Merge sqlite-release(3.42.0) into prerelease-integration
[sqlcipher.git] / src / vdbemem.c
blobd3cd55ba9f3daea1469e98e0f11f1fac6970e693
1 /*
2 ** 2004 May 26
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to manipulate "Mem" structure. A "Mem"
14 ** stores a single value in the VDBE. Mem is an opaque structure visible
15 ** only within the VDBE. Interface routines refer to a Mem using the
16 ** name sqlite_value
18 #include "sqliteInt.h"
19 #include "vdbeInt.h"
21 /* True if X is a power of two. 0 is considered a power of two here.
22 ** In other words, return true if X has at most one bit set.
24 #define ISPOWEROF2(X) (((X)&((X)-1))==0)
26 #ifdef SQLITE_DEBUG
28 ** Check invariants on a Mem object.
30 ** This routine is intended for use inside of assert() statements, like
31 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
33 int sqlite3VdbeCheckMemInvariants(Mem *p){
34 /* If MEM_Dyn is set then Mem.xDel!=0.
35 ** Mem.xDel might not be initialized if MEM_Dyn is clear.
37 assert( (p->flags & MEM_Dyn)==0 || p->xDel!=0 );
39 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
40 ** ensure that if Mem.szMalloc>0 then it is safe to do
41 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
42 ** That saves a few cycles in inner loops. */
43 assert( (p->flags & MEM_Dyn)==0 || p->szMalloc==0 );
45 /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */
46 assert( ISPOWEROF2(p->flags & (MEM_Int|MEM_Real|MEM_IntReal)) );
48 if( p->flags & MEM_Null ){
49 /* Cannot be both MEM_Null and some other type */
50 assert( (p->flags & (MEM_Int|MEM_Real|MEM_Str|MEM_Blob|MEM_Agg))==0 );
52 /* If MEM_Null is set, then either the value is a pure NULL (the usual
53 ** case) or it is a pointer set using sqlite3_bind_pointer() or
54 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be
55 ** set.
57 if( (p->flags & (MEM_Term|MEM_Subtype))==(MEM_Term|MEM_Subtype) ){
58 /* This is a pointer type. There may be a flag to indicate what to
59 ** do with the pointer. */
60 assert( ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
61 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
62 ((p->flags&MEM_Static)!=0 ? 1 : 0) <= 1 );
64 /* No other bits set */
65 assert( (p->flags & ~(MEM_Null|MEM_Term|MEM_Subtype|MEM_FromBind
66 |MEM_Dyn|MEM_Ephem|MEM_Static))==0 );
67 }else{
68 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
69 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
71 }else{
72 /* The MEM_Cleared bit is only allowed on NULLs */
73 assert( (p->flags & MEM_Cleared)==0 );
76 /* The szMalloc field holds the correct memory allocation size */
77 assert( p->szMalloc==0
78 || (p->flags==MEM_Undefined
79 && p->szMalloc<=sqlite3DbMallocSize(p->db,p->zMalloc))
80 || p->szMalloc==sqlite3DbMallocSize(p->db,p->zMalloc));
82 /* If p holds a string or blob, the Mem.z must point to exactly
83 ** one of the following:
85 ** (1) Memory in Mem.zMalloc and managed by the Mem object
86 ** (2) Memory to be freed using Mem.xDel
87 ** (3) An ephemeral string or blob
88 ** (4) A static string or blob
90 if( (p->flags & (MEM_Str|MEM_Blob)) && p->n>0 ){
91 assert(
92 ((p->szMalloc>0 && p->z==p->zMalloc)? 1 : 0) +
93 ((p->flags&MEM_Dyn)!=0 ? 1 : 0) +
94 ((p->flags&MEM_Ephem)!=0 ? 1 : 0) +
95 ((p->flags&MEM_Static)!=0 ? 1 : 0) == 1
98 return 1;
100 #endif
103 ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal
104 ** into a buffer.
106 static void vdbeMemRenderNum(int sz, char *zBuf, Mem *p){
107 StrAccum acc;
108 assert( p->flags & (MEM_Int|MEM_Real|MEM_IntReal) );
109 assert( sz>22 );
110 if( p->flags & MEM_Int ){
111 #if GCC_VERSION>=7000000
112 /* Work-around for GCC bug
113 ** https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96270 */
114 i64 x;
115 assert( (p->flags&MEM_Int)*2==sizeof(x) );
116 memcpy(&x, (char*)&p->u, (p->flags&MEM_Int)*2);
117 p->n = sqlite3Int64ToText(x, zBuf);
118 #else
119 p->n = sqlite3Int64ToText(p->u.i, zBuf);
120 #endif
121 }else{
122 sqlite3StrAccumInit(&acc, 0, zBuf, sz, 0);
123 sqlite3_str_appendf(&acc, "%!.15g",
124 (p->flags & MEM_IntReal)!=0 ? (double)p->u.i : p->u.r);
125 assert( acc.zText==zBuf && acc.mxAlloc<=0 );
126 zBuf[acc.nChar] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */
127 p->n = acc.nChar;
131 #ifdef SQLITE_DEBUG
133 ** Validity checks on pMem. pMem holds a string.
135 ** (1) Check that string value of pMem agrees with its integer or real value.
136 ** (2) Check that the string is correctly zero terminated
138 ** A single int or real value always converts to the same strings. But
139 ** many different strings can be converted into the same int or real.
140 ** If a table contains a numeric value and an index is based on the
141 ** corresponding string value, then it is important that the string be
142 ** derived from the numeric value, not the other way around, to ensure
143 ** that the index and table are consistent. See ticket
144 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for
145 ** an example.
147 ** This routine looks at pMem to verify that if it has both a numeric
148 ** representation and a string representation then the string rep has
149 ** been derived from the numeric and not the other way around. It returns
150 ** true if everything is ok and false if there is a problem.
152 ** This routine is for use inside of assert() statements only.
154 int sqlite3VdbeMemValidStrRep(Mem *p){
155 Mem tmp;
156 char zBuf[100];
157 char *z;
158 int i, j, incr;
159 if( (p->flags & MEM_Str)==0 ) return 1;
160 if( p->db && p->db->mallocFailed ) return 1;
161 if( p->flags & MEM_Term ){
162 /* Insure that the string is properly zero-terminated. Pay particular
163 ** attention to the case where p->n is odd */
164 if( p->szMalloc>0 && p->z==p->zMalloc ){
165 assert( p->enc==SQLITE_UTF8 || p->szMalloc >= ((p->n+1)&~1)+2 );
166 assert( p->enc!=SQLITE_UTF8 || p->szMalloc >= p->n+1 );
168 assert( p->z[p->n]==0 );
169 assert( p->enc==SQLITE_UTF8 || p->z[(p->n+1)&~1]==0 );
170 assert( p->enc==SQLITE_UTF8 || p->z[((p->n+1)&~1)+1]==0 );
172 if( (p->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 ) return 1;
173 memcpy(&tmp, p, sizeof(tmp));
174 vdbeMemRenderNum(sizeof(zBuf), zBuf, &tmp);
175 z = p->z;
176 i = j = 0;
177 incr = 1;
178 if( p->enc!=SQLITE_UTF8 ){
179 incr = 2;
180 if( p->enc==SQLITE_UTF16BE ) z++;
182 while( zBuf[j] ){
183 if( zBuf[j++]!=z[i] ) return 0;
184 i += incr;
186 return 1;
188 #endif /* SQLITE_DEBUG */
191 ** If pMem is an object with a valid string representation, this routine
192 ** ensures the internal encoding for the string representation is
193 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
195 ** If pMem is not a string object, or the encoding of the string
196 ** representation is already stored using the requested encoding, then this
197 ** routine is a no-op.
199 ** SQLITE_OK is returned if the conversion is successful (or not required).
200 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
201 ** between formats.
203 int sqlite3VdbeChangeEncoding(Mem *pMem, int desiredEnc){
204 #ifndef SQLITE_OMIT_UTF16
205 int rc;
206 #endif
207 assert( pMem!=0 );
208 assert( !sqlite3VdbeMemIsRowSet(pMem) );
209 assert( desiredEnc==SQLITE_UTF8 || desiredEnc==SQLITE_UTF16LE
210 || desiredEnc==SQLITE_UTF16BE );
211 if( !(pMem->flags&MEM_Str) ){
212 pMem->enc = desiredEnc;
213 return SQLITE_OK;
215 if( pMem->enc==desiredEnc ){
216 return SQLITE_OK;
218 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
219 #ifdef SQLITE_OMIT_UTF16
220 return SQLITE_ERROR;
221 #else
223 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
224 ** then the encoding of the value may not have changed.
226 rc = sqlite3VdbeMemTranslate(pMem, (u8)desiredEnc);
227 assert(rc==SQLITE_OK || rc==SQLITE_NOMEM);
228 assert(rc==SQLITE_OK || pMem->enc!=desiredEnc);
229 assert(rc==SQLITE_NOMEM || pMem->enc==desiredEnc);
230 return rc;
231 #endif
235 ** Make sure pMem->z points to a writable allocation of at least n bytes.
237 ** If the bPreserve argument is true, then copy of the content of
238 ** pMem->z into the new allocation. pMem must be either a string or
239 ** blob if bPreserve is true. If bPreserve is false, any prior content
240 ** in pMem->z is discarded.
