4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the parser
13 ** to handle SELECT statements in SQLite.
15 #include "sqliteInt.h"
18 ** An instance of the following object is used to record information about
19 ** how to process the DISTINCT keyword, to simplify passing that information
20 ** into the selectInnerLoop() routine.
22 typedef struct DistinctCtx DistinctCtx
;
24 u8 isTnct
; /* True if the DISTINCT keyword is present */
25 u8 eTnctType
; /* One of the WHERE_DISTINCT_* operators */
26 int tabTnct
; /* Ephemeral table used for DISTINCT processing */
27 int addrTnct
; /* Address of OP_OpenEphemeral opcode for tabTnct */
31 ** An instance of the following object is used to record information about
32 ** the ORDER BY (or GROUP BY) clause of query is being coded.
34 ** The aDefer[] array is used by the sorter-references optimization. For
35 ** example, assuming there is no index that can be used for the ORDER BY,
38 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10;
40 ** it may be more efficient to add just the "a" values to the sorter, and
41 ** retrieve the associated "bigblob" values directly from table t1 as the
42 ** 10 smallest "a" values are extracted from the sorter.
44 ** When the sorter-reference optimization is used, there is one entry in the
45 ** aDefer[] array for each database table that may be read as values are
46 ** extracted from the sorter.
48 typedef struct SortCtx SortCtx
;
50 ExprList
*pOrderBy
; /* The ORDER BY (or GROUP BY clause) */
51 int nOBSat
; /* Number of ORDER BY terms satisfied by indices */
52 int iECursor
; /* Cursor number for the sorter */
53 int regReturn
; /* Register holding block-output return address */
54 int labelBkOut
; /* Start label for the block-output subroutine */
55 int addrSortIndex
; /* Address of the OP_SorterOpen or OP_OpenEphemeral */
56 int labelDone
; /* Jump here when done, ex: LIMIT reached */
57 int labelOBLopt
; /* Jump here when sorter is full */
58 u8 sortFlags
; /* Zero or more SORTFLAG_* bits */
59 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
60 u8 nDefer
; /* Number of valid entries in aDefer[] */
62 Table
*pTab
; /* Table definition */
63 int iCsr
; /* Cursor number for table */
64 int nKey
; /* Number of PK columns for table pTab (>=1) */
67 struct RowLoadInfo
*pDeferredRowLoad
; /* Deferred row loading info or NULL */
69 #define SORTFLAG_UseSorter 0x01 /* Use SorterOpen instead of OpenEphemeral */
72 ** Delete all the content of a Select structure. Deallocate the structure
73 ** itself depending on the value of bFree
75 ** If bFree==1, call sqlite3DbFree() on the p object.
76 ** If bFree==0, Leave the first Select object unfreed
78 static void clearSelect(sqlite3
*db
, Select
*p
, int bFree
){
80 Select
*pPrior
= p
->pPrior
;
81 sqlite3ExprListDelete(db
, p
->pEList
);
82 sqlite3SrcListDelete(db
, p
->pSrc
);
83 sqlite3ExprDelete(db
, p
->pWhere
);
84 sqlite3ExprListDelete(db
, p
->pGroupBy
);
85 sqlite3ExprDelete(db
, p
->pHaving
);
86 sqlite3ExprListDelete(db
, p
->pOrderBy
);
87 sqlite3ExprDelete(db
, p
->pLimit
);
88 #ifndef SQLITE_OMIT_WINDOWFUNC
89 if( OK_IF_ALWAYS_TRUE(p
->pWinDefn
) ){
90 sqlite3WindowListDelete(db
, p
->pWinDefn
);
93 if( OK_IF_ALWAYS_TRUE(p
->pWith
) ) sqlite3WithDelete(db
, p
->pWith
);
94 if( bFree
) sqlite3DbFreeNN(db
, p
);
101 ** Initialize a SelectDest structure.
103 void sqlite3SelectDestInit(SelectDest
*pDest
, int eDest
, int iParm
){
104 pDest
->eDest
= (u8
)eDest
;
105 pDest
->iSDParm
= iParm
;
114 ** Allocate a new Select structure and return a pointer to that
117 Select
*sqlite3SelectNew(
118 Parse
*pParse
, /* Parsing context */
119 ExprList
*pEList
, /* which columns to include in the result */
120 SrcList
*pSrc
, /* the FROM clause -- which tables to scan */
121 Expr
*pWhere
, /* the WHERE clause */
122 ExprList
*pGroupBy
, /* the GROUP BY clause */
123 Expr
*pHaving
, /* the HAVING clause */
124 ExprList
*pOrderBy
, /* the ORDER BY clause */
125 u32 selFlags
, /* Flag parameters, such as SF_Distinct */
126 Expr
*pLimit
/* LIMIT value. NULL means not used */
128 Select
*pNew
, *pAllocated
;
130 pAllocated
= pNew
= sqlite3DbMallocRawNN(pParse
->db
, sizeof(*pNew
) );
132 assert( pParse
->db
->mallocFailed
);
136 pEList
= sqlite3ExprListAppend(pParse
, 0,
137 sqlite3Expr(pParse
->db
,TK_ASTERISK
,0));
139 pNew
->pEList
= pEList
;
140 pNew
->op
= TK_SELECT
;
141 pNew
->selFlags
= selFlags
;
144 pNew
->selId
= ++pParse
->nSelect
;
145 pNew
->addrOpenEphm
[0] = -1;
146 pNew
->addrOpenEphm
[1] = -1;
147 pNew
->nSelectRow
= 0;
148 if( pSrc
==0 ) pSrc
= sqlite3DbMallocZero(pParse
->db
, sizeof(*pSrc
));
150 pNew
->pWhere
= pWhere
;
151 pNew
->pGroupBy
= pGroupBy
;
152 pNew
->pHaving
= pHaving
;
153 pNew
->pOrderBy
= pOrderBy
;
156 pNew
->pLimit
= pLimit
;
158 #ifndef SQLITE_OMIT_WINDOWFUNC
162 if( pParse
->db
->mallocFailed
) {
163 clearSelect(pParse
->db
, pNew
, pNew
!=&standin
);
166 assert( pNew
->pSrc
!=0 || pParse
->nErr
>0 );
173 ** Delete the given Select structure and all of its substructures.
175 void sqlite3SelectDelete(sqlite3
*db
, Select
*p
){
176 if( OK_IF_ALWAYS_TRUE(p
) ) clearSelect(db
, p
, 1);
180 ** Return a pointer to the right-most SELECT statement in a compound.
182 static Select
*findRightmost(Select
*p
){
183 while( p
->pNext
) p
= p
->pNext
;
188 ** Given 1 to 3 identifiers preceding the JOIN keyword, determine the
189 ** type of join. Return an integer constant that expresses that type
190 ** in terms of the following bit values:
199 ** A full outer join is the combination of JT_LEFT and JT_RIGHT.
201 ** If an illegal or unsupported join type is seen, then still return
202 ** a join type, but put an error in the pParse structure.
204 int sqlite3JoinType(Parse
*pParse
, Token
*pA
, Token
*pB
, Token
*pC
){
208 /* 0123456789 123456789 123456789 123 */
209 static const char zKeyText
[] = "naturaleftouterightfullinnercross";
210 static const struct {
211 u8 i
; /* Beginning of keyword text in zKeyText[] */
212 u8 nChar
; /* Length of the keyword in characters */
213 u8 code
; /* Join type mask */
215 /* natural */ { 0, 7, JT_NATURAL
},
216 /* left */ { 6, 4, JT_LEFT
|JT_OUTER
},
217 /* outer */ { 10, 5, JT_OUTER
},
218 /* right */ { 14, 5, JT_RIGHT
|JT_OUTER
},
219 /* full */ { 19, 4, JT_LEFT
|JT_RIGHT
|JT_OUTER
},
220 /* inner */ { 23, 5, JT_INNER
},
221 /* cross */ { 28, 5, JT_INNER
|JT_CROSS
},
227 for(i
=0; i
<3 && apAll
[i
]; i
++){
229 for(j
=0; j
<ArraySize(aKeyword
); j
++){
230 if( p
->n
==aKeyword
[j
].nChar
231 && sqlite3StrNICmp((char*)p
->z
, &zKeyText
[aKeyword
[j
].i
], p
->n
)==0 ){
232 jointype
|= aKeyword
[j
].code
;
236 testcase( j
==0 || j
==1 || j
==2 || j
==3 || j
==4 || j
==5 || j
==6 );
237 if( j
>=ArraySize(aKeyword
) ){
238 jointype
|= JT_ERROR
;
243 (jointype
& (JT_INNER
|JT_OUTER
))==(JT_INNER
|JT_OUTER
) ||
244 (jointype
& JT_ERROR
)!=0
246 const char *zSp
= " ";
248 if( pC
==0 ){ zSp
++; }
249 sqlite3ErrorMsg(pParse
, "unknown or unsupported join type: "
250 "%T %T%s%T", pA
, pB
, zSp
, pC
);
252 }else if( (jointype
& JT_OUTER
)!=0
253 && (jointype
& (JT_LEFT
|JT_RIGHT
))!=JT_LEFT
){
254 sqlite3ErrorMsg(pParse
,
255 "RIGHT and FULL OUTER JOINs are not currently supported");
262 ** Return the index of a column in a table. Return -1 if the column
263 ** is not contained in the table.
265 static int columnIndex(Table
*pTab
, const char *zCol
){
267 u8 h
= sqlite3StrIHash(zCol
);
269 for(pCol
=pTab
->aCol
, i
=0; i
<pTab
->nCol
; pCol
++, i
++){
270 if( pCol
->hName
==h
&& sqlite3StrICmp(pCol
->zName
, zCol
)==0 ) return i
;
276 ** Search the first N tables in pSrc, from left to right, looking for a
277 ** table that has a column named zCol.
279 ** When found, set *piTab and *piCol to the table index and column index
280 ** of the matching column and return TRUE.
282 ** If not found, return FALSE.
284 static int tableAndColumnIndex(
285 SrcList
*pSrc
, /* Array of tables to search */
286 int N
, /* Number of tables in pSrc->a[] to search */
287 const char *zCol
, /* Name of the column we are looking for */
288 int *piTab
, /* Write index of pSrc->a[] here */
289 int *piCol
, /* Write index of pSrc->a[*piTab].pTab->aCol[] here */
290 int bIgnoreHidden
/* True to ignore hidden columns */
292 int i
; /* For looping over tables in pSrc */
293 int iCol
; /* Index of column matching zCol */
295 assert( (piTab
==0)==(piCol
==0) ); /* Both or neither are NULL */
297 iCol
= columnIndex(pSrc
->a
[i
].pTab
, zCol
);
299 && (bIgnoreHidden
==0 || IsHiddenColumn(&pSrc
->a
[i
].pTab
->aCol
[iCol
])==0)
312 ** This function is used to add terms implied by JOIN syntax to the
313 ** WHERE clause expression of a SELECT statement. The new term, which
314 ** is ANDed with the existing WHERE clause, is of the form:
316 ** (tab1.col1 = tab2.col2)
318 ** where tab1 is the iSrc'th table in SrcList pSrc and tab2 is the
319 ** (iSrc+1)'th. Column col1 is column iColLeft of tab1, and col2 is
320 ** column iColRight of tab2.
322 static void addWhereTerm(
323 Parse
*pParse
, /* Parsing context */
324 SrcList
*pSrc
, /* List of tables in FROM clause */
325 int iLeft
, /* Index of first table to join in pSrc */
326 int iColLeft
, /* Index of column in first table */
327 int iRight
, /* Index of second table in pSrc */
328 int iColRight
, /* Index of column in second table */
329 int isOuterJoin
, /* True if this is an OUTER join */
330 Expr
**ppWhere
/* IN/OUT: The WHERE clause to add to */
332 sqlite3
*db
= pParse
->db
;
337 assert( iLeft
<iRight
);
338 assert( pSrc
->nSrc
>iRight
);
339 assert( pSrc
->a
[iLeft
].pTab
);
340 assert( pSrc
->a
[iRight
].pTab
);
342 pE1
= sqlite3CreateColumnExpr(db
, pSrc
, iLeft
, iColLeft
);
343 pE2
= sqlite3CreateColumnExpr(db
, pSrc
, iRight
, iColRight
);
345 pEq
= sqlite3PExpr(pParse
, TK_EQ
, pE1
, pE2
);
346 if( pEq
&& isOuterJoin
){
347 ExprSetProperty(pEq
, EP_FromJoin
);
348 assert( !ExprHasProperty(pEq
, EP_TokenOnly
|EP_Reduced
) );
349 ExprSetVVAProperty(pEq
, EP_NoReduce
);
350 pEq
->iRightJoinTable
= (i16
)pE2
->iTable
;
352 *ppWhere
= sqlite3ExprAnd(pParse
, *ppWhere
, pEq
);
356 ** Set the EP_FromJoin property on all terms of the given expression.
357 ** And set the Expr.iRightJoinTable to iTable for every term in the
360 ** The EP_FromJoin property is used on terms of an expression to tell
361 ** the LEFT OUTER JOIN processing logic that this term is part of the
362 ** join restriction specified in the ON or USING clause and not a part
363 ** of the more general WHERE clause. These terms are moved over to the
364 ** WHERE clause during join processing but we need to remember that they
365 ** originated in the ON or USING clause.
367 ** The Expr.iRightJoinTable tells the WHERE clause processing that the
368 ** expression depends on table iRightJoinTable even if that table is not
369 ** explicitly mentioned in the expression. That information is needed
370 ** for cases like this:
372 ** SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.b AND t1.x=5
374 ** The where clause needs to defer the handling of the t1.x=5
375 ** term until after the t2 loop of the join. In that way, a
376 ** NULL t2 row will be inserted whenever t1.x!=5. If we do not
377 ** defer the handling of t1.x=5, it will be processed immediately
378 ** after the t1 loop and rows with t1.x!=5 will never appear in
379 ** the output, which is incorrect.
381 void sqlite3SetJoinExpr(Expr
*p
, int iTable
){
383 ExprSetProperty(p
, EP_FromJoin
);
384 assert( !ExprHasProperty(p
, EP_TokenOnly
|EP_Reduced
) );
385 ExprSetVVAProperty(p
, EP_NoReduce
);
386 p
->iRightJoinTable
= (i16
)iTable
;
387 if( p
->op
==TK_FUNCTION
&& p
->x
.pList
){
389 for(i
=0; i
<p
->x
.pList
->nExpr
; i
++){
390 sqlite3SetJoinExpr(p
->x
.pList
->a
[i
].pExpr
, iTable
);
393 sqlite3SetJoinExpr(p
->pLeft
, iTable
);
398 /* Undo the work of sqlite3SetJoinExpr(). In the expression p, convert every
399 ** term that is marked with EP_FromJoin and iRightJoinTable==iTable into
400 ** an ordinary term that omits the EP_FromJoin mark.
402 ** This happens when a LEFT JOIN is simplified into an ordinary JOIN.
404 static void unsetJoinExpr(Expr
*p
, int iTable
){
406 if( ExprHasProperty(p
, EP_FromJoin
)
407 && (iTable
<0 || p
->iRightJoinTable
==iTable
) ){
408 ExprClearProperty(p
, EP_FromJoin
);
410 if( p
->op
==TK_FUNCTION
&& p
->x
.pList
){
412 for(i
=0; i
<p
->x
.pList
->nExpr
; i
++){
413 unsetJoinExpr(p
->x
.pList
->a
[i
].pExpr
, iTable
);
416 unsetJoinExpr(p
->pLeft
, iTable
);
422 ** This routine processes the join information for a SELECT statement.
423 ** ON and USING clauses are converted into extra terms of the WHERE clause.
424 ** NATURAL joins also create extra WHERE clause terms.
426 ** The terms of a FROM clause are contained in the Select.pSrc structure.
427 ** The left most table is the first entry in Select.pSrc. The right-most
428 ** table is the last entry. The join operator is held in the entry to
429 ** the left. Thus entry 0 contains the join operator for the join between
430 ** entries 0 and 1. Any ON or USING clauses associated with the join are
431 ** also attached to the left entry.
433 ** This routine returns the number of errors encountered.
435 static int sqliteProcessJoin(Parse
*pParse
, Select
*p
){
436 SrcList
*pSrc
; /* All tables in the FROM clause */
437 int i
, j
; /* Loop counters */
438 struct SrcList_item
*pLeft
; /* Left table being joined */
439 struct SrcList_item
*pRight
; /* Right table being joined */
444 for(i
=0; i
<pSrc
->nSrc
-1; i
++, pRight
++, pLeft
++){
445 Table
*pRightTab
= pRight
->pTab
;
448 if( NEVER(pLeft
->pTab
==0 || pRightTab
==0) ) continue;
449 isOuter
= (pRight
->fg
.jointype
& JT_OUTER
)!=0;
451 /* When the NATURAL keyword is present, add WHERE clause terms for
452 ** every column that the two tables have in common.
454 if( pRight
->fg
.jointype
& JT_NATURAL
){
455 if( pRight
->pOn
|| pRight
->pUsing
){
456 sqlite3ErrorMsg(pParse
, "a NATURAL join may not have "
457 "an ON or USING clause", 0);
460 for(j
=0; j
<pRightTab
->nCol
; j
++){
461 char *zName
; /* Name of column in the right table */
462 int iLeft
; /* Matching left table */
463 int iLeftCol
; /* Matching column in the left table */
465 if( IsHiddenColumn(&pRightTab
->aCol
[j
]) ) continue;
466 zName
= pRightTab
->aCol
[j
].zName
;
467 if( tableAndColumnIndex(pSrc
, i
+1, zName
, &iLeft
, &iLeftCol
, 1) ){
468 addWhereTerm(pParse
, pSrc
, iLeft
, iLeftCol
, i
+1, j
,
469 isOuter
, &p
->pWhere
);
474 /* Disallow both ON and USING clauses in the same join
476 if( pRight
->pOn
&& pRight
->pUsing
){
477 sqlite3ErrorMsg(pParse
, "cannot have both ON and USING "
478 "clauses in the same join");
482 /* Add the ON clause to the end of the WHERE clause, connected by
486 if( isOuter
) sqlite3SetJoinExpr(pRight
->pOn
, pRight
->iCursor
);
487 p
->pWhere
= sqlite3ExprAnd(pParse
, p
->pWhere
, pRight
->pOn
);
491 /* Create extra terms on the WHERE clause for each column named
492 ** in the USING clause. Example: If the two tables to be joined are
493 ** A and B and the USING clause names X, Y, and Z, then add this
494 ** to the WHERE clause: A.X=B.X AND A.Y=B.Y AND A.Z=B.Z
495 ** Report an error if any column mentioned in the USING clause is
496 ** not contained in both tables to be joined.
498 if( pRight
->pUsing
){
499 IdList
*pList
= pRight
->pUsing
;
500 for(j
=0; j
<pList
->nId
; j
++){
501 char *zName
; /* Name of the term in the USING clause */
502 int iLeft
; /* Table on the left with matching column name */
503 int iLeftCol
; /* Column number of matching column on the left */
504 int iRightCol
; /* Column number of matching column on the right */
506 zName
= pList
->a
[j
].zName
;
507 iRightCol
= columnIndex(pRightTab
, zName
);
509 || !tableAndColumnIndex(pSrc
, i
+1, zName
, &iLeft
, &iLeftCol
, 0)
511 sqlite3ErrorMsg(pParse
, "cannot join using column %s - column "
512 "not present in both tables", zName
);
515 addWhereTerm(pParse
, pSrc
, iLeft
, iLeftCol
, i
+1, iRightCol
,
516 isOuter
, &p
->pWhere
);
524 ** An instance of this object holds information (beyond pParse and pSelect)
525 ** needed to load the next result row that is to be added to the sorter.
527 typedef struct RowLoadInfo RowLoadInfo
;
529 int regResult
; /* Store results in array of registers here */
530 u8 ecelFlags
; /* Flag argument to ExprCodeExprList() */
531 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
532 ExprList
*pExtra
; /* Extra columns needed by sorter refs */
533 int regExtraResult
; /* Where to load the extra columns */
538 ** This routine does the work of loading query data into an array of
539 ** registers so that it can be added to the sorter.
541 static void innerLoopLoadRow(
542 Parse
*pParse
, /* Statement under construction */
543 Select
*pSelect
, /* The query being coded */
544 RowLoadInfo
*pInfo
/* Info needed to complete the row load */
546 sqlite3ExprCodeExprList(pParse
, pSelect
->pEList
, pInfo
->regResult
,
547 0, pInfo
->ecelFlags
);
548 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
550 sqlite3ExprCodeExprList(pParse
, pInfo
->pExtra
, pInfo
->regExtraResult
, 0, 0);
551 sqlite3ExprListDelete(pParse
->db
, pInfo
->pExtra
);
557 ** Code the OP_MakeRecord instruction that generates the entry to be
558 ** added into the sorter.
560 ** Return the register in which the result is stored.
562 static int makeSorterRecord(
569 int nOBSat
= pSort
->nOBSat
;
570 Vdbe
*v
= pParse
->pVdbe
;
571 int regOut
= ++pParse
->nMem
;
572 if( pSort
->pDeferredRowLoad
){
573 innerLoopLoadRow(pParse
, pSelect
, pSort
->pDeferredRowLoad
);
575 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regBase
+nOBSat
, nBase
-nOBSat
, regOut
);
580 ** Generate code that will push the record in registers regData
581 ** through regData+nData-1 onto the sorter.
583 static void pushOntoSorter(
584 Parse
*pParse
, /* Parser context */
585 SortCtx
*pSort
, /* Information about the ORDER BY clause */
586 Select
*pSelect
, /* The whole SELECT statement */
587 int regData
, /* First register holding data to be sorted */
588 int regOrigData
, /* First register holding data before packing */
589 int nData
, /* Number of elements in the regData data array */
590 int nPrefixReg
/* No. of reg prior to regData available for use */
592 Vdbe
*v
= pParse
->pVdbe
; /* Stmt under construction */
593 int bSeq
= ((pSort
->sortFlags
& SORTFLAG_UseSorter
)==0);
594 int nExpr
= pSort
->pOrderBy
->nExpr
; /* No. of ORDER BY terms */
595 int nBase
= nExpr
+ bSeq
+ nData
; /* Fields in sorter record */
596 int regBase
; /* Regs for sorter record */
597 int regRecord
= 0; /* Assembled sorter record */
598 int nOBSat
= pSort
->nOBSat
; /* ORDER BY terms to skip */
599 int op
; /* Opcode to add sorter record to sorter */
600 int iLimit
; /* LIMIT counter */
601 int iSkip
= 0; /* End of the sorter insert loop */
603 assert( bSeq
==0 || bSeq
==1 );
606 ** (1) The data to be sorted has already been packed into a Record
607 ** by a prior OP_MakeRecord. In this case nData==1 and regData
608 ** will be completely unrelated to regOrigData.
609 ** (2) All output columns are included in the sort record. In that
610 ** case regData==regOrigData.
611 ** (3) Some output columns are omitted from the sort record due to
612 ** the SQLITE_ENABLE_SORTER_REFERENCE optimization, or due to the
613 ** SQLITE_ECEL_OMITREF optimization, or due to the
614 ** SortCtx.pDeferredRowLoad optimiation. In any of these cases
615 ** regOrigData is 0 to prevent this routine from trying to copy
616 ** values that might not yet exist.
618 assert( nData
==1 || regData
==regOrigData
|| regOrigData
==0 );
621 assert( nPrefixReg
==nExpr
+bSeq
);
622 regBase
= regData
- nPrefixReg
;
624 regBase
= pParse
->nMem
+ 1;
625 pParse
->nMem
+= nBase
;
627 assert( pSelect
->iOffset
==0 || pSelect
->iLimit
!=0 );
628 iLimit
= pSelect
->iOffset
? pSelect
->iOffset
+1 : pSelect
->iLimit
;
629 pSort
->labelDone
= sqlite3VdbeMakeLabel(pParse
);
630 sqlite3ExprCodeExprList(pParse
, pSort
->pOrderBy
, regBase
, regOrigData
,
631 SQLITE_ECEL_DUP
| (regOrigData
? SQLITE_ECEL_REF
: 0));
633 sqlite3VdbeAddOp2(v
, OP_Sequence
, pSort
->iECursor
, regBase
+nExpr
);
635 if( nPrefixReg
==0 && nData
>0 ){
636 sqlite3ExprCodeMove(pParse
, regData
, regBase
+nExpr
+bSeq
, nData
);
639 int regPrevKey
; /* The first nOBSat columns of the previous row */
640 int addrFirst
; /* Address of the OP_IfNot opcode */
641 int addrJmp
; /* Address of the OP_Jump opcode */
642 VdbeOp
*pOp
; /* Opcode that opens the sorter */
643 int nKey
; /* Number of sorting key columns, including OP_Sequence */
644 KeyInfo
*pKI
; /* Original KeyInfo on the sorter table */
646 regRecord
= makeSorterRecord(pParse
, pSort
, pSelect
, regBase
, nBase
);
647 regPrevKey
= pParse
->nMem
+1;
648 pParse
->nMem
+= pSort
->nOBSat
;
649 nKey
= nExpr
- pSort
->nOBSat
+ bSeq
;
651 addrFirst
= sqlite3VdbeAddOp1(v
, OP_IfNot
, regBase
+nExpr
);
653 addrFirst
= sqlite3VdbeAddOp1(v
, OP_SequenceTest
, pSort
->iECursor
);
656 sqlite3VdbeAddOp3(v
, OP_Compare
, regPrevKey
, regBase
, pSort
->nOBSat
);
657 pOp
= sqlite3VdbeGetOp(v
, pSort
->addrSortIndex
);
658 if( pParse
->db
->mallocFailed
) return;
659 pOp
->p2
= nKey
+ nData
;
660 pKI
= pOp
->p4
.pKeyInfo
;
661 memset(pKI
->aSortFlags
, 0, pKI
->nKeyField
); /* Makes OP_Jump testable */
662 sqlite3VdbeChangeP4(v
, -1, (char*)pKI
, P4_KEYINFO
);
663 testcase( pKI
->nAllField
> pKI
->nKeyField
+2 );
664 pOp
->p4
.pKeyInfo
= sqlite3KeyInfoFromExprList(pParse
,pSort
->pOrderBy
,nOBSat
,
665 pKI
->nAllField
-pKI
->nKeyField
-1);
666 pOp
= 0; /* Ensure pOp not used after sqltie3VdbeAddOp3() */
667 addrJmp
= sqlite3VdbeCurrentAddr(v
);
668 sqlite3VdbeAddOp3(v
, OP_Jump
, addrJmp
+1, 0, addrJmp
+1); VdbeCoverage(v
);
669 pSort
->labelBkOut
= sqlite3VdbeMakeLabel(pParse
);
670 pSort
->regReturn
= ++pParse
->nMem
;
671 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSort
->regReturn
, pSort
->labelBkOut
);
672 sqlite3VdbeAddOp1(v
, OP_ResetSorter
, pSort
->iECursor
);
674 sqlite3VdbeAddOp2(v
, OP_IfNot
, iLimit
, pSort
->labelDone
);
677 sqlite3VdbeJumpHere(v
, addrFirst
);
678 sqlite3ExprCodeMove(pParse
, regBase
, regPrevKey
, pSort
->nOBSat
);
679 sqlite3VdbeJumpHere(v
, addrJmp
);
682 /* At this point the values for the new sorter entry are stored
683 ** in an array of registers. They need to be composed into a record
684 ** and inserted into the sorter if either (a) there are currently
685 ** less than LIMIT+OFFSET items or (b) the new record is smaller than
686 ** the largest record currently in the sorter. If (b) is true and there
687 ** are already LIMIT+OFFSET items in the sorter, delete the largest
688 ** entry before inserting the new one. This way there are never more
689 ** than LIMIT+OFFSET items in the sorter.
691 ** If the new record does not need to be inserted into the sorter,
692 ** jump to the next iteration of the loop. If the pSort->labelOBLopt
693 ** value is not zero, then it is a label of where to jump. Otherwise,
694 ** just bypass the row insert logic. See the header comment on the
695 ** sqlite3WhereOrderByLimitOptLabel() function for additional info.
697 int iCsr
= pSort
->iECursor
;
698 sqlite3VdbeAddOp2(v
, OP_IfNotZero
, iLimit
, sqlite3VdbeCurrentAddr(v
)+4);
700 sqlite3VdbeAddOp2(v
, OP_Last
, iCsr
, 0);
701 iSkip
= sqlite3VdbeAddOp4Int(v
, OP_IdxLE
,
702 iCsr
, 0, regBase
+nOBSat
, nExpr
-nOBSat
);
704 sqlite3VdbeAddOp1(v
, OP_Delete
, iCsr
);
707 regRecord
= makeSorterRecord(pParse
, pSort
, pSelect
, regBase
, nBase
);
709 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
710 op
= OP_SorterInsert
;
714 sqlite3VdbeAddOp4Int(v
, op
, pSort
->iECursor
, regRecord
,
715 regBase
+nOBSat
, nBase
-nOBSat
);
717 sqlite3VdbeChangeP2(v
, iSkip
,
718 pSort
->labelOBLopt
? pSort
->labelOBLopt
: sqlite3VdbeCurrentAddr(v
));
723 ** Add code to implement the OFFSET
725 static void codeOffset(
726 Vdbe
*v
, /* Generate code into this VM */
727 int iOffset
, /* Register holding the offset counter */
728 int iContinue
/* Jump here to skip the current record */
731 sqlite3VdbeAddOp3(v
, OP_IfPos
, iOffset
, iContinue
, 1); VdbeCoverage(v
);
732 VdbeComment((v
, "OFFSET"));
737 ** Add code that will check to make sure the N registers starting at iMem
738 ** form a distinct entry. iTab is a sorting index that holds previously
739 ** seen combinations of the N values. A new entry is made in iTab
740 ** if the current N values are new.
742 ** A jump to addrRepeat is made and the N+1 values are popped from the
743 ** stack if the top N elements are not distinct.
745 static void codeDistinct(
746 Parse
*pParse
, /* Parsing and code generating context */
747 int iTab
, /* A sorting index used to test for distinctness */
748 int addrRepeat
, /* Jump to here if not distinct */
749 int N
, /* Number of elements */
750 int iMem
/* First element */
756 r1
= sqlite3GetTempReg(pParse
);
757 sqlite3VdbeAddOp4Int(v
, OP_Found
, iTab
, addrRepeat
, iMem
, N
); VdbeCoverage(v
);
758 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, iMem
, N
, r1
);
759 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iTab
, r1
, iMem
, N
);
760 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
761 sqlite3ReleaseTempReg(pParse
, r1
);
764 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
766 ** This function is called as part of inner-loop generation for a SELECT
767 ** statement with an ORDER BY that is not optimized by an index. It
768 ** determines the expressions, if any, that the sorter-reference
769 ** optimization should be used for. The sorter-reference optimization
770 ** is used for SELECT queries like:
772 ** SELECT a, bigblob FROM t1 ORDER BY a LIMIT 10
774 ** If the optimization is used for expression "bigblob", then instead of
775 ** storing values read from that column in the sorter records, the PK of
776 ** the row from table t1 is stored instead. Then, as records are extracted from
777 ** the sorter to return to the user, the required value of bigblob is
778 ** retrieved directly from table t1. If the values are very large, this
779 ** can be more efficient than storing them directly in the sorter records.
781 ** The ExprList_item.bSorterRef flag is set for each expression in pEList
782 ** for which the sorter-reference optimization should be enabled.
783 ** Additionally, the pSort->aDefer[] array is populated with entries
784 ** for all cursors required to evaluate all selected expressions. Finally.
785 ** output variable (*ppExtra) is set to an expression list containing
786 ** expressions for all extra PK values that should be stored in the
789 static void selectExprDefer(
790 Parse
*pParse
, /* Leave any error here */
791 SortCtx
*pSort
, /* Sorter context */
792 ExprList
*pEList
, /* Expressions destined for sorter */
793 ExprList
**ppExtra
/* Expressions to append to sorter record */
797 ExprList
*pExtra
= 0;
798 for(i
=0; i
<pEList
->nExpr
; i
++){
799 struct ExprList_item
*pItem
= &pEList
->a
[i
];
800 if( pItem
->u
.x
.iOrderByCol
==0 ){
801 Expr
*pExpr
= pItem
->pExpr
;
802 Table
*pTab
= pExpr
->y
.pTab
;
803 if( pExpr
->op
==TK_COLUMN
&& pExpr
->iColumn
>=0 && pTab
&& !IsVirtual(pTab
)
804 && (pTab
->aCol
[pExpr
->iColumn
].colFlags
& COLFLAG_SORTERREF
)
807 for(j
=0; j
<nDefer
; j
++){
808 if( pSort
->aDefer
[j
].iCsr
==pExpr
->iTable
) break;
811 if( nDefer
==ArraySize(pSort
->aDefer
) ){
817 if( !HasRowid(pTab
) ){
818 pPk
= sqlite3PrimaryKeyIndex(pTab
);
821 for(k
=0; k
<nKey
; k
++){
822 Expr
*pNew
= sqlite3PExpr(pParse
, TK_COLUMN
, 0, 0);
824 pNew
->iTable
= pExpr
->iTable
;
825 pNew
->y
.pTab
= pExpr
->y
.pTab
;
826 pNew
->iColumn
= pPk
? pPk
->aiColumn
[k
] : -1;
827 pExtra
= sqlite3ExprListAppend(pParse
, pExtra
, pNew
);
830 pSort
->aDefer
[nDefer
].pTab
= pExpr
->y
.pTab
;
831 pSort
->aDefer
[nDefer
].iCsr
= pExpr
->iTable
;
832 pSort
->aDefer
[nDefer
].nKey
= nKey
;
836 pItem
->bSorterRef
= 1;
840 pSort
->nDefer
= (u8
)nDefer
;
846 ** This routine generates the code for the inside of the inner loop
849 ** If srcTab is negative, then the p->pEList expressions
850 ** are evaluated in order to get the data for this row. If srcTab is
851 ** zero or more, then data is pulled from srcTab and p->pEList is used only
852 ** to get the number of columns and the collation sequence for each column.
854 static void selectInnerLoop(
855 Parse
*pParse
, /* The parser context */
856 Select
*p
, /* The complete select statement being coded */
857 int srcTab
, /* Pull data from this table if non-negative */
858 SortCtx
*pSort
, /* If not NULL, info on how to process ORDER BY */
859 DistinctCtx
*pDistinct
, /* If not NULL, info on how to process DISTINCT */
860 SelectDest
*pDest
, /* How to dispose of the results */
861 int iContinue
, /* Jump here to continue with next row */
862 int iBreak
/* Jump here to break out of the inner loop */
864 Vdbe
*v
= pParse
->pVdbe
;
866 int hasDistinct
; /* True if the DISTINCT keyword is present */
867 int eDest
= pDest
->eDest
; /* How to dispose of results */
868 int iParm
= pDest
->iSDParm
; /* First argument to disposal method */
869 int nResultCol
; /* Number of result columns */
870 int nPrefixReg
= 0; /* Number of extra registers before regResult */
871 RowLoadInfo sRowLoadInfo
; /* Info for deferred row loading */
873 /* Usually, regResult is the first cell in an array of memory cells
874 ** containing the current result row. In this case regOrig is set to the
875 ** same value. However, if the results are being sent to the sorter, the
876 ** values for any expressions that are also part of the sort-key are omitted
877 ** from this array. In this case regOrig is set to zero. */
878 int regResult
; /* Start of memory holding current results */
879 int regOrig
; /* Start of memory holding full result (or 0) */
882 assert( p
->pEList
!=0 );
883 hasDistinct
= pDistinct
? pDistinct
->eTnctType
: WHERE_DISTINCT_NOOP
;
884 if( pSort
&& pSort
->pOrderBy
==0 ) pSort
= 0;
885 if( pSort
==0 && !hasDistinct
){
886 assert( iContinue
!=0 );
887 codeOffset(v
, p
->iOffset
, iContinue
);
890 /* Pull the requested columns.
