4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code use to manipulate "Mem" structure. A "Mem"
14 ** stores a single value in the VDBE. Mem is an opaque structure visible
15 ** only within the VDBE. Interface routines refer to a Mem using the
18 #include "sqliteInt.h"
21 /* True if X is a power of two. 0 is considered a power of two here.
22 ** In other words, return true if X has at most one bit set.
24 #define ISPOWEROF2(X) (((X)&((X)-1))==0)
28 ** Check invariants on a Mem object.
30 ** This routine is intended for use inside of assert() statements, like
31 ** this: assert( sqlite3VdbeCheckMemInvariants(pMem) );
33 int sqlite3VdbeCheckMemInvariants(Mem
*p
){
34 /* If MEM_Dyn is set then Mem.xDel!=0.
35 ** Mem.xDel might not be initialized if MEM_Dyn is clear.
37 assert( (p
->flags
& MEM_Dyn
)==0 || p
->xDel
!=0 );
39 /* MEM_Dyn may only be set if Mem.szMalloc==0. In this way we
40 ** ensure that if Mem.szMalloc>0 then it is safe to do
41 ** Mem.z = Mem.zMalloc without having to check Mem.flags&MEM_Dyn.
42 ** That saves a few cycles in inner loops. */
43 assert( (p
->flags
& MEM_Dyn
)==0 || p
->szMalloc
==0 );
45 /* Cannot have more than one of MEM_Int, MEM_Real, or MEM_IntReal */
46 assert( ISPOWEROF2(p
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
)) );
48 if( p
->flags
& MEM_Null
){
49 /* Cannot be both MEM_Null and some other type */
50 assert( (p
->flags
& (MEM_Int
|MEM_Real
|MEM_Str
|MEM_Blob
|MEM_Agg
))==0 );
52 /* If MEM_Null is set, then either the value is a pure NULL (the usual
53 ** case) or it is a pointer set using sqlite3_bind_pointer() or
54 ** sqlite3_result_pointer(). If a pointer, then MEM_Term must also be
57 if( (p
->flags
& (MEM_Term
|MEM_Subtype
))==(MEM_Term
|MEM_Subtype
) ){
58 /* This is a pointer type. There may be a flag to indicate what to
59 ** do with the pointer. */
60 assert( ((p
->flags
&MEM_Dyn
)!=0 ? 1 : 0) +
61 ((p
->flags
&MEM_Ephem
)!=0 ? 1 : 0) +
62 ((p
->flags
&MEM_Static
)!=0 ? 1 : 0) <= 1 );
64 /* No other bits set */
65 assert( (p
->flags
& ~(MEM_Null
|MEM_Term
|MEM_Subtype
|MEM_FromBind
66 |MEM_Dyn
|MEM_Ephem
|MEM_Static
))==0 );
68 /* A pure NULL might have other flags, such as MEM_Static, MEM_Dyn,
69 ** MEM_Ephem, MEM_Cleared, or MEM_Subtype */
72 /* The MEM_Cleared bit is only allowed on NULLs */
73 assert( (p
->flags
& MEM_Cleared
)==0 );
76 /* The szMalloc field holds the correct memory allocation size */
77 assert( p
->szMalloc
==0
78 || (p
->flags
==MEM_Undefined
79 && p
->szMalloc
<=sqlite3DbMallocSize(p
->db
,p
->zMalloc
))
80 || p
->szMalloc
==sqlite3DbMallocSize(p
->db
,p
->zMalloc
));
82 /* If p holds a string or blob, the Mem.z must point to exactly
83 ** one of the following:
85 ** (1) Memory in Mem.zMalloc and managed by the Mem object
86 ** (2) Memory to be freed using Mem.xDel
87 ** (3) An ephemeral string or blob
88 ** (4) A static string or blob
90 if( (p
->flags
& (MEM_Str
|MEM_Blob
)) && p
->n
>0 ){
92 ((p
->szMalloc
>0 && p
->z
==p
->zMalloc
)? 1 : 0) +
93 ((p
->flags
&MEM_Dyn
)!=0 ? 1 : 0) +
94 ((p
->flags
&MEM_Ephem
)!=0 ? 1 : 0) +
95 ((p
->flags
&MEM_Static
)!=0 ? 1 : 0) == 1
103 ** Render a Mem object which is one of MEM_Int, MEM_Real, or MEM_IntReal
106 static void vdbeMemRenderNum(int sz
, char *zBuf
, Mem
*p
){
108 assert( p
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
) );
110 if( p
->flags
& MEM_Int
){
111 #if GCC_VERSION>=7000000
112 /* Work-around for GCC bug
113 ** https://gcc.gnu.org/bugzilla/show_bug.cgi?id=96270 */
115 assert( (p
->flags
&MEM_Int
)*2==sizeof(x
) );
116 memcpy(&x
, (char*)&p
->u
, (p
->flags
&MEM_Int
)*2);
117 p
->n
= sqlite3Int64ToText(x
, zBuf
);
119 p
->n
= sqlite3Int64ToText(p
->u
.i
, zBuf
);
122 sqlite3StrAccumInit(&acc
, 0, zBuf
, sz
, 0);
123 sqlite3_str_appendf(&acc
, "%!.15g",
124 (p
->flags
& MEM_IntReal
)!=0 ? (double)p
->u
.i
: p
->u
.r
);
125 assert( acc
.zText
==zBuf
&& acc
.mxAlloc
<=0 );
126 zBuf
[acc
.nChar
] = 0; /* Fast version of sqlite3StrAccumFinish(&acc) */
133 ** Validity checks on pMem. pMem holds a string.
135 ** (1) Check that string value of pMem agrees with its integer or real value.
136 ** (2) Check that the string is correctly zero terminated
138 ** A single int or real value always converts to the same strings. But
139 ** many different strings can be converted into the same int or real.
140 ** If a table contains a numeric value and an index is based on the
141 ** corresponding string value, then it is important that the string be
142 ** derived from the numeric value, not the other way around, to ensure
143 ** that the index and table are consistent. See ticket
144 ** https://www.sqlite.org/src/info/343634942dd54ab (2018-01-31) for
147 ** This routine looks at pMem to verify that if it has both a numeric
148 ** representation and a string representation then the string rep has
149 ** been derived from the numeric and not the other way around. It returns
150 ** true if everything is ok and false if there is a problem.
152 ** This routine is for use inside of assert() statements only.
154 int sqlite3VdbeMemValidStrRep(Mem
*p
){
159 if( (p
->flags
& MEM_Str
)==0 ) return 1;
160 if( p
->db
&& p
->db
->mallocFailed
) return 1;
161 if( p
->flags
& MEM_Term
){
162 /* Insure that the string is properly zero-terminated. Pay particular
163 ** attention to the case where p->n is odd */
164 if( p
->szMalloc
>0 && p
->z
==p
->zMalloc
){
165 assert( p
->enc
==SQLITE_UTF8
|| p
->szMalloc
>= ((p
->n
+1)&~1)+2 );
166 assert( p
->enc
!=SQLITE_UTF8
|| p
->szMalloc
>= p
->n
+1 );
168 assert( p
->z
[p
->n
]==0 );
169 assert( p
->enc
==SQLITE_UTF8
|| p
->z
[(p
->n
+1)&~1]==0 );
170 assert( p
->enc
==SQLITE_UTF8
|| p
->z
[((p
->n
+1)&~1)+1]==0 );
172 if( (p
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
))==0 ) return 1;
173 memcpy(&tmp
, p
, sizeof(tmp
));
174 vdbeMemRenderNum(sizeof(zBuf
), zBuf
, &tmp
);
178 if( p
->enc
!=SQLITE_UTF8
){
180 if( p
->enc
==SQLITE_UTF16BE
) z
++;
183 if( zBuf
[j
++]!=z
[i
] ) return 0;
188 #endif /* SQLITE_DEBUG */
191 ** If pMem is an object with a valid string representation, this routine
192 ** ensures the internal encoding for the string representation is
193 ** 'desiredEnc', one of SQLITE_UTF8, SQLITE_UTF16LE or SQLITE_UTF16BE.
195 ** If pMem is not a string object, or the encoding of the string
196 ** representation is already stored using the requested encoding, then this
197 ** routine is a no-op.
199 ** SQLITE_OK is returned if the conversion is successful (or not required).
200 ** SQLITE_NOMEM may be returned if a malloc() fails during conversion
203 int sqlite3VdbeChangeEncoding(Mem
*pMem
, int desiredEnc
){
204 #ifndef SQLITE_OMIT_UTF16
208 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
209 assert( desiredEnc
==SQLITE_UTF8
|| desiredEnc
==SQLITE_UTF16LE
210 || desiredEnc
==SQLITE_UTF16BE
);
211 if( !(pMem
->flags
&MEM_Str
) ){
212 pMem
->enc
= desiredEnc
;
215 if( pMem
->enc
==desiredEnc
){
218 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
219 #ifdef SQLITE_OMIT_UTF16
223 /* MemTranslate() may return SQLITE_OK or SQLITE_NOMEM. If NOMEM is returned,
224 ** then the encoding of the value may not have changed.
226 rc
= sqlite3VdbeMemTranslate(pMem
, (u8
)desiredEnc
);
227 assert(rc
==SQLITE_OK
|| rc
==SQLITE_NOMEM
);
228 assert(rc
==SQLITE_OK
|| pMem
->enc
!=desiredEnc
);
229 assert(rc
==SQLITE_NOMEM
|| pMem
->enc
==desiredEnc
);
235 ** Make sure pMem->z points to a writable allocation of at least n bytes.
237 ** If the bPreserve argument is true, then copy of the content of
238 ** pMem->z into the new allocation. pMem must be either a string or
239 ** blob if bPreserve is true. If bPreserve is false, any prior content
240 ** in pMem->z is discarded.
