4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code associated with the ANALYZE command.
14 ** The ANALYZE command gather statistics about the content of tables
15 ** and indices. These statistics are made available to the query planner
16 ** to help it make better decisions about how to perform queries.
18 ** The following system tables are or have been supported:
20 ** CREATE TABLE sqlite_stat1(tbl, idx, stat);
21 ** CREATE TABLE sqlite_stat2(tbl, idx, sampleno, sample);
22 ** CREATE TABLE sqlite_stat3(tbl, idx, nEq, nLt, nDLt, sample);
23 ** CREATE TABLE sqlite_stat4(tbl, idx, nEq, nLt, nDLt, sample);
25 ** Additional tables might be added in future releases of SQLite.
26 ** The sqlite_stat2 table is not created or used unless the SQLite version
27 ** is between 3.6.18 and 3.7.8, inclusive, and unless SQLite is compiled
28 ** with SQLITE_ENABLE_STAT2. The sqlite_stat2 table is deprecated.
29 ** The sqlite_stat2 table is superseded by sqlite_stat3, which is only
30 ** created and used by SQLite versions 3.7.9 through 3.29.0 when
31 ** SQLITE_ENABLE_STAT3 defined. The functionality of sqlite_stat3
32 ** is a superset of sqlite_stat2 and is also now deprecated. The
33 ** sqlite_stat4 is an enhanced version of sqlite_stat3 and is only
34 ** available when compiled with SQLITE_ENABLE_STAT4 and in SQLite
35 ** versions 3.8.1 and later. STAT4 is the only variant that is still
38 ** For most applications, sqlite_stat1 provides all the statistics required
39 ** for the query planner to make good choices.
41 ** Format of sqlite_stat1:
43 ** There is normally one row per index, with the index identified by the
44 ** name in the idx column. The tbl column is the name of the table to
45 ** which the index belongs. In each such row, the stat column will be
46 ** a string consisting of a list of integers. The first integer in this
47 ** list is the number of rows in the index. (This is the same as the
48 ** number of rows in the table, except for partial indices.) The second
49 ** integer is the average number of rows in the index that have the same
50 ** value in the first column of the index. The third integer is the average
51 ** number of rows in the index that have the same value for the first two
52 ** columns. The N-th integer (for N>1) is the average number of rows in
53 ** the index which have the same value for the first N-1 columns. For
54 ** a K-column index, there will be K+1 integers in the stat column. If
55 ** the index is unique, then the last integer will be 1.
57 ** The list of integers in the stat column can optionally be followed
58 ** by the keyword "unordered". The "unordered" keyword, if it is present,
59 ** must be separated from the last integer by a single space. If the
60 ** "unordered" keyword is present, then the query planner assumes that
61 ** the index is unordered and will not use the index for a range query.
63 ** If the sqlite_stat1.idx column is NULL, then the sqlite_stat1.stat
64 ** column contains a single integer which is the (estimated) number of
65 ** rows in the table identified by sqlite_stat1.tbl.
67 ** Format of sqlite_stat2:
69 ** The sqlite_stat2 is only created and is only used if SQLite is compiled
70 ** with SQLITE_ENABLE_STAT2 and if the SQLite version number is between
71 ** 3.6.18 and 3.7.8. The "stat2" table contains additional information
72 ** about the distribution of keys within an index. The index is identified by
73 ** the "idx" column and the "tbl" column is the name of the table to which
74 ** the index belongs. There are usually 10 rows in the sqlite_stat2
75 ** table for each index.
77 ** The sqlite_stat2 entries for an index that have sampleno between 0 and 9
78 ** inclusive are samples of the left-most key value in the index taken at
79 ** evenly spaced points along the index. Let the number of samples be S
80 ** (10 in the standard build) and let C be the number of rows in the index.
81 ** Then the sampled rows are given by:
83 ** rownumber = (i*C*2 + C)/(S*2)
85 ** For i between 0 and S-1. Conceptually, the index space is divided into
86 ** S uniform buckets and the samples are the middle row from each bucket.
88 ** The format for sqlite_stat2 is recorded here for legacy reference. This
89 ** version of SQLite does not support sqlite_stat2. It neither reads nor
90 ** writes the sqlite_stat2 table. This version of SQLite only supports
93 ** Format for sqlite_stat3:
95 ** The sqlite_stat3 format is a subset of sqlite_stat4. Hence, the
96 ** sqlite_stat4 format will be described first. Further information
97 ** about sqlite_stat3 follows the sqlite_stat4 description.
99 ** Format for sqlite_stat4:
101 ** As with sqlite_stat2, the sqlite_stat4 table contains histogram data
102 ** to aid the query planner in choosing good indices based on the values
103 ** that indexed columns are compared against in the WHERE clauses of
106 ** The sqlite_stat4 table contains multiple entries for each index.
107 ** The idx column names the index and the tbl column is the table of the
108 ** index. If the idx and tbl columns are the same, then the sample is
109 ** of the INTEGER PRIMARY KEY. The sample column is a blob which is the
110 ** binary encoding of a key from the index. The nEq column is a
111 ** list of integers. The first integer is the approximate number
112 ** of entries in the index whose left-most column exactly matches
113 ** the left-most column of the sample. The second integer in nEq
114 ** is the approximate number of entries in the index where the
115 ** first two columns match the first two columns of the sample.
116 ** And so forth. nLt is another list of integers that show the approximate
117 ** number of entries that are strictly less than the sample. The first
118 ** integer in nLt contains the number of entries in the index where the
119 ** left-most column is less than the left-most column of the sample.
120 ** The K-th integer in the nLt entry is the number of index entries
121 ** where the first K columns are less than the first K columns of the
122 ** sample. The nDLt column is like nLt except that it contains the
123 ** number of distinct entries in the index that are less than the
126 ** There can be an arbitrary number of sqlite_stat4 entries per index.
127 ** The ANALYZE command will typically generate sqlite_stat4 tables
128 ** that contain between 10 and 40 samples which are distributed across
129 ** the key space, though not uniformly, and which include samples with
132 ** Format for sqlite_stat3 redux:
134 ** The sqlite_stat3 table is like sqlite_stat4 except that it only
135 ** looks at the left-most column of the index. The sqlite_stat3.sample
136 ** column contains the actual value of the left-most column instead
137 ** of a blob encoding of the complete index key as is found in
138 ** sqlite_stat4.sample. The nEq, nLt, and nDLt entries of sqlite_stat3
139 ** all contain just a single integer which is the same as the first
140 ** integer in the equivalent columns in sqlite_stat4.
142 #ifndef SQLITE_OMIT_ANALYZE
143 #include "sqliteInt.h"
145 #if defined(SQLITE_ENABLE_STAT4)
149 # undef SQLITE_STAT4_SAMPLES
150 # define SQLITE_STAT4_SAMPLES 1
154 ** This routine generates code that opens the sqlite_statN tables.
155 ** The sqlite_stat1 table is always relevant. sqlite_stat2 is now
156 ** obsolete. sqlite_stat3 and sqlite_stat4 are only opened when
157 ** appropriate compile-time options are provided.
159 ** If the sqlite_statN tables do not previously exist, it is created.
161 ** Argument zWhere may be a pointer to a buffer containing a table name,
162 ** or it may be a NULL pointer. If it is not NULL, then all entries in
163 ** the sqlite_statN tables associated with the named table are deleted.
164 ** If zWhere==0, then code is generated to delete all stat table entries.
166 static void openStatTable(
167 Parse
*pParse
, /* Parsing context */
168 int iDb
, /* The database we are looking in */
169 int iStatCur
, /* Open the sqlite_stat1 table on this cursor */
170 const char *zWhere
, /* Delete entries for this table or index */
171 const char *zWhereType
/* Either "tbl" or "idx" */
173 static const struct {
177 { "sqlite_stat1", "tbl,idx,stat" },
178 #if defined(SQLITE_ENABLE_STAT4)
179 { "sqlite_stat4", "tbl,idx,neq,nlt,ndlt,sample" },
181 { "sqlite_stat4", 0 },
183 { "sqlite_stat3", 0 },
186 sqlite3
*db
= pParse
->db
;
188 Vdbe
*v
= sqlite3GetVdbe(pParse
);
189 u32 aRoot
[ArraySize(aTable
)];
190 u8 aCreateTbl
[ArraySize(aTable
)];
191 #ifdef SQLITE_ENABLE_STAT4
192 const int nToOpen
= OptimizationEnabled(db
,SQLITE_Stat4
) ? 2 : 1;
194 const int nToOpen
= 1;
198 assert( sqlite3BtreeHoldsAllMutexes(db
) );
199 assert( sqlite3VdbeDb(v
)==db
);
202 /* Create new statistic tables if they do not exist, or clear them
203 ** if they do already exist.
