4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
25 #include "sqliteInt.h"
27 #ifndef SQLITE_OMIT_SHARED_CACHE
29 ** The TableLock structure is only used by the sqlite3TableLock() and
30 ** codeTableLocks() functions.
33 int iDb
; /* The database containing the table to be locked */
34 Pgno iTab
; /* The root page of the table to be locked */
35 u8 isWriteLock
; /* True for write lock. False for a read lock */
36 const char *zLockName
; /* Name of the table */
40 ** Record the fact that we want to lock a table at run-time.
42 ** The table to be locked has root page iTab and is found in database iDb.
43 ** A read or a write lock can be taken depending on isWritelock.
45 ** This routine just records the fact that the lock is desired. The
46 ** code to make the lock occur is generated by a later call to
47 ** codeTableLocks() which occurs during sqlite3FinishCoding().
49 static SQLITE_NOINLINE
void lockTable(
50 Parse
*pParse
, /* Parsing context */
51 int iDb
, /* Index of the database containing the table to lock */
52 Pgno iTab
, /* Root page number of the table to be locked */
53 u8 isWriteLock
, /* True for a write lock */
54 const char *zName
/* Name of the table to be locked */
62 pToplevel
= sqlite3ParseToplevel(pParse
);
63 for(i
=0; i
<pToplevel
->nTableLock
; i
++){
64 p
= &pToplevel
->aTableLock
[i
];
65 if( p
->iDb
==iDb
&& p
->iTab
==iTab
){
66 p
->isWriteLock
= (p
->isWriteLock
|| isWriteLock
);
71 nBytes
= sizeof(TableLock
) * (pToplevel
->nTableLock
+1);
72 pToplevel
->aTableLock
=
73 sqlite3DbReallocOrFree(pToplevel
->db
, pToplevel
->aTableLock
, nBytes
);
74 if( pToplevel
->aTableLock
){
75 p
= &pToplevel
->aTableLock
[pToplevel
->nTableLock
++];
78 p
->isWriteLock
= isWriteLock
;
81 pToplevel
->nTableLock
= 0;
82 sqlite3OomFault(pToplevel
->db
);
85 void sqlite3TableLock(
86 Parse
*pParse
, /* Parsing context */
87 int iDb
, /* Index of the database containing the table to lock */
88 Pgno iTab
, /* Root page number of the table to be locked */
89 u8 isWriteLock
, /* True for a write lock */
90 const char *zName
/* Name of the table to be locked */
93 if( !sqlite3BtreeSharable(pParse
->db
->aDb
[iDb
].pBt
) ) return;
94 lockTable(pParse
, iDb
, iTab
, isWriteLock
, zName
);
98 ** Code an OP_TableLock instruction for each table locked by the
99 ** statement (configured by calls to sqlite3TableLock()).
101 static void codeTableLocks(Parse
*pParse
){
103 Vdbe
*pVdbe
= pParse
->pVdbe
;
106 for(i
=0; i
<pParse
->nTableLock
; i
++){
107 TableLock
*p
= &pParse
->aTableLock
[i
];
109 sqlite3VdbeAddOp4(pVdbe
, OP_TableLock
, p1
, p
->iTab
, p
->isWriteLock
,
110 p
->zLockName
, P4_STATIC
);
114 #define codeTableLocks(x)
118 ** Return TRUE if the given yDbMask object is empty - if it contains no
119 ** 1 bits. This routine is used by the DbMaskAllZero() and DbMaskNotZero()
120 ** macros when SQLITE_MAX_ATTACHED is greater than 30.
122 #if SQLITE_MAX_ATTACHED>30
123 int sqlite3DbMaskAllZero(yDbMask m
){
125 for(i
=0; i
<sizeof(yDbMask
); i
++) if( m
[i
] ) return 0;
131 ** This routine is called after a single SQL statement has been
132 ** parsed and a VDBE program to execute that statement has been
133 ** prepared. This routine puts the finishing touches on the
134 ** VDBE program and resets the pParse structure for the next
137 ** Note that if an error occurred, it might be the case that
138 ** no VDBE code was generated.
140 void sqlite3FinishCoding(Parse
*pParse
){
145 assert( pParse
->pToplevel
==0 );
147 assert( db
->pParse
==pParse
);
148 if( pParse
->nested
) return;
150 if( db
->mallocFailed
) pParse
->rc
= SQLITE_NOMEM
;
153 assert( db
->mallocFailed
==0 );
155 /* Begin by generating some termination code at the end of the
161 pParse
->rc
= SQLITE_DONE
;
164 v
= sqlite3GetVdbe(pParse
);
165 if( v
==0 ) pParse
->rc
= SQLITE_ERROR
;
167 assert( !pParse
->isMultiWrite
168 || sqlite3VdbeAssertMayAbort(v
, pParse
->mayAbort
));
170 if( pParse
->bReturning
){
171 Returning
*pReturning
= pParse
->u1
.pReturning
;
175 if( pReturning
->nRetCol
){
176 sqlite3VdbeAddOp0(v
, OP_FkCheck
);
178 sqlite3VdbeAddOp1(v
, OP_Rewind
, pReturning
->iRetCur
);
180 reg
= pReturning
->iRetReg
;
181 for(i
=0; i
<pReturning
->nRetCol
; i
++){
182 sqlite3VdbeAddOp3(v
, OP_Column
, pReturning
->iRetCur
, i
, reg
+i
);
184 sqlite3VdbeAddOp2(v
, OP_ResultRow
, reg
, i
);
185 sqlite3VdbeAddOp2(v
, OP_Next
, pReturning
->iRetCur
, addrRewind
+1);
187 sqlite3VdbeJumpHere(v
, addrRewind
);
190 sqlite3VdbeAddOp0(v
, OP_Halt
);
192 #if SQLITE_USER_AUTHENTICATION
193 if( pParse
->nTableLock
>0 && db
->init
.busy
==0 ){
194 sqlite3UserAuthInit(db
);
195 if( db
->auth
.authLevel
<UAUTH_User
){
196 sqlite3ErrorMsg(pParse
, "user not authenticated");
197 pParse
->rc
= SQLITE_AUTH_USER
;
203 /* The cookie mask contains one bit for each database file open.
204 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
205 ** set for each database that is used. Generate code to start a
206 ** transaction on each used database and to verify the schema cookie
207 ** on each used database.
