update version and change log for 4.4.3
[sqlcipher.git] / src / select.c
blobb4f2726793933f75a377df58cf9997d5301c7dd3
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
22 typedef struct DistinctCtx DistinctCtx;
23 struct DistinctCtx {
24 u8 isTnct; /* True if the DISTINCT keyword is present */
25 u8 eTnctType; /* One of the WHERE_DISTINCT_* operators */
26 int tabTnct; /* Ephemeral table used for DISTINCT processing */
27 int addrTnct; /* Address of OP_OpenEphemeral opcode for tabTnct */
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
36 ** for the query:
38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
48 typedef struct SortCtx SortCtx;
49 struct SortCtx {
50 ExprList *pOrderBy; /* The ORDER BY (or GROUP BY clause) */
51 int nOBSat; /* Number of ORDER BY terms satisfied by indices */
52 int iECursor; /* Cursor number for the sorter */
53 int regReturn; /* Register holding block-output return address */
54 int labelBkOut; /* Start label for the block-output subroutine */
55 int addrSortIndex; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56 int labelDone; /* Jump here when done, ex: LIMIT reached */
57 int labelOBLopt; /* Jump here when sorter is full */
58 u8 sortFlags; /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60 u8 nDefer; /* Number of valid entries in aDefer[] */
61 struct DeferredCsr {
62 Table *pTab; /* Table definition */
63 int iCsr; /* Cursor number for table */
64 int nKey; /* Number of PK columns for table pTab (>=1) */
65 } aDefer[4];
66 #endif
67 struct RowLoadInfo *pDeferredRowLoad; /* Deferred row loading info or NULL */
69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
72 ** Delete all the content of a Select structure. Deallocate the structure
73 ** itself depending on the value of bFree
75 ** If bFree==1, call sqlite3DbFree() on the p object.
76 ** If bFree==0, Leave the first Select object unfreed
78 static void clearSelect(sqlite3 *db, Select *p, int bFree){
79 while( p ){
80 Select *pPrior = p->pPrior;
81 sqlite3ExprListDelete(db, p->pEList);
82 sqlite3SrcListDelete(db, p->pSrc);
83 sqlite3ExprDelete(db, p->pWhere);
84 sqlite3ExprListDelete(db, p->pGroupBy);
85 sqlite3ExprDelete(db, p->pHaving);
86 sqlite3ExprListDelete(db, p->pOrderBy);
87 sqlite3ExprDelete(db, p->pLimit);
88 #ifndef SQLITE_OMIT_WINDOWFUNC
89 if( OK_IF_ALWAYS_TRUE(p->pWinDefn) ){
90 sqlite3WindowListDelete(db, p->pWinDefn);
92 #endif
93 if( OK_IF_ALWAYS_TRUE(p->pWith) ) sqlite3WithDelete(db, p->pWith);
94 if( bFree ) sqlite3DbFreeNN(db, p);
95 p = pPrior;
96 bFree = 1;
101 ** Initialize a SelectDest structure.
103 void sqlite3SelectDestInit(SelectDest *pDest, int eDest, int iParm){
104 pDest->eDest = (u8)eDest;
105 pDest->iSDParm = iParm;
106 pDest->iSDParm2 = 0;
107 pDest->zAffSdst = 0;
108 pDest->iSdst = 0;
109 pDest->nSdst = 0;
114 ** Allocate a new Select structure and return a pointer to that
115 ** structure.
117 Select *sqlite3SelectNew(
118 Parse *pParse, /* Parsing context */
119 ExprList *pEList, /* which columns to include in the result */
120 SrcList *pSrc, /* the FROM clause -- which tables to scan */
121 Expr *pWhere, /* the WHERE clause */
122 ExprList *pGroupBy, /* the GROUP BY clause */
123 Expr *pHaving, /* the HAVING clause */
124 ExprList *pOrderBy, /* the ORDER BY clause */
125 u32 selFlags, /* Flag parameters, such as SF_Distinct */
126 Expr *pLimit /* LIMIT value. NULL means not used */
128 Select *pNew, *pAllocated;
129 Select standin;
130 pAllocated = pNew = sqlite3DbMallocRawNN(pParse->db, sizeof(*pNew) );
131 if( pNew==0 ){
132 assert( pParse->db->mallocFailed );
133 pNew = &standin;
135 if( pEList==0 ){
136 pEList = sqlite3ExprListAppend(pParse, 0,
137 sqlite3Expr(pParse->db,TK_ASTERISK,0));
139 pNew->pEList = pEList;
140 pNew->op = TK_SELECT;
141 pNew->selFlags = selFlags;
142 pNew->iLimit = 0;
143 pNew->iOffset = 0;
144 pNew->selId = ++pParse->nSelect;
145 pNew->addrOpenEphm[0] = -1;
146 pNew->addrOpenEphm[1] = -1;
147 pNew->nSelectRow = 0;
148 if( pSrc==0 ) pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*pSrc));
149 pNew->pSrc = pSrc;
150 pNew->pWhere = pWhere;
151 pNew->pGroupBy = pGroupBy;
152 pNew->pHaving = pHaving;
153 pNew->pOrderBy = pOrderBy;
154 pNew->pPrior = 0;
155 pNew->pNext = 0;
156 pNew->pLimit = pLimit;
157 pNew->pWith = 0;
158 #ifndef SQLITE_OMIT_WINDOWFUNC
159 pNew->pWin = 0;
160 pNew->pWinDefn = 0;
161 #endif
162 if( pParse->db->mallocFailed ) {
163 clearSelect(pParse->db, pNew, pNew!=&standin);
164 pAllocated = 0;
165 }else{
166 assert( pNew->pSrc!=0 || pParse->nErr>0 );
168 return pAllocated;
173 ** Delete the given Select structure and all of its substructures.
175 void sqlite3SelectDelete(sqlite3 *db, Select *p){
176 if( OK_IF_ALWAYS_TRUE(p) ) clearSelect(db, p, 1);
180 ** Return a pointer to the right-most SELECT statement in a compound.
182 static Select *findRightmost(Select *p){
183 while( p->pNext ) p = p->pNext;
184 return p;
188 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
189 ** type of join. Return an integer constant that expresses that type
190 ** in terms of the following bit values:
192 ** JT_INNER
193 ** JT_CROSS
194 ** JT_OUTER
195 ** JT_NATURAL
196 ** JT_LEFT
197 ** JT_RIGHT
199 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
201 ** If an illegal or unsupported join type is seen, then still return
202 ** a join type, but put an error in the pParse structure.
204 int sqlite3JoinType(Parse *pParse, Token *pA, Token *pB, Token *pC){
205 int jointype = 0;
206 Token *apAll[3];
207 Token *p;
208 /* 0123456789 123456789 123456789 123 */
209 static const char zKeyText[] = "naturaleftouterightfullinnercross";
210 static const struct {
211 u8 i; /* Beginning of keyword text in zKeyText[] */
212 u8 nChar; /* Length of the keyword in characters */
213 u8 code; /* Join type mask */
214 } aKeyword[] = {
215 /* natural */ { 0, 7, JT_NATURAL },
216 /* left */ { 6, 4, JT_LEFT|JT_OUTER },
217 /* outer */ { 10, 5, JT_OUTER },
218 /* right */ { 14, 5, JT_RIGHT|JT_OUTER },
219 /* full */ { 19, 4, JT_LEFT|JT_RIGHT|JT_OUTER },
220 /* inner */ { 23, 5, JT_INNER },
221 /* cross */ { 28, 5, JT_INNER|JT_CROSS },
223 int i, j;
224 apAll[0] = pA;
225 apAll[1] = pB;
226 apAll[2] = pC;
227 for(i=0; i<3 && apAll[i]; i++){
228 p = apAll[i];
229 for(j=0; j<ArraySize(aKeyword); j++){
230 if( p->n==aKeyword[j].nChar
231 && sqlite3StrNICmp((char*)p->z, &zKeyText[aKeyword[j].i], p->n)==0 ){
232 jointype |= aKeyword[j].code;
233 break;
236 testcase( j==0 || j==1 || j==2 || j==3 || j==4 || j==5 || j==6 );
237 if( j>=ArraySize(aKeyword) ){
238 jointype |= JT_ERROR;
239 break;
243 (jointype & (JT_INNER|JT_OUTER))==(JT_INNER|JT_OUTER) ||
244 (jointype & JT_ERROR)!=0
246 const char *zSp = " ";
247 assert( pB!=0 );
248 if( pC==0 ){ zSp++; }
249 sqlite3ErrorMsg(pParse, "unknown or unsupported join type: "
250 "%T %T%s%T", pA, pB, zSp, pC);
251 jointype = JT_INNER;
252 }else if( (jointype & JT_OUTER)!=0
253 && (jointype & (JT_LEFT|JT_RIGHT))!=JT_LEFT ){
254 sqlite3ErrorMsg(pParse,
255 "RIGHT and FULL OUTER JOINs are not currently supported");
256 jointype = JT_INNER;
258 return jointype;
262 ** Return the index of a column in a table. Return -1 if the column
263 ** is not contained in the table.
265 static int columnIndex(Table *pTab, const char *zCol){
266 int i;
267 u8 h = sqlite3StrIHash(zCol);
268 Column *pCol;
269 for(pCol=pTab->aCol, i=0; i<pTab->nCol; pCol++, i++){
270 if( pCol->hName==h && sqlite3StrICmp(pCol->zName, zCol)==0 ) return i;
272 return -1;
276 ** Search the first N tables in pSrc, from left to right, looking for a
277 ** table that has a column named zCol.
279 ** When found, set *piTab and *piCol to the table index and column index
280 ** of the matching column and return TRUE.
282 ** If not found, return FALSE.
284 static int tableAndColumnIndex(
285 SrcList *pSrc, /* Array of tables to search */
286 int N, /* Number of tables in pSrc->a[] to search */
287 const char *zCol, /* Name of the column we are looking for */
288 int *piTab, /* Write index of pSrc->a[] here */
289 int *piCol, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
290 int bIgnoreHidden /* True to ignore hidden columns */
292 int i; /* For looping over tables in pSrc */
293 int iCol; /* Index of column matching zCol */
295 assert( (piTab==0)==(piCol==0) ); /* Both or neither are NULL */
296 for(i=0; i<N; i++){
297 iCol = columnIndex(pSrc->a[i].pTab, zCol);
298 if( iCol>=0
299 && (bIgnoreHidden==0 || IsHiddenColumn(&pSrc->a[i].pTab->aCol[iCol])==0)
301 if( piTab ){
302 *piTab = i;
303 *piCol = iCol;
305 return 1;
308 return 0;
312 ** This function is used to add terms implied by JOIN syntax to the
313 ** WHERE clause expression of a SELECT statement. The new term, which
314 ** is ANDed with the existing WHERE clause, is of the form:
316 ** (tab1.col1 = tab2.col2)
318 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
319 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
320 ** column iColRight of tab2.
322 static void addWhereTerm(
323 Parse *pParse, /* Parsing context */
324 SrcList *pSrc, /* List of tables in FROM clause */
325 int iLeft, /* Index of first table to join in pSrc */
326 int iColLeft, /* Index of column in first table */
327 int iRight, /* Index of second table in pSrc */
328 int iColRight, /* Index of column in second table */
329 int isOuterJoin, /* True if this is an OUTER join */
330 Expr **ppWhere /* IN/OUT: The WHERE clause to add to */
332 sqlite3 *db = pParse->db;
333 Expr *pE1;
334 Expr *pE2;
335 Expr *pEq;
337 assert( iLeft<iRight );
338 assert( pSrc->nSrc>iRight );
339 assert( pSrc->a[iLeft].pTab );
340 assert( pSrc->a[iRight].pTab );
342 pE1 = sqlite3CreateColumnExpr(db, pSrc, iLeft, iColLeft);
343 pE2 = sqlite3CreateColumnExpr(db, pSrc, iRight, iColRight);
345 pEq = sqlite3PExpr(pParse, TK_EQ, pE1, pE2);
346 if( pEq && isOuterJoin ){
347 ExprSetProperty(pEq, EP_FromJoin);
348 assert( !ExprHasProperty(pEq, EP_TokenOnly|EP_Reduced) );
349 ExprSetVVAProperty(pEq, EP_NoReduce);
350 pEq->iRightJoinTable = (i16)pE2->iTable;
352 *ppWhere = sqlite3ExprAnd(pParse, *ppWhere, pEq);
356 ** Set the EP_FromJoin property on all terms of the given expression.
357 ** And set the Expr.iRightJoinTable to iTable for every term in the
358 ** expression.
360 ** The EP_FromJoin property is used on terms of an expression to tell
361 ** the LEFT OUTER JOIN processing logic that this term is part of the
362 ** join restriction specified in the ON or USING clause and not a part
363 ** of the more general WHERE clause. These terms are moved over to the
364 ** WHERE clause during join processing but we need to remember that they
365 ** originated in the ON or USING clause.
367 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
368 ** expression depends on table iRightJoinTable even if that table is not
369 ** explicitly mentioned in the expression. That information is needed
370 ** for cases like this:
372 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
374 ** The where clause needs to defer the handling of the t1.x=5
375 ** term until after the t2 loop of the join. In that way, a
376 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
377 ** defer the handling of t1.x=5, it will be processed immediately
378 ** after the t1 loop and rows with t1.x!=5 will never appear in
379 ** the output, which is incorrect.
381 void sqlite3SetJoinExpr(Expr *p, int iTable){
382 while( p ){
383 ExprSetProperty(p, EP_FromJoin);
384 assert( !ExprHasProperty(p, EP_TokenOnly|EP_Reduced) );
385 ExprSetVVAProperty(p, EP_NoReduce);
386 p->iRightJoinTable = (i16)iTable;
387 if( p->op==TK_FUNCTION && p->x.pList ){
388 int i;
389 for(i=0; i<p->x.pList->nExpr; i++){
390 sqlite3SetJoinExpr(p->x.pList->a[i].pExpr, iTable);
393 sqlite3SetJoinExpr(p->pLeft, iTable);
394 p = p->pRight;
398 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every
399 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
400 ** an ordinary term that omits the EP_FromJoin mark.
402 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
404 static void unsetJoinExpr(Expr *p, int iTable){
405 while( p ){
406 if( ExprHasProperty(p, EP_FromJoin)
407 && (iTable<0 || p->iRightJoinTable==iTable) ){
408 ExprClearProperty(p, EP_FromJoin);
410 if( p->op==TK_FUNCTION && p->x.pList ){
411 int i;
412 for(i=0; i<p->x.pList->nExpr; i++){
413 unsetJoinExpr(p->x.pList->a[i].pExpr, iTable);
416 unsetJoinExpr(p->pLeft, iTable);
417 p = p->pRight;
422 ** This routine processes the join information for a SELECT statement.
423 ** ON and USING clauses are converted into extra terms of the WHERE clause.
424 ** NATURAL joins also create extra WHERE clause terms.
426 ** The terms of a FROM clause are contained in the Select.pSrc structure.
427 ** The left most table is the first entry in Select.pSrc. The right-most
428 ** table is the last entry. The join operator is held in the entry to
429 ** the left. Thus entry 0 contains the join operator for the join between
430 ** entries 0 and 1. Any ON or USING clauses associated with the join are
431 ** also attached to the left entry.
433 ** This routine returns the number of errors encountered.
435 static int sqliteProcessJoin(Parse *pParse, Select *p){
436 SrcList *pSrc; /* All tables in the FROM clause */
437 int i, j; /* Loop counters */
438 struct SrcList_item *pLeft; /* Left table being joined */
439 struct SrcList_item *pRight; /* Right table being joined */
441 pSrc = p->pSrc;
442 pLeft = &pSrc->a[0];
443 pRight = &pLeft[1];
444 for(i=0; i<pSrc->nSrc-1; i++, pRight++, pLeft++){
445 Table *pRightTab = pRight->pTab;
446 int isOuter;
448 if( NEVER(pLeft->pTab==0 || pRightTab==0) ) continue;
449 isOuter = (pRight->fg.jointype & JT_OUTER)!=0;
451 /* When the NATURAL keyword is present, add WHERE clause terms for
452 ** every column that the two tables have in common.
454 if( pRight->fg.jointype & JT_NATURAL ){
455 if( pRight->pOn || pRight->pUsing ){
456 sqlite3ErrorMsg(pParse, "a NATURAL join may not have "
457 "an ON or USING clause", 0);
458 return 1;
460 for(j=0; j<pRightTab->nCol; j++){
461 char *zName; /* Name of column in the right table */
462 int iLeft; /* Matching left table */
463 int iLeftCol; /* Matching column in the left table */
465 if( IsHiddenColumn(&pRightTab->aCol[j]) ) continue;
466 zName = pRightTab->aCol[j].zName;
467 if( tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 1) ){
468 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, j,
469 isOuter, &p->pWhere);
474 /* Disallow both ON and USING clauses in the same join
476 if( pRight->pOn && pRight->pUsing ){
477 sqlite3ErrorMsg(pParse, "cannot have both ON and USING "
478 "clauses in the same join");
479 return 1;
482 /* Add the ON clause to the end of the WHERE clause, connected by
483 ** an AND operator.
485 if( pRight->pOn ){
486 if( isOuter ) sqlite3SetJoinExpr(pRight->pOn, pRight->iCursor);
487 p->pWhere = sqlite3ExprAnd(pParse, p->pWhere, pRight->pOn);
488 pRight->pOn = 0;
491 /* Create extra terms on the WHERE clause for each column named
492 ** in the USING clause. Example: If the two tables to be joined are
493 ** A and B and the USING clause names X, Y, and Z, then add this
494 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
495 ** Report an error if any column mentioned in the USING clause is
496 ** not contained in both tables to be joined.
498 if( pRight->pUsing ){
499 IdList *pList = pRight->pUsing;
500 for(j=0; j<pList->nId; j++){
501 char *zName; /* Name of the term in the USING clause */
502 int iLeft; /* Table on the left with matching column name */
503 int iLeftCol; /* Column number of matching column on the left */
504 int iRightCol; /* Column number of matching column on the right */
506 zName = pList->a[j].zName;
507 iRightCol = columnIndex(pRightTab, zName);
508 if( iRightCol<0
509 || !tableAndColumnIndex(pSrc, i+1, zName, &iLeft, &iLeftCol, 0)
511 sqlite3ErrorMsg(pParse, "cannot join using column %s - column "
512 "not present in both tables", zName);
513 return 1;
515 addWhereTerm(pParse, pSrc, iLeft, iLeftCol, i+1, iRightCol,
516 isOuter, &p->pWhere);
520 return 0;
524 ** An instance of this object holds information (beyond pParse and pSelect)
525 ** needed to load the next result row that is to be added to the sorter.
527 typedef struct RowLoadInfo RowLoadInfo;
528 struct RowLoadInfo {
529 int regResult; /* Store results in array of registers here */
530 u8 ecelFlags; /* Flag argument to ExprCodeExprList() */
531 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
532 ExprList *pExtra; /* Extra columns needed by sorter refs */
533 int regExtraResult; /* Where to load the extra columns */
534 #endif
538 ** This routine does the work of loading query data into an array of
539 ** registers so that it can be added to the sorter.
541 static void innerLoopLoadRow(
542 Parse *pParse, /* Statement under construction */
543 Select *pSelect, /* The query being coded */
544 RowLoadInfo *pInfo /* Info needed to complete the row load */
546 sqlite3ExprCodeExprList(pParse, pSelect->pEList, pInfo->regResult,
547 0, pInfo->ecelFlags);
548 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
549 if( pInfo->pExtra ){
550 sqlite3ExprCodeExprList(pParse, pInfo->pExtra, pInfo->regExtraResult, 0, 0);
551 sqlite3ExprListDelete(pParse->db, pInfo->pExtra);
553 #endif
557 ** Code the OP_MakeRecord instruction that generates the entry to be
558 ** added into the sorter.
560 ** Return the register in which the result is stored.
562 static int makeSorterRecord(
563 Parse *pParse,
564 SortCtx *pSort,
565 Select *pSelect,
566 int regBase,
567 int nBase
569 int nOBSat = pSort->nOBSat;
570 Vdbe *v = pParse->pVdbe;
571 int regOut = ++pParse->nMem;
572 if( pSort->pDeferredRowLoad ){
573 innerLoopLoadRow(pParse, pSelect, pSort->pDeferredRowLoad);
575 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase+nOBSat, nBase-nOBSat, regOut);
576 return regOut;
580 ** Generate code that will push the record in registers regData
581 ** through regData+nData-1 onto the sorter.
583 static void pushOntoSorter(
584 Parse *pParse, /* Parser context */
585 SortCtx *pSort, /* Information about the ORDER BY clause */
586 Select *pSelect, /* The whole SELECT statement */
587 int regData, /* First register holding data to be sorted */
588 int regOrigData, /* First register holding data before packing */
589 int nData, /* Number of elements in the regData data array */
590 int nPrefixReg /* No. of reg prior to regData available for use */
592 Vdbe *v = pParse->pVdbe; /* Stmt under construction */
593 int bSeq = ((pSort->sortFlags & SORTFLAG_UseSorter)==0);
594 int nExpr = pSort->pOrderBy->nExpr; /* No. of ORDER BY terms */
595 int nBase = nExpr + bSeq + nData; /* Fields in sorter record */
596 int regBase; /* Regs for sorter record */
597 int regRecord = 0; /* Assembled sorter record */
598 int nOBSat = pSort->nOBSat; /* ORDER BY terms to skip */
599 int op; /* Opcode to add sorter record to sorter */
600 int iLimit; /* LIMIT counter */
601 int iSkip = 0; /* End of the sorter insert loop */
603 assert( bSeq==0 || bSeq==1 );
605 /* Three cases:
606 ** (1) The data to be sorted has already been packed into a Record
607 ** by a prior OP_MakeRecord. In this case nData==1 and regData
608 ** will be completely unrelated to regOrigData.
609 ** (2) All output columns are included in the sort record. In that
610 ** case regData==regOrigData.
611 ** (3) Some output columns are omitted from the sort record due to
612 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
613 ** SQLITE_ECEL_OMITREF optimization, or due to the
614 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases
615 ** regOrigData is 0 to prevent this routine from trying to copy
616 ** values that might not yet exist.
618 assert( nData==1 || regData==regOrigData || regOrigData==0 );
620 if( nPrefixReg ){
621 assert( nPrefixReg==nExpr+bSeq );
622 regBase = regData - nPrefixReg;
623 }else{
624 regBase = pParse->nMem + 1;
625 pParse->nMem += nBase;
627 assert( pSelect->iOffset==0 || pSelect->iLimit!=0 );
628 iLimit = pSelect->iOffset ? pSelect->iOffset+1 : pSelect->iLimit;
629 pSort->labelDone = sqlite3VdbeMakeLabel(pParse);
630 sqlite3ExprCodeExprList(pParse, pSort->pOrderBy, regBase, regOrigData,
631 SQLITE_ECEL_DUP | (regOrigData? SQLITE_ECEL_REF : 0));
632 if( bSeq ){
633 sqlite3VdbeAddOp2(v, OP_Sequence, pSort->iECursor, regBase+nExpr);
635 if( nPrefixReg==0 && nData>0 ){
636 sqlite3ExprCodeMove(pParse, regData, regBase+nExpr+bSeq, nData);
638 if( nOBSat>0 ){
639 int regPrevKey; /* The first nOBSat columns of the previous row */
640 int addrFirst; /* Address of the OP_IfNot opcode */
641 int addrJmp; /* Address of the OP_Jump opcode */
642 VdbeOp *pOp; /* Opcode that opens the sorter */
643 int nKey; /* Number of sorting key columns, including OP_Sequence */
644 KeyInfo *pKI; /* Original KeyInfo on the sorter table */
646 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
647 regPrevKey = pParse->nMem+1;
648 pParse->nMem += pSort->nOBSat;
649 nKey = nExpr - pSort->nOBSat + bSeq;
650 if( bSeq ){
651 addrFirst = sqlite3VdbeAddOp1(v, OP_IfNot, regBase+nExpr);
652 }else{
653 addrFirst = sqlite3VdbeAddOp1(v, OP_SequenceTest, pSort->iECursor);
655 VdbeCoverage(v);
656 sqlite3VdbeAddOp3(v, OP_Compare, regPrevKey, regBase, pSort->nOBSat);
657 pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
658 if( pParse->db->mallocFailed ) return;
659 pOp->p2 = nKey + nData;
660 pKI = pOp->p4.pKeyInfo;
661 memset(pKI->aSortFlags, 0, pKI->nKeyField); /* Makes OP_Jump testable */
662 sqlite3VdbeChangeP4(v, -1, (char*)pKI, P4_KEYINFO);
663 testcase( pKI->nAllField > pKI->nKeyField+2 );
664 pOp->p4.pKeyInfo = sqlite3KeyInfoFromExprList(pParse,pSort->pOrderBy,nOBSat,
665 pKI->nAllField-pKI->nKeyField-1);
666 pOp = 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
667 addrJmp = sqlite3VdbeCurrentAddr(v);
668 sqlite3VdbeAddOp3(v, OP_Jump, addrJmp+1, 0, addrJmp+1); VdbeCoverage(v);
669 pSort->labelBkOut = sqlite3VdbeMakeLabel(pParse);
670 pSort->regReturn = ++pParse->nMem;
671 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
672 sqlite3VdbeAddOp1(v, OP_ResetSorter, pSort->iECursor);
673 if( iLimit ){
674 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, pSort->labelDone);
675 VdbeCoverage(v);
677 sqlite3VdbeJumpHere(v, addrFirst);
678 sqlite3ExprCodeMove(pParse, regBase, regPrevKey, pSort->nOBSat);
679 sqlite3VdbeJumpHere(v, addrJmp);
681 if( iLimit ){
682 /* At this point the values for the new sorter entry are stored
683 ** in an array of registers. They need to be composed into a record
684 ** and inserted into the sorter if either (a) there are currently
685 ** less than LIMIT+OFFSET items or (b) the new record is smaller than
686 ** the largest record currently in the sorter. If (b) is true and there
687 ** are already LIMIT+OFFSET items in the sorter, delete the largest
688 ** entry before inserting the new one. This way there are never more
689 ** than LIMIT+OFFSET items in the sorter.
691 ** If the new record does not need to be inserted into the sorter,
692 ** jump to the next iteration of the loop. If the pSort->labelOBLopt
693 ** value is not zero, then it is a label of where to jump. Otherwise,
694 ** just bypass the row insert logic. See the header comment on the
695 ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
697 int iCsr = pSort->iECursor;
698 sqlite3VdbeAddOp2(v, OP_IfNotZero, iLimit, sqlite3VdbeCurrentAddr(v)+4);
699 VdbeCoverage(v);
700 sqlite3VdbeAddOp2(v, OP_Last, iCsr, 0);
701 iSkip = sqlite3VdbeAddOp4Int(v, OP_IdxLE,
702 iCsr, 0, regBase+nOBSat, nExpr-nOBSat);
703 VdbeCoverage(v);
704 sqlite3VdbeAddOp1(v, OP_Delete, iCsr);
706 if( regRecord==0 ){
707 regRecord = makeSorterRecord(pParse, pSort, pSelect, regBase, nBase);
709 if( pSort->sortFlags & SORTFLAG_UseSorter ){
710 op = OP_SorterInsert;
711 }else{
712 op = OP_IdxInsert;
714 sqlite3VdbeAddOp4Int(v, op, pSort->iECursor, regRecord,
715 regBase+nOBSat, nBase-nOBSat);
716 if( iSkip ){
717 sqlite3VdbeChangeP2(v, iSkip,
718 pSort->labelOBLopt ? pSort->labelOBLopt : sqlite3VdbeCurrentAddr(v));
723 ** Add code to implement the OFFSET
725 static void codeOffset(
726 Vdbe *v, /* Generate code into this VM */
727 int iOffset, /* Register holding the offset counter */
728 int iContinue /* Jump here to skip the current record */
730 if( iOffset>0 ){
731 sqlite3VdbeAddOp3(v, OP_IfPos, iOffset, iContinue, 1); VdbeCoverage(v);
732 VdbeComment((v, "OFFSET"));
737 ** Add code that will check to make sure the N registers starting at iMem
738 ** form a distinct entry. iTab is a sorting index that holds previously
739 ** seen combinations of the N values. A new entry is made in iTab
740 ** if the current N values are new.
742 ** A jump to addrRepeat is made and the N+1 values are popped from the
743 ** stack if the top N elements are not distinct.
745 static void codeDistinct(
746 Parse *pParse, /* Parsing and code generating context */
747 int iTab, /* A sorting index used to test for distinctness */
748 int addrRepeat, /* Jump to here if not distinct */
749 int N, /* Number of elements */
750 int iMem /* First element */
752 Vdbe *v;
753 int r1;
755 v = pParse->pVdbe;
756 r1 = sqlite3GetTempReg(pParse);
757 sqlite3VdbeAddOp4Int(v, OP_Found, iTab, addrRepeat, iMem, N); VdbeCoverage(v);
758 sqlite3VdbeAddOp3(v, OP_MakeRecord, iMem, N, r1);
759 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iTab, r1, iMem, N);
760 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
761 sqlite3ReleaseTempReg(pParse, r1);
764 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
766 ** This function is called as part of inner-loop generation for a SELECT
767 ** statement with an ORDER BY that is not optimized by an index. It
768 ** determines the expressions, if any, that the sorter-reference
769 ** optimization should be used for. The sorter-reference optimization
770 ** is used for SELECT queries like:
772 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
774 ** If the optimization is used for expression "bigblob", then instead of
775 ** storing values read from that column in the sorter records, the PK of
776 ** the row from table t1 is stored instead. Then, as records are extracted from
777 ** the sorter to return to the user, the required value of bigblob is
778 ** retrieved directly from table t1. If the values are very large, this
779 ** can be more efficient than storing them directly in the sorter records.
781 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
782 ** for which the sorter-reference optimization should be enabled.
783 ** Additionally, the pSort->aDefer[] array is populated with entries
784 ** for all cursors required to evaluate all selected expressions. Finally.
785 ** output variable (*ppExtra) is set to an expression list containing
786 ** expressions for all extra PK values that should be stored in the
787 ** sorter records.
789 static void selectExprDefer(
790 Parse *pParse, /* Leave any error here */
791 SortCtx *pSort, /* Sorter context */
792 ExprList *pEList, /* Expressions destined for sorter */
793 ExprList **ppExtra /* Expressions to append to sorter record */
795 int i;
796 int nDefer = 0;
797 ExprList *pExtra = 0;
798 for(i=0; i<pEList->nExpr; i++){
799 struct ExprList_item *pItem = &pEList->a[i];
800 if( pItem->u.x.iOrderByCol==0 ){
801 Expr *pExpr = pItem->pExpr;
802 Table *pTab = pExpr->y.pTab;
803 if( pExpr->op==TK_COLUMN && pExpr->iColumn>=0 && pTab && !IsVirtual(pTab)
804 && (pTab->aCol[pExpr->iColumn].colFlags & COLFLAG_SORTERREF)
806 int j;
807 for(j=0; j<nDefer; j++){
808 if( pSort->aDefer[j].iCsr==pExpr->iTable ) break;
810 if( j==nDefer ){
811 if( nDefer==ArraySize(pSort->aDefer) ){
812 continue;
813 }else{
814 int nKey = 1;
815 int k;
816 Index *pPk = 0;
817 if( !HasRowid(pTab) ){
818 pPk = sqlite3PrimaryKeyIndex(pTab);
819 nKey = pPk->nKeyCol;
821 for(k=0; k<nKey; k++){
822 Expr *pNew = sqlite3PExpr(pParse, TK_COLUMN, 0, 0);
823 if( pNew ){
824 pNew->iTable = pExpr->iTable;
825 pNew->y.pTab = pExpr->y.pTab;
826 pNew->iColumn = pPk ? pPk->aiColumn[k] : -1;
827 pExtra = sqlite3ExprListAppend(pParse, pExtra, pNew);
830 pSort->aDefer[nDefer].pTab = pExpr->y.pTab;
831 pSort->aDefer[nDefer].iCsr = pExpr->iTable;
832 pSort->aDefer[nDefer].nKey = nKey;
833 nDefer++;
836 pItem->bSorterRef = 1;
840 pSort->nDefer = (u8)nDefer;
841 *ppExtra = pExtra;
843 #endif
846 ** This routine generates the code for the inside of the inner loop
847 ** of a SELECT.
849 ** If srcTab is negative, then the p->pEList expressions
850 ** are evaluated in order to get the data for this row. If srcTab is
851 ** zero or more, then data is pulled from srcTab and p->pEList is used only
852 ** to get the number of columns and the collation sequence for each column.
854 static void selectInnerLoop(
855 Parse *pParse, /* The parser context */
856 Select *p, /* The complete select statement being coded */
857 int srcTab, /* Pull data from this table if non-negative */
858 SortCtx *pSort, /* If not NULL, info on how to process ORDER BY */
859 DistinctCtx *pDistinct, /* If not NULL, info on how to process DISTINCT */
860 SelectDest *pDest, /* How to dispose of the results */
861 int iContinue, /* Jump here to continue with next row */
862 int iBreak /* Jump here to break out of the inner loop */
864 Vdbe *v = pParse->pVdbe;
865 int i;
866 int hasDistinct; /* True if the DISTINCT keyword is present */
867 int eDest = pDest->eDest; /* How to dispose of results */
868 int iParm = pDest->iSDParm; /* First argument to disposal method */
869 int nResultCol; /* Number of result columns */
870 int nPrefixReg = 0; /* Number of extra registers before regResult */
871 RowLoadInfo sRowLoadInfo; /* Info for deferred row loading */
873 /* Usually, regResult is the first cell in an array of memory cells
874 ** containing the current result row. In this case regOrig is set to the
875 ** same value. However, if the results are being sent to the sorter, the
876 ** values for any expressions that are also part of the sort-key are omitted
877 ** from this array. In this case regOrig is set to zero. */
878 int regResult; /* Start of memory holding current results */
879 int regOrig; /* Start of memory holding full result (or 0) */
881 assert( v );
882 assert( p->pEList!=0 );
883 hasDistinct = pDistinct ? pDistinct->eTnctType : WHERE_DISTINCT_NOOP;
884 if( pSort && pSort->pOrderBy==0 ) pSort = 0;
885 if( pSort==0 && !hasDistinct ){
886 assert( iContinue!=0 );
887 codeOffset(v, p->iOffset, iContinue);
890 /* Pull the requested columns.
892 nResultCol = p->pEList->nExpr;
894 if( pDest->iSdst==0 ){
895 if( pSort ){
896 nPrefixReg = pSort->pOrderBy->nExpr;
897 if( !(pSort->sortFlags & SORTFLAG_UseSorter) ) nPrefixReg++;
898 pParse->nMem += nPrefixReg;
900 pDest->iSdst = pParse->nMem+1;
901 pParse->nMem += nResultCol;
902 }else if( pDest->iSdst+nResultCol > pParse->nMem ){
903 /* This is an error condition that can result, for example, when a SELECT
904 ** on the right-hand side of an INSERT contains more result columns than
905 ** there are columns in the table on the left. The error will be caught
906 ** and reported later. But we need to make sure enough memory is allocated
907 ** to avoid other spurious errors in the meantime. */
908 pParse->nMem += nResultCol;
910 pDest->nSdst = nResultCol;
911 regOrig = regResult = pDest->iSdst;
912 if( srcTab>=0 ){
913 for(i=0; i<nResultCol; i++){
914 sqlite3VdbeAddOp3(v, OP_Column, srcTab, i, regResult+i);
915 VdbeComment((v, "%s", p->pEList->a[i].zEName));
917 }else if( eDest!=SRT_Exists ){
918 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
919 ExprList *pExtra = 0;
920 #endif
921 /* If the destination is an EXISTS(...) expression, the actual
922 ** values returned by the SELECT are not required.
