Merge sqlite-release(3.42.0) into prerelease-integration
[sqlcipher.git] / src / func.c
blob93c9a8f8a4b4473c5701abfe5b5d61cf0ad662d1
1 /*
2 ** 2002 February 23
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains the C-language implementations for many of the SQL
13 ** functions of SQLite. (Some function, and in particular the date and
14 ** time functions, are implemented separately.)
16 #include "sqliteInt.h"
17 #include <stdlib.h>
18 #include <assert.h>
19 #ifndef SQLITE_OMIT_FLOATING_POINT
20 #include <math.h>
21 #endif
22 #include "vdbeInt.h"
25 ** Return the collating function associated with a function.
27 static CollSeq *sqlite3GetFuncCollSeq(sqlite3_context *context){
28 VdbeOp *pOp;
29 assert( context->pVdbe!=0 );
30 pOp = &context->pVdbe->aOp[context->iOp-1];
31 assert( pOp->opcode==OP_CollSeq );
32 assert( pOp->p4type==P4_COLLSEQ );
33 return pOp->p4.pColl;
37 ** Indicate that the accumulator load should be skipped on this
38 ** iteration of the aggregate loop.
40 static void sqlite3SkipAccumulatorLoad(sqlite3_context *context){
41 assert( context->isError<=0 );
42 context->isError = -1;
43 context->skipFlag = 1;
47 ** Implementation of the non-aggregate min() and max() functions
49 static void minmaxFunc(
50 sqlite3_context *context,
51 int argc,
52 sqlite3_value **argv
54 int i;
55 int mask; /* 0 for min() or 0xffffffff for max() */
56 int iBest;
57 CollSeq *pColl;
59 assert( argc>1 );
60 mask = sqlite3_user_data(context)==0 ? 0 : -1;
61 pColl = sqlite3GetFuncCollSeq(context);
62 assert( pColl );
63 assert( mask==-1 || mask==0 );
64 iBest = 0;
65 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
66 for(i=1; i<argc; i++){
67 if( sqlite3_value_type(argv[i])==SQLITE_NULL ) return;
68 if( (sqlite3MemCompare(argv[iBest], argv[i], pColl)^mask)>=0 ){
69 testcase( mask==0 );
70 iBest = i;
73 sqlite3_result_value(context, argv[iBest]);
77 ** Return the type of the argument.
79 static void typeofFunc(
80 sqlite3_context *context,
81 int NotUsed,
82 sqlite3_value **argv
84 static const char *azType[] = { "integer", "real", "text", "blob", "null" };
85 int i = sqlite3_value_type(argv[0]) - 1;
86 UNUSED_PARAMETER(NotUsed);
87 assert( i>=0 && i<ArraySize(azType) );
88 assert( SQLITE_INTEGER==1 );
89 assert( SQLITE_FLOAT==2 );
90 assert( SQLITE_TEXT==3 );
91 assert( SQLITE_BLOB==4 );
92 assert( SQLITE_NULL==5 );
93 /* EVIDENCE-OF: R-01470-60482 The sqlite3_value_type(V) interface returns
94 ** the datatype code for the initial datatype of the sqlite3_value object
95 ** V. The returned value is one of SQLITE_INTEGER, SQLITE_FLOAT,
96 ** SQLITE_TEXT, SQLITE_BLOB, or SQLITE_NULL. */
97 sqlite3_result_text(context, azType[i], -1, SQLITE_STATIC);
100 /* subtype(X)
102 ** Return the subtype of X
104 static void subtypeFunc(
105 sqlite3_context *context,
106 int argc,
107 sqlite3_value **argv
109 UNUSED_PARAMETER(argc);
110 sqlite3_result_int(context, sqlite3_value_subtype(argv[0]));
114 ** Implementation of the length() function
116 static void lengthFunc(
117 sqlite3_context *context,
118 int argc,
119 sqlite3_value **argv
121 assert( argc==1 );
122 UNUSED_PARAMETER(argc);
123 switch( sqlite3_value_type(argv[0]) ){
124 case SQLITE_BLOB:
125 case SQLITE_INTEGER:
126 case SQLITE_FLOAT: {
127 sqlite3_result_int(context, sqlite3_value_bytes(argv[0]));
128 break;
130 case SQLITE_TEXT: {
131 const unsigned char *z = sqlite3_value_text(argv[0]);
132 const unsigned char *z0;
133 unsigned char c;
134 if( z==0 ) return;
135 z0 = z;
136 while( (c = *z)!=0 ){
137 z++;
138 if( c>=0xc0 ){
139 while( (*z & 0xc0)==0x80 ){ z++; z0++; }
142 sqlite3_result_int(context, (int)(z-z0));
143 break;
145 default: {
146 sqlite3_result_null(context);
147 break;
153 ** Implementation of the abs() function.
155 ** IMP: R-23979-26855 The abs(X) function returns the absolute value of
156 ** the numeric argument X.
158 static void absFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
159 assert( argc==1 );
160 UNUSED_PARAMETER(argc);
161 switch( sqlite3_value_type(argv[0]) ){
162 case SQLITE_INTEGER: {
163 i64 iVal = sqlite3_value_int64(argv[0]);
164 if( iVal<0 ){
165 if( iVal==SMALLEST_INT64 ){
166 /* IMP: R-31676-45509 If X is the integer -9223372036854775808
167 ** then abs(X) throws an integer overflow error since there is no
168 ** equivalent positive 64-bit two complement value. */
169 sqlite3_result_error(context, "integer overflow", -1);
170 return;
172 iVal = -iVal;
174 sqlite3_result_int64(context, iVal);
175 break;
177 case SQLITE_NULL: {
178 /* IMP: R-37434-19929 Abs(X) returns NULL if X is NULL. */
179 sqlite3_result_null(context);
180 break;
182 default: {
183 /* Because sqlite3_value_double() returns 0.0 if the argument is not
184 ** something that can be converted into a number, we have:
185 ** IMP: R-01992-00519 Abs(X) returns 0.0 if X is a string or blob
186 ** that cannot be converted to a numeric value.
188 double rVal = sqlite3_value_double(argv[0]);
189 if( rVal<0 ) rVal = -rVal;
190 sqlite3_result_double(context, rVal);
191 break;
197 ** Implementation of the instr() function.
199 ** instr(haystack,needle) finds the first occurrence of needle
200 ** in haystack and returns the number of previous characters plus 1,
201 ** or 0 if needle does not occur within haystack.
203 ** If both haystack and needle are BLOBs, then the result is one more than
204 ** the number of bytes in haystack prior to the first occurrence of needle,
205 ** or 0 if needle never occurs in haystack.
207 static void instrFunc(
208 sqlite3_context *context,
209 int argc,
210 sqlite3_value **argv
212 const unsigned char *zHaystack;
213 const unsigned char *zNeedle;
214 int nHaystack;
215 int nNeedle;
216 int typeHaystack, typeNeedle;
217 int N = 1;
218 int isText;
219 unsigned char firstChar;
220 sqlite3_value *pC1 = 0;
221 sqlite3_value *pC2 = 0;
223 UNUSED_PARAMETER(argc);
224 typeHaystack = sqlite3_value_type(argv[0]);
225 typeNeedle = sqlite3_value_type(argv[1]);
226 if( typeHaystack==SQLITE_NULL || typeNeedle==SQLITE_NULL ) return;
227 nHaystack = sqlite3_value_bytes(argv[0]);
228 nNeedle = sqlite3_value_bytes(argv[1]);
229 if( nNeedle>0 ){
230 if( typeHaystack==SQLITE_BLOB && typeNeedle==SQLITE_BLOB ){
231 zHaystack = sqlite3_value_blob(argv[0]);
232 zNeedle = sqlite3_value_blob(argv[1]);
233 isText = 0;
234 }else if( typeHaystack!=SQLITE_BLOB && typeNeedle!=SQLITE_BLOB ){
235 zHaystack = sqlite3_value_text(argv[0]);
236 zNeedle = sqlite3_value_text(argv[1]);
237 isText = 1;
238 }else{
239 pC1 = sqlite3_value_dup(argv[0]);
240 zHaystack = sqlite3_value_text(pC1);
241 if( zHaystack==0 ) goto endInstrOOM;
242 nHaystack = sqlite3_value_bytes(pC1);
243 pC2 = sqlite3_value_dup(argv[1]);
244 zNeedle = sqlite3_value_text(pC2);
245 if( zNeedle==0 ) goto endInstrOOM;
246 nNeedle = sqlite3_value_bytes(pC2);
247 isText = 1;
249 if( zNeedle==0 || (nHaystack && zHaystack==0) ) goto endInstrOOM;
250 firstChar = zNeedle[0];
251 while( nNeedle<=nHaystack
252 && (zHaystack[0]!=firstChar || memcmp(zHaystack, zNeedle, nNeedle)!=0)
254 N++;
256 nHaystack--;
257 zHaystack++;
258 }while( isText && (zHaystack[0]&0xc0)==0x80 );
260 if( nNeedle>nHaystack ) N = 0;
262 sqlite3_result_int(context, N);
263 endInstr:
264 sqlite3_value_free(pC1);
265 sqlite3_value_free(pC2);
266 return;
267 endInstrOOM:
268 sqlite3_result_error_nomem(context);
269 goto endInstr;
273 ** Implementation of the printf() (a.k.a. format()) SQL function.
275 static void printfFunc(
276 sqlite3_context *context,
277 int argc,
278 sqlite3_value **argv
280 PrintfArguments x;
281 StrAccum str;
282 const char *zFormat;
283 int n;
284 sqlite3 *db = sqlite3_context_db_handle(context);
286 if( argc>=1 && (zFormat = (const char*)sqlite3_value_text(argv[0]))!=0 ){
287 x.nArg = argc-1;
288 x.nUsed = 0;
289 x.apArg = argv+1;
290 sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
291 str.printfFlags = SQLITE_PRINTF_SQLFUNC;
292 sqlite3_str_appendf(&str, zFormat, &x);
293 n = str.nChar;
294 sqlite3_result_text(context, sqlite3StrAccumFinish(&str), n,
295 SQLITE_DYNAMIC);
300 ** Implementation of the substr() function.
302 ** substr(x,p1,p2) returns p2 characters of x[] beginning with p1.
303 ** p1 is 1-indexed. So substr(x,1,1) returns the first character
304 ** of x. If x is text, then we actually count UTF-8 characters.
305 ** If x is a blob, then we count bytes.
307 ** If p1 is negative, then we begin abs(p1) from the end of x[].
309 ** If p2 is negative, return the p2 characters preceding p1.