892 nResultCol
= p
->pEList
->nExpr
;
894 if( pDest
->iSdst
==0 ){
896 nPrefixReg
= pSort
->pOrderBy
->nExpr
;
897 if( !(pSort
->sortFlags
& SORTFLAG_UseSorter
) ) nPrefixReg
++;
898 pParse
->nMem
+= nPrefixReg
;
900 pDest
->iSdst
= pParse
->nMem
+1;
901 pParse
->nMem
+= nResultCol
;
902 }else if( pDest
->iSdst
+nResultCol
> pParse
->nMem
){
903 /* This is an error condition that can result, for example, when a SELECT
904 ** on the right-hand side of an INSERT contains more result columns than
905 ** there are columns in the table on the left. The error will be caught
906 ** and reported later. But we need to make sure enough memory is allocated
907 ** to avoid other spurious errors in the meantime. */
908 pParse
->nMem
+= nResultCol
;
910 pDest
->nSdst
= nResultCol
;
911 regOrig
= regResult
= pDest
->iSdst
;
913 for(i
=0; i
<nResultCol
; i
++){
914 sqlite3VdbeAddOp3(v
, OP_Column
, srcTab
, i
, regResult
+i
);
915 VdbeComment((v
, "%s", p
->pEList
->a
[i
].zEName
));
917 }else if( eDest
!=SRT_Exists
){
918 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
919 ExprList
*pExtra
= 0;
921 /* If the destination is an EXISTS(...) expression, the actual
922 ** values returned by the SELECT are not required.
924 u8 ecelFlags
; /* "ecel" is an abbreviation of "ExprCodeExprList" */
926 if( eDest
==SRT_Mem
|| eDest
==SRT_Output
|| eDest
==SRT_Coroutine
){
927 ecelFlags
= SQLITE_ECEL_DUP
;
931 if( pSort
&& hasDistinct
==0 && eDest
!=SRT_EphemTab
&& eDest
!=SRT_Table
){
932 /* For each expression in p->pEList that is a copy of an expression in
933 ** the ORDER BY clause (pSort->pOrderBy), set the associated
934 ** iOrderByCol value to one more than the index of the ORDER BY
935 ** expression within the sort-key that pushOntoSorter() will generate.
936 ** This allows the p->pEList field to be omitted from the sorted record,
937 ** saving space and CPU cycles. */
938 ecelFlags
|= (SQLITE_ECEL_OMITREF
|SQLITE_ECEL_REF
);
940 for(i
=pSort
->nOBSat
; i
<pSort
->pOrderBy
->nExpr
; i
++){
942 if( (j
= pSort
->pOrderBy
->a
[i
].u
.x
.iOrderByCol
)>0 ){
943 p
->pEList
->a
[j
-1].u
.x
.iOrderByCol
= i
+1-pSort
->nOBSat
;
946 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
947 selectExprDefer(pParse
, pSort
, p
->pEList
, &pExtra
);
948 if( pExtra
&& pParse
->db
->mallocFailed
==0 ){
949 /* If there are any extra PK columns to add to the sorter records,
950 ** allocate extra memory cells and adjust the OpenEphemeral
951 ** instruction to account for the larger records. This is only
952 ** required if there are one or more WITHOUT ROWID tables with
953 ** composite primary keys in the SortCtx.aDefer[] array. */
954 VdbeOp
*pOp
= sqlite3VdbeGetOp(v
, pSort
->addrSortIndex
);
955 pOp
->p2
+= (pExtra
->nExpr
- pSort
->nDefer
);
956 pOp
->p4
.pKeyInfo
->nAllField
+= (pExtra
->nExpr
- pSort
->nDefer
);
957 pParse
->nMem
+= pExtra
->nExpr
;
961 /* Adjust nResultCol to account for columns that are omitted
962 ** from the sorter by the optimizations in this branch */
964 for(i
=0; i
<pEList
->nExpr
; i
++){
965 if( pEList
->a
[i
].u
.x
.iOrderByCol
>0
966 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
967 || pEList
->a
[i
].bSorterRef
976 testcase( eDest
==SRT_Set
);
977 testcase( eDest
==SRT_Mem
);
978 testcase( eDest
==SRT_Coroutine
);
979 testcase( eDest
==SRT_Output
);
980 assert( eDest
==SRT_Set
|| eDest
==SRT_Mem
981 || eDest
==SRT_Coroutine
|| eDest
==SRT_Output
982 || eDest
==SRT_Upfrom
);
984 sRowLoadInfo
.regResult
= regResult
;
985 sRowLoadInfo
.ecelFlags
= ecelFlags
;
986 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
987 sRowLoadInfo
.pExtra
= pExtra
;
988 sRowLoadInfo
.regExtraResult
= regResult
+ nResultCol
;
989 if( pExtra
) nResultCol
+= pExtra
->nExpr
;
992 && (ecelFlags
& SQLITE_ECEL_OMITREF
)!=0
996 assert( hasDistinct
==0 );
997 pSort
->pDeferredRowLoad
= &sRowLoadInfo
;
1000 innerLoopLoadRow(pParse
, p
, &sRowLoadInfo
);
1004 /* If the DISTINCT keyword was present on the SELECT statement
1005 ** and this row has been seen before, then do not make this row
1006 ** part of the result.
1009 switch( pDistinct
->eTnctType
){
1010 case WHERE_DISTINCT_ORDERED
: {
1011 VdbeOp
*pOp
; /* No longer required OpenEphemeral instr. */
1012 int iJump
; /* Jump destination */
1013 int regPrev
; /* Previous row content */
1015 /* Allocate space for the previous row */
1016 regPrev
= pParse
->nMem
+1;
1017 pParse
->nMem
+= nResultCol
;
1019 /* Change the OP_OpenEphemeral coded earlier to an OP_Null
1020 ** sets the MEM_Cleared bit on the first register of the
1021 ** previous value. This will cause the OP_Ne below to always
1022 ** fail on the first iteration of the loop even if the first
1023 ** row is all NULLs.
1025 sqlite3VdbeChangeToNoop(v
, pDistinct
->addrTnct
);
1026 pOp
= sqlite3VdbeGetOp(v
, pDistinct
->addrTnct
);
1027 pOp
->opcode
= OP_Null
;
1030 pOp
= 0; /* Ensure pOp is not used after sqlite3VdbeAddOp() */
1032 iJump
= sqlite3VdbeCurrentAddr(v
) + nResultCol
;
1033 for(i
=0; i
<nResultCol
; i
++){
1034 CollSeq
*pColl
= sqlite3ExprCollSeq(pParse
, p
->pEList
->a
[i
].pExpr
);
1035 if( i
<nResultCol
-1 ){
1036 sqlite3VdbeAddOp3(v
, OP_Ne
, regResult
+i
, iJump
, regPrev
+i
);
1039 sqlite3VdbeAddOp3(v
, OP_Eq
, regResult
+i
, iContinue
, regPrev
+i
);
1042 sqlite3VdbeChangeP4(v
, -1, (const char *)pColl
, P4_COLLSEQ
);
1043 sqlite3VdbeChangeP5(v
, SQLITE_NULLEQ
);
1045 assert( sqlite3VdbeCurrentAddr(v
)==iJump
|| pParse
->db
->mallocFailed
);
1046 sqlite3VdbeAddOp3(v
, OP_Copy
, regResult
, regPrev
, nResultCol
-1);
1050 case WHERE_DISTINCT_UNIQUE
: {
1051 sqlite3VdbeChangeToNoop(v
, pDistinct
->addrTnct
);
1056 assert( pDistinct
->eTnctType
==WHERE_DISTINCT_UNORDERED
);
1057 codeDistinct(pParse
, pDistinct
->tabTnct
, iContinue
, nResultCol
,
1063 codeOffset(v
, p
->iOffset
, iContinue
);
1068 /* In this mode, write each query result to the key of the temporary
1071 #ifndef SQLITE_OMIT_COMPOUND_SELECT
1074 r1
= sqlite3GetTempReg(pParse
);
1075 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r1
);
1076 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regResult
, nResultCol
);
1077 sqlite3ReleaseTempReg(pParse
, r1
);
1081 /* Construct a record from the query result, but instead of
1082 ** saving that record, use it as a key to delete elements from
1083 ** the temporary table iParm.
1086 sqlite3VdbeAddOp3(v
, OP_IdxDelete
, iParm
, regResult
, nResultCol
);
1089 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
1091 /* Store the result as data using a unique key.
1096 case SRT_EphemTab
: {
1097 int r1
= sqlite3GetTempRange(pParse
, nPrefixReg
+1);
1098 testcase( eDest
==SRT_Table
);
1099 testcase( eDest
==SRT_EphemTab
);
1100 testcase( eDest
==SRT_Fifo
);
1101 testcase( eDest
==SRT_DistFifo
);
1102 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r1
+nPrefixReg
);
1103 #ifndef SQLITE_OMIT_CTE
1104 if( eDest
==SRT_DistFifo
){
1105 /* If the destination is DistFifo, then cursor (iParm+1) is open
1106 ** on an ephemeral index. If the current row is already present
1107 ** in the index, do not write it to the output. If not, add the
1108 ** current row to the index and proceed with writing it to the
1109 ** output table as well. */
1110 int addr
= sqlite3VdbeCurrentAddr(v
) + 4;
1111 sqlite3VdbeAddOp4Int(v
, OP_Found
, iParm
+1, addr
, r1
, 0);
1113 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
+1, r1
,regResult
,nResultCol
);
1118 assert( regResult
==regOrig
);
1119 pushOntoSorter(pParse
, pSort
, p
, r1
+nPrefixReg
, regOrig
, 1, nPrefixReg
);
1121 int r2
= sqlite3GetTempReg(pParse
);
1122 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iParm
, r2
);
1123 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, r1
, r2
);
1124 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1125 sqlite3ReleaseTempReg(pParse
, r2
);
1127 sqlite3ReleaseTempRange(pParse
, r1
, nPrefixReg
+1);
1134 pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
, nPrefixReg
);
1136 int i2
= pDest
->iSDParm2
;
1137 int r1
= sqlite3GetTempReg(pParse
);
1139 /* If the UPDATE FROM join is an aggregate that matches no rows, it
1140 ** might still be trying to return one row, because that is what
1141 ** aggregates do. Don't record that empty row in the output table. */
1142 sqlite3VdbeAddOp2(v
, OP_IsNull
, regResult
, iBreak
); VdbeCoverage(v
);
1144 sqlite3VdbeAddOp3(v
, OP_MakeRecord
,
1145 regResult
+(i2
<0), nResultCol
-(i2
<0), r1
);
1147 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, r1
, regResult
);
1149 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regResult
, i2
);
1155 #ifndef SQLITE_OMIT_SUBQUERY
1156 /* If we are creating a set for an "expr IN (SELECT ...)" construct,
1157 ** then there should be a single item on the stack. Write this
1158 ** item into the set table with bogus data.
1162 /* At first glance you would think we could optimize out the
1163 ** ORDER BY in this case since the order of entries in the set
1164 ** does not matter. But there might be a LIMIT clause, in which
1165 ** case the order does matter */
1167 pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
, nPrefixReg
);
1169 int r1
= sqlite3GetTempReg(pParse
);
1170 assert( sqlite3Strlen30(pDest
->zAffSdst
)==nResultCol
);
1171 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regResult
, nResultCol
,
1172 r1
, pDest
->zAffSdst
, nResultCol
);
1173 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regResult
, nResultCol
);
1174 sqlite3ReleaseTempReg(pParse
, r1
);
1180 /* If any row exist in the result set, record that fact and abort.
1183 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iParm
);
1184 /* The LIMIT clause will terminate the loop for us */
1188 /* If this is a scalar select that is part of an expression, then
1189 ** store the results in the appropriate memory cell or array of
1190 ** memory cells and break out of the scan loop.
1194 assert( nResultCol
<=pDest
->nSdst
);
1196 pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
, nPrefixReg
);
1198 assert( nResultCol
==pDest
->nSdst
);
1199 assert( regResult
==iParm
);
1200 /* The LIMIT clause will jump out of the loop for us */
1204 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
1206 case SRT_Coroutine
: /* Send data to a co-routine */
1207 case SRT_Output
: { /* Return the results */
1208 testcase( eDest
==SRT_Coroutine
);
1209 testcase( eDest
==SRT_Output
);
1211 pushOntoSorter(pParse
, pSort
, p
, regResult
, regOrig
, nResultCol
,
1213 }else if( eDest
==SRT_Coroutine
){
1214 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
1216 sqlite3VdbeAddOp2(v
, OP_ResultRow
, regResult
, nResultCol
);
1221 #ifndef SQLITE_OMIT_CTE
1222 /* Write the results into a priority queue that is order according to
1223 ** pDest->pOrderBy (in pSO). pDest->iSDParm (in iParm) is the cursor for an
1224 ** index with pSO->nExpr+2 columns. Build a key using pSO for the first
1225 ** pSO->nExpr columns, then make sure all keys are unique by adding a
1226 ** final OP_Sequence column. The last column is the record as a blob.
1234 pSO
= pDest
->pOrderBy
;
1237 r1
= sqlite3GetTempReg(pParse
);
1238 r2
= sqlite3GetTempRange(pParse
, nKey
+2);
1240 if( eDest
==SRT_DistQueue
){
1241 /* If the destination is DistQueue, then cursor (iParm+1) is open
1242 ** on a second ephemeral index that holds all values every previously
1243 ** added to the queue. */
1244 addrTest
= sqlite3VdbeAddOp4Int(v
, OP_Found
, iParm
+1, 0,
1245 regResult
, nResultCol
);
1248 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regResult
, nResultCol
, r3
);
1249 if( eDest
==SRT_DistQueue
){
1250 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iParm
+1, r3
);
1251 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
1253 for(i
=0; i
<nKey
; i
++){
1254 sqlite3VdbeAddOp2(v
, OP_SCopy
,
1255 regResult
+ pSO
->a
[i
].u
.x
.iOrderByCol
- 1,
1258 sqlite3VdbeAddOp2(v
, OP_Sequence
, iParm
, r2
+nKey
);
1259 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, r2
, nKey
+2, r1
);
1260 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, r2
, nKey
+2);
1261 if( addrTest
) sqlite3VdbeJumpHere(v
, addrTest
);
1262 sqlite3ReleaseTempReg(pParse
, r1
);
1263 sqlite3ReleaseTempRange(pParse
, r2
, nKey
+2);
1266 #endif /* SQLITE_OMIT_CTE */
1270 #if !defined(SQLITE_OMIT_TRIGGER)
1271 /* Discard the results. This is used for SELECT statements inside
1272 ** the body of a TRIGGER. The purpose of such selects is to call
1273 ** user-defined functions that have side effects. We do not care
1274 ** about the actual results of the select.
1277 assert( eDest
==SRT_Discard
);
1283 /* Jump to the end of the loop if the LIMIT is reached. Except, if
1284 ** there is a sorter, in which case the sorter has already limited
1285 ** the output for us.
1287 if( pSort
==0 && p
->iLimit
){
1288 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, p
->iLimit
, iBreak
); VdbeCoverage(v
);
1293 ** Allocate a KeyInfo object sufficient for an index of N key columns and
1296 KeyInfo
*sqlite3KeyInfoAlloc(sqlite3
*db
, int N
, int X
){
1297 int nExtra
= (N
+X
)*(sizeof(CollSeq
*)+1) - sizeof(CollSeq
*);
1298 KeyInfo
*p
= sqlite3DbMallocRawNN(db
, sizeof(KeyInfo
) + nExtra
);
1300 p
->aSortFlags
= (u8
*)&p
->aColl
[N
+X
];
1301 p
->nKeyField
= (u16
)N
;
1302 p
->nAllField
= (u16
)(N
+X
);
1306 memset(&p
[1], 0, nExtra
);
1308 sqlite3OomFault(db
);
1314 ** Deallocate a KeyInfo object
1316 void sqlite3KeyInfoUnref(KeyInfo
*p
){
1318 assert( p
->nRef
>0 );
1320 if( p
->nRef
==0 ) sqlite3DbFreeNN(p
->db
, p
);
1325 ** Make a new pointer to a KeyInfo object
1327 KeyInfo
*sqlite3KeyInfoRef(KeyInfo
*p
){
1329 assert( p
->nRef
>0 );
1337 ** Return TRUE if a KeyInfo object can be change. The KeyInfo object
1338 ** can only be changed if this is just a single reference to the object.
1340 ** This routine is used only inside of assert() statements.
1342 int sqlite3KeyInfoIsWriteable(KeyInfo
*p
){ return p
->nRef
==1; }
1343 #endif /* SQLITE_DEBUG */
1346 ** Given an expression list, generate a KeyInfo structure that records
1347 ** the collating sequence for each expression in that expression list.
1349 ** If the ExprList is an ORDER BY or GROUP BY clause then the resulting
1350 ** KeyInfo structure is appropriate for initializing a virtual index to
1351 ** implement that clause. If the ExprList is the result set of a SELECT
1352 ** then the KeyInfo structure is appropriate for initializing a virtual
1353 ** index to implement a DISTINCT test.
1355 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
1356 ** function is responsible for seeing that this structure is eventually
1359 KeyInfo
*sqlite3KeyInfoFromExprList(
1360 Parse
*pParse
, /* Parsing context */
1361 ExprList
*pList
, /* Form the KeyInfo object from this ExprList */
1362 int iStart
, /* Begin with this column of pList */
1363 int nExtra
/* Add this many extra columns to the end */
1367 struct ExprList_item
*pItem
;
1368 sqlite3
*db
= pParse
->db
;
1371 nExpr
= pList
->nExpr
;
1372 pInfo
= sqlite3KeyInfoAlloc(db
, nExpr
-iStart
, nExtra
+1);
1374 assert( sqlite3KeyInfoIsWriteable(pInfo
) );
1375 for(i
=iStart
, pItem
=pList
->a
+iStart
; i
<nExpr
; i
++, pItem
++){
1376 pInfo
->aColl
[i
-iStart
] = sqlite3ExprNNCollSeq(pParse
, pItem
->pExpr
);
1377 pInfo
->aSortFlags
[i
-iStart
] = pItem
->sortFlags
;
1384 ** Name of the connection operator, used for error messages.
1386 static const char *selectOpName(int id
){
1389 case TK_ALL
: z
= "UNION ALL"; break;
1390 case TK_INTERSECT
: z
= "INTERSECT"; break;
1391 case TK_EXCEPT
: z
= "EXCEPT"; break;
1392 default: z
= "UNION"; break;
1397 #ifndef SQLITE_OMIT_EXPLAIN
1399 ** Unless an "EXPLAIN QUERY PLAN" command is being processed, this function
1400 ** is a no-op. Otherwise, it adds a single row of output to the EQP result,
1401 ** where the caption is of the form:
1403 ** "USE TEMP B-TREE FOR xxx"
1405 ** where xxx is one of "DISTINCT", "ORDER BY" or "GROUP BY". Exactly which
1406 ** is determined by the zUsage argument.
1408 static void explainTempTable(Parse
*pParse
, const char *zUsage
){
1409 ExplainQueryPlan((pParse
, 0, "USE TEMP B-TREE FOR %s", zUsage
));
1413 ** Assign expression b to lvalue a. A second, no-op, version of this macro
1414 ** is provided when SQLITE_OMIT_EXPLAIN is defined. This allows the code
1415 ** in sqlite3Select() to assign values to structure member variables that
1416 ** only exist if SQLITE_OMIT_EXPLAIN is not defined without polluting the
1417 ** code with #ifndef directives.
1419 # define explainSetInteger(a, b) a = b
1422 /* No-op versions of the explainXXX() functions and macros. */
1423 # define explainTempTable(y,z)
1424 # define explainSetInteger(y,z)
1429 ** If the inner loop was generated using a non-null pOrderBy argument,
1430 ** then the results were placed in a sorter. After the loop is terminated
1431 ** we need to run the sorter and output the results. The following
1432 ** routine generates the code needed to do that.
1434 static void generateSortTail(
1435 Parse
*pParse
, /* Parsing context */
1436 Select
*p
, /* The SELECT statement */
1437 SortCtx
*pSort
, /* Information on the ORDER BY clause */
1438 int nColumn
, /* Number of columns of data */
1439 SelectDest
*pDest
/* Write the sorted results here */
1441 Vdbe
*v
= pParse
->pVdbe
; /* The prepared statement */
1442 int addrBreak
= pSort
->labelDone
; /* Jump here to exit loop */
1443 int addrContinue
= sqlite3VdbeMakeLabel(pParse
);/* Jump here for next cycle */
1444 int addr
; /* Top of output loop. Jump for Next. */
1447 ExprList
*pOrderBy
= pSort
->pOrderBy
;
1448 int eDest
= pDest
->eDest
;
1449 int iParm
= pDest
->iSDParm
;
1453 int nKey
; /* Number of key columns in sorter record */
1454 int iSortTab
; /* Sorter cursor to read from */
1456 int bSeq
; /* True if sorter record includes seq. no. */
1458 struct ExprList_item
*aOutEx
= p
->pEList
->a
;
1460 assert( addrBreak
<0 );
1461 if( pSort
->labelBkOut
){
1462 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSort
->regReturn
, pSort
->labelBkOut
);
1463 sqlite3VdbeGoto(v
, addrBreak
);
1464 sqlite3VdbeResolveLabel(v
, pSort
->labelBkOut
);
1467 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1468 /* Open any cursors needed for sorter-reference expressions */
1469 for(i
=0; i
<pSort
->nDefer
; i
++){
1470 Table
*pTab
= pSort
->aDefer
[i
].pTab
;
1471 int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
1472 sqlite3OpenTable(pParse
, pSort
->aDefer
[i
].iCsr
, iDb
, pTab
, OP_OpenRead
);
1473 nRefKey
= MAX(nRefKey
, pSort
->aDefer
[i
].nKey
);
1477 iTab
= pSort
->iECursor
;
1478 if( eDest
==SRT_Output
|| eDest
==SRT_Coroutine
|| eDest
==SRT_Mem
){
1480 regRow
= pDest
->iSdst
;
1482 regRowid
= sqlite3GetTempReg(pParse
);
1483 if( eDest
==SRT_EphemTab
|| eDest
==SRT_Table
){
1484 regRow
= sqlite3GetTempReg(pParse
);
1487 regRow
= sqlite3GetTempRange(pParse
, nColumn
);
1490 nKey
= pOrderBy
->nExpr
- pSort
->nOBSat
;
1491 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
1492 int regSortOut
= ++pParse
->nMem
;
1493 iSortTab
= pParse
->nTab
++;
1494 if( pSort
->labelBkOut
){
1495 addrOnce
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
1497 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, iSortTab
, regSortOut
,
1498 nKey
+1+nColumn
+nRefKey
);
1499 if( addrOnce
) sqlite3VdbeJumpHere(v
, addrOnce
);
1500 addr
= 1 + sqlite3VdbeAddOp2(v
, OP_SorterSort
, iTab
, addrBreak
);
1502 codeOffset(v
, p
->iOffset
, addrContinue
);
1503 sqlite3VdbeAddOp3(v
, OP_SorterData
, iTab
, regSortOut
, iSortTab
);
1506 addr
= 1 + sqlite3VdbeAddOp2(v
, OP_Sort
, iTab
, addrBreak
); VdbeCoverage(v
);
1507 codeOffset(v
, p
->iOffset
, addrContinue
);
1511 for(i
=0, iCol
=nKey
+bSeq
-1; i
<nColumn
; i
++){
1512 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1513 if( aOutEx
[i
].bSorterRef
) continue;
1515 if( aOutEx
[i
].u
.x
.iOrderByCol
==0 ) iCol
++;
1517 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1518 if( pSort
->nDefer
){
1520 int regKey
= sqlite3GetTempRange(pParse
, nRefKey
);
1522 for(i
=0; i
<pSort
->nDefer
; i
++){
1523 int iCsr
= pSort
->aDefer
[i
].iCsr
;
1524 Table
*pTab
= pSort
->aDefer
[i
].pTab
;
1525 int nKey
= pSort
->aDefer
[i
].nKey
;
1527 sqlite3VdbeAddOp1(v
, OP_NullRow
, iCsr
);
1528 if( HasRowid(pTab
) ){
1529 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, iKey
++, regKey
);
1530 sqlite3VdbeAddOp3(v
, OP_SeekRowid
, iCsr
,
1531 sqlite3VdbeCurrentAddr(v
)+1, regKey
);
1535 assert( sqlite3PrimaryKeyIndex(pTab
)->nKeyCol
==nKey
);
1536 for(k
=0; k
<nKey
; k
++){
1537 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, iKey
++, regKey
+k
);
1539 iJmp
= sqlite3VdbeCurrentAddr(v
);
1540 sqlite3VdbeAddOp4Int(v
, OP_SeekGE
, iCsr
, iJmp
+2, regKey
, nKey
);
1541 sqlite3VdbeAddOp4Int(v
, OP_IdxLE
, iCsr
, iJmp
+3, regKey
, nKey
);
1542 sqlite3VdbeAddOp1(v
, OP_NullRow
, iCsr
);
1545 sqlite3ReleaseTempRange(pParse
, regKey
, nRefKey
);
1548 for(i
=nColumn
-1; i
>=0; i
--){
1549 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1550 if( aOutEx
[i
].bSorterRef
){
1551 sqlite3ExprCode(pParse
, aOutEx
[i
].pExpr
, regRow
+i
);
1556 if( aOutEx
[i
].u
.x
.iOrderByCol
){
1557 iRead
= aOutEx
[i
].u
.x
.iOrderByCol
-1;
1561 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, iRead
, regRow
+i
);
1562 VdbeComment((v
, "%s", aOutEx
[i
].zEName
));
1567 case SRT_EphemTab
: {
1568 sqlite3VdbeAddOp3(v
, OP_Column
, iSortTab
, nKey
+bSeq
, regRow
);
1569 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iParm
, regRowid
);
1570 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, regRow
, regRowid
);
1571 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1574 #ifndef SQLITE_OMIT_SUBQUERY
1576 assert( nColumn
==sqlite3Strlen30(pDest
->zAffSdst
) );
1577 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regRow
, nColumn
, regRowid
,
1578 pDest
->zAffSdst
, nColumn
);
1579 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, regRowid
, regRow
, nColumn
);
1583 /* The LIMIT clause will terminate the loop for us */
1588 int i2
= pDest
->iSDParm2
;
1589 int r1
= sqlite3GetTempReg(pParse
);
1590 sqlite3VdbeAddOp3(v
, OP_MakeRecord
,regRow
+(i2
<0),nColumn
-(i2
<0),r1
);
1592 sqlite3VdbeAddOp3(v
, OP_Insert
, iParm
, r1
, regRow
);
1594 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, iParm
, r1
, regRow
, i2
);
1599 assert( eDest
==SRT_Output
|| eDest
==SRT_Coroutine
);
1600 testcase( eDest
==SRT_Output
);
1601 testcase( eDest
==SRT_Coroutine
);
1602 if( eDest
==SRT_Output
){
1603 sqlite3VdbeAddOp2(v
, OP_ResultRow
, pDest
->iSdst
, nColumn
);
1605 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
1611 if( eDest
==SRT_Set
){
1612 sqlite3ReleaseTempRange(pParse
, regRow
, nColumn
);
1614 sqlite3ReleaseTempReg(pParse
, regRow
);
1616 sqlite3ReleaseTempReg(pParse
, regRowid
);
1618 /* The bottom of the loop
1620 sqlite3VdbeResolveLabel(v
, addrContinue
);
1621 if( pSort
->sortFlags
& SORTFLAG_UseSorter
){
1622 sqlite3VdbeAddOp2(v
, OP_SorterNext
, iTab
, addr
); VdbeCoverage(v
);
1624 sqlite3VdbeAddOp2(v
, OP_Next
, iTab
, addr
); VdbeCoverage(v
);
1626 if( pSort
->regReturn
) sqlite3VdbeAddOp1(v
, OP_Return
, pSort
->regReturn
);
1627 sqlite3VdbeResolveLabel(v
, addrBreak
);
1631 ** Return a pointer to a string containing the 'declaration type' of the
1632 ** expression pExpr. The string may be treated as static by the caller.
1634 ** Also try to estimate the size of the returned value and return that
1635 ** result in *pEstWidth.
1637 ** The declaration type is the exact datatype definition extracted from the
1638 ** original CREATE TABLE statement if the expression is a column. The
1639 ** declaration type for a ROWID field is INTEGER. Exactly when an expression
1640 ** is considered a column can be complex in the presence of subqueries. The
1641 ** result-set expression in all of the following SELECT statements is
1642 ** considered a column by this function.
1644 ** SELECT col FROM tbl;
1645 ** SELECT (SELECT col FROM tbl;
1646 ** SELECT (SELECT col FROM tbl);
1647 ** SELECT abc FROM (SELECT col AS abc FROM tbl);
1649 ** The declaration type for any expression other than a column is NULL.
1651 ** This routine has either 3 or 6 parameters depending on whether or not
1652 ** the SQLITE_ENABLE_COLUMN_METADATA compile-time option is used.
1654 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1655 # define columnType(A,B,C,D,E) columnTypeImpl(A,B,C,D,E)
1656 #else /* if !defined(SQLITE_ENABLE_COLUMN_METADATA) */
1657 # define columnType(A,B,C,D,E) columnTypeImpl(A,B)
1659 static const char *columnTypeImpl(
1661 #ifndef SQLITE_ENABLE_COLUMN_METADATA
1665 const char **pzOrigDb
,
1666 const char **pzOrigTab
,
1667 const char **pzOrigCol
1670 char const *zType
= 0;
1672 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1673 char const *zOrigDb
= 0;
1674 char const *zOrigTab
= 0;
1675 char const *zOrigCol
= 0;
1679 assert( pNC
->pSrcList
!=0 );
1680 switch( pExpr
->op
){
1682 /* The expression is a column. Locate the table the column is being
1683 ** extracted from in NameContext.pSrcList. This table may be real
1684 ** database table or a subquery.
1686 Table
*pTab
= 0; /* Table structure column is extracted from */
1687 Select
*pS
= 0; /* Select the column is extracted from */
1688 int iCol
= pExpr
->iColumn
; /* Index of column in pTab */
1689 while( pNC
&& !pTab
){
1690 SrcList
*pTabList
= pNC
->pSrcList
;
1691 for(j
=0;j
<pTabList
->nSrc
&& pTabList
->a
[j
].iCursor
!=pExpr
->iTable
;j
++);
1692 if( j
<pTabList
->nSrc
){
1693 pTab
= pTabList
->a
[j
].pTab
;
1694 pS
= pTabList
->a
[j
].pSelect
;
1701 /* At one time, code such as "SELECT new.x" within a trigger would
1702 ** cause this condition to run. Since then, we have restructured how
1703 ** trigger code is generated and so this condition is no longer
1704 ** possible. However, it can still be true for statements like
1707 ** CREATE TABLE t1(col INTEGER);
1708 ** SELECT (SELECT t1.col) FROM FROM t1;
1710 ** when columnType() is called on the expression "t1.col" in the
1711 ** sub-select. In this case, set the column type to NULL, even
1712 ** though it should really be "INTEGER".
1714 ** This is not a problem, as the column type of "t1.col" is never
1715 ** used. When columnType() is called on the expression
1716 ** "(SELECT t1.col)", the correct type is returned (see the TK_SELECT
1721 assert( pTab
&& pExpr
->y
.pTab
==pTab
);
1723 /* The "table" is actually a sub-select or a view in the FROM clause
1724 ** of the SELECT statement. Return the declaration type and origin
1725 ** data for the result-set column of the sub-select.
1727 if( iCol
>=0 && iCol
<pS
->pEList
->nExpr
){
1728 /* If iCol is less than zero, then the expression requests the
1729 ** rowid of the sub-select or view. This expression is legal (see
1730 ** test case misc2.2.2) - it always evaluates to NULL.
1733 Expr
*p
= pS
->pEList
->a
[iCol
].pExpr
;
1734 sNC
.pSrcList
= pS
->pSrc
;
1736 sNC
.pParse
= pNC
->pParse
;
1737 zType
= columnType(&sNC
, p
,&zOrigDb
,&zOrigTab
,&zOrigCol
);
1740 /* A real table or a CTE table */
1742 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1743 if( iCol
<0 ) iCol
= pTab
->iPKey
;
1744 assert( iCol
==XN_ROWID
|| (iCol
>=0 && iCol
<pTab
->nCol
) );
1749 zOrigCol
= pTab
->aCol
[iCol
].zName
;
1750 zType
= sqlite3ColumnType(&pTab
->aCol
[iCol
],0);
1752 zOrigTab
= pTab
->zName
;
1753 if( pNC
->pParse
&& pTab
->pSchema
){
1754 int iDb
= sqlite3SchemaToIndex(pNC
->pParse
->db
, pTab
->pSchema
);
1755 zOrigDb
= pNC
->pParse
->db
->aDb
[iDb
].zDbSName
;
1758 assert( iCol
==XN_ROWID
|| (iCol
>=0 && iCol
<pTab
->nCol
) );
1762 zType
= sqlite3ColumnType(&pTab
->aCol
[iCol
],0);
1768 #ifndef SQLITE_OMIT_SUBQUERY
1770 /* The expression is a sub-select. Return the declaration type and
1771 ** origin info for the single column in the result set of the SELECT
1775 Select
*pS
= pExpr
->x
.pSelect
;
1776 Expr
*p
= pS
->pEList
->a
[0].pExpr
;
1777 assert( ExprHasProperty(pExpr
, EP_xIsSelect
) );
1778 sNC
.pSrcList
= pS
->pSrc
;
1780 sNC
.pParse
= pNC
->pParse
;
1781 zType
= columnType(&sNC
, p
, &zOrigDb
, &zOrigTab
, &zOrigCol
);
1787 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1789 assert( pzOrigTab
&& pzOrigCol
);
1790 *pzOrigDb
= zOrigDb
;
1791 *pzOrigTab
= zOrigTab
;
1792 *pzOrigCol
= zOrigCol
;
1799 ** Generate code that will tell the VDBE the declaration types of columns
1800 ** in the result set.
1802 static void generateColumnTypes(
1803 Parse
*pParse
, /* Parser context */
1804 SrcList
*pTabList
, /* List of tables */
1805 ExprList
*pEList
/* Expressions defining the result set */
1807 #ifndef SQLITE_OMIT_DECLTYPE
1808 Vdbe
*v
= pParse
->pVdbe
;
1811 sNC
.pSrcList
= pTabList
;
1812 sNC
.pParse
= pParse
;
1814 for(i
=0; i
<pEList
->nExpr
; i
++){
1815 Expr
*p
= pEList
->a
[i
].pExpr
;
1817 #ifdef SQLITE_ENABLE_COLUMN_METADATA
1818 const char *zOrigDb
= 0;
1819 const char *zOrigTab
= 0;
1820 const char *zOrigCol
= 0;
1821 zType
= columnType(&sNC
, p
, &zOrigDb
, &zOrigTab
, &zOrigCol
);
1823 /* The vdbe must make its own copy of the column-type and other
1824 ** column specific strings, in case the schema is reset before this
1825 ** virtual machine is deleted.
1827 sqlite3VdbeSetColName(v
, i
, COLNAME_DATABASE
, zOrigDb
, SQLITE_TRANSIENT
);
1828 sqlite3VdbeSetColName(v
, i
, COLNAME_TABLE
, zOrigTab
, SQLITE_TRANSIENT
);
1829 sqlite3VdbeSetColName(v
, i
, COLNAME_COLUMN
, zOrigCol
, SQLITE_TRANSIENT
);
1831 zType
= columnType(&sNC
, p
, 0, 0, 0);
1833 sqlite3VdbeSetColName(v
, i
, COLNAME_DECLTYPE
, zType
, SQLITE_TRANSIENT
);
1835 #endif /* !defined(SQLITE_OMIT_DECLTYPE) */
1840 ** Compute the column names for a SELECT statement.
1842 ** The only guarantee that SQLite makes about column names is that if the
1843 ** column has an AS clause assigning it a name, that will be the name used.
1844 ** That is the only documented guarantee. However, countless applications
1845 ** developed over the years have made baseless assumptions about column names
1846 ** and will break if those assumptions changes. Hence, use extreme caution
1847 ** when modifying this routine to avoid breaking legacy.
1849 ** See Also: sqlite3ColumnsFromExprList()
1851 ** The PRAGMA short_column_names and PRAGMA full_column_names settings are
1852 ** deprecated. The default setting is short=ON, full=OFF. 99.9% of all
1853 ** applications should operate this way. Nevertheless, we need to support the
1854 ** other modes for legacy:
1856 ** short=OFF, full=OFF: Column name is the text of the expression has it
1857 ** originally appears in the SELECT statement. In
1858 ** other words, the zSpan of the result expression.
