4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements.
15 ** This file was split off from where.c on 2015-06-06 in order to reduce the
16 ** size of where.c and make it easier to edit. This file contains the routines
17 ** that actually generate the bulk of the WHERE loop code. The original where.c
18 ** file retains the code that does query planning and analysis.
20 #include "sqliteInt.h"
23 #ifndef SQLITE_OMIT_EXPLAIN
26 ** Return the name of the i-th column of the pIdx index.
28 static const char *explainIndexColumnName(Index
*pIdx
, int i
){
29 i
= pIdx
->aiColumn
[i
];
30 if( i
==XN_EXPR
) return "<expr>";
31 if( i
==XN_ROWID
) return "rowid";
32 return pIdx
->pTable
->aCol
[i
].zCnName
;
36 ** This routine is a helper for explainIndexRange() below
38 ** pStr holds the text of an expression that we are building up one term
39 ** at a time. This routine adds a new term to the end of the expression.
40 ** Terms are separated by AND so add the "AND" text for second and subsequent
43 static void explainAppendTerm(
44 StrAccum
*pStr
, /* The text expression being built */
45 Index
*pIdx
, /* Index to read column names from */
46 int nTerm
, /* Number of terms */
47 int iTerm
, /* Zero-based index of first term. */
48 int bAnd
, /* Non-zero to append " AND " */
49 const char *zOp
/* Name of the operator */
54 if( bAnd
) sqlite3_str_append(pStr
, " AND ", 5);
56 if( nTerm
>1 ) sqlite3_str_append(pStr
, "(", 1);
57 for(i
=0; i
<nTerm
; i
++){
58 if( i
) sqlite3_str_append(pStr
, ",", 1);
59 sqlite3_str_appendall(pStr
, explainIndexColumnName(pIdx
, iTerm
+i
));
61 if( nTerm
>1 ) sqlite3_str_append(pStr
, ")", 1);
63 sqlite3_str_append(pStr
, zOp
, 1);
65 if( nTerm
>1 ) sqlite3_str_append(pStr
, "(", 1);
66 for(i
=0; i
<nTerm
; i
++){
67 if( i
) sqlite3_str_append(pStr
, ",", 1);
68 sqlite3_str_append(pStr
, "?", 1);
70 if( nTerm
>1 ) sqlite3_str_append(pStr
, ")", 1);
74 ** Argument pLevel describes a strategy for scanning table pTab. This
75 ** function appends text to pStr that describes the subset of table
76 ** rows scanned by the strategy in the form of an SQL expression.
78 ** For example, if the query:
80 ** SELECT * FROM t1 WHERE a=1 AND b>2;
82 ** is run and there is an index on (a, b), then this function returns a
87 static void explainIndexRange(StrAccum
*pStr
, WhereLoop
*pLoop
){
88 Index
*pIndex
= pLoop
->u
.btree
.pIndex
;
89 u16 nEq
= pLoop
->u
.btree
.nEq
;
90 u16 nSkip
= pLoop
->nSkip
;
93 if( nEq
==0 && (pLoop
->wsFlags
&(WHERE_BTM_LIMIT
|WHERE_TOP_LIMIT
))==0 ) return;
94 sqlite3_str_append(pStr
, " (", 2);
96 const char *z
= explainIndexColumnName(pIndex
, i
);
97 if( i
) sqlite3_str_append(pStr
, " AND ", 5);
98 sqlite3_str_appendf(pStr
, i
>=nSkip
? "%s=?" : "ANY(%s)", z
);
102 if( pLoop
->wsFlags
&WHERE_BTM_LIMIT
){
103 explainAppendTerm(pStr
, pIndex
, pLoop
->u
.btree
.nBtm
, j
, i
, ">");
106 if( pLoop
->wsFlags
&WHERE_TOP_LIMIT
){
107 explainAppendTerm(pStr
, pIndex
, pLoop
->u
.btree
.nTop
, j
, i
, "<");
109 sqlite3_str_append(pStr
, ")", 1);
113 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
114 ** command, or if either SQLITE_DEBUG or SQLITE_ENABLE_STMT_SCANSTATUS was
115 ** defined at compile-time. If it is not a no-op, a single OP_Explain opcode
116 ** is added to the output to describe the table scan strategy in pLevel.
118 ** If an OP_Explain opcode is added to the VM, its address is returned.
119 ** Otherwise, if no OP_Explain is coded, zero is returned.
121 int sqlite3WhereExplainOneScan(
122 Parse
*pParse
, /* Parse context */
123 SrcList
*pTabList
, /* Table list this loop refers to */
124 WhereLevel
*pLevel
, /* Scan to write OP_Explain opcode for */
125 u16 wctrlFlags
/* Flags passed to sqlite3WhereBegin() */
128 #if !defined(SQLITE_DEBUG) && !defined(SQLITE_ENABLE_STMT_SCANSTATUS)
129 if( sqlite3ParseToplevel(pParse
)->explain
==2 )
132 SrcItem
*pItem
= &pTabList
->a
[pLevel
->iFrom
];
133 Vdbe
*v
= pParse
->pVdbe
; /* VM being constructed */
134 sqlite3
*db
= pParse
->db
; /* Database handle */
135 int isSearch
; /* True for a SEARCH. False for SCAN. */
136 WhereLoop
*pLoop
; /* The controlling WhereLoop object */
137 u32 flags
; /* Flags that describe this loop */
138 char *zMsg
; /* Text to add to EQP output */
139 StrAccum str
; /* EQP output string */
140 char zBuf
[100]; /* Initial space for EQP output string */
142 pLoop
= pLevel
->pWLoop
;
143 flags
= pLoop
->wsFlags
;
144 if( (flags
&WHERE_MULTI_OR
) || (wctrlFlags
&WHERE_OR_SUBCLAUSE
) ) return 0;
146 isSearch
= (flags
&(WHERE_BTM_LIMIT
|WHERE_TOP_LIMIT
))!=0
147 || ((flags
&WHERE_VIRTUALTABLE
)==0 && (pLoop
->u
.btree
.nEq
>0))
148 || (wctrlFlags
&(WHERE_ORDERBY_MIN
|WHERE_ORDERBY_MAX
));
150 sqlite3StrAccumInit(&str
, db
, zBuf
, sizeof(zBuf
), SQLITE_MAX_LENGTH
);
151 str
.printfFlags
= SQLITE_PRINTF_INTERNAL
;
152 sqlite3_str_appendf(&str
, "%s %S", isSearch
? "SEARCH" : "SCAN", pItem
);
153 if( (flags
& (WHERE_IPK
|WHERE_VIRTUALTABLE
))==0 ){
154 const char *zFmt
= 0;
157 assert( pLoop
->u
.btree
.pIndex
!=0 );
158 pIdx
= pLoop
->u
.btree
.pIndex
;
159 assert( !(flags
&WHERE_AUTO_INDEX
) || (flags
&WHERE_IDX_ONLY
) );
160 if( !HasRowid(pItem
->pTab
) && IsPrimaryKeyIndex(pIdx
) ){
162 zFmt
= "PRIMARY KEY";
164 }else if( flags
& WHERE_PARTIALIDX
){
165 zFmt
= "AUTOMATIC PARTIAL COVERING INDEX";
166 }else if( flags
& WHERE_AUTO_INDEX
){
167 zFmt
= "AUTOMATIC COVERING INDEX";
168 }else if( flags
& WHERE_IDX_ONLY
){
169 zFmt
= "COVERING INDEX %s";
174 sqlite3_str_append(&str
, " USING ", 7);
175 sqlite3_str_appendf(&str
, zFmt
, pIdx
->zName
);
176 explainIndexRange(&str
, pLoop
);
178 }else if( (flags
& WHERE_IPK
)!=0 && (flags
& WHERE_CONSTRAINT
)!=0 ){
180 #if 0 /* Better output, but breaks many tests */
181 const Table
*pTab
= pItem
->pTab
;
182 const char *zRowid
= pTab
->iPKey
>=0 ? pTab
->aCol
[pTab
->iPKey
].zCnName
:
185 const char *zRowid
= "rowid";
187 sqlite3_str_appendf(&str
, " USING INTEGER PRIMARY KEY (%s", zRowid
);
188 if( flags
&(WHERE_COLUMN_EQ
|WHERE_COLUMN_IN
) ){
190 }else if( (flags
&WHERE_BOTH_LIMIT
)==WHERE_BOTH_LIMIT
){
191 sqlite3_str_appendf(&str
, ">? AND %s", zRowid
);
193 }else if( flags
&WHERE_BTM_LIMIT
){
196 assert( flags
&WHERE_TOP_LIMIT
);
199 sqlite3_str_appendf(&str
, "%c?)", cRangeOp
);
201 #ifndef SQLITE_OMIT_VIRTUALTABLE
202 else if( (flags
& WHERE_VIRTUALTABLE
)!=0 ){
203 sqlite3_str_appendf(&str
, " VIRTUAL TABLE INDEX %d:%s",
204 pLoop
->u
.vtab
.idxNum
, pLoop
->u
.vtab
.idxStr
);
207 if( pItem
->fg
.jointype
& JT_LEFT
){
208 sqlite3_str_appendf(&str
, " LEFT-JOIN");
210 #ifdef SQLITE_EXPLAIN_ESTIMATED_ROWS
211 if( pLoop
->nOut
>=10 ){
212 sqlite3_str_appendf(&str
, " (~%llu rows)",
213 sqlite3LogEstToInt(pLoop
->nOut
));
215 sqlite3_str_append(&str
, " (~1 row)", 9);
218 zMsg
= sqlite3StrAccumFinish(&str
);
219 sqlite3ExplainBreakpoint("",zMsg
);
220 ret
= sqlite3VdbeAddOp4(v
, OP_Explain
, sqlite3VdbeCurrentAddr(v
),
221 pParse
->addrExplain
, 0, zMsg
,P4_DYNAMIC
);
227 ** Add a single OP_Explain opcode that describes a Bloom filter.
229 ** Or if not processing EXPLAIN QUERY PLAN and not in a SQLITE_DEBUG and/or
230 ** SQLITE_ENABLE_STMT_SCANSTATUS build, then OP_Explain opcodes are not
231 ** required and this routine is a no-op.
233 ** If an OP_Explain opcode is added to the VM, its address is returned.
234 ** Otherwise, if no OP_Explain is coded, zero is returned.
236 int sqlite3WhereExplainBloomFilter(
237 const Parse
*pParse
, /* Parse context */
238 const WhereInfo
*pWInfo
, /* WHERE clause */
239 const WhereLevel
*pLevel
/* Bloom filter on this level */
242 SrcItem
*pItem
= &pWInfo
->pTabList
->a
[pLevel
->iFrom
];
243 Vdbe
*v
= pParse
->pVdbe
; /* VM being constructed */
244 sqlite3
*db
= pParse
->db
; /* Database handle */
245 char *zMsg
; /* Text to add to EQP output */
246 int i
; /* Loop counter */
247 WhereLoop
*pLoop
; /* The where loop */
248 StrAccum str
; /* EQP output string */
249 char zBuf
[100]; /* Initial space for EQP output string */
251 sqlite3StrAccumInit(&str
, db
, zBuf
, sizeof(zBuf
), SQLITE_MAX_LENGTH
);
252 str
.printfFlags
= SQLITE_PRINTF_INTERNAL
;
253 sqlite3_str_appendf(&str
, "BLOOM FILTER ON %S (", pItem
);
254 pLoop
= pLevel
->pWLoop
;
255 if( pLoop
->wsFlags
& WHERE_IPK
){
256 const Table
*pTab
= pItem
->pTab
;
257 if( pTab
->iPKey
>=0 ){
258 sqlite3_str_appendf(&str
, "%s=?", pTab
->aCol
[pTab
->iPKey
].zCnName
);
260 sqlite3_str_appendf(&str
, "rowid=?");
263 for(i
=pLoop
->nSkip
; i
<pLoop
->u
.btree
.nEq
; i
++){
264 const char *z
= explainIndexColumnName(pLoop
->u
.btree
.pIndex
, i
);
265 if( i
>pLoop
->nSkip
) sqlite3_str_append(&str
, " AND ", 5);
266 sqlite3_str_appendf(&str
, "%s=?", z
);
269 sqlite3_str_append(&str
, ")", 1);
270 zMsg
= sqlite3StrAccumFinish(&str
);
271 ret
= sqlite3VdbeAddOp4(v
, OP_Explain
, sqlite3VdbeCurrentAddr(v
),
272 pParse
->addrExplain
, 0, zMsg
,P4_DYNAMIC
);
275 #endif /* SQLITE_OMIT_EXPLAIN */
277 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
279 ** Configure the VM passed as the first argument with an
280 ** sqlite3_stmt_scanstatus() entry corresponding to the scan used to
281 ** implement level pLvl. Argument pSrclist is a pointer to the FROM
282 ** clause that the scan reads data from.
284 ** If argument addrExplain is not 0, it must be the address of an
285 ** OP_Explain instruction that describes the same loop.
287 void sqlite3WhereAddScanStatus(
288 Vdbe
*v
, /* Vdbe to add scanstatus entry to */
289 SrcList
*pSrclist
, /* FROM clause pLvl reads data from */
290 WhereLevel
*pLvl
, /* Level to add scanstatus() entry for */
291 int addrExplain
/* Address of OP_Explain (or 0) */
293 const char *zObj
= 0;
294 WhereLoop
*pLoop
= pLvl
->pWLoop
;
295 if( (pLoop
->wsFlags
& WHERE_VIRTUALTABLE
)==0 && pLoop
->u
.btree
.pIndex
!=0 ){
296 zObj
= pLoop
->u
.btree
.pIndex
->zName
;
298 zObj
= pSrclist
->a
[pLvl
->iFrom
].zName
;
300 sqlite3VdbeScanStatus(
301 v
, addrExplain
, pLvl
->addrBody
, pLvl
->addrVisit
, pLoop
->nOut
, zObj
308 ** Disable a term in the WHERE clause. Except, do not disable the term
309 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
310 ** or USING clause of that join.
312 ** Consider the term t2.z='ok' in the following queries:
314 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
315 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
316 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
318 ** The t2.z='ok' is disabled in the in (2) because it originates
319 ** in the ON clause. The term is disabled in (3) because it is not part
320 ** of a LEFT OUTER JOIN. In (1), the term is not disabled.
322 ** Disabling a term causes that term to not be tested in the inner loop
323 ** of the join. Disabling is an optimization. When terms are satisfied
324 ** by indices, we disable them to prevent redundant tests in the inner
325 ** loop. We would get the correct results if nothing were ever disabled,
326 ** but joins might run a little slower. The trick is to disable as much
327 ** as we can without disabling too much. If we disabled in (1), we'd get
328 ** the wrong answer. See ticket #813.
330 ** If all the children of a term are disabled, then that term is also
331 ** automatically disabled. In this way, terms get disabled if derived
332 ** virtual terms are tested first. For example:
334 ** x GLOB 'abc*' AND x>='abc' AND x<'acd'
335 ** \___________/ \______/ \_____/
336 ** parent child1 child2
338 ** Only the parent term was in the original WHERE clause. The child1
339 ** and child2 terms were added by the LIKE optimization. If both of
340 ** the virtual child terms are valid, then testing of the parent can be
343 ** Usually the parent term is marked as TERM_CODED. But if the parent
344 ** term was originally TERM_LIKE, then the parent gets TERM_LIKECOND instead.
345 ** The TERM_LIKECOND marking indicates that the term should be coded inside
346 ** a conditional such that is only evaluated on the second pass of a
347 ** LIKE-optimization loop, when scanning BLOBs instead of strings.
349 static void disableTerm(WhereLevel
*pLevel
, WhereTerm
*pTerm
){
352 while( (pTerm
->wtFlags
& TERM_CODED
)==0
353 && (pLevel
->iLeftJoin
==0 || ExprHasProperty(pTerm
->pExpr
, EP_OuterON
))
354 && (pLevel
->notReady
& pTerm
->prereqAll
)==0
356 if( nLoop
&& (pTerm
->wtFlags
& TERM_LIKE
)!=0 ){
357 pTerm
->wtFlags
|= TERM_LIKECOND
;
359 pTerm
->wtFlags
|= TERM_CODED
;
361 #ifdef WHERETRACE_ENABLED
362 if( sqlite3WhereTrace
& 0x20000 ){
363 sqlite3DebugPrintf("DISABLE-");
364 sqlite3WhereTermPrint(pTerm
, (int)(pTerm
- (pTerm
->pWC
->a
)));
367 if( pTerm
->iParent
<0 ) break;
368 pTerm
= &pTerm
->pWC
->a
[pTerm
->iParent
];
371 if( pTerm
->nChild
!=0 ) break;
377 ** Code an OP_Affinity opcode to apply the column affinity string zAff
378 ** to the n registers starting at base.
380 ** As an optimization, SQLITE_AFF_BLOB and SQLITE_AFF_NONE entries (which
381 ** are no-ops) at the beginning and end of zAff are ignored. If all entries
382 ** in zAff are SQLITE_AFF_BLOB or SQLITE_AFF_NONE, then no code gets generated.
384 ** This routine makes its own copy of zAff so that the caller is free
385 ** to modify zAff after this routine returns.
387 static void codeApplyAffinity(Parse
*pParse
, int base
, int n
, char *zAff
){
388 Vdbe
*v
= pParse
->pVdbe
;
390 assert( pParse
->db
->mallocFailed
);
395 /* Adjust base and n to skip over SQLITE_AFF_BLOB and SQLITE_AFF_NONE
396 ** entries at the beginning and end of the affinity string.