209 assert( pParse
->nErr
>0 || sqlite3VdbeGetOp(v
, 0)->opcode
==OP_Init
);
210 sqlite3VdbeJumpHere(v
, 0);
215 if( DbMaskTest(pParse
->cookieMask
, iDb
)==0 ) continue;
216 sqlite3VdbeUsesBtree(v
, iDb
);
217 pSchema
= db
->aDb
[iDb
].pSchema
;
218 sqlite3VdbeAddOp4Int(v
,
219 OP_Transaction
, /* Opcode */
221 DbMaskTest(pParse
->writeMask
,iDb
), /* P2 */
222 pSchema
->schema_cookie
, /* P3 */
223 pSchema
->iGeneration
/* P4 */
225 if( db
->init
.busy
==0 ) sqlite3VdbeChangeP5(v
, 1);
227 "usesStmtJournal=%d", pParse
->mayAbort
&& pParse
->isMultiWrite
));
228 }while( ++iDb
<db
->nDb
);
229 #ifndef SQLITE_OMIT_VIRTUALTABLE
230 for(i
=0; i
<pParse
->nVtabLock
; i
++){
231 char *vtab
= (char *)sqlite3GetVTable(db
, pParse
->apVtabLock
[i
]);
232 sqlite3VdbeAddOp4(v
, OP_VBegin
, 0, 0, 0, vtab
, P4_VTAB
);
234 pParse
->nVtabLock
= 0;
237 /* Once all the cookies have been verified and transactions opened,
238 ** obtain the required table-locks. This is a no-op unless the
239 ** shared-cache feature is enabled.
241 codeTableLocks(pParse
);
243 /* Initialize any AUTOINCREMENT data structures required.
245 sqlite3AutoincrementBegin(pParse
);
247 /* Code constant expressions that where factored out of inner loops.
249 ** The pConstExpr list might also contain expressions that we simply
250 ** want to keep around until the Parse object is deleted. Such
251 ** expressions have iConstExprReg==0. Do not generate code for
252 ** those expressions, of course.
254 if( pParse
->pConstExpr
){
255 ExprList
*pEL
= pParse
->pConstExpr
;
256 pParse
->okConstFactor
= 0;
257 for(i
=0; i
<pEL
->nExpr
; i
++){
258 int iReg
= pEL
->a
[i
].u
.iConstExprReg
;
259 sqlite3ExprCode(pParse
, pEL
->a
[i
].pExpr
, iReg
);
263 if( pParse
->bReturning
){
264 Returning
*pRet
= pParse
->u1
.pReturning
;
266 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pRet
->iRetCur
, pRet
->nRetCol
);
270 /* Finally, jump back to the beginning of the executable code. */
271 sqlite3VdbeGoto(v
, 1);
274 /* Get the VDBE program ready for execution
276 assert( v
!=0 || pParse
->nErr
);
277 assert( db
->mallocFailed
==0 || pParse
->nErr
);
278 if( pParse
->nErr
==0 ){
279 /* A minimum of one cursor is required if autoincrement is used
280 * See ticket [a696379c1f08866] */
281 assert( pParse
->pAinc
==0 || pParse
->nTab
>0 );
282 sqlite3VdbeMakeReady(v
, pParse
);
283 pParse
->rc
= SQLITE_DONE
;
285 pParse
->rc
= SQLITE_ERROR
;
290 ** Run the parser and code generator recursively in order to generate
291 ** code for the SQL statement given onto the end of the pParse context
292 ** currently under construction. Notes:
294 ** * The final OP_Halt is not appended and other initialization
295 ** and finalization steps are omitted because those are handling by the
298 ** * Built-in SQL functions always take precedence over application-defined
299 ** SQL functions. In other words, it is not possible to override a
300 ** built-in function.
302 void sqlite3NestedParse(Parse
*pParse
, const char *zFormat
, ...){
305 sqlite3
*db
= pParse
->db
;
306 u32 savedDbFlags
= db
->mDbFlags
;
307 char saveBuf
[PARSE_TAIL_SZ
];
309 if( pParse
->nErr
) return;
310 assert( pParse
->nested
<10 ); /* Nesting should only be of limited depth */
311 va_start(ap
, zFormat
);
312 zSql
= sqlite3VMPrintf(db
, zFormat
, ap
);
315 /* This can result either from an OOM or because the formatted string
316 ** exceeds SQLITE_LIMIT_LENGTH. In the latter case, we need to set
318 if( !db
->mallocFailed
) pParse
->rc
= SQLITE_TOOBIG
;
323 memcpy(saveBuf
, PARSE_TAIL(pParse
), PARSE_TAIL_SZ
);
324 memset(PARSE_TAIL(pParse
), 0, PARSE_TAIL_SZ
);
325 db
->mDbFlags
|= DBFLAG_PreferBuiltin
;
326 sqlite3RunParser(pParse
, zSql
);
327 db
->mDbFlags
= savedDbFlags
;
328 sqlite3DbFree(db
, zSql
);
329 memcpy(PARSE_TAIL(pParse
), saveBuf
, PARSE_TAIL_SZ
);
333 #if SQLITE_USER_AUTHENTICATION
335 ** Return TRUE if zTable is the name of the system table that stores the
336 ** list of users and their access credentials.
338 int sqlite3UserAuthTable(const char *zTable
){
339 return sqlite3_stricmp(zTable
, "sqlite_user")==0;
344 ** Locate the in-memory structure that describes a particular database
345 ** table given the name of that table and (optionally) the name of the
346 ** database containing the table. Return NULL if not found.
348 ** If zDatabase is 0, all databases are searched for the table and the
349 ** first matching table is returned. (No checking for duplicate table
350 ** names is done.) The search order is TEMP first, then MAIN, then any
351 ** auxiliary databases added using the ATTACH command.
353 ** See also sqlite3LocateTable().