924 u8 ecelFlags; /* "ecel" is an abbreviation of "ExprCodeExprList" */
925 ExprList *pEList;
926 if( eDest==SRT_Mem || eDest==SRT_Output || eDest==SRT_Coroutine ){
927 ecelFlags = SQLITE_ECEL_DUP;
928 }else{
929 ecelFlags = 0;
931 if( pSort && hasDistinct==0 && eDest!=SRT_EphemTab && eDest!=SRT_Table ){
932 /* For each expression in p->pEList that is a copy of an expression in
933 ** the ORDER BY clause (pSort->pOrderBy), set the associated
934 ** iOrderByCol value to one more than the index of the ORDER BY
935 ** expression within the sort-key that pushOntoSorter() will generate.
936 ** This allows the p->pEList field to be omitted from the sorted record,
937 ** saving space and CPU cycles. */
938 ecelFlags |= (SQLITE_ECEL_OMITREF|SQLITE_ECEL_REF);
940 for(i=pSort->nOBSat; i<pSort->pOrderBy->nExpr; i++){
941 int j;
942 if( (j = pSort->pOrderBy->a[i].u.x.iOrderByCol)>0 ){
943 p->pEList->a[j-1].u.x.iOrderByCol = i+1-pSort->nOBSat;
946 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
947 selectExprDefer(pParse, pSort, p->pEList, &pExtra);
948 if( pExtra && pParse->db->mallocFailed==0 ){
949 /* If there are any extra PK columns to add to the sorter records,
950 ** allocate extra memory cells and adjust the OpenEphemeral
951 ** instruction to account for the larger records. This is only
952 ** required if there are one or more WITHOUT ROWID tables with
953 ** composite primary keys in the SortCtx.aDefer[] array. */
954 VdbeOp *pOp = sqlite3VdbeGetOp(v, pSort->addrSortIndex);
955 pOp->p2 += (pExtra->nExpr - pSort->nDefer);
956 pOp->p4.pKeyInfo->nAllField += (pExtra->nExpr - pSort->nDefer);
957 pParse->nMem += pExtra->nExpr;
959 #endif
961 /* Adjust nResultCol to account for columns that are omitted
962 ** from the sorter by the optimizations in this branch */
963 pEList = p->pEList;
964 for(i=0; i<pEList->nExpr; i++){
965 if( pEList->a[i].u.x.iOrderByCol>0
966 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
967 || pEList->a[i].bSorterRef
968 #endif
970 nResultCol--;
971 regOrig = 0;
975 testcase( regOrig );
976 testcase( eDest==SRT_Set );
977 testcase( eDest==SRT_Mem );
978 testcase( eDest==SRT_Coroutine );
979 testcase( eDest==SRT_Output );
980 assert( eDest==SRT_Set || eDest==SRT_Mem
981 || eDest==SRT_Coroutine || eDest==SRT_Output
982 || eDest==SRT_Upfrom );
984 sRowLoadInfo.regResult = regResult;
985 sRowLoadInfo.ecelFlags = ecelFlags;
986 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
987 sRowLoadInfo.pExtra = pExtra;
988 sRowLoadInfo.regExtraResult = regResult + nResultCol;
989 if( pExtra ) nResultCol += pExtra->nExpr;
990 #endif
991 if( p->iLimit
992 && (ecelFlags & SQLITE_ECEL_OMITREF)!=0
993 && nPrefixReg>0
995 assert( pSort!=0 );
996 assert( hasDistinct==0 );
997 pSort->pDeferredRowLoad = &sRowLoadInfo;
998 regOrig = 0;
999 }else{
1000 innerLoopLoadRow(pParse, p, &sRowLoadInfo);
1004 /* If the DISTINCT keyword was present on the SELECT statement
1005 ** and this row has been seen before, then do not make this row
1006 ** part of the result.
1008 if( hasDistinct ){
1009 switch( pDistinct->eTnctType ){
1010 case WHERE_DISTINCT_ORDERED: {
1011 VdbeOp *pOp; /* No longer required OpenEphemeral instr. */
1012 int iJump; /* Jump destination */
1013 int regPrev; /* Previous row content */
1015 /* Allocate space for the previous row */
1016 regPrev = pParse->nMem+1;
1017 pParse->nMem += nResultCol;
1019 /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1020 ** sets the MEM_Cleared bit on the first register of the
1021 ** previous value. This will cause the OP_Ne below to always
1022 ** fail on the first iteration of the loop even if the first
1023 ** row is all NULLs.
1025 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1026 pOp = sqlite3VdbeGetOp(v, pDistinct->addrTnct);
1027 pOp->opcode = OP_Null;
1028 pOp->p1 = 1;
1029 pOp->p2 = regPrev;
1030 pOp = 0; /* Ensure pOp is not used after sqlite3VdbeAddOp() */
1032 iJump = sqlite3VdbeCurrentAddr(v) + nResultCol;
1033 for(i=0; i<nResultCol; i++){
1034 CollSeq *pColl = sqlite3ExprCollSeq(pParse, p->pEList->a[i].pExpr);
1035 if( i<nResultCol-1 ){
1036 sqlite3VdbeAddOp3(v, OP_Ne, regResult+i, iJump, regPrev+i);
1037 VdbeCoverage(v);
1038 }else{
1039 sqlite3VdbeAddOp3(v, OP_Eq, regResult+i, iContinue, regPrev+i);
1040 VdbeCoverage(v);
1042 sqlite3VdbeChangeP4(v, -1, (const char *)pColl, P4_COLLSEQ);
1043 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
1045 assert( sqlite3VdbeCurrentAddr(v)==iJump || pParse->db->mallocFailed );
1046 sqlite3VdbeAddOp3(v, OP_Copy, regResult, regPrev, nResultCol-1);
1047 break;
1050 case WHERE_DISTINCT_UNIQUE: {
1051 sqlite3VdbeChangeToNoop(v, pDistinct->addrTnct);
1052 break;
1055 default: {
1056 assert( pDistinct->eTnctType==WHERE_DISTINCT_UNORDERED );
1057 codeDistinct(pParse, pDistinct->tabTnct, iContinue, nResultCol,
1058 regResult);
1059 break;
1062 if( pSort==0 ){
1063 codeOffset(v, p->iOffset, iContinue);
1067 switch( eDest ){
1068 /* In this mode, write each query result to the key of the temporary
1069 ** table iParm.
1071 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1072 case SRT_Union: {
1073 int r1;
1074 r1 = sqlite3GetTempReg(pParse);
1075 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1);
1076 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1077 sqlite3ReleaseTempReg(pParse, r1);
1078 break;
1081 /* Construct a record from the query result, but instead of
1082 ** saving that record, use it as a key to delete elements from
1083 ** the temporary table iParm.
1085 case SRT_Except: {
1086 sqlite3VdbeAddOp3(v, OP_IdxDelete, iParm, regResult, nResultCol);
1087 break;
1089 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1091 /* Store the result as data using a unique key.
1093 case SRT_Fifo:
1094 case SRT_DistFifo:
1095 case SRT_Table:
1096 case SRT_EphemTab: {
1097 int r1 = sqlite3GetTempRange(pParse, nPrefixReg+1);
1098 testcase( eDest==SRT_Table );
1099 testcase( eDest==SRT_EphemTab );
1100 testcase( eDest==SRT_Fifo );
1101 testcase( eDest==SRT_DistFifo );
1102 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r1+nPrefixReg);
1103 #ifndef SQLITE_OMIT_CTE
1104 if( eDest==SRT_DistFifo ){
1105 /* If the destination is DistFifo, then cursor (iParm+1) is open
1106 ** on an ephemeral index. If the current row is already present
1107 ** in the index, do not write it to the output. If not, add the
1108 ** current row to the index and proceed with writing it to the
1109 ** output table as well. */
1110 int addr = sqlite3VdbeCurrentAddr(v) + 4;
1111 sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, addr, r1, 0);
1112 VdbeCoverage(v);
1113 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm+1, r1,regResult,nResultCol);
1114 assert( pSort==0 );
1116 #endif
1117 if( pSort ){
1118 assert( regResult==regOrig );
1119 pushOntoSorter(pParse, pSort, p, r1+nPrefixReg, regOrig, 1, nPrefixReg);
1120 }else{
1121 int r2 = sqlite3GetTempReg(pParse);
1122 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, r2);
1123 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, r2);
1124 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1125 sqlite3ReleaseTempReg(pParse, r2);
1127 sqlite3ReleaseTempRange(pParse, r1, nPrefixReg+1);
1128 break;
1131 case SRT_Upfrom: {
1132 if( pSort ){
1133 pushOntoSorter(
1134 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1135 }else{
1136 int i2 = pDest->iSDParm2;
1137 int r1 = sqlite3GetTempReg(pParse);
1139 /* If the UPDATE FROM join is an aggregate that matches no rows, it
1140 ** might still be trying to return one row, because that is what
1141 ** aggregates do. Don't record that empty row in the output table. */
1142 sqlite3VdbeAddOp2(v, OP_IsNull, regResult, iBreak); VdbeCoverage(v);
1144 sqlite3VdbeAddOp3(v, OP_MakeRecord,
1145 regResult+(i2<0), nResultCol-(i2<0), r1);
1146 if( i2<0 ){
1147 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regResult);
1148 }else{
1149 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, i2);
1152 break;
1155 #ifndef SQLITE_OMIT_SUBQUERY
1156 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1157 ** then there should be a single item on the stack. Write this
1158 ** item into the set table with bogus data.
1160 case SRT_Set: {
1161 if( pSort ){
1162 /* At first glance you would think we could optimize out the
1163 ** ORDER BY in this case since the order of entries in the set
1164 ** does not matter. But there might be a LIMIT clause, in which
1165 ** case the order does matter */
1166 pushOntoSorter(
1167 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1168 }else{
1169 int r1 = sqlite3GetTempReg(pParse);
1170 assert( sqlite3Strlen30(pDest->zAffSdst)==nResultCol );
1171 sqlite3VdbeAddOp4(v, OP_MakeRecord, regResult, nResultCol,
1172 r1, pDest->zAffSdst, nResultCol);
1173 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regResult, nResultCol);
1174 sqlite3ReleaseTempReg(pParse, r1);
1176 break;
1180 /* If any row exist in the result set, record that fact and abort.
1182 case SRT_Exists: {
1183 sqlite3VdbeAddOp2(v, OP_Integer, 1, iParm);
1184 /* The LIMIT clause will terminate the loop for us */
1185 break;
1188 /* If this is a scalar select that is part of an expression, then
1189 ** store the results in the appropriate memory cell or array of
1190 ** memory cells and break out of the scan loop.
1192 case SRT_Mem: {
1193 if( pSort ){
1194 assert( nResultCol<=pDest->nSdst );
1195 pushOntoSorter(
1196 pParse, pSort, p, regResult, regOrig, nResultCol, nPrefixReg);
1197 }else{
1198 assert( nResultCol==pDest->nSdst );
1199 assert( regResult==iParm );
1200 /* The LIMIT clause will jump out of the loop for us */
1202 break;
1204 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1206 case SRT_Coroutine: /* Send data to a co-routine */
1207 case SRT_Output: { /* Return the results */
1208 testcase( eDest==SRT_Coroutine );
1209 testcase( eDest==SRT_Output );
1210 if( pSort ){
1211 pushOntoSorter(pParse, pSort, p, regResult, regOrig, nResultCol,
1212 nPrefixReg);
1213 }else if( eDest==SRT_Coroutine ){
1214 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1215 }else{
1216 sqlite3VdbeAddOp2(v, OP_ResultRow, regResult, nResultCol);
1218 break;
1221 #ifndef SQLITE_OMIT_CTE
1222 /* Write the results into a priority queue that is order according to
1223 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
1224 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
1225 ** pSO->nExpr columns, then make sure all keys are unique by adding a
1226 ** final OP_Sequence column. The last column is the record as a blob.
1228 case SRT_DistQueue:
1229 case SRT_Queue: {
1230 int nKey;
1231 int r1, r2, r3;
1232 int addrTest = 0;
1233 ExprList *pSO;
1234 pSO = pDest->pOrderBy;
1235 assert( pSO );
1236 nKey = pSO->nExpr;
1237 r1 = sqlite3GetTempReg(pParse);
1238 r2 = sqlite3GetTempRange(pParse, nKey+2);
1239 r3 = r2+nKey+1;
1240 if( eDest==SRT_DistQueue ){
1241 /* If the destination is DistQueue, then cursor (iParm+1) is open
1242 ** on a second ephemeral index that holds all values every previously
1243 ** added to the queue. */
1244 addrTest = sqlite3VdbeAddOp4Int(v, OP_Found, iParm+1, 0,
1245 regResult, nResultCol);
1246 VdbeCoverage(v);
1248 sqlite3VdbeAddOp3(v, OP_MakeRecord, regResult, nResultCol, r3);
1249 if( eDest==SRT_DistQueue ){
1250 sqlite3VdbeAddOp2(v, OP_IdxInsert, iParm+1, r3);
1251 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
1253 for(i=0; i<nKey; i++){
1254 sqlite3VdbeAddOp2(v, OP_SCopy,
1255 regResult + pSO->a[i].u.x.iOrderByCol - 1,
1256 r2+i);
1258 sqlite3VdbeAddOp2(v, OP_Sequence, iParm, r2+nKey);
1259 sqlite3VdbeAddOp3(v, OP_MakeRecord, r2, nKey+2, r1);
1260 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, r2, nKey+2);
1261 if( addrTest ) sqlite3VdbeJumpHere(v, addrTest);
1262 sqlite3ReleaseTempReg(pParse, r1);
1263 sqlite3ReleaseTempRange(pParse, r2, nKey+2);
1264 break;
1266 #endif /* SQLITE_OMIT_CTE */
1270 #if !defined(SQLITE_OMIT_TRIGGER)
1271 /* Discard the results. This is used for SELECT statements inside
1272 ** the body of a TRIGGER. The purpose of such selects is to call
1273 ** user-defined functions that have side effects. We do not care
1274 ** about the actual results of the select.
1276 default: {
1277 assert( eDest==SRT_Discard );
1278 break;
1280 #endif
1283 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1284 ** there is a sorter, in which case the sorter has already limited
1285 ** the output for us.
1287 if( pSort==0 && p->iLimit ){
1288 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
1293 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1294 ** X extra columns.
1296 KeyInfo *sqlite3KeyInfoAlloc(sqlite3 *db, int N, int X){
1297 int nExtra = (N+X)*(sizeof(CollSeq*)+1) - sizeof(CollSeq*);
1298 KeyInfo *p = sqlite3DbMallocRawNN(db, sizeof(KeyInfo) + nExtra);
1299 if( p ){
1300 p->aSortFlags = (u8*)&p->aColl[N+X];
1301 p->nKeyField = (u16)N;
1302 p->nAllField = (u16)(N+X);
1303 p->enc = ENC(db);
1304 p->db = db;
1305 p->nRef = 1;
1306 memset(&p[1], 0, nExtra);
1307 }else{
1308 sqlite3OomFault(db);
1310 return p;
1314 ** Deallocate a KeyInfo object
1316 void sqlite3KeyInfoUnref(KeyInfo *p){
1317 if( p ){
1318 assert( p->nRef>0 );
1319 p->nRef--;
1320 if( p->nRef==0 ) sqlite3DbFreeNN(p->db, p);
1325 ** Make a new pointer to a KeyInfo object
1327 KeyInfo *sqlite3KeyInfoRef(KeyInfo *p){
1328 if( p ){
1329 assert( p->nRef>0 );
1330 p->nRef++;
1332 return p;
1335 #ifdef SQLITE_DEBUG
1337 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1338 ** can only be changed if this is just a single reference to the object.
1340 ** This routine is used only inside of assert() statements.
1342 int sqlite3KeyInfoIsWriteable(KeyInfo *p){ return p->nRef==1; }
1343 #endif /* SQLITE_DEBUG */
1346 ** Given an expression list, generate a KeyInfo structure that records
1347 ** the collating sequence for each expression in that expression list.
1349 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1350 ** KeyInfo structure is appropriate for initializing a virtual index to
1351 ** implement that clause. If the ExprList is the result set of a SELECT
1352 ** then the KeyInfo structure is appropriate for initializing a virtual
1353 ** index to implement a DISTINCT test.
1355 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1356 ** function is responsible for seeing that this structure is eventually
1357 ** freed.
1359 KeyInfo *sqlite3KeyInfoFromExprList(
1360 Parse *pParse, /* Parsing context */
1361 ExprList *pList, /* Form the KeyInfo object from this ExprList */
1362 int iStart, /* Begin with this column of pList */
1363 int nExtra /* Add this many extra columns to the end */
1365 int nExpr;
1366 KeyInfo *pInfo;
1367 struct ExprList_item *pItem;
1368 sqlite3 *db = pParse->db;
1369 int i;
1371 nExpr = pList->nExpr;
1372 pInfo = sqlite3KeyInfoAlloc(db, nExpr-iStart, nExtra+1);
1373 if( pInfo ){
1374 assert( sqlite3KeyInfoIsWriteable(pInfo) );
1375 for(i=iStart, pItem=pList->a+iStart; i<nExpr; i++, pItem++){
1376 pInfo->aColl[i-iStart] = sqlite3ExprNNCollSeq(pParse, pItem->pExpr);
1377 pInfo->aSortFlags[i-iStart] = pItem->sortFlags;
1380 return pInfo;
1384 ** Name of the connection operator, used for error messages.
1386 static const char *selectOpName(int id){
1387 char *z;
1388 switch( id ){
1389 case TK_ALL: z = "UNION ALL"; break;
1390 case TK_INTERSECT: z = "INTERSECT"; break;
1391 case TK_EXCEPT: z = "EXCEPT"; break;
1392 default: z = "UNION"; break;
1394 return z;
1397 #ifndef SQLITE_OMIT_EXPLAIN
1399 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1400 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1401 ** where the caption is of the form:
1403 ** "USE TEMP B-TREE FOR xxx"
1405 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1406 ** is determined by the zUsage argument.
1408 static void explainTempTable(Parse *pParse, const char *zUsage){
1409 ExplainQueryPlan((pParse, 0, "USE TEMP B-TREE FOR %s", zUsage));
1413 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1414 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1415 ** in sqlite3Select() to assign values to structure member variables that
1416 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1417 ** code with #ifndef directives.
1419 # define explainSetInteger(a, b) a = b
1421 #else
1422 /* No-op versions of the explainXXX() functions and macros. */
1423 # define explainTempTable(y,z)
1424 # define explainSetInteger(y,z)
1425 #endif
1429 ** If the inner loop was generated using a non-null pOrderBy argument,
1430 ** then the results were placed in a sorter. After the loop is terminated
1431 ** we need to run the sorter and output the results. The following
1432 ** routine generates the code needed to do that.
1434 static void generateSortTail(
1435 Parse *pParse, /* Parsing context */
1436 Select *p, /* The SELECT statement */
1437 SortCtx *pSort, /* Information on the ORDER BY clause */
1438 int nColumn, /* Number of columns of data */
1439 SelectDest *pDest /* Write the sorted results here */
1441 Vdbe *v = pParse->pVdbe; /* The prepared statement */
1442 int addrBreak = pSort->labelDone; /* Jump here to exit loop */
1443 int addrContinue = sqlite3VdbeMakeLabel(pParse);/* Jump here for next cycle */
1444 int addr; /* Top of output loop. Jump for Next. */
1445 int addrOnce = 0;
1446 int iTab;
1447 ExprList *pOrderBy = pSort->pOrderBy;
1448 int eDest = pDest->eDest;
1449 int iParm = pDest->iSDParm;
1450 int regRow;
1451 int regRowid;
1452 int iCol;
1453 int nKey; /* Number of key columns in sorter record */
1454 int iSortTab; /* Sorter cursor to read from */
1455 int i;
1456 int bSeq; /* True if sorter record includes seq. no. */
1457 int nRefKey = 0;
1458 struct ExprList_item *aOutEx = p->pEList->a;
1460 assert( addrBreak<0 );
1461 if( pSort->labelBkOut ){
1462 sqlite3VdbeAddOp2(v, OP_Gosub, pSort->regReturn, pSort->labelBkOut);
1463 sqlite3VdbeGoto(v, addrBreak);
1464 sqlite3VdbeResolveLabel(v, pSort->labelBkOut);
1467 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1468 /* Open any cursors needed for sorter-reference expressions */
1469 for(i=0; i<pSort->nDefer; i++){
1470 Table *pTab = pSort->aDefer[i].pTab;
1471 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1472 sqlite3OpenTable(pParse, pSort->aDefer[i].iCsr, iDb, pTab, OP_OpenRead);
1473 nRefKey = MAX(nRefKey, pSort->aDefer[i].nKey);
1475 #endif
1477 iTab = pSort->iECursor;
1478 if( eDest==SRT_Output || eDest==SRT_Coroutine || eDest==SRT_Mem ){
1479 regRowid = 0;
1480 regRow = pDest->iSdst;
1481 }else{
1482 regRowid = sqlite3GetTempReg(pParse);
1483 if( eDest==SRT_EphemTab || eDest==SRT_Table ){
1484 regRow = sqlite3GetTempReg(pParse);
1485 nColumn = 0;
1486 }else{
1487 regRow = sqlite3GetTempRange(pParse, nColumn);
1490 nKey = pOrderBy->nExpr - pSort->nOBSat;
1491 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1492 int regSortOut = ++pParse->nMem;
1493 iSortTab = pParse->nTab++;
1494 if( pSort->labelBkOut ){
1495 addrOnce = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
1497 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iSortTab, regSortOut,
1498 nKey+1+nColumn+nRefKey);
1499 if( addrOnce ) sqlite3VdbeJumpHere(v, addrOnce);
1500 addr = 1 + sqlite3VdbeAddOp2(v, OP_SorterSort, iTab, addrBreak);
1501 VdbeCoverage(v);
1502 codeOffset(v, p->iOffset, addrContinue);
1503 sqlite3VdbeAddOp3(v, OP_SorterData, iTab, regSortOut, iSortTab);
1504 bSeq = 0;
1505 }else{
1506 addr = 1 + sqlite3VdbeAddOp2(v, OP_Sort, iTab, addrBreak); VdbeCoverage(v);
1507 codeOffset(v, p->iOffset, addrContinue);
1508 iSortTab = iTab;
1509 bSeq = 1;
1511 for(i=0, iCol=nKey+bSeq-1; i<nColumn; i++){
1512 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1513 if( aOutEx[i].bSorterRef ) continue;
1514 #endif
1515 if( aOutEx[i].u.x.iOrderByCol==0 ) iCol++;
1517 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1518 if( pSort->nDefer ){
1519 int iKey = iCol+1;
1520 int regKey = sqlite3GetTempRange(pParse, nRefKey);
1522 for(i=0; i<pSort->nDefer; i++){
1523 int iCsr = pSort->aDefer[i].iCsr;
1524 Table *pTab = pSort->aDefer[i].pTab;
1525 int nKey = pSort->aDefer[i].nKey;
1527 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1528 if( HasRowid(pTab) ){
1529 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey);
1530 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCsr,
1531 sqlite3VdbeCurrentAddr(v)+1, regKey);
1532 }else{
1533 int k;
1534 int iJmp;
1535 assert( sqlite3PrimaryKeyIndex(pTab)->nKeyCol==nKey );
1536 for(k=0; k<nKey; k++){
1537 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iKey++, regKey+k);
1539 iJmp = sqlite3VdbeCurrentAddr(v);
1540 sqlite3VdbeAddOp4Int(v, OP_SeekGE, iCsr, iJmp+2, regKey, nKey);
1541 sqlite3VdbeAddOp4Int(v, OP_IdxLE, iCsr, iJmp+3, regKey, nKey);
1542 sqlite3VdbeAddOp1(v, OP_NullRow, iCsr);
1545 sqlite3ReleaseTempRange(pParse, regKey, nRefKey);
1547 #endif
1548 for(i=nColumn-1; i>=0; i--){
1549 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1550 if( aOutEx[i].bSorterRef ){
1551 sqlite3ExprCode(pParse, aOutEx[i].pExpr, regRow+i);
1552 }else
1553 #endif
1555 int iRead;
1556 if( aOutEx[i].u.x.iOrderByCol ){
1557 iRead = aOutEx[i].u.x.iOrderByCol-1;
1558 }else{
1559 iRead = iCol--;
1561 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, iRead, regRow+i);
1562 VdbeComment((v, "%s", aOutEx[i].zEName));
1565 switch( eDest ){
1566 case SRT_Table:
1567 case SRT_EphemTab: {
1568 sqlite3VdbeAddOp3(v, OP_Column, iSortTab, nKey+bSeq, regRow);
1569 sqlite3VdbeAddOp2(v, OP_NewRowid, iParm, regRowid);
1570 sqlite3VdbeAddOp3(v, OP_Insert, iParm, regRow, regRowid);
1571 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1572 break;
1574 #ifndef SQLITE_OMIT_SUBQUERY
1575 case SRT_Set: {
1576 assert( nColumn==sqlite3Strlen30(pDest->zAffSdst) );
1577 sqlite3VdbeAddOp4(v, OP_MakeRecord, regRow, nColumn, regRowid,
1578 pDest->zAffSdst, nColumn);
1579 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, regRowid, regRow, nColumn);
1580 break;
1582 case SRT_Mem: {
1583 /* The LIMIT clause will terminate the loop for us */
1584 break;
1586 #endif
1587 case SRT_Upfrom: {
1588 int i2 = pDest->iSDParm2;
1589 int r1 = sqlite3GetTempReg(pParse);
1590 sqlite3VdbeAddOp3(v, OP_MakeRecord,regRow+(i2<0),nColumn-(i2<0),r1);
1591 if( i2<0 ){
1592 sqlite3VdbeAddOp3(v, OP_Insert, iParm, r1, regRow);
1593 }else{
1594 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, iParm, r1, regRow, i2);
1596 break;
1598 default: {
1599 assert( eDest==SRT_Output || eDest==SRT_Coroutine );
1600 testcase( eDest==SRT_Output );
1601 testcase( eDest==SRT_Coroutine );
1602 if( eDest==SRT_Output ){
1603 sqlite3VdbeAddOp2(v, OP_ResultRow, pDest->iSdst, nColumn);
1604 }else{
1605 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
1607 break;
1610 if( regRowid ){
1611 if( eDest==SRT_Set ){
1612 sqlite3ReleaseTempRange(pParse, regRow, nColumn);
1613 }else{
1614 sqlite3ReleaseTempReg(pParse, regRow);
1616 sqlite3ReleaseTempReg(pParse, regRowid);
1618 /* The bottom of the loop
1620 sqlite3VdbeResolveLabel(v, addrContinue);
1621 if( pSort->sortFlags & SORTFLAG_UseSorter ){
1622 sqlite3VdbeAddOp2(v, OP_SorterNext, iTab, addr); VdbeCoverage(v);
1623 }else{
1624 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr); VdbeCoverage(v);
1626 if( pSort->regReturn ) sqlite3VdbeAddOp1(v, OP_Return, pSort->regReturn);
1627 sqlite3VdbeResolveLabel(v, addrBreak);
1631 ** Return a pointer to a string containing the 'declaration type' of the
1632 ** expression pExpr. The string may be treated as static by the caller.
1634 ** Also try to estimate the size of the returned value and return that
1635 ** result in *pEstWidth.
1637 ** The declaration type is the exact datatype definition extracted from the
1638 ** original CREATE TABLE statement if the expression is a column. The
1639 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1640 ** is considered a column can be complex in the presence of subqueries. The
1641 ** result-set expression in all of the following SELECT statements is
1642 ** considered a column by this function.
1644 ** SELECT col FROM tbl;
1645 ** SELECT (SELECT col FROM tbl;
1646 ** SELECT (SELECT col FROM tbl);
1647 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1649 ** The declaration type for any expression other than a column is NULL.
1651 ** This routine has either 3 or 6 parameters depending on whether or not
1652 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1654 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1655 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1656 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1657 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1658 #endif
1659 static const char *columnTypeImpl(
1660 NameContext *pNC,
1661 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1662 Expr *pExpr
1663 #else
1664 Expr *pExpr,
1665 const char **pzOrigDb,
1666 const char **pzOrigTab,
1667 const char **pzOrigCol
1668 #endif
1670 char const *zType = 0;
1671 int j;
1672 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1673 char const *zOrigDb = 0;
1674 char const *zOrigTab = 0;
1675 char const *zOrigCol = 0;
1676 #endif
1678 assert( pExpr!=0 );
1679 assert( pNC->pSrcList!=0 );
1680 switch( pExpr->op ){
1681 case TK_COLUMN: {
1682 /* The expression is a column. Locate the table the column is being
1683 ** extracted from in NameContext.pSrcList. This table may be real
1684 ** database table or a subquery.
1686 Table *pTab = 0; /* Table structure column is extracted from */
1687 Select *pS = 0; /* Select the column is extracted from */
1688 int iCol = pExpr->iColumn; /* Index of column in pTab */
1689 while( pNC && !pTab ){
1690 SrcList *pTabList = pNC->pSrcList;
1691 for(j=0;j<pTabList->nSrc && pTabList->a[j].iCursor!=pExpr->iTable;j++);
1692 if( j<pTabList->nSrc ){
1693 pTab = pTabList->a[j].pTab;
1694 pS = pTabList->a[j].pSelect;
1695 }else{
1696 pNC = pNC->pNext;
1700 if( pTab==0 ){
1701 /* At one time, code such as "SELECT new.x" within a trigger would
1702 ** cause this condition to run. Since then, we have restructured how
1703 ** trigger code is generated and so this condition is no longer
1704 ** possible. However, it can still be true for statements like
1705 ** the following:
1707 ** CREATE TABLE t1(col INTEGER);
1708 ** SELECT (SELECT t1.col) FROM FROM t1;
1710 ** when columnType() is called on the expression "t1.col" in the
1711 ** sub-select. In this case, set the column type to NULL, even
1712 ** though it should really be "INTEGER".
1714 ** This is not a problem, as the column type of "t1.col" is never
1715 ** used. When columnType() is called on the expression
1716 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1717 ** branch below. */
1718 break;
1721 assert( pTab && pExpr->y.pTab==pTab );
1722 if( pS ){
1723 /* The "table" is actually a sub-select or a view in the FROM clause
1724 ** of the SELECT statement. Return the declaration type and origin
1725 ** data for the result-set column of the sub-select.
1727 if( iCol>=0 && iCol<pS->pEList->nExpr ){
1728 /* If iCol is less than zero, then the expression requests the
1729 ** rowid of the sub-select or view. This expression is legal (see
1730 ** test case misc2.2.2) - it always evaluates to NULL.
1732 NameContext sNC;
1733 Expr *p = pS->pEList->a[iCol].pExpr;
1734 sNC.pSrcList = pS->pSrc;
1735 sNC.pNext = pNC;
1736 sNC.pParse = pNC->pParse;
1737 zType = columnType(&sNC, p,&zOrigDb,&zOrigTab,&zOrigCol);
1739 }else{
1740 /* A real table or a CTE table */
1741 assert( !pS );
1742 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1743 if( iCol<0 ) iCol = pTab->iPKey;
1744 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1745 if( iCol<0 ){
1746 zType = "INTEGER";
1747 zOrigCol = "rowid";
1748 }else{
1749 zOrigCol = pTab->aCol[iCol].zName;
1750 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1752 zOrigTab = pTab->zName;
1753 if( pNC->pParse && pTab->pSchema ){
1754 int iDb = sqlite3SchemaToIndex(pNC->pParse->db, pTab->pSchema);
1755 zOrigDb = pNC->pParse->db->aDb[iDb].zDbSName;
1757 #else
1758 assert( iCol==XN_ROWID || (iCol>=0 && iCol<pTab->nCol) );
1759 if( iCol<0 ){
1760 zType = "INTEGER";
1761 }else{
1762 zType = sqlite3ColumnType(&pTab->aCol[iCol],0);
1764 #endif
1766 break;
1768 #ifndef SQLITE_OMIT_SUBQUERY
1769 case TK_SELECT: {
1770 /* The expression is a sub-select. Return the declaration type and
1771 ** origin info for the single column in the result set of the SELECT
1772 ** statement.
1774 NameContext sNC;
1775 Select *pS = pExpr->x.pSelect;
1776 Expr *p = pS->pEList->a[0].pExpr;
1777 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1778 sNC.pSrcList = pS->pSrc;
1779 sNC.pNext = pNC;
1780 sNC.pParse = pNC->pParse;
1781 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1782 break;
1784 #endif
1787 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1788 if( pzOrigDb ){
1789 assert( pzOrigTab && pzOrigCol );
1790 *pzOrigDb = zOrigDb;
1791 *pzOrigTab = zOrigTab;
1792 *pzOrigCol = zOrigCol;
1794 #endif
1795 return zType;
1799 ** Generate code that will tell the VDBE the declaration types of columns
1800 ** in the result set.
1802 static void generateColumnTypes(
1803 Parse *pParse, /* Parser context */
1804 SrcList *pTabList, /* List of tables */
1805 ExprList *pEList /* Expressions defining the result set */
1807 #ifndef SQLITE_OMIT_DECLTYPE
1808 Vdbe *v = pParse->pVdbe;
1809 int i;
1810 NameContext sNC;
1811 sNC.pSrcList = pTabList;
1812 sNC.pParse = pParse;
1813 sNC.pNext = 0;
1814 for(i=0; i<pEList->nExpr; i++){
1815 Expr *p = pEList->a[i].pExpr;
1816 const char *zType;
1817 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1818 const char *zOrigDb = 0;
1819 const char *zOrigTab = 0;
1820 const char *zOrigCol = 0;
1821 zType = columnType(&sNC, p, &zOrigDb, &zOrigTab, &zOrigCol);
1823 /* The vdbe must make its own copy of the column-type and other
1824 ** column specific strings, in case the schema is reset before this
1825 ** virtual machine is deleted.
1827 sqlite3VdbeSetColName(v, i, COLNAME_DATABASE, zOrigDb, SQLITE_TRANSIENT);
1828 sqlite3VdbeSetColName(v, i, COLNAME_TABLE, zOrigTab, SQLITE_TRANSIENT);
1829 sqlite3VdbeSetColName(v, i, COLNAME_COLUMN, zOrigCol, SQLITE_TRANSIENT);
1830 #else
1831 zType = columnType(&sNC, p, 0, 0, 0);
1832 #endif
1833 sqlite3VdbeSetColName(v, i, COLNAME_DECLTYPE, zType, SQLITE_TRANSIENT);
1835 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1840 ** Compute the column names for a SELECT statement.
1842 ** The only guarantee that SQLite makes about column names is that if the
1843 ** column has an AS clause assigning it a name, that will be the name used.