398 assert( SQLITE_AFF_NONE
<SQLITE_AFF_BLOB
);
399 while( n
>0 && zAff
[0]<=SQLITE_AFF_BLOB
){
404 while( n
>1 && zAff
[n
-1]<=SQLITE_AFF_BLOB
){
408 /* Code the OP_Affinity opcode if there is anything left to do. */
410 sqlite3VdbeAddOp4(v
, OP_Affinity
, base
, n
, 0, zAff
, n
);
415 ** Expression pRight, which is the RHS of a comparison operation, is
416 ** either a vector of n elements or, if n==1, a scalar expression.
417 ** Before the comparison operation, affinity zAff is to be applied
418 ** to the pRight values. This function modifies characters within the
419 ** affinity string to SQLITE_AFF_BLOB if either:
421 ** * the comparison will be performed with no affinity, or
422 ** * the affinity change in zAff is guaranteed not to change the value.
424 static void updateRangeAffinityStr(
425 Expr
*pRight
, /* RHS of comparison */
426 int n
, /* Number of vector elements in comparison */
427 char *zAff
/* Affinity string to modify */
431 Expr
*p
= sqlite3VectorFieldSubexpr(pRight
, i
);
432 if( sqlite3CompareAffinity(p
, zAff
[i
])==SQLITE_AFF_BLOB
433 || sqlite3ExprNeedsNoAffinityChange(p
, zAff
[i
])
435 zAff
[i
] = SQLITE_AFF_BLOB
;
442 ** pX is an expression of the form: (vector) IN (SELECT ...)
443 ** In other words, it is a vector IN operator with a SELECT clause on the
444 ** LHS. But not all terms in the vector are indexable and the terms might
445 ** not be in the correct order for indexing.
447 ** This routine makes a copy of the input pX expression and then adjusts
448 ** the vector on the LHS with corresponding changes to the SELECT so that
449 ** the vector contains only index terms and those terms are in the correct
450 ** order. The modified IN expression is returned. The caller is responsible
451 ** for deleting the returned expression.
455 ** CREATE TABLE t1(a,b,c,d,e,f);
456 ** CREATE INDEX t1x1 ON t1(e,c);
457 ** SELECT * FROM t1 WHERE (a,b,c,d,e) IN (SELECT v,w,x,y,z FROM t2)
458 ** \_______________________________________/
461 ** Since only columns e and c can be used with the index, in that order,
462 ** the modified IN expression that is returned will be:
464 ** (e,c) IN (SELECT z,x FROM t2)
466 ** The reduced pX is different from the original (obviously) and thus is
467 ** only used for indexing, to improve performance. The original unaltered
468 ** IN expression must also be run on each output row for correctness.
470 static Expr
*removeUnindexableInClauseTerms(
471 Parse
*pParse
, /* The parsing context */
472 int iEq
, /* Look at loop terms starting here */
473 WhereLoop
*pLoop
, /* The current loop */
474 Expr
*pX
/* The IN expression to be reduced */
476 sqlite3
*db
= pParse
->db
;
478 pNew
= sqlite3ExprDup(db
, pX
, 0);
479 if( db
->mallocFailed
==0 ){
480 ExprList
*pOrigRhs
; /* Original unmodified RHS */
481 ExprList
*pOrigLhs
; /* Original unmodified LHS */
482 ExprList
*pRhs
= 0; /* New RHS after modifications */
483 ExprList
*pLhs
= 0; /* New LHS after mods */
484 int i
; /* Loop counter */
485 Select
*pSelect
; /* Pointer to the SELECT on the RHS */
487 assert( ExprUseXSelect(pNew
) );
488 pOrigRhs
= pNew
->x
.pSelect
->pEList
;
489 assert( pNew
->pLeft
!=0 );
490 assert( ExprUseXList(pNew
->pLeft
) );
491 pOrigLhs
= pNew
->pLeft
->x
.pList
;
492 for(i
=iEq
; i
<pLoop
->nLTerm
; i
++){
493 if( pLoop
->aLTerm
[i
]->pExpr
==pX
){
495 assert( (pLoop
->aLTerm
[i
]->eOperator
& (WO_OR
|WO_AND
))==0 );
496 iField
= pLoop
->aLTerm
[i
]->u
.x
.iField
- 1;
497 if( pOrigRhs
->a
[iField
].pExpr
==0 ) continue; /* Duplicate PK column */
498 pRhs
= sqlite3ExprListAppend(pParse
, pRhs
, pOrigRhs
->a
[iField
].pExpr
);
499 pOrigRhs
->a
[iField
].pExpr
= 0;
500 assert( pOrigLhs
->a
[iField
].pExpr
!=0 );
501 pLhs
= sqlite3ExprListAppend(pParse
, pLhs
, pOrigLhs
->a
[iField
].pExpr
);
502 pOrigLhs
->a
[iField
].pExpr
= 0;
505 sqlite3ExprListDelete(db
, pOrigRhs
);
506 sqlite3ExprListDelete(db
, pOrigLhs
);
507 pNew
->pLeft
->x
.pList
= pLhs
;
508 pNew
->x
.pSelect
->pEList
= pRhs
;
509 if( pLhs
&& pLhs
->nExpr
==1 ){
510 /* Take care here not to generate a TK_VECTOR containing only a
511 ** single value. Since the parser never creates such a vector, some
512 ** of the subroutines do not handle this case. */
513 Expr
*p
= pLhs
->a
[0].pExpr
;
514 pLhs
->a
[0].pExpr
= 0;
515 sqlite3ExprDelete(db
, pNew
->pLeft
);
518 pSelect
= pNew
->x
.pSelect
;
519 if( pSelect
->pOrderBy
){
520 /* If the SELECT statement has an ORDER BY clause, zero the
521 ** iOrderByCol variables. These are set to non-zero when an
522 ** ORDER BY term exactly matches one of the terms of the
523 ** result-set. Since the result-set of the SELECT statement may
524 ** have been modified or reordered, these variables are no longer
525 ** set correctly. Since setting them is just an optimization,
526 ** it's easiest just to zero them here. */
527 ExprList
*pOrderBy
= pSelect
->pOrderBy
;
528 for(i
=0; i
<pOrderBy
->nExpr
; i
++){
529 pOrderBy
->a
[i
].u
.x
.iOrderByCol
= 0;
534 printf("For indexing, change the IN expr:\n");
535 sqlite3TreeViewExpr(0, pX
, 0);
537 sqlite3TreeViewExpr(0, pNew
, 0);
545 ** Generate code for a single equality term of the WHERE clause. An equality
546 ** term can be either X=expr or X IN (...). pTerm is the term to be
549 ** The current value for the constraint is left in a register, the index
550 ** of which is returned. An attempt is made store the result in iTarget but
551 ** this is only guaranteed for TK_ISNULL and TK_IN constraints. If the
552 ** constraint is a TK_EQ or TK_IS, then the current value might be left in
553 ** some other register and it is the caller's responsibility to compensate.
555 ** For a constraint of the form X=expr, the expression is evaluated in
556 ** straight-line code. For constraints of the form X IN (...)
557 ** this routine sets up a loop that will iterate over all values of X.
559 static int codeEqualityTerm(
560 Parse
*pParse
, /* The parsing context */
561 WhereTerm
*pTerm
, /* The term of the WHERE clause to be coded */
562 WhereLevel
*pLevel
, /* The level of the FROM clause we are working on */
563 int iEq
, /* Index of the equality term within this level */
564 int bRev
, /* True for reverse-order IN operations */
565 int iTarget
/* Attempt to leave results in this register */
567 Expr
*pX
= pTerm
->pExpr
;
568 Vdbe
*v
= pParse
->pVdbe
;
569 int iReg
; /* Register holding results */
571 assert( pLevel
->pWLoop
->aLTerm
[iEq
]==pTerm
);
573 if( pX
->op
==TK_EQ
|| pX
->op
==TK_IS
){
574 iReg
= sqlite3ExprCodeTarget(pParse
, pX
->pRight
, iTarget
);
575 }else if( pX
->op
==TK_ISNULL
){
577 sqlite3VdbeAddOp2(v
, OP_Null
, 0, iReg
);
578 #ifndef SQLITE_OMIT_SUBQUERY
580 int eType
= IN_INDEX_NOOP
;
583 WhereLoop
*pLoop
= pLevel
->pWLoop
;
588 if( (pLoop
->wsFlags
& WHERE_VIRTUALTABLE
)==0
589 && pLoop
->u
.btree
.pIndex
!=0
590 && pLoop
->u
.btree
.pIndex
->aSortOrder
[iEq
]
596 assert( pX
->op
==TK_IN
);
599 for(i
=0; i
<iEq
; i
++){
600 if( pLoop
->aLTerm
[i
] && pLoop
->aLTerm
[i
]->pExpr
==pX
){
601 disableTerm(pLevel
, pTerm
);
605 for(i
=iEq
;i
<pLoop
->nLTerm
; i
++){
606 assert( pLoop
->aLTerm
[i
]!=0 );
607 if( pLoop
->aLTerm
[i
]->pExpr
==pX
) nEq
++;
611 if( !ExprUseXSelect(pX
) || pX
->x
.pSelect
->pEList
->nExpr
==1 ){
612 eType
= sqlite3FindInIndex(pParse
, pX
, IN_INDEX_LOOP
, 0, 0, &iTab
);
614 Expr
*pExpr
= pTerm
->pExpr
;
615 if( pExpr
->iTable
==0 || !ExprHasProperty(pExpr
, EP_Subrtn
) ){
616 sqlite3
*db
= pParse
->db
;
617 pX
= removeUnindexableInClauseTerms(pParse
, iEq
, pLoop
, pX
);
618 if( !db
->mallocFailed
){
619 aiMap
= (int*)sqlite3DbMallocZero(pParse
->db
, sizeof(int)*nEq
);
620 eType
= sqlite3FindInIndex(pParse
, pX
, IN_INDEX_LOOP
, 0, aiMap
,&iTab
);
621 pExpr
->iTable
= iTab
;
623 sqlite3ExprDelete(db
, pX
);
625 int n
= sqlite3ExprVectorSize(pX
->pLeft
);
626 aiMap
= (int*)sqlite3DbMallocZero(pParse
->db
, sizeof(int)*MAX(nEq
,n
));
627 eType
= sqlite3FindInIndex(pParse
, pX
, IN_INDEX_LOOP
, 0, aiMap
, &iTab
);
632 if( eType
==IN_INDEX_INDEX_DESC
){
636 sqlite3VdbeAddOp2(v
, bRev
? OP_Last
: OP_Rewind
, iTab
, 0);
637 VdbeCoverageIf(v
, bRev
);
638 VdbeCoverageIf(v
, !bRev
);
640 assert( (pLoop
->wsFlags
& WHERE_MULTI_OR
)==0 );
641 pLoop
->wsFlags
|= WHERE_IN_ABLE
;
642 if( pLevel
->u
.in
.nIn
==0 ){
643 pLevel
->addrNxt
= sqlite3VdbeMakeLabel(pParse
);
645 if( iEq
>0 && (pLoop
->wsFlags
& WHERE_IN_SEEKSCAN
)==0 ){
646 pLoop
->wsFlags
|= WHERE_IN_EARLYOUT
;
649 i
= pLevel
->u
.in
.nIn
;
650 pLevel
->u
.in
.nIn
+= nEq
;
651 pLevel
->u
.in
.aInLoop
=
652 sqlite3WhereRealloc(pTerm
->pWC
->pWInfo
,
653 pLevel
->u
.in
.aInLoop
,
654 sizeof(pLevel
->u
.in
.aInLoop
[0])*pLevel
->u
.in
.nIn
);
655 pIn
= pLevel
->u
.in
.aInLoop
;
657 int iMap
= 0; /* Index in aiMap[] */
659 for(i
=iEq
;i
<pLoop
->nLTerm
; i
++){
660 if( pLoop
->aLTerm
[i
]->pExpr
==pX
){
661 int iOut
= iReg
+ i
- iEq
;
662 if( eType
==IN_INDEX_ROWID
){
663 pIn
->addrInTop
= sqlite3VdbeAddOp2(v
, OP_Rowid
, iTab
, iOut
);
665 int iCol
= aiMap
? aiMap
[iMap
++] : 0;
666 pIn
->addrInTop
= sqlite3VdbeAddOp3(v
,OP_Column
,iTab
, iCol
, iOut
);
668 sqlite3VdbeAddOp1(v
, OP_IsNull
, iOut
); VdbeCoverage(v
);
671 pIn
->eEndLoopOp
= bRev
? OP_Prev
: OP_Next
;
673 pIn
->iBase
= iReg
- i
;
679 pIn
->eEndLoopOp
= OP_Noop
;
685 && (pLoop
->wsFlags
& WHERE_IN_SEEKSCAN
)==0
686 && (pLoop
->wsFlags
& WHERE_VIRTUALTABLE
)!=0 );
688 && (pLoop
->wsFlags
& (WHERE_IN_SEEKSCAN
|WHERE_VIRTUALTABLE
))==0
690 sqlite3VdbeAddOp3(v
, OP_SeekHit
, pLevel
->iIdxCur
, 0, iEq
);
693 pLevel
->u
.in
.nIn
= 0;
695 sqlite3DbFree(pParse
->db
, aiMap
);
699 /* As an optimization, try to disable the WHERE clause term that is
700 ** driving the index as it will always be true. The correct answer is
701 ** obtained regardless, but we might get the answer with fewer CPU cycles
702 ** by omitting the term.
704 ** But do not disable the term unless we are certain that the term is
705 ** not a transitive constraint. For an example of where that does not
706 ** work, see https://sqlite.org/forum/forumpost/eb8613976a (2021-05-04)
708 if( (pLevel
->pWLoop
->wsFlags
& WHERE_TRANSCONS
)==0
709 || (pTerm
->eOperator
& WO_EQUIV
)==0
711 disableTerm(pLevel
, pTerm
);
718 ** Generate code that will evaluate all == and IN constraints for an
721 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
722 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
723 ** The index has as many as three equality constraints, but in this
724 ** example, the third "c" value is an inequality. So only two
725 ** constraints are coded. This routine will generate code to evaluate
726 ** a==5 and b IN (1,2,3). The current values for a and b will be stored
727 ** in consecutive registers and the index of the first register is returned.
729 ** In the example above nEq==2. But this subroutine works for any value
730 ** of nEq including 0. If nEq==0, this routine is nearly a no-op.
731 ** The only thing it does is allocate the pLevel->iMem memory cell and
732 ** compute the affinity string.
734 ** The nExtraReg parameter is 0 or 1. It is 0 if all WHERE clause constraints
735 ** are == or IN and are covered by the nEq. nExtraReg is 1 if there is
736 ** an inequality constraint (such as the "c>=5 AND c<10" in the example) that
737 ** occurs after the nEq quality constraints.
739 ** This routine allocates a range of nEq+nExtraReg memory cells and returns
740 ** the index of the first memory cell in that range. The code that
741 ** calls this routine will use that memory range to store keys for
742 ** start and termination conditions of the loop.
743 ** key value of the loop. If one or more IN operators appear, then
744 ** this routine allocates an additional nEq memory cells for internal
747 ** Before returning, *pzAff is set to point to a buffer containing a
748 ** copy of the column affinity string of the index allocated using
749 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
750 ** with equality constraints that use BLOB or NONE affinity are set to
751 ** SQLITE_AFF_BLOB. This is to deal with SQL such as the following:
753 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
754 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
756 ** In the example above, the index on t1(a) has TEXT affinity. But since
757 ** the right hand side of the equality constraint (t2.b) has BLOB/NONE affinity,
758 ** no conversion should be attempted before using a t2.b value as part of
759 ** a key to search the index. Hence the first byte in the returned affinity
760 ** string in this example would be set to SQLITE_AFF_BLOB.
762 static int codeAllEqualityTerms(
763 Parse
*pParse
, /* Parsing context */
764 WhereLevel
*pLevel
, /* Which nested loop of the FROM we are coding */
765 int bRev
, /* Reverse the order of IN operators */
766 int nExtraReg
, /* Number of extra registers to allocate */
767 char **pzAff
/* OUT: Set to point to affinity string */
769 u16 nEq
; /* The number of == or IN constraints to code */
770 u16 nSkip
; /* Number of left-most columns to skip */
771 Vdbe
*v
= pParse
->pVdbe
; /* The vm under construction */
772 Index
*pIdx
; /* The index being used for this loop */
773 WhereTerm
*pTerm
; /* A single constraint term */
774 WhereLoop
*pLoop
; /* The WhereLoop object */
775 int j
; /* Loop counter */
776 int regBase
; /* Base register */
777 int nReg
; /* Number of registers to allocate */
778 char *zAff
; /* Affinity string to return */
780 /* This module is only called on query plans that use an index. */
781 pLoop
= pLevel
->pWLoop
;
782 assert( (pLoop
->wsFlags
& WHERE_VIRTUALTABLE
)==0 );
783 nEq
= pLoop
->u
.btree
.nEq
;
784 nSkip
= pLoop
->nSkip
;
785 pIdx
= pLoop
->u
.btree
.pIndex
;
788 /* Figure out how many memory cells we will need then allocate them.
