Merge sqlite-release(3.42.0) into prerelease-integration
[sqlcipher.git] / src / window.c
bloba8081aa2444dc3b35d60993817b84a2debcb78a0
1 /*
2 ** 2018 May 08
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 #include "sqliteInt.h"
15 #ifndef SQLITE_OMIT_WINDOWFUNC
18 ** SELECT REWRITING
20 ** Any SELECT statement that contains one or more window functions in
21 ** either the select list or ORDER BY clause (the only two places window
22 ** functions may be used) is transformed by function sqlite3WindowRewrite()
23 ** in order to support window function processing. For example, with the
24 ** schema:
26 ** CREATE TABLE t1(a, b, c, d, e, f, g);
28 ** the statement:
30 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM t1 ORDER BY e;
32 ** is transformed to:
34 ** SELECT a+1, max(b) OVER (PARTITION BY c ORDER BY d) FROM (
35 ** SELECT a, e, c, d, b FROM t1 ORDER BY c, d
36 ** ) ORDER BY e;
38 ** The flattening optimization is disabled when processing this transformed
39 ** SELECT statement. This allows the implementation of the window function
40 ** (in this case max()) to process rows sorted in order of (c, d), which
41 ** makes things easier for obvious reasons. More generally:
43 ** * FROM, WHERE, GROUP BY and HAVING clauses are all moved to
44 ** the sub-query.
46 ** * ORDER BY, LIMIT and OFFSET remain part of the parent query.
48 ** * Terminals from each of the expression trees that make up the
49 ** select-list and ORDER BY expressions in the parent query are
50 ** selected by the sub-query. For the purposes of the transformation,
51 ** terminals are column references and aggregate functions.
53 ** If there is more than one window function in the SELECT that uses
54 ** the same window declaration (the OVER bit), then a single scan may
55 ** be used to process more than one window function. For example:
57 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d),
58 ** min(e) OVER (PARTITION BY c ORDER BY d)
59 ** FROM t1;
61 ** is transformed in the same way as the example above. However:
63 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d),
64 ** min(e) OVER (PARTITION BY a ORDER BY b)
65 ** FROM t1;
67 ** Must be transformed to:
69 ** SELECT max(b) OVER (PARTITION BY c ORDER BY d) FROM (
70 ** SELECT e, min(e) OVER (PARTITION BY a ORDER BY b), c, d, b FROM
71 ** SELECT a, e, c, d, b FROM t1 ORDER BY a, b
72 ** ) ORDER BY c, d
73 ** ) ORDER BY e;
75 ** so that both min() and max() may process rows in the order defined by
76 ** their respective window declarations.
78 ** INTERFACE WITH SELECT.C
80 ** When processing the rewritten SELECT statement, code in select.c calls
81 ** sqlite3WhereBegin() to begin iterating through the results of the
82 ** sub-query, which is always implemented as a co-routine. It then calls
83 ** sqlite3WindowCodeStep() to process rows and finish the scan by calling
84 ** sqlite3WhereEnd().
86 ** sqlite3WindowCodeStep() generates VM code so that, for each row returned
87 ** by the sub-query a sub-routine (OP_Gosub) coded by select.c is invoked.
88 ** When the sub-routine is invoked:
90 ** * The results of all window-functions for the row are stored
91 ** in the associated Window.regResult registers.
93 ** * The required terminal values are stored in the current row of
94 ** temp table Window.iEphCsr.
96 ** In some cases, depending on the window frame and the specific window
97 ** functions invoked, sqlite3WindowCodeStep() caches each entire partition
98 ** in a temp table before returning any rows. In other cases it does not.
99 ** This detail is encapsulated within this file, the code generated by
100 ** select.c is the same in either case.
102 ** BUILT-IN WINDOW FUNCTIONS
104 ** This implementation features the following built-in window functions:
106 ** row_number()
107 ** rank()
108 ** dense_rank()
109 ** percent_rank()
110 ** cume_dist()
111 ** ntile(N)
112 ** lead(expr [, offset [, default]])
113 ** lag(expr [, offset [, default]])
114 ** first_value(expr)
115 ** last_value(expr)
116 ** nth_value(expr, N)
118 ** These are the same built-in window functions supported by Postgres.
119 ** Although the behaviour of aggregate window functions (functions that
120 ** can be used as either aggregates or window funtions) allows them to
121 ** be implemented using an API, built-in window functions are much more
122 ** esoteric. Additionally, some window functions (e.g. nth_value())
123 ** may only be implemented by caching the entire partition in memory.
124 ** As such, some built-in window functions use the same API as aggregate
125 ** window functions and some are implemented directly using VDBE
126 ** instructions. Additionally, for those functions that use the API, the
127 ** window frame is sometimes modified before the SELECT statement is
128 ** rewritten. For example, regardless of the specified window frame, the
129 ** row_number() function always uses:
131 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
133 ** See sqlite3WindowUpdate() for details.
135 ** As well as some of the built-in window functions, aggregate window
136 ** functions min() and max() are implemented using VDBE instructions if
137 ** the start of the window frame is declared as anything other than
138 ** UNBOUNDED PRECEDING.
142 ** Implementation of built-in window function row_number(). Assumes that the
143 ** window frame has been coerced to:
145 ** ROWS BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
147 static void row_numberStepFunc(
148 sqlite3_context *pCtx,
149 int nArg,
150 sqlite3_value **apArg
152 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
153 if( p ) (*p)++;
154 UNUSED_PARAMETER(nArg);
155 UNUSED_PARAMETER(apArg);
157 static void row_numberValueFunc(sqlite3_context *pCtx){
158 i64 *p = (i64*)sqlite3_aggregate_context(pCtx, sizeof(*p));
159 sqlite3_result_int64(pCtx, (p ? *p : 0));
163 ** Context object type used by rank(), dense_rank(), percent_rank() and
164 ** cume_dist().
166 struct CallCount {
167 i64 nValue;
168 i64 nStep;
169 i64 nTotal;
173 ** Implementation of built-in window function dense_rank(). Assumes that
174 ** the window frame has been set to:
176 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
178 static void dense_rankStepFunc(
179 sqlite3_context *pCtx,
180 int nArg,
181 sqlite3_value **apArg
183 struct CallCount *p;
184 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
185 if( p ) p->nStep = 1;
186 UNUSED_PARAMETER(nArg);
187 UNUSED_PARAMETER(apArg);
189 static void dense_rankValueFunc(sqlite3_context *pCtx){
190 struct CallCount *p;
191 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
192 if( p ){
193 if( p->nStep ){
194 p->nValue++;
195 p->nStep = 0;
197 sqlite3_result_int64(pCtx, p->nValue);
202 ** Implementation of built-in window function nth_value(). This
203 ** implementation is used in "slow mode" only - when the EXCLUDE clause
204 ** is not set to the default value "NO OTHERS".
206 struct NthValueCtx {
207 i64 nStep;
208 sqlite3_value *pValue;
210 static void nth_valueStepFunc(
211 sqlite3_context *pCtx,
212 int nArg,
213 sqlite3_value **apArg
215 struct NthValueCtx *p;
216 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
217 if( p ){
218 i64 iVal;
219 switch( sqlite3_value_numeric_type(apArg[1]) ){
220 case SQLITE_INTEGER:
221 iVal = sqlite3_value_int64(apArg[1]);
222 break;
223 case SQLITE_FLOAT: {
224 double fVal = sqlite3_value_double(apArg[1]);
225 if( ((i64)fVal)!=fVal ) goto error_out;
226 iVal = (i64)fVal;
227 break;
229 default:
230 goto error_out;
232 if( iVal<=0 ) goto error_out;
234 p->nStep++;
235 if( iVal==p->nStep ){
236 p->pValue = sqlite3_value_dup(apArg[0]);
237 if( !p->pValue ){
238 sqlite3_result_error_nomem(pCtx);
242 UNUSED_PARAMETER(nArg);
243 UNUSED_PARAMETER(apArg);
244 return;
246 error_out:
247 sqlite3_result_error(
248 pCtx, "second argument to nth_value must be a positive integer", -1
251 static void nth_valueFinalizeFunc(sqlite3_context *pCtx){
252 struct NthValueCtx *p;
253 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, 0);
254 if( p && p->pValue ){
255 sqlite3_result_value(pCtx, p->pValue);
256 sqlite3_value_free(p->pValue);
257 p->pValue = 0;
260 #define nth_valueInvFunc noopStepFunc
261 #define nth_valueValueFunc noopValueFunc
263 static void first_valueStepFunc(
264 sqlite3_context *pCtx,
265 int nArg,
266 sqlite3_value **apArg
268 struct NthValueCtx *p;
269 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
270 if( p && p->pValue==0 ){
271 p->pValue = sqlite3_value_dup(apArg[0]);
272 if( !p->pValue ){
273 sqlite3_result_error_nomem(pCtx);
276 UNUSED_PARAMETER(nArg);
277 UNUSED_PARAMETER(apArg);
279 static void first_valueFinalizeFunc(sqlite3_context *pCtx){
280 struct NthValueCtx *p;
281 p = (struct NthValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
282 if( p && p->pValue ){
283 sqlite3_result_value(pCtx, p->pValue);
284 sqlite3_value_free(p->pValue);
285 p->pValue = 0;
288 #define first_valueInvFunc noopStepFunc
289 #define first_valueValueFunc noopValueFunc
292 ** Implementation of built-in window function rank(). Assumes that
293 ** the window frame has been set to:
295 ** RANGE BETWEEN UNBOUNDED PRECEDING AND CURRENT ROW
297 static void rankStepFunc(
298 sqlite3_context *pCtx,
299 int nArg,
300 sqlite3_value **apArg
302 struct CallCount *p;
303 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
304 if( p ){
305 p->nStep++;
306 if( p->nValue==0 ){
307 p->nValue = p->nStep;
310 UNUSED_PARAMETER(nArg);
311 UNUSED_PARAMETER(apArg);
313 static void rankValueFunc(sqlite3_context *pCtx){
314 struct CallCount *p;
315 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
316 if( p ){
317 sqlite3_result_int64(pCtx, p->nValue);
318 p->nValue = 0;
323 ** Implementation of built-in window function percent_rank(). Assumes that
324 ** the window frame has been set to:
326 ** GROUPS BETWEEN CURRENT ROW AND UNBOUNDED FOLLOWING
328 static void percent_rankStepFunc(
329 sqlite3_context *pCtx,
330 int nArg,
331 sqlite3_value **apArg
333 struct CallCount *p;
334 UNUSED_PARAMETER(nArg); assert( nArg==0 );
335 UNUSED_PARAMETER(apArg);
336 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
337 if( p ){
338 p->nTotal++;
341 static void percent_rankInvFunc(
342 sqlite3_context *pCtx,
343 int nArg,
344 sqlite3_value **apArg
346 struct CallCount *p;
347 UNUSED_PARAMETER(nArg); assert( nArg==0 );
348 UNUSED_PARAMETER(apArg);
349 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
350 p->nStep++;
352 static void percent_rankValueFunc(sqlite3_context *pCtx){
353 struct CallCount *p;
354 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
355 if( p ){
356 p->nValue = p->nStep;
357 if( p->nTotal>1 ){
358 double r = (double)p->nValue / (double)(p->nTotal-1);
359 sqlite3_result_double(pCtx, r);
360 }else{
361 sqlite3_result_double(pCtx, 0.0);
365 #define percent_rankFinalizeFunc percent_rankValueFunc
368 ** Implementation of built-in window function cume_dist(). Assumes that
369 ** the window frame has been set to:
371 ** GROUPS BETWEEN 1 FOLLOWING AND UNBOUNDED FOLLOWING
373 static void cume_distStepFunc(
374 sqlite3_context *pCtx,
375 int nArg,
376 sqlite3_value **apArg
378 struct CallCount *p;
379 UNUSED_PARAMETER(nArg); assert( nArg==0 );
380 UNUSED_PARAMETER(apArg);
381 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
382 if( p ){
383 p->nTotal++;
386 static void cume_distInvFunc(
387 sqlite3_context *pCtx,
388 int nArg,
389 sqlite3_value **apArg
391 struct CallCount *p;
392 UNUSED_PARAMETER(nArg); assert( nArg==0 );
393 UNUSED_PARAMETER(apArg);
394 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, sizeof(*p));
395 p->nStep++;
397 static void cume_distValueFunc(sqlite3_context *pCtx){
398 struct CallCount *p;
399 p = (struct CallCount*)sqlite3_aggregate_context(pCtx, 0);
400 if( p ){
401 double r = (double)(p->nStep) / (double)(p->nTotal);
402 sqlite3_result_double(pCtx, r);
405 #define cume_distFinalizeFunc cume_distValueFunc
408 ** Context object for ntile() window function.
410 struct NtileCtx {
411 i64 nTotal; /* Total rows in partition */
412 i64 nParam; /* Parameter passed to ntile(N) */
413 i64 iRow; /* Current row */
417 ** Implementation of ntile(). This assumes that the window frame has
418 ** been coerced to:
420 ** ROWS CURRENT ROW AND UNBOUNDED FOLLOWING
422 static void ntileStepFunc(
423 sqlite3_context *pCtx,
424 int nArg,
425 sqlite3_value **apArg
427 struct NtileCtx *p;
428 assert( nArg==1 ); UNUSED_PARAMETER(nArg);
429 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
430 if( p ){
431 if( p->nTotal==0 ){
432 p->nParam = sqlite3_value_int64(apArg[0]);
433 if( p->nParam<=0 ){
434 sqlite3_result_error(
435 pCtx, "argument of ntile must be a positive integer", -1
439 p->nTotal++;
442 static void ntileInvFunc(
443 sqlite3_context *pCtx,
444 int nArg,
445 sqlite3_value **apArg
447 struct NtileCtx *p;
448 assert( nArg==1 ); UNUSED_PARAMETER(nArg);
449 UNUSED_PARAMETER(apArg);
450 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
451 p->iRow++;
453 static void ntileValueFunc(sqlite3_context *pCtx){
454 struct NtileCtx *p;
455 p = (struct NtileCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
456 if( p && p->nParam>0 ){
457 int nSize = (p->nTotal / p->nParam);
458 if( nSize==0 ){
459 sqlite3_result_int64(pCtx, p->iRow+1);
460 }else{
461 i64 nLarge = p->nTotal - p->nParam*nSize;
462 i64 iSmall = nLarge*(nSize+1);
463 i64 iRow = p->iRow;
465 assert( (nLarge*(nSize+1) + (p->nParam-nLarge)*nSize)==p->nTotal );
467 if( iRow<iSmall ){
468 sqlite3_result_int64(pCtx, 1 + iRow/(nSize+1));
469 }else{
470 sqlite3_result_int64(pCtx, 1 + nLarge + (iRow-iSmall)/nSize);
475 #define ntileFinalizeFunc ntileValueFunc
478 ** Context object for last_value() window function.
480 struct LastValueCtx {
481 sqlite3_value *pVal;
482 int nVal;
486 ** Implementation of last_value().