242 SQLITE_NOINLINE
int sqlite3VdbeMemGrow(Mem
*pMem
, int n
, int bPreserve
){
243 assert( sqlite3VdbeCheckMemInvariants(pMem
) );
244 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
245 testcase( pMem
->db
==0 );
247 /* If the bPreserve flag is set to true, then the memory cell must already
248 ** contain a valid string or blob value. */
249 assert( bPreserve
==0 || pMem
->flags
&(MEM_Blob
|MEM_Str
) );
250 testcase( bPreserve
&& pMem
->z
==0 );
252 assert( pMem
->szMalloc
==0
253 || (pMem
->flags
==MEM_Undefined
254 && pMem
->szMalloc
<=sqlite3DbMallocSize(pMem
->db
,pMem
->zMalloc
))
255 || pMem
->szMalloc
==sqlite3DbMallocSize(pMem
->db
,pMem
->zMalloc
));
256 if( pMem
->szMalloc
>0 && bPreserve
&& pMem
->z
==pMem
->zMalloc
){
258 pMem
->z
= pMem
->zMalloc
= sqlite3DbReallocOrFree(pMem
->db
, pMem
->z
, n
);
260 pMem
->zMalloc
= sqlite3Realloc(pMem
->z
, n
);
261 if( pMem
->zMalloc
==0 ) sqlite3_free(pMem
->z
);
262 pMem
->z
= pMem
->zMalloc
;
266 if( pMem
->szMalloc
>0 ) sqlite3DbFreeNN(pMem
->db
, pMem
->zMalloc
);
267 pMem
->zMalloc
= sqlite3DbMallocRaw(pMem
->db
, n
);
269 if( pMem
->zMalloc
==0 ){
270 sqlite3VdbeMemSetNull(pMem
);
273 return SQLITE_NOMEM_BKPT
;
275 pMem
->szMalloc
= sqlite3DbMallocSize(pMem
->db
, pMem
->zMalloc
);
278 if( bPreserve
&& pMem
->z
){
279 assert( pMem
->z
!=pMem
->zMalloc
);
280 memcpy(pMem
->zMalloc
, pMem
->z
, pMem
->n
);
282 if( (pMem
->flags
&MEM_Dyn
)!=0 ){
283 assert( pMem
->xDel
!=0 && pMem
->xDel
!=SQLITE_DYNAMIC
);
284 pMem
->xDel((void *)(pMem
->z
));
287 pMem
->z
= pMem
->zMalloc
;
288 pMem
->flags
&= ~(MEM_Dyn
|MEM_Ephem
|MEM_Static
);
293 ** Change the pMem->zMalloc allocation to be at least szNew bytes.
294 ** If pMem->zMalloc already meets or exceeds the requested size, this
295 ** routine is a no-op.
297 ** Any prior string or blob content in the pMem object may be discarded.
298 ** The pMem->xDel destructor is called, if it exists. Though MEM_Str
299 ** and MEM_Blob values may be discarded, MEM_Int, MEM_Real, MEM_IntReal,
300 ** and MEM_Null values are preserved.
302 ** Return SQLITE_OK on success or an error code (probably SQLITE_NOMEM)
303 ** if unable to complete the resizing.
305 int sqlite3VdbeMemClearAndResize(Mem
*pMem
, int szNew
){
306 assert( CORRUPT_DB
|| szNew
>0 );
307 assert( (pMem
->flags
& MEM_Dyn
)==0 || pMem
->szMalloc
==0 );
308 if( pMem
->szMalloc
<szNew
){
309 return sqlite3VdbeMemGrow(pMem
, szNew
, 0);
311 assert( (pMem
->flags
& MEM_Dyn
)==0 );
312 pMem
->z
= pMem
->zMalloc
;
313 pMem
->flags
&= (MEM_Null
|MEM_Int
|MEM_Real
|MEM_IntReal
);
318 ** It is already known that pMem contains an unterminated string.
319 ** Add the zero terminator.
321 ** Three bytes of zero are added. In this way, there is guaranteed
322 ** to be a double-zero byte at an even byte boundary in order to
323 ** terminate a UTF16 string, even if the initial size of the buffer
324 ** is an odd number of bytes.
326 static SQLITE_NOINLINE
int vdbeMemAddTerminator(Mem
*pMem
){
327 if( sqlite3VdbeMemGrow(pMem
, pMem
->n
+3, 1) ){
328 return SQLITE_NOMEM_BKPT
;
330 pMem
->z
[pMem
->n
] = 0;
331 pMem
->z
[pMem
->n
+1] = 0;
332 pMem
->z
[pMem
->n
+2] = 0;
333 pMem
->flags
|= MEM_Term
;
338 ** Change pMem so that its MEM_Str or MEM_Blob value is stored in
339 ** MEM.zMalloc, where it can be safely written.
341 ** Return SQLITE_OK on success or SQLITE_NOMEM if malloc fails.
343 int sqlite3VdbeMemMakeWriteable(Mem
*pMem
){
345 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
346 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
347 if( (pMem
->flags
& (MEM_Str
|MEM_Blob
))!=0 ){
348 if( ExpandBlob(pMem
) ) return SQLITE_NOMEM
;
349 if( pMem
->szMalloc
==0 || pMem
->z
!=pMem
->zMalloc
){
350 int rc
= vdbeMemAddTerminator(pMem
);
354 pMem
->flags
&= ~MEM_Ephem
;
356 pMem
->pScopyFrom
= 0;
363 ** If the given Mem* has a zero-filled tail, turn it into an ordinary
364 ** blob stored in dynamically allocated space.
366 #ifndef SQLITE_OMIT_INCRBLOB
367 int sqlite3VdbeMemExpandBlob(Mem
*pMem
){
370 assert( pMem
->flags
& MEM_Zero
);
371 assert( (pMem
->flags
&MEM_Blob
)!=0 || MemNullNochng(pMem
) );
372 testcase( sqlite3_value_nochange(pMem
) );
373 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
374 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
376 /* Set nByte to the number of bytes required to store the expanded blob. */
377 nByte
= pMem
->n
+ pMem
->u
.nZero
;
379 if( (pMem
->flags
& MEM_Blob
)==0 ) return SQLITE_OK
;
382 if( sqlite3VdbeMemGrow(pMem
, nByte
, 1) ){
383 return SQLITE_NOMEM_BKPT
;
385 assert( pMem
->z
!=0 );
386 assert( sqlite3DbMallocSize(pMem
->db
,pMem
->z
) >= nByte
);
388 memset(&pMem
->z
[pMem
->n
], 0, pMem
->u
.nZero
);
389 pMem
->n
+= pMem
->u
.nZero
;
390 pMem
->flags
&= ~(MEM_Zero
|MEM_Term
);
396 ** Make sure the given Mem is \u0000 terminated.
398 int sqlite3VdbeMemNulTerminate(Mem
*pMem
){
400 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
401 testcase( (pMem
->flags
& (MEM_Term
|MEM_Str
))==(MEM_Term
|MEM_Str
) );
402 testcase( (pMem
->flags
& (MEM_Term
|MEM_Str
))==0 );
403 if( (pMem
->flags
& (MEM_Term
|MEM_Str
))!=MEM_Str
){
404 return SQLITE_OK
; /* Nothing to do */
406 return vdbeMemAddTerminator(pMem
);
411 ** Add MEM_Str to the set of representations for the given Mem. This
412 ** routine is only called if pMem is a number of some kind, not a NULL
415 ** Existing representations MEM_Int, MEM_Real, or MEM_IntReal are invalidated
416 ** if bForce is true but are retained if bForce is false.
418 ** A MEM_Null value will never be passed to this function. This function is
419 ** used for converting values to text for returning to the user (i.e. via
420 ** sqlite3_value_text()), or for ensuring that values to be used as btree
421 ** keys are strings. In the former case a NULL pointer is returned the
422 ** user and the latter is an internal programming error.
424 int sqlite3VdbeMemStringify(Mem
*pMem
, u8 enc
, u8 bForce
){
425 const int nByte
= 32;
428 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
429 assert( !(pMem
->flags
&MEM_Zero
) );
430 assert( !(pMem
->flags
&(MEM_Str
|MEM_Blob
)) );
431 assert( pMem
->flags
&(MEM_Int
|MEM_Real
|MEM_IntReal
) );
432 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
433 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
436 if( sqlite3VdbeMemClearAndResize(pMem
, nByte
) ){
438 return SQLITE_NOMEM_BKPT
;
441 vdbeMemRenderNum(nByte
, pMem
->z
, pMem
);
442 assert( pMem
->z
!=0 );
443 assert( pMem
->n
==(int)sqlite3Strlen30NN(pMem
->z
) );
444 pMem
->enc
= SQLITE_UTF8
;
445 pMem
->flags
|= MEM_Str
|MEM_Term
;
446 if( bForce
) pMem
->flags
&= ~(MEM_Int
|MEM_Real
|MEM_IntReal
);
447 sqlite3VdbeChangeEncoding(pMem
, enc
);
452 ** Memory cell pMem contains the context of an aggregate function.
453 ** This routine calls the finalize method for that function. The
454 ** result of the aggregate is stored back into pMem.
456 ** Return SQLITE_ERROR if the finalizer reports an error. SQLITE_OK
459 int sqlite3VdbeMemFinalize(Mem
*pMem
, FuncDef
*pFunc
){
464 assert( pMem
->db
!=0 );
465 assert( pFunc
->xFinalize
!=0 );
466 assert( (pMem
->flags
& MEM_Null
)!=0 || pFunc
==pMem
->u
.pDef
);
467 assert( sqlite3_mutex_held(pMem
->db
->mutex
) );
468 memset(&ctx
, 0, sizeof(ctx
));
469 memset(&t
, 0, sizeof(t
));
476 pFunc
->xFinalize(&ctx
); /* IMP: R-24505-23230 */
477 assert( (pMem
->flags
& MEM_Dyn
)==0 );
478 if( pMem
->szMalloc
>0 ) sqlite3DbFreeNN(pMem
->db
, pMem
->zMalloc
);
479 memcpy(pMem
, &t
, sizeof(t
));
484 ** Memory cell pAccum contains the context of an aggregate function.
485 ** This routine calls the xValue method for that function and stores
486 ** the results in memory cell pMem.
