replace use of sqlite3StrICmp with public sqlite3_stricmp API
[sqlcipher.git] / src / build.c
blob5bf5680d4679e85b3f4407c6fde7f38b889507af
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
16 ** CREATE TABLE
17 ** DROP TABLE
18 ** CREATE INDEX
19 ** DROP INDEX
20 ** creating ID lists
21 ** BEGIN TRANSACTION
22 ** COMMIT
23 ** ROLLBACK
25 #include "sqliteInt.h"
27 #ifndef SQLITE_OMIT_SHARED_CACHE
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
32 struct TableLock {
33 int iDb; /* The database containing the table to be locked */
34 Pgno iTab; /* The root page of the table to be locked */
35 u8 isWriteLock; /* True for write lock. False for a read lock */
36 const char *zLockName; /* Name of the table */
40 ** Record the fact that we want to lock a table at run-time.
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
45 ** This routine just records the fact that the lock is desired. The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
49 static SQLITE_NOINLINE void lockTable(
50 Parse *pParse, /* Parsing context */
51 int iDb, /* Index of the database containing the table to lock */
52 Pgno iTab, /* Root page number of the table to be locked */
53 u8 isWriteLock, /* True for a write lock */
54 const char *zName /* Name of the table to be locked */
56 Parse *pToplevel;
57 int i;
58 int nBytes;
59 TableLock *p;
60 assert( iDb>=0 );
62 pToplevel = sqlite3ParseToplevel(pParse);
63 for(i=0; i<pToplevel->nTableLock; i++){
64 p = &pToplevel->aTableLock[i];
65 if( p->iDb==iDb && p->iTab==iTab ){
66 p->isWriteLock = (p->isWriteLock || isWriteLock);
67 return;
71 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
72 pToplevel->aTableLock =
73 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
74 if( pToplevel->aTableLock ){
75 p = &pToplevel->aTableLock[pToplevel->nTableLock++];
76 p->iDb = iDb;
77 p->iTab = iTab;
78 p->isWriteLock = isWriteLock;
79 p->zLockName = zName;
80 }else{
81 pToplevel->nTableLock = 0;
82 sqlite3OomFault(pToplevel->db);
85 void sqlite3TableLock(
86 Parse *pParse, /* Parsing context */
87 int iDb, /* Index of the database containing the table to lock */
88 Pgno iTab, /* Root page number of the table to be locked */
89 u8 isWriteLock, /* True for a write lock */
90 const char *zName /* Name of the table to be locked */
92 if( iDb==1 ) return;
93 if( !sqlite3BtreeSharable(pParse->db->aDb[iDb].pBt) ) return;
94 lockTable(pParse, iDb, iTab, isWriteLock, zName);
98 ** Code an OP_TableLock instruction for each table locked by the
99 ** statement (configured by calls to sqlite3TableLock()).
101 static void codeTableLocks(Parse *pParse){
102 int i;
103 Vdbe *pVdbe = pParse->pVdbe;
104 assert( pVdbe!=0 );
106 for(i=0; i<pParse->nTableLock; i++){
107 TableLock *p = &pParse->aTableLock[i];
108 int p1 = p->iDb;
109 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
110 p->zLockName, P4_STATIC);
113 #else
114 #define codeTableLocks(x)
115 #endif
118 ** Return TRUE if the given yDbMask object is empty - if it contains no
119 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
120 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
122 #if SQLITE_MAX_ATTACHED>30
123 int sqlite3DbMaskAllZero(yDbMask m){
124 int i;
125 for(i=0; i<sizeof(yDbMask); i++) if( m[i] ) return 0;
126 return 1;
128 #endif
131 ** This routine is called after a single SQL statement has been
132 ** parsed and a VDBE program to execute that statement has been
133 ** prepared. This routine puts the finishing touches on the
134 ** VDBE program and resets the pParse structure for the next
135 ** parse.
137 ** Note that if an error occurred, it might be the case that
138 ** no VDBE code was generated.
140 void sqlite3FinishCoding(Parse *pParse){
141 sqlite3 *db;
142 Vdbe *v;
144 assert( pParse->pToplevel==0 );
145 db = pParse->db;
146 if( pParse->nested ) return;
147 if( db->mallocFailed || pParse->nErr ){
148 if( pParse->rc==SQLITE_OK ) pParse->rc = SQLITE_ERROR;
149 return;
152 /* Begin by generating some termination code at the end of the
153 ** vdbe program
155 v = pParse->pVdbe;
156 if( v==0 ){
157 if( db->init.busy ){
158 pParse->rc = SQLITE_DONE;
159 return;
161 v = sqlite3GetVdbe(pParse);
162 if( v==0 ) pParse->rc = SQLITE_ERROR;
164 assert( !pParse->isMultiWrite
165 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
166 if( v ){
167 if( pParse->bReturning ){
168 Returning *pReturning = pParse->u1.pReturning;
169 int addrRewind;
170 int i;
171 int reg;
173 addrRewind =
174 sqlite3VdbeAddOp1(v, OP_Rewind, pReturning->iRetCur);
175 VdbeCoverage(v);
176 reg = pReturning->iRetReg;
177 for(i=0; i<pReturning->nRetCol; i++){
178 sqlite3VdbeAddOp3(v, OP_Column, pReturning->iRetCur, i, reg+i);
180 sqlite3VdbeAddOp2(v, OP_ResultRow, reg, i);
181 sqlite3VdbeAddOp2(v, OP_Next, pReturning->iRetCur, addrRewind+1);
182 VdbeCoverage(v);
183 sqlite3VdbeJumpHere(v, addrRewind);
185 sqlite3VdbeAddOp0(v, OP_Halt);
187 #if SQLITE_USER_AUTHENTICATION
188 if( pParse->nTableLock>0 && db->init.busy==0 ){
189 sqlite3UserAuthInit(db);
190 if( db->auth.authLevel<UAUTH_User ){
191 sqlite3ErrorMsg(pParse, "user not authenticated");
192 pParse->rc = SQLITE_AUTH_USER;
193 return;
196 #endif
198 /* The cookie mask contains one bit for each database file open.
199 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
200 ** set for each database that is used. Generate code to start a
201 ** transaction on each used database and to verify the schema cookie
202 ** on each used database.
204 if( db->mallocFailed==0
205 && (DbMaskNonZero(pParse->cookieMask) || pParse->pConstExpr)
207 int iDb, i;
208 assert( sqlite3VdbeGetOp(v, 0)->opcode==OP_Init );
209 sqlite3VdbeJumpHere(v, 0);
210 for(iDb=0; iDb<db->nDb; iDb++){
211 Schema *pSchema;
212 if( DbMaskTest(pParse->cookieMask, iDb)==0 ) continue;
213 sqlite3VdbeUsesBtree(v, iDb);
214 pSchema = db->aDb[iDb].pSchema;
215 sqlite3VdbeAddOp4Int(v,
216 OP_Transaction, /* Opcode */
217 iDb, /* P1 */
218 DbMaskTest(pParse->writeMask,iDb), /* P2 */
219 pSchema->schema_cookie, /* P3 */
220 pSchema->iGeneration /* P4 */
222 if( db->init.busy==0 ) sqlite3VdbeChangeP5(v, 1);
223 VdbeComment((v,
224 "usesStmtJournal=%d", pParse->mayAbort && pParse->isMultiWrite));
226 #ifndef SQLITE_OMIT_VIRTUALTABLE
227 for(i=0; i<pParse->nVtabLock; i++){
228 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
229 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
231 pParse->nVtabLock = 0;
232 #endif
234 /* Once all the cookies have been verified and transactions opened,
235 ** obtain the required table-locks. This is a no-op unless the
236 ** shared-cache feature is enabled.
238 codeTableLocks(pParse);
240 /* Initialize any AUTOINCREMENT data structures required.
242 sqlite3AutoincrementBegin(pParse);
244 /* Code constant expressions that where factored out of inner loops.
246 ** The pConstExpr list might also contain expressions that we simply
247 ** want to keep around until the Parse object is deleted. Such
248 ** expressions have iConstExprReg==0. Do not generate code for
249 ** those expressions, of course.
251 if( pParse->pConstExpr ){
252 ExprList *pEL = pParse->pConstExpr;
253 pParse->okConstFactor = 0;
254 for(i=0; i<pEL->nExpr; i++){
255 int iReg = pEL->a[i].u.iConstExprReg;
256 if( iReg>0 ){
257 sqlite3ExprCode(pParse, pEL->a[i].pExpr, iReg);
262 if( pParse->bReturning ){
263 Returning *pRet = pParse->u1.pReturning;
264 sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pRet->iRetCur, pRet->nRetCol);
267 /* Finally, jump back to the beginning of the executable code. */
268 sqlite3VdbeGoto(v, 1);
272 /* Get the VDBE program ready for execution
274 if( v && pParse->nErr==0 && !db->mallocFailed ){
275 /* A minimum of one cursor is required if autoincrement is used
276 * See ticket [a696379c1f08866] */
277 assert( pParse->pAinc==0 || pParse->nTab>0 );
278 sqlite3VdbeMakeReady(v, pParse);
279 pParse->rc = SQLITE_DONE;
280 }else{
281 pParse->rc = SQLITE_ERROR;
286 ** Run the parser and code generator recursively in order to generate
287 ** code for the SQL statement given onto the end of the pParse context
288 ** currently under construction. When the parser is run recursively
289 ** this way, the final OP_Halt is not appended and other initialization
290 ** and finalization steps are omitted because those are handling by the
291 ** outermost parser.
293 ** Not everything is nestable. This facility is designed to permit
294 ** INSERT, UPDATE, and DELETE operations against the schema table. Use
295 ** care if you decide to try to use this routine for some other purposes.
297 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
298 va_list ap;
299 char *zSql;
300 char *zErrMsg = 0;
301 sqlite3 *db = pParse->db;
302 char saveBuf[PARSE_TAIL_SZ];
304 if( pParse->nErr ) return;
305 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
306 va_start(ap, zFormat);
307 zSql = sqlite3VMPrintf(db, zFormat, ap);
308 va_end(ap);
309 if( zSql==0 ){
310 /* This can result either from an OOM or because the formatted string
311 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set
312 ** an error */
313 if( !db->mallocFailed ) pParse->rc = SQLITE_TOOBIG;
314 pParse->nErr++;
315 return;
317 pParse->nested++;
318 memcpy(saveBuf, PARSE_TAIL(pParse), PARSE_TAIL_SZ);
319 memset(PARSE_TAIL(pParse), 0, PARSE_TAIL_SZ);
320 sqlite3RunParser(pParse, zSql, &zErrMsg);
321 sqlite3DbFree(db, zErrMsg);
322 sqlite3DbFree(db, zSql);
323 memcpy(PARSE_TAIL(pParse), saveBuf, PARSE_TAIL_SZ);
324 pParse->nested--;
327 #if SQLITE_USER_AUTHENTICATION
329 ** Return TRUE if zTable is the name of the system table that stores the
330 ** list of users and their access credentials.
332 int sqlite3UserAuthTable(const char *zTable){
333 return sqlite3_stricmp(zTable, "sqlite_user")==0;
335 #endif
338 ** Locate the in-memory structure that describes a particular database
339 ** table given the name of that table and (optionally) the name of the
340 ** database containing the table. Return NULL if not found.
342 ** If zDatabase is 0, all databases are searched for the table and the
343 ** first matching table is returned. (No checking for duplicate table
344 ** names is done.) The search order is TEMP first, then MAIN, then any
345 ** auxiliary databases added using the ATTACH command.
347 ** See also sqlite3LocateTable().
349 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
350 Table *p = 0;
351 int i;
353 /* All mutexes are required for schema access. Make sure we hold them. */
354 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
355 #if SQLITE_USER_AUTHENTICATION
356 /* Only the admin user is allowed to know that the sqlite_user table
357 ** exists */
358 if( db->auth.authLevel<UAUTH_Admin && sqlite3UserAuthTable(zName)!=0 ){
359 return 0;
361 #endif
362 if( zDatabase ){
363 for(i=0; i<db->nDb; i++){
364 if( sqlite3StrICmp(zDatabase, db->aDb[i].zDbSName)==0 ) break;
366 if( i>=db->nDb ){
367 /* No match against the official names. But always match "main"
368 ** to schema 0 as a legacy fallback. */
369 if( sqlite3StrICmp(zDatabase,"main")==0 ){
370 i = 0;
371 }else{
372 return 0;
375 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
376 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
377 if( i==1 ){
378 if( sqlite3StrICmp(zName+7, &ALT_TEMP_SCHEMA_TABLE[7])==0
379 || sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0
380 || sqlite3StrICmp(zName+7, &DFLT_SCHEMA_TABLE[7])==0
382 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
383 DFLT_TEMP_SCHEMA_TABLE);
385 }else{
386 if( sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 ){
387 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash,
388 DFLT_SCHEMA_TABLE);
392 }else{
393 /* Match against TEMP first */
394 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash, zName);
395 if( p ) return p;
396 /* The main database is second */
397 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, zName);
398 if( p ) return p;
399 /* Attached databases are in order of attachment */
400 for(i=2; i<db->nDb; i++){
401 assert( sqlite3SchemaMutexHeld(db, i, 0) );
402 p = sqlite3HashFind(&db->aDb[i].pSchema->tblHash, zName);
403 if( p ) break;
405 if( p==0 && sqlite3StrNICmp(zName, "sqlite_", 7)==0 ){
406 if( sqlite3StrICmp(zName+7, &ALT_SCHEMA_TABLE[7])==0 ){
407 p = sqlite3HashFind(&db->aDb[0].pSchema->tblHash, DFLT_SCHEMA_TABLE);
408 }else if( sqlite3StrICmp(zName+7, &ALT_TEMP_SCHEMA_TABLE[7])==0 ){
409 p = sqlite3HashFind(&db->aDb[1].pSchema->tblHash,
410 DFLT_TEMP_SCHEMA_TABLE);
414 return p;
418 ** Locate the in-memory structure that describes a particular database
419 ** table given the name of that table and (optionally) the name of the
420 ** database containing the table. Return NULL if not found. Also leave an
421 ** error message in pParse->zErrMsg.
423 ** The difference between this routine and sqlite3FindTable() is that this
424 ** routine leaves an error message in pParse->zErrMsg where
425 ** sqlite3FindTable() does not.
427 Table *sqlite3LocateTable(
428 Parse *pParse, /* context in which to report errors */
429 u32 flags, /* LOCATE_VIEW or LOCATE_NOERR */
430 const char *zName, /* Name of the table we are looking for */
431 const char *zDbase /* Name of the database. Might be NULL */
433 Table *p;
434 sqlite3 *db = pParse->db;
436 /* Read the database schema. If an error occurs, leave an error message
437 ** and code in pParse and return NULL. */
438 if( (db->mDbFlags & DBFLAG_SchemaKnownOk)==0
439 && SQLITE_OK!=sqlite3ReadSchema(pParse)
441 return 0;
444 p = sqlite3FindTable(db, zName, zDbase);
445 if( p==0 ){
446 #ifndef SQLITE_OMIT_VIRTUALTABLE
447 /* If zName is the not the name of a table in the schema created using
448 ** CREATE, then check to see if it is the name of an virtual table that
449 ** can be an eponymous virtual table. */
450 if( pParse->disableVtab==0 && db->init.busy==0 ){
451 Module *pMod = (Module*)sqlite3HashFind(&db->aModule, zName);
452 if( pMod==0 && sqlite3_strnicmp(zName, "pragma_", 7)==0 ){
453 pMod = sqlite3PragmaVtabRegister(db, zName);
455 if( pMod && sqlite3VtabEponymousTableInit(pParse, pMod) ){
456 return pMod->pEpoTab;
459 #endif
460 if( flags & LOCATE_NOERR ) return 0;
461 pParse->checkSchema = 1;
462 }else if( IsVirtual(p) && pParse->disableVtab ){
463 p = 0;
466 if( p==0 ){
467 const char *zMsg = flags & LOCATE_VIEW ? "no such view" : "no such table";
468 if( zDbase ){
469 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
470 }else{
471 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
473 }else{
474 assert( HasRowid(p) || p->iPKey<0 );
477 return p;
481 ** Locate the table identified by *p.
483 ** This is a wrapper around sqlite3LocateTable(). The difference between
484 ** sqlite3LocateTable() and this function is that this function restricts
485 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
486 ** non-NULL if it is part of a view or trigger program definition. See
487 ** sqlite3FixSrcList() for details.
489 Table *sqlite3LocateTableItem(
490 Parse *pParse,
491 u32 flags,
492 SrcItem *p
494 const char *zDb;
495 assert( p->pSchema==0 || p->zDatabase==0 );
496 if( p->pSchema ){
497 int iDb = sqlite3SchemaToIndex(pParse->db, p->pSchema);
498 zDb = pParse->db->aDb[iDb].zDbSName;
499 }else{
500 zDb = p->zDatabase;
502 return sqlite3LocateTable(pParse, flags, p->zName, zDb);
506 ** Locate the in-memory structure that describes
507 ** a particular index given the name of that index
508 ** and the name of the database that contains the index.
509 ** Return NULL if not found.
511 ** If zDatabase is 0, all databases are searched for the
512 ** table and the first matching index is returned. (No checking
513 ** for duplicate index names is done.) The search order is
514 ** TEMP first, then MAIN, then any auxiliary databases added
515 ** using the ATTACH command.
517 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
518 Index *p = 0;
519 int i;
520 /* All mutexes are required for schema access. Make sure we hold them. */
521 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
522 for(i=OMIT_TEMPDB; i<db->nDb; i++){
523 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
524 Schema *pSchema = db->aDb[j].pSchema;
525 assert( pSchema );
526 if( zDb && sqlite3DbIsNamed(db, j, zDb)==0 ) continue;
527 assert( sqlite3SchemaMutexHeld(db, j, 0) );
528 p = sqlite3HashFind(&pSchema->idxHash, zName);
529 if( p ) break;
531 return p;
535 ** Reclaim the memory used by an index
537 void sqlite3FreeIndex(sqlite3 *db, Index *p){
538 #ifndef SQLITE_OMIT_ANALYZE
539 sqlite3DeleteIndexSamples(db, p);
540 #endif
541 sqlite3ExprDelete(db, p->pPartIdxWhere);
542 sqlite3ExprListDelete(db, p->aColExpr);
543 sqlite3DbFree(db, p->zColAff);
544 if( p->isResized ) sqlite3DbFree(db, (void *)p->azColl);
545 #ifdef SQLITE_ENABLE_STAT4
546 sqlite3_free(p->aiRowEst);
547 #endif
548 sqlite3DbFree(db, p);
552 ** For the index called zIdxName which is found in the database iDb,
553 ** unlike that index from its Table then remove the index from
554 ** the index hash table and free all memory structures associated
555 ** with the index.
557 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
558 Index *pIndex;
559 Hash *pHash;
561 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
562 pHash = &db->aDb[iDb].pSchema->idxHash;
563 pIndex = sqlite3HashInsert(pHash, zIdxName, 0);
564 if( ALWAYS(pIndex) ){
565 if( pIndex->pTable->pIndex==pIndex ){
566 pIndex->pTable->pIndex = pIndex->pNext;
567 }else{
568 Index *p;
569 /* Justification of ALWAYS(); The index must be on the list of
570 ** indices. */
571 p = pIndex->pTable->pIndex;
572 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
573 if( ALWAYS(p && p->pNext==pIndex) ){
574 p->pNext = pIndex->pNext;
577 sqlite3FreeIndex(db, pIndex);
579 db->mDbFlags |= DBFLAG_SchemaChange;
583 ** Look through the list of open database files in db->aDb[] and if
584 ** any have been closed, remove them from the list. Reallocate the
585 ** db->aDb[] structure to a smaller size, if possible.
587 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
588 ** are never candidates for being collapsed.
590 void sqlite3CollapseDatabaseArray(sqlite3 *db){
591 int i, j;
592 for(i=j=2; i<db->nDb; i++){
593 struct Db *pDb = &db->aDb[i];
594 if( pDb->pBt==0 ){
595 sqlite3DbFree(db, pDb->zDbSName);
596 pDb->zDbSName = 0;
597 continue;
599 if( j<i ){
600 db->aDb[j] = db->aDb[i];
602 j++;
604 db->nDb = j;
605 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
606 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
607 sqlite3DbFree(db, db->aDb);
608 db->aDb = db->aDbStatic;
613 ** Reset the schema for the database at index iDb. Also reset the
614 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero.
615 ** Deferred resets may be run by calling with iDb<0.
617 void sqlite3ResetOneSchema(sqlite3 *db, int iDb){
618 int i;
619 assert( iDb<db->nDb );
621 if( iDb>=0 ){
622 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
623 DbSetProperty(db, iDb, DB_ResetWanted);
624 DbSetProperty(db, 1, DB_ResetWanted);
625 db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
628 if( db->nSchemaLock==0 ){
629 for(i=0; i<db->nDb; i++){
630 if( DbHasProperty(db, i, DB_ResetWanted) ){
631 sqlite3SchemaClear(db->aDb[i].pSchema);
638 ** Erase all schema information from all attached databases (including
639 ** "main" and "temp") for a single database connection.
641 void sqlite3ResetAllSchemasOfConnection(sqlite3 *db){
642 int i;
643 sqlite3BtreeEnterAll(db);
644 for(i=0; i<db->nDb; i++){
645 Db *pDb = &db->aDb[i];
646 if( pDb->pSchema ){
647 if( db->nSchemaLock==0 ){
648 sqlite3SchemaClear(pDb->pSchema);
649 }else{
650 DbSetProperty(db, i, DB_ResetWanted);
654 db->mDbFlags &= ~(DBFLAG_SchemaChange|DBFLAG_SchemaKnownOk);
655 sqlite3VtabUnlockList(db);
656 sqlite3BtreeLeaveAll(db);
657 if( db->nSchemaLock==0 ){
658 sqlite3CollapseDatabaseArray(db);
663 ** This routine is called when a commit occurs.
665 void sqlite3CommitInternalChanges(sqlite3 *db){
666 db->mDbFlags &= ~DBFLAG_SchemaChange;
670 ** Delete memory allocated for the column names of a table or view (the
671 ** Table.aCol[] array).
673 void sqlite3DeleteColumnNames(sqlite3 *db, Table *pTable){
674 int i;
675 Column *pCol;
676 assert( pTable!=0 );
677 if( (pCol = pTable->aCol)!=0 ){
678 for(i=0; i<pTable->nCol; i++, pCol++){
679 assert( pCol->zName==0 || pCol->hName==sqlite3StrIHash(pCol->zName) );
680 sqlite3DbFree(db, pCol->zName);
681 sqlite3ExprDelete(db, pCol->pDflt);
682 sqlite3DbFree(db, pCol->zColl);
684 sqlite3DbFree(db, pTable->aCol);
689 ** Remove the memory data structures associated with the given
690 ** Table. No changes are made to disk by this routine.
692 ** This routine just deletes the data structure. It does not unlink
693 ** the table data structure from the hash table. But it does destroy
694 ** memory structures of the indices and foreign keys associated with
695 ** the table.
697 ** The db parameter is optional. It is needed if the Table object
698 ** contains lookaside memory. (Table objects in the schema do not use
699 ** lookaside memory, but some ephemeral Table objects do.) Or the
700 ** db parameter can be used with db->pnBytesFreed to measure the memory
701 ** used by the Table object.
703 static void SQLITE_NOINLINE deleteTable(sqlite3 *db, Table *pTable){
704 Index *pIndex, *pNext;
706 #ifdef SQLITE_DEBUG
707 /* Record the number of outstanding lookaside allocations in schema Tables
708 ** prior to doing any free() operations. Since schema Tables do not use
709 ** lookaside, this number should not change.
711 ** If malloc has already failed, it may be that it failed while allocating
712 ** a Table object that was going to be marked ephemeral. So do not check
713 ** that no lookaside memory is used in this case either. */
714 int nLookaside = 0;
715 if( db && !db->mallocFailed && (pTable->tabFlags & TF_Ephemeral)==0 ){
716 nLookaside = sqlite3LookasideUsed(db, 0);
718 #endif
720 /* Delete all indices associated with this table. */
721 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
722 pNext = pIndex->pNext;
723 assert( pIndex->pSchema==pTable->pSchema
724 || (IsVirtual(pTable) && pIndex->idxType!=SQLITE_IDXTYPE_APPDEF) );
725 if( (db==0 || db->pnBytesFreed==0) && !IsVirtual(pTable) ){
726 char *zName = pIndex->zName;
727 TESTONLY ( Index *pOld = ) sqlite3HashInsert(
728 &pIndex->pSchema->idxHash, zName, 0
730 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
731 assert( pOld==pIndex || pOld==0 );
733 sqlite3FreeIndex(db, pIndex);
736 /* Delete any foreign keys attached to this table. */
737 sqlite3FkDelete(db, pTable);
739 /* Delete the Table structure itself.