488 static void last_valueStepFunc(
489 sqlite3_context *pCtx,
490 int nArg,
491 sqlite3_value **apArg
493 struct LastValueCtx *p;
494 UNUSED_PARAMETER(nArg);
495 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
496 if( p ){
497 sqlite3_value_free(p->pVal);
498 p->pVal = sqlite3_value_dup(apArg[0]);
499 if( p->pVal==0 ){
500 sqlite3_result_error_nomem(pCtx);
501 }else{
502 p->nVal++;
506 static void last_valueInvFunc(
507 sqlite3_context *pCtx,
508 int nArg,
509 sqlite3_value **apArg
511 struct LastValueCtx *p;
512 UNUSED_PARAMETER(nArg);
513 UNUSED_PARAMETER(apArg);
514 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
515 if( ALWAYS(p) ){
516 p->nVal--;
517 if( p->nVal==0 ){
518 sqlite3_value_free(p->pVal);
519 p->pVal = 0;
523 static void last_valueValueFunc(sqlite3_context *pCtx){
524 struct LastValueCtx *p;
525 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, 0);
526 if( p && p->pVal ){
527 sqlite3_result_value(pCtx, p->pVal);
530 static void last_valueFinalizeFunc(sqlite3_context *pCtx){
531 struct LastValueCtx *p;
532 p = (struct LastValueCtx*)sqlite3_aggregate_context(pCtx, sizeof(*p));
533 if( p && p->pVal ){
534 sqlite3_result_value(pCtx, p->pVal);
535 sqlite3_value_free(p->pVal);
536 p->pVal = 0;
541 ** Static names for the built-in window function names. These static
542 ** names are used, rather than string literals, so that FuncDef objects
543 ** can be associated with a particular window function by direct
544 ** comparison of the zName pointer. Example:
546 ** if( pFuncDef->zName==row_valueName ){ ... }
548 static const char row_numberName[] = "row_number";
549 static const char dense_rankName[] = "dense_rank";
550 static const char rankName[] = "rank";
551 static const char percent_rankName[] = "percent_rank";
552 static const char cume_distName[] = "cume_dist";
553 static const char ntileName[] = "ntile";
554 static const char last_valueName[] = "last_value";
555 static const char nth_valueName[] = "nth_value";
556 static const char first_valueName[] = "first_value";
557 static const char leadName[] = "lead";
558 static const char lagName[] = "lag";
561 ** No-op implementations of xStep() and xFinalize(). Used as place-holders
562 ** for built-in window functions that never call those interfaces.
564 ** The noopValueFunc() is called but is expected to do nothing. The
565 ** noopStepFunc() is never called, and so it is marked with NO_TEST to
566 ** let the test coverage routine know not to expect this function to be
567 ** invoked.
569 static void noopStepFunc( /*NO_TEST*/
570 sqlite3_context *p, /*NO_TEST*/
571 int n, /*NO_TEST*/
572 sqlite3_value **a /*NO_TEST*/
573 ){ /*NO_TEST*/
574 UNUSED_PARAMETER(p); /*NO_TEST*/
575 UNUSED_PARAMETER(n); /*NO_TEST*/
576 UNUSED_PARAMETER(a); /*NO_TEST*/
577 assert(0); /*NO_TEST*/
578 } /*NO_TEST*/
579 static void noopValueFunc(sqlite3_context *p){ UNUSED_PARAMETER(p); /*no-op*/ }
581 /* Window functions that use all window interfaces: xStep, xFinal,
582 ** xValue, and xInverse */
583 #define WINDOWFUNCALL(name,nArg,extra) { \
584 nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \
585 name ## StepFunc, name ## FinalizeFunc, name ## ValueFunc, \
586 name ## InvFunc, name ## Name, {0} \
589 /* Window functions that are implemented using bytecode and thus have
590 ** no-op routines for their methods */
591 #define WINDOWFUNCNOOP(name,nArg,extra) { \
592 nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \
593 noopStepFunc, noopValueFunc, noopValueFunc, \
594 noopStepFunc, name ## Name, {0} \
597 /* Window functions that use all window interfaces: xStep, the
598 ** same routine for xFinalize and xValue and which never call
599 ** xInverse. */
600 #define WINDOWFUNCX(name,nArg,extra) { \
601 nArg, (SQLITE_FUNC_BUILTIN|SQLITE_UTF8|SQLITE_FUNC_WINDOW|extra), 0, 0, \
602 name ## StepFunc, name ## ValueFunc, name ## ValueFunc, \
603 noopStepFunc, name ## Name, {0} \
608 ** Register those built-in window functions that are not also aggregates.
610 void sqlite3WindowFunctions(void){
611 static FuncDef aWindowFuncs[] = {
612 WINDOWFUNCX(row_number, 0, 0),
613 WINDOWFUNCX(dense_rank, 0, 0),
614 WINDOWFUNCX(rank, 0, 0),
615 WINDOWFUNCALL(percent_rank, 0, 0),
616 WINDOWFUNCALL(cume_dist, 0, 0),
617 WINDOWFUNCALL(ntile, 1, 0),
618 WINDOWFUNCALL(last_value, 1, 0),
619 WINDOWFUNCALL(nth_value, 2, 0),
620 WINDOWFUNCALL(first_value, 1, 0),
621 WINDOWFUNCNOOP(lead, 1, 0),
622 WINDOWFUNCNOOP(lead, 2, 0),
623 WINDOWFUNCNOOP(lead, 3, 0),
624 WINDOWFUNCNOOP(lag, 1, 0),
625 WINDOWFUNCNOOP(lag, 2, 0),
626 WINDOWFUNCNOOP(lag, 3, 0),
628 sqlite3InsertBuiltinFuncs(aWindowFuncs, ArraySize(aWindowFuncs));
631 static Window *windowFind(Parse *pParse, Window *pList, const char *zName){
632 Window *p;
633 for(p=pList; p; p=p->pNextWin){
634 if( sqlite3StrICmp(p->zName, zName)==0 ) break;
636 if( p==0 ){
637 sqlite3ErrorMsg(pParse, "no such window: %s", zName);
639 return p;
643 ** This function is called immediately after resolving the function name
644 ** for a window function within a SELECT statement. Argument pList is a
645 ** linked list of WINDOW definitions for the current SELECT statement.
646 ** Argument pFunc is the function definition just resolved and pWin
647 ** is the Window object representing the associated OVER clause. This
648 ** function updates the contents of pWin as follows:
650 ** * If the OVER clause refered to a named window (as in "max(x) OVER win"),
651 ** search list pList for a matching WINDOW definition, and update pWin
652 ** accordingly. If no such WINDOW clause can be found, leave an error
653 ** in pParse.
655 ** * If the function is a built-in window function that requires the
656 ** window to be coerced (see "BUILT-IN WINDOW FUNCTIONS" at the top
657 ** of this file), pWin is updated here.
659 void sqlite3WindowUpdate(
660 Parse *pParse,
661 Window *pList, /* List of named windows for this SELECT */
662 Window *pWin, /* Window frame to update */
663 FuncDef *pFunc /* Window function definition */
665 if( pWin->zName && pWin->eFrmType==0 ){
666 Window *p = windowFind(pParse, pList, pWin->zName);
667 if( p==0 ) return;
668 pWin->pPartition = sqlite3ExprListDup(pParse->db, p->pPartition, 0);
669 pWin->pOrderBy = sqlite3ExprListDup(pParse->db, p->pOrderBy, 0);
670 pWin->pStart = sqlite3ExprDup(pParse->db, p->pStart, 0);
671 pWin->pEnd = sqlite3ExprDup(pParse->db, p->pEnd, 0);
672 pWin->eStart = p->eStart;
673 pWin->eEnd = p->eEnd;
674 pWin->eFrmType = p->eFrmType;
675 pWin->eExclude = p->eExclude;
676 }else{
677 sqlite3WindowChain(pParse, pWin, pList);
679 if( (pWin->eFrmType==TK_RANGE)
680 && (pWin->pStart || pWin->pEnd)
681 && (pWin->pOrderBy==0 || pWin->pOrderBy->nExpr!=1)
683 sqlite3ErrorMsg(pParse,
684 "RANGE with offset PRECEDING/FOLLOWING requires one ORDER BY expression"
686 }else
687 if( pFunc->funcFlags & SQLITE_FUNC_WINDOW ){
688 sqlite3 *db = pParse->db;
689 if( pWin->pFilter ){
690 sqlite3ErrorMsg(pParse,
691 "FILTER clause may only be used with aggregate window functions"
693 }else{
694 struct WindowUpdate {
695 const char *zFunc;
696 int eFrmType;
697 int eStart;
698 int eEnd;
699 } aUp[] = {
700 { row_numberName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT },
701 { dense_rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT },
702 { rankName, TK_RANGE, TK_UNBOUNDED, TK_CURRENT },
703 { percent_rankName, TK_GROUPS, TK_CURRENT, TK_UNBOUNDED },
704 { cume_distName, TK_GROUPS, TK_FOLLOWING, TK_UNBOUNDED },
705 { ntileName, TK_ROWS, TK_CURRENT, TK_UNBOUNDED },
706 { leadName, TK_ROWS, TK_UNBOUNDED, TK_UNBOUNDED },
707 { lagName, TK_ROWS, TK_UNBOUNDED, TK_CURRENT },
709 int i;
710 for(i=0; i<ArraySize(aUp); i++){
711 if( pFunc->zName==aUp[i].zFunc ){
712 sqlite3ExprDelete(db, pWin->pStart);
713 sqlite3ExprDelete(db, pWin->pEnd);
714 pWin->pEnd = pWin->pStart = 0;
715 pWin->eFrmType = aUp[i].eFrmType;
716 pWin->eStart = aUp[i].eStart;
717 pWin->eEnd = aUp[i].eEnd;
718 pWin->eExclude = 0;
719 if( pWin->eStart==TK_FOLLOWING ){
720 pWin->pStart = sqlite3Expr(db, TK_INTEGER, "1");
722 break;
727 pWin->pWFunc = pFunc;
731 ** Context object passed through sqlite3WalkExprList() to
732 ** selectWindowRewriteExprCb() by selectWindowRewriteEList().
734 typedef struct WindowRewrite WindowRewrite;
735 struct WindowRewrite {
736 Window *pWin;
737 SrcList *pSrc;
738 ExprList *pSub;
739 Table *pTab;
740 Select *pSubSelect; /* Current sub-select, if any */
744 ** Callback function used by selectWindowRewriteEList(). If necessary,
745 ** this function appends to the output expression-list and updates
746 ** expression (*ppExpr) in place.
748 static int selectWindowRewriteExprCb(Walker *pWalker, Expr *pExpr){
749 struct WindowRewrite *p = pWalker->u.pRewrite;
750 Parse *pParse = pWalker->pParse;
751 assert( p!=0 );
752 assert( p->pWin!=0 );
754 /* If this function is being called from within a scalar sub-select
755 ** that used by the SELECT statement being processed, only process
756 ** TK_COLUMN expressions that refer to it (the outer SELECT). Do
757 ** not process aggregates or window functions at all, as they belong
758 ** to the scalar sub-select. */
759 if( p->pSubSelect ){
760 if( pExpr->op!=TK_COLUMN ){
761 return WRC_Continue;
762 }else{
763 int nSrc = p->pSrc->nSrc;
764 int i;
765 for(i=0; i<nSrc; i++){
766 if( pExpr->iTable==p->pSrc->a[i].iCursor ) break;
768 if( i==nSrc ) return WRC_Continue;
772 switch( pExpr->op ){
774 case TK_FUNCTION:
775 if( !ExprHasProperty(pExpr, EP_WinFunc) ){
776 break;
777 }else{
778 Window *pWin;
779 for(pWin=p->pWin; pWin; pWin=pWin->pNextWin){
780 if( pExpr->y.pWin==pWin ){
781 assert( pWin->pOwner==pExpr );
782 return WRC_Prune;
786 /* no break */ deliberate_fall_through
788 case TK_IF_NULL_ROW:
789 case TK_AGG_FUNCTION:
790 case TK_COLUMN: {
791 int iCol = -1;
792 if( pParse->db->mallocFailed ) return WRC_Abort;
793 if( p->pSub ){
794 int i;
795 for(i=0; i<p->pSub->nExpr; i++){
796 if( 0==sqlite3ExprCompare(0, p->pSub->a[i].pExpr, pExpr, -1) ){
797 iCol = i;
798 break;
802 if( iCol<0 ){
803 Expr *pDup = sqlite3ExprDup(pParse->db, pExpr, 0);
804 if( pDup && pDup->op==TK_AGG_FUNCTION ) pDup->op = TK_FUNCTION;
805 p->pSub = sqlite3ExprListAppend(pParse, p->pSub, pDup);
807 if( p->pSub ){
808 int f = pExpr->flags & EP_Collate;
809 assert( ExprHasProperty(pExpr, EP_Static)==0 );
810 ExprSetProperty(pExpr, EP_Static);
811 sqlite3ExprDelete(pParse->db, pExpr);
812 ExprClearProperty(pExpr, EP_Static);
813 memset(pExpr, 0, sizeof(Expr));
815 pExpr->op = TK_COLUMN;
816 pExpr->iColumn = (iCol<0 ? p->pSub->nExpr-1: iCol);
817 pExpr->iTable = p->pWin->iEphCsr;
818 pExpr->y.pTab = p->pTab;
819 pExpr->flags = f;
821 if( pParse->db->mallocFailed ) return WRC_Abort;
822 break;
825 default: /* no-op */
826 break;
829 return WRC_Continue;
831 static int selectWindowRewriteSelectCb(Walker *pWalker, Select *pSelect){
832 struct WindowRewrite *p = pWalker->u.pRewrite;
833 Select *pSave = p->pSubSelect;
834 if( pSave==pSelect ){
835 return WRC_Continue;
836 }else{
837 p->pSubSelect = pSelect;
838 sqlite3WalkSelect(pWalker, pSelect);
839 p->pSubSelect = pSave;
841 return WRC_Prune;
846 ** Iterate through each expression in expression-list pEList. For each:
848 ** * TK_COLUMN,
849 ** * aggregate function, or
850 ** * window function with a Window object that is not a member of the
851 ** Window list passed as the second argument (pWin).
853 ** Append the node to output expression-list (*ppSub). And replace it
854 ** with a TK_COLUMN that reads the (N-1)th element of table
855 ** pWin->iEphCsr, where N is the number of elements in (*ppSub) after
856 ** appending the new one.
858 static void selectWindowRewriteEList(
859 Parse *pParse,
860 Window *pWin,
861 SrcList *pSrc,
862 ExprList *pEList, /* Rewrite expressions in this list */
863 Table *pTab,
864 ExprList **ppSub /* IN/OUT: Sub-select expression-list */
866 Walker sWalker;
867 WindowRewrite sRewrite;
869 assert( pWin!=0 );
870 memset(&sWalker, 0, sizeof(Walker));
871 memset(&sRewrite, 0, sizeof(WindowRewrite));
873 sRewrite.pSub = *ppSub;
874 sRewrite.pWin = pWin;
875 sRewrite.pSrc = pSrc;
876 sRewrite.pTab = pTab;
878 sWalker.pParse = pParse;
879 sWalker.xExprCallback = selectWindowRewriteExprCb;
880 sWalker.xSelectCallback = selectWindowRewriteSelectCb;
881 sWalker.u.pRewrite = &sRewrite;
883 (void)sqlite3WalkExprList(&sWalker, pEList);
885 *ppSub = sRewrite.pSub;
889 ** Append a copy of each expression in expression-list pAppend to
890 ** expression list pList. Return a pointer to the result list.
892 static ExprList *exprListAppendList(
893 Parse *pParse, /* Parsing context */
894 ExprList *pList, /* List to which to append. Might be NULL */
895 ExprList *pAppend, /* List of values to append. Might be NULL */
896 int bIntToNull
898 if( pAppend ){
899 int i;
900 int nInit = pList ? pList->nExpr : 0;
901 for(i=0; i<pAppend->nExpr; i++){
902 sqlite3 *db = pParse->db;
903 Expr *pDup = sqlite3ExprDup(db, pAppend->a[i].pExpr, 0);
904 if( db->mallocFailed ){
905 sqlite3ExprDelete(db, pDup);
906 break;
908 if( bIntToNull ){
909 int iDummy;
910 Expr *pSub;
911 pSub = sqlite3ExprSkipCollateAndLikely(pDup);
912 if( sqlite3ExprIsInteger(pSub, &iDummy) ){
913 pSub->op = TK_NULL;
914 pSub->flags &= ~(EP_IntValue|EP_IsTrue|EP_IsFalse);
915 pSub->u.zToken = 0;
918 pList = sqlite3ExprListAppend(pParse, pList, pDup);
919 if( pList ) pList->a[nInit+i].fg.sortFlags = pAppend->a[i].fg.sortFlags;
922 return pList;
926 ** When rewriting a query, if the new subquery in the FROM clause
927 ** contains TK_AGG_FUNCTION nodes that refer to an outer query,
928 ** then we have to increase the Expr->op2 values of those nodes
929 ** due to the extra subquery layer that was added.
