Snapshot of upstream SQLite 3.41.2
[sqlcipher.git] / src / vtab.c
blob58452dfc5df5c4ccb32d536456ac15fa7eef2770
1 /*
2 ** 2006 June 10
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used to help implement virtual tables.
14 #ifndef SQLITE_OMIT_VIRTUALTABLE
15 #include "sqliteInt.h"
18 ** Before a virtual table xCreate() or xConnect() method is invoked, the
19 ** sqlite3.pVtabCtx member variable is set to point to an instance of
20 ** this struct allocated on the stack. It is used by the implementation of
21 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which
22 ** are invoked only from within xCreate and xConnect methods.
24 struct VtabCtx {
25 VTable *pVTable; /* The virtual table being constructed */
26 Table *pTab; /* The Table object to which the virtual table belongs */
27 VtabCtx *pPrior; /* Parent context (if any) */
28 int bDeclared; /* True after sqlite3_declare_vtab() is called */
32 ** Construct and install a Module object for a virtual table. When this
33 ** routine is called, it is guaranteed that all appropriate locks are held
34 ** and the module is not already part of the connection.
36 ** If there already exists a module with zName, replace it with the new one.
37 ** If pModule==0, then delete the module zName if it exists.
39 Module *sqlite3VtabCreateModule(
40 sqlite3 *db, /* Database in which module is registered */
41 const char *zName, /* Name assigned to this module */
42 const sqlite3_module *pModule, /* The definition of the module */
43 void *pAux, /* Context pointer for xCreate/xConnect */
44 void (*xDestroy)(void *) /* Module destructor function */
46 Module *pMod;
47 Module *pDel;
48 char *zCopy;
49 if( pModule==0 ){
50 zCopy = (char*)zName;
51 pMod = 0;
52 }else{
53 int nName = sqlite3Strlen30(zName);
54 pMod = (Module *)sqlite3Malloc(sizeof(Module) + nName + 1);
55 if( pMod==0 ){
56 sqlite3OomFault(db);
57 return 0;
59 zCopy = (char *)(&pMod[1]);
60 memcpy(zCopy, zName, nName+1);
61 pMod->zName = zCopy;
62 pMod->pModule = pModule;
63 pMod->pAux = pAux;
64 pMod->xDestroy = xDestroy;
65 pMod->pEpoTab = 0;
66 pMod->nRefModule = 1;
68 pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod);
69 if( pDel ){
70 if( pDel==pMod ){
71 sqlite3OomFault(db);
72 sqlite3DbFree(db, pDel);
73 pMod = 0;
74 }else{
75 sqlite3VtabEponymousTableClear(db, pDel);
76 sqlite3VtabModuleUnref(db, pDel);
79 return pMod;
83 ** The actual function that does the work of creating a new module.
84 ** This function implements the sqlite3_create_module() and
85 ** sqlite3_create_module_v2() interfaces.
87 static int createModule(
88 sqlite3 *db, /* Database in which module is registered */
89 const char *zName, /* Name assigned to this module */
90 const sqlite3_module *pModule, /* The definition of the module */
91 void *pAux, /* Context pointer for xCreate/xConnect */
92 void (*xDestroy)(void *) /* Module destructor function */
94 int rc = SQLITE_OK;
96 sqlite3_mutex_enter(db->mutex);
97 (void)sqlite3VtabCreateModule(db, zName, pModule, pAux, xDestroy);
98 rc = sqlite3ApiExit(db, rc);
99 if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux);
100 sqlite3_mutex_leave(db->mutex);
101 return rc;
106 ** External API function used to create a new virtual-table module.
108 int sqlite3_create_module(
109 sqlite3 *db, /* Database in which module is registered */
110 const char *zName, /* Name assigned to this module */
111 const sqlite3_module *pModule, /* The definition of the module */
112 void *pAux /* Context pointer for xCreate/xConnect */
114 #ifdef SQLITE_ENABLE_API_ARMOR
115 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
116 #endif
117 return createModule(db, zName, pModule, pAux, 0);
121 ** External API function used to create a new virtual-table module.
123 int sqlite3_create_module_v2(
124 sqlite3 *db, /* Database in which module is registered */
125 const char *zName, /* Name assigned to this module */
126 const sqlite3_module *pModule, /* The definition of the module */
127 void *pAux, /* Context pointer for xCreate/xConnect */
128 void (*xDestroy)(void *) /* Module destructor function */
130 #ifdef SQLITE_ENABLE_API_ARMOR
131 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
132 #endif
133 return createModule(db, zName, pModule, pAux, xDestroy);
137 ** External API to drop all virtual-table modules, except those named
138 ** on the azNames list.
140 int sqlite3_drop_modules(sqlite3 *db, const char** azNames){
141 HashElem *pThis, *pNext;
142 #ifdef SQLITE_ENABLE_API_ARMOR
143 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
144 #endif
145 for(pThis=sqliteHashFirst(&db->aModule); pThis; pThis=pNext){
146 Module *pMod = (Module*)sqliteHashData(pThis);
147 pNext = sqliteHashNext(pThis);
148 if( azNames ){
149 int ii;
150 for(ii=0; azNames[ii]!=0 && strcmp(azNames[ii],pMod->zName)!=0; ii++){}
151 if( azNames[ii]!=0 ) continue;
153 createModule(db, pMod->zName, 0, 0, 0);
155 return SQLITE_OK;
159 ** Decrement the reference count on a Module object. Destroy the
160 ** module when the reference count reaches zero.
162 void sqlite3VtabModuleUnref(sqlite3 *db, Module *pMod){
163 assert( pMod->nRefModule>0 );
164 pMod->nRefModule--;
165 if( pMod->nRefModule==0 ){
166 if( pMod->xDestroy ){
167 pMod->xDestroy(pMod->pAux);
169 assert( pMod->pEpoTab==0 );
170 sqlite3DbFree(db, pMod);
175 ** Lock the virtual table so that it cannot be disconnected.