790 regBase
= pParse
->nMem
+ 1;
791 nReg
= pLoop
->u
.btree
.nEq
+ nExtraReg
;
792 pParse
->nMem
+= nReg
;
794 zAff
= sqlite3DbStrDup(pParse
->db
,sqlite3IndexAffinityStr(pParse
->db
,pIdx
));
795 assert( zAff
!=0 || pParse
->db
->mallocFailed
);
798 int iIdxCur
= pLevel
->iIdxCur
;
799 sqlite3VdbeAddOp3(v
, OP_Null
, 0, regBase
, regBase
+nSkip
-1);
800 sqlite3VdbeAddOp1(v
, (bRev
?OP_Last
:OP_Rewind
), iIdxCur
);
801 VdbeCoverageIf(v
, bRev
==0);
802 VdbeCoverageIf(v
, bRev
!=0);
803 VdbeComment((v
, "begin skip-scan on %s", pIdx
->zName
));
804 j
= sqlite3VdbeAddOp0(v
, OP_Goto
);
805 assert( pLevel
->addrSkip
==0 );
806 pLevel
->addrSkip
= sqlite3VdbeAddOp4Int(v
, (bRev
?OP_SeekLT
:OP_SeekGT
),
807 iIdxCur
, 0, regBase
, nSkip
);
808 VdbeCoverageIf(v
, bRev
==0);
809 VdbeCoverageIf(v
, bRev
!=0);
810 sqlite3VdbeJumpHere(v
, j
);
811 for(j
=0; j
<nSkip
; j
++){
812 sqlite3VdbeAddOp3(v
, OP_Column
, iIdxCur
, j
, regBase
+j
);
813 testcase( pIdx
->aiColumn
[j
]==XN_EXPR
);
814 VdbeComment((v
, "%s", explainIndexColumnName(pIdx
, j
)));
818 /* Evaluate the equality constraints
820 assert( zAff
==0 || (int)strlen(zAff
)>=nEq
);
821 for(j
=nSkip
; j
<nEq
; j
++){
823 pTerm
= pLoop
->aLTerm
[j
];
825 /* The following testcase is true for indices with redundant columns.
826 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
827 testcase( (pTerm
->wtFlags
& TERM_CODED
)!=0 );
828 testcase( pTerm
->wtFlags
& TERM_VIRTUAL
);
829 r1
= codeEqualityTerm(pParse
, pTerm
, pLevel
, j
, bRev
, regBase
+j
);
832 sqlite3ReleaseTempReg(pParse
, regBase
);
835 sqlite3VdbeAddOp2(v
, OP_Copy
, r1
, regBase
+j
);
839 for(j
=nSkip
; j
<nEq
; j
++){
840 pTerm
= pLoop
->aLTerm
[j
];
841 if( pTerm
->eOperator
& WO_IN
){
842 if( pTerm
->pExpr
->flags
& EP_xIsSelect
){
843 /* No affinity ever needs to be (or should be) applied to a value
844 ** from the RHS of an "? IN (SELECT ...)" expression. The
845 ** sqlite3FindInIndex() routine has already ensured that the
846 ** affinity of the comparison has been applied to the value. */
847 if( zAff
) zAff
[j
] = SQLITE_AFF_BLOB
;
849 }else if( (pTerm
->eOperator
& WO_ISNULL
)==0 ){
850 Expr
*pRight
= pTerm
->pExpr
->pRight
;
851 if( (pTerm
->wtFlags
& TERM_IS
)==0 && sqlite3ExprCanBeNull(pRight
) ){
852 sqlite3VdbeAddOp2(v
, OP_IsNull
, regBase
+j
, pLevel
->addrBrk
);
855 if( pParse
->nErr
==0 ){
856 assert( pParse
->db
->mallocFailed
==0 );
857 if( sqlite3CompareAffinity(pRight
, zAff
[j
])==SQLITE_AFF_BLOB
){
858 zAff
[j
] = SQLITE_AFF_BLOB
;
860 if( sqlite3ExprNeedsNoAffinityChange(pRight
, zAff
[j
]) ){
861 zAff
[j
] = SQLITE_AFF_BLOB
;
870 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
872 ** If the most recently coded instruction is a constant range constraint
873 ** (a string literal) that originated from the LIKE optimization, then
874 ** set P3 and P5 on the OP_String opcode so that the string will be cast
875 ** to a BLOB at appropriate times.
877 ** The LIKE optimization trys to evaluate "x LIKE 'abc%'" as a range
878 ** expression: "x>='ABC' AND x<'abd'". But this requires that the range
879 ** scan loop run twice, once for strings and a second time for BLOBs.
880 ** The OP_String opcodes on the second pass convert the upper and lower
881 ** bound string constants to blobs. This routine makes the necessary changes
882 ** to the OP_String opcodes for that to happen.
884 ** Except, of course, if SQLITE_LIKE_DOESNT_MATCH_BLOBS is defined, then
885 ** only the one pass through the string space is required, so this routine
888 static void whereLikeOptimizationStringFixup(
889 Vdbe
*v
, /* prepared statement under construction */
890 WhereLevel
*pLevel
, /* The loop that contains the LIKE operator */
891 WhereTerm
*pTerm
/* The upper or lower bound just coded */
893 if( pTerm
->wtFlags
& TERM_LIKEOPT
){
895 assert( pLevel
->iLikeRepCntr
>0 );
896 pOp
= sqlite3VdbeGetOp(v
, -1);
898 assert( pOp
->opcode
==OP_String8
899 || pTerm
->pWC
->pWInfo
->pParse
->db
->mallocFailed
);
900 pOp
->p3
= (int)(pLevel
->iLikeRepCntr
>>1); /* Register holding counter */
901 pOp
->p5
= (u8
)(pLevel
->iLikeRepCntr
&1); /* ASC or DESC */
905 # define whereLikeOptimizationStringFixup(A,B,C)
908 #ifdef SQLITE_ENABLE_CURSOR_HINTS
910 ** Information is passed from codeCursorHint() down to individual nodes of
911 ** the expression tree (by sqlite3WalkExpr()) using an instance of this
915 int iTabCur
; /* Cursor for the main table */
916 int iIdxCur
; /* Cursor for the index, if pIdx!=0. Unused otherwise */
917 Index
*pIdx
; /* The index used to access the table */
921 ** This function is called for every node of an expression that is a candidate
922 ** for a cursor hint on an index cursor. For TK_COLUMN nodes that reference
923 ** the table CCurHint.iTabCur, verify that the same column can be
924 ** accessed through the index. If it cannot, then set pWalker->eCode to 1.
926 static int codeCursorHintCheckExpr(Walker
*pWalker
, Expr
*pExpr
){
927 struct CCurHint
*pHint
= pWalker
->u
.pCCurHint
;
928 assert( pHint
->pIdx
!=0 );
929 if( pExpr
->op
==TK_COLUMN
930 && pExpr
->iTable
==pHint
->iTabCur
931 && sqlite3TableColumnToIndex(pHint
->pIdx
, pExpr
->iColumn
)<0
939 ** Test whether or not expression pExpr, which was part of a WHERE clause,
940 ** should be included in the cursor-hint for a table that is on the rhs
941 ** of a LEFT JOIN. Set Walker.eCode to non-zero before returning if the
942 ** expression is not suitable.
944 ** An expression is unsuitable if it might evaluate to non NULL even if
945 ** a TK_COLUMN node that does affect the value of the expression is set
946 ** to NULL. For example:
951 ** CASE WHEN col THEN 0 ELSE 1 END
953 static int codeCursorHintIsOrFunction(Walker
*pWalker
, Expr
*pExpr
){
955 || pExpr
->op
==TK_ISNULL
|| pExpr
->op
==TK_ISNOT
956 || pExpr
->op
==TK_NOTNULL
|| pExpr
->op
==TK_CASE
959 }else if( pExpr
->op
==TK_FUNCTION
){
962 if( 0==sqlite3IsLikeFunction(pWalker
->pParse
->db
, pExpr
, &d1
, d2
) ){
972 ** This function is called on every node of an expression tree used as an
973 ** argument to the OP_CursorHint instruction. If the node is a TK_COLUMN
974 ** that accesses any table other than the one identified by
975 ** CCurHint.iTabCur, then do the following:
977 ** 1) allocate a register and code an OP_Column instruction to read
978 ** the specified column into the new register, and
980 ** 2) transform the expression node to a TK_REGISTER node that reads
981 ** from the newly populated register.
983 ** Also, if the node is a TK_COLUMN that does access the table idenified
984 ** by pCCurHint.iTabCur, and an index is being used (which we will
985 ** know because CCurHint.pIdx!=0) then transform the TK_COLUMN into
986 ** an access of the index rather than the original table.
988 static int codeCursorHintFixExpr(Walker
*pWalker
, Expr
*pExpr
){
989 int rc
= WRC_Continue
;
990 struct CCurHint
*pHint
= pWalker
->u
.pCCurHint
;
991 if( pExpr
->op
==TK_COLUMN
){
992 if( pExpr
->iTable
!=pHint
->iTabCur
){
993 int reg
= ++pWalker
->pParse
->nMem
; /* Register for column value */
994 sqlite3ExprCode(pWalker
->pParse
, pExpr
, reg
);
995 pExpr
->op
= TK_REGISTER
;
997 }else if( pHint
->pIdx
!=0 ){
998 pExpr
->iTable
= pHint
->iIdxCur
;
999 pExpr
->iColumn
= sqlite3TableColumnToIndex(pHint
->pIdx
, pExpr
->iColumn
);
1000 assert( pExpr
->iColumn
>=0 );
1002 }else if( pExpr
->op
==TK_AGG_FUNCTION
){
1003 /* An aggregate function in the WHERE clause of a query means this must
1004 ** be a correlated sub-query, and expression pExpr is an aggregate from
1005 ** the parent context. Do not walk the function arguments in this case.
1007 ** todo: It should be possible to replace this node with a TK_REGISTER
1008 ** expression, as the result of the expression must be stored in a
1009 ** register at this point. The same holds for TK_AGG_COLUMN nodes. */
1016 ** Insert an OP_CursorHint instruction if it is appropriate to do so.
1018 static void codeCursorHint(
1019 SrcItem
*pTabItem
, /* FROM clause item */
1020 WhereInfo
*pWInfo
, /* The where clause */
1021 WhereLevel
*pLevel
, /* Which loop to provide hints for */
1022 WhereTerm
*pEndRange
/* Hint this end-of-scan boundary term if not NULL */
1024 Parse
*pParse
= pWInfo
->pParse
;
1025 sqlite3
*db
= pParse
->db
;
1026 Vdbe
*v
= pParse
->pVdbe
;
1028 WhereLoop
*pLoop
= pLevel
->pWLoop
;
1033 struct CCurHint sHint
;
1036 if( OptimizationDisabled(db
, SQLITE_CursorHints
) ) return;
1037 iCur
= pLevel
->iTabCur
;
1038 assert( iCur
==pWInfo
->pTabList
->a
[pLevel
->iFrom
].iCursor
);
1039 sHint
.iTabCur
= iCur
;
1040 sHint
.iIdxCur
= pLevel
->iIdxCur
;
1041 sHint
.pIdx
= pLoop
->u
.btree
.pIndex
;
1042 memset(&sWalker
, 0, sizeof(sWalker
));
1043 sWalker
.pParse
= pParse
;
1044 sWalker
.u
.pCCurHint
= &sHint
;
1046 for(i
=0; i
<pWC
->nBase
; i
++){
1048 if( pTerm
->wtFlags
& (TERM_VIRTUAL
|TERM_CODED
) ) continue;
1049 if( pTerm
->prereqAll
& pLevel
->notReady
) continue;
1051 /* Any terms specified as part of the ON(...) clause for any LEFT
1052 ** JOIN for which the current table is not the rhs are omitted
1053 ** from the cursor-hint.
1055 ** If this table is the rhs of a LEFT JOIN, "IS" or "IS NULL" terms
1056 ** that were specified as part of the WHERE clause must be excluded.
1057 ** This is to address the following:
1059 ** SELECT ... t1 LEFT JOIN t2 ON (t1.a=t2.b) WHERE t2.c IS NULL;
1061 ** Say there is a single row in t2 that matches (t1.a=t2.b), but its
1062 ** t2.c values is not NULL. If the (t2.c IS NULL) constraint is
1063 ** pushed down to the cursor, this row is filtered out, causing
1064 ** SQLite to synthesize a row of NULL values. Which does match the
1065 ** WHERE clause, and so the query returns a row. Which is incorrect.
1067 ** For the same reason, WHERE terms such as:
1069 ** WHERE 1 = (t2.c IS NULL)
1071 ** are also excluded. See codeCursorHintIsOrFunction() for details.
1073 if( pTabItem
->fg
.jointype
& JT_LEFT
){
1074 Expr
*pExpr
= pTerm
->pExpr
;
1075 if( !ExprHasProperty(pExpr
, EP_OuterON
)
1076 || pExpr
->w
.iJoin
!=pTabItem
->iCursor
1079 sWalker
.xExprCallback
= codeCursorHintIsOrFunction
;
1080 sqlite3WalkExpr(&sWalker
, pTerm
->pExpr
);
1081 if( sWalker
.eCode
) continue;
1084 if( ExprHasProperty(pTerm
->pExpr
, EP_OuterON
) ) continue;
1087 /* All terms in pWLoop->aLTerm[] except pEndRange are used to initialize
1088 ** the cursor. These terms are not needed as hints for a pure range
1089 ** scan (that has no == terms) so omit them. */
1090 if( pLoop
->u
.btree
.nEq
==0 && pTerm
!=pEndRange
){
1091 for(j
=0; j
<pLoop
->nLTerm
&& pLoop
->aLTerm
[j
]!=pTerm
; j
++){}
1092 if( j
<pLoop
->nLTerm
) continue;
1095 /* No subqueries or non-deterministic functions allowed */
1096 if( sqlite3ExprContainsSubquery(pTerm
->pExpr
) ) continue;
1098 /* For an index scan, make sure referenced columns are actually in
1100 if( sHint
.pIdx
!=0 ){
1102 sWalker
.xExprCallback
= codeCursorHintCheckExpr
;
1103 sqlite3WalkExpr(&sWalker
, pTerm
->pExpr
);
1104 if( sWalker
.eCode
) continue;
1107 /* If we survive all prior tests, that means this term is worth hinting */
1108 pExpr
= sqlite3ExprAnd(pParse
, pExpr
, sqlite3ExprDup(db
, pTerm
->pExpr
, 0));
1111 sWalker
.xExprCallback
= codeCursorHintFixExpr
;
1112 sqlite3WalkExpr(&sWalker
, pExpr
);
1113 sqlite3VdbeAddOp4(v
, OP_CursorHint
,
1114 (sHint
.pIdx
? sHint
.iIdxCur
: sHint
.iTabCur
), 0, 0,
1115 (const char*)pExpr
, P4_EXPR
);
1119 # define codeCursorHint(A,B,C,D) /* No-op */
1120 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
1123 ** Cursor iCur is open on an intkey b-tree (a table). Register iRowid contains
1124 ** a rowid value just read from cursor iIdxCur, open on index pIdx. This
1125 ** function generates code to do a deferred seek of cursor iCur to the
1126 ** rowid stored in register iRowid.
1128 ** Normally, this is just:
1130 ** OP_DeferredSeek $iCur $iRowid
1132 ** Which causes a seek on $iCur to the row with rowid $iRowid.
1134 ** However, if the scan currently being coded is a branch of an OR-loop and
1135 ** the statement currently being coded is a SELECT, then additional information
1136 ** is added that might allow OP_Column to omit the seek and instead do its
1137 ** lookup on the index, thus avoiding an expensive seek operation. To
1138 ** enable this optimization, the P3 of OP_DeferredSeek is set to iIdxCur
1139 ** and P4 is set to an array of integers containing one entry for each column
1140 ** in the table. For each table column, if the column is the i'th
1141 ** column of the index, then the corresponding array entry is set to (i+1).
1142 ** If the column does not appear in the index at all, the array entry is set
1143 ** to 0. The OP_Column opcode can check this array to see if the column it
1144 ** wants is in the index and if it is, it will substitute the index cursor
1145 ** and column number and continue with those new values, rather than seeking
1146 ** the table cursor.
1148 static void codeDeferredSeek(
1149 WhereInfo
*pWInfo
, /* Where clause context */
1150 Index
*pIdx
, /* Index scan is using */
1151 int iCur
, /* Cursor for IPK b-tree */
1152 int iIdxCur
/* Index cursor */
1154 Parse
*pParse
= pWInfo
->pParse
; /* Parse context */
1155 Vdbe
*v
= pParse
->pVdbe
; /* Vdbe to generate code within */
1157 assert( iIdxCur
>0 );
1158 assert( pIdx
->aiColumn
[pIdx
->nColumn
-1]==-1 );
1160 pWInfo
->bDeferredSeek
= 1;
1161 sqlite3VdbeAddOp3(v
, OP_DeferredSeek
, iIdxCur
, 0, iCur
);
1162 if( (pWInfo
->wctrlFlags
& (WHERE_OR_SUBCLAUSE
|WHERE_RIGHT_JOIN
))
1163 && DbMaskAllZero(sqlite3ParseToplevel(pParse
)->writeMask
)
1166 Table
*pTab
= pIdx
->pTable
;
1167 u32
*ai
= (u32
*)sqlite3DbMallocZero(pParse
->db
, sizeof(u32
)*(pTab
->nCol
+1));
1170 for(i
=0; i
<pIdx
->nColumn
-1; i
++){
1172 assert( pIdx
->aiColumn
[i
]<pTab
->nCol
);
1173 x1
= pIdx
->aiColumn
[i
];
1174 x2
= sqlite3TableColumnToStorage(pTab
, x1
);
1176 if( x1
>=0 ) ai
[x2
+1] = i
+1;
1178 sqlite3VdbeChangeP4(v
, -1, (char*)ai
, P4_INTARRAY
);
1184 ** If the expression passed as the second argument is a vector, generate
1185 ** code to write the first nReg elements of the vector into an array
1186 ** of registers starting with iReg.