205 for(i
=0; i
<ArraySize(aTable
); i
++){
206 const char *zTab
= aTable
[i
].zName
;
209 if( (pStat
= sqlite3FindTable(db
, zTab
, pDb
->zDbSName
))==0 ){
211 /* The sqlite_statN table does not exist. Create it. Note that a
212 ** side-effect of the CREATE TABLE statement is to leave the rootpage
213 ** of the new table in register pParse->regRoot. This is important
214 ** because the OpenWrite opcode below will be needing it. */
215 sqlite3NestedParse(pParse
,
216 "CREATE TABLE %Q.%s(%s)", pDb
->zDbSName
, zTab
, aTable
[i
].zCols
218 aRoot
[i
] = (u32
)pParse
->regRoot
;
219 aCreateTbl
[i
] = OPFLAG_P2ISREG
;
222 /* The table already exists. If zWhere is not NULL, delete all entries
223 ** associated with the table zWhere. If zWhere is NULL, delete the
224 ** entire contents of the table. */
225 aRoot
[i
] = pStat
->tnum
;
226 sqlite3TableLock(pParse
, iDb
, aRoot
[i
], 1, zTab
);
228 sqlite3NestedParse(pParse
,
229 "DELETE FROM %Q.%s WHERE %s=%Q",
230 pDb
->zDbSName
, zTab
, zWhereType
, zWhere
232 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
233 }else if( db
->xPreUpdateCallback
){
234 sqlite3NestedParse(pParse
, "DELETE FROM %Q.%s", pDb
->zDbSName
, zTab
);
237 /* The sqlite_stat[134] table already exists. Delete all rows. */
238 sqlite3VdbeAddOp2(v
, OP_Clear
, (int)aRoot
[i
], iDb
);
243 /* Open the sqlite_stat[134] tables for writing. */
244 for(i
=0; i
<nToOpen
; i
++){
245 assert( i
<ArraySize(aTable
) );
246 sqlite3VdbeAddOp4Int(v
, OP_OpenWrite
, iStatCur
+i
, (int)aRoot
[i
], iDb
, 3);
247 sqlite3VdbeChangeP5(v
, aCreateTbl
[i
]);
248 VdbeComment((v
, aTable
[i
].zName
));
253 ** Recommended number of samples for sqlite_stat4
255 #ifndef SQLITE_STAT4_SAMPLES
256 # define SQLITE_STAT4_SAMPLES 24
260 ** Three SQL functions - stat_init(), stat_push(), and stat_get() -
261 ** share an instance of the following structure to hold their state
264 typedef struct StatAccum StatAccum
;
265 typedef struct StatSample StatSample
;
267 tRowcnt
*anEq
; /* sqlite_stat4.nEq */
268 tRowcnt
*anDLt
; /* sqlite_stat4.nDLt */
269 #ifdef SQLITE_ENABLE_STAT4
270 tRowcnt
*anLt
; /* sqlite_stat4.nLt */
272 i64 iRowid
; /* Rowid in main table of the key */
273 u8
*aRowid
; /* Key for WITHOUT ROWID tables */
275 u32 nRowid
; /* Sizeof aRowid[] */
276 u8 isPSample
; /* True if a periodic sample */
277 int iCol
; /* If !isPSample, the reason for inclusion */
278 u32 iHash
; /* Tiebreaker hash */
282 sqlite3
*db
; /* Database connection, for malloc() */
283 tRowcnt nEst
; /* Estimated number of rows */
284 tRowcnt nRow
; /* Number of rows visited so far */
285 int nLimit
; /* Analysis row-scan limit */
286 int nCol
; /* Number of columns in index + pk/rowid */
287 int nKeyCol
; /* Number of index columns w/o the pk/rowid */
288 u8 nSkipAhead
; /* Number of times of skip-ahead */
289 StatSample current
; /* Current row as a StatSample */
290 #ifdef SQLITE_ENABLE_STAT4
291 tRowcnt nPSample
; /* How often to do a periodic sample */
292 int mxSample
; /* Maximum number of samples to accumulate */
293 u32 iPrn
; /* Pseudo-random number used for sampling */
294 StatSample
*aBest
; /* Array of nCol best samples */
295 int iMin
; /* Index in a[] of entry with minimum score */
296 int nSample
; /* Current number of samples */
297 int nMaxEqZero
; /* Max leading 0 in anEq[] for any a[] entry */
298 int iGet
; /* Index of current sample accessed by stat_get() */
299 StatSample
*a
; /* Array of mxSample StatSample objects */
303 /* Reclaim memory used by a StatSample
305 #ifdef SQLITE_ENABLE_STAT4
306 static void sampleClear(sqlite3
*db
, StatSample
*p
){
309 sqlite3DbFree(db
, p
->u
.aRowid
);
315 /* Initialize the BLOB value of a ROWID
317 #ifdef SQLITE_ENABLE_STAT4
318 static void sampleSetRowid(sqlite3
*db
, StatSample
*p
, int n
, const u8
*pData
){
320 if( p
->nRowid
) sqlite3DbFree(db
, p
->u
.aRowid
);
321 p
->u
.aRowid
= sqlite3DbMallocRawNN(db
, n
);
324 memcpy(p
->u
.aRowid
, pData
, n
);
331 /* Initialize the INTEGER value of a ROWID.
333 #ifdef SQLITE_ENABLE_STAT4
334 static void sampleSetRowidInt64(sqlite3
*db
, StatSample
*p
, i64 iRowid
){
336 if( p
->nRowid
) sqlite3DbFree(db
, p
->u
.aRowid
);
338 p
->u
.iRowid
= iRowid
;
344 ** Copy the contents of object (*pFrom) into (*pTo).
346 #ifdef SQLITE_ENABLE_STAT4
347 static void sampleCopy(StatAccum
*p
, StatSample
*pTo
, StatSample
*pFrom
){
348 pTo
->isPSample
= pFrom
->isPSample
;
349 pTo
->iCol
= pFrom
->iCol
;
350 pTo
->iHash
= pFrom
->iHash
;
351 memcpy(pTo
->anEq
, pFrom
->anEq
, sizeof(tRowcnt
)*p
->nCol
);
352 memcpy(pTo
->anLt
, pFrom
->anLt
, sizeof(tRowcnt
)*p
->nCol
);
353 memcpy(pTo
->anDLt
, pFrom
->anDLt
, sizeof(tRowcnt
)*p
->nCol
);
355 sampleSetRowid(p
->db
, pTo
, pFrom
->nRowid
, pFrom
->u
.aRowid
);
357 sampleSetRowidInt64(p
->db
, pTo
, pFrom
->u
.iRowid
);
363 ** Reclaim all memory of a StatAccum structure.
365 static void statAccumDestructor(void *pOld
){
366 StatAccum
*p
= (StatAccum
*)pOld
;
367 #ifdef SQLITE_ENABLE_STAT4
370 for(i
=0; i
<p
->nCol
; i
++) sampleClear(p
->db
, p
->aBest
+i
);
371 for(i
=0; i
<p
->mxSample
; i
++) sampleClear(p
->db
, p
->a
+i
);
372 sampleClear(p
->db
, &p
->current
);
375 sqlite3DbFree(p
->db
, p
);
379 ** Implementation of the stat_init(N,K,C,L) SQL function. The four parameters
381 ** N: The number of columns in the index including the rowid/pk (note 1)
382 ** K: The number of columns in the index excluding the rowid/pk.
383 ** C: Estimated number of rows in the index
384 ** L: A limit on the number of rows to scan, or 0 for no-limit
386 ** Note 1: In the special case of the covering index that implements a
387 ** WITHOUT ROWID table, N is the number of PRIMARY KEY columns, not the
388 ** total number of columns in the table.
390 ** For indexes on ordinary rowid tables, N==K+1. But for indexes on
391 ** WITHOUT ROWID tables, N=K+P where P is the number of columns in the
392 ** PRIMARY KEY of the table. The covering index that implements the
393 ** original WITHOUT ROWID table as N==K as a special case.
395 ** This routine allocates the StatAccum object in heap memory. The return
396 ** value is a pointer to the StatAccum object. The datatype of the
397 ** return value is BLOB, but it is really just a pointer to the StatAccum
400 static void statInit(
401 sqlite3_context
*context
,
406 int nCol
; /* Number of columns in index being sampled */
407 int nKeyCol
; /* Number of key columns */
408 int nColUp
; /* nCol rounded up for alignment */
409 int n
; /* Bytes of space to allocate */
410 sqlite3
*db
= sqlite3_context_db_handle(context
); /* Database connection */
411 #ifdef SQLITE_ENABLE_STAT4
412 /* Maximum number of samples. 0 if STAT4 data is not collected */
413 int mxSample
= OptimizationEnabled(db
,SQLITE_Stat4
) ?SQLITE_STAT4_SAMPLES
:0;
416 /* Decode the three function arguments */
417 UNUSED_PARAMETER(argc
);
418 nCol
= sqlite3_value_int(argv
[0]);
420 nColUp
= sizeof(tRowcnt
)<8 ? (nCol
+1)&~1 : nCol
;
421 nKeyCol
= sqlite3_value_int(argv
[1]);
422 assert( nKeyCol
<=nCol
);
425 /* Allocate the space required for the StatAccum object */
427 + sizeof(tRowcnt
)*nColUp
/* StatAccum.anEq */
428 + sizeof(tRowcnt
)*nColUp
; /* StatAccum.anDLt */
429 #ifdef SQLITE_ENABLE_STAT4
431 n
+= sizeof(tRowcnt
)*nColUp
/* StatAccum.anLt */
432 + sizeof(StatSample
)*(nCol
+mxSample
) /* StatAccum.aBest[], a[] */
433 + sizeof(tRowcnt
)*3*nColUp
*(nCol
+mxSample
);
436 p
= sqlite3DbMallocZero(db
, n
);
438 sqlite3_result_error_nomem(context
);
443 p
->nEst
= sqlite3_value_int64(argv
[2]);
445 p
->nLimit
= sqlite3_value_int64(argv
[3]);
447 p
->nKeyCol
= nKeyCol
;
449 p
->current
.anDLt
= (tRowcnt
*)&p
[1];
450 p
->current
.anEq
= &p
->current
.anDLt
[nColUp
];
452 #ifdef SQLITE_ENABLE_STAT4
453 p
->mxSample
= p
->nLimit
==0 ? mxSample
: 0;
455 u8
*pSpace
; /* Allocated space not yet assigned */
456 int i
; /* Used to iterate through p->aSample[] */
459 p
->nPSample
= (tRowcnt
)(p
->nEst
/(mxSample
/3+1) + 1);
460 p
->current
.anLt
= &p
->current
.anEq
[nColUp
];
461 p
->iPrn
= 0x689e962d*(u32
)nCol
^ 0xd0944565*(u32
)sqlite3_value_int(argv
[2]);
463 /* Set up the StatAccum.a[] and aBest[] arrays */
464 p
->a
= (struct StatSample
*)&p
->current
.anLt
[nColUp
];
465 p
->aBest
= &p
->a
[mxSample
];
466 pSpace
= (u8
*)(&p
->a
[mxSample
+nCol
]);
467 for(i
=0; i
<(mxSample
+nCol
); i
++){
468 p
->a
[i
].anEq
= (tRowcnt
*)pSpace
; pSpace
+= (sizeof(tRowcnt
) * nColUp
);
469 p
->a
[i
].anLt
= (tRowcnt
*)pSpace
; pSpace
+= (sizeof(tRowcnt
) * nColUp
);
470 p
->a
[i
].anDLt
= (tRowcnt
*)pSpace
; pSpace
+= (sizeof(tRowcnt
) * nColUp
);
472 assert( (pSpace
- (u8
*)p
)==n
);
474 for(i
=0; i
<nCol
; i
++){
475 p
->aBest
[i
].iCol
= i
;
480 /* Return a pointer to the allocated object to the caller. Note that
481 ** only the pointer (the 2nd parameter) matters. The size of the object
482 ** (given by the 3rd parameter) is never used and can be any positive
484 sqlite3_result_blob(context
, p
, sizeof(*p
), statAccumDestructor
);
486 static const FuncDef statInitFuncdef
= {
488 SQLITE_UTF8
, /* funcFlags */
491 statInit
, /* xSFunc */
493 0, 0, /* xValue, xInverse */
494 "stat_init", /* zName */
498 #ifdef SQLITE_ENABLE_STAT4
500 ** pNew and pOld are both candidate non-periodic samples selected for
501 ** the same column (pNew->iCol==pOld->iCol). Ignoring this column and
502 ** considering only any trailing columns and the sample hash value, this
503 ** function returns true if sample pNew is to be preferred over pOld.