488 ** SQLITE_ERROR is returned if xValue() reports an error. SQLITE_OK
491 #ifndef SQLITE_OMIT_WINDOWFUNC
492 int sqlite3VdbeMemAggValue(Mem
*pAccum
, Mem
*pOut
, FuncDef
*pFunc
){
495 assert( pFunc
->xValue
!=0 );
496 assert( (pAccum
->flags
& MEM_Null
)!=0 || pFunc
==pAccum
->u
.pDef
);
497 assert( pAccum
->db
!=0 );
498 assert( sqlite3_mutex_held(pAccum
->db
->mutex
) );
499 memset(&ctx
, 0, sizeof(ctx
));
500 sqlite3VdbeMemSetNull(pOut
);
504 ctx
.enc
= ENC(pAccum
->db
);
508 #endif /* SQLITE_OMIT_WINDOWFUNC */
511 ** If the memory cell contains a value that must be freed by
512 ** invoking the external callback in Mem.xDel, then this routine
513 ** will free that value. It also sets Mem.flags to MEM_Null.
515 ** This is a helper routine for sqlite3VdbeMemSetNull() and
516 ** for sqlite3VdbeMemRelease(). Use those other routines as the
517 ** entry point for releasing Mem resources.
519 static SQLITE_NOINLINE
void vdbeMemClearExternAndSetNull(Mem
*p
){
520 assert( p
->db
==0 || sqlite3_mutex_held(p
->db
->mutex
) );
521 assert( VdbeMemDynamic(p
) );
522 if( p
->flags
&MEM_Agg
){
523 sqlite3VdbeMemFinalize(p
, p
->u
.pDef
);
524 assert( (p
->flags
& MEM_Agg
)==0 );
525 testcase( p
->flags
& MEM_Dyn
);
527 if( p
->flags
&MEM_Dyn
){
528 assert( p
->xDel
!=SQLITE_DYNAMIC
&& p
->xDel
!=0 );
529 p
->xDel((void *)p
->z
);
535 ** Release memory held by the Mem p, both external memory cleared
536 ** by p->xDel and memory in p->zMalloc.
538 ** This is a helper routine invoked by sqlite3VdbeMemRelease() in
539 ** the unusual case where there really is memory in p that needs
542 static SQLITE_NOINLINE
void vdbeMemClear(Mem
*p
){
543 if( VdbeMemDynamic(p
) ){
544 vdbeMemClearExternAndSetNull(p
);
547 sqlite3DbFreeNN(p
->db
, p
->zMalloc
);
554 ** Release any memory resources held by the Mem. Both the memory that is
555 ** free by Mem.xDel and the Mem.zMalloc allocation are freed.
557 ** Use this routine prior to clean up prior to abandoning a Mem, or to
558 ** reset a Mem back to its minimum memory utilization.
560 ** Use sqlite3VdbeMemSetNull() to release just the Mem.xDel space
561 ** prior to inserting new content into the Mem.
563 void sqlite3VdbeMemRelease(Mem
*p
){
564 assert( sqlite3VdbeCheckMemInvariants(p
) );
565 if( VdbeMemDynamic(p
) || p
->szMalloc
){
570 /* Like sqlite3VdbeMemRelease() but faster for cases where we
571 ** know in advance that the Mem is not MEM_Dyn or MEM_Agg.
573 void sqlite3VdbeMemReleaseMalloc(Mem
*p
){
574 assert( !VdbeMemDynamic(p
) );
575 if( p
->szMalloc
) vdbeMemClear(p
);
579 ** Convert a 64-bit IEEE double into a 64-bit signed integer.
580 ** If the double is out of range of a 64-bit signed integer then
581 ** return the closest available 64-bit signed integer.
583 static SQLITE_NOINLINE i64
doubleToInt64(double r
){
584 #ifdef SQLITE_OMIT_FLOATING_POINT
585 /* When floating-point is omitted, double and int64 are the same thing */
589 ** Many compilers we encounter do not define constants for the
590 ** minimum and maximum 64-bit integers, or they define them
591 ** inconsistently. And many do not understand the "LL" notation.
592 ** So we define our own static constants here using nothing
593 ** larger than a 32-bit integer constant.
595 static const i64 maxInt
= LARGEST_INT64
;
596 static const i64 minInt
= SMALLEST_INT64
;
598 if( r
<=(double)minInt
){
600 }else if( r
>=(double)maxInt
){
609 ** Return some kind of integer value which is the best we can do
610 ** at representing the value that *pMem describes as an integer.
611 ** If pMem is an integer, then the value is exact. If pMem is
612 ** a floating-point then the value returned is the integer part.
613 ** If pMem is a string or blob, then we make an attempt to convert
614 ** it into an integer and return that. If pMem represents an
615 ** an SQL-NULL value, return 0.
617 ** If pMem represents a string value, its encoding might be changed.
619 static SQLITE_NOINLINE i64
memIntValue(const Mem
*pMem
){
621 sqlite3Atoi64(pMem
->z
, &value
, pMem
->n
, pMem
->enc
);
624 i64
sqlite3VdbeIntValue(const Mem
*pMem
){
627 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
628 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
630 if( flags
& (MEM_Int
|MEM_IntReal
) ){
631 testcase( flags
& MEM_IntReal
);
633 }else if( flags
& MEM_Real
){
634 return doubleToInt64(pMem
->u
.r
);
635 }else if( (flags
& (MEM_Str
|MEM_Blob
))!=0 && pMem
->z
!=0 ){
636 return memIntValue(pMem
);
643 ** Return the best representation of pMem that we can get into a
644 ** double. If pMem is already a double or an integer, return its
645 ** value. If it is a string or blob, try to convert it to a double.
646 ** If it is a NULL, return 0.0.
648 static SQLITE_NOINLINE
double memRealValue(Mem
*pMem
){
649 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
650 double val
= (double)0;
651 sqlite3AtoF(pMem
->z
, &val
, pMem
->n
, pMem
->enc
);
654 double sqlite3VdbeRealValue(Mem
*pMem
){
656 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
657 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
658 if( pMem
->flags
& MEM_Real
){
660 }else if( pMem
->flags
& (MEM_Int
|MEM_IntReal
) ){
661 testcase( pMem
->flags
& MEM_IntReal
);
662 return (double)pMem
->u
.i
;
663 }else if( pMem
->flags
& (MEM_Str
|MEM_Blob
) ){
664 return memRealValue(pMem
);
666 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
672 ** Return 1 if pMem represents true, and return 0 if pMem represents false.
673 ** Return the value ifNull if pMem is NULL.
675 int sqlite3VdbeBooleanValue(Mem
*pMem
, int ifNull
){
676 testcase( pMem
->flags
& MEM_IntReal
);
677 if( pMem
->flags
& (MEM_Int
|MEM_IntReal
) ) return pMem
->u
.i
!=0;
678 if( pMem
->flags
& MEM_Null
) return ifNull
;
679 return sqlite3VdbeRealValue(pMem
)!=0.0;
683 ** The MEM structure is already a MEM_Real or MEM_IntReal. Try to
684 ** make it a MEM_Int if we can.
686 void sqlite3VdbeIntegerAffinity(Mem
*pMem
){
688 assert( pMem
->flags
& (MEM_Real
|MEM_IntReal
) );
689 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
690 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
691 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
693 if( pMem
->flags
& MEM_IntReal
){
694 MemSetTypeFlag(pMem
, MEM_Int
);
696 i64 ix
= doubleToInt64(pMem
->u
.r
);
698 /* Only mark the value as an integer if
700 ** (1) the round-trip conversion real->int->real is a no-op, and
701 ** (2) The integer is neither the largest nor the smallest
702 ** possible integer (ticket #3922)
704 ** The second and third terms in the following conditional enforces
705 ** the second condition under the assumption that addition overflow causes
706 ** values to wrap around.
708 if( pMem
->u
.r
==ix
&& ix
>SMALLEST_INT64
&& ix
<LARGEST_INT64
){
710 MemSetTypeFlag(pMem
, MEM_Int
);
716 ** Convert pMem to type integer. Invalidate any prior representations.
718 int sqlite3VdbeMemIntegerify(Mem
*pMem
){
720 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
721 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
722 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
724 pMem
->u
.i
= sqlite3VdbeIntValue(pMem
);
725 MemSetTypeFlag(pMem
, MEM_Int
);
730 ** Convert pMem so that it is of type MEM_Real.
731 ** Invalidate any prior representations.
733 int sqlite3VdbeMemRealify(Mem
*pMem
){
735 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
736 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
738 pMem
->u
.r
= sqlite3VdbeRealValue(pMem
);
739 MemSetTypeFlag(pMem
, MEM_Real
);
743 /* Compare a floating point value to an integer. Return true if the two
744 ** values are the same within the precision of the floating point value.
746 ** This function assumes that i was obtained by assignment from r1.
748 ** For some versions of GCC on 32-bit machines, if you do the more obvious
749 ** comparison of "r1==(double)i" you sometimes get an answer of false even
750 ** though the r1 and (double)i values are bit-for-bit the same.
752 int sqlite3RealSameAsInt(double r1
, sqlite3_int64 i
){
753 double r2
= (double)i
;
755 || (memcmp(&r1
, &r2
, sizeof(r1
))==0
756 && i
>= -2251799813685248LL && i
< 2251799813685248LL);
759 /* Convert a floating point value to its closest integer. Do so in
760 ** a way that avoids 'outside the range of representable values' warnings
763 i64
sqlite3RealToI64(double r
){
764 if( r
<=(double)SMALLEST_INT64
) return SMALLEST_INT64
;
765 if( r
>=(double)LARGEST_INT64
) return LARGEST_INT64
;
770 ** Convert pMem so that it has type MEM_Real or MEM_Int.
771 ** Invalidate any prior representations.
773 ** Every effort is made to force the conversion, even if the input
774 ** is a string that does not look completely like a number. Convert
775 ** as much of the string as we can and ignore the rest.
