
852 /* Set useTempTable to TRUE if the result of the SELECT statement
853 ** should be written into a temporary table (template 4). Set to
854 ** FALSE if each output row of the SELECT can be written directly into
855 ** the destination table (template 3).
857 ** A temp table must be used if the table being updated is also one
858 ** of the tables being read by the SELECT statement. Also use a
859 ** temp table in the case of row triggers.
861 if( pTrigger || readsTable(pParse, iDb, pTab) ){
862 useTempTable = 1;
865 if( useTempTable ){
866 /* Invoke the coroutine to extract information from the SELECT
867 ** and add it to a transient table srcTab. The code generated
868 ** here is from the 4th template:
870 ** B: open temp table
871 ** L: yield X, goto M at EOF
872 ** insert row from R..R+n into temp table
873 ** goto L
874 ** M: ...
876 int regRec; /* Register to hold packed record */
877 int regTempRowid; /* Register to hold temp table ROWID */
878 int addrL; /* Label "L" */
880 srcTab = pParse->nTab++;
881 regRec = sqlite3GetTempReg(pParse);
882 regTempRowid = sqlite3GetTempReg(pParse);
883 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, srcTab, nColumn);
884 addrL = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm); VdbeCoverage(v);
885 sqlite3VdbeAddOp3(v, OP_MakeRecord, regFromSelect, nColumn, regRec);
886 sqlite3VdbeAddOp2(v, OP_NewRowid, srcTab, regTempRowid);
887 sqlite3VdbeAddOp3(v, OP_Insert, srcTab, regRec, regTempRowid);
888 sqlite3VdbeGoto(v, addrL);
889 sqlite3VdbeJumpHere(v, addrL);
890 sqlite3ReleaseTempReg(pParse, regRec);
891 sqlite3ReleaseTempReg(pParse, regTempRowid);
893 }else{
894 /* This is the case if the data for the INSERT is coming from a
895 ** single-row VALUES clause
897 NameContext sNC;
898 memset(&sNC, 0, sizeof(sNC));
899 sNC.pParse = pParse;
900 srcTab = -1;
901 assert( useTempTable==0 );
902 if( pList ){
903 nColumn = pList->nExpr;
904 if( sqlite3ResolveExprListNames(&sNC, pList) ){
905 goto insert_cleanup;
907 }else{
908 nColumn = 0;
912 /* If there is no IDLIST term but the table has an integer primary
913 ** key, the set the ipkColumn variable to the integer primary key
914 ** column index in the original table definition.
916 if( pColumn==0 && nColumn>0 ){
917 ipkColumn = pTab->iPKey;
918 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
919 if( ipkColumn>=0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
920 testcase( pTab->tabFlags & TF_HasVirtual );
921 testcase( pTab->tabFlags & TF_HasStored );
922 for(i=ipkColumn-1; i>=0; i--){
923 if( pTab->aCol[i].colFlags & COLFLAG_GENERATED ){
924 testcase( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL );
925 testcase( pTab->aCol[i].colFlags & COLFLAG_STORED );
926 ipkColumn--;
930 #endif
933 /* Make sure the number of columns in the source data matches the number
934 ** of columns to be inserted into the table.
936 for(i=0; i<pTab->nCol; i++){
937 if( pTab->aCol[i].colFlags & COLFLAG_NOINSERT ) nHidden++;
939 if( pColumn==0 && nColumn && nColumn!=(pTab->nCol-nHidden) ){
940 sqlite3ErrorMsg(pParse,
941 "table %S has %d columns but %d values were supplied",
942 pTabList, 0, pTab->nCol-nHidden, nColumn);
943 goto insert_cleanup;
945 if( pColumn!=0 && nColumn!=pColumn->nId ){
946 sqlite3ErrorMsg(pParse, "%d values for %d columns", nColumn, pColumn->nId);
947 goto insert_cleanup;
950 /* Initialize the count of rows to be inserted
952 if( (db->flags & SQLITE_CountRows)!=0
953 && !pParse->nested
954 && !pParse->pTriggerTab
956 regRowCount = ++pParse->nMem;
957 sqlite3VdbeAddOp2(v, OP_Integer, 0, regRowCount);
960 /* If this is not a view, open the table and and all indices */
961 if( !isView ){
962 int nIdx;
963 nIdx = sqlite3OpenTableAndIndices(pParse, pTab, OP_OpenWrite, 0, -1, 0,
964 &iDataCur, &iIdxCur);
965 aRegIdx = sqlite3DbMallocRawNN(db, sizeof(int)*(nIdx+2));
966 if( aRegIdx==0 ){
967 goto insert_cleanup;
969 for(i=0, pIdx=pTab->pIndex; i<nIdx; pIdx=pIdx->pNext, i++){
970 assert( pIdx );
971 aRegIdx[i] = ++pParse->nMem;
972 pParse->nMem += pIdx->nColumn;
974 aRegIdx[i] = ++pParse->nMem; /* Register to store the table record */
976 #ifndef SQLITE_OMIT_UPSERT
977 if( pUpsert ){
978 if( IsVirtual(pTab) ){
979 sqlite3ErrorMsg(pParse, "UPSERT not implemented for virtual table \"%s\"",
980 pTab->zName);
981 goto insert_cleanup;
983 if( pTab->pSelect ){
984 sqlite3ErrorMsg(pParse, "cannot UPSERT a view");
985 goto insert_cleanup;
987 if( sqlite3HasExplicitNulls(pParse, pUpsert->pUpsertTarget) ){
988 goto insert_cleanup;
990 pTabList->a[0].iCursor = iDataCur;
991 pUpsert->pUpsertSrc = pTabList;
992 pUpsert->regData = regData;
993 pUpsert->iDataCur = iDataCur;
994 pUpsert->iIdxCur = iIdxCur;
995 if( pUpsert->pUpsertTarget ){
996 sqlite3UpsertAnalyzeTarget(pParse, pTabList, pUpsert);
999 #endif
1002 /* This is the top of the main insertion loop */
1003 if( useTempTable ){
1004 /* This block codes the top of loop only. The complete loop is the
1005 ** following pseudocode (template 4):
1007 ** rewind temp table, if empty goto D
1008 ** C: loop over rows of intermediate table
1009 ** transfer values form intermediate table into <table>
1010 ** end loop
1011 ** D: ...
1013 addrInsTop = sqlite3VdbeAddOp1(v, OP_Rewind, srcTab); VdbeCoverage(v);
1014 addrCont = sqlite3VdbeCurrentAddr(v);
1015 }else if( pSelect ){
1016 /* This block codes the top of loop only. The complete loop is the
1017 ** following pseudocode (template 3):
1019 ** C: yield X, at EOF goto D
1020 ** insert the select result into <table> from R..R+n
1021 ** goto C
1022 ** D: ...
1024 sqlite3VdbeReleaseRegisters(pParse, regData, pTab->nCol, 0, 0);
1025 addrInsTop = addrCont = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
1026 VdbeCoverage(v);
1027 if( ipkColumn>=0 ){
1028 /* tag-20191021-001: If the INTEGER PRIMARY KEY is being generated by the
1029 ** SELECT, go ahead and copy the value into the rowid slot now, so that
1030 ** the value does not get overwritten by a NULL at tag-20191021-002. */
1031 sqlite3VdbeAddOp2(v, OP_Copy, regFromSelect+ipkColumn, regRowid);
1035 /* Compute data for ordinary columns of the new entry. Values
1036 ** are written in storage order into registers starting with regData.
1037 ** Only ordinary columns are computed in this loop. The rowid
1038 ** (if there is one) is computed later and generated columns are
1039 ** computed after the rowid since they might depend on the value
1040 ** of the rowid.
1042 nHidden = 0;
1043 iRegStore = regData; assert( regData==regRowid+1 );
1044 for(i=0; i<pTab->nCol; i++, iRegStore++){
1045 int k;
1046 u32 colFlags;
1047 assert( i>=nHidden );
1048 if( i==pTab->iPKey ){
1049 /* tag-20191021-002: References to the INTEGER PRIMARY KEY are filled
1050 ** using the rowid. So put a NULL in the IPK slot of the record to avoid
1051 ** using excess space. The file format definition requires this extra
1052 ** NULL - we cannot optimize further by skipping the column completely */
1053 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
1054 continue;
1056 if( ((colFlags = pTab->aCol[i].colFlags) & COLFLAG_NOINSERT)!=0 ){
1057 nHidden++;
1058 if( (colFlags & COLFLAG_VIRTUAL)!=0 ){
1059 /* Virtual columns do not participate in OP_MakeRecord. So back up
1060 ** iRegStore by one slot to compensate for the iRegStore++ in the
1061 ** outer for() loop */
1062 iRegStore--;
1063 continue;
1064 }else if( (colFlags & COLFLAG_STORED)!=0 ){
1065 /* Stored columns are computed later. But if there are BEFORE
1066 ** triggers, the slots used for stored columns will be OP_Copy-ed
1067 ** to a second block of registers, so the register needs to be
1068 ** initialized to NULL to avoid an uninitialized register read */
1069 if( tmask & TRIGGER_BEFORE ){
1070 sqlite3VdbeAddOp1(v, OP_SoftNull, iRegStore);
1072 continue;
1073 }else if( pColumn==0 ){
1074 /* Hidden columns that are not explicitly named in the INSERT
1075 ** get there default value */
1076 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
1077 continue;
1080 if( pColumn ){
1081 for(j=0; j<pColumn->nId && pColumn->a[j].idx!=i; j++){}
1082 if( j>=pColumn->nId ){
1083 /* A column not named in the insert column list gets its
1084 ** default value */
1085 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
1086 continue;
1088 k = j;
1089 }else if( nColumn==0 ){
1090 /* This is INSERT INTO ... DEFAULT VALUES. Load the default value. */
1091 sqlite3ExprCodeFactorable(pParse, pTab->aCol[i].pDflt, iRegStore);
1092 continue;
1093 }else{
1094 k = i - nHidden;
1097 if( useTempTable ){
1098 sqlite3VdbeAddOp3(v, OP_Column, srcTab, k, iRegStore);
1099 }else if( pSelect ){
1100 if( regFromSelect!=regData ){
1101 sqlite3VdbeAddOp2(v, OP_SCopy, regFromSelect+k, iRegStore);
1103 }else{
1104 sqlite3ExprCode(pParse, pList->a[k].pExpr, iRegStore);
1109 /* Run the BEFORE and INSTEAD OF triggers, if there are any
1111 endOfLoop = sqlite3VdbeMakeLabel(pParse);
1112 if( tmask & TRIGGER_BEFORE ){
1113 int regCols = sqlite3GetTempRange(pParse, pTab->nCol+1);
1115 /* build the NEW.* reference row. Note that if there is an INTEGER
1116 ** PRIMARY KEY into which a NULL is being inserted, that NULL will be
1117 ** translated into a unique ID for the row. But on a BEFORE trigger,
1118 ** we do not know what the unique ID will be (because the insert has
1119 ** not happened yet) so we substitute a rowid of -1
1121 if( ipkColumn<0 ){
1122 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
1123 }else{
1124 int addr1;
1125 assert( !withoutRowid );
1126 if( useTempTable ){
1127 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regCols);
1128 }else{
1129 assert( pSelect==0 ); /* Otherwise useTempTable is true */
1130 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regCols);
1132 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regCols); VdbeCoverage(v);
1133 sqlite3VdbeAddOp2(v, OP_Integer, -1, regCols);
1134 sqlite3VdbeJumpHere(v, addr1);
1135 sqlite3VdbeAddOp1(v, OP_MustBeInt, regCols); VdbeCoverage(v);
1138 /* Cannot have triggers on a virtual table. If it were possible,
1139 ** this block would have to account for hidden column.