741 sqlite3DeleteColumnNames(db, pTable);
742 sqlite3DbFree(db, pTable->zName);
743 sqlite3DbFree(db, pTable->zColAff);
744 sqlite3SelectDelete(db, pTable->pSelect);
745 sqlite3ExprListDelete(db, pTable->pCheck);
746 #ifndef SQLITE_OMIT_VIRTUALTABLE
747 sqlite3VtabClear(db, pTable);
748 #endif
749 sqlite3DbFree(db, pTable);
751 /* Verify that no lookaside memory was used by schema tables */
752 assert( nLookaside==0 || nLookaside==sqlite3LookasideUsed(db,0) );
754 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
755 /* Do not delete the table until the reference count reaches zero. */
756 if( !pTable ) return;
757 if( ((!db || db->pnBytesFreed==0) && (--pTable->nTabRef)>0) ) return;
758 deleteTable(db, pTable);
763 ** Unlink the given table from the hash tables and the delete the
764 ** table structure with all its indices and foreign keys.
766 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
767 Table *p;
768 Db *pDb;
770 assert( db!=0 );
771 assert( iDb>=0 && iDb<db->nDb );
772 assert( zTabName );
773 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
774 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */
775 pDb = &db->aDb[iDb];
776 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName, 0);
777 sqlite3DeleteTable(db, p);
778 db->mDbFlags |= DBFLAG_SchemaChange;
782 ** Given a token, return a string that consists of the text of that
783 ** token. Space to hold the returned string
784 ** is obtained from sqliteMalloc() and must be freed by the calling
785 ** function.
787 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
788 ** surround the body of the token are removed.
790 ** Tokens are often just pointers into the original SQL text and so
791 ** are not \000 terminated and are not persistent. The returned string
792 ** is \000 terminated and is persistent.
794 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
795 char *zName;
796 if( pName ){
797 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
798 sqlite3Dequote(zName);
799 }else{
800 zName = 0;
802 return zName;
806 ** Open the sqlite_schema table stored in database number iDb for
807 ** writing. The table is opened using cursor 0.
809 void sqlite3OpenSchemaTable(Parse *p, int iDb){
810 Vdbe *v = sqlite3GetVdbe(p);
811 sqlite3TableLock(p, iDb, SCHEMA_ROOT, 1, DFLT_SCHEMA_TABLE);
812 sqlite3VdbeAddOp4Int(v, OP_OpenWrite, 0, SCHEMA_ROOT, iDb, 5);
813 if( p->nTab==0 ){
814 p->nTab = 1;
819 ** Parameter zName points to a nul-terminated buffer containing the name
820 ** of a database ("main", "temp" or the name of an attached db). This
821 ** function returns the index of the named database in db->aDb[], or
822 ** -1 if the named db cannot be found.
824 int sqlite3FindDbName(sqlite3 *db, const char *zName){
825 int i = -1; /* Database number */
826 if( zName ){
827 Db *pDb;
828 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
829 if( 0==sqlite3_stricmp(pDb->zDbSName, zName) ) break;
830 /* "main" is always an acceptable alias for the primary database
831 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
832 if( i==0 && 0==sqlite3_stricmp("main", zName) ) break;
835 return i;
839 ** The token *pName contains the name of a database (either "main" or
840 ** "temp" or the name of an attached db). This routine returns the
841 ** index of the named database in db->aDb[], or -1 if the named db
842 ** does not exist.
844 int sqlite3FindDb(sqlite3 *db, Token *pName){
845 int i; /* Database number */
846 char *zName; /* Name we are searching for */
847 zName = sqlite3NameFromToken(db, pName);
848 i = sqlite3FindDbName(db, zName);
849 sqlite3DbFree(db, zName);
850 return i;
853 /* The table or view or trigger name is passed to this routine via tokens
854 ** pName1 and pName2. If the table name was fully qualified, for example:
856 ** CREATE TABLE xxx.yyy (...);
858 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
859 ** the table name is not fully qualified, i.e.:
861 ** CREATE TABLE yyy(...);
863 ** Then pName1 is set to "yyy" and pName2 is "".
865 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
866 ** pName2) that stores the unqualified table name. The index of the
867 ** database "xxx" is returned.
869 int sqlite3TwoPartName(
870 Parse *pParse, /* Parsing and code generating context */
871 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
872 Token *pName2, /* The "yyy" in the name "xxx.yyy" */
873 Token **pUnqual /* Write the unqualified object name here */
875 int iDb; /* Database holding the object */
876 sqlite3 *db = pParse->db;
878 assert( pName2!=0 );
879 if( pName2->n>0 ){
880 if( db->init.busy ) {
881 sqlite3ErrorMsg(pParse, "corrupt database");
882 return -1;
884 *pUnqual = pName2;
885 iDb = sqlite3FindDb(db, pName1);
886 if( iDb<0 ){
887 sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
888 return -1;
890 }else{
891 assert( db->init.iDb==0 || db->init.busy || IN_SPECIAL_PARSE
892 || (db->mDbFlags & DBFLAG_Vacuum)!=0);
893 iDb = db->init.iDb;
894 *pUnqual = pName1;
896 return iDb;
900 ** True if PRAGMA writable_schema is ON
902 int sqlite3WritableSchema(sqlite3 *db){
903 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==0 );
904 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
905 SQLITE_WriteSchema );
906 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
907 SQLITE_Defensive );
908 testcase( (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==
909 (SQLITE_WriteSchema|SQLITE_Defensive) );
910 return (db->flags&(SQLITE_WriteSchema|SQLITE_Defensive))==SQLITE_WriteSchema;
914 ** This routine is used to check if the UTF-8 string zName is a legal
915 ** unqualified name for a new schema object (table, index, view or
916 ** trigger). All names are legal except those that begin with the string
917 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
918 ** is reserved for internal use.
920 ** When parsing the sqlite_schema table, this routine also checks to
921 ** make sure the "type", "name", and "tbl_name" columns are consistent
922 ** with the SQL.
924 int sqlite3CheckObjectName(
925 Parse *pParse, /* Parsing context */
926 const char *zName, /* Name of the object to check */
927 const char *zType, /* Type of this object */
928 const char *zTblName /* Parent table name for triggers and indexes */
930 sqlite3 *db = pParse->db;
931 if( sqlite3WritableSchema(db)
932 || db->init.imposterTable
933 || !sqlite3Config.bExtraSchemaChecks
935 /* Skip these error checks for writable_schema=ON */
936 return SQLITE_OK;
938 if( db->init.busy ){
939 if( sqlite3_stricmp(zType, db->init.azInit[0])
940 || sqlite3_stricmp(zName, db->init.azInit[1])
941 || sqlite3_stricmp(zTblName, db->init.azInit[2])
943 sqlite3ErrorMsg(pParse, ""); /* corruptSchema() will supply the error */
944 return SQLITE_ERROR;
946 }else{
947 if( (pParse->nested==0 && 0==sqlite3StrNICmp(zName, "sqlite_", 7))
948 || (sqlite3ReadOnlyShadowTables(db) && sqlite3ShadowTableName(db, zName))
950 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s",
951 zName);
952 return SQLITE_ERROR;
956 return SQLITE_OK;
960 ** Return the PRIMARY KEY index of a table
962 Index *sqlite3PrimaryKeyIndex(Table *pTab){
963 Index *p;
964 for(p=pTab->pIndex; p && !IsPrimaryKeyIndex(p); p=p->pNext){}
965 return p;
969 ** Convert an table column number into a index column number. That is,
970 ** for the column iCol in the table (as defined by the CREATE TABLE statement)
971 ** find the (first) offset of that column in index pIdx. Or return -1
972 ** if column iCol is not used in index pIdx.
974 i16 sqlite3TableColumnToIndex(Index *pIdx, i16 iCol){
975 int i;
976 for(i=0; i<pIdx->nColumn; i++){
977 if( iCol==pIdx->aiColumn[i] ) return i;
979 return -1;
982 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
983 /* Convert a storage column number into a table column number.
985 ** The storage column number (0,1,2,....) is the index of the value
986 ** as it appears in the record on disk. The true column number
987 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement.
989 ** The storage column number is less than the table column number if
990 ** and only there are VIRTUAL columns to the left.
992 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro.
994 i16 sqlite3StorageColumnToTable(Table *pTab, i16 iCol){
995 if( pTab->tabFlags & TF_HasVirtual ){
996 int i;
997 for(i=0; i<=iCol; i++){
998 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ) iCol++;
1001 return iCol;
1003 #endif
1005 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1006 /* Convert a table column number into a storage column number.
1008 ** The storage column number (0,1,2,....) is the index of the value
1009 ** as it appears in the record on disk. Or, if the input column is
1010 ** the N-th virtual column (zero-based) then the storage number is
1011 ** the number of non-virtual columns in the table plus N.
1013 ** The true column number is the index (0,1,2,...) of the column in
1014 ** the CREATE TABLE statement.
1016 ** If the input column is a VIRTUAL column, then it should not appear
1017 ** in storage. But the value sometimes is cached in registers that
1018 ** follow the range of registers used to construct storage. This
1019 ** avoids computing the same VIRTUAL column multiple times, and provides
1020 ** values for use by OP_Param opcodes in triggers. Hence, if the
1021 ** input column is a VIRTUAL table, put it after all the other columns.
1023 ** In the following, N means "normal column", S means STORED, and
1024 ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this:
1026 ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V);
1027 ** -- 0 1 2 3 4 5 6 7 8
1029 ** Then the mapping from this function is as follows:
1031 ** INPUTS: 0 1 2 3 4 5 6 7 8
1032 ** OUTPUTS: 0 1 6 2 3 7 4 5 8
1034 ** So, in other words, this routine shifts all the virtual columns to
1035 ** the end.
1037 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and
1038 ** this routine is a no-op macro. If the pTab does not have any virtual
1039 ** columns, then this routine is no-op that always return iCol. If iCol
1040 ** is negative (indicating the ROWID column) then this routine return iCol.
1042 i16 sqlite3TableColumnToStorage(Table *pTab, i16 iCol){
1043 int i;
1044 i16 n;
1045 assert( iCol<pTab->nCol );
1046 if( (pTab->tabFlags & TF_HasVirtual)==0 || iCol<0 ) return iCol;
1047 for(i=0, n=0; i<iCol; i++){
1048 if( (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) n++;
1050 if( pTab->aCol[i].colFlags & COLFLAG_VIRTUAL ){
1051 /* iCol is a virtual column itself */
1052 return pTab->nNVCol + i - n;
1053 }else{
1054 /* iCol is a normal or stored column */
1055 return n;
1058 #endif
1061 ** Insert a single OP_JournalMode query opcode in order to force the
1062 ** prepared statement to return false for sqlite3_stmt_readonly(). This
1063 ** is used by CREATE TABLE IF NOT EXISTS and similar if the table already
1064 ** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS
1065 ** will return false for sqlite3_stmt_readonly() even if that statement
1066 ** is a read-only no-op.
1068 static void sqlite3ForceNotReadOnly(Parse *pParse){
1069 int iReg = ++pParse->nMem;
1070 Vdbe *v = sqlite3GetVdbe(pParse);
1071 if( v ){
1072 sqlite3VdbeAddOp3(v, OP_JournalMode, 0, iReg, PAGER_JOURNALMODE_QUERY);
1073 sqlite3VdbeUsesBtree(v, 0);
1078 ** Begin constructing a new table representation in memory. This is
1079 ** the first of several action routines that get called in response
1080 ** to a CREATE TABLE statement. In particular, this routine is called
1081 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
1082 ** flag is true if the table should be stored in the auxiliary database
1083 ** file instead of in the main database file. This is normally the case
1084 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
1085 ** CREATE and TABLE.
1087 ** The new table record is initialized and put in pParse->pNewTable.
1088 ** As more of the CREATE TABLE statement is parsed, additional action
1089 ** routines will be called to add more information to this record.
1090 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
1091 ** is called to complete the construction of the new table record.
1093 void sqlite3StartTable(
1094 Parse *pParse, /* Parser context */
1095 Token *pName1, /* First part of the name of the table or view */
1096 Token *pName2, /* Second part of the name of the table or view */
1097 int isTemp, /* True if this is a TEMP table */
1098 int isView, /* True if this is a VIEW */
1099 int isVirtual, /* True if this is a VIRTUAL table */
1100 int noErr /* Do nothing if table already exists */
1102 Table *pTable;
1103 char *zName = 0; /* The name of the new table */
1104 sqlite3 *db = pParse->db;
1105 Vdbe *v;
1106 int iDb; /* Database number to create the table in */
1107 Token *pName; /* Unqualified name of the table to create */
1109 if( db->init.busy && db->init.newTnum==1 ){
1110 /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */
1111 iDb = db->init.iDb;
1112 zName = sqlite3DbStrDup(db, SCHEMA_TABLE(iDb));
1113 pName = pName1;
1114 }else{
1115 /* The common case */
1116 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
1117 if( iDb<0 ) return;
1118 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
1119 /* If creating a temp table, the name may not be qualified. Unless
1120 ** the database name is "temp" anyway. */
1121 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
1122 return;
1124 if( !OMIT_TEMPDB && isTemp ) iDb = 1;
1125 zName = sqlite3NameFromToken(db, pName);
1126 if( IN_RENAME_OBJECT ){
1127 sqlite3RenameTokenMap(pParse, (void*)zName, pName);
1130 pParse->sNameToken = *pName;
1131 if( zName==0 ) return;
1132 if( sqlite3CheckObjectName(pParse, zName, isView?"view":"table", zName) ){
1133 goto begin_table_error;
1135 if( db->init.iDb==1 ) isTemp = 1;
1136 #ifndef SQLITE_OMIT_AUTHORIZATION
1137 assert( isTemp==0 || isTemp==1 );
1138 assert( isView==0 || isView==1 );
1140 static const u8 aCode[] = {
1141 SQLITE_CREATE_TABLE,
1142 SQLITE_CREATE_TEMP_TABLE,
1143 SQLITE_CREATE_VIEW,
1144 SQLITE_CREATE_TEMP_VIEW
1146 char *zDb = db->aDb[iDb].zDbSName;
1147 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
1148 goto begin_table_error;
1150 if( !isVirtual && sqlite3AuthCheck(pParse, (int)aCode[isTemp+2*isView],
1151 zName, 0, zDb) ){
1152 goto begin_table_error;
1155 #endif
1157 /* Make sure the new table name does not collide with an existing
1158 ** index or table name in the same database. Issue an error message if
1159 ** it does. The exception is if the statement being parsed was passed
1160 ** to an sqlite3_declare_vtab() call. In that case only the column names
1161 ** and types will be used, so there is no need to test for namespace
1162 ** collisions.
1164 if( !IN_SPECIAL_PARSE ){
1165 char *zDb = db->aDb[iDb].zDbSName;
1166 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
1167 goto begin_table_error;
1169 pTable = sqlite3FindTable(db, zName, zDb);
1170 if( pTable ){
1171 if( !noErr ){
1172 sqlite3ErrorMsg(pParse, "table %T already exists", pName);
1173 }else{
1174 assert( !db->init.busy || CORRUPT_DB );
1175 sqlite3CodeVerifySchema(pParse, iDb);
1176 sqlite3ForceNotReadOnly(pParse);
1178 goto begin_table_error;
1180 if( sqlite3FindIndex(db, zName, zDb)!=0 ){
1181 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
1182 goto begin_table_error;
1186 pTable = sqlite3DbMallocZero(db, sizeof(Table));
1187 if( pTable==0 ){
1188 assert( db->mallocFailed );
1189 pParse->rc = SQLITE_NOMEM_BKPT;
1190 pParse->nErr++;
1191 goto begin_table_error;
1193 pTable->zName = zName;
1194 pTable->iPKey = -1;
1195 pTable->pSchema = db->aDb[iDb].pSchema;
1196 pTable->nTabRef = 1;
1197 #ifdef SQLITE_DEFAULT_ROWEST
1198 pTable->nRowLogEst = sqlite3LogEst(SQLITE_DEFAULT_ROWEST);
1199 #else
1200 pTable->nRowLogEst = 200; assert( 200==sqlite3LogEst(1048576) );
1201 #endif
1202 assert( pParse->pNewTable==0 );
1203 pParse->pNewTable = pTable;
1205 /* Begin generating the code that will insert the table record into
1206 ** the schema table. Note in particular that we must go ahead
1207 ** and allocate the record number for the table entry now. Before any
1208 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
1209 ** indices to be created and the table record must come before the
1210 ** indices. Hence, the record number for the table must be allocated
1211 ** now.
1213 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
1214 int addr1;
1215 int fileFormat;
1216 int reg1, reg2, reg3;
1217 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
1218 static const char nullRow[] = { 6, 0, 0, 0, 0, 0 };
1219 sqlite3BeginWriteOperation(pParse, 1, iDb);
1221 #ifndef SQLITE_OMIT_VIRTUALTABLE
1222 if( isVirtual ){
1223 sqlite3VdbeAddOp0(v, OP_VBegin);
1225 #endif
1227 /* If the file format and encoding in the database have not been set,
1228 ** set them now.
1230 reg1 = pParse->regRowid = ++pParse->nMem;
1231 reg2 = pParse->regRoot = ++pParse->nMem;
1232 reg3 = ++pParse->nMem;
1233 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
1234 sqlite3VdbeUsesBtree(v, iDb);
1235 addr1 = sqlite3VdbeAddOp1(v, OP_If, reg3); VdbeCoverage(v);
1236 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
1237 1 : SQLITE_MAX_FILE_FORMAT;
1238 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, fileFormat);
1239 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, ENC(db));
1240 sqlite3VdbeJumpHere(v, addr1);
1242 /* This just creates a place-holder record in the sqlite_schema table.
1243 ** The record created does not contain anything yet. It will be replaced
1244 ** by the real entry in code generated at sqlite3EndTable().
1246 ** The rowid for the new entry is left in register pParse->regRowid.
1247 ** The root page number of the new table is left in reg pParse->regRoot.
1248 ** The rowid and root page number values are needed by the code that
1249 ** sqlite3EndTable will generate.
1251 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1252 if( isView || isVirtual ){
1253 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
1254 }else
1255 #endif
1257 assert( !pParse->bReturning );
1258 pParse->u1.addrCrTab =
1259 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, reg2, BTREE_INTKEY);
1261 sqlite3OpenSchemaTable(pParse, iDb);
1262 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
1263 sqlite3VdbeAddOp4(v, OP_Blob, 6, reg3, 0, nullRow, P4_STATIC);
1264 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
1265 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
1266 sqlite3VdbeAddOp0(v, OP_Close);
1269 /* Normal (non-error) return. */
1270 return;
1272 /* If an error occurs, we jump here */
1273 begin_table_error:
1274 sqlite3DbFree(db, zName);
1275 return;
1278 /* Set properties of a table column based on the (magical)
1279 ** name of the column.
1281 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1282 void sqlite3ColumnPropertiesFromName(Table *pTab, Column *pCol){
1283 if( sqlite3_strnicmp(pCol->zName, "__hidden__", 10)==0 ){
1284 pCol->colFlags |= COLFLAG_HIDDEN;
1285 if( pTab ) pTab->tabFlags |= TF_HasHidden;
1286 }else if( pTab && pCol!=pTab->aCol && (pCol[-1].colFlags & COLFLAG_HIDDEN) ){
1287 pTab->tabFlags |= TF_OOOHidden;
1290 #endif
1293 ** Name of the special TEMP trigger used to implement RETURNING. The
1294 ** name begins with "sqlite_" so that it is guaranteed not to collide
1295 ** with any application-generated triggers.
1297 #define RETURNING_TRIGGER_NAME "sqlite_returning"
1300 ** Clean up the data structures associated with the RETURNING clause.
1302 static void sqlite3DeleteReturning(sqlite3 *db, Returning *pRet){
1303 Hash *pHash;
1304 pHash = &(db->aDb[1].pSchema->trigHash);
1305 sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, 0);
1306 sqlite3ExprListDelete(db, pRet->pReturnEL);
1307 sqlite3DbFree(db, pRet);
1311 ** Add the RETURNING clause to the parse currently underway.
1313 ** This routine creates a special TEMP trigger that will fire for each row
1314 ** of the DML statement. That TEMP trigger contains a single SELECT
1315 ** statement with a result set that is the argument of the RETURNING clause.
1316 ** The trigger has the Trigger.bReturning flag and an opcode of
1317 ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator
1318 ** knows to handle it specially. The TEMP trigger is automatically
1319 ** removed at the end of the parse.
1321 ** When this routine is called, we do not yet know if the RETURNING clause
1322 ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a
1323 ** RETURNING trigger instead. It will then be converted into the appropriate
1324 ** type on the first call to sqlite3TriggersExist().
1326 void sqlite3AddReturning(Parse *pParse, ExprList *pList){
1327 Returning *pRet;
1328 Hash *pHash;
1329 sqlite3 *db = pParse->db;
1330 if( pParse->pNewTrigger ){
1331 sqlite3ErrorMsg(pParse, "cannot use RETURNING in a trigger");
1332 }else{
1333 assert( pParse->bReturning==0 );
1335 pParse->bReturning = 1;
1336 pRet = sqlite3DbMallocZero(db, sizeof(*pRet));
1337 if( pRet==0 ){
1338 sqlite3ExprListDelete(db, pList);
1339 return;
1341 pParse->u1.pReturning = pRet;
1342 pRet->pParse = pParse;
1343 pRet->pReturnEL = pList;
1344 sqlite3ParserAddCleanup(pParse,
1345 (void(*)(sqlite3*,void*))sqlite3DeleteReturning, pRet);
1346 testcase( pParse->earlyCleanup );
1347 if( db->mallocFailed ) return;
1348 pRet->retTrig.zName = RETURNING_TRIGGER_NAME;
1349 pRet->retTrig.op = TK_RETURNING;
1350 pRet->retTrig.tr_tm = TRIGGER_AFTER;
1351 pRet->retTrig.bReturning = 1;
1352 pRet->retTrig.pSchema = db->aDb[1].pSchema;
1353 pRet->retTrig.pTabSchema = db->aDb[1].pSchema;
1354 pRet->retTrig.step_list = &pRet->retTStep;
1355 pRet->retTStep.op = TK_RETURNING;
1356 pRet->retTStep.pTrig = &pRet->retTrig;
1357 pRet->retTStep.pExprList = pList;
1358 pHash = &(db->aDb[1].pSchema->trigHash);
1359 assert( sqlite3HashFind(pHash, RETURNING_TRIGGER_NAME)==0 || pParse->nErr );
1360 if( sqlite3HashInsert(pHash, RETURNING_TRIGGER_NAME, &pRet->retTrig)
1361 ==&pRet->retTrig ){
1362 sqlite3OomFault(db);
1367 ** Add a new column to the table currently being constructed.
1369 ** The parser calls this routine once for each column declaration
1370 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
1371 ** first to get things going. Then this routine is called for each
1372 ** column.
1374 void sqlite3AddColumn(Parse *pParse, Token *pName, Token *pType){
1375 Table *p;
1376 int i;
1377 char *z;
1378 char *zType;
1379 Column *pCol;
1380 sqlite3 *db = pParse->db;
1381 u8 hName;
1383 if( (p = pParse->pNewTable)==0 ) return;
1384 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
1385 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
1386 return;
1388 z = sqlite3DbMallocRaw(db, pName->n + pType->n + 2);
1389 if( z==0 ) return;
1390 if( IN_RENAME_OBJECT ) sqlite3RenameTokenMap(pParse, (void*)z, pName);
1391 memcpy(z, pName->z, pName->n);
1392 z[pName->n] = 0;
1393 sqlite3Dequote(z);
1394 hName = sqlite3StrIHash(z);
1395 for(i=0; i<p->nCol; i++){
1396 if( p->aCol[i].hName==hName && sqlite3StrICmp(z, p->aCol[i].zName)==0 ){
1397 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
1398 sqlite3DbFree(db, z);
1399 return;
1402 if( (p->nCol & 0x7)==0 ){
1403 Column *aNew;
1404 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
1405 if( aNew==0 ){
1406 sqlite3DbFree(db, z);
1407 return;
1409 p->aCol = aNew;
1411 pCol = &p->aCol[p->nCol];
1412 memset(pCol, 0, sizeof(p->aCol[0]));
1413 pCol->zName = z;
1414 pCol->hName = hName;
1415 sqlite3ColumnPropertiesFromName(p, pCol);
1417 if( pType->n==0 ){
1418 /* If there is no type specified, columns have the default affinity
1419 ** 'BLOB' with a default size of 4 bytes. */
1420 pCol->affinity = SQLITE_AFF_BLOB;
1421 pCol->szEst = 1;
1422 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1423 if( 4>=sqlite3GlobalConfig.szSorterRef ){
1424 pCol->colFlags |= COLFLAG_SORTERREF;
1426 #endif
1427 }else{
1428 zType = z + sqlite3Strlen30(z) + 1;
1429 memcpy(zType, pType->z, pType->n);
1430 zType[pType->n] = 0;
1431 sqlite3Dequote(zType);
1432 pCol->affinity = sqlite3AffinityType(zType, pCol);
1433 pCol->colFlags |= COLFLAG_HASTYPE;
1435 p->nCol++;
1436 p->nNVCol++;
1437 pParse->constraintName.n = 0;
1441 ** This routine is called by the parser while in the middle of
1442 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
1443 ** been seen on a column. This routine sets the notNull flag on
1444 ** the column currently under construction.
