Merge sqlite-release(3.42.0) into prerelease-integration
[sqlcipher.git] / src / wal.c
blob89cc53ca31ade63552a1cb450aa25446015a89e3
1 /*
2 ** 2010 February 1
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains the implementation of a write-ahead log (WAL) used in
14 ** "journal_mode=WAL" mode.
16 ** WRITE-AHEAD LOG (WAL) FILE FORMAT
18 ** A WAL file consists of a header followed by zero or more "frames".
19 ** Each frame records the revised content of a single page from the
20 ** database file. All changes to the database are recorded by writing
21 ** frames into the WAL. Transactions commit when a frame is written that
22 ** contains a commit marker. A single WAL can and usually does record
23 ** multiple transactions. Periodically, the content of the WAL is
24 ** transferred back into the database file in an operation called a
25 ** "checkpoint".
27 ** A single WAL file can be used multiple times. In other words, the
28 ** WAL can fill up with frames and then be checkpointed and then new
29 ** frames can overwrite the old ones. A WAL always grows from beginning
30 ** toward the end. Checksums and counters attached to each frame are
31 ** used to determine which frames within the WAL are valid and which
32 ** are leftovers from prior checkpoints.
34 ** The WAL header is 32 bytes in size and consists of the following eight
35 ** big-endian 32-bit unsigned integer values:
37 ** 0: Magic number. 0x377f0682 or 0x377f0683
38 ** 4: File format version. Currently 3007000
39 ** 8: Database page size. Example: 1024
40 ** 12: Checkpoint sequence number
41 ** 16: Salt-1, random integer incremented with each checkpoint
42 ** 20: Salt-2, a different random integer changing with each ckpt
43 ** 24: Checksum-1 (first part of checksum for first 24 bytes of header).
44 ** 28: Checksum-2 (second part of checksum for first 24 bytes of header).
46 ** Immediately following the wal-header are zero or more frames. Each
47 ** frame consists of a 24-byte frame-header followed by a <page-size> bytes
48 ** of page data. The frame-header is six big-endian 32-bit unsigned
49 ** integer values, as follows:
51 ** 0: Page number.
52 ** 4: For commit records, the size of the database image in pages
53 ** after the commit. For all other records, zero.
54 ** 8: Salt-1 (copied from the header)
55 ** 12: Salt-2 (copied from the header)
56 ** 16: Checksum-1.
57 ** 20: Checksum-2.
59 ** A frame is considered valid if and only if the following conditions are
60 ** true:
62 ** (1) The salt-1 and salt-2 values in the frame-header match
63 ** salt values in the wal-header
65 ** (2) The checksum values in the final 8 bytes of the frame-header
66 ** exactly match the checksum computed consecutively on the
67 ** WAL header and the first 8 bytes and the content of all frames
68 ** up to and including the current frame.
70 ** The checksum is computed using 32-bit big-endian integers if the
71 ** magic number in the first 4 bytes of the WAL is 0x377f0683 and it
72 ** is computed using little-endian if the magic number is 0x377f0682.
73 ** The checksum values are always stored in the frame header in a
74 ** big-endian format regardless of which byte order is used to compute
75 ** the checksum. The checksum is computed by interpreting the input as
76 ** an even number of unsigned 32-bit integers: x[0] through x[N]. The
77 ** algorithm used for the checksum is as follows:
78 **
79 ** for i from 0 to n-1 step 2:
80 ** s0 += x[i] + s1;
81 ** s1 += x[i+1] + s0;
82 ** endfor
84 ** Note that s0 and s1 are both weighted checksums using fibonacci weights
85 ** in reverse order (the largest fibonacci weight occurs on the first element
86 ** of the sequence being summed.) The s1 value spans all 32-bit
87 ** terms of the sequence whereas s0 omits the final term.
89 ** On a checkpoint, the WAL is first VFS.xSync-ed, then valid content of the
90 ** WAL is transferred into the database, then the database is VFS.xSync-ed.
91 ** The VFS.xSync operations serve as write barriers - all writes launched
92 ** before the xSync must complete before any write that launches after the
93 ** xSync begins.
95 ** After each checkpoint, the salt-1 value is incremented and the salt-2
96 ** value is randomized. This prevents old and new frames in the WAL from
97 ** being considered valid at the same time and being checkpointing together
98 ** following a crash.
100 ** READER ALGORITHM
102 ** To read a page from the database (call it page number P), a reader
103 ** first checks the WAL to see if it contains page P. If so, then the
104 ** last valid instance of page P that is a followed by a commit frame
105 ** or is a commit frame itself becomes the value read. If the WAL
106 ** contains no copies of page P that are valid and which are a commit
107 ** frame or are followed by a commit frame, then page P is read from
108 ** the database file.
110 ** To start a read transaction, the reader records the index of the last
111 ** valid frame in the WAL. The reader uses this recorded "mxFrame" value
112 ** for all subsequent read operations. New transactions can be appended
113 ** to the WAL, but as long as the reader uses its original mxFrame value
114 ** and ignores the newly appended content, it will see a consistent snapshot
115 ** of the database from a single point in time. This technique allows
116 ** multiple concurrent readers to view different versions of the database
117 ** content simultaneously.
119 ** The reader algorithm in the previous paragraphs works correctly, but
120 ** because frames for page P can appear anywhere within the WAL, the
121 ** reader has to scan the entire WAL looking for page P frames. If the
122 ** WAL is large (multiple megabytes is typical) that scan can be slow,
123 ** and read performance suffers. To overcome this problem, a separate
124 ** data structure called the wal-index is maintained to expedite the
125 ** search for frames of a particular page.
127 ** WAL-INDEX FORMAT
129 ** Conceptually, the wal-index is shared memory, though VFS implementations
130 ** might choose to implement the wal-index using a mmapped file. Because
131 ** the wal-index is shared memory, SQLite does not support journal_mode=WAL
132 ** on a network filesystem. All users of the database must be able to
133 ** share memory.
135 ** In the default unix and windows implementation, the wal-index is a mmapped
136 ** file whose name is the database name with a "-shm" suffix added. For that
137 ** reason, the wal-index is sometimes called the "shm" file.
139 ** The wal-index is transient. After a crash, the wal-index can (and should
140 ** be) reconstructed from the original WAL file. In fact, the VFS is required
141 ** to either truncate or zero the header of the wal-index when the last
142 ** connection to it closes. Because the wal-index is transient, it can
143 ** use an architecture-specific format; it does not have to be cross-platform.
144 ** Hence, unlike the database and WAL file formats which store all values
145 ** as big endian, the wal-index can store multi-byte values in the native
146 ** byte order of the host computer.
148 ** The purpose of the wal-index is to answer this question quickly: Given
149 ** a page number P and a maximum frame index M, return the index of the
150 ** last frame in the wal before frame M for page P in the WAL, or return
151 ** NULL if there are no frames for page P in the WAL prior to M.
153 ** The wal-index consists of a header region, followed by an one or
154 ** more index blocks.
156 ** The wal-index header contains the total number of frames within the WAL
157 ** in the mxFrame field.
159 ** Each index block except for the first contains information on
160 ** HASHTABLE_NPAGE frames. The first index block contains information on
161 ** HASHTABLE_NPAGE_ONE frames. The values of HASHTABLE_NPAGE_ONE and
162 ** HASHTABLE_NPAGE are selected so that together the wal-index header and
163 ** first index block are the same size as all other index blocks in the
164 ** wal-index. The values are:
166 ** HASHTABLE_NPAGE 4096
167 ** HASHTABLE_NPAGE_ONE 4062
169 ** Each index block contains two sections, a page-mapping that contains the
170 ** database page number associated with each wal frame, and a hash-table
171 ** that allows readers to query an index block for a specific page number.
172 ** The page-mapping is an array of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE
173 ** for the first index block) 32-bit page numbers. The first entry in the
174 ** first index-block contains the database page number corresponding to the
175 ** first frame in the WAL file. The first entry in the second index block
176 ** in the WAL file corresponds to the (HASHTABLE_NPAGE_ONE+1)th frame in
177 ** the log, and so on.
179 ** The last index block in a wal-index usually contains less than the full
180 ** complement of HASHTABLE_NPAGE (or HASHTABLE_NPAGE_ONE) page-numbers,
181 ** depending on the contents of the WAL file. This does not change the
182 ** allocated size of the page-mapping array - the page-mapping array merely
183 ** contains unused entries.
185 ** Even without using the hash table, the last frame for page P
186 ** can be found by scanning the page-mapping sections of each index block
187 ** starting with the last index block and moving toward the first, and
188 ** within each index block, starting at the end and moving toward the
189 ** beginning. The first entry that equals P corresponds to the frame
190 ** holding the content for that page.
192 ** The hash table consists of HASHTABLE_NSLOT 16-bit unsigned integers.
193 ** HASHTABLE_NSLOT = 2*HASHTABLE_NPAGE, and there is one entry in the
194 ** hash table for each page number in the mapping section, so the hash
195 ** table is never more than half full. The expected number of collisions
196 ** prior to finding a match is 1. Each entry of the hash table is an
197 ** 1-based index of an entry in the mapping section of the same
198 ** index block. Let K be the 1-based index of the largest entry in
199 ** the mapping section. (For index blocks other than the last, K will
200 ** always be exactly HASHTABLE_NPAGE (4096) and for the last index block
201 ** K will be (mxFrame%HASHTABLE_NPAGE).) Unused slots of the hash table
202 ** contain a value of 0.
204 ** To look for page P in the hash table, first compute a hash iKey on
205 ** P as follows:
207 ** iKey = (P * 383) % HASHTABLE_NSLOT
209 ** Then start scanning entries of the hash table, starting with iKey
210 ** (wrapping around to the beginning when the end of the hash table is
211 ** reached) until an unused hash slot is found. Let the first unused slot
212 ** be at index iUnused. (iUnused might be less than iKey if there was
213 ** wrap-around.) Because the hash table is never more than half full,
214 ** the search is guaranteed to eventually hit an unused entry. Let
215 ** iMax be the value between iKey and iUnused, closest to iUnused,
216 ** where aHash[iMax]==P. If there is no iMax entry (if there exists
217 ** no hash slot such that aHash[i]==p) then page P is not in the
218 ** current index block. Otherwise the iMax-th mapping entry of the
219 ** current index block corresponds to the last entry that references
220 ** page P.
222 ** A hash search begins with the last index block and moves toward the
223 ** first index block, looking for entries corresponding to page P. On
224 ** average, only two or three slots in each index block need to be
225 ** examined in order to either find the last entry for page P, or to
226 ** establish that no such entry exists in the block. Each index block
227 ** holds over 4000 entries. So two or three index blocks are sufficient
228 ** to cover a typical 10 megabyte WAL file, assuming 1K pages. 8 or 10
229 ** comparisons (on average) suffice to either locate a frame in the
230 ** WAL or to establish that the frame does not exist in the WAL. This
231 ** is much faster than scanning the entire 10MB WAL.
233 ** Note that entries are added in order of increasing K. Hence, one
234 ** reader might be using some value K0 and a second reader that started
235 ** at a later time (after additional transactions were added to the WAL
236 ** and to the wal-index) might be using a different value K1, where K1>K0.
237 ** Both readers can use the same hash table and mapping section to get
238 ** the correct result. There may be entries in the hash table with
239 ** K>K0 but to the first reader, those entries will appear to be unused
240 ** slots in the hash table and so the first reader will get an answer as
241 ** if no values greater than K0 had ever been inserted into the hash table
242 ** in the first place - which is what reader one wants. Meanwhile, the
243 ** second reader using K1 will see additional values that were inserted
244 ** later, which is exactly what reader two wants.
246 ** When a rollback occurs, the value of K is decreased. Hash table entries
247 ** that correspond to frames greater than the new K value are removed
248 ** from the hash table at this point.
250 #ifndef SQLITE_OMIT_WAL
252 #include "wal.h"
255 ** Trace output macros
257 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
258 int sqlite3WalTrace = 0;
259 # define WALTRACE(X) if(sqlite3WalTrace) sqlite3DebugPrintf X
260 #else
261 # define WALTRACE(X)
262 #endif
265 ** The maximum (and only) versions of the wal and wal-index formats
266 ** that may be interpreted by this version of SQLite.
268 ** If a client begins recovering a WAL file and finds that (a) the checksum
269 ** values in the wal-header are correct and (b) the version field is not
270 ** WAL_MAX_VERSION, recovery fails and SQLite returns SQLITE_CANTOPEN.
272 ** Similarly, if a client successfully reads a wal-index header (i.e. the
273 ** checksum test is successful) and finds that the version field is not
274 ** WALINDEX_MAX_VERSION, then no read-transaction is opened and SQLite
275 ** returns SQLITE_CANTOPEN.
277 #define WAL_MAX_VERSION 3007000
278 #define WALINDEX_MAX_VERSION 3007000
281 ** Index numbers for various locking bytes. WAL_NREADER is the number
282 ** of available reader locks and should be at least 3. The default
283 ** is SQLITE_SHM_NLOCK==8 and WAL_NREADER==5.
285 ** Technically, the various VFSes are free to implement these locks however
286 ** they see fit. However, compatibility is encouraged so that VFSes can
287 ** interoperate. The standard implemention used on both unix and windows
288 ** is for the index number to indicate a byte offset into the
289 ** WalCkptInfo.aLock[] array in the wal-index header. In other words, all
290 ** locks are on the shm file. The WALINDEX_LOCK_OFFSET constant (which
291 ** should be 120) is the location in the shm file for the first locking
292 ** byte.
294 #define WAL_WRITE_LOCK 0
295 #define WAL_ALL_BUT_WRITE 1
296 #define WAL_CKPT_LOCK 1
297 #define WAL_RECOVER_LOCK 2
298 #define WAL_READ_LOCK(I) (3+(I))
299 #define WAL_NREADER (SQLITE_SHM_NLOCK-3)
302 /* Object declarations */
303 typedef struct WalIndexHdr WalIndexHdr;
304 typedef struct WalIterator WalIterator;
305 typedef struct WalCkptInfo WalCkptInfo;
309 ** The following object holds a copy of the wal-index header content.
311 ** The actual header in the wal-index consists of two copies of this
312 ** object followed by one instance of the WalCkptInfo object.
313 ** For all versions of SQLite through 3.10.0 and probably beyond,
314 ** the locking bytes (WalCkptInfo.aLock) start at offset 120 and
315 ** the total header size is 136 bytes.
317 ** The szPage value can be any power of 2 between 512 and 32768, inclusive.
318 ** Or it can be 1 to represent a 65536-byte page. The latter case was
319 ** added in 3.7.1 when support for 64K pages was added.
321 struct WalIndexHdr {
322 u32 iVersion; /* Wal-index version */
323 u32 unused; /* Unused (padding) field */
324 u32 iChange; /* Counter incremented each transaction */
325 u8 isInit; /* 1 when initialized */
326 u8 bigEndCksum; /* True if checksums in WAL are big-endian */
327 u16 szPage; /* Database page size in bytes. 1==64K */
328 u32 mxFrame; /* Index of last valid frame in the WAL */
329 u32 nPage; /* Size of database in pages */
330 u32 aFrameCksum[2]; /* Checksum of last frame in log */
331 u32 aSalt[2]; /* Two salt values copied from WAL header */
332 u32 aCksum[2]; /* Checksum over all prior fields */
336 ** A copy of the following object occurs in the wal-index immediately
337 ** following the second copy of the WalIndexHdr. This object stores
338 ** information used by checkpoint.
340 ** nBackfill is the number of frames in the WAL that have been written
341 ** back into the database. (We call the act of moving content from WAL to
342 ** database "backfilling".) The nBackfill number is never greater than
343 ** WalIndexHdr.mxFrame. nBackfill can only be increased by threads
344 ** holding the WAL_CKPT_LOCK lock (which includes a recovery thread).
345 ** However, a WAL_WRITE_LOCK thread can move the value of nBackfill from
346 ** mxFrame back to zero when the WAL is reset.
348 ** nBackfillAttempted is the largest value of nBackfill that a checkpoint
349 ** has attempted to achieve. Normally nBackfill==nBackfillAtempted, however
350 ** the nBackfillAttempted is set before any backfilling is done and the
351 ** nBackfill is only set after all backfilling completes. So if a checkpoint
352 ** crashes, nBackfillAttempted might be larger than nBackfill. The
353 ** WalIndexHdr.mxFrame must never be less than nBackfillAttempted.
355 ** The aLock[] field is a set of bytes used for locking. These bytes should
356 ** never be read or written.
358 ** There is one entry in aReadMark[] for each reader lock. If a reader
359 ** holds read-lock K, then the value in aReadMark[K] is no greater than
360 ** the mxFrame for that reader. The value READMARK_NOT_USED (0xffffffff)
361 ** for any aReadMark[] means that entry is unused. aReadMark[0] is
362 ** a special case; its value is never used and it exists as a place-holder
363 ** to avoid having to offset aReadMark[] indexs by one. Readers holding
364 ** WAL_READ_LOCK(0) always ignore the entire WAL and read all content
365 ** directly from the database.
367 ** The value of aReadMark[K] may only be changed by a thread that
368 ** is holding an exclusive lock on WAL_READ_LOCK(K). Thus, the value of
369 ** aReadMark[K] cannot changed while there is a reader is using that mark
370 ** since the reader will be holding a shared lock on WAL_READ_LOCK(K).
372 ** The checkpointer may only transfer frames from WAL to database where
373 ** the frame numbers are less than or equal to every aReadMark[] that is
374 ** in use (that is, every aReadMark[j] for which there is a corresponding
375 ** WAL_READ_LOCK(j)). New readers (usually) pick the aReadMark[] with the
376 ** largest value and will increase an unused aReadMark[] to mxFrame if there
377 ** is not already an aReadMark[] equal to mxFrame. The exception to the
378 ** previous sentence is when nBackfill equals mxFrame (meaning that everything
379 ** in the WAL has been backfilled into the database) then new readers
380 ** will choose aReadMark[0] which has value 0 and hence such reader will
381 ** get all their all content directly from the database file and ignore
382 ** the WAL.
384 ** Writers normally append new frames to the end of the WAL. However,
385 ** if nBackfill equals mxFrame (meaning that all WAL content has been
386 ** written back into the database) and if no readers are using the WAL
387 ** (in other words, if there are no WAL_READ_LOCK(i) where i>0) then
388 ** the writer will first "reset" the WAL back to the beginning and start
389 ** writing new content beginning at frame 1.
391 ** We assume that 32-bit loads are atomic and so no locks are needed in
392 ** order to read from any aReadMark[] entries.
394 struct WalCkptInfo {
395 u32 nBackfill; /* Number of WAL frames backfilled into DB */
396 u32 aReadMark[WAL_NREADER]; /* Reader marks */
397 u8 aLock[SQLITE_SHM_NLOCK]; /* Reserved space for locks */
398 u32 nBackfillAttempted; /* WAL frames perhaps written, or maybe not */
399 u32 notUsed0; /* Available for future enhancements */
401 #define READMARK_NOT_USED 0xffffffff
404 ** This is a schematic view of the complete 136-byte header of the
405 ** wal-index file (also known as the -shm file):
407 ** +-----------------------------+
408 ** 0: | iVersion | \
409 ** +-----------------------------+ |
410 ** 4: | (unused padding) | |
411 ** +-----------------------------+ |
412 ** 8: | iChange | |
413 ** +-------+-------+-------------+ |
414 ** 12: | bInit | bBig | szPage | |
415 ** +-------+-------+-------------+ |
416 ** 16: | mxFrame | | First copy of the
417 ** +-----------------------------+ | WalIndexHdr object
418 ** 20: | nPage | |
419 ** +-----------------------------+ |
420 ** 24: | aFrameCksum | |
421 ** | | |
422 ** +-----------------------------+ |
423 ** 32: | aSalt | |
424 ** | | |
425 ** +-----------------------------+ |
426 ** 40: | aCksum | |
427 ** | | /
428 ** +-----------------------------+
429 ** 48: | iVersion | \
430 ** +-----------------------------+ |
431 ** 52: | (unused padding) | |
432 ** +-----------------------------+ |
433 ** 56: | iChange | |
434 ** +-------+-------+-------------+ |
435 ** 60: | bInit | bBig | szPage | |
436 ** +-------+-------+-------------+ | Second copy of the
437 ** 64: | mxFrame | | WalIndexHdr
438 ** +-----------------------------+ |
439 ** 68: | nPage | |
440 ** +-----------------------------+ |
441 ** 72: | aFrameCksum | |
442 ** | | |
443 ** +-----------------------------+ |
444 ** 80: | aSalt | |
445 ** | | |
446 ** +-----------------------------+ |
447 ** 88: | aCksum | |
448 ** | | /
449 ** +-----------------------------+
450 ** 96: | nBackfill |
451 ** +-----------------------------+
452 ** 100: | 5 read marks |
453 ** | |
454 ** | |
455 ** | |
456 ** | |
457 ** +-------+-------+------+------+
458 ** 120: | Write | Ckpt | Rcvr | Rd0 | \
459 ** +-------+-------+------+------+ ) 8 lock bytes
460 ** | Read1 | Read2 | Rd3 | Rd4 | /
461 ** +-------+-------+------+------+
462 ** 128: | nBackfillAttempted |
463 ** +-----------------------------+
464 ** 132: | (unused padding) |
465 ** +-----------------------------+
468 /* A block of WALINDEX_LOCK_RESERVED bytes beginning at
469 ** WALINDEX_LOCK_OFFSET is reserved for locks. Since some systems
470 ** only support mandatory file-locks, we do not read or write data
471 ** from the region of the file on which locks are applied.
473 #define WALINDEX_LOCK_OFFSET (sizeof(WalIndexHdr)*2+offsetof(WalCkptInfo,aLock))
474 #define WALINDEX_HDR_SIZE (sizeof(WalIndexHdr)*2+sizeof(WalCkptInfo))
476 /* Size of header before each frame in wal */
477 #define WAL_FRAME_HDRSIZE 24
479 /* Size of write ahead log header, including checksum. */
480 #define WAL_HDRSIZE 32
482 /* WAL magic value. Either this value, or the same value with the least
483 ** significant bit also set (WAL_MAGIC | 0x00000001) is stored in 32-bit
484 ** big-endian format in the first 4 bytes of a WAL file.
486 ** If the LSB is set, then the checksums for each frame within the WAL
487 ** file are calculated by treating all data as an array of 32-bit
488 ** big-endian words. Otherwise, they are calculated by interpreting
489 ** all data as 32-bit little-endian words.
491 #define WAL_MAGIC 0x377f0682
494 ** Return the offset of frame iFrame in the write-ahead log file,
495 ** assuming a database page size of szPage bytes. The offset returned
496 ** is to the start of the write-ahead log frame-header.