176 ** Locks nest. Every lock should have a corresponding unlock.
177 ** If an unlock is omitted, resources leaks will occur.
179 ** If a disconnect is attempted while a virtual table is locked,
180 ** the disconnect is deferred until all locks have been removed.
182 void sqlite3VtabLock(VTable *pVTab){
183 pVTab->nRef++;
188 ** pTab is a pointer to a Table structure representing a virtual-table.
189 ** Return a pointer to the VTable object used by connection db to access
190 ** this virtual-table, if one has been created, or NULL otherwise.
192 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){
193 VTable *pVtab;
194 assert( IsVirtual(pTab) );
195 for(pVtab=pTab->u.vtab.p; pVtab && pVtab->db!=db; pVtab=pVtab->pNext);
196 return pVtab;
200 ** Decrement the ref-count on a virtual table object. When the ref-count
201 ** reaches zero, call the xDisconnect() method to delete the object.
203 void sqlite3VtabUnlock(VTable *pVTab){
204 sqlite3 *db = pVTab->db;
206 assert( db );
207 assert( pVTab->nRef>0 );
208 assert( db->eOpenState==SQLITE_STATE_OPEN
209 || db->eOpenState==SQLITE_STATE_ZOMBIE );
211 pVTab->nRef--;
212 if( pVTab->nRef==0 ){
213 sqlite3_vtab *p = pVTab->pVtab;
214 if( p ){
215 p->pModule->xDisconnect(p);
217 sqlite3VtabModuleUnref(pVTab->db, pVTab->pMod);
218 sqlite3DbFree(db, pVTab);
223 ** Table p is a virtual table. This function moves all elements in the
224 ** p->u.vtab.p list to the sqlite3.pDisconnect lists of their associated
225 ** database connections to be disconnected at the next opportunity.
226 ** Except, if argument db is not NULL, then the entry associated with
227 ** connection db is left in the p->u.vtab.p list.
229 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){
230 VTable *pRet = 0;
231 VTable *pVTable;
233 assert( IsVirtual(p) );
234 pVTable = p->u.vtab.p;
235 p->u.vtab.p = 0;
237 /* Assert that the mutex (if any) associated with the BtShared database
238 ** that contains table p is held by the caller. See header comments
239 ** above function sqlite3VtabUnlockList() for an explanation of why
240 ** this makes it safe to access the sqlite3.pDisconnect list of any
241 ** database connection that may have an entry in the p->u.vtab.p list.
243 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
245 while( pVTable ){
246 sqlite3 *db2 = pVTable->db;
247 VTable *pNext = pVTable->pNext;
248 assert( db2 );
249 if( db2==db ){
250 pRet = pVTable;
251 p->u.vtab.p = pRet;
252 pRet->pNext = 0;
253 }else{
254 pVTable->pNext = db2->pDisconnect;
255 db2->pDisconnect = pVTable;
257 pVTable = pNext;
260 assert( !db || pRet );
261 return pRet;
265 ** Table *p is a virtual table. This function removes the VTable object
266 ** for table *p associated with database connection db from the linked
267 ** list in p->pVTab. It also decrements the VTable ref count. This is
268 ** used when closing database connection db to free all of its VTable
269 ** objects without disturbing the rest of the Schema object (which may
270 ** be being used by other shared-cache connections).
272 void sqlite3VtabDisconnect(sqlite3 *db, Table *p){
273 VTable **ppVTab;
275 assert( IsVirtual(p) );
276 assert( sqlite3BtreeHoldsAllMutexes(db) );
277 assert( sqlite3_mutex_held(db->mutex) );
279 for(ppVTab=&p->u.vtab.p; *ppVTab; ppVTab=&(*ppVTab)->pNext){
280 if( (*ppVTab)->db==db ){
281 VTable *pVTab = *ppVTab;
282 *ppVTab = pVTab->pNext;
283 sqlite3VtabUnlock(pVTab);
284 break;
291 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list.
293 ** This function may only be called when the mutexes associated with all
294 ** shared b-tree databases opened using connection db are held by the
295 ** caller. This is done to protect the sqlite3.pDisconnect list. The
296 ** sqlite3.pDisconnect list is accessed only as follows:
298 ** 1) By this function. In this case, all BtShared mutexes and the mutex
299 ** associated with the database handle itself must be held.
301 ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to
302 ** the sqlite3.pDisconnect list. In this case either the BtShared mutex
303 ** associated with the database the virtual table is stored in is held
304 ** or, if the virtual table is stored in a non-sharable database, then
305 ** the database handle mutex is held.
307 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously
308 ** by multiple threads. It is thread-safe.
310 void sqlite3VtabUnlockList(sqlite3 *db){
311 VTable *p = db->pDisconnect;
313 assert( sqlite3BtreeHoldsAllMutexes(db) );
314 assert( sqlite3_mutex_held(db->mutex) );
316 if( p ){
317 db->pDisconnect = 0;
318 sqlite3ExpirePreparedStatements(db, 0);
319 do {
320 VTable *pNext = p->pNext;
321 sqlite3VtabUnlock(p);
322 p = pNext;
323 }while( p );
328 ** Clear any and all virtual-table information from the Table record.
329 ** This routine is called, for example, just before deleting the Table
330 ** record.
332 ** Since it is a virtual-table, the Table structure contains a pointer
333 ** to the head of a linked list of VTable structures. Each VTable
334 ** structure is associated with a single sqlite3* user of the schema.
335 ** The reference count of the VTable structure associated with database
336 ** connection db is decremented immediately (which may lead to the
337 ** structure being xDisconnected and free). Any other VTable structures
338 ** in the list are moved to the sqlite3.pDisconnect list of the associated
339 ** database connection.
341 void sqlite3VtabClear(sqlite3 *db, Table *p){
342 assert( IsVirtual(p) );
343 assert( db!=0 );
344 if( db->pnBytesFreed==0 ) vtabDisconnectAll(0, p);
345 if( p->u.vtab.azArg ){
346 int i;
347 for(i=0; i<p->u.vtab.nArg; i++){
348 if( i!=1 ) sqlite3DbFree(db, p->u.vtab.azArg[i]);
350 sqlite3DbFree(db, p->u.vtab.azArg);
355 ** Add a new module argument to pTable->u.vtab.azArg[].