1860 ** short=ON, full=OFF: (This is the default setting). If the result
1861 ** refers directly to a table column, then the
1862 ** result column name is just the table column
1863 ** name: COLUMN. Otherwise use zSpan.
1865 ** full=ON, short=ANY: If the result refers directly to a table column,
1866 ** then the result column name with the table name
1867 ** prefix, ex: TABLE.COLUMN. Otherwise use zSpan.
1869 static void generateColumnNames(
1870 Parse
*pParse
, /* Parser context */
1871 Select
*pSelect
/* Generate column names for this SELECT statement */
1873 Vdbe
*v
= pParse
->pVdbe
;
1878 sqlite3
*db
= pParse
->db
;
1879 int fullName
; /* TABLE.COLUMN if no AS clause and is a direct table ref */
1880 int srcName
; /* COLUMN or TABLE.COLUMN if no AS clause and is direct */
1882 #ifndef SQLITE_OMIT_EXPLAIN
1883 /* If this is an EXPLAIN, skip this step */
1884 if( pParse
->explain
){
1889 if( pParse
->colNamesSet
) return;
1890 /* Column names are determined by the left-most term of a compound select */
1891 while( pSelect
->pPrior
) pSelect
= pSelect
->pPrior
;
1892 SELECTTRACE(1,pParse
,pSelect
,("generating column names\n"));
1893 pTabList
= pSelect
->pSrc
;
1894 pEList
= pSelect
->pEList
;
1896 assert( pTabList
!=0 );
1897 pParse
->colNamesSet
= 1;
1898 fullName
= (db
->flags
& SQLITE_FullColNames
)!=0;
1899 srcName
= (db
->flags
& SQLITE_ShortColNames
)!=0 || fullName
;
1900 sqlite3VdbeSetNumCols(v
, pEList
->nExpr
);
1901 for(i
=0; i
<pEList
->nExpr
; i
++){
1902 Expr
*p
= pEList
->a
[i
].pExpr
;
1905 assert( p
->op
!=TK_AGG_COLUMN
); /* Agg processing has not run yet */
1906 assert( p
->op
!=TK_COLUMN
|| p
->y
.pTab
!=0 ); /* Covering idx not yet coded */
1907 if( pEList
->a
[i
].zEName
&& pEList
->a
[i
].eEName
==ENAME_NAME
){
1908 /* An AS clause always takes first priority */
1909 char *zName
= pEList
->a
[i
].zEName
;
1910 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zName
, SQLITE_TRANSIENT
);
1911 }else if( srcName
&& p
->op
==TK_COLUMN
){
1913 int iCol
= p
->iColumn
;
1916 if( iCol
<0 ) iCol
= pTab
->iPKey
;
1917 assert( iCol
==-1 || (iCol
>=0 && iCol
<pTab
->nCol
) );
1921 zCol
= pTab
->aCol
[iCol
].zName
;
1925 zName
= sqlite3MPrintf(db
, "%s.%s", pTab
->zName
, zCol
);
1926 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zName
, SQLITE_DYNAMIC
);
1928 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, zCol
, SQLITE_TRANSIENT
);
1931 const char *z
= pEList
->a
[i
].zEName
;
1932 z
= z
==0 ? sqlite3MPrintf(db
, "column%d", i
+1) : sqlite3DbStrDup(db
, z
);
1933 sqlite3VdbeSetColName(v
, i
, COLNAME_NAME
, z
, SQLITE_DYNAMIC
);
1936 generateColumnTypes(pParse
, pTabList
, pEList
);
1940 ** Given an expression list (which is really the list of expressions
1941 ** that form the result set of a SELECT statement) compute appropriate
1942 ** column names for a table that would hold the expression list.
1944 ** All column names will be unique.
1946 ** Only the column names are computed. Column.zType, Column.zColl,
1947 ** and other fields of Column are zeroed.
1949 ** Return SQLITE_OK on success. If a memory allocation error occurs,
1950 ** store NULL in *paCol and 0 in *pnCol and return SQLITE_NOMEM.
1952 ** The only guarantee that SQLite makes about column names is that if the
1953 ** column has an AS clause assigning it a name, that will be the name used.
1954 ** That is the only documented guarantee. However, countless applications
1955 ** developed over the years have made baseless assumptions about column names
1956 ** and will break if those assumptions changes. Hence, use extreme caution
1957 ** when modifying this routine to avoid breaking legacy.
1959 ** See Also: generateColumnNames()
1961 int sqlite3ColumnsFromExprList(
1962 Parse
*pParse
, /* Parsing context */
1963 ExprList
*pEList
, /* Expr list from which to derive column names */
1964 i16
*pnCol
, /* Write the number of columns here */
1965 Column
**paCol
/* Write the new column list here */
1967 sqlite3
*db
= pParse
->db
; /* Database connection */
1968 int i
, j
; /* Loop counters */
1969 u32 cnt
; /* Index added to make the name unique */
1970 Column
*aCol
, *pCol
; /* For looping over result columns */
1971 int nCol
; /* Number of columns in the result set */
1972 char *zName
; /* Column name */
1973 int nName
; /* Size of name in zName[] */
1974 Hash ht
; /* Hash table of column names */
1977 sqlite3HashInit(&ht
);
1979 nCol
= pEList
->nExpr
;
1980 aCol
= sqlite3DbMallocZero(db
, sizeof(aCol
[0])*nCol
);
1981 testcase( aCol
==0 );
1982 if( nCol
>32767 ) nCol
= 32767;
1987 assert( nCol
==(i16
)nCol
);
1991 for(i
=0, pCol
=aCol
; i
<nCol
&& !db
->mallocFailed
; i
++, pCol
++){
1992 /* Get an appropriate name for the column
1994 if( (zName
= pEList
->a
[i
].zEName
)!=0 && pEList
->a
[i
].eEName
==ENAME_NAME
){
1995 /* If the column contains an "AS <name>" phrase, use <name> as the name */
1997 Expr
*pColExpr
= sqlite3ExprSkipCollateAndLikely(pEList
->a
[i
].pExpr
);
1998 while( ALWAYS(pColExpr
!=0) && pColExpr
->op
==TK_DOT
){
1999 pColExpr
= pColExpr
->pRight
;
2000 assert( pColExpr
!=0 );
2002 if( pColExpr
->op
==TK_COLUMN
&& (pTab
= pColExpr
->y
.pTab
)!=0 ){
2003 /* For columns use the column name name */
2004 int iCol
= pColExpr
->iColumn
;
2005 if( iCol
<0 ) iCol
= pTab
->iPKey
;
2006 zName
= iCol
>=0 ? pTab
->aCol
[iCol
].zName
: "rowid";
2007 }else if( pColExpr
->op
==TK_ID
){
2008 assert( !ExprHasProperty(pColExpr
, EP_IntValue
) );
2009 zName
= pColExpr
->u
.zToken
;
2011 /* Use the original text of the column expression as its name */
2012 zName
= pEList
->a
[i
].zEName
;
2015 if( zName
&& !sqlite3IsTrueOrFalse(zName
) ){
2016 zName
= sqlite3DbStrDup(db
, zName
);
2018 zName
= sqlite3MPrintf(db
,"column%d",i
+1);
2021 /* Make sure the column name is unique. If the name is not unique,
2022 ** append an integer to the name so that it becomes unique.
2025 while( zName
&& sqlite3HashFind(&ht
, zName
)!=0 ){
2026 nName
= sqlite3Strlen30(zName
);
2028 for(j
=nName
-1; j
>0 && sqlite3Isdigit(zName
[j
]); j
--){}
2029 if( zName
[j
]==':' ) nName
= j
;
2031 zName
= sqlite3MPrintf(db
, "%.*z:%u", nName
, zName
, ++cnt
);
2032 if( cnt
>3 ) sqlite3_randomness(sizeof(cnt
), &cnt
);
2034 pCol
->zName
= zName
;
2035 pCol
->hName
= sqlite3StrIHash(zName
);
2036 sqlite3ColumnPropertiesFromName(0, pCol
);
2037 if( zName
&& sqlite3HashInsert(&ht
, zName
, pCol
)==pCol
){
2038 sqlite3OomFault(db
);
2041 sqlite3HashClear(&ht
);
2042 if( db
->mallocFailed
){
2044 sqlite3DbFree(db
, aCol
[j
].zName
);
2046 sqlite3DbFree(db
, aCol
);
2049 return SQLITE_NOMEM_BKPT
;
2055 ** Add type and collation information to a column list based on
2056 ** a SELECT statement.
2058 ** The column list presumably came from selectColumnNamesFromExprList().
2059 ** The column list has only names, not types or collations. This
2060 ** routine goes through and adds the types and collations.
2062 ** This routine requires that all identifiers in the SELECT
2063 ** statement be resolved.
2065 void sqlite3SelectAddColumnTypeAndCollation(
2066 Parse
*pParse
, /* Parsing contexts */
2067 Table
*pTab
, /* Add column type information to this table */
2068 Select
*pSelect
, /* SELECT used to determine types and collations */
2069 char aff
/* Default affinity for columns */
2071 sqlite3
*db
= pParse
->db
;
2077 struct ExprList_item
*a
;
2079 assert( pSelect
!=0 );
2080 assert( (pSelect
->selFlags
& SF_Resolved
)!=0 );
2081 assert( pTab
->nCol
==pSelect
->pEList
->nExpr
|| db
->mallocFailed
);
2082 if( db
->mallocFailed
) return;
2083 memset(&sNC
, 0, sizeof(sNC
));
2084 sNC
.pSrcList
= pSelect
->pSrc
;
2085 a
= pSelect
->pEList
->a
;
2086 for(i
=0, pCol
=pTab
->aCol
; i
<pTab
->nCol
; i
++, pCol
++){
2090 zType
= columnType(&sNC
, p
, 0, 0, 0);
2091 /* pCol->szEst = ... // Column size est for SELECT tables never used */
2092 pCol
->affinity
= sqlite3ExprAffinity(p
);
2094 m
= sqlite3Strlen30(zType
);
2095 n
= sqlite3Strlen30(pCol
->zName
);
2096 pCol
->zName
= sqlite3DbReallocOrFree(db
, pCol
->zName
, n
+m
+2);
2098 memcpy(&pCol
->zName
[n
+1], zType
, m
+1);
2099 pCol
->colFlags
|= COLFLAG_HASTYPE
;
2102 if( pCol
->affinity
<=SQLITE_AFF_NONE
) pCol
->affinity
= aff
;
2103 pColl
= sqlite3ExprCollSeq(pParse
, p
);
2104 if( pColl
&& pCol
->zColl
==0 ){
2105 pCol
->zColl
= sqlite3DbStrDup(db
, pColl
->zName
);
2108 pTab
->szTabRow
= 1; /* Any non-zero value works */
2112 ** Given a SELECT statement, generate a Table structure that describes
2113 ** the result set of that SELECT.
2115 Table
*sqlite3ResultSetOfSelect(Parse
*pParse
, Select
*pSelect
, char aff
){
2117 sqlite3
*db
= pParse
->db
;
2120 savedFlags
= db
->flags
;
2121 db
->flags
&= ~(u64
)SQLITE_FullColNames
;
2122 db
->flags
|= SQLITE_ShortColNames
;
2123 sqlite3SelectPrep(pParse
, pSelect
, 0);
2124 db
->flags
= savedFlags
;
2125 if( pParse
->nErr
) return 0;
2126 while( pSelect
->pPrior
) pSelect
= pSelect
->pPrior
;
2127 pTab
= sqlite3DbMallocZero(db
, sizeof(Table
) );
2133 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
2134 sqlite3ColumnsFromExprList(pParse
, pSelect
->pEList
, &pTab
->nCol
, &pTab
->aCol
);
2135 sqlite3SelectAddColumnTypeAndCollation(pParse
, pTab
, pSelect
, aff
);
2137 if( db
->mallocFailed
){
2138 sqlite3DeleteTable(db
, pTab
);
2145 ** Get a VDBE for the given parser context. Create a new one if necessary.
2146 ** If an error occurs, return NULL and leave a message in pParse.
2148 Vdbe
*sqlite3GetVdbe(Parse
*pParse
){
2149 if( pParse
->pVdbe
){
2150 return pParse
->pVdbe
;
2152 if( pParse
->pToplevel
==0
2153 && OptimizationEnabled(pParse
->db
,SQLITE_FactorOutConst
)
2155 pParse
->okConstFactor
= 1;
2157 return sqlite3VdbeCreate(pParse
);
2162 ** Compute the iLimit and iOffset fields of the SELECT based on the
2163 ** pLimit expressions. pLimit->pLeft and pLimit->pRight hold the expressions
2164 ** that appear in the original SQL statement after the LIMIT and OFFSET
2165 ** keywords. Or NULL if those keywords are omitted. iLimit and iOffset
2166 ** are the integer memory register numbers for counters used to compute
2167 ** the limit and offset. If there is no limit and/or offset, then
2168 ** iLimit and iOffset are negative.
2170 ** This routine changes the values of iLimit and iOffset only if
2171 ** a limit or offset is defined by pLimit->pLeft and pLimit->pRight. iLimit
2172 ** and iOffset should have been preset to appropriate default values (zero)
2173 ** prior to calling this routine.
2175 ** The iOffset register (if it exists) is initialized to the value
2176 ** of the OFFSET. The iLimit register is initialized to LIMIT. Register
2177 ** iOffset+1 is initialized to LIMIT+OFFSET.
2179 ** Only if pLimit->pLeft!=0 do the limit registers get
2180 ** redefined. The UNION ALL operator uses this property to force
2181 ** the reuse of the same limit and offset registers across multiple
2182 ** SELECT statements.
2184 static void computeLimitRegisters(Parse
*pParse
, Select
*p
, int iBreak
){
2189 Expr
*pLimit
= p
->pLimit
;
2191 if( p
->iLimit
) return;
2194 ** "LIMIT -1" always shows all rows. There is some
2195 ** controversy about what the correct behavior should be.
2196 ** The current implementation interprets "LIMIT 0" to mean
2200 assert( pLimit
->op
==TK_LIMIT
);
2201 assert( pLimit
->pLeft
!=0 );
2202 p
->iLimit
= iLimit
= ++pParse
->nMem
;
2203 v
= sqlite3GetVdbe(pParse
);
2205 if( sqlite3ExprIsInteger(pLimit
->pLeft
, &n
) ){
2206 sqlite3VdbeAddOp2(v
, OP_Integer
, n
, iLimit
);
2207 VdbeComment((v
, "LIMIT counter"));
2209 sqlite3VdbeGoto(v
, iBreak
);
2210 }else if( n
>=0 && p
->nSelectRow
>sqlite3LogEst((u64
)n
) ){
2211 p
->nSelectRow
= sqlite3LogEst((u64
)n
);
2212 p
->selFlags
|= SF_FixedLimit
;
2215 sqlite3ExprCode(pParse
, pLimit
->pLeft
, iLimit
);
2216 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, iLimit
); VdbeCoverage(v
);
2217 VdbeComment((v
, "LIMIT counter"));
2218 sqlite3VdbeAddOp2(v
, OP_IfNot
, iLimit
, iBreak
); VdbeCoverage(v
);
2220 if( pLimit
->pRight
){
2221 p
->iOffset
= iOffset
= ++pParse
->nMem
;
2222 pParse
->nMem
++; /* Allocate an extra register for limit+offset */
2223 sqlite3ExprCode(pParse
, pLimit
->pRight
, iOffset
);
2224 sqlite3VdbeAddOp1(v
, OP_MustBeInt
, iOffset
); VdbeCoverage(v
);
2225 VdbeComment((v
, "OFFSET counter"));
2226 sqlite3VdbeAddOp3(v
, OP_OffsetLimit
, iLimit
, iOffset
+1, iOffset
);
2227 VdbeComment((v
, "LIMIT+OFFSET"));
2232 #ifndef SQLITE_OMIT_COMPOUND_SELECT
2234 ** Return the appropriate collating sequence for the iCol-th column of
2235 ** the result set for the compound-select statement "p". Return NULL if
2236 ** the column has no default collating sequence.
2238 ** The collating sequence for the compound select is taken from the
2239 ** left-most term of the select that has a collating sequence.
2241 static CollSeq
*multiSelectCollSeq(Parse
*pParse
, Select
*p
, int iCol
){
2244 pRet
= multiSelectCollSeq(pParse
, p
->pPrior
, iCol
);
2249 /* iCol must be less than p->pEList->nExpr. Otherwise an error would
2250 ** have been thrown during name resolution and we would not have gotten
2252 if( pRet
==0 && ALWAYS(iCol
<p
->pEList
->nExpr
) ){
2253 pRet
= sqlite3ExprCollSeq(pParse
, p
->pEList
->a
[iCol
].pExpr
);
2259 ** The select statement passed as the second parameter is a compound SELECT
2260 ** with an ORDER BY clause. This function allocates and returns a KeyInfo
2261 ** structure suitable for implementing the ORDER BY.
2263 ** Space to hold the KeyInfo structure is obtained from malloc. The calling
2264 ** function is responsible for ensuring that this structure is eventually
2267 static KeyInfo
*multiSelectOrderByKeyInfo(Parse
*pParse
, Select
*p
, int nExtra
){
2268 ExprList
*pOrderBy
= p
->pOrderBy
;
2269 int nOrderBy
= p
->pOrderBy
->nExpr
;
2270 sqlite3
*db
= pParse
->db
;
2271 KeyInfo
*pRet
= sqlite3KeyInfoAlloc(db
, nOrderBy
+nExtra
, 1);
2274 for(i
=0; i
<nOrderBy
; i
++){
2275 struct ExprList_item
*pItem
= &pOrderBy
->a
[i
];
2276 Expr
*pTerm
= pItem
->pExpr
;
2279 if( pTerm
->flags
& EP_Collate
){
2280 pColl
= sqlite3ExprCollSeq(pParse
, pTerm
);
2282 pColl
= multiSelectCollSeq(pParse
, p
, pItem
->u
.x
.iOrderByCol
-1);
2283 if( pColl
==0 ) pColl
= db
->pDfltColl
;
2284 pOrderBy
->a
[i
].pExpr
=
2285 sqlite3ExprAddCollateString(pParse
, pTerm
, pColl
->zName
);
2287 assert( sqlite3KeyInfoIsWriteable(pRet
) );
2288 pRet
->aColl
[i
] = pColl
;
2289 pRet
->aSortFlags
[i
] = pOrderBy
->a
[i
].sortFlags
;
2296 #ifndef SQLITE_OMIT_CTE
2298 ** This routine generates VDBE code to compute the content of a WITH RECURSIVE
2299 ** query of the form:
2301 ** <recursive-table> AS (<setup-query> UNION [ALL] <recursive-query>)
2302 ** \___________/ \_______________/
2306 ** There is exactly one reference to the recursive-table in the FROM clause
2307 ** of recursive-query, marked with the SrcList->a[].fg.isRecursive flag.
2309 ** The setup-query runs once to generate an initial set of rows that go
2310 ** into a Queue table. Rows are extracted from the Queue table one by
2311 ** one. Each row extracted from Queue is output to pDest. Then the single
2312 ** extracted row (now in the iCurrent table) becomes the content of the
2313 ** recursive-table for a recursive-query run. The output of the recursive-query
2314 ** is added back into the Queue table. Then another row is extracted from Queue
2315 ** and the iteration continues until the Queue table is empty.
2317 ** If the compound query operator is UNION then no duplicate rows are ever
2318 ** inserted into the Queue table. The iDistinct table keeps a copy of all rows
2319 ** that have ever been inserted into Queue and causes duplicates to be
2320 ** discarded. If the operator is UNION ALL, then duplicates are allowed.
2322 ** If the query has an ORDER BY, then entries in the Queue table are kept in
2323 ** ORDER BY order and the first entry is extracted for each cycle. Without
2324 ** an ORDER BY, the Queue table is just a FIFO.
2326 ** If a LIMIT clause is provided, then the iteration stops after LIMIT rows
2327 ** have been output to pDest. A LIMIT of zero means to output no rows and a
2328 ** negative LIMIT means to output all rows. If there is also an OFFSET clause
2329 ** with a positive value, then the first OFFSET outputs are discarded rather
2330 ** than being sent to pDest. The LIMIT count does not begin until after OFFSET
2331 ** rows have been skipped.
2333 static void generateWithRecursiveQuery(
2334 Parse
*pParse
, /* Parsing context */
2335 Select
*p
, /* The recursive SELECT to be coded */
2336 SelectDest
*pDest
/* What to do with query results */
2338 SrcList
*pSrc
= p
->pSrc
; /* The FROM clause of the recursive query */
2339 int nCol
= p
->pEList
->nExpr
; /* Number of columns in the recursive table */
2340 Vdbe
*v
= pParse
->pVdbe
; /* The prepared statement under construction */
2341 Select
*pSetup
= p
->pPrior
; /* The setup query */
2342 Select
*pFirstRec
; /* Left-most recursive term */
2343 int addrTop
; /* Top of the loop */
2344 int addrCont
, addrBreak
; /* CONTINUE and BREAK addresses */
2345 int iCurrent
= 0; /* The Current table */
2346 int regCurrent
; /* Register holding Current table */
2347 int iQueue
; /* The Queue table */
2348 int iDistinct
= 0; /* To ensure unique results if UNION */
2349 int eDest
= SRT_Fifo
; /* How to write to Queue */
2350 SelectDest destQueue
; /* SelectDest targetting the Queue table */
2351 int i
; /* Loop counter */
2352 int rc
; /* Result code */
2353 ExprList
*pOrderBy
; /* The ORDER BY clause */
2354 Expr
*pLimit
; /* Saved LIMIT and OFFSET */
2355 int regLimit
, regOffset
; /* Registers used by LIMIT and OFFSET */
2357 #ifndef SQLITE_OMIT_WINDOWFUNC
2359 sqlite3ErrorMsg(pParse
, "cannot use window functions in recursive queries");
2364 /* Obtain authorization to do a recursive query */
2365 if( sqlite3AuthCheck(pParse
, SQLITE_RECURSIVE
, 0, 0, 0) ) return;
2367 /* Process the LIMIT and OFFSET clauses, if they exist */
2368 addrBreak
= sqlite3VdbeMakeLabel(pParse
);
2369 p
->nSelectRow
= 320; /* 4 billion rows */
2370 computeLimitRegisters(pParse
, p
, addrBreak
);
2372 regLimit
= p
->iLimit
;
2373 regOffset
= p
->iOffset
;
2375 p
->iLimit
= p
->iOffset
= 0;
2376 pOrderBy
= p
->pOrderBy
;
2378 /* Locate the cursor number of the Current table */
2379 for(i
=0; ALWAYS(i
<pSrc
->nSrc
); i
++){
2380 if( pSrc
->a
[i
].fg
.isRecursive
){
2381 iCurrent
= pSrc
->a
[i
].iCursor
;
2386 /* Allocate cursors numbers for Queue and Distinct. The cursor number for
2387 ** the Distinct table must be exactly one greater than Queue in order
2388 ** for the SRT_DistFifo and SRT_DistQueue destinations to work. */
2389 iQueue
= pParse
->nTab
++;
2390 if( p
->op
==TK_UNION
){
2391 eDest
= pOrderBy
? SRT_DistQueue
: SRT_DistFifo
;
2392 iDistinct
= pParse
->nTab
++;
2394 eDest
= pOrderBy
? SRT_Queue
: SRT_Fifo
;
2396 sqlite3SelectDestInit(&destQueue
, eDest
, iQueue
);
2398 /* Allocate cursors for Current, Queue, and Distinct. */
2399 regCurrent
= ++pParse
->nMem
;
2400 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, iCurrent
, regCurrent
, nCol
);
2402 KeyInfo
*pKeyInfo
= multiSelectOrderByKeyInfo(pParse
, p
, 1);
2403 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
, iQueue
, pOrderBy
->nExpr
+2, 0,
2404 (char*)pKeyInfo
, P4_KEYINFO
);
2405 destQueue
.pOrderBy
= pOrderBy
;
2407 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, iQueue
, nCol
);
2409 VdbeComment((v
, "Queue table"));
2411 p
->addrOpenEphm
[0] = sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, iDistinct
, 0);
2412 p
->selFlags
|= SF_UsesEphemeral
;
2415 /* Detach the ORDER BY clause from the compound SELECT */
2418 /* Figure out how many elements of the compound SELECT are part of the
2419 ** recursive query. Make sure no recursive elements use aggregate
2420 ** functions. Mark the recursive elements as UNION ALL even if they
2421 ** are really UNION because the distinctness will be enforced by the
2422 ** iDistinct table. pFirstRec is left pointing to the left-most
2423 ** recursive term of the CTE.
2426 for(pFirstRec
=p
; ALWAYS(pFirstRec
!=0); pFirstRec
=pFirstRec
->pPrior
){
2427 if( pFirstRec
->selFlags
& SF_Aggregate
){
2428 sqlite3ErrorMsg(pParse
, "recursive aggregate queries not supported");
2429 goto end_of_recursive_query
;
2431 pFirstRec
->op
= TK_ALL
;
2432 if( (pFirstRec
->pPrior
->selFlags
& SF_Recursive
)==0 ) break;
2435 /* Store the results of the setup-query in Queue. */
2436 pSetup
= pFirstRec
->pPrior
;
2438 ExplainQueryPlan((pParse
, 1, "SETUP"));
2439 rc
= sqlite3Select(pParse
, pSetup
, &destQueue
);
2441 if( rc
) goto end_of_recursive_query
;
2443 /* Find the next row in the Queue and output that row */
2444 addrTop
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iQueue
, addrBreak
); VdbeCoverage(v
);
2446 /* Transfer the next row in Queue over to Current */
2447 sqlite3VdbeAddOp1(v
, OP_NullRow
, iCurrent
); /* To reset column cache */
2449 sqlite3VdbeAddOp3(v
, OP_Column
, iQueue
, pOrderBy
->nExpr
+1, regCurrent
);
2451 sqlite3VdbeAddOp2(v
, OP_RowData
, iQueue
, regCurrent
);
2453 sqlite3VdbeAddOp1(v
, OP_Delete
, iQueue
);
2455 /* Output the single row in Current */
2456 addrCont
= sqlite3VdbeMakeLabel(pParse
);
2457 codeOffset(v
, regOffset
, addrCont
);
2458 selectInnerLoop(pParse
, p
, iCurrent
,
2459 0, 0, pDest
, addrCont
, addrBreak
);
2461 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, regLimit
, addrBreak
);
2464 sqlite3VdbeResolveLabel(v
, addrCont
);
2466 /* Execute the recursive SELECT taking the single row in Current as
2467 ** the value for the recursive-table. Store the results in the Queue.
2469 pFirstRec
->pPrior
= 0;
2470 ExplainQueryPlan((pParse
, 1, "RECURSIVE STEP"));
2471 sqlite3Select(pParse
, p
, &destQueue
);
2472 assert( pFirstRec
->pPrior
==0 );
2473 pFirstRec
->pPrior
= pSetup
;
2475 /* Keep running the loop until the Queue is empty */
2476 sqlite3VdbeGoto(v
, addrTop
);
2477 sqlite3VdbeResolveLabel(v
, addrBreak
);
2479 end_of_recursive_query
:
2480 sqlite3ExprListDelete(pParse
->db
, p
->pOrderBy
);
2481 p
->pOrderBy
= pOrderBy
;
2485 #endif /* SQLITE_OMIT_CTE */
2487 /* Forward references */
2488 static int multiSelectOrderBy(
2489 Parse
*pParse
, /* Parsing context */
2490 Select
*p
, /* The right-most of SELECTs to be coded */
2491 SelectDest
*pDest
/* What to do with query results */
2495 ** Handle the special case of a compound-select that originates from a
2496 ** VALUES clause. By handling this as a special case, we avoid deep
2497 ** recursion, and thus do not need to enforce the SQLITE_LIMIT_COMPOUND_SELECT
2498 ** on a VALUES clause.
2500 ** Because the Select object originates from a VALUES clause:
2501 ** (1) There is no LIMIT or OFFSET or else there is a LIMIT of exactly 1
2502 ** (2) All terms are UNION ALL
2503 ** (3) There is no ORDER BY clause
2505 ** The "LIMIT of exactly 1" case of condition (1) comes about when a VALUES
2506 ** clause occurs within scalar expression (ex: "SELECT (VALUES(1),(2),(3))").
2507 ** The sqlite3CodeSubselect will have added the LIMIT 1 clause in tht case.
2508 ** Since the limit is exactly 1, we only need to evalutes the left-most VALUES.
2510 static int multiSelectValues(
2511 Parse
*pParse
, /* Parsing context */
2512 Select
*p
, /* The right-most of SELECTs to be coded */
2513 SelectDest
*pDest
/* What to do with query results */
2517 int bShowAll
= p
->pLimit
==0;
2518 assert( p
->selFlags
& SF_MultiValue
);
2520 assert( p
->selFlags
& SF_Values
);
2521 assert( p
->op
==TK_ALL
|| (p
->op
==TK_SELECT
&& p
->pPrior
==0) );
2522 assert( p
->pNext
==0 || p
->pEList
->nExpr
==p
->pNext
->pEList
->nExpr
);
2523 #ifndef SQLITE_OMIT_WINDOWFUNC
2524 if( p
->pWin
) return -1;
2526 if( p
->pPrior
==0 ) break;
2527 assert( p
->pPrior
->pNext
==p
);
2531 ExplainQueryPlan((pParse
, 0, "SCAN %d CONSTANT ROW%s", nRow
,
2532 nRow
==1 ? "" : "S"));
2534 selectInnerLoop(pParse
, p
, -1, 0, 0, pDest
, 1, 1);
2535 if( !bShowAll
) break;
2536 p
->nSelectRow
= nRow
;
2543 ** Return true if the SELECT statement which is known to be the recursive
2544 ** part of a recursive CTE still has its anchor terms attached. If the
2545 ** anchor terms have already been removed, then return false.
2547 static int hasAnchor(Select
*p
){
2548 while( p
&& (p
->selFlags
& SF_Recursive
)!=0 ){ p
= p
->pPrior
; }
2553 ** This routine is called to process a compound query form from
2554 ** two or more separate queries using UNION, UNION ALL, EXCEPT, or
2557 ** "p" points to the right-most of the two queries. the query on the
2558 ** left is p->pPrior. The left query could also be a compound query
2559 ** in which case this routine will be called recursively.
2561 ** The results of the total query are to be written into a destination
2562 ** of type eDest with parameter iParm.
2564 ** Example 1: Consider a three-way compound SQL statement.
2566 ** SELECT a FROM t1 UNION SELECT b FROM t2 UNION SELECT c FROM t3
2568 ** This statement is parsed up as follows:
2572 ** `-----> SELECT b FROM t2
2574 ** `------> SELECT a FROM t1
2576 ** The arrows in the diagram above represent the Select.pPrior pointer.
2577 ** So if this routine is called with p equal to the t3 query, then
2578 ** pPrior will be the t2 query. p->op will be TK_UNION in this case.
2580 ** Notice that because of the way SQLite parses compound SELECTs, the
2581 ** individual selects always group from left to right.
2583 static int multiSelect(
2584 Parse
*pParse
, /* Parsing context */
2585 Select
*p
, /* The right-most of SELECTs to be coded */
2586 SelectDest
*pDest
/* What to do with query results */
2588 int rc
= SQLITE_OK
; /* Success code from a subroutine */
2589 Select
*pPrior
; /* Another SELECT immediately to our left */
2590 Vdbe
*v
; /* Generate code to this VDBE */
2591 SelectDest dest
; /* Alternative data destination */
2592 Select
*pDelete
= 0; /* Chain of simple selects to delete */
2593 sqlite3
*db
; /* Database connection */
2595 /* Make sure there is no ORDER BY or LIMIT clause on prior SELECTs. Only
2596 ** the last (right-most) SELECT in the series may have an ORDER BY or LIMIT.
2598 assert( p
&& p
->pPrior
); /* Calling function guarantees this much */
2599 assert( (p
->selFlags
& SF_Recursive
)==0 || p
->op
==TK_ALL
|| p
->op
==TK_UNION
);
2600 assert( p
->selFlags
& SF_Compound
);
2604 if( pPrior
->pOrderBy
|| pPrior
->pLimit
){
2605 sqlite3ErrorMsg(pParse
,"%s clause should come after %s not before",
2606 pPrior
->pOrderBy
!=0 ? "ORDER BY" : "LIMIT", selectOpName(p
->op
));
2608 goto multi_select_end
;
2611 v
= sqlite3GetVdbe(pParse
);
2612 assert( v
!=0 ); /* The VDBE already created by calling function */
2614 /* Create the destination temporary table if necessary
2616 if( dest
.eDest
==SRT_EphemTab
){
2617 assert( p
->pEList
);
2618 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, dest
.iSDParm
, p
->pEList
->nExpr
);
2619 dest
.eDest
= SRT_Table
;
2622 /* Special handling for a compound-select that originates as a VALUES clause.
2624 if( p
->selFlags
& SF_MultiValue
){
2625 rc
= multiSelectValues(pParse
, p
, &dest
);
2626 if( rc
>=0 ) goto multi_select_end
;
2630 /* Make sure all SELECTs in the statement have the same number of elements
2631 ** in their result sets.
2633 assert( p
->pEList
&& pPrior
->pEList
);
2634 assert( p
->pEList
->nExpr
==pPrior
->pEList
->nExpr
);
2636 #ifndef SQLITE_OMIT_CTE
2637 if( (p
->selFlags
& SF_Recursive
)!=0 && hasAnchor(p
) ){
2638 generateWithRecursiveQuery(pParse
, p
, &dest
);
2642 /* Compound SELECTs that have an ORDER BY clause are handled separately.
2645 return multiSelectOrderBy(pParse
, p
, pDest
);
2648 #ifndef SQLITE_OMIT_EXPLAIN
2649 if( pPrior
->pPrior
==0 ){
2650 ExplainQueryPlan((pParse
, 1, "COMPOUND QUERY"));
2651 ExplainQueryPlan((pParse
, 1, "LEFT-MOST SUBQUERY"));
2655 /* Generate code for the left and right SELECT statements.
2661 assert( !pPrior
->pLimit
);
2662 pPrior
->iLimit
= p
->iLimit
;
2663 pPrior
->iOffset
= p
->iOffset
;
2664 pPrior
->pLimit
= p
->pLimit
;
2665 rc
= sqlite3Select(pParse
, pPrior
, &dest
);
2668 goto multi_select_end
;
2671 p
->iLimit
= pPrior
->iLimit
;
2672 p
->iOffset
= pPrior
->iOffset
;
2674 addr
= sqlite3VdbeAddOp1(v
, OP_IfNot
, p
->iLimit
); VdbeCoverage(v
);
2675 VdbeComment((v
, "Jump ahead if LIMIT reached"));
2677 sqlite3VdbeAddOp3(v
, OP_OffsetLimit
,
2678 p
->iLimit
, p
->iOffset
+1, p
->iOffset
);
2681 ExplainQueryPlan((pParse
, 1, "UNION ALL"));
2682 rc
= sqlite3Select(pParse
, p
, &dest
);
2683 testcase( rc
!=SQLITE_OK
);
2684 pDelete
= p
->pPrior
;
2686 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
2688 && sqlite3ExprIsInteger(pPrior
->pLimit
->pLeft
, &nLimit
)
2689 && nLimit
>0 && p
->nSelectRow
> sqlite3LogEst((u64
)nLimit
)
2691 p
->nSelectRow
= sqlite3LogEst((u64
)nLimit
);
2694 sqlite3VdbeJumpHere(v
, addr
);
2700 int unionTab
; /* Cursor number of the temp table holding result */
2701 u8 op
= 0; /* One of the SRT_ operations to apply to self */
2702 int priorOp
; /* The SRT_ operation to apply to prior selects */
2703 Expr
*pLimit
; /* Saved values of p->nLimit */
2705 SelectDest uniondest
;
2707 testcase( p
->op
==TK_EXCEPT
);
2708 testcase( p
->op
==TK_UNION
);
2709 priorOp
= SRT_Union
;
2710 if( dest
.eDest
==priorOp
){
2711 /* We can reuse a temporary table generated by a SELECT to our
2714 assert( p
->pLimit
==0 ); /* Not allowed on leftward elements */
2715 unionTab
= dest
.iSDParm
;
2717 /* We will need to create our own temporary table to hold the
2718 ** intermediate results.