1446 void sqlite3AddNotNull(Parse *pParse, int onError){
1447 Table *p;
1448 Column *pCol;
1449 p = pParse->pNewTable;
1450 if( p==0 || NEVER(p->nCol<1) ) return;
1451 pCol = &p->aCol[p->nCol-1];
1452 pCol->notNull = (u8)onError;
1453 p->tabFlags |= TF_HasNotNull;
1455 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created
1456 ** on this column. */
1457 if( pCol->colFlags & COLFLAG_UNIQUE ){
1458 Index *pIdx;
1459 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1460 assert( pIdx->nKeyCol==1 && pIdx->onError!=OE_None );
1461 if( pIdx->aiColumn[0]==p->nCol-1 ){
1462 pIdx->uniqNotNull = 1;
1469 ** Scan the column type name zType (length nType) and return the
1470 ** associated affinity type.
1472 ** This routine does a case-independent search of zType for the
1473 ** substrings in the following table. If one of the substrings is
1474 ** found, the corresponding affinity is returned. If zType contains
1475 ** more than one of the substrings, entries toward the top of
1476 ** the table take priority. For example, if zType is 'BLOBINT',
1477 ** SQLITE_AFF_INTEGER is returned.
1479 ** Substring | Affinity
1480 ** --------------------------------
1481 ** 'INT' | SQLITE_AFF_INTEGER
1482 ** 'CHAR' | SQLITE_AFF_TEXT
1483 ** 'CLOB' | SQLITE_AFF_TEXT
1484 ** 'TEXT' | SQLITE_AFF_TEXT
1485 ** 'BLOB' | SQLITE_AFF_BLOB
1486 ** 'REAL' | SQLITE_AFF_REAL
1487 ** 'FLOA' | SQLITE_AFF_REAL
1488 ** 'DOUB' | SQLITE_AFF_REAL
1490 ** If none of the substrings in the above table are found,
1491 ** SQLITE_AFF_NUMERIC is returned.
1493 char sqlite3AffinityType(const char *zIn, Column *pCol){
1494 u32 h = 0;
1495 char aff = SQLITE_AFF_NUMERIC;
1496 const char *zChar = 0;
1498 assert( zIn!=0 );
1499 while( zIn[0] ){
1500 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1501 zIn++;
1502 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1503 aff = SQLITE_AFF_TEXT;
1504 zChar = zIn;
1505 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1506 aff = SQLITE_AFF_TEXT;
1507 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1508 aff = SQLITE_AFF_TEXT;
1509 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1510 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1511 aff = SQLITE_AFF_BLOB;
1512 if( zIn[0]=='(' ) zChar = zIn;
1513 #ifndef SQLITE_OMIT_FLOATING_POINT
1514 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1515 && aff==SQLITE_AFF_NUMERIC ){
1516 aff = SQLITE_AFF_REAL;
1517 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1518 && aff==SQLITE_AFF_NUMERIC ){
1519 aff = SQLITE_AFF_REAL;
1520 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1521 && aff==SQLITE_AFF_NUMERIC ){
1522 aff = SQLITE_AFF_REAL;
1523 #endif
1524 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1525 aff = SQLITE_AFF_INTEGER;
1526 break;
1530 /* If pCol is not NULL, store an estimate of the field size. The
1531 ** estimate is scaled so that the size of an integer is 1. */
1532 if( pCol ){
1533 int v = 0; /* default size is approx 4 bytes */
1534 if( aff<SQLITE_AFF_NUMERIC ){
1535 if( zChar ){
1536 while( zChar[0] ){
1537 if( sqlite3Isdigit(zChar[0]) ){
1538 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1539 sqlite3GetInt32(zChar, &v);
1540 break;
1542 zChar++;
1544 }else{
1545 v = 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
1548 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1549 if( v>=sqlite3GlobalConfig.szSorterRef ){
1550 pCol->colFlags |= COLFLAG_SORTERREF;
1552 #endif
1553 v = v/4 + 1;
1554 if( v>255 ) v = 255;
1555 pCol->szEst = v;
1557 return aff;
1561 ** The expression is the default value for the most recently added column
1562 ** of the table currently under construction.
1564 ** Default value expressions must be constant. Raise an exception if this
1565 ** is not the case.
1567 ** This routine is called by the parser while in the middle of
1568 ** parsing a CREATE TABLE statement.
1570 void sqlite3AddDefaultValue(
1571 Parse *pParse, /* Parsing context */
1572 Expr *pExpr, /* The parsed expression of the default value */
1573 const char *zStart, /* Start of the default value text */
1574 const char *zEnd /* First character past end of defaut value text */
1576 Table *p;
1577 Column *pCol;
1578 sqlite3 *db = pParse->db;
1579 p = pParse->pNewTable;
1580 if( p!=0 ){
1581 int isInit = db->init.busy && db->init.iDb!=1;
1582 pCol = &(p->aCol[p->nCol-1]);
1583 if( !sqlite3ExprIsConstantOrFunction(pExpr, isInit) ){
1584 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1585 pCol->zName);
1586 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1587 }else if( pCol->colFlags & COLFLAG_GENERATED ){
1588 testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1589 testcase( pCol->colFlags & COLFLAG_STORED );
1590 sqlite3ErrorMsg(pParse, "cannot use DEFAULT on a generated column");
1591 #endif
1592 }else{
1593 /* A copy of pExpr is used instead of the original, as pExpr contains
1594 ** tokens that point to volatile memory.
1596 Expr x;
1597 sqlite3ExprDelete(db, pCol->pDflt);
1598 memset(&x, 0, sizeof(x));
1599 x.op = TK_SPAN;
1600 x.u.zToken = sqlite3DbSpanDup(db, zStart, zEnd);
1601 x.pLeft = pExpr;
1602 x.flags = EP_Skip;
1603 pCol->pDflt = sqlite3ExprDup(db, &x, EXPRDUP_REDUCE);
1604 sqlite3DbFree(db, x.u.zToken);
1607 if( IN_RENAME_OBJECT ){
1608 sqlite3RenameExprUnmap(pParse, pExpr);
1610 sqlite3ExprDelete(db, pExpr);
1614 ** Backwards Compatibility Hack:
1616 ** Historical versions of SQLite accepted strings as column names in
1617 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example:
1619 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1620 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1622 ** This is goofy. But to preserve backwards compatibility we continue to
1623 ** accept it. This routine does the necessary conversion. It converts
1624 ** the expression given in its argument from a TK_STRING into a TK_ID
1625 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1626 ** If the expression is anything other than TK_STRING, the expression is
1627 ** unchanged.
1629 static void sqlite3StringToId(Expr *p){
1630 if( p->op==TK_STRING ){
1631 p->op = TK_ID;
1632 }else if( p->op==TK_COLLATE && p->pLeft->op==TK_STRING ){
1633 p->pLeft->op = TK_ID;
1638 ** Tag the given column as being part of the PRIMARY KEY
1640 static void makeColumnPartOfPrimaryKey(Parse *pParse, Column *pCol){
1641 pCol->colFlags |= COLFLAG_PRIMKEY;
1642 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1643 if( pCol->colFlags & COLFLAG_GENERATED ){
1644 testcase( pCol->colFlags & COLFLAG_VIRTUAL );
1645 testcase( pCol->colFlags & COLFLAG_STORED );
1646 sqlite3ErrorMsg(pParse,
1647 "generated columns cannot be part of the PRIMARY KEY");
1649 #endif
1653 ** Designate the PRIMARY KEY for the table. pList is a list of names
1654 ** of columns that form the primary key. If pList is NULL, then the
1655 ** most recently added column of the table is the primary key.
1657 ** A table can have at most one primary key. If the table already has
1658 ** a primary key (and this is the second primary key) then create an
1659 ** error.
1661 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1662 ** then we will try to use that column as the rowid. Set the Table.iPKey
1663 ** field of the table under construction to be the index of the
1664 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1665 ** no INTEGER PRIMARY KEY.
1667 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1668 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1670 void sqlite3AddPrimaryKey(
1671 Parse *pParse, /* Parsing context */
1672 ExprList *pList, /* List of field names to be indexed */
1673 int onError, /* What to do with a uniqueness conflict */
1674 int autoInc, /* True if the AUTOINCREMENT keyword is present */
1675 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1677 Table *pTab = pParse->pNewTable;
1678 Column *pCol = 0;
1679 int iCol = -1, i;
1680 int nTerm;
1681 if( pTab==0 ) goto primary_key_exit;
1682 if( pTab->tabFlags & TF_HasPrimaryKey ){
1683 sqlite3ErrorMsg(pParse,
1684 "table \"%s\" has more than one primary key", pTab->zName);
1685 goto primary_key_exit;
1687 pTab->tabFlags |= TF_HasPrimaryKey;
1688 if( pList==0 ){
1689 iCol = pTab->nCol - 1;
1690 pCol = &pTab->aCol[iCol];
1691 makeColumnPartOfPrimaryKey(pParse, pCol);
1692 nTerm = 1;
1693 }else{
1694 nTerm = pList->nExpr;
1695 for(i=0; i<nTerm; i++){
1696 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[i].pExpr);
1697 assert( pCExpr!=0 );
1698 sqlite3StringToId(pCExpr);
1699 if( pCExpr->op==TK_ID ){
1700 const char *zCName = pCExpr->u.zToken;
1701 for(iCol=0; iCol<pTab->nCol; iCol++){
1702 if( sqlite3StrICmp(zCName, pTab->aCol[iCol].zName)==0 ){
1703 pCol = &pTab->aCol[iCol];
1704 makeColumnPartOfPrimaryKey(pParse, pCol);
1705 break;
1711 if( nTerm==1
1712 && pCol
1713 && sqlite3StrICmp(sqlite3ColumnType(pCol,""), "INTEGER")==0
1714 && sortOrder!=SQLITE_SO_DESC
1716 if( IN_RENAME_OBJECT && pList ){
1717 Expr *pCExpr = sqlite3ExprSkipCollate(pList->a[0].pExpr);
1718 sqlite3RenameTokenRemap(pParse, &pTab->iPKey, pCExpr);
1720 pTab->iPKey = iCol;
1721 pTab->keyConf = (u8)onError;
1722 assert( autoInc==0 || autoInc==1 );
1723 pTab->tabFlags |= autoInc*TF_Autoincrement;
1724 if( pList ) pParse->iPkSortOrder = pList->a[0].sortFlags;
1725 (void)sqlite3HasExplicitNulls(pParse, pList);
1726 }else if( autoInc ){
1727 #ifndef SQLITE_OMIT_AUTOINCREMENT
1728 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1729 "INTEGER PRIMARY KEY");
1730 #endif
1731 }else{
1732 sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0,
1733 0, sortOrder, 0, SQLITE_IDXTYPE_PRIMARYKEY);
1734 pList = 0;
1737 primary_key_exit:
1738 sqlite3ExprListDelete(pParse->db, pList);
1739 return;
1743 ** Add a new CHECK constraint to the table currently under construction.
1745 void sqlite3AddCheckConstraint(
1746 Parse *pParse, /* Parsing context */
1747 Expr *pCheckExpr, /* The check expression */
1748 const char *zStart, /* Opening "(" */
1749 const char *zEnd /* Closing ")" */
1751 #ifndef SQLITE_OMIT_CHECK
1752 Table *pTab = pParse->pNewTable;
1753 sqlite3 *db = pParse->db;
1754 if( pTab && !IN_DECLARE_VTAB
1755 && !sqlite3BtreeIsReadonly(db->aDb[db->init.iDb].pBt)
1757 pTab->pCheck = sqlite3ExprListAppend(pParse, pTab->pCheck, pCheckExpr);
1758 if( pParse->constraintName.n ){
1759 sqlite3ExprListSetName(pParse, pTab->pCheck, &pParse->constraintName, 1);
1760 }else{
1761 Token t;
1762 for(zStart++; sqlite3Isspace(zStart[0]); zStart++){}
1763 while( sqlite3Isspace(zEnd[-1]) ){ zEnd--; }
1764 t.z = zStart;
1765 t.n = (int)(zEnd - t.z);
1766 sqlite3ExprListSetName(pParse, pTab->pCheck, &t, 1);
1768 }else
1769 #endif
1771 sqlite3ExprDelete(pParse->db, pCheckExpr);
1776 ** Set the collation function of the most recently parsed table column
1777 ** to the CollSeq given.
1779 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1780 Table *p;
1781 int i;
1782 char *zColl; /* Dequoted name of collation sequence */
1783 sqlite3 *db;
1785 if( (p = pParse->pNewTable)==0 || IN_RENAME_OBJECT ) return;
1786 i = p->nCol-1;
1787 db = pParse->db;
1788 zColl = sqlite3NameFromToken(db, pToken);
1789 if( !zColl ) return;
1791 if( sqlite3LocateCollSeq(pParse, zColl) ){
1792 Index *pIdx;
1793 sqlite3DbFree(db, p->aCol[i].zColl);
1794 p->aCol[i].zColl = zColl;
1796 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1797 ** then an index may have been created on this column before the
1798 ** collation type was added. Correct this if it is the case.
1800 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1801 assert( pIdx->nKeyCol==1 );
1802 if( pIdx->aiColumn[0]==i ){
1803 pIdx->azColl[0] = p->aCol[i].zColl;
1806 }else{
1807 sqlite3DbFree(db, zColl);
1811 /* Change the most recently parsed column to be a GENERATED ALWAYS AS
1812 ** column.
1814 void sqlite3AddGenerated(Parse *pParse, Expr *pExpr, Token *pType){
1815 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1816 u8 eType = COLFLAG_VIRTUAL;
1817 Table *pTab = pParse->pNewTable;
1818 Column *pCol;
1819 if( pTab==0 ){
1820 /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */
1821 goto generated_done;
1823 pCol = &(pTab->aCol[pTab->nCol-1]);
1824 if( IN_DECLARE_VTAB ){
1825 sqlite3ErrorMsg(pParse, "virtual tables cannot use computed columns");
1826 goto generated_done;
1828 if( pCol->pDflt ) goto generated_error;
1829 if( pType ){
1830 if( pType->n==7 && sqlite3StrNICmp("virtual",pType->z,7)==0 ){
1831 /* no-op */
1832 }else if( pType->n==6 && sqlite3StrNICmp("stored",pType->z,6)==0 ){
1833 eType = COLFLAG_STORED;
1834 }else{
1835 goto generated_error;
1838 if( eType==COLFLAG_VIRTUAL ) pTab->nNVCol--;
1839 pCol->colFlags |= eType;
1840 assert( TF_HasVirtual==COLFLAG_VIRTUAL );
1841 assert( TF_HasStored==COLFLAG_STORED );
1842 pTab->tabFlags |= eType;
1843 if( pCol->colFlags & COLFLAG_PRIMKEY ){
1844 makeColumnPartOfPrimaryKey(pParse, pCol); /* For the error message */
1846 pCol->pDflt = pExpr;
1847 pExpr = 0;
1848 goto generated_done;
1850 generated_error:
1851 sqlite3ErrorMsg(pParse, "error in generated column \"%s\"",
1852 pCol->zName);
1853 generated_done:
1854 sqlite3ExprDelete(pParse->db, pExpr);
1855 #else
1856 /* Throw and error for the GENERATED ALWAYS AS clause if the
1857 ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */
1858 sqlite3ErrorMsg(pParse, "generated columns not supported");
1859 sqlite3ExprDelete(pParse->db, pExpr);
1860 #endif
1864 ** Generate code that will increment the schema cookie.
1866 ** The schema cookie is used to determine when the schema for the
1867 ** database changes. After each schema change, the cookie value
1868 ** changes. When a process first reads the schema it records the
1869 ** cookie. Thereafter, whenever it goes to access the database,
1870 ** it checks the cookie to make sure the schema has not changed
1871 ** since it was last read.
1873 ** This plan is not completely bullet-proof. It is possible for
1874 ** the schema to change multiple times and for the cookie to be
1875 ** set back to prior value. But schema changes are infrequent
1876 ** and the probability of hitting the same cookie value is only
1877 ** 1 chance in 2^32. So we're safe enough.
1879 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
1880 ** the schema-version whenever the schema changes.
1882 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1883 sqlite3 *db = pParse->db;
1884 Vdbe *v = pParse->pVdbe;
1885 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1886 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION,
1887 (int)(1+(unsigned)db->aDb[iDb].pSchema->schema_cookie));
1891 ** Measure the number of characters needed to output the given
1892 ** identifier. The number returned includes any quotes used
1893 ** but does not include the null terminator.
1895 ** The estimate is conservative. It might be larger that what is
1896 ** really needed.
1898 static int identLength(const char *z){
1899 int n;
1900 for(n=0; *z; n++, z++){
1901 if( *z=='"' ){ n++; }
1903 return n + 2;
1907 ** The first parameter is a pointer to an output buffer. The second
1908 ** parameter is a pointer to an integer that contains the offset at
1909 ** which to write into the output buffer. This function copies the
1910 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1911 ** to the specified offset in the buffer and updates *pIdx to refer
1912 ** to the first byte after the last byte written before returning.
1914 ** If the string zSignedIdent consists entirely of alpha-numeric
1915 ** characters, does not begin with a digit and is not an SQL keyword,
1916 ** then it is copied to the output buffer exactly as it is. Otherwise,
1917 ** it is quoted using double-quotes.
1919 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1920 unsigned char *zIdent = (unsigned char*)zSignedIdent;
1921 int i, j, needQuote;
1922 i = *pIdx;
1924 for(j=0; zIdent[j]; j++){
1925 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1927 needQuote = sqlite3Isdigit(zIdent[0])
1928 || sqlite3KeywordCode(zIdent, j)!=TK_ID
1929 || zIdent[j]!=0
1930 || j==0;
1932 if( needQuote ) z[i++] = '"';
1933 for(j=0; zIdent[j]; j++){
1934 z[i++] = zIdent[j];
1935 if( zIdent[j]=='"' ) z[i++] = '"';
1937 if( needQuote ) z[i++] = '"';
1938 z[i] = 0;
1939 *pIdx = i;
1943 ** Generate a CREATE TABLE statement appropriate for the given
1944 ** table. Memory to hold the text of the statement is obtained
1945 ** from sqliteMalloc() and must be freed by the calling function.
1947 static char *createTableStmt(sqlite3 *db, Table *p){
1948 int i, k, n;
1949 char *zStmt;
1950 char *zSep, *zSep2, *zEnd;
1951 Column *pCol;
1952 n = 0;
1953 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1954 n += identLength(pCol->zName) + 5;
1956 n += identLength(p->zName);
1957 if( n<50 ){
1958 zSep = "";
1959 zSep2 = ",";
1960 zEnd = ")";
1961 }else{
1962 zSep = "\n ";
1963 zSep2 = ",\n ";
1964 zEnd = "\n)";
1966 n += 35 + 6*p->nCol;
1967 zStmt = sqlite3DbMallocRaw(0, n);
1968 if( zStmt==0 ){
1969 sqlite3OomFault(db);
1970 return 0;
1972 sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1973 k = sqlite3Strlen30(zStmt);
1974 identPut(zStmt, &k, p->zName);
1975 zStmt[k++] = '(';
1976 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1977 static const char * const azType[] = {
1978 /* SQLITE_AFF_BLOB */ "",
1979 /* SQLITE_AFF_TEXT */ " TEXT",
1980 /* SQLITE_AFF_NUMERIC */ " NUM",
1981 /* SQLITE_AFF_INTEGER */ " INT",
1982 /* SQLITE_AFF_REAL */ " REAL"
1984 int len;
1985 const char *zType;
1987 sqlite3_snprintf(n-k, &zStmt[k], zSep);
1988 k += sqlite3Strlen30(&zStmt[k]);
1989 zSep = zSep2;
1990 identPut(zStmt, &k, pCol->zName);
1991 assert( pCol->affinity-SQLITE_AFF_BLOB >= 0 );
1992 assert( pCol->affinity-SQLITE_AFF_BLOB < ArraySize(azType) );
1993 testcase( pCol->affinity==SQLITE_AFF_BLOB );
1994 testcase( pCol->affinity==SQLITE_AFF_TEXT );
1995 testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1996 testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1997 testcase( pCol->affinity==SQLITE_AFF_REAL );
1999 zType = azType[pCol->affinity - SQLITE_AFF_BLOB];
2000 len = sqlite3Strlen30(zType);
2001 assert( pCol->affinity==SQLITE_AFF_BLOB
2002 || pCol->affinity==sqlite3AffinityType(zType, 0) );
2003 memcpy(&zStmt[k], zType, len);
2004 k += len;
2005 assert( k<=n );
2007 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
2008 return zStmt;
2012 ** Resize an Index object to hold N columns total. Return SQLITE_OK
2013 ** on success and SQLITE_NOMEM on an OOM error.
2015 static int resizeIndexObject(sqlite3 *db, Index *pIdx, int N){
2016 char *zExtra;
2017 int nByte;
2018 if( pIdx->nColumn>=N ) return SQLITE_OK;
2019 assert( pIdx->isResized==0 );
2020 nByte = (sizeof(char*) + sizeof(LogEst) + sizeof(i16) + 1)*N;
2021 zExtra = sqlite3DbMallocZero(db, nByte);
2022 if( zExtra==0 ) return SQLITE_NOMEM_BKPT;
2023 memcpy(zExtra, pIdx->azColl, sizeof(char*)*pIdx->nColumn);
2024 pIdx->azColl = (const char**)zExtra;
2025 zExtra += sizeof(char*)*N;
2026 memcpy(zExtra, pIdx->aiRowLogEst, sizeof(LogEst)*(pIdx->nKeyCol+1));
2027 pIdx->aiRowLogEst = (LogEst*)zExtra;
2028 zExtra += sizeof(LogEst)*N;
2029 memcpy(zExtra, pIdx->aiColumn, sizeof(i16)*pIdx->nColumn);
2030 pIdx->aiColumn = (i16*)zExtra;
2031 zExtra += sizeof(i16)*N;
2032 memcpy(zExtra, pIdx->aSortOrder, pIdx->nColumn);
2033 pIdx->aSortOrder = (u8*)zExtra;
2034 pIdx->nColumn = N;
2035 pIdx->isResized = 1;
2036 return SQLITE_OK;
2040 ** Estimate the total row width for a table.
2042 static void estimateTableWidth(Table *pTab){
2043 unsigned wTable = 0;
2044 const Column *pTabCol;
2045 int i;
2046 for(i=pTab->nCol, pTabCol=pTab->aCol; i>0; i--, pTabCol++){
2047 wTable += pTabCol->szEst;
2049 if( pTab->iPKey<0 ) wTable++;
2050 pTab->szTabRow = sqlite3LogEst(wTable*4);
2054 ** Estimate the average size of a row for an index.
2056 static void estimateIndexWidth(Index *pIdx){
2057 unsigned wIndex = 0;
2058 int i;
2059 const Column *aCol = pIdx->pTable->aCol;
2060 for(i=0; i<pIdx->nColumn; i++){
2061 i16 x = pIdx->aiColumn[i];
2062 assert( x<pIdx->pTable->nCol );
2063 wIndex += x<0 ? 1 : aCol[pIdx->aiColumn[i]].szEst;
2065 pIdx->szIdxRow = sqlite3LogEst(wIndex*4);
2068 /* Return true if column number x is any of the first nCol entries of aiCol[].
2069 ** This is used to determine if the column number x appears in any of the
2070 ** first nCol entries of an index.
2072 static int hasColumn(const i16 *aiCol, int nCol, int x){
2073 while( nCol-- > 0 ){
2074 assert( aiCol[0]>=0 );
2075 if( x==*(aiCol++) ){
2076 return 1;
2079 return 0;
2083 ** Return true if any of the first nKey entries of index pIdx exactly
2084 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID
2085 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may
2086 ** or may not be the same index as pPk.
2088 ** The first nKey entries of pIdx are guaranteed to be ordinary columns,
2089 ** not a rowid or expression.