931 ** See also the incrAggDepth() routine in resolve.c
933 static int sqlite3WindowExtraAggFuncDepth(Walker *pWalker, Expr *pExpr){
934 if( pExpr->op==TK_AGG_FUNCTION
935 && pExpr->op2>=pWalker->walkerDepth
937 pExpr->op2++;
939 return WRC_Continue;
942 static int disallowAggregatesInOrderByCb(Walker *pWalker, Expr *pExpr){
943 if( pExpr->op==TK_AGG_FUNCTION && pExpr->pAggInfo==0 ){
944 assert( !ExprHasProperty(pExpr, EP_IntValue) );
945 sqlite3ErrorMsg(pWalker->pParse,
946 "misuse of aggregate: %s()", pExpr->u.zToken);
948 return WRC_Continue;
952 ** If the SELECT statement passed as the second argument does not invoke
953 ** any SQL window functions, this function is a no-op. Otherwise, it
954 ** rewrites the SELECT statement so that window function xStep functions
955 ** are invoked in the correct order as described under "SELECT REWRITING"
956 ** at the top of this file.
958 int sqlite3WindowRewrite(Parse *pParse, Select *p){
959 int rc = SQLITE_OK;
960 if( p->pWin
961 && p->pPrior==0
962 && ALWAYS((p->selFlags & SF_WinRewrite)==0)
963 && ALWAYS(!IN_RENAME_OBJECT)
965 Vdbe *v = sqlite3GetVdbe(pParse);
966 sqlite3 *db = pParse->db;
967 Select *pSub = 0; /* The subquery */
968 SrcList *pSrc = p->pSrc;
969 Expr *pWhere = p->pWhere;
970 ExprList *pGroupBy = p->pGroupBy;
971 Expr *pHaving = p->pHaving;
972 ExprList *pSort = 0;
974 ExprList *pSublist = 0; /* Expression list for sub-query */
975 Window *pMWin = p->pWin; /* Main window object */
976 Window *pWin; /* Window object iterator */
977 Table *pTab;
978 Walker w;
980 u32 selFlags = p->selFlags;
982 pTab = sqlite3DbMallocZero(db, sizeof(Table));
983 if( pTab==0 ){
984 return sqlite3ErrorToParser(db, SQLITE_NOMEM);
986 sqlite3AggInfoPersistWalkerInit(&w, pParse);
987 sqlite3WalkSelect(&w, p);
988 if( (p->selFlags & SF_Aggregate)==0 ){
989 w.xExprCallback = disallowAggregatesInOrderByCb;
990 w.xSelectCallback = 0;
991 sqlite3WalkExprList(&w, p->pOrderBy);
994 p->pSrc = 0;
995 p->pWhere = 0;
996 p->pGroupBy = 0;
997 p->pHaving = 0;
998 p->selFlags &= ~SF_Aggregate;
999 p->selFlags |= SF_WinRewrite;
1001 /* Create the ORDER BY clause for the sub-select. This is the concatenation
1002 ** of the window PARTITION and ORDER BY clauses. Then, if this makes it
1003 ** redundant, remove the ORDER BY from the parent SELECT. */
1004 pSort = exprListAppendList(pParse, 0, pMWin->pPartition, 1);
1005 pSort = exprListAppendList(pParse, pSort, pMWin->pOrderBy, 1);
1006 if( pSort && p->pOrderBy && p->pOrderBy->nExpr<=pSort->nExpr ){
1007 int nSave = pSort->nExpr;
1008 pSort->nExpr = p->pOrderBy->nExpr;
1009 if( sqlite3ExprListCompare(pSort, p->pOrderBy, -1)==0 ){
1010 sqlite3ExprListDelete(db, p->pOrderBy);
1011 p->pOrderBy = 0;
1013 pSort->nExpr = nSave;
1016 /* Assign a cursor number for the ephemeral table used to buffer rows.
1017 ** The OpenEphemeral instruction is coded later, after it is known how
1018 ** many columns the table will have. */
1019 pMWin->iEphCsr = pParse->nTab++;
1020 pParse->nTab += 3;
1022 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pEList, pTab, &pSublist);
1023 selectWindowRewriteEList(pParse, pMWin, pSrc, p->pOrderBy, pTab, &pSublist);
1024 pMWin->nBufferCol = (pSublist ? pSublist->nExpr : 0);
1026 /* Append the PARTITION BY and ORDER BY expressions to the to the
1027 ** sub-select expression list. They are required to figure out where
1028 ** boundaries for partitions and sets of peer rows lie. */
1029 pSublist = exprListAppendList(pParse, pSublist, pMWin->pPartition, 0);
1030 pSublist = exprListAppendList(pParse, pSublist, pMWin->pOrderBy, 0);
1032 /* Append the arguments passed to each window function to the
1033 ** sub-select expression list. Also allocate two registers for each
1034 ** window function - one for the accumulator, another for interim
1035 ** results. */
1036 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1037 ExprList *pArgs;
1038 assert( ExprUseXList(pWin->pOwner) );
1039 assert( pWin->pWFunc!=0 );
1040 pArgs = pWin->pOwner->x.pList;
1041 if( pWin->pWFunc->funcFlags & SQLITE_FUNC_SUBTYPE ){
1042 selectWindowRewriteEList(pParse, pMWin, pSrc, pArgs, pTab, &pSublist);
1043 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
1044 pWin->bExprArgs = 1;
1045 }else{
1046 pWin->iArgCol = (pSublist ? pSublist->nExpr : 0);
1047 pSublist = exprListAppendList(pParse, pSublist, pArgs, 0);
1049 if( pWin->pFilter ){
1050 Expr *pFilter = sqlite3ExprDup(db, pWin->pFilter, 0);
1051 pSublist = sqlite3ExprListAppend(pParse, pSublist, pFilter);
1053 pWin->regAccum = ++pParse->nMem;
1054 pWin->regResult = ++pParse->nMem;
1055 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1058 /* If there is no ORDER BY or PARTITION BY clause, and the window
1059 ** function accepts zero arguments, and there are no other columns
1060 ** selected (e.g. "SELECT row_number() OVER () FROM t1"), it is possible
1061 ** that pSublist is still NULL here. Add a constant expression here to
1062 ** keep everything legal in this case.
1064 if( pSublist==0 ){
1065 pSublist = sqlite3ExprListAppend(pParse, 0,
1066 sqlite3Expr(db, TK_INTEGER, "0")
1070 pSub = sqlite3SelectNew(
1071 pParse, pSublist, pSrc, pWhere, pGroupBy, pHaving, pSort, 0, 0
1073 TREETRACE(0x40,pParse,pSub,
1074 ("New window-function subquery in FROM clause of (%u/%p)\n",
1075 p->selId, p));
1076 p->pSrc = sqlite3SrcListAppend(pParse, 0, 0, 0);
1077 assert( pSub!=0 || p->pSrc==0 ); /* Due to db->mallocFailed test inside
1078 ** of sqlite3DbMallocRawNN() called from
1079 ** sqlite3SrcListAppend() */
1080 if( p->pSrc ){
1081 Table *pTab2;
1082 p->pSrc->a[0].pSelect = pSub;
1083 p->pSrc->a[0].fg.isCorrelated = 1;
1084 sqlite3SrcListAssignCursors(pParse, p->pSrc);
1085 pSub->selFlags |= SF_Expanded|SF_OrderByReqd;
1086 pTab2 = sqlite3ResultSetOfSelect(pParse, pSub, SQLITE_AFF_NONE);
1087 pSub->selFlags |= (selFlags & SF_Aggregate);
1088 if( pTab2==0 ){
1089 /* Might actually be some other kind of error, but in that case
1090 ** pParse->nErr will be set, so if SQLITE_NOMEM is set, we will get
1091 ** the correct error message regardless. */
1092 rc = SQLITE_NOMEM;
1093 }else{
1094 memcpy(pTab, pTab2, sizeof(Table));
1095 pTab->tabFlags |= TF_Ephemeral;
1096 p->pSrc->a[0].pTab = pTab;
1097 pTab = pTab2;
1098 memset(&w, 0, sizeof(w));
1099 w.xExprCallback = sqlite3WindowExtraAggFuncDepth;
1100 w.xSelectCallback = sqlite3WalkerDepthIncrease;
1101 w.xSelectCallback2 = sqlite3WalkerDepthDecrease;
1102 sqlite3WalkSelect(&w, pSub);
1104 }else{
1105 sqlite3SelectDelete(db, pSub);
1107 if( db->mallocFailed ) rc = SQLITE_NOMEM;
1109 /* Defer deleting the temporary table pTab because if an error occurred,
1110 ** there could still be references to that table embedded in the
1111 ** result-set or ORDER BY clause of the SELECT statement p. */
1112 sqlite3ParserAddCleanup(pParse, sqlite3DbFree, pTab);
1115 assert( rc==SQLITE_OK || pParse->nErr!=0 );
1116 return rc;
1120 ** Unlink the Window object from the Select to which it is attached,
1121 ** if it is attached.
1123 void sqlite3WindowUnlinkFromSelect(Window *p){
1124 if( p->ppThis ){
1125 *p->ppThis = p->pNextWin;
1126 if( p->pNextWin ) p->pNextWin->ppThis = p->ppThis;
1127 p->ppThis = 0;
1132 ** Free the Window object passed as the second argument.
1134 void sqlite3WindowDelete(sqlite3 *db, Window *p){
1135 if( p ){
1136 sqlite3WindowUnlinkFromSelect(p);
1137 sqlite3ExprDelete(db, p->pFilter);
1138 sqlite3ExprListDelete(db, p->pPartition);
1139 sqlite3ExprListDelete(db, p->pOrderBy);
1140 sqlite3ExprDelete(db, p->pEnd);
1141 sqlite3ExprDelete(db, p->pStart);
1142 sqlite3DbFree(db, p->zName);
1143 sqlite3DbFree(db, p->zBase);
1144 sqlite3DbFree(db, p);
1149 ** Free the linked list of Window objects starting at the second argument.
1151 void sqlite3WindowListDelete(sqlite3 *db, Window *p){
1152 while( p ){
1153 Window *pNext = p->pNextWin;
1154 sqlite3WindowDelete(db, p);
1155 p = pNext;
1160 ** The argument expression is an PRECEDING or FOLLOWING offset. The
1161 ** value should be a non-negative integer. If the value is not a
1162 ** constant, change it to NULL. The fact that it is then a non-negative
1163 ** integer will be caught later. But it is important not to leave
1164 ** variable values in the expression tree.
1166 static Expr *sqlite3WindowOffsetExpr(Parse *pParse, Expr *pExpr){
1167 if( 0==sqlite3ExprIsConstant(pExpr) ){
1168 if( IN_RENAME_OBJECT ) sqlite3RenameExprUnmap(pParse, pExpr);
1169 sqlite3ExprDelete(pParse->db, pExpr);
1170 pExpr = sqlite3ExprAlloc(pParse->db, TK_NULL, 0, 0);
1172 return pExpr;
1176 ** Allocate and return a new Window object describing a Window Definition.
1178 Window *sqlite3WindowAlloc(
1179 Parse *pParse, /* Parsing context */
1180 int eType, /* Frame type. TK_RANGE, TK_ROWS, TK_GROUPS, or 0 */
1181 int eStart, /* Start type: CURRENT, PRECEDING, FOLLOWING, UNBOUNDED */
1182 Expr *pStart, /* Start window size if TK_PRECEDING or FOLLOWING */
1183 int eEnd, /* End type: CURRENT, FOLLOWING, TK_UNBOUNDED, PRECEDING */
1184 Expr *pEnd, /* End window size if TK_FOLLOWING or PRECEDING */
1185 u8 eExclude /* EXCLUDE clause */
1187 Window *pWin = 0;
1188 int bImplicitFrame = 0;
1190 /* Parser assures the following: */
1191 assert( eType==0 || eType==TK_RANGE || eType==TK_ROWS || eType==TK_GROUPS );
1192 assert( eStart==TK_CURRENT || eStart==TK_PRECEDING
1193 || eStart==TK_UNBOUNDED || eStart==TK_FOLLOWING );
1194 assert( eEnd==TK_CURRENT || eEnd==TK_FOLLOWING
1195 || eEnd==TK_UNBOUNDED || eEnd==TK_PRECEDING );
1196 assert( (eStart==TK_PRECEDING || eStart==TK_FOLLOWING)==(pStart!=0) );
1197 assert( (eEnd==TK_FOLLOWING || eEnd==TK_PRECEDING)==(pEnd!=0) );
1199 if( eType==0 ){
1200 bImplicitFrame = 1;
1201 eType = TK_RANGE;
1204 /* Additionally, the
1205 ** starting boundary type may not occur earlier in the following list than
1206 ** the ending boundary type:
1208 ** UNBOUNDED PRECEDING
1209 ** <expr> PRECEDING
1210 ** CURRENT ROW
1211 ** <expr> FOLLOWING
1212 ** UNBOUNDED FOLLOWING
1214 ** The parser ensures that "UNBOUNDED PRECEDING" cannot be used as an ending
1215 ** boundary, and than "UNBOUNDED FOLLOWING" cannot be used as a starting
1216 ** frame boundary.
1218 if( (eStart==TK_CURRENT && eEnd==TK_PRECEDING)
1219 || (eStart==TK_FOLLOWING && (eEnd==TK_PRECEDING || eEnd==TK_CURRENT))
1221 sqlite3ErrorMsg(pParse, "unsupported frame specification");
1222 goto windowAllocErr;
1225 pWin = (Window*)sqlite3DbMallocZero(pParse->db, sizeof(Window));
1226 if( pWin==0 ) goto windowAllocErr;
1227 pWin->eFrmType = eType;
1228 pWin->eStart = eStart;
1229 pWin->eEnd = eEnd;
1230 if( eExclude==0 && OptimizationDisabled(pParse->db, SQLITE_WindowFunc) ){
1231 eExclude = TK_NO;
1233 pWin->eExclude = eExclude;
1234 pWin->bImplicitFrame = bImplicitFrame;
1235 pWin->pEnd = sqlite3WindowOffsetExpr(pParse, pEnd);
1236 pWin->pStart = sqlite3WindowOffsetExpr(pParse, pStart);
1237 return pWin;
1239 windowAllocErr:
1240 sqlite3ExprDelete(pParse->db, pEnd);
1241 sqlite3ExprDelete(pParse->db, pStart);
1242 return 0;
1246 ** Attach PARTITION and ORDER BY clauses pPartition and pOrderBy to window
1247 ** pWin. Also, if parameter pBase is not NULL, set pWin->zBase to the
1248 ** equivalent nul-terminated string.
1250 Window *sqlite3WindowAssemble(
1251 Parse *pParse,
1252 Window *pWin,
1253 ExprList *pPartition,
1254 ExprList *pOrderBy,
1255 Token *pBase
1257 if( pWin ){
1258 pWin->pPartition = pPartition;
1259 pWin->pOrderBy = pOrderBy;
1260 if( pBase ){
1261 pWin->zBase = sqlite3DbStrNDup(pParse->db, pBase->z, pBase->n);
1263 }else{
1264 sqlite3ExprListDelete(pParse->db, pPartition);
1265 sqlite3ExprListDelete(pParse->db, pOrderBy);
1267 return pWin;
1271 ** Window *pWin has just been created from a WINDOW clause. Tokne pBase
1272 ** is the base window. Earlier windows from the same WINDOW clause are
1273 ** stored in the linked list starting at pWin->pNextWin. This function
1274 ** either updates *pWin according to the base specification, or else
1275 ** leaves an error in pParse.
