update version and change log for 4.4.3
[sqlcipher.git] / src / pcache1.c
blobed762ebf70f1d1fc887c77e44fd326662cf9771a
1 /*
2 ** 2008 November 05
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file implements the default page cache implementation (the
14 ** sqlite3_pcache interface). It also contains part of the implementation
15 ** of the SQLITE_CONFIG_PAGECACHE and sqlite3_release_memory() features.
16 ** If the default page cache implementation is overridden, then neither of
17 ** these two features are available.
19 ** A Page cache line looks like this:
21 ** -------------------------------------------------------------
22 ** | database page content | PgHdr1 | MemPage | PgHdr |
23 ** -------------------------------------------------------------
25 ** The database page content is up front (so that buffer overreads tend to
26 ** flow harmlessly into the PgHdr1, MemPage, and PgHdr extensions). MemPage
27 ** is the extension added by the btree.c module containing information such
28 ** as the database page number and how that database page is used. PgHdr
29 ** is added by the pcache.c layer and contains information used to keep track
30 ** of which pages are "dirty". PgHdr1 is an extension added by this
31 ** module (pcache1.c). The PgHdr1 header is a subclass of sqlite3_pcache_page.
32 ** PgHdr1 contains information needed to look up a page by its page number.
33 ** The superclass sqlite3_pcache_page.pBuf points to the start of the
34 ** database page content and sqlite3_pcache_page.pExtra points to PgHdr.
36 ** The size of the extension (MemPage+PgHdr+PgHdr1) can be determined at
37 ** runtime using sqlite3_config(SQLITE_CONFIG_PCACHE_HDRSZ, &size). The
38 ** sizes of the extensions sum to 272 bytes on x64 for 3.8.10, but this
39 ** size can vary according to architecture, compile-time options, and
40 ** SQLite library version number.
42 ** If SQLITE_PCACHE_SEPARATE_HEADER is defined, then the extension is obtained
43 ** using a separate memory allocation from the database page content. This
44 ** seeks to overcome the "clownshoe" problem (also called "internal
45 ** fragmentation" in academic literature) of allocating a few bytes more
46 ** than a power of two with the memory allocator rounding up to the next
47 ** power of two, and leaving the rounded-up space unused.
49 ** This module tracks pointers to PgHdr1 objects. Only pcache.c communicates
50 ** with this module. Information is passed back and forth as PgHdr1 pointers.
52 ** The pcache.c and pager.c modules deal pointers to PgHdr objects.
53 ** The btree.c module deals with pointers to MemPage objects.
55 ** SOURCE OF PAGE CACHE MEMORY:
57 ** Memory for a page might come from any of three sources:
59 ** (1) The general-purpose memory allocator - sqlite3Malloc()
60 ** (2) Global page-cache memory provided using sqlite3_config() with
61 ** SQLITE_CONFIG_PAGECACHE.
62 ** (3) PCache-local bulk allocation.
64 ** The third case is a chunk of heap memory (defaulting to 100 pages worth)
65 ** that is allocated when the page cache is created. The size of the local
66 ** bulk allocation can be adjusted using
68 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, (void*)0, 0, N).
70 ** If N is positive, then N pages worth of memory are allocated using a single
71 ** sqlite3Malloc() call and that memory is used for the first N pages allocated.
72 ** Or if N is negative, then -1024*N bytes of memory are allocated and used
73 ** for as many pages as can be accomodated.
75 ** Only one of (2) or (3) can be used. Once the memory available to (2) or
76 ** (3) is exhausted, subsequent allocations fail over to the general-purpose
77 ** memory allocator (1).
79 ** Earlier versions of SQLite used only methods (1) and (2). But experiments
80 ** show that method (3) with N==100 provides about a 5% performance boost for
81 ** common workloads.
83 #include "sqliteInt.h"
85 typedef struct PCache1 PCache1;
86 typedef struct PgHdr1 PgHdr1;
87 typedef struct PgFreeslot PgFreeslot;
88 typedef struct PGroup PGroup;
91 ** Each cache entry is represented by an instance of the following
92 ** structure. Unless SQLITE_PCACHE_SEPARATE_HEADER is defined, a buffer of
93 ** PgHdr1.pCache->szPage bytes is allocated directly before this structure
94 ** in memory.
96 ** Note: Variables isBulkLocal and isAnchor were once type "u8". That works,
97 ** but causes a 2-byte gap in the structure for most architectures (since
98 ** pointers must be either 4 or 8-byte aligned). As this structure is located
99 ** in memory directly after the associated page data, if the database is
100 ** corrupt, code at the b-tree layer may overread the page buffer and
101 ** read part of this structure before the corruption is detected. This
102 ** can cause a valgrind error if the unitialized gap is accessed. Using u16
103 ** ensures there is no such gap, and therefore no bytes of unitialized memory
104 ** in the structure.
106 struct PgHdr1 {
107 sqlite3_pcache_page page; /* Base class. Must be first. pBuf & pExtra */
108 unsigned int iKey; /* Key value (page number) */
109 u16 isBulkLocal; /* This page from bulk local storage */
110 u16 isAnchor; /* This is the PGroup.lru element */
111 PgHdr1 *pNext; /* Next in hash table chain */
112 PCache1 *pCache; /* Cache that currently owns this page */
113 PgHdr1 *pLruNext; /* Next in LRU list of unpinned pages */
114 PgHdr1 *pLruPrev; /* Previous in LRU list of unpinned pages */
115 /* NB: pLruPrev is only valid if pLruNext!=0 */
119 ** A page is pinned if it is not on the LRU list. To be "pinned" means
120 ** that the page is in active use and must not be deallocated.
122 #define PAGE_IS_PINNED(p) ((p)->pLruNext==0)
123 #define PAGE_IS_UNPINNED(p) ((p)->pLruNext!=0)
125 /* Each page cache (or PCache) belongs to a PGroup. A PGroup is a set
126 ** of one or more PCaches that are able to recycle each other's unpinned
127 ** pages when they are under memory pressure. A PGroup is an instance of
128 ** the following object.
130 ** This page cache implementation works in one of two modes:
132 ** (1) Every PCache is the sole member of its own PGroup. There is
133 ** one PGroup per PCache.
135 ** (2) There is a single global PGroup that all PCaches are a member
136 ** of.
138 ** Mode 1 uses more memory (since PCache instances are not able to rob
139 ** unused pages from other PCaches) but it also operates without a mutex,
140 ** and is therefore often faster. Mode 2 requires a mutex in order to be
141 ** threadsafe, but recycles pages more efficiently.