1188 ** If the expression is not a vector, then nReg must be passed 1. In
1189 ** this case, generate code to evaluate the expression and leave the
1190 ** result in register iReg.
1192 static void codeExprOrVector(Parse
*pParse
, Expr
*p
, int iReg
, int nReg
){
1194 if( p
&& sqlite3ExprIsVector(p
) ){
1195 #ifndef SQLITE_OMIT_SUBQUERY
1196 if( ExprUseXSelect(p
) ){
1197 Vdbe
*v
= pParse
->pVdbe
;
1199 assert( p
->op
==TK_SELECT
);
1200 iSelect
= sqlite3CodeSubselect(pParse
, p
);
1201 sqlite3VdbeAddOp3(v
, OP_Copy
, iSelect
, iReg
, nReg
-1);
1206 const ExprList
*pList
;
1207 assert( ExprUseXList(p
) );
1209 assert( nReg
<=pList
->nExpr
);
1210 for(i
=0; i
<nReg
; i
++){
1211 sqlite3ExprCode(pParse
, pList
->a
[i
].pExpr
, iReg
+i
);
1215 assert( nReg
==1 || pParse
->nErr
);
1216 sqlite3ExprCode(pParse
, p
, iReg
);
1220 /* An instance of the IdxExprTrans object carries information about a
1221 ** mapping from an expression on table columns into a column in an index
1222 ** down through the Walker.
1224 typedef struct IdxExprTrans
{
1225 Expr
*pIdxExpr
; /* The index expression */
1226 int iTabCur
; /* The cursor of the corresponding table */
1227 int iIdxCur
; /* The cursor for the index */
1228 int iIdxCol
; /* The column for the index */
1229 int iTabCol
; /* The column for the table */
1230 WhereInfo
*pWInfo
; /* Complete WHERE clause information */
1231 sqlite3
*db
; /* Database connection (for malloc()) */
1235 ** Preserve pExpr on the WhereETrans list of the WhereInfo.
1237 static void preserveExpr(IdxExprTrans
*pTrans
, Expr
*pExpr
){
1239 pNew
= sqlite3DbMallocRaw(pTrans
->db
, sizeof(*pNew
));
1240 if( pNew
==0 ) return;
1241 pNew
->pNext
= pTrans
->pWInfo
->pExprMods
;
1242 pTrans
->pWInfo
->pExprMods
= pNew
;
1243 pNew
->pExpr
= pExpr
;
1244 memcpy(&pNew
->orig
, pExpr
, sizeof(*pExpr
));
1247 /* The walker node callback used to transform matching expressions into
1248 ** a reference to an index column for an index on an expression.
1250 ** If pExpr matches, then transform it into a reference to the index column
1251 ** that contains the value of pExpr.
1253 static int whereIndexExprTransNode(Walker
*p
, Expr
*pExpr
){
1254 IdxExprTrans
*pX
= p
->u
.pIdxTrans
;
1255 if( sqlite3ExprCompare(0, pExpr
, pX
->pIdxExpr
, pX
->iTabCur
)==0 ){
1256 pExpr
= sqlite3ExprSkipCollate(pExpr
);
1257 preserveExpr(pX
, pExpr
);
1258 pExpr
->affExpr
= sqlite3ExprAffinity(pExpr
);
1259 pExpr
->op
= TK_COLUMN
;
1260 pExpr
->iTable
= pX
->iIdxCur
;
1261 pExpr
->iColumn
= pX
->iIdxCol
;
1262 testcase( ExprHasProperty(pExpr
, EP_Unlikely
) );
1263 ExprClearProperty(pExpr
, EP_Skip
|EP_Unlikely
|EP_WinFunc
|EP_Subrtn
);
1267 return WRC_Continue
;
1271 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1272 /* A walker node callback that translates a column reference to a table
1273 ** into a corresponding column reference of an index.
1275 static int whereIndexExprTransColumn(Walker
*p
, Expr
*pExpr
){
1276 if( pExpr
->op
==TK_COLUMN
){
1277 IdxExprTrans
*pX
= p
->u
.pIdxTrans
;
1278 if( pExpr
->iTable
==pX
->iTabCur
&& pExpr
->iColumn
==pX
->iTabCol
){
1279 assert( ExprUseYTab(pExpr
) && pExpr
->y
.pTab
!=0 );
1280 preserveExpr(pX
, pExpr
);
1281 pExpr
->affExpr
= sqlite3TableColumnAffinity(pExpr
->y
.pTab
,pExpr
->iColumn
);
1282 pExpr
->iTable
= pX
->iIdxCur
;
1283 pExpr
->iColumn
= pX
->iIdxCol
;
1287 return WRC_Continue
;
1289 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1292 ** For an indexes on expression X, locate every instance of expression X
1293 ** in pExpr and change that subexpression into a reference to the appropriate
1294 ** column of the index.
1296 ** 2019-10-24: Updated to also translate references to a VIRTUAL column in
1297 ** the table into references to the corresponding (stored) column of the
1300 static void whereIndexExprTrans(
1301 Index
*pIdx
, /* The Index */
1302 int iTabCur
, /* Cursor of the table that is being indexed */
1303 int iIdxCur
, /* Cursor of the index itself */
1304 WhereInfo
*pWInfo
/* Transform expressions in this WHERE clause */
1306 int iIdxCol
; /* Column number of the index */
1307 ExprList
*aColExpr
; /* Expressions that are indexed */
1311 aColExpr
= pIdx
->aColExpr
;
1312 if( aColExpr
==0 && !pIdx
->bHasVCol
){
1313 /* The index does not reference any expressions or virtual columns
1314 ** so no translations are needed. */
1317 pTab
= pIdx
->pTable
;
1318 memset(&w
, 0, sizeof(w
));
1320 x
.iTabCur
= iTabCur
;
1321 x
.iIdxCur
= iIdxCur
;
1323 x
.db
= pWInfo
->pParse
->db
;
1324 for(iIdxCol
=0; iIdxCol
<pIdx
->nColumn
; iIdxCol
++){
1325 i16 iRef
= pIdx
->aiColumn
[iIdxCol
];
1326 if( iRef
==XN_EXPR
){
1327 assert( aColExpr
!=0 && aColExpr
->a
[iIdxCol
].pExpr
!=0 );
1328 x
.pIdxExpr
= aColExpr
->a
[iIdxCol
].pExpr
;
1329 if( sqlite3ExprIsConstant(x
.pIdxExpr
) ) continue;
1330 w
.xExprCallback
= whereIndexExprTransNode
;
1331 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1333 && (pTab
->aCol
[iRef
].colFlags
& COLFLAG_VIRTUAL
)!=0
1334 && ((pTab
->aCol
[iRef
].colFlags
& COLFLAG_HASCOLL
)==0
1335 || sqlite3StrICmp(sqlite3ColumnColl(&pTab
->aCol
[iRef
]),
1336 sqlite3StrBINARY
)==0)
1338 /* Check to see if there are direct references to generated columns
1339 ** that are contained in the index. Pulling the generated column
1340 ** out of the index is an optimization only - the main table is always
1341 ** available if the index cannot be used. To avoid unnecessary
1342 ** complication, omit this optimization if the collating sequence for
1343 ** the column is non-standard */
1345 w
.xExprCallback
= whereIndexExprTransColumn
;
1346 #endif /* SQLITE_OMIT_GENERATED_COLUMNS */
1350 x
.iIdxCol
= iIdxCol
;
1351 sqlite3WalkExpr(&w
, pWInfo
->pWhere
);
1352 sqlite3WalkExprList(&w
, pWInfo
->pOrderBy
);
1353 sqlite3WalkExprList(&w
, pWInfo
->pResultSet
);
1358 ** The pTruth expression is always true because it is the WHERE clause
1359 ** a partial index that is driving a query loop. Look through all of the
1360 ** WHERE clause terms on the query, and if any of those terms must be
1361 ** true because pTruth is true, then mark those WHERE clause terms as
1364 static void whereApplyPartialIndexConstraints(
1371 while( pTruth
->op
==TK_AND
){
1372 whereApplyPartialIndexConstraints(pTruth
->pLeft
, iTabCur
, pWC
);
1373 pTruth
= pTruth
->pRight
;
1375 for(i
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
1377 if( pTerm
->wtFlags
& TERM_CODED
) continue;
1378 pExpr
= pTerm
->pExpr
;
1379 if( sqlite3ExprCompare(0, pExpr
, pTruth
, iTabCur
)==0 ){
1380 pTerm
->wtFlags
|= TERM_CODED
;
1386 ** This routine is called right after An OP_Filter has been generated and
1387 ** before the corresponding index search has been performed. This routine
1388 ** checks to see if there are additional Bloom filters in inner loops that
1389 ** can be checked prior to doing the index lookup. If there are available
1390 ** inner-loop Bloom filters, then evaluate those filters now, before the
1391 ** index lookup. The idea is that a Bloom filter check is way faster than
1392 ** an index lookup, and the Bloom filter might return false, meaning that
1393 ** the index lookup can be skipped.
1395 ** We know that an inner loop uses a Bloom filter because it has the
1396 ** WhereLevel.regFilter set. If an inner-loop Bloom filter is checked,
1397 ** then clear the WhereLevel.regFilter value to prevent the Bloom filter
1398 ** from being checked a second time when the inner loop is evaluated.
1400 static SQLITE_NOINLINE
void filterPullDown(
1401 Parse
*pParse
, /* Parsing context */
1402 WhereInfo
*pWInfo
, /* Complete information about the WHERE clause */
1403 int iLevel
, /* Which level of pWInfo->a[] should be coded */
1404 int addrNxt
, /* Jump here to bypass inner loops */
1405 Bitmask notReady
/* Loops that are not ready */
1407 while( ++iLevel
< pWInfo
->nLevel
){
1408 WhereLevel
*pLevel
= &pWInfo
->a
[iLevel
];
1409 WhereLoop
*pLoop
= pLevel
->pWLoop
;
1410 if( pLevel
->regFilter
==0 ) continue;
1411 if( pLevel
->pWLoop
->nSkip
) continue;
1412 /* ,--- Because sqlite3ConstructBloomFilter() has will not have set
1413 ** vvvvv--' pLevel->regFilter if this were true. */
1414 if( NEVER(pLoop
->prereq
& notReady
) ) continue;
1415 assert( pLevel
->addrBrk
==0 );
1416 pLevel
->addrBrk
= addrNxt
;
1417 if( pLoop
->wsFlags
& WHERE_IPK
){
1418 WhereTerm
*pTerm
= pLoop
->aLTerm
[0];
1421 assert( pTerm
->pExpr
!=0 );
1422 testcase( pTerm
->wtFlags
& TERM_VIRTUAL
);
1423 regRowid
= sqlite3GetTempReg(pParse
);
1424 regRowid
= codeEqualityTerm(pParse
, pTerm
, pLevel
, 0, 0, regRowid
);
1425 sqlite3VdbeAddOp4Int(pParse
->pVdbe
, OP_Filter
, pLevel
->regFilter
,
1426 addrNxt
, regRowid
, 1);
1427 VdbeCoverage(pParse
->pVdbe
);
1429 u16 nEq
= pLoop
->u
.btree
.nEq
;
1433 assert( pLoop
->wsFlags
& WHERE_INDEXED
);
1434 assert( (pLoop
->wsFlags
& WHERE_COLUMN_IN
)==0 );
1435 r1
= codeAllEqualityTerms(pParse
,pLevel
,0,0,&zStartAff
);
1436 codeApplyAffinity(pParse
, r1
, nEq
, zStartAff
);
1437 sqlite3DbFree(pParse
->db
, zStartAff
);
1438 sqlite3VdbeAddOp4Int(pParse
->pVdbe
, OP_Filter
, pLevel
->regFilter
,
1440 VdbeCoverage(pParse
->pVdbe
);
1442 pLevel
->regFilter
= 0;
1443 pLevel
->addrBrk
= 0;
1448 ** Generate code for the start of the iLevel-th loop in the WHERE clause
1449 ** implementation described by pWInfo.
1451 Bitmask
sqlite3WhereCodeOneLoopStart(
1452 Parse
*pParse
, /* Parsing context */
1453 Vdbe
*v
, /* Prepared statement under construction */
1454 WhereInfo
*pWInfo
, /* Complete information about the WHERE clause */
1455 int iLevel
, /* Which level of pWInfo->a[] should be coded */
1456 WhereLevel
*pLevel
, /* The current level pointer */
1457 Bitmask notReady
/* Which tables are currently available */
1459 int j
, k
; /* Loop counters */
1460 int iCur
; /* The VDBE cursor for the table */
1461 int addrNxt
; /* Where to jump to continue with the next IN case */
1462 int bRev
; /* True if we need to scan in reverse order */
1463 WhereLoop
*pLoop
; /* The WhereLoop object being coded */
1464 WhereClause
*pWC
; /* Decomposition of the entire WHERE clause */
1465 WhereTerm
*pTerm
; /* A WHERE clause term */
1466 sqlite3
*db
; /* Database connection */
1467 SrcItem
*pTabItem
; /* FROM clause term being coded */
1468 int addrBrk
; /* Jump here to break out of the loop */
1469 int addrHalt
; /* addrBrk for the outermost loop */
1470 int addrCont
; /* Jump here to continue with next cycle */
1471 int iRowidReg
= 0; /* Rowid is stored in this register, if not zero */
1472 int iReleaseReg
= 0; /* Temp register to free before returning */
1473 Index
*pIdx
= 0; /* Index used by loop (if any) */
1474 int iLoop
; /* Iteration of constraint generator loop */
1478 pLoop
= pLevel
->pWLoop
;
1479 pTabItem
= &pWInfo
->pTabList
->a
[pLevel
->iFrom
];
1480 iCur
= pTabItem
->iCursor
;
1481 pLevel
->notReady
= notReady
& ~sqlite3WhereGetMask(&pWInfo
->sMaskSet
, iCur
);
1482 bRev
= (pWInfo
->revMask
>>iLevel
)&1;
1483 VdbeModuleComment((v
, "Begin WHERE-loop%d: %s",iLevel
,pTabItem
->pTab
->zName
));
1484 #if WHERETRACE_ENABLED /* 0x20800 */
1485 if( sqlite3WhereTrace
& 0x800 ){
1486 sqlite3DebugPrintf("Coding level %d of %d: notReady=%llx iFrom=%d\n",
1487 iLevel
, pWInfo
->nLevel
, (u64
)notReady
, pLevel
->iFrom
);
1488 sqlite3WhereLoopPrint(pLoop
, pWC
);
1490 if( sqlite3WhereTrace
& 0x20000 ){
1492 sqlite3DebugPrintf("WHERE clause being coded:\n");
1493 sqlite3TreeViewExpr(0, pWInfo
->pWhere
, 0);
1495 sqlite3DebugPrintf("All WHERE-clause terms before coding:\n");
1496 sqlite3WhereClausePrint(pWC
);
1500 /* Create labels for the "break" and "continue" instructions
1501 ** for the current loop. Jump to addrBrk to break out of a loop.
1502 ** Jump to cont to go immediately to the next iteration of the
1505 ** When there is an IN operator, we also have a "addrNxt" label that
1506 ** means to continue with the next IN value combination. When
1507 ** there are no IN operators in the constraints, the "addrNxt" label
1508 ** is the same as "addrBrk".
1510 addrBrk
= pLevel
->addrBrk
= pLevel
->addrNxt
= sqlite3VdbeMakeLabel(pParse
);
1511 addrCont
= pLevel
->addrCont
= sqlite3VdbeMakeLabel(pParse
);
1513 /* If this is the right table of a LEFT OUTER JOIN, allocate and
1514 ** initialize a memory cell that records if this table matches any
1515 ** row of the left table of the join.
1517 assert( (pWInfo
->wctrlFlags
& (WHERE_OR_SUBCLAUSE
|WHERE_RIGHT_JOIN
))
1518 || pLevel
->iFrom
>0 || (pTabItem
[0].fg
.jointype
& JT_LEFT
)==0
1520 if( pLevel
->iFrom
>0 && (pTabItem
[0].fg
.jointype
& JT_LEFT
)!=0 ){
1521 pLevel
->iLeftJoin
= ++pParse
->nMem
;
1522 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, pLevel
->iLeftJoin
);
1523 VdbeComment((v
, "init LEFT JOIN no-match flag"));
1526 /* Compute a safe address to jump to if we discover that the table for
1527 ** this loop is empty and can never contribute content. */
1528 for(j
=iLevel
; j
>0; j
--){
1529 if( pWInfo
->a
[j
].iLeftJoin
) break;
1530 if( pWInfo
->a
[j
].pRJ
) break;
1532 addrHalt
= pWInfo
->a
[j
].addrBrk
;
1534 /* Special case of a FROM clause subquery implemented as a co-routine */
1535 if( pTabItem
->fg
.viaCoroutine
){
1536 int regYield
= pTabItem
->regReturn
;
1537 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regYield
, 0, pTabItem
->addrFillSub
);
1538 pLevel
->p2
= sqlite3VdbeAddOp2(v
, OP_Yield
, regYield
, addrBrk
);
1540 VdbeComment((v
, "next row of %s", pTabItem
->pTab
->zName
));
1541 pLevel
->op
= OP_Goto
;
1544 #ifndef SQLITE_OMIT_VIRTUALTABLE
1545 if( (pLoop
->wsFlags
& WHERE_VIRTUALTABLE
)!=0 ){
1546 /* Case 1: The table is a virtual-table. Use the VFilter and VNext
1547 ** to access the data.