1277 void sqlite3WindowChain(Parse *pParse, Window *pWin, Window *pList){
1278 if( pWin->zBase ){
1279 sqlite3 *db = pParse->db;
1280 Window *pExist = windowFind(pParse, pList, pWin->zBase);
1281 if( pExist ){
1282 const char *zErr = 0;
1283 /* Check for errors */
1284 if( pWin->pPartition ){
1285 zErr = "PARTITION clause";
1286 }else if( pExist->pOrderBy && pWin->pOrderBy ){
1287 zErr = "ORDER BY clause";
1288 }else if( pExist->bImplicitFrame==0 ){
1289 zErr = "frame specification";
1291 if( zErr ){
1292 sqlite3ErrorMsg(pParse,
1293 "cannot override %s of window: %s", zErr, pWin->zBase
1295 }else{
1296 pWin->pPartition = sqlite3ExprListDup(db, pExist->pPartition, 0);
1297 if( pExist->pOrderBy ){
1298 assert( pWin->pOrderBy==0 );
1299 pWin->pOrderBy = sqlite3ExprListDup(db, pExist->pOrderBy, 0);
1301 sqlite3DbFree(db, pWin->zBase);
1302 pWin->zBase = 0;
1309 ** Attach window object pWin to expression p.
1311 void sqlite3WindowAttach(Parse *pParse, Expr *p, Window *pWin){
1312 if( p ){
1313 assert( p->op==TK_FUNCTION );
1314 assert( pWin );
1315 p->y.pWin = pWin;
1316 ExprSetProperty(p, EP_WinFunc);
1317 pWin->pOwner = p;
1318 if( (p->flags & EP_Distinct) && pWin->eFrmType!=TK_FILTER ){
1319 sqlite3ErrorMsg(pParse,
1320 "DISTINCT is not supported for window functions"
1323 }else{
1324 sqlite3WindowDelete(pParse->db, pWin);
1329 ** Possibly link window pWin into the list at pSel->pWin (window functions
1330 ** to be processed as part of SELECT statement pSel). The window is linked
1331 ** in if either (a) there are no other windows already linked to this
1332 ** SELECT, or (b) the windows already linked use a compatible window frame.
1334 void sqlite3WindowLink(Select *pSel, Window *pWin){
1335 if( pSel ){
1336 if( 0==pSel->pWin || 0==sqlite3WindowCompare(0, pSel->pWin, pWin, 0) ){
1337 pWin->pNextWin = pSel->pWin;
1338 if( pSel->pWin ){
1339 pSel->pWin->ppThis = &pWin->pNextWin;
1341 pSel->pWin = pWin;
1342 pWin->ppThis = &pSel->pWin;
1343 }else{
1344 if( sqlite3ExprListCompare(pWin->pPartition, pSel->pWin->pPartition,-1) ){
1345 pSel->selFlags |= SF_MultiPart;
1352 ** Return 0 if the two window objects are identical, 1 if they are
1353 ** different, or 2 if it cannot be determined if the objects are identical
1354 ** or not. Identical window objects can be processed in a single scan.
1356 int sqlite3WindowCompare(
1357 const Parse *pParse,
1358 const Window *p1,
1359 const Window *p2,
1360 int bFilter
1362 int res;
1363 if( NEVER(p1==0) || NEVER(p2==0) ) return 1;
1364 if( p1->eFrmType!=p2->eFrmType ) return 1;
1365 if( p1->eStart!=p2->eStart ) return 1;
1366 if( p1->eEnd!=p2->eEnd ) return 1;
1367 if( p1->eExclude!=p2->eExclude ) return 1;
1368 if( sqlite3ExprCompare(pParse, p1->pStart, p2->pStart, -1) ) return 1;
1369 if( sqlite3ExprCompare(pParse, p1->pEnd, p2->pEnd, -1) ) return 1;
1370 if( (res = sqlite3ExprListCompare(p1->pPartition, p2->pPartition, -1)) ){
1371 return res;
1373 if( (res = sqlite3ExprListCompare(p1->pOrderBy, p2->pOrderBy, -1)) ){
1374 return res;
1376 if( bFilter ){
1377 if( (res = sqlite3ExprCompare(pParse, p1->pFilter, p2->pFilter, -1)) ){
1378 return res;
1381 return 0;
1386 ** This is called by code in select.c before it calls sqlite3WhereBegin()
1387 ** to begin iterating through the sub-query results. It is used to allocate
1388 ** and initialize registers and cursors used by sqlite3WindowCodeStep().
1390 void sqlite3WindowCodeInit(Parse *pParse, Select *pSelect){
1391 int nEphExpr = pSelect->pSrc->a[0].pSelect->pEList->nExpr;
1392 Window *pMWin = pSelect->pWin;
1393 Window *pWin;
1394 Vdbe *v = sqlite3GetVdbe(pParse);
1396 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pMWin->iEphCsr, nEphExpr);
1397 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+1, pMWin->iEphCsr);
1398 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+2, pMWin->iEphCsr);
1399 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->iEphCsr+3, pMWin->iEphCsr);
1401 /* Allocate registers to use for PARTITION BY values, if any. Initialize
1402 ** said registers to NULL. */
1403 if( pMWin->pPartition ){
1404 int nExpr = pMWin->pPartition->nExpr;
1405 pMWin->regPart = pParse->nMem+1;
1406 pParse->nMem += nExpr;
1407 sqlite3VdbeAddOp3(v, OP_Null, 0, pMWin->regPart, pMWin->regPart+nExpr-1);
1410 pMWin->regOne = ++pParse->nMem;
1411 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regOne);
1413 if( pMWin->eExclude ){
1414 pMWin->regStartRowid = ++pParse->nMem;
1415 pMWin->regEndRowid = ++pParse->nMem;
1416 pMWin->csrApp = pParse->nTab++;
1417 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
1418 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
1419 sqlite3VdbeAddOp2(v, OP_OpenDup, pMWin->csrApp, pMWin->iEphCsr);
1420 return;
1423 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1424 FuncDef *p = pWin->pWFunc;
1425 if( (p->funcFlags & SQLITE_FUNC_MINMAX) && pWin->eStart!=TK_UNBOUNDED ){
1426 /* The inline versions of min() and max() require a single ephemeral
1427 ** table and 3 registers. The registers are used as follows:
1429 ** regApp+0: slot to copy min()/max() argument to for MakeRecord
1430 ** regApp+1: integer value used to ensure keys are unique
1431 ** regApp+2: output of MakeRecord
1433 ExprList *pList;
1434 KeyInfo *pKeyInfo;
1435 assert( ExprUseXList(pWin->pOwner) );
1436 pList = pWin->pOwner->x.pList;
1437 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pList, 0, 0);
1438 pWin->csrApp = pParse->nTab++;
1439 pWin->regApp = pParse->nMem+1;
1440 pParse->nMem += 3;
1441 if( pKeyInfo && pWin->pWFunc->zName[1]=='i' ){
1442 assert( pKeyInfo->aSortFlags[0]==0 );
1443 pKeyInfo->aSortFlags[0] = KEYINFO_ORDER_DESC;
1445 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pWin->csrApp, 2);
1446 sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1447 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
1449 else if( p->zName==nth_valueName || p->zName==first_valueName ){
1450 /* Allocate two registers at pWin->regApp. These will be used to
1451 ** store the start and end index of the current frame. */
1452 pWin->regApp = pParse->nMem+1;
1453 pWin->csrApp = pParse->nTab++;
1454 pParse->nMem += 2;
1455 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1457 else if( p->zName==leadName || p->zName==lagName ){
1458 pWin->csrApp = pParse->nTab++;
1459 sqlite3VdbeAddOp2(v, OP_OpenDup, pWin->csrApp, pMWin->iEphCsr);
1464 #define WINDOW_STARTING_INT 0
1465 #define WINDOW_ENDING_INT 1
1466 #define WINDOW_NTH_VALUE_INT 2
1467 #define WINDOW_STARTING_NUM 3
1468 #define WINDOW_ENDING_NUM 4
1471 ** A "PRECEDING <expr>" (eCond==0) or "FOLLOWING <expr>" (eCond==1) or the
1472 ** value of the second argument to nth_value() (eCond==2) has just been
1473 ** evaluated and the result left in register reg. This function generates VM
1474 ** code to check that the value is a non-negative integer and throws an
1475 ** exception if it is not.
1477 static void windowCheckValue(Parse *pParse, int reg, int eCond){
1478 static const char *azErr[] = {
1479 "frame starting offset must be a non-negative integer",
1480 "frame ending offset must be a non-negative integer",
1481 "second argument to nth_value must be a positive integer",
1482 "frame starting offset must be a non-negative number",
1483 "frame ending offset must be a non-negative number",
1485 static int aOp[] = { OP_Ge, OP_Ge, OP_Gt, OP_Ge, OP_Ge };
1486 Vdbe *v = sqlite3GetVdbe(pParse);
1487 int regZero = sqlite3GetTempReg(pParse);
1488 assert( eCond>=0 && eCond<ArraySize(azErr) );
1489 sqlite3VdbeAddOp2(v, OP_Integer, 0, regZero);
1490 if( eCond>=WINDOW_STARTING_NUM ){
1491 int regString = sqlite3GetTempReg(pParse);
1492 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
1493 sqlite3VdbeAddOp3(v, OP_Ge, regString, sqlite3VdbeCurrentAddr(v)+2, reg);
1494 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC|SQLITE_JUMPIFNULL);
1495 VdbeCoverage(v);
1496 assert( eCond==3 || eCond==4 );
1497 VdbeCoverageIf(v, eCond==3);
1498 VdbeCoverageIf(v, eCond==4);
1499 }else{
1500 sqlite3VdbeAddOp2(v, OP_MustBeInt, reg, sqlite3VdbeCurrentAddr(v)+2);
1501 VdbeCoverage(v);
1502 assert( eCond==0 || eCond==1 || eCond==2 );
1503 VdbeCoverageIf(v, eCond==0);
1504 VdbeCoverageIf(v, eCond==1);
1505 VdbeCoverageIf(v, eCond==2);
1507 sqlite3VdbeAddOp3(v, aOp[eCond], regZero, sqlite3VdbeCurrentAddr(v)+2, reg);
1508 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC);
1509 VdbeCoverageNeverNullIf(v, eCond==0); /* NULL case captured by */
1510 VdbeCoverageNeverNullIf(v, eCond==1); /* the OP_MustBeInt */
1511 VdbeCoverageNeverNullIf(v, eCond==2);
1512 VdbeCoverageNeverNullIf(v, eCond==3); /* NULL case caught by */
1513 VdbeCoverageNeverNullIf(v, eCond==4); /* the OP_Ge */
1514 sqlite3MayAbort(pParse);
1515 sqlite3VdbeAddOp2(v, OP_Halt, SQLITE_ERROR, OE_Abort);
1516 sqlite3VdbeAppendP4(v, (void*)azErr[eCond], P4_STATIC);
1517 sqlite3ReleaseTempReg(pParse, regZero);
1521 ** Return the number of arguments passed to the window-function associated
1522 ** with the object passed as the only argument to this function.
1524 static int windowArgCount(Window *pWin){
1525 const ExprList *pList;
1526 assert( ExprUseXList(pWin->pOwner) );
1527 pList = pWin->pOwner->x.pList;
1528 return (pList ? pList->nExpr : 0);
1531 typedef struct WindowCodeArg WindowCodeArg;
1532 typedef struct WindowCsrAndReg WindowCsrAndReg;
1535 ** See comments above struct WindowCodeArg.
1537 struct WindowCsrAndReg {
1538 int csr; /* Cursor number */
1539 int reg; /* First in array of peer values */
1543 ** A single instance of this structure is allocated on the stack by
1544 ** sqlite3WindowCodeStep() and a pointer to it passed to the various helper
1545 ** routines. This is to reduce the number of arguments required by each
1546 ** helper function.
1548 ** regArg:
1549 ** Each window function requires an accumulator register (just as an
1550 ** ordinary aggregate function does). This variable is set to the first
1551 ** in an array of accumulator registers - one for each window function
1552 ** in the WindowCodeArg.pMWin list.
1554 ** eDelete:
1555 ** The window functions implementation sometimes caches the input rows
1556 ** that it processes in a temporary table. If it is not zero, this
1557 ** variable indicates when rows may be removed from the temp table (in
1558 ** order to reduce memory requirements - it would always be safe just
1559 ** to leave them there). Possible values for eDelete are:
1561 ** WINDOW_RETURN_ROW:
1562 ** An input row can be discarded after it is returned to the caller.
1564 ** WINDOW_AGGINVERSE:
1565 ** An input row can be discarded after the window functions xInverse()
1566 ** callbacks have been invoked in it.
1568 ** WINDOW_AGGSTEP:
1569 ** An input row can be discarded after the window functions xStep()
1570 ** callbacks have been invoked in it.
1572 ** start,current,end
1573 ** Consider a window-frame similar to the following:
1575 ** (ORDER BY a, b GROUPS BETWEEN 2 PRECEDING AND 2 FOLLOWING)
1577 ** The windows functions implmentation caches the input rows in a temp
1578 ** table, sorted by "a, b" (it actually populates the cache lazily, and
1579 ** aggressively removes rows once they are no longer required, but that's
1580 ** a mere detail). It keeps three cursors open on the temp table. One
1581 ** (current) that points to the next row to return to the query engine
1582 ** once its window function values have been calculated. Another (end)
1583 ** points to the next row to call the xStep() method of each window function
1584 ** on (so that it is 2 groups ahead of current). And a third (start) that
1585 ** points to the next row to call the xInverse() method of each window
1586 ** function on.
1588 ** Each cursor (start, current and end) consists of a VDBE cursor
1589 ** (WindowCsrAndReg.csr) and an array of registers (starting at
1590 ** WindowCodeArg.reg) that always contains a copy of the peer values
1591 ** read from the corresponding cursor.
1593 ** Depending on the window-frame in question, all three cursors may not
1594 ** be required. In this case both WindowCodeArg.csr and reg are set to
1595 ** 0.
1597 struct WindowCodeArg {
1598 Parse *pParse; /* Parse context */
1599 Window *pMWin; /* First in list of functions being processed */
1600 Vdbe *pVdbe; /* VDBE object */
1601 int addrGosub; /* OP_Gosub to this address to return one row */
1602 int regGosub; /* Register used with OP_Gosub(addrGosub) */
1603 int regArg; /* First in array of accumulator registers */
1604 int eDelete; /* See above */
1605 int regRowid;
1607 WindowCsrAndReg start;
1608 WindowCsrAndReg current;
1609 WindowCsrAndReg end;
1613 ** Generate VM code to read the window frames peer values from cursor csr into
1614 ** an array of registers starting at reg.
1616 static void windowReadPeerValues(
1617 WindowCodeArg *p,
1618 int csr,
1619 int reg
1621 Window *pMWin = p->pMWin;
1622 ExprList *pOrderBy = pMWin->pOrderBy;
1623 if( pOrderBy ){
1624 Vdbe *v = sqlite3GetVdbe(p->pParse);
1625 ExprList *pPart = pMWin->pPartition;
1626 int iColOff = pMWin->nBufferCol + (pPart ? pPart->nExpr : 0);
1627 int i;
1628 for(i=0; i<pOrderBy->nExpr; i++){
1629 sqlite3VdbeAddOp3(v, OP_Column, csr, iColOff+i, reg+i);
1635 ** Generate VM code to invoke either xStep() (if bInverse is 0) or
1636 ** xInverse (if bInverse is non-zero) for each window function in the
1637 ** linked list starting at pMWin. Or, for built-in window functions
1638 ** that do not use the standard function API, generate the required
1639 ** inline VM code.
1641 ** If argument csr is greater than or equal to 0, then argument reg is
1642 ** the first register in an array of registers guaranteed to be large
1643 ** enough to hold the array of arguments for each function. In this case
1644 ** the arguments are extracted from the current row of csr into the
1645 ** array of registers before invoking OP_AggStep or OP_AggInverse
1647 ** Or, if csr is less than zero, then the array of registers at reg is
1648 ** already populated with all columns from the current row of the sub-query.
1650 ** If argument regPartSize is non-zero, then it is a register containing the
1651 ** number of rows in the current partition.