1844 ** That is the only documented guarantee. However, countless applications
1845 ** developed over the years have made baseless assumptions about column names
1846 ** and will break if those assumptions changes. Hence, use extreme caution
1847 ** when modifying this routine to avoid breaking legacy.
1849 ** See Also: sqlite3ColumnsFromExprList()
1851 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1852 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
1853 ** applications should operate this way. Nevertheless, we need to support the
1854 ** other modes for legacy:
1856 ** short=OFF, full=OFF: Column name is the text of the expression has it
1857 ** originally appears in the SELECT statement. In
1858 ** other words, the zSpan of the result expression.
1860 ** short=ON, full=OFF: (This is the default setting). If the result
1861 ** refers directly to a table column, then the
1862 ** result column name is just the table column
1863 ** name: COLUMN. Otherwise use zSpan.
1865 ** full=ON, short=ANY: If the result refers directly to a table column,
1866 ** then the result column name with the table name
1867 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
1869 static void generateColumnNames(
1870 Parse *pParse, /* Parser context */
1871 Select *pSelect /* Generate column names for this SELECT statement */
1873 Vdbe *v = pParse->pVdbe;
1874 int i;
1875 Table *pTab;
1876 SrcList *pTabList;
1877 ExprList *pEList;
1878 sqlite3 *db = pParse->db;
1879 int fullName; /* TABLE.COLUMN if no AS clause and is a direct table ref */
1880 int srcName; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1882 #ifndef SQLITE_OMIT_EXPLAIN
1883 /* If this is an EXPLAIN, skip this step */
1884 if( pParse->explain ){
1885 return;
1887 #endif
1889 if( pParse->colNamesSet ) return;
1890 /* Column names are determined by the left-most term of a compound select */
1891 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
1892 SELECTTRACE(1,pParse,pSelect,("generating column names\n"));
1893 pTabList = pSelect->pSrc;
1894 pEList = pSelect->pEList;
1895 assert( v!=0 );
1896 assert( pTabList!=0 );
1897 pParse->colNamesSet = 1;
1898 fullName = (db->flags & SQLITE_FullColNames)!=0;
1899 srcName = (db->flags & SQLITE_ShortColNames)!=0 || fullName;
1900 sqlite3VdbeSetNumCols(v, pEList->nExpr);
1901 for(i=0; i<pEList->nExpr; i++){
1902 Expr *p = pEList->a[i].pExpr;
1904 assert( p!=0 );
1905 assert( p->op!=TK_AGG_COLUMN ); /* Agg processing has not run yet */
1906 assert( p->op!=TK_COLUMN || p->y.pTab!=0 ); /* Covering idx not yet coded */
1907 if( pEList->a[i].zEName && pEList->a[i].eEName==ENAME_NAME ){
1908 /* An AS clause always takes first priority */
1909 char *zName = pEList->a[i].zEName;
1910 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_TRANSIENT);
1911 }else if( srcName && p->op==TK_COLUMN ){
1912 char *zCol;
1913 int iCol = p->iColumn;
1914 pTab = p->y.pTab;
1915 assert( pTab!=0 );
1916 if( iCol<0 ) iCol = pTab->iPKey;
1917 assert( iCol==-1 || (iCol>=0 && iCol<pTab->nCol) );
1918 if( iCol<0 ){
1919 zCol = "rowid";
1920 }else{
1921 zCol = pTab->aCol[iCol].zName;
1923 if( fullName ){
1924 char *zName = 0;
1925 zName = sqlite3MPrintf(db, "%s.%s", pTab->zName, zCol);
1926 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zName, SQLITE_DYNAMIC);
1927 }else{
1928 sqlite3VdbeSetColName(v, i, COLNAME_NAME, zCol, SQLITE_TRANSIENT);
1930 }else{
1931 const char *z = pEList->a[i].zEName;
1932 z = z==0 ? sqlite3MPrintf(db, "column%d", i+1) : sqlite3DbStrDup(db, z);
1933 sqlite3VdbeSetColName(v, i, COLNAME_NAME, z, SQLITE_DYNAMIC);
1936 generateColumnTypes(pParse, pTabList, pEList);
1940 ** Given an expression list (which is really the list of expressions
1941 ** that form the result set of a SELECT statement) compute appropriate
1942 ** column names for a table that would hold the expression list.
1944 ** All column names will be unique.
1946 ** Only the column names are computed. Column.zType, Column.zColl,
1947 ** and other fields of Column are zeroed.
1949 ** Return SQLITE_OK on success. If a memory allocation error occurs,
1950 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1952 ** The only guarantee that SQLite makes about column names is that if the
1953 ** column has an AS clause assigning it a name, that will be the name used.
1954 ** That is the only documented guarantee. However, countless applications
1955 ** developed over the years have made baseless assumptions about column names
1956 ** and will break if those assumptions changes. Hence, use extreme caution
1957 ** when modifying this routine to avoid breaking legacy.
1959 ** See Also: generateColumnNames()
1961 int sqlite3ColumnsFromExprList(
1962 Parse *pParse, /* Parsing context */
1963 ExprList *pEList, /* Expr list from which to derive column names */
1964 i16 *pnCol, /* Write the number of columns here */
1965 Column **paCol /* Write the new column list here */
1967 sqlite3 *db = pParse->db; /* Database connection */
1968 int i, j; /* Loop counters */
1969 u32 cnt; /* Index added to make the name unique */
1970 Column *aCol, *pCol; /* For looping over result columns */
1971 int nCol; /* Number of columns in the result set */
1972 char *zName; /* Column name */
1973 int nName; /* Size of name in zName[] */
1974 Hash ht; /* Hash table of column names */
1975 Table *pTab;
1977 sqlite3HashInit(&ht);
1978 if( pEList ){
1979 nCol = pEList->nExpr;
1980 aCol = sqlite3DbMallocZero(db, sizeof(aCol[0])*nCol);
1981 testcase( aCol==0 );
1982 if( nCol>32767 ) nCol = 32767;
1983 }else{
1984 nCol = 0;
1985 aCol = 0;
1987 assert( nCol==(i16)nCol );
1988 *pnCol = nCol;
1989 *paCol = aCol;
1991 for(i=0, pCol=aCol; i<nCol && !db->mallocFailed; i++, pCol++){
1992 /* Get an appropriate name for the column
1994 if( (zName = pEList->a[i].zEName)!=0 && pEList->a[i].eEName==ENAME_NAME ){
1995 /* If the column contains an "AS <name>" phrase, use <name> as the name */
1996 }else{
1997 Expr *pColExpr = sqlite3ExprSkipCollateAndLikely(pEList->a[i].pExpr);
1998 while( ALWAYS(pColExpr!=0) && pColExpr->op==TK_DOT ){
1999 pColExpr = pColExpr->pRight;
2000 assert( pColExpr!=0 );
2002 if( pColExpr->op==TK_COLUMN && (pTab = pColExpr->y.pTab)!=0 ){
2003 /* For columns use the column name name */
2004 int iCol = pColExpr->iColumn;
2005 if( iCol<0 ) iCol = pTab->iPKey;
2006 zName = iCol>=0 ? pTab->aCol[iCol].zName : "rowid";
2007 }else if( pColExpr->op==TK_ID ){
2008 assert( !ExprHasProperty(pColExpr, EP_IntValue) );
2009 zName = pColExpr->u.zToken;
2010 }else{
2011 /* Use the original text of the column expression as its name */
2012 zName = pEList->a[i].zEName;
2015 if( zName && !sqlite3IsTrueOrFalse(zName) ){
2016 zName = sqlite3DbStrDup(db, zName);
2017 }else{
2018 zName = sqlite3MPrintf(db,"column%d",i+1);
2021 /* Make sure the column name is unique. If the name is not unique,
2022 ** append an integer to the name so that it becomes unique.
2024 cnt = 0;
2025 while( zName && sqlite3HashFind(&ht, zName)!=0 ){
2026 nName = sqlite3Strlen30(zName);
2027 if( nName>0 ){
2028 for(j=nName-1; j>0 && sqlite3Isdigit(zName[j]); j--){}
2029 if( zName[j]==':' ) nName = j;
2031 zName = sqlite3MPrintf(db, "%.*z:%u", nName, zName, ++cnt);
2032 if( cnt>3 ) sqlite3_randomness(sizeof(cnt), &cnt);
2034 pCol->zName = zName;
2035 pCol->hName = sqlite3StrIHash(zName);
2036 sqlite3ColumnPropertiesFromName(0, pCol);
2037 if( zName && sqlite3HashInsert(&ht, zName, pCol)==pCol ){
2038 sqlite3OomFault(db);
2041 sqlite3HashClear(&ht);
2042 if( db->mallocFailed ){
2043 for(j=0; j<i; j++){
2044 sqlite3DbFree(db, aCol[j].zName);
2046 sqlite3DbFree(db, aCol);
2047 *paCol = 0;
2048 *pnCol = 0;
2049 return SQLITE_NOMEM_BKPT;
2051 return SQLITE_OK;
2055 ** Add type and collation information to a column list based on
2056 ** a SELECT statement.
2058 ** The column list presumably came from selectColumnNamesFromExprList().
2059 ** The column list has only names, not types or collations. This
2060 ** routine goes through and adds the types and collations.
2062 ** This routine requires that all identifiers in the SELECT
2063 ** statement be resolved.
2065 void sqlite3SelectAddColumnTypeAndCollation(
2066 Parse *pParse, /* Parsing contexts */
2067 Table *pTab, /* Add column type information to this table */
2068 Select *pSelect, /* SELECT used to determine types and collations */
2069 char aff /* Default affinity for columns */
2071 sqlite3 *db = pParse->db;
2072 NameContext sNC;
2073 Column *pCol;
2074 CollSeq *pColl;
2075 int i;
2076 Expr *p;
2077 struct ExprList_item *a;
2079 assert( pSelect!=0 );
2080 assert( (pSelect->selFlags & SF_Resolved)!=0 );
2081 assert( pTab->nCol==pSelect->pEList->nExpr || db->mallocFailed );
2082 if( db->mallocFailed ) return;
2083 memset(&sNC, 0, sizeof(sNC));
2084 sNC.pSrcList = pSelect->pSrc;
2085 a = pSelect->pEList->a;
2086 for(i=0, pCol=pTab->aCol; i<pTab->nCol; i++, pCol++){
2087 const char *zType;
2088 int n, m;
2089 p = a[i].pExpr;
2090 zType = columnType(&sNC, p, 0, 0, 0);
2091 /* pCol->szEst = ... // Column size est for SELECT tables never used */
2092 pCol->affinity = sqlite3ExprAffinity(p);
2093 if( zType ){
2094 m = sqlite3Strlen30(zType);
2095 n = sqlite3Strlen30(pCol->zName);
2096 pCol->zName = sqlite3DbReallocOrFree(db, pCol->zName, n+m+2);
2097 if( pCol->zName ){
2098 memcpy(&pCol->zName[n+1], zType, m+1);
2099 pCol->colFlags |= COLFLAG_HASTYPE;
2102 if( pCol->affinity<=SQLITE_AFF_NONE ) pCol->affinity = aff;
2103 pColl = sqlite3ExprCollSeq(pParse, p);
2104 if( pColl && pCol->zColl==0 ){
2105 pCol->zColl = sqlite3DbStrDup(db, pColl->zName);
2108 pTab->szTabRow = 1; /* Any non-zero value works */
2112 ** Given a SELECT statement, generate a Table structure that describes
2113 ** the result set of that SELECT.
2115 Table *sqlite3ResultSetOfSelect(Parse *pParse, Select *pSelect, char aff){
2116 Table *pTab;
2117 sqlite3 *db = pParse->db;
2118 u64 savedFlags;
2120 savedFlags = db->flags;
2121 db->flags &= ~(u64)SQLITE_FullColNames;
2122 db->flags |= SQLITE_ShortColNames;
2123 sqlite3SelectPrep(pParse, pSelect, 0);
2124 db->flags = savedFlags;
2125 if( pParse->nErr ) return 0;
2126 while( pSelect->pPrior ) pSelect = pSelect->pPrior;
2127 pTab = sqlite3DbMallocZero(db, sizeof(Table) );
2128 if( pTab==0 ){
2129 return 0;
2131 pTab->nTabRef = 1;
2132 pTab->zName = 0;
2133 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
2134 sqlite3ColumnsFromExprList(pParse, pSelect->pEList, &pTab->nCol, &pTab->aCol);
2135 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSelect, aff);
2136 pTab->iPKey = -1;
2137 if( db->mallocFailed ){
2138 sqlite3DeleteTable(db, pTab);
2139 return 0;
2141 return pTab;
2145 ** Get a VDBE for the given parser context. Create a new one if necessary.
2146 ** If an error occurs, return NULL and leave a message in pParse.
2148 Vdbe *sqlite3GetVdbe(Parse *pParse){
2149 if( pParse->pVdbe ){
2150 return pParse->pVdbe;
2152 if( pParse->pToplevel==0
2153 && OptimizationEnabled(pParse->db,SQLITE_FactorOutConst)
2155 pParse->okConstFactor = 1;
2157 return sqlite3VdbeCreate(pParse);
2162 ** Compute the iLimit and iOffset fields of the SELECT based on the
2163 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
2164 ** that appear in the original SQL statement after the LIMIT and OFFSET
2165 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
2166 ** are the integer memory register numbers for counters used to compute
2167 ** the limit and offset. If there is no limit and/or offset, then
2168 ** iLimit and iOffset are negative.
2170 ** This routine changes the values of iLimit and iOffset only if
2171 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
2172 ** and iOffset should have been preset to appropriate default values (zero)
2173 ** prior to calling this routine.
2175 ** The iOffset register (if it exists) is initialized to the value
2176 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
2177 ** iOffset+1 is initialized to LIMIT+OFFSET.
2179 ** Only if pLimit->pLeft!=0 do the limit registers get
2180 ** redefined. The UNION ALL operator uses this property to force
2181 ** the reuse of the same limit and offset registers across multiple
2182 ** SELECT statements.
2184 static void computeLimitRegisters(Parse *pParse, Select *p, int iBreak){
2185 Vdbe *v = 0;
2186 int iLimit = 0;
2187 int iOffset;
2188 int n;
2189 Expr *pLimit = p->pLimit;
2191 if( p->iLimit ) return;
2194 ** "LIMIT -1" always shows all rows. There is some
2195 ** controversy about what the correct behavior should be.
2196 ** The current implementation interprets "LIMIT 0" to mean
2197 ** no rows.
2199 if( pLimit ){
2200 assert( pLimit->op==TK_LIMIT );
2201 assert( pLimit->pLeft!=0 );
2202 p->iLimit = iLimit = ++pParse->nMem;
2203 v = sqlite3GetVdbe(pParse);
2204 assert( v!=0 );
2205 if( sqlite3ExprIsInteger(pLimit->pLeft, &n) ){
2206 sqlite3VdbeAddOp2(v, OP_Integer, n, iLimit);
2207 VdbeComment((v, "LIMIT counter"));
2208 if( n==0 ){
2209 sqlite3VdbeGoto(v, iBreak);
2210 }else if( n>=0 && p->nSelectRow>sqlite3LogEst((u64)n) ){
2211 p->nSelectRow = sqlite3LogEst((u64)n);
2212 p->selFlags |= SF_FixedLimit;
2214 }else{
2215 sqlite3ExprCode(pParse, pLimit->pLeft, iLimit);
2216 sqlite3VdbeAddOp1(v, OP_MustBeInt, iLimit); VdbeCoverage(v);
2217 VdbeComment((v, "LIMIT counter"));
2218 sqlite3VdbeAddOp2(v, OP_IfNot, iLimit, iBreak); VdbeCoverage(v);
2220 if( pLimit->pRight ){
2221 p->iOffset = iOffset = ++pParse->nMem;
2222 pParse->nMem++; /* Allocate an extra register for limit+offset */
2223 sqlite3ExprCode(pParse, pLimit->pRight, iOffset);
2224 sqlite3VdbeAddOp1(v, OP_MustBeInt, iOffset); VdbeCoverage(v);
2225 VdbeComment((v, "OFFSET counter"));
2226 sqlite3VdbeAddOp3(v, OP_OffsetLimit, iLimit, iOffset+1, iOffset);
2227 VdbeComment((v, "LIMIT+OFFSET"));
2232 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2234 ** Return the appropriate collating sequence for the iCol-th column of
2235 ** the result set for the compound-select statement "p". Return NULL if
2236 ** the column has no default collating sequence.
2238 ** The collating sequence for the compound select is taken from the
2239 ** left-most term of the select that has a collating sequence.
2241 static CollSeq *multiSelectCollSeq(Parse *pParse, Select *p, int iCol){
2242 CollSeq *pRet;
2243 if( p->pPrior ){
2244 pRet = multiSelectCollSeq(pParse, p->pPrior, iCol);
2245 }else{
2246 pRet = 0;
2248 assert( iCol>=0 );
2249 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
2250 ** have been thrown during name resolution and we would not have gotten
2251 ** this far */
2252 if( pRet==0 && ALWAYS(iCol<p->pEList->nExpr) ){
2253 pRet = sqlite3ExprCollSeq(pParse, p->pEList->a[iCol].pExpr);
2255 return pRet;
2259 ** The select statement passed as the second parameter is a compound SELECT
2260 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2261 ** structure suitable for implementing the ORDER BY.
2263 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2264 ** function is responsible for ensuring that this structure is eventually
2265 ** freed.
2267 static KeyInfo *multiSelectOrderByKeyInfo(Parse *pParse, Select *p, int nExtra){
2268 ExprList *pOrderBy = p->pOrderBy;
2269 int nOrderBy = p->pOrderBy->nExpr;
2270 sqlite3 *db = pParse->db;
2271 KeyInfo *pRet = sqlite3KeyInfoAlloc(db, nOrderBy+nExtra, 1);
2272 if( pRet ){
2273 int i;
2274 for(i=0; i<nOrderBy; i++){
2275 struct ExprList_item *pItem = &pOrderBy->a[i];
2276 Expr *pTerm = pItem->pExpr;
2277 CollSeq *pColl;
2279 if( pTerm->flags & EP_Collate ){
2280 pColl = sqlite3ExprCollSeq(pParse, pTerm);
2281 }else{
2282 pColl = multiSelectCollSeq(pParse, p, pItem->u.x.iOrderByCol-1);
2283 if( pColl==0 ) pColl = db->pDfltColl;
2284 pOrderBy->a[i].pExpr =
2285 sqlite3ExprAddCollateString(pParse, pTerm, pColl->zName);
2287 assert( sqlite3KeyInfoIsWriteable(pRet) );
2288 pRet->aColl[i] = pColl;
2289 pRet->aSortFlags[i] = pOrderBy->a[i].sortFlags;
2293 return pRet;
2296 #ifndef SQLITE_OMIT_CTE
2298 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2299 ** query of the form:
2301 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2302 ** \___________/ \_______________/
2303 ** p->pPrior p
2306 ** There is exactly one reference to the recursive-table in the FROM clause
2307 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2309 ** The setup-query runs once to generate an initial set of rows that go
2310 ** into a Queue table. Rows are extracted from the Queue table one by
2311 ** one. Each row extracted from Queue is output to pDest. Then the single
2312 ** extracted row (now in the iCurrent table) becomes the content of the
2313 ** recursive-table for a recursive-query run. The output of the recursive-query
2314 ** is added back into the Queue table. Then another row is extracted from Queue
2315 ** and the iteration continues until the Queue table is empty.
2317 ** If the compound query operator is UNION then no duplicate rows are ever
2318 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
2319 ** that have ever been inserted into Queue and causes duplicates to be
2320 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
2322 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2323 ** ORDER BY order and the first entry is extracted for each cycle. Without
2324 ** an ORDER BY, the Queue table is just a FIFO.
2326 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2327 ** have been output to pDest. A LIMIT of zero means to output no rows and a
2328 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
2329 ** with a positive value, then the first OFFSET outputs are discarded rather
2330 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
2331 ** rows have been skipped.
2333 static void generateWithRecursiveQuery(
2334 Parse *pParse, /* Parsing context */
2335 Select *p, /* The recursive SELECT to be coded */
2336 SelectDest *pDest /* What to do with query results */
2338 SrcList *pSrc = p->pSrc; /* The FROM clause of the recursive query */
2339 int nCol = p->pEList->nExpr; /* Number of columns in the recursive table */
2340 Vdbe *v = pParse->pVdbe; /* The prepared statement under construction */
2341 Select *pSetup = p->pPrior; /* The setup query */
2342 Select *pFirstRec; /* Left-most recursive term */
2343 int addrTop; /* Top of the loop */
2344 int addrCont, addrBreak; /* CONTINUE and BREAK addresses */
2345 int iCurrent = 0; /* The Current table */
2346 int regCurrent; /* Register holding Current table */
2347 int iQueue; /* The Queue table */
2348 int iDistinct = 0; /* To ensure unique results if UNION */
2349 int eDest = SRT_Fifo; /* How to write to Queue */
2350 SelectDest destQueue; /* SelectDest targetting the Queue table */
2351 int i; /* Loop counter */
2352 int rc; /* Result code */
2353 ExprList *pOrderBy; /* The ORDER BY clause */
2354 Expr *pLimit; /* Saved LIMIT and OFFSET */
2355 int regLimit, regOffset; /* Registers used by LIMIT and OFFSET */
2357 #ifndef SQLITE_OMIT_WINDOWFUNC
2358 if( p->pWin ){
2359 sqlite3ErrorMsg(pParse, "cannot use window functions in recursive queries");
2360 return;
2362 #endif
2364 /* Obtain authorization to do a recursive query */
2365 if( sqlite3AuthCheck(pParse, SQLITE_RECURSIVE, 0, 0, 0) ) return;
2367 /* Process the LIMIT and OFFSET clauses, if they exist */
2368 addrBreak = sqlite3VdbeMakeLabel(pParse);
2369 p->nSelectRow = 320; /* 4 billion rows */
2370 computeLimitRegisters(pParse, p, addrBreak);
2371 pLimit = p->pLimit;
2372 regLimit = p->iLimit;
2373 regOffset = p->iOffset;
2374 p->pLimit = 0;
2375 p->iLimit = p->iOffset = 0;
2376 pOrderBy = p->pOrderBy;
2378 /* Locate the cursor number of the Current table */
2379 for(i=0; ALWAYS(i<pSrc->nSrc); i++){
2380 if( pSrc->a[i].fg.isRecursive ){
2381 iCurrent = pSrc->a[i].iCursor;
2382 break;
2386 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2387 ** the Distinct table must be exactly one greater than Queue in order
2388 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2389 iQueue = pParse->nTab++;
2390 if( p->op==TK_UNION ){
2391 eDest = pOrderBy ? SRT_DistQueue : SRT_DistFifo;
2392 iDistinct = pParse->nTab++;
2393 }else{
2394 eDest = pOrderBy ? SRT_Queue : SRT_Fifo;
2396 sqlite3SelectDestInit(&destQueue, eDest, iQueue);
2398 /* Allocate cursors for Current, Queue, and Distinct. */
2399 regCurrent = ++pParse->nMem;
2400 sqlite3VdbeAddOp3(v, OP_OpenPseudo, iCurrent, regCurrent, nCol);
2401 if( pOrderBy ){
2402 KeyInfo *pKeyInfo = multiSelectOrderByKeyInfo(pParse, p, 1);
2403 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, iQueue, pOrderBy->nExpr+2, 0,
2404 (char*)pKeyInfo, P4_KEYINFO);
2405 destQueue.pOrderBy = pOrderBy;
2406 }else{
2407 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iQueue, nCol);
2409 VdbeComment((v, "Queue table"));
2410 if( iDistinct ){
2411 p->addrOpenEphm[0] = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, iDistinct, 0);
2412 p->selFlags |= SF_UsesEphemeral;
2415 /* Detach the ORDER BY clause from the compound SELECT */
2416 p->pOrderBy = 0;
2418 /* Figure out how many elements of the compound SELECT are part of the
2419 ** recursive query. Make sure no recursive elements use aggregate
2420 ** functions. Mark the recursive elements as UNION ALL even if they
2421 ** are really UNION because the distinctness will be enforced by the
2422 ** iDistinct table. pFirstRec is left pointing to the left-most
2423 ** recursive term of the CTE.
2425 pFirstRec = p;
2426 for(pFirstRec=p; ALWAYS(pFirstRec!=0); pFirstRec=pFirstRec->pPrior){
2427 if( pFirstRec->selFlags & SF_Aggregate ){
2428 sqlite3ErrorMsg(pParse, "recursive aggregate queries not supported");
2429 goto end_of_recursive_query;
2431 pFirstRec->op = TK_ALL;
2432 if( (pFirstRec->pPrior->selFlags & SF_Recursive)==0 ) break;
2435 /* Store the results of the setup-query in Queue. */
2436 pSetup = pFirstRec->pPrior;
2437 pSetup->pNext = 0;
2438 ExplainQueryPlan((pParse, 1, "SETUP"));
2439 rc = sqlite3Select(pParse, pSetup, &destQueue);
2440 pSetup->pNext = p;
2441 if( rc ) goto end_of_recursive_query;
2443 /* Find the next row in the Queue and output that row */
2444 addrTop = sqlite3VdbeAddOp2(v, OP_Rewind, iQueue, addrBreak); VdbeCoverage(v);
2446 /* Transfer the next row in Queue over to Current */
2447 sqlite3VdbeAddOp1(v, OP_NullRow, iCurrent); /* To reset column cache */
2448 if( pOrderBy ){
2449 sqlite3VdbeAddOp3(v, OP_Column, iQueue, pOrderBy->nExpr+1, regCurrent);
2450 }else{
2451 sqlite3VdbeAddOp2(v, OP_RowData, iQueue, regCurrent);
2453 sqlite3VdbeAddOp1(v, OP_Delete, iQueue);
2455 /* Output the single row in Current */
2456 addrCont = sqlite3VdbeMakeLabel(pParse);
2457 codeOffset(v, regOffset, addrCont);
2458 selectInnerLoop(pParse, p, iCurrent,
2459 0, 0, pDest, addrCont, addrBreak);
2460 if( regLimit ){
2461 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, regLimit, addrBreak);
2462 VdbeCoverage(v);
2464 sqlite3VdbeResolveLabel(v, addrCont);
2466 /* Execute the recursive SELECT taking the single row in Current as
2467 ** the value for the recursive-table. Store the results in the Queue.
2469 pFirstRec->pPrior = 0;
2470 ExplainQueryPlan((pParse, 1, "RECURSIVE STEP"));
2471 sqlite3Select(pParse, p, &destQueue);
2472 assert( pFirstRec->pPrior==0 );
2473 pFirstRec->pPrior = pSetup;
2475 /* Keep running the loop until the Queue is empty */
2476 sqlite3VdbeGoto(v, addrTop);
2477 sqlite3VdbeResolveLabel(v, addrBreak);
2479 end_of_recursive_query:
2480 sqlite3ExprListDelete(pParse->db, p->pOrderBy);
2481 p->pOrderBy = pOrderBy;
2482 p->pLimit = pLimit;
2483 return;
2485 #endif /* SQLITE_OMIT_CTE */
2487 /* Forward references */
2488 static int multiSelectOrderBy(
2489 Parse *pParse, /* Parsing context */
2490 Select *p, /* The right-most of SELECTs to be coded */
2491 SelectDest *pDest /* What to do with query results */
2495 ** Handle the special case of a compound-select that originates from a
2496 ** VALUES clause. By handling this as a special case, we avoid deep
2497 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2498 ** on a VALUES clause.
2500 ** Because the Select object originates from a VALUES clause:
2501 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2502 ** (2) All terms are UNION ALL
2503 ** (3) There is no ORDER BY clause
2505 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2506 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2507 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2508 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2510 static int multiSelectValues(
2511 Parse *pParse, /* Parsing context */
2512 Select *p, /* The right-most of SELECTs to be coded */
2513 SelectDest *pDest /* What to do with query results */
2515 int nRow = 1;
2516 int rc = 0;
2517 int bShowAll = p->pLimit==0;
2518 assert( p->selFlags & SF_MultiValue );
2520 assert( p->selFlags & SF_Values );
2521 assert( p->op==TK_ALL || (p->op==TK_SELECT && p->pPrior==0) );
2522 assert( p->pNext==0 || p->pEList->nExpr==p->pNext->pEList->nExpr );
2523 #ifndef SQLITE_OMIT_WINDOWFUNC
2524 if( p->pWin ) return -1;
2525 #endif
2526 if( p->pPrior==0 ) break;
2527 assert( p->pPrior->pNext==p );
2528 p = p->pPrior;
2529 nRow += bShowAll;
2530 }while(1);
2531 ExplainQueryPlan((pParse, 0, "SCAN %d CONSTANT ROW%s", nRow,
2532 nRow==1 ? "" : "S"));
2533 while( p ){
2534 selectInnerLoop(pParse, p, -1, 0, 0, pDest, 1, 1);
2535 if( !bShowAll ) break;
2536 p->nSelectRow = nRow;
2537 p = p->pNext;
2539 return rc;
2543 ** Return true if the SELECT statement which is known to be the recursive
2544 ** part of a recursive CTE still has its anchor terms attached. If the
2545 ** anchor terms have already been removed, then return false.
2547 static int hasAnchor(Select *p){
2548 while( p && (p->selFlags & SF_Recursive)!=0 ){ p = p->pPrior; }
2549 return p!=0;
2553 ** This routine is called to process a compound query form from
2554 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2555 ** INTERSECT
2557 ** "p" points to the right-most of the two queries. the query on the
2558 ** left is p->pPrior. The left query could also be a compound query
2559 ** in which case this routine will be called recursively.
2561 ** The results of the total query are to be written into a destination
2562 ** of type eDest with parameter iParm.
2564 ** Example 1: Consider a three-way compound SQL statement.
2566 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2568 ** This statement is parsed up as follows:
2570 ** SELECT c FROM t3
2571 ** |
2572 ** `-----> SELECT b FROM t2
2573 ** |
2574 ** `------> SELECT a FROM t1
2576 ** The arrows in the diagram above represent the Select.pPrior pointer.
2577 ** So if this routine is called with p equal to the t3 query, then
2578 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2580 ** Notice that because of the way SQLite parses compound SELECTs, the
2581 ** individual selects always group from left to right.
2583 static int multiSelect(
2584 Parse *pParse, /* Parsing context */
2585 Select *p, /* The right-most of SELECTs to be coded */
2586 SelectDest *pDest /* What to do with query results */
2588 int rc = SQLITE_OK; /* Success code from a subroutine */
2589 Select *pPrior; /* Another SELECT immediately to our left */
2590 Vdbe *v; /* Generate code to this VDBE */
2591 SelectDest dest; /* Alternative data destination */
2592 Select *pDelete = 0; /* Chain of simple selects to delete */
2593 sqlite3 *db; /* Database connection */
2595 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2596 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2598 assert( p && p->pPrior ); /* Calling function guarantees this much */
2599 assert( (p->selFlags & SF_Recursive)==0 || p->op==TK_ALL || p->op==TK_UNION );
2600 assert( p->selFlags & SF_Compound );
2601 db = pParse->db;
2602 pPrior = p->pPrior;
2603 dest = *pDest;
2604 if( pPrior->pOrderBy || pPrior->pLimit ){
2605 sqlite3ErrorMsg(pParse,"%s clause should come after %s not before",
2606 pPrior->pOrderBy!=0 ? "ORDER BY" : "LIMIT", selectOpName(p->op));
2607 rc = 1;
2608 goto multi_select_end;
2611 v = sqlite3GetVdbe(pParse);
2612 assert( v!=0 ); /* The VDBE already created by calling function */
2614 /* Create the destination temporary table if necessary
2616 if( dest.eDest==SRT_EphemTab ){
2617 assert( p->pEList );
2618 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, dest.iSDParm, p->pEList->nExpr);
2619 dest.eDest = SRT_Table;
2622 /* Special handling for a compound-select that originates as a VALUES clause.
2624 if( p->selFlags & SF_MultiValue ){
2625 rc = multiSelectValues(pParse, p, &dest);
2626 if( rc>=0 ) goto multi_select_end;
2627 rc = SQLITE_OK;
2630 /* Make sure all SELECTs in the statement have the same number of elements
2631 ** in their result sets.
2633 assert( p->pEList && pPrior->pEList );
2634 assert( p->pEList->nExpr==pPrior->pEList->nExpr );
2636 #ifndef SQLITE_OMIT_CTE
2637 if( (p->selFlags & SF_Recursive)!=0 && hasAnchor(p) ){
2638 generateWithRecursiveQuery(pParse, p, &dest);
2639 }else
2640 #endif
2642 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2644 if( p->pOrderBy ){
2645 return multiSelectOrderBy(pParse, p, pDest);
2646 }else{
2648 #ifndef SQLITE_OMIT_EXPLAIN
2649 if( pPrior->pPrior==0 ){
2650 ExplainQueryPlan((pParse, 1, "COMPOUND QUERY"));
2651 ExplainQueryPlan((pParse, 1, "LEFT-MOST SUBQUERY"));
2653 #endif
2655 /* Generate code for the left and right SELECT statements.
2657 switch( p->op ){
2658 case TK_ALL: {
2659 int addr = 0;
2660 int nLimit;
2661 assert( !pPrior->pLimit );
2662 pPrior->iLimit = p->iLimit;
2663 pPrior->iOffset = p->iOffset;
2664 pPrior->pLimit = p->pLimit;
2665 rc = sqlite3Select(pParse, pPrior, &dest);
2666 p->pLimit = 0;
2667 if( rc ){
2668 goto multi_select_end;
2670 p->pPrior = 0;
2671 p->iLimit = pPrior->iLimit;
2672 p->iOffset = pPrior->iOffset;
2673 if( p->iLimit ){
2674 addr = sqlite3VdbeAddOp1(v, OP_IfNot, p->iLimit); VdbeCoverage(v);
2675 VdbeComment((v, "Jump ahead if LIMIT reached"));
2676 if( p->iOffset ){
2677 sqlite3VdbeAddOp3(v, OP_OffsetLimit,
2678 p->iLimit, p->iOffset+1, p->iOffset);
2681 ExplainQueryPlan((pParse, 1, "UNION ALL"));
2682 rc = sqlite3Select(pParse, p, &dest);
2683 testcase( rc!=SQLITE_OK );
2684 pDelete = p->pPrior;
2685 p->pPrior = pPrior;
2686 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2687 if( pPrior->pLimit
2688 && sqlite3ExprIsInteger(pPrior->pLimit->pLeft, &nLimit)
2689 && nLimit>0 && p->nSelectRow > sqlite3LogEst((u64)nLimit)
2691 p->nSelectRow = sqlite3LogEst((u64)nLimit);
2693 if( addr ){
2694 sqlite3VdbeJumpHere(v, addr);
2696 break;
2698 case TK_EXCEPT:
2699 case TK_UNION: {
2700 int unionTab; /* Cursor number of the temp table holding result */
2701 u8 op = 0; /* One of the SRT_ operations to apply to self */
2702 int priorOp; /* The SRT_ operation to apply to prior selects */
2703 Expr *pLimit; /* Saved values of p->nLimit */
2704 int addr;
2705 SelectDest uniondest;
2707 testcase( p->op==TK_EXCEPT );
2708 testcase( p->op==TK_UNION );
2709 priorOp = SRT_Union;
2710 if( dest.eDest==priorOp ){
2711 /* We can reuse a temporary table generated by a SELECT to our
2712 ** right.
