Snapshot of upstream SQLite 3.39.4
[sqlcipher.git] / src / wherecode.c
blobc582ec65710347560b2c1c17e3401bced2b2b9cb
1 /*
2 ** 2015-06-06
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit. This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code. The original where.c
18 ** file retains the code that does query planning and analysis.
20 #include "sqliteInt.h"
21 #include "whereInt.h"
23 #ifndef SQLITE_OMIT_EXPLAIN
26 ** Return the name of the i-th column of the pIdx index.
28 static const char *explainIndexColumnName(Index *pIdx, int i){
29 i = pIdx->aiColumn[i];
30 if( i==XN_EXPR ) return "<expr>";
31 if( i==XN_ROWID ) return "rowid";
32 return pIdx->pTable->aCol[i].zCnName;
36 ** This routine is a helper for explainIndexRange() below
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time. This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
41 ** terms only.
43 static void explainAppendTerm(
44 StrAccum *pStr, /* The text expression being built */
45 Index *pIdx, /* Index to read column names from */
46 int nTerm, /* Number of terms */
47 int iTerm, /* Zero-based index of first term. */
48 int bAnd, /* Non-zero to append " AND " */
49 const char *zOp /* Name of the operator */
51 int i;
53 assert( nTerm>=1 );
54 if( bAnd ) sqlite3_str_append(pStr, " AND ", 5);
56 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
57 for(i=0; i<nTerm; i++){
58 if( i ) sqlite3_str_append(pStr, ",", 1);
59 sqlite3_str_appendall(pStr, explainIndexColumnName(pIdx, iTerm+i));
61 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
63 sqlite3_str_append(pStr, zOp, 1);
65 if( nTerm>1 ) sqlite3_str_append(pStr, "(", 1);
66 for(i=0; i<nTerm; i++){
67 if( i ) sqlite3_str_append(pStr, ",", 1);
68 sqlite3_str_append(pStr, "?", 1);
70 if( nTerm>1 ) sqlite3_str_append(pStr, ")", 1);
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
78 ** For example, if the query:
80 ** SELECT * FROM t1 WHERE a=1 AND b>2;
82 ** is run and there is an index on (a, b), then this function returns a
83 ** string similar to:
85 ** "a=? AND b>?"
87 static void explainIndexRange(StrAccum *pStr, WhereLoop *pLoop){
88 Index *pIndex = pLoop->u.btree.pIndex;
89 u16 nEq = pLoop->u.btree.nEq;
90 u16 nSkip = pLoop->nSkip;
91 int i, j;
93 if( nEq==0 && (pLoop->wsFlags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))==0 ) return;
94 sqlite3_str_append(pStr, " (", 2);
95 for(i=0; i<nEq; i++){
96 const char *z = explainIndexColumnName(pIndex, i);
97 if( i ) sqlite3_str_append(pStr, " AND ", 5);
98 sqlite3_str_appendf(pStr, i>=nSkip ? "%s=?" : "ANY(%s)", z);
101 j = i;
102 if( pLoop->wsFlags&WHERE_BTM_LIMIT ){
103 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nBtm, j, i, ">");
104 i = 1;
106 if( pLoop->wsFlags&WHERE_TOP_LIMIT ){
107 explainAppendTerm(pStr, pIndex, pLoop->u.btree.nTop, j, i, "<");
109 sqlite3_str_append(pStr, ")", 1);
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
121 int sqlite3WhereExplainOneScan(
122 Parse *pParse, /* Parse context */
123 SrcList *pTabList, /* Table list this loop refers to */
124 WhereLevel *pLevel, /* Scan to write OP_Explain opcode for */
125 u16 wctrlFlags /* Flags passed to sqlite3WhereBegin() */
127 int ret = 0;
128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
129 if( sqlite3ParseToplevel(pParse)->explain==2 )
130 #endif
132 SrcItem *pItem = &pTabList->a[pLevel->iFrom];
133 Vdbe *v = pParse->pVdbe; /* VM being constructed */
134 sqlite3 *db = pParse->db; /* Database handle */
135 int isSearch; /* True for a SEARCH. False for SCAN. */
136 WhereLoop *pLoop; /* The controlling WhereLoop object */
137 u32 flags; /* Flags that describe this loop */
138 char *zMsg; /* Text to add to EQP output */
139 StrAccum str; /* EQP output string */
140 char zBuf[100]; /* Initial space for EQP output string */
142 pLoop = pLevel->pWLoop;
143 flags = pLoop->wsFlags;
144 if( (flags&WHERE_MULTI_OR) || (wctrlFlags&WHERE_OR_SUBCLAUSE) ) return 0;
146 isSearch = (flags&(WHERE_BTM_LIMIT|WHERE_TOP_LIMIT))!=0
147 || ((flags&WHERE_VIRTUALTABLE)==0 && (pLoop->u.btree.nEq>0))
148 || (wctrlFlags&(WHERE_ORDERBY_MIN|WHERE_ORDERBY_MAX));
150 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
151 str.printfFlags = SQLITE_PRINTF_INTERNAL;
152 sqlite3_str_appendf(&str, "%s %S", isSearch ? "SEARCH" : "SCAN", pItem);
153 if( (flags & (WHERE_IPK|WHERE_VIRTUALTABLE))==0 ){
154 const char *zFmt = 0;
155 Index *pIdx;
157 assert( pLoop->u.btree.pIndex!=0 );
158 pIdx = pLoop->u.btree.pIndex;
159 assert( !(flags&WHERE_AUTO_INDEX) || (flags&WHERE_IDX_ONLY) );
160 if( !HasRowid(pItem->pTab) && IsPrimaryKeyIndex(pIdx) ){
161 if( isSearch ){
162 zFmt = "PRIMARY KEY";
164 }else if( flags & WHERE_PARTIALIDX ){
165 zFmt = "AUTOMATIC PARTIAL COVERING INDEX";
166 }else if( flags & WHERE_AUTO_INDEX ){
167 zFmt = "AUTOMATIC COVERING INDEX";
168 }else if( flags & WHERE_IDX_ONLY ){
169 zFmt = "COVERING INDEX %s";
170 }else{
171 zFmt = "INDEX %s";
173 if( zFmt ){
174 sqlite3_str_append(&str, " USING ", 7);
175 sqlite3_str_appendf(&str, zFmt, pIdx->zName);
176 explainIndexRange(&str, pLoop);
178 }else if( (flags & WHERE_IPK)!=0 && (flags & WHERE_CONSTRAINT)!=0 ){
179 char cRangeOp;
180 #if 0 /* Better output, but breaks many tests */
181 const Table *pTab = pItem->pTab;
182 const char *zRowid = pTab->iPKey>=0 ? pTab->aCol[pTab->iPKey].zCnName:
183 "rowid";
184 #else
185 const char *zRowid = "rowid";
186 #endif
187 sqlite3_str_appendf(&str, " USING INTEGER PRIMARY KEY (%s", zRowid);
188 if( flags&(WHERE_COLUMN_EQ|WHERE_COLUMN_IN) ){
189 cRangeOp = '=';
190 }else if( (flags&WHERE_BOTH_LIMIT)==WHERE_BOTH_LIMIT ){
191 sqlite3_str_appendf(&str, ">? AND %s", zRowid);
192 cRangeOp = '<';
193 }else if( flags&WHERE_BTM_LIMIT ){
194 cRangeOp = '>';
195 }else{
196 assert( flags&WHERE_TOP_LIMIT);
197 cRangeOp = '<';
199 sqlite3_str_appendf(&str, "%c?)", cRangeOp);
201 #ifndef SQLITE_OMIT_VIRTUALTABLE
202 else if( (flags & WHERE_VIRTUALTABLE)!=0 ){
203 sqlite3_str_appendf(&str, " VIRTUAL TABLE INDEX %d:%s",
204 pLoop->u.vtab.idxNum, pLoop->u.vtab.idxStr);
206 #endif
207 if( pItem->fg.jointype & JT_LEFT ){
208 sqlite3_str_appendf(&str, " LEFT-JOIN");
210 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
211 if( pLoop->nOut>=10 ){
212 sqlite3_str_appendf(&str, " (~%llu rows)",
213 sqlite3LogEstToInt(pLoop->nOut));
214 }else{
215 sqlite3_str_append(&str, " (~1 row)", 9);
217 #endif
218 zMsg = sqlite3StrAccumFinish(&str);
219 sqlite3ExplainBreakpoint("",zMsg);
220 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
221 pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
223 return ret;
227 ** Add a single OP_Explain opcode that describes a Bloom filter.
229 ** Or if not processing EXPLAIN QUERY PLAN and not in a SQLITE_DEBUG and/or
230 ** SQLITE_ENABLE_STMT_SCANSTATUS build, then OP_Explain opcodes are not
231 ** required and this routine is a no-op.
233 ** If an OP_Explain opcode is added to the VM, its address is returned.
234 ** Otherwise, if no OP_Explain is coded, zero is returned.
236 int sqlite3WhereExplainBloomFilter(
237 const Parse *pParse, /* Parse context */
238 const WhereInfo *pWInfo, /* WHERE clause */
239 const WhereLevel *pLevel /* Bloom filter on this level */
241 int ret = 0;
242 SrcItem *pItem = &pWInfo->pTabList->a[pLevel->iFrom];
243 Vdbe *v = pParse->pVdbe; /* VM being constructed */
244 sqlite3 *db = pParse->db; /* Database handle */
245 char *zMsg; /* Text to add to EQP output */
246 int i; /* Loop counter */
247 WhereLoop *pLoop; /* The where loop */
248 StrAccum str; /* EQP output string */
249 char zBuf[100]; /* Initial space for EQP output string */
251 sqlite3StrAccumInit(&str, db, zBuf, sizeof(zBuf), SQLITE_MAX_LENGTH);
252 str.printfFlags = SQLITE_PRINTF_INTERNAL;
253 sqlite3_str_appendf(&str, "BLOOM FILTER ON %S (", pItem);
254 pLoop = pLevel->pWLoop;
255 if( pLoop->wsFlags & WHERE_IPK ){
256 const Table *pTab = pItem->pTab;
257 if( pTab->iPKey>=0 ){
258 sqlite3_str_appendf(&str, "%s=?", pTab->aCol[pTab->iPKey].zCnName);
259 }else{
260 sqlite3_str_appendf(&str, "rowid=?");
262 }else{
263 for(i=pLoop->nSkip; i<pLoop->u.btree.nEq; i++){
264 const char *z = explainIndexColumnName(pLoop->u.btree.pIndex, i);
265 if( i>pLoop->nSkip ) sqlite3_str_append(&str, " AND ", 5);
266 sqlite3_str_appendf(&str, "%s=?", z);
269 sqlite3_str_append(&str, ")", 1);
270 zMsg = sqlite3StrAccumFinish(&str);
271 ret = sqlite3VdbeAddOp4(v, OP_Explain, sqlite3VdbeCurrentAddr(v),
272 pParse->addrExplain, 0, zMsg,P4_DYNAMIC);
273 return ret;
275 #endif /* SQLITE_OMIT_EXPLAIN */
277 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
279 ** Configure the VM passed as the first argument with an
280 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
281 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
282 ** clause that the scan reads data from.
284 ** If argument addrExplain is not 0, it must be the address of an
285 ** OP_Explain instruction that describes the same loop.
287 void sqlite3WhereAddScanStatus(
288 Vdbe *v, /* Vdbe to add scanstatus entry to */
289 SrcList *pSrclist, /* FROM clause pLvl reads data from */
290 WhereLevel *pLvl, /* Level to add scanstatus() entry for */
291 int addrExplain /* Address of OP_Explain (or 0) */
293 const char *zObj = 0;
294 WhereLoop *pLoop = pLvl->pWLoop;
295 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 && pLoop->u.btree.pIndex!=0 ){
296 zObj = pLoop->u.btree.pIndex->zName;
297 }else{
298 zObj = pSrclist->a[pLvl->iFrom].zName;
300 sqlite3VdbeScanStatus(
301 v, addrExplain, pLvl->addrBody, pLvl->addrVisit, pLoop->nOut, zObj
304 #endif
308 ** Disable a term in the WHERE clause. Except, do not disable the term
309 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
310 ** or USING clause of that join.
312 ** Consider the term t2.z='ok' in the following queries:
314 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
315 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
316 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
318 ** The t2.z='ok' is disabled in the in (2) because it originates
319 ** in the ON clause. The term is disabled in (3) because it is not part
320 ** of a LEFT OUTER JOIN. In (1), the term is not disabled.
322 ** Disabling a term causes that term to not be tested in the inner loop
323 ** of the join. Disabling is an optimization. When terms are satisfied
324 ** by indices, we disable them to prevent redundant tests in the inner
325 ** loop. We would get the correct results if nothing were ever disabled,
326 ** but joins might run a little slower. The trick is to disable as much
327 ** as we can without disabling too much. If we disabled in (1), we'd get
328 ** the wrong answer. See ticket #813.
330 ** If all the children of a term are disabled, then that term is also
331 ** automatically disabled. In this way, terms get disabled if derived
332 ** virtual terms are tested first. For example:
334 ** x GLOB 'abc*' AND x>='abc' AND x<'acd'
335 ** \___________/ \______/ \_____/
336 ** parent child1 child2
338 ** Only the parent term was in the original WHERE clause. The child1
339 ** and child2 terms were added by the LIKE optimization. If both of
340 ** the virtual child terms are valid, then testing of the parent can be
341 ** skipped.
343 ** Usually the parent term is marked as TERM_CODED. But if the parent
344 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
345 ** The TERM_LIKECOND marking indicates that the term should be coded inside
346 ** a conditional such that is only evaluated on the second pass of a
347 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
349 static void disableTerm(WhereLevel *pLevel, WhereTerm *pTerm){
350 int nLoop = 0;
351 assert( pTerm!=0 );
352 while( (pTerm->wtFlags & TERM_CODED)==0
353 && (pLevel->iLeftJoin==0 || ExprHasProperty(pTerm->pExpr, EP_OuterON))
354 && (pLevel->notReady & pTerm->prereqAll)==0
356 if( nLoop && (pTerm->wtFlags & TERM_LIKE)!=0 ){
357 pTerm->wtFlags |= TERM_LIKECOND;
358 }else{
359 pTerm->wtFlags |= TERM_CODED;
361 #ifdef WHERETRACE_ENABLED
362 if( sqlite3WhereTrace & 0x20000 ){
363 sqlite3DebugPrintf("DISABLE-");
364 sqlite3WhereTermPrint(pTerm, (int)(pTerm - (pTerm->pWC->a)));
366 #endif
367 if( pTerm->iParent<0 ) break;
368 pTerm = &pTerm->pWC->a[pTerm->iParent];
369 assert( pTerm!=0 );
370 pTerm->nChild--;
371 if( pTerm->nChild!=0 ) break;
372 nLoop++;
377 ** Code an OP_Affinity opcode to apply the column affinity string zAff
378 ** to the n registers starting at base.
380 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which
381 ** are no-ops) at the beginning and end of zAff are ignored. If all entries
382 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated.
384 ** This routine makes its own copy of zAff so that the caller is free
385 ** to modify zAff after this routine returns.
387 static void codeApplyAffinity(Parse *pParse, int base, int n, char *zAff){
388 Vdbe *v = pParse->pVdbe;
389 if( zAff==0 ){
390 assert( pParse->db->mallocFailed );
391 return;
393 assert( v!=0 );
395 /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE
396 ** entries at the beginning and end of the affinity string.
398 assert( SQLITE_AFF_NONE<SQLITE_AFF_BLOB );
399 while( n>0 && zAff[0]<=SQLITE_AFF_BLOB ){
400 n--;
401 base++;
402 zAff++;
404 while( n>1 && zAff[n-1]<=SQLITE_AFF_BLOB ){
405 n--;
408 /* Code the OP_Affinity opcode if there is anything left to do. */
409 if( n>0 ){
410 sqlite3VdbeAddOp4(v, OP_Affinity, base, n, 0, zAff, n);
415 ** Expression pRight, which is the RHS of a comparison operation, is
416 ** either a vector of n elements or, if n==1, a scalar expression.
417 ** Before the comparison operation, affinity zAff is to be applied
418 ** to the pRight values. This function modifies characters within the
419 ** affinity string to SQLITE_AFF_BLOB if either:
421 ** * the comparison will be performed with no affinity, or
422 ** * the affinity change in zAff is guaranteed not to change the value.