242 SQLITE_NOINLINE int sqlite3VdbeMemGrow(Mem *pMem, int n, int bPreserve){
243 assert( sqlite3VdbeCheckMemInvariants(pMem) );
244 assert( !sqlite3VdbeMemIsRowSet(pMem) );
245 testcase( pMem->db==0 );
247 /* If the bPreserve flag is set to true, then the memory cell must already
248 ** contain a valid string or blob value. */
249 assert( bPreserve==0 || pMem->flags&(MEM_Blob|MEM_Str) );
250 testcase( bPreserve && pMem->z==0 );
252 assert( pMem->szMalloc==0
253 || (pMem->flags==MEM_Undefined
254 && pMem->szMalloc<=sqlite3DbMallocSize(pMem->db,pMem->zMalloc))
255 || pMem->szMalloc==sqlite3DbMallocSize(pMem->db,pMem->zMalloc));
256 if( pMem->szMalloc>0 && bPreserve && pMem->z==pMem->zMalloc ){
257 if( pMem->db ){
258 pMem->z = pMem->zMalloc = sqlite3DbReallocOrFree(pMem->db, pMem->z, n);
259 }else{
260 pMem->zMalloc = sqlite3Realloc(pMem->z, n);
261 if( pMem->zMalloc==0 ) sqlite3_free(pMem->z);
262 pMem->z = pMem->zMalloc;
264 bPreserve = 0;
265 }else{
266 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
267 pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, n);
269 if( pMem->zMalloc==0 ){
270 sqlite3VdbeMemSetNull(pMem);
271 pMem->z = 0;
272 pMem->szMalloc = 0;
273 return SQLITE_NOMEM_BKPT;
274 }else{
275 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
278 if( bPreserve && pMem->z ){
279 assert( pMem->z!=pMem->zMalloc );
280 memcpy(pMem->zMalloc, pMem->z, pMem->n);
282 if( (pMem->flags&MEM_Dyn)!=0 ){
283 assert( pMem->xDel!=0 && pMem->xDel!=SQLITE_DYNAMIC );
284 pMem->xDel((void *)(pMem->z));
287 pMem->z = pMem->zMalloc;
288 pMem->flags &= ~(MEM_Dyn|MEM_Ephem|MEM_Static);
289 return SQLITE_OK;
293 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
294 ** If pMem->zMalloc already meets or exceeds the requested size, this
295 ** routine is a no-op.
297 ** Any prior string or blob content in the pMem object may be discarded.
298 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str
299 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal,
300 ** and MEM_Null values are preserved.
302 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
303 ** if unable to complete the resizing.
305 int sqlite3VdbeMemClearAndResize(Mem *pMem, int szNew){
306 assert( CORRUPT_DB || szNew>0 );
307 assert( (pMem->flags & MEM_Dyn)==0 || pMem->szMalloc==0 );
308 if( pMem->szMalloc<szNew ){
309 return sqlite3VdbeMemGrow(pMem, szNew, 0);
311 assert( (pMem->flags & MEM_Dyn)==0 );
312 pMem->z = pMem->zMalloc;
313 pMem->flags &= (MEM_Null|MEM_Int|MEM_Real|MEM_IntReal);
314 return SQLITE_OK;
318 ** It is already known that pMem contains an unterminated string.
319 ** Add the zero terminator.
321 ** Three bytes of zero are added. In this way, there is guaranteed
322 ** to be a double-zero byte at an even byte boundary in order to
323 ** terminate a UTF16 string, even if the initial size of the buffer
324 ** is an odd number of bytes.
326 static SQLITE_NOINLINE int vdbeMemAddTerminator(Mem *pMem){
327 if( sqlite3VdbeMemGrow(pMem, pMem->n+3, 1) ){
328 return SQLITE_NOMEM_BKPT;
330 pMem->z[pMem->n] = 0;
331 pMem->z[pMem->n+1] = 0;
332 pMem->z[pMem->n+2] = 0;
333 pMem->flags |= MEM_Term;
334 return SQLITE_OK;
338 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
339 ** MEM.zMalloc, where it can be safely written.
341 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
343 int sqlite3VdbeMemMakeWriteable(Mem *pMem){
344 assert( pMem!=0 );
345 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
346 assert( !sqlite3VdbeMemIsRowSet(pMem) );
347 if( (pMem->flags & (MEM_Str|MEM_Blob))!=0 ){
348 if( ExpandBlob(pMem) ) return SQLITE_NOMEM;
349 if( pMem->szMalloc==0 || pMem->z!=pMem->zMalloc ){
350 int rc = vdbeMemAddTerminator(pMem);
351 if( rc ) return rc;
354 pMem->flags &= ~MEM_Ephem;
355 #ifdef SQLITE_DEBUG
356 pMem->pScopyFrom = 0;
357 #endif
359 return SQLITE_OK;
363 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
364 ** blob stored in dynamically allocated space.
366 #ifndef SQLITE_OMIT_INCRBLOB
367 int sqlite3VdbeMemExpandBlob(Mem *pMem){
368 int nByte;
369 assert( pMem!=0 );
370 assert( pMem->flags & MEM_Zero );
371 assert( (pMem->flags&MEM_Blob)!=0 || MemNullNochng(pMem) );
372 testcase( sqlite3_value_nochange(pMem) );
373 assert( !sqlite3VdbeMemIsRowSet(pMem) );
374 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
376 /* Set nByte to the number of bytes required to store the expanded blob. */
377 nByte = pMem->n + pMem->u.nZero;
378 if( nByte<=0 ){
379 if( (pMem->flags & MEM_Blob)==0 ) return SQLITE_OK;
380 nByte = 1;
382 if( sqlite3VdbeMemGrow(pMem, nByte, 1) ){
383 return SQLITE_NOMEM_BKPT;
385 assert( pMem->z!=0 );
386 assert( sqlite3DbMallocSize(pMem->db,pMem->z) >= nByte );
388 memset(&pMem->z[pMem->n], 0, pMem->u.nZero);
389 pMem->n += pMem->u.nZero;
390 pMem->flags &= ~(MEM_Zero|MEM_Term);
391 return SQLITE_OK;
393 #endif
396 ** Make sure the given Mem is \u0000 terminated.
398 int sqlite3VdbeMemNulTerminate(Mem *pMem){
399 assert( pMem!=0 );
400 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
401 testcase( (pMem->flags & (MEM_Term|MEM_Str))==(MEM_Term|MEM_Str) );
402 testcase( (pMem->flags & (MEM_Term|MEM_Str))==0 );
403 if( (pMem->flags & (MEM_Term|MEM_Str))!=MEM_Str ){
404 return SQLITE_OK; /* Nothing to do */
405 }else{
406 return vdbeMemAddTerminator(pMem);
411 ** Add MEM_Str to the set of representations for the given Mem. This
412 ** routine is only called if pMem is a number of some kind, not a NULL
413 ** or a BLOB.
415 ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated
416 ** if bForce is true but are retained if bForce is false.
418 ** A MEM_Null value will never be passed to this function. This function is
419 ** used for converting values to text for returning to the user (i.e. via
420 ** sqlite3_value_text()), or for ensuring that values to be used as btree
421 ** keys are strings. In the former case a NULL pointer is returned the
422 ** user and the latter is an internal programming error.
424 int sqlite3VdbeMemStringify(Mem *pMem, u8 enc, u8 bForce){
425 const int nByte = 32;
427 assert( pMem!=0 );
428 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
429 assert( !(pMem->flags&MEM_Zero) );
430 assert( !(pMem->flags&(MEM_Str|MEM_Blob)) );
431 assert( pMem->flags&(MEM_Int|MEM_Real|MEM_IntReal) );
432 assert( !sqlite3VdbeMemIsRowSet(pMem) );
433 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
436 if( sqlite3VdbeMemClearAndResize(pMem, nByte) ){
437 pMem->enc = 0;
438 return SQLITE_NOMEM_BKPT;
441 vdbeMemRenderNum(nByte, pMem->z, pMem);
442 assert( pMem->z!=0 );
443 assert( pMem->n==(int)sqlite3Strlen30NN(pMem->z) );
444 pMem->enc = SQLITE_UTF8;
445 pMem->flags |= MEM_Str|MEM_Term;
446 if( bForce ) pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal);
447 sqlite3VdbeChangeEncoding(pMem, enc);
448 return SQLITE_OK;
452 ** Memory cell pMem contains the context of an aggregate function.
453 ** This routine calls the finalize method for that function. The
454 ** result of the aggregate is stored back into pMem.
456 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
457 ** otherwise.
459 int sqlite3VdbeMemFinalize(Mem *pMem, FuncDef *pFunc){
460 sqlite3_context ctx;
461 Mem t;
462 assert( pFunc!=0 );
463 assert( pMem!=0 );
464 assert( pMem->db!=0 );
465 assert( pFunc->xFinalize!=0 );
466 assert( (pMem->flags & MEM_Null)!=0 || pFunc==pMem->u.pDef );
467 assert( sqlite3_mutex_held(pMem->db->mutex) );
468 memset(&ctx, 0, sizeof(ctx));
469 memset(&t, 0, sizeof(t));
470 t.flags = MEM_Null;
471 t.db = pMem->db;
472 ctx.pOut = &t;
473 ctx.pMem = pMem;
474 ctx.pFunc = pFunc;
475 ctx.enc = ENC(t.db);
476 pFunc->xFinalize(&ctx); /* IMP: R-24505-23230 */
477 assert( (pMem->flags & MEM_Dyn)==0 );
478 if( pMem->szMalloc>0 ) sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
479 memcpy(pMem, &t, sizeof(t));
480 return ctx.isError;
484 ** Memory cell pAccum contains the context of an aggregate function.
485 ** This routine calls the xValue method for that function and stores
486 ** the results in memory cell pMem.
488 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK
489 ** otherwise.