356 ** The string is not copied - the pointer is stored. The
357 ** string will be freed automatically when the table is
358 ** deleted.
360 static void addModuleArgument(Parse *pParse, Table *pTable, char *zArg){
361 sqlite3_int64 nBytes;
362 char **azModuleArg;
363 sqlite3 *db = pParse->db;
365 assert( IsVirtual(pTable) );
366 nBytes = sizeof(char *)*(2+pTable->u.vtab.nArg);
367 if( pTable->u.vtab.nArg+3>=db->aLimit[SQLITE_LIMIT_COLUMN] ){
368 sqlite3ErrorMsg(pParse, "too many columns on %s", pTable->zName);
370 azModuleArg = sqlite3DbRealloc(db, pTable->u.vtab.azArg, nBytes);
371 if( azModuleArg==0 ){
372 sqlite3DbFree(db, zArg);
373 }else{
374 int i = pTable->u.vtab.nArg++;
375 azModuleArg[i] = zArg;
376 azModuleArg[i+1] = 0;
377 pTable->u.vtab.azArg = azModuleArg;
382 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE
383 ** statement. The module name has been parsed, but the optional list
384 ** of parameters that follow the module name are still pending.
386 void sqlite3VtabBeginParse(
387 Parse *pParse, /* Parsing context */
388 Token *pName1, /* Name of new table, or database name */
389 Token *pName2, /* Name of new table or NULL */
390 Token *pModuleName, /* Name of the module for the virtual table */
391 int ifNotExists /* No error if the table already exists */
393 Table *pTable; /* The new virtual table */
394 sqlite3 *db; /* Database connection */
396 sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists);
397 pTable = pParse->pNewTable;
398 if( pTable==0 ) return;
399 assert( 0==pTable->pIndex );
400 pTable->eTabType = TABTYP_VTAB;
402 db = pParse->db;
404 assert( pTable->u.vtab.nArg==0 );
405 addModuleArgument(pParse, pTable, sqlite3NameFromToken(db, pModuleName));
406 addModuleArgument(pParse, pTable, 0);
407 addModuleArgument(pParse, pTable, sqlite3DbStrDup(db, pTable->zName));
408 assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0)
409 || (pParse->sNameToken.z==pName1->z && pName2->z==0)
411 pParse->sNameToken.n = (int)(
412 &pModuleName->z[pModuleName->n] - pParse->sNameToken.z
415 #ifndef SQLITE_OMIT_AUTHORIZATION
416 /* Creating a virtual table invokes the authorization callback twice.
417 ** The first invocation, to obtain permission to INSERT a row into the
418 ** sqlite_schema table, has already been made by sqlite3StartTable().
419 ** The second call, to obtain permission to create the table, is made now.
421 if( pTable->u.vtab.azArg ){
422 int iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
423 assert( iDb>=0 ); /* The database the table is being created in */
424 sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName,
425 pTable->u.vtab.azArg[0], pParse->db->aDb[iDb].zDbSName);
427 #endif
431 ** This routine takes the module argument that has been accumulating
432 ** in pParse->zArg[] and appends it to the list of arguments on the
433 ** virtual table currently under construction in pParse->pTable.
435 static void addArgumentToVtab(Parse *pParse){
436 if( pParse->sArg.z && pParse->pNewTable ){
437 const char *z = (const char*)pParse->sArg.z;
438 int n = pParse->sArg.n;
439 sqlite3 *db = pParse->db;
440 addModuleArgument(pParse, pParse->pNewTable, sqlite3DbStrNDup(db, z, n));
445 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement
446 ** has been completely parsed.
448 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
449 Table *pTab = pParse->pNewTable; /* The table being constructed */
450 sqlite3 *db = pParse->db; /* The database connection */
452 if( pTab==0 ) return;
453 assert( IsVirtual(pTab) );
454 addArgumentToVtab(pParse);
455 pParse->sArg.z = 0;
456 if( pTab->u.vtab.nArg<1 ) return;
458 /* If the CREATE VIRTUAL TABLE statement is being entered for the
459 ** first time (in other words if the virtual table is actually being
460 ** created now instead of just being read out of sqlite_schema) then
461 ** do additional initialization work and store the statement text
462 ** in the sqlite_schema table.
464 if( !db->init.busy ){
465 char *zStmt;
466 char *zWhere;
467 int iDb;
468 int iReg;
469 Vdbe *v;
471 sqlite3MayAbort(pParse);
473 /* Compute the complete text of the CREATE VIRTUAL TABLE statement */
474 if( pEnd ){
475 pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n;
477 zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
479 /* A slot for the record has already been allocated in the
480 ** schema table. We just need to update that slot with all
481 ** the information we've collected.
483 ** The VM register number pParse->regRowid holds the rowid of an
484 ** entry in the sqlite_schema table tht was created for this vtab
485 ** by sqlite3StartTable().
487 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
488 sqlite3NestedParse(pParse,
489 "UPDATE %Q." LEGACY_SCHEMA_TABLE " "
490 "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q "
491 "WHERE rowid=#%d",
492 db->aDb[iDb].zDbSName,
493 pTab->zName,
494 pTab->zName,
495 zStmt,
496 pParse->regRowid
498 v = sqlite3GetVdbe(pParse);
499 sqlite3ChangeCookie(pParse, iDb);
501 sqlite3VdbeAddOp0(v, OP_Expire);
502 zWhere = sqlite3MPrintf(db, "name=%Q AND sql=%Q", pTab->zName, zStmt);
503 sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere, 0);
504 sqlite3DbFree(db, zStmt);
506 iReg = ++pParse->nMem;
507 sqlite3VdbeLoadString(v, iReg, pTab->zName);
508 sqlite3VdbeAddOp2(v, OP_VCreate, iDb, iReg);
509 }else{
510 /* If we are rereading the sqlite_schema table create the in-memory
511 ** record of the table. */
512 Table *pOld;
513 Schema *pSchema = pTab->pSchema;
514 const char *zName = pTab->zName;
515 assert( zName!=0 );
516 sqlite3MarkAllShadowTablesOf(db, pTab);
517 pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab);
518 if( pOld ){
519 sqlite3OomFault(db);
520 assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */
521 return;
523 pParse->pNewTable = 0;
528 ** The parser calls this routine when it sees the first token
529 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement.