424 static void updateRangeAffinityStr(
425 Expr *pRight, /* RHS of comparison */
426 int n, /* Number of vector elements in comparison */
427 char *zAff /* Affinity string to modify */
429 int i;
430 for(i=0; i<n; i++){
431 Expr *p = sqlite3VectorFieldSubexpr(pRight, i);
432 if( sqlite3CompareAffinity(p, zAff[i])==SQLITE_AFF_BLOB
433 || sqlite3ExprNeedsNoAffinityChange(p, zAff[i])
435 zAff[i] = SQLITE_AFF_BLOB;
442 ** pX is an expression of the form: (vector) IN (SELECT ...)
443 ** In other words, it is a vector IN operator with a SELECT clause on the
444 ** LHS. But not all terms in the vector are indexable and the terms might
445 ** not be in the correct order for indexing.
447 ** This routine makes a copy of the input pX expression and then adjusts
448 ** the vector on the LHS with corresponding changes to the SELECT so that
449 ** the vector contains only index terms and those terms are in the correct
450 ** order. The modified IN expression is returned. The caller is responsible
451 ** for deleting the returned expression.
453 ** Example:
455 ** CREATE TABLE t1(a,b,c,d,e,f);
456 ** CREATE INDEX t1x1 ON t1(e,c);
457 ** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
458 ** \_______________________________________/
459 ** The pX expression
461 ** Since only columns e and c can be used with the index, in that order,
462 ** the modified IN expression that is returned will be:
464 ** (e,c) IN (SELECT z,x FROM t2)
466 ** The reduced pX is different from the original (obviously) and thus is
467 ** only used for indexing, to improve performance. The original unaltered
468 ** IN expression must also be run on each output row for correctness.
470 static Expr *removeUnindexableInClauseTerms(
471 Parse *pParse, /* The parsing context */
472 int iEq, /* Look at loop terms starting here */
473 WhereLoop *pLoop, /* The current loop */
474 Expr *pX /* The IN expression to be reduced */
476 sqlite3 *db = pParse->db;
477 Expr *pNew;
478 pNew = sqlite3ExprDup(db, pX, 0);
479 if( db->mallocFailed==0 ){
480 ExprList *pOrigRhs; /* Original unmodified RHS */
481 ExprList *pOrigLhs; /* Original unmodified LHS */
482 ExprList *pRhs = 0; /* New RHS after modifications */
483 ExprList *pLhs = 0; /* New LHS after mods */
484 int i; /* Loop counter */
485 Select *pSelect; /* Pointer to the SELECT on the RHS */
487 assert( ExprUseXSelect(pNew) );
488 pOrigRhs = pNew->x.pSelect->pEList;
489 assert( pNew->pLeft!=0 );
490 assert( ExprUseXList(pNew->pLeft) );
491 pOrigLhs = pNew->pLeft->x.pList;
492 for(i=iEq; i<pLoop->nLTerm; i++){
493 if( pLoop->aLTerm[i]->pExpr==pX ){
494 int iField;
495 assert( (pLoop->aLTerm[i]->eOperator & (WO_OR|WO_AND))==0 );
496 iField = pLoop->aLTerm[i]->u.x.iField - 1;
497 if( pOrigRhs->a[iField].pExpr==0 ) continue; /* Duplicate PK column */
498 pRhs = sqlite3ExprListAppend(pParse, pRhs, pOrigRhs->a[iField].pExpr);
499 pOrigRhs->a[iField].pExpr = 0;
500 assert( pOrigLhs->a[iField].pExpr!=0 );
501 pLhs = sqlite3ExprListAppend(pParse, pLhs, pOrigLhs->a[iField].pExpr);
502 pOrigLhs->a[iField].pExpr = 0;
505 sqlite3ExprListDelete(db, pOrigRhs);
506 sqlite3ExprListDelete(db, pOrigLhs);
507 pNew->pLeft->x.pList = pLhs;
508 pNew->x.pSelect->pEList = pRhs;
509 if( pLhs && pLhs->nExpr==1 ){
510 /* Take care here not to generate a TK_VECTOR containing only a
511 ** single value. Since the parser never creates such a vector, some
512 ** of the subroutines do not handle this case. */
513 Expr *p = pLhs->a[0].pExpr;
514 pLhs->a[0].pExpr = 0;
515 sqlite3ExprDelete(db, pNew->pLeft);
516 pNew->pLeft = p;
518 pSelect = pNew->x.pSelect;
519 if( pSelect->pOrderBy ){
520 /* If the SELECT statement has an ORDER BY clause, zero the
521 ** iOrderByCol variables. These are set to non-zero when an
522 ** ORDER BY term exactly matches one of the terms of the
523 ** result-set. Since the result-set of the SELECT statement may
524 ** have been modified or reordered, these variables are no longer
525 ** set correctly. Since setting them is just an optimization,
526 ** it's easiest just to zero them here. */
527 ExprList *pOrderBy = pSelect->pOrderBy;
528 for(i=0; i<pOrderBy->nExpr; i++){
529 pOrderBy->a[i].u.x.iOrderByCol = 0;
533 #if 0
534 printf("For indexing, change the IN expr:\n");
535 sqlite3TreeViewExpr(0, pX, 0);
536 printf("Into:\n");
537 sqlite3TreeViewExpr(0, pNew, 0);
538 #endif
540 return pNew;
545 ** Generate code for a single equality term of the WHERE clause. An equality
546 ** term can be either X=expr or X IN (...). pTerm is the term to be
547 ** coded.
549 ** The current value for the constraint is left in a register, the index
550 ** of which is returned. An attempt is made store the result in iTarget but
551 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the
552 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
553 ** some other register and it is the caller's responsibility to compensate.
555 ** For a constraint of the form X=expr, the expression is evaluated in
556 ** straight-line code. For constraints of the form X IN (...)
557 ** this routine sets up a loop that will iterate over all values of X.
559 static int codeEqualityTerm(
560 Parse *pParse, /* The parsing context */
561 WhereTerm *pTerm, /* The term of the WHERE clause to be coded */
562 WhereLevel *pLevel, /* The level of the FROM clause we are working on */
563 int iEq, /* Index of the equality term within this level */
564 int bRev, /* True for reverse-order IN operations */
565 int iTarget /* Attempt to leave results in this register */
567 Expr *pX = pTerm->pExpr;
568 Vdbe *v = pParse->pVdbe;
569 int iReg; /* Register holding results */
571 assert( pLevel->pWLoop->aLTerm[iEq]==pTerm );
572 assert( iTarget>0 );
573 if( pX->op==TK_EQ || pX->op==TK_IS ){
574 iReg = sqlite3ExprCodeTarget(pParse, pX->pRight, iTarget);
575 }else if( pX->op==TK_ISNULL ){
576 iReg = iTarget;
577 sqlite3VdbeAddOp2(v, OP_Null, 0, iReg);
578 #ifndef SQLITE_OMIT_SUBQUERY
579 }else{
580 int eType = IN_INDEX_NOOP;
581 int iTab;
582 struct InLoop *pIn;
583 WhereLoop *pLoop = pLevel->pWLoop;
584 int i;
585 int nEq = 0;
586 int *aiMap = 0;
588 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0
589 && pLoop->u.btree.pIndex!=0
590 && pLoop->u.btree.pIndex->aSortOrder[iEq]
592 testcase( iEq==0 );
593 testcase( bRev );
594 bRev = !bRev;
596 assert( pX->op==TK_IN );
597 iReg = iTarget;
599 for(i=0; i<iEq; i++){
600 if( pLoop->aLTerm[i] && pLoop->aLTerm[i]->pExpr==pX ){
601 disableTerm(pLevel, pTerm);
602 return iTarget;
605 for(i=iEq;i<pLoop->nLTerm; i++){
606 assert( pLoop->aLTerm[i]!=0 );
607 if( pLoop->aLTerm[i]->pExpr==pX ) nEq++;
610 iTab = 0;
611 if( !ExprUseXSelect(pX) || pX->x.pSelect->pEList->nExpr==1 ){
612 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, 0, &iTab);
613 }else{
614 Expr *pExpr = pTerm->pExpr;
615 if( pExpr->iTable==0 || !ExprHasProperty(pExpr, EP_Subrtn) ){
616 sqlite3 *db = pParse->db;
617 pX = removeUnindexableInClauseTerms(pParse, iEq, pLoop, pX);
618 if( !db->mallocFailed ){
619 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*nEq);
620 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap,&iTab);
621 pExpr->iTable = iTab;
623 sqlite3ExprDelete(db, pX);
624 }else{
625 int n = sqlite3ExprVectorSize(pX->pLeft);
626 aiMap = (int*)sqlite3DbMallocZero(pParse->db, sizeof(int)*MAX(nEq,n));
627 eType = sqlite3FindInIndex(pParse, pX, IN_INDEX_LOOP, 0, aiMap, &iTab);
629 pX = pExpr;
632 if( eType==IN_INDEX_INDEX_DESC ){
633 testcase( bRev );
634 bRev = !bRev;
636 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iTab, 0);
637 VdbeCoverageIf(v, bRev);
638 VdbeCoverageIf(v, !bRev);
640 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
641 pLoop->wsFlags |= WHERE_IN_ABLE;
642 if( pLevel->u.in.nIn==0 ){
643 pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
645 if( iEq>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0 ){
646 pLoop->wsFlags |= WHERE_IN_EARLYOUT;
649 i = pLevel->u.in.nIn;
650 pLevel->u.in.nIn += nEq;
651 pLevel->u.in.aInLoop =
652 sqlite3WhereRealloc(pTerm->pWC->pWInfo,
653 pLevel->u.in.aInLoop,
654 sizeof(pLevel->u.in.aInLoop[0])*pLevel->u.in.nIn);
655 pIn = pLevel->u.in.aInLoop;
656 if( pIn ){
657 int iMap = 0; /* Index in aiMap[] */
658 pIn += i;
659 for(i=iEq;i<pLoop->nLTerm; i++){
660 if( pLoop->aLTerm[i]->pExpr==pX ){
661 int iOut = iReg + i - iEq;
662 if( eType==IN_INDEX_ROWID ){
663 pIn->addrInTop = sqlite3VdbeAddOp2(v, OP_Rowid, iTab, iOut);
664 }else{
665 int iCol = aiMap ? aiMap[iMap++] : 0;
666 pIn->addrInTop = sqlite3VdbeAddOp3(v,OP_Column,iTab, iCol, iOut);
668 sqlite3VdbeAddOp1(v, OP_IsNull, iOut); VdbeCoverage(v);
669 if( i==iEq ){
670 pIn->iCur = iTab;
671 pIn->eEndLoopOp = bRev ? OP_Prev : OP_Next;
672 if( iEq>0 ){
673 pIn->iBase = iReg - i;
674 pIn->nPrefix = i;
675 }else{
676 pIn->nPrefix = 0;
678 }else{
679 pIn->eEndLoopOp = OP_Noop;
681 pIn++;
684 testcase( iEq>0
685 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)==0
686 && (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 );
687 if( iEq>0
688 && (pLoop->wsFlags & (WHERE_IN_SEEKSCAN|WHERE_VIRTUALTABLE))==0
690 sqlite3VdbeAddOp3(v, OP_SeekHit, pLevel->iIdxCur, 0, iEq);
692 }else{
693 pLevel->u.in.nIn = 0;
695 sqlite3DbFree(pParse->db, aiMap);
696 #endif
699 /* As an optimization, try to disable the WHERE clause term that is
700 ** driving the index as it will always be true. The correct answer is
701 ** obtained regardless, but we might get the answer with fewer CPU cycles
702 ** by omitting the term.
704 ** But do not disable the term unless we are certain that the term is
705 ** not a transitive constraint. For an example of where that does not
706 ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04)
708 if( (pLevel->pWLoop->wsFlags & WHERE_TRANSCONS)==0
709 || (pTerm->eOperator & WO_EQUIV)==0
711 disableTerm(pLevel, pTerm);
714 return iReg;
718 ** Generate code that will evaluate all == and IN constraints for an
719 ** index scan.
721 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
722 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
723 ** The index has as many as three equality constraints, but in this
724 ** example, the third "c" value is an inequality. So only two
725 ** constraints are coded. This routine will generate code to evaluate
726 ** a==5 and b IN (1,2,3). The current values for a and b will be stored
727 ** in consecutive registers and the index of the first register is returned.
729 ** In the example above nEq==2. But this subroutine works for any value
730 ** of nEq including 0. If nEq==0, this routine is nearly a no-op.
731 ** The only thing it does is allocate the pLevel->iMem memory cell and
732 ** compute the affinity string.
734 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints
735 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is
736 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
737 ** occurs after the nEq quality constraints.
739 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
740 ** the index of the first memory cell in that range. The code that
741 ** calls this routine will use that memory range to store keys for
742 ** start and termination conditions of the loop.
743 ** key value of the loop. If one or more IN operators appear, then
744 ** this routine allocates an additional nEq memory cells for internal
745 ** use.
747 ** Before returning, *pzAff is set to point to a buffer containing a
748 ** copy of the column affinity string of the index allocated using
749 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
750 ** with equality constraints that use BLOB or NONE affinity are set to
751 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
753 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
754 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
756 ** In the example above, the index on t1(a) has TEXT affinity. But since
757 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
758 ** no conversion should be attempted before using a t2.b value as part of
759 ** a key to search the index. Hence the first byte in the returned affinity
760 ** string in this example would be set to SQLITE_AFF_BLOB.
762 static int codeAllEqualityTerms(
763 Parse *pParse, /* Parsing context */
764 WhereLevel *pLevel, /* Which nested loop of the FROM we are coding */
765 int bRev, /* Reverse the order of IN operators */
766 int nExtraReg, /* Number of extra registers to allocate */
767 char **pzAff /* OUT: Set to point to affinity string */
769 u16 nEq; /* The number of == or IN constraints to code */
770 u16 nSkip; /* Number of left-most columns to skip */
771 Vdbe *v = pParse->pVdbe; /* The vm under construction */
772 Index *pIdx; /* The index being used for this loop */
773 WhereTerm *pTerm; /* A single constraint term */
774 WhereLoop *pLoop; /* The WhereLoop object */
775 int j; /* Loop counter */
776 int regBase; /* Base register */
777 int nReg; /* Number of registers to allocate */
778 char *zAff; /* Affinity string to return */
780 /* This module is only called on query plans that use an index. */
781 pLoop = pLevel->pWLoop;
782 assert( (pLoop->wsFlags & WHERE_VIRTUALTABLE)==0 );
783 nEq = pLoop->u.btree.nEq;
784 nSkip = pLoop->nSkip;
785 pIdx = pLoop->u.btree.pIndex;
786 assert( pIdx!=0 );
788 /* Figure out how many memory cells we will need then allocate them.
790 regBase = pParse->nMem + 1;
791 nReg = pLoop->u.btree.nEq + nExtraReg;
792 pParse->nMem += nReg;
794 zAff = sqlite3DbStrDup(pParse->db,sqlite3IndexAffinityStr(pParse->db,pIdx));
795 assert( zAff!=0 || pParse->db->mallocFailed );
797 if( nSkip ){
798 int iIdxCur = pLevel->iIdxCur;
799 sqlite3VdbeAddOp3(v, OP_Null, 0, regBase, regBase+nSkip-1);
800 sqlite3VdbeAddOp1(v, (bRev?OP_Last:OP_Rewind), iIdxCur);
801 VdbeCoverageIf(v, bRev==0);
802 VdbeCoverageIf(v, bRev!=0);
803 VdbeComment((v, "begin skip-scan on %s", pIdx->zName));
804 j = sqlite3VdbeAddOp0(v, OP_Goto);
805 assert( pLevel->addrSkip==0 );
806 pLevel->addrSkip = sqlite3VdbeAddOp4Int(v, (bRev?OP_SeekLT:OP_SeekGT),
807 iIdxCur, 0, regBase, nSkip);
808 VdbeCoverageIf(v, bRev==0);
809 VdbeCoverageIf(v, bRev!=0);
810 sqlite3VdbeJumpHere(v, j);
811 for(j=0; j<nSkip; j++){
812 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, j, regBase+j);
813 testcase( pIdx->aiColumn[j]==XN_EXPR );
814 VdbeComment((v, "%s", explainIndexColumnName(pIdx, j)));
818 /* Evaluate the equality constraints
820 assert( zAff==0 || (int)strlen(zAff)>=nEq );
821 for(j=nSkip; j<nEq; j++){
822 int r1;
823 pTerm = pLoop->aLTerm[j];
824 assert( pTerm!=0 );
825 /* The following testcase is true for indices with redundant columns.