498 #define walFrameOffset(iFrame, szPage) ( \
499 WAL_HDRSIZE + ((iFrame)-1)*(i64)((szPage)+WAL_FRAME_HDRSIZE) \
503 ** An open write-ahead log file is represented by an instance of the
504 ** following object.
506 struct Wal {
507 sqlite3_vfs *pVfs; /* The VFS used to create pDbFd */
508 sqlite3_file *pDbFd; /* File handle for the database file */
509 sqlite3_file *pWalFd; /* File handle for WAL file */
510 u32 iCallback; /* Value to pass to log callback (or 0) */
511 i64 mxWalSize; /* Truncate WAL to this size upon reset */
512 int nWiData; /* Size of array apWiData */
513 int szFirstBlock; /* Size of first block written to WAL file */
514 volatile u32 **apWiData; /* Pointer to wal-index content in memory */
515 u32 szPage; /* Database page size */
516 i16 readLock; /* Which read lock is being held. -1 for none */
517 u8 syncFlags; /* Flags to use to sync header writes */
518 u8 exclusiveMode; /* Non-zero if connection is in exclusive mode */
519 u8 writeLock; /* True if in a write transaction */
520 u8 ckptLock; /* True if holding a checkpoint lock */
521 u8 readOnly; /* WAL_RDWR, WAL_RDONLY, or WAL_SHM_RDONLY */
522 u8 truncateOnCommit; /* True to truncate WAL file on commit */
523 u8 syncHeader; /* Fsync the WAL header if true */
524 u8 padToSectorBoundary; /* Pad transactions out to the next sector */
525 u8 bShmUnreliable; /* SHM content is read-only and unreliable */
526 WalIndexHdr hdr; /* Wal-index header for current transaction */
527 u32 minFrame; /* Ignore wal frames before this one */
528 u32 iReCksum; /* On commit, recalculate checksums from here */
529 const char *zWalName; /* Name of WAL file */
530 u32 nCkpt; /* Checkpoint sequence counter in the wal-header */
531 #ifdef SQLITE_DEBUG
532 u8 lockError; /* True if a locking error has occurred */
533 #endif
534 #ifdef SQLITE_ENABLE_SNAPSHOT
535 WalIndexHdr *pSnapshot; /* Start transaction here if not NULL */
536 #endif
537 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
538 sqlite3 *db;
539 #endif
543 ** Candidate values for Wal.exclusiveMode.
545 #define WAL_NORMAL_MODE 0
546 #define WAL_EXCLUSIVE_MODE 1
547 #define WAL_HEAPMEMORY_MODE 2
550 ** Possible values for WAL.readOnly
552 #define WAL_RDWR 0 /* Normal read/write connection */
553 #define WAL_RDONLY 1 /* The WAL file is readonly */
554 #define WAL_SHM_RDONLY 2 /* The SHM file is readonly */
557 ** Each page of the wal-index mapping contains a hash-table made up of
558 ** an array of HASHTABLE_NSLOT elements of the following type.
560 typedef u16 ht_slot;
563 ** This structure is used to implement an iterator that loops through
564 ** all frames in the WAL in database page order. Where two or more frames
565 ** correspond to the same database page, the iterator visits only the
566 ** frame most recently written to the WAL (in other words, the frame with
567 ** the largest index).
569 ** The internals of this structure are only accessed by:
571 ** walIteratorInit() - Create a new iterator,
572 ** walIteratorNext() - Step an iterator,
573 ** walIteratorFree() - Free an iterator.
575 ** This functionality is used by the checkpoint code (see walCheckpoint()).
577 struct WalIterator {
578 u32 iPrior; /* Last result returned from the iterator */
579 int nSegment; /* Number of entries in aSegment[] */
580 struct WalSegment {
581 int iNext; /* Next slot in aIndex[] not yet returned */
582 ht_slot *aIndex; /* i0, i1, i2... such that aPgno[iN] ascend */
583 u32 *aPgno; /* Array of page numbers. */
584 int nEntry; /* Nr. of entries in aPgno[] and aIndex[] */
585 int iZero; /* Frame number associated with aPgno[0] */
586 } aSegment[1]; /* One for every 32KB page in the wal-index */
590 ** Define the parameters of the hash tables in the wal-index file. There
591 ** is a hash-table following every HASHTABLE_NPAGE page numbers in the
592 ** wal-index.
594 ** Changing any of these constants will alter the wal-index format and
595 ** create incompatibilities.
597 #define HASHTABLE_NPAGE 4096 /* Must be power of 2 */
598 #define HASHTABLE_HASH_1 383 /* Should be prime */
599 #define HASHTABLE_NSLOT (HASHTABLE_NPAGE*2) /* Must be a power of 2 */
602 ** The block of page numbers associated with the first hash-table in a
603 ** wal-index is smaller than usual. This is so that there is a complete
604 ** hash-table on each aligned 32KB page of the wal-index.
606 #define HASHTABLE_NPAGE_ONE (HASHTABLE_NPAGE - (WALINDEX_HDR_SIZE/sizeof(u32)))
608 /* The wal-index is divided into pages of WALINDEX_PGSZ bytes each. */
609 #define WALINDEX_PGSZ ( \
610 sizeof(ht_slot)*HASHTABLE_NSLOT + HASHTABLE_NPAGE*sizeof(u32) \
614 ** Obtain a pointer to the iPage'th page of the wal-index. The wal-index
615 ** is broken into pages of WALINDEX_PGSZ bytes. Wal-index pages are
616 ** numbered from zero.
618 ** If the wal-index is currently smaller the iPage pages then the size
619 ** of the wal-index might be increased, but only if it is safe to do
620 ** so. It is safe to enlarge the wal-index if pWal->writeLock is true
621 ** or pWal->exclusiveMode==WAL_HEAPMEMORY_MODE.
623 ** Three possible result scenarios:
625 ** (1) rc==SQLITE_OK and *ppPage==Requested-Wal-Index-Page
626 ** (2) rc>=SQLITE_ERROR and *ppPage==NULL
627 ** (3) rc==SQLITE_OK and *ppPage==NULL // only if iPage==0
629 ** Scenario (3) can only occur when pWal->writeLock is false and iPage==0
631 static SQLITE_NOINLINE int walIndexPageRealloc(
632 Wal *pWal, /* The WAL context */
633 int iPage, /* The page we seek */
634 volatile u32 **ppPage /* Write the page pointer here */
636 int rc = SQLITE_OK;
638 /* Enlarge the pWal->apWiData[] array if required */
639 if( pWal->nWiData<=iPage ){
640 sqlite3_int64 nByte = sizeof(u32*)*(iPage+1);
641 volatile u32 **apNew;
642 apNew = (volatile u32 **)sqlite3Realloc((void *)pWal->apWiData, nByte);
643 if( !apNew ){
644 *ppPage = 0;
645 return SQLITE_NOMEM_BKPT;
647 memset((void*)&apNew[pWal->nWiData], 0,
648 sizeof(u32*)*(iPage+1-pWal->nWiData));
649 pWal->apWiData = apNew;
650 pWal->nWiData = iPage+1;
653 /* Request a pointer to the required page from the VFS */
654 assert( pWal->apWiData[iPage]==0 );
655 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE ){
656 pWal->apWiData[iPage] = (u32 volatile *)sqlite3MallocZero(WALINDEX_PGSZ);
657 if( !pWal->apWiData[iPage] ) rc = SQLITE_NOMEM_BKPT;
658 }else{
659 rc = sqlite3OsShmMap(pWal->pDbFd, iPage, WALINDEX_PGSZ,
660 pWal->writeLock, (void volatile **)&pWal->apWiData[iPage]
662 assert( pWal->apWiData[iPage]!=0
663 || rc!=SQLITE_OK
664 || (pWal->writeLock==0 && iPage==0) );
665 testcase( pWal->apWiData[iPage]==0 && rc==SQLITE_OK );
666 if( rc==SQLITE_OK ){
667 if( iPage>0 && sqlite3FaultSim(600) ) rc = SQLITE_NOMEM;
668 }else if( (rc&0xff)==SQLITE_READONLY ){
669 pWal->readOnly |= WAL_SHM_RDONLY;
670 if( rc==SQLITE_READONLY ){
671 rc = SQLITE_OK;
676 *ppPage = pWal->apWiData[iPage];
677 assert( iPage==0 || *ppPage || rc!=SQLITE_OK );
678 return rc;
680 static int walIndexPage(
681 Wal *pWal, /* The WAL context */
682 int iPage, /* The page we seek */
683 volatile u32 **ppPage /* Write the page pointer here */
685 if( pWal->nWiData<=iPage || (*ppPage = pWal->apWiData[iPage])==0 ){
686 return walIndexPageRealloc(pWal, iPage, ppPage);
688 return SQLITE_OK;
692 ** Return a pointer to the WalCkptInfo structure in the wal-index.
694 static volatile WalCkptInfo *walCkptInfo(Wal *pWal){
695 assert( pWal->nWiData>0 && pWal->apWiData[0] );
696 return (volatile WalCkptInfo*)&(pWal->apWiData[0][sizeof(WalIndexHdr)/2]);
700 ** Return a pointer to the WalIndexHdr structure in the wal-index.
702 static volatile WalIndexHdr *walIndexHdr(Wal *pWal){
703 assert( pWal->nWiData>0 && pWal->apWiData[0] );
704 return (volatile WalIndexHdr*)pWal->apWiData[0];
708 ** The argument to this macro must be of type u32. On a little-endian
709 ** architecture, it returns the u32 value that results from interpreting
710 ** the 4 bytes as a big-endian value. On a big-endian architecture, it
711 ** returns the value that would be produced by interpreting the 4 bytes
712 ** of the input value as a little-endian integer.
714 #define BYTESWAP32(x) ( \
715 (((x)&0x000000FF)<<24) + (((x)&0x0000FF00)<<8) \
716 + (((x)&0x00FF0000)>>8) + (((x)&0xFF000000)>>24) \
720 ** Generate or extend an 8 byte checksum based on the data in
721 ** array aByte[] and the initial values of aIn[0] and aIn[1] (or
722 ** initial values of 0 and 0 if aIn==NULL).
724 ** The checksum is written back into aOut[] before returning.
726 ** nByte must be a positive multiple of 8.
728 static void walChecksumBytes(
729 int nativeCksum, /* True for native byte-order, false for non-native */
730 u8 *a, /* Content to be checksummed */
731 int nByte, /* Bytes of content in a[]. Must be a multiple of 8. */
732 const u32 *aIn, /* Initial checksum value input */
733 u32 *aOut /* OUT: Final checksum value output */
735 u32 s1, s2;
736 u32 *aData = (u32 *)a;
737 u32 *aEnd = (u32 *)&a[nByte];
739 if( aIn ){
740 s1 = aIn[0];
741 s2 = aIn[1];
742 }else{
743 s1 = s2 = 0;
746 assert( nByte>=8 );
747 assert( (nByte&0x00000007)==0 );
748 assert( nByte<=65536 );
749 assert( nByte%4==0 );
751 if( !nativeCksum ){
752 do {
753 s1 += BYTESWAP32(aData[0]) + s2;
754 s2 += BYTESWAP32(aData[1]) + s1;
755 aData += 2;
756 }while( aData<aEnd );
757 }else if( nByte%64==0 ){
758 do {
759 s1 += *aData++ + s2;
760 s2 += *aData++ + s1;
761 s1 += *aData++ + s2;
762 s2 += *aData++ + s1;
763 s1 += *aData++ + s2;
764 s2 += *aData++ + s1;
765 s1 += *aData++ + s2;
766 s2 += *aData++ + s1;
767 s1 += *aData++ + s2;
768 s2 += *aData++ + s1;
769 s1 += *aData++ + s2;
770 s2 += *aData++ + s1;
771 s1 += *aData++ + s2;
772 s2 += *aData++ + s1;
773 s1 += *aData++ + s2;
774 s2 += *aData++ + s1;
775 }while( aData<aEnd );
776 }else{
777 do {
778 s1 += *aData++ + s2;
779 s2 += *aData++ + s1;
780 }while( aData<aEnd );
782 assert( aData==aEnd );
784 aOut[0] = s1;
785 aOut[1] = s2;
789 ** If there is the possibility of concurrent access to the SHM file
790 ** from multiple threads and/or processes, then do a memory barrier.
792 static void walShmBarrier(Wal *pWal){
793 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
794 sqlite3OsShmBarrier(pWal->pDbFd);
799 ** Add the SQLITE_NO_TSAN as part of the return-type of a function
800 ** definition as a hint that the function contains constructs that
801 ** might give false-positive TSAN warnings.
803 ** See tag-20200519-1.
805 #if defined(__clang__) && !defined(SQLITE_NO_TSAN)
806 # define SQLITE_NO_TSAN __attribute__((no_sanitize_thread))
807 #else
808 # define SQLITE_NO_TSAN
809 #endif
812 ** Write the header information in pWal->hdr into the wal-index.
814 ** The checksum on pWal->hdr is updated before it is written.
816 static SQLITE_NO_TSAN void walIndexWriteHdr(Wal *pWal){
817 volatile WalIndexHdr *aHdr = walIndexHdr(pWal);
818 const int nCksum = offsetof(WalIndexHdr, aCksum);
820 assert( pWal->writeLock );
821 pWal->hdr.isInit = 1;
822 pWal->hdr.iVersion = WALINDEX_MAX_VERSION;
823 walChecksumBytes(1, (u8*)&pWal->hdr, nCksum, 0, pWal->hdr.aCksum);
824 /* Possible TSAN false-positive. See tag-20200519-1 */
825 memcpy((void*)&aHdr[1], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
826 walShmBarrier(pWal);
827 memcpy((void*)&aHdr[0], (const void*)&pWal->hdr, sizeof(WalIndexHdr));
831 ** This function encodes a single frame header and writes it to a buffer
832 ** supplied by the caller. A frame-header is made up of a series of
833 ** 4-byte big-endian integers, as follows:
835 ** 0: Page number.
836 ** 4: For commit records, the size of the database image in pages
837 ** after the commit. For all other records, zero.
838 ** 8: Salt-1 (copied from the wal-header)
839 ** 12: Salt-2 (copied from the wal-header)
840 ** 16: Checksum-1.
841 ** 20: Checksum-2.
843 static void walEncodeFrame(
844 Wal *pWal, /* The write-ahead log */
845 u32 iPage, /* Database page number for frame */
846 u32 nTruncate, /* New db size (or 0 for non-commit frames) */
847 u8 *aData, /* Pointer to page data */
848 u8 *aFrame /* OUT: Write encoded frame here */
850 int nativeCksum; /* True for native byte-order checksums */
851 u32 *aCksum = pWal->hdr.aFrameCksum;
852 assert( WAL_FRAME_HDRSIZE==24 );
853 sqlite3Put4byte(&aFrame[0], iPage);
854 sqlite3Put4byte(&aFrame[4], nTruncate);
855 if( pWal->iReCksum==0 ){
856 memcpy(&aFrame[8], pWal->hdr.aSalt, 8);
858 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
859 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
860 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
862 sqlite3Put4byte(&aFrame[16], aCksum[0]);
863 sqlite3Put4byte(&aFrame[20], aCksum[1]);
864 }else{
865 memset(&aFrame[8], 0, 16);
870 ** Check to see if the frame with header in aFrame[] and content
871 ** in aData[] is valid. If it is a valid frame, fill *piPage and
872 ** *pnTruncate and return true. Return if the frame is not valid.
874 static int walDecodeFrame(
875 Wal *pWal, /* The write-ahead log */
876 u32 *piPage, /* OUT: Database page number for frame */
877 u32 *pnTruncate, /* OUT: New db size (or 0 if not commit) */
878 u8 *aData, /* Pointer to page data (for checksum) */
879 u8 *aFrame /* Frame data */
881 int nativeCksum; /* True for native byte-order checksums */
882 u32 *aCksum = pWal->hdr.aFrameCksum;
883 u32 pgno; /* Page number of the frame */
884 assert( WAL_FRAME_HDRSIZE==24 );
886 /* A frame is only valid if the salt values in the frame-header
887 ** match the salt values in the wal-header.
889 if( memcmp(&pWal->hdr.aSalt, &aFrame[8], 8)!=0 ){
890 return 0;
893 /* A frame is only valid if the page number is creater than zero.
895 pgno = sqlite3Get4byte(&aFrame[0]);
896 if( pgno==0 ){
897 return 0;
900 /* A frame is only valid if a checksum of the WAL header,
901 ** all prior frams, the first 16 bytes of this frame-header,
902 ** and the frame-data matches the checksum in the last 8
903 ** bytes of this frame-header.
905 nativeCksum = (pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN);
906 walChecksumBytes(nativeCksum, aFrame, 8, aCksum, aCksum);
907 walChecksumBytes(nativeCksum, aData, pWal->szPage, aCksum, aCksum);
908 if( aCksum[0]!=sqlite3Get4byte(&aFrame[16])
909 || aCksum[1]!=sqlite3Get4byte(&aFrame[20])
911 /* Checksum failed. */
912 return 0;
915 /* If we reach this point, the frame is valid. Return the page number
916 ** and the new database size.
918 *piPage = pgno;
919 *pnTruncate = sqlite3Get4byte(&aFrame[4]);
920 return 1;
924 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
926 ** Names of locks. This routine is used to provide debugging output and is not
927 ** a part of an ordinary build.
929 static const char *walLockName(int lockIdx){
930 if( lockIdx==WAL_WRITE_LOCK ){
931 return "WRITE-LOCK";
932 }else if( lockIdx==WAL_CKPT_LOCK ){
933 return "CKPT-LOCK";
934 }else if( lockIdx==WAL_RECOVER_LOCK ){
935 return "RECOVER-LOCK";
936 }else{
937 static char zName[15];
938 sqlite3_snprintf(sizeof(zName), zName, "READ-LOCK[%d]",
939 lockIdx-WAL_READ_LOCK(0));
940 return zName;
943 #endif /*defined(SQLITE_TEST) || defined(SQLITE_DEBUG) */
947 ** Set or release locks on the WAL. Locks are either shared or exclusive.
948 ** A lock cannot be moved directly between shared and exclusive - it must go
949 ** through the unlocked state first.
951 ** In locking_mode=EXCLUSIVE, all of these routines become no-ops.
953 static int walLockShared(Wal *pWal, int lockIdx){
954 int rc;
955 if( pWal->exclusiveMode ) return SQLITE_OK;
956 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
957 SQLITE_SHM_LOCK | SQLITE_SHM_SHARED);
958 WALTRACE(("WAL%p: acquire SHARED-%s %s\n", pWal,
959 walLockName(lockIdx), rc ? "failed" : "ok"));
960 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
961 return rc;
963 static void walUnlockShared(Wal *pWal, int lockIdx){
964 if( pWal->exclusiveMode ) return;
965 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, 1,
966 SQLITE_SHM_UNLOCK | SQLITE_SHM_SHARED);
967 WALTRACE(("WAL%p: release SHARED-%s\n", pWal, walLockName(lockIdx)));
969 static int walLockExclusive(Wal *pWal, int lockIdx, int n){
970 int rc;
971 if( pWal->exclusiveMode ) return SQLITE_OK;
972 rc = sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
973 SQLITE_SHM_LOCK | SQLITE_SHM_EXCLUSIVE);
974 WALTRACE(("WAL%p: acquire EXCLUSIVE-%s cnt=%d %s\n", pWal,
975 walLockName(lockIdx), n, rc ? "failed" : "ok"));
976 VVA_ONLY( pWal->lockError = (u8)(rc!=SQLITE_OK && (rc&0xFF)!=SQLITE_BUSY); )
977 return rc;
979 static void walUnlockExclusive(Wal *pWal, int lockIdx, int n){
980 if( pWal->exclusiveMode ) return;
981 (void)sqlite3OsShmLock(pWal->pDbFd, lockIdx, n,
982 SQLITE_SHM_UNLOCK | SQLITE_SHM_EXCLUSIVE);
983 WALTRACE(("WAL%p: release EXCLUSIVE-%s cnt=%d\n", pWal,
984 walLockName(lockIdx), n));
988 ** Compute a hash on a page number. The resulting hash value must land
989 ** between 0 and (HASHTABLE_NSLOT-1). The walHashNext() function advances
990 ** the hash to the next value in the event of a collision.
992 static int walHash(u32 iPage){
993 assert( iPage>0 );
994 assert( (HASHTABLE_NSLOT & (HASHTABLE_NSLOT-1))==0 );
995 return (iPage*HASHTABLE_HASH_1) & (HASHTABLE_NSLOT-1);
997 static int walNextHash(int iPriorHash){
998 return (iPriorHash+1)&(HASHTABLE_NSLOT-1);
1002 ** An instance of the WalHashLoc object is used to describe the location
1003 ** of a page hash table in the wal-index. This becomes the return value
1004 ** from walHashGet().
1006 typedef struct WalHashLoc WalHashLoc;
1007 struct WalHashLoc {
1008 volatile ht_slot *aHash; /* Start of the wal-index hash table */
1009 volatile u32 *aPgno; /* aPgno[1] is the page of first frame indexed */
1010 u32 iZero; /* One less than the frame number of first indexed*/
1014 ** Return pointers to the hash table and page number array stored on
1015 ** page iHash of the wal-index. The wal-index is broken into 32KB pages
1016 ** numbered starting from 0.
1018 ** Set output variable pLoc->aHash to point to the start of the hash table
1019 ** in the wal-index file. Set pLoc->iZero to one less than the frame
1020 ** number of the first frame indexed by this hash table. If a
1021 ** slot in the hash table is set to N, it refers to frame number
1022 ** (pLoc->iZero+N) in the log.
1024 ** Finally, set pLoc->aPgno so that pLoc->aPgno[0] is the page number of the
1025 ** first frame indexed by the hash table, frame (pLoc->iZero).
1027 static int walHashGet(
1028 Wal *pWal, /* WAL handle */
1029 int iHash, /* Find the iHash'th table */
1030 WalHashLoc *pLoc /* OUT: Hash table location */
1032 int rc; /* Return code */
1034 rc = walIndexPage(pWal, iHash, &pLoc->aPgno);
1035 assert( rc==SQLITE_OK || iHash>0 );
1037 if( pLoc->aPgno ){
1038 pLoc->aHash = (volatile ht_slot *)&pLoc->aPgno[HASHTABLE_NPAGE];
1039 if( iHash==0 ){
1040 pLoc->aPgno = &pLoc->aPgno[WALINDEX_HDR_SIZE/sizeof(u32)];
1041 pLoc->iZero = 0;
1042 }else{
1043 pLoc->iZero = HASHTABLE_NPAGE_ONE + (iHash-1)*HASHTABLE_NPAGE;
1045 }else if( NEVER(rc==SQLITE_OK) ){
1046 rc = SQLITE_ERROR;
1048 return rc;
1052 ** Return the number of the wal-index page that contains the hash-table
1053 ** and page-number array that contain entries corresponding to WAL frame
1054 ** iFrame. The wal-index is broken up into 32KB pages. Wal-index pages
1055 ** are numbered starting from 0.