2720 unionTab
= pParse
->nTab
++;
2721 assert( p
->pOrderBy
==0 );
2722 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, unionTab
, 0);
2723 assert( p
->addrOpenEphm
[0] == -1 );
2724 p
->addrOpenEphm
[0] = addr
;
2725 findRightmost(p
)->selFlags
|= SF_UsesEphemeral
;
2726 assert( p
->pEList
);
2730 /* Code the SELECT statements to our left
2732 assert( !pPrior
->pOrderBy
);
2733 sqlite3SelectDestInit(&uniondest
, priorOp
, unionTab
);
2734 rc
= sqlite3Select(pParse
, pPrior
, &uniondest
);
2736 goto multi_select_end
;
2739 /* Code the current SELECT statement
2741 if( p
->op
==TK_EXCEPT
){
2744 assert( p
->op
==TK_UNION
);
2750 uniondest
.eDest
= op
;
2751 ExplainQueryPlan((pParse
, 1, "%s USING TEMP B-TREE",
2752 selectOpName(p
->op
)));
2753 rc
= sqlite3Select(pParse
, p
, &uniondest
);
2754 testcase( rc
!=SQLITE_OK
);
2755 assert( p
->pOrderBy
==0 );
2756 pDelete
= p
->pPrior
;
2759 if( p
->op
==TK_UNION
){
2760 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
2762 sqlite3ExprDelete(db
, p
->pLimit
);
2767 /* Convert the data in the temporary table into whatever form
2768 ** it is that we currently need.
2770 assert( unionTab
==dest
.iSDParm
|| dest
.eDest
!=priorOp
);
2771 assert( p
->pEList
|| db
->mallocFailed
);
2772 if( dest
.eDest
!=priorOp
&& db
->mallocFailed
==0 ){
2773 int iCont
, iBreak
, iStart
;
2774 iBreak
= sqlite3VdbeMakeLabel(pParse
);
2775 iCont
= sqlite3VdbeMakeLabel(pParse
);
2776 computeLimitRegisters(pParse
, p
, iBreak
);
2777 sqlite3VdbeAddOp2(v
, OP_Rewind
, unionTab
, iBreak
); VdbeCoverage(v
);
2778 iStart
= sqlite3VdbeCurrentAddr(v
);
2779 selectInnerLoop(pParse
, p
, unionTab
,
2780 0, 0, &dest
, iCont
, iBreak
);
2781 sqlite3VdbeResolveLabel(v
, iCont
);
2782 sqlite3VdbeAddOp2(v
, OP_Next
, unionTab
, iStart
); VdbeCoverage(v
);
2783 sqlite3VdbeResolveLabel(v
, iBreak
);
2784 sqlite3VdbeAddOp2(v
, OP_Close
, unionTab
, 0);
2788 default: assert( p
->op
==TK_INTERSECT
); {
2790 int iCont
, iBreak
, iStart
;
2793 SelectDest intersectdest
;
2796 /* INTERSECT is different from the others since it requires
2797 ** two temporary tables. Hence it has its own case. Begin
2798 ** by allocating the tables we will need.
2800 tab1
= pParse
->nTab
++;
2801 tab2
= pParse
->nTab
++;
2802 assert( p
->pOrderBy
==0 );
2804 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, tab1
, 0);
2805 assert( p
->addrOpenEphm
[0] == -1 );
2806 p
->addrOpenEphm
[0] = addr
;
2807 findRightmost(p
)->selFlags
|= SF_UsesEphemeral
;
2808 assert( p
->pEList
);
2810 /* Code the SELECTs to our left into temporary table "tab1".
2812 sqlite3SelectDestInit(&intersectdest
, SRT_Union
, tab1
);
2813 rc
= sqlite3Select(pParse
, pPrior
, &intersectdest
);
2815 goto multi_select_end
;
2818 /* Code the current SELECT into temporary table "tab2"
2820 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, tab2
, 0);
2821 assert( p
->addrOpenEphm
[1] == -1 );
2822 p
->addrOpenEphm
[1] = addr
;
2826 intersectdest
.iSDParm
= tab2
;
2827 ExplainQueryPlan((pParse
, 1, "%s USING TEMP B-TREE",
2828 selectOpName(p
->op
)));
2829 rc
= sqlite3Select(pParse
, p
, &intersectdest
);
2830 testcase( rc
!=SQLITE_OK
);
2831 pDelete
= p
->pPrior
;
2833 if( p
->nSelectRow
>pPrior
->nSelectRow
){
2834 p
->nSelectRow
= pPrior
->nSelectRow
;
2836 sqlite3ExprDelete(db
, p
->pLimit
);
2839 /* Generate code to take the intersection of the two temporary
2843 assert( p
->pEList
);
2844 iBreak
= sqlite3VdbeMakeLabel(pParse
);
2845 iCont
= sqlite3VdbeMakeLabel(pParse
);
2846 computeLimitRegisters(pParse
, p
, iBreak
);
2847 sqlite3VdbeAddOp2(v
, OP_Rewind
, tab1
, iBreak
); VdbeCoverage(v
);
2848 r1
= sqlite3GetTempReg(pParse
);
2849 iStart
= sqlite3VdbeAddOp2(v
, OP_RowData
, tab1
, r1
);
2850 sqlite3VdbeAddOp4Int(v
, OP_NotFound
, tab2
, iCont
, r1
, 0);
2852 sqlite3ReleaseTempReg(pParse
, r1
);
2853 selectInnerLoop(pParse
, p
, tab1
,
2854 0, 0, &dest
, iCont
, iBreak
);
2855 sqlite3VdbeResolveLabel(v
, iCont
);
2856 sqlite3VdbeAddOp2(v
, OP_Next
, tab1
, iStart
); VdbeCoverage(v
);
2857 sqlite3VdbeResolveLabel(v
, iBreak
);
2858 sqlite3VdbeAddOp2(v
, OP_Close
, tab2
, 0);
2859 sqlite3VdbeAddOp2(v
, OP_Close
, tab1
, 0);
2864 #ifndef SQLITE_OMIT_EXPLAIN
2866 ExplainQueryPlanPop(pParse
);
2870 if( pParse
->nErr
) goto multi_select_end
;
2872 /* Compute collating sequences used by
2873 ** temporary tables needed to implement the compound select.
2874 ** Attach the KeyInfo structure to all temporary tables.
2876 ** This section is run by the right-most SELECT statement only.
2877 ** SELECT statements to the left always skip this part. The right-most
2878 ** SELECT might also skip this part if it has no ORDER BY clause and
2879 ** no temp tables are required.
2881 if( p
->selFlags
& SF_UsesEphemeral
){
2882 int i
; /* Loop counter */
2883 KeyInfo
*pKeyInfo
; /* Collating sequence for the result set */
2884 Select
*pLoop
; /* For looping through SELECT statements */
2885 CollSeq
**apColl
; /* For looping through pKeyInfo->aColl[] */
2886 int nCol
; /* Number of columns in result set */
2888 assert( p
->pNext
==0 );
2889 nCol
= p
->pEList
->nExpr
;
2890 pKeyInfo
= sqlite3KeyInfoAlloc(db
, nCol
, 1);
2892 rc
= SQLITE_NOMEM_BKPT
;
2893 goto multi_select_end
;
2895 for(i
=0, apColl
=pKeyInfo
->aColl
; i
<nCol
; i
++, apColl
++){
2896 *apColl
= multiSelectCollSeq(pParse
, p
, i
);
2898 *apColl
= db
->pDfltColl
;
2902 for(pLoop
=p
; pLoop
; pLoop
=pLoop
->pPrior
){
2904 int addr
= pLoop
->addrOpenEphm
[i
];
2906 /* If [0] is unused then [1] is also unused. So we can
2907 ** always safely abort as soon as the first unused slot is found */
2908 assert( pLoop
->addrOpenEphm
[1]<0 );
2911 sqlite3VdbeChangeP2(v
, addr
, nCol
);
2912 sqlite3VdbeChangeP4(v
, addr
, (char*)sqlite3KeyInfoRef(pKeyInfo
),
2914 pLoop
->addrOpenEphm
[i
] = -1;
2917 sqlite3KeyInfoUnref(pKeyInfo
);
2921 pDest
->iSdst
= dest
.iSdst
;
2922 pDest
->nSdst
= dest
.nSdst
;
2923 sqlite3SelectDelete(db
, pDelete
);
2926 #endif /* SQLITE_OMIT_COMPOUND_SELECT */
2929 ** Error message for when two or more terms of a compound select have different
2930 ** size result sets.
2932 void sqlite3SelectWrongNumTermsError(Parse
*pParse
, Select
*p
){
2933 if( p
->selFlags
& SF_Values
){
2934 sqlite3ErrorMsg(pParse
, "all VALUES must have the same number of terms");
2936 sqlite3ErrorMsg(pParse
, "SELECTs to the left and right of %s"
2937 " do not have the same number of result columns", selectOpName(p
->op
));
2942 ** Code an output subroutine for a coroutine implementation of a
2945 ** The data to be output is contained in pIn->iSdst. There are
2946 ** pIn->nSdst columns to be output. pDest is where the output should
2949 ** regReturn is the number of the register holding the subroutine
2952 ** If regPrev>0 then it is the first register in a vector that
2953 ** records the previous output. mem[regPrev] is a flag that is false
2954 ** if there has been no previous output. If regPrev>0 then code is
2955 ** generated to suppress duplicates. pKeyInfo is used for comparing
2958 ** If the LIMIT found in p->iLimit is reached, jump immediately to
2961 static int generateOutputSubroutine(
2962 Parse
*pParse
, /* Parsing context */
2963 Select
*p
, /* The SELECT statement */
2964 SelectDest
*pIn
, /* Coroutine supplying data */
2965 SelectDest
*pDest
, /* Where to send the data */
2966 int regReturn
, /* The return address register */
2967 int regPrev
, /* Previous result register. No uniqueness if 0 */
2968 KeyInfo
*pKeyInfo
, /* For comparing with previous entry */
2969 int iBreak
/* Jump here if we hit the LIMIT */
2971 Vdbe
*v
= pParse
->pVdbe
;
2975 addr
= sqlite3VdbeCurrentAddr(v
);
2976 iContinue
= sqlite3VdbeMakeLabel(pParse
);
2978 /* Suppress duplicates for UNION, EXCEPT, and INTERSECT
2982 addr1
= sqlite3VdbeAddOp1(v
, OP_IfNot
, regPrev
); VdbeCoverage(v
);
2983 addr2
= sqlite3VdbeAddOp4(v
, OP_Compare
, pIn
->iSdst
, regPrev
+1, pIn
->nSdst
,
2984 (char*)sqlite3KeyInfoRef(pKeyInfo
), P4_KEYINFO
);
2985 sqlite3VdbeAddOp3(v
, OP_Jump
, addr2
+2, iContinue
, addr2
+2); VdbeCoverage(v
);
2986 sqlite3VdbeJumpHere(v
, addr1
);
2987 sqlite3VdbeAddOp3(v
, OP_Copy
, pIn
->iSdst
, regPrev
+1, pIn
->nSdst
-1);
2988 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, regPrev
);
2990 if( pParse
->db
->mallocFailed
) return 0;
2992 /* Suppress the first OFFSET entries if there is an OFFSET clause
2994 codeOffset(v
, p
->iOffset
, iContinue
);
2996 assert( pDest
->eDest
!=SRT_Exists
);
2997 assert( pDest
->eDest
!=SRT_Table
);
2998 switch( pDest
->eDest
){
2999 /* Store the result as data using a unique key.
3001 case SRT_EphemTab
: {
3002 int r1
= sqlite3GetTempReg(pParse
);
3003 int r2
= sqlite3GetTempReg(pParse
);
3004 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, pIn
->iSdst
, pIn
->nSdst
, r1
);
3005 sqlite3VdbeAddOp2(v
, OP_NewRowid
, pDest
->iSDParm
, r2
);
3006 sqlite3VdbeAddOp3(v
, OP_Insert
, pDest
->iSDParm
, r1
, r2
);
3007 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
3008 sqlite3ReleaseTempReg(pParse
, r2
);
3009 sqlite3ReleaseTempReg(pParse
, r1
);
3013 #ifndef SQLITE_OMIT_SUBQUERY
3014 /* If we are creating a set for an "expr IN (SELECT ...)".
3018 testcase( pIn
->nSdst
>1 );
3019 r1
= sqlite3GetTempReg(pParse
);
3020 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, pIn
->iSdst
, pIn
->nSdst
,
3021 r1
, pDest
->zAffSdst
, pIn
->nSdst
);
3022 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, pDest
->iSDParm
, r1
,
3023 pIn
->iSdst
, pIn
->nSdst
);
3024 sqlite3ReleaseTempReg(pParse
, r1
);
3028 /* If this is a scalar select that is part of an expression, then
3029 ** store the results in the appropriate memory cell and break out
3030 ** of the scan loop. Note that the select might return multiple columns
3031 ** if it is the RHS of a row-value IN operator.
3034 if( pParse
->nErr
==0 ){
3035 testcase( pIn
->nSdst
>1 );
3036 sqlite3ExprCodeMove(pParse
, pIn
->iSdst
, pDest
->iSDParm
, pIn
->nSdst
);
3038 /* The LIMIT clause will jump out of the loop for us */
3041 #endif /* #ifndef SQLITE_OMIT_SUBQUERY */
3043 /* The results are stored in a sequence of registers
3044 ** starting at pDest->iSdst. Then the co-routine yields.
3046 case SRT_Coroutine
: {
3047 if( pDest
->iSdst
==0 ){
3048 pDest
->iSdst
= sqlite3GetTempRange(pParse
, pIn
->nSdst
);
3049 pDest
->nSdst
= pIn
->nSdst
;
3051 sqlite3ExprCodeMove(pParse
, pIn
->iSdst
, pDest
->iSdst
, pIn
->nSdst
);
3052 sqlite3VdbeAddOp1(v
, OP_Yield
, pDest
->iSDParm
);
3056 /* If none of the above, then the result destination must be
3057 ** SRT_Output. This routine is never called with any other
3058 ** destination other than the ones handled above or SRT_Output.
3060 ** For SRT_Output, results are stored in a sequence of registers.
3061 ** Then the OP_ResultRow opcode is used to cause sqlite3_step() to
3062 ** return the next row of result.
3065 assert( pDest
->eDest
==SRT_Output
);
3066 sqlite3VdbeAddOp2(v
, OP_ResultRow
, pIn
->iSdst
, pIn
->nSdst
);
3071 /* Jump to the end of the loop if the LIMIT is reached.
3074 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, p
->iLimit
, iBreak
); VdbeCoverage(v
);
3077 /* Generate the subroutine return
3079 sqlite3VdbeResolveLabel(v
, iContinue
);
3080 sqlite3VdbeAddOp1(v
, OP_Return
, regReturn
);
3086 ** Alternative compound select code generator for cases when there
3087 ** is an ORDER BY clause.
3089 ** We assume a query of the following form:
3091 ** <selectA> <operator> <selectB> ORDER BY <orderbylist>
3093 ** <operator> is one of UNION ALL, UNION, EXCEPT, or INTERSECT. The idea
3094 ** is to code both <selectA> and <selectB> with the ORDER BY clause as
3095 ** co-routines. Then run the co-routines in parallel and merge the results
3096 ** into the output. In addition to the two coroutines (called selectA and
3097 ** selectB) there are 7 subroutines:
3099 ** outA: Move the output of the selectA coroutine into the output
3100 ** of the compound query.
3102 ** outB: Move the output of the selectB coroutine into the output
3103 ** of the compound query. (Only generated for UNION and
3104 ** UNION ALL. EXCEPT and INSERTSECT never output a row that
3105 ** appears only in B.)
3107 ** AltB: Called when there is data from both coroutines and A<B.
3109 ** AeqB: Called when there is data from both coroutines and A==B.
3111 ** AgtB: Called when there is data from both coroutines and A>B.
3113 ** EofA: Called when data is exhausted from selectA.
3115 ** EofB: Called when data is exhausted from selectB.
3117 ** The implementation of the latter five subroutines depend on which
3118 ** <operator> is used:
3121 ** UNION ALL UNION EXCEPT INTERSECT
3122 ** ------------- ----------------- -------------- -----------------
3123 ** AltB: outA, nextA outA, nextA outA, nextA nextA
3125 ** AeqB: outA, nextA nextA nextA outA, nextA
3127 ** AgtB: outB, nextB outB, nextB nextB nextB
3129 ** EofA: outB, nextB outB, nextB halt halt
3131 ** EofB: outA, nextA outA, nextA outA, nextA halt
3133 ** In the AltB, AeqB, and AgtB subroutines, an EOF on A following nextA
3134 ** causes an immediate jump to EofA and an EOF on B following nextB causes
3135 ** an immediate jump to EofB. Within EofA and EofB, and EOF on entry or
3136 ** following nextX causes a jump to the end of the select processing.
3138 ** Duplicate removal in the UNION, EXCEPT, and INTERSECT cases is handled
3139 ** within the output subroutine. The regPrev register set holds the previously
3140 ** output value. A comparison is made against this value and the output
3141 ** is skipped if the next results would be the same as the previous.
3143 ** The implementation plan is to implement the two coroutines and seven
3144 ** subroutines first, then put the control logic at the bottom. Like this:
3147 ** coA: coroutine for left query (A)
3148 ** coB: coroutine for right query (B)
3149 ** outA: output one row of A
3150 ** outB: output one row of B (UNION and UNION ALL only)
3156 ** Init: initialize coroutine registers
3158 ** if eof(A) goto EofA
3160 ** if eof(B) goto EofB
3161 ** Cmpr: Compare A, B
3162 ** Jump AltB, AeqB, AgtB
3165 ** We call AltB, AeqB, AgtB, EofA, and EofB "subroutines" but they are not
3166 ** actually called using Gosub and they do not Return. EofA and EofB loop
3167 ** until all data is exhausted then jump to the "end" labe. AltB, AeqB,
3168 ** and AgtB jump to either L2 or to one of EofA or EofB.
3170 #ifndef SQLITE_OMIT_COMPOUND_SELECT
3171 static int multiSelectOrderBy(
3172 Parse
*pParse
, /* Parsing context */
3173 Select
*p
, /* The right-most of SELECTs to be coded */
3174 SelectDest
*pDest
/* What to do with query results */
3176 int i
, j
; /* Loop counters */
3177 Select
*pPrior
; /* Another SELECT immediately to our left */
3178 Vdbe
*v
; /* Generate code to this VDBE */
3179 SelectDest destA
; /* Destination for coroutine A */
3180 SelectDest destB
; /* Destination for coroutine B */
3181 int regAddrA
; /* Address register for select-A coroutine */
3182 int regAddrB
; /* Address register for select-B coroutine */
3183 int addrSelectA
; /* Address of the select-A coroutine */
3184 int addrSelectB
; /* Address of the select-B coroutine */
3185 int regOutA
; /* Address register for the output-A subroutine */
3186 int regOutB
; /* Address register for the output-B subroutine */
3187 int addrOutA
; /* Address of the output-A subroutine */
3188 int addrOutB
= 0; /* Address of the output-B subroutine */
3189 int addrEofA
; /* Address of the select-A-exhausted subroutine */
3190 int addrEofA_noB
; /* Alternate addrEofA if B is uninitialized */
3191 int addrEofB
; /* Address of the select-B-exhausted subroutine */
3192 int addrAltB
; /* Address of the A<B subroutine */
3193 int addrAeqB
; /* Address of the A==B subroutine */
3194 int addrAgtB
; /* Address of the A>B subroutine */
3195 int regLimitA
; /* Limit register for select-A */
3196 int regLimitB
; /* Limit register for select-A */
3197 int regPrev
; /* A range of registers to hold previous output */
3198 int savedLimit
; /* Saved value of p->iLimit */
3199 int savedOffset
; /* Saved value of p->iOffset */
3200 int labelCmpr
; /* Label for the start of the merge algorithm */
3201 int labelEnd
; /* Label for the end of the overall SELECT stmt */
3202 int addr1
; /* Jump instructions that get retargetted */
3203 int op
; /* One of TK_ALL, TK_UNION, TK_EXCEPT, TK_INTERSECT */
3204 KeyInfo
*pKeyDup
= 0; /* Comparison information for duplicate removal */
3205 KeyInfo
*pKeyMerge
; /* Comparison information for merging rows */
3206 sqlite3
*db
; /* Database connection */
3207 ExprList
*pOrderBy
; /* The ORDER BY clause */
3208 int nOrderBy
; /* Number of terms in the ORDER BY clause */
3209 u32
*aPermute
; /* Mapping from ORDER BY terms to result set columns */
3211 assert( p
->pOrderBy
!=0 );
3212 assert( pKeyDup
==0 ); /* "Managed" code needs this. Ticket #3382. */
3215 assert( v
!=0 ); /* Already thrown the error if VDBE alloc failed */
3216 labelEnd
= sqlite3VdbeMakeLabel(pParse
);
3217 labelCmpr
= sqlite3VdbeMakeLabel(pParse
);
3220 /* Patch up the ORDER BY clause
3224 assert( pPrior
->pOrderBy
==0 );
3225 pOrderBy
= p
->pOrderBy
;
3227 nOrderBy
= pOrderBy
->nExpr
;
3229 /* For operators other than UNION ALL we have to make sure that
3230 ** the ORDER BY clause covers every term of the result set. Add
3231 ** terms to the ORDER BY clause as necessary.
3234 for(i
=1; db
->mallocFailed
==0 && i
<=p
->pEList
->nExpr
; i
++){
3235 struct ExprList_item
*pItem
;
3236 for(j
=0, pItem
=pOrderBy
->a
; j
<nOrderBy
; j
++, pItem
++){
3237 assert( pItem
->u
.x
.iOrderByCol
>0 );
3238 if( pItem
->u
.x
.iOrderByCol
==i
) break;
3241 Expr
*pNew
= sqlite3Expr(db
, TK_INTEGER
, 0);
3242 if( pNew
==0 ) return SQLITE_NOMEM_BKPT
;
3243 pNew
->flags
|= EP_IntValue
;
3245 p
->pOrderBy
= pOrderBy
= sqlite3ExprListAppend(pParse
, pOrderBy
, pNew
);
3246 if( pOrderBy
) pOrderBy
->a
[nOrderBy
++].u
.x
.iOrderByCol
= (u16
)i
;
3251 /* Compute the comparison permutation and keyinfo that is used with
3252 ** the permutation used to determine if the next
3253 ** row of results comes from selectA or selectB. Also add explicit
3254 ** collations to the ORDER BY clause terms so that when the subqueries
3255 ** to the right and the left are evaluated, they use the correct
3258 aPermute
= sqlite3DbMallocRawNN(db
, sizeof(u32
)*(nOrderBy
+ 1));
3260 struct ExprList_item
*pItem
;
3261 aPermute
[0] = nOrderBy
;
3262 for(i
=1, pItem
=pOrderBy
->a
; i
<=nOrderBy
; i
++, pItem
++){
3263 assert( pItem
->u
.x
.iOrderByCol
>0 );
3264 assert( pItem
->u
.x
.iOrderByCol
<=p
->pEList
->nExpr
);
3265 aPermute
[i
] = pItem
->u
.x
.iOrderByCol
- 1;
3267 pKeyMerge
= multiSelectOrderByKeyInfo(pParse
, p
, 1);
3272 /* Reattach the ORDER BY clause to the query.
3274 p
->pOrderBy
= pOrderBy
;
3275 pPrior
->pOrderBy
= sqlite3ExprListDup(pParse
->db
, pOrderBy
, 0);
3277 /* Allocate a range of temporary registers and the KeyInfo needed
3278 ** for the logic that removes duplicate result rows when the
3279 ** operator is UNION, EXCEPT, or INTERSECT (but not UNION ALL).
3284 int nExpr
= p
->pEList
->nExpr
;
3285 assert( nOrderBy
>=nExpr
|| db
->mallocFailed
);
3286 regPrev
= pParse
->nMem
+1;
3287 pParse
->nMem
+= nExpr
+1;
3288 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regPrev
);
3289 pKeyDup
= sqlite3KeyInfoAlloc(db
, nExpr
, 1);
3291 assert( sqlite3KeyInfoIsWriteable(pKeyDup
) );
3292 for(i
=0; i
<nExpr
; i
++){
3293 pKeyDup
->aColl
[i
] = multiSelectCollSeq(pParse
, p
, i
);
3294 pKeyDup
->aSortFlags
[i
] = 0;
3299 /* Separate the left and the right query from one another
3303 sqlite3ResolveOrderGroupBy(pParse
, p
, p
->pOrderBy
, "ORDER");
3304 if( pPrior
->pPrior
==0 ){
3305 sqlite3ResolveOrderGroupBy(pParse
, pPrior
, pPrior
->pOrderBy
, "ORDER");
3308 /* Compute the limit registers */
3309 computeLimitRegisters(pParse
, p
, labelEnd
);
3310 if( p
->iLimit
&& op
==TK_ALL
){
3311 regLimitA
= ++pParse
->nMem
;
3312 regLimitB
= ++pParse
->nMem
;
3313 sqlite3VdbeAddOp2(v
, OP_Copy
, p
->iOffset
? p
->iOffset
+1 : p
->iLimit
,
3315 sqlite3VdbeAddOp2(v
, OP_Copy
, regLimitA
, regLimitB
);
3317 regLimitA
= regLimitB
= 0;
3319 sqlite3ExprDelete(db
, p
->pLimit
);
3322 regAddrA
= ++pParse
->nMem
;
3323 regAddrB
= ++pParse
->nMem
;
3324 regOutA
= ++pParse
->nMem
;
3325 regOutB
= ++pParse
->nMem
;
3326 sqlite3SelectDestInit(&destA
, SRT_Coroutine
, regAddrA
);
3327 sqlite3SelectDestInit(&destB
, SRT_Coroutine
, regAddrB
);
3329 ExplainQueryPlan((pParse
, 1, "MERGE (%s)", selectOpName(p
->op
)));
3331 /* Generate a coroutine to evaluate the SELECT statement to the
3332 ** left of the compound operator - the "A" select.
3334 addrSelectA
= sqlite3VdbeCurrentAddr(v
) + 1;
3335 addr1
= sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regAddrA
, 0, addrSelectA
);
3336 VdbeComment((v
, "left SELECT"));
3337 pPrior
->iLimit
= regLimitA
;
3338 ExplainQueryPlan((pParse
, 1, "LEFT"));
3339 sqlite3Select(pParse
, pPrior
, &destA
);
3340 sqlite3VdbeEndCoroutine(v
, regAddrA
);
3341 sqlite3VdbeJumpHere(v
, addr1
);
3343 /* Generate a coroutine to evaluate the SELECT statement on
3344 ** the right - the "B" select
3346 addrSelectB
= sqlite3VdbeCurrentAddr(v
) + 1;
3347 addr1
= sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regAddrB
, 0, addrSelectB
);
3348 VdbeComment((v
, "right SELECT"));
3349 savedLimit
= p
->iLimit
;
3350 savedOffset
= p
->iOffset
;
3351 p
->iLimit
= regLimitB
;
3353 ExplainQueryPlan((pParse
, 1, "RIGHT"));
3354 sqlite3Select(pParse
, p
, &destB
);
3355 p
->iLimit
= savedLimit
;
3356 p
->iOffset
= savedOffset
;
3357 sqlite3VdbeEndCoroutine(v
, regAddrB
);
3359 /* Generate a subroutine that outputs the current row of the A
3360 ** select as the next output row of the compound select.
3362 VdbeNoopComment((v
, "Output routine for A"));
3363 addrOutA
= generateOutputSubroutine(pParse
,
3364 p
, &destA
, pDest
, regOutA
,
3365 regPrev
, pKeyDup
, labelEnd
);
3367 /* Generate a subroutine that outputs the current row of the B
3368 ** select as the next output row of the compound select.
3370 if( op
==TK_ALL
|| op
==TK_UNION
){
3371 VdbeNoopComment((v
, "Output routine for B"));
3372 addrOutB
= generateOutputSubroutine(pParse
,
3373 p
, &destB
, pDest
, regOutB
,
3374 regPrev
, pKeyDup
, labelEnd
);
3376 sqlite3KeyInfoUnref(pKeyDup
);
3378 /* Generate a subroutine to run when the results from select A
3379 ** are exhausted and only data in select B remains.
3381 if( op
==TK_EXCEPT
|| op
==TK_INTERSECT
){
3382 addrEofA_noB
= addrEofA
= labelEnd
;
3384 VdbeNoopComment((v
, "eof-A subroutine"));
3385 addrEofA
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutB
, addrOutB
);
3386 addrEofA_noB
= sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, labelEnd
);
3388 sqlite3VdbeGoto(v
, addrEofA
);
3389 p
->nSelectRow
= sqlite3LogEstAdd(p
->nSelectRow
, pPrior
->nSelectRow
);
3392 /* Generate a subroutine to run when the results from select B
3393 ** are exhausted and only data in select A remains.
3395 if( op
==TK_INTERSECT
){
3396 addrEofB
= addrEofA
;
3397 if( p
->nSelectRow
> pPrior
->nSelectRow
) p
->nSelectRow
= pPrior
->nSelectRow
;
3399 VdbeNoopComment((v
, "eof-B subroutine"));
3400 addrEofB
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutA
, addrOutA
);
3401 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, labelEnd
); VdbeCoverage(v
);
3402 sqlite3VdbeGoto(v
, addrEofB
);
3405 /* Generate code to handle the case of A<B
3407 VdbeNoopComment((v
, "A-lt-B subroutine"));
3408 addrAltB
= sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutA
, addrOutA
);
3409 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA
); VdbeCoverage(v
);
3410 sqlite3VdbeGoto(v
, labelCmpr
);
3412 /* Generate code to handle the case of A==B
3415 addrAeqB
= addrAltB
;
3416 }else if( op
==TK_INTERSECT
){
3417 addrAeqB
= addrAltB
;
3420 VdbeNoopComment((v
, "A-eq-B subroutine"));
3422 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA
); VdbeCoverage(v
);
3423 sqlite3VdbeGoto(v
, labelCmpr
);
3426 /* Generate code to handle the case of A>B
3428 VdbeNoopComment((v
, "A-gt-B subroutine"));
3429 addrAgtB
= sqlite3VdbeCurrentAddr(v
);
3430 if( op
==TK_ALL
|| op
==TK_UNION
){
3431 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutB
, addrOutB
);
3433 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, addrEofB
); VdbeCoverage(v
);
3434 sqlite3VdbeGoto(v
, labelCmpr
);
3436 /* This code runs once to initialize everything.
3438 sqlite3VdbeJumpHere(v
, addr1
);
3439 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrA
, addrEofA_noB
); VdbeCoverage(v
);
3440 sqlite3VdbeAddOp2(v
, OP_Yield
, regAddrB
, addrEofB
); VdbeCoverage(v
);
3442 /* Implement the main merge loop
3444 sqlite3VdbeResolveLabel(v
, labelCmpr
);
3445 sqlite3VdbeAddOp4(v
, OP_Permutation
, 0, 0, 0, (char*)aPermute
, P4_INTARRAY
);
3446 sqlite3VdbeAddOp4(v
, OP_Compare
, destA
.iSdst
, destB
.iSdst
, nOrderBy
,
3447 (char*)pKeyMerge
, P4_KEYINFO
);
3448 sqlite3VdbeChangeP5(v
, OPFLAG_PERMUTE
);
3449 sqlite3VdbeAddOp3(v
, OP_Jump
, addrAltB
, addrAeqB
, addrAgtB
); VdbeCoverage(v
);
3451 /* Jump to the this point in order to terminate the query.
3453 sqlite3VdbeResolveLabel(v
, labelEnd
);
3455 /* Reassembly the compound query so that it will be freed correctly
3456 ** by the calling function */
3458 sqlite3SelectDelete(db
, p
->pPrior
);
3463 /*** TBD: Insert subroutine calls to close cursors on incomplete
3464 **** subqueries ****/
3465 ExplainQueryPlanPop(pParse
);
3466 return pParse
->nErr
!=0;
3470 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3472 /* An instance of the SubstContext object describes an substitution edit
3473 ** to be performed on a parse tree.
3475 ** All references to columns in table iTable are to be replaced by corresponding
3476 ** expressions in pEList.
3478 typedef struct SubstContext
{
3479 Parse
*pParse
; /* The parsing context */
3480 int iTable
; /* Replace references to this table */
3481 int iNewTable
; /* New table number */
3482 int isLeftJoin
; /* Add TK_IF_NULL_ROW opcodes on each replacement */
3483 ExprList
*pEList
; /* Replacement expressions */
3486 /* Forward Declarations */
3487 static void substExprList(SubstContext
*, ExprList
*);
3488 static void substSelect(SubstContext
*, Select
*, int);
3491 ** Scan through the expression pExpr. Replace every reference to
3492 ** a column in table number iTable with a copy of the iColumn-th
3493 ** entry in pEList. (But leave references to the ROWID column
3496 ** This routine is part of the flattening procedure. A subquery
3497 ** whose result set is defined by pEList appears as entry in the
3498 ** FROM clause of a SELECT such that the VDBE cursor assigned to that
3499 ** FORM clause entry is iTable. This routine makes the necessary
3500 ** changes to pExpr so that it refers directly to the source table
3501 ** of the subquery rather the result set of the subquery.
3503 static Expr
*substExpr(
3504 SubstContext
*pSubst
, /* Description of the substitution */
3505 Expr
*pExpr
/* Expr in which substitution occurs */
3507 if( pExpr
==0 ) return 0;
3508 if( ExprHasProperty(pExpr
, EP_FromJoin
)
3509 && pExpr
->iRightJoinTable
==pSubst
->iTable
3511 pExpr
->iRightJoinTable
= pSubst
->iNewTable
;
3513 if( pExpr
->op
==TK_COLUMN
3514 && pExpr
->iTable
==pSubst
->iTable
3515 && !ExprHasProperty(pExpr
, EP_FixedCol
)
3517 if( pExpr
->iColumn
<0 ){
3518 pExpr
->op
= TK_NULL
;
3521 Expr
*pCopy
= pSubst
->pEList
->a
[pExpr
->iColumn
].pExpr
;
3523 assert( pSubst
->pEList
!=0 && pExpr
->iColumn
<pSubst
->pEList
->nExpr
);
3524 assert( pExpr
->pRight
==0 );
3525 if( sqlite3ExprIsVector(pCopy
) ){
3526 sqlite3VectorErrorMsg(pSubst
->pParse
, pCopy
);
3528 sqlite3
*db
= pSubst
->pParse
->db
;
3529 if( pSubst
->isLeftJoin
&& pCopy
->op
!=TK_COLUMN
){
3530 memset(&ifNullRow
, 0, sizeof(ifNullRow
));
3531 ifNullRow
.op
= TK_IF_NULL_ROW
;
3532 ifNullRow
.pLeft
= pCopy
;
3533 ifNullRow
.iTable
= pSubst
->iNewTable
;
3534 ifNullRow
.flags
= EP_IfNullRow
;
3537 testcase( ExprHasProperty(pCopy
, EP_Subquery
) );
3538 pNew
= sqlite3ExprDup(db
, pCopy
, 0);
3539 if( pNew
&& pSubst
->isLeftJoin
){
3540 ExprSetProperty(pNew
, EP_CanBeNull
);
3542 if( pNew
&& ExprHasProperty(pExpr
,EP_FromJoin
) ){
3543 sqlite3SetJoinExpr(pNew
, pExpr
->iRightJoinTable
);
3545 sqlite3ExprDelete(db
, pExpr
);
3548 /* Ensure that the expression now has an implicit collation sequence,
3549 ** just as it did when it was a column of a view or sub-query. */
3551 if( pExpr
->op
!=TK_COLUMN
&& pExpr
->op
!=TK_COLLATE
){
3552 CollSeq
*pColl
= sqlite3ExprCollSeq(pSubst
->pParse
, pExpr
);
3553 pExpr
= sqlite3ExprAddCollateString(pSubst
->pParse
, pExpr
,
3554 (pColl
? pColl
->zName
: "BINARY")
3557 ExprClearProperty(pExpr
, EP_Collate
);
3562 if( pExpr
->op
==TK_IF_NULL_ROW
&& pExpr
->iTable
==pSubst
->iTable
){
3563 pExpr
->iTable
= pSubst
->iNewTable
;
3565 pExpr
->pLeft
= substExpr(pSubst
, pExpr
->pLeft
);
3566 pExpr
->pRight
= substExpr(pSubst
, pExpr
->pRight
);
3567 if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
3568 substSelect(pSubst
, pExpr
->x
.pSelect
, 1);
3570 substExprList(pSubst
, pExpr
->x
.pList
);
3572 #ifndef SQLITE_OMIT_WINDOWFUNC
3573 if( ExprHasProperty(pExpr
, EP_WinFunc
) ){
3574 Window
*pWin
= pExpr
->y
.pWin
;
3575 pWin
->pFilter
= substExpr(pSubst
, pWin
->pFilter
);
3576 substExprList(pSubst
, pWin
->pPartition
);
3577 substExprList(pSubst
, pWin
->pOrderBy
);
3583 static void substExprList(
3584 SubstContext
*pSubst
, /* Description of the substitution */
3585 ExprList
*pList
/* List to scan and in which to make substitutes */
3588 if( pList
==0 ) return;
3589 for(i
=0; i
<pList
->nExpr
; i
++){
3590 pList
->a
[i
].pExpr
= substExpr(pSubst
, pList
->a
[i
].pExpr
);
3593 static void substSelect(
3594 SubstContext
*pSubst
, /* Description of the substitution */
3595 Select
*p
, /* SELECT statement in which to make substitutions */
3596 int doPrior
/* Do substitutes on p->pPrior too */
3599 struct SrcList_item
*pItem
;
3603 substExprList(pSubst
, p
->pEList
);
3604 substExprList(pSubst
, p
->pGroupBy
);
3605 substExprList(pSubst
, p
->pOrderBy
);
3606 p
->pHaving
= substExpr(pSubst
, p
->pHaving
);
3607 p
->pWhere
= substExpr(pSubst
, p
->pWhere
);
3610 for(i
=pSrc
->nSrc
, pItem
=pSrc
->a
; i
>0; i
--, pItem
++){
3611 substSelect(pSubst
, pItem
->pSelect
, 1);
3612 if( pItem
->fg
.isTabFunc
){
3613 substExprList(pSubst
, pItem
->u1
.pFuncArg
);
3616 }while( doPrior
&& (p
= p
->pPrior
)!=0 );
3618 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3620 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3622 ** pSelect is a SELECT statement and pSrcItem is one item in the FROM
3623 ** clause of that SELECT.