777 int sqlite3VdbeMemNumerify(Mem
*pMem
){
779 testcase( pMem
->flags
& MEM_Int
);
780 testcase( pMem
->flags
& MEM_Real
);
781 testcase( pMem
->flags
& MEM_IntReal
);
782 testcase( pMem
->flags
& MEM_Null
);
783 if( (pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
|MEM_Null
))==0 ){
786 assert( (pMem
->flags
& (MEM_Blob
|MEM_Str
))!=0 );
787 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
788 rc
= sqlite3AtoF(pMem
->z
, &pMem
->u
.r
, pMem
->n
, pMem
->enc
);
789 if( ((rc
==0 || rc
==1) && sqlite3Atoi64(pMem
->z
, &ix
, pMem
->n
, pMem
->enc
)<=1)
790 || sqlite3RealSameAsInt(pMem
->u
.r
, (ix
= sqlite3RealToI64(pMem
->u
.r
)))
793 MemSetTypeFlag(pMem
, MEM_Int
);
795 MemSetTypeFlag(pMem
, MEM_Real
);
798 assert( (pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
|MEM_Null
))!=0 );
799 pMem
->flags
&= ~(MEM_Str
|MEM_Blob
|MEM_Zero
);
804 ** Cast the datatype of the value in pMem according to the affinity
805 ** "aff". Casting is different from applying affinity in that a cast
806 ** is forced. In other words, the value is converted into the desired
807 ** affinity even if that results in loss of data. This routine is
808 ** used (for example) to implement the SQL "cast()" operator.
810 int sqlite3VdbeMemCast(Mem
*pMem
, u8 aff
, u8 encoding
){
811 if( pMem
->flags
& MEM_Null
) return SQLITE_OK
;
813 case SQLITE_AFF_BLOB
: { /* Really a cast to BLOB */
814 if( (pMem
->flags
& MEM_Blob
)==0 ){
815 sqlite3ValueApplyAffinity(pMem
, SQLITE_AFF_TEXT
, encoding
);
816 assert( pMem
->flags
& MEM_Str
|| pMem
->db
->mallocFailed
);
817 if( pMem
->flags
& MEM_Str
) MemSetTypeFlag(pMem
, MEM_Blob
);
819 pMem
->flags
&= ~(MEM_TypeMask
&~MEM_Blob
);
823 case SQLITE_AFF_NUMERIC
: {
824 sqlite3VdbeMemNumerify(pMem
);
827 case SQLITE_AFF_INTEGER
: {
828 sqlite3VdbeMemIntegerify(pMem
);
831 case SQLITE_AFF_REAL
: {
832 sqlite3VdbeMemRealify(pMem
);
836 assert( aff
==SQLITE_AFF_TEXT
);
837 assert( MEM_Str
==(MEM_Blob
>>3) );
838 pMem
->flags
|= (pMem
->flags
&MEM_Blob
)>>3;
839 sqlite3ValueApplyAffinity(pMem
, SQLITE_AFF_TEXT
, encoding
);
840 assert( pMem
->flags
& MEM_Str
|| pMem
->db
->mallocFailed
);
841 pMem
->flags
&= ~(MEM_Int
|MEM_Real
|MEM_IntReal
|MEM_Blob
|MEM_Zero
);
842 if( encoding
!=SQLITE_UTF8
) pMem
->n
&= ~1;
843 return sqlite3VdbeChangeEncoding(pMem
, encoding
);
850 ** Initialize bulk memory to be a consistent Mem object.
852 ** The minimum amount of initialization feasible is performed.
854 void sqlite3VdbeMemInit(Mem
*pMem
, sqlite3
*db
, u16 flags
){
855 assert( (flags
& ~MEM_TypeMask
)==0 );
863 ** Delete any previous value and set the value stored in *pMem to NULL.
865 ** This routine calls the Mem.xDel destructor to dispose of values that
866 ** require the destructor. But it preserves the Mem.zMalloc memory allocation.
867 ** To free all resources, use sqlite3VdbeMemRelease(), which both calls this
868 ** routine to invoke the destructor and deallocates Mem.zMalloc.
870 ** Use this routine to reset the Mem prior to insert a new value.
872 ** Use sqlite3VdbeMemRelease() to complete erase the Mem prior to abandoning it.
874 void sqlite3VdbeMemSetNull(Mem
*pMem
){
875 if( VdbeMemDynamic(pMem
) ){
876 vdbeMemClearExternAndSetNull(pMem
);
878 pMem
->flags
= MEM_Null
;
881 void sqlite3ValueSetNull(sqlite3_value
*p
){
882 sqlite3VdbeMemSetNull((Mem
*)p
);
886 ** Delete any previous value and set the value to be a BLOB of length
887 ** n containing all zeros.
889 #ifndef SQLITE_OMIT_INCRBLOB
890 void sqlite3VdbeMemSetZeroBlob(Mem
*pMem
, int n
){
891 sqlite3VdbeMemRelease(pMem
);
892 pMem
->flags
= MEM_Blob
|MEM_Zero
;
896 pMem
->enc
= SQLITE_UTF8
;
900 int sqlite3VdbeMemSetZeroBlob(Mem
*pMem
, int n
){
902 if( sqlite3VdbeMemGrow(pMem
, nByte
, 0) ){
903 return SQLITE_NOMEM_BKPT
;
905 assert( pMem
->z
!=0 );
906 assert( sqlite3DbMallocSize(pMem
->db
, pMem
->z
)>=nByte
);
907 memset(pMem
->z
, 0, nByte
);
909 pMem
->flags
= MEM_Blob
;
910 pMem
->enc
= SQLITE_UTF8
;
916 ** The pMem is known to contain content that needs to be destroyed prior
917 ** to a value change. So invoke the destructor, then set the value to
920 static SQLITE_NOINLINE
void vdbeReleaseAndSetInt64(Mem
*pMem
, i64 val
){
921 sqlite3VdbeMemSetNull(pMem
);
923 pMem
->flags
= MEM_Int
;
927 ** Delete any previous value and set the value stored in *pMem to val,
928 ** manifest type INTEGER.
930 void sqlite3VdbeMemSetInt64(Mem
*pMem
, i64 val
){
931 if( VdbeMemDynamic(pMem
) ){
932 vdbeReleaseAndSetInt64(pMem
, val
);
935 pMem
->flags
= MEM_Int
;
939 /* A no-op destructor */
940 void sqlite3NoopDestructor(void *p
){ UNUSED_PARAMETER(p
); }
943 ** Set the value stored in *pMem should already be a NULL.
944 ** Also store a pointer to go with it.
946 void sqlite3VdbeMemSetPointer(
950 void (*xDestructor
)(void*)
952 assert( pMem
->flags
==MEM_Null
);
954 pMem
->u
.zPType
= zPType
? zPType
: "";
956 pMem
->flags
= MEM_Null
|MEM_Dyn
|MEM_Subtype
|MEM_Term
;
957 pMem
->eSubtype
= 'p';
958 pMem
->xDel
= xDestructor
? xDestructor
: sqlite3NoopDestructor
;
961 #ifndef SQLITE_OMIT_FLOATING_POINT
963 ** Delete any previous value and set the value stored in *pMem to val,
964 ** manifest type REAL.
966 void sqlite3VdbeMemSetDouble(Mem
*pMem
, double val
){
967 sqlite3VdbeMemSetNull(pMem
);
968 if( !sqlite3IsNaN(val
) ){
970 pMem
->flags
= MEM_Real
;
977 ** Return true if the Mem holds a RowSet object. This routine is intended
978 ** for use inside of assert() statements.
980 int sqlite3VdbeMemIsRowSet(const Mem
*pMem
){
981 return (pMem
->flags
&(MEM_Blob
|MEM_Dyn
))==(MEM_Blob
|MEM_Dyn
)
982 && pMem
->xDel
==sqlite3RowSetDelete
;
987 ** Delete any previous value and set the value of pMem to be an
988 ** empty boolean index.
990 ** Return SQLITE_OK on success and SQLITE_NOMEM if a memory allocation
993 int sqlite3VdbeMemSetRowSet(Mem
*pMem
){
994 sqlite3
*db
= pMem
->db
;
997 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
998 sqlite3VdbeMemRelease(pMem
);
999 p
= sqlite3RowSetInit(db
);
1000 if( p
==0 ) return SQLITE_NOMEM
;
1002 pMem
->flags
= MEM_Blob
|MEM_Dyn
;
1003 pMem
->xDel
= sqlite3RowSetDelete
;
1008 ** Return true if the Mem object contains a TEXT or BLOB that is
1009 ** too large - whose size exceeds SQLITE_MAX_LENGTH.
1011 int sqlite3VdbeMemTooBig(Mem
*p
){
1013 if( p
->flags
& (MEM_Str
|MEM_Blob
) ){
1015 if( p
->flags
& MEM_Zero
){
1018 return n
>p
->db
->aLimit
[SQLITE_LIMIT_LENGTH
];
1025 ** This routine prepares a memory cell for modification by breaking
1026 ** its link to a shallow copy and by marking any current shallow
1027 ** copies of this cell as invalid.
1029 ** This is used for testing and debugging only - to help ensure that shallow
1030 ** copies (created by OP_SCopy) are not misused.
1032 void sqlite3VdbeMemAboutToChange(Vdbe
*pVdbe
, Mem
*pMem
){
1035 for(i
=1, pX
=pVdbe
->aMem
+1; i
<pVdbe
->nMem
; i
++, pX
++){
1036 if( pX
->pScopyFrom
==pMem
){
1038 if( pVdbe
->db
->flags
& SQLITE_VdbeTrace
){
1039 sqlite3DebugPrintf("Invalidate R[%d] due to change in R[%d]\n",
1040 (int)(pX
- pVdbe
->aMem
), (int)(pMem
- pVdbe
->aMem
));
1042 /* If pX is marked as a shallow copy of pMem, then try to verify that
1043 ** no significant changes have been made to pX since the OP_SCopy.