311 static void substrFunc(
312 sqlite3_context *context,
313 int argc,
314 sqlite3_value **argv
316 const unsigned char *z;
317 const unsigned char *z2;
318 int len;
319 int p0type;
320 i64 p1, p2;
321 int negP2 = 0;
323 assert( argc==3 || argc==2 );
324 if( sqlite3_value_type(argv[1])==SQLITE_NULL
325 || (argc==3 && sqlite3_value_type(argv[2])==SQLITE_NULL)
327 return;
329 p0type = sqlite3_value_type(argv[0]);
330 p1 = sqlite3_value_int(argv[1]);
331 if( p0type==SQLITE_BLOB ){
332 len = sqlite3_value_bytes(argv[0]);
333 z = sqlite3_value_blob(argv[0]);
334 if( z==0 ) return;
335 assert( len==sqlite3_value_bytes(argv[0]) );
336 }else{
337 z = sqlite3_value_text(argv[0]);
338 if( z==0 ) return;
339 len = 0;
340 if( p1<0 ){
341 for(z2=z; *z2; len++){
342 SQLITE_SKIP_UTF8(z2);
346 #ifdef SQLITE_SUBSTR_COMPATIBILITY
347 /* If SUBSTR_COMPATIBILITY is defined then substr(X,0,N) work the same as
348 ** as substr(X,1,N) - it returns the first N characters of X. This
349 ** is essentially a back-out of the bug-fix in check-in [5fc125d362df4b8]
350 ** from 2009-02-02 for compatibility of applications that exploited the
351 ** old buggy behavior. */
352 if( p1==0 ) p1 = 1; /* <rdar://problem/6778339> */
353 #endif
354 if( argc==3 ){
355 p2 = sqlite3_value_int(argv[2]);
356 if( p2<0 ){
357 p2 = -p2;
358 negP2 = 1;
360 }else{
361 p2 = sqlite3_context_db_handle(context)->aLimit[SQLITE_LIMIT_LENGTH];
363 if( p1<0 ){
364 p1 += len;
365 if( p1<0 ){
366 p2 += p1;
367 if( p2<0 ) p2 = 0;
368 p1 = 0;
370 }else if( p1>0 ){
371 p1--;
372 }else if( p2>0 ){
373 p2--;
375 if( negP2 ){
376 p1 -= p2;
377 if( p1<0 ){
378 p2 += p1;
379 p1 = 0;
382 assert( p1>=0 && p2>=0 );
383 if( p0type!=SQLITE_BLOB ){
384 while( *z && p1 ){
385 SQLITE_SKIP_UTF8(z);
386 p1--;
388 for(z2=z; *z2 && p2; p2--){
389 SQLITE_SKIP_UTF8(z2);
391 sqlite3_result_text64(context, (char*)z, z2-z, SQLITE_TRANSIENT,
392 SQLITE_UTF8);
393 }else{
394 if( p1+p2>len ){
395 p2 = len-p1;
396 if( p2<0 ) p2 = 0;
398 sqlite3_result_blob64(context, (char*)&z[p1], (u64)p2, SQLITE_TRANSIENT);
403 ** Implementation of the round() function
405 #ifndef SQLITE_OMIT_FLOATING_POINT
406 static void roundFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
407 int n = 0;
408 double r;
409 char *zBuf;
410 assert( argc==1 || argc==2 );
411 if( argc==2 ){
412 if( SQLITE_NULL==sqlite3_value_type(argv[1]) ) return;
413 n = sqlite3_value_int(argv[1]);
414 if( n>30 ) n = 30;
415 if( n<0 ) n = 0;
417 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
418 r = sqlite3_value_double(argv[0]);
419 /* If Y==0 and X will fit in a 64-bit int,
420 ** handle the rounding directly,
421 ** otherwise use printf.
423 if( r<-4503599627370496.0 || r>+4503599627370496.0 ){
424 /* The value has no fractional part so there is nothing to round */
425 }else if( n==0 ){
426 r = (double)((sqlite_int64)(r+(r<0?-0.5:+0.5)));
427 }else{
428 zBuf = sqlite3_mprintf("%.*f",n,r);
429 if( zBuf==0 ){
430 sqlite3_result_error_nomem(context);
431 return;
433 sqlite3AtoF(zBuf, &r, sqlite3Strlen30(zBuf), SQLITE_UTF8);
434 sqlite3_free(zBuf);
436 sqlite3_result_double(context, r);
438 #endif
441 ** Allocate nByte bytes of space using sqlite3Malloc(). If the
442 ** allocation fails, call sqlite3_result_error_nomem() to notify
443 ** the database handle that malloc() has failed and return NULL.
444 ** If nByte is larger than the maximum string or blob length, then
445 ** raise an SQLITE_TOOBIG exception and return NULL.
447 static void *contextMalloc(sqlite3_context *context, i64 nByte){
448 char *z;
449 sqlite3 *db = sqlite3_context_db_handle(context);
450 assert( nByte>0 );
451 testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH] );
452 testcase( nByte==db->aLimit[SQLITE_LIMIT_LENGTH]+1 );
453 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
454 sqlite3_result_error_toobig(context);
455 z = 0;
456 }else{
457 z = sqlite3Malloc(nByte);
458 if( !z ){
459 sqlite3_result_error_nomem(context);
462 return z;
466 ** Implementation of the upper() and lower() SQL functions.
468 static void upperFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
469 char *z1;
470 const char *z2;
471 int i, n;
472 UNUSED_PARAMETER(argc);
473 z2 = (char*)sqlite3_value_text(argv[0]);
474 n = sqlite3_value_bytes(argv[0]);
475 /* Verify that the call to _bytes() does not invalidate the _text() pointer */
476 assert( z2==(char*)sqlite3_value_text(argv[0]) );
477 if( z2 ){
478 z1 = contextMalloc(context, ((i64)n)+1);
479 if( z1 ){
480 for(i=0; i<n; i++){
481 z1[i] = (char)sqlite3Toupper(z2[i]);
483 sqlite3_result_text(context, z1, n, sqlite3_free);
487 static void lowerFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
488 char *z1;
489 const char *z2;
490 int i, n;
491 UNUSED_PARAMETER(argc);
492 z2 = (char*)sqlite3_value_text(argv[0]);
493 n = sqlite3_value_bytes(argv[0]);
494 /* Verify that the call to _bytes() does not invalidate the _text() pointer */
495 assert( z2==(char*)sqlite3_value_text(argv[0]) );
496 if( z2 ){
497 z1 = contextMalloc(context, ((i64)n)+1);
498 if( z1 ){
499 for(i=0; i<n; i++){
500 z1[i] = sqlite3Tolower(z2[i]);
502 sqlite3_result_text(context, z1, n, sqlite3_free);
508 ** Some functions like COALESCE() and IFNULL() and UNLIKELY() are implemented
509 ** as VDBE code so that unused argument values do not have to be computed.
510 ** However, we still need some kind of function implementation for this
511 ** routines in the function table. The noopFunc macro provides this.
512 ** noopFunc will never be called so it doesn't matter what the implementation
513 ** is. We might as well use the "version()" function as a substitute.
515 #define noopFunc versionFunc /* Substitute function - never called */
518 ** Implementation of random(). Return a random integer.
520 static void randomFunc(
521 sqlite3_context *context,
522 int NotUsed,
523 sqlite3_value **NotUsed2
525 sqlite_int64 r;
526 UNUSED_PARAMETER2(NotUsed, NotUsed2);
527 sqlite3_randomness(sizeof(r), &r);
528 if( r<0 ){
529 /* We need to prevent a random number of 0x8000000000000000
530 ** (or -9223372036854775808) since when you do abs() of that
531 ** number of you get the same value back again. To do this
532 ** in a way that is testable, mask the sign bit off of negative
533 ** values, resulting in a positive value. Then take the
534 ** 2s complement of that positive value. The end result can
535 ** therefore be no less than -9223372036854775807.
537 r = -(r & LARGEST_INT64);
539 sqlite3_result_int64(context, r);
543 ** Implementation of randomblob(N). Return a random blob
544 ** that is N bytes long.
546 static void randomBlob(
547 sqlite3_context *context,
548 int argc,
549 sqlite3_value **argv
551 sqlite3_int64 n;
552 unsigned char *p;
553 assert( argc==1 );
554 UNUSED_PARAMETER(argc);
555 n = sqlite3_value_int64(argv[0]);
556 if( n<1 ){
557 n = 1;
559 p = contextMalloc(context, n);
560 if( p ){
561 sqlite3_randomness(n, p);
562 sqlite3_result_blob(context, (char*)p, n, sqlite3_free);
567 ** Implementation of the last_insert_rowid() SQL function. The return
568 ** value is the same as the sqlite3_last_insert_rowid() API function.
570 static void last_insert_rowid(
571 sqlite3_context *context,
572 int NotUsed,
573 sqlite3_value **NotUsed2
575 sqlite3 *db = sqlite3_context_db_handle(context);
576 UNUSED_PARAMETER2(NotUsed, NotUsed2);
577 /* IMP: R-51513-12026 The last_insert_rowid() SQL function is a
578 ** wrapper around the sqlite3_last_insert_rowid() C/C++ interface
579 ** function. */
580 sqlite3_result_int64(context, sqlite3_last_insert_rowid(db));
584 ** Implementation of the changes() SQL function.
586 ** IMP: R-32760-32347 The changes() SQL function is a wrapper
587 ** around the sqlite3_changes64() C/C++ function and hence follows the
588 ** same rules for counting changes.
590 static void changes(
591 sqlite3_context *context,
592 int NotUsed,
593 sqlite3_value **NotUsed2
595 sqlite3 *db = sqlite3_context_db_handle(context);
596 UNUSED_PARAMETER2(NotUsed, NotUsed2);
597 sqlite3_result_int64(context, sqlite3_changes64(db));
601 ** Implementation of the total_changes() SQL function. The return value is
602 ** the same as the sqlite3_total_changes64() API function.
604 static void total_changes(
605 sqlite3_context *context,
606 int NotUsed,
607 sqlite3_value **NotUsed2
609 sqlite3 *db = sqlite3_context_db_handle(context);
610 UNUSED_PARAMETER2(NotUsed, NotUsed2);
611 /* IMP: R-11217-42568 This function is a wrapper around the
612 ** sqlite3_total_changes64() C/C++ interface. */
613 sqlite3_result_int64(context, sqlite3_total_changes64(db));
617 ** A structure defining how to do GLOB-style comparisons.
619 struct compareInfo {
620 u8 matchAll; /* "*" or "%" */
621 u8 matchOne; /* "?" or "_" */
622 u8 matchSet; /* "[" or 0 */
623 u8 noCase; /* true to ignore case differences */
627 ** For LIKE and GLOB matching on EBCDIC machines, assume that every
628 ** character is exactly one byte in size. Also, provde the Utf8Read()
629 ** macro for fast reading of the next character in the common case where
630 ** the next character is ASCII.
632 #if defined(SQLITE_EBCDIC)
633 # define sqlite3Utf8Read(A) (*((*A)++))
634 # define Utf8Read(A) (*(A++))
635 #else
636 # define Utf8Read(A) (A[0]<0x80?*(A++):sqlite3Utf8Read(&A))
637 #endif
639 static const struct compareInfo globInfo = { '*', '?', '[', 0 };
640 /* The correct SQL-92 behavior is for the LIKE operator to ignore
641 ** case. Thus 'a' LIKE 'A' would be true. */
642 static const struct compareInfo likeInfoNorm = { '%', '_', 0, 1 };
643 /* If SQLITE_CASE_SENSITIVE_LIKE is defined, then the LIKE operator
644 ** is case sensitive causing 'a' LIKE 'A' to be false */
645 static const struct compareInfo likeInfoAlt = { '%', '_', 0, 0 };
648 ** Possible error returns from patternMatch()
650 #define SQLITE_MATCH 0
651 #define SQLITE_NOMATCH 1
652 #define SQLITE_NOWILDCARDMATCH 2
655 ** Compare two UTF-8 strings for equality where the first string is
656 ** a GLOB or LIKE expression. Return values:
658 ** SQLITE_MATCH: Match
659 ** SQLITE_NOMATCH: No match
660 ** SQLITE_NOWILDCARDMATCH: No match in spite of having * or % wildcards.
662 ** Globbing rules:
664 ** '*' Matches any sequence of zero or more characters.
666 ** '?' Matches exactly one character.
668 ** [...] Matches one character from the enclosed list of
669 ** characters.
671 ** [^...] Matches one character not in the enclosed list.
673 ** With the [...] and [^...] matching, a ']' character can be included
674 ** in the list by making it the first character after '[' or '^'. A
675 ** range of characters can be specified using '-'. Example:
676 ** "[a-z]" matches any single lower-case letter. To match a '-', make
677 ** it the last character in the list.
679 ** Like matching rules:
681 ** '%' Matches any sequence of zero or more characters
683 *** '_' Matches any one character
685 ** Ec Where E is the "esc" character and c is any other
686 ** character, including '%', '_', and esc, match exactly c.
688 ** The comments within this routine usually assume glob matching.
690 ** This routine is usually quick, but can be N**2 in the worst case.