1141 assert( !IsVirtual(pTab) );
1143 /* Copy the new data already generated. */
1144 assert( pTab->nNVCol>0 );
1145 sqlite3VdbeAddOp3(v, OP_Copy, regRowid+1, regCols+1, pTab->nNVCol-1);
1147 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1148 /* Compute the new value for generated columns after all other
1149 ** columns have already been computed. This must be done after
1150 ** computing the ROWID in case one of the generated columns
1151 ** refers to the ROWID. */
1152 if( pTab->tabFlags & TF_HasGenerated ){
1153 testcase( pTab->tabFlags & TF_HasVirtual );
1154 testcase( pTab->tabFlags & TF_HasStored );
1155 sqlite3ComputeGeneratedColumns(pParse, regCols+1, pTab);
1157 #endif
1159 /* If this is an INSERT on a view with an INSTEAD OF INSERT trigger,
1160 ** do not attempt any conversions before assembling the record.
1161 ** If this is a real table, attempt conversions as required by the
1162 ** table column affinities.
1164 if( !isView ){
1165 sqlite3TableAffinity(v, pTab, regCols+1);
1168 /* Fire BEFORE or INSTEAD OF triggers */
1169 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_BEFORE,
1170 pTab, regCols-pTab->nCol-1, onError, endOfLoop);
1172 sqlite3ReleaseTempRange(pParse, regCols, pTab->nCol+1);
1175 if( !isView ){
1176 if( IsVirtual(pTab) ){
1177 /* The row that the VUpdate opcode will delete: none */
1178 sqlite3VdbeAddOp2(v, OP_Null, 0, regIns);
1180 if( ipkColumn>=0 ){
1181 /* Compute the new rowid */
1182 if( useTempTable ){
1183 sqlite3VdbeAddOp3(v, OP_Column, srcTab, ipkColumn, regRowid);
1184 }else if( pSelect ){
1185 /* Rowid already initialized at tag-20191021-001 */
1186 }else{
1187 Expr *pIpk = pList->a[ipkColumn].pExpr;
1188 if( pIpk->op==TK_NULL && !IsVirtual(pTab) ){
1189 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1190 appendFlag = 1;
1191 }else{
1192 sqlite3ExprCode(pParse, pList->a[ipkColumn].pExpr, regRowid);
1195 /* If the PRIMARY KEY expression is NULL, then use OP_NewRowid
1196 ** to generate a unique primary key value.
1198 if( !appendFlag ){
1199 int addr1;
1200 if( !IsVirtual(pTab) ){
1201 addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, regRowid); VdbeCoverage(v);
1202 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1203 sqlite3VdbeJumpHere(v, addr1);
1204 }else{
1205 addr1 = sqlite3VdbeCurrentAddr(v);
1206 sqlite3VdbeAddOp2(v, OP_IsNull, regRowid, addr1+2); VdbeCoverage(v);
1208 sqlite3VdbeAddOp1(v, OP_MustBeInt, regRowid); VdbeCoverage(v);
1210 }else if( IsVirtual(pTab) || withoutRowid ){
1211 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowid);
1212 }else{
1213 sqlite3VdbeAddOp3(v, OP_NewRowid, iDataCur, regRowid, regAutoinc);
1214 appendFlag = 1;
1216 autoIncStep(pParse, regAutoinc, regRowid);
1218 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1219 /* Compute the new value for generated columns after all other
1220 ** columns have already been computed. This must be done after
1221 ** computing the ROWID in case one of the generated columns
1222 ** is derived from the INTEGER PRIMARY KEY. */
1223 if( pTab->tabFlags & TF_HasGenerated ){
1224 sqlite3ComputeGeneratedColumns(pParse, regRowid+1, pTab);
1226 #endif
1228 /* Generate code to check constraints and generate index keys and
1229 ** do the insertion.
1231 #ifndef SQLITE_OMIT_VIRTUALTABLE
1232 if( IsVirtual(pTab) ){
1233 const char *pVTab = (const char *)sqlite3GetVTable(db, pTab);
1234 sqlite3VtabMakeWritable(pParse, pTab);
1235 sqlite3VdbeAddOp4(v, OP_VUpdate, 1, pTab->nCol+2, regIns, pVTab, P4_VTAB);
1236 sqlite3VdbeChangeP5(v, onError==OE_Default ? OE_Abort : onError);
1237 sqlite3MayAbort(pParse);
1238 }else
1239 #endif
1241 int isReplace; /* Set to true if constraints may cause a replace */
1242 int bUseSeek; /* True to use OPFLAG_SEEKRESULT */
1243 sqlite3GenerateConstraintChecks(pParse, pTab, aRegIdx, iDataCur, iIdxCur,
1244 regIns, 0, ipkColumn>=0, onError, endOfLoop, &isReplace, 0, pUpsert
1246 sqlite3FkCheck(pParse, pTab, 0, regIns, 0, 0);
1248 /* Set the OPFLAG_USESEEKRESULT flag if either (a) there are no REPLACE
1249 ** constraints or (b) there are no triggers and this table is not a
1250 ** parent table in a foreign key constraint. It is safe to set the
1251 ** flag in the second case as if any REPLACE constraint is hit, an
1252 ** OP_Delete or OP_IdxDelete instruction will be executed on each
1253 ** cursor that is disturbed. And these instructions both clear the
1254 ** VdbeCursor.seekResult variable, disabling the OPFLAG_USESEEKRESULT
1255 ** functionality. */
1256 bUseSeek = (isReplace==0 || !sqlite3VdbeHasSubProgram(v));
1257 sqlite3CompleteInsertion(pParse, pTab, iDataCur, iIdxCur,
1258 regIns, aRegIdx, 0, appendFlag, bUseSeek
1263 /* Update the count of rows that are inserted
1265 if( regRowCount ){
1266 sqlite3VdbeAddOp2(v, OP_AddImm, regRowCount, 1);
1269 if( pTrigger ){
1270 /* Code AFTER triggers */
1271 sqlite3CodeRowTrigger(pParse, pTrigger, TK_INSERT, 0, TRIGGER_AFTER,
1272 pTab, regData-2-pTab->nCol, onError, endOfLoop);
1275 /* The bottom of the main insertion loop, if the data source
1276 ** is a SELECT statement.
1278 sqlite3VdbeResolveLabel(v, endOfLoop);
1279 if( useTempTable ){
1280 sqlite3VdbeAddOp2(v, OP_Next, srcTab, addrCont); VdbeCoverage(v);
1281 sqlite3VdbeJumpHere(v, addrInsTop);
1282 sqlite3VdbeAddOp1(v, OP_Close, srcTab);
1283 }else if( pSelect ){
1284 sqlite3VdbeGoto(v, addrCont);
1285 #ifdef SQLITE_DEBUG
1286 /* If we are jumping back to an OP_Yield that is preceded by an
1287 ** OP_ReleaseReg, set the p5 flag on the OP_Goto so that the
1288 ** OP_ReleaseReg will be included in the loop. */
1289 if( sqlite3VdbeGetOp(v, addrCont-1)->opcode==OP_ReleaseReg ){
1290 assert( sqlite3VdbeGetOp(v, addrCont)->opcode==OP_Yield );
1291 sqlite3VdbeChangeP5(v, 1);
1293 #endif
1294 sqlite3VdbeJumpHere(v, addrInsTop);
1297 insert_end:
1298 /* Update the sqlite_sequence table by storing the content of the
1299 ** maximum rowid counter values recorded while inserting into
1300 ** autoincrement tables.
1302 if( pParse->nested==0 && pParse->pTriggerTab==0 ){
1303 sqlite3AutoincrementEnd(pParse);
1307 ** Return the number of rows inserted. If this routine is
1308 ** generating code because of a call to sqlite3NestedParse(), do not
1309 ** invoke the callback function.
1311 if( regRowCount ){
1312 sqlite3VdbeAddOp2(v, OP_ResultRow, regRowCount, 1);
1313 sqlite3VdbeSetNumCols(v, 1);
1314 sqlite3VdbeSetColName(v, 0, COLNAME_NAME, "rows inserted", SQLITE_STATIC);
1317 insert_cleanup:
1318 sqlite3SrcListDelete(db, pTabList);
1319 sqlite3ExprListDelete(db, pList);
1320 sqlite3UpsertDelete(db, pUpsert);
1321 sqlite3SelectDelete(db, pSelect);
1322 sqlite3IdListDelete(db, pColumn);
1323 sqlite3DbFree(db, aRegIdx);
1326 /* Make sure "isView" and other macros defined above are undefined. Otherwise
1327 ** they may interfere with compilation of other functions in this file
1328 ** (or in another file, if this file becomes part of the amalgamation). */
1329 #ifdef isView
1330 #undef isView
1331 #endif
1332 #ifdef pTrigger
1333 #undef pTrigger
1334 #endif
1335 #ifdef tmask
1336 #undef tmask
1337 #endif
1340 ** Meanings of bits in of pWalker->eCode for
1341 ** sqlite3ExprReferencesUpdatedColumn()
1343 #define CKCNSTRNT_COLUMN 0x01 /* CHECK constraint uses a changing column */
1344 #define CKCNSTRNT_ROWID 0x02 /* CHECK constraint references the ROWID */
1346 /* This is the Walker callback from sqlite3ExprReferencesUpdatedColumn().
1347 * Set bit 0x01 of pWalker->eCode if pWalker->eCode to 0 and if this
1348 ** expression node references any of the
1349 ** columns that are being modifed by an UPDATE statement.
1351 static int checkConstraintExprNode(Walker *pWalker, Expr *pExpr){
1352 if( pExpr->op==TK_COLUMN ){
1353 assert( pExpr->iColumn>=0 || pExpr->iColumn==-1 );
1354 if( pExpr->iColumn>=0 ){
1355 if( pWalker->u.aiCol[pExpr->iColumn]>=0 ){
1356 pWalker->eCode |= CKCNSTRNT_COLUMN;
1358 }else{
1359 pWalker->eCode |= CKCNSTRNT_ROWID;
1362 return WRC_Continue;
1366 ** pExpr is a CHECK constraint on a row that is being UPDATE-ed. The
1367 ** only columns that are modified by the UPDATE are those for which
1368 ** aiChng[i]>=0, and also the ROWID is modified if chngRowid is true.
1370 ** Return true if CHECK constraint pExpr uses any of the
1371 ** changing columns (or the rowid if it is changing). In other words,
1372 ** return true if this CHECK constraint must be validated for
1373 ** the new row in the UPDATE statement.
1375 ** 2018-09-15: pExpr might also be an expression for an index-on-expressions.
1376 ** The operation of this routine is the same - return true if an only if
1377 ** the expression uses one or more of columns identified by the second and
1378 ** third arguments.
1380 int sqlite3ExprReferencesUpdatedColumn(
1381 Expr *pExpr, /* The expression to be checked */
1382 int *aiChng, /* aiChng[x]>=0 if column x changed by the UPDATE */
1383 int chngRowid /* True if UPDATE changes the rowid */
1385 Walker w;
1386 memset(&w, 0, sizeof(w));
1387 w.eCode = 0;
1388 w.xExprCallback = checkConstraintExprNode;
1389 w.u.aiCol = aiChng;
1390 sqlite3WalkExpr(&w, pExpr);
1391 if( !chngRowid ){
1392 testcase( (w.eCode & CKCNSTRNT_ROWID)!=0 );
1393 w.eCode &= ~CKCNSTRNT_ROWID;
1395 testcase( w.eCode==0 );
1396 testcase( w.eCode==CKCNSTRNT_COLUMN );
1397 testcase( w.eCode==CKCNSTRNT_ROWID );
1398 testcase( w.eCode==(CKCNSTRNT_ROWID|CKCNSTRNT_COLUMN) );
1399 return w.eCode!=0;
1403 ** Generate code to do constraint checks prior to an INSERT or an UPDATE
1404 ** on table pTab.