2091 ** This routine differs from hasColumn() in that both the column and the
2092 ** collating sequence must match for this routine, but for hasColumn() only
2093 ** the column name must match.
2095 static int isDupColumn(Index *pIdx, int nKey, Index *pPk, int iCol){
2096 int i, j;
2097 assert( nKey<=pIdx->nColumn );
2098 assert( iCol<MAX(pPk->nColumn,pPk->nKeyCol) );
2099 assert( pPk->idxType==SQLITE_IDXTYPE_PRIMARYKEY );
2100 assert( pPk->pTable->tabFlags & TF_WithoutRowid );
2101 assert( pPk->pTable==pIdx->pTable );
2102 testcase( pPk==pIdx );
2103 j = pPk->aiColumn[iCol];
2104 assert( j!=XN_ROWID && j!=XN_EXPR );
2105 for(i=0; i<nKey; i++){
2106 assert( pIdx->aiColumn[i]>=0 || j>=0 );
2107 if( pIdx->aiColumn[i]==j
2108 && sqlite3StrICmp(pIdx->azColl[i], pPk->azColl[iCol])==0
2110 return 1;
2113 return 0;
2116 /* Recompute the colNotIdxed field of the Index.
2118 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed
2119 ** columns that are within the first 63 columns of the table. The
2120 ** high-order bit of colNotIdxed is always 1. All unindexed columns
2121 ** of the table have a 1.
2123 ** 2019-10-24: For the purpose of this computation, virtual columns are
2124 ** not considered to be covered by the index, even if they are in the
2125 ** index, because we do not trust the logic in whereIndexExprTrans() to be
2126 ** able to find all instances of a reference to the indexed table column
2127 ** and convert them into references to the index. Hence we always want
2128 ** the actual table at hand in order to recompute the virtual column, if
2129 ** necessary.
2131 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask
2132 ** to determine if the index is covering index.
2134 static void recomputeColumnsNotIndexed(Index *pIdx){
2135 Bitmask m = 0;
2136 int j;
2137 Table *pTab = pIdx->pTable;
2138 for(j=pIdx->nColumn-1; j>=0; j--){
2139 int x = pIdx->aiColumn[j];
2140 if( x>=0 && (pTab->aCol[x].colFlags & COLFLAG_VIRTUAL)==0 ){
2141 testcase( x==BMS-1 );
2142 testcase( x==BMS-2 );
2143 if( x<BMS-1 ) m |= MASKBIT(x);
2146 pIdx->colNotIdxed = ~m;
2147 assert( (pIdx->colNotIdxed>>63)==1 );
2151 ** This routine runs at the end of parsing a CREATE TABLE statement that
2152 ** has a WITHOUT ROWID clause. The job of this routine is to convert both
2153 ** internal schema data structures and the generated VDBE code so that they
2154 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
2155 ** Changes include:
2157 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
2158 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
2159 ** into BTREE_BLOBKEY.
2160 ** (3) Bypass the creation of the sqlite_schema table entry
2161 ** for the PRIMARY KEY as the primary key index is now
2162 ** identified by the sqlite_schema table entry of the table itself.
2163 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the
2164 ** schema to the rootpage from the main table.
2165 ** (5) Add all table columns to the PRIMARY KEY Index object
2166 ** so that the PRIMARY KEY is a covering index. The surplus
2167 ** columns are part of KeyInfo.nAllField and are not used for
2168 ** sorting or lookup or uniqueness checks.
2169 ** (6) Replace the rowid tail on all automatically generated UNIQUE
2170 ** indices with the PRIMARY KEY columns.
2172 ** For virtual tables, only (1) is performed.
2174 static void convertToWithoutRowidTable(Parse *pParse, Table *pTab){
2175 Index *pIdx;
2176 Index *pPk;
2177 int nPk;
2178 int nExtra;
2179 int i, j;
2180 sqlite3 *db = pParse->db;
2181 Vdbe *v = pParse->pVdbe;
2183 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
2185 if( !db->init.imposterTable ){
2186 for(i=0; i<pTab->nCol; i++){
2187 if( (pTab->aCol[i].colFlags & COLFLAG_PRIMKEY)!=0 ){
2188 pTab->aCol[i].notNull = OE_Abort;
2191 pTab->tabFlags |= TF_HasNotNull;
2194 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
2195 ** into BTREE_BLOBKEY.
2197 assert( !pParse->bReturning );
2198 if( pParse->u1.addrCrTab ){
2199 assert( v );
2200 sqlite3VdbeChangeP3(v, pParse->u1.addrCrTab, BTREE_BLOBKEY);
2203 /* Locate the PRIMARY KEY index. Or, if this table was originally
2204 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
2206 if( pTab->iPKey>=0 ){
2207 ExprList *pList;
2208 Token ipkToken;
2209 sqlite3TokenInit(&ipkToken, pTab->aCol[pTab->iPKey].zName);
2210 pList = sqlite3ExprListAppend(pParse, 0,
2211 sqlite3ExprAlloc(db, TK_ID, &ipkToken, 0));
2212 if( pList==0 ){
2213 pTab->tabFlags &= ~TF_WithoutRowid;
2214 return;
2216 if( IN_RENAME_OBJECT ){
2217 sqlite3RenameTokenRemap(pParse, pList->a[0].pExpr, &pTab->iPKey);
2219 pList->a[0].sortFlags = pParse->iPkSortOrder;
2220 assert( pParse->pNewTable==pTab );
2221 pTab->iPKey = -1;
2222 sqlite3CreateIndex(pParse, 0, 0, 0, pList, pTab->keyConf, 0, 0, 0, 0,
2223 SQLITE_IDXTYPE_PRIMARYKEY);
2224 if( db->mallocFailed || pParse->nErr ){
2225 pTab->tabFlags &= ~TF_WithoutRowid;
2226 return;
2228 pPk = sqlite3PrimaryKeyIndex(pTab);
2229 assert( pPk->nKeyCol==1 );
2230 }else{
2231 pPk = sqlite3PrimaryKeyIndex(pTab);
2232 assert( pPk!=0 );
2235 ** Remove all redundant columns from the PRIMARY KEY. For example, change
2236 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later
2237 ** code assumes the PRIMARY KEY contains no repeated columns.
2239 for(i=j=1; i<pPk->nKeyCol; i++){
2240 if( isDupColumn(pPk, j, pPk, i) ){
2241 pPk->nColumn--;
2242 }else{
2243 testcase( hasColumn(pPk->aiColumn, j, pPk->aiColumn[i]) );
2244 pPk->azColl[j] = pPk->azColl[i];
2245 pPk->aSortOrder[j] = pPk->aSortOrder[i];
2246 pPk->aiColumn[j++] = pPk->aiColumn[i];
2249 pPk->nKeyCol = j;
2251 assert( pPk!=0 );
2252 pPk->isCovering = 1;
2253 if( !db->init.imposterTable ) pPk->uniqNotNull = 1;
2254 nPk = pPk->nColumn = pPk->nKeyCol;
2256 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema
2257 ** table entry. This is only required if currently generating VDBE
2258 ** code for a CREATE TABLE (not when parsing one as part of reading
2259 ** a database schema). */
2260 if( v && pPk->tnum>0 ){
2261 assert( db->init.busy==0 );
2262 sqlite3VdbeChangeOpcode(v, (int)pPk->tnum, OP_Goto);
2265 /* The root page of the PRIMARY KEY is the table root page */
2266 pPk->tnum = pTab->tnum;
2268 /* Update the in-memory representation of all UNIQUE indices by converting
2269 ** the final rowid column into one or more columns of the PRIMARY KEY.
2271 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2272 int n;
2273 if( IsPrimaryKeyIndex(pIdx) ) continue;
2274 for(i=n=0; i<nPk; i++){
2275 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
2276 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
2277 n++;
2280 if( n==0 ){
2281 /* This index is a superset of the primary key */
2282 pIdx->nColumn = pIdx->nKeyCol;
2283 continue;
2285 if( resizeIndexObject(db, pIdx, pIdx->nKeyCol+n) ) return;
2286 for(i=0, j=pIdx->nKeyCol; i<nPk; i++){
2287 if( !isDupColumn(pIdx, pIdx->nKeyCol, pPk, i) ){
2288 testcase( hasColumn(pIdx->aiColumn, pIdx->nKeyCol, pPk->aiColumn[i]) );
2289 pIdx->aiColumn[j] = pPk->aiColumn[i];
2290 pIdx->azColl[j] = pPk->azColl[i];
2291 if( pPk->aSortOrder[i] ){
2292 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */
2293 pIdx->bAscKeyBug = 1;
2295 j++;
2298 assert( pIdx->nColumn>=pIdx->nKeyCol+n );
2299 assert( pIdx->nColumn>=j );
2302 /* Add all table columns to the PRIMARY KEY index
2304 nExtra = 0;
2305 for(i=0; i<pTab->nCol; i++){
2306 if( !hasColumn(pPk->aiColumn, nPk, i)
2307 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0 ) nExtra++;
2309 if( resizeIndexObject(db, pPk, nPk+nExtra) ) return;
2310 for(i=0, j=nPk; i<pTab->nCol; i++){
2311 if( !hasColumn(pPk->aiColumn, j, i)
2312 && (pTab->aCol[i].colFlags & COLFLAG_VIRTUAL)==0
2314 assert( j<pPk->nColumn );
2315 pPk->aiColumn[j] = i;
2316 pPk->azColl[j] = sqlite3StrBINARY;
2317 j++;
2320 assert( pPk->nColumn==j );
2321 assert( pTab->nNVCol<=j );
2322 recomputeColumnsNotIndexed(pPk);
2326 #ifndef SQLITE_OMIT_VIRTUALTABLE
2328 ** Return true if pTab is a virtual table and zName is a shadow table name
2329 ** for that virtual table.
2331 int sqlite3IsShadowTableOf(sqlite3 *db, Table *pTab, const char *zName){
2332 int nName; /* Length of zName */
2333 Module *pMod; /* Module for the virtual table */
2335 if( !IsVirtual(pTab) ) return 0;
2336 nName = sqlite3Strlen30(pTab->zName);
2337 if( sqlite3_strnicmp(zName, pTab->zName, nName)!=0 ) return 0;
2338 if( zName[nName]!='_' ) return 0;
2339 pMod = (Module*)sqlite3HashFind(&db->aModule, pTab->azModuleArg[0]);
2340 if( pMod==0 ) return 0;
2341 if( pMod->pModule->iVersion<3 ) return 0;
2342 if( pMod->pModule->xShadowName==0 ) return 0;
2343 return pMod->pModule->xShadowName(zName+nName+1);
2345 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2347 #ifndef SQLITE_OMIT_VIRTUALTABLE
2349 ** Return true if zName is a shadow table name in the current database
2350 ** connection.
2352 ** zName is temporarily modified while this routine is running, but is
2353 ** restored to its original value prior to this routine returning.
2355 int sqlite3ShadowTableName(sqlite3 *db, const char *zName){
2356 char *zTail; /* Pointer to the last "_" in zName */
2357 Table *pTab; /* Table that zName is a shadow of */
2358 zTail = strrchr(zName, '_');
2359 if( zTail==0 ) return 0;
2360 *zTail = 0;
2361 pTab = sqlite3FindTable(db, zName, 0);
2362 *zTail = '_';
2363 if( pTab==0 ) return 0;
2364 if( !IsVirtual(pTab) ) return 0;
2365 return sqlite3IsShadowTableOf(db, pTab, zName);
2367 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2370 #ifdef SQLITE_DEBUG
2372 ** Mark all nodes of an expression as EP_Immutable, indicating that
2373 ** they should not be changed. Expressions attached to a table or
2374 ** index definition are tagged this way to help ensure that we do
2375 ** not pass them into code generator routines by mistake.
2377 static int markImmutableExprStep(Walker *pWalker, Expr *pExpr){
2378 ExprSetVVAProperty(pExpr, EP_Immutable);
2379 return WRC_Continue;
2381 static void markExprListImmutable(ExprList *pList){
2382 if( pList ){
2383 Walker w;
2384 memset(&w, 0, sizeof(w));
2385 w.xExprCallback = markImmutableExprStep;
2386 w.xSelectCallback = sqlite3SelectWalkNoop;
2387 w.xSelectCallback2 = 0;
2388 sqlite3WalkExprList(&w, pList);
2391 #else
2392 #define markExprListImmutable(X) /* no-op */
2393 #endif /* SQLITE_DEBUG */
2397 ** This routine is called to report the final ")" that terminates
2398 ** a CREATE TABLE statement.
2400 ** The table structure that other action routines have been building
2401 ** is added to the internal hash tables, assuming no errors have
2402 ** occurred.
2404 ** An entry for the table is made in the schema table on disk, unless
2405 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
2406 ** it means we are reading the sqlite_schema table because we just
2407 ** connected to the database or because the sqlite_schema table has
2408 ** recently changed, so the entry for this table already exists in
2409 ** the sqlite_schema table. We do not want to create it again.
2411 ** If the pSelect argument is not NULL, it means that this routine
2412 ** was called to create a table generated from a
2413 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
2414 ** the new table will match the result set of the SELECT.
2416 void sqlite3EndTable(
2417 Parse *pParse, /* Parse context */
2418 Token *pCons, /* The ',' token after the last column defn. */
2419 Token *pEnd, /* The ')' before options in the CREATE TABLE */
2420 u8 tabOpts, /* Extra table options. Usually 0. */
2421 Select *pSelect /* Select from a "CREATE ... AS SELECT" */
2423 Table *p; /* The new table */
2424 sqlite3 *db = pParse->db; /* The database connection */
2425 int iDb; /* Database in which the table lives */
2426 Index *pIdx; /* An implied index of the table */
2428 if( pEnd==0 && pSelect==0 ){
2429 return;
2431 p = pParse->pNewTable;
2432 if( p==0 ) return;
2434 if( pSelect==0 && sqlite3ShadowTableName(db, p->zName) ){
2435 p->tabFlags |= TF_Shadow;
2438 /* If the db->init.busy is 1 it means we are reading the SQL off the
2439 ** "sqlite_schema" or "sqlite_temp_schema" table on the disk.
2440 ** So do not write to the disk again. Extract the root page number
2441 ** for the table from the db->init.newTnum field. (The page number
2442 ** should have been put there by the sqliteOpenCb routine.)
2444 ** If the root page number is 1, that means this is the sqlite_schema
2445 ** table itself. So mark it read-only.
2447 if( db->init.busy ){
2448 if( pSelect ){
2449 sqlite3ErrorMsg(pParse, "");
2450 return;
2452 p->tnum = db->init.newTnum;
2453 if( p->tnum==1 ) p->tabFlags |= TF_Readonly;
2456 assert( (p->tabFlags & TF_HasPrimaryKey)==0
2457 || p->iPKey>=0 || sqlite3PrimaryKeyIndex(p)!=0 );
2458 assert( (p->tabFlags & TF_HasPrimaryKey)!=0
2459 || (p->iPKey<0 && sqlite3PrimaryKeyIndex(p)==0) );
2461 /* Special processing for WITHOUT ROWID Tables */
2462 if( tabOpts & TF_WithoutRowid ){
2463 if( (p->tabFlags & TF_Autoincrement) ){
2464 sqlite3ErrorMsg(pParse,
2465 "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
2466 return;
2468 if( (p->tabFlags & TF_HasPrimaryKey)==0 ){
2469 sqlite3ErrorMsg(pParse, "PRIMARY KEY missing on table %s", p->zName);
2470 return;
2472 p->tabFlags |= TF_WithoutRowid | TF_NoVisibleRowid;
2473 convertToWithoutRowidTable(pParse, p);
2475 iDb = sqlite3SchemaToIndex(db, p->pSchema);
2477 #ifndef SQLITE_OMIT_CHECK
2478 /* Resolve names in all CHECK constraint expressions.
2480 if( p->pCheck ){
2481 sqlite3ResolveSelfReference(pParse, p, NC_IsCheck, 0, p->pCheck);
2482 if( pParse->nErr ){
2483 /* If errors are seen, delete the CHECK constraints now, else they might
2484 ** actually be used if PRAGMA writable_schema=ON is set. */
2485 sqlite3ExprListDelete(db, p->pCheck);
2486 p->pCheck = 0;
2487 }else{
2488 markExprListImmutable(p->pCheck);
2491 #endif /* !defined(SQLITE_OMIT_CHECK) */
2492 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2493 if( p->tabFlags & TF_HasGenerated ){
2494 int ii, nNG = 0;
2495 testcase( p->tabFlags & TF_HasVirtual );
2496 testcase( p->tabFlags & TF_HasStored );
2497 for(ii=0; ii<p->nCol; ii++){
2498 u32 colFlags = p->aCol[ii].colFlags;
2499 if( (colFlags & COLFLAG_GENERATED)!=0 ){
2500 Expr *pX = p->aCol[ii].pDflt;
2501 testcase( colFlags & COLFLAG_VIRTUAL );
2502 testcase( colFlags & COLFLAG_STORED );
2503 if( sqlite3ResolveSelfReference(pParse, p, NC_GenCol, pX, 0) ){
2504 /* If there are errors in resolving the expression, change the
2505 ** expression to a NULL. This prevents code generators that operate
2506 ** on the expression from inserting extra parts into the expression
2507 ** tree that have been allocated from lookaside memory, which is
2508 ** illegal in a schema and will lead to errors or heap corruption
2509 ** when the database connection closes. */
2510 sqlite3ExprDelete(db, pX);
2511 p->aCol[ii].pDflt = sqlite3ExprAlloc(db, TK_NULL, 0, 0);
2513 }else{
2514 nNG++;
2517 if( nNG==0 ){
2518 sqlite3ErrorMsg(pParse, "must have at least one non-generated column");
2519 return;
2522 #endif
2524 /* Estimate the average row size for the table and for all implied indices */
2525 estimateTableWidth(p);
2526 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
2527 estimateIndexWidth(pIdx);
2530 /* If not initializing, then create a record for the new table
2531 ** in the schema table of the database.
2533 ** If this is a TEMPORARY table, write the entry into the auxiliary
2534 ** file instead of into the main database file.
2536 if( !db->init.busy ){
2537 int n;
2538 Vdbe *v;
2539 char *zType; /* "view" or "table" */
2540 char *zType2; /* "VIEW" or "TABLE" */
2541 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
2543 v = sqlite3GetVdbe(pParse);
2544 if( NEVER(v==0) ) return;
2546 sqlite3VdbeAddOp1(v, OP_Close, 0);
2549 ** Initialize zType for the new view or table.
2551 if( p->pSelect==0 ){
2552 /* A regular table */
2553 zType = "table";
2554 zType2 = "TABLE";
2555 #ifndef SQLITE_OMIT_VIEW
2556 }else{
2557 /* A view */
2558 zType = "view";
2559 zType2 = "VIEW";
2560 #endif
2563 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
2564 ** statement to populate the new table. The root-page number for the
2565 ** new table is in register pParse->regRoot.
2567 ** Once the SELECT has been coded by sqlite3Select(), it is in a
2568 ** suitable state to query for the column names and types to be used
2569 ** by the new table.
2571 ** A shared-cache write-lock is not required to write to the new table,
2572 ** as a schema-lock must have already been obtained to create it. Since
2573 ** a schema-lock excludes all other database users, the write-lock would
2574 ** be redundant.
2576 if( pSelect ){
2577 SelectDest dest; /* Where the SELECT should store results */
2578 int regYield; /* Register holding co-routine entry-point */
2579 int addrTop; /* Top of the co-routine */
2580 int regRec; /* A record to be insert into the new table */
2581 int regRowid; /* Rowid of the next row to insert */
2582 int addrInsLoop; /* Top of the loop for inserting rows */
2583 Table *pSelTab; /* A table that describes the SELECT results */
2585 regYield = ++pParse->nMem;
2586 regRec = ++pParse->nMem;
2587 regRowid = ++pParse->nMem;
2588 assert(pParse->nTab==1);
2589 sqlite3MayAbort(pParse);
2590 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
2591 sqlite3VdbeChangeP5(v, OPFLAG_P2ISREG);
2592 pParse->nTab = 2;
2593 addrTop = sqlite3VdbeCurrentAddr(v) + 1;
2594 sqlite3VdbeAddOp3(v, OP_InitCoroutine, regYield, 0, addrTop);
2595 if( pParse->nErr ) return;
2596 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect, SQLITE_AFF_BLOB);
2597 if( pSelTab==0 ) return;
2598 assert( p->aCol==0 );
2599 p->nCol = p->nNVCol = pSelTab->nCol;
2600 p->aCol = pSelTab->aCol;
2601 pSelTab->nCol = 0;
2602 pSelTab->aCol = 0;
2603 sqlite3DeleteTable(db, pSelTab);
2604 sqlite3SelectDestInit(&dest, SRT_Coroutine, regYield);
2605 sqlite3Select(pParse, pSelect, &dest);
2606 if( pParse->nErr ) return;
2607 sqlite3VdbeEndCoroutine(v, regYield);
2608 sqlite3VdbeJumpHere(v, addrTop - 1);
2609 addrInsLoop = sqlite3VdbeAddOp1(v, OP_Yield, dest.iSDParm);
2610 VdbeCoverage(v);
2611 sqlite3VdbeAddOp3(v, OP_MakeRecord, dest.iSdst, dest.nSdst, regRec);
2612 sqlite3TableAffinity(v, p, 0);
2613 sqlite3VdbeAddOp2(v, OP_NewRowid, 1, regRowid);
2614 sqlite3VdbeAddOp3(v, OP_Insert, 1, regRec, regRowid);
2615 sqlite3VdbeGoto(v, addrInsLoop);
2616 sqlite3VdbeJumpHere(v, addrInsLoop);
2617 sqlite3VdbeAddOp1(v, OP_Close, 1);
2620 /* Compute the complete text of the CREATE statement */
2621 if( pSelect ){
2622 zStmt = createTableStmt(db, p);
2623 }else{
2624 Token *pEnd2 = tabOpts ? &pParse->sLastToken : pEnd;
2625 n = (int)(pEnd2->z - pParse->sNameToken.z);
2626 if( pEnd2->z[0]!=';' ) n += pEnd2->n;
2627 zStmt = sqlite3MPrintf(db,
2628 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
2632 /* A slot for the record has already been allocated in the
2633 ** schema table. We just need to update that slot with all
2634 ** the information we've collected.
2636 sqlite3NestedParse(pParse,
2637 "UPDATE %Q." DFLT_SCHEMA_TABLE
2638 " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q"
2639 " WHERE rowid=#%d",
2640 db->aDb[iDb].zDbSName,
2641 zType,
2642 p->zName,
2643 p->zName,
2644 pParse->regRoot,
2645 zStmt,
2646 pParse->regRowid
2648 sqlite3DbFree(db, zStmt);
2649 sqlite3ChangeCookie(pParse, iDb);
2651 #ifndef SQLITE_OMIT_AUTOINCREMENT
2652 /* Check to see if we need to create an sqlite_sequence table for
2653 ** keeping track of autoincrement keys.
2655 if( (p->tabFlags & TF_Autoincrement)!=0 && !IN_SPECIAL_PARSE ){
2656 Db *pDb = &db->aDb[iDb];
2657 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2658 if( pDb->pSchema->pSeqTab==0 ){
2659 sqlite3NestedParse(pParse,
2660 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2661 pDb->zDbSName
2665 #endif
2667 /* Reparse everything to update our internal data structures */
2668 sqlite3VdbeAddParseSchemaOp(v, iDb,
2669 sqlite3MPrintf(db, "tbl_name='%q' AND type!='trigger'", p->zName),0);
2672 /* Add the table to the in-memory representation of the database.