491 #ifndef SQLITE_OMIT_WINDOWFUNC
492 int sqlite3VdbeMemAggValue(Mem *pAccum, Mem *pOut, FuncDef *pFunc){
493 sqlite3_context ctx;
494 assert( pFunc!=0 );
495 assert( pFunc->xValue!=0 );
496 assert( (pAccum->flags & MEM_Null)!=0 || pFunc==pAccum->u.pDef );
497 assert( pAccum->db!=0 );
498 assert( sqlite3_mutex_held(pAccum->db->mutex) );
499 memset(&ctx, 0, sizeof(ctx));
500 sqlite3VdbeMemSetNull(pOut);
501 ctx.pOut = pOut;
502 ctx.pMem = pAccum;
503 ctx.pFunc = pFunc;
504 ctx.enc = ENC(pAccum->db);
505 pFunc->xValue(&ctx);
506 return ctx.isError;
508 #endif /* SQLITE_OMIT_WINDOWFUNC */
511 ** If the memory cell contains a value that must be freed by
512 ** invoking the external callback in Mem.xDel, then this routine
513 ** will free that value. It also sets Mem.flags to MEM_Null.
515 ** This is a helper routine for sqlite3VdbeMemSetNull() and
516 ** for sqlite3VdbeMemRelease(). Use those other routines as the
517 ** entry point for releasing Mem resources.
519 static SQLITE_NOINLINE void vdbeMemClearExternAndSetNull(Mem *p){
520 assert( p->db==0 || sqlite3_mutex_held(p->db->mutex) );
521 assert( VdbeMemDynamic(p) );
522 if( p->flags&MEM_Agg ){
523 sqlite3VdbeMemFinalize(p, p->u.pDef);
524 assert( (p->flags & MEM_Agg)==0 );
525 testcase( p->flags & MEM_Dyn );
527 if( p->flags&MEM_Dyn ){
528 assert( p->xDel!=SQLITE_DYNAMIC && p->xDel!=0 );
529 p->xDel((void *)p->z);
531 p->flags = MEM_Null;
535 ** Release memory held by the Mem p, both external memory cleared
536 ** by p->xDel and memory in p->zMalloc.
538 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
539 ** the unusual case where there really is memory in p that needs
540 ** to be freed.
542 static SQLITE_NOINLINE void vdbeMemClear(Mem *p){
543 if( VdbeMemDynamic(p) ){
544 vdbeMemClearExternAndSetNull(p);
546 if( p->szMalloc ){
547 sqlite3DbFreeNN(p->db, p->zMalloc);
548 p->szMalloc = 0;
550 p->z = 0;
554 ** Release any memory resources held by the Mem. Both the memory that is
555 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
557 ** Use this routine prior to clean up prior to abandoning a Mem, or to
558 ** reset a Mem back to its minimum memory utilization.
560 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
561 ** prior to inserting new content into the Mem.
563 void sqlite3VdbeMemRelease(Mem *p){
564 assert( sqlite3VdbeCheckMemInvariants(p) );
565 if( VdbeMemDynamic(p) || p->szMalloc ){
566 vdbeMemClear(p);
570 /* Like sqlite3VdbeMemRelease() but faster for cases where we
571 ** know in advance that the Mem is not MEM_Dyn or MEM_Agg.
573 void sqlite3VdbeMemReleaseMalloc(Mem *p){
574 assert( !VdbeMemDynamic(p) );
575 if( p->szMalloc ) vdbeMemClear(p);
579 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
580 ** If the double is out of range of a 64-bit signed integer then
581 ** return the closest available 64-bit signed integer.
583 static SQLITE_NOINLINE i64 doubleToInt64(double r){
584 #ifdef SQLITE_OMIT_FLOATING_POINT
585 /* When floating-point is omitted, double and int64 are the same thing */
586 return r;
587 #else
589 ** Many compilers we encounter do not define constants for the
590 ** minimum and maximum 64-bit integers, or they define them
591 ** inconsistently. And many do not understand the "LL" notation.
592 ** So we define our own static constants here using nothing
593 ** larger than a 32-bit integer constant.
595 static const i64 maxInt = LARGEST_INT64;
596 static const i64 minInt = SMALLEST_INT64;
598 if( r<=(double)minInt ){
599 return minInt;
600 }else if( r>=(double)maxInt ){
601 return maxInt;
602 }else{
603 return (i64)r;
605 #endif
609 ** Return some kind of integer value which is the best we can do
610 ** at representing the value that *pMem describes as an integer.
611 ** If pMem is an integer, then the value is exact. If pMem is
612 ** a floating-point then the value returned is the integer part.
613 ** If pMem is a string or blob, then we make an attempt to convert
614 ** it into an integer and return that. If pMem represents an
615 ** an SQL-NULL value, return 0.
617 ** If pMem represents a string value, its encoding might be changed.
619 static SQLITE_NOINLINE i64 memIntValue(const Mem *pMem){
620 i64 value = 0;
621 sqlite3Atoi64(pMem->z, &value, pMem->n, pMem->enc);
622 return value;
624 i64 sqlite3VdbeIntValue(const Mem *pMem){
625 int flags;
626 assert( pMem!=0 );
627 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
628 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
629 flags = pMem->flags;
630 if( flags & (MEM_Int|MEM_IntReal) ){
631 testcase( flags & MEM_IntReal );
632 return pMem->u.i;
633 }else if( flags & MEM_Real ){
634 return doubleToInt64(pMem->u.r);
635 }else if( (flags & (MEM_Str|MEM_Blob))!=0 && pMem->z!=0 ){
636 return memIntValue(pMem);
637 }else{
638 return 0;
643 ** Return the best representation of pMem that we can get into a
644 ** double. If pMem is already a double or an integer, return its
645 ** value. If it is a string or blob, try to convert it to a double.
646 ** If it is a NULL, return 0.0.
648 static SQLITE_NOINLINE double memRealValue(Mem *pMem){
649 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
650 double val = (double)0;
651 sqlite3AtoF(pMem->z, &val, pMem->n, pMem->enc);
652 return val;
654 double sqlite3VdbeRealValue(Mem *pMem){
655 assert( pMem!=0 );
656 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
657 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
658 if( pMem->flags & MEM_Real ){
659 return pMem->u.r;
660 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
661 testcase( pMem->flags & MEM_IntReal );
662 return (double)pMem->u.i;
663 }else if( pMem->flags & (MEM_Str|MEM_Blob) ){
664 return memRealValue(pMem);
665 }else{
666 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
667 return (double)0;
672 ** Return 1 if pMem represents true, and return 0 if pMem represents false.
673 ** Return the value ifNull if pMem is NULL.
675 int sqlite3VdbeBooleanValue(Mem *pMem, int ifNull){
676 testcase( pMem->flags & MEM_IntReal );
677 if( pMem->flags & (MEM_Int|MEM_IntReal) ) return pMem->u.i!=0;
678 if( pMem->flags & MEM_Null ) return ifNull;
679 return sqlite3VdbeRealValue(pMem)!=0.0;
683 ** The MEM structure is already a MEM_Real or MEM_IntReal. Try to
684 ** make it a MEM_Int if we can.
686 void sqlite3VdbeIntegerAffinity(Mem *pMem){
687 assert( pMem!=0 );
688 assert( pMem->flags & (MEM_Real|MEM_IntReal) );
689 assert( !sqlite3VdbeMemIsRowSet(pMem) );
690 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
691 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
693 if( pMem->flags & MEM_IntReal ){
694 MemSetTypeFlag(pMem, MEM_Int);
695 }else{
696 i64 ix = doubleToInt64(pMem->u.r);
698 /* Only mark the value as an integer if
700 ** (1) the round-trip conversion real->int->real is a no-op, and
701 ** (2) The integer is neither the largest nor the smallest
702 ** possible integer (ticket #3922)
704 ** The second and third terms in the following conditional enforces
705 ** the second condition under the assumption that addition overflow causes
706 ** values to wrap around.
708 if( pMem->u.r==ix && ix>SMALLEST_INT64 && ix<LARGEST_INT64 ){
709 pMem->u.i = ix;
710 MemSetTypeFlag(pMem, MEM_Int);
716 ** Convert pMem to type integer. Invalidate any prior representations.
718 int sqlite3VdbeMemIntegerify(Mem *pMem){
719 assert( pMem!=0 );
720 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
721 assert( !sqlite3VdbeMemIsRowSet(pMem) );
722 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
724 pMem->u.i = sqlite3VdbeIntValue(pMem);
725 MemSetTypeFlag(pMem, MEM_Int);
726 return SQLITE_OK;
730 ** Convert pMem so that it is of type MEM_Real.
731 ** Invalidate any prior representations.
733 int sqlite3VdbeMemRealify(Mem *pMem){
734 assert( pMem!=0 );
735 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
736 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
738 pMem->u.r = sqlite3VdbeRealValue(pMem);
739 MemSetTypeFlag(pMem, MEM_Real);
740 return SQLITE_OK;
743 /* Compare a floating point value to an integer. Return true if the two
744 ** values are the same within the precision of the floating point value.
746 ** This function assumes that i was obtained by assignment from r1.
748 ** For some versions of GCC on 32-bit machines, if you do the more obvious
749 ** comparison of "r1==(double)i" you sometimes get an answer of false even
750 ** though the r1 and (double)i values are bit-for-bit the same.
752 int sqlite3RealSameAsInt(double r1, sqlite3_int64 i){
753 double r2 = (double)i;
754 return r1==0.0
755 || (memcmp(&r1, &r2, sizeof(r1))==0
756 && i >= -2251799813685248LL && i < 2251799813685248LL);
759 /* Convert a floating point value to its closest integer. Do so in
760 ** a way that avoids 'outside the range of representable values' warnings
761 ** from UBSAN.
763 i64 sqlite3RealToI64(double r){
764 if( r<=(double)SMALLEST_INT64 ) return SMALLEST_INT64;
765 if( r>=(double)LARGEST_INT64) return LARGEST_INT64;
766 return (i64)r;
770 ** Convert pMem so that it has type MEM_Real or MEM_Int.
771 ** Invalidate any prior representations.
773 ** Every effort is made to force the conversion, even if the input
774 ** is a string that does not look completely like a number. Convert
775 ** as much of the string as we can and ignore the rest.