355 Table
*sqlite3FindTable(sqlite3
*db
, const char *zName
, const char *zDatabase
){
359 /* All mutexes are required for schema access. Make sure we hold them. */
360 assert( zDatabase
!=0 || sqlite3BtreeHoldsAllMutexes(db
) );
361 #if SQLITE_USER_AUTHENTICATION
362 /* Only the admin user is allowed to know that the sqlite_user table
364 if( db
->auth
.authLevel
<UAUTH_Admin
&& sqlite3UserAuthTable(zName
)!=0 ){
369 for(i
=0; i
<db
->nDb
; i
++){
370 if( sqlite3StrICmp(zDatabase
, db
->aDb
[i
].zDbSName
)==0 ) break;
373 /* No match against the official names. But always match "main"
374 ** to schema 0 as a legacy fallback. */
375 if( sqlite3StrICmp(zDatabase
,"main")==0 ){
381 p
= sqlite3HashFind(&db
->aDb
[i
].pSchema
->tblHash
, zName
);
382 if( p
==0 && sqlite3StrNICmp(zName
, "sqlite_", 7)==0 ){
384 if( sqlite3StrICmp(zName
+7, &PREFERRED_TEMP_SCHEMA_TABLE
[7])==0
385 || sqlite3StrICmp(zName
+7, &PREFERRED_SCHEMA_TABLE
[7])==0
386 || sqlite3StrICmp(zName
+7, &LEGACY_SCHEMA_TABLE
[7])==0
388 p
= sqlite3HashFind(&db
->aDb
[1].pSchema
->tblHash
,
389 LEGACY_TEMP_SCHEMA_TABLE
);
392 if( sqlite3StrICmp(zName
+7, &PREFERRED_SCHEMA_TABLE
[7])==0 ){
393 p
= sqlite3HashFind(&db
->aDb
[i
].pSchema
->tblHash
,
394 LEGACY_SCHEMA_TABLE
);
399 /* Match against TEMP first */
400 p
= sqlite3HashFind(&db
->aDb
[1].pSchema
->tblHash
, zName
);
402 /* The main database is second */
403 p
= sqlite3HashFind(&db
->aDb
[0].pSchema
->tblHash
, zName
);
405 /* Attached databases are in order of attachment */
406 for(i
=2; i
<db
->nDb
; i
++){
407 assert( sqlite3SchemaMutexHeld(db
, i
, 0) );
408 p
= sqlite3HashFind(&db
->aDb
[i
].pSchema
->tblHash
, zName
);
411 if( p
==0 && sqlite3StrNICmp(zName
, "sqlite_", 7)==0 ){
412 if( sqlite3StrICmp(zName
+7, &PREFERRED_SCHEMA_TABLE
[7])==0 ){
413 p
= sqlite3HashFind(&db
->aDb
[0].pSchema
->tblHash
, LEGACY_SCHEMA_TABLE
);
414 }else if( sqlite3StrICmp(zName
+7, &PREFERRED_TEMP_SCHEMA_TABLE
[7])==0 ){
415 p
= sqlite3HashFind(&db
->aDb
[1].pSchema
->tblHash
,
416 LEGACY_TEMP_SCHEMA_TABLE
);
424 ** Locate the in-memory structure that describes a particular database
425 ** table given the name of that table and (optionally) the name of the
426 ** database containing the table. Return NULL if not found. Also leave an
427 ** error message in pParse->zErrMsg.
429 ** The difference between this routine and sqlite3FindTable() is that this
430 ** routine leaves an error message in pParse->zErrMsg where
431 ** sqlite3FindTable() does not.
433 Table
*sqlite3LocateTable(
434 Parse
*pParse
, /* context in which to report errors */
435 u32 flags
, /* LOCATE_VIEW or LOCATE_NOERR */
436 const char *zName
, /* Name of the table we are looking for */
437 const char *zDbase
/* Name of the database. Might be NULL */
440 sqlite3
*db
= pParse
->db
;
442 /* Read the database schema. If an error occurs, leave an error message
443 ** and code in pParse and return NULL. */
444 if( (db
->mDbFlags
& DBFLAG_SchemaKnownOk
)==0
445 && SQLITE_OK
!=sqlite3ReadSchema(pParse
)
450 p
= sqlite3FindTable(db
, zName
, zDbase
);
452 #ifndef SQLITE_OMIT_VIRTUALTABLE
453 /* If zName is the not the name of a table in the schema created using
454 ** CREATE, then check to see if it is the name of an virtual table that
455 ** can be an eponymous virtual table. */
456 if( (pParse
->prepFlags
& SQLITE_PREPARE_NO_VTAB
)==0 && db
->init
.busy
==0 ){
457 Module
*pMod
= (Module
*)sqlite3HashFind(&db
->aModule
, zName
);
458 if( pMod
==0 && sqlite3_strnicmp(zName
, "pragma_", 7)==0 ){
459 pMod
= sqlite3PragmaVtabRegister(db
, zName
);
461 if( pMod
&& sqlite3VtabEponymousTableInit(pParse
, pMod
) ){
462 testcase( pMod
->pEpoTab
==0 );
463 return pMod
->pEpoTab
;
467 if( flags
& LOCATE_NOERR
) return 0;
468 pParse
->checkSchema
= 1;
469 }else if( IsVirtual(p
) && (pParse
->prepFlags
& SQLITE_PREPARE_NO_VTAB
)!=0 ){
474 const char *zMsg
= flags
& LOCATE_VIEW
? "no such view" : "no such table";
476 sqlite3ErrorMsg(pParse
, "%s: %s.%s", zMsg
, zDbase
, zName
);
478 sqlite3ErrorMsg(pParse
, "%s: %s", zMsg
, zName
);
481 assert( HasRowid(p
) || p
->iPKey
<0 );
488 ** Locate the table identified by *p.
490 ** This is a wrapper around sqlite3LocateTable(). The difference between
491 ** sqlite3LocateTable() and this function is that this function restricts
492 ** the search to schema (p->pSchema) if it is not NULL. p->pSchema may be
493 ** non-NULL if it is part of a view or trigger program definition. See
494 ** sqlite3FixSrcList() for details.
496 Table
*sqlite3LocateTableItem(
502 assert( p
->pSchema
==0 || p
->zDatabase
==0 );
504 int iDb
= sqlite3SchemaToIndex(pParse
->db
, p
->pSchema
);
505 zDb
= pParse
->db
->aDb
[iDb
].zDbSName
;
509 return sqlite3LocateTable(pParse
, flags
, p
->zName
, zDb
);
513 ** Return the preferred table name for system tables. Translate legacy
514 ** names into the new preferred names, as appropriate.
516 const char *sqlite3PreferredTableName(const char *zName
){
517 if( sqlite3StrNICmp(zName
, "sqlite_", 7)==0 ){
518 if( sqlite3StrICmp(zName
+7, &LEGACY_SCHEMA_TABLE
[7])==0 ){
519 return PREFERRED_SCHEMA_TABLE
;
521 if( sqlite3StrICmp(zName
+7, &LEGACY_TEMP_SCHEMA_TABLE
[7])==0 ){
522 return PREFERRED_TEMP_SCHEMA_TABLE
;
529 ** Locate the in-memory structure that describes
530 ** a particular index given the name of that index
531 ** and the name of the database that contains the index.
532 ** Return NULL if not found.