2674 if( db->init.busy ){
2675 Table *pOld;
2676 Schema *pSchema = p->pSchema;
2677 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2678 assert( HasRowid(p) || p->iPKey<0 );
2679 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName, p);
2680 if( pOld ){
2681 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
2682 sqlite3OomFault(db);
2683 return;
2685 pParse->pNewTable = 0;
2686 db->mDbFlags |= DBFLAG_SchemaChange;
2688 /* If this is the magic sqlite_sequence table used by autoincrement,
2689 ** then record a pointer to this table in the main database structure
2690 ** so that INSERT can find the table easily. */
2691 assert( !pParse->nested );
2692 #ifndef SQLITE_OMIT_AUTOINCREMENT
2693 if( strcmp(p->zName, "sqlite_sequence")==0 ){
2694 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2695 p->pSchema->pSeqTab = p;
2697 #endif
2700 #ifndef SQLITE_OMIT_ALTERTABLE
2701 if( !pSelect && !p->pSelect ){
2702 assert( pCons && pEnd );
2703 if( pCons->z==0 ){
2704 pCons = pEnd;
2706 p->addColOffset = 13 + (int)(pCons->z - pParse->sNameToken.z);
2708 #endif
2711 #ifndef SQLITE_OMIT_VIEW
2713 ** The parser calls this routine in order to create a new VIEW
2715 void sqlite3CreateView(
2716 Parse *pParse, /* The parsing context */
2717 Token *pBegin, /* The CREATE token that begins the statement */
2718 Token *pName1, /* The token that holds the name of the view */
2719 Token *pName2, /* The token that holds the name of the view */
2720 ExprList *pCNames, /* Optional list of view column names */
2721 Select *pSelect, /* A SELECT statement that will become the new view */
2722 int isTemp, /* TRUE for a TEMPORARY view */
2723 int noErr /* Suppress error messages if VIEW already exists */
2725 Table *p;
2726 int n;
2727 const char *z;
2728 Token sEnd;
2729 DbFixer sFix;
2730 Token *pName = 0;
2731 int iDb;
2732 sqlite3 *db = pParse->db;
2734 if( pParse->nVar>0 ){
2735 sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
2736 goto create_view_fail;
2738 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
2739 p = pParse->pNewTable;
2740 if( p==0 || pParse->nErr ) goto create_view_fail;
2742 /* Legacy versions of SQLite allowed the use of the magic "rowid" column
2743 ** on a view, even though views do not have rowids. The following flag
2744 ** setting fixes this problem. But the fix can be disabled by compiling
2745 ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that
2746 ** depend upon the old buggy behavior. */
2747 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
2748 p->tabFlags |= TF_NoVisibleRowid;
2749 #endif
2751 sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2752 iDb = sqlite3SchemaToIndex(db, p->pSchema);
2753 sqlite3FixInit(&sFix, pParse, iDb, "view", pName);
2754 if( sqlite3FixSelect(&sFix, pSelect) ) goto create_view_fail;
2756 /* Make a copy of the entire SELECT statement that defines the view.
2757 ** This will force all the Expr.token.z values to be dynamically
2758 ** allocated rather than point to the input string - which means that
2759 ** they will persist after the current sqlite3_exec() call returns.
2761 pSelect->selFlags |= SF_View;
2762 if( IN_RENAME_OBJECT ){
2763 p->pSelect = pSelect;
2764 pSelect = 0;
2765 }else{
2766 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
2768 p->pCheck = sqlite3ExprListDup(db, pCNames, EXPRDUP_REDUCE);
2769 if( db->mallocFailed ) goto create_view_fail;
2771 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
2772 ** the end.
2774 sEnd = pParse->sLastToken;
2775 assert( sEnd.z[0]!=0 || sEnd.n==0 );
2776 if( sEnd.z[0]!=';' ){
2777 sEnd.z += sEnd.n;
2779 sEnd.n = 0;
2780 n = (int)(sEnd.z - pBegin->z);
2781 assert( n>0 );
2782 z = pBegin->z;
2783 while( sqlite3Isspace(z[n-1]) ){ n--; }
2784 sEnd.z = &z[n-1];
2785 sEnd.n = 1;
2787 /* Use sqlite3EndTable() to add the view to the schema table */
2788 sqlite3EndTable(pParse, 0, &sEnd, 0, 0);
2790 create_view_fail:
2791 sqlite3SelectDelete(db, pSelect);
2792 if( IN_RENAME_OBJECT ){
2793 sqlite3RenameExprlistUnmap(pParse, pCNames);
2795 sqlite3ExprListDelete(db, pCNames);
2796 return;
2798 #endif /* SQLITE_OMIT_VIEW */
2800 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
2802 ** The Table structure pTable is really a VIEW. Fill in the names of
2803 ** the columns of the view in the pTable structure. Return the number
2804 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
2806 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
2807 Table *pSelTab; /* A fake table from which we get the result set */
2808 Select *pSel; /* Copy of the SELECT that implements the view */
2809 int nErr = 0; /* Number of errors encountered */
2810 int n; /* Temporarily holds the number of cursors assigned */
2811 sqlite3 *db = pParse->db; /* Database connection for malloc errors */
2812 #ifndef SQLITE_OMIT_VIRTUALTABLE
2813 int rc;
2814 #endif
2815 #ifndef SQLITE_OMIT_AUTHORIZATION
2816 sqlite3_xauth xAuth; /* Saved xAuth pointer */
2817 #endif
2819 assert( pTable );
2821 #ifndef SQLITE_OMIT_VIRTUALTABLE
2822 db->nSchemaLock++;
2823 rc = sqlite3VtabCallConnect(pParse, pTable);
2824 db->nSchemaLock--;
2825 if( rc ){
2826 return 1;
2828 if( IsVirtual(pTable) ) return 0;
2829 #endif
2831 #ifndef SQLITE_OMIT_VIEW
2832 /* A positive nCol means the columns names for this view are
2833 ** already known.
2835 if( pTable->nCol>0 ) return 0;
2837 /* A negative nCol is a special marker meaning that we are currently
2838 ** trying to compute the column names. If we enter this routine with
2839 ** a negative nCol, it means two or more views form a loop, like this:
2841 ** CREATE VIEW one AS SELECT * FROM two;
2842 ** CREATE VIEW two AS SELECT * FROM one;
2844 ** Actually, the error above is now caught prior to reaching this point.
2845 ** But the following test is still important as it does come up
2846 ** in the following:
2848 ** CREATE TABLE main.ex1(a);
2849 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
2850 ** SELECT * FROM temp.ex1;
2852 if( pTable->nCol<0 ){
2853 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
2854 return 1;
2856 assert( pTable->nCol>=0 );
2858 /* If we get this far, it means we need to compute the table names.
2859 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
2860 ** "*" elements in the results set of the view and will assign cursors
2861 ** to the elements of the FROM clause. But we do not want these changes
2862 ** to be permanent. So the computation is done on a copy of the SELECT
2863 ** statement that defines the view.
2865 assert( pTable->pSelect );
2866 pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
2867 if( pSel ){
2868 u8 eParseMode = pParse->eParseMode;
2869 pParse->eParseMode = PARSE_MODE_NORMAL;
2870 n = pParse->nTab;
2871 sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
2872 pTable->nCol = -1;
2873 DisableLookaside;
2874 #ifndef SQLITE_OMIT_AUTHORIZATION
2875 xAuth = db->xAuth;
2876 db->xAuth = 0;
2877 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
2878 db->xAuth = xAuth;
2879 #else
2880 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel, SQLITE_AFF_NONE);
2881 #endif
2882 pParse->nTab = n;
2883 if( pSelTab==0 ){
2884 pTable->nCol = 0;
2885 nErr++;
2886 }else if( pTable->pCheck ){
2887 /* CREATE VIEW name(arglist) AS ...
2888 ** The names of the columns in the table are taken from
2889 ** arglist which is stored in pTable->pCheck. The pCheck field
2890 ** normally holds CHECK constraints on an ordinary table, but for
2891 ** a VIEW it holds the list of column names.
2893 sqlite3ColumnsFromExprList(pParse, pTable->pCheck,
2894 &pTable->nCol, &pTable->aCol);
2895 if( db->mallocFailed==0
2896 && pParse->nErr==0
2897 && pTable->nCol==pSel->pEList->nExpr
2899 sqlite3SelectAddColumnTypeAndCollation(pParse, pTable, pSel,
2900 SQLITE_AFF_NONE);
2902 }else{
2903 /* CREATE VIEW name AS... without an argument list. Construct
2904 ** the column names from the SELECT statement that defines the view.
2906 assert( pTable->aCol==0 );
2907 pTable->nCol = pSelTab->nCol;
2908 pTable->aCol = pSelTab->aCol;
2909 pTable->tabFlags |= (pSelTab->tabFlags & COLFLAG_NOINSERT);
2910 pSelTab->nCol = 0;
2911 pSelTab->aCol = 0;
2912 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
2914 pTable->nNVCol = pTable->nCol;
2915 sqlite3DeleteTable(db, pSelTab);
2916 sqlite3SelectDelete(db, pSel);
2917 EnableLookaside;
2918 pParse->eParseMode = eParseMode;
2919 } else {
2920 nErr++;
2922 pTable->pSchema->schemaFlags |= DB_UnresetViews;
2923 if( db->mallocFailed ){
2924 sqlite3DeleteColumnNames(db, pTable);
2925 pTable->aCol = 0;
2926 pTable->nCol = 0;
2928 #endif /* SQLITE_OMIT_VIEW */
2929 return nErr;
2931 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
2933 #ifndef SQLITE_OMIT_VIEW
2935 ** Clear the column names from every VIEW in database idx.
2937 static void sqliteViewResetAll(sqlite3 *db, int idx){
2938 HashElem *i;
2939 assert( sqlite3SchemaMutexHeld(db, idx, 0) );
2940 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
2941 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
2942 Table *pTab = sqliteHashData(i);
2943 if( pTab->pSelect ){
2944 sqlite3DeleteColumnNames(db, pTab);
2945 pTab->aCol = 0;
2946 pTab->nCol = 0;
2949 DbClearProperty(db, idx, DB_UnresetViews);
2951 #else
2952 # define sqliteViewResetAll(A,B)
2953 #endif /* SQLITE_OMIT_VIEW */
2956 ** This function is called by the VDBE to adjust the internal schema
2957 ** used by SQLite when the btree layer moves a table root page. The
2958 ** root-page of a table or index in database iDb has changed from iFrom
2959 ** to iTo.
2961 ** Ticket #1728: The symbol table might still contain information
2962 ** on tables and/or indices that are the process of being deleted.
2963 ** If you are unlucky, one of those deleted indices or tables might
2964 ** have the same rootpage number as the real table or index that is
2965 ** being moved. So we cannot stop searching after the first match
2966 ** because the first match might be for one of the deleted indices
2967 ** or tables and not the table/index that is actually being moved.
2968 ** We must continue looping until all tables and indices with
2969 ** rootpage==iFrom have been converted to have a rootpage of iTo
2970 ** in order to be certain that we got the right one.
2972 #ifndef SQLITE_OMIT_AUTOVACUUM
2973 void sqlite3RootPageMoved(sqlite3 *db, int iDb, Pgno iFrom, Pgno iTo){
2974 HashElem *pElem;
2975 Hash *pHash;
2976 Db *pDb;
2978 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2979 pDb = &db->aDb[iDb];
2980 pHash = &pDb->pSchema->tblHash;
2981 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2982 Table *pTab = sqliteHashData(pElem);
2983 if( pTab->tnum==iFrom ){
2984 pTab->tnum = iTo;
2987 pHash = &pDb->pSchema->idxHash;
2988 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
2989 Index *pIdx = sqliteHashData(pElem);
2990 if( pIdx->tnum==iFrom ){
2991 pIdx->tnum = iTo;
2995 #endif
2998 ** Write code to erase the table with root-page iTable from database iDb.
2999 ** Also write code to modify the sqlite_schema table and internal schema
3000 ** if a root-page of another table is moved by the btree-layer whilst
3001 ** erasing iTable (this can happen with an auto-vacuum database).
3003 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
3004 Vdbe *v = sqlite3GetVdbe(pParse);
3005 int r1 = sqlite3GetTempReg(pParse);
3006 if( iTable<2 ) sqlite3ErrorMsg(pParse, "corrupt schema");
3007 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
3008 sqlite3MayAbort(pParse);
3009 #ifndef SQLITE_OMIT_AUTOVACUUM
3010 /* OP_Destroy stores an in integer r1. If this integer
3011 ** is non-zero, then it is the root page number of a table moved to
3012 ** location iTable. The following code modifies the sqlite_schema table to
3013 ** reflect this.
3015 ** The "#NNN" in the SQL is a special constant that means whatever value
3016 ** is in register NNN. See grammar rules associated with the TK_REGISTER
3017 ** token for additional information.
3019 sqlite3NestedParse(pParse,
3020 "UPDATE %Q." DFLT_SCHEMA_TABLE
3021 " SET rootpage=%d WHERE #%d AND rootpage=#%d",
3022 pParse->db->aDb[iDb].zDbSName, iTable, r1, r1);
3023 #endif
3024 sqlite3ReleaseTempReg(pParse, r1);
3028 ** Write VDBE code to erase table pTab and all associated indices on disk.
3029 ** Code to update the sqlite_schema tables and internal schema definitions
3030 ** in case a root-page belonging to another table is moved by the btree layer
3031 ** is also added (this can happen with an auto-vacuum database).
3033 static void destroyTable(Parse *pParse, Table *pTab){
3034 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
3035 ** is not defined), then it is important to call OP_Destroy on the
3036 ** table and index root-pages in order, starting with the numerically
3037 ** largest root-page number. This guarantees that none of the root-pages
3038 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
3039 ** following were coded:
3041 ** OP_Destroy 4 0
3042 ** ...
3043 ** OP_Destroy 5 0
3045 ** and root page 5 happened to be the largest root-page number in the
3046 ** database, then root page 5 would be moved to page 4 by the
3047 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
3048 ** a free-list page.
3050 Pgno iTab = pTab->tnum;
3051 Pgno iDestroyed = 0;
3053 while( 1 ){
3054 Index *pIdx;
3055 Pgno iLargest = 0;
3057 if( iDestroyed==0 || iTab<iDestroyed ){
3058 iLargest = iTab;
3060 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
3061 Pgno iIdx = pIdx->tnum;
3062 assert( pIdx->pSchema==pTab->pSchema );
3063 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
3064 iLargest = iIdx;
3067 if( iLargest==0 ){
3068 return;
3069 }else{
3070 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
3071 assert( iDb>=0 && iDb<pParse->db->nDb );
3072 destroyRootPage(pParse, iLargest, iDb);
3073 iDestroyed = iLargest;
3079 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
3080 ** after a DROP INDEX or DROP TABLE command.
3082 static void sqlite3ClearStatTables(
3083 Parse *pParse, /* The parsing context */
3084 int iDb, /* The database number */
3085 const char *zType, /* "idx" or "tbl" */
3086 const char *zName /* Name of index or table */
3088 int i;
3089 const char *zDbName = pParse->db->aDb[iDb].zDbSName;
3090 for(i=1; i<=4; i++){
3091 char zTab[24];
3092 sqlite3_snprintf(sizeof(zTab),zTab,"sqlite_stat%d",i);
3093 if( sqlite3FindTable(pParse->db, zTab, zDbName) ){
3094 sqlite3NestedParse(pParse,
3095 "DELETE FROM %Q.%s WHERE %s=%Q",
3096 zDbName, zTab, zType, zName
3103 ** Generate code to drop a table.
3105 void sqlite3CodeDropTable(Parse *pParse, Table *pTab, int iDb, int isView){
3106 Vdbe *v;
3107 sqlite3 *db = pParse->db;
3108 Trigger *pTrigger;
3109 Db *pDb = &db->aDb[iDb];
3111 v = sqlite3GetVdbe(pParse);
3112 assert( v!=0 );
3113 sqlite3BeginWriteOperation(pParse, 1, iDb);
3115 #ifndef SQLITE_OMIT_VIRTUALTABLE
3116 if( IsVirtual(pTab) ){
3117 sqlite3VdbeAddOp0(v, OP_VBegin);
3119 #endif
3121 /* Drop all triggers associated with the table being dropped. Code
3122 ** is generated to remove entries from sqlite_schema and/or
3123 ** sqlite_temp_schema if required.
3125 pTrigger = sqlite3TriggerList(pParse, pTab);
3126 while( pTrigger ){
3127 assert( pTrigger->pSchema==pTab->pSchema ||
3128 pTrigger->pSchema==db->aDb[1].pSchema );
3129 sqlite3DropTriggerPtr(pParse, pTrigger);
3130 pTrigger = pTrigger->pNext;
3133 #ifndef SQLITE_OMIT_AUTOINCREMENT
3134 /* Remove any entries of the sqlite_sequence table associated with
3135 ** the table being dropped. This is done before the table is dropped
3136 ** at the btree level, in case the sqlite_sequence table needs to
3137 ** move as a result of the drop (can happen in auto-vacuum mode).
3139 if( pTab->tabFlags & TF_Autoincrement ){
3140 sqlite3NestedParse(pParse,
3141 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
3142 pDb->zDbSName, pTab->zName
3145 #endif
3147 /* Drop all entries in the schema table that refer to the
3148 ** table. The program name loops through the schema table and deletes
3149 ** every row that refers to a table of the same name as the one being
3150 ** dropped. Triggers are handled separately because a trigger can be
3151 ** created in the temp database that refers to a table in another
3152 ** database.
3154 sqlite3NestedParse(pParse,
3155 "DELETE FROM %Q." DFLT_SCHEMA_TABLE
3156 " WHERE tbl_name=%Q and type!='trigger'",
3157 pDb->zDbSName, pTab->zName);
3158 if( !isView && !IsVirtual(pTab) ){
3159 destroyTable(pParse, pTab);
3162 /* Remove the table entry from SQLite's internal schema and modify
3163 ** the schema cookie.
3165 if( IsVirtual(pTab) ){
3166 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
3167 sqlite3MayAbort(pParse);
3169 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
3170 sqlite3ChangeCookie(pParse, iDb);
3171 sqliteViewResetAll(db, iDb);
3175 ** Return TRUE if shadow tables should be read-only in the current
3176 ** context.
3178 int sqlite3ReadOnlyShadowTables(sqlite3 *db){
3179 #ifndef SQLITE_OMIT_VIRTUALTABLE
3180 if( (db->flags & SQLITE_Defensive)!=0
3181 && db->pVtabCtx==0
3182 && db->nVdbeExec==0
3184 return 1;
3186 #endif
3187 return 0;
3191 ** Return true if it is not allowed to drop the given table
3193 static int tableMayNotBeDropped(sqlite3 *db, Table *pTab){
3194 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
3195 if( sqlite3StrNICmp(pTab->zName+7, "stat", 4)==0 ) return 0;
3196 if( sqlite3StrNICmp(pTab->zName+7, "parameters", 10)==0 ) return 0;
3197 return 1;
3199 if( (pTab->tabFlags & TF_Shadow)!=0 && sqlite3ReadOnlyShadowTables(db) ){
3200 return 1;
3202 return 0;
3206 ** This routine is called to do the work of a DROP TABLE statement.
3207 ** pName is the name of the table to be dropped.
3209 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
3210 Table *pTab;
3211 Vdbe *v;
3212 sqlite3 *db = pParse->db;
3213 int iDb;
3215 if( db->mallocFailed ){
3216 goto exit_drop_table;
3218 assert( pParse->nErr==0 );
3219 assert( pName->nSrc==1 );
3220 if( sqlite3ReadSchema(pParse) ) goto exit_drop_table;
3221 if( noErr ) db->suppressErr++;
3222 assert( isView==0 || isView==LOCATE_VIEW );
3223 pTab = sqlite3LocateTableItem(pParse, isView, &pName->a[0]);
3224 if( noErr ) db->suppressErr--;
3226 if( pTab==0 ){
3227 if( noErr ){
3228 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
3229 sqlite3ForceNotReadOnly(pParse);
3231 goto exit_drop_table;
3233 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3234 assert( iDb>=0 && iDb<db->nDb );
3236 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
3237 ** it is initialized.
3239 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
3240 goto exit_drop_table;
3242 #ifndef SQLITE_OMIT_AUTHORIZATION
3244 int code;
3245 const char *zTab = SCHEMA_TABLE(iDb);
3246 const char *zDb = db->aDb[iDb].zDbSName;
3247 const char *zArg2 = 0;
3248 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
3249 goto exit_drop_table;
3251 if( isView ){
3252 if( !OMIT_TEMPDB && iDb==1 ){
3253 code = SQLITE_DROP_TEMP_VIEW;
3254 }else{
3255 code = SQLITE_DROP_VIEW;
3257 #ifndef SQLITE_OMIT_VIRTUALTABLE
3258 }else if( IsVirtual(pTab) ){
3259 code = SQLITE_DROP_VTABLE;
3260 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
3261 #endif
3262 }else{
3263 if( !OMIT_TEMPDB && iDb==1 ){
3264 code = SQLITE_DROP_TEMP_TABLE;
3265 }else{
3266 code = SQLITE_DROP_TABLE;
3269 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
3270 goto exit_drop_table;
3272 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
3273 goto exit_drop_table;
3276 #endif
3277 if( tableMayNotBeDropped(db, pTab) ){
3278 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
3279 goto exit_drop_table;
3282 #ifndef SQLITE_OMIT_VIEW
3283 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
3284 ** on a table.
3286 if( isView && pTab->pSelect==0 ){
3287 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
3288 goto exit_drop_table;
3290 if( !isView && pTab->pSelect ){
3291 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
3292 goto exit_drop_table;
3294 #endif
3296 /* Generate code to remove the table from the schema table
3297 ** on disk.
3299 v = sqlite3GetVdbe(pParse);
3300 if( v ){
3301 sqlite3BeginWriteOperation(pParse, 1, iDb);
3302 if( !isView ){
3303 sqlite3ClearStatTables(pParse, iDb, "tbl", pTab->zName);
3304 sqlite3FkDropTable(pParse, pName, pTab);
3306 sqlite3CodeDropTable(pParse, pTab, iDb, isView);
3309 exit_drop_table:
3310 sqlite3SrcListDelete(db, pName);
3314 ** This routine is called to create a new foreign key on the table
3315 ** currently under construction. pFromCol determines which columns
3316 ** in the current table point to the foreign key. If pFromCol==0 then
3317 ** connect the key to the last column inserted. pTo is the name of
3318 ** the table referred to (a.k.a the "parent" table). pToCol is a list
3319 ** of tables in the parent pTo table. flags contains all
3320 ** information about the conflict resolution algorithms specified
3321 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
3323 ** An FKey structure is created and added to the table currently
3324 ** under construction in the pParse->pNewTable field.
3326 ** The foreign key is set for IMMEDIATE processing. A subsequent call
3327 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
3329 void sqlite3CreateForeignKey(
3330 Parse *pParse, /* Parsing context */
3331 ExprList *pFromCol, /* Columns in this table that point to other table */
3332 Token *pTo, /* Name of the other table */
3333 ExprList *pToCol, /* Columns in the other table */
3334 int flags /* Conflict resolution algorithms. */
3336 sqlite3 *db = pParse->db;
3337 #ifndef SQLITE_OMIT_FOREIGN_KEY
3338 FKey *pFKey = 0;
3339 FKey *pNextTo;
3340 Table *p = pParse->pNewTable;
3341 int nByte;
3342 int i;
3343 int nCol;
3344 char *z;
3346 assert( pTo!=0 );
3347 if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
3348 if( pFromCol==0 ){
3349 int iCol = p->nCol-1;
3350 if( NEVER(iCol<0) ) goto fk_end;
3351 if( pToCol && pToCol->nExpr!=1 ){
3352 sqlite3ErrorMsg(pParse, "foreign key on %s"
3353 " should reference only one column of table %T",
3354 p->aCol[iCol].zName, pTo);
3355 goto fk_end;
3357 nCol = 1;
3358 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
3359 sqlite3ErrorMsg(pParse,
3360 "number of columns in foreign key does not match the number of "
3361 "columns in the referenced table");
3362 goto fk_end;
3363 }else{
3364 nCol = pFromCol->nExpr;
3366 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
3367 if( pToCol ){
3368 for(i=0; i<pToCol->nExpr; i++){
3369 nByte += sqlite3Strlen30(pToCol->a[i].zEName) + 1;
3372 pFKey = sqlite3DbMallocZero(db, nByte );
3373 if( pFKey==0 ){
3374 goto fk_end;
3376 pFKey->pFrom = p;
3377 pFKey->pNextFrom = p->pFKey;
3378 z = (char*)&pFKey->aCol[nCol];
3379 pFKey->zTo = z;
3380 if( IN_RENAME_OBJECT ){
3381 sqlite3RenameTokenMap(pParse, (void*)z, pTo);
3383 memcpy(z, pTo->z, pTo->n);
3384 z[pTo->n] = 0;
3385 sqlite3Dequote(z);
3386 z += pTo->n+1;
3387 pFKey->nCol = nCol;
3388 if( pFromCol==0 ){
3389 pFKey->aCol[0].iFrom = p->nCol-1;
3390 }else{
3391 for(i=0; i<nCol; i++){
3392 int j;
3393 for(j=0; j<p->nCol; j++){
3394 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zEName)==0 ){
3395 pFKey->aCol[i].iFrom = j;
3396 break;
3399 if( j>=p->nCol ){
3400 sqlite3ErrorMsg(pParse,
3401 "unknown column \"%s\" in foreign key definition",
3402 pFromCol->a[i].zEName);
3403 goto fk_end;
3405 if( IN_RENAME_OBJECT ){
3406 sqlite3RenameTokenRemap(pParse, &pFKey->aCol[i], pFromCol->a[i].zEName);
3410 if( pToCol ){
3411 for(i=0; i<nCol; i++){
3412 int n = sqlite3Strlen30(pToCol->a[i].zEName);
3413 pFKey->aCol[i].zCol = z;
3414 if( IN_RENAME_OBJECT ){
3415 sqlite3RenameTokenRemap(pParse, z, pToCol->a[i].zEName);
3417 memcpy(z, pToCol->a[i].zEName, n);
3418 z[n] = 0;
3419 z += n+1;
3422 pFKey->isDeferred = 0;
3423 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */
3424 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */
3426 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
3427 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
3428 pFKey->zTo, (void *)pFKey
3430 if( pNextTo==pFKey ){
3431 sqlite3OomFault(db);
3432 goto fk_end;
3434 if( pNextTo ){
3435 assert( pNextTo->pPrevTo==0 );
3436 pFKey->pNextTo = pNextTo;
3437 pNextTo->pPrevTo = pFKey;
3440 /* Link the foreign key to the table as the last step.