2714 assert( p->pLimit==0 ); /* Not allowed on leftward elements */
2715 unionTab = dest.iSDParm;
2716 }else{
2717 /* We will need to create our own temporary table to hold the
2718 ** intermediate results.
2720 unionTab = pParse->nTab++;
2721 assert( p->pOrderBy==0 );
2722 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, unionTab, 0);
2723 assert( p->addrOpenEphm[0] == -1 );
2724 p->addrOpenEphm[0] = addr;
2725 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2726 assert( p->pEList );
2730 /* Code the SELECT statements to our left
2732 assert( !pPrior->pOrderBy );
2733 sqlite3SelectDestInit(&uniondest, priorOp, unionTab);
2734 rc = sqlite3Select(pParse, pPrior, &uniondest);
2735 if( rc ){
2736 goto multi_select_end;
2739 /* Code the current SELECT statement
2741 if( p->op==TK_EXCEPT ){
2742 op = SRT_Except;
2743 }else{
2744 assert( p->op==TK_UNION );
2745 op = SRT_Union;
2747 p->pPrior = 0;
2748 pLimit = p->pLimit;
2749 p->pLimit = 0;
2750 uniondest.eDest = op;
2751 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2752 selectOpName(p->op)));
2753 rc = sqlite3Select(pParse, p, &uniondest);
2754 testcase( rc!=SQLITE_OK );
2755 assert( p->pOrderBy==0 );
2756 pDelete = p->pPrior;
2757 p->pPrior = pPrior;
2758 p->pOrderBy = 0;
2759 if( p->op==TK_UNION ){
2760 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
2762 sqlite3ExprDelete(db, p->pLimit);
2763 p->pLimit = pLimit;
2764 p->iLimit = 0;
2765 p->iOffset = 0;
2767 /* Convert the data in the temporary table into whatever form
2768 ** it is that we currently need.
2770 assert( unionTab==dest.iSDParm || dest.eDest!=priorOp );
2771 assert( p->pEList || db->mallocFailed );
2772 if( dest.eDest!=priorOp && db->mallocFailed==0 ){
2773 int iCont, iBreak, iStart;
2774 iBreak = sqlite3VdbeMakeLabel(pParse);
2775 iCont = sqlite3VdbeMakeLabel(pParse);
2776 computeLimitRegisters(pParse, p, iBreak);
2777 sqlite3VdbeAddOp2(v, OP_Rewind, unionTab, iBreak); VdbeCoverage(v);
2778 iStart = sqlite3VdbeCurrentAddr(v);
2779 selectInnerLoop(pParse, p, unionTab,
2780 0, 0, &dest, iCont, iBreak);
2781 sqlite3VdbeResolveLabel(v, iCont);
2782 sqlite3VdbeAddOp2(v, OP_Next, unionTab, iStart); VdbeCoverage(v);
2783 sqlite3VdbeResolveLabel(v, iBreak);
2784 sqlite3VdbeAddOp2(v, OP_Close, unionTab, 0);
2786 break;
2788 default: assert( p->op==TK_INTERSECT ); {
2789 int tab1, tab2;
2790 int iCont, iBreak, iStart;
2791 Expr *pLimit;
2792 int addr;
2793 SelectDest intersectdest;
2794 int r1;
2796 /* INTERSECT is different from the others since it requires
2797 ** two temporary tables. Hence it has its own case. Begin
2798 ** by allocating the tables we will need.
2800 tab1 = pParse->nTab++;
2801 tab2 = pParse->nTab++;
2802 assert( p->pOrderBy==0 );
2804 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab1, 0);
2805 assert( p->addrOpenEphm[0] == -1 );
2806 p->addrOpenEphm[0] = addr;
2807 findRightmost(p)->selFlags |= SF_UsesEphemeral;
2808 assert( p->pEList );
2810 /* Code the SELECTs to our left into temporary table "tab1".
2812 sqlite3SelectDestInit(&intersectdest, SRT_Union, tab1);
2813 rc = sqlite3Select(pParse, pPrior, &intersectdest);
2814 if( rc ){
2815 goto multi_select_end;
2818 /* Code the current SELECT into temporary table "tab2"
2820 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, tab2, 0);
2821 assert( p->addrOpenEphm[1] == -1 );
2822 p->addrOpenEphm[1] = addr;
2823 p->pPrior = 0;
2824 pLimit = p->pLimit;
2825 p->pLimit = 0;
2826 intersectdest.iSDParm = tab2;
2827 ExplainQueryPlan((pParse, 1, "%s USING TEMP B-TREE",
2828 selectOpName(p->op)));
2829 rc = sqlite3Select(pParse, p, &intersectdest);
2830 testcase( rc!=SQLITE_OK );
2831 pDelete = p->pPrior;
2832 p->pPrior = pPrior;
2833 if( p->nSelectRow>pPrior->nSelectRow ){
2834 p->nSelectRow = pPrior->nSelectRow;
2836 sqlite3ExprDelete(db, p->pLimit);
2837 p->pLimit = pLimit;
2839 /* Generate code to take the intersection of the two temporary
2840 ** tables.
2842 if( rc ) break;
2843 assert( p->pEList );
2844 iBreak = sqlite3VdbeMakeLabel(pParse);
2845 iCont = sqlite3VdbeMakeLabel(pParse);
2846 computeLimitRegisters(pParse, p, iBreak);
2847 sqlite3VdbeAddOp2(v, OP_Rewind, tab1, iBreak); VdbeCoverage(v);
2848 r1 = sqlite3GetTempReg(pParse);
2849 iStart = sqlite3VdbeAddOp2(v, OP_RowData, tab1, r1);
2850 sqlite3VdbeAddOp4Int(v, OP_NotFound, tab2, iCont, r1, 0);
2851 VdbeCoverage(v);
2852 sqlite3ReleaseTempReg(pParse, r1);
2853 selectInnerLoop(pParse, p, tab1,
2854 0, 0, &dest, iCont, iBreak);
2855 sqlite3VdbeResolveLabel(v, iCont);
2856 sqlite3VdbeAddOp2(v, OP_Next, tab1, iStart); VdbeCoverage(v);
2857 sqlite3VdbeResolveLabel(v, iBreak);
2858 sqlite3VdbeAddOp2(v, OP_Close, tab2, 0);
2859 sqlite3VdbeAddOp2(v, OP_Close, tab1, 0);
2860 break;
2864 #ifndef SQLITE_OMIT_EXPLAIN
2865 if( p->pNext==0 ){
2866 ExplainQueryPlanPop(pParse);
2868 #endif
2870 if( pParse->nErr ) goto multi_select_end;
2872 /* Compute collating sequences used by
2873 ** temporary tables needed to implement the compound select.
2874 ** Attach the KeyInfo structure to all temporary tables.
2876 ** This section is run by the right-most SELECT statement only.
2877 ** SELECT statements to the left always skip this part. The right-most
2878 ** SELECT might also skip this part if it has no ORDER BY clause and
2879 ** no temp tables are required.
2881 if( p->selFlags & SF_UsesEphemeral ){
2882 int i; /* Loop counter */
2883 KeyInfo *pKeyInfo; /* Collating sequence for the result set */
2884 Select *pLoop; /* For looping through SELECT statements */
2885 CollSeq **apColl; /* For looping through pKeyInfo->aColl[] */
2886 int nCol; /* Number of columns in result set */
2888 assert( p->pNext==0 );
2889 nCol = p->pEList->nExpr;
2890 pKeyInfo = sqlite3KeyInfoAlloc(db, nCol, 1);
2891 if( !pKeyInfo ){
2892 rc = SQLITE_NOMEM_BKPT;
2893 goto multi_select_end;
2895 for(i=0, apColl=pKeyInfo->aColl; i<nCol; i++, apColl++){
2896 *apColl = multiSelectCollSeq(pParse, p, i);
2897 if( 0==*apColl ){
2898 *apColl = db->pDfltColl;
2902 for(pLoop=p; pLoop; pLoop=pLoop->pPrior){
2903 for(i=0; i<2; i++){
2904 int addr = pLoop->addrOpenEphm[i];
2905 if( addr<0 ){
2906 /* If [0] is unused then [1] is also unused. So we can
2907 ** always safely abort as soon as the first unused slot is found */
2908 assert( pLoop->addrOpenEphm[1]<0 );
2909 break;
2911 sqlite3VdbeChangeP2(v, addr, nCol);
2912 sqlite3VdbeChangeP4(v, addr, (char*)sqlite3KeyInfoRef(pKeyInfo),
2913 P4_KEYINFO);
2914 pLoop->addrOpenEphm[i] = -1;
2917 sqlite3KeyInfoUnref(pKeyInfo);
2920 multi_select_end:
2921 pDest->iSdst = dest.iSdst;
2922 pDest->nSdst = dest.nSdst;
2923 sqlite3SelectDelete(db, pDelete);
2924 return rc;
2926 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2929 ** Error message for when two or more terms of a compound select have different
2930 ** size result sets.
2932 void sqlite3SelectWrongNumTermsError(Parse *pParse, Select *p){
2933 if( p->selFlags & SF_Values ){
2934 sqlite3ErrorMsg(pParse, "all VALUES must have the same number of terms");
2935 }else{
2936 sqlite3ErrorMsg(pParse, "SELECTs to the left and right of %s"
2937 " do not have the same number of result columns", selectOpName(p->op));
2942 ** Code an output subroutine for a coroutine implementation of a
2943 ** SELECT statment.
2945 ** The data to be output is contained in pIn->iSdst. There are
2946 ** pIn->nSdst columns to be output. pDest is where the output should
2947 ** be sent.
2949 ** regReturn is the number of the register holding the subroutine
2950 ** return address.
2952 ** If regPrev>0 then it is the first register in a vector that
2953 ** records the previous output. mem[regPrev] is a flag that is false
2954 ** if there has been no previous output. If regPrev>0 then code is
2955 ** generated to suppress duplicates. pKeyInfo is used for comparing
2956 ** keys.
2958 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2959 ** iBreak.
2961 static int generateOutputSubroutine(
2962 Parse *pParse, /* Parsing context */
2963 Select *p, /* The SELECT statement */
2964 SelectDest *pIn, /* Coroutine supplying data */
2965 SelectDest *pDest, /* Where to send the data */
2966 int regReturn, /* The return address register */
2967 int regPrev, /* Previous result register. No uniqueness if 0 */
2968 KeyInfo *pKeyInfo, /* For comparing with previous entry */
2969 int iBreak /* Jump here if we hit the LIMIT */
2971 Vdbe *v = pParse->pVdbe;
2972 int iContinue;
2973 int addr;
2975 addr = sqlite3VdbeCurrentAddr(v);
2976 iContinue = sqlite3VdbeMakeLabel(pParse);
2978 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2980 if( regPrev ){
2981 int addr1, addr2;
2982 addr1 = sqlite3VdbeAddOp1(v, OP_IfNot, regPrev); VdbeCoverage(v);
2983 addr2 = sqlite3VdbeAddOp4(v, OP_Compare, pIn->iSdst, regPrev+1, pIn->nSdst,
2984 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
2985 sqlite3VdbeAddOp3(v, OP_Jump, addr2+2, iContinue, addr2+2); VdbeCoverage(v);
2986 sqlite3VdbeJumpHere(v, addr1);
2987 sqlite3VdbeAddOp3(v, OP_Copy, pIn->iSdst, regPrev+1, pIn->nSdst-1);
2988 sqlite3VdbeAddOp2(v, OP_Integer, 1, regPrev);
2990 if( pParse->db->mallocFailed ) return 0;
2992 /* Suppress the first OFFSET entries if there is an OFFSET clause
2994 codeOffset(v, p->iOffset, iContinue);
2996 assert( pDest->eDest!=SRT_Exists );
2997 assert( pDest->eDest!=SRT_Table );
2998 switch( pDest->eDest ){
2999 /* Store the result as data using a unique key.
3001 case SRT_EphemTab: {
3002 int r1 = sqlite3GetTempReg(pParse);
3003 int r2 = sqlite3GetTempReg(pParse);
3004 sqlite3VdbeAddOp3(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst, r1);
3005 sqlite3VdbeAddOp2(v, OP_NewRowid, pDest->iSDParm, r2);
3006 sqlite3VdbeAddOp3(v, OP_Insert, pDest->iSDParm, r1, r2);
3007 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
3008 sqlite3ReleaseTempReg(pParse, r2);
3009 sqlite3ReleaseTempReg(pParse, r1);
3010 break;
3013 #ifndef SQLITE_OMIT_SUBQUERY
3014 /* If we are creating a set for an "expr IN (SELECT ...)".
3016 case SRT_Set: {
3017 int r1;
3018 testcase( pIn->nSdst>1 );
3019 r1 = sqlite3GetTempReg(pParse);
3020 sqlite3VdbeAddOp4(v, OP_MakeRecord, pIn->iSdst, pIn->nSdst,
3021 r1, pDest->zAffSdst, pIn->nSdst);
3022 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pDest->iSDParm, r1,
3023 pIn->iSdst, pIn->nSdst);
3024 sqlite3ReleaseTempReg(pParse, r1);
3025 break;
3028 /* If this is a scalar select that is part of an expression, then
3029 ** store the results in the appropriate memory cell and break out
3030 ** of the scan loop. Note that the select might return multiple columns
3031 ** if it is the RHS of a row-value IN operator.
3033 case SRT_Mem: {
3034 if( pParse->nErr==0 ){
3035 testcase( pIn->nSdst>1 );
3036 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSDParm, pIn->nSdst);
3038 /* The LIMIT clause will jump out of the loop for us */
3039 break;
3041 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3043 /* The results are stored in a sequence of registers
3044 ** starting at pDest->iSdst. Then the co-routine yields.
3046 case SRT_Coroutine: {
3047 if( pDest->iSdst==0 ){
3048 pDest->iSdst = sqlite3GetTempRange(pParse, pIn->nSdst);
3049 pDest->nSdst = pIn->nSdst;
3051 sqlite3ExprCodeMove(pParse, pIn->iSdst, pDest->iSdst, pIn->nSdst);
3052 sqlite3VdbeAddOp1(v, OP_Yield, pDest->iSDParm);
3053 break;
3056 /* If none of the above, then the result destination must be
3057 ** SRT_Output. This routine is never called with any other
3058 ** destination other than the ones handled above or SRT_Output.
3060 ** For SRT_Output, results are stored in a sequence of registers.
3061 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3062 ** return the next row of result.
3064 default: {
3065 assert( pDest->eDest==SRT_Output );
3066 sqlite3VdbeAddOp2(v, OP_ResultRow, pIn->iSdst, pIn->nSdst);
3067 break;
3071 /* Jump to the end of the loop if the LIMIT is reached.
3073 if( p->iLimit ){
3074 sqlite3VdbeAddOp2(v, OP_DecrJumpZero, p->iLimit, iBreak); VdbeCoverage(v);
3077 /* Generate the subroutine return
3079 sqlite3VdbeResolveLabel(v, iContinue);
3080 sqlite3VdbeAddOp1(v, OP_Return, regReturn);
3082 return addr;
3086 ** Alternative compound select code generator for cases when there
3087 ** is an ORDER BY clause.
3089 ** We assume a query of the following form:
3091 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
3093 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
3094 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3095 ** co-routines. Then run the co-routines in parallel and merge the results
3096 ** into the output. In addition to the two coroutines (called selectA and
3097 ** selectB) there are 7 subroutines:
3099 ** outA: Move the output of the selectA coroutine into the output
3100 ** of the compound query.
3102 ** outB: Move the output of the selectB coroutine into the output
3103 ** of the compound query. (Only generated for UNION and
3104 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
3105 ** appears only in B.)
3107 ** AltB: Called when there is data from both coroutines and A<B.
3109 ** AeqB: Called when there is data from both coroutines and A==B.
3111 ** AgtB: Called when there is data from both coroutines and A>B.
3113 ** EofA: Called when data is exhausted from selectA.
3115 ** EofB: Called when data is exhausted from selectB.
3117 ** The implementation of the latter five subroutines depend on which
3118 ** <operator> is used:
3121 ** UNION ALL UNION EXCEPT INTERSECT
3122 ** ------------- ----------------- -------------- -----------------
3123 ** AltB: outA, nextA outA, nextA outA, nextA nextA
3125 ** AeqB: outA, nextA nextA nextA outA, nextA
3127 ** AgtB: outB, nextB outB, nextB nextB nextB
3129 ** EofA: outB, nextB outB, nextB halt halt
3131 ** EofB: outA, nextA outA, nextA outA, nextA halt
3133 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3134 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3135 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
3136 ** following nextX causes a jump to the end of the select processing.
3138 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3139 ** within the output subroutine. The regPrev register set holds the previously
3140 ** output value. A comparison is made against this value and the output
3141 ** is skipped if the next results would be the same as the previous.
3143 ** The implementation plan is to implement the two coroutines and seven
3144 ** subroutines first, then put the control logic at the bottom. Like this:
3146 ** goto Init
3147 ** coA: coroutine for left query (A)
3148 ** coB: coroutine for right query (B)
3149 ** outA: output one row of A
3150 ** outB: output one row of B (UNION and UNION ALL only)
3151 ** EofA: ...
3152 ** EofB: ...
3153 ** AltB: ...
3154 ** AeqB: ...
3155 ** AgtB: ...
3156 ** Init: initialize coroutine registers
3157 ** yield coA
3158 ** if eof(A) goto EofA
3159 ** yield coB
3160 ** if eof(B) goto EofB
3161 ** Cmpr: Compare A, B
3162 ** Jump AltB, AeqB, AgtB
3163 ** End: ...
3165 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3166 ** actually called using Gosub and they do not Return. EofA and EofB loop
3167 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
3168 ** and AgtB jump to either L2 or to one of EofA or EofB.
3170 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3171 static int multiSelectOrderBy(
3172 Parse *pParse, /* Parsing context */
3173 Select *p, /* The right-most of SELECTs to be coded */
3174 SelectDest *pDest /* What to do with query results */
3176 int i, j; /* Loop counters */
3177 Select *pPrior; /* Another SELECT immediately to our left */
3178 Vdbe *v; /* Generate code to this VDBE */
3179 SelectDest destA; /* Destination for coroutine A */
3180 SelectDest destB; /* Destination for coroutine B */
3181 int regAddrA; /* Address register for select-A coroutine */
3182 int regAddrB; /* Address register for select-B coroutine */
3183 int addrSelectA; /* Address of the select-A coroutine */
3184 int addrSelectB; /* Address of the select-B coroutine */
3185 int regOutA; /* Address register for the output-A subroutine */
3186 int regOutB; /* Address register for the output-B subroutine */
3187 int addrOutA; /* Address of the output-A subroutine */
3188 int addrOutB = 0; /* Address of the output-B subroutine */
3189 int addrEofA; /* Address of the select-A-exhausted subroutine */
3190 int addrEofA_noB; /* Alternate addrEofA if B is uninitialized */
3191 int addrEofB; /* Address of the select-B-exhausted subroutine */
3192 int addrAltB; /* Address of the A<B subroutine */
3193 int addrAeqB; /* Address of the A==B subroutine */
3194 int addrAgtB; /* Address of the A>B subroutine */
3195 int regLimitA; /* Limit register for select-A */
3196 int regLimitB; /* Limit register for select-A */
3197 int regPrev; /* A range of registers to hold previous output */
3198 int savedLimit; /* Saved value of p->iLimit */
3199 int savedOffset; /* Saved value of p->iOffset */
3200 int labelCmpr; /* Label for the start of the merge algorithm */
3201 int labelEnd; /* Label for the end of the overall SELECT stmt */
3202 int addr1; /* Jump instructions that get retargetted */
3203 int op; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3204 KeyInfo *pKeyDup = 0; /* Comparison information for duplicate removal */
3205 KeyInfo *pKeyMerge; /* Comparison information for merging rows */
3206 sqlite3 *db; /* Database connection */
3207 ExprList *pOrderBy; /* The ORDER BY clause */
3208 int nOrderBy; /* Number of terms in the ORDER BY clause */
3209 u32 *aPermute; /* Mapping from ORDER BY terms to result set columns */
3211 assert( p->pOrderBy!=0 );
3212 assert( pKeyDup==0 ); /* "Managed" code needs this. Ticket #3382. */
3213 db = pParse->db;
3214 v = pParse->pVdbe;
3215 assert( v!=0 ); /* Already thrown the error if VDBE alloc failed */
3216 labelEnd = sqlite3VdbeMakeLabel(pParse);
3217 labelCmpr = sqlite3VdbeMakeLabel(pParse);
3220 /* Patch up the ORDER BY clause
3222 op = p->op;
3223 pPrior = p->pPrior;
3224 assert( pPrior->pOrderBy==0 );
3225 pOrderBy = p->pOrderBy;
3226 assert( pOrderBy );
3227 nOrderBy = pOrderBy->nExpr;
3229 /* For operators other than UNION ALL we have to make sure that
3230 ** the ORDER BY clause covers every term of the result set. Add
3231 ** terms to the ORDER BY clause as necessary.
3233 if( op!=TK_ALL ){
3234 for(i=1; db->mallocFailed==0 && i<=p->pEList->nExpr; i++){
3235 struct ExprList_item *pItem;
3236 for(j=0, pItem=pOrderBy->a; j<nOrderBy; j++, pItem++){
3237 assert( pItem->u.x.iOrderByCol>0 );
3238 if( pItem->u.x.iOrderByCol==i ) break;
3240 if( j==nOrderBy ){
3241 Expr *pNew = sqlite3Expr(db, TK_INTEGER, 0);
3242 if( pNew==0 ) return SQLITE_NOMEM_BKPT;
3243 pNew->flags |= EP_IntValue;
3244 pNew->u.iValue = i;
3245 p->pOrderBy = pOrderBy = sqlite3ExprListAppend(pParse, pOrderBy, pNew);
3246 if( pOrderBy ) pOrderBy->a[nOrderBy++].u.x.iOrderByCol = (u16)i;
3251 /* Compute the comparison permutation and keyinfo that is used with
3252 ** the permutation used to determine if the next
3253 ** row of results comes from selectA or selectB. Also add explicit
3254 ** collations to the ORDER BY clause terms so that when the subqueries
3255 ** to the right and the left are evaluated, they use the correct
3256 ** collation.
3258 aPermute = sqlite3DbMallocRawNN(db, sizeof(u32)*(nOrderBy + 1));
3259 if( aPermute ){
3260 struct ExprList_item *pItem;
3261 aPermute[0] = nOrderBy;
3262 for(i=1, pItem=pOrderBy->a; i<=nOrderBy; i++, pItem++){
3263 assert( pItem->u.x.iOrderByCol>0 );
3264 assert( pItem->u.x.iOrderByCol<=p->pEList->nExpr );
3265 aPermute[i] = pItem->u.x.iOrderByCol - 1;
3267 pKeyMerge = multiSelectOrderByKeyInfo(pParse, p, 1);
3268 }else{
3269 pKeyMerge = 0;
3272 /* Reattach the ORDER BY clause to the query.
3274 p->pOrderBy = pOrderBy;
3275 pPrior->pOrderBy = sqlite3ExprListDup(pParse->db, pOrderBy, 0);
3277 /* Allocate a range of temporary registers and the KeyInfo needed
3278 ** for the logic that removes duplicate result rows when the
3279 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3281 if( op==TK_ALL ){
3282 regPrev = 0;
3283 }else{
3284 int nExpr = p->pEList->nExpr;
3285 assert( nOrderBy>=nExpr || db->mallocFailed );
3286 regPrev = pParse->nMem+1;
3287 pParse->nMem += nExpr+1;
3288 sqlite3VdbeAddOp2(v, OP_Integer, 0, regPrev);
3289 pKeyDup = sqlite3KeyInfoAlloc(db, nExpr, 1);
3290 if( pKeyDup ){
3291 assert( sqlite3KeyInfoIsWriteable(pKeyDup) );
3292 for(i=0; i<nExpr; i++){
3293 pKeyDup->aColl[i] = multiSelectCollSeq(pParse, p, i);
3294 pKeyDup->aSortFlags[i] = 0;
3299 /* Separate the left and the right query from one another
3301 p->pPrior = 0;
3302 pPrior->pNext = 0;
3303 sqlite3ResolveOrderGroupBy(pParse, p, p->pOrderBy, "ORDER");
3304 if( pPrior->pPrior==0 ){
3305 sqlite3ResolveOrderGroupBy(pParse, pPrior, pPrior->pOrderBy, "ORDER");
3308 /* Compute the limit registers */
3309 computeLimitRegisters(pParse, p, labelEnd);
3310 if( p->iLimit && op==TK_ALL ){
3311 regLimitA = ++pParse->nMem;
3312 regLimitB = ++pParse->nMem;
3313 sqlite3VdbeAddOp2(v, OP_Copy, p->iOffset ? p->iOffset+1 : p->iLimit,
3314 regLimitA);
3315 sqlite3VdbeAddOp2(v, OP_Copy, regLimitA, regLimitB);
3316 }else{
3317 regLimitA = regLimitB = 0;
3319 sqlite3ExprDelete(db, p->pLimit);
3320 p->pLimit = 0;
3322 regAddrA = ++pParse->nMem;
3323 regAddrB = ++pParse->nMem;
3324 regOutA = ++pParse->nMem;
3325 regOutB = ++pParse->nMem;
3326 sqlite3SelectDestInit(&destA, SRT_Coroutine, regAddrA);
3327 sqlite3SelectDestInit(&destB, SRT_Coroutine, regAddrB);
3329 ExplainQueryPlan((pParse, 1, "MERGE (%s)", selectOpName(p->op)));
3331 /* Generate a coroutine to evaluate the SELECT statement to the
3332 ** left of the compound operator - the "A" select.
3334 addrSelectA = sqlite3VdbeCurrentAddr(v) + 1;
3335 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrA, 0, addrSelectA);
3336 VdbeComment((v, "left SELECT"));
3337 pPrior->iLimit = regLimitA;
3338 ExplainQueryPlan((pParse, 1, "LEFT"));
3339 sqlite3Select(pParse, pPrior, &destA);
3340 sqlite3VdbeEndCoroutine(v, regAddrA);
3341 sqlite3VdbeJumpHere(v, addr1);
3343 /* Generate a coroutine to evaluate the SELECT statement on
3344 ** the right - the "B" select
3346 addrSelectB = sqlite3VdbeCurrentAddr(v) + 1;
3347 addr1 = sqlite3VdbeAddOp3(v, OP_InitCoroutine, regAddrB, 0, addrSelectB);
3348 VdbeComment((v, "right SELECT"));
3349 savedLimit = p->iLimit;
3350 savedOffset = p->iOffset;
3351 p->iLimit = regLimitB;
3352 p->iOffset = 0;
3353 ExplainQueryPlan((pParse, 1, "RIGHT"));
3354 sqlite3Select(pParse, p, &destB);
3355 p->iLimit = savedLimit;
3356 p->iOffset = savedOffset;
3357 sqlite3VdbeEndCoroutine(v, regAddrB);
3359 /* Generate a subroutine that outputs the current row of the A
3360 ** select as the next output row of the compound select.
3362 VdbeNoopComment((v, "Output routine for A"));
3363 addrOutA = generateOutputSubroutine(pParse,
3364 p, &destA, pDest, regOutA,
3365 regPrev, pKeyDup, labelEnd);
3367 /* Generate a subroutine that outputs the current row of the B
3368 ** select as the next output row of the compound select.
3370 if( op==TK_ALL || op==TK_UNION ){
3371 VdbeNoopComment((v, "Output routine for B"));
3372 addrOutB = generateOutputSubroutine(pParse,
3373 p, &destB, pDest, regOutB,
3374 regPrev, pKeyDup, labelEnd);
3376 sqlite3KeyInfoUnref(pKeyDup);
3378 /* Generate a subroutine to run when the results from select A
3379 ** are exhausted and only data in select B remains.
3381 if( op==TK_EXCEPT || op==TK_INTERSECT ){
3382 addrEofA_noB = addrEofA = labelEnd;
3383 }else{
3384 VdbeNoopComment((v, "eof-A subroutine"));
3385 addrEofA = sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3386 addrEofA_noB = sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, labelEnd);
3387 VdbeCoverage(v);
3388 sqlite3VdbeGoto(v, addrEofA);
3389 p->nSelectRow = sqlite3LogEstAdd(p->nSelectRow, pPrior->nSelectRow);
3392 /* Generate a subroutine to run when the results from select B
3393 ** are exhausted and only data in select A remains.
3395 if( op==TK_INTERSECT ){
3396 addrEofB = addrEofA;
3397 if( p->nSelectRow > pPrior->nSelectRow ) p->nSelectRow = pPrior->nSelectRow;
3398 }else{
3399 VdbeNoopComment((v, "eof-B subroutine"));
3400 addrEofB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3401 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, labelEnd); VdbeCoverage(v);
3402 sqlite3VdbeGoto(v, addrEofB);
3405 /* Generate code to handle the case of A<B
3407 VdbeNoopComment((v, "A-lt-B subroutine"));
3408 addrAltB = sqlite3VdbeAddOp2(v, OP_Gosub, regOutA, addrOutA);
3409 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3410 sqlite3VdbeGoto(v, labelCmpr);
3412 /* Generate code to handle the case of A==B
3414 if( op==TK_ALL ){
3415 addrAeqB = addrAltB;
3416 }else if( op==TK_INTERSECT ){
3417 addrAeqB = addrAltB;
3418 addrAltB++;
3419 }else{
3420 VdbeNoopComment((v, "A-eq-B subroutine"));
3421 addrAeqB =
3422 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA); VdbeCoverage(v);
3423 sqlite3VdbeGoto(v, labelCmpr);
3426 /* Generate code to handle the case of A>B
3428 VdbeNoopComment((v, "A-gt-B subroutine"));
3429 addrAgtB = sqlite3VdbeCurrentAddr(v);
3430 if( op==TK_ALL || op==TK_UNION ){
3431 sqlite3VdbeAddOp2(v, OP_Gosub, regOutB, addrOutB);
3433 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3434 sqlite3VdbeGoto(v, labelCmpr);
3436 /* This code runs once to initialize everything.
3438 sqlite3VdbeJumpHere(v, addr1);
3439 sqlite3VdbeAddOp2(v, OP_Yield, regAddrA, addrEofA_noB); VdbeCoverage(v);
3440 sqlite3VdbeAddOp2(v, OP_Yield, regAddrB, addrEofB); VdbeCoverage(v);
3442 /* Implement the main merge loop
3444 sqlite3VdbeResolveLabel(v, labelCmpr);
3445 sqlite3VdbeAddOp4(v, OP_Permutation, 0, 0, 0, (char*)aPermute, P4_INTARRAY);
3446 sqlite3VdbeAddOp4(v, OP_Compare, destA.iSdst, destB.iSdst, nOrderBy,
3447 (char*)pKeyMerge, P4_KEYINFO);
3448 sqlite3VdbeChangeP5(v, OPFLAG_PERMUTE);
3449 sqlite3VdbeAddOp3(v, OP_Jump, addrAltB, addrAeqB, addrAgtB); VdbeCoverage(v);
3451 /* Jump to the this point in order to terminate the query.
3453 sqlite3VdbeResolveLabel(v, labelEnd);
3455 /* Reassembly the compound query so that it will be freed correctly
3456 ** by the calling function */
3457 if( p->pPrior ){
3458 sqlite3SelectDelete(db, p->pPrior);
3460 p->pPrior = pPrior;
3461 pPrior->pNext = p;
3463 /*** TBD: Insert subroutine calls to close cursors on incomplete
3464 **** subqueries ****/
3465 ExplainQueryPlanPop(pParse);
3466 return pParse->nErr!=0;
3468 #endif
3470 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3472 /* An instance of the SubstContext object describes an substitution edit
3473 ** to be performed on a parse tree.
3475 ** All references to columns in table iTable are to be replaced by corresponding
3476 ** expressions in pEList.
3478 typedef struct SubstContext {
3479 Parse *pParse; /* The parsing context */
3480 int iTable; /* Replace references to this table */
3481 int iNewTable; /* New table number */
3482 int isLeftJoin; /* Add TK_IF_NULL_ROW opcodes on each replacement */
3483 ExprList *pEList; /* Replacement expressions */
3484 } SubstContext;
3486 /* Forward Declarations */
3487 static void substExprList(SubstContext*, ExprList*);
3488 static void substSelect(SubstContext*, Select*, int);
3491 ** Scan through the expression pExpr. Replace every reference to
3492 ** a column in table number iTable with a copy of the iColumn-th
3493 ** entry in pEList. (But leave references to the ROWID column
3494 ** unchanged.)
3496 ** This routine is part of the flattening procedure. A subquery
3497 ** whose result set is defined by pEList appears as entry in the
3498 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3499 ** FORM clause entry is iTable. This routine makes the necessary
3500 ** changes to pExpr so that it refers directly to the source table
3501 ** of the subquery rather the result set of the subquery.