826 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
827 testcase( (pTerm->wtFlags & TERM_CODED)!=0 );
828 testcase( pTerm->wtFlags & TERM_VIRTUAL );
829 r1 = codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, regBase+j);
830 if( r1!=regBase+j ){
831 if( nReg==1 ){
832 sqlite3ReleaseTempReg(pParse, regBase);
833 regBase = r1;
834 }else{
835 sqlite3VdbeAddOp2(v, OP_Copy, r1, regBase+j);
839 for(j=nSkip; j<nEq; j++){
840 pTerm = pLoop->aLTerm[j];
841 if( pTerm->eOperator & WO_IN ){
842 if( pTerm->pExpr->flags & EP_xIsSelect ){
843 /* No affinity ever needs to be (or should be) applied to a value
844 ** from the RHS of an "? IN (SELECT ...)" expression. The
845 ** sqlite3FindInIndex() routine has already ensured that the
846 ** affinity of the comparison has been applied to the value. */
847 if( zAff ) zAff[j] = SQLITE_AFF_BLOB;
849 }else if( (pTerm->eOperator & WO_ISNULL)==0 ){
850 Expr *pRight = pTerm->pExpr->pRight;
851 if( (pTerm->wtFlags & TERM_IS)==0 && sqlite3ExprCanBeNull(pRight) ){
852 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+j, pLevel->addrBrk);
853 VdbeCoverage(v);
855 if( pParse->nErr==0 ){
856 assert( pParse->db->mallocFailed==0 );
857 if( sqlite3CompareAffinity(pRight, zAff[j])==SQLITE_AFF_BLOB ){
858 zAff[j] = SQLITE_AFF_BLOB;
860 if( sqlite3ExprNeedsNoAffinityChange(pRight, zAff[j]) ){
861 zAff[j] = SQLITE_AFF_BLOB;
866 *pzAff = zAff;
867 return regBase;
870 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
872 ** If the most recently coded instruction is a constant range constraint
873 ** (a string literal) that originated from the LIKE optimization, then
874 ** set P3 and P5 on the OP_String opcode so that the string will be cast
875 ** to a BLOB at appropriate times.
877 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
878 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range
879 ** scan loop run twice, once for strings and a second time for BLOBs.
880 ** The OP_String opcodes on the second pass convert the upper and lower
881 ** bound string constants to blobs. This routine makes the necessary changes
882 ** to the OP_String opcodes for that to happen.
884 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
885 ** only the one pass through the string space is required, so this routine
886 ** becomes a no-op.
888 static void whereLikeOptimizationStringFixup(
889 Vdbe *v, /* prepared statement under construction */
890 WhereLevel *pLevel, /* The loop that contains the LIKE operator */
891 WhereTerm *pTerm /* The upper or lower bound just coded */
893 if( pTerm->wtFlags & TERM_LIKEOPT ){
894 VdbeOp *pOp;
895 assert( pLevel->iLikeRepCntr>0 );
896 pOp = sqlite3VdbeGetOp(v, -1);
897 assert( pOp!=0 );
898 assert( pOp->opcode==OP_String8
899 || pTerm->pWC->pWInfo->pParse->db->mallocFailed );
900 pOp->p3 = (int)(pLevel->iLikeRepCntr>>1); /* Register holding counter */
901 pOp->p5 = (u8)(pLevel->iLikeRepCntr&1); /* ASC or DESC */
904 #else
905 # define whereLikeOptimizationStringFixup(A,B,C)
906 #endif
908 #ifdef SQLITE_ENABLE_CURSOR_HINTS
910 ** Information is passed from codeCursorHint() down to individual nodes of
911 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
912 ** structure.
914 struct CCurHint {
915 int iTabCur; /* Cursor for the main table */
916 int iIdxCur; /* Cursor for the index, if pIdx!=0. Unused otherwise */
917 Index *pIdx; /* The index used to access the table */
921 ** This function is called for every node of an expression that is a candidate
922 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference
923 ** the table CCurHint.iTabCur, verify that the same column can be
924 ** accessed through the index. If it cannot, then set pWalker->eCode to 1.
926 static int codeCursorHintCheckExpr(Walker *pWalker, Expr *pExpr){
927 struct CCurHint *pHint = pWalker->u.pCCurHint;
928 assert( pHint->pIdx!=0 );
929 if( pExpr->op==TK_COLUMN
930 && pExpr->iTable==pHint->iTabCur
931 && sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn)<0
933 pWalker->eCode = 1;
935 return WRC_Continue;
939 ** Test whether or not expression pExpr, which was part of a WHERE clause,
940 ** should be included in the cursor-hint for a table that is on the rhs
941 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
942 ** expression is not suitable.
944 ** An expression is unsuitable if it might evaluate to non NULL even if
945 ** a TK_COLUMN node that does affect the value of the expression is set
946 ** to NULL. For example:
948 ** col IS NULL
949 ** col IS NOT NULL
950 ** coalesce(col, 1)
951 ** CASE WHEN col THEN 0 ELSE 1 END
953 static int codeCursorHintIsOrFunction(Walker *pWalker, Expr *pExpr){
954 if( pExpr->op==TK_IS
955 || pExpr->op==TK_ISNULL || pExpr->op==TK_ISNOT
956 || pExpr->op==TK_NOTNULL || pExpr->op==TK_CASE
958 pWalker->eCode = 1;
959 }else if( pExpr->op==TK_FUNCTION ){
960 int d1;
961 char d2[4];
962 if( 0==sqlite3IsLikeFunction(pWalker->pParse->db, pExpr, &d1, d2) ){
963 pWalker->eCode = 1;
967 return WRC_Continue;
972 ** This function is called on every node of an expression tree used as an
973 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
974 ** that accesses any table other than the one identified by
975 ** CCurHint.iTabCur, then do the following:
977 ** 1) allocate a register and code an OP_Column instruction to read
978 ** the specified column into the new register, and
980 ** 2) transform the expression node to a TK_REGISTER node that reads
981 ** from the newly populated register.
983 ** Also, if the node is a TK_COLUMN that does access the table idenified
984 ** by pCCurHint.iTabCur, and an index is being used (which we will
985 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
986 ** an access of the index rather than the original table.
988 static int codeCursorHintFixExpr(Walker *pWalker, Expr *pExpr){
989 int rc = WRC_Continue;
990 struct CCurHint *pHint = pWalker->u.pCCurHint;
991 if( pExpr->op==TK_COLUMN ){
992 if( pExpr->iTable!=pHint->iTabCur ){
993 int reg = ++pWalker->pParse->nMem; /* Register for column value */
994 sqlite3ExprCode(pWalker->pParse, pExpr, reg);
995 pExpr->op = TK_REGISTER;
996 pExpr->iTable = reg;
997 }else if( pHint->pIdx!=0 ){
998 pExpr->iTable = pHint->iIdxCur;
999 pExpr->iColumn = sqlite3TableColumnToIndex(pHint->pIdx, pExpr->iColumn);
1000 assert( pExpr->iColumn>=0 );
1002 }else if( pExpr->op==TK_AGG_FUNCTION ){
1003 /* An aggregate function in the WHERE clause of a query means this must
1004 ** be a correlated sub-query, and expression pExpr is an aggregate from
1005 ** the parent context. Do not walk the function arguments in this case.
1007 ** todo: It should be possible to replace this node with a TK_REGISTER
1008 ** expression, as the result of the expression must be stored in a
1009 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
1010 rc = WRC_Prune;
1012 return rc;
1016 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
1018 static void codeCursorHint(
1019 SrcItem *pTabItem, /* FROM clause item */
1020 WhereInfo *pWInfo, /* The where clause */
1021 WhereLevel *pLevel, /* Which loop to provide hints for */
1022 WhereTerm *pEndRange /* Hint this end-of-scan boundary term if not NULL */
1024 Parse *pParse = pWInfo->pParse;
1025 sqlite3 *db = pParse->db;
1026 Vdbe *v = pParse->pVdbe;
1027 Expr *pExpr = 0;
1028 WhereLoop *pLoop = pLevel->pWLoop;
1029 int iCur;
1030 WhereClause *pWC;
1031 WhereTerm *pTerm;
1032 int i, j;
1033 struct CCurHint sHint;
1034 Walker sWalker;
1036 if( OptimizationDisabled(db, SQLITE_CursorHints) ) return;
1037 iCur = pLevel->iTabCur;
1038 assert( iCur==pWInfo->pTabList->a[pLevel->iFrom].iCursor );
1039 sHint.iTabCur = iCur;
1040 sHint.iIdxCur = pLevel->iIdxCur;
1041 sHint.pIdx = pLoop->u.btree.pIndex;
1042 memset(&sWalker, 0, sizeof(sWalker));
1043 sWalker.pParse = pParse;
1044 sWalker.u.pCCurHint = &sHint;
1045 pWC = &pWInfo->sWC;
1046 for(i=0; i<pWC->nBase; i++){
1047 pTerm = &pWC->a[i];
1048 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
1049 if( pTerm->prereqAll & pLevel->notReady ) continue;
1051 /* Any terms specified as part of the ON(...) clause for any LEFT
1052 ** JOIN for which the current table is not the rhs are omitted
1053 ** from the cursor-hint.
1055 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
1056 ** that were specified as part of the WHERE clause must be excluded.
1057 ** This is to address the following:
1059 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
1061 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
1062 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
1063 ** pushed down to the cursor, this row is filtered out, causing
1064 ** SQLite to synthesize a row of NULL values. Which does match the
1065 ** WHERE clause, and so the query returns a row. Which is incorrect.
1067 ** For the same reason, WHERE terms such as:
1069 ** WHERE 1 = (t2.c IS NULL)
1071 ** are also excluded. See codeCursorHintIsOrFunction() for details.
1073 if( pTabItem->fg.jointype & JT_LEFT ){
1074 Expr *pExpr = pTerm->pExpr;
1075 if( !ExprHasProperty(pExpr, EP_OuterON)
1076 || pExpr->w.iJoin!=pTabItem->iCursor
1078 sWalker.eCode = 0;
1079 sWalker.xExprCallback = codeCursorHintIsOrFunction;
1080 sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1081 if( sWalker.eCode ) continue;
1083 }else{
1084 if( ExprHasProperty(pTerm->pExpr, EP_OuterON) ) continue;
1087 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
1088 ** the cursor. These terms are not needed as hints for a pure range
1089 ** scan (that has no == terms) so omit them. */
1090 if( pLoop->u.btree.nEq==0 && pTerm!=pEndRange ){
1091 for(j=0; j<pLoop->nLTerm && pLoop->aLTerm[j]!=pTerm; j++){}
1092 if( j<pLoop->nLTerm ) continue;
1095 /* No subqueries or non-deterministic functions allowed */
1096 if( sqlite3ExprContainsSubquery(pTerm->pExpr) ) continue;
1098 /* For an index scan, make sure referenced columns are actually in
1099 ** the index. */
1100 if( sHint.pIdx!=0 ){
1101 sWalker.eCode = 0;
1102 sWalker.xExprCallback = codeCursorHintCheckExpr;
1103 sqlite3WalkExpr(&sWalker, pTerm->pExpr);
1104 if( sWalker.eCode ) continue;
1107 /* If we survive all prior tests, that means this term is worth hinting */
1108 pExpr = sqlite3ExprAnd(pParse, pExpr, sqlite3ExprDup(db, pTerm->pExpr, 0));
1110 if( pExpr!=0 ){
1111 sWalker.xExprCallback = codeCursorHintFixExpr;
1112 sqlite3WalkExpr(&sWalker, pExpr);
1113 sqlite3VdbeAddOp4(v, OP_CursorHint,
1114 (sHint.pIdx ? sHint.iIdxCur : sHint.iTabCur), 0, 0,
1115 (const char*)pExpr, P4_EXPR);
1118 #else
1119 # define codeCursorHint(A,B,C,D) /* No-op */
1120 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
1123 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
1124 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
1125 ** function generates code to do a deferred seek of cursor iCur to the
1126 ** rowid stored in register iRowid.
1128 ** Normally, this is just:
1130 ** OP_DeferredSeek $iCur $iRowid
1132 ** Which causes a seek on $iCur to the row with rowid $iRowid.
1134 ** However, if the scan currently being coded is a branch of an OR-loop and
1135 ** the statement currently being coded is a SELECT, then additional information
1136 ** is added that might allow OP_Column to omit the seek and instead do its
1137 ** lookup on the index, thus avoiding an expensive seek operation. To
1138 ** enable this optimization, the P3 of OP_DeferredSeek is set to iIdxCur
1139 ** and P4 is set to an array of integers containing one entry for each column
1140 ** in the table. For each table column, if the column is the i'th
1141 ** column of the index, then the corresponding array entry is set to (i+1).
1142 ** If the column does not appear in the index at all, the array entry is set
1143 ** to 0. The OP_Column opcode can check this array to see if the column it
1144 ** wants is in the index and if it is, it will substitute the index cursor
1145 ** and column number and continue with those new values, rather than seeking
1146 ** the table cursor.
1148 static void codeDeferredSeek(
1149 WhereInfo *pWInfo, /* Where clause context */
1150 Index *pIdx, /* Index scan is using */
1151 int iCur, /* Cursor for IPK b-tree */
1152 int iIdxCur /* Index cursor */
1154 Parse *pParse = pWInfo->pParse; /* Parse context */
1155 Vdbe *v = pParse->pVdbe; /* Vdbe to generate code within */
1157 assert( iIdxCur>0 );
1158 assert( pIdx->aiColumn[pIdx->nColumn-1]==-1 );
1160 pWInfo->bDeferredSeek = 1;
1161 sqlite3VdbeAddOp3(v, OP_DeferredSeek, iIdxCur, 0, iCur);
1162 if( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))
1163 && DbMaskAllZero(sqlite3ParseToplevel(pParse)->writeMask)
1165 int i;
1166 Table *pTab = pIdx->pTable;
1167 u32 *ai = (u32*)sqlite3DbMallocZero(pParse->db, sizeof(u32)*(pTab->nCol+1));
1168 if( ai ){
1169 ai[0] = pTab->nCol;
1170 for(i=0; i<pIdx->nColumn-1; i++){
1171 int x1, x2;
1172 assert( pIdx->aiColumn[i]<pTab->nCol );
1173 x1 = pIdx->aiColumn[i];
1174 x2 = sqlite3TableColumnToStorage(pTab, x1);
1175 testcase( x1!=x2 );
1176 if( x1>=0 ) ai[x2+1] = i+1;
1178 sqlite3VdbeChangeP4(v, -1, (char*)ai, P4_INTARRAY);
1184 ** If the expression passed as the second argument is a vector, generate
1185 ** code to write the first nReg elements of the vector into an array
1186 ** of registers starting with iReg.
1188 ** If the expression is not a vector, then nReg must be passed 1. In
1189 ** this case, generate code to evaluate the expression and leave the
1190 ** result in register iReg.
1192 static void codeExprOrVector(Parse *pParse, Expr *p, int iReg, int nReg){
1193 assert( nReg>0 );
1194 if( p && sqlite3ExprIsVector(p) ){
1195 #ifndef SQLITE_OMIT_SUBQUERY
1196 if( ExprUseXSelect(p) ){
1197 Vdbe *v = pParse->pVdbe;
1198 int iSelect;
1199 assert( p->op==TK_SELECT );
1200 iSelect = sqlite3CodeSubselect(pParse, p);
1201 sqlite3VdbeAddOp3(v, OP_Copy, iSelect, iReg, nReg-1);
1202 }else
1203 #endif
1205 int i;
1206 const ExprList *pList;
1207 assert( ExprUseXList(p) );
1208 pList = p->x.pList;
1209 assert( nReg<=pList->nExpr );
1210 for(i=0; i<nReg; i++){
1211 sqlite3ExprCode(pParse, pList->a[i].pExpr, iReg+i);
1214 }else{
1215 assert( nReg==1 || pParse->nErr );
1216 sqlite3ExprCode(pParse, p, iReg);
1220 /* An instance of the IdxExprTrans object carries information about a
1221 ** mapping from an expression on table columns into a column in an index
1222 ** down through the Walker.