1044 ** A significant change would indicated a missed call to this
1045 ** function for pX. Minor changes, such as adding or removing a
1046 ** dual type, are allowed, as long as the underlying value is the
1048 mFlags
= pMem
->flags
& pX
->flags
& pX
->mScopyFlags
;
1049 assert( (mFlags
&(MEM_Int
|MEM_IntReal
))==0 || pMem
->u
.i
==pX
->u
.i
);
1051 /* pMem is the register that is changing. But also mark pX as
1052 ** undefined so that we can quickly detect the shallow-copy error */
1053 pX
->flags
= MEM_Undefined
;
1057 pMem
->pScopyFrom
= 0;
1059 #endif /* SQLITE_DEBUG */
1062 ** Make an shallow copy of pFrom into pTo. Prior contents of
1063 ** pTo are freed. The pFrom->z field is not duplicated. If
1064 ** pFrom->z is used, then pTo->z points to the same thing as pFrom->z
1065 ** and flags gets srcType (either MEM_Ephem or MEM_Static).
1067 static SQLITE_NOINLINE
void vdbeClrCopy(Mem
*pTo
, const Mem
*pFrom
, int eType
){
1068 vdbeMemClearExternAndSetNull(pTo
);
1069 assert( !VdbeMemDynamic(pTo
) );
1070 sqlite3VdbeMemShallowCopy(pTo
, pFrom
, eType
);
1072 void sqlite3VdbeMemShallowCopy(Mem
*pTo
, const Mem
*pFrom
, int srcType
){
1073 assert( !sqlite3VdbeMemIsRowSet(pFrom
) );
1074 assert( pTo
->db
==pFrom
->db
);
1075 if( VdbeMemDynamic(pTo
) ){ vdbeClrCopy(pTo
,pFrom
,srcType
); return; }
1076 memcpy(pTo
, pFrom
, MEMCELLSIZE
);
1077 if( (pFrom
->flags
&MEM_Static
)==0 ){
1078 pTo
->flags
&= ~(MEM_Dyn
|MEM_Static
|MEM_Ephem
);
1079 assert( srcType
==MEM_Ephem
|| srcType
==MEM_Static
);
1080 pTo
->flags
|= srcType
;
1085 ** Make a full copy of pFrom into pTo. Prior contents of pTo are
1086 ** freed before the copy is made.
1088 int sqlite3VdbeMemCopy(Mem
*pTo
, const Mem
*pFrom
){
1091 assert( !sqlite3VdbeMemIsRowSet(pFrom
) );
1092 if( VdbeMemDynamic(pTo
) ) vdbeMemClearExternAndSetNull(pTo
);
1093 memcpy(pTo
, pFrom
, MEMCELLSIZE
);
1094 pTo
->flags
&= ~MEM_Dyn
;
1095 if( pTo
->flags
&(MEM_Str
|MEM_Blob
) ){
1096 if( 0==(pFrom
->flags
&MEM_Static
) ){
1097 pTo
->flags
|= MEM_Ephem
;
1098 rc
= sqlite3VdbeMemMakeWriteable(pTo
);
1106 ** Transfer the contents of pFrom to pTo. Any existing value in pTo is
1107 ** freed. If pFrom contains ephemeral data, a copy is made.
1109 ** pFrom contains an SQL NULL when this routine returns.
1111 void sqlite3VdbeMemMove(Mem
*pTo
, Mem
*pFrom
){
1112 assert( pFrom
->db
==0 || sqlite3_mutex_held(pFrom
->db
->mutex
) );
1113 assert( pTo
->db
==0 || sqlite3_mutex_held(pTo
->db
->mutex
) );
1114 assert( pFrom
->db
==0 || pTo
->db
==0 || pFrom
->db
==pTo
->db
);
1116 sqlite3VdbeMemRelease(pTo
);
1117 memcpy(pTo
, pFrom
, sizeof(Mem
));
1118 pFrom
->flags
= MEM_Null
;
1119 pFrom
->szMalloc
= 0;
1123 ** Change the value of a Mem to be a string or a BLOB.
1125 ** The memory management strategy depends on the value of the xDel
1126 ** parameter. If the value passed is SQLITE_TRANSIENT, then the
1127 ** string is copied into a (possibly existing) buffer managed by the
1128 ** Mem structure. Otherwise, any existing buffer is freed and the
1131 ** If the string is too large (if it exceeds the SQLITE_LIMIT_LENGTH
1132 ** size limit) then no memory allocation occurs. If the string can be
1133 ** stored without allocating memory, then it is. If a memory allocation
1134 ** is required to store the string, then value of pMem is unchanged. In
1135 ** either case, SQLITE_TOOBIG is returned.
1137 ** The "enc" parameter is the text encoding for the string, or zero
1140 ** If n is negative, then the string consists of all bytes up to but
1141 ** excluding the first zero character. The n parameter must be
1142 ** non-negative for blobs.
1144 int sqlite3VdbeMemSetStr(
1145 Mem
*pMem
, /* Memory cell to set to string value */
1146 const char *z
, /* String pointer */
1147 i64 n
, /* Bytes in string, or negative */
1148 u8 enc
, /* Encoding of z. 0 for BLOBs */
1149 void (*xDel
)(void*) /* Destructor function */
1151 i64 nByte
= n
; /* New value for pMem->n */
1152 int iLimit
; /* Maximum allowed string or blob size */
1153 u16 flags
; /* New value for pMem->flags */
1156 assert( pMem
->db
==0 || sqlite3_mutex_held(pMem
->db
->mutex
) );
1157 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
1158 assert( enc
!=0 || n
>=0 );
1160 /* If z is a NULL pointer, set pMem to contain an SQL NULL. */
1162 sqlite3VdbeMemSetNull(pMem
);
1167 iLimit
= pMem
->db
->aLimit
[SQLITE_LIMIT_LENGTH
];
1169 iLimit
= SQLITE_MAX_LENGTH
;
1173 if( enc
==SQLITE_UTF8
){
1176 for(nByte
=0; nByte
<=iLimit
&& (z
[nByte
] | z
[nByte
+1]); nByte
+=2){}
1178 flags
= MEM_Str
|MEM_Term
;
1186 if( xDel
&& xDel
!=SQLITE_TRANSIENT
){
1187 if( xDel
==SQLITE_DYNAMIC
){
1188 sqlite3DbFree(pMem
->db
, (void*)z
);
1193 sqlite3VdbeMemSetNull(pMem
);
1194 return sqlite3ErrorToParser(pMem
->db
, SQLITE_TOOBIG
);
1197 /* The following block sets the new values of Mem.z and Mem.xDel. It
1198 ** also sets a flag in local variable "flags" to indicate the memory
1199 ** management (one of MEM_Dyn or MEM_Static).
1201 if( xDel
==SQLITE_TRANSIENT
){
1203 if( flags
&MEM_Term
){
1204 nAlloc
+= (enc
==SQLITE_UTF8
?1:2);
1206 testcase( nAlloc
==0 );
1207 testcase( nAlloc
==31 );
1208 testcase( nAlloc
==32 );
1209 if( sqlite3VdbeMemClearAndResize(pMem
, (int)MAX(nAlloc
,32)) ){
1210 return SQLITE_NOMEM_BKPT
;
1212 memcpy(pMem
->z
, z
, nAlloc
);
1214 sqlite3VdbeMemRelease(pMem
);
1215 pMem
->z
= (char *)z
;
1216 if( xDel
==SQLITE_DYNAMIC
){
1217 pMem
->zMalloc
= pMem
->z
;
1218 pMem
->szMalloc
= sqlite3DbMallocSize(pMem
->db
, pMem
->zMalloc
);
1221 flags
|= ((xDel
==SQLITE_STATIC
)?MEM_Static
:MEM_Dyn
);
1225 pMem
->n
= (int)(nByte
& 0x7fffffff);
1226 pMem
->flags
= flags
;
1229 #ifndef SQLITE_OMIT_UTF16
1230 if( enc
>SQLITE_UTF8
&& sqlite3VdbeMemHandleBom(pMem
) ){
1231 return SQLITE_NOMEM_BKPT
;
1240 ** Move data out of a btree key or data field and into a Mem structure.
1241 ** The data is payload from the entry that pCur is currently pointing
1242 ** to. offset and amt determine what portion of the data or key to retrieve.
1243 ** The result is written into the pMem element.
1245 ** The pMem object must have been initialized. This routine will use
1246 ** pMem->zMalloc to hold the content from the btree, if possible. New
1247 ** pMem->zMalloc space will be allocated if necessary. The calling routine
1248 ** is responsible for making sure that the pMem object is eventually
1251 ** If this routine fails for any reason (malloc returns NULL or unable
1252 ** to read from the disk) then the pMem is left in an inconsistent state.
1254 int sqlite3VdbeMemFromBtree(
1255 BtCursor
*pCur
, /* Cursor pointing at record to retrieve. */
1256 u32 offset
, /* Offset from the start of data to return bytes from. */
1257 u32 amt
, /* Number of bytes to return. */
1258 Mem
*pMem
/* OUT: Return data in this Mem structure. */
1261 pMem
->flags
= MEM_Null
;
1262 if( sqlite3BtreeMaxRecordSize(pCur
)<offset
+amt
){
1263 return SQLITE_CORRUPT_BKPT
;
1265 if( SQLITE_OK
==(rc
= sqlite3VdbeMemClearAndResize(pMem
, amt
+1)) ){
1266 rc
= sqlite3BtreePayload(pCur
, offset
, amt
, pMem
->z
);
1267 if( rc
==SQLITE_OK
){
1268 pMem
->z
[amt
] = 0; /* Overrun area used when reading malformed records */
1269 pMem
->flags
= MEM_Blob
;
1272 sqlite3VdbeMemRelease(pMem
);
1277 int sqlite3VdbeMemFromBtreeZeroOffset(
1278 BtCursor
*pCur
, /* Cursor pointing at record to retrieve. */
1279 u32 amt
, /* Number of bytes to return. */
1280 Mem
*pMem
/* OUT: Return data in this Mem structure. */
1282 u32 available
= 0; /* Number of bytes available on the local btree page */
1283 int rc
= SQLITE_OK
; /* Return code */
1285 assert( sqlite3BtreeCursorIsValid(pCur
) );
1286 assert( !VdbeMemDynamic(pMem
) );
1288 /* Note: the calls to BtreeKeyFetch() and DataFetch() below assert()
1289 ** that both the BtShared and database handle mutexes are held. */
1290 assert( !sqlite3VdbeMemIsRowSet(pMem
) );
1291 pMem
->z
= (char *)sqlite3BtreePayloadFetch(pCur
, &available
);
1292 assert( pMem
->z
!=0 );
1294 if( amt
<=available
){
1295 pMem
->flags
= MEM_Blob
|MEM_Ephem
;
1298 rc
= sqlite3VdbeMemFromBtree(pCur
, 0, amt
, pMem
);
1305 ** The pVal argument is known to be a value other than NULL.