1406 ** The regNewData parameter is the first register in a range that contains
1407 ** the data to be inserted or the data after the update. There will be
1408 ** pTab->nCol+1 registers in this range. The first register (the one
1409 ** that regNewData points to) will contain the new rowid, or NULL in the
1410 ** case of a WITHOUT ROWID table. The second register in the range will
1411 ** contain the content of the first table column. The third register will
1412 ** contain the content of the second table column. And so forth.
1414 ** The regOldData parameter is similar to regNewData except that it contains
1415 ** the data prior to an UPDATE rather than afterwards. regOldData is zero
1416 ** for an INSERT. This routine can distinguish between UPDATE and INSERT by
1417 ** checking regOldData for zero.
1419 ** For an UPDATE, the pkChng boolean is true if the true primary key (the
1420 ** rowid for a normal table or the PRIMARY KEY for a WITHOUT ROWID table)
1421 ** might be modified by the UPDATE. If pkChng is false, then the key of
1422 ** the iDataCur content table is guaranteed to be unchanged by the UPDATE.
1424 ** For an INSERT, the pkChng boolean indicates whether or not the rowid
1425 ** was explicitly specified as part of the INSERT statement. If pkChng
1426 ** is zero, it means that the either rowid is computed automatically or
1427 ** that the table is a WITHOUT ROWID table and has no rowid. On an INSERT,
1428 ** pkChng will only be true if the INSERT statement provides an integer
1429 ** value for either the rowid column or its INTEGER PRIMARY KEY alias.
1431 ** The code generated by this routine will store new index entries into
1432 ** registers identified by aRegIdx[]. No index entry is created for
1433 ** indices where aRegIdx[i]==0. The order of indices in aRegIdx[] is
1434 ** the same as the order of indices on the linked list of indices
1435 ** at pTab->pIndex.
1437 ** (2019-05-07) The generated code also creates a new record for the
1438 ** main table, if pTab is a rowid table, and stores that record in the
1439 ** register identified by aRegIdx[nIdx] - in other words in the first
1440 ** entry of aRegIdx[] past the last index. It is important that the
1441 ** record be generated during constraint checks to avoid affinity changes
1442 ** to the register content that occur after constraint checks but before
1443 ** the new record is inserted.
1445 ** The caller must have already opened writeable cursors on the main
1446 ** table and all applicable indices (that is to say, all indices for which
1447 ** aRegIdx[] is not zero). iDataCur is the cursor for the main table when
1448 ** inserting or updating a rowid table, or the cursor for the PRIMARY KEY
1449 ** index when operating on a WITHOUT ROWID table. iIdxCur is the cursor
1450 ** for the first index in the pTab->pIndex list. Cursors for other indices
1451 ** are at iIdxCur+N for the N-th element of the pTab->pIndex list.
1453 ** This routine also generates code to check constraints. NOT NULL,
1454 ** CHECK, and UNIQUE constraints are all checked. If a constraint fails,
1455 ** then the appropriate action is performed. There are five possible
1456 ** actions: ROLLBACK, ABORT, FAIL, REPLACE, and IGNORE.
1458 ** Constraint type Action What Happens
1459 ** --------------- ---------- ----------------------------------------
1460 ** any ROLLBACK The current transaction is rolled back and
1461 ** sqlite3_step() returns immediately with a
1462 ** return code of SQLITE_CONSTRAINT.
1464 ** any ABORT Back out changes from the current command
1465 ** only (do not do a complete rollback) then
1466 ** cause sqlite3_step() to return immediately
1467 ** with SQLITE_CONSTRAINT.
1469 ** any FAIL Sqlite3_step() returns immediately with a
1470 ** return code of SQLITE_CONSTRAINT. The
1471 ** transaction is not rolled back and any
1472 ** changes to prior rows are retained.
1474 ** any IGNORE The attempt in insert or update the current
1475 ** row is skipped, without throwing an error.
1476 ** Processing continues with the next row.
1477 ** (There is an immediate jump to ignoreDest.)
1479 ** NOT NULL REPLACE The NULL value is replace by the default
1480 ** value for that column. If the default value
1481 ** is NULL, the action is the same as ABORT.
1483 ** UNIQUE REPLACE The other row that conflicts with the row
1484 ** being inserted is removed.
1486 ** CHECK REPLACE Illegal. The results in an exception.
1488 ** Which action to take is determined by the overrideError parameter.
1489 ** Or if overrideError==OE_Default, then the pParse->onError parameter
1490 ** is used. Or if pParse->onError==OE_Default then the onError value
1491 ** for the constraint is used.
1493 void sqlite3GenerateConstraintChecks(
1494 Parse *pParse, /* The parser context */
1495 Table *pTab, /* The table being inserted or updated */
1496 int *aRegIdx, /* Use register aRegIdx[i] for index i. 0 for unused */
1497 int iDataCur, /* Canonical data cursor (main table or PK index) */
1498 int iIdxCur, /* First index cursor */
1499 int regNewData, /* First register in a range holding values to insert */
1500 int regOldData, /* Previous content. 0 for INSERTs */
1501 u8 pkChng, /* Non-zero if the rowid or PRIMARY KEY changed */
1502 u8 overrideError, /* Override onError to this if not OE_Default */
1503 int ignoreDest, /* Jump to this label on an OE_Ignore resolution */
1504 int *pbMayReplace, /* OUT: Set to true if constraint may cause a replace */
1505 int *aiChng, /* column i is unchanged if aiChng[i]<0 */
1506 Upsert *pUpsert /* ON CONFLICT clauses, if any. NULL otherwise */
1508 Vdbe *v; /* VDBE under constrution */
1509 Index *pIdx; /* Pointer to one of the indices */
1510 Index *pPk = 0; /* The PRIMARY KEY index */
1511 sqlite3 *db; /* Database connection */
1512 int i; /* loop counter */
1513 int ix; /* Index loop counter */
1514 int nCol; /* Number of columns */
1515 int onError; /* Conflict resolution strategy */
1516 int seenReplace = 0; /* True if REPLACE is used to resolve INT PK conflict */
1517 int nPkField; /* Number of fields in PRIMARY KEY. 1 for ROWID tables */
1518 Index *pUpIdx = 0; /* Index to which to apply the upsert */
1519 u8 isUpdate; /* True if this is an UPDATE operation */
1520 u8 bAffinityDone = 0; /* True if the OP_Affinity operation has been run */
1521 int upsertBypass = 0; /* Address of Goto to bypass upsert subroutine */
1522 int upsertJump = 0; /* Address of Goto that jumps into upsert subroutine */
1523 int ipkTop = 0; /* Top of the IPK uniqueness check */
1524 int ipkBottom = 0; /* OP_Goto at the end of the IPK uniqueness check */
1525 /* Variables associated with retesting uniqueness constraints after
1526 ** replace triggers fire have run */
1527 int regTrigCnt; /* Register used to count replace trigger invocations */
1528 int addrRecheck = 0; /* Jump here to recheck all uniqueness constraints */
1529 int lblRecheckOk = 0; /* Each recheck jumps to this label if it passes */
1530 Trigger *pTrigger; /* List of DELETE triggers on the table pTab */
1531 int nReplaceTrig = 0; /* Number of replace triggers coded */
1533 isUpdate = regOldData!=0;
1534 db = pParse->db;
1535 v = pParse->pVdbe;
1536 assert( v!=0 );
1537 assert( pTab->pSelect==0 ); /* This table is not a VIEW */
1538 nCol = pTab->nCol;
1540 /* pPk is the PRIMARY KEY index for WITHOUT ROWID tables and NULL for
1541 ** normal rowid tables. nPkField is the number of key fields in the
1542 ** pPk index or 1 for a rowid table. In other words, nPkField is the
1543 ** number of fields in the true primary key of the table. */
1544 if( HasRowid(pTab) ){
1545 pPk = 0;
1546 nPkField = 1;
1547 }else{
1548 pPk = sqlite3PrimaryKeyIndex(pTab);
1549 nPkField = pPk->nKeyCol;
1552 /* Record that this module has started */
1553 VdbeModuleComment((v, "BEGIN: GenCnstCks(%d,%d,%d,%d,%d)",
1554 iDataCur, iIdxCur, regNewData, regOldData, pkChng));
1556 /* Test all NOT NULL constraints.
1558 if( pTab->tabFlags & TF_HasNotNull ){
1559 int b2ndPass = 0; /* True if currently running 2nd pass */
1560 int nSeenReplace = 0; /* Number of ON CONFLICT REPLACE operations */
1561 int nGenerated = 0; /* Number of generated columns with NOT NULL */
1562 while(1){ /* Make 2 passes over columns. Exit loop via "break" */
1563 for(i=0; i<nCol; i++){
1564 int iReg; /* Register holding column value */
1565 Column *pCol = &pTab->aCol[i]; /* The column to check for NOT NULL */
1566 int isGenerated; /* non-zero if column is generated */
1567 onError = pCol->notNull;
1568 if( onError==OE_None ) continue; /* No NOT NULL on this column */
1569 if( i==pTab->iPKey ){
1570 continue; /* ROWID is never NULL */
1572 isGenerated = pCol->colFlags & COLFLAG_GENERATED;
1573 if( isGenerated && !b2ndPass ){
1574 nGenerated++;
1575 continue; /* Generated columns processed on 2nd pass */
1577 if( aiChng && aiChng[i]<0 && !isGenerated ){
1578 /* Do not check NOT NULL on columns that do not change */
1579 continue;
1581 if( overrideError!=OE_Default ){
1582 onError = overrideError;
1583 }else if( onError==OE_Default ){
1584 onError = OE_Abort;
1586 if( onError==OE_Replace ){
1587 if( b2ndPass /* REPLACE becomes ABORT on the 2nd pass */
1588 || pCol->pDflt==0 /* REPLACE is ABORT if no DEFAULT value */
1590 testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1591 testcase( pCol->colFlags & COLFLAG_STORED );
1592 testcase( pCol->colFlags & COLFLAG_GENERATED );
1593 onError = OE_Abort;
1594 }else{
1595 assert( !isGenerated );
1597 }else if( b2ndPass && !isGenerated ){
1598 continue;
1600 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
1601 || onError==OE_Ignore || onError==OE_Replace );
1602 testcase( i!=sqlite3TableColumnToStorage(pTab, i) );
1603 iReg = sqlite3TableColumnToStorage(pTab, i) + regNewData + 1;
1604 switch( onError ){
1605 case OE_Replace: {
1606 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, iReg);
1607 VdbeCoverage(v);
1608 assert( (pCol->colFlags & COLFLAG_GENERATED)==0 );
1609 nSeenReplace++;
1610 sqlite3ExprCodeCopy(pParse, pCol->pDflt, iReg);
1611 sqlite3VdbeJumpHere(v, addr1);
1612 break;
1614 case OE_Abort:
1615 sqlite3MayAbort(pParse);
1616 /* no break */ deliberate_fall_through
1617 case OE_Rollback:
1618 case OE_Fail: {
1619 char *zMsg = sqlite3MPrintf(db, "%s.%s", pTab->zName,
1620 pCol->zName);
1621 sqlite3VdbeAddOp3(v, OP_HaltIfNull, SQLITE_CONSTRAINT_NOTNULL,
1622 onError, iReg);
1623 sqlite3VdbeAppendP4(v, zMsg, P4_DYNAMIC);
1624 sqlite3VdbeChangeP5(v, P5_ConstraintNotNull);
1625 VdbeCoverage(v);
1626 break;
1628 default: {
1629 assert( onError==OE_Ignore );
1630 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, ignoreDest);
1631 VdbeCoverage(v);
1632 break;
1634 } /* end switch(onError) */
1635 } /* end loop i over columns */
1636 if( nGenerated==0 && nSeenReplace==0 ){
1637 /* If there are no generated columns with NOT NULL constraints
1638 ** and no NOT NULL ON CONFLICT REPLACE constraints, then a single
1639 ** pass is sufficient */
1640 break;
1642 if( b2ndPass ) break; /* Never need more than 2 passes */
1643 b2ndPass = 1;
1644 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1645 if( nSeenReplace>0 && (pTab->tabFlags & TF_HasGenerated)!=0 ){
1646 /* If any NOT NULL ON CONFLICT REPLACE constraints fired on the
1647 ** first pass, recomputed values for all generated columns, as
1648 ** those values might depend on columns affected by the REPLACE.