1224 typedef struct IdxExprTrans {
1225 Expr *pIdxExpr; /* The index expression */
1226 int iTabCur; /* The cursor of the corresponding table */
1227 int iIdxCur; /* The cursor for the index */
1228 int iIdxCol; /* The column for the index */
1229 int iTabCol; /* The column for the table */
1230 WhereInfo *pWInfo; /* Complete WHERE clause information */
1231 sqlite3 *db; /* Database connection (for malloc()) */
1232 } IdxExprTrans;
1235 ** Preserve pExpr on the WhereETrans list of the WhereInfo.
1237 static void preserveExpr(IdxExprTrans *pTrans, Expr *pExpr){
1238 WhereExprMod *pNew;
1239 pNew = sqlite3DbMallocRaw(pTrans->db, sizeof(*pNew));
1240 if( pNew==0 ) return;
1241 pNew->pNext = pTrans->pWInfo->pExprMods;
1242 pTrans->pWInfo->pExprMods = pNew;
1243 pNew->pExpr = pExpr;
1244 memcpy(&pNew->orig, pExpr, sizeof(*pExpr));
1247 /* The walker node callback used to transform matching expressions into
1248 ** a reference to an index column for an index on an expression.
1250 ** If pExpr matches, then transform it into a reference to the index column
1251 ** that contains the value of pExpr.
1253 static int whereIndexExprTransNode(Walker *p, Expr *pExpr){
1254 IdxExprTrans *pX = p->u.pIdxTrans;
1255 if( sqlite3ExprCompare(0, pExpr, pX->pIdxExpr, pX->iTabCur)==0 ){
1256 pExpr = sqlite3ExprSkipCollate(pExpr);
1257 preserveExpr(pX, pExpr);
1258 pExpr->affExpr = sqlite3ExprAffinity(pExpr);
1259 pExpr->op = TK_COLUMN;
1260 pExpr->iTable = pX->iIdxCur;
1261 pExpr->iColumn = pX->iIdxCol;
1262 testcase( ExprHasProperty(pExpr, EP_Unlikely) );
1263 ExprClearProperty(pExpr, EP_Skip|EP_Unlikely|EP_WinFunc|EP_Subrtn);
1264 pExpr->y.pTab = 0;
1265 return WRC_Prune;
1266 }else{
1267 return WRC_Continue;
1271 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1272 /* A walker node callback that translates a column reference to a table
1273 ** into a corresponding column reference of an index.
1275 static int whereIndexExprTransColumn(Walker *p, Expr *pExpr){
1276 if( pExpr->op==TK_COLUMN ){
1277 IdxExprTrans *pX = p->u.pIdxTrans;
1278 if( pExpr->iTable==pX->iTabCur && pExpr->iColumn==pX->iTabCol ){
1279 assert( ExprUseYTab(pExpr) && pExpr->y.pTab!=0 );
1280 preserveExpr(pX, pExpr);
1281 pExpr->affExpr = sqlite3TableColumnAffinity(pExpr->y.pTab,pExpr->iColumn);
1282 pExpr->iTable = pX->iIdxCur;
1283 pExpr->iColumn = pX->iIdxCol;
1284 pExpr->y.pTab = 0;
1287 return WRC_Continue;
1289 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1292 ** For an indexes on expression X, locate every instance of expression X
1293 ** in pExpr and change that subexpression into a reference to the appropriate
1294 ** column of the index.
1296 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in
1297 ** the table into references to the corresponding (stored) column of the
1298 ** index.
1300 static void whereIndexExprTrans(
1301 Index *pIdx, /* The Index */
1302 int iTabCur, /* Cursor of the table that is being indexed */
1303 int iIdxCur, /* Cursor of the index itself */
1304 WhereInfo *pWInfo /* Transform expressions in this WHERE clause */
1306 int iIdxCol; /* Column number of the index */
1307 ExprList *aColExpr; /* Expressions that are indexed */
1308 Table *pTab;
1309 Walker w;
1310 IdxExprTrans x;
1311 aColExpr = pIdx->aColExpr;
1312 if( aColExpr==0 && !pIdx->bHasVCol ){
1313 /* The index does not reference any expressions or virtual columns
1314 ** so no translations are needed. */
1315 return;
1317 pTab = pIdx->pTable;
1318 memset(&w, 0, sizeof(w));
1319 w.u.pIdxTrans = &x;
1320 x.iTabCur = iTabCur;
1321 x.iIdxCur = iIdxCur;
1322 x.pWInfo = pWInfo;
1323 x.db = pWInfo->pParse->db;
1324 for(iIdxCol=0; iIdxCol<pIdx->nColumn; iIdxCol++){
1325 i16 iRef = pIdx->aiColumn[iIdxCol];
1326 if( iRef==XN_EXPR ){
1327 assert( aColExpr!=0 && aColExpr->a[iIdxCol].pExpr!=0 );
1328 x.pIdxExpr = aColExpr->a[iIdxCol].pExpr;
1329 if( sqlite3ExprIsConstant(x.pIdxExpr) ) continue;
1330 w.xExprCallback = whereIndexExprTransNode;
1331 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1332 }else if( iRef>=0
1333 && (pTab->aCol[iRef].colFlags & COLFLAG_VIRTUAL)!=0
1334 && ((pTab->aCol[iRef].colFlags & COLFLAG_HASCOLL)==0
1335 || sqlite3StrICmp(sqlite3ColumnColl(&pTab->aCol[iRef]),
1336 sqlite3StrBINARY)==0)
1338 /* Check to see if there are direct references to generated columns
1339 ** that are contained in the index. Pulling the generated column
1340 ** out of the index is an optimization only - the main table is always
1341 ** available if the index cannot be used. To avoid unnecessary
1342 ** complication, omit this optimization if the collating sequence for
1343 ** the column is non-standard */
1344 x.iTabCol = iRef;
1345 w.xExprCallback = whereIndexExprTransColumn;
1346 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1347 }else{
1348 continue;
1350 x.iIdxCol = iIdxCol;
1351 sqlite3WalkExpr(&w, pWInfo->pWhere);
1352 sqlite3WalkExprList(&w, pWInfo->pOrderBy);
1353 sqlite3WalkExprList(&w, pWInfo->pResultSet);
1358 ** The pTruth expression is always true because it is the WHERE clause
1359 ** a partial index that is driving a query loop. Look through all of the
1360 ** WHERE clause terms on the query, and if any of those terms must be
1361 ** true because pTruth is true, then mark those WHERE clause terms as
1362 ** coded.
1364 static void whereApplyPartialIndexConstraints(
1365 Expr *pTruth,
1366 int iTabCur,
1367 WhereClause *pWC
1369 int i;
1370 WhereTerm *pTerm;
1371 while( pTruth->op==TK_AND ){
1372 whereApplyPartialIndexConstraints(pTruth->pLeft, iTabCur, pWC);
1373 pTruth = pTruth->pRight;
1375 for(i=0, pTerm=pWC->a; i<pWC->nTerm; i++, pTerm++){
1376 Expr *pExpr;
1377 if( pTerm->wtFlags & TERM_CODED ) continue;
1378 pExpr = pTerm->pExpr;
1379 if( sqlite3ExprCompare(0, pExpr, pTruth, iTabCur)==0 ){
1380 pTerm->wtFlags |= TERM_CODED;
1386 ** This routine is called right after An OP_Filter has been generated and
1387 ** before the corresponding index search has been performed. This routine
1388 ** checks to see if there are additional Bloom filters in inner loops that
1389 ** can be checked prior to doing the index lookup. If there are available
1390 ** inner-loop Bloom filters, then evaluate those filters now, before the
1391 ** index lookup. The idea is that a Bloom filter check is way faster than
1392 ** an index lookup, and the Bloom filter might return false, meaning that
1393 ** the index lookup can be skipped.
1395 ** We know that an inner loop uses a Bloom filter because it has the
1396 ** WhereLevel.regFilter set. If an inner-loop Bloom filter is checked,
1397 ** then clear the WhereLevel.regFilter value to prevent the Bloom filter
1398 ** from being checked a second time when the inner loop is evaluated.
1400 static SQLITE_NOINLINE void filterPullDown(
1401 Parse *pParse, /* Parsing context */
1402 WhereInfo *pWInfo, /* Complete information about the WHERE clause */
1403 int iLevel, /* Which level of pWInfo->a[] should be coded */
1404 int addrNxt, /* Jump here to bypass inner loops */
1405 Bitmask notReady /* Loops that are not ready */
1407 while( ++iLevel < pWInfo->nLevel ){
1408 WhereLevel *pLevel = &pWInfo->a[iLevel];
1409 WhereLoop *pLoop = pLevel->pWLoop;
1410 if( pLevel->regFilter==0 ) continue;
1411 if( pLevel->pWLoop->nSkip ) continue;
1412 /* ,--- Because sqlite3ConstructBloomFilter() has will not have set
1413 ** vvvvv--' pLevel->regFilter if this were true. */
1414 if( NEVER(pLoop->prereq & notReady) ) continue;
1415 assert( pLevel->addrBrk==0 );
1416 pLevel->addrBrk = addrNxt;
1417 if( pLoop->wsFlags & WHERE_IPK ){
1418 WhereTerm *pTerm = pLoop->aLTerm[0];
1419 int regRowid;
1420 assert( pTerm!=0 );
1421 assert( pTerm->pExpr!=0 );
1422 testcase( pTerm->wtFlags & TERM_VIRTUAL );
1423 regRowid = sqlite3GetTempReg(pParse);
1424 regRowid = codeEqualityTerm(pParse, pTerm, pLevel, 0, 0, regRowid);
1425 sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter,
1426 addrNxt, regRowid, 1);
1427 VdbeCoverage(pParse->pVdbe);
1428 }else{
1429 u16 nEq = pLoop->u.btree.nEq;
1430 int r1;
1431 char *zStartAff;
1433 assert( pLoop->wsFlags & WHERE_INDEXED );
1434 assert( (pLoop->wsFlags & WHERE_COLUMN_IN)==0 );
1435 r1 = codeAllEqualityTerms(pParse,pLevel,0,0,&zStartAff);
1436 codeApplyAffinity(pParse, r1, nEq, zStartAff);
1437 sqlite3DbFree(pParse->db, zStartAff);
1438 sqlite3VdbeAddOp4Int(pParse->pVdbe, OP_Filter, pLevel->regFilter,
1439 addrNxt, r1, nEq);
1440 VdbeCoverage(pParse->pVdbe);
1442 pLevel->regFilter = 0;
1443 pLevel->addrBrk = 0;
1448 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1449 ** implementation described by pWInfo.
1451 Bitmask sqlite3WhereCodeOneLoopStart(
1452 Parse *pParse, /* Parsing context */
1453 Vdbe *v, /* Prepared statement under construction */
1454 WhereInfo *pWInfo, /* Complete information about the WHERE clause */
1455 int iLevel, /* Which level of pWInfo->a[] should be coded */
1456 WhereLevel *pLevel, /* The current level pointer */
1457 Bitmask notReady /* Which tables are currently available */
1459 int j, k; /* Loop counters */
1460 int iCur; /* The VDBE cursor for the table */
1461 int addrNxt; /* Where to jump to continue with the next IN case */
1462 int bRev; /* True if we need to scan in reverse order */
1463 WhereLoop *pLoop; /* The WhereLoop object being coded */
1464 WhereClause *pWC; /* Decomposition of the entire WHERE clause */
1465 WhereTerm *pTerm; /* A WHERE clause term */
1466 sqlite3 *db; /* Database connection */
1467 SrcItem *pTabItem; /* FROM clause term being coded */
1468 int addrBrk; /* Jump here to break out of the loop */
1469 int addrHalt; /* addrBrk for the outermost loop */
1470 int addrCont; /* Jump here to continue with next cycle */
1471 int iRowidReg = 0; /* Rowid is stored in this register, if not zero */
1472 int iReleaseReg = 0; /* Temp register to free before returning */
1473 Index *pIdx = 0; /* Index used by loop (if any) */
1474 int iLoop; /* Iteration of constraint generator loop */
1476 pWC = &pWInfo->sWC;
1477 db = pParse->db;
1478 pLoop = pLevel->pWLoop;
1479 pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
1480 iCur = pTabItem->iCursor;
1481 pLevel->notReady = notReady & ~sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur);
1482 bRev = (pWInfo->revMask>>iLevel)&1;
1483 VdbeModuleComment((v, "Begin WHERE-loop%d: %s",iLevel,pTabItem->pTab->zName));
1484 #if WHERETRACE_ENABLED /* 0x20800 */
1485 if( sqlite3WhereTrace & 0x800 ){
1486 sqlite3DebugPrintf("Coding level %d of %d: notReady=%llx iFrom=%d\n",
1487 iLevel, pWInfo->nLevel, (u64)notReady, pLevel->iFrom);
1488 sqlite3WhereLoopPrint(pLoop, pWC);
1490 if( sqlite3WhereTrace & 0x20000 ){
1491 if( iLevel==0 ){
1492 sqlite3DebugPrintf("WHERE clause being coded:\n");
1493 sqlite3TreeViewExpr(0, pWInfo->pWhere, 0);
1495 sqlite3DebugPrintf("All WHERE-clause terms before coding:\n");
1496 sqlite3WhereClausePrint(pWC);
1498 #endif
1500 /* Create labels for the "break" and "continue" instructions
1501 ** for the current loop. Jump to addrBrk to break out of a loop.
1502 ** Jump to cont to go immediately to the next iteration of the
1503 ** loop.
1505 ** When there is an IN operator, we also have a "addrNxt" label that
1506 ** means to continue with the next IN value combination. When
1507 ** there are no IN operators in the constraints, the "addrNxt" label
1508 ** is the same as "addrBrk".
1510 addrBrk = pLevel->addrBrk = pLevel->addrNxt = sqlite3VdbeMakeLabel(pParse);
1511 addrCont = pLevel->addrCont = sqlite3VdbeMakeLabel(pParse);
1513 /* If this is the right table of a LEFT OUTER JOIN, allocate and
1514 ** initialize a memory cell that records if this table matches any
1515 ** row of the left table of the join.
1517 assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))
1518 || pLevel->iFrom>0 || (pTabItem[0].fg.jointype & JT_LEFT)==0
1520 if( pLevel->iFrom>0 && (pTabItem[0].fg.jointype & JT_LEFT)!=0 ){
1521 pLevel->iLeftJoin = ++pParse->nMem;
1522 sqlite3VdbeAddOp2(v, OP_Integer, 0, pLevel->iLeftJoin);
1523 VdbeComment((v, "init LEFT JOIN no-match flag"));
1526 /* Compute a safe address to jump to if we discover that the table for
1527 ** this loop is empty and can never contribute content. */
1528 for(j=iLevel; j>0; j--){
1529 if( pWInfo->a[j].iLeftJoin ) break;
1530 if( pWInfo->a[j].pRJ ) break;
1532 addrHalt = pWInfo->a[j].addrBrk;
1534 /* Special case of a FROM clause subquery implemented as a co-routine */
1535 if( pTabItem->fg.viaCoroutine ){
1536 int regYield = pTabItem->regReturn;
1537 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, pTabItem->addrFillSub);
1538 pLevel->p2 = sqlite3VdbeAddOp2(v, OP_Yield, regYield, addrBrk);
1539 VdbeCoverage(v);
1540 VdbeComment((v, "next row of %s", pTabItem->pTab->zName));
1541 pLevel->op = OP_Goto;
1542 }else
1544 #ifndef SQLITE_OMIT_VIRTUALTABLE
1545 if( (pLoop->wsFlags & WHERE_VIRTUALTABLE)!=0 ){
1546 /* Case 1: The table is a virtual-table. Use the VFilter and VNext
1547 ** to access the data.