3442 p->pFKey = pFKey;
3443 pFKey = 0;
3445 fk_end:
3446 sqlite3DbFree(db, pFKey);
3447 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
3448 sqlite3ExprListDelete(db, pFromCol);
3449 sqlite3ExprListDelete(db, pToCol);
3453 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
3454 ** clause is seen as part of a foreign key definition. The isDeferred
3455 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
3456 ** The behavior of the most recently created foreign key is adjusted
3457 ** accordingly.
3459 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
3460 #ifndef SQLITE_OMIT_FOREIGN_KEY
3461 Table *pTab;
3462 FKey *pFKey;
3463 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
3464 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
3465 pFKey->isDeferred = (u8)isDeferred;
3466 #endif
3470 ** Generate code that will erase and refill index *pIdx. This is
3471 ** used to initialize a newly created index or to recompute the
3472 ** content of an index in response to a REINDEX command.
3474 ** if memRootPage is not negative, it means that the index is newly
3475 ** created. The register specified by memRootPage contains the
3476 ** root page number of the index. If memRootPage is negative, then
3477 ** the index already exists and must be cleared before being refilled and
3478 ** the root page number of the index is taken from pIndex->tnum.
3480 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
3481 Table *pTab = pIndex->pTable; /* The table that is indexed */
3482 int iTab = pParse->nTab++; /* Btree cursor used for pTab */
3483 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */
3484 int iSorter; /* Cursor opened by OpenSorter (if in use) */
3485 int addr1; /* Address of top of loop */
3486 int addr2; /* Address to jump to for next iteration */
3487 Pgno tnum; /* Root page of index */
3488 int iPartIdxLabel; /* Jump to this label to skip a row */
3489 Vdbe *v; /* Generate code into this virtual machine */
3490 KeyInfo *pKey; /* KeyInfo for index */
3491 int regRecord; /* Register holding assembled index record */
3492 sqlite3 *db = pParse->db; /* The database connection */
3493 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
3495 #ifndef SQLITE_OMIT_AUTHORIZATION
3496 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
3497 db->aDb[iDb].zDbSName ) ){
3498 return;
3500 #endif
3502 /* Require a write-lock on the table to perform this operation */
3503 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
3505 v = sqlite3GetVdbe(pParse);
3506 if( v==0 ) return;
3507 if( memRootPage>=0 ){
3508 tnum = (Pgno)memRootPage;
3509 }else{
3510 tnum = pIndex->tnum;
3512 pKey = sqlite3KeyInfoOfIndex(pParse, pIndex);
3513 assert( pKey!=0 || db->mallocFailed || pParse->nErr );
3515 /* Open the sorter cursor if we are to use one. */
3516 iSorter = pParse->nTab++;
3517 sqlite3VdbeAddOp4(v, OP_SorterOpen, iSorter, 0, pIndex->nKeyCol, (char*)
3518 sqlite3KeyInfoRef(pKey), P4_KEYINFO);
3520 /* Open the table. Loop through all rows of the table, inserting index
3521 ** records into the sorter. */
3522 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
3523 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0); VdbeCoverage(v);
3524 regRecord = sqlite3GetTempReg(pParse);
3525 sqlite3MultiWrite(pParse);
3527 sqlite3GenerateIndexKey(pParse,pIndex,iTab,regRecord,0,&iPartIdxLabel,0,0);
3528 sqlite3VdbeAddOp2(v, OP_SorterInsert, iSorter, regRecord);
3529 sqlite3ResolvePartIdxLabel(pParse, iPartIdxLabel);
3530 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1); VdbeCoverage(v);
3531 sqlite3VdbeJumpHere(v, addr1);
3532 if( memRootPage<0 ) sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
3533 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, (int)tnum, iDb,
3534 (char *)pKey, P4_KEYINFO);
3535 sqlite3VdbeChangeP5(v, OPFLAG_BULKCSR|((memRootPage>=0)?OPFLAG_P2ISREG:0));
3537 addr1 = sqlite3VdbeAddOp2(v, OP_SorterSort, iSorter, 0); VdbeCoverage(v);
3538 if( IsUniqueIndex(pIndex) ){
3539 int j2 = sqlite3VdbeGoto(v, 1);
3540 addr2 = sqlite3VdbeCurrentAddr(v);
3541 sqlite3VdbeVerifyAbortable(v, OE_Abort);
3542 sqlite3VdbeAddOp4Int(v, OP_SorterCompare, iSorter, j2, regRecord,
3543 pIndex->nKeyCol); VdbeCoverage(v);
3544 sqlite3UniqueConstraint(pParse, OE_Abort, pIndex);
3545 sqlite3VdbeJumpHere(v, j2);
3546 }else{
3547 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not
3548 ** abort. The exception is if one of the indexed expressions contains a
3549 ** user function that throws an exception when it is evaluated. But the
3550 ** overhead of adding a statement journal to a CREATE INDEX statement is
3551 ** very small (since most of the pages written do not contain content that
3552 ** needs to be restored if the statement aborts), so we call
3553 ** sqlite3MayAbort() for all CREATE INDEX statements. */
3554 sqlite3MayAbort(pParse);
3555 addr2 = sqlite3VdbeCurrentAddr(v);
3557 sqlite3VdbeAddOp3(v, OP_SorterData, iSorter, regRecord, iIdx);
3558 if( !pIndex->bAscKeyBug ){
3559 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much
3560 ** faster by avoiding unnecessary seeks. But the optimization does
3561 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables
3562 ** with DESC primary keys, since those indexes have there keys in
3563 ** a different order from the main table.
3564 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf
3566 sqlite3VdbeAddOp1(v, OP_SeekEnd, iIdx);
3568 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
3569 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
3570 sqlite3ReleaseTempReg(pParse, regRecord);
3571 sqlite3VdbeAddOp2(v, OP_SorterNext, iSorter, addr2); VdbeCoverage(v);
3572 sqlite3VdbeJumpHere(v, addr1);
3574 sqlite3VdbeAddOp1(v, OP_Close, iTab);
3575 sqlite3VdbeAddOp1(v, OP_Close, iIdx);
3576 sqlite3VdbeAddOp1(v, OP_Close, iSorter);
3580 ** Allocate heap space to hold an Index object with nCol columns.
3582 ** Increase the allocation size to provide an extra nExtra bytes
3583 ** of 8-byte aligned space after the Index object and return a
3584 ** pointer to this extra space in *ppExtra.
3586 Index *sqlite3AllocateIndexObject(
3587 sqlite3 *db, /* Database connection */
3588 i16 nCol, /* Total number of columns in the index */
3589 int nExtra, /* Number of bytes of extra space to alloc */
3590 char **ppExtra /* Pointer to the "extra" space */
3592 Index *p; /* Allocated index object */
3593 int nByte; /* Bytes of space for Index object + arrays */
3595 nByte = ROUND8(sizeof(Index)) + /* Index structure */
3596 ROUND8(sizeof(char*)*nCol) + /* Index.azColl */
3597 ROUND8(sizeof(LogEst)*(nCol+1) + /* Index.aiRowLogEst */
3598 sizeof(i16)*nCol + /* Index.aiColumn */
3599 sizeof(u8)*nCol); /* Index.aSortOrder */
3600 p = sqlite3DbMallocZero(db, nByte + nExtra);
3601 if( p ){
3602 char *pExtra = ((char*)p)+ROUND8(sizeof(Index));
3603 p->azColl = (const char**)pExtra; pExtra += ROUND8(sizeof(char*)*nCol);
3604 p->aiRowLogEst = (LogEst*)pExtra; pExtra += sizeof(LogEst)*(nCol+1);
3605 p->aiColumn = (i16*)pExtra; pExtra += sizeof(i16)*nCol;
3606 p->aSortOrder = (u8*)pExtra;
3607 p->nColumn = nCol;
3608 p->nKeyCol = nCol - 1;
3609 *ppExtra = ((char*)p) + nByte;
3611 return p;
3615 ** If expression list pList contains an expression that was parsed with
3616 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in
3617 ** pParse and return non-zero. Otherwise, return zero.
3619 int sqlite3HasExplicitNulls(Parse *pParse, ExprList *pList){
3620 if( pList ){
3621 int i;
3622 for(i=0; i<pList->nExpr; i++){
3623 if( pList->a[i].bNulls ){
3624 u8 sf = pList->a[i].sortFlags;
3625 sqlite3ErrorMsg(pParse, "unsupported use of NULLS %s",
3626 (sf==0 || sf==3) ? "FIRST" : "LAST"
3628 return 1;
3632 return 0;
3636 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
3637 ** and pTblList is the name of the table that is to be indexed. Both will
3638 ** be NULL for a primary key or an index that is created to satisfy a
3639 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
3640 ** as the table to be indexed. pParse->pNewTable is a table that is
3641 ** currently being constructed by a CREATE TABLE statement.
3643 ** pList is a list of columns to be indexed. pList will be NULL if this
3644 ** is a primary key or unique-constraint on the most recent column added
3645 ** to the table currently under construction.
3647 void sqlite3CreateIndex(
3648 Parse *pParse, /* All information about this parse */
3649 Token *pName1, /* First part of index name. May be NULL */
3650 Token *pName2, /* Second part of index name. May be NULL */
3651 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
3652 ExprList *pList, /* A list of columns to be indexed */
3653 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
3654 Token *pStart, /* The CREATE token that begins this statement */
3655 Expr *pPIWhere, /* WHERE clause for partial indices */
3656 int sortOrder, /* Sort order of primary key when pList==NULL */
3657 int ifNotExist, /* Omit error if index already exists */
3658 u8 idxType /* The index type */
3660 Table *pTab = 0; /* Table to be indexed */
3661 Index *pIndex = 0; /* The index to be created */
3662 char *zName = 0; /* Name of the index */
3663 int nName; /* Number of characters in zName */
3664 int i, j;
3665 DbFixer sFix; /* For assigning database names to pTable */
3666 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
3667 sqlite3 *db = pParse->db;
3668 Db *pDb; /* The specific table containing the indexed database */
3669 int iDb; /* Index of the database that is being written */
3670 Token *pName = 0; /* Unqualified name of the index to create */
3671 struct ExprList_item *pListItem; /* For looping over pList */
3672 int nExtra = 0; /* Space allocated for zExtra[] */
3673 int nExtraCol; /* Number of extra columns needed */
3674 char *zExtra = 0; /* Extra space after the Index object */
3675 Index *pPk = 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
3677 if( db->mallocFailed || pParse->nErr>0 ){
3678 goto exit_create_index;
3680 if( IN_DECLARE_VTAB && idxType!=SQLITE_IDXTYPE_PRIMARYKEY ){
3681 goto exit_create_index;
3683 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3684 goto exit_create_index;
3686 if( sqlite3HasExplicitNulls(pParse, pList) ){
3687 goto exit_create_index;
3691 ** Find the table that is to be indexed. Return early if not found.
3693 if( pTblName!=0 ){
3695 /* Use the two-part index name to determine the database
3696 ** to search for the table. 'Fix' the table name to this db
3697 ** before looking up the table.
3699 assert( pName1 && pName2 );
3700 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
3701 if( iDb<0 ) goto exit_create_index;
3702 assert( pName && pName->z );
3704 #ifndef SQLITE_OMIT_TEMPDB
3705 /* If the index name was unqualified, check if the table
3706 ** is a temp table. If so, set the database to 1. Do not do this
3707 ** if initialising a database schema.
3709 if( !db->init.busy ){
3710 pTab = sqlite3SrcListLookup(pParse, pTblName);
3711 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
3712 iDb = 1;
3715 #endif
3717 sqlite3FixInit(&sFix, pParse, iDb, "index", pName);
3718 if( sqlite3FixSrcList(&sFix, pTblName) ){
3719 /* Because the parser constructs pTblName from a single identifier,
3720 ** sqlite3FixSrcList can never fail. */
3721 assert(0);
3723 pTab = sqlite3LocateTableItem(pParse, 0, &pTblName->a[0]);
3724 assert( db->mallocFailed==0 || pTab==0 );
3725 if( pTab==0 ) goto exit_create_index;
3726 if( iDb==1 && db->aDb[iDb].pSchema!=pTab->pSchema ){
3727 sqlite3ErrorMsg(pParse,
3728 "cannot create a TEMP index on non-TEMP table \"%s\"",
3729 pTab->zName);
3730 goto exit_create_index;
3732 if( !HasRowid(pTab) ) pPk = sqlite3PrimaryKeyIndex(pTab);
3733 }else{
3734 assert( pName==0 );
3735 assert( pStart==0 );
3736 pTab = pParse->pNewTable;
3737 if( !pTab ) goto exit_create_index;
3738 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
3740 pDb = &db->aDb[iDb];
3742 assert( pTab!=0 );
3743 assert( pParse->nErr==0 );
3744 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
3745 && db->init.busy==0
3746 && pTblName!=0
3747 #if SQLITE_USER_AUTHENTICATION
3748 && sqlite3UserAuthTable(pTab->zName)==0
3749 #endif
3751 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
3752 goto exit_create_index;
3754 #ifndef SQLITE_OMIT_VIEW
3755 if( pTab->pSelect ){
3756 sqlite3ErrorMsg(pParse, "views may not be indexed");
3757 goto exit_create_index;
3759 #endif
3760 #ifndef SQLITE_OMIT_VIRTUALTABLE
3761 if( IsVirtual(pTab) ){
3762 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
3763 goto exit_create_index;
3765 #endif
3768 ** Find the name of the index. Make sure there is not already another
3769 ** index or table with the same name.
3771 ** Exception: If we are reading the names of permanent indices from the
3772 ** sqlite_schema table (because some other process changed the schema) and
3773 ** one of the index names collides with the name of a temporary table or
3774 ** index, then we will continue to process this index.
3776 ** If pName==0 it means that we are
3777 ** dealing with a primary key or UNIQUE constraint. We have to invent our
3778 ** own name.
3780 if( pName ){
3781 zName = sqlite3NameFromToken(db, pName);
3782 if( zName==0 ) goto exit_create_index;
3783 assert( pName->z!=0 );
3784 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName,"index",pTab->zName) ){
3785 goto exit_create_index;
3787 if( !IN_RENAME_OBJECT ){
3788 if( !db->init.busy ){
3789 if( sqlite3FindTable(db, zName, 0)!=0 ){
3790 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
3791 goto exit_create_index;
3794 if( sqlite3FindIndex(db, zName, pDb->zDbSName)!=0 ){
3795 if( !ifNotExist ){
3796 sqlite3ErrorMsg(pParse, "index %s already exists", zName);
3797 }else{
3798 assert( !db->init.busy );
3799 sqlite3CodeVerifySchema(pParse, iDb);
3800 sqlite3ForceNotReadOnly(pParse);
3802 goto exit_create_index;
3805 }else{
3806 int n;
3807 Index *pLoop;
3808 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
3809 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
3810 if( zName==0 ){
3811 goto exit_create_index;
3814 /* Automatic index names generated from within sqlite3_declare_vtab()
3815 ** must have names that are distinct from normal automatic index names.
3816 ** The following statement converts "sqlite3_autoindex..." into
3817 ** "sqlite3_butoindex..." in order to make the names distinct.
3818 ** The "vtab_err.test" test demonstrates the need of this statement. */
3819 if( IN_SPECIAL_PARSE ) zName[7]++;
3822 /* Check for authorization to create an index.
3824 #ifndef SQLITE_OMIT_AUTHORIZATION
3825 if( !IN_RENAME_OBJECT ){
3826 const char *zDb = pDb->zDbSName;
3827 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
3828 goto exit_create_index;
3830 i = SQLITE_CREATE_INDEX;
3831 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
3832 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
3833 goto exit_create_index;
3836 #endif
3838 /* If pList==0, it means this routine was called to make a primary
3839 ** key out of the last column added to the table under construction.
3840 ** So create a fake list to simulate this.
3842 if( pList==0 ){
3843 Token prevCol;
3844 Column *pCol = &pTab->aCol[pTab->nCol-1];
3845 pCol->colFlags |= COLFLAG_UNIQUE;
3846 sqlite3TokenInit(&prevCol, pCol->zName);
3847 pList = sqlite3ExprListAppend(pParse, 0,
3848 sqlite3ExprAlloc(db, TK_ID, &prevCol, 0));
3849 if( pList==0 ) goto exit_create_index;
3850 assert( pList->nExpr==1 );
3851 sqlite3ExprListSetSortOrder(pList, sortOrder, SQLITE_SO_UNDEFINED);
3852 }else{
3853 sqlite3ExprListCheckLength(pParse, pList, "index");
3854 if( pParse->nErr ) goto exit_create_index;
3857 /* Figure out how many bytes of space are required to store explicitly
3858 ** specified collation sequence names.
3860 for(i=0; i<pList->nExpr; i++){
3861 Expr *pExpr = pList->a[i].pExpr;
3862 assert( pExpr!=0 );
3863 if( pExpr->op==TK_COLLATE ){
3864 nExtra += (1 + sqlite3Strlen30(pExpr->u.zToken));
3869 ** Allocate the index structure.
3871 nName = sqlite3Strlen30(zName);
3872 nExtraCol = pPk ? pPk->nKeyCol : 1;
3873 assert( pList->nExpr + nExtraCol <= 32767 /* Fits in i16 */ );
3874 pIndex = sqlite3AllocateIndexObject(db, pList->nExpr + nExtraCol,
3875 nName + nExtra + 1, &zExtra);
3876 if( db->mallocFailed ){
3877 goto exit_create_index;
3879 assert( EIGHT_BYTE_ALIGNMENT(pIndex->aiRowLogEst) );
3880 assert( EIGHT_BYTE_ALIGNMENT(pIndex->azColl) );
3881 pIndex->zName = zExtra;
3882 zExtra += nName + 1;
3883 memcpy(pIndex->zName, zName, nName+1);
3884 pIndex->pTable = pTab;
3885 pIndex->onError = (u8)onError;
3886 pIndex->uniqNotNull = onError!=OE_None;
3887 pIndex->idxType = idxType;
3888 pIndex->pSchema = db->aDb[iDb].pSchema;
3889 pIndex->nKeyCol = pList->nExpr;
3890 if( pPIWhere ){
3891 sqlite3ResolveSelfReference(pParse, pTab, NC_PartIdx, pPIWhere, 0);
3892 pIndex->pPartIdxWhere = pPIWhere;
3893 pPIWhere = 0;
3895 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3897 /* Check to see if we should honor DESC requests on index columns
3899 if( pDb->pSchema->file_format>=4 ){
3900 sortOrderMask = -1; /* Honor DESC */
3901 }else{
3902 sortOrderMask = 0; /* Ignore DESC */
3905 /* Analyze the list of expressions that form the terms of the index and
3906 ** report any errors. In the common case where the expression is exactly
3907 ** a table column, store that column in aiColumn[]. For general expressions,
3908 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
3910 ** TODO: Issue a warning if two or more columns of the index are identical.
3911 ** TODO: Issue a warning if the table primary key is used as part of the
3912 ** index key.
3914 pListItem = pList->a;
3915 if( IN_RENAME_OBJECT ){
3916 pIndex->aColExpr = pList;
3917 pList = 0;
3919 for(i=0; i<pIndex->nKeyCol; i++, pListItem++){
3920 Expr *pCExpr; /* The i-th index expression */
3921 int requestedSortOrder; /* ASC or DESC on the i-th expression */
3922 const char *zColl; /* Collation sequence name */
3924 sqlite3StringToId(pListItem->pExpr);
3925 sqlite3ResolveSelfReference(pParse, pTab, NC_IdxExpr, pListItem->pExpr, 0);
3926 if( pParse->nErr ) goto exit_create_index;
3927 pCExpr = sqlite3ExprSkipCollate(pListItem->pExpr);
3928 if( pCExpr->op!=TK_COLUMN ){
3929 if( pTab==pParse->pNewTable ){
3930 sqlite3ErrorMsg(pParse, "expressions prohibited in PRIMARY KEY and "
3931 "UNIQUE constraints");
3932 goto exit_create_index;
3934 if( pIndex->aColExpr==0 ){
3935 pIndex->aColExpr = pList;
3936 pList = 0;
3938 j = XN_EXPR;
3939 pIndex->aiColumn[i] = XN_EXPR;
3940 pIndex->uniqNotNull = 0;
3941 }else{
3942 j = pCExpr->iColumn;
3943 assert( j<=0x7fff );
3944 if( j<0 ){
3945 j = pTab->iPKey;
3946 }else{
3947 if( pTab->aCol[j].notNull==0 ){
3948 pIndex->uniqNotNull = 0;
3950 if( pTab->aCol[j].colFlags & COLFLAG_VIRTUAL ){
3951 pIndex->bHasVCol = 1;
3954 pIndex->aiColumn[i] = (i16)j;
3956 zColl = 0;
3957 if( pListItem->pExpr->op==TK_COLLATE ){
3958 int nColl;
3959 zColl = pListItem->pExpr->u.zToken;
3960 nColl = sqlite3Strlen30(zColl) + 1;
3961 assert( nExtra>=nColl );
3962 memcpy(zExtra, zColl, nColl);
3963 zColl = zExtra;
3964 zExtra += nColl;
3965 nExtra -= nColl;
3966 }else if( j>=0 ){
3967 zColl = pTab->aCol[j].zColl;
3969 if( !zColl ) zColl = sqlite3StrBINARY;
3970 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
3971 goto exit_create_index;
3973 pIndex->azColl[i] = zColl;
3974 requestedSortOrder = pListItem->sortFlags & sortOrderMask;
3975 pIndex->aSortOrder[i] = (u8)requestedSortOrder;
3978 /* Append the table key to the end of the index. For WITHOUT ROWID
3979 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For
3980 ** normal tables (when pPk==0) this will be the rowid.
3982 if( pPk ){
3983 for(j=0; j<pPk->nKeyCol; j++){
3984 int x = pPk->aiColumn[j];
3985 assert( x>=0 );
3986 if( isDupColumn(pIndex, pIndex->nKeyCol, pPk, j) ){
3987 pIndex->nColumn--;
3988 }else{
3989 testcase( hasColumn(pIndex->aiColumn,pIndex->nKeyCol,x) );
3990 pIndex->aiColumn[i] = x;
3991 pIndex->azColl[i] = pPk->azColl[j];
3992 pIndex->aSortOrder[i] = pPk->aSortOrder[j];
3993 i++;
3996 assert( i==pIndex->nColumn );
3997 }else{
3998 pIndex->aiColumn[i] = XN_ROWID;
3999 pIndex->azColl[i] = sqlite3StrBINARY;
4001 sqlite3DefaultRowEst(pIndex);
4002 if( pParse->pNewTable==0 ) estimateIndexWidth(pIndex);
4004 /* If this index contains every column of its table, then mark
4005 ** it as a covering index */
4006 assert( HasRowid(pTab)
4007 || pTab->iPKey<0 || sqlite3TableColumnToIndex(pIndex, pTab->iPKey)>=0 );
4008 recomputeColumnsNotIndexed(pIndex);
4009 if( pTblName!=0 && pIndex->nColumn>=pTab->nCol ){
4010 pIndex->isCovering = 1;
4011 for(j=0; j<pTab->nCol; j++){
4012 if( j==pTab->iPKey ) continue;
4013 if( sqlite3TableColumnToIndex(pIndex,j)>=0 ) continue;
4014 pIndex->isCovering = 0;
4015 break;
4019 if( pTab==pParse->pNewTable ){
4020 /* This routine has been called to create an automatic index as a
4021 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
4022 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
4023 ** i.e. one of:
4025 ** CREATE TABLE t(x PRIMARY KEY, y);
4026 ** CREATE TABLE t(x, y, UNIQUE(x, y));
4028 ** Either way, check to see if the table already has such an index. If
4029 ** so, don't bother creating this one. This only applies to
4030 ** automatically created indices. Users can do as they wish with
4031 ** explicit indices.