1057 static int walFramePage(u32 iFrame){
1058 int iHash = (iFrame+HASHTABLE_NPAGE-HASHTABLE_NPAGE_ONE-1) / HASHTABLE_NPAGE;
1059 assert( (iHash==0 || iFrame>HASHTABLE_NPAGE_ONE)
1060 && (iHash>=1 || iFrame<=HASHTABLE_NPAGE_ONE)
1061 && (iHash<=1 || iFrame>(HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE))
1062 && (iHash>=2 || iFrame<=HASHTABLE_NPAGE_ONE+HASHTABLE_NPAGE)
1063 && (iHash<=2 || iFrame>(HASHTABLE_NPAGE_ONE+2*HASHTABLE_NPAGE))
1065 assert( iHash>=0 );
1066 return iHash;
1070 ** Return the page number associated with frame iFrame in this WAL.
1072 static u32 walFramePgno(Wal *pWal, u32 iFrame){
1073 int iHash = walFramePage(iFrame);
1074 if( iHash==0 ){
1075 return pWal->apWiData[0][WALINDEX_HDR_SIZE/sizeof(u32) + iFrame - 1];
1077 return pWal->apWiData[iHash][(iFrame-1-HASHTABLE_NPAGE_ONE)%HASHTABLE_NPAGE];
1081 ** Remove entries from the hash table that point to WAL slots greater
1082 ** than pWal->hdr.mxFrame.
1084 ** This function is called whenever pWal->hdr.mxFrame is decreased due
1085 ** to a rollback or savepoint.
1087 ** At most only the hash table containing pWal->hdr.mxFrame needs to be
1088 ** updated. Any later hash tables will be automatically cleared when
1089 ** pWal->hdr.mxFrame advances to the point where those hash tables are
1090 ** actually needed.
1092 static void walCleanupHash(Wal *pWal){
1093 WalHashLoc sLoc; /* Hash table location */
1094 int iLimit = 0; /* Zero values greater than this */
1095 int nByte; /* Number of bytes to zero in aPgno[] */
1096 int i; /* Used to iterate through aHash[] */
1098 assert( pWal->writeLock );
1099 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE-1 );
1100 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE );
1101 testcase( pWal->hdr.mxFrame==HASHTABLE_NPAGE_ONE+1 );
1103 if( pWal->hdr.mxFrame==0 ) return;
1105 /* Obtain pointers to the hash-table and page-number array containing
1106 ** the entry that corresponds to frame pWal->hdr.mxFrame. It is guaranteed
1107 ** that the page said hash-table and array reside on is already mapped.(1)
1109 assert( pWal->nWiData>walFramePage(pWal->hdr.mxFrame) );
1110 assert( pWal->apWiData[walFramePage(pWal->hdr.mxFrame)] );
1111 i = walHashGet(pWal, walFramePage(pWal->hdr.mxFrame), &sLoc);
1112 if( NEVER(i) ) return; /* Defense-in-depth, in case (1) above is wrong */
1114 /* Zero all hash-table entries that correspond to frame numbers greater
1115 ** than pWal->hdr.mxFrame.
1117 iLimit = pWal->hdr.mxFrame - sLoc.iZero;
1118 assert( iLimit>0 );
1119 for(i=0; i<HASHTABLE_NSLOT; i++){
1120 if( sLoc.aHash[i]>iLimit ){
1121 sLoc.aHash[i] = 0;
1125 /* Zero the entries in the aPgno array that correspond to frames with
1126 ** frame numbers greater than pWal->hdr.mxFrame.
1128 nByte = (int)((char *)sLoc.aHash - (char *)&sLoc.aPgno[iLimit]);
1129 assert( nByte>=0 );
1130 memset((void *)&sLoc.aPgno[iLimit], 0, nByte);
1132 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1133 /* Verify that the every entry in the mapping region is still reachable
1134 ** via the hash table even after the cleanup.
1136 if( iLimit ){
1137 int j; /* Loop counter */
1138 int iKey; /* Hash key */
1139 for(j=0; j<iLimit; j++){
1140 for(iKey=walHash(sLoc.aPgno[j]);sLoc.aHash[iKey];iKey=walNextHash(iKey)){
1141 if( sLoc.aHash[iKey]==j+1 ) break;
1143 assert( sLoc.aHash[iKey]==j+1 );
1146 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1151 ** Set an entry in the wal-index that will map database page number
1152 ** pPage into WAL frame iFrame.
1154 static int walIndexAppend(Wal *pWal, u32 iFrame, u32 iPage){
1155 int rc; /* Return code */
1156 WalHashLoc sLoc; /* Wal-index hash table location */
1158 rc = walHashGet(pWal, walFramePage(iFrame), &sLoc);
1160 /* Assuming the wal-index file was successfully mapped, populate the
1161 ** page number array and hash table entry.
1163 if( rc==SQLITE_OK ){
1164 int iKey; /* Hash table key */
1165 int idx; /* Value to write to hash-table slot */
1166 int nCollide; /* Number of hash collisions */
1168 idx = iFrame - sLoc.iZero;
1169 assert( idx <= HASHTABLE_NSLOT/2 + 1 );
1171 /* If this is the first entry to be added to this hash-table, zero the
1172 ** entire hash table and aPgno[] array before proceeding.
1174 if( idx==1 ){
1175 int nByte = (int)((u8*)&sLoc.aHash[HASHTABLE_NSLOT] - (u8*)sLoc.aPgno);
1176 assert( nByte>=0 );
1177 memset((void*)sLoc.aPgno, 0, nByte);
1180 /* If the entry in aPgno[] is already set, then the previous writer
1181 ** must have exited unexpectedly in the middle of a transaction (after
1182 ** writing one or more dirty pages to the WAL to free up memory).
1183 ** Remove the remnants of that writers uncommitted transaction from
1184 ** the hash-table before writing any new entries.
1186 if( sLoc.aPgno[idx-1] ){
1187 walCleanupHash(pWal);
1188 assert( !sLoc.aPgno[idx-1] );
1191 /* Write the aPgno[] array entry and the hash-table slot. */
1192 nCollide = idx;
1193 for(iKey=walHash(iPage); sLoc.aHash[iKey]; iKey=walNextHash(iKey)){
1194 if( (nCollide--)==0 ) return SQLITE_CORRUPT_BKPT;
1196 sLoc.aPgno[idx-1] = iPage;
1197 AtomicStore(&sLoc.aHash[iKey], (ht_slot)idx);
1199 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
1200 /* Verify that the number of entries in the hash table exactly equals
1201 ** the number of entries in the mapping region.
1204 int i; /* Loop counter */
1205 int nEntry = 0; /* Number of entries in the hash table */
1206 for(i=0; i<HASHTABLE_NSLOT; i++){ if( sLoc.aHash[i] ) nEntry++; }
1207 assert( nEntry==idx );
1210 /* Verify that the every entry in the mapping region is reachable
1211 ** via the hash table. This turns out to be a really, really expensive
1212 ** thing to check, so only do this occasionally - not on every
1213 ** iteration.
1215 if( (idx&0x3ff)==0 ){
1216 int i; /* Loop counter */
1217 for(i=0; i<idx; i++){
1218 for(iKey=walHash(sLoc.aPgno[i]);
1219 sLoc.aHash[iKey];
1220 iKey=walNextHash(iKey)){
1221 if( sLoc.aHash[iKey]==i+1 ) break;
1223 assert( sLoc.aHash[iKey]==i+1 );
1226 #endif /* SQLITE_ENABLE_EXPENSIVE_ASSERT */
1229 return rc;
1234 ** Recover the wal-index by reading the write-ahead log file.
1236 ** This routine first tries to establish an exclusive lock on the
1237 ** wal-index to prevent other threads/processes from doing anything
1238 ** with the WAL or wal-index while recovery is running. The
1239 ** WAL_RECOVER_LOCK is also held so that other threads will know
1240 ** that this thread is running recovery. If unable to establish
1241 ** the necessary locks, this routine returns SQLITE_BUSY.
1243 static int walIndexRecover(Wal *pWal){
1244 int rc; /* Return Code */
1245 i64 nSize; /* Size of log file */
1246 u32 aFrameCksum[2] = {0, 0};
1247 int iLock; /* Lock offset to lock for checkpoint */
1249 /* Obtain an exclusive lock on all byte in the locking range not already
1250 ** locked by the caller. The caller is guaranteed to have locked the
1251 ** WAL_WRITE_LOCK byte, and may have also locked the WAL_CKPT_LOCK byte.
1252 ** If successful, the same bytes that are locked here are unlocked before
1253 ** this function returns.
1255 assert( pWal->ckptLock==1 || pWal->ckptLock==0 );
1256 assert( WAL_ALL_BUT_WRITE==WAL_WRITE_LOCK+1 );
1257 assert( WAL_CKPT_LOCK==WAL_ALL_BUT_WRITE );
1258 assert( pWal->writeLock );
1259 iLock = WAL_ALL_BUT_WRITE + pWal->ckptLock;
1260 rc = walLockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1261 if( rc ){
1262 return rc;
1265 WALTRACE(("WAL%p: recovery begin...\n", pWal));
1267 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
1269 rc = sqlite3OsFileSize(pWal->pWalFd, &nSize);
1270 if( rc!=SQLITE_OK ){
1271 goto recovery_error;
1274 if( nSize>WAL_HDRSIZE ){
1275 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
1276 u32 *aPrivate = 0; /* Heap copy of *-shm hash being populated */
1277 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
1278 int szFrame; /* Number of bytes in buffer aFrame[] */
1279 u8 *aData; /* Pointer to data part of aFrame buffer */
1280 int szPage; /* Page size according to the log */
1281 u32 magic; /* Magic value read from WAL header */
1282 u32 version; /* Magic value read from WAL header */
1283 int isValid; /* True if this frame is valid */
1284 u32 iPg; /* Current 32KB wal-index page */
1285 u32 iLastFrame; /* Last frame in wal, based on nSize alone */
1287 /* Read in the WAL header. */
1288 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
1289 if( rc!=SQLITE_OK ){
1290 goto recovery_error;
1293 /* If the database page size is not a power of two, or is greater than
1294 ** SQLITE_MAX_PAGE_SIZE, conclude that the WAL file contains no valid
1295 ** data. Similarly, if the 'magic' value is invalid, ignore the whole
1296 ** WAL file.
1298 magic = sqlite3Get4byte(&aBuf[0]);
1299 szPage = sqlite3Get4byte(&aBuf[8]);
1300 if( (magic&0xFFFFFFFE)!=WAL_MAGIC
1301 || szPage&(szPage-1)
1302 || szPage>SQLITE_MAX_PAGE_SIZE
1303 || szPage<512
1305 goto finished;
1307 pWal->hdr.bigEndCksum = (u8)(magic&0x00000001);
1308 pWal->szPage = szPage;
1309 pWal->nCkpt = sqlite3Get4byte(&aBuf[12]);
1310 memcpy(&pWal->hdr.aSalt, &aBuf[16], 8);
1312 /* Verify that the WAL header checksum is correct */
1313 walChecksumBytes(pWal->hdr.bigEndCksum==SQLITE_BIGENDIAN,
1314 aBuf, WAL_HDRSIZE-2*4, 0, pWal->hdr.aFrameCksum
1316 if( pWal->hdr.aFrameCksum[0]!=sqlite3Get4byte(&aBuf[24])
1317 || pWal->hdr.aFrameCksum[1]!=sqlite3Get4byte(&aBuf[28])
1319 goto finished;
1322 /* Verify that the version number on the WAL format is one that
1323 ** are able to understand */
1324 version = sqlite3Get4byte(&aBuf[4]);
1325 if( version!=WAL_MAX_VERSION ){
1326 rc = SQLITE_CANTOPEN_BKPT;
1327 goto finished;
1330 /* Malloc a buffer to read frames into. */
1331 szFrame = szPage + WAL_FRAME_HDRSIZE;
1332 aFrame = (u8 *)sqlite3_malloc64(szFrame + WALINDEX_PGSZ);
1333 if( !aFrame ){
1334 rc = SQLITE_NOMEM_BKPT;
1335 goto recovery_error;
1337 aData = &aFrame[WAL_FRAME_HDRSIZE];
1338 aPrivate = (u32*)&aData[szPage];
1340 /* Read all frames from the log file. */
1341 iLastFrame = (nSize - WAL_HDRSIZE) / szFrame;
1342 for(iPg=0; iPg<=(u32)walFramePage(iLastFrame); iPg++){
1343 u32 *aShare;
1344 u32 iFrame; /* Index of last frame read */
1345 u32 iLast = MIN(iLastFrame, HASHTABLE_NPAGE_ONE+iPg*HASHTABLE_NPAGE);
1346 u32 iFirst = 1 + (iPg==0?0:HASHTABLE_NPAGE_ONE+(iPg-1)*HASHTABLE_NPAGE);
1347 u32 nHdr, nHdr32;
1348 rc = walIndexPage(pWal, iPg, (volatile u32**)&aShare);
1349 assert( aShare!=0 || rc!=SQLITE_OK );
1350 if( aShare==0 ) break;
1351 pWal->apWiData[iPg] = aPrivate;
1353 for(iFrame=iFirst; iFrame<=iLast; iFrame++){
1354 i64 iOffset = walFrameOffset(iFrame, szPage);
1355 u32 pgno; /* Database page number for frame */
1356 u32 nTruncate; /* dbsize field from frame header */
1358 /* Read and decode the next log frame. */
1359 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
1360 if( rc!=SQLITE_OK ) break;
1361 isValid = walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame);
1362 if( !isValid ) break;
1363 rc = walIndexAppend(pWal, iFrame, pgno);
1364 if( NEVER(rc!=SQLITE_OK) ) break;
1366 /* If nTruncate is non-zero, this is a commit record. */
1367 if( nTruncate ){
1368 pWal->hdr.mxFrame = iFrame;
1369 pWal->hdr.nPage = nTruncate;
1370 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
1371 testcase( szPage<=32768 );
1372 testcase( szPage>=65536 );
1373 aFrameCksum[0] = pWal->hdr.aFrameCksum[0];
1374 aFrameCksum[1] = pWal->hdr.aFrameCksum[1];
1377 pWal->apWiData[iPg] = aShare;
1378 nHdr = (iPg==0 ? WALINDEX_HDR_SIZE : 0);
1379 nHdr32 = nHdr / sizeof(u32);
1380 #ifndef SQLITE_SAFER_WALINDEX_RECOVERY
1381 /* Memcpy() should work fine here, on all reasonable implementations.
1382 ** Technically, memcpy() might change the destination to some
1383 ** intermediate value before setting to the final value, and that might
1384 ** cause a concurrent reader to malfunction. Memcpy() is allowed to
1385 ** do that, according to the spec, but no memcpy() implementation that
1386 ** we know of actually does that, which is why we say that memcpy()
1387 ** is safe for this. Memcpy() is certainly a lot faster.
1389 memcpy(&aShare[nHdr32], &aPrivate[nHdr32], WALINDEX_PGSZ-nHdr);
1390 #else
1391 /* In the event that some platform is found for which memcpy()
1392 ** changes the destination to some intermediate value before
1393 ** setting the final value, this alternative copy routine is
1394 ** provided.
1397 int i;
1398 for(i=nHdr32; i<WALINDEX_PGSZ/sizeof(u32); i++){
1399 if( aShare[i]!=aPrivate[i] ){
1400 /* Atomic memory operations are not required here because if
1401 ** the value needs to be changed, that means it is not being
1402 ** accessed concurrently. */
1403 aShare[i] = aPrivate[i];
1407 #endif
1408 if( iFrame<=iLast ) break;
1411 sqlite3_free(aFrame);
1414 finished:
1415 if( rc==SQLITE_OK ){
1416 volatile WalCkptInfo *pInfo;
1417 int i;
1418 pWal->hdr.aFrameCksum[0] = aFrameCksum[0];
1419 pWal->hdr.aFrameCksum[1] = aFrameCksum[1];
1420 walIndexWriteHdr(pWal);
1422 /* Reset the checkpoint-header. This is safe because this thread is
1423 ** currently holding locks that exclude all other writers and
1424 ** checkpointers. Then set the values of read-mark slots 1 through N.
1426 pInfo = walCkptInfo(pWal);
1427 pInfo->nBackfill = 0;
1428 pInfo->nBackfillAttempted = pWal->hdr.mxFrame;
1429 pInfo->aReadMark[0] = 0;
1430 for(i=1; i<WAL_NREADER; i++){
1431 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
1432 if( rc==SQLITE_OK ){
1433 if( i==1 && pWal->hdr.mxFrame ){
1434 pInfo->aReadMark[i] = pWal->hdr.mxFrame;
1435 }else{
1436 pInfo->aReadMark[i] = READMARK_NOT_USED;
1438 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
1439 }else if( rc!=SQLITE_BUSY ){
1440 goto recovery_error;
1444 /* If more than one frame was recovered from the log file, report an
1445 ** event via sqlite3_log(). This is to help with identifying performance
1446 ** problems caused by applications routinely shutting down without
1447 ** checkpointing the log file.
1449 if( pWal->hdr.nPage ){
1450 sqlite3_log(SQLITE_NOTICE_RECOVER_WAL,
1451 "recovered %d frames from WAL file %s",
1452 pWal->hdr.mxFrame, pWal->zWalName
1457 recovery_error:
1458 WALTRACE(("WAL%p: recovery %s\n", pWal, rc ? "failed" : "ok"));
1459 walUnlockExclusive(pWal, iLock, WAL_READ_LOCK(0)-iLock);
1460 return rc;
1464 ** Close an open wal-index.
1466 static void walIndexClose(Wal *pWal, int isDelete){
1467 if( pWal->exclusiveMode==WAL_HEAPMEMORY_MODE || pWal->bShmUnreliable ){
1468 int i;
1469 for(i=0; i<pWal->nWiData; i++){
1470 sqlite3_free((void *)pWal->apWiData[i]);
1471 pWal->apWiData[i] = 0;
1474 if( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE ){
1475 sqlite3OsShmUnmap(pWal->pDbFd, isDelete);
1480 ** Open a connection to the WAL file zWalName. The database file must
1481 ** already be opened on connection pDbFd. The buffer that zWalName points
1482 ** to must remain valid for the lifetime of the returned Wal* handle.
1484 ** A SHARED lock should be held on the database file when this function
1485 ** is called. The purpose of this SHARED lock is to prevent any other
1486 ** client from unlinking the WAL or wal-index file. If another process
1487 ** were to do this just after this client opened one of these files, the
1488 ** system would be badly broken.
1490 ** If the log file is successfully opened, SQLITE_OK is returned and
1491 ** *ppWal is set to point to a new WAL handle. If an error occurs,
1492 ** an SQLite error code is returned and *ppWal is left unmodified.
1494 int sqlite3WalOpen(
1495 sqlite3_vfs *pVfs, /* vfs module to open wal and wal-index */
1496 sqlite3_file *pDbFd, /* The open database file */
1497 const char *zWalName, /* Name of the WAL file */
1498 int bNoShm, /* True to run in heap-memory mode */
1499 i64 mxWalSize, /* Truncate WAL to this size on reset */
1500 Wal **ppWal /* OUT: Allocated Wal handle */
1502 int rc; /* Return Code */
1503 Wal *pRet; /* Object to allocate and return */
1504 int flags; /* Flags passed to OsOpen() */
1506 assert( zWalName && zWalName[0] );
1507 assert( pDbFd );
1509 /* Verify the values of various constants. Any changes to the values
1510 ** of these constants would result in an incompatible on-disk format
1511 ** for the -shm file. Any change that causes one of these asserts to
1512 ** fail is a backward compatibility problem, even if the change otherwise
1513 ** works.
1515 ** This table also serves as a helpful cross-reference when trying to
1516 ** interpret hex dumps of the -shm file.
1518 assert( 48 == sizeof(WalIndexHdr) );
1519 assert( 40 == sizeof(WalCkptInfo) );
1520 assert( 120 == WALINDEX_LOCK_OFFSET );
1521 assert( 136 == WALINDEX_HDR_SIZE );
1522 assert( 4096 == HASHTABLE_NPAGE );
1523 assert( 4062 == HASHTABLE_NPAGE_ONE );
1524 assert( 8192 == HASHTABLE_NSLOT );
1525 assert( 383 == HASHTABLE_HASH_1 );
1526 assert( 32768 == WALINDEX_PGSZ );
1527 assert( 8 == SQLITE_SHM_NLOCK );
1528 assert( 5 == WAL_NREADER );
1529 assert( 24 == WAL_FRAME_HDRSIZE );
1530 assert( 32 == WAL_HDRSIZE );
1531 assert( 120 == WALINDEX_LOCK_OFFSET + WAL_WRITE_LOCK );
1532 assert( 121 == WALINDEX_LOCK_OFFSET + WAL_CKPT_LOCK );
1533 assert( 122 == WALINDEX_LOCK_OFFSET + WAL_RECOVER_LOCK );
1534 assert( 123 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(0) );
1535 assert( 124 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(1) );
1536 assert( 125 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(2) );
1537 assert( 126 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(3) );
1538 assert( 127 == WALINDEX_LOCK_OFFSET + WAL_READ_LOCK(4) );
1540 /* In the amalgamation, the os_unix.c and os_win.c source files come before
1541 ** this source file. Verify that the #defines of the locking byte offsets
1542 ** in os_unix.c and os_win.c agree with the WALINDEX_LOCK_OFFSET value.
1543 ** For that matter, if the lock offset ever changes from its initial design
1544 ** value of 120, we need to know that so there is an assert() to check it.
1546 #ifdef WIN_SHM_BASE
1547 assert( WIN_SHM_BASE==WALINDEX_LOCK_OFFSET );
1548 #endif
1549 #ifdef UNIX_SHM_BASE
1550 assert( UNIX_SHM_BASE==WALINDEX_LOCK_OFFSET );
1551 #endif
1554 /* Allocate an instance of struct Wal to return. */
1555 *ppWal = 0;
1556 pRet = (Wal*)sqlite3MallocZero(sizeof(Wal) + pVfs->szOsFile);
1557 if( !pRet ){
1558 return SQLITE_NOMEM_BKPT;
1561 pRet->pVfs = pVfs;
1562 pRet->pWalFd = (sqlite3_file *)&pRet[1];
1563 pRet->pDbFd = pDbFd;
1564 pRet->readLock = -1;
1565 pRet->mxWalSize = mxWalSize;
1566 pRet->zWalName = zWalName;
1567 pRet->syncHeader = 1;
1568 pRet->padToSectorBoundary = 1;
1569 pRet->exclusiveMode = (bNoShm ? WAL_HEAPMEMORY_MODE: WAL_NORMAL_MODE);
1571 /* Open file handle on the write-ahead log file. */
1572 flags = (SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|SQLITE_OPEN_WAL);
1573 rc = sqlite3OsOpen(pVfs, zWalName, pRet->pWalFd, flags, &flags);
1574 if( rc==SQLITE_OK && flags&SQLITE_OPEN_READONLY ){
1575 pRet->readOnly = WAL_RDONLY;
1578 if( rc!=SQLITE_OK ){
1579 walIndexClose(pRet, 0);
1580 sqlite3OsClose(pRet->pWalFd);
1581 sqlite3_free(pRet);
1582 }else{
1583 int iDC = sqlite3OsDeviceCharacteristics(pDbFd);
1584 if( iDC & SQLITE_IOCAP_SEQUENTIAL ){ pRet->syncHeader = 0; }
1585 if( iDC & SQLITE_IOCAP_POWERSAFE_OVERWRITE ){
1586 pRet->padToSectorBoundary = 0;
1588 *ppWal = pRet;
1589 WALTRACE(("WAL%d: opened\n", pRet));
1591 return rc;
1595 ** Change the size to which the WAL file is trucated on each reset.