504 ** In other words, if we assume that the cardinalities of the selected
505 ** column for pNew and pOld are equal, is pNew to be preferred over pOld.
507 ** This function assumes that for each argument sample, the contents of
508 ** the anEq[] array from pSample->anEq[pSample->iCol+1] onwards are valid.
510 static int sampleIsBetterPost(
515 int nCol
= pAccum
->nCol
;
517 assert( pNew
->iCol
==pOld
->iCol
);
518 for(i
=pNew
->iCol
+1; i
<nCol
; i
++){
519 if( pNew
->anEq
[i
]>pOld
->anEq
[i
] ) return 1;
520 if( pNew
->anEq
[i
]<pOld
->anEq
[i
] ) return 0;
522 if( pNew
->iHash
>pOld
->iHash
) return 1;
527 #ifdef SQLITE_ENABLE_STAT4
529 ** Return true if pNew is to be preferred over pOld.
531 ** This function assumes that for each argument sample, the contents of
532 ** the anEq[] array from pSample->anEq[pSample->iCol] onwards are valid.
534 static int sampleIsBetter(
539 tRowcnt nEqNew
= pNew
->anEq
[pNew
->iCol
];
540 tRowcnt nEqOld
= pOld
->anEq
[pOld
->iCol
];
542 assert( pOld
->isPSample
==0 && pNew
->isPSample
==0 );
543 assert( IsStat4
|| (pNew
->iCol
==0 && pOld
->iCol
==0) );
545 if( (nEqNew
>nEqOld
) ) return 1;
546 if( nEqNew
==nEqOld
){
547 if( pNew
->iCol
<pOld
->iCol
) return 1;
548 return (pNew
->iCol
==pOld
->iCol
&& sampleIsBetterPost(pAccum
, pNew
, pOld
));
554 ** Copy the contents of sample *pNew into the p->a[] array. If necessary,
555 ** remove the least desirable sample from p->a[] to make room.
557 static void sampleInsert(StatAccum
*p
, StatSample
*pNew
, int nEqZero
){
558 StatSample
*pSample
= 0;
561 assert( IsStat4
|| nEqZero
==0 );
563 /* StatAccum.nMaxEqZero is set to the maximum number of leading 0
564 ** values in the anEq[] array of any sample in StatAccum.a[]. In
565 ** other words, if nMaxEqZero is n, then it is guaranteed that there
566 ** are no samples with StatSample.anEq[m]==0 for (m>=n). */
567 if( nEqZero
>p
->nMaxEqZero
){
568 p
->nMaxEqZero
= nEqZero
;
570 if( pNew
->isPSample
==0 ){
571 StatSample
*pUpgrade
= 0;
572 assert( pNew
->anEq
[pNew
->iCol
]>0 );
574 /* This sample is being added because the prefix that ends in column
575 ** iCol occurs many times in the table. However, if we have already
576 ** added a sample that shares this prefix, there is no need to add
577 ** this one. Instead, upgrade the priority of the highest priority
578 ** existing sample that shares this prefix. */
579 for(i
=p
->nSample
-1; i
>=0; i
--){
580 StatSample
*pOld
= &p
->a
[i
];
581 if( pOld
->anEq
[pNew
->iCol
]==0 ){
582 if( pOld
->isPSample
) return;
583 assert( pOld
->iCol
>pNew
->iCol
);
584 assert( sampleIsBetter(p
, pNew
, pOld
) );
585 if( pUpgrade
==0 || sampleIsBetter(p
, pOld
, pUpgrade
) ){
591 pUpgrade
->iCol
= pNew
->iCol
;
592 pUpgrade
->anEq
[pUpgrade
->iCol
] = pNew
->anEq
[pUpgrade
->iCol
];
597 /* If necessary, remove sample iMin to make room for the new sample. */
598 if( p
->nSample
>=p
->mxSample
){
599 StatSample
*pMin
= &p
->a
[p
->iMin
];
600 tRowcnt
*anEq
= pMin
->anEq
;
601 tRowcnt
*anLt
= pMin
->anLt
;
602 tRowcnt
*anDLt
= pMin
->anDLt
;
603 sampleClear(p
->db
, pMin
);
604 memmove(pMin
, &pMin
[1], sizeof(p
->a
[0])*(p
->nSample
-p
->iMin
-1));
605 pSample
= &p
->a
[p
->nSample
-1];
607 pSample
->anEq
= anEq
;
608 pSample
->anDLt
= anDLt
;
609 pSample
->anLt
= anLt
;
610 p
->nSample
= p
->mxSample
-1;
613 /* The "rows less-than" for the rowid column must be greater than that
614 ** for the last sample in the p->a[] array. Otherwise, the samples would
615 ** be out of order. */
616 assert( p
->nSample
==0
617 || pNew
->anLt
[p
->nCol
-1] > p
->a
[p
->nSample
-1].anLt
[p
->nCol
-1] );
619 /* Insert the new sample */
620 pSample
= &p
->a
[p
->nSample
];
621 sampleCopy(p
, pSample
, pNew
);
624 /* Zero the first nEqZero entries in the anEq[] array. */
625 memset(pSample
->anEq
, 0, sizeof(tRowcnt
)*nEqZero
);
628 if( p
->nSample
>=p
->mxSample
){
630 for(i
=0; i
<p
->mxSample
; i
++){
631 if( p
->a
[i
].isPSample
) continue;
632 if( iMin
<0 || sampleIsBetter(p
, &p
->a
[iMin
], &p
->a
[i
]) ){
640 #endif /* SQLITE_ENABLE_STAT4 */
642 #ifdef SQLITE_ENABLE_STAT4
644 ** Field iChng of the index being scanned has changed. So at this point
645 ** p->current contains a sample that reflects the previous row of the
646 ** index. The value of anEq[iChng] and subsequent anEq[] elements are
647 ** correct at this point.
649 static void samplePushPrevious(StatAccum
*p
, int iChng
){
652 /* Check if any samples from the aBest[] array should be pushed
653 ** into IndexSample.a[] at this point. */
654 for(i
=(p
->nCol
-2); i
>=iChng
; i
--){
655 StatSample
*pBest
= &p
->aBest
[i
];
656 pBest
->anEq
[i
] = p
->current
.anEq
[i
];
657 if( p
->nSample
<p
->mxSample
|| sampleIsBetter(p
, pBest
, &p
->a
[p
->iMin
]) ){
658 sampleInsert(p
, pBest
, i
);
662 /* Check that no sample contains an anEq[] entry with an index of
663 ** p->nMaxEqZero or greater set to zero. */
664 for(i
=p
->nSample
-1; i
>=0; i
--){
666 for(j
=p
->nMaxEqZero
; j
<p
->nCol
; j
++) assert( p
->a
[i
].anEq
[j
]>0 );
669 /* Update the anEq[] fields of any samples already collected. */
670 if( iChng
<p
->nMaxEqZero
){
671 for(i
=p
->nSample
-1; i
>=0; i
--){
673 for(j
=iChng
; j
<p
->nCol
; j
++){
674 if( p
->a
[i
].anEq
[j
]==0 ) p
->a
[i
].anEq
[j
] = p
->current
.anEq
[j
];
677 p
->nMaxEqZero
= iChng
;
680 #endif /* SQLITE_ENABLE_STAT4 */
683 ** Implementation of the stat_push SQL function: stat_push(P,C,R)
686 ** P Pointer to the StatAccum object created by stat_init()
687 ** C Index of left-most column to differ from previous row
688 ** R Rowid for the current row. Might be a key record for
689 ** WITHOUT ROWID tables.
691 ** The purpose of this routine is to collect statistical data and/or
692 ** samples from the index being analyzed into the StatAccum object.
693 ** The stat_get() SQL function will be used afterwards to
694 ** retrieve the information gathered.
696 ** This SQL function usually returns NULL, but might return an integer
697 ** if it wants the byte-code to do special processing.