1650 sqlite3ComputeGeneratedColumns(pParse, regNewData+1, pTab);
1652 #endif
1653 } /* end of 2-pass loop */
1654 } /* end if( has-not-null-constraints ) */
1656 /* Test all CHECK constraints
1658 #ifndef SQLITE_OMIT_CHECK
1659 if( pTab->pCheck && (db->flags & SQLITE_IgnoreChecks)==0 ){
1660 ExprList *pCheck = pTab->pCheck;
1661 pParse->iSelfTab = -(regNewData+1);
1662 onError = overrideError!=OE_Default ? overrideError : OE_Abort;
1663 for(i=0; i<pCheck->nExpr; i++){
1664 int allOk;
1665 Expr *pCopy;
1666 Expr *pExpr = pCheck->a[i].pExpr;
1667 if( aiChng
1668 && !sqlite3ExprReferencesUpdatedColumn(pExpr, aiChng, pkChng)
1670 /* The check constraints do not reference any of the columns being
1671 ** updated so there is no point it verifying the check constraint */
1672 continue;
1674 if( bAffinityDone==0 ){
1675 sqlite3TableAffinity(v, pTab, regNewData+1);
1676 bAffinityDone = 1;
1678 allOk = sqlite3VdbeMakeLabel(pParse);
1679 sqlite3VdbeVerifyAbortable(v, onError);
1680 pCopy = sqlite3ExprDup(db, pExpr, 0);
1681 if( !db->mallocFailed ){
1682 sqlite3ExprIfTrue(pParse, pCopy, allOk, SQLITE_JUMPIFNULL);
1684 sqlite3ExprDelete(db, pCopy);
1685 if( onError==OE_Ignore ){
1686 sqlite3VdbeGoto(v, ignoreDest);
1687 }else{
1688 char *zName = pCheck->a[i].zEName;
1689 assert( zName!=0 || pParse->db->mallocFailed );
1690 if( onError==OE_Replace ) onError = OE_Abort; /* IMP: R-26383-51744 */
1691 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_CHECK,
1692 onError, zName, P4_TRANSIENT,
1693 P5_ConstraintCheck);
1695 sqlite3VdbeResolveLabel(v, allOk);
1697 pParse->iSelfTab = 0;
1699 #endif /* !defined(SQLITE_OMIT_CHECK) */
1701 /* UNIQUE and PRIMARY KEY constraints should be handled in the following
1702 ** order:
1704 ** (1) OE_Update
1705 ** (2) OE_Abort, OE_Fail, OE_Rollback, OE_Ignore
1706 ** (3) OE_Replace
1708 ** OE_Fail and OE_Ignore must happen before any changes are made.
1709 ** OE_Update guarantees that only a single row will change, so it
1710 ** must happen before OE_Replace. Technically, OE_Abort and OE_Rollback
1711 ** could happen in any order, but they are grouped up front for
1712 ** convenience.
1714 ** 2018-08-14: Ticket https://www.sqlite.org/src/info/908f001483982c43
1715 ** The order of constraints used to have OE_Update as (2) and OE_Abort
1716 ** and so forth as (1). But apparently PostgreSQL checks the OE_Update
1717 ** constraint before any others, so it had to be moved.
1719 ** Constraint checking code is generated in this order:
1720 ** (A) The rowid constraint
1721 ** (B) Unique index constraints that do not have OE_Replace as their
1722 ** default conflict resolution strategy
1723 ** (C) Unique index that do use OE_Replace by default.
1725 ** The ordering of (2) and (3) is accomplished by making sure the linked
1726 ** list of indexes attached to a table puts all OE_Replace indexes last
1727 ** in the list. See sqlite3CreateIndex() for where that happens.
1730 if( pUpsert ){
1731 if( pUpsert->pUpsertTarget==0 ){
1732 /* An ON CONFLICT DO NOTHING clause, without a constraint-target.
1733 ** Make all unique constraint resolution be OE_Ignore */
1734 assert( pUpsert->pUpsertSet==0 );
1735 overrideError = OE_Ignore;
1736 pUpsert = 0;
1737 }else if( (pUpIdx = pUpsert->pUpsertIdx)!=0 ){
1738 /* If the constraint-target uniqueness check must be run first.
1739 ** Jump to that uniqueness check now */
1740 upsertJump = sqlite3VdbeAddOp0(v, OP_Goto);
1741 VdbeComment((v, "UPSERT constraint goes first"));
1745 /* Determine if it is possible that triggers (either explicitly coded
1746 ** triggers or FK resolution actions) might run as a result of deletes
1747 ** that happen when OE_Replace conflict resolution occurs. (Call these
1748 ** "replace triggers".) If any replace triggers run, we will need to
1749 ** recheck all of the uniqueness constraints after they have all run.
1750 ** But on the recheck, the resolution is OE_Abort instead of OE_Replace.
1752 ** If replace triggers are a possibility, then
1754 ** (1) Allocate register regTrigCnt and initialize it to zero.
1755 ** That register will count the number of replace triggers that
1756 ** fire. Constraint recheck only occurs if the number is positive.
1757 ** (2) Initialize pTrigger to the list of all DELETE triggers on pTab.
1758 ** (3) Initialize addrRecheck and lblRecheckOk
1760 ** The uniqueness rechecking code will create a series of tests to run
1761 ** in a second pass. The addrRecheck and lblRecheckOk variables are
1762 ** used to link together these tests which are separated from each other
1763 ** in the generate bytecode.
1765 if( (db->flags & (SQLITE_RecTriggers|SQLITE_ForeignKeys))==0 ){
1766 /* There are not DELETE triggers nor FK constraints. No constraint
1767 ** rechecks are needed. */
1768 pTrigger = 0;
1769 regTrigCnt = 0;
1770 }else{
1771 if( db->flags&SQLITE_RecTriggers ){
1772 pTrigger = sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0);
1773 regTrigCnt = pTrigger!=0 || sqlite3FkRequired(pParse, pTab, 0, 0);
1774 }else{
1775 pTrigger = 0;
1776 regTrigCnt = sqlite3FkRequired(pParse, pTab, 0, 0);
1778 if( regTrigCnt ){
1779 /* Replace triggers might exist. Allocate the counter and
1780 ** initialize it to zero. */
1781 regTrigCnt = ++pParse->nMem;
1782 sqlite3VdbeAddOp2(v, OP_Integer, 0, regTrigCnt);
1783 VdbeComment((v, "trigger count"));
1784 lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
1785 addrRecheck = lblRecheckOk;
1789 /* If rowid is changing, make sure the new rowid does not previously
1790 ** exist in the table.
1792 if( pkChng && pPk==0 ){
1793 int addrRowidOk = sqlite3VdbeMakeLabel(pParse);
1795 /* Figure out what action to take in case of a rowid collision */
1796 onError = pTab->keyConf;
1797 if( overrideError!=OE_Default ){
1798 onError = overrideError;
1799 }else if( onError==OE_Default ){
1800 onError = OE_Abort;
1803 /* figure out whether or not upsert applies in this case */
1804 if( pUpsert && pUpsert->pUpsertIdx==0 ){
1805 if( pUpsert->pUpsertSet==0 ){
1806 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */
1807 }else{
1808 onError = OE_Update; /* DO UPDATE */
1812 /* If the response to a rowid conflict is REPLACE but the response
1813 ** to some other UNIQUE constraint is FAIL or IGNORE, then we need
1814 ** to defer the running of the rowid conflict checking until after
1815 ** the UNIQUE constraints have run.
1817 if( onError==OE_Replace /* IPK rule is REPLACE */
1818 && onError!=overrideError /* Rules for other contraints are different */
1819 && pTab->pIndex /* There exist other constraints */
1821 ipkTop = sqlite3VdbeAddOp0(v, OP_Goto)+1;
1822 VdbeComment((v, "defer IPK REPLACE until last"));
1825 if( isUpdate ){
1826 /* pkChng!=0 does not mean that the rowid has changed, only that
1827 ** it might have changed. Skip the conflict logic below if the rowid
1828 ** is unchanged. */
1829 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRowidOk, regOldData);
1830 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
1831 VdbeCoverage(v);
1834 /* Check to see if the new rowid already exists in the table. Skip
1835 ** the following conflict logic if it does not. */
1836 VdbeNoopComment((v, "uniqueness check for ROWID"));
1837 sqlite3VdbeVerifyAbortable(v, onError);
1838 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRowidOk, regNewData);
1839 VdbeCoverage(v);
1841 switch( onError ){
1842 default: {
1843 onError = OE_Abort;
1844 /* no break */ deliberate_fall_through
1846 case OE_Rollback:
1847 case OE_Abort:
1848 case OE_Fail: {
1849 testcase( onError==OE_Rollback );
1850 testcase( onError==OE_Abort );
1851 testcase( onError==OE_Fail );
1852 sqlite3RowidConstraint(pParse, onError, pTab);
1853 break;
1855 case OE_Replace: {
1856 /* If there are DELETE triggers on this table and the
1857 ** recursive-triggers flag is set, call GenerateRowDelete() to
1858 ** remove the conflicting row from the table. This will fire
1859 ** the triggers and remove both the table and index b-tree entries.
1861 ** Otherwise, if there are no triggers or the recursive-triggers
1862 ** flag is not set, but the table has one or more indexes, call
1863 ** GenerateRowIndexDelete(). This removes the index b-tree entries
1864 ** only. The table b-tree entry will be replaced by the new entry
1865 ** when it is inserted.
1867 ** If either GenerateRowDelete() or GenerateRowIndexDelete() is called,
1868 ** also invoke MultiWrite() to indicate that this VDBE may require
1869 ** statement rollback (if the statement is aborted after the delete
1870 ** takes place). Earlier versions called sqlite3MultiWrite() regardless,
1871 ** but being more selective here allows statements like:
1873 ** REPLACE INTO t(rowid) VALUES($newrowid)
1875 ** to run without a statement journal if there are no indexes on the
1876 ** table.
1878 if( regTrigCnt ){
1879 sqlite3MultiWrite(pParse);
1880 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
1881 regNewData, 1, 0, OE_Replace, 1, -1);
1882 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
1883 nReplaceTrig++;
1884 }else{
1885 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1886 assert( HasRowid(pTab) );
1887 /* This OP_Delete opcode fires the pre-update-hook only. It does
1888 ** not modify the b-tree. It is more efficient to let the coming
1889 ** OP_Insert replace the existing entry than it is to delete the
1890 ** existing entry and then insert a new one. */
1891 sqlite3VdbeAddOp2(v, OP_Delete, iDataCur, OPFLAG_ISNOOP);
1892 sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
1893 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
1894 if( pTab->pIndex ){
1895 sqlite3MultiWrite(pParse);
1896 sqlite3GenerateRowIndexDelete(pParse, pTab, iDataCur, iIdxCur,0,-1);
1899 seenReplace = 1;
1900 break;
1902 #ifndef SQLITE_OMIT_UPSERT
1903 case OE_Update: {
1904 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, 0, iDataCur);
1905 /* no break */ deliberate_fall_through
1907 #endif
1908 case OE_Ignore: {
1909 testcase( onError==OE_Ignore );
1910 sqlite3VdbeGoto(v, ignoreDest);
1911 break;
1914 sqlite3VdbeResolveLabel(v, addrRowidOk);
1915 if( ipkTop ){
1916 ipkBottom = sqlite3VdbeAddOp0(v, OP_Goto);
1917 sqlite3VdbeJumpHere(v, ipkTop-1);
1921 /* Test all UNIQUE constraints by creating entries for each UNIQUE
1922 ** index and making sure that duplicate entries do not already exist.