777 int sqlite3VdbeMemNumerify(Mem *pMem){
778 assert( pMem!=0 );
779 testcase( pMem->flags & MEM_Int );
780 testcase( pMem->flags & MEM_Real );
781 testcase( pMem->flags & MEM_IntReal );
782 testcase( pMem->flags & MEM_Null );
783 if( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))==0 ){
784 int rc;
785 sqlite3_int64 ix;
786 assert( (pMem->flags & (MEM_Blob|MEM_Str))!=0 );
787 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
788 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
789 if( ((rc==0 || rc==1) && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1)
790 || sqlite3RealSameAsInt(pMem->u.r, (ix = sqlite3RealToI64(pMem->u.r)))
792 pMem->u.i = ix;
793 MemSetTypeFlag(pMem, MEM_Int);
794 }else{
795 MemSetTypeFlag(pMem, MEM_Real);
798 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null))!=0 );
799 pMem->flags &= ~(MEM_Str|MEM_Blob|MEM_Zero);
800 return SQLITE_OK;
804 ** Cast the datatype of the value in pMem according to the affinity
805 ** "aff". Casting is different from applying affinity in that a cast
806 ** is forced. In other words, the value is converted into the desired
807 ** affinity even if that results in loss of data. This routine is
808 ** used (for example) to implement the SQL "cast()" operator.
810 int sqlite3VdbeMemCast(Mem *pMem, u8 aff, u8 encoding){
811 if( pMem->flags & MEM_Null ) return SQLITE_OK;
812 switch( aff ){
813 case SQLITE_AFF_BLOB: { /* Really a cast to BLOB */
814 if( (pMem->flags & MEM_Blob)==0 ){
815 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
816 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
817 if( pMem->flags & MEM_Str ) MemSetTypeFlag(pMem, MEM_Blob);
818 }else{
819 pMem->flags &= ~(MEM_TypeMask&~MEM_Blob);
821 break;
823 case SQLITE_AFF_NUMERIC: {
824 sqlite3VdbeMemNumerify(pMem);
825 break;
827 case SQLITE_AFF_INTEGER: {
828 sqlite3VdbeMemIntegerify(pMem);
829 break;
831 case SQLITE_AFF_REAL: {
832 sqlite3VdbeMemRealify(pMem);
833 break;
835 default: {
836 assert( aff==SQLITE_AFF_TEXT );
837 assert( MEM_Str==(MEM_Blob>>3) );
838 pMem->flags |= (pMem->flags&MEM_Blob)>>3;
839 sqlite3ValueApplyAffinity(pMem, SQLITE_AFF_TEXT, encoding);
840 assert( pMem->flags & MEM_Str || pMem->db->mallocFailed );
841 pMem->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal|MEM_Blob|MEM_Zero);
842 if( encoding!=SQLITE_UTF8 ) pMem->n &= ~1;
843 return sqlite3VdbeChangeEncoding(pMem, encoding);
846 return SQLITE_OK;
850 ** Initialize bulk memory to be a consistent Mem object.
852 ** The minimum amount of initialization feasible is performed.
854 void sqlite3VdbeMemInit(Mem *pMem, sqlite3 *db, u16 flags){
855 assert( (flags & ~MEM_TypeMask)==0 );
856 pMem->flags = flags;
857 pMem->db = db;
858 pMem->szMalloc = 0;
863 ** Delete any previous value and set the value stored in *pMem to NULL.
865 ** This routine calls the Mem.xDel destructor to dispose of values that
866 ** require the destructor. But it preserves the Mem.zMalloc memory allocation.
867 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
868 ** routine to invoke the destructor and deallocates Mem.zMalloc.
870 ** Use this routine to reset the Mem prior to insert a new value.
872 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
874 void sqlite3VdbeMemSetNull(Mem *pMem){
875 if( VdbeMemDynamic(pMem) ){
876 vdbeMemClearExternAndSetNull(pMem);
877 }else{
878 pMem->flags = MEM_Null;
881 void sqlite3ValueSetNull(sqlite3_value *p){
882 sqlite3VdbeMemSetNull((Mem*)p);
886 ** Delete any previous value and set the value to be a BLOB of length
887 ** n containing all zeros.
889 #ifndef SQLITE_OMIT_INCRBLOB
890 void sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
891 sqlite3VdbeMemRelease(pMem);
892 pMem->flags = MEM_Blob|MEM_Zero;
893 pMem->n = 0;
894 if( n<0 ) n = 0;
895 pMem->u.nZero = n;
896 pMem->enc = SQLITE_UTF8;
897 pMem->z = 0;
899 #else
900 int sqlite3VdbeMemSetZeroBlob(Mem *pMem, int n){
901 int nByte = n>0?n:1;
902 if( sqlite3VdbeMemGrow(pMem, nByte, 0) ){
903 return SQLITE_NOMEM_BKPT;
905 assert( pMem->z!=0 );
906 assert( sqlite3DbMallocSize(pMem->db, pMem->z)>=nByte );
907 memset(pMem->z, 0, nByte);
908 pMem->n = n>0?n:0;
909 pMem->flags = MEM_Blob;
910 pMem->enc = SQLITE_UTF8;
911 return SQLITE_OK;
913 #endif
916 ** The pMem is known to contain content that needs to be destroyed prior
917 ** to a value change. So invoke the destructor, then set the value to
918 ** a 64-bit integer.
920 static SQLITE_NOINLINE void vdbeReleaseAndSetInt64(Mem *pMem, i64 val){
921 sqlite3VdbeMemSetNull(pMem);
922 pMem->u.i = val;
923 pMem->flags = MEM_Int;
927 ** Delete any previous value and set the value stored in *pMem to val,
928 ** manifest type INTEGER.
930 void sqlite3VdbeMemSetInt64(Mem *pMem, i64 val){
931 if( VdbeMemDynamic(pMem) ){
932 vdbeReleaseAndSetInt64(pMem, val);
933 }else{
934 pMem->u.i = val;
935 pMem->flags = MEM_Int;
939 /* A no-op destructor */
940 void sqlite3NoopDestructor(void *p){ UNUSED_PARAMETER(p); }
943 ** Set the value stored in *pMem should already be a NULL.
944 ** Also store a pointer to go with it.
946 void sqlite3VdbeMemSetPointer(
947 Mem *pMem,
948 void *pPtr,
949 const char *zPType,
950 void (*xDestructor)(void*)
952 assert( pMem->flags==MEM_Null );
953 vdbeMemClear(pMem);
954 pMem->u.zPType = zPType ? zPType : "";
955 pMem->z = pPtr;
956 pMem->flags = MEM_Null|MEM_Dyn|MEM_Subtype|MEM_Term;
957 pMem->eSubtype = 'p';
958 pMem->xDel = xDestructor ? xDestructor : sqlite3NoopDestructor;
961 #ifndef SQLITE_OMIT_FLOATING_POINT
963 ** Delete any previous value and set the value stored in *pMem to val,
964 ** manifest type REAL.
966 void sqlite3VdbeMemSetDouble(Mem *pMem, double val){
967 sqlite3VdbeMemSetNull(pMem);
968 if( !sqlite3IsNaN(val) ){
969 pMem->u.r = val;
970 pMem->flags = MEM_Real;
973 #endif
975 #ifdef SQLITE_DEBUG
977 ** Return true if the Mem holds a RowSet object. This routine is intended
978 ** for use inside of assert() statements.
980 int sqlite3VdbeMemIsRowSet(const Mem *pMem){
981 return (pMem->flags&(MEM_Blob|MEM_Dyn))==(MEM_Blob|MEM_Dyn)
982 && pMem->xDel==sqlite3RowSetDelete;
984 #endif
987 ** Delete any previous value and set the value of pMem to be an
988 ** empty boolean index.
990 ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation
991 ** error occurs.
993 int sqlite3VdbeMemSetRowSet(Mem *pMem){
994 sqlite3 *db = pMem->db;
995 RowSet *p;
996 assert( db!=0 );
997 assert( !sqlite3VdbeMemIsRowSet(pMem) );
998 sqlite3VdbeMemRelease(pMem);
999 p = sqlite3RowSetInit(db);
1000 if( p==0 ) return SQLITE_NOMEM;
1001 pMem->z = (char*)p;
1002 pMem->flags = MEM_Blob|MEM_Dyn;
1003 pMem->xDel = sqlite3RowSetDelete;
1004 return SQLITE_OK;
1008 ** Return true if the Mem object contains a TEXT or BLOB that is
1009 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
1011 int sqlite3VdbeMemTooBig(Mem *p){
1012 assert( p->db!=0 );
1013 if( p->flags & (MEM_Str|MEM_Blob) ){
1014 int n = p->n;
1015 if( p->flags & MEM_Zero ){
1016 n += p->u.nZero;
1018 return n>p->db->aLimit[SQLITE_LIMIT_LENGTH];
1020 return 0;
1023 #ifdef SQLITE_DEBUG
1025 ** This routine prepares a memory cell for modification by breaking
1026 ** its link to a shallow copy and by marking any current shallow
1027 ** copies of this cell as invalid.
1029 ** This is used for testing and debugging only - to help ensure that shallow
1030 ** copies (created by OP_SCopy) are not misused.
1032 void sqlite3VdbeMemAboutToChange(Vdbe *pVdbe, Mem *pMem){
1033 int i;
1034 Mem *pX;
1035 for(i=1, pX=pVdbe->aMem+1; i<pVdbe->nMem; i++, pX++){
1036 if( pX->pScopyFrom==pMem ){
1037 u16 mFlags;
1038 if( pVdbe->db->flags & SQLITE_VdbeTrace ){
1039 sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n",
1040 (int)(pX - pVdbe->aMem), (int)(pMem - pVdbe->aMem));
1042 /* If pX is marked as a shallow copy of pMem, then try to verify that
1043 ** no significant changes have been made to pX since the OP_SCopy.