143 ** For mode (1), PGroup.mutex is NULL. For mode (2) there is only a single
144 ** PGroup which is the pcache1.grp global variable and its mutex is
145 ** SQLITE_MUTEX_STATIC_LRU.
147 struct PGroup {
148 sqlite3_mutex *mutex; /* MUTEX_STATIC_LRU or NULL */
149 unsigned int nMaxPage; /* Sum of nMax for purgeable caches */
150 unsigned int nMinPage; /* Sum of nMin for purgeable caches */
151 unsigned int mxPinned; /* nMaxpage + 10 - nMinPage */
152 unsigned int nPurgeable; /* Number of purgeable pages allocated */
153 PgHdr1 lru; /* The beginning and end of the LRU list */
156 /* Each page cache is an instance of the following object. Every
157 ** open database file (including each in-memory database and each
158 ** temporary or transient database) has a single page cache which
159 ** is an instance of this object.
161 ** Pointers to structures of this type are cast and returned as
162 ** opaque sqlite3_pcache* handles.
164 struct PCache1 {
165 /* Cache configuration parameters. Page size (szPage) and the purgeable
166 ** flag (bPurgeable) and the pnPurgeable pointer are all set when the
167 ** cache is created and are never changed thereafter. nMax may be
168 ** modified at any time by a call to the pcache1Cachesize() method.
169 ** The PGroup mutex must be held when accessing nMax.
171 PGroup *pGroup; /* PGroup this cache belongs to */
172 unsigned int *pnPurgeable; /* Pointer to pGroup->nPurgeable */
173 int szPage; /* Size of database content section */
174 int szExtra; /* sizeof(MemPage)+sizeof(PgHdr) */
175 int szAlloc; /* Total size of one pcache line */
176 int bPurgeable; /* True if cache is purgeable */
177 unsigned int nMin; /* Minimum number of pages reserved */
178 unsigned int nMax; /* Configured "cache_size" value */
179 unsigned int n90pct; /* nMax*9/10 */
180 unsigned int iMaxKey; /* Largest key seen since xTruncate() */
181 unsigned int nPurgeableDummy; /* pnPurgeable points here when not used*/
183 /* Hash table of all pages. The following variables may only be accessed
184 ** when the accessor is holding the PGroup mutex.
186 unsigned int nRecyclable; /* Number of pages in the LRU list */
187 unsigned int nPage; /* Total number of pages in apHash */
188 unsigned int nHash; /* Number of slots in apHash[] */
189 PgHdr1 **apHash; /* Hash table for fast lookup by key */
190 PgHdr1 *pFree; /* List of unused pcache-local pages */
191 void *pBulk; /* Bulk memory used by pcache-local */
195 ** Free slots in the allocator used to divide up the global page cache
196 ** buffer provided using the SQLITE_CONFIG_PAGECACHE mechanism.
198 struct PgFreeslot {
199 PgFreeslot *pNext; /* Next free slot */
203 ** Global data used by this cache.
205 static SQLITE_WSD struct PCacheGlobal {
206 PGroup grp; /* The global PGroup for mode (2) */
208 /* Variables related to SQLITE_CONFIG_PAGECACHE settings. The
209 ** szSlot, nSlot, pStart, pEnd, nReserve, and isInit values are all
210 ** fixed at sqlite3_initialize() time and do not require mutex protection.
211 ** The nFreeSlot and pFree values do require mutex protection.
213 int isInit; /* True if initialized */
214 int separateCache; /* Use a new PGroup for each PCache */
215 int nInitPage; /* Initial bulk allocation size */
216 int szSlot; /* Size of each free slot */
217 int nSlot; /* The number of pcache slots */
218 int nReserve; /* Try to keep nFreeSlot above this */
219 void *pStart, *pEnd; /* Bounds of global page cache memory */
220 /* Above requires no mutex. Use mutex below for variable that follow. */
221 sqlite3_mutex *mutex; /* Mutex for accessing the following: */
222 PgFreeslot *pFree; /* Free page blocks */
223 int nFreeSlot; /* Number of unused pcache slots */
224 /* The following value requires a mutex to change. We skip the mutex on
225 ** reading because (1) most platforms read a 32-bit integer atomically and
226 ** (2) even if an incorrect value is read, no great harm is done since this
227 ** is really just an optimization. */
228 int bUnderPressure; /* True if low on PAGECACHE memory */
229 } pcache1_g;
232 ** All code in this file should access the global structure above via the
233 ** alias "pcache1". This ensures that the WSD emulation is used when
234 ** compiling for systems that do not support real WSD.
236 #define pcache1 (GLOBAL(struct PCacheGlobal, pcache1_g))
239 ** Macros to enter and leave the PCache LRU mutex.
241 #if !defined(SQLITE_ENABLE_MEMORY_MANAGEMENT) || SQLITE_THREADSAFE==0
242 # define pcache1EnterMutex(X) assert((X)->mutex==0)
243 # define pcache1LeaveMutex(X) assert((X)->mutex==0)
244 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 0
245 #else
246 # define pcache1EnterMutex(X) sqlite3_mutex_enter((X)->mutex)
247 # define pcache1LeaveMutex(X) sqlite3_mutex_leave((X)->mutex)
248 # define PCACHE1_MIGHT_USE_GROUP_MUTEX 1
249 #endif
251 /******************************************************************************/
252 /******** Page Allocation/SQLITE_CONFIG_PCACHE Related Functions **************/
256 ** This function is called during initialization if a static buffer is
257 ** supplied to use for the page-cache by passing the SQLITE_CONFIG_PAGECACHE
258 ** verb to sqlite3_config(). Parameter pBuf points to an allocation large
259 ** enough to contain 'n' buffers of 'sz' bytes each.
261 ** This routine is called from sqlite3_initialize() and so it is guaranteed
262 ** to be serialized already. There is no need for further mutexing.