531 void sqlite3VtabArgInit(Parse *pParse){
532 addArgumentToVtab(pParse);
533 pParse->sArg.z = 0;
534 pParse->sArg.n = 0;
538 ** The parser calls this routine for each token after the first token
539 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement.
541 void sqlite3VtabArgExtend(Parse *pParse, Token *p){
542 Token *pArg = &pParse->sArg;
543 if( pArg->z==0 ){
544 pArg->z = p->z;
545 pArg->n = p->n;
546 }else{
547 assert(pArg->z <= p->z);
548 pArg->n = (int)(&p->z[p->n] - pArg->z);
553 ** Invoke a virtual table constructor (either xCreate or xConnect). The
554 ** pointer to the function to invoke is passed as the fourth parameter
555 ** to this procedure.
557 static int vtabCallConstructor(
558 sqlite3 *db,
559 Table *pTab,
560 Module *pMod,
561 int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**),
562 char **pzErr
564 VtabCtx sCtx;
565 VTable *pVTable;
566 int rc;
567 const char *const*azArg;
568 int nArg = pTab->u.vtab.nArg;
569 char *zErr = 0;
570 char *zModuleName;
571 int iDb;
572 VtabCtx *pCtx;
574 assert( IsVirtual(pTab) );
575 azArg = (const char *const*)pTab->u.vtab.azArg;
577 /* Check that the virtual-table is not already being initialized */
578 for(pCtx=db->pVtabCtx; pCtx; pCtx=pCtx->pPrior){
579 if( pCtx->pTab==pTab ){
580 *pzErr = sqlite3MPrintf(db,
581 "vtable constructor called recursively: %s", pTab->zName
583 return SQLITE_LOCKED;
587 zModuleName = sqlite3DbStrDup(db, pTab->zName);
588 if( !zModuleName ){
589 return SQLITE_NOMEM_BKPT;
592 pVTable = sqlite3MallocZero(sizeof(VTable));
593 if( !pVTable ){
594 sqlite3OomFault(db);
595 sqlite3DbFree(db, zModuleName);
596 return SQLITE_NOMEM_BKPT;
598 pVTable->db = db;
599 pVTable->pMod = pMod;
600 pVTable->eVtabRisk = SQLITE_VTABRISK_Normal;
602 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
603 pTab->u.vtab.azArg[1] = db->aDb[iDb].zDbSName;
605 /* Invoke the virtual table constructor */
606 assert( &db->pVtabCtx );
607 assert( xConstruct );
608 sCtx.pTab = pTab;
609 sCtx.pVTable = pVTable;
610 sCtx.pPrior = db->pVtabCtx;
611 sCtx.bDeclared = 0;
612 db->pVtabCtx = &sCtx;
613 pTab->nTabRef++;
614 rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr);
615 sqlite3DeleteTable(db, pTab);
616 db->pVtabCtx = sCtx.pPrior;
617 if( rc==SQLITE_NOMEM ) sqlite3OomFault(db);
618 assert( sCtx.pTab==pTab );
620 if( SQLITE_OK!=rc ){
621 if( zErr==0 ){
622 *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
623 }else {
624 *pzErr = sqlite3MPrintf(db, "%s", zErr);
625 sqlite3_free(zErr);
627 sqlite3DbFree(db, pVTable);
628 }else if( ALWAYS(pVTable->pVtab) ){
629 /* Justification of ALWAYS(): A correct vtab constructor must allocate
630 ** the sqlite3_vtab object if successful. */
631 memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0]));
632 pVTable->pVtab->pModule = pMod->pModule;
633 pMod->nRefModule++;
634 pVTable->nRef = 1;
635 if( sCtx.bDeclared==0 ){
636 const char *zFormat = "vtable constructor did not declare schema: %s";
637 *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
638 sqlite3VtabUnlock(pVTable);
639 rc = SQLITE_ERROR;
640 }else{
641 int iCol;
642 u16 oooHidden = 0;
643 /* If everything went according to plan, link the new VTable structure
644 ** into the linked list headed by pTab->u.vtab.p. Then loop through the
645 ** columns of the table to see if any of them contain the token "hidden".
646 ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from
647 ** the type string. */
648 pVTable->pNext = pTab->u.vtab.p;
649 pTab->u.vtab.p = pVTable;
651 for(iCol=0; iCol<pTab->nCol; iCol++){
652 char *zType = sqlite3ColumnType(&pTab->aCol[iCol], "");
653 int nType;
654 int i = 0;
655 nType = sqlite3Strlen30(zType);
656 for(i=0; i<nType; i++){
657 if( 0==sqlite3StrNICmp("hidden", &zType[i], 6)
658 && (i==0 || zType[i-1]==' ')
659 && (zType[i+6]=='\0' || zType[i+6]==' ')
661 break;
664 if( i<nType ){
665 int j;
666 int nDel = 6 + (zType[i+6] ? 1 : 0);
667 for(j=i; (j+nDel)<=nType; j++){
668 zType[j] = zType[j+nDel];
670 if( zType[i]=='\0' && i>0 ){
671 assert(zType[i-1]==' ');
672 zType[i-1] = '\0';
674 pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN;
675 pTab->tabFlags |= TF_HasHidden;
676 oooHidden = TF_OOOHidden;
677 }else{
678 pTab->tabFlags |= oooHidden;
684 sqlite3DbFree(db, zModuleName);
685 return rc;
689 ** This function is invoked by the parser to call the xConnect() method
690 ** of the virtual table pTab. If an error occurs, an error code is returned
691 ** and an error left in pParse.