1923 ** Compute the revised record entries for indices as we go.
1925 ** This loop also handles the case of the PRIMARY KEY index for a
1926 ** WITHOUT ROWID table.
1928 for(ix=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, ix++){
1929 int regIdx; /* Range of registers hold conent for pIdx */
1930 int regR; /* Range of registers holding conflicting PK */
1931 int iThisCur; /* Cursor for this UNIQUE index */
1932 int addrUniqueOk; /* Jump here if the UNIQUE constraint is satisfied */
1933 int addrConflictCk; /* First opcode in the conflict check logic */
1935 if( aRegIdx[ix]==0 ) continue; /* Skip indices that do not change */
1936 if( pUpIdx==pIdx ){
1937 addrUniqueOk = upsertJump+1;
1938 upsertBypass = sqlite3VdbeGoto(v, 0);
1939 VdbeComment((v, "Skip upsert subroutine"));
1940 sqlite3VdbeJumpHere(v, upsertJump);
1941 }else{
1942 addrUniqueOk = sqlite3VdbeMakeLabel(pParse);
1944 if( bAffinityDone==0 && (pUpIdx==0 || pUpIdx==pIdx) ){
1945 sqlite3TableAffinity(v, pTab, regNewData+1);
1946 bAffinityDone = 1;
1948 VdbeNoopComment((v, "prep index %s", pIdx->zName));
1949 iThisCur = iIdxCur+ix;
1952 /* Skip partial indices for which the WHERE clause is not true */
1953 if( pIdx->pPartIdxWhere ){
1954 sqlite3VdbeAddOp2(v, OP_Null, 0, aRegIdx[ix]);
1955 pParse->iSelfTab = -(regNewData+1);
1956 sqlite3ExprIfFalseDup(pParse, pIdx->pPartIdxWhere, addrUniqueOk,
1957 SQLITE_JUMPIFNULL);
1958 pParse->iSelfTab = 0;
1961 /* Create a record for this index entry as it should appear after
1962 ** the insert or update. Store that record in the aRegIdx[ix] register
1964 regIdx = aRegIdx[ix]+1;
1965 for(i=0; i<pIdx->nColumn; i++){
1966 int iField = pIdx->aiColumn[i];
1967 int x;
1968 if( iField==XN_EXPR ){
1969 pParse->iSelfTab = -(regNewData+1);
1970 sqlite3ExprCodeCopy(pParse, pIdx->aColExpr->a[i].pExpr, regIdx+i);
1971 pParse->iSelfTab = 0;
1972 VdbeComment((v, "%s column %d", pIdx->zName, i));
1973 }else if( iField==XN_ROWID || iField==pTab->iPKey ){
1974 x = regNewData;
1975 sqlite3VdbeAddOp2(v, OP_IntCopy, x, regIdx+i);
1976 VdbeComment((v, "rowid"));
1977 }else{
1978 testcase( sqlite3TableColumnToStorage(pTab, iField)!=iField );
1979 x = sqlite3TableColumnToStorage(pTab, iField) + regNewData + 1;
1980 sqlite3VdbeAddOp2(v, OP_SCopy, x, regIdx+i);
1981 VdbeComment((v, "%s", pTab->aCol[iField].zName));
1984 sqlite3VdbeAddOp3(v, OP_MakeRecord, regIdx, pIdx->nColumn, aRegIdx[ix]);
1985 VdbeComment((v, "for %s", pIdx->zName));
1986 #ifdef SQLITE_ENABLE_NULL_TRIM
1987 if( pIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
1988 sqlite3SetMakeRecordP5(v, pIdx->pTable);
1990 #endif
1991 sqlite3VdbeReleaseRegisters(pParse, regIdx, pIdx->nColumn, 0, 0);
1993 /* In an UPDATE operation, if this index is the PRIMARY KEY index
1994 ** of a WITHOUT ROWID table and there has been no change the
1995 ** primary key, then no collision is possible. The collision detection
1996 ** logic below can all be skipped. */
1997 if( isUpdate && pPk==pIdx && pkChng==0 ){
1998 sqlite3VdbeResolveLabel(v, addrUniqueOk);
1999 continue;
2002 /* Find out what action to take in case there is a uniqueness conflict */
2003 onError = pIdx->onError;
2004 if( onError==OE_None ){
2005 sqlite3VdbeResolveLabel(v, addrUniqueOk);
2006 continue; /* pIdx is not a UNIQUE index */
2008 if( overrideError!=OE_Default ){
2009 onError = overrideError;
2010 }else if( onError==OE_Default ){
2011 onError = OE_Abort;
2014 /* Figure out if the upsert clause applies to this index */
2015 if( pUpIdx==pIdx ){
2016 if( pUpsert->pUpsertSet==0 ){
2017 onError = OE_Ignore; /* DO NOTHING is the same as INSERT OR IGNORE */
2018 }else{
2019 onError = OE_Update; /* DO UPDATE */
2023 /* Collision detection may be omitted if all of the following are true:
2024 ** (1) The conflict resolution algorithm is REPLACE
2025 ** (2) The table is a WITHOUT ROWID table
2026 ** (3) There are no secondary indexes on the table
2027 ** (4) No delete triggers need to be fired if there is a conflict
2028 ** (5) No FK constraint counters need to be updated if a conflict occurs.
2030 ** This is not possible for ENABLE_PREUPDATE_HOOK builds, as the row
2031 ** must be explicitly deleted in order to ensure any pre-update hook
2032 ** is invoked. */
2033 #ifndef SQLITE_ENABLE_PREUPDATE_HOOK
2034 if( (ix==0 && pIdx->pNext==0) /* Condition 3 */
2035 && pPk==pIdx /* Condition 2 */
2036 && onError==OE_Replace /* Condition 1 */
2037 && ( 0==(db->flags&SQLITE_RecTriggers) || /* Condition 4 */
2038 0==sqlite3TriggersExist(pParse, pTab, TK_DELETE, 0, 0))
2039 && ( 0==(db->flags&SQLITE_ForeignKeys) || /* Condition 5 */
2040 (0==pTab->pFKey && 0==sqlite3FkReferences(pTab)))
2042 sqlite3VdbeResolveLabel(v, addrUniqueOk);
2043 continue;
2045 #endif /* ifndef SQLITE_ENABLE_PREUPDATE_HOOK */
2047 /* Check to see if the new index entry will be unique */
2048 sqlite3VdbeVerifyAbortable(v, onError);
2049 addrConflictCk =
2050 sqlite3VdbeAddOp4Int(v, OP_NoConflict, iThisCur, addrUniqueOk,
2051 regIdx, pIdx->nKeyCol); VdbeCoverage(v);
2053 /* Generate code to handle collisions */
2054 regR = (pIdx==pPk) ? regIdx : sqlite3GetTempRange(pParse, nPkField);
2055 if( isUpdate || onError==OE_Replace ){
2056 if( HasRowid(pTab) ){
2057 sqlite3VdbeAddOp2(v, OP_IdxRowid, iThisCur, regR);
2058 /* Conflict only if the rowid of the existing index entry
2059 ** is different from old-rowid */
2060 if( isUpdate ){
2061 sqlite3VdbeAddOp3(v, OP_Eq, regR, addrUniqueOk, regOldData);
2062 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2063 VdbeCoverage(v);
2065 }else{
2066 int x;
2067 /* Extract the PRIMARY KEY from the end of the index entry and
2068 ** store it in registers regR..regR+nPk-1 */
2069 if( pIdx!=pPk ){
2070 for(i=0; i<pPk->nKeyCol; i++){
2071 assert( pPk->aiColumn[i]>=0 );
2072 x = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[i]);
2073 sqlite3VdbeAddOp3(v, OP_Column, iThisCur, x, regR+i);
2074 VdbeComment((v, "%s.%s", pTab->zName,
2075 pTab->aCol[pPk->aiColumn[i]].zName));
2078 if( isUpdate ){
2079 /* If currently processing the PRIMARY KEY of a WITHOUT ROWID
2080 ** table, only conflict if the new PRIMARY KEY values are actually
2081 ** different from the old.
2083 ** For a UNIQUE index, only conflict if the PRIMARY KEY values
2084 ** of the matched index row are different from the original PRIMARY
2085 ** KEY values of this row before the update. */
2086 int addrJump = sqlite3VdbeCurrentAddr(v)+pPk->nKeyCol;
2087 int op = OP_Ne;
2088 int regCmp = (IsPrimaryKeyIndex(pIdx) ? regIdx : regR);
2090 for(i=0; i<pPk->nKeyCol; i++){
2091 char *p4 = (char*)sqlite3LocateCollSeq(pParse, pPk->azColl[i]);
2092 x = pPk->aiColumn[i];
2093 assert( x>=0 );
2094 if( i==(pPk->nKeyCol-1) ){
2095 addrJump = addrUniqueOk;
2096 op = OP_Eq;
2098 x = sqlite3TableColumnToStorage(pTab, x);
2099 sqlite3VdbeAddOp4(v, op,
2100 regOldData+1+x, addrJump, regCmp+i, p4, P4_COLLSEQ
2102 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2103 VdbeCoverageIf(v, op==OP_Eq);
2104 VdbeCoverageIf(v, op==OP_Ne);
2110 /* Generate code that executes if the new index entry is not unique */
2111 assert( onError==OE_Rollback || onError==OE_Abort || onError==OE_Fail
2112 || onError==OE_Ignore || onError==OE_Replace || onError==OE_Update );
2113 switch( onError ){
2114 case OE_Rollback:
2115 case OE_Abort:
2116 case OE_Fail: {
2117 testcase( onError==OE_Rollback );
2118 testcase( onError==OE_Abort );
2119 testcase( onError==OE_Fail );
2120 sqlite3UniqueConstraint(pParse, onError, pIdx);
2121 break;
2123 #ifndef SQLITE_OMIT_UPSERT
2124 case OE_Update: {
2125 sqlite3UpsertDoUpdate(pParse, pUpsert, pTab, pIdx, iIdxCur+ix);
2126 /* no break */ deliberate_fall_through
2128 #endif
2129 case OE_Ignore: {
2130 testcase( onError==OE_Ignore );
2131 sqlite3VdbeGoto(v, ignoreDest);
2132 break;
2134 default: {
2135 int nConflictCk; /* Number of opcodes in conflict check logic */
2137 assert( onError==OE_Replace );
2138 nConflictCk = sqlite3VdbeCurrentAddr(v) - addrConflictCk;
2139 assert( nConflictCk>0 );
2140 testcase( nConflictCk>1 );
2141 if( regTrigCnt ){
2142 sqlite3MultiWrite(pParse);
2143 nReplaceTrig++;
2145 if( pTrigger && isUpdate ){
2146 sqlite3VdbeAddOp1(v, OP_CursorLock, iDataCur);
2148 sqlite3GenerateRowDelete(pParse, pTab, pTrigger, iDataCur, iIdxCur,
2149 regR, nPkField, 0, OE_Replace,
2150 (pIdx==pPk ? ONEPASS_SINGLE : ONEPASS_OFF), iThisCur);
2151 if( pTrigger && isUpdate ){
2152 sqlite3VdbeAddOp1(v, OP_CursorUnlock, iDataCur);
2154 if( regTrigCnt ){
2155 int addrBypass; /* Jump destination to bypass recheck logic */
2157 sqlite3VdbeAddOp2(v, OP_AddImm, regTrigCnt, 1); /* incr trigger cnt */
2158 addrBypass = sqlite3VdbeAddOp0(v, OP_Goto); /* Bypass recheck */
2159 VdbeComment((v, "bypass recheck"));
2161 /* Here we insert code that will be invoked after all constraint
2162 ** checks have run, if and only if one or more replace triggers
2163 ** fired. */
2164 sqlite3VdbeResolveLabel(v, lblRecheckOk);
2165 lblRecheckOk = sqlite3VdbeMakeLabel(pParse);
2166 if( pIdx->pPartIdxWhere ){
2167 /* Bypass the recheck if this partial index is not defined
2168 ** for the current row */
2169 sqlite3VdbeAddOp2(v, OP_IsNull, regIdx-1, lblRecheckOk);
2170 VdbeCoverage(v);
2172 /* Copy the constraint check code from above, except change
2173 ** the constraint-ok jump destination to be the address of
2174 ** the next retest block */
2175 while( nConflictCk>0 ){
2176 VdbeOp x; /* Conflict check opcode to copy */
2177 /* The sqlite3VdbeAddOp4() call might reallocate the opcode array.