699 ** The R parameter is only used for STAT4
701 static void statPush(
702 sqlite3_context
*context
,
708 /* The three function arguments */
709 StatAccum
*p
= (StatAccum
*)sqlite3_value_blob(argv
[0]);
710 int iChng
= sqlite3_value_int(argv
[1]);
712 UNUSED_PARAMETER( argc
);
713 UNUSED_PARAMETER( context
);
715 assert( iChng
<p
->nCol
);
718 /* This is the first call to this function. Do initialization. */
719 for(i
=0; i
<p
->nCol
; i
++) p
->current
.anEq
[i
] = 1;
721 /* Second and subsequent calls get processed here */
722 #ifdef SQLITE_ENABLE_STAT4
723 if( p
->mxSample
) samplePushPrevious(p
, iChng
);
726 /* Update anDLt[], anLt[] and anEq[] to reflect the values that apply
727 ** to the current row of the index. */
728 for(i
=0; i
<iChng
; i
++){
729 p
->current
.anEq
[i
]++;
731 for(i
=iChng
; i
<p
->nCol
; i
++){
732 p
->current
.anDLt
[i
]++;
733 #ifdef SQLITE_ENABLE_STAT4
734 if( p
->mxSample
) p
->current
.anLt
[i
] += p
->current
.anEq
[i
];
736 p
->current
.anEq
[i
] = 1;
741 #ifdef SQLITE_ENABLE_STAT4
744 if( sqlite3_value_type(argv
[2])==SQLITE_INTEGER
){
745 sampleSetRowidInt64(p
->db
, &p
->current
, sqlite3_value_int64(argv
[2]));
747 sampleSetRowid(p
->db
, &p
->current
, sqlite3_value_bytes(argv
[2]),
748 sqlite3_value_blob(argv
[2]));
750 p
->current
.iHash
= p
->iPrn
= p
->iPrn
*1103515245 + 12345;
752 nLt
= p
->current
.anLt
[p
->nCol
-1];
753 /* Check if this is to be a periodic sample. If so, add it. */
754 if( (nLt
/p
->nPSample
)!=(nLt
+1)/p
->nPSample
){
755 p
->current
.isPSample
= 1;
757 sampleInsert(p
, &p
->current
, p
->nCol
-1);
758 p
->current
.isPSample
= 0;
761 /* Update the aBest[] array. */
762 for(i
=0; i
<(p
->nCol
-1); i
++){
764 if( i
>=iChng
|| sampleIsBetterPost(p
, &p
->current
, &p
->aBest
[i
]) ){
765 sampleCopy(p
, &p
->aBest
[i
], &p
->current
);
770 if( p
->nLimit
&& p
->nRow
>(tRowcnt
)p
->nLimit
*(p
->nSkipAhead
+1) ){
772 sqlite3_result_int(context
, p
->current
.anDLt
[0]>0);
776 static const FuncDef statPushFuncdef
= {
777 2+IsStat4
, /* nArg */
778 SQLITE_UTF8
, /* funcFlags */
781 statPush
, /* xSFunc */
783 0, 0, /* xValue, xInverse */
784 "stat_push", /* zName */
788 #define STAT_GET_STAT1 0 /* "stat" column of stat1 table */
789 #define STAT_GET_ROWID 1 /* "rowid" column of stat[34] entry */
790 #define STAT_GET_NEQ 2 /* "neq" column of stat[34] entry */
791 #define STAT_GET_NLT 3 /* "nlt" column of stat[34] entry */
792 #define STAT_GET_NDLT 4 /* "ndlt" column of stat[34] entry */
795 ** Implementation of the stat_get(P,J) SQL function. This routine is
796 ** used to query statistical information that has been gathered into
797 ** the StatAccum object by prior calls to stat_push(). The P parameter
798 ** has type BLOB but it is really just a pointer to the StatAccum object.
799 ** The content to returned is determined by the parameter J
800 ** which is one of the STAT_GET_xxxx values defined above.
802 ** The stat_get(P,J) function is not available to generic SQL. It is
803 ** inserted as part of a manually constructed bytecode program. (See
804 ** the callStatGet() routine below.) It is guaranteed that the P
805 ** parameter will always be a pointer to a StatAccum object, never a
808 ** If STAT4 is not enabled, then J is always
809 ** STAT_GET_STAT1 and is hence omitted and this routine becomes
810 ** a one-parameter function, stat_get(P), that always returns the
811 ** stat1 table entry information.
814 sqlite3_context
*context
,
818 StatAccum
*p
= (StatAccum
*)sqlite3_value_blob(argv
[0]);
819 #ifdef SQLITE_ENABLE_STAT4
820 /* STAT4 has a parameter on this routine. */
821 int eCall
= sqlite3_value_int(argv
[1]);
823 assert( eCall
==STAT_GET_STAT1
|| eCall
==STAT_GET_NEQ
824 || eCall
==STAT_GET_ROWID
|| eCall
==STAT_GET_NLT
825 || eCall
==STAT_GET_NDLT
827 assert( eCall
==STAT_GET_STAT1
|| p
->mxSample
);
828 if( eCall
==STAT_GET_STAT1
)
833 /* Return the value to store in the "stat" column of the sqlite_stat1
834 ** table for this index.
836 ** The value is a string composed of a list of integers describing
837 ** the index. The first integer in the list is the total number of
838 ** entries in the index. There is one additional integer in the list
839 ** for each indexed column. This additional integer is an estimate of
840 ** the number of rows matched by a equality query on the index using
841 ** a key with the corresponding number of fields. In other words,
842 ** if the index is on columns (a,b) and the sqlite_stat1 value is
843 ** "100 10 2", then SQLite estimates that:
845 ** * the index contains 100 rows,
846 ** * "WHERE a=?" matches 10 rows, and
847 ** * "WHERE a=? AND b=?" matches 2 rows.
849 ** If D is the count of distinct values and K is the total number of
850 ** rows, then each estimate is usually computed as:
854 ** In other words, I is K/D rounded up to the next whole integer.
855 ** However, if I is between 1.0 and 1.1 (in other words if I is
856 ** close to 1.0 but just a little larger) then do not round up but
857 ** instead keep the I value at 1.0.
859 sqlite3_str sStat
; /* Text of the constructed "stat" line */
860 int i
; /* Loop counter */
862 sqlite3StrAccumInit(&sStat
, 0, 0, 0, (p
->nKeyCol
+1)*100);
863 sqlite3_str_appendf(&sStat
, "%llu",
864 p
->nSkipAhead
? (u64
)p
->nEst
: (u64
)p
->nRow
);
865 for(i
=0; i
<p
->nKeyCol
; i
++){
866 u64 nDistinct
= p
->current
.anDLt
[i
] + 1;
867 u64 iVal
= (p
->nRow
+ nDistinct
- 1) / nDistinct
;
868 if( iVal
==2 && p
->nRow
*10 <= nDistinct
*11 ) iVal
= 1;
869 sqlite3_str_appendf(&sStat
, " %llu", iVal
);
870 assert( p
->current
.anEq
[i
] );
872 sqlite3ResultStrAccum(context
, &sStat
);
874 #ifdef SQLITE_ENABLE_STAT4
875 else if( eCall
==STAT_GET_ROWID
){
877 samplePushPrevious(p
, 0);
880 if( p
->iGet
<p
->nSample
){
881 StatSample
*pS
= p
->a
+ p
->iGet
;
883 sqlite3_result_int64(context
, pS
->u
.iRowid
);
885 sqlite3_result_blob(context
, pS
->u
.aRowid
, pS
->nRowid
,
894 assert( p
->iGet
<p
->nSample
);
896 case STAT_GET_NEQ
: aCnt
= p
->a
[p
->iGet
].anEq
; break;
897 case STAT_GET_NLT
: aCnt
= p
->a
[p
->iGet
].anLt
; break;
899 aCnt
= p
->a
[p
->iGet
].anDLt
;
904 sqlite3StrAccumInit(&sStat
, 0, 0, 0, p
->nCol
*100);
905 for(i
=0; i
<p
->nCol
; i
++){
906 sqlite3_str_appendf(&sStat
, "%llu ", (u64
)aCnt
[i
]);
908 if( sStat
.nChar
) sStat
.nChar
--;
909 sqlite3ResultStrAccum(context
, &sStat
);
911 #endif /* SQLITE_ENABLE_STAT4 */
913 UNUSED_PARAMETER( argc
);
916 static const FuncDef statGetFuncdef
= {
917 1+IsStat4
, /* nArg */
918 SQLITE_UTF8
, /* funcFlags */
921 statGet
, /* xSFunc */
923 0, 0, /* xValue, xInverse */
924 "stat_get", /* zName */
928 static void callStatGet(Parse
*pParse
, int regStat
, int iParam
, int regOut
){
929 #ifdef SQLITE_ENABLE_STAT4
930 sqlite3VdbeAddOp2(pParse
->pVdbe
, OP_Integer
, iParam
, regStat
+1);
932 assert( iParam
==STAT_GET_STAT1
);
934 UNUSED_PARAMETER( iParam
);
936 assert( regOut
!=regStat
&& regOut
!=regStat
+1 );
937 sqlite3VdbeAddFunctionCall(pParse
, 0, regStat
, regOut
, 1+IsStat4
,
941 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
942 /* Add a comment to the most recent VDBE opcode that is the name
943 ** of the k-th column of the pIdx index.
945 static void analyzeVdbeCommentIndexWithColumnName(
946 Vdbe
*v
, /* Prepared statement under construction */
947 Index
*pIdx
, /* Index whose column is being loaded */
948 int k
/* Which column index */
950 int i
; /* Index of column in the table */
951 assert( k
>=0 && k
<pIdx
->nColumn
);
952 i
= pIdx
->aiColumn
[k
];
953 if( NEVER(i
==XN_ROWID
) ){
954 VdbeComment((v
,"%s.rowid",pIdx
->zName
));
955 }else if( i
==XN_EXPR
){
956 assert( pIdx
->bHasExpr
);
957 VdbeComment((v
,"%s.expr(%d)",pIdx
->zName
, k
));
959 VdbeComment((v
,"%s.%s", pIdx
->zName
, pIdx
->pTable
->aCol
[i
].zCnName
));
963 # define analyzeVdbeCommentIndexWithColumnName(a,b,c)
964 #endif /* SQLITE_DEBUG */
967 ** Generate code to do an analysis of all indices associated with
970 static void analyzeOneTable(
971 Parse
*pParse
, /* Parser context */
972 Table
*pTab
, /* Table whose indices are to be analyzed */
973 Index
*pOnlyIdx
, /* If not NULL, only analyze this one index */
974 int iStatCur
, /* Index of VdbeCursor that writes the sqlite_stat1 table */
975 int iMem
, /* Available memory locations begin here */
976 int iTab
/* Next available cursor */
978 sqlite3
*db
= pParse
->db
; /* Database handle */
979 Index
*pIdx
; /* An index to being analyzed */
980 int iIdxCur
; /* Cursor open on index being analyzed */
981 int iTabCur
; /* Table cursor */
982 Vdbe
*v
; /* The virtual machine being built up */
983 int i
; /* Loop counter */
984 int jZeroRows
= -1; /* Jump from here if number of rows is zero */
985 int iDb
; /* Index of database containing pTab */
986 u8 needTableCnt
= 1; /* True to count the table */
987 int regNewRowid
= iMem
++; /* Rowid for the inserted record */
988 int regStat
= iMem
++; /* Register to hold StatAccum object */
989 int regChng
= iMem
++; /* Index of changed index field */
990 int regRowid
= iMem
++; /* Rowid argument passed to stat_push() */
991 int regTemp
= iMem
++; /* Temporary use register */
992 int regTemp2
= iMem
++; /* Second temporary use register */
993 int regTabname
= iMem
++; /* Register containing table name */
994 int regIdxname
= iMem
++; /* Register containing index name */
995 int regStat1
= iMem
++; /* Value for the stat column of sqlite_stat1 */
996 int regPrev
= iMem
; /* MUST BE LAST (see below) */
997 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1001 pParse
->nMem
= MAX(pParse
->nMem
, iMem
);
1002 v
= sqlite3GetVdbe(pParse
);
1003 if( v
==0 || NEVER(pTab
==0) ){
1006 if( !IsOrdinaryTable(pTab
) ){
1007 /* Do not gather statistics on views or virtual tables */
1010 if( sqlite3_strlike("sqlite\\_%", pTab
->zName
, '\\')==0 ){
1011 /* Do not gather statistics on system tables */
1014 assert( sqlite3BtreeHoldsAllMutexes(db
) );
1015 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
1017 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
1018 #ifndef SQLITE_OMIT_AUTHORIZATION
1019 if( sqlite3AuthCheck(pParse
, SQLITE_ANALYZE
, pTab
->zName
, 0,
1020 db
->aDb
[iDb
].zDbSName
) ){
1025 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1026 if( db
->xPreUpdateCallback
){
1027 pStat1
= (Table
*)sqlite3DbMallocZero(db
, sizeof(Table
) + 13);
1028 if( pStat1
==0 ) return;
1029 pStat1
->zName
= (char*)&pStat1
[1];
1030 memcpy(pStat1
->zName
, "sqlite_stat1", 13);
1033 sqlite3VdbeAddOp4(pParse
->pVdbe
, OP_Noop
, 0, 0, 0,(char*)pStat1
,P4_DYNAMIC
);
1037 /* Establish a read-lock on the table at the shared-cache level.