4033 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
4034 ** (and thus suppressing the second one) even if they have different
4035 ** sort orders.
4037 ** If there are different collating sequences or if the columns of
4038 ** the constraint occur in different orders, then the constraints are
4039 ** considered distinct and both result in separate indices.
4041 Index *pIdx;
4042 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
4043 int k;
4044 assert( IsUniqueIndex(pIdx) );
4045 assert( pIdx->idxType!=SQLITE_IDXTYPE_APPDEF );
4046 assert( IsUniqueIndex(pIndex) );
4048 if( pIdx->nKeyCol!=pIndex->nKeyCol ) continue;
4049 for(k=0; k<pIdx->nKeyCol; k++){
4050 const char *z1;
4051 const char *z2;
4052 assert( pIdx->aiColumn[k]>=0 );
4053 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
4054 z1 = pIdx->azColl[k];
4055 z2 = pIndex->azColl[k];
4056 if( sqlite3StrICmp(z1, z2) ) break;
4058 if( k==pIdx->nKeyCol ){
4059 if( pIdx->onError!=pIndex->onError ){
4060 /* This constraint creates the same index as a previous
4061 ** constraint specified somewhere in the CREATE TABLE statement.
4062 ** However the ON CONFLICT clauses are different. If both this
4063 ** constraint and the previous equivalent constraint have explicit
4064 ** ON CONFLICT clauses this is an error. Otherwise, use the
4065 ** explicitly specified behavior for the index.
4067 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
4068 sqlite3ErrorMsg(pParse,
4069 "conflicting ON CONFLICT clauses specified", 0);
4071 if( pIdx->onError==OE_Default ){
4072 pIdx->onError = pIndex->onError;
4075 if( idxType==SQLITE_IDXTYPE_PRIMARYKEY ) pIdx->idxType = idxType;
4076 if( IN_RENAME_OBJECT ){
4077 pIndex->pNext = pParse->pNewIndex;
4078 pParse->pNewIndex = pIndex;
4079 pIndex = 0;
4081 goto exit_create_index;
4086 if( !IN_RENAME_OBJECT ){
4088 /* Link the new Index structure to its table and to the other
4089 ** in-memory database structures.
4091 assert( pParse->nErr==0 );
4092 if( db->init.busy ){
4093 Index *p;
4094 assert( !IN_SPECIAL_PARSE );
4095 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
4096 if( pTblName!=0 ){
4097 pIndex->tnum = db->init.newTnum;
4098 if( sqlite3IndexHasDuplicateRootPage(pIndex) ){
4099 sqlite3ErrorMsg(pParse, "invalid rootpage");
4100 pParse->rc = SQLITE_CORRUPT_BKPT;
4101 goto exit_create_index;
4104 p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
4105 pIndex->zName, pIndex);
4106 if( p ){
4107 assert( p==pIndex ); /* Malloc must have failed */
4108 sqlite3OomFault(db);
4109 goto exit_create_index;
4111 db->mDbFlags |= DBFLAG_SchemaChange;
4114 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
4115 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
4116 ** emit code to allocate the index rootpage on disk and make an entry for
4117 ** the index in the sqlite_schema table and populate the index with
4118 ** content. But, do not do this if we are simply reading the sqlite_schema
4119 ** table to parse the schema, or if this index is the PRIMARY KEY index
4120 ** of a WITHOUT ROWID table.
4122 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
4123 ** or UNIQUE index in a CREATE TABLE statement. Since the table
4124 ** has just been created, it contains no data and the index initialization
4125 ** step can be skipped.
4127 else if( HasRowid(pTab) || pTblName!=0 ){
4128 Vdbe *v;
4129 char *zStmt;
4130 int iMem = ++pParse->nMem;
4132 v = sqlite3GetVdbe(pParse);
4133 if( v==0 ) goto exit_create_index;
4135 sqlite3BeginWriteOperation(pParse, 1, iDb);
4137 /* Create the rootpage for the index using CreateIndex. But before
4138 ** doing so, code a Noop instruction and store its address in
4139 ** Index.tnum. This is required in case this index is actually a
4140 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
4141 ** that case the convertToWithoutRowidTable() routine will replace
4142 ** the Noop with a Goto to jump over the VDBE code generated below. */
4143 pIndex->tnum = (Pgno)sqlite3VdbeAddOp0(v, OP_Noop);
4144 sqlite3VdbeAddOp3(v, OP_CreateBtree, iDb, iMem, BTREE_BLOBKEY);
4146 /* Gather the complete text of the CREATE INDEX statement into
4147 ** the zStmt variable
4149 assert( pName!=0 || pStart==0 );
4150 if( pStart ){
4151 int n = (int)(pParse->sLastToken.z - pName->z) + pParse->sLastToken.n;
4152 if( pName->z[n-1]==';' ) n--;
4153 /* A named index with an explicit CREATE INDEX statement */
4154 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
4155 onError==OE_None ? "" : " UNIQUE", n, pName->z);
4156 }else{
4157 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
4158 /* zStmt = sqlite3MPrintf(""); */
4159 zStmt = 0;
4162 /* Add an entry in sqlite_schema for this index
4164 sqlite3NestedParse(pParse,
4165 "INSERT INTO %Q." DFLT_SCHEMA_TABLE " VALUES('index',%Q,%Q,#%d,%Q);",
4166 db->aDb[iDb].zDbSName,
4167 pIndex->zName,
4168 pTab->zName,
4169 iMem,
4170 zStmt
4172 sqlite3DbFree(db, zStmt);
4174 /* Fill the index with data and reparse the schema. Code an OP_Expire
4175 ** to invalidate all pre-compiled statements.
4177 if( pTblName ){
4178 sqlite3RefillIndex(pParse, pIndex, iMem);
4179 sqlite3ChangeCookie(pParse, iDb);
4180 sqlite3VdbeAddParseSchemaOp(v, iDb,
4181 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName), 0);
4182 sqlite3VdbeAddOp2(v, OP_Expire, 0, 1);
4185 sqlite3VdbeJumpHere(v, (int)pIndex->tnum);
4188 if( db->init.busy || pTblName==0 ){
4189 pIndex->pNext = pTab->pIndex;
4190 pTab->pIndex = pIndex;
4191 pIndex = 0;
4193 else if( IN_RENAME_OBJECT ){
4194 assert( pParse->pNewIndex==0 );
4195 pParse->pNewIndex = pIndex;
4196 pIndex = 0;
4199 /* Clean up before exiting */
4200 exit_create_index:
4201 if( pIndex ) sqlite3FreeIndex(db, pIndex);
4202 if( pTab ){
4203 /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list.
4204 ** The list was already ordered when this routine was entered, so at this
4205 ** point at most a single index (the newly added index) will be out of
4206 ** order. So we have to reorder at most one index. */
4207 Index **ppFrom = &pTab->pIndex;
4208 Index *pThis;
4209 for(ppFrom=&pTab->pIndex; (pThis = *ppFrom)!=0; ppFrom=&pThis->pNext){
4210 Index *pNext;
4211 if( pThis->onError!=OE_Replace ) continue;
4212 while( (pNext = pThis->pNext)!=0 && pNext->onError!=OE_Replace ){
4213 *ppFrom = pNext;
4214 pThis->pNext = pNext->pNext;
4215 pNext->pNext = pThis;
4216 ppFrom = &pNext->pNext;
4218 break;
4220 #ifdef SQLITE_DEBUG
4221 /* Verify that all REPLACE indexes really are now at the end
4222 ** of the index list. In other words, no other index type ever
4223 ** comes after a REPLACE index on the list. */
4224 for(pThis = pTab->pIndex; pThis; pThis=pThis->pNext){
4225 assert( pThis->onError!=OE_Replace
4226 || pThis->pNext==0
4227 || pThis->pNext->onError==OE_Replace );
4229 #endif
4231 sqlite3ExprDelete(db, pPIWhere);
4232 sqlite3ExprListDelete(db, pList);
4233 sqlite3SrcListDelete(db, pTblName);
4234 sqlite3DbFree(db, zName);
4238 ** Fill the Index.aiRowEst[] array with default information - information
4239 ** to be used when we have not run the ANALYZE command.
4241 ** aiRowEst[0] is supposed to contain the number of elements in the index.
4242 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
4243 ** number of rows in the table that match any particular value of the
4244 ** first column of the index. aiRowEst[2] is an estimate of the number
4245 ** of rows that match any particular combination of the first 2 columns
4246 ** of the index. And so forth. It must always be the case that
4248 ** aiRowEst[N]<=aiRowEst[N-1]
4249 ** aiRowEst[N]>=1
4251 ** Apart from that, we have little to go on besides intuition as to
4252 ** how aiRowEst[] should be initialized. The numbers generated here
4253 ** are based on typical values found in actual indices.
4255 void sqlite3DefaultRowEst(Index *pIdx){
4256 /* 10, 9, 8, 7, 6 */
4257 static const LogEst aVal[] = { 33, 32, 30, 28, 26 };
4258 LogEst *a = pIdx->aiRowLogEst;
4259 LogEst x;
4260 int nCopy = MIN(ArraySize(aVal), pIdx->nKeyCol);
4261 int i;
4263 /* Indexes with default row estimates should not have stat1 data */
4264 assert( !pIdx->hasStat1 );
4266 /* Set the first entry (number of rows in the index) to the estimated
4267 ** number of rows in the table, or half the number of rows in the table
4268 ** for a partial index.
4270 ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1
4271 ** table but other parts we are having to guess at, then do not let the
4272 ** estimated number of rows in the table be less than 1000 (LogEst 99).
4273 ** Failure to do this can cause the indexes for which we do not have
4274 ** stat1 data to be ignored by the query planner.
4276 x = pIdx->pTable->nRowLogEst;
4277 assert( 99==sqlite3LogEst(1000) );
4278 if( x<99 ){
4279 pIdx->pTable->nRowLogEst = x = 99;
4281 if( pIdx->pPartIdxWhere!=0 ){ x -= 10; assert( 10==sqlite3LogEst(2) ); }
4282 a[0] = x;
4284 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
4285 ** 6 and each subsequent value (if any) is 5. */
4286 memcpy(&a[1], aVal, nCopy*sizeof(LogEst));
4287 for(i=nCopy+1; i<=pIdx->nKeyCol; i++){
4288 a[i] = 23; assert( 23==sqlite3LogEst(5) );
4291 assert( 0==sqlite3LogEst(1) );
4292 if( IsUniqueIndex(pIdx) ) a[pIdx->nKeyCol] = 0;
4296 ** This routine will drop an existing named index. This routine
4297 ** implements the DROP INDEX statement.
4299 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
4300 Index *pIndex;
4301 Vdbe *v;
4302 sqlite3 *db = pParse->db;
4303 int iDb;
4305 assert( pParse->nErr==0 ); /* Never called with prior errors */
4306 if( db->mallocFailed ){
4307 goto exit_drop_index;
4309 assert( pName->nSrc==1 );
4310 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
4311 goto exit_drop_index;
4313 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
4314 if( pIndex==0 ){
4315 if( !ifExists ){
4316 sqlite3ErrorMsg(pParse, "no such index: %S", pName->a);
4317 }else{
4318 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
4319 sqlite3ForceNotReadOnly(pParse);
4321 pParse->checkSchema = 1;
4322 goto exit_drop_index;
4324 if( pIndex->idxType!=SQLITE_IDXTYPE_APPDEF ){
4325 sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
4326 "or PRIMARY KEY constraint cannot be dropped", 0);
4327 goto exit_drop_index;
4329 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
4330 #ifndef SQLITE_OMIT_AUTHORIZATION
4332 int code = SQLITE_DROP_INDEX;
4333 Table *pTab = pIndex->pTable;
4334 const char *zDb = db->aDb[iDb].zDbSName;
4335 const char *zTab = SCHEMA_TABLE(iDb);
4336 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
4337 goto exit_drop_index;
4339 if( !OMIT_TEMPDB && iDb==1 ) code = SQLITE_DROP_TEMP_INDEX;
4340 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
4341 goto exit_drop_index;
4344 #endif
4346 /* Generate code to remove the index and from the schema table */
4347 v = sqlite3GetVdbe(pParse);
4348 if( v ){
4349 sqlite3BeginWriteOperation(pParse, 1, iDb);
4350 sqlite3NestedParse(pParse,
4351 "DELETE FROM %Q." DFLT_SCHEMA_TABLE " WHERE name=%Q AND type='index'",
4352 db->aDb[iDb].zDbSName, pIndex->zName
4354 sqlite3ClearStatTables(pParse, iDb, "idx", pIndex->zName);
4355 sqlite3ChangeCookie(pParse, iDb);
4356 destroyRootPage(pParse, pIndex->tnum, iDb);
4357 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
4360 exit_drop_index:
4361 sqlite3SrcListDelete(db, pName);
4365 ** pArray is a pointer to an array of objects. Each object in the
4366 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
4367 ** to extend the array so that there is space for a new object at the end.
4369 ** When this function is called, *pnEntry contains the current size of
4370 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
4371 ** in total).
4373 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
4374 ** space allocated for the new object is zeroed, *pnEntry updated to
4375 ** reflect the new size of the array and a pointer to the new allocation
4376 ** returned. *pIdx is set to the index of the new array entry in this case.
4378 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
4379 ** unchanged and a copy of pArray returned.
4381 void *sqlite3ArrayAllocate(
4382 sqlite3 *db, /* Connection to notify of malloc failures */
4383 void *pArray, /* Array of objects. Might be reallocated */
4384 int szEntry, /* Size of each object in the array */
4385 int *pnEntry, /* Number of objects currently in use */
4386 int *pIdx /* Write the index of a new slot here */
4388 char *z;
4389 sqlite3_int64 n = *pIdx = *pnEntry;
4390 if( (n & (n-1))==0 ){
4391 sqlite3_int64 sz = (n==0) ? 1 : 2*n;
4392 void *pNew = sqlite3DbRealloc(db, pArray, sz*szEntry);
4393 if( pNew==0 ){
4394 *pIdx = -1;
4395 return pArray;
4397 pArray = pNew;
4399 z = (char*)pArray;
4400 memset(&z[n * szEntry], 0, szEntry);
4401 ++*pnEntry;
4402 return pArray;
4406 ** Append a new element to the given IdList. Create a new IdList if
4407 ** need be.
4409 ** A new IdList is returned, or NULL if malloc() fails.
4411 IdList *sqlite3IdListAppend(Parse *pParse, IdList *pList, Token *pToken){
4412 sqlite3 *db = pParse->db;
4413 int i;
4414 if( pList==0 ){
4415 pList = sqlite3DbMallocZero(db, sizeof(IdList) );
4416 if( pList==0 ) return 0;
4418 pList->a = sqlite3ArrayAllocate(
4420 pList->a,
4421 sizeof(pList->a[0]),
4422 &pList->nId,
4425 if( i<0 ){
4426 sqlite3IdListDelete(db, pList);
4427 return 0;
4429 pList->a[i].zName = sqlite3NameFromToken(db, pToken);
4430 if( IN_RENAME_OBJECT && pList->a[i].zName ){
4431 sqlite3RenameTokenMap(pParse, (void*)pList->a[i].zName, pToken);
4433 return pList;
4437 ** Delete an IdList.
4439 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
4440 int i;
4441 if( pList==0 ) return;
4442 for(i=0; i<pList->nId; i++){
4443 sqlite3DbFree(db, pList->a[i].zName);
4445 sqlite3DbFree(db, pList->a);
4446 sqlite3DbFreeNN(db, pList);
4450 ** Return the index in pList of the identifier named zId. Return -1
4451 ** if not found.
4453 int sqlite3IdListIndex(IdList *pList, const char *zName){
4454 int i;
4455 if( pList==0 ) return -1;
4456 for(i=0; i<pList->nId; i++){
4457 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
4459 return -1;
4463 ** Maximum size of a SrcList object.
4464 ** The SrcList object is used to represent the FROM clause of a
4465 ** SELECT statement, and the query planner cannot deal with more
4466 ** than 64 tables in a join. So any value larger than 64 here
4467 ** is sufficient for most uses. Smaller values, like say 10, are
4468 ** appropriate for small and memory-limited applications.
4470 #ifndef SQLITE_MAX_SRCLIST
4471 # define SQLITE_MAX_SRCLIST 200
4472 #endif
4475 ** Expand the space allocated for the given SrcList object by
4476 ** creating nExtra new slots beginning at iStart. iStart is zero based.
4477 ** New slots are zeroed.
4479 ** For example, suppose a SrcList initially contains two entries: A,B.
4480 ** To append 3 new entries onto the end, do this:
4482 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
4484 ** After the call above it would contain: A, B, nil, nil, nil.
4485 ** If the iStart argument had been 1 instead of 2, then the result
4486 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
4487 ** the iStart value would be 0. The result then would
4488 ** be: nil, nil, nil, A, B.
4490 ** If a memory allocation fails or the SrcList becomes too large, leave
4491 ** the original SrcList unchanged, return NULL, and leave an error message
4492 ** in pParse.
4494 SrcList *sqlite3SrcListEnlarge(
4495 Parse *pParse, /* Parsing context into which errors are reported */
4496 SrcList *pSrc, /* The SrcList to be enlarged */
4497 int nExtra, /* Number of new slots to add to pSrc->a[] */
4498 int iStart /* Index in pSrc->a[] of first new slot */
4500 int i;
4502 /* Sanity checking on calling parameters */
4503 assert( iStart>=0 );
4504 assert( nExtra>=1 );
4505 assert( pSrc!=0 );
4506 assert( iStart<=pSrc->nSrc );
4508 /* Allocate additional space if needed */
4509 if( (u32)pSrc->nSrc+nExtra>pSrc->nAlloc ){
4510 SrcList *pNew;
4511 sqlite3_int64 nAlloc = 2*(sqlite3_int64)pSrc->nSrc+nExtra;
4512 sqlite3 *db = pParse->db;
4514 if( pSrc->nSrc+nExtra>=SQLITE_MAX_SRCLIST ){
4515 sqlite3ErrorMsg(pParse, "too many FROM clause terms, max: %d",
4516 SQLITE_MAX_SRCLIST);
4517 return 0;
4519 if( nAlloc>SQLITE_MAX_SRCLIST ) nAlloc = SQLITE_MAX_SRCLIST;
4520 pNew = sqlite3DbRealloc(db, pSrc,
4521 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
4522 if( pNew==0 ){
4523 assert( db->mallocFailed );
4524 return 0;
4526 pSrc = pNew;
4527 pSrc->nAlloc = nAlloc;
4530 /* Move existing slots that come after the newly inserted slots
4531 ** out of the way */
4532 for(i=pSrc->nSrc-1; i>=iStart; i--){
4533 pSrc->a[i+nExtra] = pSrc->a[i];
4535 pSrc->nSrc += nExtra;
4537 /* Zero the newly allocated slots */
4538 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
4539 for(i=iStart; i<iStart+nExtra; i++){
4540 pSrc->a[i].iCursor = -1;
4543 /* Return a pointer to the enlarged SrcList */
4544 return pSrc;
4549 ** Append a new table name to the given SrcList. Create a new SrcList if
4550 ** need be. A new entry is created in the SrcList even if pTable is NULL.
4552 ** A SrcList is returned, or NULL if there is an OOM error or if the
4553 ** SrcList grows to large. The returned
4554 ** SrcList might be the same as the SrcList that was input or it might be
4555 ** a new one. If an OOM error does occurs, then the prior value of pList
4556 ** that is input to this routine is automatically freed.
4558 ** If pDatabase is not null, it means that the table has an optional
4559 ** database name prefix. Like this: "database.table". The pDatabase
4560 ** points to the table name and the pTable points to the database name.
4561 ** The SrcList.a[].zName field is filled with the table name which might
4562 ** come from pTable (if pDatabase is NULL) or from pDatabase.
4563 ** SrcList.a[].zDatabase is filled with the database name from pTable,
4564 ** or with NULL if no database is specified.
4566 ** In other words, if call like this:
4568 ** sqlite3SrcListAppend(D,A,B,0);
4570 ** Then B is a table name and the database name is unspecified. If called
4571 ** like this:
4573 ** sqlite3SrcListAppend(D,A,B,C);
4575 ** Then C is the table name and B is the database name. If C is defined
4576 ** then so is B. In other words, we never have a case where:
4578 ** sqlite3SrcListAppend(D,A,0,C);
4580 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
4581 ** before being added to the SrcList.
4583 SrcList *sqlite3SrcListAppend(
4584 Parse *pParse, /* Parsing context, in which errors are reported */
4585 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
4586 Token *pTable, /* Table to append */
4587 Token *pDatabase /* Database of the table */
4589 SrcItem *pItem;
4590 sqlite3 *db;
4591 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
4592 assert( pParse!=0 );
4593 assert( pParse->db!=0 );
4594 db = pParse->db;
4595 if( pList==0 ){
4596 pList = sqlite3DbMallocRawNN(pParse->db, sizeof(SrcList) );
4597 if( pList==0 ) return 0;
4598 pList->nAlloc = 1;
4599 pList->nSrc = 1;
4600 memset(&pList->a[0], 0, sizeof(pList->a[0]));
4601 pList->a[0].iCursor = -1;
4602 }else{
4603 SrcList *pNew = sqlite3SrcListEnlarge(pParse, pList, 1, pList->nSrc);
4604 if( pNew==0 ){
4605 sqlite3SrcListDelete(db, pList);
4606 return 0;
4607 }else{
4608 pList = pNew;
4611 pItem = &pList->a[pList->nSrc-1];
4612 if( pDatabase && pDatabase->z==0 ){
4613 pDatabase = 0;
4615 if( pDatabase ){
4616 pItem->zName = sqlite3NameFromToken(db, pDatabase);
4617 pItem->zDatabase = sqlite3NameFromToken(db, pTable);
4618 }else{
4619 pItem->zName = sqlite3NameFromToken(db, pTable);
4620 pItem->zDatabase = 0;
4622 return pList;
4626 ** Assign VdbeCursor index numbers to all tables in a SrcList
4628 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
4629 int i;
4630 SrcItem *pItem;
4631 assert( pList || pParse->db->mallocFailed );
4632 if( ALWAYS(pList) ){
4633 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
4634 if( pItem->iCursor>=0 ) continue;
4635 pItem->iCursor = pParse->nTab++;
4636 if( pItem->pSelect ){
4637 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
4644 ** Delete an entire SrcList including all its substructure.
4646 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
4647 int i;
4648 SrcItem *pItem;
4649 if( pList==0 ) return;
4650 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
4651 if( pItem->zDatabase ) sqlite3DbFreeNN(db, pItem->zDatabase);
4652 sqlite3DbFree(db, pItem->zName);
4653 if( pItem->zAlias ) sqlite3DbFreeNN(db, pItem->zAlias);
4654 if( pItem->fg.isIndexedBy ) sqlite3DbFree(db, pItem->u1.zIndexedBy);
4655 if( pItem->fg.isTabFunc ) sqlite3ExprListDelete(db, pItem->u1.pFuncArg);
4656 sqlite3DeleteTable(db, pItem->pTab);
4657 if( pItem->pSelect ) sqlite3SelectDelete(db, pItem->pSelect);
4658 if( pItem->pOn ) sqlite3ExprDelete(db, pItem->pOn);
4659 if( pItem->pUsing ) sqlite3IdListDelete(db, pItem->pUsing);
4661 sqlite3DbFreeNN(db, pList);
4665 ** This routine is called by the parser to add a new term to the
4666 ** end of a growing FROM clause. The "p" parameter is the part of
4667 ** the FROM clause that has already been constructed. "p" is NULL
4668 ** if this is the first term of the FROM clause. pTable and pDatabase
4669 ** are the name of the table and database named in the FROM clause term.
4670 ** pDatabase is NULL if the database name qualifier is missing - the
4671 ** usual case. If the term has an alias, then pAlias points to the
4672 ** alias token. If the term is a subquery, then pSubquery is the
4673 ** SELECT statement that the subquery encodes. The pTable and
4674 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
4675 ** parameters are the content of the ON and USING clauses.
4677 ** Return a new SrcList which encodes is the FROM with the new
4678 ** term added.