3503 static Expr *substExpr(
3504 SubstContext *pSubst, /* Description of the substitution */
3505 Expr *pExpr /* Expr in which substitution occurs */
3507 if( pExpr==0 ) return 0;
3508 if( ExprHasProperty(pExpr, EP_FromJoin)
3509 && pExpr->iRightJoinTable==pSubst->iTable
3511 pExpr->iRightJoinTable = pSubst->iNewTable;
3513 if( pExpr->op==TK_COLUMN
3514 && pExpr->iTable==pSubst->iTable
3515 && !ExprHasProperty(pExpr, EP_FixedCol)
3517 if( pExpr->iColumn<0 ){
3518 pExpr->op = TK_NULL;
3519 }else{
3520 Expr *pNew;
3521 Expr *pCopy = pSubst->pEList->a[pExpr->iColumn].pExpr;
3522 Expr ifNullRow;
3523 assert( pSubst->pEList!=0 && pExpr->iColumn<pSubst->pEList->nExpr );
3524 assert( pExpr->pRight==0 );
3525 if( sqlite3ExprIsVector(pCopy) ){
3526 sqlite3VectorErrorMsg(pSubst->pParse, pCopy);
3527 }else{
3528 sqlite3 *db = pSubst->pParse->db;
3529 if( pSubst->isLeftJoin && pCopy->op!=TK_COLUMN ){
3530 memset(&ifNullRow, 0, sizeof(ifNullRow));
3531 ifNullRow.op = TK_IF_NULL_ROW;
3532 ifNullRow.pLeft = pCopy;
3533 ifNullRow.iTable = pSubst->iNewTable;
3534 ifNullRow.flags = EP_IfNullRow;
3535 pCopy = &ifNullRow;
3537 testcase( ExprHasProperty(pCopy, EP_Subquery) );
3538 pNew = sqlite3ExprDup(db, pCopy, 0);
3539 if( pNew && pSubst->isLeftJoin ){
3540 ExprSetProperty(pNew, EP_CanBeNull);
3542 if( pNew && ExprHasProperty(pExpr,EP_FromJoin) ){
3543 sqlite3SetJoinExpr(pNew, pExpr->iRightJoinTable);
3545 sqlite3ExprDelete(db, pExpr);
3546 pExpr = pNew;
3548 /* Ensure that the expression now has an implicit collation sequence,
3549 ** just as it did when it was a column of a view or sub-query. */
3550 if( pExpr ){
3551 if( pExpr->op!=TK_COLUMN && pExpr->op!=TK_COLLATE ){
3552 CollSeq *pColl = sqlite3ExprCollSeq(pSubst->pParse, pExpr);
3553 pExpr = sqlite3ExprAddCollateString(pSubst->pParse, pExpr,
3554 (pColl ? pColl->zName : "BINARY")
3557 ExprClearProperty(pExpr, EP_Collate);
3561 }else{
3562 if( pExpr->op==TK_IF_NULL_ROW && pExpr->iTable==pSubst->iTable ){
3563 pExpr->iTable = pSubst->iNewTable;
3565 pExpr->pLeft = substExpr(pSubst, pExpr->pLeft);
3566 pExpr->pRight = substExpr(pSubst, pExpr->pRight);
3567 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3568 substSelect(pSubst, pExpr->x.pSelect, 1);
3569 }else{
3570 substExprList(pSubst, pExpr->x.pList);
3572 #ifndef SQLITE_OMIT_WINDOWFUNC
3573 if( ExprHasProperty(pExpr, EP_WinFunc) ){
3574 Window *pWin = pExpr->y.pWin;
3575 pWin->pFilter = substExpr(pSubst, pWin->pFilter);
3576 substExprList(pSubst, pWin->pPartition);
3577 substExprList(pSubst, pWin->pOrderBy);
3579 #endif
3581 return pExpr;
3583 static void substExprList(
3584 SubstContext *pSubst, /* Description of the substitution */
3585 ExprList *pList /* List to scan and in which to make substitutes */
3587 int i;
3588 if( pList==0 ) return;
3589 for(i=0; i<pList->nExpr; i++){
3590 pList->a[i].pExpr = substExpr(pSubst, pList->a[i].pExpr);
3593 static void substSelect(
3594 SubstContext *pSubst, /* Description of the substitution */
3595 Select *p, /* SELECT statement in which to make substitutions */
3596 int doPrior /* Do substitutes on p->pPrior too */
3598 SrcList *pSrc;
3599 struct SrcList_item *pItem;
3600 int i;
3601 if( !p ) return;
3603 substExprList(pSubst, p->pEList);
3604 substExprList(pSubst, p->pGroupBy);
3605 substExprList(pSubst, p->pOrderBy);
3606 p->pHaving = substExpr(pSubst, p->pHaving);
3607 p->pWhere = substExpr(pSubst, p->pWhere);
3608 pSrc = p->pSrc;
3609 assert( pSrc!=0 );
3610 for(i=pSrc->nSrc, pItem=pSrc->a; i>0; i--, pItem++){
3611 substSelect(pSubst, pItem->pSelect, 1);
3612 if( pItem->fg.isTabFunc ){
3613 substExprList(pSubst, pItem->u1.pFuncArg);
3616 }while( doPrior && (p = p->pPrior)!=0 );
3618 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3620 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3622 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3623 ** clause of that SELECT.
3625 ** This routine scans the entire SELECT statement and recomputes the
3626 ** pSrcItem->colUsed mask.
3628 static int recomputeColumnsUsedExpr(Walker *pWalker, Expr *pExpr){
3629 struct SrcList_item *pItem;
3630 if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
3631 pItem = pWalker->u.pSrcItem;
3632 if( pItem->iCursor!=pExpr->iTable ) return WRC_Continue;
3633 if( pExpr->iColumn<0 ) return WRC_Continue;
3634 pItem->colUsed |= sqlite3ExprColUsed(pExpr);
3635 return WRC_Continue;
3637 static void recomputeColumnsUsed(
3638 Select *pSelect, /* The complete SELECT statement */
3639 struct SrcList_item *pSrcItem /* Which FROM clause item to recompute */
3641 Walker w;
3642 if( NEVER(pSrcItem->pTab==0) ) return;
3643 memset(&w, 0, sizeof(w));
3644 w.xExprCallback = recomputeColumnsUsedExpr;
3645 w.xSelectCallback = sqlite3SelectWalkNoop;
3646 w.u.pSrcItem = pSrcItem;
3647 pSrcItem->colUsed = 0;
3648 sqlite3WalkSelect(&w, pSelect);
3650 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3652 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3654 ** This routine attempts to flatten subqueries as a performance optimization.
3655 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3657 ** To understand the concept of flattening, consider the following
3658 ** query:
3660 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3662 ** The default way of implementing this query is to execute the
3663 ** subquery first and store the results in a temporary table, then
3664 ** run the outer query on that temporary table. This requires two
3665 ** passes over the data. Furthermore, because the temporary table
3666 ** has no indices, the WHERE clause on the outer query cannot be
3667 ** optimized.
3669 ** This routine attempts to rewrite queries such as the above into
3670 ** a single flat select, like this:
3672 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3674 ** The code generated for this simplification gives the same result
3675 ** but only has to scan the data once. And because indices might
3676 ** exist on the table t1, a complete scan of the data might be
3677 ** avoided.
3679 ** Flattening is subject to the following constraints:
3681 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3682 ** The subquery and the outer query cannot both be aggregates.
3684 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3685 ** (2) If the subquery is an aggregate then
3686 ** (2a) the outer query must not be a join and
3687 ** (2b) the outer query must not use subqueries
3688 ** other than the one FROM-clause subquery that is a candidate
3689 ** for flattening. (This is due to ticket [2f7170d73bf9abf80]
3690 ** from 2015-02-09.)
3692 ** (3) If the subquery is the right operand of a LEFT JOIN then
3693 ** (3a) the subquery may not be a join and
3694 ** (3b) the FROM clause of the subquery may not contain a virtual
3695 ** table and
3696 ** (3c) the outer query may not be an aggregate.
3697 ** (3d) the outer query may not be DISTINCT.
3699 ** (4) The subquery can not be DISTINCT.
3701 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
3702 ** sub-queries that were excluded from this optimization. Restriction
3703 ** (4) has since been expanded to exclude all DISTINCT subqueries.
3705 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3706 ** If the subquery is aggregate, the outer query may not be DISTINCT.
3708 ** (7) The subquery must have a FROM clause. TODO: For subqueries without
3709 ** A FROM clause, consider adding a FROM clause with the special
3710 ** table sqlite_once that consists of a single row containing a
3711 ** single NULL.
3713 ** (8) If the subquery uses LIMIT then the outer query may not be a join.
3715 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
3717 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
3718 ** accidently carried the comment forward until 2014-09-15. Original
3719 ** constraint: "If the subquery is aggregate then the outer query
3720 ** may not use LIMIT."
3722 ** (11) The subquery and the outer query may not both have ORDER BY clauses.
3724 ** (**) Not implemented. Subsumed into restriction (3). Was previously
3725 ** a separate restriction deriving from ticket #350.
3727 ** (13) The subquery and outer query may not both use LIMIT.
3729 ** (14) The subquery may not use OFFSET.
3731 ** (15) If the outer query is part of a compound select, then the
3732 ** subquery may not use LIMIT.
3733 ** (See ticket #2339 and ticket [02a8e81d44]).
3735 ** (16) If the outer query is aggregate, then the subquery may not
3736 ** use ORDER BY. (Ticket #2942) This used to not matter
3737 ** until we introduced the group_concat() function.
3739 ** (17) If the subquery is a compound select, then
3740 ** (17a) all compound operators must be a UNION ALL, and
3741 ** (17b) no terms within the subquery compound may be aggregate
3742 ** or DISTINCT, and
3743 ** (17c) every term within the subquery compound must have a FROM clause
3744 ** (17d) the outer query may not be
3745 ** (17d1) aggregate, or
3746 ** (17d2) DISTINCT, or
3747 ** (17d3) a join.
3748 ** (17e) the subquery may not contain window functions
3750 ** The parent and sub-query may contain WHERE clauses. Subject to
3751 ** rules (11), (13) and (14), they may also contain ORDER BY,
3752 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
3753 ** operator other than UNION ALL because all the other compound
3754 ** operators have an implied DISTINCT which is disallowed by
3755 ** restriction (4).
3757 ** Also, each component of the sub-query must return the same number
3758 ** of result columns. This is actually a requirement for any compound
3759 ** SELECT statement, but all the code here does is make sure that no
3760 ** such (illegal) sub-query is flattened. The caller will detect the
3761 ** syntax error and return a detailed message.
3763 ** (18) If the sub-query is a compound select, then all terms of the
3764 ** ORDER BY clause of the parent must be simple references to
3765 ** columns of the sub-query.
3767 ** (19) If the subquery uses LIMIT then the outer query may not
3768 ** have a WHERE clause.
3770 ** (20) If the sub-query is a compound select, then it must not use
3771 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
3772 ** somewhat by saying that the terms of the ORDER BY clause must
3773 ** appear as unmodified result columns in the outer query. But we
3774 ** have other optimizations in mind to deal with that case.
3776 ** (21) If the subquery uses LIMIT then the outer query may not be
3777 ** DISTINCT. (See ticket [752e1646fc]).
3779 ** (22) The subquery may not be a recursive CTE.
3781 ** (**) Subsumed into restriction (17d3). Was: If the outer query is
3782 ** a recursive CTE, then the sub-query may not be a compound query.
3783 ** This restriction is because transforming the
3784 ** parent to a compound query confuses the code that handles
3785 ** recursive queries in multiSelect().
3787 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3788 ** The subquery may not be an aggregate that uses the built-in min() or
3789 ** or max() functions. (Without this restriction, a query like:
3790 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3791 ** return the value X for which Y was maximal.)
3793 ** (25) If either the subquery or the parent query contains a window
3794 ** function in the select list or ORDER BY clause, flattening
3795 ** is not attempted.
3798 ** In this routine, the "p" parameter is a pointer to the outer query.
3799 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
3800 ** uses aggregates.
3802 ** If flattening is not attempted, this routine is a no-op and returns 0.
3803 ** If flattening is attempted this routine returns 1.
3805 ** All of the expression analysis must occur on both the outer query and
3806 ** the subquery before this routine runs.
3808 static int flattenSubquery(
3809 Parse *pParse, /* Parsing context */
3810 Select *p, /* The parent or outer SELECT statement */
3811 int iFrom, /* Index in p->pSrc->a[] of the inner subquery */
3812 int isAgg /* True if outer SELECT uses aggregate functions */
3814 const char *zSavedAuthContext = pParse->zAuthContext;
3815 Select *pParent; /* Current UNION ALL term of the other query */
3816 Select *pSub; /* The inner query or "subquery" */
3817 Select *pSub1; /* Pointer to the rightmost select in sub-query */
3818 SrcList *pSrc; /* The FROM clause of the outer query */
3819 SrcList *pSubSrc; /* The FROM clause of the subquery */
3820 int iParent; /* VDBE cursor number of the pSub result set temp table */
3821 int iNewParent = -1;/* Replacement table for iParent */
3822 int isLeftJoin = 0; /* True if pSub is the right side of a LEFT JOIN */
3823 int i; /* Loop counter */
3824 Expr *pWhere; /* The WHERE clause */
3825 struct SrcList_item *pSubitem; /* The subquery */
3826 sqlite3 *db = pParse->db;
3827 Walker w; /* Walker to persist agginfo data */
3829 /* Check to see if flattening is permitted. Return 0 if not.
3831 assert( p!=0 );
3832 assert( p->pPrior==0 );
3833 if( OptimizationDisabled(db, SQLITE_QueryFlattener) ) return 0;
3834 pSrc = p->pSrc;
3835 assert( pSrc && iFrom>=0 && iFrom<pSrc->nSrc );
3836 pSubitem = &pSrc->a[iFrom];
3837 iParent = pSubitem->iCursor;
3838 pSub = pSubitem->pSelect;
3839 assert( pSub!=0 );
3841 #ifndef SQLITE_OMIT_WINDOWFUNC
3842 if( p->pWin || pSub->pWin ) return 0; /* Restriction (25) */
3843 #endif
3845 pSubSrc = pSub->pSrc;
3846 assert( pSubSrc );
3847 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3848 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3849 ** because they could be computed at compile-time. But when LIMIT and OFFSET
3850 ** became arbitrary expressions, we were forced to add restrictions (13)
3851 ** and (14). */
3852 if( pSub->pLimit && p->pLimit ) return 0; /* Restriction (13) */
3853 if( pSub->pLimit && pSub->pLimit->pRight ) return 0; /* Restriction (14) */
3854 if( (p->selFlags & SF_Compound)!=0 && pSub->pLimit ){
3855 return 0; /* Restriction (15) */
3857 if( pSubSrc->nSrc==0 ) return 0; /* Restriction (7) */
3858 if( pSub->selFlags & SF_Distinct ) return 0; /* Restriction (4) */
3859 if( pSub->pLimit && (pSrc->nSrc>1 || isAgg) ){
3860 return 0; /* Restrictions (8)(9) */
3862 if( p->pOrderBy && pSub->pOrderBy ){
3863 return 0; /* Restriction (11) */
3865 if( isAgg && pSub->pOrderBy ) return 0; /* Restriction (16) */
3866 if( pSub->pLimit && p->pWhere ) return 0; /* Restriction (19) */
3867 if( pSub->pLimit && (p->selFlags & SF_Distinct)!=0 ){
3868 return 0; /* Restriction (21) */
3870 if( pSub->selFlags & (SF_Recursive) ){
3871 return 0; /* Restrictions (22) */
3875 ** If the subquery is the right operand of a LEFT JOIN, then the
3876 ** subquery may not be a join itself (3a). Example of why this is not
3877 ** allowed:
3879 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
3881 ** If we flatten the above, we would get
3883 ** (t1 LEFT OUTER JOIN t2) JOIN t3
3885 ** which is not at all the same thing.
3887 ** If the subquery is the right operand of a LEFT JOIN, then the outer
3888 ** query cannot be an aggregate. (3c) This is an artifact of the way
3889 ** aggregates are processed - there is no mechanism to determine if
3890 ** the LEFT JOIN table should be all-NULL.
3892 ** See also tickets #306, #350, and #3300.
3894 if( (pSubitem->fg.jointype & JT_OUTER)!=0 ){
3895 isLeftJoin = 1;
3896 if( pSubSrc->nSrc>1 /* (3a) */
3897 || isAgg /* (3b) */
3898 || IsVirtual(pSubSrc->a[0].pTab) /* (3c) */
3899 || (p->selFlags & SF_Distinct)!=0 /* (3d) */
3901 return 0;
3904 #ifdef SQLITE_EXTRA_IFNULLROW
3905 else if( iFrom>0 && !isAgg ){
3906 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3907 ** every reference to any result column from subquery in a join, even
3908 ** though they are not necessary. This will stress-test the OP_IfNullRow
3909 ** opcode. */
3910 isLeftJoin = -1;
3912 #endif
3914 /* Restriction (17): If the sub-query is a compound SELECT, then it must
3915 ** use only the UNION ALL operator. And none of the simple select queries
3916 ** that make up the compound SELECT are allowed to be aggregate or distinct
3917 ** queries.
3919 if( pSub->pPrior ){
3920 if( pSub->pOrderBy ){
3921 return 0; /* Restriction (20) */
3923 if( isAgg || (p->selFlags & SF_Distinct)!=0 || pSrc->nSrc!=1 ){
3924 return 0; /* (17d1), (17d2), or (17d3) */
3926 for(pSub1=pSub; pSub1; pSub1=pSub1->pPrior){
3927 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
3928 testcase( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
3929 assert( pSub->pSrc!=0 );
3930 assert( pSub->pEList->nExpr==pSub1->pEList->nExpr );
3931 if( (pSub1->selFlags & (SF_Distinct|SF_Aggregate))!=0 /* (17b) */
3932 || (pSub1->pPrior && pSub1->op!=TK_ALL) /* (17a) */
3933 || pSub1->pSrc->nSrc<1 /* (17c) */
3934 #ifndef SQLITE_OMIT_WINDOWFUNC
3935 || pSub1->pWin /* (17e) */
3936 #endif
3938 return 0;
3940 testcase( pSub1->pSrc->nSrc>1 );
3943 /* Restriction (18). */
3944 if( p->pOrderBy ){
3945 int ii;
3946 for(ii=0; ii<p->pOrderBy->nExpr; ii++){
3947 if( p->pOrderBy->a[ii].u.x.iOrderByCol==0 ) return 0;
3952 /* Ex-restriction (23):
3953 ** The only way that the recursive part of a CTE can contain a compound
3954 ** subquery is for the subquery to be one term of a join. But if the
3955 ** subquery is a join, then the flattening has already been stopped by
3956 ** restriction (17d3)
3958 assert( (p->selFlags & SF_Recursive)==0 || pSub->pPrior==0 );
3960 /***** If we reach this point, flattening is permitted. *****/
3961 SELECTTRACE(1,pParse,p,("flatten %u.%p from term %d\n",
3962 pSub->selId, pSub, iFrom));
3964 /* Authorize the subquery */
3965 pParse->zAuthContext = pSubitem->zName;
3966 TESTONLY(i =) sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0);
3967 testcase( i==SQLITE_DENY );
3968 pParse->zAuthContext = zSavedAuthContext;
3970 /* If the sub-query is a compound SELECT statement, then (by restrictions
3971 ** 17 and 18 above) it must be a UNION ALL and the parent query must
3972 ** be of the form:
3974 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
3976 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3977 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3978 ** OFFSET clauses and joins them to the left-hand-side of the original
3979 ** using UNION ALL operators. In this case N is the number of simple
3980 ** select statements in the compound sub-query.
3982 ** Example:
3984 ** SELECT a+1 FROM (
3985 ** SELECT x FROM tab
3986 ** UNION ALL
3987 ** SELECT y FROM tab
3988 ** UNION ALL
3989 ** SELECT abs(z*2) FROM tab2
3990 ** ) WHERE a!=5 ORDER BY 1
3992 ** Transformed into:
3994 ** SELECT x+1 FROM tab WHERE x+1!=5
3995 ** UNION ALL
3996 ** SELECT y+1 FROM tab WHERE y+1!=5
3997 ** UNION ALL
3998 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
3999 ** ORDER BY 1
4001 ** We call this the "compound-subquery flattening".
4003 for(pSub=pSub->pPrior; pSub; pSub=pSub->pPrior){
4004 Select *pNew;
4005 ExprList *pOrderBy = p->pOrderBy;
4006 Expr *pLimit = p->pLimit;
4007 Select *pPrior = p->pPrior;
4008 p->pOrderBy = 0;
4009 p->pSrc = 0;
4010 p->pPrior = 0;
4011 p->pLimit = 0;
4012 pNew = sqlite3SelectDup(db, p, 0);
4013 p->pLimit = pLimit;
4014 p->pOrderBy = pOrderBy;
4015 p->pSrc = pSrc;
4016 p->op = TK_ALL;
4017 if( pNew==0 ){
4018 p->pPrior = pPrior;
4019 }else{
4020 pNew->pPrior = pPrior;
4021 if( pPrior ) pPrior->pNext = pNew;
4022 pNew->pNext = p;
4023 p->pPrior = pNew;
4024 SELECTTRACE(2,pParse,p,("compound-subquery flattener"
4025 " creates %u as peer\n",pNew->selId));
4027 if( db->mallocFailed ) return 1;
4030 /* Begin flattening the iFrom-th entry of the FROM clause
4031 ** in the outer query.
4033 pSub = pSub1 = pSubitem->pSelect;
4035 /* Delete the transient table structure associated with the
4036 ** subquery
4038 sqlite3DbFree(db, pSubitem->zDatabase);
4039 sqlite3DbFree(db, pSubitem->zName);
4040 sqlite3DbFree(db, pSubitem->zAlias);
4041 pSubitem->zDatabase = 0;
4042 pSubitem->zName = 0;
4043 pSubitem->zAlias = 0;
4044 pSubitem->pSelect = 0;
4046 /* Defer deleting the Table object associated with the
4047 ** subquery until code generation is
4048 ** complete, since there may still exist Expr.pTab entries that
4049 ** refer to the subquery even after flattening. Ticket #3346.
4051 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4053 if( ALWAYS(pSubitem->pTab!=0) ){
4054 Table *pTabToDel = pSubitem->pTab;
4055 if( pTabToDel->nTabRef==1 ){
4056 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4057 pTabToDel->pNextZombie = pToplevel->pZombieTab;
4058 pToplevel->pZombieTab = pTabToDel;
4059 }else{
4060 pTabToDel->nTabRef--;
4062 pSubitem->pTab = 0;
4065 /* The following loop runs once for each term in a compound-subquery
4066 ** flattening (as described above). If we are doing a different kind
4067 ** of flattening - a flattening other than a compound-subquery flattening -
4068 ** then this loop only runs once.
4070 ** This loop moves all of the FROM elements of the subquery into the
4071 ** the FROM clause of the outer query. Before doing this, remember
4072 ** the cursor number for the original outer query FROM element in
4073 ** iParent. The iParent cursor will never be used. Subsequent code
4074 ** will scan expressions looking for iParent references and replace
4075 ** those references with expressions that resolve to the subquery FROM
4076 ** elements we are now copying in.
4078 for(pParent=p; pParent; pParent=pParent->pPrior, pSub=pSub->pPrior){
4079 int nSubSrc;
4080 u8 jointype = 0;
4081 assert( pSub!=0 );
4082 pSubSrc = pSub->pSrc; /* FROM clause of subquery */
4083 nSubSrc = pSubSrc->nSrc; /* Number of terms in subquery FROM clause */
4084 pSrc = pParent->pSrc; /* FROM clause of the outer query */
4086 if( pSrc ){
4087 assert( pParent==p ); /* First time through the loop */
4088 jointype = pSubitem->fg.jointype;
4089 }else{
4090 assert( pParent!=p ); /* 2nd and subsequent times through the loop */
4091 pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
4092 if( pSrc==0 ) break;
4093 pParent->pSrc = pSrc;
4096 /* The subquery uses a single slot of the FROM clause of the outer
4097 ** query. If the subquery has more than one element in its FROM clause,
4098 ** then expand the outer query to make space for it to hold all elements
4099 ** of the subquery.
4101 ** Example:
4103 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4105 ** The outer query has 3 slots in its FROM clause. One slot of the
4106 ** outer query (the middle slot) is used by the subquery. The next
4107 ** block of code will expand the outer query FROM clause to 4 slots.
4108 ** The middle slot is expanded to two slots in order to make space
4109 ** for the two elements in the FROM clause of the subquery.
4111 if( nSubSrc>1 ){
4112 pSrc = sqlite3SrcListEnlarge(pParse, pSrc, nSubSrc-1,iFrom+1);
4113 if( pSrc==0 ) break;
4114 pParent->pSrc = pSrc;
4117 /* Transfer the FROM clause terms from the subquery into the
4118 ** outer query.
4120 for(i=0; i<nSubSrc; i++){
4121 sqlite3IdListDelete(db, pSrc->a[i+iFrom].pUsing);
4122 assert( pSrc->a[i+iFrom].fg.isTabFunc==0 );
4123 pSrc->a[i+iFrom] = pSubSrc->a[i];
4124 iNewParent = pSubSrc->a[i].iCursor;
4125 memset(&pSubSrc->a[i], 0, sizeof(pSubSrc->a[i]));
4127 pSrc->a[iFrom].fg.jointype = jointype;
4129 /* Now begin substituting subquery result set expressions for
4130 ** references to the iParent in the outer query.
4132 ** Example:
4134 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4135 ** \ \_____________ subquery __________/ /
4136 ** \_____________________ outer query ______________________________/
4138 ** We look at every expression in the outer query and every place we see
4139 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4141 if( pSub->pOrderBy && (pParent->selFlags & SF_NoopOrderBy)==0 ){
4142 /* At this point, any non-zero iOrderByCol values indicate that the
4143 ** ORDER BY column expression is identical to the iOrderByCol'th
4144 ** expression returned by SELECT statement pSub. Since these values
4145 ** do not necessarily correspond to columns in SELECT statement pParent,
4146 ** zero them before transfering the ORDER BY clause.
4148 ** Not doing this may cause an error if a subsequent call to this
4149 ** function attempts to flatten a compound sub-query into pParent
4150 ** (the only way this can happen is if the compound sub-query is
4151 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
4152 ExprList *pOrderBy = pSub->pOrderBy;
4153 for(i=0; i<pOrderBy->nExpr; i++){
4154 pOrderBy->a[i].u.x.iOrderByCol = 0;
4156 assert( pParent->pOrderBy==0 );
4157 pParent->pOrderBy = pOrderBy;
4158 pSub->pOrderBy = 0;
4160 pWhere = pSub->pWhere;
4161 pSub->pWhere = 0;
4162 if( isLeftJoin>0 ){
4163 sqlite3SetJoinExpr(pWhere, iNewParent);
4165 if( pWhere ){
4166 if( pParent->pWhere ){
4167 pParent->pWhere = sqlite3PExpr(pParse, TK_AND, pWhere, pParent->pWhere);
4168 }else{
4169 pParent->pWhere = pWhere;
4172 if( db->mallocFailed==0 ){
4173 SubstContext x;
4174 x.pParse = pParse;
4175 x.iTable = iParent;
4176 x.iNewTable = iNewParent;
4177 x.isLeftJoin = isLeftJoin;
4178 x.pEList = pSub->pEList;
4179 substSelect(&x, pParent, 0);
4182 /* The flattened query is a compound if either the inner or the
4183 ** outer query is a compound. */
4184 pParent->selFlags |= pSub->selFlags & SF_Compound;
4185 assert( (pSub->selFlags & SF_Distinct)==0 ); /* restriction (17b) */
4188 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4190 ** One is tempted to try to add a and b to combine the limits. But this
4191 ** does not work if either limit is negative.
4193 if( pSub->pLimit ){
4194 pParent->pLimit = pSub->pLimit;
4195 pSub->pLimit = 0;
4198 /* Recompute the SrcList_item.colUsed masks for the flattened
4199 ** tables. */
4200 for(i=0; i<nSubSrc; i++){
4201 recomputeColumnsUsed(pParent, &pSrc->a[i+iFrom]);
4205 /* Finially, delete what is left of the subquery and return
4206 ** success.
4208 sqlite3AggInfoPersistWalkerInit(&w, pParse);
4209 sqlite3WalkSelect(&w,pSub1);
4210 sqlite3SelectDelete(db, pSub1);
4212 #if SELECTTRACE_ENABLED
4213 if( sqlite3_unsupported_selecttrace & 0x100 ){
4214 SELECTTRACE(0x100,pParse,p,("After flattening:\n"));
4215 sqlite3TreeViewSelect(0, p, 0);
4217 #endif
4219 return 1;
4221 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4224 ** A structure to keep track of all of the column values that are fixed to
4225 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4227 typedef struct WhereConst WhereConst;
4228 struct WhereConst {
4229 Parse *pParse; /* Parsing context */
4230 int nConst; /* Number for COLUMN=CONSTANT terms */
4231 int nChng; /* Number of times a constant is propagated */
4232 Expr **apExpr; /* [i*2] is COLUMN and [i*2+1] is VALUE */
4236 ** Add a new entry to the pConst object. Except, do not add duplicate
4237 ** pColumn entires. Also, do not add if doing so would not be appropriate.
4239 ** The caller guarantees the pColumn is a column and pValue is a constant.
4240 ** This routine has to do some additional checks before completing the
4241 ** insert.
4243 static void constInsert(
4244 WhereConst *pConst, /* The WhereConst into which we are inserting */
4245 Expr *pColumn, /* The COLUMN part of the constraint */
4246 Expr *pValue, /* The VALUE part of the constraint */
4247 Expr *pExpr /* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4249 int i;
4250 assert( pColumn->op==TK_COLUMN );
4251 assert( sqlite3ExprIsConstant(pValue) );
4253 if( ExprHasProperty(pColumn, EP_FixedCol) ) return;
4254 if( sqlite3ExprAffinity(pValue)!=0 ) return;
4255 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst->pParse,pExpr)) ){
4256 return;
4259 /* 2018-10-25 ticket [cf5ed20f]
4260 ** Make sure the same pColumn is not inserted more than once */
4261 for(i=0; i<pConst->nConst; i++){
4262 const Expr *pE2 = pConst->apExpr[i*2];
4263 assert( pE2->op==TK_COLUMN );
4264 if( pE2->iTable==pColumn->iTable
4265 && pE2->iColumn==pColumn->iColumn
4267 return; /* Already present. Return without doing anything. */
4271 pConst->nConst++;
4272 pConst->apExpr = sqlite3DbReallocOrFree(pConst->pParse->db, pConst->apExpr,
4273 pConst->nConst*2*sizeof(Expr*));
4274 if( pConst->apExpr==0 ){
4275 pConst->nConst = 0;
4276 }else{
4277 pConst->apExpr[pConst->nConst*2-2] = pColumn;
4278 pConst->apExpr[pConst->nConst*2-1] = pValue;
4283 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4284 ** is a constant expression and where the term must be true because it
4285 ** is part of the AND-connected terms of the expression. For each term
4286 ** found, add it to the pConst structure.
4288 static void findConstInWhere(WhereConst *pConst, Expr *pExpr){
4289 Expr *pRight, *pLeft;
4290 if( pExpr==0 ) return;
4291 if( ExprHasProperty(pExpr, EP_FromJoin) ) return;
4292 if( pExpr->op==TK_AND ){
4293 findConstInWhere(pConst, pExpr->pRight);
4294 findConstInWhere(pConst, pExpr->pLeft);
4295 return;
4297 if( pExpr->op!=TK_EQ ) return;
4298 pRight = pExpr->pRight;
4299 pLeft = pExpr->pLeft;
4300 assert( pRight!=0 );
4301 assert( pLeft!=0 );
4302 if( pRight->op==TK_COLUMN && sqlite3ExprIsConstant(pLeft) ){
4303 constInsert(pConst,pRight,pLeft,pExpr);
4305 if( pLeft->op==TK_COLUMN && sqlite3ExprIsConstant(pRight) ){
4306 constInsert(pConst,pLeft,pRight,pExpr);
4311 ** This is a Walker expression callback. pExpr is a candidate expression
4312 ** to be replaced by a value. If pExpr is equivalent to one of the
4313 ** columns named in pWalker->u.pConst, then overwrite it with its
4314 ** corresponding value.
4316 static int propagateConstantExprRewrite(Walker *pWalker, Expr *pExpr){
4317 int i;
4318 WhereConst *pConst;
4319 if( pExpr->op!=TK_COLUMN ) return WRC_Continue;
4320 if( ExprHasProperty(pExpr, EP_FixedCol|EP_FromJoin) ){
4321 testcase( ExprHasProperty(pExpr, EP_FixedCol) );
4322 testcase( ExprHasProperty(pExpr, EP_FromJoin) );
4323 return WRC_Continue;
4325 pConst = pWalker->u.pConst;
4326 for(i=0; i<pConst->nConst; i++){
4327 Expr *pColumn = pConst->apExpr[i*2];
4328 if( pColumn==pExpr ) continue;
4329 if( pColumn->iTable!=pExpr->iTable ) continue;
4330 if( pColumn->iColumn!=pExpr->iColumn ) continue;
4331 /* A match is found. Add the EP_FixedCol property */
4332 pConst->nChng++;
4333 ExprClearProperty(pExpr, EP_Leaf);
4334 ExprSetProperty(pExpr, EP_FixedCol);
4335 assert( pExpr->pLeft==0 );
4336 pExpr->pLeft = sqlite3ExprDup(pConst->pParse->db, pConst->apExpr[i*2+1], 0);
4337 break;
4339 return WRC_Prune;
4343 ** The WHERE-clause constant propagation optimization.
4345 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4346 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4347 ** part of a ON clause from a LEFT JOIN, then throughout the query
4348 ** replace all other occurrences of COLUMN with CONSTANT.
4350 ** For example, the query:
4352 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4354 ** Is transformed into
4356 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4358 ** Return true if any transformations where made and false if not.
4360 ** Implementation note: Constant propagation is tricky due to affinity
4361 ** and collating sequence interactions. Consider this example:
4363 ** CREATE TABLE t1(a INT,b TEXT);
4364 ** INSERT INTO t1 VALUES(123,'0123');
4365 ** SELECT * FROM t1 WHERE a=123 AND b=a;
4366 ** SELECT * FROM t1 WHERE a=123 AND b=123;
4368 ** The two SELECT statements above should return different answers. b=a
4369 ** is alway true because the comparison uses numeric affinity, but b=123
4370 ** is false because it uses text affinity and '0123' is not the same as '123'.
4371 ** To work around this, the expression tree is not actually changed from
4372 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4373 ** and the "123" value is hung off of the pLeft pointer. Code generator
4374 ** routines know to generate the constant "123" instead of looking up the
4375 ** column value. Also, to avoid collation problems, this optimization is
4376 ** only attempted if the "a=123" term uses the default BINARY collation.
4378 static int propagateConstants(
4379 Parse *pParse, /* The parsing context */
4380 Select *p /* The query in which to propagate constants */
4382 WhereConst x;
4383 Walker w;
4384 int nChng = 0;
4385 x.pParse = pParse;
4387 x.nConst = 0;
4388 x.nChng = 0;
4389 x.apExpr = 0;
4390 findConstInWhere(&x, p->pWhere);
4391 if( x.nConst ){
4392 memset(&w, 0, sizeof(w));
4393 w.pParse = pParse;
4394 w.xExprCallback = propagateConstantExprRewrite;
4395 w.xSelectCallback = sqlite3SelectWalkNoop;
4396 w.xSelectCallback2 = 0;
4397 w.walkerDepth = 0;
4398 w.u.pConst = &x;
4399 sqlite3WalkExpr(&w, p->pWhere);
4400 sqlite3DbFree(x.pParse->db, x.apExpr);
4401 nChng += x.nChng;
4403 }while( x.nChng );
4404 return nChng;
4407 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4409 ** Make copies of relevant WHERE clause terms of the outer query into
4410 ** the WHERE clause of subquery. Example:
4412 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4414 ** Transformed into:
4416 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4417 ** WHERE x=5 AND y=10;
4419 ** The hope is that the terms added to the inner query will make it more
4420 ** efficient.
4422 ** Do not attempt this optimization if:
4424 ** (1) (** This restriction was removed on 2017-09-29. We used to
4425 ** disallow this optimization for aggregate subqueries, but now
4426 ** it is allowed by putting the extra terms on the HAVING clause.
4427 ** The added HAVING clause is pointless if the subquery lacks
4428 ** a GROUP BY clause. But such a HAVING clause is also harmless
4429 ** so there does not appear to be any reason to add extra logic
4430 ** to suppress it. **)
4432 ** (2) The inner query is the recursive part of a common table expression.
4434 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
4435 ** clause would change the meaning of the LIMIT).
4437 ** (4) The inner query is the right operand of a LEFT JOIN and the
4438 ** expression to be pushed down does not come from the ON clause
4439 ** on that LEFT JOIN.
4441 ** (5) The WHERE clause expression originates in the ON or USING clause
4442 ** of a LEFT JOIN where iCursor is not the right-hand table of that
4443 ** left join. An example:
4445 ** SELECT *
4446 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4447 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4448 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4450 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9).
4451 ** But if the (b2=2) term were to be pushed down into the bb subquery,
4452 ** then the (1,1,NULL) row would be suppressed.