693 ** This call is a no-op if table pTab is not a virtual table.
695 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
696 sqlite3 *db = pParse->db;
697 const char *zMod;
698 Module *pMod;
699 int rc;
701 assert( pTab );
702 assert( IsVirtual(pTab) );
703 if( sqlite3GetVTable(db, pTab) ){
704 return SQLITE_OK;
707 /* Locate the required virtual table module */
708 zMod = pTab->u.vtab.azArg[0];
709 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod);
711 if( !pMod ){
712 const char *zModule = pTab->u.vtab.azArg[0];
713 sqlite3ErrorMsg(pParse, "no such module: %s", zModule);
714 rc = SQLITE_ERROR;
715 }else{
716 char *zErr = 0;
717 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr);
718 if( rc!=SQLITE_OK ){
719 sqlite3ErrorMsg(pParse, "%s", zErr);
720 pParse->rc = rc;
722 sqlite3DbFree(db, zErr);
725 return rc;
728 ** Grow the db->aVTrans[] array so that there is room for at least one
729 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise.
731 static int growVTrans(sqlite3 *db){
732 const int ARRAY_INCR = 5;
734 /* Grow the sqlite3.aVTrans array if required */
735 if( (db->nVTrans%ARRAY_INCR)==0 ){
736 VTable **aVTrans;
737 sqlite3_int64 nBytes = sizeof(sqlite3_vtab*)*
738 ((sqlite3_int64)db->nVTrans + ARRAY_INCR);
739 aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes);
740 if( !aVTrans ){
741 return SQLITE_NOMEM_BKPT;
743 memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR);
744 db->aVTrans = aVTrans;
747 return SQLITE_OK;
751 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should
752 ** have already been reserved using growVTrans().
754 static void addToVTrans(sqlite3 *db, VTable *pVTab){
755 /* Add pVtab to the end of sqlite3.aVTrans */
756 db->aVTrans[db->nVTrans++] = pVTab;
757 sqlite3VtabLock(pVTab);
761 ** This function is invoked by the vdbe to call the xCreate method
762 ** of the virtual table named zTab in database iDb.
764 ** If an error occurs, *pzErr is set to point to an English language
765 ** description of the error and an SQLITE_XXX error code is returned.
766 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr.
768 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
769 int rc = SQLITE_OK;
770 Table *pTab;
771 Module *pMod;
772 const char *zMod;
774 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName);
775 assert( pTab && IsVirtual(pTab) && !pTab->u.vtab.p );
777 /* Locate the required virtual table module */
778 zMod = pTab->u.vtab.azArg[0];
779 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod);
781 /* If the module has been registered and includes a Create method,
782 ** invoke it now. If the module has not been registered, return an
783 ** error. Otherwise, do nothing.
785 if( pMod==0 || pMod->pModule->xCreate==0 || pMod->pModule->xDestroy==0 ){
786 *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod);
787 rc = SQLITE_ERROR;
788 }else{
789 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr);
792 /* Justification of ALWAYS(): The xConstructor method is required to
793 ** create a valid sqlite3_vtab if it returns SQLITE_OK. */
794 if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){
795 rc = growVTrans(db);
796 if( rc==SQLITE_OK ){
797 addToVTrans(db, sqlite3GetVTable(db, pTab));
801 return rc;
805 ** This function is used to set the schema of a virtual table. It is only
806 ** valid to call this function from within the xCreate() or xConnect() of a
807 ** virtual table module.
809 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
810 VtabCtx *pCtx;
811 int rc = SQLITE_OK;
812 Table *pTab;
813 Parse sParse;
814 int initBusy;
816 #ifdef SQLITE_ENABLE_API_ARMOR
817 if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){
818 return SQLITE_MISUSE_BKPT;
820 #endif
821 sqlite3_mutex_enter(db->mutex);
822 pCtx = db->pVtabCtx;
823 if( !pCtx || pCtx->bDeclared ){
824 sqlite3Error(db, SQLITE_MISUSE);
825 sqlite3_mutex_leave(db->mutex);
826 return SQLITE_MISUSE_BKPT;
828 pTab = pCtx->pTab;
829 assert( IsVirtual(pTab) );
831 sqlite3ParseObjectInit(&sParse, db);
832 sParse.eParseMode = PARSE_MODE_DECLARE_VTAB;
833 sParse.disableTriggers = 1;
834 /* We should never be able to reach this point while loading the
835 ** schema. Nevertheless, defend against that (turn off db->init.busy)
836 ** in case a bug arises. */
837 assert( db->init.busy==0 );
838 initBusy = db->init.busy;
839 db->init.busy = 0;
840 sParse.nQueryLoop = 1;
841 if( SQLITE_OK==sqlite3RunParser(&sParse, zCreateTable)
842 && ALWAYS(sParse.pNewTable!=0)
843 && ALWAYS(!db->mallocFailed)
844 && IsOrdinaryTable(sParse.pNewTable)
846 assert( sParse.zErrMsg==0 );
847 if( !pTab->aCol ){
848 Table *pNew = sParse.pNewTable;
849 Index *pIdx;
850 pTab->aCol = pNew->aCol;
851 sqlite3ExprListDelete(db, pNew->u.tab.pDfltList);
852 pTab->nNVCol = pTab->nCol = pNew->nCol;
853 pTab->tabFlags |= pNew->tabFlags & (TF_WithoutRowid|TF_NoVisibleRowid);
854 pNew->nCol = 0;
855 pNew->aCol = 0;
856 assert( pTab->pIndex==0 );
857 assert( HasRowid(pNew) || sqlite3PrimaryKeyIndex(pNew)!=0 );
858 if( !HasRowid(pNew)
859 && pCtx->pVTable->pMod->pModule->xUpdate!=0
860 && sqlite3PrimaryKeyIndex(pNew)->nKeyCol!=1
862 /* WITHOUT ROWID virtual tables must either be read-only (xUpdate==0)
863 ** or else must have a single-column PRIMARY KEY */
864 rc = SQLITE_ERROR;
866 pIdx = pNew->pIndex;
867 if( pIdx ){
868 assert( pIdx->pNext==0 );
869 pTab->pIndex = pIdx;
870 pNew->pIndex = 0;
871 pIdx->pTable = pTab;
874 pCtx->bDeclared = 1;
875 }else{
876 sqlite3ErrorWithMsg(db, SQLITE_ERROR,
877 (sParse.zErrMsg ? "%s" : 0), sParse.zErrMsg);
878 sqlite3DbFree(db, sParse.zErrMsg);
879 rc = SQLITE_ERROR;
881 sParse.eParseMode = PARSE_MODE_NORMAL;
883 if( sParse.pVdbe ){
884 sqlite3VdbeFinalize(sParse.pVdbe);
886 sqlite3DeleteTable(db, sParse.pNewTable);
887 sqlite3ParseObjectReset(&sParse);
888 db->init.busy = initBusy;
890 assert( (rc&0xff)==rc );
891 rc = sqlite3ApiExit(db, rc);
892 sqlite3_mutex_leave(db->mutex);
893 return rc;
897 ** This function is invoked by the vdbe to call the xDestroy method
898 ** of the virtual table named zTab in database iDb. This occurs
899 ** when a DROP TABLE is mentioned.