1306 ** Convert it into a string with encoding enc and return a pointer
1307 ** to a zero-terminated version of that string.
1309 static SQLITE_NOINLINE
const void *valueToText(sqlite3_value
* pVal
, u8 enc
){
1311 assert( pVal
->db
==0 || sqlite3_mutex_held(pVal
->db
->mutex
) );
1312 assert( (enc
&3)==(enc
&~SQLITE_UTF16_ALIGNED
) );
1313 assert( !sqlite3VdbeMemIsRowSet(pVal
) );
1314 assert( (pVal
->flags
& (MEM_Null
))==0 );
1315 if( pVal
->flags
& (MEM_Blob
|MEM_Str
) ){
1316 if( ExpandBlob(pVal
) ) return 0;
1317 pVal
->flags
|= MEM_Str
;
1318 if( pVal
->enc
!= (enc
& ~SQLITE_UTF16_ALIGNED
) ){
1319 sqlite3VdbeChangeEncoding(pVal
, enc
& ~SQLITE_UTF16_ALIGNED
);
1321 if( (enc
& SQLITE_UTF16_ALIGNED
)!=0 && 1==(1&SQLITE_PTR_TO_INT(pVal
->z
)) ){
1322 assert( (pVal
->flags
& (MEM_Ephem
|MEM_Static
))!=0 );
1323 if( sqlite3VdbeMemMakeWriteable(pVal
)!=SQLITE_OK
){
1327 sqlite3VdbeMemNulTerminate(pVal
); /* IMP: R-31275-44060 */
1329 sqlite3VdbeMemStringify(pVal
, enc
, 0);
1330 assert( 0==(1&SQLITE_PTR_TO_INT(pVal
->z
)) );
1332 assert(pVal
->enc
==(enc
& ~SQLITE_UTF16_ALIGNED
) || pVal
->db
==0
1333 || pVal
->db
->mallocFailed
);
1334 if( pVal
->enc
==(enc
& ~SQLITE_UTF16_ALIGNED
) ){
1335 assert( sqlite3VdbeMemValidStrRep(pVal
) );
1342 /* This function is only available internally, it is not part of the
1343 ** external API. It works in a similar way to sqlite3_value_text(),
1344 ** except the data returned is in the encoding specified by the second
1345 ** parameter, which must be one of SQLITE_UTF16BE, SQLITE_UTF16LE or
1348 ** (2006-02-16:) The enc value can be or-ed with SQLITE_UTF16_ALIGNED.
1349 ** If that is the case, then the result must be aligned on an even byte
1352 const void *sqlite3ValueText(sqlite3_value
* pVal
, u8 enc
){
1353 if( !pVal
) return 0;
1354 assert( pVal
->db
==0 || sqlite3_mutex_held(pVal
->db
->mutex
) );
1355 assert( (enc
&3)==(enc
&~SQLITE_UTF16_ALIGNED
) );
1356 assert( !sqlite3VdbeMemIsRowSet(pVal
) );
1357 if( (pVal
->flags
&(MEM_Str
|MEM_Term
))==(MEM_Str
|MEM_Term
) && pVal
->enc
==enc
){
1358 assert( sqlite3VdbeMemValidStrRep(pVal
) );
1361 if( pVal
->flags
&MEM_Null
){
1364 return valueToText(pVal
, enc
);
1368 ** Create a new sqlite3_value object.
1370 sqlite3_value
*sqlite3ValueNew(sqlite3
*db
){
1371 Mem
*p
= sqlite3DbMallocZero(db
, sizeof(*p
));
1373 p
->flags
= MEM_Null
;
1380 ** Context object passed by sqlite3Stat4ProbeSetValue() through to
1381 ** valueNew(). See comments above valueNew() for details.
1383 struct ValueNewStat4Ctx
{
1386 UnpackedRecord
**ppRec
;
1391 ** Allocate and return a pointer to a new sqlite3_value object. If
1392 ** the second argument to this function is NULL, the object is allocated
1393 ** by calling sqlite3ValueNew().
1395 ** Otherwise, if the second argument is non-zero, then this function is
1396 ** being called indirectly by sqlite3Stat4ProbeSetValue(). If it has not
1397 ** already been allocated, allocate the UnpackedRecord structure that
1398 ** that function will return to its caller here. Then return a pointer to
1399 ** an sqlite3_value within the UnpackedRecord.a[] array.
1401 static sqlite3_value
*valueNew(sqlite3
*db
, struct ValueNewStat4Ctx
*p
){
1402 #ifdef SQLITE_ENABLE_STAT4
1404 UnpackedRecord
*pRec
= p
->ppRec
[0];
1407 Index
*pIdx
= p
->pIdx
; /* Index being probed */
1408 int nByte
; /* Bytes of space to allocate */
1409 int i
; /* Counter variable */
1410 int nCol
= pIdx
->nColumn
; /* Number of index columns including rowid */
1412 nByte
= sizeof(Mem
) * nCol
+ ROUND8(sizeof(UnpackedRecord
));
1413 pRec
= (UnpackedRecord
*)sqlite3DbMallocZero(db
, nByte
);
1415 pRec
->pKeyInfo
= sqlite3KeyInfoOfIndex(p
->pParse
, pIdx
);
1416 if( pRec
->pKeyInfo
){
1417 assert( pRec
->pKeyInfo
->nAllField
==nCol
);
1418 assert( pRec
->pKeyInfo
->enc
==ENC(db
) );
1419 pRec
->aMem
= (Mem
*)((u8
*)pRec
+ ROUND8(sizeof(UnpackedRecord
)));
1420 for(i
=0; i
<nCol
; i
++){
1421 pRec
->aMem
[i
].flags
= MEM_Null
;
1422 pRec
->aMem
[i
].db
= db
;
1425 sqlite3DbFreeNN(db
, pRec
);
1429 if( pRec
==0 ) return 0;
1433 pRec
->nField
= p
->iVal
+1;
1434 return &pRec
->aMem
[p
->iVal
];
1437 UNUSED_PARAMETER(p
);
1438 #endif /* defined(SQLITE_ENABLE_STAT4) */
1439 return sqlite3ValueNew(db
);
1443 ** The expression object indicated by the second argument is guaranteed
1444 ** to be a scalar SQL function. If
1446 ** * all function arguments are SQL literals,
1447 ** * one of the SQLITE_FUNC_CONSTANT or _SLOCHNG function flags is set, and
1448 ** * the SQLITE_FUNC_NEEDCOLL function flag is not set,
1450 ** then this routine attempts to invoke the SQL function. Assuming no
1451 ** error occurs, output parameter (*ppVal) is set to point to a value
1452 ** object containing the result before returning SQLITE_OK.
1454 ** Affinity aff is applied to the result of the function before returning.
1455 ** If the result is a text value, the sqlite3_value object uses encoding
1458 ** If the conditions above are not met, this function returns SQLITE_OK
1459 ** and sets (*ppVal) to NULL. Or, if an error occurs, (*ppVal) is set to
1460 ** NULL and an SQLite error code returned.
1462 #ifdef SQLITE_ENABLE_STAT4
1463 static int valueFromFunction(
1464 sqlite3
*db
, /* The database connection */
1465 const Expr
*p
, /* The expression to evaluate */
1466 u8 enc
, /* Encoding to use */
1467 u8 aff
, /* Affinity to use */
1468 sqlite3_value
**ppVal
, /* Write the new value here */
1469 struct ValueNewStat4Ctx
*pCtx
/* Second argument for valueNew() */
1471 sqlite3_context ctx
; /* Context object for function invocation */
1472 sqlite3_value
**apVal
= 0; /* Function arguments */
1473 int nVal
= 0; /* Size of apVal[] array */
1474 FuncDef
*pFunc
= 0; /* Function definition */
1475 sqlite3_value
*pVal
= 0; /* New value */
1476 int rc
= SQLITE_OK
; /* Return code */
1477 ExprList
*pList
= 0; /* Function arguments */
1478 int i
; /* Iterator variable */
1481 assert( (p
->flags
& EP_TokenOnly
)==0 );
1482 assert( ExprUseXList(p
) );
1484 if( pList
) nVal
= pList
->nExpr
;
1485 assert( !ExprHasProperty(p
, EP_IntValue
) );
1486 pFunc
= sqlite3FindFunction(db
, p
->u
.zToken
, nVal
, enc
, 0);
1487 #ifdef SQLITE_ENABLE_UNKNOWN_SQL_FUNCTION
1488 if( pFunc
==0 ) return SQLITE_OK
;
1491 if( (pFunc
->funcFlags
& (SQLITE_FUNC_CONSTANT
|SQLITE_FUNC_SLOCHNG
))==0
1492 || (pFunc
->funcFlags
& SQLITE_FUNC_NEEDCOLL
)
1498 apVal
= (sqlite3_value
**)sqlite3DbMallocZero(db
, sizeof(apVal
[0]) * nVal
);
1500 rc
= SQLITE_NOMEM_BKPT
;
1501 goto value_from_function_out
;
1503 for(i
=0; i
<nVal
; i
++){
1504 rc
= sqlite3ValueFromExpr(db
, pList
->a
[i
].pExpr
, enc
, aff
, &apVal
[i
]);
1505 if( apVal
[i
]==0 || rc
!=SQLITE_OK
) goto value_from_function_out
;
1509 pVal
= valueNew(db
, pCtx
);
1511 rc
= SQLITE_NOMEM_BKPT
;
1512 goto value_from_function_out
;
1515 memset(&ctx
, 0, sizeof(ctx
));
1519 pFunc
->xSFunc(&ctx
, nVal
, apVal
);
1522 sqlite3ErrorMsg(pCtx
->pParse
, "%s", sqlite3_value_text(pVal
));
1524 sqlite3ValueApplyAffinity(pVal
, aff
, SQLITE_UTF8
);
1525 assert( rc
==SQLITE_OK
);
1526 rc
= sqlite3VdbeChangeEncoding(pVal
, enc
);
1527 if( NEVER(rc
==SQLITE_OK
&& sqlite3VdbeMemTooBig(pVal
)) ){
1529 pCtx
->pParse
->nErr
++;
1533 value_from_function_out
:
1534 if( rc
!=SQLITE_OK
){
1536 pCtx
->pParse
->rc
= rc
;
1539 for(i
=0; i
<nVal
; i
++){
1540 sqlite3ValueFree(apVal
[i
]);
1542 sqlite3DbFreeNN(db
, apVal
);
1549 # define valueFromFunction(a,b,c,d,e,f) SQLITE_OK
1550 #endif /* defined(SQLITE_ENABLE_STAT4) */
1553 ** Extract a value from the supplied expression in the manner described
1554 ** above sqlite3ValueFromExpr(). Allocate the sqlite3_value object
1555 ** using valueNew().