1549 int iReg
; /* P3 Value for OP_VFilter */
1551 int nConstraint
= pLoop
->nLTerm
;
1553 iReg
= sqlite3GetTempRange(pParse
, nConstraint
+2);
1554 addrNotFound
= pLevel
->addrBrk
;
1555 for(j
=0; j
<nConstraint
; j
++){
1556 int iTarget
= iReg
+j
+2;
1557 pTerm
= pLoop
->aLTerm
[j
];
1558 if( NEVER(pTerm
==0) ) continue;
1559 if( pTerm
->eOperator
& WO_IN
){
1560 if( SMASKBIT32(j
) & pLoop
->u
.vtab
.mHandleIn
){
1561 int iTab
= pParse
->nTab
++;
1562 int iCache
= ++pParse
->nMem
;
1563 sqlite3CodeRhsOfIN(pParse
, pTerm
->pExpr
, iTab
);
1564 sqlite3VdbeAddOp3(v
, OP_VInitIn
, iTab
, iTarget
, iCache
);
1566 codeEqualityTerm(pParse
, pTerm
, pLevel
, j
, bRev
, iTarget
);
1567 addrNotFound
= pLevel
->addrNxt
;
1570 Expr
*pRight
= pTerm
->pExpr
->pRight
;
1571 codeExprOrVector(pParse
, pRight
, iTarget
, 1);
1572 if( pTerm
->eMatchOp
==SQLITE_INDEX_CONSTRAINT_OFFSET
1573 && pLoop
->u
.vtab
.bOmitOffset
1575 assert( pTerm
->eOperator
==WO_AUX
);
1576 assert( pWInfo
->pLimit
!=0 );
1577 assert( pWInfo
->pLimit
->iOffset
>0 );
1578 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, pWInfo
->pLimit
->iOffset
);
1579 VdbeComment((v
,"Zero OFFSET counter"));
1583 sqlite3VdbeAddOp2(v
, OP_Integer
, pLoop
->u
.vtab
.idxNum
, iReg
);
1584 sqlite3VdbeAddOp2(v
, OP_Integer
, nConstraint
, iReg
+1);
1585 sqlite3VdbeAddOp4(v
, OP_VFilter
, iCur
, addrNotFound
, iReg
,
1586 pLoop
->u
.vtab
.idxStr
,
1587 pLoop
->u
.vtab
.needFree
? P4_DYNAMIC
: P4_STATIC
);
1589 pLoop
->u
.vtab
.needFree
= 0;
1590 /* An OOM inside of AddOp4(OP_VFilter) instruction above might have freed
1591 ** the u.vtab.idxStr. NULL it out to prevent a use-after-free */
1592 if( db
->mallocFailed
) pLoop
->u
.vtab
.idxStr
= 0;
1594 pLevel
->op
= pWInfo
->eOnePass
? OP_Noop
: OP_VNext
;
1595 pLevel
->p2
= sqlite3VdbeCurrentAddr(v
);
1596 assert( (pLoop
->wsFlags
& WHERE_MULTI_OR
)==0 );
1598 for(j
=0; j
<nConstraint
; j
++){
1599 pTerm
= pLoop
->aLTerm
[j
];
1600 if( j
<16 && (pLoop
->u
.vtab
.omitMask
>>j
)&1 ){
1601 disableTerm(pLevel
, pTerm
);
1604 if( (pTerm
->eOperator
& WO_IN
)!=0
1605 && (SMASKBIT32(j
) & pLoop
->u
.vtab
.mHandleIn
)==0
1606 && !db
->mallocFailed
1608 Expr
*pCompare
; /* The comparison operator */
1609 Expr
*pRight
; /* RHS of the comparison */
1610 VdbeOp
*pOp
; /* Opcode to access the value of the IN constraint */
1611 int iIn
; /* IN loop corresponding to the j-th constraint */
1613 /* Reload the constraint value into reg[iReg+j+2]. The same value
1614 ** was loaded into the same register prior to the OP_VFilter, but
1615 ** the xFilter implementation might have changed the datatype or
1616 ** encoding of the value in the register, so it *must* be reloaded.
1618 for(iIn
=0; ALWAYS(iIn
<pLevel
->u
.in
.nIn
); iIn
++){
1619 pOp
= sqlite3VdbeGetOp(v
, pLevel
->u
.in
.aInLoop
[iIn
].addrInTop
);
1620 if( (pOp
->opcode
==OP_Column
&& pOp
->p3
==iReg
+j
+2)
1621 || (pOp
->opcode
==OP_Rowid
&& pOp
->p2
==iReg
+j
+2)
1623 testcase( pOp
->opcode
==OP_Rowid
);
1624 sqlite3VdbeAddOp3(v
, pOp
->opcode
, pOp
->p1
, pOp
->p2
, pOp
->p3
);
1629 /* Generate code that will continue to the next row if
1630 ** the IN constraint is not satisfied
1632 pCompare
= sqlite3PExpr(pParse
, TK_EQ
, 0, 0);
1633 if( !db
->mallocFailed
){
1634 int iFld
= pTerm
->u
.x
.iField
;
1635 Expr
*pLeft
= pTerm
->pExpr
->pLeft
;
1638 assert( pLeft
->op
==TK_VECTOR
);
1639 assert( ExprUseXList(pLeft
) );
1640 assert( iFld
<=pLeft
->x
.pList
->nExpr
);
1641 pCompare
->pLeft
= pLeft
->x
.pList
->a
[iFld
-1].pExpr
;
1643 pCompare
->pLeft
= pLeft
;
1645 pCompare
->pRight
= pRight
= sqlite3Expr(db
, TK_REGISTER
, 0);
1647 pRight
->iTable
= iReg
+j
+2;
1649 pParse
, pCompare
, pLevel
->addrCont
, SQLITE_JUMPIFNULL
1652 pCompare
->pLeft
= 0;
1654 sqlite3ExprDelete(db
, pCompare
);
1658 /* These registers need to be preserved in case there is an IN operator
1659 ** loop. So we could deallocate the registers here (and potentially
1660 ** reuse them later) if (pLoop->wsFlags & WHERE_IN_ABLE)==0. But it seems
1661 ** simpler and safer to simply not reuse the registers.
1663 ** sqlite3ReleaseTempRange(pParse, iReg, nConstraint+2);
1666 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1668 if( (pLoop
->wsFlags
& WHERE_IPK
)!=0
1669 && (pLoop
->wsFlags
& (WHERE_COLUMN_IN
|WHERE_COLUMN_EQ
))!=0
1671 /* Case 2: We can directly reference a single row using an
1672 ** equality comparison against the ROWID field. Or
1673 ** we reference multiple rows using a "rowid IN (...)"
1676 assert( pLoop
->u
.btree
.nEq
==1 );
1677 pTerm
= pLoop
->aLTerm
[0];
1679 assert( pTerm
->pExpr
!=0 );
1680 testcase( pTerm
->wtFlags
& TERM_VIRTUAL
);
1681 iReleaseReg
= ++pParse
->nMem
;
1682 iRowidReg
= codeEqualityTerm(pParse
, pTerm
, pLevel
, 0, bRev
, iReleaseReg
);
1683 if( iRowidReg
!=iReleaseReg
) sqlite3ReleaseTempReg(pParse
, iReleaseReg
);
1684 addrNxt
= pLevel
->addrNxt
;
1685 if( pLevel
->regFilter
){
1686 sqlite3VdbeAddOp4Int(v
, OP_Filter
, pLevel
->regFilter
, addrNxt
,
1689 filterPullDown(pParse
, pWInfo
, iLevel
, addrNxt
, notReady
);
1691 sqlite3VdbeAddOp3(v
, OP_SeekRowid
, iCur
, addrNxt
, iRowidReg
);
1693 pLevel
->op
= OP_Noop
;
1694 }else if( (pLoop
->wsFlags
& WHERE_IPK
)!=0
1695 && (pLoop
->wsFlags
& WHERE_COLUMN_RANGE
)!=0
1697 /* Case 3: We have an inequality comparison against the ROWID field.
1699 int testOp
= OP_Noop
;
1701 int memEndValue
= 0;
1702 WhereTerm
*pStart
, *pEnd
;
1706 if( pLoop
->wsFlags
& WHERE_BTM_LIMIT
) pStart
= pLoop
->aLTerm
[j
++];
1707 if( pLoop
->wsFlags
& WHERE_TOP_LIMIT
) pEnd
= pLoop
->aLTerm
[j
++];
1708 assert( pStart
!=0 || pEnd
!=0 );
1714 codeCursorHint(pTabItem
, pWInfo
, pLevel
, pEnd
);
1716 Expr
*pX
; /* The expression that defines the start bound */
1717 int r1
, rTemp
; /* Registers for holding the start boundary */
1718 int op
; /* Cursor seek operation */
1720 /* The following constant maps TK_xx codes into corresponding
1721 ** seek opcodes. It depends on a particular ordering of TK_xx
1723 const u8 aMoveOp
[] = {
1724 /* TK_GT */ OP_SeekGT
,
1725 /* TK_LE */ OP_SeekLE
,
1726 /* TK_LT */ OP_SeekLT
,
1727 /* TK_GE */ OP_SeekGE
1729 assert( TK_LE
==TK_GT
+1 ); /* Make sure the ordering.. */
1730 assert( TK_LT
==TK_GT
+2 ); /* ... of the TK_xx values... */
1731 assert( TK_GE
==TK_GT
+3 ); /* ... is correcct. */
1733 assert( (pStart
->wtFlags
& TERM_VNULL
)==0 );
1734 testcase( pStart
->wtFlags
& TERM_VIRTUAL
);
1737 testcase( pStart
->leftCursor
!=iCur
); /* transitive constraints */
1738 if( sqlite3ExprIsVector(pX
->pRight
) ){
1739 r1
= rTemp
= sqlite3GetTempReg(pParse
);
1740 codeExprOrVector(pParse
, pX
->pRight
, r1
, 1);
1741 testcase( pX
->op
==TK_GT
);
1742 testcase( pX
->op
==TK_GE
);
1743 testcase( pX
->op
==TK_LT
);
1744 testcase( pX
->op
==TK_LE
);
1745 op
= aMoveOp
[((pX
->op
- TK_GT
- 1) & 0x3) | 0x1];
1746 assert( pX
->op
!=TK_GT
|| op
==OP_SeekGE
);
1747 assert( pX
->op
!=TK_GE
|| op
==OP_SeekGE
);
1748 assert( pX
->op
!=TK_LT
|| op
==OP_SeekLE
);
1749 assert( pX
->op
!=TK_LE
|| op
==OP_SeekLE
);
1751 r1
= sqlite3ExprCodeTemp(pParse
, pX
->pRight
, &rTemp
);
1752 disableTerm(pLevel
, pStart
);
1753 op
= aMoveOp
[(pX
->op
- TK_GT
)];
1755 sqlite3VdbeAddOp3(v
, op
, iCur
, addrBrk
, r1
);
1756 VdbeComment((v
, "pk"));
1757 VdbeCoverageIf(v
, pX
->op
==TK_GT
);
1758 VdbeCoverageIf(v
, pX
->op
==TK_LE
);
1759 VdbeCoverageIf(v
, pX
->op
==TK_LT
);
1760 VdbeCoverageIf(v
, pX
->op
==TK_GE
);
1761 sqlite3ReleaseTempReg(pParse
, rTemp
);
1763 sqlite3VdbeAddOp2(v
, bRev
? OP_Last
: OP_Rewind
, iCur
, addrHalt
);
1764 VdbeCoverageIf(v
, bRev
==0);
1765 VdbeCoverageIf(v
, bRev
!=0);
1771 assert( (pEnd
->wtFlags
& TERM_VNULL
)==0 );
1772 testcase( pEnd
->leftCursor
!=iCur
); /* Transitive constraints */
1773 testcase( pEnd
->wtFlags
& TERM_VIRTUAL
);
1774 memEndValue
= ++pParse
->nMem
;
1775 codeExprOrVector(pParse
, pX
->pRight
, memEndValue
, 1);
1776 if( 0==sqlite3ExprIsVector(pX
->pRight
)
1777 && (pX
->op
==TK_LT
|| pX
->op
==TK_GT
)
1779 testOp
= bRev
? OP_Le
: OP_Ge
;
1781 testOp
= bRev
? OP_Lt
: OP_Gt
;
1783 if( 0==sqlite3ExprIsVector(pX
->pRight
) ){
1784 disableTerm(pLevel
, pEnd
);
1787 start
= sqlite3VdbeCurrentAddr(v
);
1788 pLevel
->op
= bRev
? OP_Prev
: OP_Next
;
1791 assert( pLevel
->p5
==0 );
1792 if( testOp
!=OP_Noop
){
1793 iRowidReg
= ++pParse
->nMem
;
1794 sqlite3VdbeAddOp2(v
, OP_Rowid
, iCur
, iRowidReg
);
1795 sqlite3VdbeAddOp3(v
, testOp
, memEndValue
, addrBrk
, iRowidReg
);
1796 VdbeCoverageIf(v
, testOp
==OP_Le
);
1797 VdbeCoverageIf(v
, testOp
==OP_Lt
);
1798 VdbeCoverageIf(v
, testOp
==OP_Ge
);
1799 VdbeCoverageIf(v
, testOp
==OP_Gt
);
1800 sqlite3VdbeChangeP5(v
, SQLITE_AFF_NUMERIC
| SQLITE_JUMPIFNULL
);
1802 }else if( pLoop
->wsFlags
& WHERE_INDEXED
){
1803 /* Case 4: A scan using an index.
1805 ** The WHERE clause may contain zero or more equality
1806 ** terms ("==" or "IN" operators) that refer to the N
1807 ** left-most columns of the index. It may also contain
1808 ** inequality constraints (>, <, >= or <=) on the indexed
1809 ** column that immediately follows the N equalities. Only
1810 ** the right-most column can be an inequality - the rest must
1811 ** use the "==" and "IN" operators. For example, if the
1812 ** index is on (x,y,z), then the following clauses are all
1818 ** x=5 AND y>5 AND y<10
1819 ** x=5 AND y=5 AND z<=10
1821 ** The z<10 term of the following cannot be used, only
1826 ** N may be zero if there are inequality constraints.
1827 ** If there are no inequality constraints, then N is at
1830 ** This case is also used when there are no WHERE clause
1831 ** constraints but an index is selected anyway, in order
1832 ** to force the output order to conform to an ORDER BY.
1834 static const u8 aStartOp
[] = {
1837 OP_Rewind
, /* 2: (!start_constraints && startEq && !bRev) */
1838 OP_Last
, /* 3: (!start_constraints && startEq && bRev) */
1839 OP_SeekGT
, /* 4: (start_constraints && !startEq && !bRev) */
1840 OP_SeekLT
, /* 5: (start_constraints && !startEq && bRev) */
1841 OP_SeekGE
, /* 6: (start_constraints && startEq && !bRev) */
1842 OP_SeekLE
/* 7: (start_constraints && startEq && bRev) */
1844 static const u8 aEndOp
[] = {
1845 OP_IdxGE
, /* 0: (end_constraints && !bRev && !endEq) */
1846 OP_IdxGT
, /* 1: (end_constraints && !bRev && endEq) */
1847 OP_IdxLE
, /* 2: (end_constraints && bRev && !endEq) */
1848 OP_IdxLT
, /* 3: (end_constraints && bRev && endEq) */
1850 u16 nEq
= pLoop
->u
.btree
.nEq
; /* Number of == or IN terms */
1851 u16 nBtm
= pLoop
->u
.btree
.nBtm
; /* Length of BTM vector */
1852 u16 nTop
= pLoop
->u
.btree
.nTop
; /* Length of TOP vector */
1853 int regBase
; /* Base register holding constraint values */
1854 WhereTerm
*pRangeStart
= 0; /* Inequality constraint at range start */
1855 WhereTerm
*pRangeEnd
= 0; /* Inequality constraint at range end */
1856 int startEq
; /* True if range start uses ==, >= or <= */
1857 int endEq
; /* True if range end uses ==, >= or <= */
1858 int start_constraints
; /* Start of range is constrained */
1859 int nConstraint
; /* Number of constraint terms */
1860 int iIdxCur
; /* The VDBE cursor for the index */
1861 int nExtraReg
= 0; /* Number of extra registers needed */
1862 int op
; /* Instruction opcode */
1863 char *zStartAff
; /* Affinity for start of range constraint */
1864 char *zEndAff
= 0; /* Affinity for end of range constraint */
1865 u8 bSeekPastNull
= 0; /* True to seek past initial nulls */
1866 u8 bStopAtNull
= 0; /* Add condition to terminate at NULLs */
1867 int omitTable
; /* True if we use the index only */
1868 int regBignull
= 0; /* big-null flag register */
1869 int addrSeekScan
= 0; /* Opcode of the OP_SeekScan, if any */
1871 pIdx
= pLoop
->u
.btree
.pIndex
;
1872 iIdxCur
= pLevel
->iIdxCur
;
1873 assert( nEq
>=pLoop
->nSkip
);
1875 /* Find any inequality constraint terms for the start and end
1879 if( pLoop
->wsFlags
& WHERE_BTM_LIMIT
){
1880 pRangeStart
= pLoop
->aLTerm
[j
++];
1881 nExtraReg
= MAX(nExtraReg
, pLoop
->u
.btree
.nBtm
);
1882 /* Like optimization range constraints always occur in pairs */
1883 assert( (pRangeStart
->wtFlags
& TERM_LIKEOPT
)==0 ||
1884 (pLoop
->wsFlags
& WHERE_TOP_LIMIT
)!=0 );
1886 if( pLoop
->wsFlags
& WHERE_TOP_LIMIT
){
1887 pRangeEnd
= pLoop
->aLTerm
[j
++];
1888 nExtraReg
= MAX(nExtraReg
, pLoop
->u
.btree
.nTop
);
1889 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1890 if( (pRangeEnd
->wtFlags
& TERM_LIKEOPT
)!=0 ){
1891 assert( pRangeStart
!=0 ); /* LIKE opt constraints */
1892 assert( pRangeStart
->wtFlags
& TERM_LIKEOPT
); /* occur in pairs */
1893 pLevel
->iLikeRepCntr
= (u32
)++pParse
->nMem
;
1894 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, (int)pLevel
->iLikeRepCntr
);
1895 VdbeComment((v
, "LIKE loop counter"));
1896 pLevel
->addrLikeRep
= sqlite3VdbeCurrentAddr(v
);
1897 /* iLikeRepCntr actually stores 2x the counter register number. The
1898 ** bottom bit indicates whether the search order is ASC or DESC. */
1900 testcase( pIdx
->aSortOrder
[nEq
]==SQLITE_SO_DESC
);
1901 assert( (bRev
& ~1)==0 );
1902 pLevel
->iLikeRepCntr
<<=1;
1903 pLevel
->iLikeRepCntr
|= bRev
^ (pIdx
->aSortOrder
[nEq
]==SQLITE_SO_DESC
);
1906 if( pRangeStart
==0 ){
1907 j
= pIdx
->aiColumn
[nEq
];
1908 if( (j
>=0 && pIdx
->pTable
->aCol
[j
].notNull
==0) || j
==XN_EXPR
){
1913 assert( pRangeEnd
==0 || (pRangeEnd
->wtFlags
& TERM_VNULL
)==0 );
1915 /* If the WHERE_BIGNULL_SORT flag is set, then index column nEq uses
1916 ** a non-default "big-null" sort (either ASC NULLS LAST or DESC NULLS
1917 ** FIRST). In both cases separate ordered scans are made of those
1918 ** index entries for which the column is null and for those for which
1919 ** it is not. For an ASC sort, the non-NULL entries are scanned first.