1549 int iReg; /* P3 Value for OP_VFilter */
1550 int addrNotFound;
1551 int nConstraint = pLoop->nLTerm;
1553 iReg = sqlite3GetTempRange(pParse, nConstraint+2);
1554 addrNotFound = pLevel->addrBrk;
1555 for(j=0; j<nConstraint; j++){
1556 int iTarget = iReg+j+2;
1557 pTerm = pLoop->aLTerm[j];
1558 if( NEVER(pTerm==0) ) continue;
1559 if( pTerm->eOperator & WO_IN ){
1560 if( SMASKBIT32(j) & pLoop->u.vtab.mHandleIn ){
1561 int iTab = pParse->nTab++;
1562 int iCache = ++pParse->nMem;
1563 sqlite3CodeRhsOfIN(pParse, pTerm->pExpr, iTab);
1564 sqlite3VdbeAddOp3(v, OP_VInitIn, iTab, iTarget, iCache);
1565 }else{
1566 codeEqualityTerm(pParse, pTerm, pLevel, j, bRev, iTarget);
1567 addrNotFound = pLevel->addrNxt;
1569 }else{
1570 Expr *pRight = pTerm->pExpr->pRight;
1571 codeExprOrVector(pParse, pRight, iTarget, 1);
1572 if( pTerm->eMatchOp==SQLITE_INDEX_CONSTRAINT_OFFSET
1573 && pLoop->u.vtab.bOmitOffset
1575 assert( pTerm->eOperator==WO_AUX );
1576 assert( pWInfo->pLimit!=0 );
1577 assert( pWInfo->pLimit->iOffset>0 );
1578 sqlite3VdbeAddOp2(v, OP_Integer, 0, pWInfo->pLimit->iOffset);
1579 VdbeComment((v,"Zero OFFSET counter"));
1583 sqlite3VdbeAddOp2(v, OP_Integer, pLoop->u.vtab.idxNum, iReg);
1584 sqlite3VdbeAddOp2(v, OP_Integer, nConstraint, iReg+1);
1585 sqlite3VdbeAddOp4(v, OP_VFilter, iCur, addrNotFound, iReg,
1586 pLoop->u.vtab.idxStr,
1587 pLoop->u.vtab.needFree ? P4_DYNAMIC : P4_STATIC);
1588 VdbeCoverage(v);
1589 pLoop->u.vtab.needFree = 0;
1590 /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed
1591 ** the u.vtab.idxStr. NULL it out to prevent a use-after-free */
1592 if( db->mallocFailed ) pLoop->u.vtab.idxStr = 0;
1593 pLevel->p1 = iCur;
1594 pLevel->op = pWInfo->eOnePass ? OP_Noop : OP_VNext;
1595 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
1596 assert( (pLoop->wsFlags & WHERE_MULTI_OR)==0 );
1598 for(j=0; j<nConstraint; j++){
1599 pTerm = pLoop->aLTerm[j];
1600 if( j<16 && (pLoop->u.vtab.omitMask>>j)&1 ){
1601 disableTerm(pLevel, pTerm);
1602 continue;
1604 if( (pTerm->eOperator & WO_IN)!=0
1605 && (SMASKBIT32(j) & pLoop->u.vtab.mHandleIn)==0
1606 && !db->mallocFailed
1608 Expr *pCompare; /* The comparison operator */
1609 Expr *pRight; /* RHS of the comparison */
1610 VdbeOp *pOp; /* Opcode to access the value of the IN constraint */
1611 int iIn; /* IN loop corresponding to the j-th constraint */
1613 /* Reload the constraint value into reg[iReg+j+2]. The same value
1614 ** was loaded into the same register prior to the OP_VFilter, but
1615 ** the xFilter implementation might have changed the datatype or
1616 ** encoding of the value in the register, so it *must* be reloaded.
1618 for(iIn=0; ALWAYS(iIn<pLevel->u.in.nIn); iIn++){
1619 pOp = sqlite3VdbeGetOp(v, pLevel->u.in.aInLoop[iIn].addrInTop);
1620 if( (pOp->opcode==OP_Column && pOp->p3==iReg+j+2)
1621 || (pOp->opcode==OP_Rowid && pOp->p2==iReg+j+2)
1623 testcase( pOp->opcode==OP_Rowid );
1624 sqlite3VdbeAddOp3(v, pOp->opcode, pOp->p1, pOp->p2, pOp->p3);
1625 break;
1629 /* Generate code that will continue to the next row if
1630 ** the IN constraint is not satisfied
1632 pCompare = sqlite3PExpr(pParse, TK_EQ, 0, 0);
1633 if( !db->mallocFailed ){
1634 int iFld = pTerm->u.x.iField;
1635 Expr *pLeft = pTerm->pExpr->pLeft;
1636 assert( pLeft!=0 );
1637 if( iFld>0 ){
1638 assert( pLeft->op==TK_VECTOR );
1639 assert( ExprUseXList(pLeft) );
1640 assert( iFld<=pLeft->x.pList->nExpr );
1641 pCompare->pLeft = pLeft->x.pList->a[iFld-1].pExpr;
1642 }else{
1643 pCompare->pLeft = pLeft;
1645 pCompare->pRight = pRight = sqlite3Expr(db, TK_REGISTER, 0);
1646 if( pRight ){
1647 pRight->iTable = iReg+j+2;
1648 sqlite3ExprIfFalse(
1649 pParse, pCompare, pLevel->addrCont, SQLITE_JUMPIFNULL
1652 pCompare->pLeft = 0;
1654 sqlite3ExprDelete(db, pCompare);
1658 /* These registers need to be preserved in case there is an IN operator
1659 ** loop. So we could deallocate the registers here (and potentially
1660 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems
1661 ** simpler and safer to simply not reuse the registers.
1663 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1665 }else
1666 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1668 if( (pLoop->wsFlags & WHERE_IPK)!=0
1669 && (pLoop->wsFlags & (WHERE_COLUMN_IN|WHERE_COLUMN_EQ))!=0
1671 /* Case 2: We can directly reference a single row using an
1672 ** equality comparison against the ROWID field. Or
1673 ** we reference multiple rows using a "rowid IN (...)"
1674 ** construct.
1676 assert( pLoop->u.btree.nEq==1 );
1677 pTerm = pLoop->aLTerm[0];
1678 assert( pTerm!=0 );
1679 assert( pTerm->pExpr!=0 );
1680 testcase( pTerm->wtFlags & TERM_VIRTUAL );
1681 iReleaseReg = ++pParse->nMem;
1682 iRowidReg = codeEqualityTerm(pParse, pTerm, pLevel, 0, bRev, iReleaseReg);
1683 if( iRowidReg!=iReleaseReg ) sqlite3ReleaseTempReg(pParse, iReleaseReg);
1684 addrNxt = pLevel->addrNxt;
1685 if( pLevel->regFilter ){
1686 sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt,
1687 iRowidReg, 1);
1688 VdbeCoverage(v);
1689 filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady);
1691 sqlite3VdbeAddOp3(v, OP_SeekRowid, iCur, addrNxt, iRowidReg);
1692 VdbeCoverage(v);
1693 pLevel->op = OP_Noop;
1694 }else if( (pLoop->wsFlags & WHERE_IPK)!=0
1695 && (pLoop->wsFlags & WHERE_COLUMN_RANGE)!=0
1697 /* Case 3: We have an inequality comparison against the ROWID field.
1699 int testOp = OP_Noop;
1700 int start;
1701 int memEndValue = 0;
1702 WhereTerm *pStart, *pEnd;
1704 j = 0;
1705 pStart = pEnd = 0;
1706 if( pLoop->wsFlags & WHERE_BTM_LIMIT ) pStart = pLoop->aLTerm[j++];
1707 if( pLoop->wsFlags & WHERE_TOP_LIMIT ) pEnd = pLoop->aLTerm[j++];
1708 assert( pStart!=0 || pEnd!=0 );
1709 if( bRev ){
1710 pTerm = pStart;
1711 pStart = pEnd;
1712 pEnd = pTerm;
1714 codeCursorHint(pTabItem, pWInfo, pLevel, pEnd);
1715 if( pStart ){
1716 Expr *pX; /* The expression that defines the start bound */
1717 int r1, rTemp; /* Registers for holding the start boundary */
1718 int op; /* Cursor seek operation */
1720 /* The following constant maps TK_xx codes into corresponding
1721 ** seek opcodes. It depends on a particular ordering of TK_xx
1723 const u8 aMoveOp[] = {
1724 /* TK_GT */ OP_SeekGT,
1725 /* TK_LE */ OP_SeekLE,
1726 /* TK_LT */ OP_SeekLT,
1727 /* TK_GE */ OP_SeekGE
1729 assert( TK_LE==TK_GT+1 ); /* Make sure the ordering.. */
1730 assert( TK_LT==TK_GT+2 ); /* ... of the TK_xx values... */
1731 assert( TK_GE==TK_GT+3 ); /* ... is correcct. */
1733 assert( (pStart->wtFlags & TERM_VNULL)==0 );
1734 testcase( pStart->wtFlags & TERM_VIRTUAL );
1735 pX = pStart->pExpr;
1736 assert( pX!=0 );
1737 testcase( pStart->leftCursor!=iCur ); /* transitive constraints */
1738 if( sqlite3ExprIsVector(pX->pRight) ){
1739 r1 = rTemp = sqlite3GetTempReg(pParse);
1740 codeExprOrVector(pParse, pX->pRight, r1, 1);
1741 testcase( pX->op==TK_GT );
1742 testcase( pX->op==TK_GE );
1743 testcase( pX->op==TK_LT );
1744 testcase( pX->op==TK_LE );
1745 op = aMoveOp[((pX->op - TK_GT - 1) & 0x3) | 0x1];
1746 assert( pX->op!=TK_GT || op==OP_SeekGE );
1747 assert( pX->op!=TK_GE || op==OP_SeekGE );
1748 assert( pX->op!=TK_LT || op==OP_SeekLE );
1749 assert( pX->op!=TK_LE || op==OP_SeekLE );
1750 }else{
1751 r1 = sqlite3ExprCodeTemp(pParse, pX->pRight, &rTemp);
1752 disableTerm(pLevel, pStart);
1753 op = aMoveOp[(pX->op - TK_GT)];
1755 sqlite3VdbeAddOp3(v, op, iCur, addrBrk, r1);
1756 VdbeComment((v, "pk"));
1757 VdbeCoverageIf(v, pX->op==TK_GT);
1758 VdbeCoverageIf(v, pX->op==TK_LE);
1759 VdbeCoverageIf(v, pX->op==TK_LT);
1760 VdbeCoverageIf(v, pX->op==TK_GE);
1761 sqlite3ReleaseTempReg(pParse, rTemp);
1762 }else{
1763 sqlite3VdbeAddOp2(v, bRev ? OP_Last : OP_Rewind, iCur, addrHalt);
1764 VdbeCoverageIf(v, bRev==0);
1765 VdbeCoverageIf(v, bRev!=0);
1767 if( pEnd ){
1768 Expr *pX;
1769 pX = pEnd->pExpr;
1770 assert( pX!=0 );
1771 assert( (pEnd->wtFlags & TERM_VNULL)==0 );
1772 testcase( pEnd->leftCursor!=iCur ); /* Transitive constraints */
1773 testcase( pEnd->wtFlags & TERM_VIRTUAL );
1774 memEndValue = ++pParse->nMem;
1775 codeExprOrVector(pParse, pX->pRight, memEndValue, 1);
1776 if( 0==sqlite3ExprIsVector(pX->pRight)
1777 && (pX->op==TK_LT || pX->op==TK_GT)
1779 testOp = bRev ? OP_Le : OP_Ge;
1780 }else{
1781 testOp = bRev ? OP_Lt : OP_Gt;
1783 if( 0==sqlite3ExprIsVector(pX->pRight) ){
1784 disableTerm(pLevel, pEnd);
1787 start = sqlite3VdbeCurrentAddr(v);
1788 pLevel->op = bRev ? OP_Prev : OP_Next;
1789 pLevel->p1 = iCur;
1790 pLevel->p2 = start;
1791 assert( pLevel->p5==0 );
1792 if( testOp!=OP_Noop ){
1793 iRowidReg = ++pParse->nMem;
1794 sqlite3VdbeAddOp2(v, OP_Rowid, iCur, iRowidReg);
1795 sqlite3VdbeAddOp3(v, testOp, memEndValue, addrBrk, iRowidReg);
1796 VdbeCoverageIf(v, testOp==OP_Le);
1797 VdbeCoverageIf(v, testOp==OP_Lt);
1798 VdbeCoverageIf(v, testOp==OP_Ge);
1799 VdbeCoverageIf(v, testOp==OP_Gt);
1800 sqlite3VdbeChangeP5(v, SQLITE_AFF_NUMERIC | SQLITE_JUMPIFNULL);
1802 }else if( pLoop->wsFlags & WHERE_INDEXED ){
1803 /* Case 4: A scan using an index.
1805 ** The WHERE clause may contain zero or more equality
1806 ** terms ("==" or "IN" operators) that refer to the N
1807 ** left-most columns of the index. It may also contain
1808 ** inequality constraints (>, <, >= or <=) on the indexed
1809 ** column that immediately follows the N equalities. Only
1810 ** the right-most column can be an inequality - the rest must
1811 ** use the "==" and "IN" operators. For example, if the
1812 ** index is on (x,y,z), then the following clauses are all
1813 ** optimized:
1815 ** x=5
1816 ** x=5 AND y=10
1817 ** x=5 AND y<10
1818 ** x=5 AND y>5 AND y<10
1819 ** x=5 AND y=5 AND z<=10
1821 ** The z<10 term of the following cannot be used, only
1822 ** the x=5 term:
1824 ** x=5 AND z<10
1826 ** N may be zero if there are inequality constraints.
1827 ** If there are no inequality constraints, then N is at
1828 ** least one.
1830 ** This case is also used when there are no WHERE clause
1831 ** constraints but an index is selected anyway, in order
1832 ** to force the output order to conform to an ORDER BY.
1834 static const u8 aStartOp[] = {
1837 OP_Rewind, /* 2: (!start_constraints && startEq && !bRev) */
1838 OP_Last, /* 3: (!start_constraints && startEq && bRev) */
1839 OP_SeekGT, /* 4: (start_constraints && !startEq && !bRev) */
1840 OP_SeekLT, /* 5: (start_constraints && !startEq && bRev) */
1841 OP_SeekGE, /* 6: (start_constraints && startEq && !bRev) */
1842 OP_SeekLE /* 7: (start_constraints && startEq && bRev) */
1844 static const u8 aEndOp[] = {
1845 OP_IdxGE, /* 0: (end_constraints && !bRev && !endEq) */
1846 OP_IdxGT, /* 1: (end_constraints && !bRev && endEq) */
1847 OP_IdxLE, /* 2: (end_constraints && bRev && !endEq) */
1848 OP_IdxLT, /* 3: (end_constraints && bRev && endEq) */
1850 u16 nEq = pLoop->u.btree.nEq; /* Number of == or IN terms */
1851 u16 nBtm = pLoop->u.btree.nBtm; /* Length of BTM vector */
1852 u16 nTop = pLoop->u.btree.nTop; /* Length of TOP vector */
1853 int regBase; /* Base register holding constraint values */
1854 WhereTerm *pRangeStart = 0; /* Inequality constraint at range start */
1855 WhereTerm *pRangeEnd = 0; /* Inequality constraint at range end */
1856 int startEq; /* True if range start uses ==, >= or <= */
1857 int endEq; /* True if range end uses ==, >= or <= */
1858 int start_constraints; /* Start of range is constrained */
1859 int nConstraint; /* Number of constraint terms */
1860 int iIdxCur; /* The VDBE cursor for the index */
1861 int nExtraReg = 0; /* Number of extra registers needed */
1862 int op; /* Instruction opcode */
1863 char *zStartAff; /* Affinity for start of range constraint */
1864 char *zEndAff = 0; /* Affinity for end of range constraint */
1865 u8 bSeekPastNull = 0; /* True to seek past initial nulls */
1866 u8 bStopAtNull = 0; /* Add condition to terminate at NULLs */
1867 int omitTable; /* True if we use the index only */
1868 int regBignull = 0; /* big-null flag register */
1869 int addrSeekScan = 0; /* Opcode of the OP_SeekScan, if any */
1871 pIdx = pLoop->u.btree.pIndex;
1872 iIdxCur = pLevel->iIdxCur;
1873 assert( nEq>=pLoop->nSkip );
1875 /* Find any inequality constraint terms for the start and end
1876 ** of the range.