692 static int patternCompare(
693 const u8 *zPattern, /* The glob pattern */
694 const u8 *zString, /* The string to compare against the glob */
695 const struct compareInfo *pInfo, /* Information about how to do the compare */
696 u32 matchOther /* The escape char (LIKE) or '[' (GLOB) */
698 u32 c, c2; /* Next pattern and input string chars */
699 u32 matchOne = pInfo->matchOne; /* "?" or "_" */
700 u32 matchAll = pInfo->matchAll; /* "*" or "%" */
701 u8 noCase = pInfo->noCase; /* True if uppercase==lowercase */
702 const u8 *zEscaped = 0; /* One past the last escaped input char */
704 while( (c = Utf8Read(zPattern))!=0 ){
705 if( c==matchAll ){ /* Match "*" */
706 /* Skip over multiple "*" characters in the pattern. If there
707 ** are also "?" characters, skip those as well, but consume a
708 ** single character of the input string for each "?" skipped */
709 while( (c=Utf8Read(zPattern)) == matchAll
710 || (c == matchOne && matchOne!=0) ){
711 if( c==matchOne && sqlite3Utf8Read(&zString)==0 ){
712 return SQLITE_NOWILDCARDMATCH;
715 if( c==0 ){
716 return SQLITE_MATCH; /* "*" at the end of the pattern matches */
717 }else if( c==matchOther ){
718 if( pInfo->matchSet==0 ){
719 c = sqlite3Utf8Read(&zPattern);
720 if( c==0 ) return SQLITE_NOWILDCARDMATCH;
721 }else{
722 /* "[...]" immediately follows the "*". We have to do a slow
723 ** recursive search in this case, but it is an unusual case. */
724 assert( matchOther<0x80 ); /* '[' is a single-byte character */
725 while( *zString ){
726 int bMatch = patternCompare(&zPattern[-1],zString,pInfo,matchOther);
727 if( bMatch!=SQLITE_NOMATCH ) return bMatch;
728 SQLITE_SKIP_UTF8(zString);
730 return SQLITE_NOWILDCARDMATCH;
734 /* At this point variable c contains the first character of the
735 ** pattern string past the "*". Search in the input string for the
736 ** first matching character and recursively continue the match from
737 ** that point.
739 ** For a case-insensitive search, set variable cx to be the same as
740 ** c but in the other case and search the input string for either
741 ** c or cx.
743 if( c<0x80 ){
744 char zStop[3];
745 int bMatch;
746 if( noCase ){
747 zStop[0] = sqlite3Toupper(c);
748 zStop[1] = sqlite3Tolower(c);
749 zStop[2] = 0;
750 }else{
751 zStop[0] = c;
752 zStop[1] = 0;
754 while(1){
755 zString += strcspn((const char*)zString, zStop);
756 if( zString[0]==0 ) break;
757 zString++;
758 bMatch = patternCompare(zPattern,zString,pInfo,matchOther);
759 if( bMatch!=SQLITE_NOMATCH ) return bMatch;
761 }else{
762 int bMatch;
763 while( (c2 = Utf8Read(zString))!=0 ){
764 if( c2!=c ) continue;
765 bMatch = patternCompare(zPattern,zString,pInfo,matchOther);
766 if( bMatch!=SQLITE_NOMATCH ) return bMatch;
769 return SQLITE_NOWILDCARDMATCH;
771 if( c==matchOther ){
772 if( pInfo->matchSet==0 ){
773 c = sqlite3Utf8Read(&zPattern);
774 if( c==0 ) return SQLITE_NOMATCH;
775 zEscaped = zPattern;
776 }else{
777 u32 prior_c = 0;
778 int seen = 0;
779 int invert = 0;
780 c = sqlite3Utf8Read(&zString);
781 if( c==0 ) return SQLITE_NOMATCH;
782 c2 = sqlite3Utf8Read(&zPattern);
783 if( c2=='^' ){
784 invert = 1;
785 c2 = sqlite3Utf8Read(&zPattern);
787 if( c2==']' ){
788 if( c==']' ) seen = 1;
789 c2 = sqlite3Utf8Read(&zPattern);
791 while( c2 && c2!=']' ){
792 if( c2=='-' && zPattern[0]!=']' && zPattern[0]!=0 && prior_c>0 ){
793 c2 = sqlite3Utf8Read(&zPattern);
794 if( c>=prior_c && c<=c2 ) seen = 1;
795 prior_c = 0;
796 }else{
797 if( c==c2 ){
798 seen = 1;
800 prior_c = c2;
802 c2 = sqlite3Utf8Read(&zPattern);
804 if( c2==0 || (seen ^ invert)==0 ){
805 return SQLITE_NOMATCH;
807 continue;
810 c2 = Utf8Read(zString);
811 if( c==c2 ) continue;
812 if( noCase && sqlite3Tolower(c)==sqlite3Tolower(c2) && c<0x80 && c2<0x80 ){
813 continue;
815 if( c==matchOne && zPattern!=zEscaped && c2!=0 ) continue;
816 return SQLITE_NOMATCH;
818 return *zString==0 ? SQLITE_MATCH : SQLITE_NOMATCH;
822 ** The sqlite3_strglob() interface. Return 0 on a match (like strcmp()) and
823 ** non-zero if there is no match.
825 int sqlite3_strglob(const char *zGlobPattern, const char *zString){
826 if( zString==0 ){
827 return zGlobPattern!=0;
828 }else if( zGlobPattern==0 ){
829 return 1;
830 }else {
831 return patternCompare((u8*)zGlobPattern, (u8*)zString, &globInfo, '[');
836 ** The sqlite3_strlike() interface. Return 0 on a match and non-zero for
837 ** a miss - like strcmp().
839 int sqlite3_strlike(const char *zPattern, const char *zStr, unsigned int esc){
840 if( zStr==0 ){
841 return zPattern!=0;
842 }else if( zPattern==0 ){
843 return 1;
844 }else{
845 return patternCompare((u8*)zPattern, (u8*)zStr, &likeInfoNorm, esc);
850 ** Count the number of times that the LIKE operator (or GLOB which is
851 ** just a variation of LIKE) gets called. This is used for testing
852 ** only.
854 #ifdef SQLITE_TEST
855 int sqlite3_like_count = 0;
856 #endif
860 ** Implementation of the like() SQL function. This function implements
861 ** the build-in LIKE operator. The first argument to the function is the
862 ** pattern and the second argument is the string. So, the SQL statements:
864 ** A LIKE B
866 ** is implemented as like(B,A).
868 ** This same function (with a different compareInfo structure) computes
869 ** the GLOB operator.
871 static void likeFunc(
872 sqlite3_context *context,
873 int argc,
874 sqlite3_value **argv
876 const unsigned char *zA, *zB;
877 u32 escape;
878 int nPat;
879 sqlite3 *db = sqlite3_context_db_handle(context);
880 struct compareInfo *pInfo = sqlite3_user_data(context);
881 struct compareInfo backupInfo;
883 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
884 if( sqlite3_value_type(argv[0])==SQLITE_BLOB
885 || sqlite3_value_type(argv[1])==SQLITE_BLOB
887 #ifdef SQLITE_TEST
888 sqlite3_like_count++;
889 #endif
890 sqlite3_result_int(context, 0);
891 return;
893 #endif
895 /* Limit the length of the LIKE or GLOB pattern to avoid problems
896 ** of deep recursion and N*N behavior in patternCompare().
898 nPat = sqlite3_value_bytes(argv[0]);
899 testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] );
900 testcase( nPat==db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH]+1 );
901 if( nPat > db->aLimit[SQLITE_LIMIT_LIKE_PATTERN_LENGTH] ){
902 sqlite3_result_error(context, "LIKE or GLOB pattern too complex", -1);
903 return;
905 if( argc==3 ){
906 /* The escape character string must consist of a single UTF-8 character.
907 ** Otherwise, return an error.
909 const unsigned char *zEsc = sqlite3_value_text(argv[2]);
910 if( zEsc==0 ) return;
911 if( sqlite3Utf8CharLen((char*)zEsc, -1)!=1 ){
912 sqlite3_result_error(context,
913 "ESCAPE expression must be a single character", -1);
914 return;
916 escape = sqlite3Utf8Read(&zEsc);
917 if( escape==pInfo->matchAll || escape==pInfo->matchOne ){
918 memcpy(&backupInfo, pInfo, sizeof(backupInfo));
919 pInfo = &backupInfo;
920 if( escape==pInfo->matchAll ) pInfo->matchAll = 0;
921 if( escape==pInfo->matchOne ) pInfo->matchOne = 0;
923 }else{
924 escape = pInfo->matchSet;
926 zB = sqlite3_value_text(argv[0]);
927 zA = sqlite3_value_text(argv[1]);
928 if( zA && zB ){
929 #ifdef SQLITE_TEST
930 sqlite3_like_count++;
931 #endif
932 sqlite3_result_int(context,
933 patternCompare(zB, zA, pInfo, escape)==SQLITE_MATCH);
938 ** Implementation of the NULLIF(x,y) function. The result is the first
939 ** argument if the arguments are different. The result is NULL if the
940 ** arguments are equal to each other.
942 static void nullifFunc(
943 sqlite3_context *context,
944 int NotUsed,
945 sqlite3_value **argv
947 CollSeq *pColl = sqlite3GetFuncCollSeq(context);
948 UNUSED_PARAMETER(NotUsed);
949 if( sqlite3MemCompare(argv[0], argv[1], pColl)!=0 ){
950 sqlite3_result_value(context, argv[0]);
955 ** Implementation of the sqlite_version() function. The result is the version
956 ** of the SQLite library that is running.
958 static void versionFunc(
959 sqlite3_context *context,
960 int NotUsed,
961 sqlite3_value **NotUsed2
963 UNUSED_PARAMETER2(NotUsed, NotUsed2);
964 /* IMP: R-48699-48617 This function is an SQL wrapper around the
965 ** sqlite3_libversion() C-interface. */
966 sqlite3_result_text(context, sqlite3_libversion(), -1, SQLITE_STATIC);
970 ** Implementation of the sqlite_source_id() function. The result is a string
971 ** that identifies the particular version of the source code used to build
972 ** SQLite.
974 static void sourceidFunc(
975 sqlite3_context *context,
976 int NotUsed,
977 sqlite3_value **NotUsed2
979 UNUSED_PARAMETER2(NotUsed, NotUsed2);
980 /* IMP: R-24470-31136 This function is an SQL wrapper around the
981 ** sqlite3_sourceid() C interface. */
982 sqlite3_result_text(context, sqlite3_sourceid(), -1, SQLITE_STATIC);
986 ** Implementation of the sqlite_log() function. This is a wrapper around
987 ** sqlite3_log(). The return value is NULL. The function exists purely for
988 ** its side-effects.
990 static void errlogFunc(
991 sqlite3_context *context,
992 int argc,
993 sqlite3_value **argv
995 UNUSED_PARAMETER(argc);
996 UNUSED_PARAMETER(context);
997 sqlite3_log(sqlite3_value_int(argv[0]), "%s", sqlite3_value_text(argv[1]));
1001 ** Implementation of the sqlite_compileoption_used() function.
1002 ** The result is an integer that identifies if the compiler option
1003 ** was used to build SQLite.
1005 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
1006 static void compileoptionusedFunc(
1007 sqlite3_context *context,
1008 int argc,
1009 sqlite3_value **argv
1011 const char *zOptName;
1012 assert( argc==1 );
1013 UNUSED_PARAMETER(argc);
1014 /* IMP: R-39564-36305 The sqlite_compileoption_used() SQL
1015 ** function is a wrapper around the sqlite3_compileoption_used() C/C++
1016 ** function.
1018 if( (zOptName = (const char*)sqlite3_value_text(argv[0]))!=0 ){
1019 sqlite3_result_int(context, sqlite3_compileoption_used(zOptName));
1022 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
1025 ** Implementation of the sqlite_compileoption_get() function.
1026 ** The result is a string that identifies the compiler options
1027 ** used to build SQLite.
1029 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
1030 static void compileoptiongetFunc(
1031 sqlite3_context *context,
1032 int argc,
1033 sqlite3_value **argv
1035 int n;
1036 assert( argc==1 );
1037 UNUSED_PARAMETER(argc);
1038 /* IMP: R-04922-24076 The sqlite_compileoption_get() SQL function
1039 ** is a wrapper around the sqlite3_compileoption_get() C/C++ function.
1041 n = sqlite3_value_int(argv[0]);
1042 sqlite3_result_text(context, sqlite3_compileoption_get(n), -1, SQLITE_STATIC);
1044 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
1046 /* Array for converting from half-bytes (nybbles) into ASCII hex
1047 ** digits. */
1048 static const char hexdigits[] = {
1049 '0', '1', '2', '3', '4', '5', '6', '7',
1050 '8', '9', 'A', 'B', 'C', 'D', 'E', 'F'
1054 ** Append to pStr text that is the SQL literal representation of the
1055 ** value contained in pValue.
1057 void sqlite3QuoteValue(StrAccum *pStr, sqlite3_value *pValue){
1058 /* As currently implemented, the string must be initially empty.