901 ** This call is a no-op if zTab is not a virtual table.
903 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){
904 int rc = SQLITE_OK;
905 Table *pTab;
907 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName);
908 if( ALWAYS(pTab!=0)
909 && ALWAYS(IsVirtual(pTab))
910 && ALWAYS(pTab->u.vtab.p!=0)
912 VTable *p;
913 int (*xDestroy)(sqlite3_vtab *);
914 for(p=pTab->u.vtab.p; p; p=p->pNext){
915 assert( p->pVtab );
916 if( p->pVtab->nRef>0 ){
917 return SQLITE_LOCKED;
920 p = vtabDisconnectAll(db, pTab);
921 xDestroy = p->pMod->pModule->xDestroy;
922 if( xDestroy==0 ) xDestroy = p->pMod->pModule->xDisconnect;
923 assert( xDestroy!=0 );
924 pTab->nTabRef++;
925 rc = xDestroy(p->pVtab);
926 /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */
927 if( rc==SQLITE_OK ){
928 assert( pTab->u.vtab.p==p && p->pNext==0 );
929 p->pVtab = 0;
930 pTab->u.vtab.p = 0;
931 sqlite3VtabUnlock(p);
933 sqlite3DeleteTable(db, pTab);
936 return rc;
940 ** This function invokes either the xRollback or xCommit method
941 ** of each of the virtual tables in the sqlite3.aVTrans array. The method
942 ** called is identified by the second argument, "offset", which is
943 ** the offset of the method to call in the sqlite3_module structure.
945 ** The array is cleared after invoking the callbacks.
947 static void callFinaliser(sqlite3 *db, int offset){
948 int i;
949 if( db->aVTrans ){
950 VTable **aVTrans = db->aVTrans;
951 db->aVTrans = 0;
952 for(i=0; i<db->nVTrans; i++){
953 VTable *pVTab = aVTrans[i];
954 sqlite3_vtab *p = pVTab->pVtab;
955 if( p ){
956 int (*x)(sqlite3_vtab *);
957 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset);
958 if( x ) x(p);
960 pVTab->iSavepoint = 0;
961 sqlite3VtabUnlock(pVTab);
963 sqlite3DbFree(db, aVTrans);
964 db->nVTrans = 0;
969 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
970 ** array. Return the error code for the first error that occurs, or
971 ** SQLITE_OK if all xSync operations are successful.
973 ** If an error message is available, leave it in p->zErrMsg.
975 int sqlite3VtabSync(sqlite3 *db, Vdbe *p){
976 int i;
977 int rc = SQLITE_OK;
978 VTable **aVTrans = db->aVTrans;
980 db->aVTrans = 0;
981 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
982 int (*x)(sqlite3_vtab *);
983 sqlite3_vtab *pVtab = aVTrans[i]->pVtab;
984 if( pVtab && (x = pVtab->pModule->xSync)!=0 ){
985 rc = x(pVtab);
986 sqlite3VtabImportErrmsg(p, pVtab);
989 db->aVTrans = aVTrans;
990 return rc;
994 ** Invoke the xRollback method of all virtual tables in the
995 ** sqlite3.aVTrans array. Then clear the array itself.
997 int sqlite3VtabRollback(sqlite3 *db){
998 callFinaliser(db, offsetof(sqlite3_module,xRollback));
999 return SQLITE_OK;
1003 ** Invoke the xCommit method of all virtual tables in the
1004 ** sqlite3.aVTrans array. Then clear the array itself.
1006 int sqlite3VtabCommit(sqlite3 *db){
1007 callFinaliser(db, offsetof(sqlite3_module,xCommit));
1008 return SQLITE_OK;
1012 ** If the virtual table pVtab supports the transaction interface
1013 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is
1014 ** not currently open, invoke the xBegin method now.
1016 ** If the xBegin call is successful, place the sqlite3_vtab pointer
1017 ** in the sqlite3.aVTrans array.
1019 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){
1020 int rc = SQLITE_OK;
1021 const sqlite3_module *pModule;
1023 /* Special case: If db->aVTrans is NULL and db->nVTrans is greater
1024 ** than zero, then this function is being called from within a
1025 ** virtual module xSync() callback. It is illegal to write to
1026 ** virtual module tables in this case, so return SQLITE_LOCKED.