1044 ** A significant change would indicated a missed call to this
1045 ** function for pX. Minor changes, such as adding or removing a
1046 ** dual type, are allowed, as long as the underlying value is the
1047 ** same. */
1048 mFlags = pMem->flags & pX->flags & pX->mScopyFlags;
1049 assert( (mFlags&(MEM_Int|MEM_IntReal))==0 || pMem->u.i==pX->u.i );
1051 /* pMem is the register that is changing. But also mark pX as
1052 ** undefined so that we can quickly detect the shallow-copy error */
1053 pX->flags = MEM_Undefined;
1054 pX->pScopyFrom = 0;
1057 pMem->pScopyFrom = 0;
1059 #endif /* SQLITE_DEBUG */
1062 ** Make an shallow copy of pFrom into pTo. Prior contents of
1063 ** pTo are freed. The pFrom->z field is not duplicated. If
1064 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
1065 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
1067 static SQLITE_NOINLINE void vdbeClrCopy(Mem *pTo, const Mem *pFrom, int eType){
1068 vdbeMemClearExternAndSetNull(pTo);
1069 assert( !VdbeMemDynamic(pTo) );
1070 sqlite3VdbeMemShallowCopy(pTo, pFrom, eType);
1072 void sqlite3VdbeMemShallowCopy(Mem *pTo, const Mem *pFrom, int srcType){
1073 assert( !sqlite3VdbeMemIsRowSet(pFrom) );
1074 assert( pTo->db==pFrom->db );
1075 if( VdbeMemDynamic(pTo) ){ vdbeClrCopy(pTo,pFrom,srcType); return; }
1076 memcpy(pTo, pFrom, MEMCELLSIZE);
1077 if( (pFrom->flags&MEM_Static)==0 ){
1078 pTo->flags &= ~(MEM_Dyn|MEM_Static|MEM_Ephem);
1079 assert( srcType==MEM_Ephem || srcType==MEM_Static );
1080 pTo->flags |= srcType;
1085 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
1086 ** freed before the copy is made.
1088 int sqlite3VdbeMemCopy(Mem *pTo, const Mem *pFrom){
1089 int rc = SQLITE_OK;
1091 assert( !sqlite3VdbeMemIsRowSet(pFrom) );
1092 if( VdbeMemDynamic(pTo) ) vdbeMemClearExternAndSetNull(pTo);
1093 memcpy(pTo, pFrom, MEMCELLSIZE);
1094 pTo->flags &= ~MEM_Dyn;
1095 if( pTo->flags&(MEM_Str|MEM_Blob) ){
1096 if( 0==(pFrom->flags&MEM_Static) ){
1097 pTo->flags |= MEM_Ephem;
1098 rc = sqlite3VdbeMemMakeWriteable(pTo);
1102 return rc;
1106 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
1107 ** freed. If pFrom contains ephemeral data, a copy is made.
1109 ** pFrom contains an SQL NULL when this routine returns.
1111 void sqlite3VdbeMemMove(Mem *pTo, Mem *pFrom){
1112 assert( pFrom->db==0 || sqlite3_mutex_held(pFrom->db->mutex) );
1113 assert( pTo->db==0 || sqlite3_mutex_held(pTo->db->mutex) );
1114 assert( pFrom->db==0 || pTo->db==0 || pFrom->db==pTo->db );
1116 sqlite3VdbeMemRelease(pTo);
1117 memcpy(pTo, pFrom, sizeof(Mem));
1118 pFrom->flags = MEM_Null;
1119 pFrom->szMalloc = 0;
1123 ** Change the value of a Mem to be a string or a BLOB.
1125 ** The memory management strategy depends on the value of the xDel
1126 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
1127 ** string is copied into a (possibly existing) buffer managed by the
1128 ** Mem structure. Otherwise, any existing buffer is freed and the
1129 ** pointer copied.
1131 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
1132 ** size limit) then no memory allocation occurs. If the string can be
1133 ** stored without allocating memory, then it is. If a memory allocation
1134 ** is required to store the string, then value of pMem is unchanged. In
1135 ** either case, SQLITE_TOOBIG is returned.
1137 ** The "enc" parameter is the text encoding for the string, or zero
1138 ** to store a blob.
1140 ** If n is negative, then the string consists of all bytes up to but
1141 ** excluding the first zero character. The n parameter must be
1142 ** non-negative for blobs.
1144 int sqlite3VdbeMemSetStr(
1145 Mem *pMem, /* Memory cell to set to string value */
1146 const char *z, /* String pointer */
1147 i64 n, /* Bytes in string, or negative */
1148 u8 enc, /* Encoding of z. 0 for BLOBs */
1149 void (*xDel)(void*) /* Destructor function */
1151 i64 nByte = n; /* New value for pMem->n */
1152 int iLimit; /* Maximum allowed string or blob size */
1153 u16 flags; /* New value for pMem->flags */
1155 assert( pMem!=0 );
1156 assert( pMem->db==0 || sqlite3_mutex_held(pMem->db->mutex) );
1157 assert( !sqlite3VdbeMemIsRowSet(pMem) );
1158 assert( enc!=0 || n>=0 );
1160 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
1161 if( !z ){
1162 sqlite3VdbeMemSetNull(pMem);
1163 return SQLITE_OK;
1166 if( pMem->db ){
1167 iLimit = pMem->db->aLimit[SQLITE_LIMIT_LENGTH];
1168 }else{
1169 iLimit = SQLITE_MAX_LENGTH;
1171 if( nByte<0 ){
1172 assert( enc!=0 );
1173 if( enc==SQLITE_UTF8 ){
1174 nByte = strlen(z);
1175 }else{
1176 for(nByte=0; nByte<=iLimit && (z[nByte] | z[nByte+1]); nByte+=2){}
1178 flags= MEM_Str|MEM_Term;
1179 }else if( enc==0 ){
1180 flags = MEM_Blob;
1181 enc = SQLITE_UTF8;
1182 }else{
1183 flags = MEM_Str;
1185 if( nByte>iLimit ){
1186 if( xDel && xDel!=SQLITE_TRANSIENT ){
1187 if( xDel==SQLITE_DYNAMIC ){
1188 sqlite3DbFree(pMem->db, (void*)z);
1189 }else{
1190 xDel((void*)z);
1193 sqlite3VdbeMemSetNull(pMem);
1194 return sqlite3ErrorToParser(pMem->db, SQLITE_TOOBIG);
1197 /* The following block sets the new values of Mem.z and Mem.xDel. It
1198 ** also sets a flag in local variable "flags" to indicate the memory
1199 ** management (one of MEM_Dyn or MEM_Static).
1201 if( xDel==SQLITE_TRANSIENT ){
1202 i64 nAlloc = nByte;
1203 if( flags&MEM_Term ){
1204 nAlloc += (enc==SQLITE_UTF8?1:2);
1206 testcase( nAlloc==0 );
1207 testcase( nAlloc==31 );
1208 testcase( nAlloc==32 );
1209 if( sqlite3VdbeMemClearAndResize(pMem, (int)MAX(nAlloc,32)) ){
1210 return SQLITE_NOMEM_BKPT;
1212 memcpy(pMem->z, z, nAlloc);
1213 }else{
1214 sqlite3VdbeMemRelease(pMem);
1215 pMem->z = (char *)z;
1216 if( xDel==SQLITE_DYNAMIC ){
1217 pMem->zMalloc = pMem->z;
1218 pMem->szMalloc = sqlite3DbMallocSize(pMem->db, pMem->zMalloc);
1219 }else{
1220 pMem->xDel = xDel;
1221 flags |= ((xDel==SQLITE_STATIC)?MEM_Static:MEM_Dyn);
1225 pMem->n = (int)(nByte & 0x7fffffff);
1226 pMem->flags = flags;
1227 pMem->enc = enc;
1229 #ifndef SQLITE_OMIT_UTF16
1230 if( enc>SQLITE_UTF8 && sqlite3VdbeMemHandleBom(pMem) ){
1231 return SQLITE_NOMEM_BKPT;
1233 #endif
1236 return SQLITE_OK;
1240 ** Move data out of a btree key or data field and into a Mem structure.
1241 ** The data is payload from the entry that pCur is currently pointing
1242 ** to. offset and amt determine what portion of the data or key to retrieve.
1243 ** The result is written into the pMem element.
1245 ** The pMem object must have been initialized. This routine will use
1246 ** pMem->zMalloc to hold the content from the btree, if possible. New
1247 ** pMem->zMalloc space will be allocated if necessary. The calling routine
1248 ** is responsible for making sure that the pMem object is eventually
1249 ** destroyed.
1251 ** If this routine fails for any reason (malloc returns NULL or unable
1252 ** to read from the disk) then the pMem is left in an inconsistent state.
1254 int sqlite3VdbeMemFromBtree(
1255 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1256 u32 offset, /* Offset from the start of data to return bytes from. */
1257 u32 amt, /* Number of bytes to return. */
1258 Mem *pMem /* OUT: Return data in this Mem structure. */
1260 int rc;
1261 pMem->flags = MEM_Null;
1262 if( sqlite3BtreeMaxRecordSize(pCur)<offset+amt ){
1263 return SQLITE_CORRUPT_BKPT;
1265 if( SQLITE_OK==(rc = sqlite3VdbeMemClearAndResize(pMem, amt+1)) ){
1266 rc = sqlite3BtreePayload(pCur, offset, amt, pMem->z);
1267 if( rc==SQLITE_OK ){
1268 pMem->z[amt] = 0; /* Overrun area used when reading malformed records */
1269 pMem->flags = MEM_Blob;
1270 pMem->n = (int)amt;
1271 }else{
1272 sqlite3VdbeMemRelease(pMem);
1275 return rc;
1277 int sqlite3VdbeMemFromBtreeZeroOffset(
1278 BtCursor *pCur, /* Cursor pointing at record to retrieve. */
1279 u32 amt, /* Number of bytes to return. */
1280 Mem *pMem /* OUT: Return data in this Mem structure. */
1282 u32 available = 0; /* Number of bytes available on the local btree page */
1283 int rc = SQLITE_OK; /* Return code */
1285 assert( sqlite3BtreeCursorIsValid(pCur) );
1286 assert( !VdbeMemDynamic(pMem) );
1288 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
1289 ** that both the BtShared and database handle mutexes are held. */
1290 assert( !sqlite3VdbeMemIsRowSet(pMem) );
1291 pMem->z = (char *)sqlite3BtreePayloadFetch(pCur, &available);
1292 assert( pMem->z!=0 );
1294 if( amt<=available ){
1295 pMem->flags = MEM_Blob|MEM_Ephem;
1296 pMem->n = (int)amt;
1297 }else{
1298 rc = sqlite3VdbeMemFromBtree(pCur, 0, amt, pMem);
1301 return rc;
1305 ** The pVal argument is known to be a value other than NULL.