264 void sqlite3PCacheBufferSetup(void *pBuf, int sz, int n){
265 if( pcache1.isInit ){
266 PgFreeslot *p;
267 if( pBuf==0 ) sz = n = 0;
268 if( n==0 ) sz = 0;
269 sz = ROUNDDOWN8(sz);
270 pcache1.szSlot = sz;
271 pcache1.nSlot = pcache1.nFreeSlot = n;
272 pcache1.nReserve = n>90 ? 10 : (n/10 + 1);
273 pcache1.pStart = pBuf;
274 pcache1.pFree = 0;
275 pcache1.bUnderPressure = 0;
276 while( n-- ){
277 p = (PgFreeslot*)pBuf;
278 p->pNext = pcache1.pFree;
279 pcache1.pFree = p;
280 pBuf = (void*)&((char*)pBuf)[sz];
282 pcache1.pEnd = pBuf;
287 ** Try to initialize the pCache->pFree and pCache->pBulk fields. Return
288 ** true if pCache->pFree ends up containing one or more free pages.
290 static int pcache1InitBulk(PCache1 *pCache){
291 i64 szBulk;
292 char *zBulk;
293 if( pcache1.nInitPage==0 ) return 0;
294 /* Do not bother with a bulk allocation if the cache size very small */
295 if( pCache->nMax<3 ) return 0;
296 sqlite3BeginBenignMalloc();
297 if( pcache1.nInitPage>0 ){
298 szBulk = pCache->szAlloc * (i64)pcache1.nInitPage;
299 }else{
300 szBulk = -1024 * (i64)pcache1.nInitPage;
302 if( szBulk > pCache->szAlloc*(i64)pCache->nMax ){
303 szBulk = pCache->szAlloc*(i64)pCache->nMax;
305 zBulk = pCache->pBulk = sqlite3Malloc( szBulk );
306 sqlite3EndBenignMalloc();
307 if( zBulk ){
308 int nBulk = sqlite3MallocSize(zBulk)/pCache->szAlloc;
310 PgHdr1 *pX = (PgHdr1*)&zBulk[pCache->szPage];
311 pX->page.pBuf = zBulk;
312 pX->page.pExtra = &pX[1];
313 pX->isBulkLocal = 1;
314 pX->isAnchor = 0;
315 pX->pNext = pCache->pFree;
316 pX->pLruPrev = 0; /* Initializing this saves a valgrind error */
317 pCache->pFree = pX;
318 zBulk += pCache->szAlloc;
319 }while( --nBulk );
321 return pCache->pFree!=0;
325 ** Malloc function used within this file to allocate space from the buffer
326 ** configured using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no
327 ** such buffer exists or there is no space left in it, this function falls
328 ** back to sqlite3Malloc().
330 ** Multiple threads can run this routine at the same time. Global variables
331 ** in pcache1 need to be protected via mutex.
333 static void *pcache1Alloc(int nByte){
334 void *p = 0;
335 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
336 if( nByte<=pcache1.szSlot ){
337 sqlite3_mutex_enter(pcache1.mutex);
338 p = (PgHdr1 *)pcache1.pFree;
339 if( p ){
340 pcache1.pFree = pcache1.pFree->pNext;
341 pcache1.nFreeSlot--;
342 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
343 assert( pcache1.nFreeSlot>=0 );
344 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
345 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_USED, 1);
347 sqlite3_mutex_leave(pcache1.mutex);
349 if( p==0 ){
350 /* Memory is not available in the SQLITE_CONFIG_PAGECACHE pool. Get
351 ** it from sqlite3Malloc instead.
353 p = sqlite3Malloc(nByte);
354 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
355 if( p ){
356 int sz = sqlite3MallocSize(p);
357 sqlite3_mutex_enter(pcache1.mutex);
358 sqlite3StatusHighwater(SQLITE_STATUS_PAGECACHE_SIZE, nByte);
359 sqlite3StatusUp(SQLITE_STATUS_PAGECACHE_OVERFLOW, sz);
360 sqlite3_mutex_leave(pcache1.mutex);
362 #endif
363 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
365 return p;
369 ** Free an allocated buffer obtained from pcache1Alloc().
371 static void pcache1Free(void *p){
372 if( p==0 ) return;
373 if( SQLITE_WITHIN(p, pcache1.pStart, pcache1.pEnd) ){
374 PgFreeslot *pSlot;
375 sqlite3_mutex_enter(pcache1.mutex);
376 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_USED, 1);
377 pSlot = (PgFreeslot*)p;
378 pSlot->pNext = pcache1.pFree;
379 pcache1.pFree = pSlot;
380 pcache1.nFreeSlot++;
381 pcache1.bUnderPressure = pcache1.nFreeSlot<pcache1.nReserve;
382 assert( pcache1.nFreeSlot<=pcache1.nSlot );
383 sqlite3_mutex_leave(pcache1.mutex);
384 }else{
385 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
386 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
387 #ifndef SQLITE_DISABLE_PAGECACHE_OVERFLOW_STATS
389 int nFreed = 0;
390 nFreed = sqlite3MallocSize(p);
391 sqlite3_mutex_enter(pcache1.mutex);
392 sqlite3StatusDown(SQLITE_STATUS_PAGECACHE_OVERFLOW, nFreed);
393 sqlite3_mutex_leave(pcache1.mutex);
395 #endif
396 sqlite3_free(p);
400 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
402 ** Return the size of a pcache allocation
404 static int pcache1MemSize(void *p){
405 if( p>=pcache1.pStart && p<pcache1.pEnd ){
406 return pcache1.szSlot;
407 }else{
408 int iSize;
409 assert( sqlite3MemdebugHasType(p, MEMTYPE_PCACHE) );
410 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
411 iSize = sqlite3MallocSize(p);
412 sqlite3MemdebugSetType(p, MEMTYPE_PCACHE);
413 return iSize;
416 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
419 ** Allocate a new page object initially associated with cache pCache.
421 static PgHdr1 *pcache1AllocPage(PCache1 *pCache, int benignMalloc){
422 PgHdr1 *p = 0;
423 void *pPg;
425 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
426 if( pCache->pFree || (pCache->nPage==0 && pcache1InitBulk(pCache)) ){
427 assert( pCache->pFree!=0 );
428 p = pCache->pFree;
429 pCache->pFree = p->pNext;
430 p->pNext = 0;
431 }else{
432 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
433 /* The group mutex must be released before pcache1Alloc() is called. This
434 ** is because it might call sqlite3_release_memory(), which assumes that
435 ** this mutex is not held. */
436 assert( pcache1.separateCache==0 );
437 assert( pCache->pGroup==&pcache1.grp );
438 pcache1LeaveMutex(pCache->pGroup);
439 #endif
440 if( benignMalloc ){ sqlite3BeginBenignMalloc(); }
441 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
442 pPg = pcache1Alloc(pCache->szPage);
443 p = sqlite3Malloc(sizeof(PgHdr1) + pCache->szExtra);
444 if( !pPg || !p ){
445 pcache1Free(pPg);
446 sqlite3_free(p);
447 pPg = 0;
449 #else
450 pPg = pcache1Alloc(pCache->szAlloc);
451 #endif
452 if( benignMalloc ){ sqlite3EndBenignMalloc(); }
453 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
454 pcache1EnterMutex(pCache->pGroup);
455 #endif
456 if( pPg==0 ) return 0;
457 #ifndef SQLITE_PCACHE_SEPARATE_HEADER
458 p = (PgHdr1 *)&((u8 *)pPg)[pCache->szPage];
459 #endif
460 p->page.pBuf = pPg;
461 p->page.pExtra = &p[1];
462 p->isBulkLocal = 0;
463 p->isAnchor = 0;
465 (*pCache->pnPurgeable)++;
466 return p;
470 ** Free a page object allocated by pcache1AllocPage().