1653 static void windowAggStep(
1654 WindowCodeArg *p,
1655 Window *pMWin, /* Linked list of window functions */
1656 int csr, /* Read arguments from this cursor */
1657 int bInverse, /* True to invoke xInverse instead of xStep */
1658 int reg /* Array of registers */
1660 Parse *pParse = p->pParse;
1661 Vdbe *v = sqlite3GetVdbe(pParse);
1662 Window *pWin;
1663 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1664 FuncDef *pFunc = pWin->pWFunc;
1665 int regArg;
1666 int nArg = pWin->bExprArgs ? 0 : windowArgCount(pWin);
1667 int i;
1669 assert( bInverse==0 || pWin->eStart!=TK_UNBOUNDED );
1671 /* All OVER clauses in the same window function aggregate step must
1672 ** be the same. */
1673 assert( pWin==pMWin || sqlite3WindowCompare(pParse,pWin,pMWin,0)!=1 );
1675 for(i=0; i<nArg; i++){
1676 if( i!=1 || pFunc->zName!=nth_valueName ){
1677 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+i, reg+i);
1678 }else{
1679 sqlite3VdbeAddOp3(v, OP_Column, pMWin->iEphCsr, pWin->iArgCol+i, reg+i);
1682 regArg = reg;
1684 if( pMWin->regStartRowid==0
1685 && (pFunc->funcFlags & SQLITE_FUNC_MINMAX)
1686 && (pWin->eStart!=TK_UNBOUNDED)
1688 int addrIsNull = sqlite3VdbeAddOp1(v, OP_IsNull, regArg);
1689 VdbeCoverage(v);
1690 if( bInverse==0 ){
1691 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1, 1);
1692 sqlite3VdbeAddOp2(v, OP_SCopy, regArg, pWin->regApp);
1693 sqlite3VdbeAddOp3(v, OP_MakeRecord, pWin->regApp, 2, pWin->regApp+2);
1694 sqlite3VdbeAddOp2(v, OP_IdxInsert, pWin->csrApp, pWin->regApp+2);
1695 }else{
1696 sqlite3VdbeAddOp4Int(v, OP_SeekGE, pWin->csrApp, 0, regArg, 1);
1697 VdbeCoverageNeverTaken(v);
1698 sqlite3VdbeAddOp1(v, OP_Delete, pWin->csrApp);
1699 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1701 sqlite3VdbeJumpHere(v, addrIsNull);
1702 }else if( pWin->regApp ){
1703 assert( pFunc->zName==nth_valueName
1704 || pFunc->zName==first_valueName
1706 assert( bInverse==0 || bInverse==1 );
1707 sqlite3VdbeAddOp2(v, OP_AddImm, pWin->regApp+1-bInverse, 1);
1708 }else if( pFunc->xSFunc!=noopStepFunc ){
1709 int addrIf = 0;
1710 if( pWin->pFilter ){
1711 int regTmp;
1712 assert( ExprUseXList(pWin->pOwner) );
1713 assert( pWin->bExprArgs || !nArg ||nArg==pWin->pOwner->x.pList->nExpr );
1714 assert( pWin->bExprArgs || nArg ||pWin->pOwner->x.pList==0 );
1715 regTmp = sqlite3GetTempReg(pParse);
1716 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol+nArg,regTmp);
1717 addrIf = sqlite3VdbeAddOp3(v, OP_IfNot, regTmp, 0, 1);
1718 VdbeCoverage(v);
1719 sqlite3ReleaseTempReg(pParse, regTmp);
1722 if( pWin->bExprArgs ){
1723 int iOp = sqlite3VdbeCurrentAddr(v);
1724 int iEnd;
1726 assert( ExprUseXList(pWin->pOwner) );
1727 nArg = pWin->pOwner->x.pList->nExpr;
1728 regArg = sqlite3GetTempRange(pParse, nArg);
1729 sqlite3ExprCodeExprList(pParse, pWin->pOwner->x.pList, regArg, 0, 0);
1731 for(iEnd=sqlite3VdbeCurrentAddr(v); iOp<iEnd; iOp++){
1732 VdbeOp *pOp = sqlite3VdbeGetOp(v, iOp);
1733 if( pOp->opcode==OP_Column && pOp->p1==pMWin->iEphCsr ){
1734 pOp->p1 = csr;
1738 if( pFunc->funcFlags & SQLITE_FUNC_NEEDCOLL ){
1739 CollSeq *pColl;
1740 assert( nArg>0 );
1741 assert( ExprUseXList(pWin->pOwner) );
1742 pColl = sqlite3ExprNNCollSeq(pParse, pWin->pOwner->x.pList->a[0].pExpr);
1743 sqlite3VdbeAddOp4(v, OP_CollSeq, 0,0,0, (const char*)pColl, P4_COLLSEQ);
1745 sqlite3VdbeAddOp3(v, bInverse? OP_AggInverse : OP_AggStep,
1746 bInverse, regArg, pWin->regAccum);
1747 sqlite3VdbeAppendP4(v, pFunc, P4_FUNCDEF);
1748 sqlite3VdbeChangeP5(v, (u8)nArg);
1749 if( pWin->bExprArgs ){
1750 sqlite3ReleaseTempRange(pParse, regArg, nArg);
1752 if( addrIf ) sqlite3VdbeJumpHere(v, addrIf);
1758 ** Values that may be passed as the second argument to windowCodeOp().
1760 #define WINDOW_RETURN_ROW 1
1761 #define WINDOW_AGGINVERSE 2
1762 #define WINDOW_AGGSTEP 3
1765 ** Generate VM code to invoke either xValue() (bFin==0) or xFinalize()
1766 ** (bFin==1) for each window function in the linked list starting at
1767 ** pMWin. Or, for built-in window-functions that do not use the standard
1768 ** API, generate the equivalent VM code.
1770 static void windowAggFinal(WindowCodeArg *p, int bFin){
1771 Parse *pParse = p->pParse;
1772 Window *pMWin = p->pMWin;
1773 Vdbe *v = sqlite3GetVdbe(pParse);
1774 Window *pWin;
1776 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1777 if( pMWin->regStartRowid==0
1778 && (pWin->pWFunc->funcFlags & SQLITE_FUNC_MINMAX)
1779 && (pWin->eStart!=TK_UNBOUNDED)
1781 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1782 sqlite3VdbeAddOp1(v, OP_Last, pWin->csrApp);
1783 VdbeCoverage(v);
1784 sqlite3VdbeAddOp3(v, OP_Column, pWin->csrApp, 0, pWin->regResult);
1785 sqlite3VdbeJumpHere(v, sqlite3VdbeCurrentAddr(v)-2);
1786 }else if( pWin->regApp ){
1787 assert( pMWin->regStartRowid==0 );
1788 }else{
1789 int nArg = windowArgCount(pWin);
1790 if( bFin ){
1791 sqlite3VdbeAddOp2(v, OP_AggFinal, pWin->regAccum, nArg);
1792 sqlite3VdbeAppendP4(v, pWin->pWFunc, P4_FUNCDEF);
1793 sqlite3VdbeAddOp2(v, OP_Copy, pWin->regAccum, pWin->regResult);
1794 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1795 }else{
1796 sqlite3VdbeAddOp3(v, OP_AggValue,pWin->regAccum,nArg,pWin->regResult);
1797 sqlite3VdbeAppendP4(v, pWin->pWFunc, P4_FUNCDEF);
1804 ** Generate code to calculate the current values of all window functions in the
1805 ** p->pMWin list by doing a full scan of the current window frame. Store the
1806 ** results in the Window.regResult registers, ready to return the upper
1807 ** layer.
1809 static void windowFullScan(WindowCodeArg *p){
1810 Window *pWin;
1811 Parse *pParse = p->pParse;
1812 Window *pMWin = p->pMWin;
1813 Vdbe *v = p->pVdbe;
1815 int regCRowid = 0; /* Current rowid value */
1816 int regCPeer = 0; /* Current peer values */
1817 int regRowid = 0; /* AggStep rowid value */
1818 int regPeer = 0; /* AggStep peer values */
1820 int nPeer;
1821 int lblNext;
1822 int lblBrk;
1823 int addrNext;
1824 int csr;
1826 VdbeModuleComment((v, "windowFullScan begin"));
1828 assert( pMWin!=0 );
1829 csr = pMWin->csrApp;
1830 nPeer = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
1832 lblNext = sqlite3VdbeMakeLabel(pParse);
1833 lblBrk = sqlite3VdbeMakeLabel(pParse);
1835 regCRowid = sqlite3GetTempReg(pParse);
1836 regRowid = sqlite3GetTempReg(pParse);
1837 if( nPeer ){
1838 regCPeer = sqlite3GetTempRange(pParse, nPeer);
1839 regPeer = sqlite3GetTempRange(pParse, nPeer);
1842 sqlite3VdbeAddOp2(v, OP_Rowid, pMWin->iEphCsr, regCRowid);
1843 windowReadPeerValues(p, pMWin->iEphCsr, regCPeer);
1845 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1846 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
1849 sqlite3VdbeAddOp3(v, OP_SeekGE, csr, lblBrk, pMWin->regStartRowid);
1850 VdbeCoverage(v);
1851 addrNext = sqlite3VdbeCurrentAddr(v);
1852 sqlite3VdbeAddOp2(v, OP_Rowid, csr, regRowid);
1853 sqlite3VdbeAddOp3(v, OP_Gt, pMWin->regEndRowid, lblBrk, regRowid);
1854 VdbeCoverageNeverNull(v);
1856 if( pMWin->eExclude==TK_CURRENT ){
1857 sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, lblNext, regRowid);
1858 VdbeCoverageNeverNull(v);
1859 }else if( pMWin->eExclude!=TK_NO ){
1860 int addr;
1861 int addrEq = 0;
1862 KeyInfo *pKeyInfo = 0;
1864 if( pMWin->pOrderBy ){
1865 pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pMWin->pOrderBy, 0, 0);
1867 if( pMWin->eExclude==TK_TIES ){
1868 addrEq = sqlite3VdbeAddOp3(v, OP_Eq, regCRowid, 0, regRowid);
1869 VdbeCoverageNeverNull(v);
1871 if( pKeyInfo ){
1872 windowReadPeerValues(p, csr, regPeer);
1873 sqlite3VdbeAddOp3(v, OP_Compare, regPeer, regCPeer, nPeer);
1874 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
1875 addr = sqlite3VdbeCurrentAddr(v)+1;
1876 sqlite3VdbeAddOp3(v, OP_Jump, addr, lblNext, addr);
1877 VdbeCoverageEqNe(v);
1878 }else{
1879 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblNext);
1881 if( addrEq ) sqlite3VdbeJumpHere(v, addrEq);
1884 windowAggStep(p, pMWin, csr, 0, p->regArg);
1886 sqlite3VdbeResolveLabel(v, lblNext);
1887 sqlite3VdbeAddOp2(v, OP_Next, csr, addrNext);
1888 VdbeCoverage(v);
1889 sqlite3VdbeJumpHere(v, addrNext-1);
1890 sqlite3VdbeJumpHere(v, addrNext+1);
1891 sqlite3ReleaseTempReg(pParse, regRowid);
1892 sqlite3ReleaseTempReg(pParse, regCRowid);
1893 if( nPeer ){
1894 sqlite3ReleaseTempRange(pParse, regPeer, nPeer);
1895 sqlite3ReleaseTempRange(pParse, regCPeer, nPeer);
1898 windowAggFinal(p, 1);
1899 VdbeModuleComment((v, "windowFullScan end"));
1903 ** Invoke the sub-routine at regGosub (generated by code in select.c) to
1904 ** return the current row of Window.iEphCsr. If all window functions are
1905 ** aggregate window functions that use the standard API, a single
1906 ** OP_Gosub instruction is all that this routine generates. Extra VM code
1907 ** for per-row processing is only generated for the following built-in window
1908 ** functions:
1910 ** nth_value()
1911 ** first_value()
1912 ** lag()
1913 ** lead()
1915 static void windowReturnOneRow(WindowCodeArg *p){
1916 Window *pMWin = p->pMWin;
1917 Vdbe *v = p->pVdbe;
1919 if( pMWin->regStartRowid ){
1920 windowFullScan(p);
1921 }else{
1922 Parse *pParse = p->pParse;
1923 Window *pWin;
1925 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1926 FuncDef *pFunc = pWin->pWFunc;
1927 assert( ExprUseXList(pWin->pOwner) );
1928 if( pFunc->zName==nth_valueName
1929 || pFunc->zName==first_valueName
1931 int csr = pWin->csrApp;
1932 int lbl = sqlite3VdbeMakeLabel(pParse);
1933 int tmpReg = sqlite3GetTempReg(pParse);
1934 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1936 if( pFunc->zName==nth_valueName ){
1937 sqlite3VdbeAddOp3(v, OP_Column,pMWin->iEphCsr,pWin->iArgCol+1,tmpReg);
1938 windowCheckValue(pParse, tmpReg, 2);
1939 }else{
1940 sqlite3VdbeAddOp2(v, OP_Integer, 1, tmpReg);
1942 sqlite3VdbeAddOp3(v, OP_Add, tmpReg, pWin->regApp, tmpReg);
1943 sqlite3VdbeAddOp3(v, OP_Gt, pWin->regApp+1, lbl, tmpReg);
1944 VdbeCoverageNeverNull(v);
1945 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, 0, tmpReg);
1946 VdbeCoverageNeverTaken(v);
1947 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1948 sqlite3VdbeResolveLabel(v, lbl);
1949 sqlite3ReleaseTempReg(pParse, tmpReg);
1951 else if( pFunc->zName==leadName || pFunc->zName==lagName ){
1952 int nArg = pWin->pOwner->x.pList->nExpr;
1953 int csr = pWin->csrApp;
1954 int lbl = sqlite3VdbeMakeLabel(pParse);
1955 int tmpReg = sqlite3GetTempReg(pParse);
1956 int iEph = pMWin->iEphCsr;
1958 if( nArg<3 ){
1959 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regResult);
1960 }else{
1961 sqlite3VdbeAddOp3(v, OP_Column, iEph,pWin->iArgCol+2,pWin->regResult);
1963 sqlite3VdbeAddOp2(v, OP_Rowid, iEph, tmpReg);
1964 if( nArg<2 ){
1965 int val = (pFunc->zName==leadName ? 1 : -1);
1966 sqlite3VdbeAddOp2(v, OP_AddImm, tmpReg, val);
1967 }else{
1968 int op = (pFunc->zName==leadName ? OP_Add : OP_Subtract);
1969 int tmpReg2 = sqlite3GetTempReg(pParse);
1970 sqlite3VdbeAddOp3(v, OP_Column, iEph, pWin->iArgCol+1, tmpReg2);
1971 sqlite3VdbeAddOp3(v, op, tmpReg2, tmpReg, tmpReg);
1972 sqlite3ReleaseTempReg(pParse, tmpReg2);
1975 sqlite3VdbeAddOp3(v, OP_SeekRowid, csr, lbl, tmpReg);
1976 VdbeCoverage(v);
1977 sqlite3VdbeAddOp3(v, OP_Column, csr, pWin->iArgCol, pWin->regResult);
1978 sqlite3VdbeResolveLabel(v, lbl);
1979 sqlite3ReleaseTempReg(pParse, tmpReg);
1983 sqlite3VdbeAddOp2(v, OP_Gosub, p->regGosub, p->addrGosub);
1987 ** Generate code to set the accumulator register for each window function
1988 ** in the linked list passed as the second argument to NULL. And perform
1989 ** any equivalent initialization required by any built-in window functions
1990 ** in the list.