1878 j = nEq;
1879 if( pLoop->wsFlags & WHERE_BTM_LIMIT ){
1880 pRangeStart = pLoop->aLTerm[j++];
1881 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nBtm);
1882 /* Like optimization range constraints always occur in pairs */
1883 assert( (pRangeStart->wtFlags & TERM_LIKEOPT)==0 ||
1884 (pLoop->wsFlags & WHERE_TOP_LIMIT)!=0 );
1886 if( pLoop->wsFlags & WHERE_TOP_LIMIT ){
1887 pRangeEnd = pLoop->aLTerm[j++];
1888 nExtraReg = MAX(nExtraReg, pLoop->u.btree.nTop);
1889 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1890 if( (pRangeEnd->wtFlags & TERM_LIKEOPT)!=0 ){
1891 assert( pRangeStart!=0 ); /* LIKE opt constraints */
1892 assert( pRangeStart->wtFlags & TERM_LIKEOPT ); /* occur in pairs */
1893 pLevel->iLikeRepCntr = (u32)++pParse->nMem;
1894 sqlite3VdbeAddOp2(v, OP_Integer, 1, (int)pLevel->iLikeRepCntr);
1895 VdbeComment((v, "LIKE loop counter"));
1896 pLevel->addrLikeRep = sqlite3VdbeCurrentAddr(v);
1897 /* iLikeRepCntr actually stores 2x the counter register number. The
1898 ** bottom bit indicates whether the search order is ASC or DESC. */
1899 testcase( bRev );
1900 testcase( pIdx->aSortOrder[nEq]==SQLITE_SO_DESC );
1901 assert( (bRev & ~1)==0 );
1902 pLevel->iLikeRepCntr <<=1;
1903 pLevel->iLikeRepCntr |= bRev ^ (pIdx->aSortOrder[nEq]==SQLITE_SO_DESC);
1905 #endif
1906 if( pRangeStart==0 ){
1907 j = pIdx->aiColumn[nEq];
1908 if( (j>=0 && pIdx->pTable->aCol[j].notNull==0) || j==XN_EXPR ){
1909 bSeekPastNull = 1;
1913 assert( pRangeEnd==0 || (pRangeEnd->wtFlags & TERM_VNULL)==0 );
1915 /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses
1916 ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS
1917 ** FIRST). In both cases separate ordered scans are made of those
1918 ** index entries for which the column is null and for those for which
1919 ** it is not. For an ASC sort, the non-NULL entries are scanned first.
1920 ** For DESC, NULL entries are scanned first.
1922 if( (pLoop->wsFlags & (WHERE_TOP_LIMIT|WHERE_BTM_LIMIT))==0
1923 && (pLoop->wsFlags & WHERE_BIGNULL_SORT)!=0
1925 assert( bSeekPastNull==0 && nExtraReg==0 && nBtm==0 && nTop==0 );
1926 assert( pRangeEnd==0 && pRangeStart==0 );
1927 testcase( pLoop->nSkip>0 );
1928 nExtraReg = 1;
1929 bSeekPastNull = 1;
1930 pLevel->regBignull = regBignull = ++pParse->nMem;
1931 if( pLevel->iLeftJoin ){
1932 sqlite3VdbeAddOp2(v, OP_Integer, 0, regBignull);
1934 pLevel->addrBignull = sqlite3VdbeMakeLabel(pParse);
1937 /* If we are doing a reverse order scan on an ascending index, or
1938 ** a forward order scan on a descending index, interchange the
1939 ** start and end terms (pRangeStart and pRangeEnd).
1941 if( (nEq<pIdx->nColumn && bRev==(pIdx->aSortOrder[nEq]==SQLITE_SO_ASC)) ){
1942 SWAP(WhereTerm *, pRangeEnd, pRangeStart);
1943 SWAP(u8, bSeekPastNull, bStopAtNull);
1944 SWAP(u8, nBtm, nTop);
1947 if( iLevel>0 && (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 ){
1948 /* In case OP_SeekScan is used, ensure that the index cursor does not
1949 ** point to a valid row for the first iteration of this loop. */
1950 sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur);
1953 /* Generate code to evaluate all constraint terms using == or IN
1954 ** and store the values of those terms in an array of registers
1955 ** starting at regBase.
1957 codeCursorHint(pTabItem, pWInfo, pLevel, pRangeEnd);
1958 regBase = codeAllEqualityTerms(pParse,pLevel,bRev,nExtraReg,&zStartAff);
1959 assert( zStartAff==0 || sqlite3Strlen30(zStartAff)>=nEq );
1960 if( zStartAff && nTop ){
1961 zEndAff = sqlite3DbStrDup(db, &zStartAff[nEq]);
1963 addrNxt = (regBignull ? pLevel->addrBignull : pLevel->addrNxt);
1965 testcase( pRangeStart && (pRangeStart->eOperator & WO_LE)!=0 );
1966 testcase( pRangeStart && (pRangeStart->eOperator & WO_GE)!=0 );
1967 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_LE)!=0 );
1968 testcase( pRangeEnd && (pRangeEnd->eOperator & WO_GE)!=0 );
1969 startEq = !pRangeStart || pRangeStart->eOperator & (WO_LE|WO_GE);
1970 endEq = !pRangeEnd || pRangeEnd->eOperator & (WO_LE|WO_GE);
1971 start_constraints = pRangeStart || nEq>0;
1973 /* Seek the index cursor to the start of the range. */
1974 nConstraint = nEq;
1975 if( pRangeStart ){
1976 Expr *pRight = pRangeStart->pExpr->pRight;
1977 codeExprOrVector(pParse, pRight, regBase+nEq, nBtm);
1978 whereLikeOptimizationStringFixup(v, pLevel, pRangeStart);
1979 if( (pRangeStart->wtFlags & TERM_VNULL)==0
1980 && sqlite3ExprCanBeNull(pRight)
1982 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
1983 VdbeCoverage(v);
1985 if( zStartAff ){
1986 updateRangeAffinityStr(pRight, nBtm, &zStartAff[nEq]);
1988 nConstraint += nBtm;
1989 testcase( pRangeStart->wtFlags & TERM_VIRTUAL );
1990 if( sqlite3ExprIsVector(pRight)==0 ){
1991 disableTerm(pLevel, pRangeStart);
1992 }else{
1993 startEq = 1;
1995 bSeekPastNull = 0;
1996 }else if( bSeekPastNull ){
1997 startEq = 0;
1998 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
1999 start_constraints = 1;
2000 nConstraint++;
2001 }else if( regBignull ){
2002 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
2003 start_constraints = 1;
2004 nConstraint++;
2006 codeApplyAffinity(pParse, regBase, nConstraint - bSeekPastNull, zStartAff);
2007 if( pLoop->nSkip>0 && nConstraint==pLoop->nSkip ){
2008 /* The skip-scan logic inside the call to codeAllEqualityConstraints()
2009 ** above has already left the cursor sitting on the correct row,
2010 ** so no further seeking is needed */
2011 }else{
2012 if( regBignull ){
2013 sqlite3VdbeAddOp2(v, OP_Integer, 1, regBignull);
2014 VdbeComment((v, "NULL-scan pass ctr"));
2016 if( pLevel->regFilter ){
2017 sqlite3VdbeAddOp4Int(v, OP_Filter, pLevel->regFilter, addrNxt,
2018 regBase, nEq);
2019 VdbeCoverage(v);
2020 filterPullDown(pParse, pWInfo, iLevel, addrNxt, notReady);
2023 op = aStartOp[(start_constraints<<2) + (startEq<<1) + bRev];
2024 assert( op!=0 );
2025 if( (pLoop->wsFlags & WHERE_IN_SEEKSCAN)!=0 && op==OP_SeekGE ){
2026 assert( regBignull==0 );
2027 /* TUNING: The OP_SeekScan opcode seeks to reduce the number
2028 ** of expensive seek operations by replacing a single seek with
2029 ** 1 or more step operations. The question is, how many steps
2030 ** should we try before giving up and going with a seek. The cost
2031 ** of a seek is proportional to the logarithm of the of the number
2032 ** of entries in the tree, so basing the number of steps to try
2033 ** on the estimated number of rows in the btree seems like a good
2034 ** guess. */
2035 addrSeekScan = sqlite3VdbeAddOp1(v, OP_SeekScan,
2036 (pIdx->aiRowLogEst[0]+9)/10);
2037 VdbeCoverage(v);
2039 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
2040 VdbeCoverage(v);
2041 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
2042 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
2043 VdbeCoverageIf(v, op==OP_SeekGT); testcase( op==OP_SeekGT );
2044 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
2045 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
2046 VdbeCoverageIf(v, op==OP_SeekLT); testcase( op==OP_SeekLT );
2048 assert( bSeekPastNull==0 || bStopAtNull==0 );
2049 if( regBignull ){
2050 assert( bSeekPastNull==1 || bStopAtNull==1 );
2051 assert( bSeekPastNull==!bStopAtNull );
2052 assert( bStopAtNull==startEq );
2053 sqlite3VdbeAddOp2(v, OP_Goto, 0, sqlite3VdbeCurrentAddr(v)+2);
2054 op = aStartOp[(nConstraint>1)*4 + 2 + bRev];
2055 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
2056 nConstraint-startEq);
2057 VdbeCoverage(v);
2058 VdbeCoverageIf(v, op==OP_Rewind); testcase( op==OP_Rewind );
2059 VdbeCoverageIf(v, op==OP_Last); testcase( op==OP_Last );
2060 VdbeCoverageIf(v, op==OP_SeekGE); testcase( op==OP_SeekGE );
2061 VdbeCoverageIf(v, op==OP_SeekLE); testcase( op==OP_SeekLE );
2062 assert( op==OP_Rewind || op==OP_Last || op==OP_SeekGE || op==OP_SeekLE);
2066 /* Load the value for the inequality constraint at the end of the
2067 ** range (if any).
2069 nConstraint = nEq;
2070 assert( pLevel->p2==0 );
2071 if( pRangeEnd ){
2072 Expr *pRight = pRangeEnd->pExpr->pRight;
2073 if( addrSeekScan ){
2074 /* For a seek-scan that has a range on the lowest term of the index,
2075 ** we have to make the top of the loop be code that sets the end
2076 ** condition of the range. Otherwise, the OP_SeekScan might jump
2077 ** over that initialization, leaving the range-end value set to the
2078 ** range-start value, resulting in a wrong answer.
2079 ** See ticket 5981a8c041a3c2f3 (2021-11-02).
2081 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2083 codeExprOrVector(pParse, pRight, regBase+nEq, nTop);
2084 whereLikeOptimizationStringFixup(v, pLevel, pRangeEnd);
2085 if( (pRangeEnd->wtFlags & TERM_VNULL)==0
2086 && sqlite3ExprCanBeNull(pRight)
2088 sqlite3VdbeAddOp2(v, OP_IsNull, regBase+nEq, addrNxt);
2089 VdbeCoverage(v);
2091 if( zEndAff ){
2092 updateRangeAffinityStr(pRight, nTop, zEndAff);
2093 codeApplyAffinity(pParse, regBase+nEq, nTop, zEndAff);
2094 }else{
2095 assert( pParse->db->mallocFailed );
2097 nConstraint += nTop;
2098 testcase( pRangeEnd->wtFlags & TERM_VIRTUAL );
2100 if( sqlite3ExprIsVector(pRight)==0 ){
2101 disableTerm(pLevel, pRangeEnd);
2102 }else{
2103 endEq = 1;
2105 }else if( bStopAtNull ){
2106 if( regBignull==0 ){
2107 sqlite3VdbeAddOp2(v, OP_Null, 0, regBase+nEq);
2108 endEq = 0;
2110 nConstraint++;
2112 sqlite3DbFree(db, zStartAff);
2113 sqlite3DbFree(db, zEndAff);
2115 /* Top of the loop body */
2116 if( pLevel->p2==0 ) pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2118 /* Check if the index cursor is past the end of the range. */
2119 if( nConstraint ){
2120 if( regBignull ){
2121 /* Except, skip the end-of-range check while doing the NULL-scan */
2122 sqlite3VdbeAddOp2(v, OP_IfNot, regBignull, sqlite3VdbeCurrentAddr(v)+3);
2123 VdbeComment((v, "If NULL-scan 2nd pass"));
2124 VdbeCoverage(v);
2126 op = aEndOp[bRev*2 + endEq];
2127 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase, nConstraint);
2128 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
2129 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
2130 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
2131 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
2132 if( addrSeekScan ) sqlite3VdbeJumpHere(v, addrSeekScan);
2134 if( regBignull ){
2135 /* During a NULL-scan, check to see if we have reached the end of
2136 ** the NULLs */
2137 assert( bSeekPastNull==!bStopAtNull );
2138 assert( bSeekPastNull+bStopAtNull==1 );
2139 assert( nConstraint+bSeekPastNull>0 );
2140 sqlite3VdbeAddOp2(v, OP_If, regBignull, sqlite3VdbeCurrentAddr(v)+2);
2141 VdbeComment((v, "If NULL-scan 1st pass"));
2142 VdbeCoverage(v);
2143 op = aEndOp[bRev*2 + bSeekPastNull];
2144 sqlite3VdbeAddOp4Int(v, op, iIdxCur, addrNxt, regBase,
2145 nConstraint+bSeekPastNull);
2146 testcase( op==OP_IdxGT ); VdbeCoverageIf(v, op==OP_IdxGT );
2147 testcase( op==OP_IdxGE ); VdbeCoverageIf(v, op==OP_IdxGE );
2148 testcase( op==OP_IdxLT ); VdbeCoverageIf(v, op==OP_IdxLT );
2149 testcase( op==OP_IdxLE ); VdbeCoverageIf(v, op==OP_IdxLE );
2152 if( (pLoop->wsFlags & WHERE_IN_EARLYOUT)!=0 ){
2153 sqlite3VdbeAddOp3(v, OP_SeekHit, iIdxCur, nEq, nEq);
2156 /* Seek the table cursor, if required */
2157 omitTable = (pLoop->wsFlags & WHERE_IDX_ONLY)!=0
2158 && (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0;
2159 if( omitTable ){
2160 /* pIdx is a covering index. No need to access the main table. */
2161 }else if( HasRowid(pIdx->pTable) ){
2162 codeDeferredSeek(pWInfo, pIdx, iCur, iIdxCur);
2163 }else if( iCur!=iIdxCur ){
2164 Index *pPk = sqlite3PrimaryKeyIndex(pIdx->pTable);
2165 iRowidReg = sqlite3GetTempRange(pParse, pPk->nKeyCol);
2166 for(j=0; j<pPk->nKeyCol; j++){
2167 k = sqlite3TableColumnToIndex(pIdx, pPk->aiColumn[j]);
2168 sqlite3VdbeAddOp3(v, OP_Column, iIdxCur, k, iRowidReg+j);
2170 sqlite3VdbeAddOp4Int(v, OP_NotFound, iCur, addrCont,
2171 iRowidReg, pPk->nKeyCol); VdbeCoverage(v);
2174 if( pLevel->iLeftJoin==0 ){
2175 /* If pIdx is an index on one or more expressions, then look through
2176 ** all the expressions in pWInfo and try to transform matching expressions
2177 ** into reference to index columns. Also attempt to translate references
2178 ** to virtual columns in the table into references to (stored) columns
2179 ** of the index.
2181 ** Do not do this for the RHS of a LEFT JOIN. This is because the
2182 ** expression may be evaluated after OP_NullRow has been executed on
2183 ** the cursor. In this case it is important to do the full evaluation,
2184 ** as the result of the expression may not be NULL, even if all table
2185 ** column values are. https://www.sqlite.org/src/info/7fa8049685b50b5a
2187 ** Also, do not do this when processing one index an a multi-index
2188 ** OR clause, since the transformation will become invalid once we
2189 ** move forward to the next index.
2190 ** https://sqlite.org/src/info/4e8e4857d32d401f
2192 if( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0 ){
2193 whereIndexExprTrans(pIdx, iCur, iIdxCur, pWInfo);
2196 /* If a partial index is driving the loop, try to eliminate WHERE clause
2197 ** terms from the query that must be true due to the WHERE clause of
2198 ** the partial index.
2200 ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work
2201 ** for a LEFT JOIN.
2203 if( pIdx->pPartIdxWhere ){
2204 whereApplyPartialIndexConstraints(pIdx->pPartIdxWhere, iCur, pWC);
2206 }else{
2207 testcase( pIdx->pPartIdxWhere );
2208 /* The following assert() is not a requirement, merely an observation:
2209 ** The OR-optimization doesn't work for the right hand table of
2210 ** a LEFT JOIN: */
2211 assert( (pWInfo->wctrlFlags & (WHERE_OR_SUBCLAUSE|WHERE_RIGHT_JOIN))==0 );
2214 /* Record the instruction used to terminate the loop. */
2215 if( pLoop->wsFlags & WHERE_ONEROW ){
2216 pLevel->op = OP_Noop;
2217 }else if( bRev ){
2218 pLevel->op = OP_Prev;
2219 }else{
2220 pLevel->op = OP_Next;
2222 pLevel->p1 = iIdxCur;
2223 pLevel->p3 = (pLoop->wsFlags&WHERE_UNQ_WANTED)!=0 ? 1:0;
2224 if( (pLoop->wsFlags & WHERE_CONSTRAINT)==0 ){
2225 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2226 }else{
2227 assert( pLevel->p5==0 );
2229 if( omitTable ) pIdx = 0;
2230 }else
2232 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
2233 if( pLoop->wsFlags & WHERE_MULTI_OR ){
2234 /* Case 5: Two or more separately indexed terms connected by OR
2236 ** Example:
2238 ** CREATE TABLE t1(a,b,c,d);
2239 ** CREATE INDEX i1 ON t1(a);
2240 ** CREATE INDEX i2 ON t1(b);
2241 ** CREATE INDEX i3 ON t1(c);
2243 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
2245 ** In the example, there are three indexed terms connected by OR.