1557 ** If pCtx is NULL and an error occurs after the sqlite3_value object
1558 ** has been allocated, it is freed before returning. Or, if pCtx is not
1559 ** NULL, it is assumed that the caller will free any allocated object
1562 static int valueFromExpr(
1563 sqlite3
*db
, /* The database connection */
1564 const Expr
*pExpr
, /* The expression to evaluate */
1565 u8 enc
, /* Encoding to use */
1566 u8 affinity
, /* Affinity to use */
1567 sqlite3_value
**ppVal
, /* Write the new value here */
1568 struct ValueNewStat4Ctx
*pCtx
/* Second argument for valueNew() */
1572 sqlite3_value
*pVal
= 0;
1574 const char *zNeg
= "";
1578 while( (op
= pExpr
->op
)==TK_UPLUS
|| op
==TK_SPAN
) pExpr
= pExpr
->pLeft
;
1579 if( op
==TK_REGISTER
) op
= pExpr
->op2
;
1581 /* Compressed expressions only appear when parsing the DEFAULT clause
1582 ** on a table column definition, and hence only when pCtx==0. This
1583 ** check ensures that an EP_TokenOnly expression is never passed down
1584 ** into valueFromFunction(). */
1585 assert( (pExpr
->flags
& EP_TokenOnly
)==0 || pCtx
==0 );
1589 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
1590 aff
= sqlite3AffinityType(pExpr
->u
.zToken
,0);
1591 rc
= valueFromExpr(db
, pExpr
->pLeft
, enc
, aff
, ppVal
, pCtx
);
1592 testcase( rc
!=SQLITE_OK
);
1594 #ifdef SQLITE_ENABLE_STAT4
1595 rc
= ExpandBlob(*ppVal
);
1597 /* zero-blobs only come from functions, not literal values. And
1598 ** functions are only processed under STAT4 */
1599 assert( (ppVal
[0][0].flags
& MEM_Zero
)==0 );
1601 sqlite3VdbeMemCast(*ppVal
, aff
, enc
);
1602 sqlite3ValueApplyAffinity(*ppVal
, affinity
, enc
);
1607 /* Handle negative integers in a single step. This is needed in the
1608 ** case when the value is -9223372036854775808.
1611 && (pExpr
->pLeft
->op
==TK_INTEGER
|| pExpr
->pLeft
->op
==TK_FLOAT
) ){
1612 pExpr
= pExpr
->pLeft
;
1618 if( op
==TK_STRING
|| op
==TK_FLOAT
|| op
==TK_INTEGER
){
1619 pVal
= valueNew(db
, pCtx
);
1620 if( pVal
==0 ) goto no_mem
;
1621 if( ExprHasProperty(pExpr
, EP_IntValue
) ){
1622 sqlite3VdbeMemSetInt64(pVal
, (i64
)pExpr
->u
.iValue
*negInt
);
1624 zVal
= sqlite3MPrintf(db
, "%s%s", zNeg
, pExpr
->u
.zToken
);
1625 if( zVal
==0 ) goto no_mem
;
1626 sqlite3ValueSetStr(pVal
, -1, zVal
, SQLITE_UTF8
, SQLITE_DYNAMIC
);
1628 if( (op
==TK_INTEGER
|| op
==TK_FLOAT
) && affinity
==SQLITE_AFF_BLOB
){
1629 sqlite3ValueApplyAffinity(pVal
, SQLITE_AFF_NUMERIC
, SQLITE_UTF8
);
1631 sqlite3ValueApplyAffinity(pVal
, affinity
, SQLITE_UTF8
);
1633 assert( (pVal
->flags
& MEM_IntReal
)==0 );
1634 if( pVal
->flags
& (MEM_Int
|MEM_IntReal
|MEM_Real
) ){
1635 testcase( pVal
->flags
& MEM_Int
);
1636 testcase( pVal
->flags
& MEM_Real
);
1637 pVal
->flags
&= ~MEM_Str
;
1639 if( enc
!=SQLITE_UTF8
){
1640 rc
= sqlite3VdbeChangeEncoding(pVal
, enc
);
1642 }else if( op
==TK_UMINUS
) {
1643 /* This branch happens for multiple negative signs. Ex: -(-5) */
1644 if( SQLITE_OK
==valueFromExpr(db
,pExpr
->pLeft
,enc
,affinity
,&pVal
,pCtx
)
1647 sqlite3VdbeMemNumerify(pVal
);
1648 if( pVal
->flags
& MEM_Real
){
1649 pVal
->u
.r
= -pVal
->u
.r
;
1650 }else if( pVal
->u
.i
==SMALLEST_INT64
){
1651 #ifndef SQLITE_OMIT_FLOATING_POINT
1652 pVal
->u
.r
= -(double)SMALLEST_INT64
;
1654 pVal
->u
.r
= LARGEST_INT64
;
1656 MemSetTypeFlag(pVal
, MEM_Real
);
1658 pVal
->u
.i
= -pVal
->u
.i
;
1660 sqlite3ValueApplyAffinity(pVal
, affinity
, enc
);
1662 }else if( op
==TK_NULL
){
1663 pVal
= valueNew(db
, pCtx
);
1664 if( pVal
==0 ) goto no_mem
;
1665 sqlite3VdbeMemSetNull(pVal
);
1667 #ifndef SQLITE_OMIT_BLOB_LITERAL
1668 else if( op
==TK_BLOB
){
1670 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
1671 assert( pExpr
->u
.zToken
[0]=='x' || pExpr
->u
.zToken
[0]=='X' );
1672 assert( pExpr
->u
.zToken
[1]=='\'' );
1673 pVal
= valueNew(db
, pCtx
);
1674 if( !pVal
) goto no_mem
;
1675 zVal
= &pExpr
->u
.zToken
[2];
1676 nVal
= sqlite3Strlen30(zVal
)-1;
1677 assert( zVal
[nVal
]=='\'' );
1678 sqlite3VdbeMemSetStr(pVal
, sqlite3HexToBlob(db
, zVal
, nVal
), nVal
/2,
1682 #ifdef SQLITE_ENABLE_STAT4
1683 else if( op
==TK_FUNCTION
&& pCtx
!=0 ){
1684 rc
= valueFromFunction(db
, pExpr
, enc
, affinity
, &pVal
, pCtx
);
1687 else if( op
==TK_TRUEFALSE
){
1688 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
1689 pVal
= valueNew(db
, pCtx
);
1691 pVal
->flags
= MEM_Int
;
1692 pVal
->u
.i
= pExpr
->u
.zToken
[4]==0;
1700 #ifdef SQLITE_ENABLE_STAT4
1701 if( pCtx
==0 || NEVER(pCtx
->pParse
->nErr
==0) )
1703 sqlite3OomFault(db
);
1704 sqlite3DbFree(db
, zVal
);
1705 assert( *ppVal
==0 );
1706 #ifdef SQLITE_ENABLE_STAT4
1707 if( pCtx
==0 ) sqlite3ValueFree(pVal
);
1709 assert( pCtx
==0 ); sqlite3ValueFree(pVal
);
1711 return SQLITE_NOMEM_BKPT
;
1715 ** Create a new sqlite3_value object, containing the value of pExpr.
1717 ** This only works for very simple expressions that consist of one constant
1718 ** token (i.e. "5", "5.1", "'a string'"). If the expression can
1719 ** be converted directly into a value, then the value is allocated and
1720 ** a pointer written to *ppVal. The caller is responsible for deallocating
1721 ** the value by passing it to sqlite3ValueFree() later on. If the expression
1722 ** cannot be converted to a value, then *ppVal is set to NULL.
1724 int sqlite3ValueFromExpr(
1725 sqlite3
*db
, /* The database connection */
1726 const Expr
*pExpr
, /* The expression to evaluate */
1727 u8 enc
, /* Encoding to use */
1728 u8 affinity
, /* Affinity to use */
1729 sqlite3_value
**ppVal
/* Write the new value here */
1731 return pExpr
? valueFromExpr(db
, pExpr
, enc
, affinity
, ppVal
, 0) : 0;
1734 #ifdef SQLITE_ENABLE_STAT4
1736 ** Attempt to extract a value from pExpr and use it to construct *ppVal.
1738 ** If pAlloc is not NULL, then an UnpackedRecord object is created for
1739 ** pAlloc if one does not exist and the new value is added to the
1740 ** UnpackedRecord object.
1742 ** A value is extracted in the following cases:
1744 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1746 ** * The expression is a bound variable, and this is a reprepare, or
1748 ** * The expression is a literal value.
1750 ** On success, *ppVal is made to point to the extracted value. The caller
1751 ** is responsible for ensuring that the value is eventually freed.