4680 SrcList *sqlite3SrcListAppendFromTerm(
4681 Parse *pParse, /* Parsing context */
4682 SrcList *p, /* The left part of the FROM clause already seen */
4683 Token *pTable, /* Name of the table to add to the FROM clause */
4684 Token *pDatabase, /* Name of the database containing pTable */
4685 Token *pAlias, /* The right-hand side of the AS subexpression */
4686 Select *pSubquery, /* A subquery used in place of a table name */
4687 Expr *pOn, /* The ON clause of a join */
4688 IdList *pUsing /* The USING clause of a join */
4690 SrcItem *pItem;
4691 sqlite3 *db = pParse->db;
4692 if( !p && (pOn || pUsing) ){
4693 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
4694 (pOn ? "ON" : "USING")
4696 goto append_from_error;
4698 p = sqlite3SrcListAppend(pParse, p, pTable, pDatabase);
4699 if( p==0 ){
4700 goto append_from_error;
4702 assert( p->nSrc>0 );
4703 pItem = &p->a[p->nSrc-1];
4704 assert( (pTable==0)==(pDatabase==0) );
4705 assert( pItem->zName==0 || pDatabase!=0 );
4706 if( IN_RENAME_OBJECT && pItem->zName ){
4707 Token *pToken = (ALWAYS(pDatabase) && pDatabase->z) ? pDatabase : pTable;
4708 sqlite3RenameTokenMap(pParse, pItem->zName, pToken);
4710 assert( pAlias!=0 );
4711 if( pAlias->n ){
4712 pItem->zAlias = sqlite3NameFromToken(db, pAlias);
4714 pItem->pSelect = pSubquery;
4715 pItem->pOn = pOn;
4716 pItem->pUsing = pUsing;
4717 return p;
4719 append_from_error:
4720 assert( p==0 );
4721 sqlite3ExprDelete(db, pOn);
4722 sqlite3IdListDelete(db, pUsing);
4723 sqlite3SelectDelete(db, pSubquery);
4724 return 0;
4728 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
4729 ** element of the source-list passed as the second argument.
4731 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
4732 assert( pIndexedBy!=0 );
4733 if( p && pIndexedBy->n>0 ){
4734 SrcItem *pItem;
4735 assert( p->nSrc>0 );
4736 pItem = &p->a[p->nSrc-1];
4737 assert( pItem->fg.notIndexed==0 );
4738 assert( pItem->fg.isIndexedBy==0 );
4739 assert( pItem->fg.isTabFunc==0 );
4740 if( pIndexedBy->n==1 && !pIndexedBy->z ){
4741 /* A "NOT INDEXED" clause was supplied. See parse.y
4742 ** construct "indexed_opt" for details. */
4743 pItem->fg.notIndexed = 1;
4744 }else{
4745 pItem->u1.zIndexedBy = sqlite3NameFromToken(pParse->db, pIndexedBy);
4746 pItem->fg.isIndexedBy = 1;
4752 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting
4753 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2
4754 ** are deleted by this function.
4756 SrcList *sqlite3SrcListAppendList(Parse *pParse, SrcList *p1, SrcList *p2){
4757 assert( p1 && p1->nSrc==1 );
4758 if( p2 ){
4759 SrcList *pNew = sqlite3SrcListEnlarge(pParse, p1, p2->nSrc, 1);
4760 if( pNew==0 ){
4761 sqlite3SrcListDelete(pParse->db, p2);
4762 }else{
4763 p1 = pNew;
4764 memcpy(&p1->a[1], p2->a, p2->nSrc*sizeof(SrcItem));
4765 sqlite3DbFree(pParse->db, p2);
4768 return p1;
4772 ** Add the list of function arguments to the SrcList entry for a
4773 ** table-valued-function.
4775 void sqlite3SrcListFuncArgs(Parse *pParse, SrcList *p, ExprList *pList){
4776 if( p ){
4777 SrcItem *pItem = &p->a[p->nSrc-1];
4778 assert( pItem->fg.notIndexed==0 );
4779 assert( pItem->fg.isIndexedBy==0 );
4780 assert( pItem->fg.isTabFunc==0 );
4781 pItem->u1.pFuncArg = pList;
4782 pItem->fg.isTabFunc = 1;
4783 }else{
4784 sqlite3ExprListDelete(pParse->db, pList);
4789 ** When building up a FROM clause in the parser, the join operator
4790 ** is initially attached to the left operand. But the code generator
4791 ** expects the join operator to be on the right operand. This routine
4792 ** Shifts all join operators from left to right for an entire FROM
4793 ** clause.
4795 ** Example: Suppose the join is like this:
4797 ** A natural cross join B
4799 ** The operator is "natural cross join". The A and B operands are stored
4800 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
4801 ** operator with A. This routine shifts that operator over to B.
4803 void sqlite3SrcListShiftJoinType(SrcList *p){
4804 if( p ){
4805 int i;
4806 for(i=p->nSrc-1; i>0; i--){
4807 p->a[i].fg.jointype = p->a[i-1].fg.jointype;
4809 p->a[0].fg.jointype = 0;
4814 ** Generate VDBE code for a BEGIN statement.
4816 void sqlite3BeginTransaction(Parse *pParse, int type){
4817 sqlite3 *db;
4818 Vdbe *v;
4819 int i;
4821 assert( pParse!=0 );
4822 db = pParse->db;
4823 assert( db!=0 );
4824 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
4825 return;
4827 v = sqlite3GetVdbe(pParse);
4828 if( !v ) return;
4829 if( type!=TK_DEFERRED ){
4830 for(i=0; i<db->nDb; i++){
4831 int eTxnType;
4832 Btree *pBt = db->aDb[i].pBt;
4833 if( pBt && sqlite3BtreeIsReadonly(pBt) ){
4834 eTxnType = 0; /* Read txn */
4835 }else if( type==TK_EXCLUSIVE ){
4836 eTxnType = 2; /* Exclusive txn */
4837 }else{
4838 eTxnType = 1; /* Write txn */
4840 sqlite3VdbeAddOp2(v, OP_Transaction, i, eTxnType);
4841 sqlite3VdbeUsesBtree(v, i);
4844 sqlite3VdbeAddOp0(v, OP_AutoCommit);
4848 ** Generate VDBE code for a COMMIT or ROLLBACK statement.
4849 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise
4850 ** code is generated for a COMMIT.
4852 void sqlite3EndTransaction(Parse *pParse, int eType){
4853 Vdbe *v;
4854 int isRollback;
4856 assert( pParse!=0 );
4857 assert( pParse->db!=0 );
4858 assert( eType==TK_COMMIT || eType==TK_END || eType==TK_ROLLBACK );
4859 isRollback = eType==TK_ROLLBACK;
4860 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION,
4861 isRollback ? "ROLLBACK" : "COMMIT", 0, 0) ){
4862 return;
4864 v = sqlite3GetVdbe(pParse);
4865 if( v ){
4866 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, isRollback);
4871 ** This function is called by the parser when it parses a command to create,
4872 ** release or rollback an SQL savepoint.
4874 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
4875 char *zName = sqlite3NameFromToken(pParse->db, pName);
4876 if( zName ){
4877 Vdbe *v = sqlite3GetVdbe(pParse);
4878 #ifndef SQLITE_OMIT_AUTHORIZATION
4879 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
4880 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
4881 #endif
4882 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
4883 sqlite3DbFree(pParse->db, zName);
4884 return;
4886 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
4891 ** Make sure the TEMP database is open and available for use. Return
4892 ** the number of errors. Leave any error messages in the pParse structure.
4894 int sqlite3OpenTempDatabase(Parse *pParse){
4895 sqlite3 *db = pParse->db;
4896 if( db->aDb[1].pBt==0 && !pParse->explain ){
4897 int rc;
4898 Btree *pBt;
4899 static const int flags =
4900 SQLITE_OPEN_READWRITE |
4901 SQLITE_OPEN_CREATE |
4902 SQLITE_OPEN_EXCLUSIVE |
4903 SQLITE_OPEN_DELETEONCLOSE |
4904 SQLITE_OPEN_TEMP_DB;
4906 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pBt, 0, flags);
4907 if( rc!=SQLITE_OK ){
4908 sqlite3ErrorMsg(pParse, "unable to open a temporary database "
4909 "file for storing temporary tables");
4910 pParse->rc = rc;
4911 return 1;
4913 db->aDb[1].pBt = pBt;
4914 assert( db->aDb[1].pSchema );
4915 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, 0, 0) ){
4916 sqlite3OomFault(db);
4917 return 1;
4920 return 0;
4924 ** Record the fact that the schema cookie will need to be verified
4925 ** for database iDb. The code to actually verify the schema cookie
4926 ** will occur at the end of the top-level VDBE and will be generated
4927 ** later, by sqlite3FinishCoding().
4929 static void sqlite3CodeVerifySchemaAtToplevel(Parse *pToplevel, int iDb){
4930 assert( iDb>=0 && iDb<pToplevel->db->nDb );
4931 assert( pToplevel->db->aDb[iDb].pBt!=0 || iDb==1 );
4932 assert( iDb<SQLITE_MAX_DB );
4933 assert( sqlite3SchemaMutexHeld(pToplevel->db, iDb, 0) );
4934 if( DbMaskTest(pToplevel->cookieMask, iDb)==0 ){
4935 DbMaskSet(pToplevel->cookieMask, iDb);
4936 if( !OMIT_TEMPDB && iDb==1 ){
4937 sqlite3OpenTempDatabase(pToplevel);
4941 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
4942 sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse), iDb);
4947 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
4948 ** attached database. Otherwise, invoke it for the database named zDb only.
4950 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
4951 sqlite3 *db = pParse->db;
4952 int i;
4953 for(i=0; i<db->nDb; i++){
4954 Db *pDb = &db->aDb[i];
4955 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zDbSName)) ){
4956 sqlite3CodeVerifySchema(pParse, i);
4962 ** Generate VDBE code that prepares for doing an operation that
4963 ** might change the database.
4965 ** This routine starts a new transaction if we are not already within
4966 ** a transaction. If we are already within a transaction, then a checkpoint
4967 ** is set if the setStatement parameter is true. A checkpoint should
4968 ** be set for operations that might fail (due to a constraint) part of
4969 ** the way through and which will need to undo some writes without having to
4970 ** rollback the whole transaction. For operations where all constraints
4971 ** can be checked before any changes are made to the database, it is never
4972 ** necessary to undo a write and the checkpoint should not be set.
4974 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
4975 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4976 sqlite3CodeVerifySchemaAtToplevel(pToplevel, iDb);
4977 DbMaskSet(pToplevel->writeMask, iDb);
4978 pToplevel->isMultiWrite |= setStatement;
4982 ** Indicate that the statement currently under construction might write
4983 ** more than one entry (example: deleting one row then inserting another,
4984 ** inserting multiple rows in a table, or inserting a row and index entries.)
4985 ** If an abort occurs after some of these writes have completed, then it will
4986 ** be necessary to undo the completed writes.
4988 void sqlite3MultiWrite(Parse *pParse){
4989 Parse *pToplevel = sqlite3ParseToplevel(pParse);
4990 pToplevel->isMultiWrite = 1;
4994 ** The code generator calls this routine if is discovers that it is
4995 ** possible to abort a statement prior to completion. In order to
4996 ** perform this abort without corrupting the database, we need to make
4997 ** sure that the statement is protected by a statement transaction.
4999 ** Technically, we only need to set the mayAbort flag if the
5000 ** isMultiWrite flag was previously set. There is a time dependency
5001 ** such that the abort must occur after the multiwrite. This makes
5002 ** some statements involving the REPLACE conflict resolution algorithm
5003 ** go a little faster. But taking advantage of this time dependency
5004 ** makes it more difficult to prove that the code is correct (in
5005 ** particular, it prevents us from writing an effective
5006 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
5007 ** to take the safe route and skip the optimization.
5009 void sqlite3MayAbort(Parse *pParse){
5010 Parse *pToplevel = sqlite3ParseToplevel(pParse);
5011 pToplevel->mayAbort = 1;
5015 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
5016 ** error. The onError parameter determines which (if any) of the statement
5017 ** and/or current transaction is rolled back.
5019 void sqlite3HaltConstraint(
5020 Parse *pParse, /* Parsing context */
5021 int errCode, /* extended error code */
5022 int onError, /* Constraint type */
5023 char *p4, /* Error message */
5024 i8 p4type, /* P4_STATIC or P4_TRANSIENT */
5025 u8 p5Errmsg /* P5_ErrMsg type */
5027 Vdbe *v;
5028 assert( pParse->pVdbe!=0 );
5029 v = sqlite3GetVdbe(pParse);
5030 assert( (errCode&0xff)==SQLITE_CONSTRAINT || pParse->nested );
5031 if( onError==OE_Abort ){
5032 sqlite3MayAbort(pParse);
5034 sqlite3VdbeAddOp4(v, OP_Halt, errCode, onError, 0, p4, p4type);
5035 sqlite3VdbeChangeP5(v, p5Errmsg);
5039 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
5041 void sqlite3UniqueConstraint(
5042 Parse *pParse, /* Parsing context */
5043 int onError, /* Constraint type */
5044 Index *pIdx /* The index that triggers the constraint */
5046 char *zErr;
5047 int j;
5048 StrAccum errMsg;
5049 Table *pTab = pIdx->pTable;
5051 sqlite3StrAccumInit(&errMsg, pParse->db, 0, 0,
5052 pParse->db->aLimit[SQLITE_LIMIT_LENGTH]);
5053 if( pIdx->aColExpr ){
5054 sqlite3_str_appendf(&errMsg, "index '%q'", pIdx->zName);
5055 }else{
5056 for(j=0; j<pIdx->nKeyCol; j++){
5057 char *zCol;
5058 assert( pIdx->aiColumn[j]>=0 );
5059 zCol = pTab->aCol[pIdx->aiColumn[j]].zName;
5060 if( j ) sqlite3_str_append(&errMsg, ", ", 2);
5061 sqlite3_str_appendall(&errMsg, pTab->zName);
5062 sqlite3_str_append(&errMsg, ".", 1);
5063 sqlite3_str_appendall(&errMsg, zCol);
5066 zErr = sqlite3StrAccumFinish(&errMsg);
5067 sqlite3HaltConstraint(pParse,
5068 IsPrimaryKeyIndex(pIdx) ? SQLITE_CONSTRAINT_PRIMARYKEY
5069 : SQLITE_CONSTRAINT_UNIQUE,
5070 onError, zErr, P4_DYNAMIC, P5_ConstraintUnique);
5075 ** Code an OP_Halt due to non-unique rowid.
5077 void sqlite3RowidConstraint(
5078 Parse *pParse, /* Parsing context */
5079 int onError, /* Conflict resolution algorithm */
5080 Table *pTab /* The table with the non-unique rowid */
5082 char *zMsg;
5083 int rc;
5084 if( pTab->iPKey>=0 ){
5085 zMsg = sqlite3MPrintf(pParse->db, "%s.%s", pTab->zName,
5086 pTab->aCol[pTab->iPKey].zName);
5087 rc = SQLITE_CONSTRAINT_PRIMARYKEY;
5088 }else{
5089 zMsg = sqlite3MPrintf(pParse->db, "%s.rowid", pTab->zName);
5090 rc = SQLITE_CONSTRAINT_ROWID;
5092 sqlite3HaltConstraint(pParse, rc, onError, zMsg, P4_DYNAMIC,
5093 P5_ConstraintUnique);
5097 ** Check to see if pIndex uses the collating sequence pColl. Return
5098 ** true if it does and false if it does not.
5100 #ifndef SQLITE_OMIT_REINDEX
5101 static int collationMatch(const char *zColl, Index *pIndex){
5102 int i;
5103 assert( zColl!=0 );
5104 for(i=0; i<pIndex->nColumn; i++){
5105 const char *z = pIndex->azColl[i];
5106 assert( z!=0 || pIndex->aiColumn[i]<0 );
5107 if( pIndex->aiColumn[i]>=0 && 0==sqlite3StrICmp(z, zColl) ){
5108 return 1;
5111 return 0;
5113 #endif
5116 ** Recompute all indices of pTab that use the collating sequence pColl.
5117 ** If pColl==0 then recompute all indices of pTab.
5119 #ifndef SQLITE_OMIT_REINDEX
5120 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
5121 if( !IsVirtual(pTab) ){
5122 Index *pIndex; /* An index associated with pTab */
5124 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
5125 if( zColl==0 || collationMatch(zColl, pIndex) ){
5126 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
5127 sqlite3BeginWriteOperation(pParse, 0, iDb);
5128 sqlite3RefillIndex(pParse, pIndex, -1);
5133 #endif
5136 ** Recompute all indices of all tables in all databases where the
5137 ** indices use the collating sequence pColl. If pColl==0 then recompute
5138 ** all indices everywhere.
5140 #ifndef SQLITE_OMIT_REINDEX
5141 static void reindexDatabases(Parse *pParse, char const *zColl){
5142 Db *pDb; /* A single database */
5143 int iDb; /* The database index number */
5144 sqlite3 *db = pParse->db; /* The database connection */
5145 HashElem *k; /* For looping over tables in pDb */
5146 Table *pTab; /* A table in the database */
5148 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */
5149 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
5150 assert( pDb!=0 );
5151 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
5152 pTab = (Table*)sqliteHashData(k);
5153 reindexTable(pParse, pTab, zColl);
5157 #endif
5160 ** Generate code for the REINDEX command.
5162 ** REINDEX -- 1
5163 ** REINDEX <collation> -- 2
5164 ** REINDEX ?<database>.?<tablename> -- 3
5165 ** REINDEX ?<database>.?<indexname> -- 4
5167 ** Form 1 causes all indices in all attached databases to be rebuilt.
5168 ** Form 2 rebuilds all indices in all databases that use the named
5169 ** collating function. Forms 3 and 4 rebuild the named index or all
5170 ** indices associated with the named table.
5172 #ifndef SQLITE_OMIT_REINDEX
5173 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
5174 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
5175 char *z; /* Name of a table or index */
5176 const char *zDb; /* Name of the database */
5177 Table *pTab; /* A table in the database */
5178 Index *pIndex; /* An index associated with pTab */
5179 int iDb; /* The database index number */
5180 sqlite3 *db = pParse->db; /* The database connection */
5181 Token *pObjName; /* Name of the table or index to be reindexed */
5183 /* Read the database schema. If an error occurs, leave an error message
5184 ** and code in pParse and return NULL. */
5185 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
5186 return;
5189 if( pName1==0 ){
5190 reindexDatabases(pParse, 0);
5191 return;
5192 }else if( NEVER(pName2==0) || pName2->z==0 ){
5193 char *zColl;
5194 assert( pName1->z );
5195 zColl = sqlite3NameFromToken(pParse->db, pName1);
5196 if( !zColl ) return;
5197 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
5198 if( pColl ){
5199 reindexDatabases(pParse, zColl);
5200 sqlite3DbFree(db, zColl);
5201 return;
5203 sqlite3DbFree(db, zColl);
5205 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
5206 if( iDb<0 ) return;
5207 z = sqlite3NameFromToken(db, pObjName);
5208 if( z==0 ) return;
5209 zDb = db->aDb[iDb].zDbSName;
5210 pTab = sqlite3FindTable(db, z, zDb);
5211 if( pTab ){
5212 reindexTable(pParse, pTab, 0);
5213 sqlite3DbFree(db, z);
5214 return;
5216 pIndex = sqlite3FindIndex(db, z, zDb);
5217 sqlite3DbFree(db, z);
5218 if( pIndex ){
5219 sqlite3BeginWriteOperation(pParse, 0, iDb);
5220 sqlite3RefillIndex(pParse, pIndex, -1);
5221 return;
5223 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
5225 #endif
5228 ** Return a KeyInfo structure that is appropriate for the given Index.
5230 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
5231 ** when it has finished using it.
5233 KeyInfo *sqlite3KeyInfoOfIndex(Parse *pParse, Index *pIdx){
5234 int i;
5235 int nCol = pIdx->nColumn;
5236 int nKey = pIdx->nKeyCol;
5237 KeyInfo *pKey;
5238 if( pParse->nErr ) return 0;
5239 if( pIdx->uniqNotNull ){
5240 pKey = sqlite3KeyInfoAlloc(pParse->db, nKey, nCol-nKey);
5241 }else{
5242 pKey = sqlite3KeyInfoAlloc(pParse->db, nCol, 0);
5244 if( pKey ){
5245 assert( sqlite3KeyInfoIsWriteable(pKey) );
5246 for(i=0; i<nCol; i++){
5247 const char *zColl = pIdx->azColl[i];
5248 pKey->aColl[i] = zColl==sqlite3StrBINARY ? 0 :
5249 sqlite3LocateCollSeq(pParse, zColl);
5250 pKey->aSortFlags[i] = pIdx->aSortOrder[i];
5251 assert( 0==(pKey->aSortFlags[i] & KEYINFO_ORDER_BIGNULL) );
5253 if( pParse->nErr ){
5254 assert( pParse->rc==SQLITE_ERROR_MISSING_COLLSEQ );
5255 if( pIdx->bNoQuery==0 ){
5256 /* Deactivate the index because it contains an unknown collating
5257 ** sequence. The only way to reactive the index is to reload the
5258 ** schema. Adding the missing collating sequence later does not
5259 ** reactive the index. The application had the chance to register
5260 ** the missing index using the collation-needed callback. For
5261 ** simplicity, SQLite will not give the application a second chance.
5263 pIdx->bNoQuery = 1;
5264 pParse->rc = SQLITE_ERROR_RETRY;
5266 sqlite3KeyInfoUnref(pKey);
5267 pKey = 0;
5270 return pKey;
5273 #ifndef SQLITE_OMIT_CTE
5275 ** Create a new CTE object
5277 Cte *sqlite3CteNew(
5278 Parse *pParse, /* Parsing context */
5279 Token *pName, /* Name of the common-table */
5280 ExprList *pArglist, /* Optional column name list for the table */
5281 Select *pQuery, /* Query used to initialize the table */
5282 u8 eM10d /* The MATERIALIZED flag */
5284 Cte *pNew;
5285 sqlite3 *db = pParse->db;
5287 pNew = sqlite3DbMallocZero(db, sizeof(*pNew));
5288 assert( pNew!=0 || db->mallocFailed );
5290 if( db->mallocFailed ){
5291 sqlite3ExprListDelete(db, pArglist);
5292 sqlite3SelectDelete(db, pQuery);
5293 }else{
5294 pNew->pSelect = pQuery;
5295 pNew->pCols = pArglist;
5296 pNew->zName = sqlite3NameFromToken(pParse->db, pName);
5297 pNew->eM10d = eM10d;
5299 return pNew;
5303 ** Clear information from a Cte object, but do not deallocate storage
5304 ** for the object itself.
5306 static void cteClear(sqlite3 *db, Cte *pCte){
5307 assert( pCte!=0 );
5308 sqlite3ExprListDelete(db, pCte->pCols);
5309 sqlite3SelectDelete(db, pCte->pSelect);
5310 sqlite3DbFree(db, pCte->zName);
5314 ** Free the contents of the CTE object passed as the second argument.
5316 void sqlite3CteDelete(sqlite3 *db, Cte *pCte){
5317 assert( pCte!=0 );
5318 cteClear(db, pCte);
5319 sqlite3DbFree(db, pCte);
5323 ** This routine is invoked once per CTE by the parser while parsing a
5324 ** WITH clause. The CTE described by teh third argument is added to
5325 ** the WITH clause of the second argument. If the second argument is
5326 ** NULL, then a new WITH argument is created.
5328 With *sqlite3WithAdd(
5329 Parse *pParse, /* Parsing context */
5330 With *pWith, /* Existing WITH clause, or NULL */
5331 Cte *pCte /* CTE to add to the WITH clause */
5333 sqlite3 *db = pParse->db;
5334 With *pNew;
5335 char *zName;
5337 if( pCte==0 ){
5338 return pWith;
5341 /* Check that the CTE name is unique within this WITH clause. If
5342 ** not, store an error in the Parse structure. */
5343 zName = pCte->zName;
5344 if( zName && pWith ){
5345 int i;
5346 for(i=0; i<pWith->nCte; i++){
5347 if( sqlite3StrICmp(zName, pWith->a[i].zName)==0 ){
5348 sqlite3ErrorMsg(pParse, "duplicate WITH table name: %s", zName);
5353 if( pWith ){
5354 sqlite3_int64 nByte = sizeof(*pWith) + (sizeof(pWith->a[1]) * pWith->nCte);
5355 pNew = sqlite3DbRealloc(db, pWith, nByte);
5356 }else{
5357 pNew = sqlite3DbMallocZero(db, sizeof(*pWith));
5359 assert( (pNew!=0 && zName!=0) || db->mallocFailed );
5361 if( db->mallocFailed ){
5362 sqlite3CteDelete(db, pCte);
5363 pNew = pWith;
5364 }else{
5365 pNew->a[pNew->nCte++] = *pCte;
5366 sqlite3DbFree(db, pCte);
5369 return pNew;
5373 ** Free the contents of the With object passed as the second argument.
5375 void sqlite3WithDelete(sqlite3 *db, With *pWith){
5376 if( pWith ){
5377 int i;
5378 for(i=0; i<pWith->nCte; i++){
5379 cteClear(db, &pWith->a[i]);
5381 sqlite3DbFree(db, pWith);
5384 #endif /* !defined(SQLITE_OMIT_CTE) */