1059 ** we might relax this requirement in the future, but that will
1060 ** require enhancements to the implementation. */
1061 assert( pStr!=0 && pStr->nChar==0 );
1063 switch( sqlite3_value_type(pValue) ){
1064 case SQLITE_FLOAT: {
1065 double r1, r2;
1066 const char *zVal;
1067 r1 = sqlite3_value_double(pValue);
1068 sqlite3_str_appendf(pStr, "%!.15g", r1);
1069 zVal = sqlite3_str_value(pStr);
1070 if( zVal ){
1071 sqlite3AtoF(zVal, &r2, pStr->nChar, SQLITE_UTF8);
1072 if( r1!=r2 ){
1073 sqlite3_str_reset(pStr);
1074 sqlite3_str_appendf(pStr, "%!.20e", r1);
1077 break;
1079 case SQLITE_INTEGER: {
1080 sqlite3_str_appendf(pStr, "%lld", sqlite3_value_int64(pValue));
1081 break;
1083 case SQLITE_BLOB: {
1084 char const *zBlob = sqlite3_value_blob(pValue);
1085 i64 nBlob = sqlite3_value_bytes(pValue);
1086 assert( zBlob==sqlite3_value_blob(pValue) ); /* No encoding change */
1087 sqlite3StrAccumEnlarge(pStr, nBlob*2 + 4);
1088 if( pStr->accError==0 ){
1089 char *zText = pStr->zText;
1090 int i;
1091 for(i=0; i<nBlob; i++){
1092 zText[(i*2)+2] = hexdigits[(zBlob[i]>>4)&0x0F];
1093 zText[(i*2)+3] = hexdigits[(zBlob[i])&0x0F];
1095 zText[(nBlob*2)+2] = '\'';
1096 zText[(nBlob*2)+3] = '\0';
1097 zText[0] = 'X';
1098 zText[1] = '\'';
1099 pStr->nChar = nBlob*2 + 3;
1101 break;
1103 case SQLITE_TEXT: {
1104 const unsigned char *zArg = sqlite3_value_text(pValue);
1105 sqlite3_str_appendf(pStr, "%Q", zArg);
1106 break;
1108 default: {
1109 assert( sqlite3_value_type(pValue)==SQLITE_NULL );
1110 sqlite3_str_append(pStr, "NULL", 4);
1111 break;
1117 ** Implementation of the QUOTE() function.
1119 ** The quote(X) function returns the text of an SQL literal which is the
1120 ** value of its argument suitable for inclusion into an SQL statement.
1121 ** Strings are surrounded by single-quotes with escapes on interior quotes
1122 ** as needed. BLOBs are encoded as hexadecimal literals. Strings with
1123 ** embedded NUL characters cannot be represented as string literals in SQL
1124 ** and hence the returned string literal is truncated prior to the first NUL.
1126 static void quoteFunc(sqlite3_context *context, int argc, sqlite3_value **argv){
1127 sqlite3_str str;
1128 sqlite3 *db = sqlite3_context_db_handle(context);
1129 assert( argc==1 );
1130 UNUSED_PARAMETER(argc);
1131 sqlite3StrAccumInit(&str, db, 0, 0, db->aLimit[SQLITE_LIMIT_LENGTH]);
1132 sqlite3QuoteValue(&str,argv[0]);
1133 sqlite3_result_text(context, sqlite3StrAccumFinish(&str), str.nChar,
1134 SQLITE_DYNAMIC);
1135 if( str.accError!=SQLITE_OK ){
1136 sqlite3_result_null(context);
1137 sqlite3_result_error_code(context, str.accError);
1142 ** The unicode() function. Return the integer unicode code-point value
1143 ** for the first character of the input string.
1145 static void unicodeFunc(
1146 sqlite3_context *context,
1147 int argc,
1148 sqlite3_value **argv
1150 const unsigned char *z = sqlite3_value_text(argv[0]);
1151 (void)argc;
1152 if( z && z[0] ) sqlite3_result_int(context, sqlite3Utf8Read(&z));
1156 ** The char() function takes zero or more arguments, each of which is
1157 ** an integer. It constructs a string where each character of the string
1158 ** is the unicode character for the corresponding integer argument.
1160 static void charFunc(
1161 sqlite3_context *context,
1162 int argc,
1163 sqlite3_value **argv
1165 unsigned char *z, *zOut;
1166 int i;
1167 zOut = z = sqlite3_malloc64( argc*4+1 );
1168 if( z==0 ){
1169 sqlite3_result_error_nomem(context);
1170 return;
1172 for(i=0; i<argc; i++){
1173 sqlite3_int64 x;
1174 unsigned c;
1175 x = sqlite3_value_int64(argv[i]);
1176 if( x<0 || x>0x10ffff ) x = 0xfffd;
1177 c = (unsigned)(x & 0x1fffff);
1178 if( c<0x00080 ){
1179 *zOut++ = (u8)(c&0xFF);
1180 }else if( c<0x00800 ){
1181 *zOut++ = 0xC0 + (u8)((c>>6)&0x1F);
1182 *zOut++ = 0x80 + (u8)(c & 0x3F);
1183 }else if( c<0x10000 ){
1184 *zOut++ = 0xE0 + (u8)((c>>12)&0x0F);
1185 *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
1186 *zOut++ = 0x80 + (u8)(c & 0x3F);
1187 }else{
1188 *zOut++ = 0xF0 + (u8)((c>>18) & 0x07);
1189 *zOut++ = 0x80 + (u8)((c>>12) & 0x3F);
1190 *zOut++ = 0x80 + (u8)((c>>6) & 0x3F);
1191 *zOut++ = 0x80 + (u8)(c & 0x3F);
1194 sqlite3_result_text64(context, (char*)z, zOut-z, sqlite3_free, SQLITE_UTF8);
1198 ** The hex() function. Interpret the argument as a blob. Return
1199 ** a hexadecimal rendering as text.
1201 static void hexFunc(
1202 sqlite3_context *context,
1203 int argc,
1204 sqlite3_value **argv
1206 int i, n;
1207 const unsigned char *pBlob;
1208 char *zHex, *z;
1209 assert( argc==1 );
1210 UNUSED_PARAMETER(argc);
1211 pBlob = sqlite3_value_blob(argv[0]);
1212 n = sqlite3_value_bytes(argv[0]);
1213 assert( pBlob==sqlite3_value_blob(argv[0]) ); /* No encoding change */
1214 z = zHex = contextMalloc(context, ((i64)n)*2 + 1);
1215 if( zHex ){
1216 for(i=0; i<n; i++, pBlob++){
1217 unsigned char c = *pBlob;
1218 *(z++) = hexdigits[(c>>4)&0xf];
1219 *(z++) = hexdigits[c&0xf];
1221 *z = 0;
1222 sqlite3_result_text(context, zHex, n*2, sqlite3_free);
1227 ** Buffer zStr contains nStr bytes of utf-8 encoded text. Return 1 if zStr
1228 ** contains character ch, or 0 if it does not.
1230 static int strContainsChar(const u8 *zStr, int nStr, u32 ch){
1231 const u8 *zEnd = &zStr[nStr];
1232 const u8 *z = zStr;
1233 while( z<zEnd ){
1234 u32 tst = Utf8Read(z);
1235 if( tst==ch ) return 1;
1237 return 0;
1241 ** The unhex() function. This function may be invoked with either one or
1242 ** two arguments. In both cases the first argument is interpreted as text
1243 ** a text value containing a set of pairs of hexadecimal digits which are
1244 ** decoded and returned as a blob.
1246 ** If there is only a single argument, then it must consist only of an
1247 ** even number of hexadeximal digits. Otherwise, return NULL.
1249 ** Or, if there is a second argument, then any character that appears in
1250 ** the second argument is also allowed to appear between pairs of hexadecimal
1251 ** digits in the first argument. If any other character appears in the
1252 ** first argument, or if one of the allowed characters appears between
1253 ** two hexadecimal digits that make up a single byte, NULL is returned.
1255 ** The following expressions are all true:
1257 ** unhex('ABCD') IS x'ABCD'
1258 ** unhex('AB CD') IS NULL
1259 ** unhex('AB CD', ' ') IS x'ABCD'
1260 ** unhex('A BCD', ' ') IS NULL
1262 static void unhexFunc(
1263 sqlite3_context *pCtx,
1264 int argc,
1265 sqlite3_value **argv
1267 const u8 *zPass = (const u8*)"";
1268 int nPass = 0;
1269 const u8 *zHex = sqlite3_value_text(argv[0]);
1270 int nHex = sqlite3_value_bytes(argv[0]);
1271 #ifdef SQLITE_DEBUG
1272 const u8 *zEnd = zHex ? &zHex[nHex] : 0;
1273 #endif
1274 u8 *pBlob = 0;
1275 u8 *p = 0;
1277 assert( argc==1 || argc==2 );
1278 if( argc==2 ){
1279 zPass = sqlite3_value_text(argv[1]);
1280 nPass = sqlite3_value_bytes(argv[1]);
1282 if( !zHex || !zPass ) return;
1284 p = pBlob = contextMalloc(pCtx, (nHex/2)+1);
1285 if( pBlob ){
1286 u8 c; /* Most significant digit of next byte */
1287 u8 d; /* Least significant digit of next byte */
1289 while( (c = *zHex)!=0x00 ){
1290 while( !sqlite3Isxdigit(c) ){
1291 u32 ch = Utf8Read(zHex);
1292 assert( zHex<=zEnd );
1293 if( !strContainsChar(zPass, nPass, ch) ) goto unhex_null;
1294 c = *zHex;
1295 if( c==0x00 ) goto unhex_done;
1297 zHex++;
1298 assert( *zEnd==0x00 );
1299 assert( zHex<=zEnd );
1300 d = *(zHex++);
1301 if( !sqlite3Isxdigit(d) ) goto unhex_null;
1302 *(p++) = (sqlite3HexToInt(c)<<4) | sqlite3HexToInt(d);
1306 unhex_done:
1307 sqlite3_result_blob(pCtx, pBlob, (p - pBlob), sqlite3_free);
1308 return;
1310 unhex_null:
1311 sqlite3_free(pBlob);
1312 return;
1317 ** The zeroblob(N) function returns a zero-filled blob of size N bytes.
1319 static void zeroblobFunc(
1320 sqlite3_context *context,
1321 int argc,
1322 sqlite3_value **argv
1324 i64 n;
1325 int rc;
1326 assert( argc==1 );
1327 UNUSED_PARAMETER(argc);
1328 n = sqlite3_value_int64(argv[0]);
1329 if( n<0 ) n = 0;
1330 rc = sqlite3_result_zeroblob64(context, n); /* IMP: R-00293-64994 */
1331 if( rc ){
1332 sqlite3_result_error_code(context, rc);
1337 ** The replace() function. Three arguments are all strings: call
1338 ** them A, B, and C. The result is also a string which is derived
1339 ** from A by replacing every occurrence of B with C. The match
1340 ** must be exact. Collating sequences are not used.