1992 static int windowInitAccum(Parse *pParse, Window *pMWin){
1993 Vdbe *v = sqlite3GetVdbe(pParse);
1994 int regArg;
1995 int nArg = 0;
1996 Window *pWin;
1997 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
1998 FuncDef *pFunc = pWin->pWFunc;
1999 assert( pWin->regAccum );
2000 sqlite3VdbeAddOp2(v, OP_Null, 0, pWin->regAccum);
2001 nArg = MAX(nArg, windowArgCount(pWin));
2002 if( pMWin->regStartRowid==0 ){
2003 if( pFunc->zName==nth_valueName || pFunc->zName==first_valueName ){
2004 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp);
2005 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
2008 if( (pFunc->funcFlags & SQLITE_FUNC_MINMAX) && pWin->csrApp ){
2009 assert( pWin->eStart!=TK_UNBOUNDED );
2010 sqlite3VdbeAddOp1(v, OP_ResetSorter, pWin->csrApp);
2011 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWin->regApp+1);
2015 regArg = pParse->nMem+1;
2016 pParse->nMem += nArg;
2017 return regArg;
2021 ** Return true if the current frame should be cached in the ephemeral table,
2022 ** even if there are no xInverse() calls required.
2024 static int windowCacheFrame(Window *pMWin){
2025 Window *pWin;
2026 if( pMWin->regStartRowid ) return 1;
2027 for(pWin=pMWin; pWin; pWin=pWin->pNextWin){
2028 FuncDef *pFunc = pWin->pWFunc;
2029 if( (pFunc->zName==nth_valueName)
2030 || (pFunc->zName==first_valueName)
2031 || (pFunc->zName==leadName)
2032 || (pFunc->zName==lagName)
2034 return 1;
2037 return 0;
2041 ** regOld and regNew are each the first register in an array of size
2042 ** pOrderBy->nExpr. This function generates code to compare the two
2043 ** arrays of registers using the collation sequences and other comparison
2044 ** parameters specified by pOrderBy.
2046 ** If the two arrays are not equal, the contents of regNew is copied to
2047 ** regOld and control falls through. Otherwise, if the contents of the arrays
2048 ** are equal, an OP_Goto is executed. The address of the OP_Goto is returned.
2050 static void windowIfNewPeer(
2051 Parse *pParse,
2052 ExprList *pOrderBy,
2053 int regNew, /* First in array of new values */
2054 int regOld, /* First in array of old values */
2055 int addr /* Jump here */
2057 Vdbe *v = sqlite3GetVdbe(pParse);
2058 if( pOrderBy ){
2059 int nVal = pOrderBy->nExpr;
2060 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pOrderBy, 0, 0);
2061 sqlite3VdbeAddOp3(v, OP_Compare, regOld, regNew, nVal);
2062 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
2063 sqlite3VdbeAddOp3(v, OP_Jump,
2064 sqlite3VdbeCurrentAddr(v)+1, addr, sqlite3VdbeCurrentAddr(v)+1
2066 VdbeCoverageEqNe(v);
2067 sqlite3VdbeAddOp3(v, OP_Copy, regNew, regOld, nVal-1);
2068 }else{
2069 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
2074 ** This function is called as part of generating VM programs for RANGE
2075 ** offset PRECEDING/FOLLOWING frame boundaries. Assuming "ASC" order for
2076 ** the ORDER BY term in the window, and that argument op is OP_Ge, it generates
2077 ** code equivalent to:
2079 ** if( csr1.peerVal + regVal >= csr2.peerVal ) goto lbl;
2081 ** The value of parameter op may also be OP_Gt or OP_Le. In these cases the
2082 ** operator in the above pseudo-code is replaced with ">" or "<=", respectively.
2084 ** If the sort-order for the ORDER BY term in the window is DESC, then the
2085 ** comparison is reversed. Instead of adding regVal to csr1.peerVal, it is
2086 ** subtracted. And the comparison operator is inverted to - ">=" becomes "<=",
2087 ** ">" becomes "<", and so on. So, with DESC sort order, if the argument op
2088 ** is OP_Ge, the generated code is equivalent to:
2090 ** if( csr1.peerVal - regVal <= csr2.peerVal ) goto lbl;
2092 ** A special type of arithmetic is used such that if csr1.peerVal is not
2093 ** a numeric type (real or integer), then the result of the addition
2094 ** or subtraction is a a copy of csr1.peerVal.
2096 static void windowCodeRangeTest(
2097 WindowCodeArg *p,
2098 int op, /* OP_Ge, OP_Gt, or OP_Le */
2099 int csr1, /* Cursor number for cursor 1 */
2100 int regVal, /* Register containing non-negative number */
2101 int csr2, /* Cursor number for cursor 2 */
2102 int lbl /* Jump destination if condition is true */
2104 Parse *pParse = p->pParse;
2105 Vdbe *v = sqlite3GetVdbe(pParse);
2106 ExprList *pOrderBy = p->pMWin->pOrderBy; /* ORDER BY clause for window */
2107 int reg1 = sqlite3GetTempReg(pParse); /* Reg. for csr1.peerVal+regVal */
2108 int reg2 = sqlite3GetTempReg(pParse); /* Reg. for csr2.peerVal */
2109 int regString = ++pParse->nMem; /* Reg. for constant value '' */
2110 int arith = OP_Add; /* OP_Add or OP_Subtract */
2111 int addrGe; /* Jump destination */
2112 int addrDone = sqlite3VdbeMakeLabel(pParse); /* Address past OP_Ge */
2113 CollSeq *pColl;
2115 /* Read the peer-value from each cursor into a register */
2116 windowReadPeerValues(p, csr1, reg1);
2117 windowReadPeerValues(p, csr2, reg2);
2119 assert( op==OP_Ge || op==OP_Gt || op==OP_Le );
2120 assert( pOrderBy && pOrderBy->nExpr==1 );
2121 if( pOrderBy->a[0].fg.sortFlags & KEYINFO_ORDER_DESC ){
2122 switch( op ){
2123 case OP_Ge: op = OP_Le; break;
2124 case OP_Gt: op = OP_Lt; break;
2125 default: assert( op==OP_Le ); op = OP_Ge; break;
2127 arith = OP_Subtract;
2130 VdbeModuleComment((v, "CodeRangeTest: if( R%d %s R%d %s R%d ) goto lbl",
2131 reg1, (arith==OP_Add ? "+" : "-"), regVal,
2132 ((op==OP_Ge) ? ">=" : (op==OP_Le) ? "<=" : (op==OP_Gt) ? ">" : "<"), reg2
2135 /* If the BIGNULL flag is set for the ORDER BY, then it is required to
2136 ** consider NULL values to be larger than all other values, instead of
2137 ** the usual smaller. The VDBE opcodes OP_Ge and so on do not handle this
2138 ** (and adding that capability causes a performance regression), so
2139 ** instead if the BIGNULL flag is set then cases where either reg1 or
2140 ** reg2 are NULL are handled separately in the following block. The code
2141 ** generated is equivalent to:
2143 ** if( reg1 IS NULL ){
2144 ** if( op==OP_Ge ) goto lbl;
2145 ** if( op==OP_Gt && reg2 IS NOT NULL ) goto lbl;
2146 ** if( op==OP_Le && reg2 IS NULL ) goto lbl;
2147 ** }else if( reg2 IS NULL ){
2148 ** if( op==OP_Le ) goto lbl;
2149 ** }
2151 ** Additionally, if either reg1 or reg2 are NULL but the jump to lbl is
2152 ** not taken, control jumps over the comparison operator coded below this
2153 ** block. */
2154 if( pOrderBy->a[0].fg.sortFlags & KEYINFO_ORDER_BIGNULL ){
2155 /* This block runs if reg1 contains a NULL. */
2156 int addr = sqlite3VdbeAddOp1(v, OP_NotNull, reg1); VdbeCoverage(v);
2157 switch( op ){
2158 case OP_Ge:
2159 sqlite3VdbeAddOp2(v, OP_Goto, 0, lbl);
2160 break;
2161 case OP_Gt:
2162 sqlite3VdbeAddOp2(v, OP_NotNull, reg2, lbl);
2163 VdbeCoverage(v);
2164 break;
2165 case OP_Le:
2166 sqlite3VdbeAddOp2(v, OP_IsNull, reg2, lbl);
2167 VdbeCoverage(v);
2168 break;
2169 default: assert( op==OP_Lt ); /* no-op */ break;
2171 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrDone);
2173 /* This block runs if reg1 is not NULL, but reg2 is. */
2174 sqlite3VdbeJumpHere(v, addr);
2175 sqlite3VdbeAddOp2(v, OP_IsNull, reg2,
2176 (op==OP_Gt || op==OP_Ge) ? addrDone : lbl);
2177 VdbeCoverage(v);
2180 /* Register reg1 currently contains csr1.peerVal (the peer-value from csr1).
2181 ** This block adds (or subtracts for DESC) the numeric value in regVal
2182 ** from it. Or, if reg1 is not numeric (it is a NULL, a text value or a blob),
2183 ** then leave reg1 as it is. In pseudo-code, this is implemented as:
2185 ** if( reg1>='' ) goto addrGe;
2186 ** reg1 = reg1 +/- regVal
2187 ** addrGe:
2189 ** Since all strings and blobs are greater-than-or-equal-to an empty string,
2190 ** the add/subtract is skipped for these, as required. If reg1 is a NULL,
2191 ** then the arithmetic is performed, but since adding or subtracting from
2192 ** NULL is always NULL anyway, this case is handled as required too. */
2193 sqlite3VdbeAddOp4(v, OP_String8, 0, regString, 0, "", P4_STATIC);
2194 addrGe = sqlite3VdbeAddOp3(v, OP_Ge, regString, 0, reg1);
2195 VdbeCoverage(v);
2196 if( (op==OP_Ge && arith==OP_Add) || (op==OP_Le && arith==OP_Subtract) ){
2197 sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v);
2199 sqlite3VdbeAddOp3(v, arith, regVal, reg1, reg1);
2200 sqlite3VdbeJumpHere(v, addrGe);
2202 /* Compare registers reg2 and reg1, taking the jump if required. Note that
2203 ** control skips over this test if the BIGNULL flag is set and either
2204 ** reg1 or reg2 contain a NULL value. */
2205 sqlite3VdbeAddOp3(v, op, reg2, lbl, reg1); VdbeCoverage(v);
2206 pColl = sqlite3ExprNNCollSeq(pParse, pOrderBy->a[0].pExpr);
2207 sqlite3VdbeAppendP4(v, (void*)pColl, P4_COLLSEQ);
2208 sqlite3VdbeChangeP5(v, SQLITE_NULLEQ);
2209 sqlite3VdbeResolveLabel(v, addrDone);
2211 assert( op==OP_Ge || op==OP_Gt || op==OP_Lt || op==OP_Le );
2212 testcase(op==OP_Ge); VdbeCoverageIf(v, op==OP_Ge);
2213 testcase(op==OP_Lt); VdbeCoverageIf(v, op==OP_Lt);
2214 testcase(op==OP_Le); VdbeCoverageIf(v, op==OP_Le);
2215 testcase(op==OP_Gt); VdbeCoverageIf(v, op==OP_Gt);
2216 sqlite3ReleaseTempReg(pParse, reg1);
2217 sqlite3ReleaseTempReg(pParse, reg2);
2219 VdbeModuleComment((v, "CodeRangeTest: end"));
2223 ** Helper function for sqlite3WindowCodeStep(). Each call to this function
2224 ** generates VM code for a single RETURN_ROW, AGGSTEP or AGGINVERSE
2225 ** operation. Refer to the header comment for sqlite3WindowCodeStep() for
2226 ** details.
2228 static int windowCodeOp(
2229 WindowCodeArg *p, /* Context object */
2230 int op, /* WINDOW_RETURN_ROW, AGGSTEP or AGGINVERSE */
2231 int regCountdown, /* Register for OP_IfPos countdown */
2232 int jumpOnEof /* Jump here if stepped cursor reaches EOF */
2234 int csr, reg;
2235 Parse *pParse = p->pParse;
2236 Window *pMWin = p->pMWin;
2237 int ret = 0;
2238 Vdbe *v = p->pVdbe;
2239 int addrContinue = 0;
2240 int bPeer = (pMWin->eFrmType!=TK_ROWS);
2242 int lblDone = sqlite3VdbeMakeLabel(pParse);
2243 int addrNextRange = 0;
2245 /* Special case - WINDOW_AGGINVERSE is always a no-op if the frame
2246 ** starts with UNBOUNDED PRECEDING. */
2247 if( op==WINDOW_AGGINVERSE && pMWin->eStart==TK_UNBOUNDED ){
2248 assert( regCountdown==0 && jumpOnEof==0 );
2249 return 0;
2252 if( regCountdown>0 ){
2253 if( pMWin->eFrmType==TK_RANGE ){
2254 addrNextRange = sqlite3VdbeCurrentAddr(v);
2255 assert( op==WINDOW_AGGINVERSE || op==WINDOW_AGGSTEP );
2256 if( op==WINDOW_AGGINVERSE ){
2257 if( pMWin->eStart==TK_FOLLOWING ){
2258 windowCodeRangeTest(
2259 p, OP_Le, p->current.csr, regCountdown, p->start.csr, lblDone
2261 }else{
2262 windowCodeRangeTest(
2263 p, OP_Ge, p->start.csr, regCountdown, p->current.csr, lblDone
2266 }else{
2267 windowCodeRangeTest(
2268 p, OP_Gt, p->end.csr, regCountdown, p->current.csr, lblDone
2271 }else{
2272 sqlite3VdbeAddOp3(v, OP_IfPos, regCountdown, lblDone, 1);
2273 VdbeCoverage(v);
2277 if( op==WINDOW_RETURN_ROW && pMWin->regStartRowid==0 ){
2278 windowAggFinal(p, 0);
2280 addrContinue = sqlite3VdbeCurrentAddr(v);
2282 /* If this is a (RANGE BETWEEN a FOLLOWING AND b FOLLOWING) or
2283 ** (RANGE BETWEEN b PRECEDING AND a PRECEDING) frame, ensure the
2284 ** start cursor does not advance past the end cursor within the
2285 ** temporary table. It otherwise might, if (a>b). Also ensure that,
2286 ** if the input cursor is still finding new rows, that the end
2287 ** cursor does not go past it to EOF. */
2288 if( pMWin->eStart==pMWin->eEnd && regCountdown
2289 && pMWin->eFrmType==TK_RANGE
2291 int regRowid1 = sqlite3GetTempReg(pParse);
2292 int regRowid2 = sqlite3GetTempReg(pParse);
2293 if( op==WINDOW_AGGINVERSE ){
2294 sqlite3VdbeAddOp2(v, OP_Rowid, p->start.csr, regRowid1);
2295 sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid2);
2296 sqlite3VdbeAddOp3(v, OP_Ge, regRowid2, lblDone, regRowid1);
2297 VdbeCoverage(v);
2298 }else if( p->regRowid ){
2299 sqlite3VdbeAddOp2(v, OP_Rowid, p->end.csr, regRowid1);
2300 sqlite3VdbeAddOp3(v, OP_Ge, p->regRowid, lblDone, regRowid1);
2301 VdbeCoverageNeverNull(v);
2303 sqlite3ReleaseTempReg(pParse, regRowid1);
2304 sqlite3ReleaseTempReg(pParse, regRowid2);
2305 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING );
2308 switch( op ){
2309 case WINDOW_RETURN_ROW:
2310 csr = p->current.csr;
2311 reg = p->current.reg;
2312 windowReturnOneRow(p);
2313 break;
2315 case WINDOW_AGGINVERSE:
2316 csr = p->start.csr;
2317 reg = p->start.reg;
2318 if( pMWin->regStartRowid ){
2319 assert( pMWin->regEndRowid );
2320 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regStartRowid, 1);
2321 }else{
2322 windowAggStep(p, pMWin, csr, 1, p->regArg);
2324 break;
2326 default:
2327 assert( op==WINDOW_AGGSTEP );
2328 csr = p->end.csr;
2329 reg = p->end.reg;
2330 if( pMWin->regStartRowid ){
2331 assert( pMWin->regEndRowid );
2332 sqlite3VdbeAddOp2(v, OP_AddImm, pMWin->regEndRowid, 1);
2333 }else{
2334 windowAggStep(p, pMWin, csr, 0, p->regArg);
2336 break;
2339 if( op==p->eDelete ){
2340 sqlite3VdbeAddOp1(v, OP_Delete, csr);
2341 sqlite3VdbeChangeP5(v, OPFLAG_SAVEPOSITION);
2344 if( jumpOnEof ){
2345 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+2);
2346 VdbeCoverage(v);
2347 ret = sqlite3VdbeAddOp0(v, OP_Goto);
2348 }else{
2349 sqlite3VdbeAddOp2(v, OP_Next, csr, sqlite3VdbeCurrentAddr(v)+1+bPeer);
2350 VdbeCoverage(v);
2351 if( bPeer ){
2352 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblDone);
2356 if( bPeer ){
2357 int nReg = (pMWin->pOrderBy ? pMWin->pOrderBy->nExpr : 0);
2358 int regTmp = (nReg ? sqlite3GetTempRange(pParse, nReg) : 0);
2359 windowReadPeerValues(p, csr, regTmp);
2360 windowIfNewPeer(pParse, pMWin->pOrderBy, regTmp, reg, addrContinue);
2361 sqlite3ReleaseTempRange(pParse, regTmp, nReg);
2364 if( addrNextRange ){
2365 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNextRange);
2367 sqlite3VdbeResolveLabel(v, lblDone);
2368 return ret;
2373 ** Allocate and return a duplicate of the Window object indicated by the
2374 ** third argument. Set the Window.pOwner field of the new object to
2375 ** pOwner.