472 static void pcache1FreePage(PgHdr1 *p){
473 PCache1 *pCache;
474 assert( p!=0 );
475 pCache = p->pCache;
476 assert( sqlite3_mutex_held(p->pCache->pGroup->mutex) );
477 if( p->isBulkLocal ){
478 p->pNext = pCache->pFree;
479 pCache->pFree = p;
480 }else{
481 pcache1Free(p->page.pBuf);
482 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
483 sqlite3_free(p);
484 #endif
486 (*pCache->pnPurgeable)--;
490 ** Malloc function used by SQLite to obtain space from the buffer configured
491 ** using sqlite3_config(SQLITE_CONFIG_PAGECACHE) option. If no such buffer
492 ** exists, this function falls back to sqlite3Malloc().
494 void *sqlite3PageMalloc(int sz){
495 assert( sz<=65536+8 ); /* These allocations are never very large */
496 return pcache1Alloc(sz);
500 ** Free an allocated buffer obtained from sqlite3PageMalloc().
502 void sqlite3PageFree(void *p){
503 pcache1Free(p);
508 ** Return true if it desirable to avoid allocating a new page cache
509 ** entry.
511 ** If memory was allocated specifically to the page cache using
512 ** SQLITE_CONFIG_PAGECACHE but that memory has all been used, then
513 ** it is desirable to avoid allocating a new page cache entry because
514 ** presumably SQLITE_CONFIG_PAGECACHE was suppose to be sufficient
515 ** for all page cache needs and we should not need to spill the
516 ** allocation onto the heap.
518 ** Or, the heap is used for all page cache memory but the heap is
519 ** under memory pressure, then again it is desirable to avoid
520 ** allocating a new page cache entry in order to avoid stressing
521 ** the heap even further.
523 static int pcache1UnderMemoryPressure(PCache1 *pCache){
524 if( pcache1.nSlot && (pCache->szPage+pCache->szExtra)<=pcache1.szSlot ){
525 return pcache1.bUnderPressure;
526 }else{
527 return sqlite3HeapNearlyFull();
531 /******************************************************************************/
532 /******** General Implementation Functions ************************************/
535 ** This function is used to resize the hash table used by the cache passed
536 ** as the first argument.
538 ** The PCache mutex must be held when this function is called.
540 static void pcache1ResizeHash(PCache1 *p){
541 PgHdr1 **apNew;
542 unsigned int nNew;
543 unsigned int i;
545 assert( sqlite3_mutex_held(p->pGroup->mutex) );
547 nNew = p->nHash*2;
548 if( nNew<256 ){
549 nNew = 256;
552 pcache1LeaveMutex(p->pGroup);
553 if( p->nHash ){ sqlite3BeginBenignMalloc(); }
554 apNew = (PgHdr1 **)sqlite3MallocZero(sizeof(PgHdr1 *)*nNew);
555 if( p->nHash ){ sqlite3EndBenignMalloc(); }
556 pcache1EnterMutex(p->pGroup);
557 if( apNew ){
558 for(i=0; i<p->nHash; i++){
559 PgHdr1 *pPage;
560 PgHdr1 *pNext = p->apHash[i];
561 while( (pPage = pNext)!=0 ){
562 unsigned int h = pPage->iKey % nNew;
563 pNext = pPage->pNext;
564 pPage->pNext = apNew[h];
565 apNew[h] = pPage;
568 sqlite3_free(p->apHash);
569 p->apHash = apNew;
570 p->nHash = nNew;
575 ** This function is used internally to remove the page pPage from the
576 ** PGroup LRU list, if is part of it. If pPage is not part of the PGroup
577 ** LRU list, then this function is a no-op.
579 ** The PGroup mutex must be held when this function is called.
581 static PgHdr1 *pcache1PinPage(PgHdr1 *pPage){
582 assert( pPage!=0 );
583 assert( PAGE_IS_UNPINNED(pPage) );
584 assert( pPage->pLruNext );
585 assert( pPage->pLruPrev );
586 assert( sqlite3_mutex_held(pPage->pCache->pGroup->mutex) );
587 pPage->pLruPrev->pLruNext = pPage->pLruNext;
588 pPage->pLruNext->pLruPrev = pPage->pLruPrev;
589 pPage->pLruNext = 0;
590 /* pPage->pLruPrev = 0;
591 ** No need to clear pLruPrev as it is never accessed if pLruNext is 0 */
592 assert( pPage->isAnchor==0 );
593 assert( pPage->pCache->pGroup->lru.isAnchor==1 );
594 pPage->pCache->nRecyclable--;
595 return pPage;
600 ** Remove the page supplied as an argument from the hash table
601 ** (PCache1.apHash structure) that it is currently stored in.
602 ** Also free the page if freePage is true.
604 ** The PGroup mutex must be held when this function is called.
606 static void pcache1RemoveFromHash(PgHdr1 *pPage, int freeFlag){
607 unsigned int h;
608 PCache1 *pCache = pPage->pCache;
609 PgHdr1 **pp;
611 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
612 h = pPage->iKey % pCache->nHash;
613 for(pp=&pCache->apHash[h]; (*pp)!=pPage; pp=&(*pp)->pNext);
614 *pp = (*pp)->pNext;
616 pCache->nPage--;
617 if( freeFlag ) pcache1FreePage(pPage);
621 ** If there are currently more than nMaxPage pages allocated, try
622 ** to recycle pages to reduce the number allocated to nMaxPage.