2246 ** The top of the loop looks like this:
2248 ** Null 1 # Zero the rowset in reg 1
2250 ** Then, for each indexed term, the following. The arguments to
2251 ** RowSetTest are such that the rowid of the current row is inserted
2252 ** into the RowSet. If it is already present, control skips the
2253 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
2255 ** sqlite3WhereBegin(<term>)
2256 ** RowSetTest # Insert rowid into rowset
2257 ** Gosub 2 A
2258 ** sqlite3WhereEnd()
2260 ** Following the above, code to terminate the loop. Label A, the target
2261 ** of the Gosub above, jumps to the instruction right after the Goto.
2263 ** Null 1 # Zero the rowset in reg 1
2264 ** Goto B # The loop is finished.
2266 ** A: <loop body> # Return data, whatever.
2268 ** Return 2 # Jump back to the Gosub
2270 ** B: <after the loop>
2272 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
2273 ** use an ephemeral index instead of a RowSet to record the primary
2274 ** keys of the rows we have already seen.
2277 WhereClause *pOrWc; /* The OR-clause broken out into subterms */
2278 SrcList *pOrTab; /* Shortened table list or OR-clause generation */
2279 Index *pCov = 0; /* Potential covering index (or NULL) */
2280 int iCovCur = pParse->nTab++; /* Cursor used for index scans (if any) */
2282 int regReturn = ++pParse->nMem; /* Register used with OP_Gosub */
2283 int regRowset = 0; /* Register for RowSet object */
2284 int regRowid = 0; /* Register holding rowid */
2285 int iLoopBody = sqlite3VdbeMakeLabel(pParse);/* Start of loop body */
2286 int iRetInit; /* Address of regReturn init */
2287 int untestedTerms = 0; /* Some terms not completely tested */
2288 int ii; /* Loop counter */
2289 Expr *pAndExpr = 0; /* An ".. AND (...)" expression */
2290 Table *pTab = pTabItem->pTab;
2292 pTerm = pLoop->aLTerm[0];
2293 assert( pTerm!=0 );
2294 assert( pTerm->eOperator & WO_OR );
2295 assert( (pTerm->wtFlags & TERM_ORINFO)!=0 );
2296 pOrWc = &pTerm->u.pOrInfo->wc;
2297 pLevel->op = OP_Return;
2298 pLevel->p1 = regReturn;
2300 /* Set up a new SrcList in pOrTab containing the table being scanned
2301 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
2302 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
2304 if( pWInfo->nLevel>1 ){
2305 int nNotReady; /* The number of notReady tables */
2306 SrcItem *origSrc; /* Original list of tables */
2307 nNotReady = pWInfo->nLevel - iLevel - 1;
2308 pOrTab = sqlite3StackAllocRaw(db,
2309 sizeof(*pOrTab)+ nNotReady*sizeof(pOrTab->a[0]));
2310 if( pOrTab==0 ) return notReady;
2311 pOrTab->nAlloc = (u8)(nNotReady + 1);
2312 pOrTab->nSrc = pOrTab->nAlloc;
2313 memcpy(pOrTab->a, pTabItem, sizeof(*pTabItem));
2314 origSrc = pWInfo->pTabList->a;
2315 for(k=1; k<=nNotReady; k++){
2316 memcpy(&pOrTab->a[k], &origSrc[pLevel[k].iFrom], sizeof(pOrTab->a[k]));
2318 }else{
2319 pOrTab = pWInfo->pTabList;
2322 /* Initialize the rowset register to contain NULL. An SQL NULL is
2323 ** equivalent to an empty rowset. Or, create an ephemeral index
2324 ** capable of holding primary keys in the case of a WITHOUT ROWID.
2326 ** Also initialize regReturn to contain the address of the instruction
2327 ** immediately following the OP_Return at the bottom of the loop. This
2328 ** is required in a few obscure LEFT JOIN cases where control jumps
2329 ** over the top of the loop into the body of it. In this case the
2330 ** correct response for the end-of-loop code (the OP_Return) is to
2331 ** fall through to the next instruction, just as an OP_Next does if
2332 ** called on an uninitialized cursor.
2334 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2335 if( HasRowid(pTab) ){
2336 regRowset = ++pParse->nMem;
2337 sqlite3VdbeAddOp2(v, OP_Null, 0, regRowset);
2338 }else{
2339 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2340 regRowset = pParse->nTab++;
2341 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, regRowset, pPk->nKeyCol);
2342 sqlite3VdbeSetP4KeyInfo(pParse, pPk);
2344 regRowid = ++pParse->nMem;
2346 iRetInit = sqlite3VdbeAddOp2(v, OP_Integer, 0, regReturn);
2348 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y
2349 ** Then for every term xN, evaluate as the subexpression: xN AND y
2350 ** That way, terms in y that are factored into the disjunction will
2351 ** be picked up by the recursive calls to sqlite3WhereBegin() below.
2353 ** Actually, each subexpression is converted to "xN AND w" where w is
2354 ** the "interesting" terms of z - terms that did not originate in the
2355 ** ON or USING clause of a LEFT JOIN, and terms that are usable as
2356 ** indices.
2358 ** This optimization also only applies if the (x1 OR x2 OR ...) term
2359 ** is not contained in the ON clause of a LEFT JOIN.
2360 ** See ticket http://www.sqlite.org/src/info/f2369304e4
2362 ** 2022-02-04: Do not push down slices of a row-value comparison.
2363 ** In other words, "w" or "y" may not be a slice of a vector. Otherwise,
2364 ** the initialization of the right-hand operand of the vector comparison
2365 ** might not occur, or might occur only in an OR branch that is not
2366 ** taken. dbsqlfuzz 80a9fade844b4fb43564efc972bcb2c68270f5d1.
2368 ** 2022-03-03: Do not push down expressions that involve subqueries.
2369 ** The subquery might get coded as a subroutine. Any table-references
2370 ** in the subquery might be resolved to index-references for the index on
2371 ** the OR branch in which the subroutine is coded. But if the subroutine
2372 ** is invoked from a different OR branch that uses a different index, such
2373 ** index-references will not work. tag-20220303a
2374 ** https://sqlite.org/forum/forumpost/36937b197273d403
2376 if( pWC->nTerm>1 ){
2377 int iTerm;
2378 for(iTerm=0; iTerm<pWC->nTerm; iTerm++){
2379 Expr *pExpr = pWC->a[iTerm].pExpr;
2380 if( &pWC->a[iTerm] == pTerm ) continue;
2381 testcase( pWC->a[iTerm].wtFlags & TERM_VIRTUAL );
2382 testcase( pWC->a[iTerm].wtFlags & TERM_CODED );
2383 testcase( pWC->a[iTerm].wtFlags & TERM_SLICE );
2384 if( (pWC->a[iTerm].wtFlags & (TERM_VIRTUAL|TERM_CODED|TERM_SLICE))!=0 ){
2385 continue;
2387 if( (pWC->a[iTerm].eOperator & WO_ALL)==0 ) continue;
2388 if( ExprHasProperty(pExpr, EP_Subquery) ) continue; /* tag-20220303a */
2389 pExpr = sqlite3ExprDup(db, pExpr, 0);
2390 pAndExpr = sqlite3ExprAnd(pParse, pAndExpr, pExpr);
2392 if( pAndExpr ){
2393 /* The extra 0x10000 bit on the opcode is masked off and does not
2394 ** become part of the new Expr.op. However, it does make the
2395 ** op==TK_AND comparison inside of sqlite3PExpr() false, and this
2396 ** prevents sqlite3PExpr() from applying the AND short-circuit
2397 ** optimization, which we do not want here. */
2398 pAndExpr = sqlite3PExpr(pParse, TK_AND|0x10000, 0, pAndExpr);
2402 /* Run a separate WHERE clause for each term of the OR clause. After
2403 ** eliminating duplicates from other WHERE clauses, the action for each
2404 ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
2406 ExplainQueryPlan((pParse, 1, "MULTI-INDEX OR"));
2407 for(ii=0; ii<pOrWc->nTerm; ii++){
2408 WhereTerm *pOrTerm = &pOrWc->a[ii];
2409 if( pOrTerm->leftCursor==iCur || (pOrTerm->eOperator & WO_AND)!=0 ){
2410 WhereInfo *pSubWInfo; /* Info for single OR-term scan */
2411 Expr *pOrExpr = pOrTerm->pExpr; /* Current OR clause term */
2412 Expr *pDelete; /* Local copy of OR clause term */
2413 int jmp1 = 0; /* Address of jump operation */
2414 testcase( (pTabItem[0].fg.jointype & JT_LEFT)!=0
2415 && !ExprHasProperty(pOrExpr, EP_OuterON)
2416 ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */
2417 pDelete = pOrExpr = sqlite3ExprDup(db, pOrExpr, 0);
2418 if( db->mallocFailed ){
2419 sqlite3ExprDelete(db, pDelete);
2420 continue;
2422 if( pAndExpr ){
2423 pAndExpr->pLeft = pOrExpr;
2424 pOrExpr = pAndExpr;
2426 /* Loop through table entries that match term pOrTerm. */
2427 ExplainQueryPlan((pParse, 1, "INDEX %d", ii+1));
2428 WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
2429 pSubWInfo = sqlite3WhereBegin(pParse, pOrTab, pOrExpr, 0, 0, 0,
2430 WHERE_OR_SUBCLAUSE, iCovCur);
2431 assert( pSubWInfo || pParse->nErr );
2432 if( pSubWInfo ){
2433 WhereLoop *pSubLoop;
2434 int addrExplain = sqlite3WhereExplainOneScan(
2435 pParse, pOrTab, &pSubWInfo->a[0], 0
2437 sqlite3WhereAddScanStatus(v, pOrTab, &pSubWInfo->a[0], addrExplain);
2439 /* This is the sub-WHERE clause body. First skip over
2440 ** duplicate rows from prior sub-WHERE clauses, and record the
2441 ** rowid (or PRIMARY KEY) for the current row so that the same
2442 ** row will be skipped in subsequent sub-WHERE clauses.
2444 if( (pWInfo->wctrlFlags & WHERE_DUPLICATES_OK)==0 ){
2445 int iSet = ((ii==pOrWc->nTerm-1)?-1:ii);
2446 if( HasRowid(pTab) ){
2447 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, regRowid);
2448 jmp1 = sqlite3VdbeAddOp4Int(v, OP_RowSetTest, regRowset, 0,
2449 regRowid, iSet);
2450 VdbeCoverage(v);
2451 }else{
2452 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2453 int nPk = pPk->nKeyCol;
2454 int iPk;
2455 int r;
2457 /* Read the PK into an array of temp registers. */
2458 r = sqlite3GetTempRange(pParse, nPk);
2459 for(iPk=0; iPk<nPk; iPk++){
2460 int iCol = pPk->aiColumn[iPk];
2461 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
2464 /* Check if the temp table already contains this key. If so,
2465 ** the row has already been included in the result set and
2466 ** can be ignored (by jumping past the Gosub below). Otherwise,
2467 ** insert the key into the temp table and proceed with processing
2468 ** the row.
2470 ** Use some of the same optimizations as OP_RowSetTest: If iSet
2471 ** is zero, assume that the key cannot already be present in
2472 ** the temp table. And if iSet is -1, assume that there is no
2473 ** need to insert the key into the temp table, as it will never
2474 ** be tested for. */
2475 if( iSet ){
2476 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, regRowset, 0, r, nPk);
2477 VdbeCoverage(v);
2479 if( iSet>=0 ){
2480 sqlite3VdbeAddOp3(v, OP_MakeRecord, r, nPk, regRowid);
2481 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, regRowset, regRowid,
2482 r, nPk);
2483 if( iSet ) sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2486 /* Release the array of temp registers */
2487 sqlite3ReleaseTempRange(pParse, r, nPk);
2491 /* Invoke the main loop body as a subroutine */
2492 sqlite3VdbeAddOp2(v, OP_Gosub, regReturn, iLoopBody);
2494 /* Jump here (skipping the main loop body subroutine) if the
2495 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
2496 if( jmp1 ) sqlite3VdbeJumpHere(v, jmp1);
2498 /* The pSubWInfo->untestedTerms flag means that this OR term
2499 ** contained one or more AND term from a notReady table. The
2500 ** terms from the notReady table could not be tested and will
2501 ** need to be tested later.
2503 if( pSubWInfo->untestedTerms ) untestedTerms = 1;
2505 /* If all of the OR-connected terms are optimized using the same
2506 ** index, and the index is opened using the same cursor number
2507 ** by each call to sqlite3WhereBegin() made by this loop, it may
2508 ** be possible to use that index as a covering index.
2510 ** If the call to sqlite3WhereBegin() above resulted in a scan that
2511 ** uses an index, and this is either the first OR-connected term
2512 ** processed or the index is the same as that used by all previous
2513 ** terms, set pCov to the candidate covering index. Otherwise, set
2514 ** pCov to NULL to indicate that no candidate covering index will
2515 ** be available.
2517 pSubLoop = pSubWInfo->a[0].pWLoop;
2518 assert( (pSubLoop->wsFlags & WHERE_AUTO_INDEX)==0 );
2519 if( (pSubLoop->wsFlags & WHERE_INDEXED)!=0
2520 && (ii==0 || pSubLoop->u.btree.pIndex==pCov)
2521 && (HasRowid(pTab) || !IsPrimaryKeyIndex(pSubLoop->u.btree.pIndex))
2523 assert( pSubWInfo->a[0].iIdxCur==iCovCur );
2524 pCov = pSubLoop->u.btree.pIndex;
2525 }else{
2526 pCov = 0;
2528 if( sqlite3WhereUsesDeferredSeek(pSubWInfo) ){
2529 pWInfo->bDeferredSeek = 1;
2532 /* Finish the loop through table entries that match term pOrTerm. */
2533 sqlite3WhereEnd(pSubWInfo);
2534 ExplainQueryPlanPop(pParse);
2536 sqlite3ExprDelete(db, pDelete);
2539 ExplainQueryPlanPop(pParse);
2540 assert( pLevel->pWLoop==pLoop );
2541 assert( (pLoop->wsFlags & WHERE_MULTI_OR)!=0 );
2542 assert( (pLoop->wsFlags & WHERE_IN_ABLE)==0 );
2543 pLevel->u.pCoveringIdx = pCov;
2544 if( pCov ) pLevel->iIdxCur = iCovCur;
2545 if( pAndExpr ){
2546 pAndExpr->pLeft = 0;
2547 sqlite3ExprDelete(db, pAndExpr);
2549 sqlite3VdbeChangeP1(v, iRetInit, sqlite3VdbeCurrentAddr(v));
2550 sqlite3VdbeGoto(v, pLevel->addrBrk);
2551 sqlite3VdbeResolveLabel(v, iLoopBody);
2553 /* Set the P2 operand of the OP_Return opcode that will end the current
2554 ** loop to point to this spot, which is the top of the next containing
2555 ** loop. The byte-code formatter will use that P2 value as a hint to
2556 ** indent everything in between the this point and the final OP_Return.
2557 ** See tag-20220407a in vdbe.c and shell.c */
2558 assert( pLevel->op==OP_Return );
2559 pLevel->p2 = sqlite3VdbeCurrentAddr(v);
2561 if( pWInfo->nLevel>1 ){ sqlite3StackFree(db, pOrTab); }
2562 if( !untestedTerms ) disableTerm(pLevel, pTerm);
2563 }else
2564 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2567 /* Case 6: There is no usable index. We must do a complete
2568 ** scan of the entire table.