2178 ** Hence, make a complete copy of the opcode, rather than using
2179 ** a pointer to the opcode. */
2180 x = *sqlite3VdbeGetOp(v, addrConflictCk);
2181 if( x.opcode!=OP_IdxRowid ){
2182 int p2; /* New P2 value for copied conflict check opcode */
2183 const char *zP4;
2184 if( sqlite3OpcodeProperty[x.opcode]&OPFLG_JUMP ){
2185 p2 = lblRecheckOk;
2186 }else{
2187 p2 = x.p2;
2189 zP4 = x.p4type==P4_INT32 ? SQLITE_INT_TO_PTR(x.p4.i) : x.p4.z;
2190 sqlite3VdbeAddOp4(v, x.opcode, x.p1, p2, x.p3, zP4, x.p4type);
2191 sqlite3VdbeChangeP5(v, x.p5);
2192 VdbeCoverageIf(v, p2!=x.p2);
2194 nConflictCk--;
2195 addrConflictCk++;
2197 /* If the retest fails, issue an abort */
2198 sqlite3UniqueConstraint(pParse, OE_Abort, pIdx);
2200 sqlite3VdbeJumpHere(v, addrBypass); /* Terminate the recheck bypass */
2202 seenReplace = 1;
2203 break;
2206 if( pUpIdx==pIdx ){
2207 sqlite3VdbeGoto(v, upsertJump+1);
2208 sqlite3VdbeJumpHere(v, upsertBypass);
2209 }else{
2210 sqlite3VdbeResolveLabel(v, addrUniqueOk);
2212 if( regR!=regIdx ) sqlite3ReleaseTempRange(pParse, regR, nPkField);
2215 /* If the IPK constraint is a REPLACE, run it last */
2216 if( ipkTop ){
2217 sqlite3VdbeGoto(v, ipkTop);
2218 VdbeComment((v, "Do IPK REPLACE"));
2219 sqlite3VdbeJumpHere(v, ipkBottom);
2222 /* Recheck all uniqueness constraints after replace triggers have run */
2223 testcase( regTrigCnt!=0 && nReplaceTrig==0 );
2224 assert( regTrigCnt!=0 || nReplaceTrig==0 );
2225 if( nReplaceTrig ){
2226 sqlite3VdbeAddOp2(v, OP_IfNot, regTrigCnt, lblRecheckOk);VdbeCoverage(v);
2227 if( !pPk ){
2228 if( isUpdate ){
2229 sqlite3VdbeAddOp3(v, OP_Eq, regNewData, addrRecheck, regOldData);
2230 sqlite3VdbeChangeP5(v, SQLITE_NOTNULL);
2231 VdbeCoverage(v);
2233 sqlite3VdbeAddOp3(v, OP_NotExists, iDataCur, addrRecheck, regNewData);
2234 VdbeCoverage(v);
2235 sqlite3RowidConstraint(pParse, OE_Abort, pTab);
2236 }else{
2237 sqlite3VdbeGoto(v, addrRecheck);
2239 sqlite3VdbeResolveLabel(v, lblRecheckOk);
2242 /* Generate the table record */
2243 if( HasRowid(pTab) ){
2244 int regRec = aRegIdx[ix];
2245 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNewData+1, pTab->nNVCol, regRec);
2246 sqlite3SetMakeRecordP5(v, pTab);
2247 if( !bAffinityDone ){
2248 sqlite3TableAffinity(v, pTab, 0);
2252 *pbMayReplace = seenReplace;
2253 VdbeModuleComment((v, "END: GenCnstCks(%d)", seenReplace));
2256 #ifdef SQLITE_ENABLE_NULL_TRIM
2258 ** Change the P5 operand on the last opcode (which should be an OP_MakeRecord)
2259 ** to be the number of columns in table pTab that must not be NULL-trimmed.
2261 ** Or if no columns of pTab may be NULL-trimmed, leave P5 at zero.
2263 void sqlite3SetMakeRecordP5(Vdbe *v, Table *pTab){
2264 u16 i;
2266 /* Records with omitted columns are only allowed for schema format
2267 ** version 2 and later (SQLite version 3.1.4, 2005-02-20). */
2268 if( pTab->pSchema->file_format<2 ) return;
2270 for(i=pTab->nCol-1; i>0; i--){
2271 if( pTab->aCol[i].pDflt!=0 ) break;
2272 if( pTab->aCol[i].colFlags & COLFLAG_PRIMKEY ) break;
2274 sqlite3VdbeChangeP5(v, i+1);
2276 #endif
2279 ** This routine generates code to finish the INSERT or UPDATE operation
2280 ** that was started by a prior call to sqlite3GenerateConstraintChecks.
2281 ** A consecutive range of registers starting at regNewData contains the
2282 ** rowid and the content to be inserted.
2284 ** The arguments to this routine should be the same as the first six
2285 ** arguments to sqlite3GenerateConstraintChecks.
2287 void sqlite3CompleteInsertion(
2288 Parse *pParse, /* The parser context */
2289 Table *pTab, /* the table into which we are inserting */
2290 int iDataCur, /* Cursor of the canonical data source */
2291 int iIdxCur, /* First index cursor */
2292 int regNewData, /* Range of content */
2293 int *aRegIdx, /* Register used by each index. 0 for unused indices */
2294 int update_flags, /* True for UPDATE, False for INSERT */
2295 int appendBias, /* True if this is likely to be an append */
2296 int useSeekResult /* True to set the USESEEKRESULT flag on OP_[Idx]Insert */
2298 Vdbe *v; /* Prepared statements under construction */
2299 Index *pIdx; /* An index being inserted or updated */
2300 u8 pik_flags; /* flag values passed to the btree insert */
2301 int i; /* Loop counter */
2303 assert( update_flags==0
2304 || update_flags==OPFLAG_ISUPDATE
2305 || update_flags==(OPFLAG_ISUPDATE|OPFLAG_SAVEPOSITION)
2308 v = pParse->pVdbe;
2309 assert( v!=0 );
2310 assert( pTab->pSelect==0 ); /* This table is not a VIEW */
2311 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2312 /* All REPLACE indexes are at the end of the list */
2313 assert( pIdx->onError!=OE_Replace
2314 || pIdx->pNext==0
2315 || pIdx->pNext->onError==OE_Replace );
2316 if( aRegIdx[i]==0 ) continue;
2317 if( pIdx->pPartIdxWhere ){
2318 sqlite3VdbeAddOp2(v, OP_IsNull, aRegIdx[i], sqlite3VdbeCurrentAddr(v)+2);
2319 VdbeCoverage(v);
2321 pik_flags = (useSeekResult ? OPFLAG_USESEEKRESULT : 0);
2322 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2323 assert( pParse->nested==0 );
2324 pik_flags |= OPFLAG_NCHANGE;
2325 pik_flags |= (update_flags & OPFLAG_SAVEPOSITION);
2326 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
2327 if( update_flags==0 ){
2328 int r = sqlite3GetTempReg(pParse);
2329 sqlite3VdbeAddOp2(v, OP_Integer, 0, r);
2330 sqlite3VdbeAddOp4(v, OP_Insert,
2331 iIdxCur+i, aRegIdx[i], r, (char*)pTab, P4_TABLE
2333 sqlite3VdbeChangeP5(v, OPFLAG_ISNOOP);
2334 sqlite3ReleaseTempReg(pParse, r);
2336 #endif
2338 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iIdxCur+i, aRegIdx[i],
2339 aRegIdx[i]+1,
2340 pIdx->uniqNotNull ? pIdx->nKeyCol: pIdx->nColumn);
2341 sqlite3VdbeChangeP5(v, pik_flags);
2343 if( !HasRowid(pTab) ) return;
2344 if( pParse->nested ){
2345 pik_flags = 0;
2346 }else{
2347 pik_flags = OPFLAG_NCHANGE;
2348 pik_flags |= (update_flags?update_flags:OPFLAG_LASTROWID);
2350 if( appendBias ){
2351 pik_flags |= OPFLAG_APPEND;
2353 if( useSeekResult ){
2354 pik_flags |= OPFLAG_USESEEKRESULT;
2356 sqlite3VdbeAddOp3(v, OP_Insert, iDataCur, aRegIdx[i], regNewData);
2357 if( !pParse->nested ){
2358 sqlite3VdbeAppendP4(v, pTab, P4_TABLE);
2360 sqlite3VdbeChangeP5(v, pik_flags);
2364 ** Allocate cursors for the pTab table and all its indices and generate
2365 ** code to open and initialized those cursors.
2367 ** The cursor for the object that contains the complete data (normally
2368 ** the table itself, but the PRIMARY KEY index in the case of a WITHOUT
2369 ** ROWID table) is returned in *piDataCur. The first index cursor is
2370 ** returned in *piIdxCur. The number of indices is returned.
2372 ** Use iBase as the first cursor (either the *piDataCur for rowid tables
2373 ** or the first index for WITHOUT ROWID tables) if it is non-negative.
2374 ** If iBase is negative, then allocate the next available cursor.
2376 ** For a rowid table, *piDataCur will be exactly one less than *piIdxCur.
2377 ** For a WITHOUT ROWID table, *piDataCur will be somewhere in the range
2378 ** of *piIdxCurs, depending on where the PRIMARY KEY index appears on the
2379 ** pTab->pIndex list.
2381 ** If pTab is a virtual table, then this routine is a no-op and the
2382 ** *piDataCur and *piIdxCur values are left uninitialized.