1597 void sqlite3WalLimit(Wal *pWal, i64 iLimit){
1598 if( pWal ) pWal->mxWalSize = iLimit;
1602 ** Find the smallest page number out of all pages held in the WAL that
1603 ** has not been returned by any prior invocation of this method on the
1604 ** same WalIterator object. Write into *piFrame the frame index where
1605 ** that page was last written into the WAL. Write into *piPage the page
1606 ** number.
1608 ** Return 0 on success. If there are no pages in the WAL with a page
1609 ** number larger than *piPage, then return 1.
1611 static int walIteratorNext(
1612 WalIterator *p, /* Iterator */
1613 u32 *piPage, /* OUT: The page number of the next page */
1614 u32 *piFrame /* OUT: Wal frame index of next page */
1616 u32 iMin; /* Result pgno must be greater than iMin */
1617 u32 iRet = 0xFFFFFFFF; /* 0xffffffff is never a valid page number */
1618 int i; /* For looping through segments */
1620 iMin = p->iPrior;
1621 assert( iMin<0xffffffff );
1622 for(i=p->nSegment-1; i>=0; i--){
1623 struct WalSegment *pSegment = &p->aSegment[i];
1624 while( pSegment->iNext<pSegment->nEntry ){
1625 u32 iPg = pSegment->aPgno[pSegment->aIndex[pSegment->iNext]];
1626 if( iPg>iMin ){
1627 if( iPg<iRet ){
1628 iRet = iPg;
1629 *piFrame = pSegment->iZero + pSegment->aIndex[pSegment->iNext];
1631 break;
1633 pSegment->iNext++;
1637 *piPage = p->iPrior = iRet;
1638 return (iRet==0xFFFFFFFF);
1642 ** This function merges two sorted lists into a single sorted list.
1644 ** aLeft[] and aRight[] are arrays of indices. The sort key is
1645 ** aContent[aLeft[]] and aContent[aRight[]]. Upon entry, the following
1646 ** is guaranteed for all J<K:
1648 ** aContent[aLeft[J]] < aContent[aLeft[K]]
1649 ** aContent[aRight[J]] < aContent[aRight[K]]
1651 ** This routine overwrites aRight[] with a new (probably longer) sequence
1652 ** of indices such that the aRight[] contains every index that appears in
1653 ** either aLeft[] or the old aRight[] and such that the second condition
1654 ** above is still met.
1656 ** The aContent[aLeft[X]] values will be unique for all X. And the
1657 ** aContent[aRight[X]] values will be unique too. But there might be
1658 ** one or more combinations of X and Y such that
1660 ** aLeft[X]!=aRight[Y] && aContent[aLeft[X]] == aContent[aRight[Y]]
1662 ** When that happens, omit the aLeft[X] and use the aRight[Y] index.
1664 static void walMerge(
1665 const u32 *aContent, /* Pages in wal - keys for the sort */
1666 ht_slot *aLeft, /* IN: Left hand input list */
1667 int nLeft, /* IN: Elements in array *paLeft */
1668 ht_slot **paRight, /* IN/OUT: Right hand input list */
1669 int *pnRight, /* IN/OUT: Elements in *paRight */
1670 ht_slot *aTmp /* Temporary buffer */
1672 int iLeft = 0; /* Current index in aLeft */
1673 int iRight = 0; /* Current index in aRight */
1674 int iOut = 0; /* Current index in output buffer */
1675 int nRight = *pnRight;
1676 ht_slot *aRight = *paRight;
1678 assert( nLeft>0 && nRight>0 );
1679 while( iRight<nRight || iLeft<nLeft ){
1680 ht_slot logpage;
1681 Pgno dbpage;
1683 if( (iLeft<nLeft)
1684 && (iRight>=nRight || aContent[aLeft[iLeft]]<aContent[aRight[iRight]])
1686 logpage = aLeft[iLeft++];
1687 }else{
1688 logpage = aRight[iRight++];
1690 dbpage = aContent[logpage];
1692 aTmp[iOut++] = logpage;
1693 if( iLeft<nLeft && aContent[aLeft[iLeft]]==dbpage ) iLeft++;
1695 assert( iLeft>=nLeft || aContent[aLeft[iLeft]]>dbpage );
1696 assert( iRight>=nRight || aContent[aRight[iRight]]>dbpage );
1699 *paRight = aLeft;
1700 *pnRight = iOut;
1701 memcpy(aLeft, aTmp, sizeof(aTmp[0])*iOut);
1705 ** Sort the elements in list aList using aContent[] as the sort key.
1706 ** Remove elements with duplicate keys, preferring to keep the
1707 ** larger aList[] values.
1709 ** The aList[] entries are indices into aContent[]. The values in
1710 ** aList[] are to be sorted so that for all J<K:
1712 ** aContent[aList[J]] < aContent[aList[K]]
1714 ** For any X and Y such that
1716 ** aContent[aList[X]] == aContent[aList[Y]]
1718 ** Keep the larger of the two values aList[X] and aList[Y] and discard
1719 ** the smaller.
1721 static void walMergesort(
1722 const u32 *aContent, /* Pages in wal */
1723 ht_slot *aBuffer, /* Buffer of at least *pnList items to use */
1724 ht_slot *aList, /* IN/OUT: List to sort */
1725 int *pnList /* IN/OUT: Number of elements in aList[] */
1727 struct Sublist {
1728 int nList; /* Number of elements in aList */
1729 ht_slot *aList; /* Pointer to sub-list content */
1732 const int nList = *pnList; /* Size of input list */
1733 int nMerge = 0; /* Number of elements in list aMerge */
1734 ht_slot *aMerge = 0; /* List to be merged */
1735 int iList; /* Index into input list */
1736 u32 iSub = 0; /* Index into aSub array */
1737 struct Sublist aSub[13]; /* Array of sub-lists */
1739 memset(aSub, 0, sizeof(aSub));
1740 assert( nList<=HASHTABLE_NPAGE && nList>0 );
1741 assert( HASHTABLE_NPAGE==(1<<(ArraySize(aSub)-1)) );
1743 for(iList=0; iList<nList; iList++){
1744 nMerge = 1;
1745 aMerge = &aList[iList];
1746 for(iSub=0; iList & (1<<iSub); iSub++){
1747 struct Sublist *p;
1748 assert( iSub<ArraySize(aSub) );
1749 p = &aSub[iSub];
1750 assert( p->aList && p->nList<=(1<<iSub) );
1751 assert( p->aList==&aList[iList&~((2<<iSub)-1)] );
1752 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1754 aSub[iSub].aList = aMerge;
1755 aSub[iSub].nList = nMerge;
1758 for(iSub++; iSub<ArraySize(aSub); iSub++){
1759 if( nList & (1<<iSub) ){
1760 struct Sublist *p;
1761 assert( iSub<ArraySize(aSub) );
1762 p = &aSub[iSub];
1763 assert( p->nList<=(1<<iSub) );
1764 assert( p->aList==&aList[nList&~((2<<iSub)-1)] );
1765 walMerge(aContent, p->aList, p->nList, &aMerge, &nMerge, aBuffer);
1768 assert( aMerge==aList );
1769 *pnList = nMerge;
1771 #ifdef SQLITE_DEBUG
1773 int i;
1774 for(i=1; i<*pnList; i++){
1775 assert( aContent[aList[i]] > aContent[aList[i-1]] );
1778 #endif
1782 ** Free an iterator allocated by walIteratorInit().
1784 static void walIteratorFree(WalIterator *p){
1785 sqlite3_free(p);
1789 ** Construct a WalInterator object that can be used to loop over all
1790 ** pages in the WAL following frame nBackfill in ascending order. Frames
1791 ** nBackfill or earlier may be included - excluding them is an optimization
1792 ** only. The caller must hold the checkpoint lock.
1794 ** On success, make *pp point to the newly allocated WalInterator object
1795 ** return SQLITE_OK. Otherwise, return an error code. If this routine
1796 ** returns an error, the value of *pp is undefined.
1798 ** The calling routine should invoke walIteratorFree() to destroy the
1799 ** WalIterator object when it has finished with it.
1801 static int walIteratorInit(Wal *pWal, u32 nBackfill, WalIterator **pp){
1802 WalIterator *p; /* Return value */
1803 int nSegment; /* Number of segments to merge */
1804 u32 iLast; /* Last frame in log */
1805 sqlite3_int64 nByte; /* Number of bytes to allocate */
1806 int i; /* Iterator variable */
1807 ht_slot *aTmp; /* Temp space used by merge-sort */
1808 int rc = SQLITE_OK; /* Return Code */
1810 /* This routine only runs while holding the checkpoint lock. And
1811 ** it only runs if there is actually content in the log (mxFrame>0).
1813 assert( pWal->ckptLock && pWal->hdr.mxFrame>0 );
1814 iLast = pWal->hdr.mxFrame;
1816 /* Allocate space for the WalIterator object. */
1817 nSegment = walFramePage(iLast) + 1;
1818 nByte = sizeof(WalIterator)
1819 + (nSegment-1)*sizeof(struct WalSegment)
1820 + iLast*sizeof(ht_slot);
1821 p = (WalIterator *)sqlite3_malloc64(nByte);
1822 if( !p ){
1823 return SQLITE_NOMEM_BKPT;
1825 memset(p, 0, nByte);
1826 p->nSegment = nSegment;
1828 /* Allocate temporary space used by the merge-sort routine. This block
1829 ** of memory will be freed before this function returns.
1831 aTmp = (ht_slot *)sqlite3_malloc64(
1832 sizeof(ht_slot) * (iLast>HASHTABLE_NPAGE?HASHTABLE_NPAGE:iLast)
1834 if( !aTmp ){
1835 rc = SQLITE_NOMEM_BKPT;
1838 for(i=walFramePage(nBackfill+1); rc==SQLITE_OK && i<nSegment; i++){
1839 WalHashLoc sLoc;
1841 rc = walHashGet(pWal, i, &sLoc);
1842 if( rc==SQLITE_OK ){
1843 int j; /* Counter variable */
1844 int nEntry; /* Number of entries in this segment */
1845 ht_slot *aIndex; /* Sorted index for this segment */
1847 if( (i+1)==nSegment ){
1848 nEntry = (int)(iLast - sLoc.iZero);
1849 }else{
1850 nEntry = (int)((u32*)sLoc.aHash - (u32*)sLoc.aPgno);
1852 aIndex = &((ht_slot *)&p->aSegment[p->nSegment])[sLoc.iZero];
1853 sLoc.iZero++;
1855 for(j=0; j<nEntry; j++){
1856 aIndex[j] = (ht_slot)j;
1858 walMergesort((u32 *)sLoc.aPgno, aTmp, aIndex, &nEntry);
1859 p->aSegment[i].iZero = sLoc.iZero;
1860 p->aSegment[i].nEntry = nEntry;
1861 p->aSegment[i].aIndex = aIndex;
1862 p->aSegment[i].aPgno = (u32 *)sLoc.aPgno;
1865 sqlite3_free(aTmp);
1867 if( rc!=SQLITE_OK ){
1868 walIteratorFree(p);
1869 p = 0;
1871 *pp = p;
1872 return rc;
1875 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
1877 ** Attempt to enable blocking locks. Blocking locks are enabled only if (a)
1878 ** they are supported by the VFS, and (b) the database handle is configured
1879 ** with a busy-timeout. Return 1 if blocking locks are successfully enabled,
1880 ** or 0 otherwise.
1882 static int walEnableBlocking(Wal *pWal){
1883 int res = 0;
1884 if( pWal->db ){
1885 int tmout = pWal->db->busyTimeout;
1886 if( tmout ){
1887 int rc;
1888 rc = sqlite3OsFileControl(
1889 pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout
1891 res = (rc==SQLITE_OK);
1894 return res;
1898 ** Disable blocking locks.
1900 static void walDisableBlocking(Wal *pWal){
1901 int tmout = 0;
1902 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_LOCK_TIMEOUT, (void*)&tmout);
1906 ** If parameter bLock is true, attempt to enable blocking locks, take
1907 ** the WRITER lock, and then disable blocking locks. If blocking locks
1908 ** cannot be enabled, no attempt to obtain the WRITER lock is made. Return
1909 ** an SQLite error code if an error occurs, or SQLITE_OK otherwise. It is not
1910 ** an error if blocking locks can not be enabled.
1912 ** If the bLock parameter is false and the WRITER lock is held, release it.
1914 int sqlite3WalWriteLock(Wal *pWal, int bLock){
1915 int rc = SQLITE_OK;
1916 assert( pWal->readLock<0 || bLock==0 );
1917 if( bLock ){
1918 assert( pWal->db );
1919 if( walEnableBlocking(pWal) ){
1920 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1921 if( rc==SQLITE_OK ){
1922 pWal->writeLock = 1;
1924 walDisableBlocking(pWal);
1926 }else if( pWal->writeLock ){
1927 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
1928 pWal->writeLock = 0;
1930 return rc;
1934 ** Set the database handle used to determine if blocking locks are required.
1936 void sqlite3WalDb(Wal *pWal, sqlite3 *db){
1937 pWal->db = db;
1941 ** Take an exclusive WRITE lock. Blocking if so configured.
1943 static int walLockWriter(Wal *pWal){
1944 int rc;
1945 walEnableBlocking(pWal);
1946 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
1947 walDisableBlocking(pWal);
1948 return rc;
1950 #else
1951 # define walEnableBlocking(x) 0
1952 # define walDisableBlocking(x)
1953 # define walLockWriter(pWal) walLockExclusive((pWal), WAL_WRITE_LOCK, 1)
1954 # define sqlite3WalDb(pWal, db)
1955 #endif /* ifdef SQLITE_ENABLE_SETLK_TIMEOUT */
1959 ** Attempt to obtain the exclusive WAL lock defined by parameters lockIdx and
1960 ** n. If the attempt fails and parameter xBusy is not NULL, then it is a
1961 ** busy-handler function. Invoke it and retry the lock until either the
1962 ** lock is successfully obtained or the busy-handler returns 0.
1964 static int walBusyLock(
1965 Wal *pWal, /* WAL connection */
1966 int (*xBusy)(void*), /* Function to call when busy */
1967 void *pBusyArg, /* Context argument for xBusyHandler */
1968 int lockIdx, /* Offset of first byte to lock */
1969 int n /* Number of bytes to lock */
1971 int rc;
1972 do {
1973 rc = walLockExclusive(pWal, lockIdx, n);
1974 }while( xBusy && rc==SQLITE_BUSY && xBusy(pBusyArg) );
1975 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
1976 if( rc==SQLITE_BUSY_TIMEOUT ){
1977 walDisableBlocking(pWal);
1978 rc = SQLITE_BUSY;
1980 #endif
1981 return rc;
1985 ** The cache of the wal-index header must be valid to call this function.
1986 ** Return the page-size in bytes used by the database.
1988 static int walPagesize(Wal *pWal){
1989 return (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
1993 ** The following is guaranteed when this function is called:
1995 ** a) the WRITER lock is held,
1996 ** b) the entire log file has been checkpointed, and
1997 ** c) any existing readers are reading exclusively from the database
1998 ** file - there are no readers that may attempt to read a frame from
1999 ** the log file.
2001 ** This function updates the shared-memory structures so that the next
2002 ** client to write to the database (which may be this one) does so by
2003 ** writing frames into the start of the log file.
2005 ** The value of parameter salt1 is used as the aSalt[1] value in the
2006 ** new wal-index header. It should be passed a pseudo-random value (i.e.
2007 ** one obtained from sqlite3_randomness()).
2009 static void walRestartHdr(Wal *pWal, u32 salt1){
2010 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2011 int i; /* Loop counter */
2012 u32 *aSalt = pWal->hdr.aSalt; /* Big-endian salt values */
2013 pWal->nCkpt++;
2014 pWal->hdr.mxFrame = 0;
2015 sqlite3Put4byte((u8*)&aSalt[0], 1 + sqlite3Get4byte((u8*)&aSalt[0]));
2016 memcpy(&pWal->hdr.aSalt[1], &salt1, 4);
2017 walIndexWriteHdr(pWal);
2018 AtomicStore(&pInfo->nBackfill, 0);
2019 pInfo->nBackfillAttempted = 0;
2020 pInfo->aReadMark[1] = 0;
2021 for(i=2; i<WAL_NREADER; i++) pInfo->aReadMark[i] = READMARK_NOT_USED;
2022 assert( pInfo->aReadMark[0]==0 );
2026 ** Copy as much content as we can from the WAL back into the database file
2027 ** in response to an sqlite3_wal_checkpoint() request or the equivalent.
2029 ** The amount of information copies from WAL to database might be limited
2030 ** by active readers. This routine will never overwrite a database page
2031 ** that a concurrent reader might be using.
2033 ** All I/O barrier operations (a.k.a fsyncs) occur in this routine when
2034 ** SQLite is in WAL-mode in synchronous=NORMAL. That means that if
2035 ** checkpoints are always run by a background thread or background
2036 ** process, foreground threads will never block on a lengthy fsync call.
2038 ** Fsync is called on the WAL before writing content out of the WAL and
2039 ** into the database. This ensures that if the new content is persistent
2040 ** in the WAL and can be recovered following a power-loss or hard reset.
2042 ** Fsync is also called on the database file if (and only if) the entire
2043 ** WAL content is copied into the database file. This second fsync makes
2044 ** it safe to delete the WAL since the new content will persist in the
2045 ** database file.
2047 ** This routine uses and updates the nBackfill field of the wal-index header.
2048 ** This is the only routine that will increase the value of nBackfill.
2049 ** (A WAL reset or recovery will revert nBackfill to zero, but not increase
2050 ** its value.)
2052 ** The caller must be holding sufficient locks to ensure that no other
2053 ** checkpoint is running (in any other thread or process) at the same
2054 ** time.
2056 static int walCheckpoint(
2057 Wal *pWal, /* Wal connection */
2058 sqlite3 *db, /* Check for interrupts on this handle */
2059 int eMode, /* One of PASSIVE, FULL or RESTART */
2060 int (*xBusy)(void*), /* Function to call when busy */
2061 void *pBusyArg, /* Context argument for xBusyHandler */
2062 int sync_flags, /* Flags for OsSync() (or 0) */
2063 u8 *zBuf /* Temporary buffer to use */
2065 int rc = SQLITE_OK; /* Return code */
2066 int szPage; /* Database page-size */
2067 WalIterator *pIter = 0; /* Wal iterator context */
2068 u32 iDbpage = 0; /* Next database page to write */
2069 u32 iFrame = 0; /* Wal frame containing data for iDbpage */
2070 u32 mxSafeFrame; /* Max frame that can be backfilled */
2071 u32 mxPage; /* Max database page to write */
2072 int i; /* Loop counter */
2073 volatile WalCkptInfo *pInfo; /* The checkpoint status information */
2075 szPage = walPagesize(pWal);
2076 testcase( szPage<=32768 );
2077 testcase( szPage>=65536 );
2078 pInfo = walCkptInfo(pWal);
2079 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
2081 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
2082 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
2083 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
2085 /* Compute in mxSafeFrame the index of the last frame of the WAL that is
2086 ** safe to write into the database. Frames beyond mxSafeFrame might
2087 ** overwrite database pages that are in use by active readers and thus
2088 ** cannot be backfilled from the WAL.
2090 mxSafeFrame = pWal->hdr.mxFrame;
2091 mxPage = pWal->hdr.nPage;
2092 for(i=1; i<WAL_NREADER; i++){
2093 u32 y = AtomicLoad(pInfo->aReadMark+i);
2094 if( mxSafeFrame>y ){
2095 assert( y<=pWal->hdr.mxFrame );
2096 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(i), 1);
2097 if( rc==SQLITE_OK ){
2098 u32 iMark = (i==1 ? mxSafeFrame : READMARK_NOT_USED);
2099 AtomicStore(pInfo->aReadMark+i, iMark);
2100 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2101 }else if( rc==SQLITE_BUSY ){
2102 mxSafeFrame = y;
2103 xBusy = 0;
2104 }else{
2105 goto walcheckpoint_out;
2110 /* Allocate the iterator */
2111 if( pInfo->nBackfill<mxSafeFrame ){
2112 rc = walIteratorInit(pWal, pInfo->nBackfill, &pIter);
2113 assert( rc==SQLITE_OK || pIter==0 );
2116 if( pIter
2117 && (rc = walBusyLock(pWal,xBusy,pBusyArg,WAL_READ_LOCK(0),1))==SQLITE_OK
2119 u32 nBackfill = pInfo->nBackfill;
2121 pInfo->nBackfillAttempted = mxSafeFrame;
2123 /* Sync the WAL to disk */
2124 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
2126 /* If the database may grow as a result of this checkpoint, hint
2127 ** about the eventual size of the db file to the VFS layer.