534 ** If zDatabase is 0, all databases are searched for the
535 ** table and the first matching index is returned. (No checking
536 ** for duplicate index names is done.) The search order is
537 ** TEMP first, then MAIN, then any auxiliary databases added
538 ** using the ATTACH command.
540 Index
*sqlite3FindIndex(sqlite3
*db
, const char *zName
, const char *zDb
){
543 /* All mutexes are required for schema access. Make sure we hold them. */
544 assert( zDb
!=0 || sqlite3BtreeHoldsAllMutexes(db
) );
545 for(i
=OMIT_TEMPDB
; i
<db
->nDb
; i
++){
546 int j
= (i
<2) ? i
^1 : i
; /* Search TEMP before MAIN */
547 Schema
*pSchema
= db
->aDb
[j
].pSchema
;
549 if( zDb
&& sqlite3DbIsNamed(db
, j
, zDb
)==0 ) continue;
550 assert( sqlite3SchemaMutexHeld(db
, j
, 0) );
551 p
= sqlite3HashFind(&pSchema
->idxHash
, zName
);
558 ** Reclaim the memory used by an index
560 void sqlite3FreeIndex(sqlite3
*db
, Index
*p
){
561 #ifndef SQLITE_OMIT_ANALYZE
562 sqlite3DeleteIndexSamples(db
, p
);
564 sqlite3ExprDelete(db
, p
->pPartIdxWhere
);
565 sqlite3ExprListDelete(db
, p
->aColExpr
);
566 sqlite3DbFree(db
, p
->zColAff
);
567 if( p
->isResized
) sqlite3DbFree(db
, (void *)p
->azColl
);
568 #ifdef SQLITE_ENABLE_STAT4
569 sqlite3_free(p
->aiRowEst
);
571 sqlite3DbFree(db
, p
);
575 ** For the index called zIdxName which is found in the database iDb,
576 ** unlike that index from its Table then remove the index from
577 ** the index hash table and free all memory structures associated
580 void sqlite3UnlinkAndDeleteIndex(sqlite3
*db
, int iDb
, const char *zIdxName
){
584 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
585 pHash
= &db
->aDb
[iDb
].pSchema
->idxHash
;
586 pIndex
= sqlite3HashInsert(pHash
, zIdxName
, 0);
587 if( ALWAYS(pIndex
) ){
588 if( pIndex
->pTable
->pIndex
==pIndex
){
589 pIndex
->pTable
->pIndex
= pIndex
->pNext
;
592 /* Justification of ALWAYS(); The index must be on the list of
594 p
= pIndex
->pTable
->pIndex
;
595 while( ALWAYS(p
) && p
->pNext
!=pIndex
){ p
= p
->pNext
; }
596 if( ALWAYS(p
&& p
->pNext
==pIndex
) ){
597 p
->pNext
= pIndex
->pNext
;
600 sqlite3FreeIndex(db
, pIndex
);
602 db
->mDbFlags
|= DBFLAG_SchemaChange
;
606 ** Look through the list of open database files in db->aDb[] and if
607 ** any have been closed, remove them from the list. Reallocate the
608 ** db->aDb[] structure to a smaller size, if possible.
610 ** Entry 0 (the "main" database) and entry 1 (the "temp" database)
611 ** are never candidates for being collapsed.
613 void sqlite3CollapseDatabaseArray(sqlite3
*db
){
615 for(i
=j
=2; i
<db
->nDb
; i
++){
616 struct Db
*pDb
= &db
->aDb
[i
];
618 sqlite3DbFree(db
, pDb
->zDbSName
);
623 db
->aDb
[j
] = db
->aDb
[i
];
628 if( db
->nDb
<=2 && db
->aDb
!=db
->aDbStatic
){
629 memcpy(db
->aDbStatic
, db
->aDb
, 2*sizeof(db
->aDb
[0]));
630 sqlite3DbFree(db
, db
->aDb
);
631 db
->aDb
= db
->aDbStatic
;
636 ** Reset the schema for the database at index iDb. Also reset the
637 ** TEMP schema. The reset is deferred if db->nSchemaLock is not zero.
638 ** Deferred resets may be run by calling with iDb<0.
640 void sqlite3ResetOneSchema(sqlite3
*db
, int iDb
){
642 assert( iDb
<db
->nDb
);
645 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
646 DbSetProperty(db
, iDb
, DB_ResetWanted
);
647 DbSetProperty(db
, 1, DB_ResetWanted
);
648 db
->mDbFlags
&= ~DBFLAG_SchemaKnownOk
;
651 if( db
->nSchemaLock
==0 ){
652 for(i
=0; i
<db
->nDb
; i
++){
653 if( DbHasProperty(db
, i
, DB_ResetWanted
) ){
654 sqlite3SchemaClear(db
->aDb
[i
].pSchema
);
661 ** Erase all schema information from all attached databases (including
662 ** "main" and "temp") for a single database connection.
664 void sqlite3ResetAllSchemasOfConnection(sqlite3
*db
){
666 sqlite3BtreeEnterAll(db
);
667 for(i
=0; i
<db
->nDb
; i
++){
668 Db
*pDb
= &db
->aDb
[i
];
670 if( db
->nSchemaLock
==0 ){
671 sqlite3SchemaClear(pDb
->pSchema
);
673 DbSetProperty(db
, i
, DB_ResetWanted
);
677 db
->mDbFlags
&= ~(DBFLAG_SchemaChange
|DBFLAG_SchemaKnownOk
);
678 sqlite3VtabUnlockList(db
);
679 sqlite3BtreeLeaveAll(db
);
680 if( db
->nSchemaLock
==0 ){
681 sqlite3CollapseDatabaseArray(db
);
686 ** This routine is called when a commit occurs.
688 void sqlite3CommitInternalChanges(sqlite3
*db
){
689 db
->mDbFlags
&= ~DBFLAG_SchemaChange
;
693 ** Set the expression associated with a column. This is usually
694 ** the DEFAULT value, but might also be the expression that computes
695 ** the value for a generated column.
697 void sqlite3ColumnSetExpr(
698 Parse
*pParse
, /* Parsing context */
699 Table
*pTab
, /* The table containing the column */
700 Column
*pCol
, /* The column to receive the new DEFAULT expression */
701 Expr
*pExpr
/* The new default expression */
704 assert( IsOrdinaryTable(pTab
) );
705 pList
= pTab
->u
.tab
.pDfltList
;
708 || NEVER(pList
->nExpr
<pCol
->iDflt
)
710 pCol
->iDflt
= pList
==0 ? 1 : pList
->nExpr
+1;
711 pTab
->u
.tab
.pDfltList
= sqlite3ExprListAppend(pParse
, pList
, pExpr
);
713 sqlite3ExprDelete(pParse
->db
, pList
->a
[pCol
->iDflt
-1].pExpr
);
714 pList
->a
[pCol
->iDflt
-1].pExpr
= pExpr
;
719 ** Return the expression associated with a column. The expression might be
720 ** the DEFAULT clause or the AS clause of a generated column.