1306 ** Convert it into a string with encoding enc and return a pointer
1307 ** to a zero-terminated version of that string.
1309 static SQLITE_NOINLINE const void *valueToText(sqlite3_value* pVal, u8 enc){
1310 assert( pVal!=0 );
1311 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1312 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1313 assert( !sqlite3VdbeMemIsRowSet(pVal) );
1314 assert( (pVal->flags & (MEM_Null))==0 );
1315 if( pVal->flags & (MEM_Blob|MEM_Str) ){
1316 if( ExpandBlob(pVal) ) return 0;
1317 pVal->flags |= MEM_Str;
1318 if( pVal->enc != (enc & ~SQLITE_UTF16_ALIGNED) ){
1319 sqlite3VdbeChangeEncoding(pVal, enc & ~SQLITE_UTF16_ALIGNED);
1321 if( (enc & SQLITE_UTF16_ALIGNED)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal->z)) ){
1322 assert( (pVal->flags & (MEM_Ephem|MEM_Static))!=0 );
1323 if( sqlite3VdbeMemMakeWriteable(pVal)!=SQLITE_OK ){
1324 return 0;
1327 sqlite3VdbeMemNulTerminate(pVal); /* IMP: R-31275-44060 */
1328 }else{
1329 sqlite3VdbeMemStringify(pVal, enc, 0);
1330 assert( 0==(1&SQLITE_PTR_TO_INT(pVal->z)) );
1332 assert(pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) || pVal->db==0
1333 || pVal->db->mallocFailed );
1334 if( pVal->enc==(enc & ~SQLITE_UTF16_ALIGNED) ){
1335 assert( sqlite3VdbeMemValidStrRep(pVal) );
1336 return pVal->z;
1337 }else{
1338 return 0;
1342 /* This function is only available internally, it is not part of the
1343 ** external API. It works in a similar way to sqlite3_value_text(),
1344 ** except the data returned is in the encoding specified by the second
1345 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1346 ** SQLITE_UTF8.
1348 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1349 ** If that is the case, then the result must be aligned on an even byte
1350 ** boundary.
1352 const void *sqlite3ValueText(sqlite3_value* pVal, u8 enc){
1353 if( !pVal ) return 0;
1354 assert( pVal->db==0 || sqlite3_mutex_held(pVal->db->mutex) );
1355 assert( (enc&3)==(enc&~SQLITE_UTF16_ALIGNED) );
1356 assert( !sqlite3VdbeMemIsRowSet(pVal) );
1357 if( (pVal->flags&(MEM_Str|MEM_Term))==(MEM_Str|MEM_Term) && pVal->enc==enc ){
1358 assert( sqlite3VdbeMemValidStrRep(pVal) );
1359 return pVal->z;
1361 if( pVal->flags&MEM_Null ){
1362 return 0;
1364 return valueToText(pVal, enc);
1368 ** Create a new sqlite3_value object.
1370 sqlite3_value *sqlite3ValueNew(sqlite3 *db){
1371 Mem *p = sqlite3DbMallocZero(db, sizeof(*p));
1372 if( p ){
1373 p->flags = MEM_Null;
1374 p->db = db;
1376 return p;
1380 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1381 ** valueNew(). See comments above valueNew() for details.
1383 struct ValueNewStat4Ctx {
1384 Parse *pParse;
1385 Index *pIdx;
1386 UnpackedRecord **ppRec;
1387 int iVal;
1391 ** Allocate and return a pointer to a new sqlite3_value object. If
1392 ** the second argument to this function is NULL, the object is allocated
1393 ** by calling sqlite3ValueNew().
1395 ** Otherwise, if the second argument is non-zero, then this function is
1396 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1397 ** already been allocated, allocate the UnpackedRecord structure that
1398 ** that function will return to its caller here. Then return a pointer to
1399 ** an sqlite3_value within the UnpackedRecord.a[] array.
1401 static sqlite3_value *valueNew(sqlite3 *db, struct ValueNewStat4Ctx *p){
1402 #ifdef SQLITE_ENABLE_STAT4
1403 if( p ){
1404 UnpackedRecord *pRec = p->ppRec[0];
1406 if( pRec==0 ){
1407 Index *pIdx = p->pIdx; /* Index being probed */
1408 int nByte; /* Bytes of space to allocate */
1409 int i; /* Counter variable */
1410 int nCol = pIdx->nColumn; /* Number of index columns including rowid */
1412 nByte = sizeof(Mem) * nCol + ROUND8(sizeof(UnpackedRecord));
1413 pRec = (UnpackedRecord*)sqlite3DbMallocZero(db, nByte);
1414 if( pRec ){
1415 pRec->pKeyInfo = sqlite3KeyInfoOfIndex(p->pParse, pIdx);
1416 if( pRec->pKeyInfo ){
1417 assert( pRec->pKeyInfo->nAllField==nCol );
1418 assert( pRec->pKeyInfo->enc==ENC(db) );
1419 pRec->aMem = (Mem *)((u8*)pRec + ROUND8(sizeof(UnpackedRecord)));
1420 for(i=0; i<nCol; i++){
1421 pRec->aMem[i].flags = MEM_Null;
1422 pRec->aMem[i].db = db;
1424 }else{
1425 sqlite3DbFreeNN(db, pRec);
1426 pRec = 0;
1429 if( pRec==0 ) return 0;
1430 p->ppRec[0] = pRec;
1433 pRec->nField = p->iVal+1;
1434 return &pRec->aMem[p->iVal];
1436 #else
1437 UNUSED_PARAMETER(p);
1438 #endif /* defined(SQLITE_ENABLE_STAT4) */
1439 return sqlite3ValueNew(db);
1443 ** The expression object indicated by the second argument is guaranteed
1444 ** to be a scalar SQL function. If
1446 ** * all function arguments are SQL literals,
1447 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
1448 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1450 ** then this routine attempts to invoke the SQL function. Assuming no
1451 ** error occurs, output parameter (*ppVal) is set to point to a value
1452 ** object containing the result before returning SQLITE_OK.
1454 ** Affinity aff is applied to the result of the function before returning.
1455 ** If the result is a text value, the sqlite3_value object uses encoding
1456 ** enc.
1458 ** If the conditions above are not met, this function returns SQLITE_OK
1459 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1460 ** NULL and an SQLite error code returned.
1462 #ifdef SQLITE_ENABLE_STAT4
1463 static int valueFromFunction(
1464 sqlite3 *db, /* The database connection */
1465 const Expr *p, /* The expression to evaluate */
1466 u8 enc, /* Encoding to use */
1467 u8 aff, /* Affinity to use */
1468 sqlite3_value **ppVal, /* Write the new value here */
1469 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1471 sqlite3_context ctx; /* Context object for function invocation */
1472 sqlite3_value **apVal = 0; /* Function arguments */
1473 int nVal = 0; /* Size of apVal[] array */
1474 FuncDef *pFunc = 0; /* Function definition */
1475 sqlite3_value *pVal = 0; /* New value */
1476 int rc = SQLITE_OK; /* Return code */
1477 ExprList *pList = 0; /* Function arguments */
1478 int i; /* Iterator variable */
1480 assert( pCtx!=0 );
1481 assert( (p->flags & EP_TokenOnly)==0 );
1482 assert( ExprUseXList(p) );
1483 pList = p->x.pList;
1484 if( pList ) nVal = pList->nExpr;
1485 assert( !ExprHasProperty(p, EP_IntValue) );
1486 pFunc = sqlite3FindFunction(db, p->u.zToken, nVal, enc, 0);
1487 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
1488 if( pFunc==0 ) return SQLITE_OK;
1489 #endif
1490 assert( pFunc );
1491 if( (pFunc->funcFlags & (SQLITE_FUNC_CONSTANT|SQLITE_FUNC_SLOCHNG))==0
1492 || (pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL)
1494 return SQLITE_OK;
1497 if( pList ){
1498 apVal = (sqlite3_value**)sqlite3DbMallocZero(db, sizeof(apVal[0]) * nVal);
1499 if( apVal==0 ){
1500 rc = SQLITE_NOMEM_BKPT;
1501 goto value_from_function_out;
1503 for(i=0; i<nVal; i++){
1504 rc = sqlite3ValueFromExpr(db, pList->a[i].pExpr, enc, aff, &apVal[i]);
1505 if( apVal[i]==0 || rc!=SQLITE_OK ) goto value_from_function_out;
1509 pVal = valueNew(db, pCtx);
1510 if( pVal==0 ){
1511 rc = SQLITE_NOMEM_BKPT;
1512 goto value_from_function_out;
1515 memset(&ctx, 0, sizeof(ctx));
1516 ctx.pOut = pVal;
1517 ctx.pFunc = pFunc;
1518 ctx.enc = ENC(db);
1519 pFunc->xSFunc(&ctx, nVal, apVal);
1520 if( ctx.isError ){
1521 rc = ctx.isError;
1522 sqlite3ErrorMsg(pCtx->pParse, "%s", sqlite3_value_text(pVal));
1523 }else{
1524 sqlite3ValueApplyAffinity(pVal, aff, SQLITE_UTF8);
1525 assert( rc==SQLITE_OK );
1526 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1527 if( NEVER(rc==SQLITE_OK && sqlite3VdbeMemTooBig(pVal)) ){
1528 rc = SQLITE_TOOBIG;
1529 pCtx->pParse->nErr++;
1533 value_from_function_out:
1534 if( rc!=SQLITE_OK ){
1535 pVal = 0;
1536 pCtx->pParse->rc = rc;
1538 if( apVal ){
1539 for(i=0; i<nVal; i++){
1540 sqlite3ValueFree(apVal[i]);
1542 sqlite3DbFreeNN(db, apVal);
1545 *ppVal = pVal;
1546 return rc;
1548 #else
1549 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1550 #endif /* defined(SQLITE_ENABLE_STAT4) */
1553 ** Extract a value from the supplied expression in the manner described
1554 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1555 ** using valueNew().