3625 ** This routine scans the entire SELECT statement and recomputes the
3626 ** pSrcItem->colUsed mask.
3628 static int recomputeColumnsUsedExpr(Walker
*pWalker
, Expr
*pExpr
){
3629 struct SrcList_item
*pItem
;
3630 if( pExpr
->op
!=TK_COLUMN
) return WRC_Continue
;
3631 pItem
= pWalker
->u
.pSrcItem
;
3632 if( pItem
->iCursor
!=pExpr
->iTable
) return WRC_Continue
;
3633 if( pExpr
->iColumn
<0 ) return WRC_Continue
;
3634 pItem
->colUsed
|= sqlite3ExprColUsed(pExpr
);
3635 return WRC_Continue
;
3637 static void recomputeColumnsUsed(
3638 Select
*pSelect
, /* The complete SELECT statement */
3639 struct SrcList_item
*pSrcItem
/* Which FROM clause item to recompute */
3642 if( NEVER(pSrcItem
->pTab
==0) ) return;
3643 memset(&w
, 0, sizeof(w
));
3644 w
.xExprCallback
= recomputeColumnsUsedExpr
;
3645 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
3646 w
.u
.pSrcItem
= pSrcItem
;
3647 pSrcItem
->colUsed
= 0;
3648 sqlite3WalkSelect(&w
, pSelect
);
3650 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
3652 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
3654 ** This routine attempts to flatten subqueries as a performance optimization.
3655 ** This routine returns 1 if it makes changes and 0 if no flattening occurs.
3657 ** To understand the concept of flattening, consider the following
3660 ** SELECT a FROM (SELECT x+y AS a FROM t1 WHERE z<100) WHERE a>5
3662 ** The default way of implementing this query is to execute the
3663 ** subquery first and store the results in a temporary table, then
3664 ** run the outer query on that temporary table. This requires two
3665 ** passes over the data. Furthermore, because the temporary table
3666 ** has no indices, the WHERE clause on the outer query cannot be
3669 ** This routine attempts to rewrite queries such as the above into
3670 ** a single flat select, like this:
3672 ** SELECT x+y AS a FROM t1 WHERE z<100 AND a>5
3674 ** The code generated for this simplification gives the same result
3675 ** but only has to scan the data once. And because indices might
3676 ** exist on the table t1, a complete scan of the data might be
3679 ** Flattening is subject to the following constraints:
3681 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3682 ** The subquery and the outer query cannot both be aggregates.
3684 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3685 ** (2) If the subquery is an aggregate then
3686 ** (2a) the outer query must not be a join and
3687 ** (2b) the outer query must not use subqueries
3688 ** other than the one FROM-clause subquery that is a candidate
3689 ** for flattening. (This is due to ticket [2f7170d73bf9abf80]
3690 ** from 2015-02-09.)
3692 ** (3) If the subquery is the right operand of a LEFT JOIN then
3693 ** (3a) the subquery may not be a join and
3694 ** (3b) the FROM clause of the subquery may not contain a virtual
3696 ** (3c) the outer query may not be an aggregate.
3697 ** (3d) the outer query may not be DISTINCT.
3699 ** (4) The subquery can not be DISTINCT.
3701 ** (**) At one point restrictions (4) and (5) defined a subset of DISTINCT
3702 ** sub-queries that were excluded from this optimization. Restriction
3703 ** (4) has since been expanded to exclude all DISTINCT subqueries.
3705 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3706 ** If the subquery is aggregate, the outer query may not be DISTINCT.
3708 ** (7) The subquery must have a FROM clause. TODO: For subqueries without
3709 ** A FROM clause, consider adding a FROM clause with the special
3710 ** table sqlite_once that consists of a single row containing a
3713 ** (8) If the subquery uses LIMIT then the outer query may not be a join.
3715 ** (9) If the subquery uses LIMIT then the outer query may not be aggregate.
3717 ** (**) Restriction (10) was removed from the code on 2005-02-05 but we
3718 ** accidently carried the comment forward until 2014-09-15. Original
3719 ** constraint: "If the subquery is aggregate then the outer query
3720 ** may not use LIMIT."
3722 ** (11) The subquery and the outer query may not both have ORDER BY clauses.
3724 ** (**) Not implemented. Subsumed into restriction (3). Was previously
3725 ** a separate restriction deriving from ticket #350.
3727 ** (13) The subquery and outer query may not both use LIMIT.
3729 ** (14) The subquery may not use OFFSET.
3731 ** (15) If the outer query is part of a compound select, then the
3732 ** subquery may not use LIMIT.
3733 ** (See ticket #2339 and ticket [02a8e81d44]).
3735 ** (16) If the outer query is aggregate, then the subquery may not
3736 ** use ORDER BY. (Ticket #2942) This used to not matter
3737 ** until we introduced the group_concat() function.
3739 ** (17) If the subquery is a compound select, then
3740 ** (17a) all compound operators must be a UNION ALL, and
3741 ** (17b) no terms within the subquery compound may be aggregate
3743 ** (17c) every term within the subquery compound must have a FROM clause
3744 ** (17d) the outer query may not be
3745 ** (17d1) aggregate, or
3746 ** (17d2) DISTINCT, or
3748 ** (17e) the subquery may not contain window functions
3750 ** The parent and sub-query may contain WHERE clauses. Subject to
3751 ** rules (11), (13) and (14), they may also contain ORDER BY,
3752 ** LIMIT and OFFSET clauses. The subquery cannot use any compound
3753 ** operator other than UNION ALL because all the other compound
3754 ** operators have an implied DISTINCT which is disallowed by
3757 ** Also, each component of the sub-query must return the same number
3758 ** of result columns. This is actually a requirement for any compound
3759 ** SELECT statement, but all the code here does is make sure that no
3760 ** such (illegal) sub-query is flattened. The caller will detect the
3761 ** syntax error and return a detailed message.
3763 ** (18) If the sub-query is a compound select, then all terms of the
3764 ** ORDER BY clause of the parent must be simple references to
3765 ** columns of the sub-query.
3767 ** (19) If the subquery uses LIMIT then the outer query may not
3768 ** have a WHERE clause.
3770 ** (20) If the sub-query is a compound select, then it must not use
3771 ** an ORDER BY clause. Ticket #3773. We could relax this constraint
3772 ** somewhat by saying that the terms of the ORDER BY clause must
3773 ** appear as unmodified result columns in the outer query. But we
3774 ** have other optimizations in mind to deal with that case.
3776 ** (21) If the subquery uses LIMIT then the outer query may not be
3777 ** DISTINCT. (See ticket [752e1646fc]).
3779 ** (22) The subquery may not be a recursive CTE.
3781 ** (**) Subsumed into restriction (17d3). Was: If the outer query is
3782 ** a recursive CTE, then the sub-query may not be a compound query.
3783 ** This restriction is because transforming the
3784 ** parent to a compound query confuses the code that handles
3785 ** recursive queries in multiSelect().
3787 ** (**) We no longer attempt to flatten aggregate subqueries. Was:
3788 ** The subquery may not be an aggregate that uses the built-in min() or
3789 ** or max() functions. (Without this restriction, a query like:
3790 ** "SELECT x FROM (SELECT max(y), x FROM t1)" would not necessarily
3791 ** return the value X for which Y was maximal.)
3793 ** (25) If either the subquery or the parent query contains a window
3794 ** function in the select list or ORDER BY clause, flattening
3795 ** is not attempted.
3798 ** In this routine, the "p" parameter is a pointer to the outer query.
3799 ** The subquery is p->pSrc->a[iFrom]. isAgg is true if the outer query
3802 ** If flattening is not attempted, this routine is a no-op and returns 0.
3803 ** If flattening is attempted this routine returns 1.
3805 ** All of the expression analysis must occur on both the outer query and
3806 ** the subquery before this routine runs.
3808 static int flattenSubquery(
3809 Parse
*pParse
, /* Parsing context */
3810 Select
*p
, /* The parent or outer SELECT statement */
3811 int iFrom
, /* Index in p->pSrc->a[] of the inner subquery */
3812 int isAgg
/* True if outer SELECT uses aggregate functions */
3814 const char *zSavedAuthContext
= pParse
->zAuthContext
;
3815 Select
*pParent
; /* Current UNION ALL term of the other query */
3816 Select
*pSub
; /* The inner query or "subquery" */
3817 Select
*pSub1
; /* Pointer to the rightmost select in sub-query */
3818 SrcList
*pSrc
; /* The FROM clause of the outer query */
3819 SrcList
*pSubSrc
; /* The FROM clause of the subquery */
3820 int iParent
; /* VDBE cursor number of the pSub result set temp table */
3821 int iNewParent
= -1;/* Replacement table for iParent */
3822 int isLeftJoin
= 0; /* True if pSub is the right side of a LEFT JOIN */
3823 int i
; /* Loop counter */
3824 Expr
*pWhere
; /* The WHERE clause */
3825 struct SrcList_item
*pSubitem
; /* The subquery */
3826 sqlite3
*db
= pParse
->db
;
3827 Walker w
; /* Walker to persist agginfo data */
3829 /* Check to see if flattening is permitted. Return 0 if not.
3832 assert( p
->pPrior
==0 );
3833 if( OptimizationDisabled(db
, SQLITE_QueryFlattener
) ) return 0;
3835 assert( pSrc
&& iFrom
>=0 && iFrom
<pSrc
->nSrc
);
3836 pSubitem
= &pSrc
->a
[iFrom
];
3837 iParent
= pSubitem
->iCursor
;
3838 pSub
= pSubitem
->pSelect
;
3841 #ifndef SQLITE_OMIT_WINDOWFUNC
3842 if( p
->pWin
|| pSub
->pWin
) return 0; /* Restriction (25) */
3845 pSubSrc
= pSub
->pSrc
;
3847 /* Prior to version 3.1.2, when LIMIT and OFFSET had to be simple constants,
3848 ** not arbitrary expressions, we allowed some combining of LIMIT and OFFSET
3849 ** because they could be computed at compile-time. But when LIMIT and OFFSET
3850 ** became arbitrary expressions, we were forced to add restrictions (13)
3852 if( pSub
->pLimit
&& p
->pLimit
) return 0; /* Restriction (13) */
3853 if( pSub
->pLimit
&& pSub
->pLimit
->pRight
) return 0; /* Restriction (14) */
3854 if( (p
->selFlags
& SF_Compound
)!=0 && pSub
->pLimit
){
3855 return 0; /* Restriction (15) */
3857 if( pSubSrc
->nSrc
==0 ) return 0; /* Restriction (7) */
3858 if( pSub
->selFlags
& SF_Distinct
) return 0; /* Restriction (4) */
3859 if( pSub
->pLimit
&& (pSrc
->nSrc
>1 || isAgg
) ){
3860 return 0; /* Restrictions (8)(9) */
3862 if( p
->pOrderBy
&& pSub
->pOrderBy
){
3863 return 0; /* Restriction (11) */
3865 if( isAgg
&& pSub
->pOrderBy
) return 0; /* Restriction (16) */
3866 if( pSub
->pLimit
&& p
->pWhere
) return 0; /* Restriction (19) */
3867 if( pSub
->pLimit
&& (p
->selFlags
& SF_Distinct
)!=0 ){
3868 return 0; /* Restriction (21) */
3870 if( pSub
->selFlags
& (SF_Recursive
) ){
3871 return 0; /* Restrictions (22) */
3875 ** If the subquery is the right operand of a LEFT JOIN, then the
3876 ** subquery may not be a join itself (3a). Example of why this is not
3879 ** t1 LEFT OUTER JOIN (t2 JOIN t3)
3881 ** If we flatten the above, we would get
3883 ** (t1 LEFT OUTER JOIN t2) JOIN t3
3885 ** which is not at all the same thing.
3887 ** If the subquery is the right operand of a LEFT JOIN, then the outer
3888 ** query cannot be an aggregate. (3c) This is an artifact of the way
3889 ** aggregates are processed - there is no mechanism to determine if
3890 ** the LEFT JOIN table should be all-NULL.
3892 ** See also tickets #306, #350, and #3300.
3894 if( (pSubitem
->fg
.jointype
& JT_OUTER
)!=0 ){
3896 if( pSubSrc
->nSrc
>1 /* (3a) */
3898 || IsVirtual(pSubSrc
->a
[0].pTab
) /* (3c) */
3899 || (p
->selFlags
& SF_Distinct
)!=0 /* (3d) */
3904 #ifdef SQLITE_EXTRA_IFNULLROW
3905 else if( iFrom
>0 && !isAgg
){
3906 /* Setting isLeftJoin to -1 causes OP_IfNullRow opcodes to be generated for
3907 ** every reference to any result column from subquery in a join, even
3908 ** though they are not necessary. This will stress-test the OP_IfNullRow
3914 /* Restriction (17): If the sub-query is a compound SELECT, then it must
3915 ** use only the UNION ALL operator. And none of the simple select queries
3916 ** that make up the compound SELECT are allowed to be aggregate or distinct
3920 if( pSub
->pOrderBy
){
3921 return 0; /* Restriction (20) */
3923 if( isAgg
|| (p
->selFlags
& SF_Distinct
)!=0 || pSrc
->nSrc
!=1 ){
3924 return 0; /* (17d1), (17d2), or (17d3) */
3926 for(pSub1
=pSub
; pSub1
; pSub1
=pSub1
->pPrior
){
3927 testcase( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
);
3928 testcase( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Aggregate
);
3929 assert( pSub
->pSrc
!=0 );
3930 assert( pSub
->pEList
->nExpr
==pSub1
->pEList
->nExpr
);
3931 if( (pSub1
->selFlags
& (SF_Distinct
|SF_Aggregate
))!=0 /* (17b) */
3932 || (pSub1
->pPrior
&& pSub1
->op
!=TK_ALL
) /* (17a) */
3933 || pSub1
->pSrc
->nSrc
<1 /* (17c) */
3934 #ifndef SQLITE_OMIT_WINDOWFUNC
3935 || pSub1
->pWin
/* (17e) */
3940 testcase( pSub1
->pSrc
->nSrc
>1 );
3943 /* Restriction (18). */
3946 for(ii
=0; ii
<p
->pOrderBy
->nExpr
; ii
++){
3947 if( p
->pOrderBy
->a
[ii
].u
.x
.iOrderByCol
==0 ) return 0;
3952 /* Ex-restriction (23):
3953 ** The only way that the recursive part of a CTE can contain a compound
3954 ** subquery is for the subquery to be one term of a join. But if the
3955 ** subquery is a join, then the flattening has already been stopped by
3956 ** restriction (17d3)
3958 assert( (p
->selFlags
& SF_Recursive
)==0 || pSub
->pPrior
==0 );
3960 /***** If we reach this point, flattening is permitted. *****/
3961 SELECTTRACE(1,pParse
,p
,("flatten %u.%p from term %d\n",
3962 pSub
->selId
, pSub
, iFrom
));
3964 /* Authorize the subquery */
3965 pParse
->zAuthContext
= pSubitem
->zName
;
3966 TESTONLY(i
=) sqlite3AuthCheck(pParse
, SQLITE_SELECT
, 0, 0, 0);
3967 testcase( i
==SQLITE_DENY
);
3968 pParse
->zAuthContext
= zSavedAuthContext
;
3970 /* If the sub-query is a compound SELECT statement, then (by restrictions
3971 ** 17 and 18 above) it must be a UNION ALL and the parent query must
3974 ** SELECT <expr-list> FROM (<sub-query>) <where-clause>
3976 ** followed by any ORDER BY, LIMIT and/or OFFSET clauses. This block
3977 ** creates N-1 copies of the parent query without any ORDER BY, LIMIT or
3978 ** OFFSET clauses and joins them to the left-hand-side of the original
3979 ** using UNION ALL operators. In this case N is the number of simple
3980 ** select statements in the compound sub-query.
3984 ** SELECT a+1 FROM (
3985 ** SELECT x FROM tab
3987 ** SELECT y FROM tab
3989 ** SELECT abs(z*2) FROM tab2
3990 ** ) WHERE a!=5 ORDER BY 1
3992 ** Transformed into:
3994 ** SELECT x+1 FROM tab WHERE x+1!=5
3996 ** SELECT y+1 FROM tab WHERE y+1!=5
3998 ** SELECT abs(z*2)+1 FROM tab2 WHERE abs(z*2)+1!=5
4001 ** We call this the "compound-subquery flattening".
4003 for(pSub
=pSub
->pPrior
; pSub
; pSub
=pSub
->pPrior
){
4005 ExprList
*pOrderBy
= p
->pOrderBy
;
4006 Expr
*pLimit
= p
->pLimit
;
4007 Select
*pPrior
= p
->pPrior
;
4012 pNew
= sqlite3SelectDup(db
, p
, 0);
4014 p
->pOrderBy
= pOrderBy
;
4020 pNew
->pPrior
= pPrior
;
4021 if( pPrior
) pPrior
->pNext
= pNew
;
4024 SELECTTRACE(2,pParse
,p
,("compound-subquery flattener"
4025 " creates %u as peer\n",pNew
->selId
));
4027 if( db
->mallocFailed
) return 1;
4030 /* Begin flattening the iFrom-th entry of the FROM clause
4031 ** in the outer query.
4033 pSub
= pSub1
= pSubitem
->pSelect
;
4035 /* Delete the transient table structure associated with the
4038 sqlite3DbFree(db
, pSubitem
->zDatabase
);
4039 sqlite3DbFree(db
, pSubitem
->zName
);
4040 sqlite3DbFree(db
, pSubitem
->zAlias
);
4041 pSubitem
->zDatabase
= 0;
4042 pSubitem
->zName
= 0;
4043 pSubitem
->zAlias
= 0;
4044 pSubitem
->pSelect
= 0;
4046 /* Defer deleting the Table object associated with the
4047 ** subquery until code generation is
4048 ** complete, since there may still exist Expr.pTab entries that
4049 ** refer to the subquery even after flattening. Ticket #3346.
4051 ** pSubitem->pTab is always non-NULL by test restrictions and tests above.
4053 if( ALWAYS(pSubitem
->pTab
!=0) ){
4054 Table
*pTabToDel
= pSubitem
->pTab
;
4055 if( pTabToDel
->nTabRef
==1 ){
4056 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
4057 pTabToDel
->pNextZombie
= pToplevel
->pZombieTab
;
4058 pToplevel
->pZombieTab
= pTabToDel
;
4060 pTabToDel
->nTabRef
--;
4065 /* The following loop runs once for each term in a compound-subquery
4066 ** flattening (as described above). If we are doing a different kind
4067 ** of flattening - a flattening other than a compound-subquery flattening -
4068 ** then this loop only runs once.
4070 ** This loop moves all of the FROM elements of the subquery into the
4071 ** the FROM clause of the outer query. Before doing this, remember
4072 ** the cursor number for the original outer query FROM element in
4073 ** iParent. The iParent cursor will never be used. Subsequent code
4074 ** will scan expressions looking for iParent references and replace
4075 ** those references with expressions that resolve to the subquery FROM
4076 ** elements we are now copying in.
4078 for(pParent
=p
; pParent
; pParent
=pParent
->pPrior
, pSub
=pSub
->pPrior
){
4082 pSubSrc
= pSub
->pSrc
; /* FROM clause of subquery */
4083 nSubSrc
= pSubSrc
->nSrc
; /* Number of terms in subquery FROM clause */
4084 pSrc
= pParent
->pSrc
; /* FROM clause of the outer query */
4087 assert( pParent
==p
); /* First time through the loop */
4088 jointype
= pSubitem
->fg
.jointype
;
4090 assert( pParent
!=p
); /* 2nd and subsequent times through the loop */
4091 pSrc
= sqlite3SrcListAppend(pParse
, 0, 0, 0);
4092 if( pSrc
==0 ) break;
4093 pParent
->pSrc
= pSrc
;
4096 /* The subquery uses a single slot of the FROM clause of the outer
4097 ** query. If the subquery has more than one element in its FROM clause,
4098 ** then expand the outer query to make space for it to hold all elements
4103 ** SELECT * FROM tabA, (SELECT * FROM sub1, sub2), tabB;
4105 ** The outer query has 3 slots in its FROM clause. One slot of the
4106 ** outer query (the middle slot) is used by the subquery. The next
4107 ** block of code will expand the outer query FROM clause to 4 slots.
4108 ** The middle slot is expanded to two slots in order to make space
4109 ** for the two elements in the FROM clause of the subquery.
4112 pSrc
= sqlite3SrcListEnlarge(pParse
, pSrc
, nSubSrc
-1,iFrom
+1);
4113 if( pSrc
==0 ) break;
4114 pParent
->pSrc
= pSrc
;
4117 /* Transfer the FROM clause terms from the subquery into the
4120 for(i
=0; i
<nSubSrc
; i
++){
4121 sqlite3IdListDelete(db
, pSrc
->a
[i
+iFrom
].pUsing
);
4122 assert( pSrc
->a
[i
+iFrom
].fg
.isTabFunc
==0 );
4123 pSrc
->a
[i
+iFrom
] = pSubSrc
->a
[i
];
4124 iNewParent
= pSubSrc
->a
[i
].iCursor
;
4125 memset(&pSubSrc
->a
[i
], 0, sizeof(pSubSrc
->a
[i
]));
4127 pSrc
->a
[iFrom
].fg
.jointype
= jointype
;
4129 /* Now begin substituting subquery result set expressions for
4130 ** references to the iParent in the outer query.
4134 ** SELECT a+5, b*10 FROM (SELECT x*3 AS a, y+10 AS b FROM t1) WHERE a>b;
4135 ** \ \_____________ subquery __________/ /
4136 ** \_____________________ outer query ______________________________/
4138 ** We look at every expression in the outer query and every place we see
4139 ** "a" we substitute "x*3" and every place we see "b" we substitute "y+10".
4141 if( pSub
->pOrderBy
&& (pParent
->selFlags
& SF_NoopOrderBy
)==0 ){
4142 /* At this point, any non-zero iOrderByCol values indicate that the
4143 ** ORDER BY column expression is identical to the iOrderByCol'th
4144 ** expression returned by SELECT statement pSub. Since these values
4145 ** do not necessarily correspond to columns in SELECT statement pParent,
4146 ** zero them before transfering the ORDER BY clause.
4148 ** Not doing this may cause an error if a subsequent call to this
4149 ** function attempts to flatten a compound sub-query into pParent
4150 ** (the only way this can happen is if the compound sub-query is
4151 ** currently part of pSub->pSrc). See ticket [d11a6e908f]. */
4152 ExprList
*pOrderBy
= pSub
->pOrderBy
;
4153 for(i
=0; i
<pOrderBy
->nExpr
; i
++){
4154 pOrderBy
->a
[i
].u
.x
.iOrderByCol
= 0;
4156 assert( pParent
->pOrderBy
==0 );
4157 pParent
->pOrderBy
= pOrderBy
;
4160 pWhere
= pSub
->pWhere
;
4163 sqlite3SetJoinExpr(pWhere
, iNewParent
);
4166 if( pParent
->pWhere
){
4167 pParent
->pWhere
= sqlite3PExpr(pParse
, TK_AND
, pWhere
, pParent
->pWhere
);
4169 pParent
->pWhere
= pWhere
;
4172 if( db
->mallocFailed
==0 ){
4176 x
.iNewTable
= iNewParent
;
4177 x
.isLeftJoin
= isLeftJoin
;
4178 x
.pEList
= pSub
->pEList
;
4179 substSelect(&x
, pParent
, 0);
4182 /* The flattened query is a compound if either the inner or the
4183 ** outer query is a compound. */
4184 pParent
->selFlags
|= pSub
->selFlags
& SF_Compound
;
4185 assert( (pSub
->selFlags
& SF_Distinct
)==0 ); /* restriction (17b) */
4188 ** SELECT ... FROM (SELECT ... LIMIT a OFFSET b) LIMIT x OFFSET y;
4190 ** One is tempted to try to add a and b to combine the limits. But this
4191 ** does not work if either limit is negative.
4194 pParent
->pLimit
= pSub
->pLimit
;
4198 /* Recompute the SrcList_item.colUsed masks for the flattened
4200 for(i
=0; i
<nSubSrc
; i
++){
4201 recomputeColumnsUsed(pParent
, &pSrc
->a
[i
+iFrom
]);
4205 /* Finially, delete what is left of the subquery and return
4208 sqlite3AggInfoPersistWalkerInit(&w
, pParse
);
4209 sqlite3WalkSelect(&w
,pSub1
);
4210 sqlite3SelectDelete(db
, pSub1
);
4212 #if SELECTTRACE_ENABLED
4213 if( sqlite3_unsupported_selecttrace
& 0x100 ){
4214 SELECTTRACE(0x100,pParse
,p
,("After flattening:\n"));
4215 sqlite3TreeViewSelect(0, p
, 0);
4221 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4224 ** A structure to keep track of all of the column values that are fixed to
4225 ** a known value due to WHERE clause constraints of the form COLUMN=VALUE.
4227 typedef struct WhereConst WhereConst
;
4229 Parse
*pParse
; /* Parsing context */
4230 int nConst
; /* Number for COLUMN=CONSTANT terms */
4231 int nChng
; /* Number of times a constant is propagated */
4232 Expr
**apExpr
; /* [i*2] is COLUMN and [i*2+1] is VALUE */
4236 ** Add a new entry to the pConst object. Except, do not add duplicate
4237 ** pColumn entires. Also, do not add if doing so would not be appropriate.
4239 ** The caller guarantees the pColumn is a column and pValue is a constant.
4240 ** This routine has to do some additional checks before completing the
4243 static void constInsert(
4244 WhereConst
*pConst
, /* The WhereConst into which we are inserting */
4245 Expr
*pColumn
, /* The COLUMN part of the constraint */
4246 Expr
*pValue
, /* The VALUE part of the constraint */
4247 Expr
*pExpr
/* Overall expression: COLUMN=VALUE or VALUE=COLUMN */
4250 assert( pColumn
->op
==TK_COLUMN
);
4251 assert( sqlite3ExprIsConstant(pValue
) );
4253 if( ExprHasProperty(pColumn
, EP_FixedCol
) ) return;
4254 if( sqlite3ExprAffinity(pValue
)!=0 ) return;
4255 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pConst
->pParse
,pExpr
)) ){
4259 /* 2018-10-25 ticket [cf5ed20f]
4260 ** Make sure the same pColumn is not inserted more than once */
4261 for(i
=0; i
<pConst
->nConst
; i
++){
4262 const Expr
*pE2
= pConst
->apExpr
[i
*2];
4263 assert( pE2
->op
==TK_COLUMN
);
4264 if( pE2
->iTable
==pColumn
->iTable
4265 && pE2
->iColumn
==pColumn
->iColumn
4267 return; /* Already present. Return without doing anything. */
4272 pConst
->apExpr
= sqlite3DbReallocOrFree(pConst
->pParse
->db
, pConst
->apExpr
,
4273 pConst
->nConst
*2*sizeof(Expr
*));
4274 if( pConst
->apExpr
==0 ){
4277 pConst
->apExpr
[pConst
->nConst
*2-2] = pColumn
;
4278 pConst
->apExpr
[pConst
->nConst
*2-1] = pValue
;
4283 ** Find all terms of COLUMN=VALUE or VALUE=COLUMN in pExpr where VALUE
4284 ** is a constant expression and where the term must be true because it
4285 ** is part of the AND-connected terms of the expression. For each term
4286 ** found, add it to the pConst structure.
4288 static void findConstInWhere(WhereConst
*pConst
, Expr
*pExpr
){
4289 Expr
*pRight
, *pLeft
;
4290 if( pExpr
==0 ) return;
4291 if( ExprHasProperty(pExpr
, EP_FromJoin
) ) return;
4292 if( pExpr
->op
==TK_AND
){
4293 findConstInWhere(pConst
, pExpr
->pRight
);
4294 findConstInWhere(pConst
, pExpr
->pLeft
);
4297 if( pExpr
->op
!=TK_EQ
) return;
4298 pRight
= pExpr
->pRight
;
4299 pLeft
= pExpr
->pLeft
;
4300 assert( pRight
!=0 );
4302 if( pRight
->op
==TK_COLUMN
&& sqlite3ExprIsConstant(pLeft
) ){
4303 constInsert(pConst
,pRight
,pLeft
,pExpr
);
4305 if( pLeft
->op
==TK_COLUMN
&& sqlite3ExprIsConstant(pRight
) ){
4306 constInsert(pConst
,pLeft
,pRight
,pExpr
);
4311 ** This is a Walker expression callback. pExpr is a candidate expression
4312 ** to be replaced by a value. If pExpr is equivalent to one of the
4313 ** columns named in pWalker->u.pConst, then overwrite it with its
4314 ** corresponding value.
4316 static int propagateConstantExprRewrite(Walker
*pWalker
, Expr
*pExpr
){
4319 if( pExpr
->op
!=TK_COLUMN
) return WRC_Continue
;
4320 if( ExprHasProperty(pExpr
, EP_FixedCol
|EP_FromJoin
) ){
4321 testcase( ExprHasProperty(pExpr
, EP_FixedCol
) );
4322 testcase( ExprHasProperty(pExpr
, EP_FromJoin
) );
4323 return WRC_Continue
;
4325 pConst
= pWalker
->u
.pConst
;
4326 for(i
=0; i
<pConst
->nConst
; i
++){
4327 Expr
*pColumn
= pConst
->apExpr
[i
*2];
4328 if( pColumn
==pExpr
) continue;
4329 if( pColumn
->iTable
!=pExpr
->iTable
) continue;
4330 if( pColumn
->iColumn
!=pExpr
->iColumn
) continue;
4331 /* A match is found. Add the EP_FixedCol property */
4333 ExprClearProperty(pExpr
, EP_Leaf
);
4334 ExprSetProperty(pExpr
, EP_FixedCol
);
4335 assert( pExpr
->pLeft
==0 );
4336 pExpr
->pLeft
= sqlite3ExprDup(pConst
->pParse
->db
, pConst
->apExpr
[i
*2+1], 0);
4343 ** The WHERE-clause constant propagation optimization.
4345 ** If the WHERE clause contains terms of the form COLUMN=CONSTANT or
4346 ** CONSTANT=COLUMN that are top-level AND-connected terms that are not
4347 ** part of a ON clause from a LEFT JOIN, then throughout the query
4348 ** replace all other occurrences of COLUMN with CONSTANT.
4350 ** For example, the query:
4352 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=t1.a AND t3.c=t2.b
4354 ** Is transformed into
4356 ** SELECT * FROM t1, t2, t3 WHERE t1.a=39 AND t2.b=39 AND t3.c=39
4358 ** Return true if any transformations where made and false if not.
4360 ** Implementation note: Constant propagation is tricky due to affinity
4361 ** and collating sequence interactions. Consider this example:
4363 ** CREATE TABLE t1(a INT,b TEXT);
4364 ** INSERT INTO t1 VALUES(123,'0123');
4365 ** SELECT * FROM t1 WHERE a=123 AND b=a;
4366 ** SELECT * FROM t1 WHERE a=123 AND b=123;
4368 ** The two SELECT statements above should return different answers. b=a
4369 ** is alway true because the comparison uses numeric affinity, but b=123
4370 ** is false because it uses text affinity and '0123' is not the same as '123'.
4371 ** To work around this, the expression tree is not actually changed from
4372 ** "b=a" to "b=123" but rather the "a" in "b=a" is tagged with EP_FixedCol
4373 ** and the "123" value is hung off of the pLeft pointer. Code generator
4374 ** routines know to generate the constant "123" instead of looking up the
4375 ** column value. Also, to avoid collation problems, this optimization is
4376 ** only attempted if the "a=123" term uses the default BINARY collation.
4378 static int propagateConstants(
4379 Parse
*pParse
, /* The parsing context */
4380 Select
*p
/* The query in which to propagate constants */
4390 findConstInWhere(&x
, p
->pWhere
);
4392 memset(&w
, 0, sizeof(w
));
4394 w
.xExprCallback
= propagateConstantExprRewrite
;
4395 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
4396 w
.xSelectCallback2
= 0;
4399 sqlite3WalkExpr(&w
, p
->pWhere
);
4400 sqlite3DbFree(x
.pParse
->db
, x
.apExpr
);
4407 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
4409 ** Make copies of relevant WHERE clause terms of the outer query into
4410 ** the WHERE clause of subquery. Example:
4412 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1) WHERE x=5 AND y=10;
4414 ** Transformed into:
4416 ** SELECT * FROM (SELECT a AS x, c-d AS y FROM t1 WHERE a=5 AND c-d=10)
4417 ** WHERE x=5 AND y=10;
4419 ** The hope is that the terms added to the inner query will make it more
4422 ** Do not attempt this optimization if:
4424 ** (1) (** This restriction was removed on 2017-09-29. We used to
4425 ** disallow this optimization for aggregate subqueries, but now
4426 ** it is allowed by putting the extra terms on the HAVING clause.
4427 ** The added HAVING clause is pointless if the subquery lacks
4428 ** a GROUP BY clause. But such a HAVING clause is also harmless
4429 ** so there does not appear to be any reason to add extra logic
4430 ** to suppress it. **)
4432 ** (2) The inner query is the recursive part of a common table expression.
4434 ** (3) The inner query has a LIMIT clause (since the changes to the WHERE
4435 ** clause would change the meaning of the LIMIT).
4437 ** (4) The inner query is the right operand of a LEFT JOIN and the
4438 ** expression to be pushed down does not come from the ON clause
4439 ** on that LEFT JOIN.