721 ** Return NULL if the column has no associated expression.
723 Expr
*sqlite3ColumnExpr(Table
*pTab
, Column
*pCol
){
724 if( pCol
->iDflt
==0 ) return 0;
725 if( NEVER(!IsOrdinaryTable(pTab
)) ) return 0;
726 if( NEVER(pTab
->u
.tab
.pDfltList
==0) ) return 0;
727 if( NEVER(pTab
->u
.tab
.pDfltList
->nExpr
<pCol
->iDflt
) ) return 0;
728 return pTab
->u
.tab
.pDfltList
->a
[pCol
->iDflt
-1].pExpr
;
732 ** Set the collating sequence name for a column.
734 void sqlite3ColumnSetColl(
743 n
= sqlite3Strlen30(pCol
->zCnName
) + 1;
744 if( pCol
->colFlags
& COLFLAG_HASTYPE
){
745 n
+= sqlite3Strlen30(pCol
->zCnName
+n
) + 1;
747 nColl
= sqlite3Strlen30(zColl
) + 1;
748 zNew
= sqlite3DbRealloc(db
, pCol
->zCnName
, nColl
+n
);
750 pCol
->zCnName
= zNew
;
751 memcpy(pCol
->zCnName
+ n
, zColl
, nColl
);
752 pCol
->colFlags
|= COLFLAG_HASCOLL
;
757 ** Return the collating squence name for a column
759 const char *sqlite3ColumnColl(Column
*pCol
){
761 if( (pCol
->colFlags
& COLFLAG_HASCOLL
)==0 ) return 0;
764 if( pCol
->colFlags
& COLFLAG_HASTYPE
){
765 do{ z
++; }while( *z
);
771 ** Delete memory allocated for the column names of a table or view (the
772 ** Table.aCol[] array).
774 void sqlite3DeleteColumnNames(sqlite3
*db
, Table
*pTable
){
779 if( (pCol
= pTable
->aCol
)!=0 ){
780 for(i
=0; i
<pTable
->nCol
; i
++, pCol
++){
781 assert( pCol
->zCnName
==0 || pCol
->hName
==sqlite3StrIHash(pCol
->zCnName
) );
782 sqlite3DbFree(db
, pCol
->zCnName
);
784 sqlite3DbNNFreeNN(db
, pTable
->aCol
);
785 if( IsOrdinaryTable(pTable
) ){
786 sqlite3ExprListDelete(db
, pTable
->u
.tab
.pDfltList
);
788 if( db
->pnBytesFreed
==0 ){
791 if( IsOrdinaryTable(pTable
) ){
792 pTable
->u
.tab
.pDfltList
= 0;
799 ** Remove the memory data structures associated with the given
800 ** Table. No changes are made to disk by this routine.
802 ** This routine just deletes the data structure. It does not unlink
803 ** the table data structure from the hash table. But it does destroy
804 ** memory structures of the indices and foreign keys associated with
807 ** The db parameter is optional. It is needed if the Table object
808 ** contains lookaside memory. (Table objects in the schema do not use
809 ** lookaside memory, but some ephemeral Table objects do.) Or the
810 ** db parameter can be used with db->pnBytesFreed to measure the memory
811 ** used by the Table object.
813 static void SQLITE_NOINLINE
deleteTable(sqlite3
*db
, Table
*pTable
){
814 Index
*pIndex
, *pNext
;
817 /* Record the number of outstanding lookaside allocations in schema Tables
818 ** prior to doing any free() operations. Since schema Tables do not use
819 ** lookaside, this number should not change.
821 ** If malloc has already failed, it may be that it failed while allocating
822 ** a Table object that was going to be marked ephemeral. So do not check
823 ** that no lookaside memory is used in this case either. */
826 if( !db
->mallocFailed
&& (pTable
->tabFlags
& TF_Ephemeral
)==0 ){
827 nLookaside
= sqlite3LookasideUsed(db
, 0);
831 /* Delete all indices associated with this table. */
832 for(pIndex
= pTable
->pIndex
; pIndex
; pIndex
=pNext
){
833 pNext
= pIndex
->pNext
;
834 assert( pIndex
->pSchema
==pTable
->pSchema
835 || (IsVirtual(pTable
) && pIndex
->idxType
!=SQLITE_IDXTYPE_APPDEF
) );
836 if( db
->pnBytesFreed
==0 && !IsVirtual(pTable
) ){
837 char *zName
= pIndex
->zName
;
838 TESTONLY ( Index
*pOld
= ) sqlite3HashInsert(
839 &pIndex
->pSchema
->idxHash
, zName
, 0
841 assert( db
==0 || sqlite3SchemaMutexHeld(db
, 0, pIndex
->pSchema
) );
842 assert( pOld
==pIndex
|| pOld
==0 );
844 sqlite3FreeIndex(db
, pIndex
);
847 if( IsOrdinaryTable(pTable
) ){
848 sqlite3FkDelete(db
, pTable
);
850 #ifndef SQLITE_OMIT_VIRTUAL_TABLE
851 else if( IsVirtual(pTable
) ){
852 sqlite3VtabClear(db
, pTable
);
856 assert( IsView(pTable
) );
857 sqlite3SelectDelete(db
, pTable
->u
.view
.pSelect
);
860 /* Delete the Table structure itself.
862 sqlite3DeleteColumnNames(db
, pTable
);
863 sqlite3DbFree(db
, pTable
->zName
);
864 sqlite3DbFree(db
, pTable
->zColAff
);
865 sqlite3ExprListDelete(db
, pTable
->pCheck
);
866 sqlite3DbFree(db
, pTable
);
868 /* Verify that no lookaside memory was used by schema tables */
869 assert( nLookaside
==0 || nLookaside
==sqlite3LookasideUsed(db
,0) );
871 void sqlite3DeleteTable(sqlite3
*db
, Table
*pTable
){
872 /* Do not delete the table until the reference count reaches zero. */
874 if( !pTable
) return;
875 if( db
->pnBytesFreed
==0 && (--pTable
->nTabRef
)>0 ) return;
876 deleteTable(db
, pTable
);
881 ** Unlink the given table from the hash tables and the delete the
882 ** table structure with all its indices and foreign keys.