1342 static void replaceFunc(
1343 sqlite3_context *context,
1344 int argc,
1345 sqlite3_value **argv
1347 const unsigned char *zStr; /* The input string A */
1348 const unsigned char *zPattern; /* The pattern string B */
1349 const unsigned char *zRep; /* The replacement string C */
1350 unsigned char *zOut; /* The output */
1351 int nStr; /* Size of zStr */
1352 int nPattern; /* Size of zPattern */
1353 int nRep; /* Size of zRep */
1354 i64 nOut; /* Maximum size of zOut */
1355 int loopLimit; /* Last zStr[] that might match zPattern[] */
1356 int i, j; /* Loop counters */
1357 unsigned cntExpand; /* Number zOut expansions */
1358 sqlite3 *db = sqlite3_context_db_handle(context);
1360 assert( argc==3 );
1361 UNUSED_PARAMETER(argc);
1362 zStr = sqlite3_value_text(argv[0]);
1363 if( zStr==0 ) return;
1364 nStr = sqlite3_value_bytes(argv[0]);
1365 assert( zStr==sqlite3_value_text(argv[0]) ); /* No encoding change */
1366 zPattern = sqlite3_value_text(argv[1]);
1367 if( zPattern==0 ){
1368 assert( sqlite3_value_type(argv[1])==SQLITE_NULL
1369 || sqlite3_context_db_handle(context)->mallocFailed );
1370 return;
1372 if( zPattern[0]==0 ){
1373 assert( sqlite3_value_type(argv[1])!=SQLITE_NULL );
1374 sqlite3_result_value(context, argv[0]);
1375 return;
1377 nPattern = sqlite3_value_bytes(argv[1]);
1378 assert( zPattern==sqlite3_value_text(argv[1]) ); /* No encoding change */
1379 zRep = sqlite3_value_text(argv[2]);
1380 if( zRep==0 ) return;
1381 nRep = sqlite3_value_bytes(argv[2]);
1382 assert( zRep==sqlite3_value_text(argv[2]) );
1383 nOut = nStr + 1;
1384 assert( nOut<SQLITE_MAX_LENGTH );
1385 zOut = contextMalloc(context, (i64)nOut);
1386 if( zOut==0 ){
1387 return;
1389 loopLimit = nStr - nPattern;
1390 cntExpand = 0;
1391 for(i=j=0; i<=loopLimit; i++){
1392 if( zStr[i]!=zPattern[0] || memcmp(&zStr[i], zPattern, nPattern) ){
1393 zOut[j++] = zStr[i];
1394 }else{
1395 if( nRep>nPattern ){
1396 nOut += nRep - nPattern;
1397 testcase( nOut-1==db->aLimit[SQLITE_LIMIT_LENGTH] );
1398 testcase( nOut-2==db->aLimit[SQLITE_LIMIT_LENGTH] );
1399 if( nOut-1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1400 sqlite3_result_error_toobig(context);
1401 sqlite3_free(zOut);
1402 return;
1404 cntExpand++;
1405 if( (cntExpand&(cntExpand-1))==0 ){
1406 /* Grow the size of the output buffer only on substitutions
1407 ** whose index is a power of two: 1, 2, 4, 8, 16, 32, ... */
1408 u8 *zOld;
1409 zOld = zOut;
1410 zOut = sqlite3Realloc(zOut, (int)nOut + (nOut - nStr - 1));
1411 if( zOut==0 ){
1412 sqlite3_result_error_nomem(context);
1413 sqlite3_free(zOld);
1414 return;
1418 memcpy(&zOut[j], zRep, nRep);
1419 j += nRep;
1420 i += nPattern-1;
1423 assert( j+nStr-i+1<=nOut );
1424 memcpy(&zOut[j], &zStr[i], nStr-i);
1425 j += nStr - i;
1426 assert( j<=nOut );
1427 zOut[j] = 0;
1428 sqlite3_result_text(context, (char*)zOut, j, sqlite3_free);
1432 ** Implementation of the TRIM(), LTRIM(), and RTRIM() functions.
1433 ** The userdata is 0x1 for left trim, 0x2 for right trim, 0x3 for both.
1435 static void trimFunc(
1436 sqlite3_context *context,
1437 int argc,
1438 sqlite3_value **argv
1440 const unsigned char *zIn; /* Input string */
1441 const unsigned char *zCharSet; /* Set of characters to trim */
1442 unsigned int nIn; /* Number of bytes in input */
1443 int flags; /* 1: trimleft 2: trimright 3: trim */
1444 int i; /* Loop counter */
1445 unsigned int *aLen = 0; /* Length of each character in zCharSet */
1446 unsigned char **azChar = 0; /* Individual characters in zCharSet */
1447 int nChar; /* Number of characters in zCharSet */
1449 if( sqlite3_value_type(argv[0])==SQLITE_NULL ){
1450 return;
1452 zIn = sqlite3_value_text(argv[0]);
1453 if( zIn==0 ) return;
1454 nIn = (unsigned)sqlite3_value_bytes(argv[0]);
1455 assert( zIn==sqlite3_value_text(argv[0]) );
1456 if( argc==1 ){
1457 static const unsigned lenOne[] = { 1 };
1458 static unsigned char * const azOne[] = { (u8*)" " };
1459 nChar = 1;
1460 aLen = (unsigned*)lenOne;
1461 azChar = (unsigned char **)azOne;
1462 zCharSet = 0;
1463 }else if( (zCharSet = sqlite3_value_text(argv[1]))==0 ){
1464 return;
1465 }else{
1466 const unsigned char *z;
1467 for(z=zCharSet, nChar=0; *z; nChar++){
1468 SQLITE_SKIP_UTF8(z);
1470 if( nChar>0 ){
1471 azChar = contextMalloc(context,
1472 ((i64)nChar)*(sizeof(char*)+sizeof(unsigned)));
1473 if( azChar==0 ){
1474 return;
1476 aLen = (unsigned*)&azChar[nChar];
1477 for(z=zCharSet, nChar=0; *z; nChar++){
1478 azChar[nChar] = (unsigned char *)z;
1479 SQLITE_SKIP_UTF8(z);
1480 aLen[nChar] = (unsigned)(z - azChar[nChar]);
1484 if( nChar>0 ){
1485 flags = SQLITE_PTR_TO_INT(sqlite3_user_data(context));
1486 if( flags & 1 ){
1487 while( nIn>0 ){
1488 unsigned int len = 0;
1489 for(i=0; i<nChar; i++){
1490 len = aLen[i];
1491 if( len<=nIn && memcmp(zIn, azChar[i], len)==0 ) break;
1493 if( i>=nChar ) break;
1494 zIn += len;
1495 nIn -= len;
1498 if( flags & 2 ){
1499 while( nIn>0 ){
1500 unsigned int len = 0;
1501 for(i=0; i<nChar; i++){
1502 len = aLen[i];
1503 if( len<=nIn && memcmp(&zIn[nIn-len],azChar[i],len)==0 ) break;
1505 if( i>=nChar ) break;
1506 nIn -= len;
1509 if( zCharSet ){
1510 sqlite3_free(azChar);
1513 sqlite3_result_text(context, (char*)zIn, nIn, SQLITE_TRANSIENT);
1517 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
1519 ** The "unknown" function is automatically substituted in place of
1520 ** any unrecognized function name when doing an EXPLAIN or EXPLAIN QUERY PLAN
1521 ** when the SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION compile-time option is used.
1522 ** When the "sqlite3" command-line shell is built using this functionality,
1523 ** that allows an EXPLAIN or EXPLAIN QUERY PLAN for complex queries
1524 ** involving application-defined functions to be examined in a generic
1525 ** sqlite3 shell.
1527 static void unknownFunc(
1528 sqlite3_context *context,
1529 int argc,
1530 sqlite3_value **argv
1532 /* no-op */
1533 (void)context;
1534 (void)argc;
1535 (void)argv;
1537 #endif /*SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION*/
1540 /* IMP: R-25361-16150 This function is omitted from SQLite by default. It
1541 ** is only available if the SQLITE_SOUNDEX compile-time option is used
1542 ** when SQLite is built.
1544 #ifdef SQLITE_SOUNDEX
1546 ** Compute the soundex encoding of a word.
1548 ** IMP: R-59782-00072 The soundex(X) function returns a string that is the
1549 ** soundex encoding of the string X.
1551 static void soundexFunc(
1552 sqlite3_context *context,
1553 int argc,
1554 sqlite3_value **argv
1556 char zResult[8];
1557 const u8 *zIn;
1558 int i, j;
1559 static const unsigned char iCode[] = {
1560 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1561 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1562 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1563 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
1564 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1565 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
1566 0, 0, 1, 2, 3, 0, 1, 2, 0, 0, 2, 2, 4, 5, 5, 0,
1567 1, 2, 6, 2, 3, 0, 1, 0, 2, 0, 2, 0, 0, 0, 0, 0,
1569 assert( argc==1 );
1570 zIn = (u8*)sqlite3_value_text(argv[0]);
1571 if( zIn==0 ) zIn = (u8*)"";
1572 for(i=0; zIn[i] && !sqlite3Isalpha(zIn[i]); i++){}
1573 if( zIn[i] ){
1574 u8 prevcode = iCode[zIn[i]&0x7f];
1575 zResult[0] = sqlite3Toupper(zIn[i]);
1576 for(j=1; j<4 && zIn[i]; i++){
1577 int code = iCode[zIn[i]&0x7f];
1578 if( code>0 ){
1579 if( code!=prevcode ){
1580 prevcode = code;
1581 zResult[j++] = code + '0';
1583 }else{
1584 prevcode = 0;
1587 while( j<4 ){
1588 zResult[j++] = '0';
1590 zResult[j] = 0;
1591 sqlite3_result_text(context, zResult, 4, SQLITE_TRANSIENT);
1592 }else{
1593 /* IMP: R-64894-50321 The string "?000" is returned if the argument
1594 ** is NULL or contains no ASCII alphabetic characters. */
1595 sqlite3_result_text(context, "?000", 4, SQLITE_STATIC);
1598 #endif /* SQLITE_SOUNDEX */
1600 #ifndef SQLITE_OMIT_LOAD_EXTENSION
1602 ** A function that loads a shared-library extension then returns NULL.
1604 static void loadExt(sqlite3_context *context, int argc, sqlite3_value **argv){
1605 const char *zFile = (const char *)sqlite3_value_text(argv[0]);
1606 const char *zProc;
1607 sqlite3 *db = sqlite3_context_db_handle(context);
1608 char *zErrMsg = 0;
1610 /* Disallow the load_extension() SQL function unless the SQLITE_LoadExtFunc
1611 ** flag is set. See the sqlite3_enable_load_extension() API.
1613 if( (db->flags & SQLITE_LoadExtFunc)==0 ){
1614 sqlite3_result_error(context, "not authorized", -1);
1615 return;
1618 if( argc==2 ){
1619 zProc = (const char *)sqlite3_value_text(argv[1]);
1620 }else{
1621 zProc = 0;
1623 if( zFile && sqlite3_load_extension(db, zFile, zProc, &zErrMsg) ){
1624 sqlite3_result_error(context, zErrMsg, -1);
1625 sqlite3_free(zErrMsg);
1628 #endif
1632 ** An instance of the following structure holds the context of a
1633 ** sum() or avg() aggregate computation.
1635 typedef struct SumCtx SumCtx;
1636 struct SumCtx {
1637 double rSum; /* Floating point sum */
1638 i64 iSum; /* Integer sum */
1639 i64 cnt; /* Number of elements summed */
1640 u8 overflow; /* True if integer overflow seen */
1641 u8 approx; /* True if non-integer value was input to the sum */
1645 ** Routines used to compute the sum, average, and total.
1647 ** The SUM() function follows the (broken) SQL standard which means
1648 ** that it returns NULL if it sums over no inputs. TOTAL returns
1649 ** 0.0 in that case. In addition, TOTAL always returns a float where
1650 ** SUM might return an integer if it never encounters a floating point
1651 ** value. TOTAL never fails, but SUM might through an exception if
1652 ** it overflows an integer.
1654 static void sumStep(sqlite3_context *context, int argc, sqlite3_value **argv){
1655 SumCtx *p;
1656 int type;
1657 assert( argc==1 );
1658 UNUSED_PARAMETER(argc);
1659 p = sqlite3_aggregate_context(context, sizeof(*p));
1660 type = sqlite3_value_numeric_type(argv[0]);
1661 if( p && type!=SQLITE_NULL ){
1662 p->cnt++;
1663 if( type==SQLITE_INTEGER ){
1664 i64 v = sqlite3_value_int64(argv[0]);
1665 p->rSum += v;
1666 if( (p->approx|p->overflow)==0 && sqlite3AddInt64(&p->iSum, v) ){
1667 p->approx = p->overflow = 1;
1669 }else{
1670 p->rSum += sqlite3_value_double(argv[0]);
1671 p->approx = 1;
1675 #ifndef SQLITE_OMIT_WINDOWFUNC
1676 static void sumInverse(sqlite3_context *context, int argc, sqlite3_value**argv){
1677 SumCtx *p;
1678 int type;
1679 assert( argc==1 );
1680 UNUSED_PARAMETER(argc);
1681 p = sqlite3_aggregate_context(context, sizeof(*p));
1682 type = sqlite3_value_numeric_type(argv[0]);
1683 /* p is always non-NULL because sumStep() will have been called first
1684 ** to initialize it */
1685 if( ALWAYS(p) && type!=SQLITE_NULL ){
1686 assert( p->cnt>0 );
1687 p->cnt--;
1688 assert( type==SQLITE_INTEGER || p->approx );
1689 if( type==SQLITE_INTEGER && p->approx==0 ){
1690 i64 v = sqlite3_value_int64(argv[0]);
1691 p->rSum -= v;
1692 p->iSum -= v;
1693 }else{
1694 p->rSum -= sqlite3_value_double(argv[0]);
1698 #else
1699 # define sumInverse 0
1700 #endif /* SQLITE_OMIT_WINDOWFUNC */
1701 static void sumFinalize(sqlite3_context *context){
1702 SumCtx *p;
1703 p = sqlite3_aggregate_context(context, 0);
1704 if( p && p->cnt>0 ){
1705 if( p->overflow ){
1706 sqlite3_result_error(context,"integer overflow",-1);
1707 }else if( p->approx ){
1708 sqlite3_result_double(context, p->rSum);
1709 }else{
1710 sqlite3_result_int64(context, p->iSum);
1714 static void avgFinalize(sqlite3_context *context){
1715 SumCtx *p;
1716 p = sqlite3_aggregate_context(context, 0);
1717 if( p && p->cnt>0 ){
1718 sqlite3_result_double(context, p->rSum/(double)p->cnt);
1721 static void totalFinalize(sqlite3_context *context){
1722 SumCtx *p;
1723 p = sqlite3_aggregate_context(context, 0);
1724 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1725 sqlite3_result_double(context, p ? p->rSum : (double)0);
1729 ** The following structure keeps track of state information for the
1730 ** count() aggregate function.