2129 if( rc==SQLITE_OK ){
2130 i64 nReq = ((i64)mxPage * szPage);
2131 i64 nSize; /* Current size of database file */
2132 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_START, 0);
2133 rc = sqlite3OsFileSize(pWal->pDbFd, &nSize);
2134 if( rc==SQLITE_OK && nSize<nReq ){
2135 if( (nSize+65536+(i64)pWal->hdr.mxFrame*szPage)<nReq ){
2136 /* If the size of the final database is larger than the current
2137 ** database plus the amount of data in the wal file, plus the
2138 ** maximum size of the pending-byte page (65536 bytes), then
2139 ** must be corruption somewhere. */
2140 rc = SQLITE_CORRUPT_BKPT;
2141 }else{
2142 sqlite3OsFileControlHint(pWal->pDbFd, SQLITE_FCNTL_SIZE_HINT,&nReq);
2148 /* Iterate through the contents of the WAL, copying data to the db file */
2149 while( rc==SQLITE_OK && 0==walIteratorNext(pIter, &iDbpage, &iFrame) ){
2150 i64 iOffset;
2151 assert( walFramePgno(pWal, iFrame)==iDbpage );
2152 if( AtomicLoad(&db->u1.isInterrupted) ){
2153 rc = db->mallocFailed ? SQLITE_NOMEM_BKPT : SQLITE_INTERRUPT;
2154 break;
2156 if( iFrame<=nBackfill || iFrame>mxSafeFrame || iDbpage>mxPage ){
2157 continue;
2159 iOffset = walFrameOffset(iFrame, szPage) + WAL_FRAME_HDRSIZE;
2160 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL file */
2161 rc = sqlite3OsRead(pWal->pWalFd, zBuf, szPage, iOffset);
2162 if( rc!=SQLITE_OK ) break;
2163 iOffset = (iDbpage-1)*(i64)szPage;
2164 testcase( IS_BIG_INT(iOffset) );
2165 rc = sqlite3OsWrite(pWal->pDbFd, zBuf, szPage, iOffset);
2166 if( rc!=SQLITE_OK ) break;
2168 sqlite3OsFileControl(pWal->pDbFd, SQLITE_FCNTL_CKPT_DONE, 0);
2170 /* If work was actually accomplished... */
2171 if( rc==SQLITE_OK ){
2172 if( mxSafeFrame==walIndexHdr(pWal)->mxFrame ){
2173 i64 szDb = pWal->hdr.nPage*(i64)szPage;
2174 testcase( IS_BIG_INT(szDb) );
2175 rc = sqlite3OsTruncate(pWal->pDbFd, szDb);
2176 if( rc==SQLITE_OK ){
2177 rc = sqlite3OsSync(pWal->pDbFd, CKPT_SYNC_FLAGS(sync_flags));
2180 if( rc==SQLITE_OK ){
2181 AtomicStore(&pInfo->nBackfill, mxSafeFrame);
2185 /* Release the reader lock held while backfilling */
2186 walUnlockExclusive(pWal, WAL_READ_LOCK(0), 1);
2189 if( rc==SQLITE_BUSY ){
2190 /* Reset the return code so as not to report a checkpoint failure
2191 ** just because there are active readers. */
2192 rc = SQLITE_OK;
2196 /* If this is an SQLITE_CHECKPOINT_RESTART or TRUNCATE operation, and the
2197 ** entire wal file has been copied into the database file, then block
2198 ** until all readers have finished using the wal file. This ensures that
2199 ** the next process to write to the database restarts the wal file.
2201 if( rc==SQLITE_OK && eMode!=SQLITE_CHECKPOINT_PASSIVE ){
2202 assert( pWal->writeLock );
2203 if( pInfo->nBackfill<pWal->hdr.mxFrame ){
2204 rc = SQLITE_BUSY;
2205 }else if( eMode>=SQLITE_CHECKPOINT_RESTART ){
2206 u32 salt1;
2207 sqlite3_randomness(4, &salt1);
2208 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
2209 rc = walBusyLock(pWal, xBusy, pBusyArg, WAL_READ_LOCK(1), WAL_NREADER-1);
2210 if( rc==SQLITE_OK ){
2211 if( eMode==SQLITE_CHECKPOINT_TRUNCATE ){
2212 /* IMPLEMENTATION-OF: R-44699-57140 This mode works the same way as
2213 ** SQLITE_CHECKPOINT_RESTART with the addition that it also
2214 ** truncates the log file to zero bytes just prior to a
2215 ** successful return.
2217 ** In theory, it might be safe to do this without updating the
2218 ** wal-index header in shared memory, as all subsequent reader or
2219 ** writer clients should see that the entire log file has been
2220 ** checkpointed and behave accordingly. This seems unsafe though,
2221 ** as it would leave the system in a state where the contents of
2222 ** the wal-index header do not match the contents of the
2223 ** file-system. To avoid this, update the wal-index header to
2224 ** indicate that the log file contains zero valid frames. */
2225 walRestartHdr(pWal, salt1);
2226 rc = sqlite3OsTruncate(pWal->pWalFd, 0);
2228 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
2233 walcheckpoint_out:
2234 walIteratorFree(pIter);
2235 return rc;
2239 ** If the WAL file is currently larger than nMax bytes in size, truncate
2240 ** it to exactly nMax bytes. If an error occurs while doing so, ignore it.
2242 static void walLimitSize(Wal *pWal, i64 nMax){
2243 i64 sz;
2244 int rx;
2245 sqlite3BeginBenignMalloc();
2246 rx = sqlite3OsFileSize(pWal->pWalFd, &sz);
2247 if( rx==SQLITE_OK && (sz > nMax ) ){
2248 rx = sqlite3OsTruncate(pWal->pWalFd, nMax);
2250 sqlite3EndBenignMalloc();
2251 if( rx ){
2252 sqlite3_log(rx, "cannot limit WAL size: %s", pWal->zWalName);
2257 ** Close a connection to a log file.
2259 int sqlite3WalClose(
2260 Wal *pWal, /* Wal to close */
2261 sqlite3 *db, /* For interrupt flag */
2262 int sync_flags, /* Flags to pass to OsSync() (or 0) */
2263 int nBuf,
2264 u8 *zBuf /* Buffer of at least nBuf bytes */
2266 int rc = SQLITE_OK;
2267 if( pWal ){
2268 int isDelete = 0; /* True to unlink wal and wal-index files */
2270 /* If an EXCLUSIVE lock can be obtained on the database file (using the
2271 ** ordinary, rollback-mode locking methods, this guarantees that the
2272 ** connection associated with this log file is the only connection to
2273 ** the database. In this case checkpoint the database and unlink both
2274 ** the wal and wal-index files.
2276 ** The EXCLUSIVE lock is not released before returning.
2278 if( zBuf!=0
2279 && SQLITE_OK==(rc = sqlite3OsLock(pWal->pDbFd, SQLITE_LOCK_EXCLUSIVE))
2281 if( pWal->exclusiveMode==WAL_NORMAL_MODE ){
2282 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
2284 rc = sqlite3WalCheckpoint(pWal, db,
2285 SQLITE_CHECKPOINT_PASSIVE, 0, 0, sync_flags, nBuf, zBuf, 0, 0
2287 if( rc==SQLITE_OK ){
2288 int bPersist = -1;
2289 sqlite3OsFileControlHint(
2290 pWal->pDbFd, SQLITE_FCNTL_PERSIST_WAL, &bPersist
2292 if( bPersist!=1 ){
2293 /* Try to delete the WAL file if the checkpoint completed and
2294 ** fsyned (rc==SQLITE_OK) and if we are not in persistent-wal
2295 ** mode (!bPersist) */
2296 isDelete = 1;
2297 }else if( pWal->mxWalSize>=0 ){
2298 /* Try to truncate the WAL file to zero bytes if the checkpoint
2299 ** completed and fsynced (rc==SQLITE_OK) and we are in persistent
2300 ** WAL mode (bPersist) and if the PRAGMA journal_size_limit is a
2301 ** non-negative value (pWal->mxWalSize>=0). Note that we truncate
2302 ** to zero bytes as truncating to the journal_size_limit might
2303 ** leave a corrupt WAL file on disk. */
2304 walLimitSize(pWal, 0);
2309 walIndexClose(pWal, isDelete);
2310 sqlite3OsClose(pWal->pWalFd);
2311 if( isDelete ){
2312 sqlite3BeginBenignMalloc();
2313 sqlite3OsDelete(pWal->pVfs, pWal->zWalName, 0);
2314 sqlite3EndBenignMalloc();
2316 WALTRACE(("WAL%p: closed\n", pWal));
2317 sqlite3_free((void *)pWal->apWiData);
2318 sqlite3_free(pWal);
2320 return rc;
2324 ** Try to read the wal-index header. Return 0 on success and 1 if
2325 ** there is a problem.
2327 ** The wal-index is in shared memory. Another thread or process might
2328 ** be writing the header at the same time this procedure is trying to
2329 ** read it, which might result in inconsistency. A dirty read is detected
2330 ** by verifying that both copies of the header are the same and also by
2331 ** a checksum on the header.
2333 ** If and only if the read is consistent and the header is different from
2334 ** pWal->hdr, then pWal->hdr is updated to the content of the new header
2335 ** and *pChanged is set to 1.
2337 ** If the checksum cannot be verified return non-zero. If the header
2338 ** is read successfully and the checksum verified, return zero.
2340 static SQLITE_NO_TSAN int walIndexTryHdr(Wal *pWal, int *pChanged){
2341 u32 aCksum[2]; /* Checksum on the header content */
2342 WalIndexHdr h1, h2; /* Two copies of the header content */
2343 WalIndexHdr volatile *aHdr; /* Header in shared memory */
2345 /* The first page of the wal-index must be mapped at this point. */
2346 assert( pWal->nWiData>0 && pWal->apWiData[0] );
2348 /* Read the header. This might happen concurrently with a write to the
2349 ** same area of shared memory on a different CPU in a SMP,
2350 ** meaning it is possible that an inconsistent snapshot is read
2351 ** from the file. If this happens, return non-zero.
2353 ** tag-20200519-1:
2354 ** There are two copies of the header at the beginning of the wal-index.
2355 ** When reading, read [0] first then [1]. Writes are in the reverse order.
2356 ** Memory barriers are used to prevent the compiler or the hardware from
2357 ** reordering the reads and writes. TSAN and similar tools can sometimes
2358 ** give false-positive warnings about these accesses because the tools do not
2359 ** account for the double-read and the memory barrier. The use of mutexes
2360 ** here would be problematic as the memory being accessed is potentially
2361 ** shared among multiple processes and not all mutex implementions work
2362 ** reliably in that environment.
2364 aHdr = walIndexHdr(pWal);
2365 memcpy(&h1, (void *)&aHdr[0], sizeof(h1)); /* Possible TSAN false-positive */
2366 walShmBarrier(pWal);
2367 memcpy(&h2, (void *)&aHdr[1], sizeof(h2));
2369 if( memcmp(&h1, &h2, sizeof(h1))!=0 ){
2370 return 1; /* Dirty read */
2372 if( h1.isInit==0 ){
2373 return 1; /* Malformed header - probably all zeros */
2375 walChecksumBytes(1, (u8*)&h1, sizeof(h1)-sizeof(h1.aCksum), 0, aCksum);
2376 if( aCksum[0]!=h1.aCksum[0] || aCksum[1]!=h1.aCksum[1] ){
2377 return 1; /* Checksum does not match */
2380 if( memcmp(&pWal->hdr, &h1, sizeof(WalIndexHdr)) ){
2381 *pChanged = 1;
2382 memcpy(&pWal->hdr, &h1, sizeof(WalIndexHdr));
2383 pWal->szPage = (pWal->hdr.szPage&0xfe00) + ((pWal->hdr.szPage&0x0001)<<16);
2384 testcase( pWal->szPage<=32768 );
2385 testcase( pWal->szPage>=65536 );
2388 /* The header was successfully read. Return zero. */
2389 return 0;
2393 ** This is the value that walTryBeginRead returns when it needs to
2394 ** be retried.
2396 #define WAL_RETRY (-1)
2399 ** Read the wal-index header from the wal-index and into pWal->hdr.
2400 ** If the wal-header appears to be corrupt, try to reconstruct the
2401 ** wal-index from the WAL before returning.
2403 ** Set *pChanged to 1 if the wal-index header value in pWal->hdr is
2404 ** changed by this operation. If pWal->hdr is unchanged, set *pChanged
2405 ** to 0.
2407 ** If the wal-index header is successfully read, return SQLITE_OK.
2408 ** Otherwise an SQLite error code.
2410 static int walIndexReadHdr(Wal *pWal, int *pChanged){
2411 int rc; /* Return code */
2412 int badHdr; /* True if a header read failed */
2413 volatile u32 *page0; /* Chunk of wal-index containing header */
2415 /* Ensure that page 0 of the wal-index (the page that contains the
2416 ** wal-index header) is mapped. Return early if an error occurs here.
2418 assert( pChanged );
2419 rc = walIndexPage(pWal, 0, &page0);
2420 if( rc!=SQLITE_OK ){
2421 assert( rc!=SQLITE_READONLY ); /* READONLY changed to OK in walIndexPage */
2422 if( rc==SQLITE_READONLY_CANTINIT ){
2423 /* The SQLITE_READONLY_CANTINIT return means that the shared-memory
2424 ** was openable but is not writable, and this thread is unable to
2425 ** confirm that another write-capable connection has the shared-memory
2426 ** open, and hence the content of the shared-memory is unreliable,
2427 ** since the shared-memory might be inconsistent with the WAL file
2428 ** and there is no writer on hand to fix it. */
2429 assert( page0==0 );
2430 assert( pWal->writeLock==0 );
2431 assert( pWal->readOnly & WAL_SHM_RDONLY );
2432 pWal->bShmUnreliable = 1;
2433 pWal->exclusiveMode = WAL_HEAPMEMORY_MODE;
2434 *pChanged = 1;
2435 }else{
2436 return rc; /* Any other non-OK return is just an error */
2438 }else{
2439 /* page0 can be NULL if the SHM is zero bytes in size and pWal->writeLock
2440 ** is zero, which prevents the SHM from growing */
2441 testcase( page0!=0 );
2443 assert( page0!=0 || pWal->writeLock==0 );
2445 /* If the first page of the wal-index has been mapped, try to read the
2446 ** wal-index header immediately, without holding any lock. This usually
2447 ** works, but may fail if the wal-index header is corrupt or currently
2448 ** being modified by another thread or process.
2450 badHdr = (page0 ? walIndexTryHdr(pWal, pChanged) : 1);
2452 /* If the first attempt failed, it might have been due to a race
2453 ** with a writer. So get a WRITE lock and try again.
2455 if( badHdr ){
2456 if( pWal->bShmUnreliable==0 && (pWal->readOnly & WAL_SHM_RDONLY) ){
2457 if( SQLITE_OK==(rc = walLockShared(pWal, WAL_WRITE_LOCK)) ){
2458 walUnlockShared(pWal, WAL_WRITE_LOCK);
2459 rc = SQLITE_READONLY_RECOVERY;
2461 }else{
2462 int bWriteLock = pWal->writeLock;
2463 if( bWriteLock || SQLITE_OK==(rc = walLockWriter(pWal)) ){
2464 pWal->writeLock = 1;
2465 if( SQLITE_OK==(rc = walIndexPage(pWal, 0, &page0)) ){
2466 badHdr = walIndexTryHdr(pWal, pChanged);
2467 if( badHdr ){
2468 /* If the wal-index header is still malformed even while holding
2469 ** a WRITE lock, it can only mean that the header is corrupted and
2470 ** needs to be reconstructed. So run recovery to do exactly that.
2472 rc = walIndexRecover(pWal);
2473 *pChanged = 1;
2476 if( bWriteLock==0 ){
2477 pWal->writeLock = 0;
2478 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
2484 /* If the header is read successfully, check the version number to make
2485 ** sure the wal-index was not constructed with some future format that
2486 ** this version of SQLite cannot understand.
2488 if( badHdr==0 && pWal->hdr.iVersion!=WALINDEX_MAX_VERSION ){
2489 rc = SQLITE_CANTOPEN_BKPT;
2491 if( pWal->bShmUnreliable ){
2492 if( rc!=SQLITE_OK ){
2493 walIndexClose(pWal, 0);
2494 pWal->bShmUnreliable = 0;
2495 assert( pWal->nWiData>0 && pWal->apWiData[0]==0 );
2496 /* walIndexRecover() might have returned SHORT_READ if a concurrent
2497 ** writer truncated the WAL out from under it. If that happens, it
2498 ** indicates that a writer has fixed the SHM file for us, so retry */
2499 if( rc==SQLITE_IOERR_SHORT_READ ) rc = WAL_RETRY;
2501 pWal->exclusiveMode = WAL_NORMAL_MODE;
2504 return rc;
2508 ** Open a transaction in a connection where the shared-memory is read-only
2509 ** and where we cannot verify that there is a separate write-capable connection
2510 ** on hand to keep the shared-memory up-to-date with the WAL file.
2512 ** This can happen, for example, when the shared-memory is implemented by
2513 ** memory-mapping a *-shm file, where a prior writer has shut down and
2514 ** left the *-shm file on disk, and now the present connection is trying
2515 ** to use that database but lacks write permission on the *-shm file.
2516 ** Other scenarios are also possible, depending on the VFS implementation.
2518 ** Precondition:
2520 ** The *-wal file has been read and an appropriate wal-index has been
2521 ** constructed in pWal->apWiData[] using heap memory instead of shared
2522 ** memory.
2524 ** If this function returns SQLITE_OK, then the read transaction has
2525 ** been successfully opened. In this case output variable (*pChanged)
2526 ** is set to true before returning if the caller should discard the
2527 ** contents of the page cache before proceeding. Or, if it returns
2528 ** WAL_RETRY, then the heap memory wal-index has been discarded and
2529 ** the caller should retry opening the read transaction from the
2530 ** beginning (including attempting to map the *-shm file).
2532 ** If an error occurs, an SQLite error code is returned.
2534 static int walBeginShmUnreliable(Wal *pWal, int *pChanged){
2535 i64 szWal; /* Size of wal file on disk in bytes */
2536 i64 iOffset; /* Current offset when reading wal file */
2537 u8 aBuf[WAL_HDRSIZE]; /* Buffer to load WAL header into */
2538 u8 *aFrame = 0; /* Malloc'd buffer to load entire frame */
2539 int szFrame; /* Number of bytes in buffer aFrame[] */
2540 u8 *aData; /* Pointer to data part of aFrame buffer */
2541 volatile void *pDummy; /* Dummy argument for xShmMap */
2542 int rc; /* Return code */
2543 u32 aSaveCksum[2]; /* Saved copy of pWal->hdr.aFrameCksum */
2545 assert( pWal->bShmUnreliable );
2546 assert( pWal->readOnly & WAL_SHM_RDONLY );
2547 assert( pWal->nWiData>0 && pWal->apWiData[0] );
2549 /* Take WAL_READ_LOCK(0). This has the effect of preventing any
2550 ** writers from running a checkpoint, but does not stop them
2551 ** from running recovery. */
2552 rc = walLockShared(pWal, WAL_READ_LOCK(0));
2553 if( rc!=SQLITE_OK ){
2554 if( rc==SQLITE_BUSY ) rc = WAL_RETRY;
2555 goto begin_unreliable_shm_out;
2557 pWal->readLock = 0;
2559 /* Check to see if a separate writer has attached to the shared-memory area,
2560 ** thus making the shared-memory "reliable" again. Do this by invoking
2561 ** the xShmMap() routine of the VFS and looking to see if the return
2562 ** is SQLITE_READONLY instead of SQLITE_READONLY_CANTINIT.
2564 ** If the shared-memory is now "reliable" return WAL_RETRY, which will
2565 ** cause the heap-memory WAL-index to be discarded and the actual
2566 ** shared memory to be used in its place.
2568 ** This step is important because, even though this connection is holding
2569 ** the WAL_READ_LOCK(0) which prevents a checkpoint, a writer might
2570 ** have already checkpointed the WAL file and, while the current
2571 ** is active, wrap the WAL and start overwriting frames that this
2572 ** process wants to use.
2574 ** Once sqlite3OsShmMap() has been called for an sqlite3_file and has
2575 ** returned any SQLITE_READONLY value, it must return only SQLITE_READONLY
2576 ** or SQLITE_READONLY_CANTINIT or some error for all subsequent invocations,
2577 ** even if some external agent does a "chmod" to make the shared-memory
2578 ** writable by us, until sqlite3OsShmUnmap() has been called.
2579 ** This is a requirement on the VFS implementation.
2581 rc = sqlite3OsShmMap(pWal->pDbFd, 0, WALINDEX_PGSZ, 0, &pDummy);
2582 assert( rc!=SQLITE_OK ); /* SQLITE_OK not possible for read-only connection */
2583 if( rc!=SQLITE_READONLY_CANTINIT ){
2584 rc = (rc==SQLITE_READONLY ? WAL_RETRY : rc);
2585 goto begin_unreliable_shm_out;
2588 /* We reach this point only if the real shared-memory is still unreliable.
2589 ** Assume the in-memory WAL-index substitute is correct and load it
2590 ** into pWal->hdr.
2592 memcpy(&pWal->hdr, (void*)walIndexHdr(pWal), sizeof(WalIndexHdr));
2594 /* Make sure some writer hasn't come in and changed the WAL file out
2595 ** from under us, then disconnected, while we were not looking.
2597 rc = sqlite3OsFileSize(pWal->pWalFd, &szWal);
2598 if( rc!=SQLITE_OK ){
2599 goto begin_unreliable_shm_out;
2601 if( szWal<WAL_HDRSIZE ){
2602 /* If the wal file is too small to contain a wal-header and the
2603 ** wal-index header has mxFrame==0, then it must be safe to proceed
2604 ** reading the database file only. However, the page cache cannot
2605 ** be trusted, as a read/write connection may have connected, written
2606 ** the db, run a checkpoint, truncated the wal file and disconnected
2607 ** since this client's last read transaction. */
2608 *pChanged = 1;
2609 rc = (pWal->hdr.mxFrame==0 ? SQLITE_OK : WAL_RETRY);
2610 goto begin_unreliable_shm_out;
2613 /* Check the salt keys at the start of the wal file still match. */
2614 rc = sqlite3OsRead(pWal->pWalFd, aBuf, WAL_HDRSIZE, 0);
2615 if( rc!=SQLITE_OK ){
2616 goto begin_unreliable_shm_out;
2618 if( memcmp(&pWal->hdr.aSalt, &aBuf[16], 8) ){
2619 /* Some writer has wrapped the WAL file while we were not looking.