2377 Window *sqlite3WindowDup(sqlite3 *db, Expr *pOwner, Window *p){
2378 Window *pNew = 0;
2379 if( ALWAYS(p) ){
2380 pNew = sqlite3DbMallocZero(db, sizeof(Window));
2381 if( pNew ){
2382 pNew->zName = sqlite3DbStrDup(db, p->zName);
2383 pNew->zBase = sqlite3DbStrDup(db, p->zBase);
2384 pNew->pFilter = sqlite3ExprDup(db, p->pFilter, 0);
2385 pNew->pWFunc = p->pWFunc;
2386 pNew->pPartition = sqlite3ExprListDup(db, p->pPartition, 0);
2387 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, 0);
2388 pNew->eFrmType = p->eFrmType;
2389 pNew->eEnd = p->eEnd;
2390 pNew->eStart = p->eStart;
2391 pNew->eExclude = p->eExclude;
2392 pNew->regResult = p->regResult;
2393 pNew->regAccum = p->regAccum;
2394 pNew->iArgCol = p->iArgCol;
2395 pNew->iEphCsr = p->iEphCsr;
2396 pNew->bExprArgs = p->bExprArgs;
2397 pNew->pStart = sqlite3ExprDup(db, p->pStart, 0);
2398 pNew->pEnd = sqlite3ExprDup(db, p->pEnd, 0);
2399 pNew->pOwner = pOwner;
2400 pNew->bImplicitFrame = p->bImplicitFrame;
2403 return pNew;
2407 ** Return a copy of the linked list of Window objects passed as the
2408 ** second argument.
2410 Window *sqlite3WindowListDup(sqlite3 *db, Window *p){
2411 Window *pWin;
2412 Window *pRet = 0;
2413 Window **pp = &pRet;
2415 for(pWin=p; pWin; pWin=pWin->pNextWin){
2416 *pp = sqlite3WindowDup(db, 0, pWin);
2417 if( *pp==0 ) break;
2418 pp = &((*pp)->pNextWin);
2421 return pRet;
2425 ** Return true if it can be determined at compile time that expression
2426 ** pExpr evaluates to a value that, when cast to an integer, is greater
2427 ** than zero. False otherwise.
2429 ** If an OOM error occurs, this function sets the Parse.db.mallocFailed
2430 ** flag and returns zero.
2432 static int windowExprGtZero(Parse *pParse, Expr *pExpr){
2433 int ret = 0;
2434 sqlite3 *db = pParse->db;
2435 sqlite3_value *pVal = 0;
2436 sqlite3ValueFromExpr(db, pExpr, db->enc, SQLITE_AFF_NUMERIC, &pVal);
2437 if( pVal && sqlite3_value_int(pVal)>0 ){
2438 ret = 1;
2440 sqlite3ValueFree(pVal);
2441 return ret;
2445 ** sqlite3WhereBegin() has already been called for the SELECT statement
2446 ** passed as the second argument when this function is invoked. It generates
2447 ** code to populate the Window.regResult register for each window function
2448 ** and invoke the sub-routine at instruction addrGosub once for each row.
2449 ** sqlite3WhereEnd() is always called before returning.
2451 ** This function handles several different types of window frames, which
2452 ** require slightly different processing. The following pseudo code is
2453 ** used to implement window frames of the form:
2455 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2457 ** Other window frame types use variants of the following:
2459 ** ... loop started by sqlite3WhereBegin() ...
2460 ** if( new partition ){
2461 ** Gosub flush
2462 ** }
2463 ** Insert new row into eph table.
2465 ** if( first row of partition ){
2466 ** // Rewind three cursors, all open on the eph table.
2467 ** Rewind(csrEnd);
2468 ** Rewind(csrStart);
2469 ** Rewind(csrCurrent);
2471 ** regEnd = <expr2> // FOLLOWING expression
2472 ** regStart = <expr1> // PRECEDING expression
2473 ** }else{
2474 ** // First time this branch is taken, the eph table contains two
2475 ** // rows. The first row in the partition, which all three cursors
2476 ** // currently point to, and the following row.
2477 ** AGGSTEP
2478 ** if( (regEnd--)<=0 ){
2479 ** RETURN_ROW
2480 ** if( (regStart--)<=0 ){
2481 ** AGGINVERSE
2482 ** }
2483 ** }
2484 ** }
2485 ** }
2486 ** flush:
2487 ** AGGSTEP
2488 ** while( 1 ){
2489 ** RETURN ROW
2490 ** if( csrCurrent is EOF ) break;
2491 ** if( (regStart--)<=0 ){
2492 ** AggInverse(csrStart)
2493 ** Next(csrStart)
2494 ** }
2495 ** }
2497 ** The pseudo-code above uses the following shorthand:
2499 ** AGGSTEP: invoke the aggregate xStep() function for each window function
2500 ** with arguments read from the current row of cursor csrEnd, then
2501 ** step cursor csrEnd forward one row (i.e. sqlite3BtreeNext()).
2503 ** RETURN_ROW: return a row to the caller based on the contents of the
2504 ** current row of csrCurrent and the current state of all
2505 ** aggregates. Then step cursor csrCurrent forward one row.
2507 ** AGGINVERSE: invoke the aggregate xInverse() function for each window
2508 ** functions with arguments read from the current row of cursor
2509 ** csrStart. Then step csrStart forward one row.
2511 ** There are two other ROWS window frames that are handled significantly
2512 ** differently from the above - "BETWEEN <expr> PRECEDING AND <expr> PRECEDING"
2513 ** and "BETWEEN <expr> FOLLOWING AND <expr> FOLLOWING". These are special
2514 ** cases because they change the order in which the three cursors (csrStart,
2515 ** csrCurrent and csrEnd) iterate through the ephemeral table. Cases that
2516 ** use UNBOUNDED or CURRENT ROW are much simpler variations on one of these
2517 ** three.
2519 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2521 ** ... loop started by sqlite3WhereBegin() ...
2522 ** if( new partition ){
2523 ** Gosub flush
2524 ** }
2525 ** Insert new row into eph table.
2526 ** if( first row of partition ){
2527 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2528 ** regEnd = <expr2>
2529 ** regStart = <expr1>
2530 ** }else{
2531 ** if( (regEnd--)<=0 ){
2532 ** AGGSTEP
2533 ** }
2534 ** RETURN_ROW
2535 ** if( (regStart--)<=0 ){
2536 ** AGGINVERSE
2537 ** }
2538 ** }
2539 ** }
2540 ** flush:
2541 ** if( (regEnd--)<=0 ){
2542 ** AGGSTEP
2543 ** }
2544 ** RETURN_ROW
2547 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2549 ** ... loop started by sqlite3WhereBegin() ...
2550 ** if( new partition ){
2551 ** Gosub flush
2552 ** }
2553 ** Insert new row into eph table.
2554 ** if( first row of partition ){
2555 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2556 ** regEnd = <expr2>
2557 ** regStart = regEnd - <expr1>
2558 ** }else{
2559 ** AGGSTEP
2560 ** if( (regEnd--)<=0 ){
2561 ** RETURN_ROW
2562 ** }
2563 ** if( (regStart--)<=0 ){
2564 ** AGGINVERSE
2565 ** }
2566 ** }
2567 ** }
2568 ** flush:
2569 ** AGGSTEP
2570 ** while( 1 ){
2571 ** if( (regEnd--)<=0 ){
2572 ** RETURN_ROW
2573 ** if( eof ) break;
2574 ** }
2575 ** if( (regStart--)<=0 ){
2576 ** AGGINVERSE
2577 ** if( eof ) break
2578 ** }
2579 ** }
2580 ** while( !eof csrCurrent ){
2581 ** RETURN_ROW
2582 ** }
2584 ** For the most part, the patterns above are adapted to support UNBOUNDED by
2585 ** assuming that it is equivalent to "infinity PRECEDING/FOLLOWING" and
2586 ** CURRENT ROW by assuming that it is equivilent to "0 PRECEDING/FOLLOWING".
2587 ** This is optimized of course - branches that will never be taken and
2588 ** conditions that are always true are omitted from the VM code. The only
2589 ** exceptional case is:
2591 ** ROWS BETWEEN <expr1> FOLLOWING AND UNBOUNDED FOLLOWING
2593 ** ... loop started by sqlite3WhereBegin() ...
2594 ** if( new partition ){
2595 ** Gosub flush
2596 ** }
2597 ** Insert new row into eph table.
2598 ** if( first row of partition ){
2599 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2600 ** regStart = <expr1>
2601 ** }else{
2602 ** AGGSTEP
2603 ** }
2604 ** }
2605 ** flush:
2606 ** AGGSTEP
2607 ** while( 1 ){
2608 ** if( (regStart--)<=0 ){
2609 ** AGGINVERSE
2610 ** if( eof ) break
2611 ** }
2612 ** RETURN_ROW
2613 ** }
2614 ** while( !eof csrCurrent ){
2615 ** RETURN_ROW
2616 ** }
2618 ** Also requiring special handling are the cases:
2620 ** ROWS BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2621 ** ROWS BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2623 ** when (expr1 < expr2). This is detected at runtime, not by this function.
2624 ** To handle this case, the pseudo-code programs depicted above are modified
2625 ** slightly to be:
2627 ** ... loop started by sqlite3WhereBegin() ...
2628 ** if( new partition ){
2629 ** Gosub flush
2630 ** }
2631 ** Insert new row into eph table.
2632 ** if( first row of partition ){
2633 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2634 ** regEnd = <expr2>
2635 ** regStart = <expr1>
2636 ** if( regEnd < regStart ){
2637 ** RETURN_ROW
2638 ** delete eph table contents
2639 ** continue
2640 ** }
2641 ** ...
2643 ** The new "continue" statement in the above jumps to the next iteration
2644 ** of the outer loop - the one started by sqlite3WhereBegin().
2646 ** The various GROUPS cases are implemented using the same patterns as
2647 ** ROWS. The VM code is modified slightly so that:
2649 ** 1. The else branch in the main loop is only taken if the row just
2650 ** added to the ephemeral table is the start of a new group. In
2651 ** other words, it becomes:
2653 ** ... loop started by sqlite3WhereBegin() ...
2654 ** if( new partition ){
2655 ** Gosub flush
2656 ** }
2657 ** Insert new row into eph table.
2658 ** if( first row of partition ){
2659 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2660 ** regEnd = <expr2>
2661 ** regStart = <expr1>
2662 ** }else if( new group ){
2663 ** ...
2664 ** }
2665 ** }
2667 ** 2. Instead of processing a single row, each RETURN_ROW, AGGSTEP or
2668 ** AGGINVERSE step processes the current row of the relevant cursor and
2669 ** all subsequent rows belonging to the same group.
2671 ** RANGE window frames are a little different again. As for GROUPS, the
2672 ** main loop runs once per group only. And RETURN_ROW, AGGSTEP and AGGINVERSE
2673 ** deal in groups instead of rows. As for ROWS and GROUPS, there are three
2674 ** basic cases:
2676 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> FOLLOWING
2678 ** ... loop started by sqlite3WhereBegin() ...
2679 ** if( new partition ){
2680 ** Gosub flush
2681 ** }
2682 ** Insert new row into eph table.
2683 ** if( first row of partition ){
2684 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2685 ** regEnd = <expr2>
2686 ** regStart = <expr1>
2687 ** }else{
2688 ** AGGSTEP
2689 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){
2690 ** RETURN_ROW
2691 ** while( csrStart.key + regStart) < csrCurrent.key ){
2692 ** AGGINVERSE
2693 ** }
2694 ** }
2695 ** }
2696 ** }
2697 ** flush:
2698 ** AGGSTEP
2699 ** while( 1 ){
2700 ** RETURN ROW
2701 ** if( csrCurrent is EOF ) break;
2702 ** while( csrStart.key + regStart) < csrCurrent.key ){
2703 ** AGGINVERSE
2704 ** }
2705 ** }
2706 ** }
2708 ** In the above notation, "csr.key" means the current value of the ORDER BY
2709 ** expression (there is only ever 1 for a RANGE that uses an <expr> FOLLOWING
2710 ** or <expr PRECEDING) read from cursor csr.
2712 ** RANGE BETWEEN <expr1> PRECEDING AND <expr2> PRECEDING
2714 ** ... loop started by sqlite3WhereBegin() ...
2715 ** if( new partition ){
2716 ** Gosub flush
2717 ** }
2718 ** Insert new row into eph table.
2719 ** if( first row of partition ){
2720 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2721 ** regEnd = <expr2>
2722 ** regStart = <expr1>
2723 ** }else{
2724 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2725 ** AGGSTEP
2726 ** }
2727 ** while( (csrStart.key + regStart) < csrCurrent.key ){
2728 ** AGGINVERSE
2729 ** }
2730 ** RETURN_ROW
2731 ** }
2732 ** }
2733 ** flush:
2734 ** while( (csrEnd.key + regEnd) <= csrCurrent.key ){
2735 ** AGGSTEP
2736 ** }
2737 ** while( (csrStart.key + regStart) < csrCurrent.key ){
2738 ** AGGINVERSE
2739 ** }
2740 ** RETURN_ROW
2742 ** RANGE BETWEEN <expr1> FOLLOWING AND <expr2> FOLLOWING
2744 ** ... loop started by sqlite3WhereBegin() ...
2745 ** if( new partition ){
2746 ** Gosub flush
2747 ** }
2748 ** Insert new row into eph table.
2749 ** if( first row of partition ){
2750 ** Rewind(csrEnd) ; Rewind(csrStart) ; Rewind(csrCurrent)
2751 ** regEnd = <expr2>
2752 ** regStart = <expr1>
2753 ** }else{
2754 ** AGGSTEP
2755 ** while( (csrCurrent.key + regEnd) < csrEnd.key ){
2756 ** while( (csrCurrent.key + regStart) > csrStart.key ){
2757 ** AGGINVERSE
2758 ** }
2759 ** RETURN_ROW
2760 ** }
2761 ** }
2762 ** }
2763 ** flush:
2764 ** AGGSTEP
2765 ** while( 1 ){
2766 ** while( (csrCurrent.key + regStart) > csrStart.key ){
2767 ** AGGINVERSE
2768 ** if( eof ) break "while( 1 )" loop.
2769 ** }
2770 ** RETURN_ROW
2771 ** }
2772 ** while( !eof csrCurrent ){
2773 ** RETURN_ROW
2774 ** }
2776 ** The text above leaves out many details. Refer to the code and comments
2777 ** below for a more complete picture.