1028 if( sqlite3VtabInSync(db) ){
1029 return SQLITE_LOCKED;
1031 if( !pVTab ){
1032 return SQLITE_OK;
1034 pModule = pVTab->pVtab->pModule;
1036 if( pModule->xBegin ){
1037 int i;
1039 /* If pVtab is already in the aVTrans array, return early */
1040 for(i=0; i<db->nVTrans; i++){
1041 if( db->aVTrans[i]==pVTab ){
1042 return SQLITE_OK;
1046 /* Invoke the xBegin method. If successful, add the vtab to the
1047 ** sqlite3.aVTrans[] array. */
1048 rc = growVTrans(db);
1049 if( rc==SQLITE_OK ){
1050 rc = pModule->xBegin(pVTab->pVtab);
1051 if( rc==SQLITE_OK ){
1052 int iSvpt = db->nStatement + db->nSavepoint;
1053 addToVTrans(db, pVTab);
1054 if( iSvpt && pModule->xSavepoint ){
1055 pVTab->iSavepoint = iSvpt;
1056 rc = pModule->xSavepoint(pVTab->pVtab, iSvpt-1);
1061 return rc;
1065 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all
1066 ** virtual tables that currently have an open transaction. Pass iSavepoint
1067 ** as the second argument to the virtual table method invoked.
1069 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is
1070 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is
1071 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with
1072 ** an open transaction is invoked.
1074 ** If any virtual table method returns an error code other than SQLITE_OK,
1075 ** processing is abandoned and the error returned to the caller of this
1076 ** function immediately. If all calls to virtual table methods are successful,
1077 ** SQLITE_OK is returned.
1079 int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){
1080 int rc = SQLITE_OK;
1082 assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN );
1083 assert( iSavepoint>=-1 );
1084 if( db->aVTrans ){
1085 int i;
1086 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
1087 VTable *pVTab = db->aVTrans[i];
1088 const sqlite3_module *pMod = pVTab->pMod->pModule;
1089 if( pVTab->pVtab && pMod->iVersion>=2 ){
1090 int (*xMethod)(sqlite3_vtab *, int);
1091 sqlite3VtabLock(pVTab);
1092 switch( op ){
1093 case SAVEPOINT_BEGIN:
1094 xMethod = pMod->xSavepoint;
1095 pVTab->iSavepoint = iSavepoint+1;
1096 break;
1097 case SAVEPOINT_ROLLBACK:
1098 xMethod = pMod->xRollbackTo;
1099 break;
1100 default:
1101 xMethod = pMod->xRelease;
1102 break;
1104 if( xMethod && pVTab->iSavepoint>iSavepoint ){
1105 rc = xMethod(pVTab->pVtab, iSavepoint);
1107 sqlite3VtabUnlock(pVTab);
1111 return rc;
1115 ** The first parameter (pDef) is a function implementation. The
1116 ** second parameter (pExpr) is the first argument to this function.
1117 ** If pExpr is a column in a virtual table, then let the virtual
1118 ** table implementation have an opportunity to overload the function.
1120 ** This routine is used to allow virtual table implementations to
1121 ** overload MATCH, LIKE, GLOB, and REGEXP operators.
1123 ** Return either the pDef argument (indicating no change) or a
1124 ** new FuncDef structure that is marked as ephemeral using the
1125 ** SQLITE_FUNC_EPHEM flag.
1127 FuncDef *sqlite3VtabOverloadFunction(
1128 sqlite3 *db, /* Database connection for reporting malloc problems */
1129 FuncDef *pDef, /* Function to possibly overload */
1130 int nArg, /* Number of arguments to the function */
1131 Expr *pExpr /* First argument to the function */
1133 Table *pTab;
1134 sqlite3_vtab *pVtab;
1135 sqlite3_module *pMod;
1136 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0;
1137 void *pArg = 0;
1138 FuncDef *pNew;
1139 int rc = 0;
1141 /* Check to see the left operand is a column in a virtual table */
1142 if( NEVER(pExpr==0) ) return pDef;
1143 if( pExpr->op!=TK_COLUMN ) return pDef;
1144 assert( ExprUseYTab(pExpr) );
1145 pTab = pExpr->y.pTab;
1146 if( NEVER(pTab==0) ) return pDef;
1147 if( !IsVirtual(pTab) ) return pDef;
1148 pVtab = sqlite3GetVTable(db, pTab)->pVtab;
1149 assert( pVtab!=0 );
1150 assert( pVtab->pModule!=0 );
1151 pMod = (sqlite3_module *)pVtab->pModule;
1152 if( pMod->xFindFunction==0 ) return pDef;
1154 /* Call the xFindFunction method on the virtual table implementation
1155 ** to see if the implementation wants to overload this function.
1157 ** Though undocumented, we have historically always invoked xFindFunction
1158 ** with an all lower-case function name. Continue in this tradition to
1159 ** avoid any chance of an incompatibility.
1161 #ifdef SQLITE_DEBUG
1163 int i;
1164 for(i=0; pDef->zName[i]; i++){
1165 unsigned char x = (unsigned char)pDef->zName[i];
1166 assert( x==sqlite3UpperToLower[x] );
1169 #endif
1170 rc = pMod->xFindFunction(pVtab, nArg, pDef->zName, &xSFunc, &pArg);
1171 if( rc==0 ){
1172 return pDef;
1175 /* Create a new ephemeral function definition for the overloaded
1176 ** function */
1177 pNew = sqlite3DbMallocZero(db, sizeof(*pNew)
1178 + sqlite3Strlen30(pDef->zName) + 1);
1179 if( pNew==0 ){
1180 return pDef;
1182 *pNew = *pDef;
1183 pNew->zName = (const char*)&pNew[1];
1184 memcpy((char*)&pNew[1], pDef->zName, sqlite3Strlen30(pDef->zName)+1);
1185 pNew->xSFunc = xSFunc;
1186 pNew->pUserData = pArg;
1187 pNew->funcFlags |= SQLITE_FUNC_EPHEM;
1188 return pNew;
1192 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
1193 ** array so that an OP_VBegin will get generated for it. Add pTab to the
1194 ** array if it is missing. If pTab is already in the array, this routine
1195 ** is a no-op.