624 static void pcache1EnforceMaxPage(PCache1 *pCache){
625 PGroup *pGroup = pCache->pGroup;
626 PgHdr1 *p;
627 assert( sqlite3_mutex_held(pGroup->mutex) );
628 while( pGroup->nPurgeable>pGroup->nMaxPage
629 && (p=pGroup->lru.pLruPrev)->isAnchor==0
631 assert( p->pCache->pGroup==pGroup );
632 assert( PAGE_IS_UNPINNED(p) );
633 pcache1PinPage(p);
634 pcache1RemoveFromHash(p, 1);
636 if( pCache->nPage==0 && pCache->pBulk ){
637 sqlite3_free(pCache->pBulk);
638 pCache->pBulk = pCache->pFree = 0;
643 ** Discard all pages from cache pCache with a page number (key value)
644 ** greater than or equal to iLimit. Any pinned pages that meet this
645 ** criteria are unpinned before they are discarded.
647 ** The PCache mutex must be held when this function is called.
649 static void pcache1TruncateUnsafe(
650 PCache1 *pCache, /* The cache to truncate */
651 unsigned int iLimit /* Drop pages with this pgno or larger */
653 TESTONLY( int nPage = 0; ) /* To assert pCache->nPage is correct */
654 unsigned int h, iStop;
655 assert( sqlite3_mutex_held(pCache->pGroup->mutex) );
656 assert( pCache->iMaxKey >= iLimit );
657 assert( pCache->nHash > 0 );
658 if( pCache->iMaxKey - iLimit < pCache->nHash ){
659 /* If we are just shaving the last few pages off the end of the
660 ** cache, then there is no point in scanning the entire hash table.
661 ** Only scan those hash slots that might contain pages that need to
662 ** be removed. */
663 h = iLimit % pCache->nHash;
664 iStop = pCache->iMaxKey % pCache->nHash;
665 TESTONLY( nPage = -10; ) /* Disable the pCache->nPage validity check */
666 }else{
667 /* This is the general case where many pages are being removed.
668 ** It is necessary to scan the entire hash table */
669 h = pCache->nHash/2;
670 iStop = h - 1;
672 for(;;){
673 PgHdr1 **pp;
674 PgHdr1 *pPage;
675 assert( h<pCache->nHash );
676 pp = &pCache->apHash[h];
677 while( (pPage = *pp)!=0 ){
678 if( pPage->iKey>=iLimit ){
679 pCache->nPage--;
680 *pp = pPage->pNext;
681 if( PAGE_IS_UNPINNED(pPage) ) pcache1PinPage(pPage);
682 pcache1FreePage(pPage);
683 }else{
684 pp = &pPage->pNext;
685 TESTONLY( if( nPage>=0 ) nPage++; )
688 if( h==iStop ) break;
689 h = (h+1) % pCache->nHash;
691 assert( nPage<0 || pCache->nPage==(unsigned)nPage );
694 /******************************************************************************/
695 /******** sqlite3_pcache Methods **********************************************/
698 ** Implementation of the sqlite3_pcache.xInit method.
700 static int pcache1Init(void *NotUsed){
701 UNUSED_PARAMETER(NotUsed);
702 assert( pcache1.isInit==0 );
703 memset(&pcache1, 0, sizeof(pcache1));
707 ** The pcache1.separateCache variable is true if each PCache has its own
708 ** private PGroup (mode-1). pcache1.separateCache is false if the single
709 ** PGroup in pcache1.grp is used for all page caches (mode-2).
711 ** * Always use a unified cache (mode-2) if ENABLE_MEMORY_MANAGEMENT
713 ** * Use a unified cache in single-threaded applications that have
714 ** configured a start-time buffer for use as page-cache memory using
715 ** sqlite3_config(SQLITE_CONFIG_PAGECACHE, pBuf, sz, N) with non-NULL
716 ** pBuf argument.
718 ** * Otherwise use separate caches (mode-1)
720 #if defined(SQLITE_ENABLE_MEMORY_MANAGEMENT)
721 pcache1.separateCache = 0;
722 #elif SQLITE_THREADSAFE
723 pcache1.separateCache = sqlite3GlobalConfig.pPage==0
724 || sqlite3GlobalConfig.bCoreMutex>0;
725 #else
726 pcache1.separateCache = sqlite3GlobalConfig.pPage==0;
727 #endif
729 #if SQLITE_THREADSAFE
730 if( sqlite3GlobalConfig.bCoreMutex ){
731 pcache1.grp.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_LRU);
732 pcache1.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_PMEM);
734 #endif
735 if( pcache1.separateCache
736 && sqlite3GlobalConfig.nPage!=0
737 && sqlite3GlobalConfig.pPage==0
739 pcache1.nInitPage = sqlite3GlobalConfig.nPage;
740 }else{
741 pcache1.nInitPage = 0;
743 pcache1.grp.mxPinned = 10;
744 pcache1.isInit = 1;
745 return SQLITE_OK;
749 ** Implementation of the sqlite3_pcache.xShutdown method.
750 ** Note that the static mutex allocated in xInit does
751 ** not need to be freed.
753 static void pcache1Shutdown(void *NotUsed){
754 UNUSED_PARAMETER(NotUsed);
755 assert( pcache1.isInit!=0 );
756 memset(&pcache1, 0, sizeof(pcache1));
759 /* forward declaration */
760 static void pcache1Destroy(sqlite3_pcache *p);
763 ** Implementation of the sqlite3_pcache.xCreate method.
765 ** Allocate a new cache.
767 static sqlite3_pcache *pcache1Create(int szPage, int szExtra, int bPurgeable){
768 PCache1 *pCache; /* The newly created page cache */
769 PGroup *pGroup; /* The group the new page cache will belong to */
770 int sz; /* Bytes of memory required to allocate the new cache */
772 assert( (szPage & (szPage-1))==0 && szPage>=512 && szPage<=65536 );
773 assert( szExtra < 300 );
775 sz = sizeof(PCache1) + sizeof(PGroup)*pcache1.separateCache;
776 pCache = (PCache1 *)sqlite3MallocZero(sz);
777 if( pCache ){
778 if( pcache1.separateCache ){
779 pGroup = (PGroup*)&pCache[1];
780 pGroup->mxPinned = 10;
781 }else{
782 pGroup = &pcache1.grp;
784 pcache1EnterMutex(pGroup);
785 if( pGroup->lru.isAnchor==0 ){
786 pGroup->lru.isAnchor = 1;
787 pGroup->lru.pLruPrev = pGroup->lru.pLruNext = &pGroup->lru;
789 pCache->pGroup = pGroup;
790 pCache->szPage = szPage;
791 pCache->szExtra = szExtra;
792 pCache->szAlloc = szPage + szExtra + ROUND8(sizeof(PgHdr1));
793 pCache->bPurgeable = (bPurgeable ? 1 : 0);
794 pcache1ResizeHash(pCache);
795 if( bPurgeable ){
796 pCache->nMin = 10;
797 pGroup->nMinPage += pCache->nMin;
798 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
799 pCache->pnPurgeable = &pGroup->nPurgeable;
800 }else{
801 pCache->pnPurgeable = &pCache->nPurgeableDummy;
803 pcache1LeaveMutex(pGroup);
804 if( pCache->nHash==0 ){
805 pcache1Destroy((sqlite3_pcache*)pCache);
806 pCache = 0;
809 return (sqlite3_pcache *)pCache;
813 ** Implementation of the sqlite3_pcache.xCachesize method.