1038 ** Open a read-only cursor on the table. Also allocate a cursor number
1039 ** to use for scanning indexes (iIdxCur). No index cursor is opened at
1040 ** this time though. */
1041 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
1044 pParse
->nTab
= MAX(pParse
->nTab
, iTab
);
1045 sqlite3OpenTable(pParse
, iTabCur
, iDb
, pTab
, OP_OpenRead
);
1046 sqlite3VdbeLoadString(v
, regTabname
, pTab
->zName
);
1048 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
1049 int nCol
; /* Number of columns in pIdx. "N" */
1050 int addrRewind
; /* Address of "OP_Rewind iIdxCur" */
1051 int addrNextRow
; /* Address of "next_row:" */
1052 const char *zIdxName
; /* Name of the index */
1053 int nColTest
; /* Number of columns to test for changes */
1055 if( pOnlyIdx
&& pOnlyIdx
!=pIdx
) continue;
1056 if( pIdx
->pPartIdxWhere
==0 ) needTableCnt
= 0;
1057 if( !HasRowid(pTab
) && IsPrimaryKeyIndex(pIdx
) ){
1058 nCol
= pIdx
->nKeyCol
;
1059 zIdxName
= pTab
->zName
;
1060 nColTest
= nCol
- 1;
1062 nCol
= pIdx
->nColumn
;
1063 zIdxName
= pIdx
->zName
;
1064 nColTest
= pIdx
->uniqNotNull
? pIdx
->nKeyCol
-1 : nCol
-1;
1067 /* Populate the register containing the index name. */
1068 sqlite3VdbeLoadString(v
, regIdxname
, zIdxName
);
1069 VdbeComment((v
, "Analysis for %s.%s", pTab
->zName
, zIdxName
));
1072 ** Pseudo-code for loop that calls stat_push():
1075 ** if eof(csr) goto end_of_scan;
1077 ** goto chng_addr_0;
1081 ** if( idx(0) != regPrev(0) ) goto chng_addr_0
1083 ** if( idx(1) != regPrev(1) ) goto chng_addr_1
1089 ** regPrev(0) = idx(0)
1091 ** regPrev(1) = idx(1)
1095 ** regRowid = idx(rowid)
1096 ** stat_push(P, regChng, regRowid)
1098 ** if !eof(csr) goto next_row;
1103 /* Make sure there are enough memory cells allocated to accommodate
1104 ** the regPrev array and a trailing rowid (the rowid slot is required
1105 ** when building a record to insert into the sample column of
1106 ** the sqlite_stat4 table. */
1107 pParse
->nMem
= MAX(pParse
->nMem
, regPrev
+nColTest
);
1109 /* Open a read-only cursor on the index being analyzed. */
1110 assert( iDb
==sqlite3SchemaToIndex(db
, pIdx
->pSchema
) );
1111 sqlite3VdbeAddOp3(v
, OP_OpenRead
, iIdxCur
, pIdx
->tnum
, iDb
);
1112 sqlite3VdbeSetP4KeyInfo(pParse
, pIdx
);
1113 VdbeComment((v
, "%s", pIdx
->zName
));
1115 /* Invoke the stat_init() function. The arguments are:
1117 ** (1) the number of columns in the index including the rowid
1118 ** (or for a WITHOUT ROWID table, the number of PK columns),
1119 ** (2) the number of columns in the key without the rowid/pk
1120 ** (3) estimated number of rows in the index,
1122 sqlite3VdbeAddOp2(v
, OP_Integer
, nCol
, regStat
+1);
1123 assert( regRowid
==regStat
+2 );
1124 sqlite3VdbeAddOp2(v
, OP_Integer
, pIdx
->nKeyCol
, regRowid
);
1125 #ifdef SQLITE_ENABLE_STAT4
1126 if( OptimizationEnabled(db
, SQLITE_Stat4
) ){
1127 sqlite3VdbeAddOp2(v
, OP_Count
, iIdxCur
, regTemp
);
1128 addrRewind
= sqlite3VdbeAddOp1(v
, OP_Rewind
, iIdxCur
);
1133 addrRewind
= sqlite3VdbeAddOp1(v
, OP_Rewind
, iIdxCur
);
1135 sqlite3VdbeAddOp3(v
, OP_Count
, iIdxCur
, regTemp
, 1);
1137 assert( regTemp2
==regStat
+4 );
1138 sqlite3VdbeAddOp2(v
, OP_Integer
, db
->nAnalysisLimit
, regTemp2
);
1139 sqlite3VdbeAddFunctionCall(pParse
, 0, regStat
+1, regStat
, 4,
1140 &statInitFuncdef
, 0);
1142 /* Implementation of the following:
1145 ** if eof(csr) goto end_of_scan;
1147 ** goto next_push_0;
1150 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regChng
);
1151 addrNextRow
= sqlite3VdbeCurrentAddr(v
);
1154 int endDistinctTest
= sqlite3VdbeMakeLabel(pParse
);
1155 int *aGotoChng
; /* Array of jump instruction addresses */
1156 aGotoChng
= sqlite3DbMallocRawNN(db
, sizeof(int)*nColTest
);
1157 if( aGotoChng
==0 ) continue;
1162 ** if( idx(0) != regPrev(0) ) goto chng_addr_0
1164 ** if( idx(1) != regPrev(1) ) goto chng_addr_1
1167 ** goto endDistinctTest
1169 sqlite3VdbeAddOp0(v
, OP_Goto
);
1170 addrNextRow
= sqlite3VdbeCurrentAddr(v
);
1171 if( nColTest
==1 && pIdx
->nKeyCol
==1 && IsUniqueIndex(pIdx
) ){
1172 /* For a single-column UNIQUE index, once we have found a non-NULL
1173 ** row, we know that all the rest will be distinct, so skip
1174 ** subsequent distinctness tests. */
1175 sqlite3VdbeAddOp2(v
, OP_NotNull
, regPrev
, endDistinctTest
);
1178 for(i
=0; i
<nColTest
; i
++){
1179 char *pColl
= (char*)sqlite3LocateCollSeq(pParse
, pIdx
->azColl
[i
]);
1180 sqlite3VdbeAddOp2(v
, OP_Integer
, i
, regChng
);
1181 sqlite3VdbeAddOp3(v
, OP_Column
, iIdxCur
, i
, regTemp
);
1182 analyzeVdbeCommentIndexWithColumnName(v
,pIdx
,i
);
1184 sqlite3VdbeAddOp4(v
, OP_Ne
, regTemp
, 0, regPrev
+i
, pColl
, P4_COLLSEQ
);
1185 sqlite3VdbeChangeP5(v
, SQLITE_NULLEQ
);
1188 sqlite3VdbeAddOp2(v
, OP_Integer
, nColTest
, regChng
);
1189 sqlite3VdbeGoto(v
, endDistinctTest
);
1194 ** regPrev(0) = idx(0)
1196 ** regPrev(1) = idx(1)
1199 sqlite3VdbeJumpHere(v
, addrNextRow
-1);
1200 for(i
=0; i
<nColTest
; i
++){
1201 sqlite3VdbeJumpHere(v
, aGotoChng
[i
]);
1202 sqlite3VdbeAddOp3(v
, OP_Column
, iIdxCur
, i
, regPrev
+i
);
1203 analyzeVdbeCommentIndexWithColumnName(v
,pIdx
,i
);
1205 sqlite3VdbeResolveLabel(v
, endDistinctTest
);
1206 sqlite3DbFree(db
, aGotoChng
);
1211 ** regRowid = idx(rowid) // STAT4 only
1212 ** stat_push(P, regChng, regRowid) // 3rd parameter STAT4 only
1214 ** if !eof(csr) goto next_row;
1216 #ifdef SQLITE_ENABLE_STAT4
1217 if( OptimizationEnabled(db
, SQLITE_Stat4
) ){
1218 assert( regRowid
==(regStat
+2) );
1219 if( HasRowid(pTab
) ){
1220 sqlite3VdbeAddOp2(v
, OP_IdxRowid
, iIdxCur
, regRowid
);
1222 Index
*pPk
= sqlite3PrimaryKeyIndex(pIdx
->pTable
);
1224 regKey
= sqlite3GetTempRange(pParse
, pPk
->nKeyCol
);
1225 for(j
=0; j
<pPk
->nKeyCol
; j
++){
1226 k
= sqlite3TableColumnToIndex(pIdx
, pPk
->aiColumn
[j
]);
1227 assert( k
>=0 && k
<pIdx
->nColumn
);
1228 sqlite3VdbeAddOp3(v
, OP_Column
, iIdxCur
, k
, regKey
+j
);
1229 analyzeVdbeCommentIndexWithColumnName(v
,pIdx
,k
);
1231 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regKey
, pPk
->nKeyCol
, regRowid
);
1232 sqlite3ReleaseTempRange(pParse
, regKey
, pPk
->nKeyCol
);
1236 assert( regChng
==(regStat
+1) );
1238 sqlite3VdbeAddFunctionCall(pParse
, 1, regStat
, regTemp
, 2+IsStat4
,
1239 &statPushFuncdef
, 0);
1240 if( db
->nAnalysisLimit
){
1242 j1
= sqlite3VdbeAddOp1(v
, OP_IsNull
, regTemp
); VdbeCoverage(v
);
1243 j2
= sqlite3VdbeAddOp1(v
, OP_If
, regTemp
); VdbeCoverage(v
);
1244 j3
= sqlite3VdbeAddOp4Int(v
, OP_SeekGT
, iIdxCur
, 0, regPrev
, 1);
1246 sqlite3VdbeJumpHere(v
, j1
);
1247 sqlite3VdbeAddOp2(v
, OP_Next
, iIdxCur
, addrNextRow
); VdbeCoverage(v
);
1248 sqlite3VdbeJumpHere(v
, j2
);
1249 sqlite3VdbeJumpHere(v
, j3
);
1251 sqlite3VdbeAddOp2(v