1753 static int stat4ValueFromExpr(
1754 Parse
*pParse
, /* Parse context */
1755 Expr
*pExpr
, /* The expression to extract a value from */
1756 u8 affinity
, /* Affinity to use */
1757 struct ValueNewStat4Ctx
*pAlloc
,/* How to allocate space. Or NULL */
1758 sqlite3_value
**ppVal
/* OUT: New value object (or NULL) */
1761 sqlite3_value
*pVal
= 0;
1762 sqlite3
*db
= pParse
->db
;
1764 /* Skip over any TK_COLLATE nodes */
1765 pExpr
= sqlite3ExprSkipCollate(pExpr
);
1767 assert( pExpr
==0 || pExpr
->op
!=TK_REGISTER
|| pExpr
->op2
!=TK_VARIABLE
);
1769 pVal
= valueNew(db
, pAlloc
);
1771 sqlite3VdbeMemSetNull((Mem
*)pVal
);
1773 }else if( pExpr
->op
==TK_VARIABLE
&& (db
->flags
& SQLITE_EnableQPSG
)==0 ){
1775 int iBindVar
= pExpr
->iColumn
;
1776 sqlite3VdbeSetVarmask(pParse
->pVdbe
, iBindVar
);
1777 if( (v
= pParse
->pReprepare
)!=0 ){
1778 pVal
= valueNew(db
, pAlloc
);
1780 rc
= sqlite3VdbeMemCopy((Mem
*)pVal
, &v
->aVar
[iBindVar
-1]);
1781 sqlite3ValueApplyAffinity(pVal
, affinity
, ENC(db
));
1782 pVal
->db
= pParse
->db
;
1786 rc
= valueFromExpr(db
, pExpr
, ENC(db
), affinity
, &pVal
, pAlloc
);
1789 assert( pVal
==0 || pVal
->db
==db
);
1795 ** This function is used to allocate and populate UnpackedRecord
1796 ** structures intended to be compared against sample index keys stored
1797 ** in the sqlite_stat4 table.
1799 ** A single call to this function populates zero or more fields of the
1800 ** record starting with field iVal (fields are numbered from left to
1801 ** right starting with 0). A single field is populated if:
1803 ** * (pExpr==0). In this case the value is assumed to be an SQL NULL,
1805 ** * The expression is a bound variable, and this is a reprepare, or
1807 ** * The sqlite3ValueFromExpr() function is able to extract a value
1808 ** from the expression (i.e. the expression is a literal value).
1810 ** Or, if pExpr is a TK_VECTOR, one field is populated for each of the
1811 ** vector components that match either of the two latter criteria listed
1814 ** Before any value is appended to the record, the affinity of the
1815 ** corresponding column within index pIdx is applied to it. Before
1816 ** this function returns, output parameter *pnExtract is set to the
1817 ** number of values appended to the record.
1819 ** When this function is called, *ppRec must either point to an object
1820 ** allocated by an earlier call to this function, or must be NULL. If it
1821 ** is NULL and a value can be successfully extracted, a new UnpackedRecord
1822 ** is allocated (and *ppRec set to point to it) before returning.
1824 ** Unless an error is encountered, SQLITE_OK is returned. It is not an
1825 ** error if a value cannot be extracted from pExpr. If an error does
1826 ** occur, an SQLite error code is returned.
1828 int sqlite3Stat4ProbeSetValue(
1829 Parse
*pParse
, /* Parse context */
1830 Index
*pIdx
, /* Index being probed */
1831 UnpackedRecord
**ppRec
, /* IN/OUT: Probe record */
1832 Expr
*pExpr
, /* The expression to extract a value from */
1833 int nElem
, /* Maximum number of values to append */
1834 int iVal
, /* Array element to populate */
1835 int *pnExtract
/* OUT: Values appended to the record */
1840 if( pExpr
==0 || pExpr
->op
!=TK_SELECT
){
1842 struct ValueNewStat4Ctx alloc
;
1844 alloc
.pParse
= pParse
;
1846 alloc
.ppRec
= ppRec
;
1848 for(i
=0; i
<nElem
; i
++){
1849 sqlite3_value
*pVal
= 0;
1850 Expr
*pElem
= (pExpr
? sqlite3VectorFieldSubexpr(pExpr
, i
) : 0);
1851 u8 aff
= sqlite3IndexColumnAffinity(pParse
->db
, pIdx
, iVal
+i
);
1852 alloc
.iVal
= iVal
+i
;
1853 rc
= stat4ValueFromExpr(pParse
, pElem
, aff
, &alloc
, &pVal
);
1859 *pnExtract
= nExtract
;
1864 ** Attempt to extract a value from expression pExpr using the methods
1865 ** as described for sqlite3Stat4ProbeSetValue() above.
1867 ** If successful, set *ppVal to point to a new value object and return
1868 ** SQLITE_OK. If no value can be extracted, but no other error occurs
1869 ** (e.g. OOM), return SQLITE_OK and set *ppVal to NULL. Or, if an error
1870 ** does occur, return an SQLite error code. The final value of *ppVal
1871 ** is undefined in this case.
1873 int sqlite3Stat4ValueFromExpr(
1874 Parse
*pParse
, /* Parse context */
1875 Expr
*pExpr
, /* The expression to extract a value from */
1876 u8 affinity
, /* Affinity to use */
1877 sqlite3_value
**ppVal
/* OUT: New value object (or NULL) */
1879 return stat4ValueFromExpr(pParse
, pExpr
, affinity
, 0, ppVal
);
1883 ** Extract the iCol-th column from the nRec-byte record in pRec. Write
1884 ** the column value into *ppVal. If *ppVal is initially NULL then a new
1885 ** sqlite3_value object is allocated.
1887 ** If *ppVal is initially NULL then the caller is responsible for
1888 ** ensuring that the value written into *ppVal is eventually freed.
1890 int sqlite3Stat4Column(
1891 sqlite3
*db
, /* Database handle */
1892 const void *pRec
, /* Pointer to buffer containing record */
1893 int nRec
, /* Size of buffer pRec in bytes */
1894 int iCol
, /* Column to extract */
1895 sqlite3_value
**ppVal
/* OUT: Extracted value */
1897 u32 t
= 0; /* a column type code */
1898 int nHdr
; /* Size of the header in the record */
1899 int iHdr
; /* Next unread header byte */
1900 int iField
; /* Next unread data byte */
1901 int szField
= 0; /* Size of the current data field */
1902 int i
; /* Column index */
1903 u8
*a
= (u8
*)pRec
; /* Typecast byte array */
1904 Mem
*pMem
= *ppVal
; /* Write result into this Mem object */
1907 iHdr
= getVarint32(a
, nHdr
);
1908 if( nHdr
>nRec
|| iHdr
>=nHdr
) return SQLITE_CORRUPT_BKPT
;
1910 for(i
=0; i
<=iCol
; i
++){
1911 iHdr
+= getVarint32(&a
[iHdr
], t
);
1912 testcase( iHdr
==nHdr
);
1913 testcase( iHdr
==nHdr
+1 );
1914 if( iHdr
>nHdr
) return SQLITE_CORRUPT_BKPT
;
1915 szField
= sqlite3VdbeSerialTypeLen(t
);
1918 testcase( iField
==nRec
);
1919 testcase( iField
==nRec
+1 );
1920 if( iField
>nRec
) return SQLITE_CORRUPT_BKPT
;
1922 pMem
= *ppVal
= sqlite3ValueNew(db
);
1923 if( pMem
==0 ) return SQLITE_NOMEM_BKPT
;
1925 sqlite3VdbeSerialGet(&a
[iField
-szField
], t
, pMem
);
1926 pMem
->enc
= ENC(db
);
1931 ** Unless it is NULL, the argument must be an UnpackedRecord object returned
1932 ** by an earlier call to sqlite3Stat4ProbeSetValue(). This call deletes
1935 void sqlite3Stat4ProbeFree(UnpackedRecord
*pRec
){
1938 int nCol
= pRec
->pKeyInfo
->nAllField
;
1939 Mem
*aMem
= pRec
->aMem
;
1940 sqlite3
*db
= aMem
[0].db
;
1941 for(i
=0; i
<nCol
; i
++){
1942 sqlite3VdbeMemRelease(&aMem
[i
]);
1944 sqlite3KeyInfoUnref(pRec
->pKeyInfo
);
1945 sqlite3DbFreeNN(db
, pRec
);
1948 #endif /* ifdef SQLITE_ENABLE_STAT4 */
1951 ** Change the string value of an sqlite3_value object
1953 void sqlite3ValueSetStr(
1954 sqlite3_value
*v
, /* Value to be set */
1955 int n
, /* Length of string z */
1956 const void *z
, /* Text of the new string */
1957 u8 enc
, /* Encoding to use */
1958 void (*xDel
)(void*) /* Destructor for the string */
1960 if( v
) sqlite3VdbeMemSetStr((Mem
*)v
, z
, n
, enc
, xDel
);
1964 ** Free an sqlite3_value object
1966 void sqlite3ValueFree(sqlite3_value
*v
){
1968 sqlite3VdbeMemRelease((Mem
*)v
);
1969 sqlite3DbFreeNN(((Mem
*)v
)->db
, v
);
1973 ** The sqlite3ValueBytes() routine returns the number of bytes in the
1974 ** sqlite3_value object assuming that it uses the encoding "enc".
1975 ** The valueBytes() routine is a helper function.
1977 static SQLITE_NOINLINE
int valueBytes(sqlite3_value
*pVal
, u8 enc
){
1978 return valueToText(pVal
, enc
)!=0 ? pVal
->n
: 0;
1980 int sqlite3ValueBytes(sqlite3_value
*pVal
, u8 enc
){
1981 Mem
*p
= (Mem
*)pVal
;
1982 assert( (p
->flags
& MEM_Null
)==0 || (p
->flags
& (MEM_Str
|MEM_Blob
))==0 );
1983 if( (p
->flags
& MEM_Str
)!=0 && pVal
->enc
==enc
){
1986 if( (p
->flags
& MEM_Str
)!=0 && enc
!=SQLITE_UTF8
&& pVal
->enc
!=SQLITE_UTF8
){
1989 if( (p
->flags
& MEM_Blob
)!=0 ){
1990 if( p
->flags
& MEM_Zero
){
1991 return p
->n
+ p
->u
.nZero
;
1996 if( p
->flags
& MEM_Null
) return 0;
1997 return valueBytes(pVal
, enc
);