1920 ** For DESC, NULL entries are scanned first.
1922 if( (pLoop
->wsFlags
& (WHERE_TOP_LIMIT
|WHERE_BTM_LIMIT
))==0
1923 && (pLoop
->wsFlags
& WHERE_BIGNULL_SORT
)!=0
1925 assert( bSeekPastNull
==0 && nExtraReg
==0 && nBtm
==0 && nTop
==0 );
1926 assert( pRangeEnd
==0 && pRangeStart
==0 );
1927 testcase( pLoop
->nSkip
>0 );
1930 pLevel
->regBignull
= regBignull
= ++pParse
->nMem
;
1931 if( pLevel
->iLeftJoin
){
1932 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regBignull
);
1934 pLevel
->addrBignull
= sqlite3VdbeMakeLabel(pParse
);
1937 /* If we are doing a reverse order scan on an ascending index, or
1938 ** a forward order scan on a descending index, interchange the
1939 ** start and end terms (pRangeStart and pRangeEnd).
1941 if( (nEq
<pIdx
->nColumn
&& bRev
==(pIdx
->aSortOrder
[nEq
]==SQLITE_SO_ASC
)) ){
1942 SWAP(WhereTerm
*, pRangeEnd
, pRangeStart
);
1943 SWAP(u8
, bSeekPastNull
, bStopAtNull
);
1944 SWAP(u8
, nBtm
, nTop
);
1947 if( iLevel
>0 && (pLoop
->wsFlags
& WHERE_IN_SEEKSCAN
)!=0 ){
1948 /* In case OP_SeekScan is used, ensure that the index cursor does not
1949 ** point to a valid row for the first iteration of this loop. */
1950 sqlite3VdbeAddOp1(v
, OP_NullRow
, iIdxCur
);
1953 /* Generate code to evaluate all constraint terms using == or IN
1954 ** and store the values of those terms in an array of registers
1955 ** starting at regBase.
1957 codeCursorHint(pTabItem
, pWInfo
, pLevel
, pRangeEnd
);
1958 regBase
= codeAllEqualityTerms(pParse
,pLevel
,bRev
,nExtraReg
,&zStartAff
);
1959 assert( zStartAff
==0 || sqlite3Strlen30(zStartAff
)>=nEq
);
1960 if( zStartAff
&& nTop
){
1961 zEndAff
= sqlite3DbStrDup(db
, &zStartAff
[nEq
]);
1963 addrNxt
= (regBignull
? pLevel
->addrBignull
: pLevel
->addrNxt
);
1965 testcase( pRangeStart
&& (pRangeStart
->eOperator
& WO_LE
)!=0 );
1966 testcase( pRangeStart
&& (pRangeStart
->eOperator
& WO_GE
)!=0 );
1967 testcase( pRangeEnd
&& (pRangeEnd
->eOperator
& WO_LE
)!=0 );
1968 testcase( pRangeEnd
&& (pRangeEnd
->eOperator
& WO_GE
)!=0 );
1969 startEq
= !pRangeStart
|| pRangeStart
->eOperator
& (WO_LE
|WO_GE
);
1970 endEq
= !pRangeEnd
|| pRangeEnd
->eOperator
& (WO_LE
|WO_GE
);
1971 start_constraints
= pRangeStart
|| nEq
>0;
1973 /* Seek the index cursor to the start of the range. */
1976 Expr
*pRight
= pRangeStart
->pExpr
->pRight
;
1977 codeExprOrVector(pParse
, pRight
, regBase
+nEq
, nBtm
);
1978 whereLikeOptimizationStringFixup(v
, pLevel
, pRangeStart
);
1979 if( (pRangeStart
->wtFlags
& TERM_VNULL
)==0
1980 && sqlite3ExprCanBeNull(pRight
)
1982 sqlite3VdbeAddOp2(v
, OP_IsNull
, regBase
+nEq
, addrNxt
);
1986 updateRangeAffinityStr(pRight
, nBtm
, &zStartAff
[nEq
]);
1988 nConstraint
+= nBtm
;
1989 testcase( pRangeStart
->wtFlags
& TERM_VIRTUAL
);
1990 if( sqlite3ExprIsVector(pRight
)==0 ){
1991 disableTerm(pLevel
, pRangeStart
);
1996 }else if( bSeekPastNull
){
1998 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regBase
+nEq
);
1999 start_constraints
= 1;
2001 }else if( regBignull
){
2002 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regBase
+nEq
);
2003 start_constraints
= 1;
2006 codeApplyAffinity(pParse
, regBase
, nConstraint
- bSeekPastNull
, zStartAff
);
2007 if( pLoop
->nSkip
>0 && nConstraint
==pLoop
->nSkip
){
2008 /* The skip-scan logic inside the call to codeAllEqualityConstraints()
2009 ** above has already left the cursor sitting on the correct row,
2010 ** so no further seeking is needed */
2013 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, regBignull
);
2014 VdbeComment((v
, "NULL-scan pass ctr"));
2016 if( pLevel
->regFilter
){
2017 sqlite3VdbeAddOp4Int(v
, OP_Filter
, pLevel
->regFilter
, addrNxt
,
2020 filterPullDown(pParse
, pWInfo
, iLevel
, addrNxt
, notReady
);
2023 op
= aStartOp
[(start_constraints
<<2) + (startEq
<<1) + bRev
];
2025 if( (pLoop
->wsFlags
& WHERE_IN_SEEKSCAN
)!=0 && op
==OP_SeekGE
){
2026 assert( regBignull
==0 );
2027 /* TUNING: The OP_SeekScan opcode seeks to reduce the number
2028 ** of expensive seek operations by replacing a single seek with
2029 ** 1 or more step operations. The question is, how many steps
2030 ** should we try before giving up and going with a seek. The cost
2031 ** of a seek is proportional to the logarithm of the of the number
2032 ** of entries in the tree, so basing the number of steps to try
2033 ** on the estimated number of rows in the btree seems like a good
2035 addrSeekScan
= sqlite3VdbeAddOp1(v
, OP_SeekScan
,
2036 (pIdx
->aiRowLogEst
[0]+9)/10);
2039 sqlite3VdbeAddOp4Int(v
, op
, iIdxCur
, addrNxt
, regBase
, nConstraint
);
2041 VdbeCoverageIf(v
, op
==OP_Rewind
); testcase( op
==OP_Rewind
);
2042 VdbeCoverageIf(v
, op
==OP_Last
); testcase( op
==OP_Last
);
2043 VdbeCoverageIf(v
, op
==OP_SeekGT
); testcase( op
==OP_SeekGT
);
2044 VdbeCoverageIf(v
, op
==OP_SeekGE
); testcase( op
==OP_SeekGE
);
2045 VdbeCoverageIf(v
, op
==OP_SeekLE
); testcase( op
==OP_SeekLE
);
2046 VdbeCoverageIf(v
, op
==OP_SeekLT
); testcase( op
==OP_SeekLT
);
2048 assert( bSeekPastNull
==0 || bStopAtNull
==0 );
2050 assert( bSeekPastNull
==1 || bStopAtNull
==1 );
2051 assert( bSeekPastNull
==!bStopAtNull
);
2052 assert( bStopAtNull
==startEq
);
2053 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, sqlite3VdbeCurrentAddr(v
)+2);
2054 op
= aStartOp
[(nConstraint
>1)*4 + 2 + bRev
];
2055 sqlite3VdbeAddOp4Int(v
, op
, iIdxCur
, addrNxt
, regBase
,
2056 nConstraint
-startEq
);
2058 VdbeCoverageIf(v
, op
==OP_Rewind
); testcase( op
==OP_Rewind
);
2059 VdbeCoverageIf(v
, op
==OP_Last
); testcase( op
==OP_Last
);
2060 VdbeCoverageIf(v
, op
==OP_SeekGE
); testcase( op
==OP_SeekGE
);
2061 VdbeCoverageIf(v
, op
==OP_SeekLE
); testcase( op
==OP_SeekLE
);
2062 assert( op
==OP_Rewind
|| op
==OP_Last
|| op
==OP_SeekGE
|| op
==OP_SeekLE
);
2066 /* Load the value for the inequality constraint at the end of the
2070 assert( pLevel
->p2
==0 );
2072 Expr
*pRight
= pRangeEnd
->pExpr
->pRight
;
2074 /* For a seek-scan that has a range on the lowest term of the index,
2075 ** we have to make the top of the loop be code that sets the end
2076 ** condition of the range. Otherwise, the OP_SeekScan might jump
2077 ** over that initialization, leaving the range-end value set to the
2078 ** range-start value, resulting in a wrong answer.
2079 ** See ticket 5981a8c041a3c2f3 (2021-11-02).
2081 pLevel
->p2
= sqlite3VdbeCurrentAddr(v
);
2083 codeExprOrVector(pParse
, pRight
, regBase
+nEq
, nTop
);
2084 whereLikeOptimizationStringFixup(v
, pLevel
, pRangeEnd
);
2085 if( (pRangeEnd
->wtFlags
& TERM_VNULL
)==0
2086 && sqlite3ExprCanBeNull(pRight
)
2088 sqlite3VdbeAddOp2(v
, OP_IsNull
, regBase
+nEq
, addrNxt
);
2092 updateRangeAffinityStr(pRight
, nTop
, zEndAff
);
2093 codeApplyAffinity(pParse
, regBase
+nEq
, nTop
, zEndAff
);
2095 assert( pParse
->db
->mallocFailed
);
2097 nConstraint
+= nTop
;
2098 testcase( pRangeEnd
->wtFlags
& TERM_VIRTUAL
);
2100 if( sqlite3ExprIsVector(pRight
)==0 ){
2101 disableTerm(pLevel
, pRangeEnd
);
2105 }else if( bStopAtNull
){
2106 if( regBignull
==0 ){
2107 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regBase
+nEq
);
2112 sqlite3DbFree(db
, zStartAff
);
2113 sqlite3DbFree(db
, zEndAff
);
2115 /* Top of the loop body */
2116 if( pLevel
->p2
==0 ) pLevel
->p2
= sqlite3VdbeCurrentAddr(v
);
2118 /* Check if the index cursor is past the end of the range. */
2121 /* Except, skip the end-of-range check while doing the NULL-scan */
2122 sqlite3VdbeAddOp2(v
, OP_IfNot
, regBignull
, sqlite3VdbeCurrentAddr(v
)+3);
2123 VdbeComment((v
, "If NULL-scan 2nd pass"));
2126 op
= aEndOp
[bRev
*2 + endEq
];
2127 sqlite3VdbeAddOp4Int(v
, op
, iIdxCur
, addrNxt
, regBase
, nConstraint
);
2128 testcase( op
==OP_IdxGT
); VdbeCoverageIf(v
, op
==OP_IdxGT
);
2129 testcase( op
==OP_IdxGE
); VdbeCoverageIf(v
, op
==OP_IdxGE
);
2130 testcase( op
==OP_IdxLT
); VdbeCoverageIf(v
, op
==OP_IdxLT
);
2131 testcase( op
==OP_IdxLE
); VdbeCoverageIf(v
, op
==OP_IdxLE
);
2132 if( addrSeekScan
) sqlite3VdbeJumpHere(v
, addrSeekScan
);
2135 /* During a NULL-scan, check to see if we have reached the end of
2137 assert( bSeekPastNull
==!bStopAtNull
);
2138 assert( bSeekPastNull
+bStopAtNull
==1 );
2139 assert( nConstraint
+bSeekPastNull
>0 );
2140 sqlite3VdbeAddOp2(v
, OP_If
, regBignull
, sqlite3VdbeCurrentAddr(v
)+2);
2141 VdbeComment((v
, "If NULL-scan 1st pass"));
2143 op
= aEndOp
[bRev
*2 + bSeekPastNull
];
2144 sqlite3VdbeAddOp4Int(v
, op
, iIdxCur
, addrNxt
, regBase
,
2145 nConstraint
+bSeekPastNull
);
2146 testcase( op
==OP_IdxGT
); VdbeCoverageIf(v
, op
==OP_IdxGT
);
2147 testcase( op
==OP_IdxGE
); VdbeCoverageIf(v
, op
==OP_IdxGE
);
2148 testcase( op
==OP_IdxLT
); VdbeCoverageIf(v
, op
==OP_IdxLT
);
2149 testcase( op
==OP_IdxLE
); VdbeCoverageIf(v
, op
==OP_IdxLE
);
2152 if( (pLoop
->wsFlags
& WHERE_IN_EARLYOUT
)!=0 ){
2153 sqlite3VdbeAddOp3(v
, OP_SeekHit
, iIdxCur
, nEq
, nEq
);
2156 /* Seek the table cursor, if required */
2157 omitTable
= (pLoop
->wsFlags
& WHERE_IDX_ONLY
)!=0
2158 && (pWInfo
->wctrlFlags
& (WHERE_OR_SUBCLAUSE
|WHERE_RIGHT_JOIN
))==0;
2160 /* pIdx is a covering index. No need to access the main table. */
2161 }else if( HasRowid(pIdx
->pTable
) ){
2162 codeDeferredSeek(pWInfo
, pIdx
, iCur
, iIdxCur
);
2163 }else if( iCur
!=iIdxCur
){
2164 Index
*pPk
= sqlite3PrimaryKeyIndex(pIdx
->pTable
);
2165 iRowidReg
= sqlite3GetTempRange(pParse
, pPk
->nKeyCol
);
2166 for(j
=0; j
<pPk
->nKeyCol
; j
++){
2167 k
= sqlite3TableColumnToIndex(pIdx
, pPk
->aiColumn
[j
]);
2168 sqlite3VdbeAddOp3(v
, OP_Column
, iIdxCur
, k
, iRowidReg
+j
);
2170 sqlite3VdbeAddOp4Int(v
, OP_NotFound
, iCur
, addrCont
,
2171 iRowidReg
, pPk
->nKeyCol
); VdbeCoverage(v
);
2174 if( pLevel
->iLeftJoin
==0 ){
2175 /* If pIdx is an index on one or more expressions, then look through
2176 ** all the expressions in pWInfo and try to transform matching expressions
2177 ** into reference to index columns. Also attempt to translate references
2178 ** to virtual columns in the table into references to (stored) columns
2181 ** Do not do this for the RHS of a LEFT JOIN. This is because the
2182 ** expression may be evaluated after OP_NullRow has been executed on
2183 ** the cursor. In this case it is important to do the full evaluation,
2184 ** as the result of the expression may not be NULL, even if all table
2185 ** column values are. https://www.sqlite.org/src/info/7fa8049685b50b5a
2187 ** Also, do not do this when processing one index an a multi-index
2188 ** OR clause, since the transformation will become invalid once we
2189 ** move forward to the next index.
2190 ** https://sqlite.org/src/info/4e8e4857d32d401f
2192 if( (pWInfo
->wctrlFlags
& (WHERE_OR_SUBCLAUSE
|WHERE_RIGHT_JOIN
))==0 ){
2193 whereIndexExprTrans(pIdx
, iCur
, iIdxCur
, pWInfo
);
2196 /* If a partial index is driving the loop, try to eliminate WHERE clause
2197 ** terms from the query that must be true due to the WHERE clause of
2198 ** the partial index.