, OP_Next
, iIdxCur
, addrNextRow
); VdbeCoverage(v
);
1255 /* Add the entry to the stat1 table. */
1256 callStatGet(pParse
, regStat
, STAT_GET_STAT1
, regStat1
);
1257 assert( "BBB"[0]==SQLITE_AFF_TEXT
);
1258 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regTabname
, 3, regTemp
, "BBB", 0);
1259 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iStatCur
, regNewRowid
);
1260 sqlite3VdbeAddOp3(v
, OP_Insert
, iStatCur
, regTemp
, regNewRowid
);
1261 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1262 sqlite3VdbeChangeP4(v
, -1, (char*)pStat1
, P4_TABLE
);
1264 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1266 /* Add the entries to the stat4 table. */
1267 #ifdef SQLITE_ENABLE_STAT4
1268 if( OptimizationEnabled(db
, SQLITE_Stat4
) && db
->nAnalysisLimit
==0 ){
1269 int regEq
= regStat1
;
1270 int regLt
= regStat1
+1;
1271 int regDLt
= regStat1
+2;
1272 int regSample
= regStat1
+3;
1273 int regCol
= regStat1
+4;
1274 int regSampleRowid
= regCol
+ nCol
;
1277 u8 seekOp
= HasRowid(pTab
) ? OP_NotExists
: OP_NotFound
;
1279 pParse
->nMem
= MAX(pParse
->nMem
, regCol
+nCol
);
1281 addrNext
= sqlite3VdbeCurrentAddr(v
);
1282 callStatGet(pParse
, regStat
, STAT_GET_ROWID
, regSampleRowid
);
1283 addrIsNull
= sqlite3VdbeAddOp1(v
, OP_IsNull
, regSampleRowid
);
1285 callStatGet(pParse
, regStat
, STAT_GET_NEQ
, regEq
);
1286 callStatGet(pParse
, regStat
, STAT_GET_NLT
, regLt
);
1287 callStatGet(pParse
, regStat
, STAT_GET_NDLT
, regDLt
);
1288 sqlite3VdbeAddOp4Int(v
, seekOp
, iTabCur
, addrNext
, regSampleRowid
, 0);
1290 for(i
=0; i
<nCol
; i
++){
1291 sqlite3ExprCodeLoadIndexColumn(pParse
, pIdx
, iTabCur
, i
, regCol
+i
);
1293 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regCol
, nCol
, regSample
);
1294 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, regTabname
, 6, regTemp
);
1295 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iStatCur
+1, regNewRowid
);
1296 sqlite3VdbeAddOp3(v
, OP_Insert
, iStatCur
+1, regTemp
, regNewRowid
);
1297 sqlite3VdbeAddOp2(v
, OP_Goto
, 1, addrNext
); /* P1==1 for end-of-loop */
1298 sqlite3VdbeJumpHere(v
, addrIsNull
);
1300 #endif /* SQLITE_ENABLE_STAT4 */
1302 /* End of analysis */
1303 sqlite3VdbeJumpHere(v
, addrRewind
);
1307 /* Create a single sqlite_stat1 entry containing NULL as the index
1308 ** name and the row count as the content.
1310 if( pOnlyIdx
==0 && needTableCnt
){
1311 VdbeComment((v
, "%s", pTab
->zName
));
1312 sqlite3VdbeAddOp2(v
, OP_Count
, iTabCur
, regStat1
);
1313 jZeroRows
= sqlite3VdbeAddOp1(v
, OP_IfNot
, regStat1
); VdbeCoverage(v
);
1314 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regIdxname
);
1315 assert( "BBB"[0]==SQLITE_AFF_TEXT
);
1316 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, regTabname
, 3, regTemp
, "BBB", 0);
1317 sqlite3VdbeAddOp2(v
, OP_NewRowid
, iStatCur
, regNewRowid
);
1318 sqlite3VdbeAddOp3(v
, OP_Insert
, iStatCur
, regTemp
, regNewRowid
);
1319 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1320 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
1321 sqlite3VdbeChangeP4(v
, -1, (char*)pStat1
, P4_TABLE
);
1323 sqlite3VdbeJumpHere(v
, jZeroRows
);
1329 ** Generate code that will cause the most recent index analysis to
1330 ** be loaded into internal hash tables where is can be used.
1332 static void loadAnalysis(Parse
*pParse
, int iDb
){
1333 Vdbe
*v
= sqlite3GetVdbe(pParse
);
1335 sqlite3VdbeAddOp1(v
, OP_LoadAnalysis
, iDb
);
1340 ** Generate code that will do an analysis of an entire database
1342 static void analyzeDatabase(Parse
*pParse
, int iDb
){
1343 sqlite3
*db
= pParse
->db
;
1344 Schema
*pSchema
= db
->aDb
[iDb
].pSchema
; /* Schema of database iDb */
1350 sqlite3BeginWriteOperation(pParse
, 0, iDb
);
1351 iStatCur
= pParse
->nTab
;
1353 openStatTable(pParse
, iDb
, iStatCur
, 0, 0);
1354 iMem
= pParse
->nMem
+1;
1355 iTab
= pParse
->nTab
;
1356 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
1357 for(k
=sqliteHashFirst(&pSchema
->tblHash
); k
; k
=sqliteHashNext(k
)){
1358 Table
*pTab
= (Table
*)sqliteHashData(k
);
1359 analyzeOneTable(pParse
, pTab
, 0, iStatCur
, iMem
, iTab
);
1361 loadAnalysis(pParse
, iDb
);
1365 ** Generate code that will do an analysis of a single table in
1366 ** a database. If pOnlyIdx is not NULL then it is a single index
1367 ** in pTab that should be analyzed.
1369 static void analyzeTable(Parse
*pParse
, Table
*pTab
, Index
*pOnlyIdx
){
1374 assert( sqlite3BtreeHoldsAllMutexes(pParse
->db
) );
1375 iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
1376 sqlite3BeginWriteOperation(pParse
, 0, iDb
);
1377 iStatCur
= pParse
->nTab
;
1380 openStatTable(pParse
, iDb
, iStatCur
, pOnlyIdx
->zName
, "idx");
1382 openStatTable(pParse
, iDb
, iStatCur
, pTab
->zName
, "tbl");
1384 analyzeOneTable(pParse
, pTab
, pOnlyIdx
, iStatCur
,pParse
->nMem
+1,pParse
->nTab
);
1385 loadAnalysis(pParse
, iDb
);
1389 ** Generate code for the ANALYZE command. The parser calls this routine
1390 ** when it recognizes an ANALYZE command.
1393 ** ANALYZE <database> -- 2
1394 ** ANALYZE ?<database>.?<tablename> -- 3
1396 ** Form 1 causes all indices in all attached databases to be analyzed.
1397 ** Form 2 analyzes all indices the single database named.
1398 ** Form 3 analyzes all indices associated with the named table.
1400 void sqlite3Analyze(Parse
*pParse
, Token
*pName1
, Token
*pName2
){
1401 sqlite3
*db
= pParse
->db
;
1410 /* Read the database schema. If an error occurs, leave an error message
1411 ** and code in pParse and return NULL. */
1412 assert( sqlite3BtreeHoldsAllMutexes(pParse
->db
) );
1413 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
1417 assert( pName2
!=0 || pName1
==0 );
1419 /* Form 1: Analyze everything */
1420 for(i
=0; i
<db
->nDb
; i
++){
1421 if( i
==1 ) continue; /* Do not analyze the TEMP database */
1422 analyzeDatabase(pParse
, i
);
1424 }else if( pName2
->n
==0 && (iDb
= sqlite3FindDb(db
, pName1
))>=0 ){
1425 /* Analyze the schema named as the argument */
1426 analyzeDatabase(pParse
, iDb
);
1428 /* Form 3: Analyze the table or index named as an argument */
1429 iDb
= sqlite3TwoPartName(pParse
, pName1
, pName2
, &pTableName
);
1431 zDb
= pName2
->n
? db
->aDb
[iDb
].zDbSName
: 0;
1432 z
= sqlite3NameFromToken(db
, pTableName
);
1434 if( (pIdx
= sqlite3FindIndex(db
, z
, zDb
))!=0 ){
1435 analyzeTable(pParse
, pIdx
->pTable
, pIdx
);
1436 }else if( (pTab
= sqlite3LocateTable(pParse
, 0, z
, zDb
))!=0 ){
1437 analyzeTable(pParse
, pTab
, 0);
1439 sqlite3DbFree(db
, z
);
1443 if( db
->nSqlExec
==0 && (v
= sqlite3GetVdbe(pParse
))!=0 ){
1444 sqlite3VdbeAddOp0(v
, OP_Expire
);
1449 ** Used to pass information from the analyzer reader through to the
1450 ** callback routine.