884 void sqlite3UnlinkAndDeleteTable(sqlite3
*db
, int iDb
, const char *zTabName
){
889 assert( iDb
>=0 && iDb
<db
->nDb
);
891 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
892 testcase( zTabName
[0]==0 ); /* Zero-length table names are allowed */
894 p
= sqlite3HashInsert(&pDb
->pSchema
->tblHash
, zTabName
, 0);
895 sqlite3DeleteTable(db
, p
);
896 db
->mDbFlags
|= DBFLAG_SchemaChange
;
900 ** Given a token, return a string that consists of the text of that
901 ** token. Space to hold the returned string
902 ** is obtained from sqliteMalloc() and must be freed by the calling
905 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
906 ** surround the body of the token are removed.
908 ** Tokens are often just pointers into the original SQL text and so
909 ** are not \000 terminated and are not persistent. The returned string
910 ** is \000 terminated and is persistent.
912 char *sqlite3NameFromToken(sqlite3
*db
, const Token
*pName
){
915 zName
= sqlite3DbStrNDup(db
, (const char*)pName
->z
, pName
->n
);
916 sqlite3Dequote(zName
);
924 ** Open the sqlite_schema table stored in database number iDb for
925 ** writing. The table is opened using cursor 0.
927 void sqlite3OpenSchemaTable(Parse
*p
, int iDb
){
928 Vdbe
*v
= sqlite3GetVdbe(p
);
929 sqlite3TableLock(p
, iDb
, SCHEMA_ROOT
, 1, LEGACY_SCHEMA_TABLE
);
930 sqlite3VdbeAddOp4Int(v
, OP_OpenWrite
, 0, SCHEMA_ROOT
, iDb
, 5);
937 ** Parameter zName points to a nul-terminated buffer containing the name
938 ** of a database ("main", "temp" or the name of an attached db). This
939 ** function returns the index of the named database in db->aDb[], or
940 ** -1 if the named db cannot be found.
942 int sqlite3FindDbName(sqlite3
*db
, const char *zName
){
943 int i
= -1; /* Database number */
946 for(i
=(db
->nDb
-1), pDb
=&db
->aDb
[i
]; i
>=0; i
--, pDb
--){
947 if( 0==sqlite3_stricmp(pDb
->zDbSName
, zName
) ) break;
948 /* "main" is always an acceptable alias for the primary database
949 ** even if it has been renamed using SQLITE_DBCONFIG_MAINDBNAME. */
950 if( i
==0 && 0==sqlite3_stricmp("main", zName
) ) break;
957 ** The token *pName contains the name of a database (either "main" or
958 ** "temp" or the name of an attached db). This routine returns the
959 ** index of the named database in db->aDb[], or -1 if the named db
962 int sqlite3FindDb(sqlite3
*db
, Token
*pName
){
963 int i
; /* Database number */
964 char *zName
; /* Name we are searching for */
965 zName
= sqlite3NameFromToken(db
, pName
);
966 i
= sqlite3FindDbName(db
, zName
);
967 sqlite3DbFree(db
, zName
);
971 /* The table or view or trigger name is passed to this routine via tokens
972 ** pName1 and pName2. If the table name was fully qualified, for example:
974 ** CREATE TABLE xxx.yyy (...);
976 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
977 ** the table name is not fully qualified, i.e.:
979 ** CREATE TABLE yyy(...);
981 ** Then pName1 is set to "yyy" and pName2 is "".
983 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
984 ** pName2) that stores the unqualified table name. The index of the
985 ** database "xxx" is returned.
987 int sqlite3TwoPartName(
988 Parse
*pParse
, /* Parsing and code generating context */
989 Token
*pName1
, /* The "xxx" in the name "xxx.yyy" or "xxx" */
990 Token
*pName2
, /* The "yyy" in the name "xxx.yyy" */
991 Token
**pUnqual
/* Write the unqualified object name here */
993 int iDb
; /* Database holding the object */
994 sqlite3
*db
= pParse
->db
;
998 if( db
->init
.busy
) {
999 sqlite3ErrorMsg(pParse
, "corrupt database");
1003 iDb
= sqlite3FindDb(db
, pName1
);
1005 sqlite3ErrorMsg(pParse
, "unknown database %T", pName1
);
1009 assert( db
->init
.iDb
==0 || db
->init
.busy
|| IN_SPECIAL_PARSE
1010 || (db
->mDbFlags
& DBFLAG_Vacuum
)!=0);
1018 ** True if PRAGMA writable_schema is ON
1020 int sqlite3WritableSchema(sqlite3
*db
){
1021 testcase( (db
->flags
&(SQLITE_WriteSchema
|SQLITE_Defensive
))==0 );
1022 testcase( (db
->flags
&(SQLITE_WriteSchema
|SQLITE_Defensive
))==
1023 SQLITE_WriteSchema
);
1024 testcase( (db
->flags
&(SQLITE_WriteSchema
|SQLITE_Defensive
))==
1026 testcase( (db
->flags
&(SQLITE_WriteSchema
|SQLITE_Defensive
))==
1027 (SQLITE_WriteSchema
|SQLITE_Defensive
) );
1028 return (db
->flags
&(SQLITE_WriteSchema
|SQLITE_Defensive
))==SQLITE_WriteSchema
;
1032 ** This routine is used to check if the UTF-8 string zName is a legal
1033 ** unqualified name for a new schema object (table, index, view or
1034 ** trigger). All names are legal except those that begin with the string
1035 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
1036 ** is reserved for internal use.