2620 ** Return WAL_RETRY which will cause the in-memory WAL-index to be
2621 ** rebuilt. */
2622 rc = WAL_RETRY;
2623 goto begin_unreliable_shm_out;
2626 /* Allocate a buffer to read frames into */
2627 assert( (pWal->szPage & (pWal->szPage-1))==0 );
2628 assert( pWal->szPage>=512 && pWal->szPage<=65536 );
2629 szFrame = pWal->szPage + WAL_FRAME_HDRSIZE;
2630 aFrame = (u8 *)sqlite3_malloc64(szFrame);
2631 if( aFrame==0 ){
2632 rc = SQLITE_NOMEM_BKPT;
2633 goto begin_unreliable_shm_out;
2635 aData = &aFrame[WAL_FRAME_HDRSIZE];
2637 /* Check to see if a complete transaction has been appended to the
2638 ** wal file since the heap-memory wal-index was created. If so, the
2639 ** heap-memory wal-index is discarded and WAL_RETRY returned to
2640 ** the caller. */
2641 aSaveCksum[0] = pWal->hdr.aFrameCksum[0];
2642 aSaveCksum[1] = pWal->hdr.aFrameCksum[1];
2643 for(iOffset=walFrameOffset(pWal->hdr.mxFrame+1, pWal->szPage);
2644 iOffset+szFrame<=szWal;
2645 iOffset+=szFrame
2647 u32 pgno; /* Database page number for frame */
2648 u32 nTruncate; /* dbsize field from frame header */
2650 /* Read and decode the next log frame. */
2651 rc = sqlite3OsRead(pWal->pWalFd, aFrame, szFrame, iOffset);
2652 if( rc!=SQLITE_OK ) break;
2653 if( !walDecodeFrame(pWal, &pgno, &nTruncate, aData, aFrame) ) break;
2655 /* If nTruncate is non-zero, then a complete transaction has been
2656 ** appended to this wal file. Set rc to WAL_RETRY and break out of
2657 ** the loop. */
2658 if( nTruncate ){
2659 rc = WAL_RETRY;
2660 break;
2663 pWal->hdr.aFrameCksum[0] = aSaveCksum[0];
2664 pWal->hdr.aFrameCksum[1] = aSaveCksum[1];
2666 begin_unreliable_shm_out:
2667 sqlite3_free(aFrame);
2668 if( rc!=SQLITE_OK ){
2669 int i;
2670 for(i=0; i<pWal->nWiData; i++){
2671 sqlite3_free((void*)pWal->apWiData[i]);
2672 pWal->apWiData[i] = 0;
2674 pWal->bShmUnreliable = 0;
2675 sqlite3WalEndReadTransaction(pWal);
2676 *pChanged = 1;
2678 return rc;
2682 ** Attempt to start a read transaction. This might fail due to a race or
2683 ** other transient condition. When that happens, it returns WAL_RETRY to
2684 ** indicate to the caller that it is safe to retry immediately.
2686 ** On success return SQLITE_OK. On a permanent failure (such an
2687 ** I/O error or an SQLITE_BUSY because another process is running
2688 ** recovery) return a positive error code.
2690 ** The useWal parameter is true to force the use of the WAL and disable
2691 ** the case where the WAL is bypassed because it has been completely
2692 ** checkpointed. If useWal==0 then this routine calls walIndexReadHdr()
2693 ** to make a copy of the wal-index header into pWal->hdr. If the
2694 ** wal-index header has changed, *pChanged is set to 1 (as an indication
2695 ** to the caller that the local page cache is obsolete and needs to be
2696 ** flushed.) When useWal==1, the wal-index header is assumed to already
2697 ** be loaded and the pChanged parameter is unused.
2699 ** The caller must set the cnt parameter to the number of prior calls to
2700 ** this routine during the current read attempt that returned WAL_RETRY.
2701 ** This routine will start taking more aggressive measures to clear the
2702 ** race conditions after multiple WAL_RETRY returns, and after an excessive
2703 ** number of errors will ultimately return SQLITE_PROTOCOL. The
2704 ** SQLITE_PROTOCOL return indicates that some other process has gone rogue
2705 ** and is not honoring the locking protocol. There is a vanishingly small
2706 ** chance that SQLITE_PROTOCOL could be returned because of a run of really
2707 ** bad luck when there is lots of contention for the wal-index, but that
2708 ** possibility is so small that it can be safely neglected, we believe.
2710 ** On success, this routine obtains a read lock on
2711 ** WAL_READ_LOCK(pWal->readLock). The pWal->readLock integer is
2712 ** in the range 0 <= pWal->readLock < WAL_NREADER. If pWal->readLock==(-1)
2713 ** that means the Wal does not hold any read lock. The reader must not
2714 ** access any database page that is modified by a WAL frame up to and
2715 ** including frame number aReadMark[pWal->readLock]. The reader will
2716 ** use WAL frames up to and including pWal->hdr.mxFrame if pWal->readLock>0
2717 ** Or if pWal->readLock==0, then the reader will ignore the WAL
2718 ** completely and get all content directly from the database file.
2719 ** If the useWal parameter is 1 then the WAL will never be ignored and
2720 ** this routine will always set pWal->readLock>0 on success.
2721 ** When the read transaction is completed, the caller must release the
2722 ** lock on WAL_READ_LOCK(pWal->readLock) and set pWal->readLock to -1.
2724 ** This routine uses the nBackfill and aReadMark[] fields of the header
2725 ** to select a particular WAL_READ_LOCK() that strives to let the
2726 ** checkpoint process do as much work as possible. This routine might
2727 ** update values of the aReadMark[] array in the header, but if it does
2728 ** so it takes care to hold an exclusive lock on the corresponding
2729 ** WAL_READ_LOCK() while changing values.
2731 static int walTryBeginRead(Wal *pWal, int *pChanged, int useWal, int cnt){
2732 volatile WalCkptInfo *pInfo; /* Checkpoint information in wal-index */
2733 u32 mxReadMark; /* Largest aReadMark[] value */
2734 int mxI; /* Index of largest aReadMark[] value */
2735 int i; /* Loop counter */
2736 int rc = SQLITE_OK; /* Return code */
2737 u32 mxFrame; /* Wal frame to lock to */
2739 assert( pWal->readLock<0 ); /* Not currently locked */
2741 /* useWal may only be set for read/write connections */
2742 assert( (pWal->readOnly & WAL_SHM_RDONLY)==0 || useWal==0 );
2744 /* Take steps to avoid spinning forever if there is a protocol error.
2746 ** Circumstances that cause a RETRY should only last for the briefest
2747 ** instances of time. No I/O or other system calls are done while the
2748 ** locks are held, so the locks should not be held for very long. But
2749 ** if we are unlucky, another process that is holding a lock might get
2750 ** paged out or take a page-fault that is time-consuming to resolve,
2751 ** during the few nanoseconds that it is holding the lock. In that case,
2752 ** it might take longer than normal for the lock to free.
2754 ** After 5 RETRYs, we begin calling sqlite3OsSleep(). The first few
2755 ** calls to sqlite3OsSleep() have a delay of 1 microsecond. Really this
2756 ** is more of a scheduler yield than an actual delay. But on the 10th
2757 ** an subsequent retries, the delays start becoming longer and longer,
2758 ** so that on the 100th (and last) RETRY we delay for 323 milliseconds.
2759 ** The total delay time before giving up is less than 10 seconds.
2761 if( cnt>5 ){
2762 int nDelay = 1; /* Pause time in microseconds */
2763 if( cnt>100 ){
2764 VVA_ONLY( pWal->lockError = 1; )
2765 return SQLITE_PROTOCOL;
2767 if( cnt>=10 ) nDelay = (cnt-9)*(cnt-9)*39;
2768 sqlite3OsSleep(pWal->pVfs, nDelay);
2771 if( !useWal ){
2772 assert( rc==SQLITE_OK );
2773 if( pWal->bShmUnreliable==0 ){
2774 rc = walIndexReadHdr(pWal, pChanged);
2776 if( rc==SQLITE_BUSY ){
2777 /* If there is not a recovery running in another thread or process
2778 ** then convert BUSY errors to WAL_RETRY. If recovery is known to
2779 ** be running, convert BUSY to BUSY_RECOVERY. There is a race here
2780 ** which might cause WAL_RETRY to be returned even if BUSY_RECOVERY
2781 ** would be technically correct. But the race is benign since with
2782 ** WAL_RETRY this routine will be called again and will probably be
2783 ** right on the second iteration.
2785 if( pWal->apWiData[0]==0 ){
2786 /* This branch is taken when the xShmMap() method returns SQLITE_BUSY.
2787 ** We assume this is a transient condition, so return WAL_RETRY. The
2788 ** xShmMap() implementation used by the default unix and win32 VFS
2789 ** modules may return SQLITE_BUSY due to a race condition in the
2790 ** code that determines whether or not the shared-memory region
2791 ** must be zeroed before the requested page is returned.
2793 rc = WAL_RETRY;
2794 }else if( SQLITE_OK==(rc = walLockShared(pWal, WAL_RECOVER_LOCK)) ){
2795 walUnlockShared(pWal, WAL_RECOVER_LOCK);
2796 rc = WAL_RETRY;
2797 }else if( rc==SQLITE_BUSY ){
2798 rc = SQLITE_BUSY_RECOVERY;
2801 if( rc!=SQLITE_OK ){
2802 return rc;
2804 else if( pWal->bShmUnreliable ){
2805 return walBeginShmUnreliable(pWal, pChanged);
2809 assert( pWal->nWiData>0 );
2810 assert( pWal->apWiData[0]!=0 );
2811 pInfo = walCkptInfo(pWal);
2812 if( !useWal && AtomicLoad(&pInfo->nBackfill)==pWal->hdr.mxFrame
2813 #ifdef SQLITE_ENABLE_SNAPSHOT
2814 && (pWal->pSnapshot==0 || pWal->hdr.mxFrame==0)
2815 #endif
2817 /* The WAL has been completely backfilled (or it is empty).
2818 ** and can be safely ignored.
2820 rc = walLockShared(pWal, WAL_READ_LOCK(0));
2821 walShmBarrier(pWal);
2822 if( rc==SQLITE_OK ){
2823 if( memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr)) ){
2824 /* It is not safe to allow the reader to continue here if frames
2825 ** may have been appended to the log before READ_LOCK(0) was obtained.
2826 ** When holding READ_LOCK(0), the reader ignores the entire log file,
2827 ** which implies that the database file contains a trustworthy
2828 ** snapshot. Since holding READ_LOCK(0) prevents a checkpoint from
2829 ** happening, this is usually correct.
2831 ** However, if frames have been appended to the log (or if the log
2832 ** is wrapped and written for that matter) before the READ_LOCK(0)
2833 ** is obtained, that is not necessarily true. A checkpointer may
2834 ** have started to backfill the appended frames but crashed before
2835 ** it finished. Leaving a corrupt image in the database file.
2837 walUnlockShared(pWal, WAL_READ_LOCK(0));
2838 return WAL_RETRY;
2840 pWal->readLock = 0;
2841 return SQLITE_OK;
2842 }else if( rc!=SQLITE_BUSY ){
2843 return rc;
2847 /* If we get this far, it means that the reader will want to use
2848 ** the WAL to get at content from recent commits. The job now is
2849 ** to select one of the aReadMark[] entries that is closest to
2850 ** but not exceeding pWal->hdr.mxFrame and lock that entry.
2852 mxReadMark = 0;
2853 mxI = 0;
2854 mxFrame = pWal->hdr.mxFrame;
2855 #ifdef SQLITE_ENABLE_SNAPSHOT
2856 if( pWal->pSnapshot && pWal->pSnapshot->mxFrame<mxFrame ){
2857 mxFrame = pWal->pSnapshot->mxFrame;
2859 #endif
2860 for(i=1; i<WAL_NREADER; i++){
2861 u32 thisMark = AtomicLoad(pInfo->aReadMark+i);
2862 if( mxReadMark<=thisMark && thisMark<=mxFrame ){
2863 assert( thisMark!=READMARK_NOT_USED );
2864 mxReadMark = thisMark;
2865 mxI = i;
2868 if( (pWal->readOnly & WAL_SHM_RDONLY)==0
2869 && (mxReadMark<mxFrame || mxI==0)
2871 for(i=1; i<WAL_NREADER; i++){
2872 rc = walLockExclusive(pWal, WAL_READ_LOCK(i), 1);
2873 if( rc==SQLITE_OK ){
2874 AtomicStore(pInfo->aReadMark+i,mxFrame);
2875 mxReadMark = mxFrame;
2876 mxI = i;
2877 walUnlockExclusive(pWal, WAL_READ_LOCK(i), 1);
2878 break;
2879 }else if( rc!=SQLITE_BUSY ){
2880 return rc;
2884 if( mxI==0 ){
2885 assert( rc==SQLITE_BUSY || (pWal->readOnly & WAL_SHM_RDONLY)!=0 );
2886 return rc==SQLITE_BUSY ? WAL_RETRY : SQLITE_READONLY_CANTINIT;
2889 rc = walLockShared(pWal, WAL_READ_LOCK(mxI));
2890 if( rc ){
2891 return rc==SQLITE_BUSY ? WAL_RETRY : rc;
2893 /* Now that the read-lock has been obtained, check that neither the
2894 ** value in the aReadMark[] array or the contents of the wal-index
2895 ** header have changed.
2897 ** It is necessary to check that the wal-index header did not change
2898 ** between the time it was read and when the shared-lock was obtained
2899 ** on WAL_READ_LOCK(mxI) was obtained to account for the possibility
2900 ** that the log file may have been wrapped by a writer, or that frames
2901 ** that occur later in the log than pWal->hdr.mxFrame may have been
2902 ** copied into the database by a checkpointer. If either of these things
2903 ** happened, then reading the database with the current value of
2904 ** pWal->hdr.mxFrame risks reading a corrupted snapshot. So, retry
2905 ** instead.
2907 ** Before checking that the live wal-index header has not changed
2908 ** since it was read, set Wal.minFrame to the first frame in the wal
2909 ** file that has not yet been checkpointed. This client will not need
2910 ** to read any frames earlier than minFrame from the wal file - they
2911 ** can be safely read directly from the database file.
2913 ** Because a ShmBarrier() call is made between taking the copy of
2914 ** nBackfill and checking that the wal-header in shared-memory still
2915 ** matches the one cached in pWal->hdr, it is guaranteed that the
2916 ** checkpointer that set nBackfill was not working with a wal-index
2917 ** header newer than that cached in pWal->hdr. If it were, that could
2918 ** cause a problem. The checkpointer could omit to checkpoint
2919 ** a version of page X that lies before pWal->minFrame (call that version
2920 ** A) on the basis that there is a newer version (version B) of the same
2921 ** page later in the wal file. But if version B happens to like past
2922 ** frame pWal->hdr.mxFrame - then the client would incorrectly assume
2923 ** that it can read version A from the database file. However, since
2924 ** we can guarantee that the checkpointer that set nBackfill could not
2925 ** see any pages past pWal->hdr.mxFrame, this problem does not come up.
2927 pWal->minFrame = AtomicLoad(&pInfo->nBackfill)+1;
2928 walShmBarrier(pWal);
2929 if( AtomicLoad(pInfo->aReadMark+mxI)!=mxReadMark
2930 || memcmp((void *)walIndexHdr(pWal), &pWal->hdr, sizeof(WalIndexHdr))
2932 walUnlockShared(pWal, WAL_READ_LOCK(mxI));
2933 return WAL_RETRY;
2934 }else{
2935 assert( mxReadMark<=pWal->hdr.mxFrame );
2936 pWal->readLock = (i16)mxI;
2938 return rc;
2941 #ifdef SQLITE_ENABLE_SNAPSHOT
2943 ** Attempt to reduce the value of the WalCkptInfo.nBackfillAttempted
2944 ** variable so that older snapshots can be accessed. To do this, loop
2945 ** through all wal frames from nBackfillAttempted to (nBackfill+1),
2946 ** comparing their content to the corresponding page with the database
2947 ** file, if any. Set nBackfillAttempted to the frame number of the
2948 ** first frame for which the wal file content matches the db file.
2950 ** This is only really safe if the file-system is such that any page
2951 ** writes made by earlier checkpointers were atomic operations, which
2952 ** is not always true. It is also possible that nBackfillAttempted
2953 ** may be left set to a value larger than expected, if a wal frame
2954 ** contains content that duplicate of an earlier version of the same
2955 ** page.
2957 ** SQLITE_OK is returned if successful, or an SQLite error code if an
2958 ** error occurs. It is not an error if nBackfillAttempted cannot be
2959 ** decreased at all.
2961 int sqlite3WalSnapshotRecover(Wal *pWal){
2962 int rc;
2964 assert( pWal->readLock>=0 );
2965 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
2966 if( rc==SQLITE_OK ){
2967 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
2968 int szPage = (int)pWal->szPage;
2969 i64 szDb; /* Size of db file in bytes */
2971 rc = sqlite3OsFileSize(pWal->pDbFd, &szDb);
2972 if( rc==SQLITE_OK ){
2973 void *pBuf1 = sqlite3_malloc(szPage);
2974 void *pBuf2 = sqlite3_malloc(szPage);
2975 if( pBuf1==0 || pBuf2==0 ){
2976 rc = SQLITE_NOMEM;
2977 }else{
2978 u32 i = pInfo->nBackfillAttempted;
2979 for(i=pInfo->nBackfillAttempted; i>AtomicLoad(&pInfo->nBackfill); i--){
2980 WalHashLoc sLoc; /* Hash table location */
2981 u32 pgno; /* Page number in db file */
2982 i64 iDbOff; /* Offset of db file entry */
2983 i64 iWalOff; /* Offset of wal file entry */
2985 rc = walHashGet(pWal, walFramePage(i), &sLoc);
2986 if( rc!=SQLITE_OK ) break;
2987 assert( i - sLoc.iZero - 1 >=0 );
2988 pgno = sLoc.aPgno[i-sLoc.iZero-1];
2989 iDbOff = (i64)(pgno-1) * szPage;
2991 if( iDbOff+szPage<=szDb ){
2992 iWalOff = walFrameOffset(i, szPage) + WAL_FRAME_HDRSIZE;
2993 rc = sqlite3OsRead(pWal->pWalFd, pBuf1, szPage, iWalOff);
2995 if( rc==SQLITE_OK ){
2996 rc = sqlite3OsRead(pWal->pDbFd, pBuf2, szPage, iDbOff);
2999 if( rc!=SQLITE_OK || 0==memcmp(pBuf1, pBuf2, szPage) ){
3000 break;
3004 pInfo->nBackfillAttempted = i-1;
3008 sqlite3_free(pBuf1);
3009 sqlite3_free(pBuf2);
3011 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
3014 return rc;
3016 #endif /* SQLITE_ENABLE_SNAPSHOT */
3019 ** Begin a read transaction on the database.
3021 ** This routine used to be called sqlite3OpenSnapshot() and with good reason:
3022 ** it takes a snapshot of the state of the WAL and wal-index for the current
3023 ** instant in time. The current thread will continue to use this snapshot.
3024 ** Other threads might append new content to the WAL and wal-index but
3025 ** that extra content is ignored by the current thread.
3027 ** If the database contents have changes since the previous read
3028 ** transaction, then *pChanged is set to 1 before returning. The
3029 ** Pager layer will use this to know that its cache is stale and
3030 ** needs to be flushed.
3032 int sqlite3WalBeginReadTransaction(Wal *pWal, int *pChanged){
3033 int rc; /* Return code */
3034 int cnt = 0; /* Number of TryBeginRead attempts */
3035 #ifdef SQLITE_ENABLE_SNAPSHOT
3036 int bChanged = 0;
3037 WalIndexHdr *pSnapshot = pWal->pSnapshot;
3038 #endif
3040 assert( pWal->ckptLock==0 );
3042 #ifdef SQLITE_ENABLE_SNAPSHOT
3043 if( pSnapshot ){
3044 if( memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
3045 bChanged = 1;
3048 /* It is possible that there is a checkpointer thread running
3049 ** concurrent with this code. If this is the case, it may be that the
3050 ** checkpointer has already determined that it will checkpoint
3051 ** snapshot X, where X is later in the wal file than pSnapshot, but
3052 ** has not yet set the pInfo->nBackfillAttempted variable to indicate
3053 ** its intent. To avoid the race condition this leads to, ensure that
3054 ** there is no checkpointer process by taking a shared CKPT lock
3055 ** before checking pInfo->nBackfillAttempted. */
3056 (void)walEnableBlocking(pWal);
3057 rc = walLockShared(pWal, WAL_CKPT_LOCK);
3058 walDisableBlocking(pWal);
3060 if( rc!=SQLITE_OK ){
3061 return rc;
3063 pWal->ckptLock = 1;
3065 #endif
3068 rc = walTryBeginRead(pWal, pChanged, 0, ++cnt);
3069 }while( rc==WAL_RETRY );
3070 testcase( (rc&0xff)==SQLITE_BUSY );
3071 testcase( (rc&0xff)==SQLITE_IOERR );
3072 testcase( rc==SQLITE_PROTOCOL );
3073 testcase( rc==SQLITE_OK );
3075 #ifdef SQLITE_ENABLE_SNAPSHOT
3076 if( rc==SQLITE_OK ){
3077 if( pSnapshot && memcmp(pSnapshot, &pWal->hdr, sizeof(WalIndexHdr))!=0 ){
3078 /* At this point the client has a lock on an aReadMark[] slot holding
3079 ** a value equal to or smaller than pSnapshot->mxFrame, but pWal->hdr
3080 ** is populated with the wal-index header corresponding to the head
3081 ** of the wal file. Verify that pSnapshot is still valid before
3082 ** continuing. Reasons why pSnapshot might no longer be valid:
3084 ** (1) The WAL file has been reset since the snapshot was taken.
3085 ** In this case, the salt will have changed.
3087 ** (2) A checkpoint as been attempted that wrote frames past
3088 ** pSnapshot->mxFrame into the database file. Note that the
3089 ** checkpoint need not have completed for this to cause problems.
3091 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3093 assert( pWal->readLock>0 || pWal->hdr.mxFrame==0 );
3094 assert( pInfo->aReadMark[pWal->readLock]<=pSnapshot->mxFrame );
3096 /* Check that the wal file has not been wrapped. Assuming that it has
3097 ** not, also check that no checkpointer has attempted to checkpoint any
3098 ** frames beyond pSnapshot->mxFrame. If either of these conditions are
3099 ** true, return SQLITE_ERROR_SNAPSHOT. Otherwise, overwrite pWal->hdr
3100 ** with *pSnapshot and set *pChanged as appropriate for opening the
3101 ** snapshot. */
3102 if( !memcmp(pSnapshot->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
3103 && pSnapshot->mxFrame>=pInfo->nBackfillAttempted
3105 assert( pWal->readLock>0 );
3106 memcpy(&pWal->hdr, pSnapshot, sizeof(WalIndexHdr));
3107 *pChanged = bChanged;
3108 }else{
3109 rc = SQLITE_ERROR_SNAPSHOT;
3112 /* A client using a non-current snapshot may not ignore any frames
3113 ** from the start of the wal file. This is because, for a system
3114 ** where (minFrame < iSnapshot < maxFrame), a checkpointer may
3115 ** have omitted to checkpoint a frame earlier than minFrame in
3116 ** the file because there exists a frame after iSnapshot that
3117 ** is the same database page. */
3118 pWal->minFrame = 1;
3120 if( rc!=SQLITE_OK ){
3121 sqlite3WalEndReadTransaction(pWal);
3126 /* Release the shared CKPT lock obtained above. */
3127 if( pWal->ckptLock ){
3128 assert( pSnapshot );
3129 walUnlockShared(pWal, WAL_CKPT_LOCK);
3130 pWal->ckptLock = 0;
3132 #endif
3133 return rc;
3137 ** Finish with a read transaction. All this does is release the
3138 ** read-lock.