2200 ** 2019-11-02 ticket 623eff57e76d45f6: This optimization does not work
2203 if( pIdx
->pPartIdxWhere
){
2204 whereApplyPartialIndexConstraints(pIdx
->pPartIdxWhere
, iCur
, pWC
);
2207 testcase( pIdx
->pPartIdxWhere
);
2208 /* The following assert() is not a requirement, merely an observation:
2209 ** The OR-optimization doesn't work for the right hand table of
2211 assert( (pWInfo
->wctrlFlags
& (WHERE_OR_SUBCLAUSE
|WHERE_RIGHT_JOIN
))==0 );
2214 /* Record the instruction used to terminate the loop. */
2215 if( pLoop
->wsFlags
& WHERE_ONEROW
){
2216 pLevel
->op
= OP_Noop
;
2218 pLevel
->op
= OP_Prev
;
2220 pLevel
->op
= OP_Next
;
2222 pLevel
->p1
= iIdxCur
;
2223 pLevel
->p3
= (pLoop
->wsFlags
&WHERE_UNQ_WANTED
)!=0 ? 1:0;
2224 if( (pLoop
->wsFlags
& WHERE_CONSTRAINT
)==0 ){
2225 pLevel
->p5
= SQLITE_STMTSTATUS_FULLSCAN_STEP
;
2227 assert( pLevel
->p5
==0 );
2229 if( omitTable
) pIdx
= 0;
2232 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
2233 if( pLoop
->wsFlags
& WHERE_MULTI_OR
){
2234 /* Case 5: Two or more separately indexed terms connected by OR
2238 ** CREATE TABLE t1(a,b,c,d);
2239 ** CREATE INDEX i1 ON t1(a);
2240 ** CREATE INDEX i2 ON t1(b);
2241 ** CREATE INDEX i3 ON t1(c);
2243 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
2245 ** In the example, there are three indexed terms connected by OR.
2246 ** The top of the loop looks like this:
2248 ** Null 1 # Zero the rowset in reg 1
2250 ** Then, for each indexed term, the following. The arguments to
2251 ** RowSetTest are such that the rowid of the current row is inserted
2252 ** into the RowSet. If it is already present, control skips the
2253 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
2255 ** sqlite3WhereBegin(<term>)
2256 ** RowSetTest # Insert rowid into rowset
2258 ** sqlite3WhereEnd()
2260 ** Following the above, code to terminate the loop. Label A, the target
2261 ** of the Gosub above, jumps to the instruction right after the Goto.
2263 ** Null 1 # Zero the rowset in reg 1
2264 ** Goto B # The loop is finished.
2266 ** A: <loop body> # Return data, whatever.
2268 ** Return 2 # Jump back to the Gosub
2270 ** B: <after the loop>
2272 ** Added 2014-05-26: If the table is a WITHOUT ROWID table, then
2273 ** use an ephemeral index instead of a RowSet to record the primary
2274 ** keys of the rows we have already seen.
2277 WhereClause
*pOrWc
; /* The OR-clause broken out into subterms */
2278 SrcList
*pOrTab
; /* Shortened table list or OR-clause generation */
2279 Index
*pCov
= 0; /* Potential covering index (or NULL) */
2280 int iCovCur
= pParse
->nTab
++; /* Cursor used for index scans (if any) */
2282 int regReturn
= ++pParse
->nMem
; /* Register used with OP_Gosub */
2283 int regRowset
= 0; /* Register for RowSet object */
2284 int regRowid
= 0; /* Register holding rowid */
2285 int iLoopBody
= sqlite3VdbeMakeLabel(pParse
);/* Start of loop body */
2286 int iRetInit
; /* Address of regReturn init */
2287 int untestedTerms
= 0; /* Some terms not completely tested */
2288 int ii
; /* Loop counter */
2289 Expr
*pAndExpr
= 0; /* An ".. AND (...)" expression */
2290 Table
*pTab
= pTabItem
->pTab
;
2292 pTerm
= pLoop
->aLTerm
[0];
2294 assert( pTerm
->eOperator
& WO_OR
);
2295 assert( (pTerm
->wtFlags
& TERM_ORINFO
)!=0 );
2296 pOrWc
= &pTerm
->u
.pOrInfo
->wc
;
2297 pLevel
->op
= OP_Return
;
2298 pLevel
->p1
= regReturn
;
2300 /* Set up a new SrcList in pOrTab containing the table being scanned
2301 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
2302 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
2304 if( pWInfo
->nLevel
>1 ){
2305 int nNotReady
; /* The number of notReady tables */
2306 SrcItem
*origSrc
; /* Original list of tables */
2307 nNotReady
= pWInfo
->nLevel
- iLevel
- 1;
2308 pOrTab
= sqlite3StackAllocRaw(db
,
2309 sizeof(*pOrTab
)+ nNotReady
*sizeof(pOrTab
->a
[0]));
2310 if( pOrTab
==0 ) return notReady
;
2311 pOrTab
->nAlloc
= (u8
)(nNotReady
+ 1);
2312 pOrTab
->nSrc
= pOrTab
->nAlloc
;
2313 memcpy(pOrTab
->a
, pTabItem
, sizeof(*pTabItem
));
2314 origSrc
= pWInfo
->pTabList
->a
;
2315 for(k
=1; k
<=nNotReady
; k
++){
2316 memcpy(&pOrTab
->a
[k
], &origSrc
[pLevel
[k
].iFrom
], sizeof(pOrTab
->a
[k
]));
2319 pOrTab
= pWInfo
->pTabList
;
2322 /* Initialize the rowset register to contain NULL. An SQL NULL is
2323 ** equivalent to an empty rowset. Or, create an ephemeral index
2324 ** capable of holding primary keys in the case of a WITHOUT ROWID.
2326 ** Also initialize regReturn to contain the address of the instruction
2327 ** immediately following the OP_Return at the bottom of the loop. This
2328 ** is required in a few obscure LEFT JOIN cases where control jumps
2329 ** over the top of the loop into the body of it. In this case the
2330 ** correct response for the end-of-loop code (the OP_Return) is to
2331 ** fall through to the next instruction, just as an OP_Next does if
2332 ** called on an uninitialized cursor.
2334 if( (pWInfo
->wctrlFlags
& WHERE_DUPLICATES_OK
)==0 ){
2335 if( HasRowid(pTab
) ){
2336 regRowset
= ++pParse
->nMem
;
2337 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regRowset
);
2339 Index
*pPk
= sqlite3PrimaryKeyIndex(pTab
);
2340 regRowset
= pParse
->nTab
++;
2341 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, regRowset
, pPk
->nKeyCol
);
2342 sqlite3VdbeSetP4KeyInfo(pParse
, pPk
);
2344 regRowid
= ++pParse
->nMem
;
2346 iRetInit
= sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regReturn
);
2348 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y
2349 ** Then for every term xN, evaluate as the subexpression: xN AND y
2350 ** That way, terms in y that are factored into the disjunction will
2351 ** be picked up by the recursive calls to sqlite3WhereBegin() below.
2353 ** Actually, each subexpression is converted to "xN AND w" where w is
2354 ** the "interesting" terms of z - terms that did not originate in the
2355 ** ON or USING clause of a LEFT JOIN, and terms that are usable as
2358 ** This optimization also only applies if the (x1 OR x2 OR ...) term
2359 ** is not contained in the ON clause of a LEFT JOIN.
2360 ** See ticket http://www.sqlite.org/src/info/f2369304e4
2362 ** 2022-02-04: Do not push down slices of a row-value comparison.
2363 ** In other words, "w" or "y" may not be a slice of a vector. Otherwise,
2364 ** the initialization of the right-hand operand of the vector comparison
2365 ** might not occur, or might occur only in an OR branch that is not
2366 ** taken. dbsqlfuzz 80a9fade844b4fb43564efc972bcb2c68270f5d1.
2368 ** 2022-03-03: Do not push down expressions that involve subqueries.
2369 ** The subquery might get coded as a subroutine. Any table-references
2370 ** in the subquery might be resolved to index-references for the index on
2371 ** the OR branch in which the subroutine is coded. But if the subroutine
2372 ** is invoked from a different OR branch that uses a different index, such
2373 ** index-references will not work. tag-20220303a
2374 ** https://sqlite.org/forum/forumpost/36937b197273d403
2378 for(iTerm
=0; iTerm
<pWC
->nTerm
; iTerm
++){
2379 Expr
*pExpr
= pWC
->a
[iTerm
].pExpr
;
2380 if( &pWC
->a
[iTerm
] == pTerm
) continue;
2381 testcase( pWC
->a
[iTerm
].wtFlags
& TERM_VIRTUAL
);
2382 testcase( pWC
->a
[iTerm
].wtFlags
& TERM_CODED
);
2383 testcase( pWC
->a
[iTerm
].wtFlags
& TERM_SLICE
);
2384 if( (pWC
->a
[iTerm
].wtFlags
& (TERM_VIRTUAL
|TERM_CODED
|TERM_SLICE
))!=0 ){
2387 if( (pWC
->a
[iTerm
].eOperator
& WO_ALL
)==0 ) continue;
2388 if( ExprHasProperty(pExpr
, EP_Subquery
) ) continue; /* tag-20220303a */
2389 pExpr
= sqlite3ExprDup(db
, pExpr
, 0);
2390 pAndExpr
= sqlite3ExprAnd(pParse
, pAndExpr
, pExpr
);
2393 /* The extra 0x10000 bit on the opcode is masked off and does not
2394 ** become part of the new Expr.op. However, it does make the
2395 ** op==TK_AND comparison inside of sqlite3PExpr() false, and this
2396 ** prevents sqlite3PExpr() from applying the AND short-circuit
2397 ** optimization, which we do not want here. */
2398 pAndExpr
= sqlite3PExpr(pParse
, TK_AND
|0x10000, 0, pAndExpr
);
2402 /* Run a separate WHERE clause for each term of the OR clause. After
2403 ** eliminating duplicates from other WHERE clauses, the action for each
2404 ** sub-WHERE clause is to to invoke the main loop body as a subroutine.
2406 ExplainQueryPlan((pParse
, 1, "MULTI-INDEX OR"));
2407 for(ii
=0; ii
<pOrWc
->nTerm
; ii
++){
2408 WhereTerm
*pOrTerm
= &pOrWc
->a
[ii
];
2409 if( pOrTerm
->leftCursor
==iCur
|| (pOrTerm
->eOperator
& WO_AND
)!=0 ){
2410 WhereInfo
*pSubWInfo
; /* Info for single OR-term scan */
2411 Expr
*pOrExpr
= pOrTerm
->pExpr
; /* Current OR clause term */
2412 Expr
*pDelete
; /* Local copy of OR clause term */
2413 int jmp1
= 0; /* Address of jump operation */
2414 testcase( (pTabItem
[0].fg
.jointype
& JT_LEFT
)!=0
2415 && !ExprHasProperty(pOrExpr
, EP_OuterON
)
2416 ); /* See TH3 vtab25.400 and ticket 614b25314c766238 */
2417 pDelete
= pOrExpr
= sqlite3ExprDup(db
, pOrExpr
, 0);
2418 if( db
->mallocFailed
){
2419 sqlite3ExprDelete(db
, pDelete
);
2423 pAndExpr
->pLeft
= pOrExpr
;
2426 /* Loop through table entries that match term pOrTerm. */
2427 ExplainQueryPlan((pParse
, 1, "INDEX %d", ii
+1));
2428 WHERETRACE(0xffff, ("Subplan for OR-clause:\n"));
2429 pSubWInfo
= sqlite3WhereBegin(pParse
, pOrTab
, pOrExpr
, 0, 0, 0,
2430 WHERE_OR_SUBCLAUSE
, iCovCur
);
2431 assert( pSubWInfo
|| pParse
->nErr
);
2433 WhereLoop
*pSubLoop
;
2434 int addrExplain
= sqlite3WhereExplainOneScan(
2435 pParse
, pOrTab
, &pSubWInfo
->a
[0], 0
2437 sqlite3WhereAddScanStatus(v
, pOrTab
, &pSubWInfo
->a
[0], addrExplain
);
2439 /* This is the sub-WHERE clause body. First skip over
2440 ** duplicate rows from prior sub-WHERE clauses, and record the
2441 ** rowid (or PRIMARY KEY) for the current row so that the same
2442 ** row will be skipped in subsequent sub-WHERE clauses.
2444 if( (pWInfo
->wctrlFlags
& WHERE_DUPLICATES_OK
)==0 ){
2445 int iSet
= ((ii
==pOrWc
->nTerm
-1)?-1:ii
);
2446 if( HasRowid(pTab
) ){
2447 sqlite3ExprCodeGetColumnOfTable(v
, pTab
, iCur
, -1, regRowid
);
2448 jmp1
= sqlite3VdbeAddOp4Int(v
, OP_RowSetTest
, regRowset
, 0,
2452 Index
*pPk
= sqlite3PrimaryKeyIndex(pTab
);
2453 int nPk
= pPk
->nKeyCol
;
2457 /* Read the PK into an array of temp registers. */
2458 r
= sqlite3GetTempRange(pParse
, nPk
);
2459 for(iPk
=0; iPk
<nPk
; iPk
++){
2460 int iCol
= pPk
->aiColumn
[iPk
];
2461 sqlite3ExprCodeGetColumnOfTable(v
, pTab
, iCur
, iCol
,r
+iPk
);
2464 /* Check if the temp table already contains this key. If so,
2465 ** the row has already been included in the result set and
2466 ** can be ignored (by jumping past the Gosub below). Otherwise,
2467 ** insert the key into the temp table and proceed with processing
2470 ** Use some of the same optimizations as OP_RowSetTest: If iSet
2471 ** is zero, assume that the key cannot already be present in
2472 ** the temp table. And if iSet is -1, assume that there is no
2473 ** need to insert the key into the temp table, as it will never
2474 ** be tested for. */
2476 jmp1
= sqlite3VdbeAddOp4Int(v
, OP_Found
, regRowset
, 0, r
, nPk
);
2480 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, r
, nPk
, regRowid
);
2481 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, regRowset
, regRowid
,
2483 if( iSet
) sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
2486 /* Release the array of temp registers */
2487 sqlite3ReleaseTempRange(pParse
, r
, nPk
);
2491 /* Invoke the main loop body as a subroutine */
2492 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReturn
, iLoopBody
);
2494 /* Jump here (skipping the main loop body subroutine) if the
2495 ** current sub-WHERE row is a duplicate from prior sub-WHEREs. */
2496 if( jmp1
) sqlite3VdbeJumpHere(v
, jmp1
);
2498 /* The pSubWInfo->untestedTerms flag means that this OR term
2499 ** contained one or more AND term from a notReady table. The
2500 ** terms from the notReady table could not be tested and will
2501 ** need to be tested later.
2503 if( pSubWInfo
->untestedTerms
) untestedTerms
= 1;
2505 /* If all of the OR-connected terms are optimized using the same
2506 ** index, and the index is opened using the same cursor number
2507 ** by each call to sqlite3WhereBegin() made by this loop, it may
2508 ** be possible to use that index as a covering index.
2510 ** If the call to sqlite3WhereBegin() above resulted in a scan that
2511 ** uses an index, and this is either the first OR-connected term
2512 ** processed or the index is the same as that used by all previous
2513 ** terms, set pCov to the candidate covering index. Otherwise, set
2514 ** pCov to NULL to indicate that no candidate covering index will
2517 pSubLoop
= pSubWInfo
->a
[0].pWLoop
;
2518 assert( (pSubLoop
->wsFlags
& WHERE_AUTO_INDEX
)==0 );
2519 if( (pSubLoop
->wsFlags
& WHERE_INDEXED
)!=0
2520 && (ii
==0 || pSubLoop
->u
.btree
.pIndex
==pCov
)
2521 && (HasRowid(pTab
) || !IsPrimaryKeyIndex(pSubLoop
->u
.btree
.pIndex
))
2523 assert( pSubWInfo
->a
[0].iIdxCur
==iCovCur
);
2524 pCov
= pSubLoop
->u
.btree
.pIndex
;
2528 if( sqlite3WhereUsesDeferredSeek(pSubWInfo
) ){
2529 pWInfo
->bDeferredSeek
= 1;
2532 /* Finish the loop through table entries that match term pOrTerm. */
2533 sqlite3WhereEnd(pSubWInfo
);
2534 ExplainQueryPlanPop(pParse
);
2536 sqlite3ExprDelete(db
, pDelete
);
2539 ExplainQueryPlanPop(pParse
);
2540 assert( pLevel
->pWLoop
==pLoop
);
2541 assert( (pLoop
->wsFlags
& WHERE_MULTI_OR
)!=0 );
2542 assert( (pLoop
->wsFlags
& WHERE_IN_ABLE
)==0 );
2543 pLevel
->u
.pCoveringIdx
= pCov
;
2544 if( pCov
) pLevel
->iIdxCur
= iCovCur
;
2546 pAndExpr
->pLeft
= 0;
2547 sqlite3ExprDelete(db
, pAndExpr
);
2549 sqlite3VdbeChangeP1(v
, iRetInit
, sqlite3VdbeCurrentAddr(v
));
2550 sqlite3VdbeGoto(v
, pLevel
->addrBrk
);
2551 sqlite3VdbeResolveLabel(v
, iLoopBody
);
2553 /* Set the P2 operand of the OP_Return opcode that will end the current
2554 ** loop to point to this spot, which is the top of the next containing
2555 ** loop. The byte-code formatter will use that P2 value as a hint to
2556 ** indent everything in between the this point and the final OP_Return.