4454 ** (6) The inner query features one or more window-functions (since
4455 ** changes to the WHERE clause of the inner query could change the
4456 ** window over which window functions are calculated).
4458 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4459 ** terms are duplicated into the subquery.
4461 static int pushDownWhereTerms(
4462 Parse *pParse, /* Parse context (for malloc() and error reporting) */
4463 Select *pSubq, /* The subquery whose WHERE clause is to be augmented */
4464 Expr *pWhere, /* The WHERE clause of the outer query */
4465 int iCursor, /* Cursor number of the subquery */
4466 int isLeftJoin /* True if pSubq is the right term of a LEFT JOIN */
4468 Expr *pNew;
4469 int nChng = 0;
4470 Select *pSel;
4471 if( pWhere==0 ) return 0;
4472 if( pSubq->selFlags & SF_Recursive ) return 0; /* restriction (2) */
4474 #ifndef SQLITE_OMIT_WINDOWFUNC
4475 for(pSel=pSubq; pSel; pSel=pSel->pPrior){
4476 if( pSel->pWin ) return 0; /* restriction (6) */
4478 #endif
4480 #ifdef SQLITE_DEBUG
4481 /* Only the first term of a compound can have a WITH clause. But make
4482 ** sure no other terms are marked SF_Recursive in case something changes
4483 ** in the future.
4486 Select *pX;
4487 for(pX=pSubq; pX; pX=pX->pPrior){
4488 assert( (pX->selFlags & (SF_Recursive))==0 );
4491 #endif
4493 if( pSubq->pLimit!=0 ){
4494 return 0; /* restriction (3) */
4496 while( pWhere->op==TK_AND ){
4497 nChng += pushDownWhereTerms(pParse, pSubq, pWhere->pRight,
4498 iCursor, isLeftJoin);
4499 pWhere = pWhere->pLeft;
4501 if( isLeftJoin
4502 && (ExprHasProperty(pWhere,EP_FromJoin)==0
4503 || pWhere->iRightJoinTable!=iCursor)
4505 return 0; /* restriction (4) */
4507 if( ExprHasProperty(pWhere,EP_FromJoin) && pWhere->iRightJoinTable!=iCursor ){
4508 return 0; /* restriction (5) */
4510 if( sqlite3ExprIsTableConstant(pWhere, iCursor) ){
4511 nChng++;
4512 while( pSubq ){
4513 SubstContext x;
4514 pNew = sqlite3ExprDup(pParse->db, pWhere, 0);
4515 unsetJoinExpr(pNew, -1);
4516 x.pParse = pParse;
4517 x.iTable = iCursor;
4518 x.iNewTable = iCursor;
4519 x.isLeftJoin = 0;
4520 x.pEList = pSubq->pEList;
4521 pNew = substExpr(&x, pNew);
4522 if( pSubq->selFlags & SF_Aggregate ){
4523 pSubq->pHaving = sqlite3ExprAnd(pParse, pSubq->pHaving, pNew);
4524 }else{
4525 pSubq->pWhere = sqlite3ExprAnd(pParse, pSubq->pWhere, pNew);
4527 pSubq = pSubq->pPrior;
4530 return nChng;
4532 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4535 ** The pFunc is the only aggregate function in the query. Check to see
4536 ** if the query is a candidate for the min/max optimization.
4538 ** If the query is a candidate for the min/max optimization, then set
4539 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4540 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4541 ** whether pFunc is a min() or max() function.
4543 ** If the query is not a candidate for the min/max optimization, return
4544 ** WHERE_ORDERBY_NORMAL (which must be zero).
4546 ** This routine must be called after aggregate functions have been
4547 ** located but before their arguments have been subjected to aggregate
4548 ** analysis.
4550 static u8 minMaxQuery(sqlite3 *db, Expr *pFunc, ExprList **ppMinMax){
4551 int eRet = WHERE_ORDERBY_NORMAL; /* Return value */
4552 ExprList *pEList = pFunc->x.pList; /* Arguments to agg function */
4553 const char *zFunc; /* Name of aggregate function pFunc */
4554 ExprList *pOrderBy;
4555 u8 sortFlags = 0;
4557 assert( *ppMinMax==0 );
4558 assert( pFunc->op==TK_AGG_FUNCTION );
4559 assert( !IsWindowFunc(pFunc) );
4560 if( pEList==0 || pEList->nExpr!=1 || ExprHasProperty(pFunc, EP_WinFunc) ){
4561 return eRet;
4563 zFunc = pFunc->u.zToken;
4564 if( sqlite3StrICmp(zFunc, "min")==0 ){
4565 eRet = WHERE_ORDERBY_MIN;
4566 if( sqlite3ExprCanBeNull(pEList->a[0].pExpr) ){
4567 sortFlags = KEYINFO_ORDER_BIGNULL;
4569 }else if( sqlite3StrICmp(zFunc, "max")==0 ){
4570 eRet = WHERE_ORDERBY_MAX;
4571 sortFlags = KEYINFO_ORDER_DESC;
4572 }else{
4573 return eRet;
4575 *ppMinMax = pOrderBy = sqlite3ExprListDup(db, pEList, 0);
4576 assert( pOrderBy!=0 || db->mallocFailed );
4577 if( pOrderBy ) pOrderBy->a[0].sortFlags = sortFlags;
4578 return eRet;
4582 ** The select statement passed as the first argument is an aggregate query.
4583 ** The second argument is the associated aggregate-info object. This
4584 ** function tests if the SELECT is of the form:
4586 ** SELECT count(*) FROM <tbl>
4588 ** where table is a database table, not a sub-select or view. If the query
4589 ** does match this pattern, then a pointer to the Table object representing
4590 ** <tbl> is returned. Otherwise, 0 is returned.
4592 static Table *isSimpleCount(Select *p, AggInfo *pAggInfo){
4593 Table *pTab;
4594 Expr *pExpr;
4596 assert( !p->pGroupBy );
4598 if( p->pWhere || p->pEList->nExpr!=1
4599 || p->pSrc->nSrc!=1 || p->pSrc->a[0].pSelect
4601 return 0;
4603 pTab = p->pSrc->a[0].pTab;
4604 pExpr = p->pEList->a[0].pExpr;
4605 assert( pTab && !pTab->pSelect && pExpr );
4607 if( IsVirtual(pTab) ) return 0;
4608 if( pExpr->op!=TK_AGG_FUNCTION ) return 0;
4609 if( NEVER(pAggInfo->nFunc==0) ) return 0;
4610 if( (pAggInfo->aFunc[0].pFunc->funcFlags&SQLITE_FUNC_COUNT)==0 ) return 0;
4611 if( ExprHasProperty(pExpr, EP_Distinct|EP_WinFunc) ) return 0;
4613 return pTab;
4617 ** If the source-list item passed as an argument was augmented with an
4618 ** INDEXED BY clause, then try to locate the specified index. If there
4619 ** was such a clause and the named index cannot be found, return
4620 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4621 ** pFrom->pIndex and return SQLITE_OK.
4623 int sqlite3IndexedByLookup(Parse *pParse, struct SrcList_item *pFrom){
4624 if( pFrom->pTab && pFrom->fg.isIndexedBy ){
4625 Table *pTab = pFrom->pTab;
4626 char *zIndexedBy = pFrom->u1.zIndexedBy;
4627 Index *pIdx;
4628 for(pIdx=pTab->pIndex;
4629 pIdx && sqlite3StrICmp(pIdx->zName, zIndexedBy);
4630 pIdx=pIdx->pNext
4632 if( !pIdx ){
4633 sqlite3ErrorMsg(pParse, "no such index: %s", zIndexedBy, 0);
4634 pParse->checkSchema = 1;
4635 return SQLITE_ERROR;
4637 pFrom->pIBIndex = pIdx;
4639 return SQLITE_OK;
4642 ** Detect compound SELECT statements that use an ORDER BY clause with
4643 ** an alternative collating sequence.
4645 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4647 ** These are rewritten as a subquery:
4649 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4650 ** ORDER BY ... COLLATE ...
4652 ** This transformation is necessary because the multiSelectOrderBy() routine
4653 ** above that generates the code for a compound SELECT with an ORDER BY clause
4654 ** uses a merge algorithm that requires the same collating sequence on the
4655 ** result columns as on the ORDER BY clause. See ticket
4656 ** http://www.sqlite.org/src/info/6709574d2a
4658 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4659 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4660 ** there are COLLATE terms in the ORDER BY.
4662 static int convertCompoundSelectToSubquery(Walker *pWalker, Select *p){
4663 int i;
4664 Select *pNew;
4665 Select *pX;
4666 sqlite3 *db;
4667 struct ExprList_item *a;
4668 SrcList *pNewSrc;
4669 Parse *pParse;
4670 Token dummy;
4672 if( p->pPrior==0 ) return WRC_Continue;
4673 if( p->pOrderBy==0 ) return WRC_Continue;
4674 for(pX=p; pX && (pX->op==TK_ALL || pX->op==TK_SELECT); pX=pX->pPrior){}
4675 if( pX==0 ) return WRC_Continue;
4676 a = p->pOrderBy->a;
4677 #ifndef SQLITE_OMIT_WINDOWFUNC
4678 /* If iOrderByCol is already non-zero, then it has already been matched
4679 ** to a result column of the SELECT statement. This occurs when the
4680 ** SELECT is rewritten for window-functions processing and then passed
4681 ** to sqlite3SelectPrep() and similar a second time. The rewriting done
4682 ** by this function is not required in this case. */
4683 if( a[0].u.x.iOrderByCol ) return WRC_Continue;
4684 #endif
4685 for(i=p->pOrderBy->nExpr-1; i>=0; i--){
4686 if( a[i].pExpr->flags & EP_Collate ) break;
4688 if( i<0 ) return WRC_Continue;
4690 /* If we reach this point, that means the transformation is required. */
4692 pParse = pWalker->pParse;
4693 db = pParse->db;
4694 pNew = sqlite3DbMallocZero(db, sizeof(*pNew) );
4695 if( pNew==0 ) return WRC_Abort;
4696 memset(&dummy, 0, sizeof(dummy));
4697 pNewSrc = sqlite3SrcListAppendFromTerm(pParse,0,0,0,&dummy,pNew,0,0);
4698 if( pNewSrc==0 ) return WRC_Abort;
4699 *pNew = *p;
4700 p->pSrc = pNewSrc;
4701 p->pEList = sqlite3ExprListAppend(pParse, 0, sqlite3Expr(db, TK_ASTERISK, 0));
4702 p->op = TK_SELECT;
4703 p->pWhere = 0;
4704 pNew->pGroupBy = 0;
4705 pNew->pHaving = 0;
4706 pNew->pOrderBy = 0;
4707 p->pPrior = 0;
4708 p->pNext = 0;
4709 p->pWith = 0;
4710 #ifndef SQLITE_OMIT_WINDOWFUNC
4711 p->pWinDefn = 0;
4712 #endif
4713 p->selFlags &= ~SF_Compound;
4714 assert( (p->selFlags & SF_Converted)==0 );
4715 p->selFlags |= SF_Converted;
4716 assert( pNew->pPrior!=0 );
4717 pNew->pPrior->pNext = pNew;
4718 pNew->pLimit = 0;
4719 return WRC_Continue;
4723 ** Check to see if the FROM clause term pFrom has table-valued function
4724 ** arguments. If it does, leave an error message in pParse and return
4725 ** non-zero, since pFrom is not allowed to be a table-valued function.
4727 static int cannotBeFunction(Parse *pParse, struct SrcList_item *pFrom){
4728 if( pFrom->fg.isTabFunc ){
4729 sqlite3ErrorMsg(pParse, "'%s' is not a function", pFrom->zName);
4730 return 1;
4732 return 0;
4735 #ifndef SQLITE_OMIT_CTE
4737 ** Argument pWith (which may be NULL) points to a linked list of nested
4738 ** WITH contexts, from inner to outermost. If the table identified by
4739 ** FROM clause element pItem is really a common-table-expression (CTE)
4740 ** then return a pointer to the CTE definition for that table. Otherwise
4741 ** return NULL.
4743 ** If a non-NULL value is returned, set *ppContext to point to the With
4744 ** object that the returned CTE belongs to.
4746 static struct Cte *searchWith(
4747 With *pWith, /* Current innermost WITH clause */
4748 struct SrcList_item *pItem, /* FROM clause element to resolve */
4749 With **ppContext /* OUT: WITH clause return value belongs to */
4751 const char *zName;
4752 if( pItem->zDatabase==0 && (zName = pItem->zName)!=0 ){
4753 With *p;
4754 for(p=pWith; p; p=p->pOuter){
4755 int i;
4756 for(i=0; i<p->nCte; i++){
4757 if( sqlite3StrICmp(zName, p->a[i].zName)==0 ){
4758 *ppContext = p;
4759 return &p->a[i];
4764 return 0;
4767 /* The code generator maintains a stack of active WITH clauses
4768 ** with the inner-most WITH clause being at the top of the stack.
4770 ** This routine pushes the WITH clause passed as the second argument
4771 ** onto the top of the stack. If argument bFree is true, then this
4772 ** WITH clause will never be popped from the stack. In this case it
4773 ** should be freed along with the Parse object. In other cases, when
4774 ** bFree==0, the With object will be freed along with the SELECT
4775 ** statement with which it is associated.
4777 void sqlite3WithPush(Parse *pParse, With *pWith, u8 bFree){
4778 assert( bFree==0 || (pParse->pWith==0 && pParse->pWithToFree==0) );
4779 if( pWith ){
4780 assert( pParse->pWith!=pWith );
4781 pWith->pOuter = pParse->pWith;
4782 pParse->pWith = pWith;
4783 if( bFree ) pParse->pWithToFree = pWith;
4788 ** This function checks if argument pFrom refers to a CTE declared by
4789 ** a WITH clause on the stack currently maintained by the parser. And,
4790 ** if currently processing a CTE expression, if it is a recursive
4791 ** reference to the current CTE.
4793 ** If pFrom falls into either of the two categories above, pFrom->pTab
4794 ** and other fields are populated accordingly. The caller should check
4795 ** (pFrom->pTab!=0) to determine whether or not a successful match
4796 ** was found.
4798 ** Whether or not a match is found, SQLITE_OK is returned if no error
4799 ** occurs. If an error does occur, an error message is stored in the
4800 ** parser and some error code other than SQLITE_OK returned.
4802 static int withExpand(
4803 Walker *pWalker,
4804 struct SrcList_item *pFrom
4806 Parse *pParse = pWalker->pParse;
4807 sqlite3 *db = pParse->db;
4808 struct Cte *pCte; /* Matched CTE (or NULL if no match) */
4809 With *pWith; /* WITH clause that pCte belongs to */
4811 assert( pFrom->pTab==0 );
4812 if( pParse->nErr ){
4813 return SQLITE_ERROR;
4816 pCte = searchWith(pParse->pWith, pFrom, &pWith);
4817 if( pCte ){
4818 Table *pTab;
4819 ExprList *pEList;
4820 Select *pSel;
4821 Select *pLeft; /* Left-most SELECT statement */
4822 Select *pRecTerm; /* Left-most recursive term */
4823 int bMayRecursive; /* True if compound joined by UNION [ALL] */
4824 With *pSavedWith; /* Initial value of pParse->pWith */
4825 int iRecTab = -1; /* Cursor for recursive table */
4827 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4828 ** recursive reference to CTE pCte. Leave an error in pParse and return
4829 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4830 ** In this case, proceed. */
4831 if( pCte->zCteErr ){
4832 sqlite3ErrorMsg(pParse, pCte->zCteErr, pCte->zName);
4833 return SQLITE_ERROR;
4835 if( cannotBeFunction(pParse, pFrom) ) return SQLITE_ERROR;
4837 assert( pFrom->pTab==0 );
4838 pFrom->pTab = pTab = sqlite3DbMallocZero(db, sizeof(Table));
4839 if( pTab==0 ) return WRC_Abort;
4840 pTab->nTabRef = 1;
4841 pTab->zName = sqlite3DbStrDup(db, pCte->zName);
4842 pTab->iPKey = -1;
4843 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4844 pTab->tabFlags |= TF_Ephemeral | TF_NoVisibleRowid;
4845 pFrom->pSelect = sqlite3SelectDup(db, pCte->pSelect, 0);
4846 if( db->mallocFailed ) return SQLITE_NOMEM_BKPT;
4847 assert( pFrom->pSelect );
4849 /* Check if this is a recursive CTE. */
4850 pRecTerm = pSel = pFrom->pSelect;
4851 bMayRecursive = ( pSel->op==TK_ALL || pSel->op==TK_UNION );
4852 while( bMayRecursive && pRecTerm->op==pSel->op ){
4853 int i;
4854 SrcList *pSrc = pRecTerm->pSrc;
4855 assert( pRecTerm->pPrior!=0 );
4856 for(i=0; i<pSrc->nSrc; i++){
4857 struct SrcList_item *pItem = &pSrc->a[i];
4858 if( pItem->zDatabase==0
4859 && pItem->zName!=0
4860 && 0==sqlite3StrICmp(pItem->zName, pCte->zName)
4862 pItem->pTab = pTab;
4863 pTab->nTabRef++;
4864 pItem->fg.isRecursive = 1;
4865 if( pRecTerm->selFlags & SF_Recursive ){
4866 sqlite3ErrorMsg(pParse,
4867 "multiple references to recursive table: %s", pCte->zName
4869 return SQLITE_ERROR;
4871 pRecTerm->selFlags |= SF_Recursive;
4872 if( iRecTab<0 ) iRecTab = pParse->nTab++;
4873 pItem->iCursor = iRecTab;
4876 if( (pRecTerm->selFlags & SF_Recursive)==0 ) break;
4877 pRecTerm = pRecTerm->pPrior;
4880 pCte->zCteErr = "circular reference: %s";
4881 pSavedWith = pParse->pWith;
4882 pParse->pWith = pWith;
4883 if( pSel->selFlags & SF_Recursive ){
4884 assert( pRecTerm!=0 );
4885 assert( (pRecTerm->selFlags & SF_Recursive)==0 );
4886 assert( pRecTerm->pNext!=0 );
4887 assert( (pRecTerm->pNext->selFlags & SF_Recursive)!=0 );
4888 assert( pRecTerm->pWith==0 );
4889 pRecTerm->pWith = pSel->pWith;
4890 sqlite3WalkSelect(pWalker, pRecTerm);
4891 pRecTerm->pWith = 0;
4892 }else{
4893 sqlite3WalkSelect(pWalker, pSel);
4895 pParse->pWith = pWith;
4897 for(pLeft=pSel; pLeft->pPrior; pLeft=pLeft->pPrior);
4898 pEList = pLeft->pEList;
4899 if( pCte->pCols ){
4900 if( pEList && pEList->nExpr!=pCte->pCols->nExpr ){
4901 sqlite3ErrorMsg(pParse, "table %s has %d values for %d columns",
4902 pCte->zName, pEList->nExpr, pCte->pCols->nExpr
4904 pParse->pWith = pSavedWith;
4905 return SQLITE_ERROR;
4907 pEList = pCte->pCols;
4910 sqlite3ColumnsFromExprList(pParse, pEList, &pTab->nCol, &pTab->aCol);
4911 if( bMayRecursive ){
4912 if( pSel->selFlags & SF_Recursive ){
4913 pCte->zCteErr = "multiple recursive references: %s";
4914 }else{
4915 pCte->zCteErr = "recursive reference in a subquery: %s";
4917 sqlite3WalkSelect(pWalker, pSel);
4919 pCte->zCteErr = 0;
4920 pParse->pWith = pSavedWith;
4923 return SQLITE_OK;
4925 #endif
4927 #ifndef SQLITE_OMIT_CTE
4929 ** If the SELECT passed as the second argument has an associated WITH
4930 ** clause, pop it from the stack stored as part of the Parse object.
4932 ** This function is used as the xSelectCallback2() callback by
4933 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4934 ** names and other FROM clause elements.
4936 static void selectPopWith(Walker *pWalker, Select *p){
4937 Parse *pParse = pWalker->pParse;
4938 if( OK_IF_ALWAYS_TRUE(pParse->pWith) && p->pPrior==0 ){
4939 With *pWith = findRightmost(p)->pWith;
4940 if( pWith!=0 ){
4941 assert( pParse->pWith==pWith || pParse->nErr );
4942 pParse->pWith = pWith->pOuter;
4946 #else
4947 #define selectPopWith 0
4948 #endif
4951 ** The SrcList_item structure passed as the second argument represents a
4952 ** sub-query in the FROM clause of a SELECT statement. This function
4953 ** allocates and populates the SrcList_item.pTab object. If successful,
4954 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
4955 ** SQLITE_NOMEM.
4957 int sqlite3ExpandSubquery(Parse *pParse, struct SrcList_item *pFrom){
4958 Select *pSel = pFrom->pSelect;
4959 Table *pTab;
4961 assert( pSel );
4962 pFrom->pTab = pTab = sqlite3DbMallocZero(pParse->db, sizeof(Table));
4963 if( pTab==0 ) return SQLITE_NOMEM;
4964 pTab->nTabRef = 1;
4965 if( pFrom->zAlias ){
4966 pTab->zName = sqlite3DbStrDup(pParse->db, pFrom->zAlias);
4967 }else{
4968 pTab->zName = sqlite3MPrintf(pParse->db, "subquery_%u", pSel->selId);
4970 while( pSel->pPrior ){ pSel = pSel->pPrior; }
4971 sqlite3ColumnsFromExprList(pParse, pSel->pEList,&pTab->nCol,&pTab->aCol);
4972 pTab->iPKey = -1;
4973 pTab->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
4974 pTab->tabFlags |= TF_Ephemeral;
4976 return pParse->nErr ? SQLITE_ERROR : SQLITE_OK;
4980 ** This routine is a Walker callback for "expanding" a SELECT statement.
4981 ** "Expanding" means to do the following:
4983 ** (1) Make sure VDBE cursor numbers have been assigned to every
4984 ** element of the FROM clause.
4986 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
4987 ** defines FROM clause. When views appear in the FROM clause,
4988 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
4989 ** that implements the view. A copy is made of the view's SELECT
4990 ** statement so that we can freely modify or delete that statement
4991 ** without worrying about messing up the persistent representation
4992 ** of the view.
4994 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
4995 ** on joins and the ON and USING clause of joins.
4997 ** (4) Scan the list of columns in the result set (pEList) looking
4998 ** for instances of the "*" operator or the TABLE.* operator.
4999 ** If found, expand each "*" to be every column in every table
5000 ** and TABLE.* to be every column in TABLE.
5003 static int selectExpander(Walker *pWalker, Select *p){
5004 Parse *pParse = pWalker->pParse;
5005 int i, j, k;
5006 SrcList *pTabList;
5007 ExprList *pEList;
5008 struct SrcList_item *pFrom;
5009 sqlite3 *db = pParse->db;
5010 Expr *pE, *pRight, *pExpr;
5011 u16 selFlags = p->selFlags;
5012 u32 elistFlags = 0;
5014 p->selFlags |= SF_Expanded;
5015 if( db->mallocFailed ){
5016 return WRC_Abort;
5018 assert( p->pSrc!=0 );
5019 if( (selFlags & SF_Expanded)!=0 ){
5020 return WRC_Prune;
5022 if( pWalker->eCode ){
5023 /* Renumber selId because it has been copied from a view */
5024 p->selId = ++pParse->nSelect;
5026 pTabList = p->pSrc;
5027 pEList = p->pEList;
5028 sqlite3WithPush(pParse, p->pWith, 0);
5030 /* Make sure cursor numbers have been assigned to all entries in
5031 ** the FROM clause of the SELECT statement.
5033 sqlite3SrcListAssignCursors(pParse, pTabList);
5035 /* Look up every table named in the FROM clause of the select. If
5036 ** an entry of the FROM clause is a subquery instead of a table or view,
5037 ** then create a transient table structure to describe the subquery.
5039 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5040 Table *pTab;
5041 assert( pFrom->fg.isRecursive==0 || pFrom->pTab!=0 );
5042 if( pFrom->pTab ) continue;
5043 assert( pFrom->fg.isRecursive==0 );
5044 #ifndef SQLITE_OMIT_CTE
5045 if( withExpand(pWalker, pFrom) ) return WRC_Abort;
5046 if( pFrom->pTab ) {} else
5047 #endif
5048 if( pFrom->zName==0 ){
5049 #ifndef SQLITE_OMIT_SUBQUERY
5050 Select *pSel = pFrom->pSelect;
5051 /* A sub-query in the FROM clause of a SELECT */
5052 assert( pSel!=0 );
5053 assert( pFrom->pTab==0 );
5054 if( sqlite3WalkSelect(pWalker, pSel) ) return WRC_Abort;
5055 if( sqlite3ExpandSubquery(pParse, pFrom) ) return WRC_Abort;
5056 #endif
5057 }else{
5058 /* An ordinary table or view name in the FROM clause */
5059 assert( pFrom->pTab==0 );
5060 pFrom->pTab = pTab = sqlite3LocateTableItem(pParse, 0, pFrom);
5061 if( pTab==0 ) return WRC_Abort;
5062 if( pTab->nTabRef>=0xffff ){
5063 sqlite3ErrorMsg(pParse, "too many references to \"%s\": max 65535",
5064 pTab->zName);
5065 pFrom->pTab = 0;
5066 return WRC_Abort;
5068 pTab->nTabRef++;
5069 if( !IsVirtual(pTab) && cannotBeFunction(pParse, pFrom) ){
5070 return WRC_Abort;
5072 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5073 if( IsVirtual(pTab) || pTab->pSelect ){
5074 i16 nCol;
5075 u8 eCodeOrig = pWalker->eCode;
5076 if( sqlite3ViewGetColumnNames(pParse, pTab) ) return WRC_Abort;
5077 assert( pFrom->pSelect==0 );
5078 if( pTab->pSelect && (db->flags & SQLITE_EnableView)==0 ){
5079 sqlite3ErrorMsg(pParse, "access to view \"%s\" prohibited",
5080 pTab->zName);
5082 #ifndef SQLITE_OMIT_VIRTUALTABLE
5083 if( IsVirtual(pTab)
5084 && pFrom->fg.fromDDL
5085 && ALWAYS(pTab->pVTable!=0)
5086 && pTab->pVTable->eVtabRisk > ((db->flags & SQLITE_TrustedSchema)!=0)
5088 sqlite3ErrorMsg(pParse, "unsafe use of virtual table \"%s\"",
5089 pTab->zName);
5091 #endif
5092 pFrom->pSelect = sqlite3SelectDup(db, pTab->pSelect, 0);
5093 nCol = pTab->nCol;
5094 pTab->nCol = -1;
5095 pWalker->eCode = 1; /* Turn on Select.selId renumbering */
5096 sqlite3WalkSelect(pWalker, pFrom->pSelect);
5097 pWalker->eCode = eCodeOrig;
5098 pTab->nCol = nCol;
5100 #endif
5103 /* Locate the index named by the INDEXED BY clause, if any. */
5104 if( sqlite3IndexedByLookup(pParse, pFrom) ){
5105 return WRC_Abort;
5109 /* Process NATURAL keywords, and ON and USING clauses of joins.
5111 if( pParse->nErr || db->mallocFailed || sqliteProcessJoin(pParse, p) ){
5112 return WRC_Abort;
5115 /* For every "*" that occurs in the column list, insert the names of
5116 ** all columns in all tables. And for every TABLE.* insert the names
5117 ** of all columns in TABLE. The parser inserted a special expression
5118 ** with the TK_ASTERISK operator for each "*" that it found in the column
5119 ** list. The following code just has to locate the TK_ASTERISK
5120 ** expressions and expand each one to the list of all columns in
5121 ** all tables.
5123 ** The first loop just checks to see if there are any "*" operators
5124 ** that need expanding.
5126 for(k=0; k<pEList->nExpr; k++){
5127 pE = pEList->a[k].pExpr;
5128 if( pE->op==TK_ASTERISK ) break;
5129 assert( pE->op!=TK_DOT || pE->pRight!=0 );
5130 assert( pE->op!=TK_DOT || (pE->pLeft!=0 && pE->pLeft->op==TK_ID) );
5131 if( pE->op==TK_DOT && pE->pRight->op==TK_ASTERISK ) break;
5132 elistFlags |= pE->flags;
5134 if( k<pEList->nExpr ){
5136 ** If we get here it means the result set contains one or more "*"
5137 ** operators that need to be expanded. Loop through each expression
5138 ** in the result set and expand them one by one.
5140 struct ExprList_item *a = pEList->a;
5141 ExprList *pNew = 0;
5142 int flags = pParse->db->flags;
5143 int longNames = (flags & SQLITE_FullColNames)!=0
5144 && (flags & SQLITE_ShortColNames)==0;
5146 for(k=0; k<pEList->nExpr; k++){
5147 pE = a[k].pExpr;
5148 elistFlags |= pE->flags;
5149 pRight = pE->pRight;
5150 assert( pE->op!=TK_DOT || pRight!=0 );
5151 if( pE->op!=TK_ASTERISK
5152 && (pE->op!=TK_DOT || pRight->op!=TK_ASTERISK)
5154 /* This particular expression does not need to be expanded.
5156 pNew = sqlite3ExprListAppend(pParse, pNew, a[k].pExpr);
5157 if( pNew ){
5158 pNew->a[pNew->nExpr-1].zEName = a[k].zEName;
5159 pNew->a[pNew->nExpr-1].eEName = a[k].eEName;
5160 a[k].zEName = 0;
5162 a[k].pExpr = 0;
5163 }else{
5164 /* This expression is a "*" or a "TABLE.*" and needs to be
5165 ** expanded. */
5166 int tableSeen = 0; /* Set to 1 when TABLE matches */
5167 char *zTName = 0; /* text of name of TABLE */
5168 if( pE->op==TK_DOT ){
5169 assert( pE->pLeft!=0 );
5170 assert( !ExprHasProperty(pE->pLeft, EP_IntValue) );
5171 zTName = pE->pLeft->u.zToken;
5173 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5174 Table *pTab = pFrom->pTab;
5175 Select *pSub = pFrom->pSelect;
5176 char *zTabName = pFrom->zAlias;
5177 const char *zSchemaName = 0;
5178 int iDb;
5179 if( zTabName==0 ){
5180 zTabName = pTab->zName;
5182 if( db->mallocFailed ) break;
5183 if( pSub==0 || (pSub->selFlags & SF_NestedFrom)==0 ){
5184 pSub = 0;
5185 if( zTName && sqlite3StrICmp(zTName, zTabName)!=0 ){
5186 continue;
5188 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
5189 zSchemaName = iDb>=0 ? db->aDb[iDb].zDbSName : "*";
5191 for(j=0; j<pTab->nCol; j++){
5192 char *zName = pTab->aCol[j].zName;
5193 char *zColname; /* The computed column name */
5194 char *zToFree; /* Malloced string that needs to be freed */
5195 Token sColname; /* Computed column name as a token */
5197 assert( zName );
5198 if( zTName && pSub
5199 && sqlite3MatchEName(&pSub->pEList->a[j], 0, zTName, 0)==0
5201 continue;
5204 /* If a column is marked as 'hidden', omit it from the expanded
5205 ** result-set list unless the SELECT has the SF_IncludeHidden
5206 ** bit set.
5208 if( (p->selFlags & SF_IncludeHidden)==0
5209 && IsHiddenColumn(&pTab->aCol[j])
5211 continue;
5213 tableSeen = 1;
5215 if( i>0 && zTName==0 ){
5216 if( (pFrom->fg.jointype & JT_NATURAL)!=0
5217 && tableAndColumnIndex(pTabList, i, zName, 0, 0, 1)
5219 /* In a NATURAL join, omit the join columns from the
5220 ** table to the right of the join */
5221 continue;
5223 if( sqlite3IdListIndex(pFrom->pUsing, zName)>=0 ){
5224 /* In a join with a USING clause, omit columns in the
5225 ** using clause from the table on the right. */
5226 continue;
5229 pRight = sqlite3Expr(db, TK_ID, zName);
5230 zColname = zName;
5231 zToFree = 0;
5232 if( longNames || pTabList->nSrc>1 ){
5233 Expr *pLeft;
5234 pLeft = sqlite3Expr(db, TK_ID, zTabName);
5235 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pRight);
5236 if( zSchemaName ){
5237 pLeft = sqlite3Expr(db, TK_ID, zSchemaName);
5238 pExpr = sqlite3PExpr(pParse, TK_DOT, pLeft, pExpr);
5240 if( longNames ){
5241 zColname = sqlite3MPrintf(db, "%s.%s", zTabName, zName);
5242 zToFree = zColname;
5244 }else{
5245 pExpr = pRight;
5247 pNew = sqlite3ExprListAppend(pParse, pNew, pExpr);
5248 sqlite3TokenInit(&sColname, zColname);
5249 sqlite3ExprListSetName(pParse, pNew, &sColname, 0);
5250 if( pNew && (p->selFlags & SF_NestedFrom)!=0 && !IN_RENAME_OBJECT ){
5251 struct ExprList_item *pX = &pNew->a[pNew->nExpr-1];
5252 sqlite3DbFree(db, pX->zEName);
5253 if( pSub ){
5254 pX->zEName = sqlite3DbStrDup(db, pSub->pEList->a[j].zEName);
5255 testcase( pX->zEName==0 );
5256 }else{
5257 pX->zEName = sqlite3MPrintf(db, "%s.%s.%s",
5258 zSchemaName, zTabName, zColname);
5259 testcase( pX->zEName==0 );
5261 pX->eEName = ENAME_TAB;
5263 sqlite3DbFree(db, zToFree);
5266 if( !tableSeen ){
5267 if( zTName ){
5268 sqlite3ErrorMsg(pParse, "no such table: %s", zTName);
5269 }else{
5270 sqlite3ErrorMsg(pParse, "no tables specified");
5275 sqlite3ExprListDelete(db, pEList);
5276 p->pEList = pNew;
5278 if( p->pEList ){
5279 if( p->pEList->nExpr>db->aLimit[SQLITE_LIMIT_COLUMN] ){
5280 sqlite3ErrorMsg(pParse, "too many columns in result set");
5281 return WRC_Abort;
5283 if( (elistFlags & (EP_HasFunc|EP_Subquery))!=0 ){
5284 p->selFlags |= SF_ComplexResult;
5287 return WRC_Continue;
5290 #if SQLITE_DEBUG
5292 ** Always assert. This xSelectCallback2 implementation proves that the
5293 ** xSelectCallback2 is never invoked.
5295 void sqlite3SelectWalkAssert2(Walker *NotUsed, Select *NotUsed2){
5296 UNUSED_PARAMETER2(NotUsed, NotUsed2);
5297 assert( 0 );
5299 #endif
5301 ** This routine "expands" a SELECT statement and all of its subqueries.
5302 ** For additional information on what it means to "expand" a SELECT
5303 ** statement, see the comment on the selectExpand worker callback above.
5305 ** Expanding a SELECT statement is the first step in processing a
5306 ** SELECT statement. The SELECT statement must be expanded before
5307 ** name resolution is performed.
5309 ** If anything goes wrong, an error message is written into pParse.
5310 ** The calling function can detect the problem by looking at pParse->nErr
5311 ** and/or pParse->db->mallocFailed.