3140 void sqlite3WalEndReadTransaction(Wal *pWal){
3141 sqlite3WalEndWriteTransaction(pWal);
3142 if( pWal->readLock>=0 ){
3143 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
3144 pWal->readLock = -1;
3149 ** Search the wal file for page pgno. If found, set *piRead to the frame that
3150 ** contains the page. Otherwise, if pgno is not in the wal file, set *piRead
3151 ** to zero.
3153 ** Return SQLITE_OK if successful, or an error code if an error occurs. If an
3154 ** error does occur, the final value of *piRead is undefined.
3156 int sqlite3WalFindFrame(
3157 Wal *pWal, /* WAL handle */
3158 Pgno pgno, /* Database page number to read data for */
3159 u32 *piRead /* OUT: Frame number (or zero) */
3161 u32 iRead = 0; /* If !=0, WAL frame to return data from */
3162 u32 iLast = pWal->hdr.mxFrame; /* Last page in WAL for this reader */
3163 int iHash; /* Used to loop through N hash tables */
3164 int iMinHash;
3166 /* This routine is only be called from within a read transaction. */
3167 assert( pWal->readLock>=0 || pWal->lockError );
3169 /* If the "last page" field of the wal-index header snapshot is 0, then
3170 ** no data will be read from the wal under any circumstances. Return early
3171 ** in this case as an optimization. Likewise, if pWal->readLock==0,
3172 ** then the WAL is ignored by the reader so return early, as if the
3173 ** WAL were empty.
3175 if( iLast==0 || (pWal->readLock==0 && pWal->bShmUnreliable==0) ){
3176 *piRead = 0;
3177 return SQLITE_OK;
3180 /* Search the hash table or tables for an entry matching page number
3181 ** pgno. Each iteration of the following for() loop searches one
3182 ** hash table (each hash table indexes up to HASHTABLE_NPAGE frames).
3184 ** This code might run concurrently to the code in walIndexAppend()
3185 ** that adds entries to the wal-index (and possibly to this hash
3186 ** table). This means the value just read from the hash
3187 ** slot (aHash[iKey]) may have been added before or after the
3188 ** current read transaction was opened. Values added after the
3189 ** read transaction was opened may have been written incorrectly -
3190 ** i.e. these slots may contain garbage data. However, we assume
3191 ** that any slots written before the current read transaction was
3192 ** opened remain unmodified.
3194 ** For the reasons above, the if(...) condition featured in the inner
3195 ** loop of the following block is more stringent that would be required
3196 ** if we had exclusive access to the hash-table:
3198 ** (aPgno[iFrame]==pgno):
3199 ** This condition filters out normal hash-table collisions.
3201 ** (iFrame<=iLast):
3202 ** This condition filters out entries that were added to the hash
3203 ** table after the current read-transaction had started.
3205 iMinHash = walFramePage(pWal->minFrame);
3206 for(iHash=walFramePage(iLast); iHash>=iMinHash; iHash--){
3207 WalHashLoc sLoc; /* Hash table location */
3208 int iKey; /* Hash slot index */
3209 int nCollide; /* Number of hash collisions remaining */
3210 int rc; /* Error code */
3211 u32 iH;
3213 rc = walHashGet(pWal, iHash, &sLoc);
3214 if( rc!=SQLITE_OK ){
3215 return rc;
3217 nCollide = HASHTABLE_NSLOT;
3218 iKey = walHash(pgno);
3219 while( (iH = AtomicLoad(&sLoc.aHash[iKey]))!=0 ){
3220 u32 iFrame = iH + sLoc.iZero;
3221 if( iFrame<=iLast && iFrame>=pWal->minFrame && sLoc.aPgno[iH-1]==pgno ){
3222 assert( iFrame>iRead || CORRUPT_DB );
3223 iRead = iFrame;
3225 if( (nCollide--)==0 ){
3226 return SQLITE_CORRUPT_BKPT;
3228 iKey = walNextHash(iKey);
3230 if( iRead ) break;
3233 #ifdef SQLITE_ENABLE_EXPENSIVE_ASSERT
3234 /* If expensive assert() statements are available, do a linear search
3235 ** of the wal-index file content. Make sure the results agree with the
3236 ** result obtained using the hash indexes above. */
3238 u32 iRead2 = 0;
3239 u32 iTest;
3240 assert( pWal->bShmUnreliable || pWal->minFrame>0 );
3241 for(iTest=iLast; iTest>=pWal->minFrame && iTest>0; iTest--){
3242 if( walFramePgno(pWal, iTest)==pgno ){
3243 iRead2 = iTest;
3244 break;
3247 assert( iRead==iRead2 );
3249 #endif
3251 *piRead = iRead;
3252 return SQLITE_OK;
3256 ** Read the contents of frame iRead from the wal file into buffer pOut
3257 ** (which is nOut bytes in size). Return SQLITE_OK if successful, or an
3258 ** error code otherwise.
3260 int sqlite3WalReadFrame(
3261 Wal *pWal, /* WAL handle */
3262 u32 iRead, /* Frame to read */
3263 int nOut, /* Size of buffer pOut in bytes */
3264 u8 *pOut /* Buffer to write page data to */
3266 int sz;
3267 i64 iOffset;
3268 sz = pWal->hdr.szPage;
3269 sz = (sz&0xfe00) + ((sz&0x0001)<<16);
3270 testcase( sz<=32768 );
3271 testcase( sz>=65536 );
3272 iOffset = walFrameOffset(iRead, sz) + WAL_FRAME_HDRSIZE;
3273 /* testcase( IS_BIG_INT(iOffset) ); // requires a 4GiB WAL */
3274 return sqlite3OsRead(pWal->pWalFd, pOut, (nOut>sz ? sz : nOut), iOffset);
3278 ** Return the size of the database in pages (or zero, if unknown).
3280 Pgno sqlite3WalDbsize(Wal *pWal){
3281 if( pWal && ALWAYS(pWal->readLock>=0) ){
3282 return pWal->hdr.nPage;
3284 return 0;
3289 ** This function starts a write transaction on the WAL.
3291 ** A read transaction must have already been started by a prior call
3292 ** to sqlite3WalBeginReadTransaction().
3294 ** If another thread or process has written into the database since
3295 ** the read transaction was started, then it is not possible for this
3296 ** thread to write as doing so would cause a fork. So this routine
3297 ** returns SQLITE_BUSY in that case and no write transaction is started.
3299 ** There can only be a single writer active at a time.
3301 int sqlite3WalBeginWriteTransaction(Wal *pWal){
3302 int rc;
3304 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3305 /* If the write-lock is already held, then it was obtained before the
3306 ** read-transaction was even opened, making this call a no-op.
3307 ** Return early. */
3308 if( pWal->writeLock ){
3309 assert( !memcmp(&pWal->hdr,(void *)walIndexHdr(pWal),sizeof(WalIndexHdr)) );
3310 return SQLITE_OK;
3312 #endif
3314 /* Cannot start a write transaction without first holding a read
3315 ** transaction. */
3316 assert( pWal->readLock>=0 );
3317 assert( pWal->writeLock==0 && pWal->iReCksum==0 );
3319 if( pWal->readOnly ){
3320 return SQLITE_READONLY;
3323 /* Only one writer allowed at a time. Get the write lock. Return
3324 ** SQLITE_BUSY if unable.
3326 rc = walLockExclusive(pWal, WAL_WRITE_LOCK, 1);
3327 if( rc ){
3328 return rc;
3330 pWal->writeLock = 1;
3332 /* If another connection has written to the database file since the
3333 ** time the read transaction on this connection was started, then
3334 ** the write is disallowed.
3336 if( memcmp(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr))!=0 ){
3337 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3338 pWal->writeLock = 0;
3339 rc = SQLITE_BUSY_SNAPSHOT;
3342 return rc;
3346 ** End a write transaction. The commit has already been done. This
3347 ** routine merely releases the lock.
3349 int sqlite3WalEndWriteTransaction(Wal *pWal){
3350 if( pWal->writeLock ){
3351 walUnlockExclusive(pWal, WAL_WRITE_LOCK, 1);
3352 pWal->writeLock = 0;
3353 pWal->iReCksum = 0;
3354 pWal->truncateOnCommit = 0;
3356 return SQLITE_OK;
3360 ** If any data has been written (but not committed) to the log file, this
3361 ** function moves the write-pointer back to the start of the transaction.
3363 ** Additionally, the callback function is invoked for each frame written
3364 ** to the WAL since the start of the transaction. If the callback returns
3365 ** other than SQLITE_OK, it is not invoked again and the error code is
3366 ** returned to the caller.
3368 ** Otherwise, if the callback function does not return an error, this
3369 ** function returns SQLITE_OK.
3371 int sqlite3WalUndo(Wal *pWal, int (*xUndo)(void *, Pgno), void *pUndoCtx){
3372 int rc = SQLITE_OK;
3373 if( ALWAYS(pWal->writeLock) ){
3374 Pgno iMax = pWal->hdr.mxFrame;
3375 Pgno iFrame;
3377 /* Restore the clients cache of the wal-index header to the state it
3378 ** was in before the client began writing to the database.
3380 memcpy(&pWal->hdr, (void *)walIndexHdr(pWal), sizeof(WalIndexHdr));
3382 for(iFrame=pWal->hdr.mxFrame+1;
3383 ALWAYS(rc==SQLITE_OK) && iFrame<=iMax;
3384 iFrame++
3386 /* This call cannot fail. Unless the page for which the page number
3387 ** is passed as the second argument is (a) in the cache and
3388 ** (b) has an outstanding reference, then xUndo is either a no-op
3389 ** (if (a) is false) or simply expels the page from the cache (if (b)
3390 ** is false).
3392 ** If the upper layer is doing a rollback, it is guaranteed that there
3393 ** are no outstanding references to any page other than page 1. And
3394 ** page 1 is never written to the log until the transaction is
3395 ** committed. As a result, the call to xUndo may not fail.
3397 assert( walFramePgno(pWal, iFrame)!=1 );
3398 rc = xUndo(pUndoCtx, walFramePgno(pWal, iFrame));
3400 if( iMax!=pWal->hdr.mxFrame ) walCleanupHash(pWal);
3402 return rc;
3406 ** Argument aWalData must point to an array of WAL_SAVEPOINT_NDATA u32
3407 ** values. This function populates the array with values required to
3408 ** "rollback" the write position of the WAL handle back to the current
3409 ** point in the event of a savepoint rollback (via WalSavepointUndo()).
3411 void sqlite3WalSavepoint(Wal *pWal, u32 *aWalData){
3412 assert( pWal->writeLock );
3413 aWalData[0] = pWal->hdr.mxFrame;
3414 aWalData[1] = pWal->hdr.aFrameCksum[0];
3415 aWalData[2] = pWal->hdr.aFrameCksum[1];
3416 aWalData[3] = pWal->nCkpt;
3420 ** Move the write position of the WAL back to the point identified by
3421 ** the values in the aWalData[] array. aWalData must point to an array
3422 ** of WAL_SAVEPOINT_NDATA u32 values that has been previously populated
3423 ** by a call to WalSavepoint().
3425 int sqlite3WalSavepointUndo(Wal *pWal, u32 *aWalData){
3426 int rc = SQLITE_OK;
3428 assert( pWal->writeLock );
3429 assert( aWalData[3]!=pWal->nCkpt || aWalData[0]<=pWal->hdr.mxFrame );
3431 if( aWalData[3]!=pWal->nCkpt ){
3432 /* This savepoint was opened immediately after the write-transaction
3433 ** was started. Right after that, the writer decided to wrap around
3434 ** to the start of the log. Update the savepoint values to match.
3436 aWalData[0] = 0;
3437 aWalData[3] = pWal->nCkpt;
3440 if( aWalData[0]<pWal->hdr.mxFrame ){
3441 pWal->hdr.mxFrame = aWalData[0];
3442 pWal->hdr.aFrameCksum[0] = aWalData[1];
3443 pWal->hdr.aFrameCksum[1] = aWalData[2];
3444 walCleanupHash(pWal);
3447 return rc;
3451 ** This function is called just before writing a set of frames to the log
3452 ** file (see sqlite3WalFrames()). It checks to see if, instead of appending
3453 ** to the current log file, it is possible to overwrite the start of the
3454 ** existing log file with the new frames (i.e. "reset" the log). If so,
3455 ** it sets pWal->hdr.mxFrame to 0. Otherwise, pWal->hdr.mxFrame is left
3456 ** unchanged.
3458 ** SQLITE_OK is returned if no error is encountered (regardless of whether
3459 ** or not pWal->hdr.mxFrame is modified). An SQLite error code is returned
3460 ** if an error occurs.
3462 static int walRestartLog(Wal *pWal){
3463 int rc = SQLITE_OK;
3464 int cnt;
3466 if( pWal->readLock==0 ){
3467 volatile WalCkptInfo *pInfo = walCkptInfo(pWal);
3468 assert( pInfo->nBackfill==pWal->hdr.mxFrame );
3469 if( pInfo->nBackfill>0 ){
3470 u32 salt1;
3471 sqlite3_randomness(4, &salt1);
3472 rc = walLockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3473 if( rc==SQLITE_OK ){
3474 /* If all readers are using WAL_READ_LOCK(0) (in other words if no
3475 ** readers are currently using the WAL), then the transactions
3476 ** frames will overwrite the start of the existing log. Update the
3477 ** wal-index header to reflect this.
3479 ** In theory it would be Ok to update the cache of the header only
3480 ** at this point. But updating the actual wal-index header is also
3481 ** safe and means there is no special case for sqlite3WalUndo()
3482 ** to handle if this transaction is rolled back. */
3483 walRestartHdr(pWal, salt1);
3484 walUnlockExclusive(pWal, WAL_READ_LOCK(1), WAL_NREADER-1);
3485 }else if( rc!=SQLITE_BUSY ){
3486 return rc;
3489 walUnlockShared(pWal, WAL_READ_LOCK(0));
3490 pWal->readLock = -1;
3491 cnt = 0;
3493 int notUsed;
3494 rc = walTryBeginRead(pWal, &notUsed, 1, ++cnt);
3495 }while( rc==WAL_RETRY );
3496 assert( (rc&0xff)!=SQLITE_BUSY ); /* BUSY not possible when useWal==1 */
3497 testcase( (rc&0xff)==SQLITE_IOERR );
3498 testcase( rc==SQLITE_PROTOCOL );
3499 testcase( rc==SQLITE_OK );
3501 return rc;
3505 ** Information about the current state of the WAL file and where
3506 ** the next fsync should occur - passed from sqlite3WalFrames() into
3507 ** walWriteToLog().
3509 typedef struct WalWriter {
3510 Wal *pWal; /* The complete WAL information */
3511 sqlite3_file *pFd; /* The WAL file to which we write */
3512 sqlite3_int64 iSyncPoint; /* Fsync at this offset */
3513 int syncFlags; /* Flags for the fsync */
3514 int szPage; /* Size of one page */
3515 } WalWriter;
3518 ** Write iAmt bytes of content into the WAL file beginning at iOffset.
3519 ** Do a sync when crossing the p->iSyncPoint boundary.
3521 ** In other words, if iSyncPoint is in between iOffset and iOffset+iAmt,
3522 ** first write the part before iSyncPoint, then sync, then write the
3523 ** rest.
3525 static int walWriteToLog(
3526 WalWriter *p, /* WAL to write to */
3527 void *pContent, /* Content to be written */
3528 int iAmt, /* Number of bytes to write */
3529 sqlite3_int64 iOffset /* Start writing at this offset */
3531 int rc;
3532 if( iOffset<p->iSyncPoint && iOffset+iAmt>=p->iSyncPoint ){
3533 int iFirstAmt = (int)(p->iSyncPoint - iOffset);
3534 rc = sqlite3OsWrite(p->pFd, pContent, iFirstAmt, iOffset);
3535 if( rc ) return rc;
3536 iOffset += iFirstAmt;
3537 iAmt -= iFirstAmt;
3538 pContent = (void*)(iFirstAmt + (char*)pContent);
3539 assert( WAL_SYNC_FLAGS(p->syncFlags)!=0 );
3540 rc = sqlite3OsSync(p->pFd, WAL_SYNC_FLAGS(p->syncFlags));
3541 if( iAmt==0 || rc ) return rc;
3543 rc = sqlite3OsWrite(p->pFd, pContent, iAmt, iOffset);
3544 return rc;
3548 ** Write out a single frame of the WAL
3550 static int walWriteOneFrame(
3551 WalWriter *p, /* Where to write the frame */
3552 PgHdr *pPage, /* The page of the frame to be written */
3553 int nTruncate, /* The commit flag. Usually 0. >0 for commit */
3554 sqlite3_int64 iOffset /* Byte offset at which to write */
3556 int rc; /* Result code from subfunctions */
3557 void *pData; /* Data actually written */
3558 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-header in */
3559 #if defined(SQLITE_HAS_CODEC)
3560 if( (pData = sqlcipherPagerCodec(pPage))==0 ) return SQLITE_NOMEM_BKPT;
3561 #else
3562 pData = pPage->pData;
3563 #endif
3564 walEncodeFrame(p->pWal, pPage->pgno, nTruncate, pData, aFrame);
3565 rc = walWriteToLog(p, aFrame, sizeof(aFrame), iOffset);
3566 if( rc ) return rc;
3567 /* Write the page data */
3568 rc = walWriteToLog(p, pData, p->szPage, iOffset+sizeof(aFrame));
3569 return rc;
3573 ** This function is called as part of committing a transaction within which
3574 ** one or more frames have been overwritten. It updates the checksums for
3575 ** all frames written to the wal file by the current transaction starting
3576 ** with the earliest to have been overwritten.
3578 ** SQLITE_OK is returned if successful, or an SQLite error code otherwise.
3580 static int walRewriteChecksums(Wal *pWal, u32 iLast){
3581 const int szPage = pWal->szPage;/* Database page size */
3582 int rc = SQLITE_OK; /* Return code */
3583 u8 *aBuf; /* Buffer to load data from wal file into */
3584 u8 aFrame[WAL_FRAME_HDRSIZE]; /* Buffer to assemble frame-headers in */
3585 u32 iRead; /* Next frame to read from wal file */
3586 i64 iCksumOff;
3588 aBuf = sqlite3_malloc(szPage + WAL_FRAME_HDRSIZE);
3589 if( aBuf==0 ) return SQLITE_NOMEM_BKPT;
3591 /* Find the checksum values to use as input for the recalculating the
3592 ** first checksum. If the first frame is frame 1 (implying that the current
3593 ** transaction restarted the wal file), these values must be read from the
3594 ** wal-file header. Otherwise, read them from the frame header of the
3595 ** previous frame. */
3596 assert( pWal->iReCksum>0 );
3597 if( pWal->iReCksum==1 ){
3598 iCksumOff = 24;
3599 }else{
3600 iCksumOff = walFrameOffset(pWal->iReCksum-1, szPage) + 16;
3602 rc = sqlite3OsRead(pWal->pWalFd, aBuf, sizeof(u32)*2, iCksumOff);
3603 pWal->hdr.aFrameCksum[0] = sqlite3Get4byte(aBuf);
3604 pWal->hdr.aFrameCksum[1] = sqlite3Get4byte(&aBuf[sizeof(u32)]);
3606 iRead = pWal->iReCksum;
3607 pWal->iReCksum = 0;
3608 for(; rc==SQLITE_OK && iRead<=iLast; iRead++){
3609 i64 iOff = walFrameOffset(iRead, szPage);
3610 rc = sqlite3OsRead(pWal->pWalFd, aBuf, szPage+WAL_FRAME_HDRSIZE, iOff);
3611 if( rc==SQLITE_OK ){
3612 u32 iPgno, nDbSize;
3613 iPgno = sqlite3Get4byte(aBuf);
3614 nDbSize = sqlite3Get4byte(&aBuf[4]);
3616 walEncodeFrame(pWal, iPgno, nDbSize, &aBuf[WAL_FRAME_HDRSIZE], aFrame);
3617 rc = sqlite3OsWrite(pWal->pWalFd, aFrame, sizeof(aFrame), iOff);
3621 sqlite3_free(aBuf);
3622 return rc;
3626 ** Write a set of frames to the log. The caller must hold the write-lock
3627 ** on the log file (obtained using sqlite3WalBeginWriteTransaction()).
3629 int sqlite3WalFrames(
3630 Wal *pWal, /* Wal handle to write to */
3631 int szPage, /* Database page-size in bytes */
3632 PgHdr *pList, /* List of dirty pages to write */
3633 Pgno nTruncate, /* Database size after this commit */
3634 int isCommit, /* True if this is a commit */
3635 int sync_flags /* Flags to pass to OsSync() (or 0) */
3637 int rc; /* Used to catch return codes */
3638 u32 iFrame; /* Next frame address */
3639 PgHdr *p; /* Iterator to run through pList with. */
3640 PgHdr *pLast = 0; /* Last frame in list */
3641 int nExtra = 0; /* Number of extra copies of last page */
3642 int szFrame; /* The size of a single frame */
3643 i64 iOffset; /* Next byte to write in WAL file */
3644 WalWriter w; /* The writer */
3645 u32 iFirst = 0; /* First frame that may be overwritten */
3646 WalIndexHdr *pLive; /* Pointer to shared header */
3648 assert( pList );
3649 assert( pWal->writeLock );
3651 /* If this frame set completes a transaction, then nTruncate>0. If
3652 ** nTruncate==0 then this frame set does not complete the transaction. */
3653 assert( (isCommit!=0)==(nTruncate!=0) );
3655 #if defined(SQLITE_TEST) && defined(SQLITE_DEBUG)
3656 { int cnt; for(cnt=0, p=pList; p; p=p->pDirty, cnt++){}
3657 WALTRACE(("WAL%p: frame write begin. %d frames. mxFrame=%d. %s\n",
3658 pWal, cnt, pWal->hdr.mxFrame, isCommit ? "Commit" : "Spill"));
3660 #endif
3662 pLive = (WalIndexHdr*)walIndexHdr(pWal);
3663 if( memcmp(&pWal->hdr, (void *)pLive, sizeof(WalIndexHdr))!=0 ){
3664 iFirst = pLive->mxFrame+1;
3667 /* See if it is possible to write these frames into the start of the
3668 ** log file, instead of appending to it at pWal->hdr.mxFrame.
3670 if( SQLITE_OK!=(rc = walRestartLog(pWal)) ){
3671 return rc;
3674 /* If this is the first frame written into the log, write the WAL
3675 ** header to the start of the WAL file. See comments at the top of
3676 ** this source file for a description of the WAL header format.