2779 void sqlite3WindowCodeStep(
2780 Parse *pParse, /* Parse context */
2781 Select *p, /* Rewritten SELECT statement */
2782 WhereInfo *pWInfo, /* Context returned by sqlite3WhereBegin() */
2783 int regGosub, /* Register for OP_Gosub */
2784 int addrGosub /* OP_Gosub here to return each row */
2786 Window *pMWin = p->pWin;
2787 ExprList *pOrderBy = pMWin->pOrderBy;
2788 Vdbe *v = sqlite3GetVdbe(pParse);
2789 int csrWrite; /* Cursor used to write to eph. table */
2790 int csrInput = p->pSrc->a[0].iCursor; /* Cursor of sub-select */
2791 int nInput = p->pSrc->a[0].pTab->nCol; /* Number of cols returned by sub */
2792 int iInput; /* To iterate through sub cols */
2793 int addrNe; /* Address of OP_Ne */
2794 int addrGosubFlush = 0; /* Address of OP_Gosub to flush: */
2795 int addrInteger = 0; /* Address of OP_Integer */
2796 int addrEmpty; /* Address of OP_Rewind in flush: */
2797 int regNew; /* Array of registers holding new input row */
2798 int regRecord; /* regNew array in record form */
2799 int regNewPeer = 0; /* Peer values for new row (part of regNew) */
2800 int regPeer = 0; /* Peer values for current row */
2801 int regFlushPart = 0; /* Register for "Gosub flush_partition" */
2802 WindowCodeArg s; /* Context object for sub-routines */
2803 int lblWhereEnd; /* Label just before sqlite3WhereEnd() code */
2804 int regStart = 0; /* Value of <expr> PRECEDING */
2805 int regEnd = 0; /* Value of <expr> FOLLOWING */
2807 assert( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_CURRENT
2808 || pMWin->eStart==TK_FOLLOWING || pMWin->eStart==TK_UNBOUNDED
2810 assert( pMWin->eEnd==TK_FOLLOWING || pMWin->eEnd==TK_CURRENT
2811 || pMWin->eEnd==TK_UNBOUNDED || pMWin->eEnd==TK_PRECEDING
2813 assert( pMWin->eExclude==0 || pMWin->eExclude==TK_CURRENT
2814 || pMWin->eExclude==TK_GROUP || pMWin->eExclude==TK_TIES
2815 || pMWin->eExclude==TK_NO
2818 lblWhereEnd = sqlite3VdbeMakeLabel(pParse);
2820 /* Fill in the context object */
2821 memset(&s, 0, sizeof(WindowCodeArg));
2822 s.pParse = pParse;
2823 s.pMWin = pMWin;
2824 s.pVdbe = v;
2825 s.regGosub = regGosub;
2826 s.addrGosub = addrGosub;
2827 s.current.csr = pMWin->iEphCsr;
2828 csrWrite = s.current.csr+1;
2829 s.start.csr = s.current.csr+2;
2830 s.end.csr = s.current.csr+3;
2832 /* Figure out when rows may be deleted from the ephemeral table. There
2833 ** are four options - they may never be deleted (eDelete==0), they may
2834 ** be deleted as soon as they are no longer part of the window frame
2835 ** (eDelete==WINDOW_AGGINVERSE), they may be deleted as after the row
2836 ** has been returned to the caller (WINDOW_RETURN_ROW), or they may
2837 ** be deleted after they enter the frame (WINDOW_AGGSTEP). */
2838 switch( pMWin->eStart ){
2839 case TK_FOLLOWING:
2840 if( pMWin->eFrmType!=TK_RANGE
2841 && windowExprGtZero(pParse, pMWin->pStart)
2843 s.eDelete = WINDOW_RETURN_ROW;
2845 break;
2846 case TK_UNBOUNDED:
2847 if( windowCacheFrame(pMWin)==0 ){
2848 if( pMWin->eEnd==TK_PRECEDING ){
2849 if( pMWin->eFrmType!=TK_RANGE
2850 && windowExprGtZero(pParse, pMWin->pEnd)
2852 s.eDelete = WINDOW_AGGSTEP;
2854 }else{
2855 s.eDelete = WINDOW_RETURN_ROW;
2858 break;
2859 default:
2860 s.eDelete = WINDOW_AGGINVERSE;
2861 break;
2864 /* Allocate registers for the array of values from the sub-query, the
2865 ** samve values in record form, and the rowid used to insert said record
2866 ** into the ephemeral table. */
2867 regNew = pParse->nMem+1;
2868 pParse->nMem += nInput;
2869 regRecord = ++pParse->nMem;
2870 s.regRowid = ++pParse->nMem;
2872 /* If the window frame contains an "<expr> PRECEDING" or "<expr> FOLLOWING"
2873 ** clause, allocate registers to store the results of evaluating each
2874 ** <expr>. */
2875 if( pMWin->eStart==TK_PRECEDING || pMWin->eStart==TK_FOLLOWING ){
2876 regStart = ++pParse->nMem;
2878 if( pMWin->eEnd==TK_PRECEDING || pMWin->eEnd==TK_FOLLOWING ){
2879 regEnd = ++pParse->nMem;
2882 /* If this is not a "ROWS BETWEEN ..." frame, then allocate arrays of
2883 ** registers to store copies of the ORDER BY expressions (peer values)
2884 ** for the main loop, and for each cursor (start, current and end). */
2885 if( pMWin->eFrmType!=TK_ROWS ){
2886 int nPeer = (pOrderBy ? pOrderBy->nExpr : 0);
2887 regNewPeer = regNew + pMWin->nBufferCol;
2888 if( pMWin->pPartition ) regNewPeer += pMWin->pPartition->nExpr;
2889 regPeer = pParse->nMem+1; pParse->nMem += nPeer;
2890 s.start.reg = pParse->nMem+1; pParse->nMem += nPeer;
2891 s.current.reg = pParse->nMem+1; pParse->nMem += nPeer;
2892 s.end.reg = pParse->nMem+1; pParse->nMem += nPeer;
2895 /* Load the column values for the row returned by the sub-select
2896 ** into an array of registers starting at regNew. Assemble them into
2897 ** a record in register regRecord. */
2898 for(iInput=0; iInput<nInput; iInput++){
2899 sqlite3VdbeAddOp3(v, OP_Column, csrInput, iInput, regNew+iInput);
2901 sqlite3VdbeAddOp3(v, OP_MakeRecord, regNew, nInput, regRecord);
2903 /* An input row has just been read into an array of registers starting
2904 ** at regNew. If the window has a PARTITION clause, this block generates
2905 ** VM code to check if the input row is the start of a new partition.
2906 ** If so, it does an OP_Gosub to an address to be filled in later. The
2907 ** address of the OP_Gosub is stored in local variable addrGosubFlush. */
2908 if( pMWin->pPartition ){
2909 int addr;
2910 ExprList *pPart = pMWin->pPartition;
2911 int nPart = pPart->nExpr;
2912 int regNewPart = regNew + pMWin->nBufferCol;
2913 KeyInfo *pKeyInfo = sqlite3KeyInfoFromExprList(pParse, pPart, 0, 0);
2915 regFlushPart = ++pParse->nMem;
2916 addr = sqlite3VdbeAddOp3(v, OP_Compare, regNewPart, pMWin->regPart, nPart);
2917 sqlite3VdbeAppendP4(v, (void*)pKeyInfo, P4_KEYINFO);
2918 sqlite3VdbeAddOp3(v, OP_Jump, addr+2, addr+4, addr+2);
2919 VdbeCoverageEqNe(v);
2920 addrGosubFlush = sqlite3VdbeAddOp1(v, OP_Gosub, regFlushPart);
2921 VdbeComment((v, "call flush_partition"));
2922 sqlite3VdbeAddOp3(v, OP_Copy, regNewPart, pMWin->regPart, nPart-1);
2925 /* Insert the new row into the ephemeral table */
2926 sqlite3VdbeAddOp2(v, OP_NewRowid, csrWrite, s.regRowid);
2927 sqlite3VdbeAddOp3(v, OP_Insert, csrWrite, regRecord, s.regRowid);
2928 addrNe = sqlite3VdbeAddOp3(v, OP_Ne, pMWin->regOne, 0, s.regRowid);
2929 VdbeCoverageNeverNull(v);
2931 /* This block is run for the first row of each partition */
2932 s.regArg = windowInitAccum(pParse, pMWin);
2934 if( regStart ){
2935 sqlite3ExprCode(pParse, pMWin->pStart, regStart);
2936 windowCheckValue(pParse, regStart, 0 + (pMWin->eFrmType==TK_RANGE?3:0));
2938 if( regEnd ){
2939 sqlite3ExprCode(pParse, pMWin->pEnd, regEnd);
2940 windowCheckValue(pParse, regEnd, 1 + (pMWin->eFrmType==TK_RANGE?3:0));
2943 if( pMWin->eFrmType!=TK_RANGE && pMWin->eStart==pMWin->eEnd && regStart ){
2944 int op = ((pMWin->eStart==TK_FOLLOWING) ? OP_Ge : OP_Le);
2945 int addrGe = sqlite3VdbeAddOp3(v, op, regStart, 0, regEnd);
2946 VdbeCoverageNeverNullIf(v, op==OP_Ge); /* NeverNull because bound <expr> */
2947 VdbeCoverageNeverNullIf(v, op==OP_Le); /* values previously checked */
2948 windowAggFinal(&s, 0);
2949 sqlite3VdbeAddOp1(v, OP_Rewind, s.current.csr);
2950 windowReturnOneRow(&s);
2951 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
2952 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2953 sqlite3VdbeJumpHere(v, addrGe);
2955 if( pMWin->eStart==TK_FOLLOWING && pMWin->eFrmType!=TK_RANGE && regEnd ){
2956 assert( pMWin->eEnd==TK_FOLLOWING );
2957 sqlite3VdbeAddOp3(v, OP_Subtract, regStart, regEnd, regStart);
2960 if( pMWin->eStart!=TK_UNBOUNDED ){
2961 sqlite3VdbeAddOp1(v, OP_Rewind, s.start.csr);
2963 sqlite3VdbeAddOp1(v, OP_Rewind, s.current.csr);
2964 sqlite3VdbeAddOp1(v, OP_Rewind, s.end.csr);
2965 if( regPeer && pOrderBy ){
2966 sqlite3VdbeAddOp3(v, OP_Copy, regNewPeer, regPeer, pOrderBy->nExpr-1);
2967 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.start.reg, pOrderBy->nExpr-1);
2968 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.current.reg, pOrderBy->nExpr-1);
2969 sqlite3VdbeAddOp3(v, OP_Copy, regPeer, s.end.reg, pOrderBy->nExpr-1);
2972 sqlite3VdbeAddOp2(v, OP_Goto, 0, lblWhereEnd);
2974 sqlite3VdbeJumpHere(v, addrNe);
2976 /* Beginning of the block executed for the second and subsequent rows. */
2977 if( regPeer ){
2978 windowIfNewPeer(pParse, pOrderBy, regNewPeer, regPeer, lblWhereEnd);
2980 if( pMWin->eStart==TK_FOLLOWING ){
2981 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
2982 if( pMWin->eEnd!=TK_UNBOUNDED ){
2983 if( pMWin->eFrmType==TK_RANGE ){
2984 int lbl = sqlite3VdbeMakeLabel(pParse);
2985 int addrNext = sqlite3VdbeCurrentAddr(v);
2986 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
2987 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2988 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
2989 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrNext);
2990 sqlite3VdbeResolveLabel(v, lbl);
2991 }else{
2992 windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 0);
2993 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
2996 }else
2997 if( pMWin->eEnd==TK_PRECEDING ){
2998 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
2999 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
3000 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
3001 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
3002 if( !bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
3003 }else{
3004 int addr = 0;
3005 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
3006 if( pMWin->eEnd!=TK_UNBOUNDED ){
3007 if( pMWin->eFrmType==TK_RANGE ){
3008 int lbl = 0;
3009 addr = sqlite3VdbeCurrentAddr(v);
3010 if( regEnd ){
3011 lbl = sqlite3VdbeMakeLabel(pParse);
3012 windowCodeRangeTest(&s, OP_Ge, s.current.csr, regEnd, s.end.csr, lbl);
3014 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
3015 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
3016 if( regEnd ){
3017 sqlite3VdbeAddOp2(v, OP_Goto, 0, addr);
3018 sqlite3VdbeResolveLabel(v, lbl);
3020 }else{
3021 if( regEnd ){
3022 addr = sqlite3VdbeAddOp3(v, OP_IfPos, regEnd, 0, 1);
3023 VdbeCoverage(v);
3025 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
3026 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
3027 if( regEnd ) sqlite3VdbeJumpHere(v, addr);
3032 /* End of the main input loop */
3033 sqlite3VdbeResolveLabel(v, lblWhereEnd);
3034 sqlite3WhereEnd(pWInfo);
3036 /* Fall through */
3037 if( pMWin->pPartition ){
3038 addrInteger = sqlite3VdbeAddOp2(v, OP_Integer, 0, regFlushPart);
3039 sqlite3VdbeJumpHere(v, addrGosubFlush);
3042 s.regRowid = 0;
3043 addrEmpty = sqlite3VdbeAddOp1(v, OP_Rewind, csrWrite);
3044 VdbeCoverage(v);
3045 if( pMWin->eEnd==TK_PRECEDING ){
3046 int bRPS = (pMWin->eStart==TK_PRECEDING && pMWin->eFrmType==TK_RANGE);
3047 windowCodeOp(&s, WINDOW_AGGSTEP, regEnd, 0);
3048 if( bRPS ) windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
3049 windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 0);
3050 }else if( pMWin->eStart==TK_FOLLOWING ){
3051 int addrStart;
3052 int addrBreak1;
3053 int addrBreak2;
3054 int addrBreak3;
3055 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
3056 if( pMWin->eFrmType==TK_RANGE ){
3057 addrStart = sqlite3VdbeCurrentAddr(v);
3058 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
3059 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3060 }else
3061 if( pMWin->eEnd==TK_UNBOUNDED ){
3062 addrStart = sqlite3VdbeCurrentAddr(v);
3063 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regStart, 1);
3064 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, 0, 1);
3065 }else{
3066 assert( pMWin->eEnd==TK_FOLLOWING );
3067 addrStart = sqlite3VdbeCurrentAddr(v);
3068 addrBreak1 = windowCodeOp(&s, WINDOW_RETURN_ROW, regEnd, 1);
3069 addrBreak2 = windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 1);
3071 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3072 sqlite3VdbeJumpHere(v, addrBreak2);
3073 addrStart = sqlite3VdbeCurrentAddr(v);
3074 addrBreak3 = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3075 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3076 sqlite3VdbeJumpHere(v, addrBreak1);
3077 sqlite3VdbeJumpHere(v, addrBreak3);
3078 }else{
3079 int addrBreak;
3080 int addrStart;
3081 windowCodeOp(&s, WINDOW_AGGSTEP, 0, 0);
3082 addrStart = sqlite3VdbeCurrentAddr(v);
3083 addrBreak = windowCodeOp(&s, WINDOW_RETURN_ROW, 0, 1);
3084 windowCodeOp(&s, WINDOW_AGGINVERSE, regStart, 0);
3085 sqlite3VdbeAddOp2(v, OP_Goto, 0, addrStart);
3086 sqlite3VdbeJumpHere(v, addrBreak);
3088 sqlite3VdbeJumpHere(v, addrEmpty);
3090 sqlite3VdbeAddOp1(v, OP_ResetSorter, s.current.csr);
3091 if( pMWin->pPartition ){
3092 if( pMWin->regStartRowid ){
3093 sqlite3VdbeAddOp2(v, OP_Integer, 1, pMWin->regStartRowid);
3094 sqlite3VdbeAddOp2(v, OP_Integer, 0, pMWin->regEndRowid);
3096 sqlite3VdbeChangeP1(v, addrInteger, sqlite3VdbeCurrentAddr(v));
3097 sqlite3VdbeAddOp1(v, OP_Return, regFlushPart);
3101 #endif /* SQLITE_OMIT_WINDOWFUNC */