5313 static void sqlite3SelectExpand(Parse *pParse, Select *pSelect){
5314 Walker w;
5315 w.xExprCallback = sqlite3ExprWalkNoop;
5316 w.pParse = pParse;
5317 if( OK_IF_ALWAYS_TRUE(pParse->hasCompound) ){
5318 w.xSelectCallback = convertCompoundSelectToSubquery;
5319 w.xSelectCallback2 = 0;
5320 sqlite3WalkSelect(&w, pSelect);
5322 w.xSelectCallback = selectExpander;
5323 w.xSelectCallback2 = selectPopWith;
5324 w.eCode = 0;
5325 sqlite3WalkSelect(&w, pSelect);
5329 #ifndef SQLITE_OMIT_SUBQUERY
5331 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5332 ** interface.
5334 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5335 ** information to the Table structure that represents the result set
5336 ** of that subquery.
5338 ** The Table structure that represents the result set was constructed
5339 ** by selectExpander() but the type and collation information was omitted
5340 ** at that point because identifiers had not yet been resolved. This
5341 ** routine is called after identifier resolution.
5343 static void selectAddSubqueryTypeInfo(Walker *pWalker, Select *p){
5344 Parse *pParse;
5345 int i;
5346 SrcList *pTabList;
5347 struct SrcList_item *pFrom;
5349 assert( p->selFlags & SF_Resolved );
5350 if( p->selFlags & SF_HasTypeInfo ) return;
5351 p->selFlags |= SF_HasTypeInfo;
5352 pParse = pWalker->pParse;
5353 pTabList = p->pSrc;
5354 for(i=0, pFrom=pTabList->a; i<pTabList->nSrc; i++, pFrom++){
5355 Table *pTab = pFrom->pTab;
5356 assert( pTab!=0 );
5357 if( (pTab->tabFlags & TF_Ephemeral)!=0 ){
5358 /* A sub-query in the FROM clause of a SELECT */
5359 Select *pSel = pFrom->pSelect;
5360 if( pSel ){
5361 while( pSel->pPrior ) pSel = pSel->pPrior;
5362 sqlite3SelectAddColumnTypeAndCollation(pParse, pTab, pSel,
5363 SQLITE_AFF_NONE);
5368 #endif
5372 ** This routine adds datatype and collating sequence information to
5373 ** the Table structures of all FROM-clause subqueries in a
5374 ** SELECT statement.
5376 ** Use this routine after name resolution.
5378 static void sqlite3SelectAddTypeInfo(Parse *pParse, Select *pSelect){
5379 #ifndef SQLITE_OMIT_SUBQUERY
5380 Walker w;
5381 w.xSelectCallback = sqlite3SelectWalkNoop;
5382 w.xSelectCallback2 = selectAddSubqueryTypeInfo;
5383 w.xExprCallback = sqlite3ExprWalkNoop;
5384 w.pParse = pParse;
5385 sqlite3WalkSelect(&w, pSelect);
5386 #endif
5391 ** This routine sets up a SELECT statement for processing. The
5392 ** following is accomplished:
5394 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
5395 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
5396 ** * ON and USING clauses are shifted into WHERE statements
5397 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
5398 ** * Identifiers in expression are matched to tables.
5400 ** This routine acts recursively on all subqueries within the SELECT.
5402 void sqlite3SelectPrep(
5403 Parse *pParse, /* The parser context */
5404 Select *p, /* The SELECT statement being coded. */
5405 NameContext *pOuterNC /* Name context for container */
5407 assert( p!=0 || pParse->db->mallocFailed );
5408 if( pParse->db->mallocFailed ) return;
5409 if( p->selFlags & SF_HasTypeInfo ) return;
5410 sqlite3SelectExpand(pParse, p);
5411 if( pParse->nErr || pParse->db->mallocFailed ) return;
5412 sqlite3ResolveSelectNames(pParse, p, pOuterNC);
5413 if( pParse->nErr || pParse->db->mallocFailed ) return;
5414 sqlite3SelectAddTypeInfo(pParse, p);
5418 ** Reset the aggregate accumulator.
5420 ** The aggregate accumulator is a set of memory cells that hold
5421 ** intermediate results while calculating an aggregate. This
5422 ** routine generates code that stores NULLs in all of those memory
5423 ** cells.
5425 static void resetAccumulator(Parse *pParse, AggInfo *pAggInfo){
5426 Vdbe *v = pParse->pVdbe;
5427 int i;
5428 struct AggInfo_func *pFunc;
5429 int nReg = pAggInfo->nFunc + pAggInfo->nColumn;
5430 if( nReg==0 ) return;
5431 if( pParse->nErr || pParse->db->mallocFailed ) return;
5432 #ifdef SQLITE_DEBUG
5433 /* Verify that all AggInfo registers are within the range specified by
5434 ** AggInfo.mnReg..AggInfo.mxReg */
5435 assert( nReg==pAggInfo->mxReg-pAggInfo->mnReg+1 );
5436 for(i=0; i<pAggInfo->nColumn; i++){
5437 assert( pAggInfo->aCol[i].iMem>=pAggInfo->mnReg
5438 && pAggInfo->aCol[i].iMem<=pAggInfo->mxReg );
5440 for(i=0; i<pAggInfo->nFunc; i++){
5441 assert( pAggInfo->aFunc[i].iMem>=pAggInfo->mnReg
5442 && pAggInfo->aFunc[i].iMem<=pAggInfo->mxReg );
5444 #endif
5445 sqlite3VdbeAddOp3(v, OP_Null, 0, pAggInfo->mnReg, pAggInfo->mxReg);
5446 for(pFunc=pAggInfo->aFunc, i=0; i<pAggInfo->nFunc; i++, pFunc++){
5447 if( pFunc->iDistinct>=0 ){
5448 Expr *pE = pFunc->pFExpr;
5449 assert( !ExprHasProperty(pE, EP_xIsSelect) );
5450 if( pE->x.pList==0 || pE->x.pList->nExpr!=1 ){
5451 sqlite3ErrorMsg(pParse, "DISTINCT aggregates must have exactly one "
5452 "argument");
5453 pFunc->iDistinct = -1;
5454 }else{
5455 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pE->x.pList,0,0);
5456 sqlite3VdbeAddOp4(v, OP_OpenEphemeral, pFunc->iDistinct, 0, 0,
5457 (char*)pKeyInfo, P4_KEYINFO);
5464 ** Invoke the OP_AggFinalize opcode for every aggregate function
5465 ** in the AggInfo structure.
5467 static void finalizeAggFunctions(Parse *pParse, AggInfo *pAggInfo){
5468 Vdbe *v = pParse->pVdbe;
5469 int i;
5470 struct AggInfo_func *pF;
5471 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5472 ExprList *pList = pF->pFExpr->x.pList;
5473 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) );
5474 sqlite3VdbeAddOp2(v, OP_AggFinal, pF->iMem, pList ? pList->nExpr : 0);
5475 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5481 ** Update the accumulator memory cells for an aggregate based on
5482 ** the current cursor position.
5484 ** If regAcc is non-zero and there are no min() or max() aggregates
5485 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5486 ** registers if register regAcc contains 0. The caller will take care
5487 ** of setting and clearing regAcc.
5489 static void updateAccumulator(Parse *pParse, int regAcc, AggInfo *pAggInfo){
5490 Vdbe *v = pParse->pVdbe;
5491 int i;
5492 int regHit = 0;
5493 int addrHitTest = 0;
5494 struct AggInfo_func *pF;
5495 struct AggInfo_col *pC;
5497 pAggInfo->directMode = 1;
5498 for(i=0, pF=pAggInfo->aFunc; i<pAggInfo->nFunc; i++, pF++){
5499 int nArg;
5500 int addrNext = 0;
5501 int regAgg;
5502 ExprList *pList = pF->pFExpr->x.pList;
5503 assert( !ExprHasProperty(pF->pFExpr, EP_xIsSelect) );
5504 assert( !IsWindowFunc(pF->pFExpr) );
5505 if( ExprHasProperty(pF->pFExpr, EP_WinFunc) ){
5506 Expr *pFilter = pF->pFExpr->y.pWin->pFilter;
5507 if( pAggInfo->nAccumulator
5508 && (pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
5509 && regAcc
5511 /* If regAcc==0, there there exists some min() or max() function
5512 ** without a FILTER clause that will ensure the magnet registers
5513 ** are populated. */
5514 if( regHit==0 ) regHit = ++pParse->nMem;
5515 /* If this is the first row of the group (regAcc contains 0), clear the
5516 ** "magnet" register regHit so that the accumulator registers
5517 ** are populated if the FILTER clause jumps over the the
5518 ** invocation of min() or max() altogether. Or, if this is not
5519 ** the first row (regAcc contains 1), set the magnet register so that
5520 ** the accumulators are not populated unless the min()/max() is invoked
5521 ** and indicates that they should be. */
5522 sqlite3VdbeAddOp2(v, OP_Copy, regAcc, regHit);
5524 addrNext = sqlite3VdbeMakeLabel(pParse);
5525 sqlite3ExprIfFalse(pParse, pFilter, addrNext, SQLITE_JUMPIFNULL);
5527 if( pList ){
5528 nArg = pList->nExpr;
5529 regAgg = sqlite3GetTempRange(pParse, nArg);
5530 sqlite3ExprCodeExprList(pParse, pList, regAgg, 0, SQLITE_ECEL_DUP);
5531 }else{
5532 nArg = 0;
5533 regAgg = 0;
5535 if( pF->iDistinct>=0 ){
5536 if( addrNext==0 ){
5537 addrNext = sqlite3VdbeMakeLabel(pParse);
5539 testcase( nArg==0 ); /* Error condition */
5540 testcase( nArg>1 ); /* Also an error */
5541 codeDistinct(pParse, pF->iDistinct, addrNext, 1, regAgg);
5543 if( pF->pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
5544 CollSeq *pColl = 0;
5545 struct ExprList_item *pItem;
5546 int j;
5547 assert( pList!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
5548 for(j=0, pItem=pList->a; !pColl && j<nArg; j++, pItem++){
5549 pColl = sqlite3ExprCollSeq(pParse, pItem->pExpr);
5551 if( !pColl ){
5552 pColl = pParse->db->pDfltColl;
5554 if( regHit==0 && pAggInfo->nAccumulator ) regHit = ++pParse->nMem;
5555 sqlite3VdbeAddOp4(v, OP_CollSeq, regHit, 0, 0, (char *)pColl, P4_COLLSEQ);
5557 sqlite3VdbeAddOp3(v, OP_AggStep, 0, regAgg, pF->iMem);
5558 sqlite3VdbeAppendP4(v, pF->pFunc, P4_FUNCDEF);
5559 sqlite3VdbeChangeP5(v, (u8)nArg);
5560 sqlite3ReleaseTempRange(pParse, regAgg, nArg);
5561 if( addrNext ){
5562 sqlite3VdbeResolveLabel(v, addrNext);
5565 if( regHit==0 && pAggInfo->nAccumulator ){
5566 regHit = regAcc;
5568 if( regHit ){
5569 addrHitTest = sqlite3VdbeAddOp1(v, OP_If, regHit); VdbeCoverage(v);
5571 for(i=0, pC=pAggInfo->aCol; i<pAggInfo->nAccumulator; i++, pC++){
5572 sqlite3ExprCode(pParse, pC->pCExpr, pC->iMem);
5575 pAggInfo->directMode = 0;
5576 if( addrHitTest ){
5577 sqlite3VdbeJumpHereOrPopInst(v, addrHitTest);
5582 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5583 ** count(*) query ("SELECT count(*) FROM pTab").
5585 #ifndef SQLITE_OMIT_EXPLAIN
5586 static void explainSimpleCount(
5587 Parse *pParse, /* Parse context */
5588 Table *pTab, /* Table being queried */
5589 Index *pIdx /* Index used to optimize scan, or NULL */
5591 if( pParse->explain==2 ){
5592 int bCover = (pIdx!=0 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pIdx)));
5593 sqlite3VdbeExplain(pParse, 0, "SCAN TABLE %s%s%s",
5594 pTab->zName,
5595 bCover ? " USING COVERING INDEX " : "",
5596 bCover ? pIdx->zName : ""
5600 #else
5601 # define explainSimpleCount(a,b,c)
5602 #endif
5605 ** sqlite3WalkExpr() callback used by havingToWhere().
5607 ** If the node passed to the callback is a TK_AND node, return
5608 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5610 ** Otherwise, return WRC_Prune. In this case, also check if the
5611 ** sub-expression matches the criteria for being moved to the WHERE
5612 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5613 ** within the HAVING expression with a constant "1".
5615 static int havingToWhereExprCb(Walker *pWalker, Expr *pExpr){
5616 if( pExpr->op!=TK_AND ){
5617 Select *pS = pWalker->u.pSelect;
5618 if( sqlite3ExprIsConstantOrGroupBy(pWalker->pParse, pExpr, pS->pGroupBy)
5619 && ExprAlwaysFalse(pExpr)==0
5621 sqlite3 *db = pWalker->pParse->db;
5622 Expr *pNew = sqlite3Expr(db, TK_INTEGER, "1");
5623 if( pNew ){
5624 Expr *pWhere = pS->pWhere;
5625 SWAP(Expr, *pNew, *pExpr);
5626 pNew = sqlite3ExprAnd(pWalker->pParse, pWhere, pNew);
5627 pS->pWhere = pNew;
5628 pWalker->eCode = 1;
5631 return WRC_Prune;
5633 return WRC_Continue;
5637 ** Transfer eligible terms from the HAVING clause of a query, which is
5638 ** processed after grouping, to the WHERE clause, which is processed before
5639 ** grouping. For example, the query:
5641 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5643 ** can be rewritten as:
5645 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5647 ** A term of the HAVING expression is eligible for transfer if it consists
5648 ** entirely of constants and expressions that are also GROUP BY terms that
5649 ** use the "BINARY" collation sequence.
5651 static void havingToWhere(Parse *pParse, Select *p){
5652 Walker sWalker;
5653 memset(&sWalker, 0, sizeof(sWalker));
5654 sWalker.pParse = pParse;
5655 sWalker.xExprCallback = havingToWhereExprCb;
5656 sWalker.u.pSelect = p;
5657 sqlite3WalkExpr(&sWalker, p->pHaving);
5658 #if SELECTTRACE_ENABLED
5659 if( sWalker.eCode && (sqlite3_unsupported_selecttrace & 0x100)!=0 ){
5660 SELECTTRACE(0x100,pParse,p,("Move HAVING terms into WHERE:\n"));
5661 sqlite3TreeViewSelect(0, p, 0);
5663 #endif
5667 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5668 ** If it is, then return the SrcList_item for the prior view. If it is not,
5669 ** then return 0.
5671 static struct SrcList_item *isSelfJoinView(
5672 SrcList *pTabList, /* Search for self-joins in this FROM clause */
5673 struct SrcList_item *pThis /* Search for prior reference to this subquery */
5675 struct SrcList_item *pItem;
5676 for(pItem = pTabList->a; pItem<pThis; pItem++){
5677 Select *pS1;
5678 if( pItem->pSelect==0 ) continue;
5679 if( pItem->fg.viaCoroutine ) continue;
5680 if( pItem->zName==0 ) continue;
5681 assert( pItem->pTab!=0 );
5682 assert( pThis->pTab!=0 );
5683 if( pItem->pTab->pSchema!=pThis->pTab->pSchema ) continue;
5684 if( sqlite3_stricmp(pItem->zName, pThis->zName)!=0 ) continue;
5685 pS1 = pItem->pSelect;
5686 if( pItem->pTab->pSchema==0 && pThis->pSelect->selId!=pS1->selId ){
5687 /* The query flattener left two different CTE tables with identical
5688 ** names in the same FROM clause. */
5689 continue;
5691 if( sqlite3ExprCompare(0, pThis->pSelect->pWhere, pS1->pWhere, -1)
5692 || sqlite3ExprCompare(0, pThis->pSelect->pHaving, pS1->pHaving, -1)
5694 /* The view was modified by some other optimization such as
5695 ** pushDownWhereTerms() */
5696 continue;
5698 return pItem;
5700 return 0;
5703 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5705 ** Attempt to transform a query of the form
5707 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5709 ** Into this:
5711 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5713 ** The transformation only works if all of the following are true:
5715 ** * The subquery is a UNION ALL of two or more terms
5716 ** * The subquery does not have a LIMIT clause
5717 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5718 ** * The outer query is a simple count(*) with no WHERE clause or other
5719 ** extraneous syntax.
5721 ** Return TRUE if the optimization is undertaken.
5723 static int countOfViewOptimization(Parse *pParse, Select *p){
5724 Select *pSub, *pPrior;
5725 Expr *pExpr;
5726 Expr *pCount;
5727 sqlite3 *db;
5728 if( (p->selFlags & SF_Aggregate)==0 ) return 0; /* This is an aggregate */
5729 if( p->pEList->nExpr!=1 ) return 0; /* Single result column */
5730 if( p->pWhere ) return 0;
5731 if( p->pGroupBy ) return 0;
5732 pExpr = p->pEList->a[0].pExpr;
5733 if( pExpr->op!=TK_AGG_FUNCTION ) return 0; /* Result is an aggregate */
5734 if( sqlite3_stricmp(pExpr->u.zToken,"count") ) return 0; /* Is count() */
5735 if( pExpr->x.pList!=0 ) return 0; /* Must be count(*) */
5736 if( p->pSrc->nSrc!=1 ) return 0; /* One table in FROM */
5737 pSub = p->pSrc->a[0].pSelect;
5738 if( pSub==0 ) return 0; /* The FROM is a subquery */
5739 if( pSub->pPrior==0 ) return 0; /* Must be a compound ry */
5741 if( pSub->op!=TK_ALL && pSub->pPrior ) return 0; /* Must be UNION ALL */
5742 if( pSub->pWhere ) return 0; /* No WHERE clause */
5743 if( pSub->pLimit ) return 0; /* No LIMIT clause */
5744 if( pSub->selFlags & SF_Aggregate ) return 0; /* Not an aggregate */
5745 pSub = pSub->pPrior; /* Repeat over compound */
5746 }while( pSub );
5748 /* If we reach this point then it is OK to perform the transformation */
5750 db = pParse->db;
5751 pCount = pExpr;
5752 pExpr = 0;
5753 pSub = p->pSrc->a[0].pSelect;
5754 p->pSrc->a[0].pSelect = 0;
5755 sqlite3SrcListDelete(db, p->pSrc);
5756 p->pSrc = sqlite3DbMallocZero(pParse->db, sizeof(*p->pSrc));
5757 while( pSub ){
5758 Expr *pTerm;
5759 pPrior = pSub->pPrior;
5760 pSub->pPrior = 0;
5761 pSub->pNext = 0;
5762 pSub->selFlags |= SF_Aggregate;
5763 pSub->selFlags &= ~SF_Compound;
5764 pSub->nSelectRow = 0;
5765 sqlite3ExprListDelete(db, pSub->pEList);
5766 pTerm = pPrior ? sqlite3ExprDup(db, pCount, 0) : pCount;
5767 pSub->pEList = sqlite3ExprListAppend(pParse, 0, pTerm);
5768 pTerm = sqlite3PExpr(pParse, TK_SELECT, 0, 0);
5769 sqlite3PExprAddSelect(pParse, pTerm, pSub);
5770 if( pExpr==0 ){
5771 pExpr = pTerm;
5772 }else{
5773 pExpr = sqlite3PExpr(pParse, TK_PLUS, pTerm, pExpr);
5775 pSub = pPrior;
5777 p->pEList->a[0].pExpr = pExpr;
5778 p->selFlags &= ~SF_Aggregate;
5780 #if SELECTTRACE_ENABLED
5781 if( sqlite3_unsupported_selecttrace & 0x400 ){
5782 SELECTTRACE(0x400,pParse,p,("After count-of-view optimization:\n"));
5783 sqlite3TreeViewSelect(0, p, 0);
5785 #endif
5786 return 1;
5788 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5791 ** Generate code for the SELECT statement given in the p argument.
5793 ** The results are returned according to the SelectDest structure.
5794 ** See comments in sqliteInt.h for further information.
5796 ** This routine returns the number of errors. If any errors are
5797 ** encountered, then an appropriate error message is left in
5798 ** pParse->zErrMsg.
5800 ** This routine does NOT free the Select structure passed in. The
5801 ** calling function needs to do that.
5803 int sqlite3Select(
5804 Parse *pParse, /* The parser context */
5805 Select *p, /* The SELECT statement being coded. */
5806 SelectDest *pDest /* What to do with the query results */
5808 int i, j; /* Loop counters */
5809 WhereInfo *pWInfo; /* Return from sqlite3WhereBegin() */
5810 Vdbe *v; /* The virtual machine under construction */
5811 int isAgg; /* True for select lists like "count(*)" */
5812 ExprList *pEList = 0; /* List of columns to extract. */
5813 SrcList *pTabList; /* List of tables to select from */
5814 Expr *pWhere; /* The WHERE clause. May be NULL */
5815 ExprList *pGroupBy; /* The GROUP BY clause. May be NULL */
5816 Expr *pHaving; /* The HAVING clause. May be NULL */
5817 AggInfo *pAggInfo = 0; /* Aggregate information */
5818 int rc = 1; /* Value to return from this function */
5819 DistinctCtx sDistinct; /* Info on how to code the DISTINCT keyword */
5820 SortCtx sSort; /* Info on how to code the ORDER BY clause */
5821 int iEnd; /* Address of the end of the query */
5822 sqlite3 *db; /* The database connection */
5823 ExprList *pMinMaxOrderBy = 0; /* Added ORDER BY for min/max queries */
5824 u8 minMaxFlag; /* Flag for min/max queries */
5826 db = pParse->db;
5827 v = sqlite3GetVdbe(pParse);
5828 if( p==0 || db->mallocFailed || pParse->nErr ){
5829 return 1;
5831 if( sqlite3AuthCheck(pParse, SQLITE_SELECT, 0, 0, 0) ) return 1;
5832 #if SELECTTRACE_ENABLED
5833 SELECTTRACE(1,pParse,p, ("begin processing:\n", pParse->addrExplain));
5834 if( sqlite3_unsupported_selecttrace & 0x100 ){
5835 sqlite3TreeViewSelect(0, p, 0);
5837 #endif
5839 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistFifo );
5840 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Fifo );
5841 assert( p->pOrderBy==0 || pDest->eDest!=SRT_DistQueue );
5842 assert( p->pOrderBy==0 || pDest->eDest!=SRT_Queue );
5843 if( IgnorableDistinct(pDest) ){
5844 assert(pDest->eDest==SRT_Exists || pDest->eDest==SRT_Union ||
5845 pDest->eDest==SRT_Except || pDest->eDest==SRT_Discard ||
5846 pDest->eDest==SRT_DistQueue || pDest->eDest==SRT_DistFifo );
5847 /* All of these destinations are also able to ignore the ORDER BY clause */
5848 sqlite3ExprListDelete(db, p->pOrderBy);
5849 p->pOrderBy = 0;
5850 p->selFlags &= ~SF_Distinct;
5851 p->selFlags |= SF_NoopOrderBy;
5853 sqlite3SelectPrep(pParse, p, 0);
5854 if( pParse->nErr || db->mallocFailed ){
5855 goto select_end;
5857 assert( p->pEList!=0 );
5858 #if SELECTTRACE_ENABLED
5859 if( sqlite3_unsupported_selecttrace & 0x104 ){
5860 SELECTTRACE(0x104,pParse,p, ("after name resolution:\n"));
5861 sqlite3TreeViewSelect(0, p, 0);
5863 #endif
5865 /* If the SF_UpdateFrom flag is set, then this function is being called
5866 ** as part of populating the temp table for an UPDATE...FROM statement.
5867 ** In this case, it is an error if the target object (pSrc->a[0]) name
5868 ** or alias is duplicated within FROM clause (pSrc->a[1..n]). */
5869 if( p->selFlags & SF_UpdateFrom ){
5870 struct SrcList_item *p0 = &p->pSrc->a[0];
5871 for(i=1; i<p->pSrc->nSrc; i++){
5872 struct SrcList_item *p1 = &p->pSrc->a[i];
5873 if( p0->pTab==p1->pTab && 0==sqlite3_stricmp(p0->zAlias, p1->zAlias) ){
5874 sqlite3ErrorMsg(pParse,
5875 "target object/alias may not appear in FROM clause: %s",
5876 p0->zAlias ? p0->zAlias : p0->pTab->zName
5878 goto select_end;
5883 if( pDest->eDest==SRT_Output ){
5884 generateColumnNames(pParse, p);
5887 #ifndef SQLITE_OMIT_WINDOWFUNC
5888 rc = sqlite3WindowRewrite(pParse, p);
5889 if( rc ){
5890 assert( db->mallocFailed || pParse->nErr>0 );
5891 goto select_end;
5893 #if SELECTTRACE_ENABLED
5894 if( p->pWin && (sqlite3_unsupported_selecttrace & 0x108)!=0 ){
5895 SELECTTRACE(0x104,pParse,p, ("after window rewrite:\n"));
5896 sqlite3TreeViewSelect(0, p, 0);
5898 #endif
5899 #endif /* SQLITE_OMIT_WINDOWFUNC */
5900 pTabList = p->pSrc;
5901 isAgg = (p->selFlags & SF_Aggregate)!=0;
5902 memset(&sSort, 0, sizeof(sSort));
5903 sSort.pOrderBy = p->pOrderBy;
5905 /* Try to do various optimizations (flattening subqueries, and strength
5906 ** reduction of join operators) in the FROM clause up into the main query
5908 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5909 for(i=0; !p->pPrior && i<pTabList->nSrc; i++){
5910 struct SrcList_item *pItem = &pTabList->a[i];
5911 Select *pSub = pItem->pSelect;
5912 Table *pTab = pItem->pTab;
5914 /* The expander should have already created transient Table objects
5915 ** even for FROM clause elements such as subqueries that do not correspond
5916 ** to a real table */
5917 assert( pTab!=0 );
5919 /* Convert LEFT JOIN into JOIN if there are terms of the right table
5920 ** of the LEFT JOIN used in the WHERE clause.
5922 if( (pItem->fg.jointype & JT_LEFT)!=0
5923 && sqlite3ExprImpliesNonNullRow(p->pWhere, pItem->iCursor)
5924 && OptimizationEnabled(db, SQLITE_SimplifyJoin)
5926 SELECTTRACE(0x100,pParse,p,
5927 ("LEFT-JOIN simplifies to JOIN on term %d\n",i));
5928 pItem->fg.jointype &= ~(JT_LEFT|JT_OUTER);
5929 unsetJoinExpr(p->pWhere, pItem->iCursor);
5932 /* No futher action if this term of the FROM clause is no a subquery */
5933 if( pSub==0 ) continue;
5935 /* Catch mismatch in the declared columns of a view and the number of
5936 ** columns in the SELECT on the RHS */
5937 if( pTab->nCol!=pSub->pEList->nExpr ){
5938 sqlite3ErrorMsg(pParse, "expected %d columns for '%s' but got %d",
5939 pTab->nCol, pTab->zName, pSub->pEList->nExpr);
5940 goto select_end;
5943 /* Do not try to flatten an aggregate subquery.
5945 ** Flattening an aggregate subquery is only possible if the outer query
5946 ** is not a join. But if the outer query is not a join, then the subquery
5947 ** will be implemented as a co-routine and there is no advantage to
5948 ** flattening in that case.
5950 if( (pSub->selFlags & SF_Aggregate)!=0 ) continue;
5951 assert( pSub->pGroupBy==0 );
5953 /* If the outer query contains a "complex" result set (that is,
5954 ** if the result set of the outer query uses functions or subqueries)
5955 ** and if the subquery contains an ORDER BY clause and if
5956 ** it will be implemented as a co-routine, then do not flatten. This
5957 ** restriction allows SQL constructs like this:
5959 ** SELECT expensive_function(x)
5960 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5962 ** The expensive_function() is only computed on the 10 rows that
5963 ** are output, rather than every row of the table.
5965 ** The requirement that the outer query have a complex result set
5966 ** means that flattening does occur on simpler SQL constraints without
5967 ** the expensive_function() like:
5969 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5971 if( pSub->pOrderBy!=0
5972 && i==0
5973 && (p->selFlags & SF_ComplexResult)!=0
5974 && (pTabList->nSrc==1
5975 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0)
5977 continue;
5980 if( flattenSubquery(pParse, p, i, isAgg) ){
5981 if( pParse->nErr ) goto select_end;
5982 /* This subquery can be absorbed into its parent. */
5983 i = -1;
5985 pTabList = p->pSrc;
5986 if( db->mallocFailed ) goto select_end;
5987 if( !IgnorableOrderby(pDest) ){
5988 sSort.pOrderBy = p->pOrderBy;
5991 #endif
5993 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5994 /* Handle compound SELECT statements using the separate multiSelect()
5995 ** procedure.
5997 if( p->pPrior ){
5998 rc = multiSelect(pParse, p, pDest);
5999 #if SELECTTRACE_ENABLED
6000 SELECTTRACE(0x1,pParse,p,("end compound-select processing\n"));
6001 if( (sqlite3_unsupported_selecttrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6002 sqlite3TreeViewSelect(0, p, 0);
6004 #endif
6005 if( p->pNext==0 ) ExplainQueryPlanPop(pParse);
6006 return rc;
6008 #endif
6010 /* Do the WHERE-clause constant propagation optimization if this is
6011 ** a join. No need to speed time on this operation for non-join queries
6012 ** as the equivalent optimization will be handled by query planner in
6013 ** sqlite3WhereBegin().
6015 if( pTabList->nSrc>1
6016 && OptimizationEnabled(db, SQLITE_PropagateConst)
6017 && propagateConstants(pParse, p)
6019 #if SELECTTRACE_ENABLED
6020 if( sqlite3_unsupported_selecttrace & 0x100 ){
6021 SELECTTRACE(0x100,pParse,p,("After constant propagation:\n"));
6022 sqlite3TreeViewSelect(0, p, 0);
6024 #endif
6025 }else{
6026 SELECTTRACE(0x100,pParse,p,("Constant propagation not helpful\n"));
6029 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6030 if( OptimizationEnabled(db, SQLITE_QueryFlattener|SQLITE_CountOfView)
6031 && countOfViewOptimization(pParse, p)
6033 if( db->mallocFailed ) goto select_end;
6034 pEList = p->pEList;
6035 pTabList = p->pSrc;
6037 #endif
6039 /* For each term in the FROM clause, do two things:
6040 ** (1) Authorized unreferenced tables
6041 ** (2) Generate code for all sub-queries
6043 for(i=0; i<pTabList->nSrc; i++){
6044 struct SrcList_item *pItem = &pTabList->a[i];
6045 SelectDest dest;
6046 Select *pSub;
6047 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6048 const char *zSavedAuthContext;
6049 #endif
6051 /* Issue SQLITE_READ authorizations with a fake column name for any
6052 ** tables that are referenced but from which no values are extracted.
6053 ** Examples of where these kinds of null SQLITE_READ authorizations
6054 ** would occur:
6056 ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
6057 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
6059 ** The fake column name is an empty string. It is possible for a table to
6060 ** have a column named by the empty string, in which case there is no way to
6061 ** distinguish between an unreferenced table and an actual reference to the
6062 ** "" column. The original design was for the fake column name to be a NULL,
6063 ** which would be unambiguous. But legacy authorization callbacks might
6064 ** assume the column name is non-NULL and segfault. The use of an empty
6065 ** string for the fake column name seems safer.
6067 if( pItem->colUsed==0 && pItem->zName!=0 ){
6068 sqlite3AuthCheck(pParse, SQLITE_READ, pItem->zName, "", pItem->zDatabase);
6071 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6072 /* Generate code for all sub-queries in the FROM clause
6074 pSub = pItem->pSelect;
6075 if( pSub==0 ) continue;
6077 /* The code for a subquery should only be generated once, though it is
6078 ** technically harmless for it to be generated multiple times. The
6079 ** following assert() will detect if something changes to cause
6080 ** the same subquery to be coded multiple times, as a signal to the
6081 ** developers to try to optimize the situation.
6083 ** Update 2019-07-24:
6084 ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40.
6085 ** The dbsqlfuzz fuzzer found a case where the same subquery gets
6086 ** coded twice. So this assert() now becomes a testcase(). It should
6087 ** be very rare, though.
6089 testcase( pItem->addrFillSub!=0 );
6091 /* Increment Parse.nHeight by the height of the largest expression
6092 ** tree referred to by this, the parent select. The child select
6093 ** may contain expression trees of at most
6094 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
6095 ** more conservative than necessary, but much easier than enforcing
6096 ** an exact limit.
6098 pParse->nHeight += sqlite3SelectExprHeight(p);
6100 /* Make copies of constant WHERE-clause terms in the outer query down
6101 ** inside the subquery. This can help the subquery to run more efficiently.
6103 if( OptimizationEnabled(db, SQLITE_PushDown)
6104 && pushDownWhereTerms(pParse, pSub, p->pWhere, pItem->iCursor,
6105 (pItem->fg.jointype & JT_OUTER)!=0)
6107 #if SELECTTRACE_ENABLED
6108 if( sqlite3_unsupported_selecttrace & 0x100 ){
6109 SELECTTRACE(0x100,pParse,p,
6110 ("After WHERE-clause push-down into subquery %d:\n", pSub->selId));
6111 sqlite3TreeViewSelect(0, p, 0);
6113 #endif
6114 }else{
6115 SELECTTRACE(0x100,pParse,p,("Push-down not possible\n"));
6118 zSavedAuthContext = pParse->zAuthContext;
6119 pParse->zAuthContext = pItem->zName;
6121 /* Generate code to implement the subquery
6123 ** The subquery is implemented as a co-routine if the subquery is
6124 ** guaranteed to be the outer loop (so that it does not need to be
6125 ** computed more than once)
6127 ** TODO: Are there other reasons beside (1) to use a co-routine
6128 ** implementation?
6130 if( i==0
6131 && (pTabList->nSrc==1
6132 || (pTabList->a[1].fg.jointype&(JT_LEFT|JT_CROSS))!=0) /* (1) */
6134 /* Implement a co-routine that will return a single row of the result
6135 ** set on each invocation.