3678 iFrame = pWal->hdr.mxFrame;
3679 if( iFrame==0 ){
3680 u8 aWalHdr[WAL_HDRSIZE]; /* Buffer to assemble wal-header in */
3681 u32 aCksum[2]; /* Checksum for wal-header */
3683 sqlite3Put4byte(&aWalHdr[0], (WAL_MAGIC | SQLITE_BIGENDIAN));
3684 sqlite3Put4byte(&aWalHdr[4], WAL_MAX_VERSION);
3685 sqlite3Put4byte(&aWalHdr[8], szPage);
3686 sqlite3Put4byte(&aWalHdr[12], pWal->nCkpt);
3687 if( pWal->nCkpt==0 ) sqlite3_randomness(8, pWal->hdr.aSalt);
3688 memcpy(&aWalHdr[16], pWal->hdr.aSalt, 8);
3689 walChecksumBytes(1, aWalHdr, WAL_HDRSIZE-2*4, 0, aCksum);
3690 sqlite3Put4byte(&aWalHdr[24], aCksum[0]);
3691 sqlite3Put4byte(&aWalHdr[28], aCksum[1]);
3693 pWal->szPage = szPage;
3694 pWal->hdr.bigEndCksum = SQLITE_BIGENDIAN;
3695 pWal->hdr.aFrameCksum[0] = aCksum[0];
3696 pWal->hdr.aFrameCksum[1] = aCksum[1];
3697 pWal->truncateOnCommit = 1;
3699 rc = sqlite3OsWrite(pWal->pWalFd, aWalHdr, sizeof(aWalHdr), 0);
3700 WALTRACE(("WAL%p: wal-header write %s\n", pWal, rc ? "failed" : "ok"));
3701 if( rc!=SQLITE_OK ){
3702 return rc;
3705 /* Sync the header (unless SQLITE_IOCAP_SEQUENTIAL is true or unless
3706 ** all syncing is turned off by PRAGMA synchronous=OFF). Otherwise
3707 ** an out-of-order write following a WAL restart could result in
3708 ** database corruption. See the ticket:
3710 ** https://sqlite.org/src/info/ff5be73dee
3712 if( pWal->syncHeader ){
3713 rc = sqlite3OsSync(pWal->pWalFd, CKPT_SYNC_FLAGS(sync_flags));
3714 if( rc ) return rc;
3717 if( (int)pWal->szPage!=szPage ){
3718 return SQLITE_CORRUPT_BKPT; /* TH3 test case: cov1/corrupt155.test */
3721 /* Setup information needed to write frames into the WAL */
3722 w.pWal = pWal;
3723 w.pFd = pWal->pWalFd;
3724 w.iSyncPoint = 0;
3725 w.syncFlags = sync_flags;
3726 w.szPage = szPage;
3727 iOffset = walFrameOffset(iFrame+1, szPage);
3728 szFrame = szPage + WAL_FRAME_HDRSIZE;
3730 /* Write all frames into the log file exactly once */
3731 for(p=pList; p; p=p->pDirty){
3732 int nDbSize; /* 0 normally. Positive == commit flag */
3734 /* Check if this page has already been written into the wal file by
3735 ** the current transaction. If so, overwrite the existing frame and
3736 ** set Wal.writeLock to WAL_WRITELOCK_RECKSUM - indicating that
3737 ** checksums must be recomputed when the transaction is committed. */
3738 if( iFirst && (p->pDirty || isCommit==0) ){
3739 u32 iWrite = 0;
3740 VVA_ONLY(rc =) sqlite3WalFindFrame(pWal, p->pgno, &iWrite);
3741 assert( rc==SQLITE_OK || iWrite==0 );
3742 if( iWrite>=iFirst ){
3743 i64 iOff = walFrameOffset(iWrite, szPage) + WAL_FRAME_HDRSIZE;
3744 void *pData;
3745 if( pWal->iReCksum==0 || iWrite<pWal->iReCksum ){
3746 pWal->iReCksum = iWrite;
3748 #if defined(SQLITE_HAS_CODEC)
3749 if( (pData = sqlcipherPagerCodec(p))==0 ) return SQLITE_NOMEM;
3750 #else
3751 pData = p->pData;
3752 #endif
3753 rc = sqlite3OsWrite(pWal->pWalFd, pData, szPage, iOff);
3754 if( rc ) return rc;
3755 p->flags &= ~PGHDR_WAL_APPEND;
3756 continue;
3760 iFrame++;
3761 assert( iOffset==walFrameOffset(iFrame, szPage) );
3762 nDbSize = (isCommit && p->pDirty==0) ? nTruncate : 0;
3763 rc = walWriteOneFrame(&w, p, nDbSize, iOffset);
3764 if( rc ) return rc;
3765 pLast = p;
3766 iOffset += szFrame;
3767 p->flags |= PGHDR_WAL_APPEND;
3770 /* Recalculate checksums within the wal file if required. */
3771 if( isCommit && pWal->iReCksum ){
3772 rc = walRewriteChecksums(pWal, iFrame);
3773 if( rc ) return rc;
3776 /* If this is the end of a transaction, then we might need to pad
3777 ** the transaction and/or sync the WAL file.
3779 ** Padding and syncing only occur if this set of frames complete a
3780 ** transaction and if PRAGMA synchronous=FULL. If synchronous==NORMAL
3781 ** or synchronous==OFF, then no padding or syncing are needed.
3783 ** If SQLITE_IOCAP_POWERSAFE_OVERWRITE is defined, then padding is not
3784 ** needed and only the sync is done. If padding is needed, then the
3785 ** final frame is repeated (with its commit mark) until the next sector
3786 ** boundary is crossed. Only the part of the WAL prior to the last
3787 ** sector boundary is synced; the part of the last frame that extends
3788 ** past the sector boundary is written after the sync.
3790 if( isCommit && WAL_SYNC_FLAGS(sync_flags)!=0 ){
3791 int bSync = 1;
3792 if( pWal->padToSectorBoundary ){
3793 int sectorSize = sqlite3SectorSize(pWal->pWalFd);
3794 w.iSyncPoint = ((iOffset+sectorSize-1)/sectorSize)*sectorSize;
3795 bSync = (w.iSyncPoint==iOffset);
3796 testcase( bSync );
3797 while( iOffset<w.iSyncPoint ){
3798 rc = walWriteOneFrame(&w, pLast, nTruncate, iOffset);
3799 if( rc ) return rc;
3800 iOffset += szFrame;
3801 nExtra++;
3802 assert( pLast!=0 );
3805 if( bSync ){
3806 assert( rc==SQLITE_OK );
3807 rc = sqlite3OsSync(w.pFd, WAL_SYNC_FLAGS(sync_flags));
3811 /* If this frame set completes the first transaction in the WAL and
3812 ** if PRAGMA journal_size_limit is set, then truncate the WAL to the
3813 ** journal size limit, if possible.
3815 if( isCommit && pWal->truncateOnCommit && pWal->mxWalSize>=0 ){
3816 i64 sz = pWal->mxWalSize;
3817 if( walFrameOffset(iFrame+nExtra+1, szPage)>pWal->mxWalSize ){
3818 sz = walFrameOffset(iFrame+nExtra+1, szPage);
3820 walLimitSize(pWal, sz);
3821 pWal->truncateOnCommit = 0;
3824 /* Append data to the wal-index. It is not necessary to lock the
3825 ** wal-index to do this as the SQLITE_SHM_WRITE lock held on the wal-index
3826 ** guarantees that there are no other writers, and no data that may
3827 ** be in use by existing readers is being overwritten.
3829 iFrame = pWal->hdr.mxFrame;
3830 for(p=pList; p && rc==SQLITE_OK; p=p->pDirty){
3831 if( (p->flags & PGHDR_WAL_APPEND)==0 ) continue;
3832 iFrame++;
3833 rc = walIndexAppend(pWal, iFrame, p->pgno);
3835 assert( pLast!=0 || nExtra==0 );
3836 while( rc==SQLITE_OK && nExtra>0 ){
3837 iFrame++;
3838 nExtra--;
3839 rc = walIndexAppend(pWal, iFrame, pLast->pgno);
3842 if( rc==SQLITE_OK ){
3843 /* Update the private copy of the header. */
3844 pWal->hdr.szPage = (u16)((szPage&0xff00) | (szPage>>16));
3845 testcase( szPage<=32768 );
3846 testcase( szPage>=65536 );
3847 pWal->hdr.mxFrame = iFrame;
3848 if( isCommit ){
3849 pWal->hdr.iChange++;
3850 pWal->hdr.nPage = nTruncate;
3852 /* If this is a commit, update the wal-index header too. */
3853 if( isCommit ){
3854 walIndexWriteHdr(pWal);
3855 pWal->iCallback = iFrame;
3859 WALTRACE(("WAL%p: frame write %s\n", pWal, rc ? "failed" : "ok"));
3860 return rc;
3864 ** This routine is called to implement sqlite3_wal_checkpoint() and
3865 ** related interfaces.
3867 ** Obtain a CHECKPOINT lock and then backfill as much information as
3868 ** we can from WAL into the database.
3870 ** If parameter xBusy is not NULL, it is a pointer to a busy-handler
3871 ** callback. In this case this function runs a blocking checkpoint.
3873 int sqlite3WalCheckpoint(
3874 Wal *pWal, /* Wal connection */
3875 sqlite3 *db, /* Check this handle's interrupt flag */
3876 int eMode, /* PASSIVE, FULL, RESTART, or TRUNCATE */
3877 int (*xBusy)(void*), /* Function to call when busy */
3878 void *pBusyArg, /* Context argument for xBusyHandler */
3879 int sync_flags, /* Flags to sync db file with (or 0) */
3880 int nBuf, /* Size of temporary buffer */
3881 u8 *zBuf, /* Temporary buffer to use */
3882 int *pnLog, /* OUT: Number of frames in WAL */
3883 int *pnCkpt /* OUT: Number of backfilled frames in WAL */
3885 int rc; /* Return code */
3886 int isChanged = 0; /* True if a new wal-index header is loaded */
3887 int eMode2 = eMode; /* Mode to pass to walCheckpoint() */
3888 int (*xBusy2)(void*) = xBusy; /* Busy handler for eMode2 */
3890 assert( pWal->ckptLock==0 );
3891 assert( pWal->writeLock==0 );
3893 /* EVIDENCE-OF: R-62920-47450 The busy-handler callback is never invoked
3894 ** in the SQLITE_CHECKPOINT_PASSIVE mode. */
3895 assert( eMode!=SQLITE_CHECKPOINT_PASSIVE || xBusy==0 );
3897 if( pWal->readOnly ) return SQLITE_READONLY;
3898 WALTRACE(("WAL%p: checkpoint begins\n", pWal));
3900 /* Enable blocking locks, if possible. If blocking locks are successfully
3901 ** enabled, set xBusy2=0 so that the busy-handler is never invoked. */
3902 sqlite3WalDb(pWal, db);
3903 (void)walEnableBlocking(pWal);
3905 /* IMPLEMENTATION-OF: R-62028-47212 All calls obtain an exclusive
3906 ** "checkpoint" lock on the database file.
3907 ** EVIDENCE-OF: R-10421-19736 If any other process is running a
3908 ** checkpoint operation at the same time, the lock cannot be obtained and
3909 ** SQLITE_BUSY is returned.
3910 ** EVIDENCE-OF: R-53820-33897 Even if there is a busy-handler configured,
3911 ** it will not be invoked in this case.
3913 rc = walLockExclusive(pWal, WAL_CKPT_LOCK, 1);
3914 testcase( rc==SQLITE_BUSY );
3915 testcase( rc!=SQLITE_OK && xBusy2!=0 );
3916 if( rc==SQLITE_OK ){
3917 pWal->ckptLock = 1;
3919 /* IMPLEMENTATION-OF: R-59782-36818 The SQLITE_CHECKPOINT_FULL, RESTART and
3920 ** TRUNCATE modes also obtain the exclusive "writer" lock on the database
3921 ** file.
3923 ** EVIDENCE-OF: R-60642-04082 If the writer lock cannot be obtained
3924 ** immediately, and a busy-handler is configured, it is invoked and the
3925 ** writer lock retried until either the busy-handler returns 0 or the
3926 ** lock is successfully obtained.
3928 if( eMode!=SQLITE_CHECKPOINT_PASSIVE ){
3929 rc = walBusyLock(pWal, xBusy2, pBusyArg, WAL_WRITE_LOCK, 1);
3930 if( rc==SQLITE_OK ){
3931 pWal->writeLock = 1;
3932 }else if( rc==SQLITE_BUSY ){
3933 eMode2 = SQLITE_CHECKPOINT_PASSIVE;
3934 xBusy2 = 0;
3935 rc = SQLITE_OK;
3941 /* Read the wal-index header. */
3942 if( rc==SQLITE_OK ){
3943 walDisableBlocking(pWal);
3944 rc = walIndexReadHdr(pWal, &isChanged);
3945 (void)walEnableBlocking(pWal);
3946 if( isChanged && pWal->pDbFd->pMethods->iVersion>=3 ){
3947 sqlite3OsUnfetch(pWal->pDbFd, 0, 0);
3951 /* Copy data from the log to the database file. */
3952 if( rc==SQLITE_OK ){
3954 if( pWal->hdr.mxFrame && walPagesize(pWal)!=nBuf ){
3955 rc = SQLITE_CORRUPT_BKPT;
3956 }else{
3957 rc = walCheckpoint(pWal, db, eMode2, xBusy2, pBusyArg, sync_flags, zBuf);
3960 /* If no error occurred, set the output variables. */
3961 if( rc==SQLITE_OK || rc==SQLITE_BUSY ){
3962 if( pnLog ) *pnLog = (int)pWal->hdr.mxFrame;
3963 if( pnCkpt ) *pnCkpt = (int)(walCkptInfo(pWal)->nBackfill);
3967 if( isChanged ){
3968 /* If a new wal-index header was loaded before the checkpoint was
3969 ** performed, then the pager-cache associated with pWal is now
3970 ** out of date. So zero the cached wal-index header to ensure that
3971 ** next time the pager opens a snapshot on this database it knows that
3972 ** the cache needs to be reset.
3974 memset(&pWal->hdr, 0, sizeof(WalIndexHdr));
3977 walDisableBlocking(pWal);
3978 sqlite3WalDb(pWal, 0);
3980 /* Release the locks. */
3981 sqlite3WalEndWriteTransaction(pWal);
3982 if( pWal->ckptLock ){
3983 walUnlockExclusive(pWal, WAL_CKPT_LOCK, 1);
3984 pWal->ckptLock = 0;
3986 WALTRACE(("WAL%p: checkpoint %s\n", pWal, rc ? "failed" : "ok"));
3987 #ifdef SQLITE_ENABLE_SETLK_TIMEOUT
3988 if( rc==SQLITE_BUSY_TIMEOUT ) rc = SQLITE_BUSY;
3989 #endif
3990 return (rc==SQLITE_OK && eMode!=eMode2 ? SQLITE_BUSY : rc);
3993 /* Return the value to pass to a sqlite3_wal_hook callback, the
3994 ** number of frames in the WAL at the point of the last commit since
3995 ** sqlite3WalCallback() was called. If no commits have occurred since
3996 ** the last call, then return 0.
3998 int sqlite3WalCallback(Wal *pWal){
3999 u32 ret = 0;
4000 if( pWal ){
4001 ret = pWal->iCallback;
4002 pWal->iCallback = 0;
4004 return (int)ret;
4008 ** This function is called to change the WAL subsystem into or out
4009 ** of locking_mode=EXCLUSIVE.
4011 ** If op is zero, then attempt to change from locking_mode=EXCLUSIVE
4012 ** into locking_mode=NORMAL. This means that we must acquire a lock
4013 ** on the pWal->readLock byte. If the WAL is already in locking_mode=NORMAL
4014 ** or if the acquisition of the lock fails, then return 0. If the
4015 ** transition out of exclusive-mode is successful, return 1. This
4016 ** operation must occur while the pager is still holding the exclusive
4017 ** lock on the main database file.
4019 ** If op is one, then change from locking_mode=NORMAL into
4020 ** locking_mode=EXCLUSIVE. This means that the pWal->readLock must
4021 ** be released. Return 1 if the transition is made and 0 if the
4022 ** WAL is already in exclusive-locking mode - meaning that this
4023 ** routine is a no-op. The pager must already hold the exclusive lock
4024 ** on the main database file before invoking this operation.
4026 ** If op is negative, then do a dry-run of the op==1 case but do
4027 ** not actually change anything. The pager uses this to see if it
4028 ** should acquire the database exclusive lock prior to invoking
4029 ** the op==1 case.
4031 int sqlite3WalExclusiveMode(Wal *pWal, int op){
4032 int rc;
4033 assert( pWal->writeLock==0 );
4034 assert( pWal->exclusiveMode!=WAL_HEAPMEMORY_MODE || op==-1 );
4036 /* pWal->readLock is usually set, but might be -1 if there was a
4037 ** prior error while attempting to acquire are read-lock. This cannot
4038 ** happen if the connection is actually in exclusive mode (as no xShmLock
4039 ** locks are taken in this case). Nor should the pager attempt to
4040 ** upgrade to exclusive-mode following such an error.
4042 assert( pWal->readLock>=0 || pWal->lockError );
4043 assert( pWal->readLock>=0 || (op<=0 && pWal->exclusiveMode==0) );
4045 if( op==0 ){
4046 if( pWal->exclusiveMode!=WAL_NORMAL_MODE ){
4047 pWal->exclusiveMode = WAL_NORMAL_MODE;
4048 if( walLockShared(pWal, WAL_READ_LOCK(pWal->readLock))!=SQLITE_OK ){
4049 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
4051 rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
4052 }else{
4053 /* Already in locking_mode=NORMAL */
4054 rc = 0;
4056 }else if( op>0 ){
4057 assert( pWal->exclusiveMode==WAL_NORMAL_MODE );
4058 assert( pWal->readLock>=0 );
4059 walUnlockShared(pWal, WAL_READ_LOCK(pWal->readLock));
4060 pWal->exclusiveMode = WAL_EXCLUSIVE_MODE;
4061 rc = 1;
4062 }else{
4063 rc = pWal->exclusiveMode==WAL_NORMAL_MODE;
4065 return rc;
4069 ** Return true if the argument is non-NULL and the WAL module is using
4070 ** heap-memory for the wal-index. Otherwise, if the argument is NULL or the
4071 ** WAL module is using shared-memory, return false.
4073 int sqlite3WalHeapMemory(Wal *pWal){
4074 return (pWal && pWal->exclusiveMode==WAL_HEAPMEMORY_MODE );
4077 #ifdef SQLITE_ENABLE_SNAPSHOT
4078 /* Create a snapshot object. The content of a snapshot is opaque to
4079 ** every other subsystem, so the WAL module can put whatever it needs
4080 ** in the object.
4082 int sqlite3WalSnapshotGet(Wal *pWal, sqlite3_snapshot **ppSnapshot){
4083 int rc = SQLITE_OK;
4084 WalIndexHdr *pRet;
4085 static const u32 aZero[4] = { 0, 0, 0, 0 };
4087 assert( pWal->readLock>=0 && pWal->writeLock==0 );
4089 if( memcmp(&pWal->hdr.aFrameCksum[0],aZero,16)==0 ){
4090 *ppSnapshot = 0;
4091 return SQLITE_ERROR;
4093 pRet = (WalIndexHdr*)sqlite3_malloc(sizeof(WalIndexHdr));
4094 if( pRet==0 ){
4095 rc = SQLITE_NOMEM_BKPT;
4096 }else{
4097 memcpy(pRet, &pWal->hdr, sizeof(WalIndexHdr));
4098 *ppSnapshot = (sqlite3_snapshot*)pRet;
4101 return rc;
4104 /* Try to open on pSnapshot when the next read-transaction starts
4106 void sqlite3WalSnapshotOpen(
4107 Wal *pWal,
4108 sqlite3_snapshot *pSnapshot
4110 pWal->pSnapshot = (WalIndexHdr*)pSnapshot;
4114 ** Return a +ve value if snapshot p1 is newer than p2. A -ve value if
4115 ** p1 is older than p2 and zero if p1 and p2 are the same snapshot.
4117 int sqlite3_snapshot_cmp(sqlite3_snapshot *p1, sqlite3_snapshot *p2){
4118 WalIndexHdr *pHdr1 = (WalIndexHdr*)p1;
4119 WalIndexHdr *pHdr2 = (WalIndexHdr*)p2;
4121 /* aSalt[0] is a copy of the value stored in the wal file header. It
4122 ** is incremented each time the wal file is restarted. */
4123 if( pHdr1->aSalt[0]<pHdr2->aSalt[0] ) return -1;
4124 if( pHdr1->aSalt[0]>pHdr2->aSalt[0] ) return +1;
4125 if( pHdr1->mxFrame<pHdr2->mxFrame ) return -1;
4126 if( pHdr1->mxFrame>pHdr2->mxFrame ) return +1;
4127 return 0;
4131 ** The caller currently has a read transaction open on the database.
4132 ** This function takes a SHARED lock on the CHECKPOINTER slot and then
4133 ** checks if the snapshot passed as the second argument is still
4134 ** available. If so, SQLITE_OK is returned.
4136 ** If the snapshot is not available, SQLITE_ERROR is returned. Or, if
4137 ** the CHECKPOINTER lock cannot be obtained, SQLITE_BUSY. If any error
4138 ** occurs (any value other than SQLITE_OK is returned), the CHECKPOINTER
4139 ** lock is released before returning.
4141 int sqlite3WalSnapshotCheck(Wal *pWal, sqlite3_snapshot *pSnapshot){
4142 int rc;
4143 rc = walLockShared(pWal, WAL_CKPT_LOCK);
4144 if( rc==SQLITE_OK ){
4145 WalIndexHdr *pNew = (WalIndexHdr*)pSnapshot;
4146 if( memcmp(pNew->aSalt, pWal->hdr.aSalt, sizeof(pWal->hdr.aSalt))
4147 || pNew->mxFrame<walCkptInfo(pWal)->nBackfillAttempted
4149 rc = SQLITE_ERROR_SNAPSHOT;
4150 walUnlockShared(pWal, WAL_CKPT_LOCK);
4153 return rc;
4157 ** Release a lock obtained by an earlier successful call to
4158 ** sqlite3WalSnapshotCheck().
4160 void sqlite3WalSnapshotUnlock(Wal *pWal){
4161 assert( pWal );
4162 walUnlockShared(pWal, WAL_CKPT_LOCK);
4166 #endif /* SQLITE_ENABLE_SNAPSHOT */
4168 #ifdef SQLITE_ENABLE_ZIPVFS
4170 ** If the argument is not NULL, it points to a Wal object that holds a
4171 ** read-lock. This function returns the database page-size if it is known,
4172 ** or zero if it is not (or if pWal is NULL).
4174 int sqlite3WalFramesize(Wal *pWal){
4175 assert( pWal==0 || pWal->readLock>=0 );
4176 return (pWal ? pWal->szPage : 0);
4178 #endif
4180 /* Return the sqlite3_file object for the WAL file
4182 sqlite3_file *sqlite3WalFile(Wal *pWal){
4183 return pWal->pWalFd;
4186 #endif /* #ifndef SQLITE_OMIT_WAL */