2384 int sqlite3OpenTableAndIndices(
2385 Parse *pParse, /* Parsing context */
2386 Table *pTab, /* Table to be opened */
2387 int op, /* OP_OpenRead or OP_OpenWrite */
2388 u8 p5, /* P5 value for OP_Open* opcodes (except on WITHOUT ROWID) */
2389 int iBase, /* Use this for the table cursor, if there is one */
2390 u8 *aToOpen, /* If not NULL: boolean for each table and index */
2391 int *piDataCur, /* Write the database source cursor number here */
2392 int *piIdxCur /* Write the first index cursor number here */
2394 int i;
2395 int iDb;
2396 int iDataCur;
2397 Index *pIdx;
2398 Vdbe *v;
2400 assert( op==OP_OpenRead || op==OP_OpenWrite );
2401 assert( op==OP_OpenWrite || p5==0 );
2402 if( IsVirtual(pTab) ){
2403 /* This routine is a no-op for virtual tables. Leave the output
2404 ** variables *piDataCur and *piIdxCur uninitialized so that valgrind
2405 ** can detect if they are used by mistake in the caller. */
2406 return 0;
2408 iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
2409 v = pParse->pVdbe;
2410 assert( v!=0 );
2411 if( iBase<0 ) iBase = pParse->nTab;
2412 iDataCur = iBase++;
2413 if( piDataCur ) *piDataCur = iDataCur;
2414 if( HasRowid(pTab) && (aToOpen==0 || aToOpen[0]) ){
2415 sqlite3OpenTable(pParse, iDataCur, iDb, pTab, op);
2416 }else{
2417 sqlite3TableLock(pParse, iDb, pTab->tnum, op==OP_OpenWrite, pTab->zName);
2419 if( piIdxCur ) *piIdxCur = iBase;
2420 for(i=0, pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext, i++){
2421 int iIdxCur = iBase++;
2422 assert( pIdx->pSchema==pTab->pSchema );
2423 if( IsPrimaryKeyIndex(pIdx) && !HasRowid(pTab) ){
2424 if( piDataCur ) *piDataCur = iIdxCur;
2425 p5 = 0;
2427 if( aToOpen==0 || aToOpen[i+1] ){
2428 sqlite3VdbeAddOp3(v, op, iIdxCur, pIdx->tnum, iDb);
2429 sqlite3VdbeSetP4KeyInfo(pParse, pIdx);
2430 sqlite3VdbeChangeP5(v, p5);
2431 VdbeComment((v, "%s", pIdx->zName));
2434 if( iBase>pParse->nTab ) pParse->nTab = iBase;
2435 return i;
2439 #ifdef SQLITE_TEST
2441 ** The following global variable is incremented whenever the
2442 ** transfer optimization is used. This is used for testing
2443 ** purposes only - to make sure the transfer optimization really
2444 ** is happening when it is supposed to.
2446 int sqlite3_xferopt_count;
2447 #endif /* SQLITE_TEST */
2450 #ifndef SQLITE_OMIT_XFER_OPT
2452 ** Check to see if index pSrc is compatible as a source of data
2453 ** for index pDest in an insert transfer optimization. The rules
2454 ** for a compatible index:
2456 ** * The index is over the same set of columns
2457 ** * The same DESC and ASC markings occurs on all columns
2458 ** * The same onError processing (OE_Abort, OE_Ignore, etc)
2459 ** * The same collating sequence on each column
2460 ** * The index has the exact same WHERE clause
2462 static int xferCompatibleIndex(Index *pDest, Index *pSrc){
2463 int i;
2464 assert( pDest && pSrc );
2465 assert( pDest->pTable!=pSrc->pTable );
2466 if( pDest->nKeyCol!=pSrc->nKeyCol || pDest->nColumn!=pSrc->nColumn ){
2467 return 0; /* Different number of columns */
2469 if( pDest->onError!=pSrc->onError ){
2470 return 0; /* Different conflict resolution strategies */
2472 for(i=0; i<pSrc->nKeyCol; i++){
2473 if( pSrc->aiColumn[i]!=pDest->aiColumn[i] ){
2474 return 0; /* Different columns indexed */
2476 if( pSrc->aiColumn[i]==XN_EXPR ){
2477 assert( pSrc->aColExpr!=0 && pDest->aColExpr!=0 );
2478 if( sqlite3ExprCompare(0, pSrc->aColExpr->a[i].pExpr,
2479 pDest->aColExpr->a[i].pExpr, -1)!=0 ){
2480 return 0; /* Different expressions in the index */
2483 if( pSrc->aSortOrder[i]!=pDest->aSortOrder[i] ){
2484 return 0; /* Different sort orders */
2486 if( sqlite3_stricmp(pSrc->azColl[i],pDest->azColl[i])!=0 ){
2487 return 0; /* Different collating sequences */
2490 if( sqlite3ExprCompare(0, pSrc->pPartIdxWhere, pDest->pPartIdxWhere, -1) ){
2491 return 0; /* Different WHERE clauses */
2494 /* If no test above fails then the indices must be compatible */
2495 return 1;
2499 ** Attempt the transfer optimization on INSERTs of the form
2501 ** INSERT INTO tab1 SELECT * FROM tab2;
2503 ** The xfer optimization transfers raw records from tab2 over to tab1.
2504 ** Columns are not decoded and reassembled, which greatly improves
2505 ** performance. Raw index records are transferred in the same way.
2507 ** The xfer optimization is only attempted if tab1 and tab2 are compatible.
2508 ** There are lots of rules for determining compatibility - see comments
2509 ** embedded in the code for details.
2511 ** This routine returns TRUE if the optimization is guaranteed to be used.
2512 ** Sometimes the xfer optimization will only work if the destination table
2513 ** is empty - a factor that can only be determined at run-time. In that
2514 ** case, this routine generates code for the xfer optimization but also
2515 ** does a test to see if the destination table is empty and jumps over the
2516 ** xfer optimization code if the test fails. In that case, this routine
2517 ** returns FALSE so that the caller will know to go ahead and generate
2518 ** an unoptimized transfer. This routine also returns FALSE if there
2519 ** is no chance that the xfer optimization can be applied.
2521 ** This optimization is particularly useful at making VACUUM run faster.
2523 static int xferOptimization(
2524 Parse *pParse, /* Parser context */
2525 Table *pDest, /* The table we are inserting into */
2526 Select *pSelect, /* A SELECT statement to use as the data source */
2527 int onError, /* How to handle constraint errors */
2528 int iDbDest /* The database of pDest */
2530 sqlite3 *db = pParse->db;
2531 ExprList *pEList; /* The result set of the SELECT */
2532 Table *pSrc; /* The table in the FROM clause of SELECT */
2533 Index *pSrcIdx, *pDestIdx; /* Source and destination indices */
2534 struct SrcList_item *pItem; /* An element of pSelect->pSrc */
2535 int i; /* Loop counter */
2536 int iDbSrc; /* The database of pSrc */
2537 int iSrc, iDest; /* Cursors from source and destination */
2538 int addr1, addr2; /* Loop addresses */
2539 int emptyDestTest = 0; /* Address of test for empty pDest */
2540 int emptySrcTest = 0; /* Address of test for empty pSrc */
2541 Vdbe *v; /* The VDBE we are building */
2542 int regAutoinc; /* Memory register used by AUTOINC */
2543 int destHasUniqueIdx = 0; /* True if pDest has a UNIQUE index */
2544 int regData, regRowid; /* Registers holding data and rowid */
2546 if( pSelect==0 ){
2547 return 0; /* Must be of the form INSERT INTO ... SELECT ... */
2549 if( pParse->pWith || pSelect->pWith ){
2550 /* Do not attempt to process this query if there are an WITH clauses
2551 ** attached to it. Proceeding may generate a false "no such table: xxx"
2552 ** error if pSelect reads from a CTE named "xxx". */
2553 return 0;
2555 if( sqlite3TriggerList(pParse, pDest) ){
2556 return 0; /* tab1 must not have triggers */
2558 #ifndef SQLITE_OMIT_VIRTUALTABLE
2559 if( IsVirtual(pDest) ){
2560 return 0; /* tab1 must not be a virtual table */
2562 #endif
2563 if( onError==OE_Default ){
2564 if( pDest->iPKey>=0 ) onError = pDest->keyConf;
2565 if( onError==OE_Default ) onError = OE_Abort;
2567 assert(pSelect->pSrc); /* allocated even if there is no FROM clause */
2568 if( pSelect->pSrc->nSrc!=1 ){
2569 return 0; /* FROM clause must have exactly one term */
2571 if( pSelect->pSrc->a[0].pSelect ){
2572 return 0; /* FROM clause cannot contain a subquery */
2574 if( pSelect->pWhere ){
2575 return 0; /* SELECT may not have a WHERE clause */
2577 if( pSelect->pOrderBy ){
2578 return 0; /* SELECT may not have an ORDER BY clause */
2580 /* Do not need to test for a HAVING clause. If HAVING is present but
2581 ** there is no ORDER BY, we will get an error. */
2582 if( pSelect->pGroupBy ){
2583 return 0; /* SELECT may not have a GROUP BY clause */
2585 if( pSelect->pLimit ){
2586 return 0; /* SELECT may not have a LIMIT clause */
2588 if( pSelect->pPrior ){
2589 return 0; /* SELECT may not be a compound query */
2591 if( pSelect->selFlags & SF_Distinct ){
2592 return 0; /* SELECT may not be DISTINCT */
2594 pEList = pSelect->pEList;
2595 assert( pEList!=0 );
2596 if( pEList->nExpr!=1 ){
2597 return 0; /* The result set must have exactly one column */
2599 assert( pEList->a[0].pExpr );
2600 if( pEList->a[0].pExpr->op!=TK_ASTERISK ){
2601 return 0; /* The result set must be the special operator "*" */
2604 /* At this point we have established that the statement is of the
2605 ** correct syntactic form to participate in this optimization. Now
2606 ** we have to check the semantics.
2608 pItem = pSelect->pSrc->a;
2609 pSrc = sqlite3LocateTableItem(pParse, 0, pItem);
2610 if( pSrc==0 ){
2611 return 0; /* FROM clause does not contain a real table */
2613 if( pSrc->tnum==pDest->tnum && pSrc->pSchema==pDest->pSchema ){
2614 testcase( pSrc!=pDest ); /* Possible due to bad sqlite_schema.rootpage */
2615 return 0; /* tab1 and tab2 may not be the same table */
2617 if( HasRowid(pDest)!=HasRowid(pSrc) ){
2618 return 0; /* source and destination must both be WITHOUT ROWID or not */
2620 #ifndef SQLITE_OMIT_VIRTUALTABLE
2621 if( IsVirtual(pSrc) ){
2622 return 0; /* tab2 must not be a virtual table */
2624 #endif
2625 if( pSrc->pSelect ){
2626 return 0; /* tab2 may not be a view */
2628 if( pDest->nCol!=pSrc->nCol ){
2629 return 0; /* Number of columns must be the same in tab1 and tab2 */
2631 if( pDest->iPKey!=pSrc->iPKey ){
2632 return 0; /* Both tables must have the same INTEGER PRIMARY KEY */
2634 for(i=0; i<pDest->nCol; i++){
2635 Column *pDestCol = &pDest->aCol[i];
2636 Column *pSrcCol = &pSrc->aCol[i];
2637 #ifdef SQLITE_ENABLE_HIDDEN_COLUMNS
2638 if( (db->mDbFlags & DBFLAG_Vacuum)==0
2639 && (pDestCol->colFlags | pSrcCol->colFlags) & COLFLAG_HIDDEN
2641 return 0; /* Neither table may have __hidden__ columns */
2643 #endif
2644 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2645 /* Even if tables t1 and t2 have identical schemas, if they contain
2646 ** generated columns, then this statement is semantically incorrect:
2648 ** INSERT INTO t2 SELECT * FROM t1;
2650 ** The reason is that generated column values are returned by the
2651 ** the SELECT statement on the right but the INSERT statement on the
2652 ** left wants them to be omitted.
2654 ** Nevertheless, this is a useful notational shorthand to tell SQLite
2655 ** to do a bulk transfer all of the content from t1 over to t2.
2657 ** We could, in theory, disable this (except for internal use by the
2658 ** VACUUM command where it is actually needed). But why do that? It
2659 ** seems harmless enough, and provides a useful service.