1197 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){
1198 Parse *pToplevel = sqlite3ParseToplevel(pParse);
1199 int i, n;
1200 Table **apVtabLock;
1202 assert( IsVirtual(pTab) );
1203 for(i=0; i<pToplevel->nVtabLock; i++){
1204 if( pTab==pToplevel->apVtabLock[i] ) return;
1206 n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]);
1207 apVtabLock = sqlite3Realloc(pToplevel->apVtabLock, n);
1208 if( apVtabLock ){
1209 pToplevel->apVtabLock = apVtabLock;
1210 pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab;
1211 }else{
1212 sqlite3OomFault(pToplevel->db);
1217 ** Check to see if virtual table module pMod can be have an eponymous
1218 ** virtual table instance. If it can, create one if one does not already
1219 ** exist. Return non-zero if either the eponymous virtual table instance
1220 ** exists when this routine returns or if an attempt to create it failed
1221 ** and an error message was left in pParse.
1223 ** An eponymous virtual table instance is one that is named after its
1224 ** module, and more importantly, does not require a CREATE VIRTUAL TABLE
1225 ** statement in order to come into existance. Eponymous virtual table
1226 ** instances always exist. They cannot be DROP-ed.
1228 ** Any virtual table module for which xConnect and xCreate are the same
1229 ** method can have an eponymous virtual table instance.
1231 int sqlite3VtabEponymousTableInit(Parse *pParse, Module *pMod){
1232 const sqlite3_module *pModule = pMod->pModule;
1233 Table *pTab;
1234 char *zErr = 0;
1235 int rc;
1236 sqlite3 *db = pParse->db;
1237 if( pMod->pEpoTab ) return 1;
1238 if( pModule->xCreate!=0 && pModule->xCreate!=pModule->xConnect ) return 0;
1239 pTab = sqlite3DbMallocZero(db, sizeof(Table));
1240 if( pTab==0 ) return 0;
1241 pTab->zName = sqlite3DbStrDup(db, pMod->zName);
1242 if( pTab->zName==0 ){
1243 sqlite3DbFree(db, pTab);
1244 return 0;
1246 pMod->pEpoTab = pTab;
1247 pTab->nTabRef = 1;
1248 pTab->eTabType = TABTYP_VTAB;
1249 pTab->pSchema = db->aDb[0].pSchema;
1250 assert( pTab->u.vtab.nArg==0 );
1251 pTab->iPKey = -1;
1252 pTab->tabFlags |= TF_Eponymous;
1253 addModuleArgument(pParse, pTab, sqlite3DbStrDup(db, pTab->zName));
1254 addModuleArgument(pParse, pTab, 0);
1255 addModuleArgument(pParse, pTab, sqlite3DbStrDup(db, pTab->zName));
1256 rc = vtabCallConstructor(db, pTab, pMod, pModule->xConnect, &zErr);
1257 if( rc ){
1258 sqlite3ErrorMsg(pParse, "%s", zErr);
1259 sqlite3DbFree(db, zErr);
1260 sqlite3VtabEponymousTableClear(db, pMod);
1262 return 1;
1266 ** Erase the eponymous virtual table instance associated with
1267 ** virtual table module pMod, if it exists.
1269 void sqlite3VtabEponymousTableClear(sqlite3 *db, Module *pMod){
1270 Table *pTab = pMod->pEpoTab;
1271 if( pTab!=0 ){
1272 /* Mark the table as Ephemeral prior to deleting it, so that the
1273 ** sqlite3DeleteTable() routine will know that it is not stored in
1274 ** the schema. */
1275 pTab->tabFlags |= TF_Ephemeral;
1276 sqlite3DeleteTable(db, pTab);
1277 pMod->pEpoTab = 0;
1282 ** Return the ON CONFLICT resolution mode in effect for the virtual
1283 ** table update operation currently in progress.
1285 ** The results of this routine are undefined unless it is called from
1286 ** within an xUpdate method.
1288 int sqlite3_vtab_on_conflict(sqlite3 *db){
1289 static const unsigned char aMap[] = {
1290 SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE
1292 #ifdef SQLITE_ENABLE_API_ARMOR
1293 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
1294 #endif
1295 assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 );
1296 assert( OE_Ignore==4 && OE_Replace==5 );
1297 assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 );
1298 return (int)aMap[db->vtabOnConflict-1];
1302 ** Call from within the xCreate() or xConnect() methods to provide
1303 ** the SQLite core with additional information about the behavior
1304 ** of the virtual table being implemented.
1306 int sqlite3_vtab_config(sqlite3 *db, int op, ...){
1307 va_list ap;
1308 int rc = SQLITE_OK;
1309 VtabCtx *p;
1311 #ifdef SQLITE_ENABLE_API_ARMOR
1312 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
1313 #endif
1314 sqlite3_mutex_enter(db->mutex);
1315 p = db->pVtabCtx;
1316 if( !p ){
1317 rc = SQLITE_MISUSE_BKPT;
1318 }else{
1319 assert( p->pTab==0 || IsVirtual(p->pTab) );
1320 va_start(ap, op);
1321 switch( op ){
1322 case SQLITE_VTAB_CONSTRAINT_SUPPORT: {
1323 p->pVTable->bConstraint = (u8)va_arg(ap, int);
1324 break;
1326 case SQLITE_VTAB_INNOCUOUS: {
1327 p->pVTable->eVtabRisk = SQLITE_VTABRISK_Low;
1328 break;
1330 case SQLITE_VTAB_DIRECTONLY: {
1331 p->pVTable->eVtabRisk = SQLITE_VTABRISK_High;
1332 break;
1334 default: {
1335 rc = SQLITE_MISUSE_BKPT;
1336 break;
1339 va_end(ap);
1342 if( rc!=SQLITE_OK ) sqlite3Error(db, rc);
1343 sqlite3_mutex_leave(db->mutex);
1344 return rc;
1347 #endif /* SQLITE_OMIT_VIRTUALTABLE */