2570 static const u8 aStep[] = { OP_Next, OP_Prev };
2571 static const u8 aStart[] = { OP_Rewind, OP_Last };
2572 assert( bRev==0 || bRev==1 );
2573 if( pTabItem->fg.isRecursive ){
2574 /* Tables marked isRecursive have only a single row that is stored in
2575 ** a pseudo-cursor. No need to Rewind or Next such cursors. */
2576 pLevel->op = OP_Noop;
2577 }else{
2578 codeCursorHint(pTabItem, pWInfo, pLevel, 0);
2579 pLevel->op = aStep[bRev];
2580 pLevel->p1 = iCur;
2581 pLevel->p2 = 1 + sqlite3VdbeAddOp2(v, aStart[bRev], iCur, addrHalt);
2582 VdbeCoverageIf(v, bRev==0);
2583 VdbeCoverageIf(v, bRev!=0);
2584 pLevel->p5 = SQLITE_STMTSTATUS_FULLSCAN_STEP;
2588 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2589 pLevel->addrVisit = sqlite3VdbeCurrentAddr(v);
2590 #endif
2592 /* Insert code to test every subexpression that can be completely
2593 ** computed using the current set of tables.
2595 ** This loop may run between one and three times, depending on the
2596 ** constraints to be generated. The value of stack variable iLoop
2597 ** determines the constraints coded by each iteration, as follows:
2599 ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2600 ** iLoop==2: Code remaining expressions that do not contain correlated
2601 ** sub-queries.
2602 ** iLoop==3: Code all remaining expressions.
2604 ** An effort is made to skip unnecessary iterations of the loop.
2606 iLoop = (pIdx ? 1 : 2);
2608 int iNext = 0; /* Next value for iLoop */
2609 for(pTerm=pWC->a, j=pWC->nTerm; j>0; j--, pTerm++){
2610 Expr *pE;
2611 int skipLikeAddr = 0;
2612 testcase( pTerm->wtFlags & TERM_VIRTUAL );
2613 testcase( pTerm->wtFlags & TERM_CODED );
2614 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2615 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2616 testcase( pWInfo->untestedTerms==0
2617 && (pWInfo->wctrlFlags & WHERE_OR_SUBCLAUSE)!=0 );
2618 pWInfo->untestedTerms = 1;
2619 continue;
2621 pE = pTerm->pExpr;
2622 assert( pE!=0 );
2623 if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT) ){
2624 if( !ExprHasProperty(pE,EP_OuterON|EP_InnerON) ){
2625 /* Defer processing WHERE clause constraints until after outer
2626 ** join processing. tag-20220513a */
2627 continue;
2628 }else if( (pTabItem->fg.jointype & JT_LEFT)==JT_LEFT
2629 && !ExprHasProperty(pE,EP_OuterON) ){
2630 continue;
2631 }else{
2632 Bitmask m = sqlite3WhereGetMask(&pWInfo->sMaskSet, pE->w.iJoin);
2633 if( m & pLevel->notReady ){
2634 /* An ON clause that is not ripe */
2635 continue;
2639 if( iLoop==1 && !sqlite3ExprCoveredByIndex(pE, pLevel->iTabCur, pIdx) ){
2640 iNext = 2;
2641 continue;
2643 if( iLoop<3 && (pTerm->wtFlags & TERM_VARSELECT) ){
2644 if( iNext==0 ) iNext = 3;
2645 continue;
2648 if( (pTerm->wtFlags & TERM_LIKECOND)!=0 ){
2649 /* If the TERM_LIKECOND flag is set, that means that the range search
2650 ** is sufficient to guarantee that the LIKE operator is true, so we
2651 ** can skip the call to the like(A,B) function. But this only works
2652 ** for strings. So do not skip the call to the function on the pass
2653 ** that compares BLOBs. */
2654 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2655 continue;
2656 #else
2657 u32 x = pLevel->iLikeRepCntr;
2658 if( x>0 ){
2659 skipLikeAddr = sqlite3VdbeAddOp1(v, (x&1)?OP_IfNot:OP_If,(int)(x>>1));
2660 VdbeCoverageIf(v, (x&1)==1);
2661 VdbeCoverageIf(v, (x&1)==0);
2663 #endif
2665 #ifdef WHERETRACE_ENABLED /* 0xffff */
2666 if( sqlite3WhereTrace ){
2667 VdbeNoopComment((v, "WhereTerm[%d] (%p) priority=%d",
2668 pWC->nTerm-j, pTerm, iLoop));
2670 if( sqlite3WhereTrace & 0x800 ){
2671 sqlite3DebugPrintf("Coding auxiliary constraint:\n");
2672 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2674 #endif
2675 sqlite3ExprIfFalse(pParse, pE, addrCont, SQLITE_JUMPIFNULL);
2676 if( skipLikeAddr ) sqlite3VdbeJumpHere(v, skipLikeAddr);
2677 pTerm->wtFlags |= TERM_CODED;
2679 iLoop = iNext;
2680 }while( iLoop>0 );
2682 /* Insert code to test for implied constraints based on transitivity
2683 ** of the "==" operator.
2685 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2686 ** and we are coding the t1 loop and the t2 loop has not yet coded,
2687 ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2688 ** the implied "t1.a=123" constraint.
2690 for(pTerm=pWC->a, j=pWC->nBase; j>0; j--, pTerm++){
2691 Expr *pE, sEAlt;
2692 WhereTerm *pAlt;
2693 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2694 if( (pTerm->eOperator & (WO_EQ|WO_IS))==0 ) continue;
2695 if( (pTerm->eOperator & WO_EQUIV)==0 ) continue;
2696 if( pTerm->leftCursor!=iCur ) continue;
2697 if( pTabItem->fg.jointype & (JT_LEFT|JT_LTORJ|JT_RIGHT) ) continue;
2698 pE = pTerm->pExpr;
2699 #ifdef WHERETRACE_ENABLED /* 0x800 */
2700 if( sqlite3WhereTrace & 0x800 ){
2701 sqlite3DebugPrintf("Coding transitive constraint:\n");
2702 sqlite3WhereTermPrint(pTerm, pWC->nTerm-j);
2704 #endif
2705 assert( !ExprHasProperty(pE, EP_OuterON) );
2706 assert( (pTerm->prereqRight & pLevel->notReady)!=0 );
2707 assert( (pTerm->eOperator & (WO_OR|WO_AND))==0 );
2708 pAlt = sqlite3WhereFindTerm(pWC, iCur, pTerm->u.x.leftColumn, notReady,
2709 WO_EQ|WO_IN|WO_IS, 0);
2710 if( pAlt==0 ) continue;
2711 if( pAlt->wtFlags & (TERM_CODED) ) continue;
2712 if( (pAlt->eOperator & WO_IN)
2713 && ExprUseXSelect(pAlt->pExpr)
2714 && (pAlt->pExpr->x.pSelect->pEList->nExpr>1)
2716 continue;
2718 testcase( pAlt->eOperator & WO_EQ );
2719 testcase( pAlt->eOperator & WO_IS );
2720 testcase( pAlt->eOperator & WO_IN );
2721 VdbeModuleComment((v, "begin transitive constraint"));
2722 sEAlt = *pAlt->pExpr;
2723 sEAlt.pLeft = pE->pLeft;
2724 sqlite3ExprIfFalse(pParse, &sEAlt, addrCont, SQLITE_JUMPIFNULL);
2725 pAlt->wtFlags |= TERM_CODED;
2728 /* For a RIGHT OUTER JOIN, record the fact that the current row has
2729 ** been matched at least once.
2731 if( pLevel->pRJ ){
2732 Table *pTab;
2733 int nPk;
2734 int r;
2735 int jmp1 = 0;
2736 WhereRightJoin *pRJ = pLevel->pRJ;
2738 /* pTab is the right-hand table of the RIGHT JOIN. Generate code that
2739 ** will record that the current row of that table has been matched at
2740 ** least once. This is accomplished by storing the PK for the row in
2741 ** both the iMatch index and the regBloom Bloom filter.
2743 pTab = pWInfo->pTabList->a[pLevel->iFrom].pTab;
2744 if( HasRowid(pTab) ){
2745 r = sqlite3GetTempRange(pParse, 2);
2746 sqlite3ExprCodeGetColumnOfTable(v, pTab, pLevel->iTabCur, -1, r+1);
2747 nPk = 1;
2748 }else{
2749 int iPk;
2750 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2751 nPk = pPk->nKeyCol;
2752 r = sqlite3GetTempRange(pParse, nPk+1);
2753 for(iPk=0; iPk<nPk; iPk++){
2754 int iCol = pPk->aiColumn[iPk];
2755 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+1+iPk);
2758 jmp1 = sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, 0, r+1, nPk);
2759 VdbeCoverage(v);
2760 VdbeComment((v, "match against %s", pTab->zName));
2761 sqlite3VdbeAddOp3(v, OP_MakeRecord, r+1, nPk, r);
2762 sqlite3VdbeAddOp4Int(v, OP_IdxInsert, pRJ->iMatch, r, r+1, nPk);
2763 sqlite3VdbeAddOp4Int(v, OP_FilterAdd, pRJ->regBloom, 0, r+1, nPk);
2764 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2765 sqlite3VdbeJumpHere(v, jmp1);
2766 sqlite3ReleaseTempRange(pParse, r, nPk+1);
2769 /* For a LEFT OUTER JOIN, generate code that will record the fact that
2770 ** at least one row of the right table has matched the left table.
2772 if( pLevel->iLeftJoin ){
2773 pLevel->addrFirst = sqlite3VdbeCurrentAddr(v);
2774 sqlite3VdbeAddOp2(v, OP_Integer, 1, pLevel->iLeftJoin);
2775 VdbeComment((v, "record LEFT JOIN hit"));
2776 if( pLevel->pRJ==0 ){
2777 goto code_outer_join_constraints; /* WHERE clause constraints */
2781 if( pLevel->pRJ ){
2782 /* Create a subroutine used to process all interior loops and code
2783 ** of the RIGHT JOIN. During normal operation, the subroutine will
2784 ** be in-line with the rest of the code. But at the end, a separate
2785 ** loop will run that invokes this subroutine for unmatched rows
2786 ** of pTab, with all tables to left begin set to NULL.
2788 WhereRightJoin *pRJ = pLevel->pRJ;
2789 sqlite3VdbeAddOp2(v, OP_BeginSubrtn, 0, pRJ->regReturn);
2790 pRJ->addrSubrtn = sqlite3VdbeCurrentAddr(v);
2791 assert( pParse->withinRJSubrtn < 255 );
2792 pParse->withinRJSubrtn++;
2794 /* WHERE clause constraints must be deferred until after outer join
2795 ** row elimination has completed, since WHERE clause constraints apply
2796 ** to the results of the OUTER JOIN. The following loop generates the
2797 ** appropriate WHERE clause constraint checks. tag-20220513a.
2799 code_outer_join_constraints:
2800 for(pTerm=pWC->a, j=0; j<pWC->nBase; j++, pTerm++){
2801 testcase( pTerm->wtFlags & TERM_VIRTUAL );
2802 testcase( pTerm->wtFlags & TERM_CODED );
2803 if( pTerm->wtFlags & (TERM_VIRTUAL|TERM_CODED) ) continue;
2804 if( (pTerm->prereqAll & pLevel->notReady)!=0 ){
2805 assert( pWInfo->untestedTerms );
2806 continue;
2808 if( pTabItem->fg.jointype & JT_LTORJ ) continue;
2809 assert( pTerm->pExpr );
2810 sqlite3ExprIfFalse(pParse, pTerm->pExpr, addrCont, SQLITE_JUMPIFNULL);
2811 pTerm->wtFlags |= TERM_CODED;
2815 #if WHERETRACE_ENABLED /* 0x20800 */
2816 if( sqlite3WhereTrace & 0x20000 ){
2817 sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n",
2818 iLevel);
2819 sqlite3WhereClausePrint(pWC);
2821 if( sqlite3WhereTrace & 0x800 ){
2822 sqlite3DebugPrintf("End Coding level %d: notReady=%llx\n",
2823 iLevel, (u64)pLevel->notReady);
2825 #endif
2826 return pLevel->notReady;
2830 ** Generate the code for the loop that finds all non-matched terms
2831 ** for a RIGHT JOIN.
2833 SQLITE_NOINLINE void sqlite3WhereRightJoinLoop(
2834 WhereInfo *pWInfo,
2835 int iLevel,
2836 WhereLevel *pLevel
2838 Parse *pParse = pWInfo->pParse;
2839 Vdbe *v = pParse->pVdbe;
2840 WhereRightJoin *pRJ = pLevel->pRJ;
2841 Expr *pSubWhere = 0;
2842 WhereClause *pWC = &pWInfo->sWC;
2843 WhereInfo *pSubWInfo;
2844 WhereLoop *pLoop = pLevel->pWLoop;
2845 SrcItem *pTabItem = &pWInfo->pTabList->a[pLevel->iFrom];
2846 SrcList sFrom;
2847 Bitmask mAll = 0;
2848 int k;
2850 ExplainQueryPlan((pParse, 1, "RIGHT-JOIN %s", pTabItem->pTab->zName));
2851 sqlite3VdbeNoJumpsOutsideSubrtn(v, pRJ->addrSubrtn, pRJ->endSubrtn,
2852 pRJ->regReturn);
2853 for(k=0; k<iLevel; k++){
2854 int iIdxCur;
2855 mAll |= pWInfo->a[k].pWLoop->maskSelf;
2856 sqlite3VdbeAddOp1(v, OP_NullRow, pWInfo->a[k].iTabCur);
2857 iIdxCur = pWInfo->a[k].iIdxCur;
2858 if( iIdxCur ){
2859 sqlite3VdbeAddOp1(v, OP_NullRow, iIdxCur);
2862 if( (pTabItem->fg.jointype & JT_LTORJ)==0 ){
2863 mAll |= pLoop->maskSelf;
2864 for(k=0; k<pWC->nTerm; k++){
2865 WhereTerm *pTerm = &pWC->a[k];
2866 if( (pTerm->wtFlags & (TERM_VIRTUAL|TERM_SLICE))!=0
2867 && pTerm->eOperator!=WO_ROWVAL
2869 break;
2871 if( pTerm->prereqAll & ~mAll ) continue;
2872 if( ExprHasProperty(pTerm->pExpr, EP_OuterON|EP_InnerON) ) continue;
2873 pSubWhere = sqlite3ExprAnd(pParse, pSubWhere,
2874 sqlite3ExprDup(pParse->db, pTerm->pExpr, 0));
2877 sFrom.nSrc = 1;
2878 sFrom.nAlloc = 1;
2879 memcpy(&sFrom.a[0], pTabItem, sizeof(SrcItem));
2880 sFrom.a[0].fg.jointype = 0;
2881 assert( pParse->withinRJSubrtn < 100 );
2882 pParse->withinRJSubrtn++;
2883 pSubWInfo = sqlite3WhereBegin(pParse, &sFrom, pSubWhere, 0, 0, 0,
2884 WHERE_RIGHT_JOIN, 0);
2885 if( pSubWInfo ){
2886 int iCur = pLevel->iTabCur;
2887 int r = ++pParse->nMem;
2888 int nPk;
2889 int jmp;
2890 int addrCont = sqlite3WhereContinueLabel(pSubWInfo);
2891 Table *pTab = pTabItem->pTab;
2892 if( HasRowid(pTab) ){
2893 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, -1, r);
2894 nPk = 1;
2895 }else{
2896 int iPk;
2897 Index *pPk = sqlite3PrimaryKeyIndex(pTab);
2898 nPk = pPk->nKeyCol;
2899 pParse->nMem += nPk - 1;
2900 for(iPk=0; iPk<nPk; iPk++){
2901 int iCol = pPk->aiColumn[iPk];
2902 sqlite3ExprCodeGetColumnOfTable(v, pTab, iCur, iCol,r+iPk);
2905 jmp = sqlite3VdbeAddOp4Int(v, OP_Filter, pRJ->regBloom, 0, r, nPk);
2906 VdbeCoverage(v);
2907 sqlite3VdbeAddOp4Int(v, OP_Found, pRJ->iMatch, addrCont, r, nPk);
2908 VdbeCoverage(v);
2909 sqlite3VdbeJumpHere(v, jmp);
2910 sqlite3VdbeAddOp2(v, OP_Gosub, pRJ->regReturn, pRJ->addrSubrtn);
2911 sqlite3WhereEnd(pSubWInfo);
2913 sqlite3ExprDelete(pParse->db, pSubWhere);
2914 ExplainQueryPlanPop(pParse);
2915 assert( pParse->withinRJSubrtn>0 );
2916 pParse->withinRJSubrtn--;