2661 if( (pDestCol->colFlags & COLFLAG_GENERATED) !=
2662 (pSrcCol->colFlags & COLFLAG_GENERATED) ){
2663 return 0; /* Both columns have the same generated-column type */
2665 /* But the transfer is only allowed if both the source and destination
2666 ** tables have the exact same expressions for generated columns.
2667 ** This requirement could be relaxed for VIRTUAL columns, I suppose.
2669 if( (pDestCol->colFlags & COLFLAG_GENERATED)!=0 ){
2670 if( sqlite3ExprCompare(0, pSrcCol->pDflt, pDestCol->pDflt, -1)!=0 ){
2671 testcase( pDestCol->colFlags & COLFLAG_VIRTUAL );
2672 testcase( pDestCol->colFlags & COLFLAG_STORED );
2673 return 0; /* Different generator expressions */
2676 #endif
2677 if( pDestCol->affinity!=pSrcCol->affinity ){
2678 return 0; /* Affinity must be the same on all columns */
2680 if( sqlite3_stricmp(pDestCol->zColl, pSrcCol->zColl)!=0 ){
2681 return 0; /* Collating sequence must be the same on all columns */
2683 if( pDestCol->notNull && !pSrcCol->notNull ){
2684 return 0; /* tab2 must be NOT NULL if tab1 is */
2686 /* Default values for second and subsequent columns need to match. */
2687 if( (pDestCol->colFlags & COLFLAG_GENERATED)==0 && i>0 ){
2688 assert( pDestCol->pDflt==0 || pDestCol->pDflt->op==TK_SPAN );
2689 assert( pSrcCol->pDflt==0 || pSrcCol->pDflt->op==TK_SPAN );
2690 if( (pDestCol->pDflt==0)!=(pSrcCol->pDflt==0)
2691 || (pDestCol->pDflt && strcmp(pDestCol->pDflt->u.zToken,
2692 pSrcCol->pDflt->u.zToken)!=0)
2694 return 0; /* Default values must be the same for all columns */
2698 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2699 if( IsUniqueIndex(pDestIdx) ){
2700 destHasUniqueIdx = 1;
2702 for(pSrcIdx=pSrc->pIndex; pSrcIdx; pSrcIdx=pSrcIdx->pNext){
2703 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2705 if( pSrcIdx==0 ){
2706 return 0; /* pDestIdx has no corresponding index in pSrc */
2708 if( pSrcIdx->tnum==pDestIdx->tnum && pSrc->pSchema==pDest->pSchema
2709 && sqlite3FaultSim(411)==SQLITE_OK ){
2710 /* The sqlite3FaultSim() call allows this corruption test to be
2711 ** bypassed during testing, in order to exercise other corruption tests
2712 ** further downstream. */
2713 return 0; /* Corrupt schema - two indexes on the same btree */
2716 #ifndef SQLITE_OMIT_CHECK
2717 if( pDest->pCheck && sqlite3ExprListCompare(pSrc->pCheck,pDest->pCheck,-1) ){
2718 return 0; /* Tables have different CHECK constraints. Ticket #2252 */
2720 #endif
2721 #ifndef SQLITE_OMIT_FOREIGN_KEY
2722 /* Disallow the transfer optimization if the destination table constains
2723 ** any foreign key constraints. This is more restrictive than necessary.
2724 ** But the main beneficiary of the transfer optimization is the VACUUM
2725 ** command, and the VACUUM command disables foreign key constraints. So
2726 ** the extra complication to make this rule less restrictive is probably
2727 ** not worth the effort. Ticket [6284df89debdfa61db8073e062908af0c9b6118e]
2729 if( (db->flags & SQLITE_ForeignKeys)!=0 && pDest->pFKey!=0 ){
2730 return 0;
2732 #endif
2733 if( (db->flags & SQLITE_CountRows)!=0 ){
2734 return 0; /* xfer opt does not play well with PRAGMA count_changes */
2737 /* If we get this far, it means that the xfer optimization is at
2738 ** least a possibility, though it might only work if the destination
2739 ** table (tab1) is initially empty.
2741 #ifdef SQLITE_TEST
2742 sqlite3_xferopt_count++;
2743 #endif
2744 iDbSrc = sqlite3SchemaToIndex(db, pSrc->pSchema);
2745 v = sqlite3GetVdbe(pParse);
2746 sqlite3CodeVerifySchema(pParse, iDbSrc);
2747 iSrc = pParse->nTab++;
2748 iDest = pParse->nTab++;
2749 regAutoinc = autoIncBegin(pParse, iDbDest, pDest);
2750 regData = sqlite3GetTempReg(pParse);
2751 regRowid = sqlite3GetTempReg(pParse);
2752 sqlite3OpenTable(pParse, iDest, iDbDest, pDest, OP_OpenWrite);
2753 assert( HasRowid(pDest) || destHasUniqueIdx );
2754 if( (db->mDbFlags & DBFLAG_Vacuum)==0 && (
2755 (pDest->iPKey<0 && pDest->pIndex!=0) /* (1) */
2756 || destHasUniqueIdx /* (2) */
2757 || (onError!=OE_Abort && onError!=OE_Rollback) /* (3) */
2759 /* In some circumstances, we are able to run the xfer optimization
2760 ** only if the destination table is initially empty. Unless the
2761 ** DBFLAG_Vacuum flag is set, this block generates code to make
2762 ** that determination. If DBFLAG_Vacuum is set, then the destination
2763 ** table is always empty.
2765 ** Conditions under which the destination must be empty:
2767 ** (1) There is no INTEGER PRIMARY KEY but there are indices.
2768 ** (If the destination is not initially empty, the rowid fields
2769 ** of index entries might need to change.)
2771 ** (2) The destination has a unique index. (The xfer optimization
2772 ** is unable to test uniqueness.)
2774 ** (3) onError is something other than OE_Abort and OE_Rollback.
2776 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iDest, 0); VdbeCoverage(v);
2777 emptyDestTest = sqlite3VdbeAddOp0(v, OP_Goto);
2778 sqlite3VdbeJumpHere(v, addr1);
2780 if( HasRowid(pSrc) ){
2781 u8 insFlags;
2782 sqlite3OpenTable(pParse, iSrc, iDbSrc, pSrc, OP_OpenRead);
2783 emptySrcTest = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2784 if( pDest->iPKey>=0 ){
2785 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2786 sqlite3VdbeVerifyAbortable(v, onError);
2787 addr2 = sqlite3VdbeAddOp3(v, OP_NotExists, iDest, 0, regRowid);
2788 VdbeCoverage(v);
2789 sqlite3RowidConstraint(pParse, onError, pDest);
2790 sqlite3VdbeJumpHere(v, addr2);
2791 autoIncStep(pParse, regAutoinc, regRowid);
2792 }else if( pDest->pIndex==0 && !(db->mDbFlags & DBFLAG_VacuumInto) ){
2793 addr1 = sqlite3VdbeAddOp2(v, OP_NewRowid, iDest, regRowid);
2794 }else{
2795 addr1 = sqlite3VdbeAddOp2(v, OP_Rowid, iSrc, regRowid);
2796 assert( (pDest->tabFlags & TF_Autoincrement)==0 );
2798 if( db->mDbFlags & DBFLAG_Vacuum ){
2799 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
2800 insFlags = OPFLAG_APPEND|OPFLAG_USESEEKRESULT;
2801 }else{
2802 insFlags = OPFLAG_NCHANGE|OPFLAG_LASTROWID|OPFLAG_APPEND;
2804 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
2805 sqlite3VdbeAddOp4(v, OP_Insert, iDest, regData, regRowid,
2806 (char*)pDest, P4_TABLE);
2807 sqlite3VdbeChangeP5(v, insFlags);
2808 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1); VdbeCoverage(v);
2809 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2810 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2811 }else{
2812 sqlite3TableLock(pParse, iDbDest, pDest->tnum, 1, pDest->zName);
2813 sqlite3TableLock(pParse, iDbSrc, pSrc->tnum, 0, pSrc->zName);
2815 for(pDestIdx=pDest->pIndex; pDestIdx; pDestIdx=pDestIdx->pNext){
2816 u8 idxInsFlags = 0;
2817 for(pSrcIdx=pSrc->pIndex; ALWAYS(pSrcIdx); pSrcIdx=pSrcIdx->pNext){
2818 if( xferCompatibleIndex(pDestIdx, pSrcIdx) ) break;
2820 assert( pSrcIdx );
2821 sqlite3VdbeAddOp3(v, OP_OpenRead, iSrc, pSrcIdx->tnum, iDbSrc);
2822 sqlite3VdbeSetP4KeyInfo(pParse, pSrcIdx);
2823 VdbeComment((v, "%s", pSrcIdx->zName));
2824 sqlite3VdbeAddOp3(v, OP_OpenWrite, iDest, pDestIdx->tnum, iDbDest);
2825 sqlite3VdbeSetP4KeyInfo(pParse, pDestIdx);
2826 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR);
2827 VdbeComment((v, "%s", pDestIdx->zName));
2828 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iSrc, 0); VdbeCoverage(v);
2829 if( db->mDbFlags & DBFLAG_Vacuum ){
2830 /* This INSERT command is part of a VACUUM operation, which guarantees
2831 ** that the destination table is empty. If all indexed columns use
2832 ** collation sequence BINARY, then it can also be assumed that the
2833 ** index will be populated by inserting keys in strictly sorted
2834 ** order. In this case, instead of seeking within the b-tree as part
2835 ** of every OP_IdxInsert opcode, an OP_SeekEnd is added before the
2836 ** OP_IdxInsert to seek to the point within the b-tree where each key
2837 ** should be inserted. This is faster.
2839 ** If any of the indexed columns use a collation sequence other than
2840 ** BINARY, this optimization is disabled. This is because the user
2841 ** might change the definition of a collation sequence and then run
2842 ** a VACUUM command. In that case keys may not be written in strictly
2843 ** sorted order. */
2844 for(i=0; i<pSrcIdx->nColumn; i++){
2845 const char *zColl = pSrcIdx->azColl[i];
2846 if( sqlite3_stricmp(sqlite3StrBINARY, zColl) ) break;
2848 if( i==pSrcIdx->nColumn ){
2849 idxInsFlags = OPFLAG_USESEEKRESULT;
2850 sqlite3VdbeAddOp1(v, OP_SeekEnd, iDest);
2852 }else if( !HasRowid(pSrc) && pDestIdx->idxType==SQLITE_IDXTYPE_PRIMARYKEY ){
2853 idxInsFlags |= OPFLAG_NCHANGE;
2855 sqlite3VdbeAddOp3(v, OP_RowData, iSrc, regData, 1);
2856 sqlite3VdbeAddOp2(v, OP_IdxInsert, iDest, regData);
2857 sqlite3VdbeChangeP5(v, idxInsFlags|OPFLAG_APPEND);
2858 sqlite3VdbeAddOp2(v, OP_Next, iSrc, addr1+1); VdbeCoverage(v);
2859 sqlite3VdbeJumpHere(v, addr1);
2860 sqlite3VdbeAddOp2(v, OP_Close, iSrc, 0);
2861 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2863 if( emptySrcTest ) sqlite3VdbeJumpHere(v, emptySrcTest);
2864 sqlite3ReleaseTempReg(pParse, regRowid);
2865 sqlite3ReleaseTempReg(pParse, regData);
2866 if( emptyDestTest ){
2867 sqlite3AutoincrementEnd(pParse);
2868 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_OK, 0);
2869 sqlite3VdbeJumpHere(v, emptyDestTest);
2870 sqlite3VdbeAddOp2(v, OP_Close, iDest, 0);
2871 return 0;
2872 }else{
2873 return 1;
2876 #endif /* SQLITE_OMIT_XFER_OPT */