815 ** Configure the cache_size limit for a cache.
817 static void pcache1Cachesize(sqlite3_pcache *p, int nMax){
818 PCache1 *pCache = (PCache1 *)p;
819 if( pCache->bPurgeable ){
820 PGroup *pGroup = pCache->pGroup;
821 pcache1EnterMutex(pGroup);
822 pGroup->nMaxPage += (nMax - pCache->nMax);
823 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
824 pCache->nMax = nMax;
825 pCache->n90pct = pCache->nMax*9/10;
826 pcache1EnforceMaxPage(pCache);
827 pcache1LeaveMutex(pGroup);
832 ** Implementation of the sqlite3_pcache.xShrink method.
834 ** Free up as much memory as possible.
836 static void pcache1Shrink(sqlite3_pcache *p){
837 PCache1 *pCache = (PCache1*)p;
838 if( pCache->bPurgeable ){
839 PGroup *pGroup = pCache->pGroup;
840 int savedMaxPage;
841 pcache1EnterMutex(pGroup);
842 savedMaxPage = pGroup->nMaxPage;
843 pGroup->nMaxPage = 0;
844 pcache1EnforceMaxPage(pCache);
845 pGroup->nMaxPage = savedMaxPage;
846 pcache1LeaveMutex(pGroup);
851 ** Implementation of the sqlite3_pcache.xPagecount method.
853 static int pcache1Pagecount(sqlite3_pcache *p){
854 int n;
855 PCache1 *pCache = (PCache1*)p;
856 pcache1EnterMutex(pCache->pGroup);
857 n = pCache->nPage;
858 pcache1LeaveMutex(pCache->pGroup);
859 return n;
864 ** Implement steps 3, 4, and 5 of the pcache1Fetch() algorithm described
865 ** in the header of the pcache1Fetch() procedure.
867 ** This steps are broken out into a separate procedure because they are
868 ** usually not needed, and by avoiding the stack initialization required
869 ** for these steps, the main pcache1Fetch() procedure can run faster.
871 static SQLITE_NOINLINE PgHdr1 *pcache1FetchStage2(
872 PCache1 *pCache,
873 unsigned int iKey,
874 int createFlag
876 unsigned int nPinned;
877 PGroup *pGroup = pCache->pGroup;
878 PgHdr1 *pPage = 0;
880 /* Step 3: Abort if createFlag is 1 but the cache is nearly full */
881 assert( pCache->nPage >= pCache->nRecyclable );
882 nPinned = pCache->nPage - pCache->nRecyclable;
883 assert( pGroup->mxPinned == pGroup->nMaxPage + 10 - pGroup->nMinPage );
884 assert( pCache->n90pct == pCache->nMax*9/10 );
885 if( createFlag==1 && (
886 nPinned>=pGroup->mxPinned
887 || nPinned>=pCache->n90pct
888 || (pcache1UnderMemoryPressure(pCache) && pCache->nRecyclable<nPinned)
890 return 0;
893 if( pCache->nPage>=pCache->nHash ) pcache1ResizeHash(pCache);
894 assert( pCache->nHash>0 && pCache->apHash );
896 /* Step 4. Try to recycle a page. */
897 if( pCache->bPurgeable
898 && !pGroup->lru.pLruPrev->isAnchor
899 && ((pCache->nPage+1>=pCache->nMax) || pcache1UnderMemoryPressure(pCache))
901 PCache1 *pOther;
902 pPage = pGroup->lru.pLruPrev;
903 assert( PAGE_IS_UNPINNED(pPage) );
904 pcache1RemoveFromHash(pPage, 0);
905 pcache1PinPage(pPage);
906 pOther = pPage->pCache;
907 if( pOther->szAlloc != pCache->szAlloc ){
908 pcache1FreePage(pPage);
909 pPage = 0;
910 }else{
911 pGroup->nPurgeable -= (pOther->bPurgeable - pCache->bPurgeable);
915 /* Step 5. If a usable page buffer has still not been found,
916 ** attempt to allocate a new one.
918 if( !pPage ){
919 pPage = pcache1AllocPage(pCache, createFlag==1);
922 if( pPage ){
923 unsigned int h = iKey % pCache->nHash;
924 pCache->nPage++;
925 pPage->iKey = iKey;
926 pPage->pNext = pCache->apHash[h];
927 pPage->pCache = pCache;
928 pPage->pLruNext = 0;
929 /* pPage->pLruPrev = 0;
930 ** No need to clear pLruPrev since it is not accessed when pLruNext==0 */
931 *(void **)pPage->page.pExtra = 0;
932 pCache->apHash[h] = pPage;
933 if( iKey>pCache->iMaxKey ){
934 pCache->iMaxKey = iKey;
937 return pPage;
941 ** Implementation of the sqlite3_pcache.xFetch method.
943 ** Fetch a page by key value.
945 ** Whether or not a new page may be allocated by this function depends on
946 ** the value of the createFlag argument. 0 means do not allocate a new
947 ** page. 1 means allocate a new page if space is easily available. 2
948 ** means to try really hard to allocate a new page.
950 ** For a non-purgeable cache (a cache used as the storage for an in-memory
951 ** database) there is really no difference between createFlag 1 and 2. So
952 ** the calling function (pcache.c) will never have a createFlag of 1 on
953 ** a non-purgeable cache.
955 ** There are three different approaches to obtaining space for a page,
956 ** depending on the value of parameter createFlag (which may be 0, 1 or 2).
958 ** 1. Regardless of the value of createFlag, the cache is searched for a
959 ** copy of the requested page. If one is found, it is returned.