6137 int addrTop = sqlite3VdbeCurrentAddr(v)+1;
6139 pItem->regReturn = ++pParse->nMem;
6140 sqlite3VdbeAddOp3(v, OP_InitCoroutine, pItem->regReturn, 0, addrTop);
6141 VdbeComment((v, "%s", pItem->pTab->zName));
6142 pItem->addrFillSub = addrTop;
6143 sqlite3SelectDestInit(&dest, SRT_Coroutine, pItem->regReturn);
6144 ExplainQueryPlan((pParse, 1, "CO-ROUTINE %u", pSub->selId));
6145 sqlite3Select(pParse, pSub, &dest);
6146 pItem->pTab->nRowLogEst = pSub->nSelectRow;
6147 pItem->fg.viaCoroutine = 1;
6148 pItem->regResult = dest.iSdst;
6149 sqlite3VdbeEndCoroutine(v, pItem->regReturn);
6150 sqlite3VdbeJumpHere(v, addrTop-1);
6151 sqlite3ClearTempRegCache(pParse);
6152 }else{
6153 /* Generate a subroutine that will fill an ephemeral table with
6154 ** the content of this subquery. pItem->addrFillSub will point
6155 ** to the address of the generated subroutine. pItem->regReturn
6156 ** is a register allocated to hold the subroutine return address
6158 int topAddr;
6159 int onceAddr = 0;
6160 int retAddr;
6161 struct SrcList_item *pPrior;
6163 testcase( pItem->addrFillSub==0 ); /* Ticket c52b09c7f38903b1311 */
6164 pItem->regReturn = ++pParse->nMem;
6165 topAddr = sqlite3VdbeAddOp2(v, OP_Integer, 0, pItem->regReturn);
6166 pItem->addrFillSub = topAddr+1;
6167 if( pItem->fg.isCorrelated==0 ){
6168 /* If the subquery is not correlated and if we are not inside of
6169 ** a trigger, then we only need to compute the value of the subquery
6170 ** once. */
6171 onceAddr = sqlite3VdbeAddOp0(v, OP_Once); VdbeCoverage(v);
6172 VdbeComment((v, "materialize \"%s\"", pItem->pTab->zName));
6173 }else{
6174 VdbeNoopComment((v, "materialize \"%s\"", pItem->pTab->zName));
6176 pPrior = isSelfJoinView(pTabList, pItem);
6177 if( pPrior ){
6178 sqlite3VdbeAddOp2(v, OP_OpenDup, pItem->iCursor, pPrior->iCursor);
6179 assert( pPrior->pSelect!=0 );
6180 pSub->nSelectRow = pPrior->pSelect->nSelectRow;
6181 }else{
6182 sqlite3SelectDestInit(&dest, SRT_EphemTab, pItem->iCursor);
6183 ExplainQueryPlan((pParse, 1, "MATERIALIZE %u", pSub->selId));
6184 sqlite3Select(pParse, pSub, &dest);
6186 pItem->pTab->nRowLogEst = pSub->nSelectRow;
6187 if( onceAddr ) sqlite3VdbeJumpHere(v, onceAddr);
6188 retAddr = sqlite3VdbeAddOp1(v, OP_Return, pItem->regReturn);
6189 VdbeComment((v, "end %s", pItem->pTab->zName));
6190 sqlite3VdbeChangeP1(v, topAddr, retAddr);
6191 sqlite3ClearTempRegCache(pParse);
6193 if( db->mallocFailed ) goto select_end;
6194 pParse->nHeight -= sqlite3SelectExprHeight(p);
6195 pParse->zAuthContext = zSavedAuthContext;
6196 #endif
6199 /* Various elements of the SELECT copied into local variables for
6200 ** convenience */
6201 pEList = p->pEList;
6202 pWhere = p->pWhere;
6203 pGroupBy = p->pGroupBy;
6204 pHaving = p->pHaving;
6205 sDistinct.isTnct = (p->selFlags & SF_Distinct)!=0;
6207 #if SELECTTRACE_ENABLED
6208 if( sqlite3_unsupported_selecttrace & 0x400 ){
6209 SELECTTRACE(0x400,pParse,p,("After all FROM-clause analysis:\n"));
6210 sqlite3TreeViewSelect(0, p, 0);
6212 #endif
6214 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
6215 ** if the select-list is the same as the ORDER BY list, then this query
6216 ** can be rewritten as a GROUP BY. In other words, this:
6218 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
6220 ** is transformed to:
6222 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
6224 ** The second form is preferred as a single index (or temp-table) may be
6225 ** used for both the ORDER BY and DISTINCT processing. As originally
6226 ** written the query must use a temp-table for at least one of the ORDER
6227 ** BY and DISTINCT, and an index or separate temp-table for the other.
6229 if( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct
6230 && sqlite3ExprListCompare(sSort.pOrderBy, pEList, -1)==0
6231 #ifndef SQLITE_OMIT_WINDOWFUNC
6232 && p->pWin==0
6233 #endif
6235 p->selFlags &= ~SF_Distinct;
6236 pGroupBy = p->pGroupBy = sqlite3ExprListDup(db, pEList, 0);
6237 p->selFlags |= SF_Aggregate;
6238 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
6239 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
6240 ** original setting of the SF_Distinct flag, not the current setting */
6241 assert( sDistinct.isTnct );
6243 #if SELECTTRACE_ENABLED
6244 if( sqlite3_unsupported_selecttrace & 0x400 ){
6245 SELECTTRACE(0x400,pParse,p,("Transform DISTINCT into GROUP BY:\n"));
6246 sqlite3TreeViewSelect(0, p, 0);
6248 #endif
6251 /* If there is an ORDER BY clause, then create an ephemeral index to
6252 ** do the sorting. But this sorting ephemeral index might end up
6253 ** being unused if the data can be extracted in pre-sorted order.
6254 ** If that is the case, then the OP_OpenEphemeral instruction will be
6255 ** changed to an OP_Noop once we figure out that the sorting index is
6256 ** not needed. The sSort.addrSortIndex variable is used to facilitate
6257 ** that change.
6259 if( sSort.pOrderBy ){
6260 KeyInfo *pKeyInfo;
6261 pKeyInfo = sqlite3KeyInfoFromExprList(
6262 pParse, sSort.pOrderBy, 0, pEList->nExpr);
6263 sSort.iECursor = pParse->nTab++;
6264 sSort.addrSortIndex =
6265 sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6266 sSort.iECursor, sSort.pOrderBy->nExpr+1+pEList->nExpr, 0,
6267 (char*)pKeyInfo, P4_KEYINFO
6269 }else{
6270 sSort.addrSortIndex = -1;
6273 /* If the output is destined for a temporary table, open that table.
6275 if( pDest->eDest==SRT_EphemTab ){
6276 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pDest->iSDParm, pEList->nExpr);
6279 /* Set the limiter.
6281 iEnd = sqlite3VdbeMakeLabel(pParse);
6282 if( (p->selFlags & SF_FixedLimit)==0 ){
6283 p->nSelectRow = 320; /* 4 billion rows */
6285 computeLimitRegisters(pParse, p, iEnd);
6286 if( p->iLimit==0 && sSort.addrSortIndex>=0 ){
6287 sqlite3VdbeChangeOpcode(v, sSort.addrSortIndex, OP_SorterOpen);
6288 sSort.sortFlags |= SORTFLAG_UseSorter;
6291 /* Open an ephemeral index to use for the distinct set.
6293 if( p->selFlags & SF_Distinct ){
6294 sDistinct.tabTnct = pParse->nTab++;
6295 sDistinct.addrTnct = sqlite3VdbeAddOp4(v, OP_OpenEphemeral,
6296 sDistinct.tabTnct, 0, 0,
6297 (char*)sqlite3KeyInfoFromExprList(pParse, p->pEList,0,0),
6298 P4_KEYINFO);
6299 sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
6300 sDistinct.eTnctType = WHERE_DISTINCT_UNORDERED;
6301 }else{
6302 sDistinct.eTnctType = WHERE_DISTINCT_NOOP;
6305 if( !isAgg && pGroupBy==0 ){
6306 /* No aggregate functions and no GROUP BY clause */
6307 u16 wctrlFlags = (sDistinct.isTnct ? WHERE_WANT_DISTINCT : 0)
6308 | (p->selFlags & SF_FixedLimit);
6309 #ifndef SQLITE_OMIT_WINDOWFUNC
6310 Window *pWin = p->pWin; /* Main window object (or NULL) */
6311 if( pWin ){
6312 sqlite3WindowCodeInit(pParse, p);
6314 #endif
6315 assert( WHERE_USE_LIMIT==SF_FixedLimit );
6318 /* Begin the database scan. */
6319 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6320 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, sSort.pOrderBy,
6321 p->pEList, wctrlFlags, p->nSelectRow);
6322 if( pWInfo==0 ) goto select_end;
6323 if( sqlite3WhereOutputRowCount(pWInfo) < p->nSelectRow ){
6324 p->nSelectRow = sqlite3WhereOutputRowCount(pWInfo);
6326 if( sDistinct.isTnct && sqlite3WhereIsDistinct(pWInfo) ){
6327 sDistinct.eTnctType = sqlite3WhereIsDistinct(pWInfo);
6329 if( sSort.pOrderBy ){
6330 sSort.nOBSat = sqlite3WhereIsOrdered(pWInfo);
6331 sSort.labelOBLopt = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6332 if( sSort.nOBSat==sSort.pOrderBy->nExpr ){
6333 sSort.pOrderBy = 0;
6337 /* If sorting index that was created by a prior OP_OpenEphemeral
6338 ** instruction ended up not being needed, then change the OP_OpenEphemeral
6339 ** into an OP_Noop.
6341 if( sSort.addrSortIndex>=0 && sSort.pOrderBy==0 ){
6342 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6345 assert( p->pEList==pEList );
6346 #ifndef SQLITE_OMIT_WINDOWFUNC
6347 if( pWin ){
6348 int addrGosub = sqlite3VdbeMakeLabel(pParse);
6349 int iCont = sqlite3VdbeMakeLabel(pParse);
6350 int iBreak = sqlite3VdbeMakeLabel(pParse);
6351 int regGosub = ++pParse->nMem;
6353 sqlite3WindowCodeStep(pParse, p, pWInfo, regGosub, addrGosub);
6355 sqlite3VdbeAddOp2(v, OP_Goto, 0, iBreak);
6356 sqlite3VdbeResolveLabel(v, addrGosub);
6357 VdbeNoopComment((v, "inner-loop subroutine"));
6358 sSort.labelOBLopt = 0;
6359 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest, iCont, iBreak);
6360 sqlite3VdbeResolveLabel(v, iCont);
6361 sqlite3VdbeAddOp1(v, OP_Return, regGosub);
6362 VdbeComment((v, "end inner-loop subroutine"));
6363 sqlite3VdbeResolveLabel(v, iBreak);
6364 }else
6365 #endif /* SQLITE_OMIT_WINDOWFUNC */
6367 /* Use the standard inner loop. */
6368 selectInnerLoop(pParse, p, -1, &sSort, &sDistinct, pDest,
6369 sqlite3WhereContinueLabel(pWInfo),
6370 sqlite3WhereBreakLabel(pWInfo));
6372 /* End the database scan loop.
6374 sqlite3WhereEnd(pWInfo);
6376 }else{
6377 /* This case when there exist aggregate functions or a GROUP BY clause
6378 ** or both */
6379 NameContext sNC; /* Name context for processing aggregate information */
6380 int iAMem; /* First Mem address for storing current GROUP BY */
6381 int iBMem; /* First Mem address for previous GROUP BY */
6382 int iUseFlag; /* Mem address holding flag indicating that at least
6383 ** one row of the input to the aggregator has been
6384 ** processed */
6385 int iAbortFlag; /* Mem address which causes query abort if positive */
6386 int groupBySort; /* Rows come from source in GROUP BY order */
6387 int addrEnd; /* End of processing for this SELECT */
6388 int sortPTab = 0; /* Pseudotable used to decode sorting results */
6389 int sortOut = 0; /* Output register from the sorter */
6390 int orderByGrp = 0; /* True if the GROUP BY and ORDER BY are the same */
6392 /* Remove any and all aliases between the result set and the
6393 ** GROUP BY clause.
6395 if( pGroupBy ){
6396 int k; /* Loop counter */
6397 struct ExprList_item *pItem; /* For looping over expression in a list */
6399 for(k=p->pEList->nExpr, pItem=p->pEList->a; k>0; k--, pItem++){
6400 pItem->u.x.iAlias = 0;
6402 for(k=pGroupBy->nExpr, pItem=pGroupBy->a; k>0; k--, pItem++){
6403 pItem->u.x.iAlias = 0;
6405 assert( 66==sqlite3LogEst(100) );
6406 if( p->nSelectRow>66 ) p->nSelectRow = 66;
6408 /* If there is both a GROUP BY and an ORDER BY clause and they are
6409 ** identical, then it may be possible to disable the ORDER BY clause
6410 ** on the grounds that the GROUP BY will cause elements to come out
6411 ** in the correct order. It also may not - the GROUP BY might use a
6412 ** database index that causes rows to be grouped together as required
6413 ** but not actually sorted. Either way, record the fact that the
6414 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6415 ** variable. */
6416 if( sSort.pOrderBy && pGroupBy->nExpr==sSort.pOrderBy->nExpr ){
6417 int ii;
6418 /* The GROUP BY processing doesn't care whether rows are delivered in
6419 ** ASC or DESC order - only that each group is returned contiguously.
6420 ** So set the ASC/DESC flags in the GROUP BY to match those in the
6421 ** ORDER BY to maximize the chances of rows being delivered in an
6422 ** order that makes the ORDER BY redundant. */
6423 for(ii=0; ii<pGroupBy->nExpr; ii++){
6424 u8 sortFlags = sSort.pOrderBy->a[ii].sortFlags & KEYINFO_ORDER_DESC;
6425 pGroupBy->a[ii].sortFlags = sortFlags;
6427 if( sqlite3ExprListCompare(pGroupBy, sSort.pOrderBy, -1)==0 ){
6428 orderByGrp = 1;
6431 }else{
6432 assert( 0==sqlite3LogEst(1) );
6433 p->nSelectRow = 0;
6436 /* Create a label to jump to when we want to abort the query */
6437 addrEnd = sqlite3VdbeMakeLabel(pParse);
6439 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6440 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6441 ** SELECT statement.
6443 pAggInfo = sqlite3DbMallocZero(db, sizeof(*pAggInfo) );
6444 if( pAggInfo==0 ){
6445 goto select_end;
6447 pAggInfo->pNext = pParse->pAggList;
6448 pParse->pAggList = pAggInfo;
6449 pAggInfo->selId = p->selId;
6450 memset(&sNC, 0, sizeof(sNC));
6451 sNC.pParse = pParse;
6452 sNC.pSrcList = pTabList;
6453 sNC.uNC.pAggInfo = pAggInfo;
6454 VVA_ONLY( sNC.ncFlags = NC_UAggInfo; )
6455 pAggInfo->mnReg = pParse->nMem+1;
6456 pAggInfo->nSortingColumn = pGroupBy ? pGroupBy->nExpr : 0;
6457 pAggInfo->pGroupBy = pGroupBy;
6458 sqlite3ExprAnalyzeAggList(&sNC, pEList);
6459 sqlite3ExprAnalyzeAggList(&sNC, sSort.pOrderBy);
6460 if( pHaving ){
6461 if( pGroupBy ){
6462 assert( pWhere==p->pWhere );
6463 assert( pHaving==p->pHaving );
6464 assert( pGroupBy==p->pGroupBy );
6465 havingToWhere(pParse, p);
6466 pWhere = p->pWhere;
6468 sqlite3ExprAnalyzeAggregates(&sNC, pHaving);
6470 pAggInfo->nAccumulator = pAggInfo->nColumn;
6471 if( p->pGroupBy==0 && p->pHaving==0 && pAggInfo->nFunc==1 ){
6472 minMaxFlag = minMaxQuery(db, pAggInfo->aFunc[0].pFExpr, &pMinMaxOrderBy);
6473 }else{
6474 minMaxFlag = WHERE_ORDERBY_NORMAL;
6476 for(i=0; i<pAggInfo->nFunc; i++){
6477 Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
6478 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
6479 sNC.ncFlags |= NC_InAggFunc;
6480 sqlite3ExprAnalyzeAggList(&sNC, pExpr->x.pList);
6481 #ifndef SQLITE_OMIT_WINDOWFUNC
6482 assert( !IsWindowFunc(pExpr) );
6483 if( ExprHasProperty(pExpr, EP_WinFunc) ){
6484 sqlite3ExprAnalyzeAggregates(&sNC, pExpr->y.pWin->pFilter);
6486 #endif
6487 sNC.ncFlags &= ~NC_InAggFunc;
6489 pAggInfo->mxReg = pParse->nMem;
6490 if( db->mallocFailed ) goto select_end;
6491 #if SELECTTRACE_ENABLED
6492 if( sqlite3_unsupported_selecttrace & 0x400 ){
6493 int ii;
6494 SELECTTRACE(0x400,pParse,p,("After aggregate analysis %p:\n", pAggInfo));
6495 sqlite3TreeViewSelect(0, p, 0);
6496 for(ii=0; ii<pAggInfo->nColumn; ii++){
6497 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6498 ii, pAggInfo->aCol[ii].iMem);
6499 sqlite3TreeViewExpr(0, pAggInfo->aCol[ii].pCExpr, 0);
6501 for(ii=0; ii<pAggInfo->nFunc; ii++){
6502 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6503 ii, pAggInfo->aFunc[ii].iMem);
6504 sqlite3TreeViewExpr(0, pAggInfo->aFunc[ii].pFExpr, 0);
6507 #endif
6510 /* Processing for aggregates with GROUP BY is very different and
6511 ** much more complex than aggregates without a GROUP BY.
6513 if( pGroupBy ){
6514 KeyInfo *pKeyInfo; /* Keying information for the group by clause */
6515 int addr1; /* A-vs-B comparision jump */
6516 int addrOutputRow; /* Start of subroutine that outputs a result row */
6517 int regOutputRow; /* Return address register for output subroutine */
6518 int addrSetAbort; /* Set the abort flag and return */
6519 int addrTopOfLoop; /* Top of the input loop */
6520 int addrSortingIdx; /* The OP_OpenEphemeral for the sorting index */
6521 int addrReset; /* Subroutine for resetting the accumulator */
6522 int regReset; /* Return address register for reset subroutine */
6524 /* If there is a GROUP BY clause we might need a sorting index to
6525 ** implement it. Allocate that sorting index now. If it turns out
6526 ** that we do not need it after all, the OP_SorterOpen instruction
6527 ** will be converted into a Noop.
6529 pAggInfo->sortingIdx = pParse->nTab++;
6530 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pGroupBy,
6531 0, pAggInfo->nColumn);
6532 addrSortingIdx = sqlite3VdbeAddOp4(v, OP_SorterOpen,
6533 pAggInfo->sortingIdx, pAggInfo->nSortingColumn,
6534 0, (char*)pKeyInfo, P4_KEYINFO);
6536 /* Initialize memory locations used by GROUP BY aggregate processing
6538 iUseFlag = ++pParse->nMem;
6539 iAbortFlag = ++pParse->nMem;
6540 regOutputRow = ++pParse->nMem;
6541 addrOutputRow = sqlite3VdbeMakeLabel(pParse);
6542 regReset = ++pParse->nMem;
6543 addrReset = sqlite3VdbeMakeLabel(pParse);
6544 iAMem = pParse->nMem + 1;
6545 pParse->nMem += pGroupBy->nExpr;
6546 iBMem = pParse->nMem + 1;
6547 pParse->nMem += pGroupBy->nExpr;
6548 sqlite3VdbeAddOp2(v, OP_Integer, 0, iAbortFlag);
6549 VdbeComment((v, "clear abort flag"));
6550 sqlite3VdbeAddOp3(v, OP_Null, 0, iAMem, iAMem+pGroupBy->nExpr-1);
6552 /* Begin a loop that will extract all source rows in GROUP BY order.
6553 ** This might involve two separate loops with an OP_Sort in between, or
6554 ** it might be a single loop that uses an index to extract information
6555 ** in the right order to begin with.
6557 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6558 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6559 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pGroupBy, 0,
6560 WHERE_GROUPBY | (orderByGrp ? WHERE_SORTBYGROUP : 0), 0
6562 if( pWInfo==0 ) goto select_end;
6563 if( sqlite3WhereIsOrdered(pWInfo)==pGroupBy->nExpr ){
6564 /* The optimizer is able to deliver rows in group by order so
6565 ** we do not have to sort. The OP_OpenEphemeral table will be
6566 ** cancelled later because we still need to use the pKeyInfo
6568 groupBySort = 0;
6569 }else{
6570 /* Rows are coming out in undetermined order. We have to push
6571 ** each row into a sorting index, terminate the first loop,
6572 ** then loop over the sorting index in order to get the output
6573 ** in sorted order
6575 int regBase;
6576 int regRecord;
6577 int nCol;
6578 int nGroupBy;
6580 explainTempTable(pParse,
6581 (sDistinct.isTnct && (p->selFlags&SF_Distinct)==0) ?
6582 "DISTINCT" : "GROUP BY");
6584 groupBySort = 1;
6585 nGroupBy = pGroupBy->nExpr;
6586 nCol = nGroupBy;
6587 j = nGroupBy;
6588 for(i=0; i<pAggInfo->nColumn; i++){
6589 if( pAggInfo->aCol[i].iSorterColumn>=j ){
6590 nCol++;
6591 j++;
6594 regBase = sqlite3GetTempRange(pParse, nCol);
6595 sqlite3ExprCodeExprList(pParse, pGroupBy, regBase, 0, 0);
6596 j = nGroupBy;
6597 for(i=0; i<pAggInfo->nColumn; i++){
6598 struct AggInfo_col *pCol = &pAggInfo->aCol[i];
6599 if( pCol->iSorterColumn>=j ){
6600 int r1 = j + regBase;
6601 sqlite3ExprCodeGetColumnOfTable(v,
6602 pCol->pTab, pCol->iTable, pCol->iColumn, r1);
6603 j++;
6606 regRecord = sqlite3GetTempReg(pParse);
6607 sqlite3VdbeAddOp3(v, OP_MakeRecord, regBase, nCol, regRecord);
6608 sqlite3VdbeAddOp2(v, OP_SorterInsert, pAggInfo->sortingIdx, regRecord);
6609 sqlite3ReleaseTempReg(pParse, regRecord);
6610 sqlite3ReleaseTempRange(pParse, regBase, nCol);
6611 sqlite3WhereEnd(pWInfo);
6612 pAggInfo->sortingIdxPTab = sortPTab = pParse->nTab++;
6613 sortOut = sqlite3GetTempReg(pParse);
6614 sqlite3VdbeAddOp3(v, OP_OpenPseudo, sortPTab, sortOut, nCol);
6615 sqlite3VdbeAddOp2(v, OP_SorterSort, pAggInfo->sortingIdx, addrEnd);
6616 VdbeComment((v, "GROUP BY sort")); VdbeCoverage(v);
6617 pAggInfo->useSortingIdx = 1;
6620 /* If the index or temporary table used by the GROUP BY sort
6621 ** will naturally deliver rows in the order required by the ORDER BY
6622 ** clause, cancel the ephemeral table open coded earlier.
6624 ** This is an optimization - the correct answer should result regardless.
6625 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6626 ** disable this optimization for testing purposes. */
6627 if( orderByGrp && OptimizationEnabled(db, SQLITE_GroupByOrder)
6628 && (groupBySort || sqlite3WhereIsSorted(pWInfo))
6630 sSort.pOrderBy = 0;
6631 sqlite3VdbeChangeToNoop(v, sSort.addrSortIndex);
6634 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6635 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6636 ** Then compare the current GROUP BY terms against the GROUP BY terms
6637 ** from the previous row currently stored in a0, a1, a2...
6639 addrTopOfLoop = sqlite3VdbeCurrentAddr(v);
6640 if( groupBySort ){
6641 sqlite3VdbeAddOp3(v, OP_SorterData, pAggInfo->sortingIdx,
6642 sortOut, sortPTab);
6644 for(j=0; j<pGroupBy->nExpr; j++){
6645 if( groupBySort ){
6646 sqlite3VdbeAddOp3(v, OP_Column, sortPTab, j, iBMem+j);
6647 }else{
6648 pAggInfo->directMode = 1;
6649 sqlite3ExprCode(pParse, pGroupBy->a[j].pExpr, iBMem+j);
6652 sqlite3VdbeAddOp4(v, OP_Compare, iAMem, iBMem, pGroupBy->nExpr,
6653 (char*)sqlite3KeyInfoRef(pKeyInfo), P4_KEYINFO);
6654 addr1 = sqlite3VdbeCurrentAddr(v);
6655 sqlite3VdbeAddOp3(v, OP_Jump, addr1+1, 0, addr1+1); VdbeCoverage(v);
6657 /* Generate code that runs whenever the GROUP BY changes.
6658 ** Changes in the GROUP BY are detected by the previous code
6659 ** block. If there were no changes, this block is skipped.
6661 ** This code copies current group by terms in b0,b1,b2,...
6662 ** over to a0,a1,a2. It then calls the output subroutine
6663 ** and resets the aggregate accumulator registers in preparation
6664 ** for the next GROUP BY batch.
6666 sqlite3ExprCodeMove(pParse, iBMem, iAMem, pGroupBy->nExpr);
6667 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6668 VdbeComment((v, "output one row"));
6669 sqlite3VdbeAddOp2(v, OP_IfPos, iAbortFlag, addrEnd); VdbeCoverage(v);
6670 VdbeComment((v, "check abort flag"));
6671 sqlite3VdbeAddOp2(v, OP_Gosub, regReset, addrReset);
6672 VdbeComment((v, "reset accumulator"));
6674 /* Update the aggregate accumulators based on the content of
6675 ** the current row
6677 sqlite3VdbeJumpHere(v, addr1);
6678 updateAccumulator(pParse, iUseFlag, pAggInfo);
6679 sqlite3VdbeAddOp2(v, OP_Integer, 1, iUseFlag);
6680 VdbeComment((v, "indicate data in accumulator"));
6682 /* End of the loop
6684 if( groupBySort ){
6685 sqlite3VdbeAddOp2(v, OP_SorterNext, pAggInfo->sortingIdx, addrTopOfLoop);
6686 VdbeCoverage(v);
6687 }else{
6688 sqlite3WhereEnd(pWInfo);
6689 sqlite3VdbeChangeToNoop(v, addrSortingIdx);
6692 /* Output the final row of result
6694 sqlite3VdbeAddOp2(v, OP_Gosub, regOutputRow, addrOutputRow);
6695 VdbeComment((v, "output final row"));
6697 /* Jump over the subroutines
6699 sqlite3VdbeGoto(v, addrEnd);
6701 /* Generate a subroutine that outputs a single row of the result
6702 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
6703 ** is less than or equal to zero, the subroutine is a no-op. If
6704 ** the processing calls for the query to abort, this subroutine
6705 ** increments the iAbortFlag memory location before returning in
6706 ** order to signal the caller to abort.
6708 addrSetAbort = sqlite3VdbeCurrentAddr(v);
6709 sqlite3VdbeAddOp2(v, OP_Integer, 1, iAbortFlag);
6710 VdbeComment((v, "set abort flag"));
6711 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6712 sqlite3VdbeResolveLabel(v, addrOutputRow);
6713 addrOutputRow = sqlite3VdbeCurrentAddr(v);
6714 sqlite3VdbeAddOp2(v, OP_IfPos, iUseFlag, addrOutputRow+2);
6715 VdbeCoverage(v);
6716 VdbeComment((v, "Groupby result generator entry point"));
6717 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6718 finalizeAggFunctions(pParse, pAggInfo);
6719 sqlite3ExprIfFalse(pParse, pHaving, addrOutputRow+1, SQLITE_JUMPIFNULL);
6720 selectInnerLoop(pParse, p, -1, &sSort,
6721 &sDistinct, pDest,
6722 addrOutputRow+1, addrSetAbort);
6723 sqlite3VdbeAddOp1(v, OP_Return, regOutputRow);
6724 VdbeComment((v, "end groupby result generator"));
6726 /* Generate a subroutine that will reset the group-by accumulator
6728 sqlite3VdbeResolveLabel(v, addrReset);
6729 resetAccumulator(pParse, pAggInfo);
6730 sqlite3VdbeAddOp2(v, OP_Integer, 0, iUseFlag);
6731 VdbeComment((v, "indicate accumulator empty"));
6732 sqlite3VdbeAddOp1(v, OP_Return, regReset);
6734 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
6735 else {
6736 Table *pTab;
6737 if( (pTab = isSimpleCount(p, pAggInfo))!=0 ){
6738 /* If isSimpleCount() returns a pointer to a Table structure, then
6739 ** the SQL statement is of the form:
6741 ** SELECT count(*) FROM <tbl>
6743 ** where the Table structure returned represents table <tbl>.
6745 ** This statement is so common that it is optimized specially. The
6746 ** OP_Count instruction is executed either on the intkey table that
6747 ** contains the data for table <tbl> or on one of its indexes. It
6748 ** is better to execute the op on an index, as indexes are almost
6749 ** always spread across less pages than their corresponding tables.
6751 const int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
6752 const int iCsr = pParse->nTab++; /* Cursor to scan b-tree */
6753 Index *pIdx; /* Iterator variable */
6754 KeyInfo *pKeyInfo = 0; /* Keyinfo for scanned index */
6755 Index *pBest = 0; /* Best index found so far */
6756 Pgno iRoot = pTab->tnum; /* Root page of scanned b-tree */
6758 sqlite3CodeVerifySchema(pParse, iDb);
6759 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
6761 /* Search for the index that has the lowest scan cost.
6763 ** (2011-04-15) Do not do a full scan of an unordered index.
6765 ** (2013-10-03) Do not count the entries in a partial index.
6767 ** In practice the KeyInfo structure will not be used. It is only
6768 ** passed to keep OP_OpenRead happy.
6770 if( !HasRowid(pTab) ) pBest = sqlite3PrimaryKeyIndex(pTab);
6771 if( !p->pSrc->a[0].fg.notIndexed ){
6772 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
6773 if( pIdx->bUnordered==0
6774 && pIdx->szIdxRow<pTab->szTabRow
6775 && pIdx->pPartIdxWhere==0
6776 && (!pBest || pIdx->szIdxRow<pBest->szIdxRow)
6778 pBest = pIdx;
6782 if( pBest ){
6783 iRoot = pBest->tnum;
6784 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pBest);
6787 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6788 sqlite3VdbeAddOp4Int(v, OP_OpenRead, iCsr, (int)iRoot, iDb, 1);
6789 if( pKeyInfo ){
6790 sqlite3VdbeChangeP4(v, -1, (char *)pKeyInfo, P4_KEYINFO);
6792 sqlite3VdbeAddOp2(v, OP_Count, iCsr, pAggInfo->aFunc[0].iMem);
6793 sqlite3VdbeAddOp1(v, OP_Close, iCsr);
6794 explainSimpleCount(pParse, pTab, pBest);
6795 }else{
6796 int regAcc = 0; /* "populate accumulators" flag */
6797 int addrSkip;
6799 /* If there are accumulator registers but no min() or max() functions
6800 ** without FILTER clauses, allocate register regAcc. Register regAcc
6801 ** will contain 0 the first time the inner loop runs, and 1 thereafter.
6802 ** The code generated by updateAccumulator() uses this to ensure
6803 ** that the accumulator registers are (a) updated only once if
6804 ** there are no min() or max functions or (b) always updated for the
6805 ** first row visited by the aggregate, so that they are updated at
6806 ** least once even if the FILTER clause means the min() or max()
6807 ** function visits zero rows. */
6808 if( pAggInfo->nAccumulator ){
6809 for(i=0; i<pAggInfo->nFunc; i++){
6810 if( ExprHasProperty(pAggInfo->aFunc[i].pFExpr, EP_WinFunc) ){
6811 continue;
6813 if( pAggInfo->aFunc[i].pFunc->funcFlags&SQLITE_FUNC_NEEDCOLL ){
6814 break;
6817 if( i==pAggInfo->nFunc ){
6818 regAcc = ++pParse->nMem;
6819 sqlite3VdbeAddOp2(v, OP_Integer, 0, regAcc);
6823 /* This case runs if the aggregate has no GROUP BY clause. The
6824 ** processing is much simpler since there is only a single row
6825 ** of output.
6827 assert( p->pGroupBy==0 );
6828 resetAccumulator(pParse, pAggInfo);
6830 /* If this query is a candidate for the min/max optimization, then
6831 ** minMaxFlag will have been previously set to either
6832 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6833 ** be an appropriate ORDER BY expression for the optimization.
6835 assert( minMaxFlag==WHERE_ORDERBY_NORMAL || pMinMaxOrderBy!=0 );
6836 assert( pMinMaxOrderBy==0 || pMinMaxOrderBy->nExpr==1 );
6838 SELECTTRACE(1,pParse,p,("WhereBegin\n"));
6839 pWInfo = sqlite3WhereBegin(pParse, pTabList, pWhere, pMinMaxOrderBy,
6840 0, minMaxFlag, 0);
6841 if( pWInfo==0 ){
6842 goto select_end;
6844 updateAccumulator(pParse, regAcc, pAggInfo);
6845 if( regAcc ) sqlite3VdbeAddOp2(v, OP_Integer, 1, regAcc);
6846 addrSkip = sqlite3WhereOrderByLimitOptLabel(pWInfo);
6847 if( addrSkip!=sqlite3WhereContinueLabel(pWInfo) ){
6848 sqlite3VdbeGoto(v, addrSkip);
6850 sqlite3WhereEnd(pWInfo);
6851 finalizeAggFunctions(pParse, pAggInfo);
6854 sSort.pOrderBy = 0;
6855 sqlite3ExprIfFalse(pParse, pHaving, addrEnd, SQLITE_JUMPIFNULL);
6856 selectInnerLoop(pParse, p, -1, 0, 0,
6857 pDest, addrEnd, addrEnd);
6859 sqlite3VdbeResolveLabel(v, addrEnd);
6861 } /* endif aggregate query */
6863 if( sDistinct.eTnctType==WHERE_DISTINCT_UNORDERED ){
6864 explainTempTable(pParse, "DISTINCT");
6867 /* If there is an ORDER BY clause, then we need to sort the results
6868 ** and send them to the callback one by one.
6870 if( sSort.pOrderBy ){
6871 explainTempTable(pParse,
6872 sSort.nOBSat>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6873 assert( p->pEList==pEList );
6874 generateSortTail(pParse, p, &sSort, pEList->nExpr, pDest);
6877 /* Jump here to skip this query
6879 sqlite3VdbeResolveLabel(v, iEnd);
6881 /* The SELECT has been coded. If there is an error in the Parse structure,
6882 ** set the return code to 1. Otherwise 0. */
6883 rc = (pParse->nErr>0);
6885 /* Control jumps to here if an error is encountered above, or upon
6886 ** successful coding of the SELECT.
6888 select_end:
6889 sqlite3ExprListDelete(db, pMinMaxOrderBy);
6890 #ifdef SQLITE_DEBUG
6891 if( pAggInfo && !db->mallocFailed ){
6892 for(i=0; i<pAggInfo->nColumn; i++){
6893 Expr *pExpr = pAggInfo->aCol[i].pCExpr;
6894 assert( pExpr!=0 || db->mallocFailed );
6895 if( pExpr==0 ) continue;
6896 assert( pExpr->pAggInfo==pAggInfo );
6897 assert( pExpr->iAgg==i );
6899 for(i=0; i<pAggInfo->nFunc; i++){
6900 Expr *pExpr = pAggInfo->aFunc[i].pFExpr;
6901 assert( pExpr!=0 || db->mallocFailed );
6902 if( pExpr==0 ) continue;
6903 assert( pExpr->pAggInfo==pAggInfo );
6904 assert( pExpr->iAgg==i );
6907 #endif
6909 #if SELECTTRACE_ENABLED
6910 SELECTTRACE(0x1,pParse,p,("end processing\n"));
6911 if( (sqlite3_unsupported_selecttrace & 0x2000)!=0 && ExplainQueryPlanParent(pParse)==0 ){
6912 sqlite3TreeViewSelect(0, p, 0);
6914 #endif
6915 ExplainQueryPlanPop(pParse);
6916 return rc;