4441 ** (5) The WHERE clause expression originates in the ON or USING clause
4442 ** of a LEFT JOIN where iCursor is not the right-hand table of that
4443 ** left join. An example:
4446 ** FROM (SELECT 1 AS a1 UNION ALL SELECT 2) AS aa
4447 ** JOIN (SELECT 1 AS b2 UNION ALL SELECT 2) AS bb ON (a1=b2)
4448 ** LEFT JOIN (SELECT 8 AS c3 UNION ALL SELECT 9) AS cc ON (b2=2);
4450 ** The correct answer is three rows: (1,1,NULL),(2,2,8),(2,2,9).
4451 ** But if the (b2=2) term were to be pushed down into the bb subquery,
4452 ** then the (1,1,NULL) row would be suppressed.
4454 ** (6) The inner query features one or more window-functions (since
4455 ** changes to the WHERE clause of the inner query could change the
4456 ** window over which window functions are calculated).
4458 ** Return 0 if no changes are made and non-zero if one or more WHERE clause
4459 ** terms are duplicated into the subquery.
4461 static int pushDownWhereTerms(
4462 Parse
*pParse
, /* Parse context (for malloc() and error reporting) */
4463 Select
*pSubq
, /* The subquery whose WHERE clause is to be augmented */
4464 Expr
*pWhere
, /* The WHERE clause of the outer query */
4465 int iCursor
, /* Cursor number of the subquery */
4466 int isLeftJoin
/* True if pSubq is the right term of a LEFT JOIN */
4471 if( pWhere
==0 ) return 0;
4472 if( pSubq
->selFlags
& SF_Recursive
) return 0; /* restriction (2) */
4474 #ifndef SQLITE_OMIT_WINDOWFUNC
4475 for(pSel
=pSubq
; pSel
; pSel
=pSel
->pPrior
){
4476 if( pSel
->pWin
) return 0; /* restriction (6) */
4481 /* Only the first term of a compound can have a WITH clause. But make
4482 ** sure no other terms are marked SF_Recursive in case something changes
4487 for(pX
=pSubq
; pX
; pX
=pX
->pPrior
){
4488 assert( (pX
->selFlags
& (SF_Recursive
))==0 );
4493 if( pSubq
->pLimit
!=0 ){
4494 return 0; /* restriction (3) */
4496 while( pWhere
->op
==TK_AND
){
4497 nChng
+= pushDownWhereTerms(pParse
, pSubq
, pWhere
->pRight
,
4498 iCursor
, isLeftJoin
);
4499 pWhere
= pWhere
->pLeft
;
4502 && (ExprHasProperty(pWhere
,EP_FromJoin
)==0
4503 || pWhere
->iRightJoinTable
!=iCursor
)
4505 return 0; /* restriction (4) */
4507 if( ExprHasProperty(pWhere
,EP_FromJoin
) && pWhere
->iRightJoinTable
!=iCursor
){
4508 return 0; /* restriction (5) */
4510 if( sqlite3ExprIsTableConstant(pWhere
, iCursor
) ){
4514 pNew
= sqlite3ExprDup(pParse
->db
, pWhere
, 0);
4515 unsetJoinExpr(pNew
, -1);
4518 x
.iNewTable
= iCursor
;
4520 x
.pEList
= pSubq
->pEList
;
4521 pNew
= substExpr(&x
, pNew
);
4522 if( pSubq
->selFlags
& SF_Aggregate
){
4523 pSubq
->pHaving
= sqlite3ExprAnd(pParse
, pSubq
->pHaving
, pNew
);
4525 pSubq
->pWhere
= sqlite3ExprAnd(pParse
, pSubq
->pWhere
, pNew
);
4527 pSubq
= pSubq
->pPrior
;
4532 #endif /* !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW) */
4535 ** The pFunc is the only aggregate function in the query. Check to see
4536 ** if the query is a candidate for the min/max optimization.
4538 ** If the query is a candidate for the min/max optimization, then set
4539 ** *ppMinMax to be an ORDER BY clause to be used for the optimization
4540 ** and return either WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX depending on
4541 ** whether pFunc is a min() or max() function.
4543 ** If the query is not a candidate for the min/max optimization, return
4544 ** WHERE_ORDERBY_NORMAL (which must be zero).
4546 ** This routine must be called after aggregate functions have been
4547 ** located but before their arguments have been subjected to aggregate
4550 static u8
minMaxQuery(sqlite3
*db
, Expr
*pFunc
, ExprList
**ppMinMax
){
4551 int eRet
= WHERE_ORDERBY_NORMAL
; /* Return value */
4552 ExprList
*pEList
= pFunc
->x
.pList
; /* Arguments to agg function */
4553 const char *zFunc
; /* Name of aggregate function pFunc */
4557 assert( *ppMinMax
==0 );
4558 assert( pFunc
->op
==TK_AGG_FUNCTION
);
4559 assert( !IsWindowFunc(pFunc
) );
4560 if( pEList
==0 || pEList
->nExpr
!=1 || ExprHasProperty(pFunc
, EP_WinFunc
) ){
4563 zFunc
= pFunc
->u
.zToken
;
4564 if( sqlite3StrICmp(zFunc
, "min")==0 ){
4565 eRet
= WHERE_ORDERBY_MIN
;
4566 if( sqlite3ExprCanBeNull(pEList
->a
[0].pExpr
) ){
4567 sortFlags
= KEYINFO_ORDER_BIGNULL
;
4569 }else if( sqlite3StrICmp(zFunc
, "max")==0 ){
4570 eRet
= WHERE_ORDERBY_MAX
;
4571 sortFlags
= KEYINFO_ORDER_DESC
;
4575 *ppMinMax
= pOrderBy
= sqlite3ExprListDup(db
, pEList
, 0);
4576 assert( pOrderBy
!=0 || db
->mallocFailed
);
4577 if( pOrderBy
) pOrderBy
->a
[0].sortFlags
= sortFlags
;
4582 ** The select statement passed as the first argument is an aggregate query.
4583 ** The second argument is the associated aggregate-info object. This
4584 ** function tests if the SELECT is of the form:
4586 ** SELECT count(*) FROM <tbl>
4588 ** where table is a database table, not a sub-select or view. If the query
4589 ** does match this pattern, then a pointer to the Table object representing
4590 ** <tbl> is returned. Otherwise, 0 is returned.
4592 static Table
*isSimpleCount(Select
*p
, AggInfo
*pAggInfo
){
4596 assert( !p
->pGroupBy
);
4598 if( p
->pWhere
|| p
->pEList
->nExpr
!=1
4599 || p
->pSrc
->nSrc
!=1 || p
->pSrc
->a
[0].pSelect
4603 pTab
= p
->pSrc
->a
[0].pTab
;
4604 pExpr
= p
->pEList
->a
[0].pExpr
;
4605 assert( pTab
&& !pTab
->pSelect
&& pExpr
);
4607 if( IsVirtual(pTab
) ) return 0;
4608 if( pExpr
->op
!=TK_AGG_FUNCTION
) return 0;
4609 if( NEVER(pAggInfo
->nFunc
==0) ) return 0;
4610 if( (pAggInfo
->aFunc
[0].pFunc
->funcFlags
&SQLITE_FUNC_COUNT
)==0 ) return 0;
4611 if( ExprHasProperty(pExpr
, EP_Distinct
|EP_WinFunc
) ) return 0;
4617 ** If the source-list item passed as an argument was augmented with an
4618 ** INDEXED BY clause, then try to locate the specified index. If there
4619 ** was such a clause and the named index cannot be found, return
4620 ** SQLITE_ERROR and leave an error in pParse. Otherwise, populate
4621 ** pFrom->pIndex and return SQLITE_OK.
4623 int sqlite3IndexedByLookup(Parse
*pParse
, struct SrcList_item
*pFrom
){
4624 if( pFrom
->pTab
&& pFrom
->fg
.isIndexedBy
){
4625 Table
*pTab
= pFrom
->pTab
;
4626 char *zIndexedBy
= pFrom
->u1
.zIndexedBy
;
4628 for(pIdx
=pTab
->pIndex
;
4629 pIdx
&& sqlite3StrICmp(pIdx
->zName
, zIndexedBy
);
4633 sqlite3ErrorMsg(pParse
, "no such index: %s", zIndexedBy
, 0);
4634 pParse
->checkSchema
= 1;
4635 return SQLITE_ERROR
;
4637 pFrom
->pIBIndex
= pIdx
;
4642 ** Detect compound SELECT statements that use an ORDER BY clause with
4643 ** an alternative collating sequence.
4645 ** SELECT ... FROM t1 EXCEPT SELECT ... FROM t2 ORDER BY .. COLLATE ...
4647 ** These are rewritten as a subquery:
4649 ** SELECT * FROM (SELECT ... FROM t1 EXCEPT SELECT ... FROM t2)
4650 ** ORDER BY ... COLLATE ...
4652 ** This transformation is necessary because the multiSelectOrderBy() routine
4653 ** above that generates the code for a compound SELECT with an ORDER BY clause
4654 ** uses a merge algorithm that requires the same collating sequence on the
4655 ** result columns as on the ORDER BY clause. See ticket
4656 ** http://www.sqlite.org/src/info/6709574d2a
4658 ** This transformation is only needed for EXCEPT, INTERSECT, and UNION.
4659 ** The UNION ALL operator works fine with multiSelectOrderBy() even when
4660 ** there are COLLATE terms in the ORDER BY.
4662 static int convertCompoundSelectToSubquery(Walker
*pWalker
, Select
*p
){
4667 struct ExprList_item
*a
;
4672 if( p
->pPrior
==0 ) return WRC_Continue
;
4673 if( p
->pOrderBy
==0 ) return WRC_Continue
;
4674 for(pX
=p
; pX
&& (pX
->op
==TK_ALL
|| pX
->op
==TK_SELECT
); pX
=pX
->pPrior
){}
4675 if( pX
==0 ) return WRC_Continue
;
4677 #ifndef SQLITE_OMIT_WINDOWFUNC
4678 /* If iOrderByCol is already non-zero, then it has already been matched
4679 ** to a result column of the SELECT statement. This occurs when the
4680 ** SELECT is rewritten for window-functions processing and then passed
4681 ** to sqlite3SelectPrep() and similar a second time. The rewriting done
4682 ** by this function is not required in this case. */
4683 if( a
[0].u
.x
.iOrderByCol
) return WRC_Continue
;
4685 for(i
=p
->pOrderBy
->nExpr
-1; i
>=0; i
--){
4686 if( a
[i
].pExpr
->flags
& EP_Collate
) break;
4688 if( i
<0 ) return WRC_Continue
;
4690 /* If we reach this point, that means the transformation is required. */
4692 pParse
= pWalker
->pParse
;
4694 pNew
= sqlite3DbMallocZero(db
, sizeof(*pNew
) );
4695 if( pNew
==0 ) return WRC_Abort
;
4696 memset(&dummy
, 0, sizeof(dummy
));
4697 pNewSrc
= sqlite3SrcListAppendFromTerm(pParse
,0,0,0,&dummy
,pNew
,0,0);
4698 if( pNewSrc
==0 ) return WRC_Abort
;
4701 p
->pEList
= sqlite3ExprListAppend(pParse
, 0, sqlite3Expr(db
, TK_ASTERISK
, 0));
4710 #ifndef SQLITE_OMIT_WINDOWFUNC
4713 p
->selFlags
&= ~SF_Compound
;
4714 assert( (p
->selFlags
& SF_Converted
)==0 );
4715 p
->selFlags
|= SF_Converted
;
4716 assert( pNew
->pPrior
!=0 );
4717 pNew
->pPrior
->pNext
= pNew
;
4719 return WRC_Continue
;
4723 ** Check to see if the FROM clause term pFrom has table-valued function
4724 ** arguments. If it does, leave an error message in pParse and return
4725 ** non-zero, since pFrom is not allowed to be a table-valued function.
4727 static int cannotBeFunction(Parse
*pParse
, struct SrcList_item
*pFrom
){
4728 if( pFrom
->fg
.isTabFunc
){
4729 sqlite3ErrorMsg(pParse
, "'%s' is not a function", pFrom
->zName
);
4735 #ifndef SQLITE_OMIT_CTE
4737 ** Argument pWith (which may be NULL) points to a linked list of nested
4738 ** WITH contexts, from inner to outermost. If the table identified by
4739 ** FROM clause element pItem is really a common-table-expression (CTE)
4740 ** then return a pointer to the CTE definition for that table. Otherwise
4743 ** If a non-NULL value is returned, set *ppContext to point to the With
4744 ** object that the returned CTE belongs to.
4746 static struct Cte
*searchWith(
4747 With
*pWith
, /* Current innermost WITH clause */
4748 struct SrcList_item
*pItem
, /* FROM clause element to resolve */
4749 With
**ppContext
/* OUT: WITH clause return value belongs to */
4752 if( pItem
->zDatabase
==0 && (zName
= pItem
->zName
)!=0 ){
4754 for(p
=pWith
; p
; p
=p
->pOuter
){
4756 for(i
=0; i
<p
->nCte
; i
++){
4757 if( sqlite3StrICmp(zName
, p
->a
[i
].zName
)==0 ){
4767 /* The code generator maintains a stack of active WITH clauses
4768 ** with the inner-most WITH clause being at the top of the stack.
4770 ** This routine pushes the WITH clause passed as the second argument
4771 ** onto the top of the stack. If argument bFree is true, then this
4772 ** WITH clause will never be popped from the stack. In this case it
4773 ** should be freed along with the Parse object. In other cases, when
4774 ** bFree==0, the With object will be freed along with the SELECT
4775 ** statement with which it is associated.
4777 void sqlite3WithPush(Parse
*pParse
, With
*pWith
, u8 bFree
){
4778 assert( bFree
==0 || (pParse
->pWith
==0 && pParse
->pWithToFree
==0) );
4780 assert( pParse
->pWith
!=pWith
);
4781 pWith
->pOuter
= pParse
->pWith
;
4782 pParse
->pWith
= pWith
;
4783 if( bFree
) pParse
->pWithToFree
= pWith
;
4788 ** This function checks if argument pFrom refers to a CTE declared by
4789 ** a WITH clause on the stack currently maintained by the parser. And,
4790 ** if currently processing a CTE expression, if it is a recursive
4791 ** reference to the current CTE.
4793 ** If pFrom falls into either of the two categories above, pFrom->pTab
4794 ** and other fields are populated accordingly. The caller should check
4795 ** (pFrom->pTab!=0) to determine whether or not a successful match
4798 ** Whether or not a match is found, SQLITE_OK is returned if no error
4799 ** occurs. If an error does occur, an error message is stored in the
4800 ** parser and some error code other than SQLITE_OK returned.
4802 static int withExpand(
4804 struct SrcList_item
*pFrom
4806 Parse
*pParse
= pWalker
->pParse
;
4807 sqlite3
*db
= pParse
->db
;
4808 struct Cte
*pCte
; /* Matched CTE (or NULL if no match) */
4809 With
*pWith
; /* WITH clause that pCte belongs to */
4811 assert( pFrom
->pTab
==0 );
4813 return SQLITE_ERROR
;
4816 pCte
= searchWith(pParse
->pWith
, pFrom
, &pWith
);
4821 Select
*pLeft
; /* Left-most SELECT statement */
4822 Select
*pRecTerm
; /* Left-most recursive term */
4823 int bMayRecursive
; /* True if compound joined by UNION [ALL] */
4824 With
*pSavedWith
; /* Initial value of pParse->pWith */
4825 int iRecTab
= -1; /* Cursor for recursive table */
4827 /* If pCte->zCteErr is non-NULL at this point, then this is an illegal
4828 ** recursive reference to CTE pCte. Leave an error in pParse and return
4829 ** early. If pCte->zCteErr is NULL, then this is not a recursive reference.
4830 ** In this case, proceed. */
4831 if( pCte
->zCteErr
){
4832 sqlite3ErrorMsg(pParse
, pCte
->zCteErr
, pCte
->zName
);
4833 return SQLITE_ERROR
;
4835 if( cannotBeFunction(pParse
, pFrom
) ) return SQLITE_ERROR
;
4837 assert( pFrom
->pTab
==0 );
4838 pFrom
->pTab
= pTab
= sqlite3DbMallocZero(db
, sizeof(Table
));
4839 if( pTab
==0 ) return WRC_Abort
;
4841 pTab
->zName
= sqlite3DbStrDup(db
, pCte
->zName
);
4843 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
4844 pTab
->tabFlags
|= TF_Ephemeral
| TF_NoVisibleRowid
;
4845 pFrom
->pSelect
= sqlite3SelectDup(db
, pCte
->pSelect
, 0);
4846 if( db
->mallocFailed
) return SQLITE_NOMEM_BKPT
;
4847 assert( pFrom
->pSelect
);
4849 /* Check if this is a recursive CTE. */
4850 pRecTerm
= pSel
= pFrom
->pSelect
;
4851 bMayRecursive
= ( pSel
->op
==TK_ALL
|| pSel
->op
==TK_UNION
);
4852 while( bMayRecursive
&& pRecTerm
->op
==pSel
->op
){
4854 SrcList
*pSrc
= pRecTerm
->pSrc
;
4855 assert( pRecTerm
->pPrior
!=0 );
4856 for(i
=0; i
<pSrc
->nSrc
; i
++){
4857 struct SrcList_item
*pItem
= &pSrc
->a
[i
];
4858 if( pItem
->zDatabase
==0
4860 && 0==sqlite3StrICmp(pItem
->zName
, pCte
->zName
)
4864 pItem
->fg
.isRecursive
= 1;
4865 if( pRecTerm
->selFlags
& SF_Recursive
){
4866 sqlite3ErrorMsg(pParse
,
4867 "multiple references to recursive table: %s", pCte
->zName
4869 return SQLITE_ERROR
;
4871 pRecTerm
->selFlags
|= SF_Recursive
;
4872 if( iRecTab
<0 ) iRecTab
= pParse
->nTab
++;
4873 pItem
->iCursor
= iRecTab
;
4876 if( (pRecTerm
->selFlags
& SF_Recursive
)==0 ) break;
4877 pRecTerm
= pRecTerm
->pPrior
;
4880 pCte
->zCteErr
= "circular reference: %s";
4881 pSavedWith
= pParse
->pWith
;
4882 pParse
->pWith
= pWith
;
4883 if( pSel
->selFlags
& SF_Recursive
){
4884 assert( pRecTerm
!=0 );
4885 assert( (pRecTerm
->selFlags
& SF_Recursive
)==0 );
4886 assert( pRecTerm
->pNext
!=0 );
4887 assert( (pRecTerm
->pNext
->selFlags
& SF_Recursive
)!=0 );
4888 assert( pRecTerm
->pWith
==0 );
4889 pRecTerm
->pWith
= pSel
->pWith
;
4890 sqlite3WalkSelect(pWalker
, pRecTerm
);
4891 pRecTerm
->pWith
= 0;
4893 sqlite3WalkSelect(pWalker
, pSel
);
4895 pParse
->pWith
= pWith
;
4897 for(pLeft
=pSel
; pLeft
->pPrior
; pLeft
=pLeft
->pPrior
);
4898 pEList
= pLeft
->pEList
;
4900 if( pEList
&& pEList
->nExpr
!=pCte
->pCols
->nExpr
){
4901 sqlite3ErrorMsg(pParse
, "table %s has %d values for %d columns",
4902 pCte
->zName
, pEList
->nExpr
, pCte
->pCols
->nExpr
4904 pParse
->pWith
= pSavedWith
;
4905 return SQLITE_ERROR
;
4907 pEList
= pCte
->pCols
;
4910 sqlite3ColumnsFromExprList(pParse
, pEList
, &pTab
->nCol
, &pTab
->aCol
);
4911 if( bMayRecursive
){
4912 if( pSel
->selFlags
& SF_Recursive
){
4913 pCte
->zCteErr
= "multiple recursive references: %s";
4915 pCte
->zCteErr
= "recursive reference in a subquery: %s";
4917 sqlite3WalkSelect(pWalker
, pSel
);
4920 pParse
->pWith
= pSavedWith
;
4927 #ifndef SQLITE_OMIT_CTE
4929 ** If the SELECT passed as the second argument has an associated WITH
4930 ** clause, pop it from the stack stored as part of the Parse object.
4932 ** This function is used as the xSelectCallback2() callback by
4933 ** sqlite3SelectExpand() when walking a SELECT tree to resolve table
4934 ** names and other FROM clause elements.
4936 static void selectPopWith(Walker
*pWalker
, Select
*p
){
4937 Parse
*pParse
= pWalker
->pParse
;
4938 if( OK_IF_ALWAYS_TRUE(pParse
->pWith
) && p
->pPrior
==0 ){
4939 With
*pWith
= findRightmost(p
)->pWith
;
4941 assert( pParse
->pWith
==pWith
|| pParse
->nErr
);
4942 pParse
->pWith
= pWith
->pOuter
;
4947 #define selectPopWith 0
4951 ** The SrcList_item structure passed as the second argument represents a
4952 ** sub-query in the FROM clause of a SELECT statement. This function
4953 ** allocates and populates the SrcList_item.pTab object. If successful,
4954 ** SQLITE_OK is returned. Otherwise, if an OOM error is encountered,
4957 int sqlite3ExpandSubquery(Parse
*pParse
, struct SrcList_item
*pFrom
){
4958 Select
*pSel
= pFrom
->pSelect
;
4962 pFrom
->pTab
= pTab
= sqlite3DbMallocZero(pParse
->db
, sizeof(Table
));
4963 if( pTab
==0 ) return SQLITE_NOMEM
;
4965 if( pFrom
->zAlias
){
4966 pTab
->zName
= sqlite3DbStrDup(pParse
->db
, pFrom
->zAlias
);
4968 pTab
->zName
= sqlite3MPrintf(pParse
->db
, "subquery_%u", pSel
->selId
);
4970 while( pSel
->pPrior
){ pSel
= pSel
->pPrior
; }
4971 sqlite3ColumnsFromExprList(pParse
, pSel
->pEList
,&pTab
->nCol
,&pTab
->aCol
);
4973 pTab
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
4974 pTab
->tabFlags
|= TF_Ephemeral
;
4976 return pParse
->nErr
? SQLITE_ERROR
: SQLITE_OK
;
4980 ** This routine is a Walker callback for "expanding" a SELECT statement.
4981 ** "Expanding" means to do the following:
4983 ** (1) Make sure VDBE cursor numbers have been assigned to every
4984 ** element of the FROM clause.
4986 ** (2) Fill in the pTabList->a[].pTab fields in the SrcList that
4987 ** defines FROM clause. When views appear in the FROM clause,
4988 ** fill pTabList->a[].pSelect with a copy of the SELECT statement
4989 ** that implements the view. A copy is made of the view's SELECT
4990 ** statement so that we can freely modify or delete that statement
4991 ** without worrying about messing up the persistent representation
4994 ** (3) Add terms to the WHERE clause to accommodate the NATURAL keyword
4995 ** on joins and the ON and USING clause of joins.
4997 ** (4) Scan the list of columns in the result set (pEList) looking
4998 ** for instances of the "*" operator or the TABLE.* operator.
4999 ** If found, expand each "*" to be every column in every table
5000 ** and TABLE.* to be every column in TABLE.
5003 static int selectExpander(Walker
*pWalker
, Select
*p
){
5004 Parse
*pParse
= pWalker
->pParse
;
5008 struct SrcList_item
*pFrom
;
5009 sqlite3
*db
= pParse
->db
;
5010 Expr
*pE
, *pRight
, *pExpr
;
5011 u16 selFlags
= p
->selFlags
;
5014 p
->selFlags
|= SF_Expanded
;
5015 if( db
->mallocFailed
){
5018 assert( p
->pSrc
!=0 );
5019 if( (selFlags
& SF_Expanded
)!=0 ){
5022 if( pWalker
->eCode
){
5023 /* Renumber selId because it has been copied from a view */
5024 p
->selId
= ++pParse
->nSelect
;
5028 sqlite3WithPush(pParse
, p
->pWith
, 0);
5030 /* Make sure cursor numbers have been assigned to all entries in
5031 ** the FROM clause of the SELECT statement.
5033 sqlite3SrcListAssignCursors(pParse
, pTabList
);
5035 /* Look up every table named in the FROM clause of the select. If
5036 ** an entry of the FROM clause is a subquery instead of a table or view,
5037 ** then create a transient table structure to describe the subquery.
5039 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
5041 assert( pFrom
->fg
.isRecursive
==0 || pFrom
->pTab
!=0 );
5042 if( pFrom
->pTab
) continue;
5043 assert( pFrom
->fg
.isRecursive
==0 );
5044 #ifndef SQLITE_OMIT_CTE
5045 if( withExpand(pWalker
, pFrom
) ) return WRC_Abort
;
5046 if( pFrom
->pTab
) {} else
5048 if( pFrom
->zName
==0 ){
5049 #ifndef SQLITE_OMIT_SUBQUERY
5050 Select
*pSel
= pFrom
->pSelect
;
5051 /* A sub-query in the FROM clause of a SELECT */
5053 assert( pFrom
->pTab
==0 );
5054 if( sqlite3WalkSelect(pWalker
, pSel
) ) return WRC_Abort
;
5055 if( sqlite3ExpandSubquery(pParse
, pFrom
) ) return WRC_Abort
;
5058 /* An ordinary table or view name in the FROM clause */
5059 assert( pFrom
->pTab
==0 );
5060 pFrom
->pTab
= pTab
= sqlite3LocateTableItem(pParse
, 0, pFrom
);
5061 if( pTab
==0 ) return WRC_Abort
;
5062 if( pTab
->nTabRef
>=0xffff ){
5063 sqlite3ErrorMsg(pParse
, "too many references to \"%s\": max 65535",
5069 if( !IsVirtual(pTab
) && cannotBeFunction(pParse
, pFrom
) ){
5072 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
5073 if( IsVirtual(pTab
) || pTab
->pSelect
){
5075 u8 eCodeOrig
= pWalker
->eCode
;
5076 if( sqlite3ViewGetColumnNames(pParse
, pTab
) ) return WRC_Abort
;
5077 assert( pFrom
->pSelect
==0 );
5078 if( pTab
->pSelect
&& (db
->flags
& SQLITE_EnableView
)==0 ){
5079 sqlite3ErrorMsg(pParse
, "access to view \"%s\" prohibited",
5082 #ifndef SQLITE_OMIT_VIRTUALTABLE
5084 && pFrom
->fg
.fromDDL
5085 && ALWAYS(pTab
->pVTable
!=0)
5086 && pTab
->pVTable
->eVtabRisk
> ((db
->flags
& SQLITE_TrustedSchema
)!=0)
5088 sqlite3ErrorMsg(pParse
, "unsafe use of virtual table \"%s\"",
5092 pFrom
->pSelect
= sqlite3SelectDup(db
, pTab
->pSelect
, 0);
5095 pWalker
->eCode
= 1; /* Turn on Select.selId renumbering */
5096 sqlite3WalkSelect(pWalker
, pFrom
->pSelect
);
5097 pWalker
->eCode
= eCodeOrig
;
5103 /* Locate the index named by the INDEXED BY clause, if any. */
5104 if( sqlite3IndexedByLookup(pParse
, pFrom
) ){
5109 /* Process NATURAL keywords, and ON and USING clauses of joins.
5111 if( pParse
->nErr
|| db
->mallocFailed
|| sqliteProcessJoin(pParse
, p
) ){
5115 /* For every "*" that occurs in the column list, insert the names of
5116 ** all columns in all tables. And for every TABLE.* insert the names
5117 ** of all columns in TABLE. The parser inserted a special expression
5118 ** with the TK_ASTERISK operator for each "*" that it found in the column
5119 ** list. The following code just has to locate the TK_ASTERISK
5120 ** expressions and expand each one to the list of all columns in
5123 ** The first loop just checks to see if there are any "*" operators
5124 ** that need expanding.
5126 for(k
=0; k
<pEList
->nExpr
; k
++){
5127 pE
= pEList
->a
[k
].pExpr
;
5128 if( pE
->op
==TK_ASTERISK
) break;
5129 assert( pE
->op
!=TK_DOT
|| pE
->pRight
!=0 );
5130 assert( pE
->op
!=TK_DOT
|| (pE
->pLeft
!=0 && pE
->pLeft
->op
==TK_ID
) );
5131 if( pE
->op
==TK_DOT
&& pE
->pRight
->op
==TK_ASTERISK
) break;
5132 elistFlags
|= pE
->flags
;
5134 if( k
<pEList
->nExpr
){
5136 ** If we get here it means the result set contains one or more "*"
5137 ** operators that need to be expanded. Loop through each expression
5138 ** in the result set and expand them one by one.
5140 struct ExprList_item
*a
= pEList
->a
;
5142 int flags
= pParse
->db
->flags
;
5143 int longNames
= (flags
& SQLITE_FullColNames
)!=0
5144 && (flags
& SQLITE_ShortColNames
)==0;
5146 for(k
=0; k
<pEList
->nExpr
; k
++){
5148 elistFlags
|= pE
->flags
;
5149 pRight
= pE
->pRight
;
5150 assert( pE
->op
!=TK_DOT
|| pRight
!=0 );
5151 if( pE
->op
!=TK_ASTERISK
5152 && (pE
->op
!=TK_DOT
|| pRight
->op
!=TK_ASTERISK
)
5154 /* This particular expression does not need to be expanded.
5156 pNew
= sqlite3ExprListAppend(pParse
, pNew
, a
[k
].pExpr
);
5158 pNew
->a
[pNew
->nExpr
-1].zEName
= a
[k
].zEName
;
5159 pNew
->a
[pNew
->nExpr
-1].eEName
= a
[k
].eEName
;
5164 /* This expression is a "*" or a "TABLE.*" and needs to be
5166 int tableSeen
= 0; /* Set to 1 when TABLE matches */
5167 char *zTName
= 0; /* text of name of TABLE */
5168 if( pE
->op
==TK_DOT
){
5169 assert( pE
->pLeft
!=0 );
5170 assert( !ExprHasProperty(pE
->pLeft
, EP_IntValue
) );
5171 zTName
= pE
->pLeft
->u
.zToken
;
5173 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
5174 Table
*pTab
= pFrom
->pTab
;
5175 Select
*pSub
= pFrom
->pSelect
;
5176 char *zTabName
= pFrom
->zAlias
;
5177 const char *zSchemaName
= 0;
5180 zTabName
= pTab
->zName
;
5182 if( db
->mallocFailed
) break;
5183 if( pSub
==0 || (pSub
->selFlags
& SF_NestedFrom
)==0 ){
5185 if( zTName
&& sqlite3StrICmp(zTName
, zTabName
)!=0 ){
5188 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
5189 zSchemaName
= iDb
>=0 ? db
->aDb
[iDb
].zDbSName
: "*";
5191 for(j
=0; j
<pTab
->nCol
; j
++){
5192 char *zName
= pTab
->aCol
[j
].zName
;
5193 char *zColname
; /* The computed column name */
5194 char *zToFree
; /* Malloced string that needs to be freed */
5195 Token sColname
; /* Computed column name as a token */
5199 && sqlite3MatchEName(&pSub
->pEList
->a
[j
], 0, zTName
, 0)==0
5204 /* If a column is marked as 'hidden', omit it from the expanded
5205 ** result-set list unless the SELECT has the SF_IncludeHidden
5208 if( (p
->selFlags
& SF_IncludeHidden
)==0
5209 && IsHiddenColumn(&pTab
->aCol
[j
])
5215 if( i
>0 && zTName
==0 ){
5216 if( (pFrom
->fg
.jointype
& JT_NATURAL
)!=0
5217 && tableAndColumnIndex(pTabList
, i
, zName
, 0, 0, 1)
5219 /* In a NATURAL join, omit the join columns from the
5220 ** table to the right of the join */
5223 if( sqlite3IdListIndex(pFrom
->pUsing
, zName
)>=0 ){
5224 /* In a join with a USING clause, omit columns in the
5225 ** using clause from the table on the right. */
5229 pRight
= sqlite3Expr(db
, TK_ID
, zName
);
5232 if( longNames
|| pTabList
->nSrc
>1 ){
5234 pLeft
= sqlite3Expr(db
, TK_ID
, zTabName
);
5235 pExpr
= sqlite3PExpr(pParse
, TK_DOT
, pLeft
, pRight
);
5237 pLeft
= sqlite3Expr(db
, TK_ID
, zSchemaName
);
5238 pExpr
= sqlite3PExpr(pParse
, TK_DOT
, pLeft
, pExpr
);
5241 zColname
= sqlite3MPrintf(db
, "%s.%s", zTabName
, zName
);
5247 pNew
= sqlite3ExprListAppend(pParse
, pNew
, pExpr
);
5248 sqlite3TokenInit(&sColname
, zColname
);
5249 sqlite3ExprListSetName(pParse
, pNew
, &sColname
, 0);
5250 if( pNew
&& (p
->selFlags
& SF_NestedFrom
)!=0 && !IN_RENAME_OBJECT
){
5251 struct ExprList_item
*pX
= &pNew
->a
[pNew
->nExpr
-1];
5252 sqlite3DbFree(db
, pX
->zEName
);
5254 pX
->zEName
= sqlite3DbStrDup(db
, pSub
->pEList
->a
[j
].zEName
);
5255 testcase( pX
->zEName
==0 );
5257 pX
->zEName
= sqlite3MPrintf(db
, "%s.%s.%s",
5258 zSchemaName
, zTabName
, zColname
);
5259 testcase( pX
->zEName
==0 );
5261 pX
->eEName
= ENAME_TAB
;
5263 sqlite3DbFree(db
, zToFree
);
5268 sqlite3ErrorMsg(pParse
, "no such table: %s", zTName
);
5270 sqlite3ErrorMsg(pParse
, "no tables specified");
5275 sqlite3ExprListDelete(db
, pEList
);
5279 if( p
->pEList
->nExpr
>db
->aLimit
[SQLITE_LIMIT_COLUMN
] ){
5280 sqlite3ErrorMsg(pParse
, "too many columns in result set");
5283 if( (elistFlags
& (EP_HasFunc
|EP_Subquery
))!=0 ){
5284 p
->selFlags
|= SF_ComplexResult
;
5287 return WRC_Continue
;
5292 ** Always assert. This xSelectCallback2 implementation proves that the
5293 ** xSelectCallback2 is never invoked.
5295 void sqlite3SelectWalkAssert2(Walker
*NotUsed
, Select
*NotUsed2
){
5296 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
5301 ** This routine "expands" a SELECT statement and all of its subqueries.
5302 ** For additional information on what it means to "expand" a SELECT
5303 ** statement, see the comment on the selectExpand worker callback above.
5305 ** Expanding a SELECT statement is the first step in processing a
5306 ** SELECT statement. The SELECT statement must be expanded before
5307 ** name resolution is performed.
5309 ** If anything goes wrong, an error message is written into pParse.
5310 ** The calling function can detect the problem by looking at pParse->nErr
5311 ** and/or pParse->db->mallocFailed.
5313 static void sqlite3SelectExpand(Parse
*pParse
, Select
*pSelect
){
5315 w
.xExprCallback
= sqlite3ExprWalkNoop
;
5317 if( OK_IF_ALWAYS_TRUE(pParse
->hasCompound
) ){
5318 w
.xSelectCallback
= convertCompoundSelectToSubquery
;
5319 w
.xSelectCallback2
= 0;
5320 sqlite3WalkSelect(&w
, pSelect
);
5322 w
.xSelectCallback
= selectExpander
;
5323 w
.xSelectCallback2
= selectPopWith
;
5325 sqlite3WalkSelect(&w
, pSelect
);
5329 #ifndef SQLITE_OMIT_SUBQUERY
5331 ** This is a Walker.xSelectCallback callback for the sqlite3SelectTypeInfo()
5334 ** For each FROM-clause subquery, add Column.zType and Column.zColl
5335 ** information to the Table structure that represents the result set
5336 ** of that subquery.
5338 ** The Table structure that represents the result set was constructed
5339 ** by selectExpander() but the type and collation information was omitted
5340 ** at that point because identifiers had not yet been resolved. This
5341 ** routine is called after identifier resolution.