1732 typedef struct CountCtx CountCtx;
1733 struct CountCtx {
1734 i64 n;
1735 #ifdef SQLITE_DEBUG
1736 int bInverse; /* True if xInverse() ever called */
1737 #endif
1741 ** Routines to implement the count() aggregate function.
1743 static void countStep(sqlite3_context *context, int argc, sqlite3_value **argv){
1744 CountCtx *p;
1745 p = sqlite3_aggregate_context(context, sizeof(*p));
1746 if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && p ){
1747 p->n++;
1750 #ifndef SQLITE_OMIT_DEPRECATED
1751 /* The sqlite3_aggregate_count() function is deprecated. But just to make
1752 ** sure it still operates correctly, verify that its count agrees with our
1753 ** internal count when using count(*) and when the total count can be
1754 ** expressed as a 32-bit integer. */
1755 assert( argc==1 || p==0 || p->n>0x7fffffff || p->bInverse
1756 || p->n==sqlite3_aggregate_count(context) );
1757 #endif
1759 static void countFinalize(sqlite3_context *context){
1760 CountCtx *p;
1761 p = sqlite3_aggregate_context(context, 0);
1762 sqlite3_result_int64(context, p ? p->n : 0);
1764 #ifndef SQLITE_OMIT_WINDOWFUNC
1765 static void countInverse(sqlite3_context *ctx, int argc, sqlite3_value **argv){
1766 CountCtx *p;
1767 p = sqlite3_aggregate_context(ctx, sizeof(*p));
1768 /* p is always non-NULL since countStep() will have been called first */
1769 if( (argc==0 || SQLITE_NULL!=sqlite3_value_type(argv[0])) && ALWAYS(p) ){
1770 p->n--;
1771 #ifdef SQLITE_DEBUG
1772 p->bInverse = 1;
1773 #endif
1776 #else
1777 # define countInverse 0
1778 #endif /* SQLITE_OMIT_WINDOWFUNC */
1781 ** Routines to implement min() and max() aggregate functions.
1783 static void minmaxStep(
1784 sqlite3_context *context,
1785 int NotUsed,
1786 sqlite3_value **argv
1788 Mem *pArg = (Mem *)argv[0];
1789 Mem *pBest;
1790 UNUSED_PARAMETER(NotUsed);
1792 pBest = (Mem *)sqlite3_aggregate_context(context, sizeof(*pBest));
1793 if( !pBest ) return;
1795 if( sqlite3_value_type(pArg)==SQLITE_NULL ){
1796 if( pBest->flags ) sqlite3SkipAccumulatorLoad(context);
1797 }else if( pBest->flags ){
1798 int max;
1799 int cmp;
1800 CollSeq *pColl = sqlite3GetFuncCollSeq(context);
1801 /* This step function is used for both the min() and max() aggregates,
1802 ** the only difference between the two being that the sense of the
1803 ** comparison is inverted. For the max() aggregate, the
1804 ** sqlite3_user_data() function returns (void *)-1. For min() it
1805 ** returns (void *)db, where db is the sqlite3* database pointer.
1806 ** Therefore the next statement sets variable 'max' to 1 for the max()
1807 ** aggregate, or 0 for min().
1809 max = sqlite3_user_data(context)!=0;
1810 cmp = sqlite3MemCompare(pBest, pArg, pColl);
1811 if( (max && cmp<0) || (!max && cmp>0) ){
1812 sqlite3VdbeMemCopy(pBest, pArg);
1813 }else{
1814 sqlite3SkipAccumulatorLoad(context);
1816 }else{
1817 pBest->db = sqlite3_context_db_handle(context);
1818 sqlite3VdbeMemCopy(pBest, pArg);
1821 static void minMaxValueFinalize(sqlite3_context *context, int bValue){
1822 sqlite3_value *pRes;
1823 pRes = (sqlite3_value *)sqlite3_aggregate_context(context, 0);
1824 if( pRes ){
1825 if( pRes->flags ){
1826 sqlite3_result_value(context, pRes);
1828 if( bValue==0 ) sqlite3VdbeMemRelease(pRes);
1831 #ifndef SQLITE_OMIT_WINDOWFUNC
1832 static void minMaxValue(sqlite3_context *context){
1833 minMaxValueFinalize(context, 1);
1835 #else
1836 # define minMaxValue 0
1837 #endif /* SQLITE_OMIT_WINDOWFUNC */
1838 static void minMaxFinalize(sqlite3_context *context){
1839 minMaxValueFinalize(context, 0);
1843 ** group_concat(EXPR, ?SEPARATOR?)
1845 ** The SEPARATOR goes before the EXPR string. This is tragic. The
1846 ** groupConcatInverse() implementation would have been easier if the
1847 ** SEPARATOR were appended after EXPR. And the order is undocumented,
1848 ** so we could change it, in theory. But the old behavior has been
1849 ** around for so long that we dare not, for fear of breaking something.
1851 typedef struct {
1852 StrAccum str; /* The accumulated concatenation */
1853 #ifndef SQLITE_OMIT_WINDOWFUNC
1854 int nAccum; /* Number of strings presently concatenated */
1855 int nFirstSepLength; /* Used to detect separator length change */
1856 /* If pnSepLengths!=0, refs an array of inter-string separator lengths,
1857 ** stored as actually incorporated into presently accumulated result.
1858 ** (Hence, its slots in use number nAccum-1 between method calls.)
1859 ** If pnSepLengths==0, nFirstSepLength is the length used throughout.
1861 int *pnSepLengths;
1862 #endif
1863 } GroupConcatCtx;
1865 static void groupConcatStep(
1866 sqlite3_context *context,
1867 int argc,
1868 sqlite3_value **argv
1870 const char *zVal;
1871 GroupConcatCtx *pGCC;
1872 const char *zSep;
1873 int nVal, nSep;
1874 assert( argc==1 || argc==2 );
1875 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
1876 pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, sizeof(*pGCC));
1877 if( pGCC ){
1878 sqlite3 *db = sqlite3_context_db_handle(context);
1879 int firstTerm = pGCC->str.mxAlloc==0;
1880 pGCC->str.mxAlloc = db->aLimit[SQLITE_LIMIT_LENGTH];
1881 if( argc==1 ){
1882 if( !firstTerm ){
1883 sqlite3_str_appendchar(&pGCC->str, 1, ',');
1885 #ifndef SQLITE_OMIT_WINDOWFUNC
1886 else{
1887 pGCC->nFirstSepLength = 1;
1889 #endif
1890 }else if( !firstTerm ){
1891 zSep = (char*)sqlite3_value_text(argv[1]);
1892 nSep = sqlite3_value_bytes(argv[1]);
1893 if( zSep ){
1894 sqlite3_str_append(&pGCC->str, zSep, nSep);
1896 #ifndef SQLITE_OMIT_WINDOWFUNC
1897 else{
1898 nSep = 0;
1900 if( nSep != pGCC->nFirstSepLength || pGCC->pnSepLengths != 0 ){
1901 int *pnsl = pGCC->pnSepLengths;
1902 if( pnsl == 0 ){
1903 /* First separator length variation seen, start tracking them. */
1904 pnsl = (int*)sqlite3_malloc64((pGCC->nAccum+1) * sizeof(int));
1905 if( pnsl!=0 ){
1906 int i = 0, nA = pGCC->nAccum-1;
1907 while( i<nA ) pnsl[i++] = pGCC->nFirstSepLength;
1909 }else{
1910 pnsl = (int*)sqlite3_realloc64(pnsl, pGCC->nAccum * sizeof(int));
1912 if( pnsl!=0 ){
1913 if( ALWAYS(pGCC->nAccum>0) ){
1914 pnsl[pGCC->nAccum-1] = nSep;
1916 pGCC->pnSepLengths = pnsl;
1917 }else{
1918 sqlite3StrAccumSetError(&pGCC->str, SQLITE_NOMEM);
1921 #endif
1923 #ifndef SQLITE_OMIT_WINDOWFUNC
1924 else{
1925 pGCC->nFirstSepLength = sqlite3_value_bytes(argv[1]);
1927 pGCC->nAccum += 1;
1928 #endif
1929 zVal = (char*)sqlite3_value_text(argv[0]);
1930 nVal = sqlite3_value_bytes(argv[0]);
1931 if( zVal ) sqlite3_str_append(&pGCC->str, zVal, nVal);
1935 #ifndef SQLITE_OMIT_WINDOWFUNC
1936 static void groupConcatInverse(
1937 sqlite3_context *context,
1938 int argc,
1939 sqlite3_value **argv
1941 GroupConcatCtx *pGCC;
1942 assert( argc==1 || argc==2 );
1943 (void)argc; /* Suppress unused parameter warning */
1944 if( sqlite3_value_type(argv[0])==SQLITE_NULL ) return;
1945 pGCC = (GroupConcatCtx*)sqlite3_aggregate_context(context, sizeof(*pGCC));
1946 /* pGCC is always non-NULL since groupConcatStep() will have always
1947 ** run frist to initialize it */
1948 if( ALWAYS(pGCC) ){
1949 int nVS;
1950 /* Must call sqlite3_value_text() to convert the argument into text prior
1951 ** to invoking sqlite3_value_bytes(), in case the text encoding is UTF16 */
1952 (void)sqlite3_value_text(argv[0]);
1953 nVS = sqlite3_value_bytes(argv[0]);
1954 pGCC->nAccum -= 1;
1955 if( pGCC->pnSepLengths!=0 ){
1956 assert(pGCC->nAccum >= 0);
1957 if( pGCC->nAccum>0 ){
1958 nVS += *pGCC->pnSepLengths;
1959 memmove(pGCC->pnSepLengths, pGCC->pnSepLengths+1,
1960 (pGCC->nAccum-1)*sizeof(int));
1962 }else{
1963 /* If removing single accumulated string, harmlessly over-do. */
1964 nVS += pGCC->nFirstSepLength;
1966 if( nVS>=(int)pGCC->str.nChar ){
1967 pGCC->str.nChar = 0;
1968 }else{
1969 pGCC->str.nChar -= nVS;
1970 memmove(pGCC->str.zText, &pGCC->str.zText[nVS], pGCC->str.nChar);
1972 if( pGCC->str.nChar==0 ){
1973 pGCC->str.mxAlloc = 0;
1974 sqlite3_free(pGCC->pnSepLengths);
1975 pGCC->pnSepLengths = 0;
1979 #else
1980 # define groupConcatInverse 0
1981 #endif /* SQLITE_OMIT_WINDOWFUNC */
1982 static void groupConcatFinalize(sqlite3_context *context){
1983 GroupConcatCtx *pGCC
1984 = (GroupConcatCtx*)sqlite3_aggregate_context(context, 0);
1985 if( pGCC ){
1986 sqlite3ResultStrAccum(context, &pGCC->str);
1987 #ifndef SQLITE_OMIT_WINDOWFUNC
1988 sqlite3_free(pGCC->pnSepLengths);
1989 #endif
1992 #ifndef SQLITE_OMIT_WINDOWFUNC
1993 static void groupConcatValue(sqlite3_context *context){
1994 GroupConcatCtx *pGCC
1995 = (GroupConcatCtx*)sqlite3_aggregate_context(context, 0);
1996 if( pGCC ){
1997 StrAccum *pAccum = &pGCC->str;
1998 if( pAccum->accError==SQLITE_TOOBIG ){
1999 sqlite3_result_error_toobig(context);
2000 }else if( pAccum->accError==SQLITE_NOMEM ){
2001 sqlite3_result_error_nomem(context);
2002 }else{
2003 const char *zText = sqlite3_str_value(pAccum);
2004 sqlite3_result_text(context, zText, pAccum->nChar, SQLITE_TRANSIENT);
2008 #else
2009 # define groupConcatValue 0
2010 #endif /* SQLITE_OMIT_WINDOWFUNC */
2013 ** This routine does per-connection function registration. Most
2014 ** of the built-in functions above are part of the global function set.