1557 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1558 ** has been allocated, it is freed before returning. Or, if pCtx is not
1559 ** NULL, it is assumed that the caller will free any allocated object
1560 ** in all cases.
1562 static int valueFromExpr(
1563 sqlite3 *db, /* The database connection */
1564 const Expr *pExpr, /* The expression to evaluate */
1565 u8 enc, /* Encoding to use */
1566 u8 affinity, /* Affinity to use */
1567 sqlite3_value **ppVal, /* Write the new value here */
1568 struct ValueNewStat4Ctx *pCtx /* Second argument for valueNew() */
1570 int op;
1571 char *zVal = 0;
1572 sqlite3_value *pVal = 0;
1573 int negInt = 1;
1574 const char *zNeg = "";
1575 int rc = SQLITE_OK;
1577 assert( pExpr!=0 );
1578 while( (op = pExpr->op)==TK_UPLUS || op==TK_SPAN ) pExpr = pExpr->pLeft;
1579 if( op==TK_REGISTER ) op = pExpr->op2;
1581 /* Compressed expressions only appear when parsing the DEFAULT clause
1582 ** on a table column definition, and hence only when pCtx==0. This
1583 ** check ensures that an EP_TokenOnly expression is never passed down
1584 ** into valueFromFunction(). */
1585 assert( (pExpr->flags & EP_TokenOnly)==0 || pCtx==0 );
1587 if( op==TK_CAST ){
1588 u8 aff;
1589 assert( !ExprHasProperty(pExpr, EP_IntValue) );
1590 aff = sqlite3AffinityType(pExpr->u.zToken,0);
1591 rc = valueFromExpr(db, pExpr->pLeft, enc, aff, ppVal, pCtx);
1592 testcase( rc!=SQLITE_OK );
1593 if( *ppVal ){
1594 #ifdef SQLITE_ENABLE_STAT4
1595 rc = ExpandBlob(*ppVal);
1596 #else
1597 /* zero-blobs only come from functions, not literal values. And
1598 ** functions are only processed under STAT4 */
1599 assert( (ppVal[0][0].flags & MEM_Zero)==0 );
1600 #endif
1601 sqlite3VdbeMemCast(*ppVal, aff, enc);
1602 sqlite3ValueApplyAffinity(*ppVal, affinity, enc);
1604 return rc;
1607 /* Handle negative integers in a single step. This is needed in the
1608 ** case when the value is -9223372036854775808.
1610 if( op==TK_UMINUS
1611 && (pExpr->pLeft->op==TK_INTEGER || pExpr->pLeft->op==TK_FLOAT) ){
1612 pExpr = pExpr->pLeft;
1613 op = pExpr->op;
1614 negInt = -1;
1615 zNeg = "-";
1618 if( op==TK_STRING || op==TK_FLOAT || op==TK_INTEGER ){
1619 pVal = valueNew(db, pCtx);
1620 if( pVal==0 ) goto no_mem;
1621 if( ExprHasProperty(pExpr, EP_IntValue) ){
1622 sqlite3VdbeMemSetInt64(pVal, (i64)pExpr->u.iValue*negInt);
1623 }else{
1624 zVal = sqlite3MPrintf(db, "%s%s", zNeg, pExpr->u.zToken);
1625 if( zVal==0 ) goto no_mem;
1626 sqlite3ValueSetStr(pVal, -1, zVal, SQLITE_UTF8, SQLITE_DYNAMIC);
1628 if( (op==TK_INTEGER || op==TK_FLOAT ) && affinity==SQLITE_AFF_BLOB ){
1629 sqlite3ValueApplyAffinity(pVal, SQLITE_AFF_NUMERIC, SQLITE_UTF8);
1630 }else{
1631 sqlite3ValueApplyAffinity(pVal, affinity, SQLITE_UTF8);
1633 assert( (pVal->flags & MEM_IntReal)==0 );
1634 if( pVal->flags & (MEM_Int|MEM_IntReal|MEM_Real) ){
1635 testcase( pVal->flags & MEM_Int );
1636 testcase( pVal->flags & MEM_Real );
1637 pVal->flags &= ~MEM_Str;
1639 if( enc!=SQLITE_UTF8 ){
1640 rc = sqlite3VdbeChangeEncoding(pVal, enc);
1642 }else if( op==TK_UMINUS ) {
1643 /* This branch happens for multiple negative signs. Ex: -(-5) */
1644 if( SQLITE_OK==valueFromExpr(db,pExpr->pLeft,enc,affinity,&pVal,pCtx)
1645 && pVal!=0
1647 sqlite3VdbeMemNumerify(pVal);
1648 if( pVal->flags & MEM_Real ){
1649 pVal->u.r = -pVal->u.r;
1650 }else if( pVal->u.i==SMALLEST_INT64 ){
1651 #ifndef SQLITE_OMIT_FLOATING_POINT
1652 pVal->u.r = -(double)SMALLEST_INT64;
1653 #else
1654 pVal->u.r = LARGEST_INT64;
1655 #endif
1656 MemSetTypeFlag(pVal, MEM_Real);
1657 }else{
1658 pVal->u.i = -pVal->u.i;
1660 sqlite3ValueApplyAffinity(pVal, affinity, enc);
1662 }else if( op==TK_NULL ){
1663 pVal = valueNew(db, pCtx);
1664 if( pVal==0 ) goto no_mem;
1665 sqlite3VdbeMemSetNull(pVal);
1667 #ifndef SQLITE_OMIT_BLOB_LITERAL
1668 else if( op==TK_BLOB ){
1669 int nVal;
1670 assert( !ExprHasProperty(pExpr, EP_IntValue) );
1671 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
1672 assert( pExpr->u.zToken[1]=='\'' );
1673 pVal = valueNew(db, pCtx);
1674 if( !pVal ) goto no_mem;
1675 zVal = &pExpr->u.zToken[2];
1676 nVal = sqlite3Strlen30(zVal)-1;
1677 assert( zVal[nVal]=='\'' );
1678 sqlite3VdbeMemSetStr(pVal, sqlite3HexToBlob(db, zVal, nVal), nVal/2,
1679 0, SQLITE_DYNAMIC);
1681 #endif
1682 #ifdef SQLITE_ENABLE_STAT4
1683 else if( op==TK_FUNCTION && pCtx!=0 ){
1684 rc = valueFromFunction(db, pExpr, enc, affinity, &pVal, pCtx);
1686 #endif
1687 else if( op==TK_TRUEFALSE ){
1688 assert( !ExprHasProperty(pExpr, EP_IntValue) );
1689 pVal = valueNew(db, pCtx);
1690 if( pVal ){
1691 pVal->flags = MEM_Int;
1692 pVal->u.i = pExpr->u.zToken[4]==0;
1696 *ppVal = pVal;
1697 return rc;
1699 no_mem:
1700 #ifdef SQLITE_ENABLE_STAT4
1701 if( pCtx==0 || NEVER(pCtx->pParse->nErr==0) )
1702 #endif
1703 sqlite3OomFault(db);
1704 sqlite3DbFree(db, zVal);
1705 assert( *ppVal==0 );
1706 #ifdef SQLITE_ENABLE_STAT4
1707 if( pCtx==0 ) sqlite3ValueFree(pVal);
1708 #else
1709 assert( pCtx==0 ); sqlite3ValueFree(pVal);
1710 #endif
1711 return SQLITE_NOMEM_BKPT;
1715 ** Create a new sqlite3_value object, containing the value of pExpr.
1717 ** This only works for very simple expressions that consist of one constant
1718 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1719 ** be converted directly into a value, then the value is allocated and
1720 ** a pointer written to *ppVal. The caller is responsible for deallocating
1721 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1722 ** cannot be converted to a value, then *ppVal is set to NULL.
1724 int sqlite3ValueFromExpr(
1725 sqlite3 *db, /* The database connection */
1726 const Expr *pExpr, /* The expression to evaluate */
1727 u8 enc, /* Encoding to use */
1728 u8 affinity, /* Affinity to use */
1729 sqlite3_value **ppVal /* Write the new value here */
1731 return pExpr ? valueFromExpr(db, pExpr, enc, affinity, ppVal, 0) : 0;
1734 #ifdef SQLITE_ENABLE_STAT4
1736 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1738 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1739 ** pAlloc if one does not exist and the new value is added to the
1740 ** UnpackedRecord object.
1742 ** A value is extracted in the following cases:
1744 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1746 ** * The expression is a bound variable, and this is a reprepare, or
1748 ** * The expression is a literal value.
1750 ** On success, *ppVal is made to point to the extracted value. The caller
1751 ** is responsible for ensuring that the value is eventually freed.