1038 ** When parsing the sqlite_schema table, this routine also checks to
1039 ** make sure the "type", "name", and "tbl_name" columns are consistent
1042 int sqlite3CheckObjectName(
1043 Parse
*pParse
, /* Parsing context */
1044 const char *zName
, /* Name of the object to check */
1045 const char *zType
, /* Type of this object */
1046 const char *zTblName
/* Parent table name for triggers and indexes */
1048 sqlite3
*db
= pParse
->db
;
1049 if( sqlite3WritableSchema(db
)
1050 || db
->init
.imposterTable
1051 || !sqlite3Config
.bExtraSchemaChecks
1053 /* Skip these error checks for writable_schema=ON */
1056 if( db
->init
.busy
){
1057 if( sqlite3_stricmp(zType
, db
->init
.azInit
[0])
1058 || sqlite3_stricmp(zName
, db
->init
.azInit
[1])
1059 || sqlite3_stricmp(zTblName
, db
->init
.azInit
[2])
1061 sqlite3ErrorMsg(pParse
, ""); /* corruptSchema() will supply the error */
1062 return SQLITE_ERROR
;
1065 if( (pParse
->nested
==0 && 0==sqlite3StrNICmp(zName
, "sqlite_", 7))
1066 || (sqlite3ReadOnlyShadowTables(db
) && sqlite3ShadowTableName(db
, zName
))
1068 sqlite3ErrorMsg(pParse
, "object name reserved for internal use: %s",
1070 return SQLITE_ERROR
;
1078 ** Return the PRIMARY KEY index of a table
1080 Index
*sqlite3PrimaryKeyIndex(Table
*pTab
){
1082 for(p
=pTab
->pIndex
; p
&& !IsPrimaryKeyIndex(p
); p
=p
->pNext
){}
1087 ** Convert an table column number into a index column number. That is,
1088 ** for the column iCol in the table (as defined by the CREATE TABLE statement)
1089 ** find the (first) offset of that column in index pIdx. Or return -1
1090 ** if column iCol is not used in index pIdx.
1092 i16
sqlite3TableColumnToIndex(Index
*pIdx
, i16 iCol
){
1094 for(i
=0; i
<pIdx
->nColumn
; i
++){
1095 if( iCol
==pIdx
->aiColumn
[i
] ) return i
;
1100 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1101 /* Convert a storage column number into a table column number.
1103 ** The storage column number (0,1,2,....) is the index of the value
1104 ** as it appears in the record on disk. The true column number
1105 ** is the index (0,1,2,...) of the column in the CREATE TABLE statement.
1107 ** The storage column number is less than the table column number if
1108 ** and only there are VIRTUAL columns to the left.
1110 ** If SQLITE_OMIT_GENERATED_COLUMNS, this routine is a no-op macro.
1112 i16
sqlite3StorageColumnToTable(Table
*pTab
, i16 iCol
){
1113 if( pTab
->tabFlags
& TF_HasVirtual
){
1115 for(i
=0; i
<=iCol
; i
++){
1116 if( pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
) iCol
++;
1123 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1124 /* Convert a table column number into a storage column number.
1126 ** The storage column number (0,1,2,....) is the index of the value
1127 ** as it appears in the record on disk. Or, if the input column is
1128 ** the N-th virtual column (zero-based) then the storage number is
1129 ** the number of non-virtual columns in the table plus N.
1131 ** The true column number is the index (0,1,2,...) of the column in
1132 ** the CREATE TABLE statement.
1134 ** If the input column is a VIRTUAL column, then it should not appear
1135 ** in storage. But the value sometimes is cached in registers that
1136 ** follow the range of registers used to construct storage. This
1137 ** avoids computing the same VIRTUAL column multiple times, and provides
1138 ** values for use by OP_Param opcodes in triggers. Hence, if the
1139 ** input column is a VIRTUAL table, put it after all the other columns.
1141 ** In the following, N means "normal column", S means STORED, and
1142 ** V means VIRTUAL. Suppose the CREATE TABLE has columns like this:
1144 ** CREATE TABLE ex(N,S,V,N,S,V,N,S,V);
1145 ** -- 0 1 2 3 4 5 6 7 8
1147 ** Then the mapping from this function is as follows:
1149 ** INPUTS: 0 1 2 3 4 5 6 7 8
1150 ** OUTPUTS: 0 1 6 2 3 7 4 5 8
1152 ** So, in other words, this routine shifts all the virtual columns to
1155 ** If SQLITE_OMIT_GENERATED_COLUMNS then there are no virtual columns and
1156 ** this routine is a no-op macro. If the pTab does not have any virtual
1157 ** columns, then this routine is no-op that always return iCol. If iCol
1158 ** is negative (indicating the ROWID column) then this routine return iCol.
1160 i16
sqlite3TableColumnToStorage(Table
*pTab
, i16 iCol
){
1163 assert( iCol
<pTab
->nCol
);
1164 if( (pTab
->tabFlags
& TF_HasVirtual
)==0 || iCol
<0 ) return iCol
;
1165 for(i
=0, n
=0; i
<iCol
; i
++){
1166 if( (pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
)==0 ) n
++;
1168 if( pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
){
1169 /* iCol is a virtual column itself */
1170 return pTab
->nNVCol
+ i
- n
;
1172 /* iCol is a normal or stored column */
1179 ** Insert a single OP_JournalMode query opcode in order to force the
1180 ** prepared statement to return false for sqlite3_stmt_readonly(). This
1181 ** is used by CREATE TABLE IF NOT EXISTS and similar if the table already
1182 ** exists, so that the prepared statement for CREATE TABLE IF NOT EXISTS
1183 ** will return false for sqlite3_stmt_readonly() even if that statement
1184 ** is a read-only no-op.
1186 static void sqlite3ForceNotReadOnly(Parse
*pParse
){
1187 int iReg
= ++pParse
->nMem
;
1188 Vdbe
*v
= sqlite3GetVdbe(pParse
);
1190 sqlite3VdbeAddOp3(v
, OP_JournalMode
, 0, iReg
, PAGER_JOURNALMODE_QUERY
);
1191 sqlite3VdbeUsesBtree(v
, 0);
1196 ** Begin constructing a new table representation in memory. This is
1197 ** the first of several action routines that get called in response
1198 ** to a CREATE TABLE statement. In particular, this routine is called
1199 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
1200 ** flag is true if the table should be stored in the auxiliary database
1201 ** file instead of in the main database file. This is normally the case
1202 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
1203 ** CREATE and TABLE.
1205 ** The new table record is initialized and put in pParse->pNewTable.
1206 ** As more of the CREATE TABLE statement is parsed, additional action
1207 ** routines will be called to add more information to this record.
1208 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
1209 ** is called to complete the construction of the new table record.