1452 typedef struct analysisInfo analysisInfo
;
1453 struct analysisInfo
{
1455 const char *zDatabase
;
1459 ** The first argument points to a nul-terminated string containing a
1460 ** list of space separated integers. Read the first nOut of these into
1461 ** the array aOut[].
1463 static void decodeIntArray(
1464 char *zIntArray
, /* String containing int array to decode */
1465 int nOut
, /* Number of slots in aOut[] */
1466 tRowcnt
*aOut
, /* Store integers here */
1467 LogEst
*aLog
, /* Or, if aOut==0, here */
1468 Index
*pIndex
/* Handle extra flags for this index, if not NULL */
1470 char *z
= zIntArray
;
1475 #ifdef SQLITE_ENABLE_STAT4
1480 for(i
=0; *z
&& i
<nOut
; i
++){
1482 while( (c
=z
[0])>='0' && c
<='9' ){
1486 #ifdef SQLITE_ENABLE_STAT4
1487 if( aOut
) aOut
[i
] = v
;
1488 if( aLog
) aLog
[i
] = sqlite3LogEst(v
);
1491 UNUSED_PARAMETER(aOut
);
1493 aLog
[i
] = sqlite3LogEst(v
);
1497 #ifndef SQLITE_ENABLE_STAT4
1498 assert( pIndex
!=0 ); {
1502 pIndex
->bUnordered
= 0;
1503 pIndex
->noSkipScan
= 0;
1505 if( sqlite3_strglob("unordered*", z
)==0 ){
1506 pIndex
->bUnordered
= 1;
1507 }else if( sqlite3_strglob("sz=[0-9]*", z
)==0 ){
1508 int sz
= sqlite3Atoi(z
+3);
1510 pIndex
->szIdxRow
= sqlite3LogEst(sz
);
1511 }else if( sqlite3_strglob("noskipscan*", z
)==0 ){
1512 pIndex
->noSkipScan
= 1;
1514 #ifdef SQLITE_ENABLE_COSTMULT
1515 else if( sqlite3_strglob("costmult=[0-9]*",z
)==0 ){
1516 pIndex
->pTable
->costMult
= sqlite3LogEst(sqlite3Atoi(z
+9));
1519 while( z
[0]!=0 && z
[0]!=' ' ) z
++;
1520 while( z
[0]==' ' ) z
++;
1526 ** This callback is invoked once for each index when reading the
1527 ** sqlite_stat1 table.
1529 ** argv[0] = name of the table
1530 ** argv[1] = name of the index (might be NULL)
1531 ** argv[2] = results of analysis - on integer for each column
1533 ** Entries for which argv[1]==NULL simply record the number of rows in
1536 static int analysisLoader(void *pData
, int argc
, char **argv
, char **NotUsed
){
1537 analysisInfo
*pInfo
= (analysisInfo
*)pData
;
1543 UNUSED_PARAMETER2(NotUsed
, argc
);
1545 if( argv
==0 || argv
[0]==0 || argv
[2]==0 ){
1548 pTable
= sqlite3FindTable(pInfo
->db
, argv
[0], pInfo
->zDatabase
);
1554 }else if( sqlite3_stricmp(argv
[0],argv
[1])==0 ){
1555 pIndex
= sqlite3PrimaryKeyIndex(pTable
);
1557 pIndex
= sqlite3FindIndex(pInfo
->db
, argv
[1], pInfo
->zDatabase
);
1562 tRowcnt
*aiRowEst
= 0;
1563 int nCol
= pIndex
->nKeyCol
+1;
1564 #ifdef SQLITE_ENABLE_STAT4
1565 /* Index.aiRowEst may already be set here if there are duplicate
1566 ** sqlite_stat1 entries for this index. In that case just clobber
1567 ** the old data with the new instead of allocating a new array. */
1568 if( pIndex
->aiRowEst
==0 ){
1569 pIndex
->aiRowEst
= (tRowcnt
*)sqlite3MallocZero(sizeof(tRowcnt
) * nCol
);
1570 if( pIndex
->aiRowEst
==0 ) sqlite3OomFault(pInfo
->db
);
1572 aiRowEst
= pIndex
->aiRowEst
;
1574 pIndex
->bUnordered
= 0;
1575 decodeIntArray((char*)z
, nCol
, aiRowEst
, pIndex
->aiRowLogEst
, pIndex
);
1576 pIndex
->hasStat1
= 1;
1577 if( pIndex
->pPartIdxWhere
==0 ){
1578 pTable
->nRowLogEst
= pIndex
->aiRowLogEst
[0];
1579 pTable
->tabFlags
|= TF_HasStat1
;
1583 fakeIdx
.szIdxRow
= pTable
->szTabRow
;
1584 #ifdef SQLITE_ENABLE_COSTMULT
1585 fakeIdx
.pTable
= pTable
;
1587 decodeIntArray((char*)z
, 1, 0, &pTable
->nRowLogEst
, &fakeIdx
);
1588 pTable
->szTabRow
= fakeIdx
.szIdxRow
;
1589 pTable
->tabFlags
|= TF_HasStat1
;
1596 ** If the Index.aSample variable is not NULL, delete the aSample[] array
1597 ** and its contents.
1599 void sqlite3DeleteIndexSamples(sqlite3
*db
, Index
*pIdx
){
1600 #ifdef SQLITE_ENABLE_STAT4
1601 if( pIdx
->aSample
){
1603 for(j
=0; j
<pIdx
->nSample
; j
++){
1604 IndexSample
*p
= &pIdx
->aSample
[j
];
1605 sqlite3DbFree(db
, p
->p
);
1607 sqlite3DbFree(db
, pIdx
->aSample
);
1609 if( db
&& db
->pnBytesFreed
==0 ){
1614 UNUSED_PARAMETER(db
);
1615 UNUSED_PARAMETER(pIdx
);
1616 #endif /* SQLITE_ENABLE_STAT4 */
1619 #ifdef SQLITE_ENABLE_STAT4
1621 ** Populate the pIdx->aAvgEq[] array based on the samples currently
1622 ** stored in pIdx->aSample[].
1624 static void initAvgEq(Index
*pIdx
){
1626 IndexSample
*aSample
= pIdx
->aSample
;
1627 IndexSample
*pFinal
= &aSample
[pIdx
->nSample
-1];
1630 if( pIdx
->nSampleCol
>1 ){
1631 /* If this is stat4 data, then calculate aAvgEq[] values for all
1632 ** sample columns except the last. The last is always set to 1, as
1633 ** once the trailing PK fields are considered all index keys are
1635 nCol
= pIdx
->nSampleCol
-1;
1636 pIdx
->aAvgEq
[nCol
] = 1;
1638 for(iCol
=0; iCol
<nCol
; iCol
++){
1639 int nSample
= pIdx
->nSample
;
1640 int i
; /* Used to iterate through samples */
1641 tRowcnt sumEq
= 0; /* Sum of the nEq values */
1643 tRowcnt nRow
; /* Number of rows in index */
1644 i64 nSum100
= 0; /* Number of terms contributing to sumEq */
1645 i64 nDist100
; /* Number of distinct values in index */
1647 if( !pIdx
->aiRowEst
|| iCol
>=pIdx
->nKeyCol
|| pIdx
->aiRowEst
[iCol
+1]==0 ){
1648 nRow
= pFinal
->anLt
[iCol
];
1649 nDist100
= (i64
)100 * pFinal
->anDLt
[iCol
];
1652 nRow
= pIdx
->aiRowEst
[0];
1653 nDist100
= ((i64
)100 * pIdx
->aiRowEst
[0]) / pIdx
->aiRowEst
[iCol
+1];
1655 pIdx
->nRowEst0
= nRow
;
1657 /* Set nSum to the number of distinct (iCol+1) field prefixes that
1658 ** occur in the stat4 table for this index. Set sumEq to the sum of
1659 ** the nEq values for column iCol for the same set (adding the value
1660 ** only once where there exist duplicate prefixes). */
1661 for(i
=0; i
<nSample
; i
++){
1662 if( i
==(pIdx
->nSample
-1)
1663 || aSample
[i
].anDLt
[iCol
]!=aSample
[i
+1].anDLt
[iCol
]
1665 sumEq
+= aSample
[i
].anEq
[iCol
];
1670 if( nDist100
>nSum100
&& sumEq
<nRow
){
1671 avgEq
= ((i64
)100 * (nRow
- sumEq
))/(nDist100
- nSum100
);
1673 if( avgEq
==0 ) avgEq
= 1;
1674 pIdx
->aAvgEq
[iCol
] = avgEq
;
1680 ** Look up an index by name. Or, if the name of a WITHOUT ROWID table
1681 ** is supplied instead, find the PRIMARY KEY index for that table.
1683 static Index
*findIndexOrPrimaryKey(
1688 Index
*pIdx
= sqlite3FindIndex(db
, zName
, zDb
);
1690 Table
*pTab
= sqlite3FindTable(db
, zName
, zDb
);
1691 if( pTab
&& !HasRowid(pTab
) ) pIdx
= sqlite3PrimaryKeyIndex(pTab
);
1697 ** Load the content from either the sqlite_stat4
1698 ** into the relevant Index.aSample[] arrays.
1700 ** Arguments zSql1 and zSql2 must point to SQL statements that return
1701 ** data equivalent to the following:
1703 ** zSql1: SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx
1704 ** zSql2: SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4
1706 ** where %Q is replaced with the database name before the SQL is executed.