961 ** 2. If createFlag==0 and the page is not already in the cache, NULL is
962 ** returned.
964 ** 3. If createFlag is 1, and the page is not already in the cache, then
965 ** return NULL (do not allocate a new page) if any of the following
966 ** conditions are true:
968 ** (a) the number of pages pinned by the cache is greater than
969 ** PCache1.nMax, or
971 ** (b) the number of pages pinned by the cache is greater than
972 ** the sum of nMax for all purgeable caches, less the sum of
973 ** nMin for all other purgeable caches, or
975 ** 4. If none of the first three conditions apply and the cache is marked
976 ** as purgeable, and if one of the following is true:
978 ** (a) The number of pages allocated for the cache is already
979 ** PCache1.nMax, or
981 ** (b) The number of pages allocated for all purgeable caches is
982 ** already equal to or greater than the sum of nMax for all
983 ** purgeable caches,
985 ** (c) The system is under memory pressure and wants to avoid
986 ** unnecessary pages cache entry allocations
988 ** then attempt to recycle a page from the LRU list. If it is the right
989 ** size, return the recycled buffer. Otherwise, free the buffer and
990 ** proceed to step 5.
992 ** 5. Otherwise, allocate and return a new page buffer.
994 ** There are two versions of this routine. pcache1FetchWithMutex() is
995 ** the general case. pcache1FetchNoMutex() is a faster implementation for
996 ** the common case where pGroup->mutex is NULL. The pcache1Fetch() wrapper
997 ** invokes the appropriate routine.
999 static PgHdr1 *pcache1FetchNoMutex(
1000 sqlite3_pcache *p,
1001 unsigned int iKey,
1002 int createFlag
1004 PCache1 *pCache = (PCache1 *)p;
1005 PgHdr1 *pPage = 0;
1007 /* Step 1: Search the hash table for an existing entry. */
1008 pPage = pCache->apHash[iKey % pCache->nHash];
1009 while( pPage && pPage->iKey!=iKey ){ pPage = pPage->pNext; }
1011 /* Step 2: If the page was found in the hash table, then return it.
1012 ** If the page was not in the hash table and createFlag is 0, abort.
1013 ** Otherwise (page not in hash and createFlag!=0) continue with
1014 ** subsequent steps to try to create the page. */
1015 if( pPage ){
1016 if( PAGE_IS_UNPINNED(pPage) ){
1017 return pcache1PinPage(pPage);
1018 }else{
1019 return pPage;
1021 }else if( createFlag ){
1022 /* Steps 3, 4, and 5 implemented by this subroutine */
1023 return pcache1FetchStage2(pCache, iKey, createFlag);
1024 }else{
1025 return 0;
1028 #if PCACHE1_MIGHT_USE_GROUP_MUTEX
1029 static PgHdr1 *pcache1FetchWithMutex(
1030 sqlite3_pcache *p,
1031 unsigned int iKey,
1032 int createFlag
1034 PCache1 *pCache = (PCache1 *)p;
1035 PgHdr1 *pPage;
1037 pcache1EnterMutex(pCache->pGroup);
1038 pPage = pcache1FetchNoMutex(p, iKey, createFlag);
1039 assert( pPage==0 || pCache->iMaxKey>=iKey );
1040 pcache1LeaveMutex(pCache->pGroup);
1041 return pPage;
1043 #endif
1044 static sqlite3_pcache_page *pcache1Fetch(
1045 sqlite3_pcache *p,
1046 unsigned int iKey,
1047 int createFlag
1049 #if PCACHE1_MIGHT_USE_GROUP_MUTEX || defined(SQLITE_DEBUG)
1050 PCache1 *pCache = (PCache1 *)p;
1051 #endif
1053 assert( offsetof(PgHdr1,page)==0 );
1054 assert( pCache->bPurgeable || createFlag!=1 );
1055 assert( pCache->bPurgeable || pCache->nMin==0 );
1056 assert( pCache->bPurgeable==0 || pCache->nMin==10 );
1057 assert( pCache->nMin==0 || pCache->bPurgeable );
1058 assert( pCache->nHash>0 );
1059 #if PCACHE1_MIGHT_USE_GROUP_MUTEX
1060 if( pCache->pGroup->mutex ){
1061 return (sqlite3_pcache_page*)pcache1FetchWithMutex(p, iKey, createFlag);
1062 }else
1063 #endif
1065 return (sqlite3_pcache_page*)pcache1FetchNoMutex(p, iKey, createFlag);
1071 ** Implementation of the sqlite3_pcache.xUnpin method.
1073 ** Mark a page as unpinned (eligible for asynchronous recycling).
1075 static void pcache1Unpin(
1076 sqlite3_pcache *p,
1077 sqlite3_pcache_page *pPg,
1078 int reuseUnlikely
1080 PCache1 *pCache = (PCache1 *)p;
1081 PgHdr1 *pPage = (PgHdr1 *)pPg;
1082 PGroup *pGroup = pCache->pGroup;
1084 assert( pPage->pCache==pCache );
1085 pcache1EnterMutex(pGroup);
1087 /* It is an error to call this function if the page is already
1088 ** part of the PGroup LRU list.
1090 assert( pPage->pLruNext==0 );
1091 assert( PAGE_IS_PINNED(pPage) );
1093 if( reuseUnlikely || pGroup->nPurgeable>pGroup->nMaxPage ){
1094 pcache1RemoveFromHash(pPage, 1);
1095 }else{
1096 /* Add the page to the PGroup LRU list. */
1097 PgHdr1 **ppFirst = &pGroup->lru.pLruNext;
1098 pPage->pLruPrev = &pGroup->lru;
1099 (pPage->pLruNext = *ppFirst)->pLruPrev = pPage;
1100 *ppFirst = pPage;
1101 pCache->nRecyclable++;
1104 pcache1LeaveMutex(pCache->pGroup);
1108 ** Implementation of the sqlite3_pcache.xRekey method.