2557 ** See tag-20220407a in vdbe.c and shell.c */
2558 assert( pLevel
->op
==OP_Return
);
2559 pLevel
->p2
= sqlite3VdbeCurrentAddr(v
);
2561 if( pWInfo
->nLevel
>1 ){ sqlite3StackFree(db
, pOrTab
); }
2562 if( !untestedTerms
) disableTerm(pLevel
, pTerm
);
2564 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
2567 /* Case 6: There is no usable index. We must do a complete
2568 ** scan of the entire table.
2570 static const u8 aStep
[] = { OP_Next
, OP_Prev
};
2571 static const u8 aStart
[] = { OP_Rewind
, OP_Last
};
2572 assert( bRev
==0 || bRev
==1 );
2573 if( pTabItem
->fg
.isRecursive
){
2574 /* Tables marked isRecursive have only a single row that is stored in
2575 ** a pseudo-cursor. No need to Rewind or Next such cursors. */
2576 pLevel
->op
= OP_Noop
;
2578 codeCursorHint(pTabItem
, pWInfo
, pLevel
, 0);
2579 pLevel
->op
= aStep
[bRev
];
2581 pLevel
->p2
= 1 + sqlite3VdbeAddOp2(v
, aStart
[bRev
], iCur
, addrHalt
);
2582 VdbeCoverageIf(v
, bRev
==0);
2583 VdbeCoverageIf(v
, bRev
!=0);
2584 pLevel
->p5
= SQLITE_STMTSTATUS_FULLSCAN_STEP
;
2588 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2589 pLevel
->addrVisit
= sqlite3VdbeCurrentAddr(v
);
2592 /* Insert code to test every subexpression that can be completely
2593 ** computed using the current set of tables.
2595 ** This loop may run between one and three times, depending on the
2596 ** constraints to be generated. The value of stack variable iLoop
2597 ** determines the constraints coded by each iteration, as follows:
2599 ** iLoop==1: Code only expressions that are entirely covered by pIdx.
2600 ** iLoop==2: Code remaining expressions that do not contain correlated
2602 ** iLoop==3: Code all remaining expressions.
2604 ** An effort is made to skip unnecessary iterations of the loop.
2606 iLoop
= (pIdx
? 1 : 2);
2608 int iNext
= 0; /* Next value for iLoop */
2609 for(pTerm
=pWC
->a
, j
=pWC
->nTerm
; j
>0; j
--, pTerm
++){
2611 int skipLikeAddr
= 0;
2612 testcase( pTerm
->wtFlags
& TERM_VIRTUAL
);
2613 testcase( pTerm
->wtFlags
& TERM_CODED
);
2614 if( pTerm
->wtFlags
& (TERM_VIRTUAL
|TERM_CODED
) ) continue;
2615 if( (pTerm
->prereqAll
& pLevel
->notReady
)!=0 ){
2616 testcase( pWInfo
->untestedTerms
==0
2617 && (pWInfo
->wctrlFlags
& WHERE_OR_SUBCLAUSE
)!=0 );
2618 pWInfo
->untestedTerms
= 1;
2623 if( pTabItem
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
) ){
2624 if( !ExprHasProperty(pE
,EP_OuterON
|EP_InnerON
) ){
2625 /* Defer processing WHERE clause constraints until after outer
2626 ** join processing. tag-20220513a */
2628 }else if( (pTabItem
->fg
.jointype
& JT_LEFT
)==JT_LEFT
2629 && !ExprHasProperty(pE
,EP_OuterON
) ){
2632 Bitmask m
= sqlite3WhereGetMask(&pWInfo
->sMaskSet
, pE
->w
.iJoin
);
2633 if( m
& pLevel
->notReady
){
2634 /* An ON clause that is not ripe */
2639 if( iLoop
==1 && !sqlite3ExprCoveredByIndex(pE
, pLevel
->iTabCur
, pIdx
) ){
2643 if( iLoop
<3 && (pTerm
->wtFlags
& TERM_VARSELECT
) ){
2644 if( iNext
==0 ) iNext
= 3;
2648 if( (pTerm
->wtFlags
& TERM_LIKECOND
)!=0 ){
2649 /* If the TERM_LIKECOND flag is set, that means that the range search
2650 ** is sufficient to guarantee that the LIKE operator is true, so we
2651 ** can skip the call to the like(A,B) function. But this only works
2652 ** for strings. So do not skip the call to the function on the pass
2653 ** that compares BLOBs. */
2654 #ifdef SQLITE_LIKE_DOESNT_MATCH_BLOBS
2657 u32 x
= pLevel
->iLikeRepCntr
;
2659 skipLikeAddr
= sqlite3VdbeAddOp1(v
, (x
&1)?OP_IfNot
:OP_If
,(int)(x
>>1));
2660 VdbeCoverageIf(v
, (x
&1)==1);
2661 VdbeCoverageIf(v
, (x
&1)==0);
2665 #ifdef WHERETRACE_ENABLED /* 0xffff */
2666 if( sqlite3WhereTrace
){
2667 VdbeNoopComment((v
, "WhereTerm[%d] (%p) priority=%d",
2668 pWC
->nTerm
-j
, pTerm
, iLoop
));
2670 if( sqlite3WhereTrace
& 0x800 ){
2671 sqlite3DebugPrintf("Coding auxiliary constraint:\n");
2672 sqlite3WhereTermPrint(pTerm
, pWC
->nTerm
-j
);
2675 sqlite3ExprIfFalse(pParse
, pE
, addrCont
, SQLITE_JUMPIFNULL
);
2676 if( skipLikeAddr
) sqlite3VdbeJumpHere(v
, skipLikeAddr
);
2677 pTerm
->wtFlags
|= TERM_CODED
;
2682 /* Insert code to test for implied constraints based on transitivity
2683 ** of the "==" operator.
2685 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
2686 ** and we are coding the t1 loop and the t2 loop has not yet coded,
2687 ** then we cannot use the "t1.a=t2.b" constraint, but we can code
2688 ** the implied "t1.a=123" constraint.
2690 for(pTerm
=pWC
->a
, j
=pWC
->nBase
; j
>0; j
--, pTerm
++){
2693 if( pTerm
->wtFlags
& (TERM_VIRTUAL
|TERM_CODED
) ) continue;
2694 if( (pTerm
->eOperator
& (WO_EQ
|WO_IS
))==0 ) continue;
2695 if( (pTerm
->eOperator
& WO_EQUIV
)==0 ) continue;
2696 if( pTerm
->leftCursor
!=iCur
) continue;
2697 if( pTabItem
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
) ) continue;
2699 #ifdef WHERETRACE_ENABLED /* 0x800 */
2700 if( sqlite3WhereTrace
& 0x800 ){
2701 sqlite3DebugPrintf("Coding transitive constraint:\n");
2702 sqlite3WhereTermPrint(pTerm
, pWC
->nTerm
-j
);
2705 assert( !ExprHasProperty(pE
, EP_OuterON
) );
2706 assert( (pTerm
->prereqRight
& pLevel
->notReady
)!=0 );
2707 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 );
2708 pAlt
= sqlite3WhereFindTerm(pWC
, iCur
, pTerm
->u
.x
.leftColumn
, notReady
,
2709 WO_EQ
|WO_IN
|WO_IS
, 0);
2710 if( pAlt
==0 ) continue;
2711 if( pAlt
->wtFlags
& (TERM_CODED
) ) continue;
2712 if( (pAlt
->eOperator
& WO_IN
)
2713 && ExprUseXSelect(pAlt
->pExpr
)
2714 && (pAlt
->pExpr
->x
.pSelect
->pEList
->nExpr
>1)
2718 testcase( pAlt
->eOperator
& WO_EQ
);
2719 testcase( pAlt
->eOperator
& WO_IS
);
2720 testcase( pAlt
->eOperator
& WO_IN
);
2721 VdbeModuleComment((v
, "begin transitive constraint"));
2722 sEAlt
= *pAlt
->pExpr
;
2723 sEAlt
.pLeft
= pE
->pLeft
;
2724 sqlite3ExprIfFalse(pParse
, &sEAlt
, addrCont
, SQLITE_JUMPIFNULL
);
2725 pAlt
->wtFlags
|= TERM_CODED
;
2728 /* For a RIGHT OUTER JOIN, record the fact that the current row has
2729 ** been matched at least once.
2736 WhereRightJoin
*pRJ
= pLevel
->pRJ
;
2738 /* pTab is the right-hand table of the RIGHT JOIN. Generate code that
2739 ** will record that the current row of that table has been matched at
2740 ** least once. This is accomplished by storing the PK for the row in
2741 ** both the iMatch index and the regBloom Bloom filter.
2743 pTab
= pWInfo
->pTabList
->a
[pLevel
->iFrom
].pTab
;
2744 if( HasRowid(pTab
) ){
2745 r
= sqlite3GetTempRange(pParse
, 2);
2746 sqlite3ExprCodeGetColumnOfTable(v
, pTab
, pLevel
->iTabCur
, -1, r
+1);
2750 Index
*pPk
= sqlite3PrimaryKeyIndex(pTab
);
2752 r
= sqlite3GetTempRange(pParse
, nPk
+1);
2753 for(iPk
=0; iPk
<nPk
; iPk
++){
2754 int iCol
= pPk
->aiColumn
[iPk
];
2755 sqlite3ExprCodeGetColumnOfTable(v
, pTab
, iCur
, iCol
,r
+1+iPk
);
2758 jmp1
= sqlite3VdbeAddOp4Int(v
, OP_Found
, pRJ
->iMatch
, 0, r
+1, nPk
);
2760 VdbeComment((v
, "match against %s", pTab
->zName
));
2761 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, r
+1, nPk
, r
);
2762 sqlite3VdbeAddOp4Int(v
, OP_IdxInsert
, pRJ
->iMatch
, r
, r
+1, nPk
);
2763 sqlite3VdbeAddOp4Int(v
, OP_FilterAdd
, pRJ
->regBloom
, 0, r
+1, nPk
);
2764 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
2765 sqlite3VdbeJumpHere(v
, jmp1
);
2766 sqlite3ReleaseTempRange(pParse
, r
, nPk
+1);
2769 /* For a LEFT OUTER JOIN, generate code that will record the fact that
2770 ** at least one row of the right table has matched the left table.
2772 if( pLevel
->iLeftJoin
){
2773 pLevel
->addrFirst
= sqlite3VdbeCurrentAddr(v
);
2774 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, pLevel
->iLeftJoin
);
2775 VdbeComment((v
, "record LEFT JOIN hit"));
2776 if( pLevel
->pRJ
==0 ){
2777 goto code_outer_join_constraints
; /* WHERE clause constraints */
2782 /* Create a subroutine used to process all interior loops and code
2783 ** of the RIGHT JOIN. During normal operation, the subroutine will
2784 ** be in-line with the rest of the code. But at the end, a separate
2785 ** loop will run that invokes this subroutine for unmatched rows
2786 ** of pTab, with all tables to left begin set to NULL.
2788 WhereRightJoin
*pRJ
= pLevel
->pRJ
;
2789 sqlite3VdbeAddOp2(v
, OP_BeginSubrtn
, 0, pRJ
->regReturn
);
2790 pRJ
->addrSubrtn
= sqlite3VdbeCurrentAddr(v
);
2791 assert( pParse
->withinRJSubrtn
< 255 );
2792 pParse
->withinRJSubrtn
++;
2794 /* WHERE clause constraints must be deferred until after outer join
2795 ** row elimination has completed, since WHERE clause constraints apply
2796 ** to the results of the OUTER JOIN. The following loop generates the
2797 ** appropriate WHERE clause constraint checks. tag-20220513a.
2799 code_outer_join_constraints
:
2800 for(pTerm
=pWC
->a
, j
=0; j
<pWC
->nBase
; j
++, pTerm
++){
2801 testcase( pTerm
->wtFlags
& TERM_VIRTUAL
);
2802 testcase( pTerm
->wtFlags
& TERM_CODED
);
2803 if( pTerm
->wtFlags
& (TERM_VIRTUAL
|TERM_CODED
) ) continue;
2804 if( (pTerm
->prereqAll
& pLevel
->notReady
)!=0 ){
2805 assert( pWInfo
->untestedTerms
);
2808 if( pTabItem
->fg
.jointype
& JT_LTORJ
) continue;
2809 assert( pTerm
->pExpr
);
2810 sqlite3ExprIfFalse(pParse
, pTerm
->pExpr
, addrCont
, SQLITE_JUMPIFNULL
);
2811 pTerm
->wtFlags
|= TERM_CODED
;
2815 #if WHERETRACE_ENABLED /* 0x20800 */
2816 if( sqlite3WhereTrace
& 0x20000 ){
2817 sqlite3DebugPrintf("All WHERE-clause terms after coding level %d:\n",
2819 sqlite3WhereClausePrint(pWC
);
2821 if( sqlite3WhereTrace
& 0x800 ){
2822 sqlite3DebugPrintf("End Coding level %d: notReady=%llx\n",
2823 iLevel
, (u64
)pLevel
->notReady
);
2826 return pLevel
->notReady
;
2830 ** Generate the code for the loop that finds all non-matched terms
2831 ** for a RIGHT JOIN.
2833 SQLITE_NOINLINE
void sqlite3WhereRightJoinLoop(
2838 Parse
*pParse
= pWInfo
->pParse
;
2839 Vdbe
*v
= pParse
->pVdbe
;
2840 WhereRightJoin
*pRJ
= pLevel
->pRJ
;
2841 Expr
*pSubWhere
= 0;
2842 WhereClause
*pWC
= &pWInfo
->sWC
;
2843 WhereInfo
*pSubWInfo
;
2844 WhereLoop
*pLoop
= pLevel
->pWLoop
;
2845 SrcItem
*pTabItem
= &pWInfo
->pTabList
->a
[pLevel
->iFrom
];
2850 ExplainQueryPlan((pParse
, 1, "RIGHT-JOIN %s", pTabItem
->pTab
->zName
));
2851 sqlite3VdbeNoJumpsOutsideSubrtn(v
, pRJ
->addrSubrtn
, pRJ
->endSubrtn
,
2853 for(k
=0; k
<iLevel
; k
++){
2855 mAll
|= pWInfo
->a
[k
].pWLoop
->maskSelf
;
2856 sqlite3VdbeAddOp1(v
, OP_NullRow
, pWInfo
->a
[k
].iTabCur
);
2857 iIdxCur
= pWInfo
->a
[k
].iIdxCur
;
2859 sqlite3VdbeAddOp1(v
, OP_NullRow
, iIdxCur
);
2862 if( (pTabItem
->fg
.jointype
& JT_LTORJ
)==0 ){
2863 mAll
|= pLoop
->maskSelf
;
2864 for(k
=0; k
<pWC
->nTerm
; k
++){
2865 WhereTerm
*pTerm
= &pWC
->a
[k
];
2866 if( (pTerm
->wtFlags
& (TERM_VIRTUAL
|TERM_SLICE
))!=0
2867 && pTerm
->eOperator
!=WO_ROWVAL
2871 if( pTerm
->prereqAll
& ~mAll
) continue;
2872 if( ExprHasProperty(pTerm
->pExpr
, EP_OuterON
|EP_InnerON
) ) continue;
2873 pSubWhere
= sqlite3ExprAnd(pParse
, pSubWhere
,
2874 sqlite3ExprDup(pParse
->db
, pTerm
->pExpr
, 0));
2879 memcpy(&sFrom
.a
[0], pTabItem
, sizeof(SrcItem
));
2880 sFrom
.a
[0].fg
.jointype
= 0;
2881 assert( pParse
->withinRJSubrtn
< 100 );
2882 pParse
->withinRJSubrtn
++;
2883 pSubWInfo
= sqlite3WhereBegin(pParse
, &sFrom
, pSubWhere
, 0, 0, 0,
2884 WHERE_RIGHT_JOIN
, 0);
2886 int iCur
= pLevel
->iTabCur
;
2887 int r
= ++pParse
->nMem
;
2890 int addrCont
= sqlite3WhereContinueLabel(pSubWInfo
);
2891 Table
*pTab
= pTabItem
->pTab
;
2892 if( HasRowid(pTab
) ){
2893 sqlite3ExprCodeGetColumnOfTable(v
, pTab
, iCur
, -1, r
);
2897 Index
*pPk
= sqlite3PrimaryKeyIndex(pTab
);
2899 pParse
->nMem
+= nPk
- 1;
2900 for(iPk
=0; iPk
<nPk
; iPk
++){
2901 int iCol
= pPk
->aiColumn
[iPk
];
2902 sqlite3ExprCodeGetColumnOfTable(v
, pTab
, iCur
, iCol
,r
+iPk
);
2905 jmp
= sqlite3VdbeAddOp4Int(v
, OP_Filter
, pRJ
->regBloom
, 0, r
, nPk
);
2907 sqlite3VdbeAddOp4Int(v
, OP_Found
, pRJ
->iMatch
, addrCont
, r
, nPk
);
2909 sqlite3VdbeJumpHere(v
, jmp
);
2910 sqlite3VdbeAddOp2(v
, OP_Gosub
, pRJ
->regReturn
, pRJ
->addrSubrtn
);
2911 sqlite3WhereEnd(pSubWInfo
);
2913 sqlite3ExprDelete(pParse
->db
, pSubWhere
);
2914 ExplainQueryPlanPop(pParse
);
2915 assert( pParse
->withinRJSubrtn
>0 );
2916 pParse
->withinRJSubrtn
--;