2015 ** This routine only deals with those that are not global.
2017 void sqlite3RegisterPerConnectionBuiltinFunctions(sqlite3 *db){
2018 int rc = sqlite3_overload_function(db, "MATCH", 2);
2019 assert( rc==SQLITE_NOMEM || rc==SQLITE_OK );
2020 if( rc==SQLITE_NOMEM ){
2021 sqlite3OomFault(db);
2023 /* BEGIN SQLCIPHER */
2024 #ifdef SQLITE_HAS_CODEC
2026 extern void sqlcipher_exportFunc(sqlite3_context *, int, sqlite3_value **);
2027 sqlite3CreateFunc(db, "sqlcipher_export", -1, SQLITE_TEXT, 0, sqlcipher_exportFunc, 0, 0, 0, 0, 0);
2029 #ifdef SQLCIPHER_EXT
2030 #include "sqlcipher_funcs_init.h"
2031 #endif
2032 #endif
2033 /* END SQLCIPHER */
2037 ** Re-register the built-in LIKE functions. The caseSensitive
2038 ** parameter determines whether or not the LIKE operator is case
2039 ** sensitive.
2041 void sqlite3RegisterLikeFunctions(sqlite3 *db, int caseSensitive){
2042 struct compareInfo *pInfo;
2043 int flags;
2044 if( caseSensitive ){
2045 pInfo = (struct compareInfo*)&likeInfoAlt;
2046 flags = SQLITE_FUNC_LIKE | SQLITE_FUNC_CASE;
2047 }else{
2048 pInfo = (struct compareInfo*)&likeInfoNorm;
2049 flags = SQLITE_FUNC_LIKE;
2051 sqlite3CreateFunc(db, "like", 2, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0, 0, 0);
2052 sqlite3CreateFunc(db, "like", 3, SQLITE_UTF8, pInfo, likeFunc, 0, 0, 0, 0, 0);
2053 sqlite3FindFunction(db, "like", 2, SQLITE_UTF8, 0)->funcFlags |= flags;
2054 sqlite3FindFunction(db, "like", 3, SQLITE_UTF8, 0)->funcFlags |= flags;
2058 ** pExpr points to an expression which implements a function. If
2059 ** it is appropriate to apply the LIKE optimization to that function
2060 ** then set aWc[0] through aWc[2] to the wildcard characters and the
2061 ** escape character and then return TRUE. If the function is not a
2062 ** LIKE-style function then return FALSE.
2064 ** The expression "a LIKE b ESCAPE c" is only considered a valid LIKE
2065 ** operator if c is a string literal that is exactly one byte in length.
2066 ** That one byte is stored in aWc[3]. aWc[3] is set to zero if there is
2067 ** no ESCAPE clause.
2069 ** *pIsNocase is set to true if uppercase and lowercase are equivalent for
2070 ** the function (default for LIKE). If the function makes the distinction
2071 ** between uppercase and lowercase (as does GLOB) then *pIsNocase is set to
2072 ** false.
2074 int sqlite3IsLikeFunction(sqlite3 *db, Expr *pExpr, int *pIsNocase, char *aWc){
2075 FuncDef *pDef;
2076 int nExpr;
2077 assert( pExpr!=0 );
2078 assert( pExpr->op==TK_FUNCTION );
2079 assert( ExprUseXList(pExpr) );
2080 if( !pExpr->x.pList ){
2081 return 0;
2083 nExpr = pExpr->x.pList->nExpr;
2084 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2085 pDef = sqlite3FindFunction(db, pExpr->u.zToken, nExpr, SQLITE_UTF8, 0);
2086 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
2087 if( pDef==0 ) return 0;
2088 #endif
2089 if( NEVER(pDef==0) || (pDef->funcFlags & SQLITE_FUNC_LIKE)==0 ){
2090 return 0;
2093 /* The memcpy() statement assumes that the wildcard characters are
2094 ** the first three statements in the compareInfo structure. The
2095 ** asserts() that follow verify that assumption
2097 memcpy(aWc, pDef->pUserData, 3);
2098 assert( (char*)&likeInfoAlt == (char*)&likeInfoAlt.matchAll );
2099 assert( &((char*)&likeInfoAlt)[1] == (char*)&likeInfoAlt.matchOne );
2100 assert( &((char*)&likeInfoAlt)[2] == (char*)&likeInfoAlt.matchSet );
2102 if( nExpr<3 ){
2103 aWc[3] = 0;
2104 }else{
2105 Expr *pEscape = pExpr->x.pList->a[2].pExpr;
2106 char *zEscape;
2107 if( pEscape->op!=TK_STRING ) return 0;
2108 assert( !ExprHasProperty(pEscape, EP_IntValue) );
2109 zEscape = pEscape->u.zToken;
2110 if( zEscape[0]==0 || zEscape[1]!=0 ) return 0;
2111 if( zEscape[0]==aWc[0] ) return 0;
2112 if( zEscape[0]==aWc[1] ) return 0;
2113 aWc[3] = zEscape[0];
2116 *pIsNocase = (pDef->funcFlags & SQLITE_FUNC_CASE)==0;
2117 return 1;
2120 /* Mathematical Constants */
2121 #ifndef M_PI
2122 # define M_PI 3.141592653589793238462643383279502884
2123 #endif
2124 #ifndef M_LN10
2125 # define M_LN10 2.302585092994045684017991454684364208
2126 #endif
2127 #ifndef M_LN2
2128 # define M_LN2 0.693147180559945309417232121458176568
2129 #endif
2132 /* Extra math functions that require linking with -lm
2134 #ifdef SQLITE_ENABLE_MATH_FUNCTIONS
2136 ** Implementation SQL functions:
2138 ** ceil(X)
2139 ** ceiling(X)
2140 ** floor(X)
2142 ** The sqlite3_user_data() pointer is a pointer to the libm implementation
2143 ** of the underlying C function.
2145 static void ceilingFunc(
2146 sqlite3_context *context,
2147 int argc,
2148 sqlite3_value **argv
2150 assert( argc==1 );
2151 switch( sqlite3_value_numeric_type(argv[0]) ){
2152 case SQLITE_INTEGER: {
2153 sqlite3_result_int64(context, sqlite3_value_int64(argv[0]));
2154 break;
2156 case SQLITE_FLOAT: {
2157 double (*x)(double) = (double(*)(double))sqlite3_user_data(context);
2158 sqlite3_result_double(context, x(sqlite3_value_double(argv[0])));
2159 break;
2161 default: {
2162 break;
2168 ** On some systems, ceil() and floor() are intrinsic function. You are
2169 ** unable to take a pointer to these functions. Hence, we here wrap them
2170 ** in our own actual functions.
2172 static double xCeil(double x){ return ceil(x); }
2173 static double xFloor(double x){ return floor(x); }
2176 ** Some systems do not have log2() and log10() in their standard math
2177 ** libraries.
2179 #if defined(HAVE_LOG10) && HAVE_LOG10==0
2180 # define log10(X) (0.4342944819032517867*log(X))
2181 #endif
2182 #if defined(HAVE_LOG2) && HAVE_LOG2==0
2183 # define log2(X) (1.442695040888963456*log(X))
2184 #endif
2188 ** Implementation of SQL functions:
2190 ** ln(X) - natural logarithm
2191 ** log(X) - log X base 10
2192 ** log10(X) - log X base 10
2193 ** log(B,X) - log X base B
2195 static void logFunc(
2196 sqlite3_context *context,
2197 int argc,
2198 sqlite3_value **argv
2200 double x, b, ans;
2201 assert( argc==1 || argc==2 );
2202 switch( sqlite3_value_numeric_type(argv[0]) ){
2203 case SQLITE_INTEGER:
2204 case SQLITE_FLOAT:
2205 x = sqlite3_value_double(argv[0]);
2206 if( x<=0.0 ) return;
2207 break;
2208 default:
2209 return;
2211 if( argc==2 ){
2212 switch( sqlite3_value_numeric_type(argv[0]) ){
2213 case SQLITE_INTEGER:
2214 case SQLITE_FLOAT:
2215 b = log(x);
2216 if( b<=0.0 ) return;
2217 x = sqlite3_value_double(argv[1]);
2218 if( x<=0.0 ) return;
2219 break;
2220 default:
2221 return;
2223 ans = log(x)/b;
2224 }else{
2225 switch( SQLITE_PTR_TO_INT(sqlite3_user_data(context)) ){
2226 case 1:
2227 ans = log10(x);
2228 break;
2229 case 2:
2230 ans = log2(x);
2231 break;
2232 default:
2233 ans = log(x);
2234 break;
2237 sqlite3_result_double(context, ans);
2241 ** Functions to converts degrees to radians and radians to degrees.
2243 static double degToRad(double x){ return x*(M_PI/180.0); }
2244 static double radToDeg(double x){ return x*(180.0/M_PI); }
2247 ** Implementation of 1-argument SQL math functions:
2249 ** exp(X) - Compute e to the X-th power
2251 static void math1Func(
2252 sqlite3_context *context,
2253 int argc,
2254 sqlite3_value **argv
2256 int type0;
2257 double v0, ans;
2258 double (*x)(double);
2259 assert( argc==1 );
2260 type0 = sqlite3_value_numeric_type(argv[0]);
2261 if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
2262 v0 = sqlite3_value_double(argv[0]);
2263 x = (double(*)(double))sqlite3_user_data(context);
2264 ans = x(v0);
2265 sqlite3_result_double(context, ans);
2269 ** Implementation of 2-argument SQL math functions:
2271 ** power(X,Y) - Compute X to the Y-th power
2273 static void math2Func(
2274 sqlite3_context *context,
2275 int argc,
2276 sqlite3_value **argv
2278 int type0, type1;
2279 double v0, v1, ans;
2280 double (*x)(double,double);
2281 assert( argc==2 );
2282 type0 = sqlite3_value_numeric_type(argv[0]);
2283 if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
2284 type1 = sqlite3_value_numeric_type(argv[1]);
2285 if( type1!=SQLITE_INTEGER && type1!=SQLITE_FLOAT ) return;
2286 v0 = sqlite3_value_double(argv[0]);
2287 v1 = sqlite3_value_double(argv[1]);
2288 x = (double(*)(double,double))sqlite3_user_data(context);
2289 ans = x(v0, v1);
2290 sqlite3_result_double(context, ans);
2294 ** Implementation of 0-argument pi() function.
2296 static void piFunc(
2297 sqlite3_context *context,
2298 int argc,
2299 sqlite3_value **argv
2301 assert( argc==0 );
2302 (void)argv;
2303 sqlite3_result_double(context, M_PI);
2306 #endif /* SQLITE_ENABLE_MATH_FUNCTIONS */
2309 ** Implementation of sign(X) function.
2311 static void signFunc(
2312 sqlite3_context *context,
2313 int argc,
2314 sqlite3_value **argv
2316 int type0;
2317 double x;
2318 UNUSED_PARAMETER(argc);
2319 assert( argc==1 );
2320 type0 = sqlite3_value_numeric_type(argv[0]);
2321 if( type0!=SQLITE_INTEGER && type0!=SQLITE_FLOAT ) return;
2322 x = sqlite3_value_double(argv[0]);
2323 sqlite3_result_int(context, x<0.0 ? -1 : x>0.0 ? +1 : 0);
2327 ** All of the FuncDef structures in the aBuiltinFunc[] array above
2328 ** to the global function hash table. This occurs at start-time (as
2329 ** a consequence of calling sqlite3_initialize()).