1110 static void pcache1Rekey(
1111 sqlite3_pcache *p,
1112 sqlite3_pcache_page *pPg,
1113 unsigned int iOld,
1114 unsigned int iNew
1116 PCache1 *pCache = (PCache1 *)p;
1117 PgHdr1 *pPage = (PgHdr1 *)pPg;
1118 PgHdr1 **pp;
1119 unsigned int h;
1120 assert( pPage->iKey==iOld );
1121 assert( pPage->pCache==pCache );
1123 pcache1EnterMutex(pCache->pGroup);
1125 h = iOld%pCache->nHash;
1126 pp = &pCache->apHash[h];
1127 while( (*pp)!=pPage ){
1128 pp = &(*pp)->pNext;
1130 *pp = pPage->pNext;
1132 h = iNew%pCache->nHash;
1133 pPage->iKey = iNew;
1134 pPage->pNext = pCache->apHash[h];
1135 pCache->apHash[h] = pPage;
1136 if( iNew>pCache->iMaxKey ){
1137 pCache->iMaxKey = iNew;
1140 pcache1LeaveMutex(pCache->pGroup);
1144 ** Implementation of the sqlite3_pcache.xTruncate method.
1146 ** Discard all unpinned pages in the cache with a page number equal to
1147 ** or greater than parameter iLimit. Any pinned pages with a page number
1148 ** equal to or greater than iLimit are implicitly unpinned.
1150 static void pcache1Truncate(sqlite3_pcache *p, unsigned int iLimit){
1151 PCache1 *pCache = (PCache1 *)p;
1152 pcache1EnterMutex(pCache->pGroup);
1153 if( iLimit<=pCache->iMaxKey ){
1154 pcache1TruncateUnsafe(pCache, iLimit);
1155 pCache->iMaxKey = iLimit-1;
1157 pcache1LeaveMutex(pCache->pGroup);
1161 ** Implementation of the sqlite3_pcache.xDestroy method.
1163 ** Destroy a cache allocated using pcache1Create().
1165 static void pcache1Destroy(sqlite3_pcache *p){
1166 PCache1 *pCache = (PCache1 *)p;
1167 PGroup *pGroup = pCache->pGroup;
1168 assert( pCache->bPurgeable || (pCache->nMax==0 && pCache->nMin==0) );
1169 pcache1EnterMutex(pGroup);
1170 if( pCache->nPage ) pcache1TruncateUnsafe(pCache, 0);
1171 assert( pGroup->nMaxPage >= pCache->nMax );
1172 pGroup->nMaxPage -= pCache->nMax;
1173 assert( pGroup->nMinPage >= pCache->nMin );
1174 pGroup->nMinPage -= pCache->nMin;
1175 pGroup->mxPinned = pGroup->nMaxPage + 10 - pGroup->nMinPage;
1176 pcache1EnforceMaxPage(pCache);
1177 pcache1LeaveMutex(pGroup);
1178 sqlite3_free(pCache->pBulk);
1179 sqlite3_free(pCache->apHash);
1180 sqlite3_free(pCache);
1184 ** This function is called during initialization (sqlite3_initialize()) to
1185 ** install the default pluggable cache module, assuming the user has not
1186 ** already provided an alternative.
1188 void sqlite3PCacheSetDefault(void){
1189 static const sqlite3_pcache_methods2 defaultMethods = {
1190 1, /* iVersion */
1191 0, /* pArg */
1192 pcache1Init, /* xInit */
1193 pcache1Shutdown, /* xShutdown */
1194 pcache1Create, /* xCreate */
1195 pcache1Cachesize, /* xCachesize */
1196 pcache1Pagecount, /* xPagecount */
1197 pcache1Fetch, /* xFetch */
1198 pcache1Unpin, /* xUnpin */
1199 pcache1Rekey, /* xRekey */
1200 pcache1Truncate, /* xTruncate */
1201 pcache1Destroy, /* xDestroy */
1202 pcache1Shrink /* xShrink */
1204 sqlite3_config(SQLITE_CONFIG_PCACHE2, &defaultMethods);
1208 ** Return the size of the header on each page of this PCACHE implementation.
1210 int sqlite3HeaderSizePcache1(void){ return ROUND8(sizeof(PgHdr1)); }
1213 ** Return the global mutex used by this PCACHE implementation. The
1214 ** sqlite3_status() routine needs access to this mutex.
1216 sqlite3_mutex *sqlite3Pcache1Mutex(void){
1217 return pcache1.mutex;
1220 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
1222 ** This function is called to free superfluous dynamically allocated memory
1223 ** held by the pager system. Memory in use by any SQLite pager allocated
1224 ** by the current thread may be sqlite3_free()ed.
1226 ** nReq is the number of bytes of memory required. Once this much has
1227 ** been released, the function returns. The return value is the total number
1228 ** of bytes of memory released.
1230 int sqlite3PcacheReleaseMemory(int nReq){
1231 int nFree = 0;
1232 assert( sqlite3_mutex_notheld(pcache1.grp.mutex) );
1233 assert( sqlite3_mutex_notheld(pcache1.mutex) );
1234 if( sqlite3GlobalConfig.pPage==0 ){
1235 PgHdr1 *p;
1236 pcache1EnterMutex(&pcache1.grp);
1237 while( (nReq<0 || nFree<nReq)
1238 && (p=pcache1.grp.lru.pLruPrev)!=0
1239 && p->isAnchor==0
1241 nFree += pcache1MemSize(p->page.pBuf);
1242 #ifdef SQLITE_PCACHE_SEPARATE_HEADER
1243 nFree += sqlite3MemSize(p);
1244 #endif
1245 assert( PAGE_IS_UNPINNED(p) );
1246 pcache1PinPage(p);
1247 pcache1RemoveFromHash(p, 1);
1249 pcache1LeaveMutex(&pcache1.grp);
1251 return nFree;
1253 #endif /* SQLITE_ENABLE_MEMORY_MANAGEMENT */
1255 #ifdef SQLITE_TEST
1257 ** This function is used by test procedures to inspect the internal state
1258 ** of the global cache.
1260 void sqlite3PcacheStats(
1261 int *pnCurrent, /* OUT: Total number of pages cached */
1262 int *pnMax, /* OUT: Global maximum cache size */
1263 int *pnMin, /* OUT: Sum of PCache1.nMin for purgeable caches */
1264 int *pnRecyclable /* OUT: Total number of pages available for recycling */
1266 PgHdr1 *p;
1267 int nRecyclable = 0;
1268 for(p=pcache1.grp.lru.pLruNext; p && !p->isAnchor; p=p->pLruNext){
1269 assert( PAGE_IS_UNPINNED(p) );
1270 nRecyclable++;
1272 *pnCurrent = pcache1.grp.nPurgeable;
1273 *pnMax = (int)pcache1.grp.nMaxPage;
1274 *pnMin = (int)pcache1.grp.nMinPage;
1275 *pnRecyclable = nRecyclable;
1277 #endif