5343 static void selectAddSubqueryTypeInfo(Walker
*pWalker
, Select
*p
){
5347 struct SrcList_item
*pFrom
;
5349 assert( p
->selFlags
& SF_Resolved
);
5350 if( p
->selFlags
& SF_HasTypeInfo
) return;
5351 p
->selFlags
|= SF_HasTypeInfo
;
5352 pParse
= pWalker
->pParse
;
5354 for(i
=0, pFrom
=pTabList
->a
; i
<pTabList
->nSrc
; i
++, pFrom
++){
5355 Table
*pTab
= pFrom
->pTab
;
5357 if( (pTab
->tabFlags
& TF_Ephemeral
)!=0 ){
5358 /* A sub-query in the FROM clause of a SELECT */
5359 Select
*pSel
= pFrom
->pSelect
;
5361 while( pSel
->pPrior
) pSel
= pSel
->pPrior
;
5362 sqlite3SelectAddColumnTypeAndCollation(pParse
, pTab
, pSel
,
5372 ** This routine adds datatype and collating sequence information to
5373 ** the Table structures of all FROM-clause subqueries in a
5374 ** SELECT statement.
5376 ** Use this routine after name resolution.
5378 static void sqlite3SelectAddTypeInfo(Parse
*pParse
, Select
*pSelect
){
5379 #ifndef SQLITE_OMIT_SUBQUERY
5381 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
5382 w
.xSelectCallback2
= selectAddSubqueryTypeInfo
;
5383 w
.xExprCallback
= sqlite3ExprWalkNoop
;
5385 sqlite3WalkSelect(&w
, pSelect
);
5391 ** This routine sets up a SELECT statement for processing. The
5392 ** following is accomplished:
5394 ** * VDBE Cursor numbers are assigned to all FROM-clause terms.
5395 ** * Ephemeral Table objects are created for all FROM-clause subqueries.
5396 ** * ON and USING clauses are shifted into WHERE statements
5397 ** * Wildcards "*" and "TABLE.*" in result sets are expanded.
5398 ** * Identifiers in expression are matched to tables.
5400 ** This routine acts recursively on all subqueries within the SELECT.
5402 void sqlite3SelectPrep(
5403 Parse
*pParse
, /* The parser context */
5404 Select
*p
, /* The SELECT statement being coded. */
5405 NameContext
*pOuterNC
/* Name context for container */
5407 assert( p
!=0 || pParse
->db
->mallocFailed
);
5408 if( pParse
->db
->mallocFailed
) return;
5409 if( p
->selFlags
& SF_HasTypeInfo
) return;
5410 sqlite3SelectExpand(pParse
, p
);
5411 if( pParse
->nErr
|| pParse
->db
->mallocFailed
) return;
5412 sqlite3ResolveSelectNames(pParse
, p
, pOuterNC
);
5413 if( pParse
->nErr
|| pParse
->db
->mallocFailed
) return;
5414 sqlite3SelectAddTypeInfo(pParse
, p
);
5418 ** Reset the aggregate accumulator.
5420 ** The aggregate accumulator is a set of memory cells that hold
5421 ** intermediate results while calculating an aggregate. This
5422 ** routine generates code that stores NULLs in all of those memory
5425 static void resetAccumulator(Parse
*pParse
, AggInfo
*pAggInfo
){
5426 Vdbe
*v
= pParse
->pVdbe
;
5428 struct AggInfo_func
*pFunc
;
5429 int nReg
= pAggInfo
->nFunc
+ pAggInfo
->nColumn
;
5430 if( nReg
==0 ) return;
5431 if( pParse
->nErr
|| pParse
->db
->mallocFailed
) return;
5433 /* Verify that all AggInfo registers are within the range specified by
5434 ** AggInfo.mnReg..AggInfo.mxReg */
5435 assert( nReg
==pAggInfo
->mxReg
-pAggInfo
->mnReg
+1 );
5436 for(i
=0; i
<pAggInfo
->nColumn
; i
++){
5437 assert( pAggInfo
->aCol
[i
].iMem
>=pAggInfo
->mnReg
5438 && pAggInfo
->aCol
[i
].iMem
<=pAggInfo
->mxReg
);
5440 for(i
=0; i
<pAggInfo
->nFunc
; i
++){
5441 assert( pAggInfo
->aFunc
[i
].iMem
>=pAggInfo
->mnReg
5442 && pAggInfo
->aFunc
[i
].iMem
<=pAggInfo
->mxReg
);
5445 sqlite3VdbeAddOp3(v
, OP_Null
, 0, pAggInfo
->mnReg
, pAggInfo
->mxReg
);
5446 for(pFunc
=pAggInfo
->aFunc
, i
=0; i
<pAggInfo
->nFunc
; i
++, pFunc
++){
5447 if( pFunc
->iDistinct
>=0 ){
5448 Expr
*pE
= pFunc
->pFExpr
;
5449 assert( !ExprHasProperty(pE
, EP_xIsSelect
) );
5450 if( pE
->x
.pList
==0 || pE
->x
.pList
->nExpr
!=1 ){
5451 sqlite3ErrorMsg(pParse
, "DISTINCT aggregates must have exactly one "
5453 pFunc
->iDistinct
= -1;
5455 KeyInfo
*pKeyInfo
= sqlite3KeyInfoFromExprList(pParse
, pE
->x
.pList
,0,0);
5456 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
, pFunc
->iDistinct
, 0, 0,
5457 (char*)pKeyInfo
, P4_KEYINFO
);
5464 ** Invoke the OP_AggFinalize opcode for every aggregate function
5465 ** in the AggInfo structure.
5467 static void finalizeAggFunctions(Parse
*pParse
, AggInfo
*pAggInfo
){
5468 Vdbe
*v
= pParse
->pVdbe
;
5470 struct AggInfo_func
*pF
;
5471 for(i
=0, pF
=pAggInfo
->aFunc
; i
<pAggInfo
->nFunc
; i
++, pF
++){
5472 ExprList
*pList
= pF
->pFExpr
->x
.pList
;
5473 assert( !ExprHasProperty(pF
->pFExpr
, EP_xIsSelect
) );
5474 sqlite3VdbeAddOp2(v
, OP_AggFinal
, pF
->iMem
, pList
? pList
->nExpr
: 0);
5475 sqlite3VdbeAppendP4(v
, pF
->pFunc
, P4_FUNCDEF
);
5481 ** Update the accumulator memory cells for an aggregate based on
5482 ** the current cursor position.
5484 ** If regAcc is non-zero and there are no min() or max() aggregates
5485 ** in pAggInfo, then only populate the pAggInfo->nAccumulator accumulator
5486 ** registers if register regAcc contains 0. The caller will take care
5487 ** of setting and clearing regAcc.
5489 static void updateAccumulator(Parse
*pParse
, int regAcc
, AggInfo
*pAggInfo
){
5490 Vdbe
*v
= pParse
->pVdbe
;
5493 int addrHitTest
= 0;
5494 struct AggInfo_func
*pF
;
5495 struct AggInfo_col
*pC
;
5497 pAggInfo
->directMode
= 1;
5498 for(i
=0, pF
=pAggInfo
->aFunc
; i
<pAggInfo
->nFunc
; i
++, pF
++){
5502 ExprList
*pList
= pF
->pFExpr
->x
.pList
;
5503 assert( !ExprHasProperty(pF
->pFExpr
, EP_xIsSelect
) );
5504 assert( !IsWindowFunc(pF
->pFExpr
) );
5505 if( ExprHasProperty(pF
->pFExpr
, EP_WinFunc
) ){
5506 Expr
*pFilter
= pF
->pFExpr
->y
.pWin
->pFilter
;
5507 if( pAggInfo
->nAccumulator
5508 && (pF
->pFunc
->funcFlags
& SQLITE_FUNC_NEEDCOLL
)
5511 /* If regAcc==0, there there exists some min() or max() function
5512 ** without a FILTER clause that will ensure the magnet registers
5513 ** are populated. */
5514 if( regHit
==0 ) regHit
= ++pParse
->nMem
;
5515 /* If this is the first row of the group (regAcc contains 0), clear the
5516 ** "magnet" register regHit so that the accumulator registers
5517 ** are populated if the FILTER clause jumps over the the
5518 ** invocation of min() or max() altogether. Or, if this is not
5519 ** the first row (regAcc contains 1), set the magnet register so that
5520 ** the accumulators are not populated unless the min()/max() is invoked
5521 ** and indicates that they should be. */
5522 sqlite3VdbeAddOp2(v
, OP_Copy
, regAcc
, regHit
);
5524 addrNext
= sqlite3VdbeMakeLabel(pParse
);
5525 sqlite3ExprIfFalse(pParse
, pFilter
, addrNext
, SQLITE_JUMPIFNULL
);
5528 nArg
= pList
->nExpr
;
5529 regAgg
= sqlite3GetTempRange(pParse
, nArg
);
5530 sqlite3ExprCodeExprList(pParse
, pList
, regAgg
, 0, SQLITE_ECEL_DUP
);
5535 if( pF
->iDistinct
>=0 ){
5537 addrNext
= sqlite3VdbeMakeLabel(pParse
);
5539 testcase( nArg
==0 ); /* Error condition */
5540 testcase( nArg
>1 ); /* Also an error */
5541 codeDistinct(pParse
, pF
->iDistinct
, addrNext
, 1, regAgg
);
5543 if( pF
->pFunc
->funcFlags
& SQLITE_FUNC_NEEDCOLL
){
5545 struct ExprList_item
*pItem
;
5547 assert( pList
!=0 ); /* pList!=0 if pF->pFunc has NEEDCOLL */
5548 for(j
=0, pItem
=pList
->a
; !pColl
&& j
<nArg
; j
++, pItem
++){
5549 pColl
= sqlite3ExprCollSeq(pParse
, pItem
->pExpr
);
5552 pColl
= pParse
->db
->pDfltColl
;
5554 if( regHit
==0 && pAggInfo
->nAccumulator
) regHit
= ++pParse
->nMem
;
5555 sqlite3VdbeAddOp4(v
, OP_CollSeq
, regHit
, 0, 0, (char *)pColl
, P4_COLLSEQ
);
5557 sqlite3VdbeAddOp3(v
, OP_AggStep
, 0, regAgg
, pF
->iMem
);
5558 sqlite3VdbeAppendP4(v
, pF
->pFunc
, P4_FUNCDEF
);
5559 sqlite3VdbeChangeP5(v
, (u8
)nArg
);
5560 sqlite3ReleaseTempRange(pParse
, regAgg
, nArg
);
5562 sqlite3VdbeResolveLabel(v
, addrNext
);
5565 if( regHit
==0 && pAggInfo
->nAccumulator
){
5569 addrHitTest
= sqlite3VdbeAddOp1(v
, OP_If
, regHit
); VdbeCoverage(v
);
5571 for(i
=0, pC
=pAggInfo
->aCol
; i
<pAggInfo
->nAccumulator
; i
++, pC
++){
5572 sqlite3ExprCode(pParse
, pC
->pCExpr
, pC
->iMem
);
5575 pAggInfo
->directMode
= 0;
5577 sqlite3VdbeJumpHereOrPopInst(v
, addrHitTest
);
5582 ** Add a single OP_Explain instruction to the VDBE to explain a simple
5583 ** count(*) query ("SELECT count(*) FROM pTab").
5585 #ifndef SQLITE_OMIT_EXPLAIN
5586 static void explainSimpleCount(
5587 Parse
*pParse
, /* Parse context */
5588 Table
*pTab
, /* Table being queried */
5589 Index
*pIdx
/* Index used to optimize scan, or NULL */
5591 if( pParse
->explain
==2 ){
5592 int bCover
= (pIdx
!=0 && (HasRowid(pTab
) || !IsPrimaryKeyIndex(pIdx
)));
5593 sqlite3VdbeExplain(pParse
, 0, "SCAN TABLE %s%s%s",
5595 bCover
? " USING COVERING INDEX " : "",
5596 bCover
? pIdx
->zName
: ""
5601 # define explainSimpleCount(a,b,c)
5605 ** sqlite3WalkExpr() callback used by havingToWhere().
5607 ** If the node passed to the callback is a TK_AND node, return
5608 ** WRC_Continue to tell sqlite3WalkExpr() to iterate through child nodes.
5610 ** Otherwise, return WRC_Prune. In this case, also check if the
5611 ** sub-expression matches the criteria for being moved to the WHERE
5612 ** clause. If so, add it to the WHERE clause and replace the sub-expression
5613 ** within the HAVING expression with a constant "1".
5615 static int havingToWhereExprCb(Walker
*pWalker
, Expr
*pExpr
){
5616 if( pExpr
->op
!=TK_AND
){
5617 Select
*pS
= pWalker
->u
.pSelect
;
5618 if( sqlite3ExprIsConstantOrGroupBy(pWalker
->pParse
, pExpr
, pS
->pGroupBy
)
5619 && ExprAlwaysFalse(pExpr
)==0
5621 sqlite3
*db
= pWalker
->pParse
->db
;
5622 Expr
*pNew
= sqlite3Expr(db
, TK_INTEGER
, "1");
5624 Expr
*pWhere
= pS
->pWhere
;
5625 SWAP(Expr
, *pNew
, *pExpr
);
5626 pNew
= sqlite3ExprAnd(pWalker
->pParse
, pWhere
, pNew
);
5633 return WRC_Continue
;
5637 ** Transfer eligible terms from the HAVING clause of a query, which is
5638 ** processed after grouping, to the WHERE clause, which is processed before
5639 ** grouping. For example, the query:
5641 ** SELECT * FROM <tables> WHERE a=? GROUP BY b HAVING b=? AND c=?
5643 ** can be rewritten as:
5645 ** SELECT * FROM <tables> WHERE a=? AND b=? GROUP BY b HAVING c=?
5647 ** A term of the HAVING expression is eligible for transfer if it consists
5648 ** entirely of constants and expressions that are also GROUP BY terms that
5649 ** use the "BINARY" collation sequence.
5651 static void havingToWhere(Parse
*pParse
, Select
*p
){
5653 memset(&sWalker
, 0, sizeof(sWalker
));
5654 sWalker
.pParse
= pParse
;
5655 sWalker
.xExprCallback
= havingToWhereExprCb
;
5656 sWalker
.u
.pSelect
= p
;
5657 sqlite3WalkExpr(&sWalker
, p
->pHaving
);
5658 #if SELECTTRACE_ENABLED
5659 if( sWalker
.eCode
&& (sqlite3_unsupported_selecttrace
& 0x100)!=0 ){
5660 SELECTTRACE(0x100,pParse
,p
,("Move HAVING terms into WHERE:\n"));
5661 sqlite3TreeViewSelect(0, p
, 0);
5667 ** Check to see if the pThis entry of pTabList is a self-join of a prior view.
5668 ** If it is, then return the SrcList_item for the prior view. If it is not,
5671 static struct SrcList_item
*isSelfJoinView(
5672 SrcList
*pTabList
, /* Search for self-joins in this FROM clause */
5673 struct SrcList_item
*pThis
/* Search for prior reference to this subquery */
5675 struct SrcList_item
*pItem
;
5676 for(pItem
= pTabList
->a
; pItem
<pThis
; pItem
++){
5678 if( pItem
->pSelect
==0 ) continue;
5679 if( pItem
->fg
.viaCoroutine
) continue;
5680 if( pItem
->zName
==0 ) continue;
5681 assert( pItem
->pTab
!=0 );
5682 assert( pThis
->pTab
!=0 );
5683 if( pItem
->pTab
->pSchema
!=pThis
->pTab
->pSchema
) continue;
5684 if( sqlite3_stricmp(pItem
->zName
, pThis
->zName
)!=0 ) continue;
5685 pS1
= pItem
->pSelect
;
5686 if( pItem
->pTab
->pSchema
==0 && pThis
->pSelect
->selId
!=pS1
->selId
){
5687 /* The query flattener left two different CTE tables with identical
5688 ** names in the same FROM clause. */
5691 if( sqlite3ExprCompare(0, pThis
->pSelect
->pWhere
, pS1
->pWhere
, -1)
5692 || sqlite3ExprCompare(0, pThis
->pSelect
->pHaving
, pS1
->pHaving
, -1)
5694 /* The view was modified by some other optimization such as
5695 ** pushDownWhereTerms() */
5703 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
5705 ** Attempt to transform a query of the form
5707 ** SELECT count(*) FROM (SELECT x FROM t1 UNION ALL SELECT y FROM t2)
5711 ** SELECT (SELECT count(*) FROM t1)+(SELECT count(*) FROM t2)
5713 ** The transformation only works if all of the following are true:
5715 ** * The subquery is a UNION ALL of two or more terms
5716 ** * The subquery does not have a LIMIT clause
5717 ** * There is no WHERE or GROUP BY or HAVING clauses on the subqueries
5718 ** * The outer query is a simple count(*) with no WHERE clause or other
5719 ** extraneous syntax.
5721 ** Return TRUE if the optimization is undertaken.
5723 static int countOfViewOptimization(Parse
*pParse
, Select
*p
){
5724 Select
*pSub
, *pPrior
;
5728 if( (p
->selFlags
& SF_Aggregate
)==0 ) return 0; /* This is an aggregate */
5729 if( p
->pEList
->nExpr
!=1 ) return 0; /* Single result column */
5730 if( p
->pWhere
) return 0;
5731 if( p
->pGroupBy
) return 0;
5732 pExpr
= p
->pEList
->a
[0].pExpr
;
5733 if( pExpr
->op
!=TK_AGG_FUNCTION
) return 0; /* Result is an aggregate */
5734 if( sqlite3_stricmp(pExpr
->u
.zToken
,"count") ) return 0; /* Is count() */
5735 if( pExpr
->x
.pList
!=0 ) return 0; /* Must be count(*) */
5736 if( p
->pSrc
->nSrc
!=1 ) return 0; /* One table in FROM */
5737 pSub
= p
->pSrc
->a
[0].pSelect
;
5738 if( pSub
==0 ) return 0; /* The FROM is a subquery */
5739 if( pSub
->pPrior
==0 ) return 0; /* Must be a compound ry */
5741 if( pSub
->op
!=TK_ALL
&& pSub
->pPrior
) return 0; /* Must be UNION ALL */
5742 if( pSub
->pWhere
) return 0; /* No WHERE clause */
5743 if( pSub
->pLimit
) return 0; /* No LIMIT clause */
5744 if( pSub
->selFlags
& SF_Aggregate
) return 0; /* Not an aggregate */
5745 pSub
= pSub
->pPrior
; /* Repeat over compound */
5748 /* If we reach this point then it is OK to perform the transformation */
5753 pSub
= p
->pSrc
->a
[0].pSelect
;
5754 p
->pSrc
->a
[0].pSelect
= 0;
5755 sqlite3SrcListDelete(db
, p
->pSrc
);
5756 p
->pSrc
= sqlite3DbMallocZero(pParse
->db
, sizeof(*p
->pSrc
));
5759 pPrior
= pSub
->pPrior
;
5762 pSub
->selFlags
|= SF_Aggregate
;
5763 pSub
->selFlags
&= ~SF_Compound
;
5764 pSub
->nSelectRow
= 0;
5765 sqlite3ExprListDelete(db
, pSub
->pEList
);
5766 pTerm
= pPrior
? sqlite3ExprDup(db
, pCount
, 0) : pCount
;
5767 pSub
->pEList
= sqlite3ExprListAppend(pParse
, 0, pTerm
);
5768 pTerm
= sqlite3PExpr(pParse
, TK_SELECT
, 0, 0);
5769 sqlite3PExprAddSelect(pParse
, pTerm
, pSub
);
5773 pExpr
= sqlite3PExpr(pParse
, TK_PLUS
, pTerm
, pExpr
);
5777 p
->pEList
->a
[0].pExpr
= pExpr
;
5778 p
->selFlags
&= ~SF_Aggregate
;
5780 #if SELECTTRACE_ENABLED
5781 if( sqlite3_unsupported_selecttrace
& 0x400 ){
5782 SELECTTRACE(0x400,pParse
,p
,("After count-of-view optimization:\n"));
5783 sqlite3TreeViewSelect(0, p
, 0);
5788 #endif /* SQLITE_COUNTOFVIEW_OPTIMIZATION */
5791 ** Generate code for the SELECT statement given in the p argument.
5793 ** The results are returned according to the SelectDest structure.
5794 ** See comments in sqliteInt.h for further information.
5796 ** This routine returns the number of errors. If any errors are
5797 ** encountered, then an appropriate error message is left in
5800 ** This routine does NOT free the Select structure passed in. The
5801 ** calling function needs to do that.
5804 Parse
*pParse
, /* The parser context */
5805 Select
*p
, /* The SELECT statement being coded. */
5806 SelectDest
*pDest
/* What to do with the query results */
5808 int i
, j
; /* Loop counters */
5809 WhereInfo
*pWInfo
; /* Return from sqlite3WhereBegin() */
5810 Vdbe
*v
; /* The virtual machine under construction */
5811 int isAgg
; /* True for select lists like "count(*)" */
5812 ExprList
*pEList
= 0; /* List of columns to extract. */
5813 SrcList
*pTabList
; /* List of tables to select from */
5814 Expr
*pWhere
; /* The WHERE clause. May be NULL */
5815 ExprList
*pGroupBy
; /* The GROUP BY clause. May be NULL */
5816 Expr
*pHaving
; /* The HAVING clause. May be NULL */
5817 AggInfo
*pAggInfo
= 0; /* Aggregate information */
5818 int rc
= 1; /* Value to return from this function */
5819 DistinctCtx sDistinct
; /* Info on how to code the DISTINCT keyword */
5820 SortCtx sSort
; /* Info on how to code the ORDER BY clause */
5821 int iEnd
; /* Address of the end of the query */
5822 sqlite3
*db
; /* The database connection */
5823 ExprList
*pMinMaxOrderBy
= 0; /* Added ORDER BY for min/max queries */
5824 u8 minMaxFlag
; /* Flag for min/max queries */
5827 v
= sqlite3GetVdbe(pParse
);
5828 if( p
==0 || db
->mallocFailed
|| pParse
->nErr
){
5831 if( sqlite3AuthCheck(pParse
, SQLITE_SELECT
, 0, 0, 0) ) return 1;
5832 #if SELECTTRACE_ENABLED
5833 SELECTTRACE(1,pParse
,p
, ("begin processing:\n", pParse
->addrExplain
));
5834 if( sqlite3_unsupported_selecttrace
& 0x100 ){
5835 sqlite3TreeViewSelect(0, p
, 0);
5839 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_DistFifo
);
5840 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_Fifo
);
5841 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_DistQueue
);
5842 assert( p
->pOrderBy
==0 || pDest
->eDest
!=SRT_Queue
);
5843 if( IgnorableDistinct(pDest
) ){
5844 assert(pDest
->eDest
==SRT_Exists
|| pDest
->eDest
==SRT_Union
||
5845 pDest
->eDest
==SRT_Except
|| pDest
->eDest
==SRT_Discard
||
5846 pDest
->eDest
==SRT_DistQueue
|| pDest
->eDest
==SRT_DistFifo
);
5847 /* All of these destinations are also able to ignore the ORDER BY clause */
5848 sqlite3ExprListDelete(db
, p
->pOrderBy
);
5850 p
->selFlags
&= ~SF_Distinct
;
5851 p
->selFlags
|= SF_NoopOrderBy
;
5853 sqlite3SelectPrep(pParse
, p
, 0);
5854 if( pParse
->nErr
|| db
->mallocFailed
){
5857 assert( p
->pEList
!=0 );
5858 #if SELECTTRACE_ENABLED
5859 if( sqlite3_unsupported_selecttrace
& 0x104 ){
5860 SELECTTRACE(0x104,pParse
,p
, ("after name resolution:\n"));
5861 sqlite3TreeViewSelect(0, p
, 0);
5865 /* If the SF_UpdateFrom flag is set, then this function is being called
5866 ** as part of populating the temp table for an UPDATE...FROM statement.
5867 ** In this case, it is an error if the target object (pSrc->a[0]) name
5868 ** or alias is duplicated within FROM clause (pSrc->a[1..n]). */
5869 if( p
->selFlags
& SF_UpdateFrom
){
5870 struct SrcList_item
*p0
= &p
->pSrc
->a
[0];
5871 for(i
=1; i
<p
->pSrc
->nSrc
; i
++){
5872 struct SrcList_item
*p1
= &p
->pSrc
->a
[i
];
5873 if( p0
->pTab
==p1
->pTab
&& 0==sqlite3_stricmp(p0
->zAlias
, p1
->zAlias
) ){
5874 sqlite3ErrorMsg(pParse
,
5875 "target object/alias may not appear in FROM clause: %s",
5876 p0
->zAlias
? p0
->zAlias
: p0
->pTab
->zName
5883 if( pDest
->eDest
==SRT_Output
){
5884 generateColumnNames(pParse
, p
);
5887 #ifndef SQLITE_OMIT_WINDOWFUNC
5888 rc
= sqlite3WindowRewrite(pParse
, p
);
5890 assert( db
->mallocFailed
|| pParse
->nErr
>0 );
5893 #if SELECTTRACE_ENABLED
5894 if( p
->pWin
&& (sqlite3_unsupported_selecttrace
& 0x108)!=0 ){
5895 SELECTTRACE(0x104,pParse
,p
, ("after window rewrite:\n"));
5896 sqlite3TreeViewSelect(0, p
, 0);
5899 #endif /* SQLITE_OMIT_WINDOWFUNC */
5901 isAgg
= (p
->selFlags
& SF_Aggregate
)!=0;
5902 memset(&sSort
, 0, sizeof(sSort
));
5903 sSort
.pOrderBy
= p
->pOrderBy
;
5905 /* Try to do various optimizations (flattening subqueries, and strength
5906 ** reduction of join operators) in the FROM clause up into the main query
5908 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
5909 for(i
=0; !p
->pPrior
&& i
<pTabList
->nSrc
; i
++){
5910 struct SrcList_item
*pItem
= &pTabList
->a
[i
];
5911 Select
*pSub
= pItem
->pSelect
;
5912 Table
*pTab
= pItem
->pTab
;
5914 /* The expander should have already created transient Table objects
5915 ** even for FROM clause elements such as subqueries that do not correspond
5916 ** to a real table */
5919 /* Convert LEFT JOIN into JOIN if there are terms of the right table
5920 ** of the LEFT JOIN used in the WHERE clause.
5922 if( (pItem
->fg
.jointype
& JT_LEFT
)!=0
5923 && sqlite3ExprImpliesNonNullRow(p
->pWhere
, pItem
->iCursor
)
5924 && OptimizationEnabled(db
, SQLITE_SimplifyJoin
)
5926 SELECTTRACE(0x100,pParse
,p
,
5927 ("LEFT-JOIN simplifies to JOIN on term %d\n",i
));
5928 pItem
->fg
.jointype
&= ~(JT_LEFT
|JT_OUTER
);
5929 unsetJoinExpr(p
->pWhere
, pItem
->iCursor
);
5932 /* No futher action if this term of the FROM clause is no a subquery */
5933 if( pSub
==0 ) continue;
5935 /* Catch mismatch in the declared columns of a view and the number of
5936 ** columns in the SELECT on the RHS */
5937 if( pTab
->nCol
!=pSub
->pEList
->nExpr
){
5938 sqlite3ErrorMsg(pParse
, "expected %d columns for '%s' but got %d",
5939 pTab
->nCol
, pTab
->zName
, pSub
->pEList
->nExpr
);
5943 /* Do not try to flatten an aggregate subquery.
5945 ** Flattening an aggregate subquery is only possible if the outer query
5946 ** is not a join. But if the outer query is not a join, then the subquery
5947 ** will be implemented as a co-routine and there is no advantage to
5948 ** flattening in that case.
5950 if( (pSub
->selFlags
& SF_Aggregate
)!=0 ) continue;
5951 assert( pSub
->pGroupBy
==0 );
5953 /* If the outer query contains a "complex" result set (that is,
5954 ** if the result set of the outer query uses functions or subqueries)
5955 ** and if the subquery contains an ORDER BY clause and if
5956 ** it will be implemented as a co-routine, then do not flatten. This
5957 ** restriction allows SQL constructs like this:
5959 ** SELECT expensive_function(x)
5960 ** FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5962 ** The expensive_function() is only computed on the 10 rows that
5963 ** are output, rather than every row of the table.
5965 ** The requirement that the outer query have a complex result set
5966 ** means that flattening does occur on simpler SQL constraints without
5967 ** the expensive_function() like:
5969 ** SELECT x FROM (SELECT x FROM tab ORDER BY y LIMIT 10);
5971 if( pSub
->pOrderBy
!=0
5973 && (p
->selFlags
& SF_ComplexResult
)!=0
5974 && (pTabList
->nSrc
==1
5975 || (pTabList
->a
[1].fg
.jointype
&(JT_LEFT
|JT_CROSS
))!=0)
5980 if( flattenSubquery(pParse
, p
, i
, isAgg
) ){
5981 if( pParse
->nErr
) goto select_end
;
5982 /* This subquery can be absorbed into its parent. */
5986 if( db
->mallocFailed
) goto select_end
;
5987 if( !IgnorableOrderby(pDest
) ){
5988 sSort
.pOrderBy
= p
->pOrderBy
;
5993 #ifndef SQLITE_OMIT_COMPOUND_SELECT
5994 /* Handle compound SELECT statements using the separate multiSelect()
5998 rc
= multiSelect(pParse
, p
, pDest
);
5999 #if SELECTTRACE_ENABLED
6000 SELECTTRACE(0x1,pParse
,p
,("end compound-select processing\n"));
6001 if( (sqlite3_unsupported_selecttrace
& 0x2000)!=0 && ExplainQueryPlanParent(pParse
)==0 ){
6002 sqlite3TreeViewSelect(0, p
, 0);
6005 if( p
->pNext
==0 ) ExplainQueryPlanPop(pParse
);
6010 /* Do the WHERE-clause constant propagation optimization if this is
6011 ** a join. No need to speed time on this operation for non-join queries
6012 ** as the equivalent optimization will be handled by query planner in
6013 ** sqlite3WhereBegin().
6015 if( pTabList
->nSrc
>1
6016 && OptimizationEnabled(db
, SQLITE_PropagateConst
)
6017 && propagateConstants(pParse
, p
)
6019 #if SELECTTRACE_ENABLED
6020 if( sqlite3_unsupported_selecttrace
& 0x100 ){
6021 SELECTTRACE(0x100,pParse
,p
,("After constant propagation:\n"));
6022 sqlite3TreeViewSelect(0, p
, 0);
6026 SELECTTRACE(0x100,pParse
,p
,("Constant propagation not helpful\n"));
6029 #ifdef SQLITE_COUNTOFVIEW_OPTIMIZATION
6030 if( OptimizationEnabled(db
, SQLITE_QueryFlattener
|SQLITE_CountOfView
)
6031 && countOfViewOptimization(pParse
, p
)
6033 if( db
->mallocFailed
) goto select_end
;
6039 /* For each term in the FROM clause, do two things:
6040 ** (1) Authorized unreferenced tables
6041 ** (2) Generate code for all sub-queries
6043 for(i
=0; i
<pTabList
->nSrc
; i
++){
6044 struct SrcList_item
*pItem
= &pTabList
->a
[i
];
6047 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6048 const char *zSavedAuthContext
;
6051 /* Issue SQLITE_READ authorizations with a fake column name for any
6052 ** tables that are referenced but from which no values are extracted.
6053 ** Examples of where these kinds of null SQLITE_READ authorizations
6056 ** SELECT count(*) FROM t1; -- SQLITE_READ t1.""
6057 ** SELECT t1.* FROM t1, t2; -- SQLITE_READ t2.""
6059 ** The fake column name is an empty string. It is possible for a table to
6060 ** have a column named by the empty string, in which case there is no way to
6061 ** distinguish between an unreferenced table and an actual reference to the
6062 ** "" column. The original design was for the fake column name to be a NULL,
6063 ** which would be unambiguous. But legacy authorization callbacks might
6064 ** assume the column name is non-NULL and segfault. The use of an empty
6065 ** string for the fake column name seems safer.
6067 if( pItem
->colUsed
==0 && pItem
->zName
!=0 ){
6068 sqlite3AuthCheck(pParse
, SQLITE_READ
, pItem
->zName
, "", pItem
->zDatabase
);
6071 #if !defined(SQLITE_OMIT_SUBQUERY) || !defined(SQLITE_OMIT_VIEW)
6072 /* Generate code for all sub-queries in the FROM clause
6074 pSub
= pItem
->pSelect
;
6075 if( pSub
==0 ) continue;
6077 /* The code for a subquery should only be generated once, though it is
6078 ** technically harmless for it to be generated multiple times. The
6079 ** following assert() will detect if something changes to cause
6080 ** the same subquery to be coded multiple times, as a signal to the
6081 ** developers to try to optimize the situation.
6083 ** Update 2019-07-24:
6084 ** See ticket https://sqlite.org/src/tktview/c52b09c7f38903b1311cec40.
6085 ** The dbsqlfuzz fuzzer found a case where the same subquery gets
6086 ** coded twice. So this assert() now becomes a testcase(). It should
6087 ** be very rare, though.
6089 testcase( pItem
->addrFillSub
!=0 );
6091 /* Increment Parse.nHeight by the height of the largest expression
6092 ** tree referred to by this, the parent select. The child select
6093 ** may contain expression trees of at most
6094 ** (SQLITE_MAX_EXPR_DEPTH-Parse.nHeight) height. This is a bit
6095 ** more conservative than necessary, but much easier than enforcing
6098 pParse
->nHeight
+= sqlite3SelectExprHeight(p
);
6100 /* Make copies of constant WHERE-clause terms in the outer query down
6101 ** inside the subquery. This can help the subquery to run more efficiently.
6103 if( OptimizationEnabled(db
, SQLITE_PushDown
)
6104 && pushDownWhereTerms(pParse
, pSub
, p
->pWhere
, pItem
->iCursor
,
6105 (pItem
->fg
.jointype
& JT_OUTER
)!=0)
6107 #if SELECTTRACE_ENABLED
6108 if( sqlite3_unsupported_selecttrace
& 0x100 ){
6109 SELECTTRACE(0x100,pParse
,p
,
6110 ("After WHERE-clause push-down into subquery %d:\n", pSub
->selId
));
6111 sqlite3TreeViewSelect(0, p
, 0);
6115 SELECTTRACE(0x100,pParse
,p
,("Push-down not possible\n"));
6118 zSavedAuthContext
= pParse
->zAuthContext
;
6119 pParse
->zAuthContext
= pItem
->zName
;
6121 /* Generate code to implement the subquery
6123 ** The subquery is implemented as a co-routine if the subquery is
6124 ** guaranteed to be the outer loop (so that it does not need to be
6125 ** computed more than once)
6127 ** TODO: Are there other reasons beside (1) to use a co-routine
6131 && (pTabList
->nSrc
==1
6132 || (pTabList
->a
[1].fg
.jointype
&(JT_LEFT
|JT_CROSS
))!=0) /* (1) */
6134 /* Implement a co-routine that will return a single row of the result
6135 ** set on each invocation.