2331 ** After this routine runs
2333 void sqlite3RegisterBuiltinFunctions(void){
2335 ** The following array holds FuncDef structures for all of the functions
2336 ** defined in this file.
2338 ** The array cannot be constant since changes are made to the
2339 ** FuncDef.pHash elements at start-time. The elements of this array
2340 ** are read-only after initialization is complete.
2342 ** For peak efficiency, put the most frequently used function last.
2344 static FuncDef aBuiltinFunc[] = {
2345 /***** Functions only available with SQLITE_TESTCTRL_INTERNAL_FUNCTIONS *****/
2346 #if !defined(SQLITE_UNTESTABLE)
2347 TEST_FUNC(implies_nonnull_row, 2, INLINEFUNC_implies_nonnull_row, 0),
2348 TEST_FUNC(expr_compare, 2, INLINEFUNC_expr_compare, 0),
2349 TEST_FUNC(expr_implies_expr, 2, INLINEFUNC_expr_implies_expr, 0),
2350 TEST_FUNC(affinity, 1, INLINEFUNC_affinity, 0),
2351 #endif /* !defined(SQLITE_UNTESTABLE) */
2352 /***** Regular functions *****/
2353 #ifdef SQLITE_SOUNDEX
2354 FUNCTION(soundex, 1, 0, 0, soundexFunc ),
2355 #endif
2356 #ifndef SQLITE_OMIT_LOAD_EXTENSION
2357 SFUNCTION(load_extension, 1, 0, 0, loadExt ),
2358 SFUNCTION(load_extension, 2, 0, 0, loadExt ),
2359 #endif
2360 #if SQLITE_USER_AUTHENTICATION
2361 FUNCTION(sqlite_crypt, 2, 0, 0, sqlite3CryptFunc ),
2362 #endif
2363 #ifndef SQLITE_OMIT_COMPILEOPTION_DIAGS
2364 DFUNCTION(sqlite_compileoption_used,1, 0, 0, compileoptionusedFunc ),
2365 DFUNCTION(sqlite_compileoption_get, 1, 0, 0, compileoptiongetFunc ),
2366 #endif /* SQLITE_OMIT_COMPILEOPTION_DIAGS */
2367 INLINE_FUNC(unlikely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
2368 INLINE_FUNC(likelihood, 2, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
2369 INLINE_FUNC(likely, 1, INLINEFUNC_unlikely, SQLITE_FUNC_UNLIKELY),
2370 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2371 INLINE_FUNC(sqlite_offset, 1, INLINEFUNC_sqlite_offset, 0 ),
2372 #endif
2373 FUNCTION(ltrim, 1, 1, 0, trimFunc ),
2374 FUNCTION(ltrim, 2, 1, 0, trimFunc ),
2375 FUNCTION(rtrim, 1, 2, 0, trimFunc ),
2376 FUNCTION(rtrim, 2, 2, 0, trimFunc ),
2377 FUNCTION(trim, 1, 3, 0, trimFunc ),
2378 FUNCTION(trim, 2, 3, 0, trimFunc ),
2379 FUNCTION(min, -1, 0, 1, minmaxFunc ),
2380 FUNCTION(min, 0, 0, 1, 0 ),
2381 WAGGREGATE(min, 1, 0, 1, minmaxStep, minMaxFinalize, minMaxValue, 0,
2382 SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER ),
2383 FUNCTION(max, -1, 1, 1, minmaxFunc ),
2384 FUNCTION(max, 0, 1, 1, 0 ),
2385 WAGGREGATE(max, 1, 1, 1, minmaxStep, minMaxFinalize, minMaxValue, 0,
2386 SQLITE_FUNC_MINMAX|SQLITE_FUNC_ANYORDER ),
2387 FUNCTION2(typeof, 1, 0, 0, typeofFunc, SQLITE_FUNC_TYPEOF),
2388 FUNCTION2(subtype, 1, 0, 0, subtypeFunc, SQLITE_FUNC_TYPEOF),
2389 FUNCTION2(length, 1, 0, 0, lengthFunc, SQLITE_FUNC_LENGTH),
2390 FUNCTION(instr, 2, 0, 0, instrFunc ),
2391 FUNCTION(printf, -1, 0, 0, printfFunc ),
2392 FUNCTION(format, -1, 0, 0, printfFunc ),
2393 FUNCTION(unicode, 1, 0, 0, unicodeFunc ),
2394 FUNCTION(char, -1, 0, 0, charFunc ),
2395 FUNCTION(abs, 1, 0, 0, absFunc ),
2396 #ifndef SQLITE_OMIT_FLOATING_POINT
2397 FUNCTION(round, 1, 0, 0, roundFunc ),
2398 FUNCTION(round, 2, 0, 0, roundFunc ),
2399 #endif
2400 FUNCTION(upper, 1, 0, 0, upperFunc ),
2401 FUNCTION(lower, 1, 0, 0, lowerFunc ),
2402 FUNCTION(hex, 1, 0, 0, hexFunc ),
2403 FUNCTION(unhex, 1, 0, 0, unhexFunc ),
2404 FUNCTION(unhex, 2, 0, 0, unhexFunc ),
2405 INLINE_FUNC(ifnull, 2, INLINEFUNC_coalesce, 0 ),
2406 VFUNCTION(random, 0, 0, 0, randomFunc ),
2407 VFUNCTION(randomblob, 1, 0, 0, randomBlob ),
2408 FUNCTION(nullif, 2, 0, 1, nullifFunc ),
2409 DFUNCTION(sqlite_version, 0, 0, 0, versionFunc ),
2410 DFUNCTION(sqlite_source_id, 0, 0, 0, sourceidFunc ),
2411 FUNCTION(sqlite_log, 2, 0, 0, errlogFunc ),
2412 FUNCTION(quote, 1, 0, 0, quoteFunc ),
2413 VFUNCTION(last_insert_rowid, 0, 0, 0, last_insert_rowid),
2414 VFUNCTION(changes, 0, 0, 0, changes ),
2415 VFUNCTION(total_changes, 0, 0, 0, total_changes ),
2416 FUNCTION(replace, 3, 0, 0, replaceFunc ),
2417 FUNCTION(zeroblob, 1, 0, 0, zeroblobFunc ),
2418 FUNCTION(substr, 2, 0, 0, substrFunc ),
2419 FUNCTION(substr, 3, 0, 0, substrFunc ),
2420 FUNCTION(substring, 2, 0, 0, substrFunc ),
2421 FUNCTION(substring, 3, 0, 0, substrFunc ),
2422 WAGGREGATE(sum, 1,0,0, sumStep, sumFinalize, sumFinalize, sumInverse, 0),
2423 WAGGREGATE(total, 1,0,0, sumStep,totalFinalize,totalFinalize,sumInverse, 0),
2424 WAGGREGATE(avg, 1,0,0, sumStep, avgFinalize, avgFinalize, sumInverse, 0),
2425 WAGGREGATE(count, 0,0,0, countStep,
2426 countFinalize, countFinalize, countInverse,
2427 SQLITE_FUNC_COUNT|SQLITE_FUNC_ANYORDER ),
2428 WAGGREGATE(count, 1,0,0, countStep,
2429 countFinalize, countFinalize, countInverse, SQLITE_FUNC_ANYORDER ),
2430 WAGGREGATE(group_concat, 1, 0, 0, groupConcatStep,
2431 groupConcatFinalize, groupConcatValue, groupConcatInverse, 0),
2432 WAGGREGATE(group_concat, 2, 0, 0, groupConcatStep,
2433 groupConcatFinalize, groupConcatValue, groupConcatInverse, 0),
2435 LIKEFUNC(glob, 2, &globInfo, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
2436 #ifdef SQLITE_CASE_SENSITIVE_LIKE
2437 LIKEFUNC(like, 2, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
2438 LIKEFUNC(like, 3, &likeInfoAlt, SQLITE_FUNC_LIKE|SQLITE_FUNC_CASE),
2439 #else
2440 LIKEFUNC(like, 2, &likeInfoNorm, SQLITE_FUNC_LIKE),
2441 LIKEFUNC(like, 3, &likeInfoNorm, SQLITE_FUNC_LIKE),
2442 #endif
2443 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
2444 FUNCTION(unknown, -1, 0, 0, unknownFunc ),
2445 #endif
2446 FUNCTION(coalesce, 1, 0, 0, 0 ),
2447 FUNCTION(coalesce, 0, 0, 0, 0 ),
2448 #ifdef SQLITE_ENABLE_MATH_FUNCTIONS
2449 MFUNCTION(ceil, 1, xCeil, ceilingFunc ),
2450 MFUNCTION(ceiling, 1, xCeil, ceilingFunc ),
2451 MFUNCTION(floor, 1, xFloor, ceilingFunc ),
2452 #if SQLITE_HAVE_C99_MATH_FUNCS
2453 MFUNCTION(trunc, 1, trunc, ceilingFunc ),
2454 #endif
2455 FUNCTION(ln, 1, 0, 0, logFunc ),
2456 FUNCTION(log, 1, 1, 0, logFunc ),
2457 FUNCTION(log10, 1, 1, 0, logFunc ),
2458 FUNCTION(log2, 1, 2, 0, logFunc ),
2459 FUNCTION(log, 2, 0, 0, logFunc ),
2460 MFUNCTION(exp, 1, exp, math1Func ),
2461 MFUNCTION(pow, 2, pow, math2Func ),
2462 MFUNCTION(power, 2, pow, math2Func ),
2463 MFUNCTION(mod, 2, fmod, math2Func ),
2464 MFUNCTION(acos, 1, acos, math1Func ),
2465 MFUNCTION(asin, 1, asin, math1Func ),
2466 MFUNCTION(atan, 1, atan, math1Func ),
2467 MFUNCTION(atan2, 2, atan2, math2Func ),
2468 MFUNCTION(cos, 1, cos, math1Func ),
2469 MFUNCTION(sin, 1, sin, math1Func ),
2470 MFUNCTION(tan, 1, tan, math1Func ),
2471 MFUNCTION(cosh, 1, cosh, math1Func ),
2472 MFUNCTION(sinh, 1, sinh, math1Func ),
2473 MFUNCTION(tanh, 1, tanh, math1Func ),
2474 #if SQLITE_HAVE_C99_MATH_FUNCS
2475 MFUNCTION(acosh, 1, acosh, math1Func ),
2476 MFUNCTION(asinh, 1, asinh, math1Func ),
2477 MFUNCTION(atanh, 1, atanh, math1Func ),
2478 #endif
2479 MFUNCTION(sqrt, 1, sqrt, math1Func ),
2480 MFUNCTION(radians, 1, degToRad, math1Func ),
2481 MFUNCTION(degrees, 1, radToDeg, math1Func ),
2482 FUNCTION(pi, 0, 0, 0, piFunc ),
2483 #endif /* SQLITE_ENABLE_MATH_FUNCTIONS */
2484 FUNCTION(sign, 1, 0, 0, signFunc ),
2485 INLINE_FUNC(coalesce, -1, INLINEFUNC_coalesce, 0 ),
2486 INLINE_FUNC(iif, 3, INLINEFUNC_iif, 0 ),
2488 #ifndef SQLITE_OMIT_ALTERTABLE
2489 sqlite3AlterFunctions();
2490 #endif
2491 sqlite3WindowFunctions();
2492 sqlite3RegisterDateTimeFunctions();
2493 sqlite3RegisterJsonFunctions();
2494 sqlite3InsertBuiltinFuncs(aBuiltinFunc, ArraySize(aBuiltinFunc));
2496 #if 0 /* Enable to print out how the built-in functions are hashed */
2498 int i;
2499 FuncDef *p;
2500 for(i=0; i<SQLITE_FUNC_HASH_SZ; i++){
2501 printf("FUNC-HASH %02d:", i);
2502 for(p=sqlite3BuiltinFunctions.a[i]; p; p=p->u.pHash){
2503 int n = sqlite3Strlen30(p->zName);
2504 int h = p->zName[0] + n;
2505 assert( p->funcFlags & SQLITE_FUNC_BUILTIN );
2506 printf(" %s(%d)", p->zName, h);
2508 printf("\n");
2511 #endif