1753 static int stat4ValueFromExpr(
1754 Parse *pParse, /* Parse context */
1755 Expr *pExpr, /* The expression to extract a value from */
1756 u8 affinity, /* Affinity to use */
1757 struct ValueNewStat4Ctx *pAlloc,/* How to allocate space. Or NULL */
1758 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1760 int rc = SQLITE_OK;
1761 sqlite3_value *pVal = 0;
1762 sqlite3 *db = pParse->db;
1764 /* Skip over any TK_COLLATE nodes */
1765 pExpr = sqlite3ExprSkipCollate(pExpr);
1767 assert( pExpr==0 || pExpr->op!=TK_REGISTER || pExpr->op2!=TK_VARIABLE );
1768 if( !pExpr ){
1769 pVal = valueNew(db, pAlloc);
1770 if( pVal ){
1771 sqlite3VdbeMemSetNull((Mem*)pVal);
1773 }else if( pExpr->op==TK_VARIABLE && (db->flags & SQLITE_EnableQPSG)==0 ){
1774 Vdbe *v;
1775 int iBindVar = pExpr->iColumn;
1776 sqlite3VdbeSetVarmask(pParse->pVdbe, iBindVar);
1777 if( (v = pParse->pReprepare)!=0 ){
1778 pVal = valueNew(db, pAlloc);
1779 if( pVal ){
1780 rc = sqlite3VdbeMemCopy((Mem*)pVal, &v->aVar[iBindVar-1]);
1781 sqlite3ValueApplyAffinity(pVal, affinity, ENC(db));
1782 pVal->db = pParse->db;
1785 }else{
1786 rc = valueFromExpr(db, pExpr, ENC(db), affinity, &pVal, pAlloc);
1789 assert( pVal==0 || pVal->db==db );
1790 *ppVal = pVal;
1791 return rc;
1795 ** This function is used to allocate and populate UnpackedRecord
1796 ** structures intended to be compared against sample index keys stored
1797 ** in the sqlite_stat4 table.
1799 ** A single call to this function populates zero or more fields of the
1800 ** record starting with field iVal (fields are numbered from left to
1801 ** right starting with 0). A single field is populated if:
1803 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1805 ** * The expression is a bound variable, and this is a reprepare, or
1807 ** * The sqlite3ValueFromExpr() function is able to extract a value
1808 ** from the expression (i.e. the expression is a literal value).
1810 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1811 ** vector components that match either of the two latter criteria listed
1812 ** above.
1814 ** Before any value is appended to the record, the affinity of the
1815 ** corresponding column within index pIdx is applied to it. Before
1816 ** this function returns, output parameter *pnExtract is set to the
1817 ** number of values appended to the record.
1819 ** When this function is called, *ppRec must either point to an object
1820 ** allocated by an earlier call to this function, or must be NULL. If it
1821 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1822 ** is allocated (and *ppRec set to point to it) before returning.
1824 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1825 ** error if a value cannot be extracted from pExpr. If an error does
1826 ** occur, an SQLite error code is returned.
1828 int sqlite3Stat4ProbeSetValue(
1829 Parse *pParse, /* Parse context */
1830 Index *pIdx, /* Index being probed */
1831 UnpackedRecord **ppRec, /* IN/OUT: Probe record */
1832 Expr *pExpr, /* The expression to extract a value from */
1833 int nElem, /* Maximum number of values to append */
1834 int iVal, /* Array element to populate */
1835 int *pnExtract /* OUT: Values appended to the record */
1837 int rc = SQLITE_OK;
1838 int nExtract = 0;
1840 if( pExpr==0 || pExpr->op!=TK_SELECT ){
1841 int i;
1842 struct ValueNewStat4Ctx alloc;
1844 alloc.pParse = pParse;
1845 alloc.pIdx = pIdx;
1846 alloc.ppRec = ppRec;
1848 for(i=0; i<nElem; i++){
1849 sqlite3_value *pVal = 0;
1850 Expr *pElem = (pExpr ? sqlite3VectorFieldSubexpr(pExpr, i) : 0);
1851 u8 aff = sqlite3IndexColumnAffinity(pParse->db, pIdx, iVal+i);
1852 alloc.iVal = iVal+i;
1853 rc = stat4ValueFromExpr(pParse, pElem, aff, &alloc, &pVal);
1854 if( !pVal ) break;
1855 nExtract++;
1859 *pnExtract = nExtract;
1860 return rc;
1864 ** Attempt to extract a value from expression pExpr using the methods
1865 ** as described for sqlite3Stat4ProbeSetValue() above.
1867 ** If successful, set *ppVal to point to a new value object and return
1868 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1869 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1870 ** does occur, return an SQLite error code. The final value of *ppVal
1871 ** is undefined in this case.
1873 int sqlite3Stat4ValueFromExpr(
1874 Parse *pParse, /* Parse context */
1875 Expr *pExpr, /* The expression to extract a value from */
1876 u8 affinity, /* Affinity to use */
1877 sqlite3_value **ppVal /* OUT: New value object (or NULL) */
1879 return stat4ValueFromExpr(pParse, pExpr, affinity, 0, ppVal);
1883 ** Extract the iCol-th column from the nRec-byte record in pRec. Write
1884 ** the column value into *ppVal. If *ppVal is initially NULL then a new
1885 ** sqlite3_value object is allocated.
1887 ** If *ppVal is initially NULL then the caller is responsible for
1888 ** ensuring that the value written into *ppVal is eventually freed.
1890 int sqlite3Stat4Column(
1891 sqlite3 *db, /* Database handle */
1892 const void *pRec, /* Pointer to buffer containing record */
1893 int nRec, /* Size of buffer pRec in bytes */
1894 int iCol, /* Column to extract */
1895 sqlite3_value **ppVal /* OUT: Extracted value */
1897 u32 t = 0; /* a column type code */
1898 int nHdr; /* Size of the header in the record */
1899 int iHdr; /* Next unread header byte */
1900 int iField; /* Next unread data byte */
1901 int szField = 0; /* Size of the current data field */
1902 int i; /* Column index */
1903 u8 *a = (u8*)pRec; /* Typecast byte array */
1904 Mem *pMem = *ppVal; /* Write result into this Mem object */
1906 assert( iCol>0 );
1907 iHdr = getVarint32(a, nHdr);
1908 if( nHdr>nRec || iHdr>=nHdr ) return SQLITE_CORRUPT_BKPT;
1909 iField = nHdr;
1910 for(i=0; i<=iCol; i++){
1911 iHdr += getVarint32(&a[iHdr], t);
1912 testcase( iHdr==nHdr );
1913 testcase( iHdr==nHdr+1 );
1914 if( iHdr>nHdr ) return SQLITE_CORRUPT_BKPT;
1915 szField = sqlite3VdbeSerialTypeLen(t);
1916 iField += szField;
1918 testcase( iField==nRec );
1919 testcase( iField==nRec+1 );
1920 if( iField>nRec ) return SQLITE_CORRUPT_BKPT;
1921 if( pMem==0 ){
1922 pMem = *ppVal = sqlite3ValueNew(db);
1923 if( pMem==0 ) return SQLITE_NOMEM_BKPT;
1925 sqlite3VdbeSerialGet(&a[iField-szField], t, pMem);
1926 pMem->enc = ENC(db);
1927 return SQLITE_OK;
1931 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1932 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1933 ** the object.
1935 void sqlite3Stat4ProbeFree(UnpackedRecord *pRec){
1936 if( pRec ){
1937 int i;
1938 int nCol = pRec->pKeyInfo->nAllField;
1939 Mem *aMem = pRec->aMem;
1940 sqlite3 *db = aMem[0].db;
1941 for(i=0; i<nCol; i++){
1942 sqlite3VdbeMemRelease(&aMem[i]);
1944 sqlite3KeyInfoUnref(pRec->pKeyInfo);
1945 sqlite3DbFreeNN(db, pRec);
1948 #endif /* ifdef SQLITE_ENABLE_STAT4 */
1951 ** Change the string value of an sqlite3_value object
1953 void sqlite3ValueSetStr(
1954 sqlite3_value *v, /* Value to be set */
1955 int n, /* Length of string z */
1956 const void *z, /* Text of the new string */
1957 u8 enc, /* Encoding to use */
1958 void (*xDel)(void*) /* Destructor for the string */
1960 if( v ) sqlite3VdbeMemSetStr((Mem *)v, z, n, enc, xDel);
1964 ** Free an sqlite3_value object
1966 void sqlite3ValueFree(sqlite3_value *v){
1967 if( !v ) return;
1968 sqlite3VdbeMemRelease((Mem *)v);
1969 sqlite3DbFreeNN(((Mem*)v)->db, v);
1973 ** The sqlite3ValueBytes() routine returns the number of bytes in the
1974 ** sqlite3_value object assuming that it uses the encoding "enc".
1975 ** The valueBytes() routine is a helper function.
1977 static SQLITE_NOINLINE int valueBytes(sqlite3_value *pVal, u8 enc){
1978 return valueToText(pVal, enc)!=0 ? pVal->n : 0;
1980 int sqlite3ValueBytes(sqlite3_value *pVal, u8 enc){
1981 Mem *p = (Mem*)pVal;
1982 assert( (p->flags & MEM_Null)==0 || (p->flags & (MEM_Str|MEM_Blob))==0 );
1983 if( (p->flags & MEM_Str)!=0 && pVal->enc==enc ){
1984 return p->n;
1986 if( (p->flags & MEM_Str)!=0 && enc!=SQLITE_UTF8 && pVal->enc!=SQLITE_UTF8 ){
1987 return p->n;
1989 if( (p->flags & MEM_Blob)!=0 ){
1990 if( p->flags & MEM_Zero ){
1991 return p->n + p->u.nZero;
1992 }else{
1993 return p->n;
1996 if( p->flags & MEM_Null ) return 0;
1997 return valueBytes(pVal, enc);