6137 int addrTop
= sqlite3VdbeCurrentAddr(v
)+1;
6139 pItem
->regReturn
= ++pParse
->nMem
;
6140 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, pItem
->regReturn
, 0, addrTop
);
6141 VdbeComment((v
, "%s", pItem
->pTab
->zName
));
6142 pItem
->addrFillSub
= addrTop
;
6143 sqlite3SelectDestInit(&dest
, SRT_Coroutine
, pItem
->regReturn
);
6144 ExplainQueryPlan((pParse
, 1, "CO-ROUTINE %u", pSub
->selId
));
6145 sqlite3Select(pParse
, pSub
, &dest
);
6146 pItem
->pTab
->nRowLogEst
= pSub
->nSelectRow
;
6147 pItem
->fg
.viaCoroutine
= 1;
6148 pItem
->regResult
= dest
.iSdst
;
6149 sqlite3VdbeEndCoroutine(v
, pItem
->regReturn
);
6150 sqlite3VdbeJumpHere(v
, addrTop
-1);
6151 sqlite3ClearTempRegCache(pParse
);
6153 /* Generate a subroutine that will fill an ephemeral table with
6154 ** the content of this subquery. pItem->addrFillSub will point
6155 ** to the address of the generated subroutine. pItem->regReturn
6156 ** is a register allocated to hold the subroutine return address
6161 struct SrcList_item
*pPrior
;
6163 testcase( pItem
->addrFillSub
==0 ); /* Ticket c52b09c7f38903b1311 */
6164 pItem
->regReturn
= ++pParse
->nMem
;
6165 topAddr
= sqlite3VdbeAddOp2(v
, OP_Integer
, 0, pItem
->regReturn
);
6166 pItem
->addrFillSub
= topAddr
+1;
6167 if( pItem
->fg
.isCorrelated
==0 ){
6168 /* If the subquery is not correlated and if we are not inside of
6169 ** a trigger, then we only need to compute the value of the subquery
6171 onceAddr
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
6172 VdbeComment((v
, "materialize \"%s\"", pItem
->pTab
->zName
));
6174 VdbeNoopComment((v
, "materialize \"%s\"", pItem
->pTab
->zName
));
6176 pPrior
= isSelfJoinView(pTabList
, pItem
);
6178 sqlite3VdbeAddOp2(v
, OP_OpenDup
, pItem
->iCursor
, pPrior
->iCursor
);
6179 assert( pPrior
->pSelect
!=0 );
6180 pSub
->nSelectRow
= pPrior
->pSelect
->nSelectRow
;
6182 sqlite3SelectDestInit(&dest
, SRT_EphemTab
, pItem
->iCursor
);
6183 ExplainQueryPlan((pParse
, 1, "MATERIALIZE %u", pSub
->selId
));
6184 sqlite3Select(pParse
, pSub
, &dest
);
6186 pItem
->pTab
->nRowLogEst
= pSub
->nSelectRow
;
6187 if( onceAddr
) sqlite3VdbeJumpHere(v
, onceAddr
);
6188 retAddr
= sqlite3VdbeAddOp1(v
, OP_Return
, pItem
->regReturn
);
6189 VdbeComment((v
, "end %s", pItem
->pTab
->zName
));
6190 sqlite3VdbeChangeP1(v
, topAddr
, retAddr
);
6191 sqlite3ClearTempRegCache(pParse
);
6193 if( db
->mallocFailed
) goto select_end
;
6194 pParse
->nHeight
-= sqlite3SelectExprHeight(p
);
6195 pParse
->zAuthContext
= zSavedAuthContext
;
6199 /* Various elements of the SELECT copied into local variables for
6203 pGroupBy
= p
->pGroupBy
;
6204 pHaving
= p
->pHaving
;
6205 sDistinct
.isTnct
= (p
->selFlags
& SF_Distinct
)!=0;
6207 #if SELECTTRACE_ENABLED
6208 if( sqlite3_unsupported_selecttrace
& 0x400 ){
6209 SELECTTRACE(0x400,pParse
,p
,("After all FROM-clause analysis:\n"));
6210 sqlite3TreeViewSelect(0, p
, 0);
6214 /* If the query is DISTINCT with an ORDER BY but is not an aggregate, and
6215 ** if the select-list is the same as the ORDER BY list, then this query
6216 ** can be rewritten as a GROUP BY. In other words, this:
6218 ** SELECT DISTINCT xyz FROM ... ORDER BY xyz
6220 ** is transformed to:
6222 ** SELECT xyz FROM ... GROUP BY xyz ORDER BY xyz
6224 ** The second form is preferred as a single index (or temp-table) may be
6225 ** used for both the ORDER BY and DISTINCT processing. As originally
6226 ** written the query must use a temp-table for at least one of the ORDER
6227 ** BY and DISTINCT, and an index or separate temp-table for the other.
6229 if( (p
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
6230 && sqlite3ExprListCompare(sSort
.pOrderBy
, pEList
, -1)==0
6231 #ifndef SQLITE_OMIT_WINDOWFUNC
6235 p
->selFlags
&= ~SF_Distinct
;
6236 pGroupBy
= p
->pGroupBy
= sqlite3ExprListDup(db
, pEList
, 0);
6237 p
->selFlags
|= SF_Aggregate
;
6238 /* Notice that even thought SF_Distinct has been cleared from p->selFlags,
6239 ** the sDistinct.isTnct is still set. Hence, isTnct represents the
6240 ** original setting of the SF_Distinct flag, not the current setting */
6241 assert( sDistinct
.isTnct
);
6243 #if SELECTTRACE_ENABLED
6244 if( sqlite3_unsupported_selecttrace
& 0x400 ){
6245 SELECTTRACE(0x400,pParse
,p
,("Transform DISTINCT into GROUP BY:\n"));
6246 sqlite3TreeViewSelect(0, p
, 0);
6251 /* If there is an ORDER BY clause, then create an ephemeral index to
6252 ** do the sorting. But this sorting ephemeral index might end up
6253 ** being unused if the data can be extracted in pre-sorted order.
6254 ** If that is the case, then the OP_OpenEphemeral instruction will be
6255 ** changed to an OP_Noop once we figure out that the sorting index is
6256 ** not needed. The sSort.addrSortIndex variable is used to facilitate
6259 if( sSort
.pOrderBy
){
6261 pKeyInfo
= sqlite3KeyInfoFromExprList(
6262 pParse
, sSort
.pOrderBy
, 0, pEList
->nExpr
);
6263 sSort
.iECursor
= pParse
->nTab
++;
6264 sSort
.addrSortIndex
=
6265 sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
6266 sSort
.iECursor
, sSort
.pOrderBy
->nExpr
+1+pEList
->nExpr
, 0,
6267 (char*)pKeyInfo
, P4_KEYINFO
6270 sSort
.addrSortIndex
= -1;
6273 /* If the output is destined for a temporary table, open that table.
6275 if( pDest
->eDest
==SRT_EphemTab
){
6276 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pDest
->iSDParm
, pEList
->nExpr
);
6281 iEnd
= sqlite3VdbeMakeLabel(pParse
);
6282 if( (p
->selFlags
& SF_FixedLimit
)==0 ){
6283 p
->nSelectRow
= 320; /* 4 billion rows */
6285 computeLimitRegisters(pParse
, p
, iEnd
);
6286 if( p
->iLimit
==0 && sSort
.addrSortIndex
>=0 ){
6287 sqlite3VdbeChangeOpcode(v
, sSort
.addrSortIndex
, OP_SorterOpen
);
6288 sSort
.sortFlags
|= SORTFLAG_UseSorter
;
6291 /* Open an ephemeral index to use for the distinct set.
6293 if( p
->selFlags
& SF_Distinct
){
6294 sDistinct
.tabTnct
= pParse
->nTab
++;
6295 sDistinct
.addrTnct
= sqlite3VdbeAddOp4(v
, OP_OpenEphemeral
,
6296 sDistinct
.tabTnct
, 0, 0,
6297 (char*)sqlite3KeyInfoFromExprList(pParse
, p
->pEList
,0,0),
6299 sqlite3VdbeChangeP5(v
, BTREE_UNORDERED
);
6300 sDistinct
.eTnctType
= WHERE_DISTINCT_UNORDERED
;
6302 sDistinct
.eTnctType
= WHERE_DISTINCT_NOOP
;
6305 if( !isAgg
&& pGroupBy
==0 ){
6306 /* No aggregate functions and no GROUP BY clause */
6307 u16 wctrlFlags
= (sDistinct
.isTnct
? WHERE_WANT_DISTINCT
: 0)
6308 | (p
->selFlags
& SF_FixedLimit
);
6309 #ifndef SQLITE_OMIT_WINDOWFUNC
6310 Window
*pWin
= p
->pWin
; /* Main window object (or NULL) */
6312 sqlite3WindowCodeInit(pParse
, p
);
6315 assert( WHERE_USE_LIMIT
==SF_FixedLimit
);
6318 /* Begin the database scan. */
6319 SELECTTRACE(1,pParse
,p
,("WhereBegin\n"));
6320 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, sSort
.pOrderBy
,
6321 p
->pEList
, wctrlFlags
, p
->nSelectRow
);
6322 if( pWInfo
==0 ) goto select_end
;
6323 if( sqlite3WhereOutputRowCount(pWInfo
) < p
->nSelectRow
){
6324 p
->nSelectRow
= sqlite3WhereOutputRowCount(pWInfo
);
6326 if( sDistinct
.isTnct
&& sqlite3WhereIsDistinct(pWInfo
) ){
6327 sDistinct
.eTnctType
= sqlite3WhereIsDistinct(pWInfo
);
6329 if( sSort
.pOrderBy
){
6330 sSort
.nOBSat
= sqlite3WhereIsOrdered(pWInfo
);
6331 sSort
.labelOBLopt
= sqlite3WhereOrderByLimitOptLabel(pWInfo
);
6332 if( sSort
.nOBSat
==sSort
.pOrderBy
->nExpr
){
6337 /* If sorting index that was created by a prior OP_OpenEphemeral
6338 ** instruction ended up not being needed, then change the OP_OpenEphemeral
6341 if( sSort
.addrSortIndex
>=0 && sSort
.pOrderBy
==0 ){
6342 sqlite3VdbeChangeToNoop(v
, sSort
.addrSortIndex
);
6345 assert( p
->pEList
==pEList
);
6346 #ifndef SQLITE_OMIT_WINDOWFUNC
6348 int addrGosub
= sqlite3VdbeMakeLabel(pParse
);
6349 int iCont
= sqlite3VdbeMakeLabel(pParse
);
6350 int iBreak
= sqlite3VdbeMakeLabel(pParse
);
6351 int regGosub
= ++pParse
->nMem
;
6353 sqlite3WindowCodeStep(pParse
, p
, pWInfo
, regGosub
, addrGosub
);
6355 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, iBreak
);
6356 sqlite3VdbeResolveLabel(v
, addrGosub
);
6357 VdbeNoopComment((v
, "inner-loop subroutine"));
6358 sSort
.labelOBLopt
= 0;
6359 selectInnerLoop(pParse
, p
, -1, &sSort
, &sDistinct
, pDest
, iCont
, iBreak
);
6360 sqlite3VdbeResolveLabel(v
, iCont
);
6361 sqlite3VdbeAddOp1(v
, OP_Return
, regGosub
);
6362 VdbeComment((v
, "end inner-loop subroutine"));
6363 sqlite3VdbeResolveLabel(v
, iBreak
);
6365 #endif /* SQLITE_OMIT_WINDOWFUNC */
6367 /* Use the standard inner loop. */
6368 selectInnerLoop(pParse
, p
, -1, &sSort
, &sDistinct
, pDest
,
6369 sqlite3WhereContinueLabel(pWInfo
),
6370 sqlite3WhereBreakLabel(pWInfo
));
6372 /* End the database scan loop.
6374 sqlite3WhereEnd(pWInfo
);
6377 /* This case when there exist aggregate functions or a GROUP BY clause
6379 NameContext sNC
; /* Name context for processing aggregate information */
6380 int iAMem
; /* First Mem address for storing current GROUP BY */
6381 int iBMem
; /* First Mem address for previous GROUP BY */
6382 int iUseFlag
; /* Mem address holding flag indicating that at least
6383 ** one row of the input to the aggregator has been
6385 int iAbortFlag
; /* Mem address which causes query abort if positive */
6386 int groupBySort
; /* Rows come from source in GROUP BY order */
6387 int addrEnd
; /* End of processing for this SELECT */
6388 int sortPTab
= 0; /* Pseudotable used to decode sorting results */
6389 int sortOut
= 0; /* Output register from the sorter */
6390 int orderByGrp
= 0; /* True if the GROUP BY and ORDER BY are the same */
6392 /* Remove any and all aliases between the result set and the
6396 int k
; /* Loop counter */
6397 struct ExprList_item
*pItem
; /* For looping over expression in a list */
6399 for(k
=p
->pEList
->nExpr
, pItem
=p
->pEList
->a
; k
>0; k
--, pItem
++){
6400 pItem
->u
.x
.iAlias
= 0;
6402 for(k
=pGroupBy
->nExpr
, pItem
=pGroupBy
->a
; k
>0; k
--, pItem
++){
6403 pItem
->u
.x
.iAlias
= 0;
6405 assert( 66==sqlite3LogEst(100) );
6406 if( p
->nSelectRow
>66 ) p
->nSelectRow
= 66;
6408 /* If there is both a GROUP BY and an ORDER BY clause and they are
6409 ** identical, then it may be possible to disable the ORDER BY clause
6410 ** on the grounds that the GROUP BY will cause elements to come out
6411 ** in the correct order. It also may not - the GROUP BY might use a
6412 ** database index that causes rows to be grouped together as required
6413 ** but not actually sorted. Either way, record the fact that the
6414 ** ORDER BY and GROUP BY clauses are the same by setting the orderByGrp
6416 if( sSort
.pOrderBy
&& pGroupBy
->nExpr
==sSort
.pOrderBy
->nExpr
){
6418 /* The GROUP BY processing doesn't care whether rows are delivered in
6419 ** ASC or DESC order - only that each group is returned contiguously.
6420 ** So set the ASC/DESC flags in the GROUP BY to match those in the
6421 ** ORDER BY to maximize the chances of rows being delivered in an
6422 ** order that makes the ORDER BY redundant. */
6423 for(ii
=0; ii
<pGroupBy
->nExpr
; ii
++){
6424 u8 sortFlags
= sSort
.pOrderBy
->a
[ii
].sortFlags
& KEYINFO_ORDER_DESC
;
6425 pGroupBy
->a
[ii
].sortFlags
= sortFlags
;
6427 if( sqlite3ExprListCompare(pGroupBy
, sSort
.pOrderBy
, -1)==0 ){
6432 assert( 0==sqlite3LogEst(1) );
6436 /* Create a label to jump to when we want to abort the query */
6437 addrEnd
= sqlite3VdbeMakeLabel(pParse
);
6439 /* Convert TK_COLUMN nodes into TK_AGG_COLUMN and make entries in
6440 ** sAggInfo for all TK_AGG_FUNCTION nodes in expressions of the
6441 ** SELECT statement.
6443 pAggInfo
= sqlite3DbMallocZero(db
, sizeof(*pAggInfo
) );
6447 pAggInfo
->pNext
= pParse
->pAggList
;
6448 pParse
->pAggList
= pAggInfo
;
6449 pAggInfo
->selId
= p
->selId
;
6450 memset(&sNC
, 0, sizeof(sNC
));
6451 sNC
.pParse
= pParse
;
6452 sNC
.pSrcList
= pTabList
;
6453 sNC
.uNC
.pAggInfo
= pAggInfo
;
6454 VVA_ONLY( sNC
.ncFlags
= NC_UAggInfo
; )
6455 pAggInfo
->mnReg
= pParse
->nMem
+1;
6456 pAggInfo
->nSortingColumn
= pGroupBy
? pGroupBy
->nExpr
: 0;
6457 pAggInfo
->pGroupBy
= pGroupBy
;
6458 sqlite3ExprAnalyzeAggList(&sNC
, pEList
);
6459 sqlite3ExprAnalyzeAggList(&sNC
, sSort
.pOrderBy
);
6462 assert( pWhere
==p
->pWhere
);
6463 assert( pHaving
==p
->pHaving
);
6464 assert( pGroupBy
==p
->pGroupBy
);
6465 havingToWhere(pParse
, p
);
6468 sqlite3ExprAnalyzeAggregates(&sNC
, pHaving
);
6470 pAggInfo
->nAccumulator
= pAggInfo
->nColumn
;
6471 if( p
->pGroupBy
==0 && p
->pHaving
==0 && pAggInfo
->nFunc
==1 ){
6472 minMaxFlag
= minMaxQuery(db
, pAggInfo
->aFunc
[0].pFExpr
, &pMinMaxOrderBy
);
6474 minMaxFlag
= WHERE_ORDERBY_NORMAL
;
6476 for(i
=0; i
<pAggInfo
->nFunc
; i
++){
6477 Expr
*pExpr
= pAggInfo
->aFunc
[i
].pFExpr
;
6478 assert( !ExprHasProperty(pExpr
, EP_xIsSelect
) );
6479 sNC
.ncFlags
|= NC_InAggFunc
;
6480 sqlite3ExprAnalyzeAggList(&sNC
, pExpr
->x
.pList
);
6481 #ifndef SQLITE_OMIT_WINDOWFUNC
6482 assert( !IsWindowFunc(pExpr
) );
6483 if( ExprHasProperty(pExpr
, EP_WinFunc
) ){
6484 sqlite3ExprAnalyzeAggregates(&sNC
, pExpr
->y
.pWin
->pFilter
);
6487 sNC
.ncFlags
&= ~NC_InAggFunc
;
6489 pAggInfo
->mxReg
= pParse
->nMem
;
6490 if( db
->mallocFailed
) goto select_end
;
6491 #if SELECTTRACE_ENABLED
6492 if( sqlite3_unsupported_selecttrace
& 0x400 ){
6494 SELECTTRACE(0x400,pParse
,p
,("After aggregate analysis %p:\n", pAggInfo
));
6495 sqlite3TreeViewSelect(0, p
, 0);
6496 for(ii
=0; ii
<pAggInfo
->nColumn
; ii
++){
6497 sqlite3DebugPrintf("agg-column[%d] iMem=%d\n",
6498 ii
, pAggInfo
->aCol
[ii
].iMem
);
6499 sqlite3TreeViewExpr(0, pAggInfo
->aCol
[ii
].pCExpr
, 0);
6501 for(ii
=0; ii
<pAggInfo
->nFunc
; ii
++){
6502 sqlite3DebugPrintf("agg-func[%d]: iMem=%d\n",
6503 ii
, pAggInfo
->aFunc
[ii
].iMem
);
6504 sqlite3TreeViewExpr(0, pAggInfo
->aFunc
[ii
].pFExpr
, 0);
6510 /* Processing for aggregates with GROUP BY is very different and
6511 ** much more complex than aggregates without a GROUP BY.
6514 KeyInfo
*pKeyInfo
; /* Keying information for the group by clause */
6515 int addr1
; /* A-vs-B comparision jump */
6516 int addrOutputRow
; /* Start of subroutine that outputs a result row */
6517 int regOutputRow
; /* Return address register for output subroutine */
6518 int addrSetAbort
; /* Set the abort flag and return */
6519 int addrTopOfLoop
; /* Top of the input loop */
6520 int addrSortingIdx
; /* The OP_OpenEphemeral for the sorting index */
6521 int addrReset
; /* Subroutine for resetting the accumulator */
6522 int regReset
; /* Return address register for reset subroutine */
6524 /* If there is a GROUP BY clause we might need a sorting index to
6525 ** implement it. Allocate that sorting index now. If it turns out
6526 ** that we do not need it after all, the OP_SorterOpen instruction
6527 ** will be converted into a Noop.
6529 pAggInfo
->sortingIdx
= pParse
->nTab
++;
6530 pKeyInfo
= sqlite3KeyInfoFromExprList(pParse
, pGroupBy
,
6531 0, pAggInfo
->nColumn
);
6532 addrSortingIdx
= sqlite3VdbeAddOp4(v
, OP_SorterOpen
,
6533 pAggInfo
->sortingIdx
, pAggInfo
->nSortingColumn
,
6534 0, (char*)pKeyInfo
, P4_KEYINFO
);
6536 /* Initialize memory locations used by GROUP BY aggregate processing
6538 iUseFlag
= ++pParse
->nMem
;
6539 iAbortFlag
= ++pParse
->nMem
;
6540 regOutputRow
= ++pParse
->nMem
;
6541 addrOutputRow
= sqlite3VdbeMakeLabel(pParse
);
6542 regReset
= ++pParse
->nMem
;
6543 addrReset
= sqlite3VdbeMakeLabel(pParse
);
6544 iAMem
= pParse
->nMem
+ 1;
6545 pParse
->nMem
+= pGroupBy
->nExpr
;
6546 iBMem
= pParse
->nMem
+ 1;
6547 pParse
->nMem
+= pGroupBy
->nExpr
;
6548 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, iAbortFlag
);
6549 VdbeComment((v
, "clear abort flag"));
6550 sqlite3VdbeAddOp3(v
, OP_Null
, 0, iAMem
, iAMem
+pGroupBy
->nExpr
-1);
6552 /* Begin a loop that will extract all source rows in GROUP BY order.
6553 ** This might involve two separate loops with an OP_Sort in between, or
6554 ** it might be a single loop that uses an index to extract information
6555 ** in the right order to begin with.
6557 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReset
, addrReset
);
6558 SELECTTRACE(1,pParse
,p
,("WhereBegin\n"));
6559 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, pGroupBy
, 0,
6560 WHERE_GROUPBY
| (orderByGrp
? WHERE_SORTBYGROUP
: 0), 0
6562 if( pWInfo
==0 ) goto select_end
;
6563 if( sqlite3WhereIsOrdered(pWInfo
)==pGroupBy
->nExpr
){
6564 /* The optimizer is able to deliver rows in group by order so
6565 ** we do not have to sort. The OP_OpenEphemeral table will be
6566 ** cancelled later because we still need to use the pKeyInfo
6570 /* Rows are coming out in undetermined order. We have to push
6571 ** each row into a sorting index, terminate the first loop,
6572 ** then loop over the sorting index in order to get the output
6580 explainTempTable(pParse
,
6581 (sDistinct
.isTnct
&& (p
->selFlags
&SF_Distinct
)==0) ?
6582 "DISTINCT" : "GROUP BY");
6585 nGroupBy
= pGroupBy
->nExpr
;
6588 for(i
=0; i
<pAggInfo
->nColumn
; i
++){
6589 if( pAggInfo
->aCol
[i
].iSorterColumn
>=j
){
6594 regBase
= sqlite3GetTempRange(pParse
, nCol
);
6595 sqlite3ExprCodeExprList(pParse
, pGroupBy
, regBase
, 0, 0);
6597 for(i
=0; i
<pAggInfo
->nColumn
; i
++){
6598 struct AggInfo_col
*pCol
= &pAggInfo
->aCol
[i
];
6599 if( pCol
->iSorterColumn
>=j
){
6600 int r1
= j
+ regBase
;
6601 sqlite3ExprCodeGetColumnOfTable(v
,
6602 pCol
->pTab
, pCol
->iTable
, pCol
->iColumn
, r1
);
6606 regRecord
= sqlite3GetTempReg(pParse
);
6607 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regBase
, nCol
, regRecord
);
6608 sqlite3VdbeAddOp2(v
, OP_SorterInsert
, pAggInfo
->sortingIdx
, regRecord
);
6609 sqlite3ReleaseTempReg(pParse
, regRecord
);
6610 sqlite3ReleaseTempRange(pParse
, regBase
, nCol
);
6611 sqlite3WhereEnd(pWInfo
);
6612 pAggInfo
->sortingIdxPTab
= sortPTab
= pParse
->nTab
++;
6613 sortOut
= sqlite3GetTempReg(pParse
);
6614 sqlite3VdbeAddOp3(v
, OP_OpenPseudo
, sortPTab
, sortOut
, nCol
);
6615 sqlite3VdbeAddOp2(v
, OP_SorterSort
, pAggInfo
->sortingIdx
, addrEnd
);
6616 VdbeComment((v
, "GROUP BY sort")); VdbeCoverage(v
);
6617 pAggInfo
->useSortingIdx
= 1;
6620 /* If the index or temporary table used by the GROUP BY sort
6621 ** will naturally deliver rows in the order required by the ORDER BY
6622 ** clause, cancel the ephemeral table open coded earlier.
6624 ** This is an optimization - the correct answer should result regardless.
6625 ** Use the SQLITE_GroupByOrder flag with SQLITE_TESTCTRL_OPTIMIZER to
6626 ** disable this optimization for testing purposes. */
6627 if( orderByGrp
&& OptimizationEnabled(db
, SQLITE_GroupByOrder
)
6628 && (groupBySort
|| sqlite3WhereIsSorted(pWInfo
))
6631 sqlite3VdbeChangeToNoop(v
, sSort
.addrSortIndex
);
6634 /* Evaluate the current GROUP BY terms and store in b0, b1, b2...
6635 ** (b0 is memory location iBMem+0, b1 is iBMem+1, and so forth)
6636 ** Then compare the current GROUP BY terms against the GROUP BY terms
6637 ** from the previous row currently stored in a0, a1, a2...
6639 addrTopOfLoop
= sqlite3VdbeCurrentAddr(v
);
6641 sqlite3VdbeAddOp3(v
, OP_SorterData
, pAggInfo
->sortingIdx
,
6644 for(j
=0; j
<pGroupBy
->nExpr
; j
++){
6646 sqlite3VdbeAddOp3(v
, OP_Column
, sortPTab
, j
, iBMem
+j
);
6648 pAggInfo
->directMode
= 1;
6649 sqlite3ExprCode(pParse
, pGroupBy
->a
[j
].pExpr
, iBMem
+j
);
6652 sqlite3VdbeAddOp4(v
, OP_Compare
, iAMem
, iBMem
, pGroupBy
->nExpr
,
6653 (char*)sqlite3KeyInfoRef(pKeyInfo
), P4_KEYINFO
);
6654 addr1
= sqlite3VdbeCurrentAddr(v
);
6655 sqlite3VdbeAddOp3(v
, OP_Jump
, addr1
+1, 0, addr1
+1); VdbeCoverage(v
);
6657 /* Generate code that runs whenever the GROUP BY changes.
6658 ** Changes in the GROUP BY are detected by the previous code
6659 ** block. If there were no changes, this block is skipped.
6661 ** This code copies current group by terms in b0,b1,b2,...
6662 ** over to a0,a1,a2. It then calls the output subroutine
6663 ** and resets the aggregate accumulator registers in preparation
6664 ** for the next GROUP BY batch.
6666 sqlite3ExprCodeMove(pParse
, iBMem
, iAMem
, pGroupBy
->nExpr
);
6667 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutputRow
, addrOutputRow
);
6668 VdbeComment((v
, "output one row"));
6669 sqlite3VdbeAddOp2(v
, OP_IfPos
, iAbortFlag
, addrEnd
); VdbeCoverage(v
);
6670 VdbeComment((v
, "check abort flag"));
6671 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReset
, addrReset
);
6672 VdbeComment((v
, "reset accumulator"));
6674 /* Update the aggregate accumulators based on the content of
6677 sqlite3VdbeJumpHere(v
, addr1
);
6678 updateAccumulator(pParse
, iUseFlag
, pAggInfo
);
6679 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iUseFlag
);
6680 VdbeComment((v
, "indicate data in accumulator"));
6685 sqlite3VdbeAddOp2(v
, OP_SorterNext
, pAggInfo
->sortingIdx
, addrTopOfLoop
);
6688 sqlite3WhereEnd(pWInfo
);
6689 sqlite3VdbeChangeToNoop(v
, addrSortingIdx
);
6692 /* Output the final row of result
6694 sqlite3VdbeAddOp2(v
, OP_Gosub
, regOutputRow
, addrOutputRow
);
6695 VdbeComment((v
, "output final row"));
6697 /* Jump over the subroutines
6699 sqlite3VdbeGoto(v
, addrEnd
);
6701 /* Generate a subroutine that outputs a single row of the result
6702 ** set. This subroutine first looks at the iUseFlag. If iUseFlag
6703 ** is less than or equal to zero, the subroutine is a no-op. If
6704 ** the processing calls for the query to abort, this subroutine
6705 ** increments the iAbortFlag memory location before returning in
6706 ** order to signal the caller to abort.
6708 addrSetAbort
= sqlite3VdbeCurrentAddr(v
);
6709 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, iAbortFlag
);
6710 VdbeComment((v
, "set abort flag"));
6711 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
6712 sqlite3VdbeResolveLabel(v
, addrOutputRow
);
6713 addrOutputRow
= sqlite3VdbeCurrentAddr(v
);
6714 sqlite3VdbeAddOp2(v
, OP_IfPos
, iUseFlag
, addrOutputRow
+2);
6716 VdbeComment((v
, "Groupby result generator entry point"));
6717 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
6718 finalizeAggFunctions(pParse
, pAggInfo
);
6719 sqlite3ExprIfFalse(pParse
, pHaving
, addrOutputRow
+1, SQLITE_JUMPIFNULL
);
6720 selectInnerLoop(pParse
, p
, -1, &sSort
,
6722 addrOutputRow
+1, addrSetAbort
);
6723 sqlite3VdbeAddOp1(v
, OP_Return
, regOutputRow
);
6724 VdbeComment((v
, "end groupby result generator"));
6726 /* Generate a subroutine that will reset the group-by accumulator
6728 sqlite3VdbeResolveLabel(v
, addrReset
);
6729 resetAccumulator(pParse
, pAggInfo
);
6730 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, iUseFlag
);
6731 VdbeComment((v
, "indicate accumulator empty"));
6732 sqlite3VdbeAddOp1(v
, OP_Return
, regReset
);
6734 } /* endif pGroupBy. Begin aggregate queries without GROUP BY: */
6737 if( (pTab
= isSimpleCount(p
, pAggInfo
))!=0 ){
6738 /* If isSimpleCount() returns a pointer to a Table structure, then
6739 ** the SQL statement is of the form:
6741 ** SELECT count(*) FROM <tbl>
6743 ** where the Table structure returned represents table <tbl>.
6745 ** This statement is so common that it is optimized specially. The
6746 ** OP_Count instruction is executed either on the intkey table that
6747 ** contains the data for table <tbl> or on one of its indexes. It
6748 ** is better to execute the op on an index, as indexes are almost
6749 ** always spread across less pages than their corresponding tables.
6751 const int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
6752 const int iCsr
= pParse
->nTab
++; /* Cursor to scan b-tree */
6753 Index
*pIdx
; /* Iterator variable */
6754 KeyInfo
*pKeyInfo
= 0; /* Keyinfo for scanned index */
6755 Index
*pBest
= 0; /* Best index found so far */
6756 Pgno iRoot
= pTab
->tnum
; /* Root page of scanned b-tree */
6758 sqlite3CodeVerifySchema(pParse
, iDb
);
6759 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
6761 /* Search for the index that has the lowest scan cost.
6763 ** (2011-04-15) Do not do a full scan of an unordered index.
6765 ** (2013-10-03) Do not count the entries in a partial index.
6767 ** In practice the KeyInfo structure will not be used. It is only
6768 ** passed to keep OP_OpenRead happy.
6770 if( !HasRowid(pTab
) ) pBest
= sqlite3PrimaryKeyIndex(pTab
);
6771 if( !p
->pSrc
->a
[0].fg
.notIndexed
){
6772 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
6773 if( pIdx
->bUnordered
==0
6774 && pIdx
->szIdxRow
<pTab
->szTabRow
6775 && pIdx
->pPartIdxWhere
==0
6776 && (!pBest
|| pIdx
->szIdxRow
<pBest
->szIdxRow
)
6783 iRoot
= pBest
->tnum
;
6784 pKeyInfo
= sqlite3KeyInfoOfIndex(pParse
, pBest
);
6787 /* Open a read-only cursor, execute the OP_Count, close the cursor. */
6788 sqlite3VdbeAddOp4Int(v
, OP_OpenRead
, iCsr
, (int)iRoot
, iDb
, 1);
6790 sqlite3VdbeChangeP4(v
, -1, (char *)pKeyInfo
, P4_KEYINFO
);
6792 sqlite3VdbeAddOp2(v
, OP_Count
, iCsr
, pAggInfo
->aFunc
[0].iMem
);
6793 sqlite3VdbeAddOp1(v
, OP_Close
, iCsr
);
6794 explainSimpleCount(pParse
, pTab
, pBest
);
6796 int regAcc
= 0; /* "populate accumulators" flag */
6799 /* If there are accumulator registers but no min() or max() functions
6800 ** without FILTER clauses, allocate register regAcc. Register regAcc
6801 ** will contain 0 the first time the inner loop runs, and 1 thereafter.
6802 ** The code generated by updateAccumulator() uses this to ensure
6803 ** that the accumulator registers are (a) updated only once if
6804 ** there are no min() or max functions or (b) always updated for the
6805 ** first row visited by the aggregate, so that they are updated at
6806 ** least once even if the FILTER clause means the min() or max()
6807 ** function visits zero rows. */
6808 if( pAggInfo
->nAccumulator
){
6809 for(i
=0; i
<pAggInfo
->nFunc
; i
++){
6810 if( ExprHasProperty(pAggInfo
->aFunc
[i
].pFExpr
, EP_WinFunc
) ){
6813 if( pAggInfo
->aFunc
[i
].pFunc
->funcFlags
&SQLITE_FUNC_NEEDCOLL
){
6817 if( i
==pAggInfo
->nFunc
){
6818 regAcc
= ++pParse
->nMem
;
6819 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regAcc
);
6823 /* This case runs if the aggregate has no GROUP BY clause. The
6824 ** processing is much simpler since there is only a single row
6827 assert( p
->pGroupBy
==0 );
6828 resetAccumulator(pParse
, pAggInfo
);
6830 /* If this query is a candidate for the min/max optimization, then
6831 ** minMaxFlag will have been previously set to either
6832 ** WHERE_ORDERBY_MIN or WHERE_ORDERBY_MAX and pMinMaxOrderBy will
6833 ** be an appropriate ORDER BY expression for the optimization.
6835 assert( minMaxFlag
==WHERE_ORDERBY_NORMAL
|| pMinMaxOrderBy
!=0 );
6836 assert( pMinMaxOrderBy
==0 || pMinMaxOrderBy
->nExpr
==1 );
6838 SELECTTRACE(1,pParse
,p
,("WhereBegin\n"));
6839 pWInfo
= sqlite3WhereBegin(pParse
, pTabList
, pWhere
, pMinMaxOrderBy
,
6844 updateAccumulator(pParse
, regAcc
, pAggInfo
);
6845 if( regAcc
) sqlite3VdbeAddOp2(v
, OP_Integer
, 1, regAcc
);
6846 addrSkip
= sqlite3WhereOrderByLimitOptLabel(pWInfo
);
6847 if( addrSkip
!=sqlite3WhereContinueLabel(pWInfo
) ){
6848 sqlite3VdbeGoto(v
, addrSkip
);
6850 sqlite3WhereEnd(pWInfo
);
6851 finalizeAggFunctions(pParse
, pAggInfo
);
6855 sqlite3ExprIfFalse(pParse
, pHaving
, addrEnd
, SQLITE_JUMPIFNULL
);
6856 selectInnerLoop(pParse
, p
, -1, 0, 0,
6857 pDest
, addrEnd
, addrEnd
);
6859 sqlite3VdbeResolveLabel(v
, addrEnd
);
6861 } /* endif aggregate query */
6863 if( sDistinct
.eTnctType
==WHERE_DISTINCT_UNORDERED
){
6864 explainTempTable(pParse
, "DISTINCT");
6867 /* If there is an ORDER BY clause, then we need to sort the results
6868 ** and send them to the callback one by one.
6870 if( sSort
.pOrderBy
){
6871 explainTempTable(pParse
,
6872 sSort
.nOBSat
>0 ? "RIGHT PART OF ORDER BY":"ORDER BY");
6873 assert( p
->pEList
==pEList
);
6874 generateSortTail(pParse
, p
, &sSort
, pEList
->nExpr
, pDest
);
6877 /* Jump here to skip this query
6879 sqlite3VdbeResolveLabel(v
, iEnd
);
6881 /* The SELECT has been coded. If there is an error in the Parse structure,
6882 ** set the return code to 1. Otherwise 0. */
6883 rc
= (pParse
->nErr
>0);
6885 /* Control jumps to here if an error is encountered above, or upon
6886 ** successful coding of the SELECT.
6889 sqlite3ExprListDelete(db
, pMinMaxOrderBy
);
6891 if( pAggInfo
&& !db
->mallocFailed
){
6892 for(i
=0; i
<pAggInfo
->nColumn
; i
++){
6893 Expr
*pExpr
= pAggInfo
->aCol
[i
].pCExpr
;
6894 assert( pExpr
!=0 || db
->mallocFailed
);
6895 if( pExpr
==0 ) continue;
6896 assert( pExpr
->pAggInfo
==pAggInfo
);
6897 assert( pExpr
->iAgg
==i
);
6899 for(i
=0; i
<pAggInfo
->nFunc
; i
++){
6900 Expr
*pExpr
= pAggInfo
->aFunc
[i
].pFExpr
;
6901 assert( pExpr
!=0 || db
->mallocFailed
);
6902 if( pExpr
==0 ) continue;
6903 assert( pExpr
->pAggInfo
==pAggInfo
);
6904 assert( pExpr
->iAgg
==i
);
6909 #if SELECTTRACE_ENABLED
6910 SELECTTRACE(0x1,pParse
,p
,("end processing\n"));
6911 if( (sqlite3_unsupported_selecttrace
& 0x2000)!=0 && ExplainQueryPlanParent(pParse
)==0 ){
6912 sqlite3TreeViewSelect(0, p
, 0);
6915 ExplainQueryPlanPop(pParse
);