1708 static int loadStatTbl(
1709 sqlite3
*db
, /* Database handle */
1710 const char *zSql1
, /* SQL statement 1 (see above) */
1711 const char *zSql2
, /* SQL statement 2 (see above) */
1712 const char *zDb
/* Database name (e.g. "main") */
1714 int rc
; /* Result codes from subroutines */
1715 sqlite3_stmt
*pStmt
= 0; /* An SQL statement being run */
1716 char *zSql
; /* Text of the SQL statement */
1717 Index
*pPrevIdx
= 0; /* Previous index in the loop */
1718 IndexSample
*pSample
; /* A slot in pIdx->aSample[] */
1720 assert( db
->lookaside
.bDisable
);
1721 zSql
= sqlite3MPrintf(db
, zSql1
, zDb
);
1723 return SQLITE_NOMEM_BKPT
;
1725 rc
= sqlite3_prepare(db
, zSql
, -1, &pStmt
, 0);
1726 sqlite3DbFree(db
, zSql
);
1729 while( sqlite3_step(pStmt
)==SQLITE_ROW
){
1730 int nIdxCol
= 1; /* Number of columns in stat4 records */
1732 char *zIndex
; /* Index name */
1733 Index
*pIdx
; /* Pointer to the index object */
1734 int nSample
; /* Number of samples */
1735 int nByte
; /* Bytes of space required */
1736 int i
; /* Bytes of space required */
1739 zIndex
= (char *)sqlite3_column_text(pStmt
, 0);
1740 if( zIndex
==0 ) continue;
1741 nSample
= sqlite3_column_int(pStmt
, 1);
1742 pIdx
= findIndexOrPrimaryKey(db
, zIndex
, zDb
);
1743 assert( pIdx
==0 || pIdx
->nSample
==0 );
1744 if( pIdx
==0 ) continue;
1745 assert( !HasRowid(pIdx
->pTable
) || pIdx
->nColumn
==pIdx
->nKeyCol
+1 );
1746 if( !HasRowid(pIdx
->pTable
) && IsPrimaryKeyIndex(pIdx
) ){
1747 nIdxCol
= pIdx
->nKeyCol
;
1749 nIdxCol
= pIdx
->nColumn
;
1751 pIdx
->nSampleCol
= nIdxCol
;
1752 nByte
= sizeof(IndexSample
) * nSample
;
1753 nByte
+= sizeof(tRowcnt
) * nIdxCol
* 3 * nSample
;
1754 nByte
+= nIdxCol
* sizeof(tRowcnt
); /* Space for Index.aAvgEq[] */
1756 pIdx
->aSample
= sqlite3DbMallocZero(db
, nByte
);
1757 if( pIdx
->aSample
==0 ){
1758 sqlite3_finalize(pStmt
);
1759 return SQLITE_NOMEM_BKPT
;
1761 pSpace
= (tRowcnt
*)&pIdx
->aSample
[nSample
];
1762 pIdx
->aAvgEq
= pSpace
; pSpace
+= nIdxCol
;
1763 pIdx
->pTable
->tabFlags
|= TF_HasStat4
;
1764 for(i
=0; i
<nSample
; i
++){
1765 pIdx
->aSample
[i
].anEq
= pSpace
; pSpace
+= nIdxCol
;
1766 pIdx
->aSample
[i
].anLt
= pSpace
; pSpace
+= nIdxCol
;
1767 pIdx
->aSample
[i
].anDLt
= pSpace
; pSpace
+= nIdxCol
;
1769 assert( ((u8
*)pSpace
)-nByte
==(u8
*)(pIdx
->aSample
) );
1771 rc
= sqlite3_finalize(pStmt
);
1774 zSql
= sqlite3MPrintf(db
, zSql2
, zDb
);
1776 return SQLITE_NOMEM_BKPT
;
1778 rc
= sqlite3_prepare(db
, zSql
, -1, &pStmt
, 0);
1779 sqlite3DbFree(db
, zSql
);
1782 while( sqlite3_step(pStmt
)==SQLITE_ROW
){
1783 char *zIndex
; /* Index name */
1784 Index
*pIdx
; /* Pointer to the index object */
1785 int nCol
= 1; /* Number of columns in index */
1787 zIndex
= (char *)sqlite3_column_text(pStmt
, 0);
1788 if( zIndex
==0 ) continue;
1789 pIdx
= findIndexOrPrimaryKey(db
, zIndex
, zDb
);
1790 if( pIdx
==0 ) continue;
1791 /* This next condition is true if data has already been loaded from
1792 ** the sqlite_stat4 table. */
1793 nCol
= pIdx
->nSampleCol
;
1794 if( pIdx
!=pPrevIdx
){
1795 initAvgEq(pPrevIdx
);
1798 pSample
= &pIdx
->aSample
[pIdx
->nSample
];
1799 decodeIntArray((char*)sqlite3_column_text(pStmt
,1),nCol
,pSample
->anEq
,0,0);
1800 decodeIntArray((char*)sqlite3_column_text(pStmt
,2),nCol
,pSample
->anLt
,0,0);
1801 decodeIntArray((char*)sqlite3_column_text(pStmt
,3),nCol
,pSample
->anDLt
,0,0);
1803 /* Take a copy of the sample. Add two 0x00 bytes the end of the buffer.
1804 ** This is in case the sample record is corrupted. In that case, the
1805 ** sqlite3VdbeRecordCompare() may read up to two varints past the
1806 ** end of the allocated buffer before it realizes it is dealing with
1807 ** a corrupt record. Adding the two 0x00 bytes prevents this from causing
1808 ** a buffer overread. */
1809 pSample
->n
= sqlite3_column_bytes(pStmt
, 4);
1810 pSample
->p
= sqlite3DbMallocZero(db
, pSample
->n
+ 2);
1811 if( pSample
->p
==0 ){
1812 sqlite3_finalize(pStmt
);
1813 return SQLITE_NOMEM_BKPT
;
1816 memcpy(pSample
->p
, sqlite3_column_blob(pStmt
, 4), pSample
->n
);
1820 rc
= sqlite3_finalize(pStmt
);
1821 if( rc
==SQLITE_OK
) initAvgEq(pPrevIdx
);
1826 ** Load content from the sqlite_stat4 table into
1827 ** the Index.aSample[] arrays of all indices.
1829 static int loadStat4(sqlite3
*db
, const char *zDb
){
1830 int rc
= SQLITE_OK
; /* Result codes from subroutines */
1831 const Table
*pStat4
;
1833 assert( db
->lookaside
.bDisable
);
1834 if( (pStat4
= sqlite3FindTable(db
, "sqlite_stat4", zDb
))!=0
1835 && IsOrdinaryTable(pStat4
)
1837 rc
= loadStatTbl(db
,
1838 "SELECT idx,count(*) FROM %Q.sqlite_stat4 GROUP BY idx",
1839 "SELECT idx,neq,nlt,ndlt,sample FROM %Q.sqlite_stat4",
1845 #endif /* SQLITE_ENABLE_STAT4 */
1848 ** Load the content of the sqlite_stat1 and sqlite_stat4 tables. The
1849 ** contents of sqlite_stat1 are used to populate the Index.aiRowEst[]
1850 ** arrays. The contents of sqlite_stat4 are used to populate the
1851 ** Index.aSample[] arrays.
1853 ** If the sqlite_stat1 table is not present in the database, SQLITE_ERROR
1854 ** is returned. In this case, even if SQLITE_ENABLE_STAT4 was defined
1855 ** during compilation and the sqlite_stat4 table is present, no data is
1858 ** If SQLITE_ENABLE_STAT4 was defined during compilation and the
1859 ** sqlite_stat4 table is not present in the database, SQLITE_ERROR is
1860 ** returned. However, in this case, data is read from the sqlite_stat1
1861 ** table (if it is present) before returning.
1863 ** If an OOM error occurs, this function always sets db->mallocFailed.
1864 ** This means if the caller does not care about other errors, the return
1865 ** code may be ignored.
1867 int sqlite3AnalysisLoad(sqlite3
*db
, int iDb
){
1872 Schema
*pSchema
= db
->aDb
[iDb
].pSchema
;
1873 const Table
*pStat1
;
1875 assert( iDb
>=0 && iDb
<db
->nDb
);
1876 assert( db
->aDb
[iDb
].pBt
!=0 );
1878 /* Clear any prior statistics */
1879 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
1880 for(i
=sqliteHashFirst(&pSchema
->tblHash
); i
; i
=sqliteHashNext(i
)){
1881 Table
*pTab
= sqliteHashData(i
);
1882 pTab
->tabFlags
&= ~TF_HasStat1
;
1884 for(i
=sqliteHashFirst(&pSchema
->idxHash
); i
; i
=sqliteHashNext(i
)){
1885 Index
*pIdx
= sqliteHashData(i
);
1887 #ifdef SQLITE_ENABLE_STAT4
1888 sqlite3DeleteIndexSamples(db
, pIdx
);
1893 /* Load new statistics out of the sqlite_stat1 table */
1895 sInfo
.zDatabase
= db
->aDb
[iDb
].zDbSName
;
1896 if( (pStat1
= sqlite3FindTable(db
, "sqlite_stat1", sInfo
.zDatabase
))
1897 && IsOrdinaryTable(pStat1
)
1899 zSql
= sqlite3MPrintf(db
,
1900 "SELECT tbl,idx,stat FROM %Q.sqlite_stat1", sInfo
.zDatabase
);
1902 rc
= SQLITE_NOMEM_BKPT
;
1904 rc
= sqlite3_exec(db
, zSql
, analysisLoader
, &sInfo
, 0);
1905 sqlite3DbFree(db
, zSql
);
1909 /* Set appropriate defaults on all indexes not in the sqlite_stat1 table */
1910 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
1911 for(i
=sqliteHashFirst(&pSchema
->idxHash
); i
; i
=sqliteHashNext(i
)){
1912 Index
*pIdx
= sqliteHashData(i
);
1913 if( !pIdx
->hasStat1
) sqlite3DefaultRowEst(pIdx
);
1916 /* Load the statistics from the sqlite_stat4 table. */
1917 #ifdef SQLITE_ENABLE_STAT4
1918 if( rc
==SQLITE_OK
){
1920 rc
= loadStat4(db
, sInfo
.zDatabase
);
1923 for(i
=sqliteHashFirst(&pSchema
->idxHash
); i
; i
=sqliteHashNext(i
)){
1924 Index
*pIdx
= sqliteHashData(i
);
1925 sqlite3_free(pIdx
->aiRowEst
);
1930 if( rc
==SQLITE_NOMEM
){
1931 sqlite3OomFault(db
);
1937 #endif /* SQLITE_OMIT_ANALYZE */