1211 void sqlite3StartTable(
1212 Parse
*pParse
, /* Parser context */
1213 Token
*pName1
, /* First part of the name of the table or view */
1214 Token
*pName2
, /* Second part of the name of the table or view */
1215 int isTemp
, /* True if this is a TEMP table */
1216 int isView
, /* True if this is a VIEW */
1217 int isVirtual
, /* True if this is a VIRTUAL table */
1218 int noErr
/* Do nothing if table already exists */
1221 char *zName
= 0; /* The name of the new table */
1222 sqlite3
*db
= pParse
->db
;
1224 int iDb
; /* Database number to create the table in */
1225 Token
*pName
; /* Unqualified name of the table to create */
1227 if( db
->init
.busy
&& db
->init
.newTnum
==1 ){
1228 /* Special case: Parsing the sqlite_schema or sqlite_temp_schema schema */
1230 zName
= sqlite3DbStrDup(db
, SCHEMA_TABLE(iDb
));
1233 /* The common case */
1234 iDb
= sqlite3TwoPartName(pParse
, pName1
, pName2
, &pName
);
1236 if( !OMIT_TEMPDB
&& isTemp
&& pName2
->n
>0 && iDb
!=1 ){
1237 /* If creating a temp table, the name may not be qualified. Unless
1238 ** the database name is "temp" anyway. */
1239 sqlite3ErrorMsg(pParse
, "temporary table name must be unqualified");
1242 if( !OMIT_TEMPDB
&& isTemp
) iDb
= 1;
1243 zName
= sqlite3NameFromToken(db
, pName
);
1244 if( IN_RENAME_OBJECT
){
1245 sqlite3RenameTokenMap(pParse
, (void*)zName
, pName
);
1248 pParse
->sNameToken
= *pName
;
1249 if( zName
==0 ) return;
1250 if( sqlite3CheckObjectName(pParse
, zName
, isView
?"view":"table", zName
) ){
1251 goto begin_table_error
;
1253 if( db
->init
.iDb
==1 ) isTemp
= 1;
1254 #ifndef SQLITE_OMIT_AUTHORIZATION
1255 assert( isTemp
==0 || isTemp
==1 );
1256 assert( isView
==0 || isView
==1 );
1258 static const u8 aCode
[] = {
1259 SQLITE_CREATE_TABLE
,
1260 SQLITE_CREATE_TEMP_TABLE
,
1262 SQLITE_CREATE_TEMP_VIEW
1264 char *zDb
= db
->aDb
[iDb
].zDbSName
;
1265 if( sqlite3AuthCheck(pParse
, SQLITE_INSERT
, SCHEMA_TABLE(isTemp
), 0, zDb
) ){
1266 goto begin_table_error
;
1268 if( !isVirtual
&& sqlite3AuthCheck(pParse
, (int)aCode
[isTemp
+2*isView
],
1270 goto begin_table_error
;
1275 /* Make sure the new table name does not collide with an existing
1276 ** index or table name in the same database. Issue an error message if
1277 ** it does. The exception is if the statement being parsed was passed
1278 ** to an sqlite3_declare_vtab() call. In that case only the column names
1279 ** and types will be used, so there is no need to test for namespace
1282 if( !IN_SPECIAL_PARSE
){
1283 char *zDb
= db
->aDb
[iDb
].zDbSName
;
1284 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
1285 goto begin_table_error
;
1287 pTable
= sqlite3FindTable(db
, zName
, zDb
);
1290 sqlite3ErrorMsg(pParse
, "%s %T already exists",
1291 (IsView(pTable
)? "view" : "table"), pName
);
1293 assert( !db
->init
.busy
|| CORRUPT_DB
);
1294 sqlite3CodeVerifySchema(pParse
, iDb
);
1295 sqlite3ForceNotReadOnly(pParse
);
1297 goto begin_table_error
;
1299 if( sqlite3FindIndex(db
, zName
, zDb
)!=0 ){
1300 sqlite3ErrorMsg(pParse
, "there is already an index named %s", zName
);
1301 goto begin_table_error
;
1305 pTable
= sqlite3DbMallocZero(db
, sizeof(Table
));
1307 assert( db
->mallocFailed
);
1308 pParse
->rc
= SQLITE_NOMEM_BKPT
;
1310 goto begin_table_error
;
1312 pTable
->zName
= zName
;
1314 pTable
->pSchema
= db
->aDb
[iDb
].pSchema
;
1315 pTable
->nTabRef
= 1;
1316 #ifdef SQLITE_DEFAULT_ROWEST
1317 pTable
->nRowLogEst
= sqlite3LogEst(SQLITE_DEFAULT_ROWEST
);
1319 pTable
->nRowLogEst
= 200; assert( 200==sqlite3LogEst(1048576) );
1321 assert( pParse
->pNewTable
==0 );
1322 pParse
->pNewTable
= pTable
;
1324 /* Begin generating the code that will insert the table record into
1325 ** the schema table. Note in particular that we must go ahead
1326 ** and allocate the record number for the table entry now. Before any
1327 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
1328 ** indices to be created and the table record must come before the
1329 ** indices. Hence, the record number for the table must be allocated
1332 if( !db
->init
.busy
&& (v
= sqlite3GetVdbe(pParse
))!=0 ){
1335 int reg1
, reg2
, reg3
;
1336 /* nullRow[] is an OP_Record encoding of a row containing 5 NULLs */
1337 static const char nullRow
[] = { 6, 0, 0, 0, 0, 0 };
1338 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
1340 #ifndef SQLITE_OMIT_VIRTUALTABLE
1342 sqlite3VdbeAddOp0(v
, OP_VBegin
);
1346 /* If the file format and encoding in the database have not been set,
1349 reg1
= pParse
->regRowid
= ++pParse
->nMem
;
1350 reg2
= pParse
->regRoot
= ++pParse
->nMem
;
1351 reg3
= ++pParse
->nMem
;
1352 sqlite3VdbeAddOp3(v
, OP_ReadCookie
, iDb
, reg3
, BTREE_FILE_FORMAT
);
1353 sqlite3VdbeUsesBtree(v
, iDb
);
1354 addr1
= sqlite3VdbeAddOp1(v
, OP_If
, reg3
); VdbeCoverage(v
);
1355 fileFormat
= (db
->flags
& SQLITE_LegacyFileFmt
)!=0 ?
1356 1 : SQLITE_MAX_FILE_FORMAT
;
1357 sqlite3VdbeAddOp3(v
, OP_SetCookie
, iDb
, BTREE_FILE_FORMAT
, fileFormat
);
1358 sqlite3VdbeAddOp3(v
, OP_SetCookie
, iDb
, BTREE_TEXT_ENCODING
, ENC(db
));
1359 sqlite3VdbeJumpHere(v
, addr1
);
1361 /* This just creates a place-holder record in the sqlite_schema table.
1362 ** The record created does not contain anything yet. It will be replaced
1363 ** by the real entry in code generated at sqlite3EndTable().
1365 ** The rowid for the new entry is left in register pParse->regRowid.
1366 ** The root page number of the new table is left in reg pParse->regRoot.
1367 ** The rowid and root page number values are needed by the code that
1368 ** sqlite3EndTable will generate.
1370 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1371 if( isView
|| isVirtual
){
1372 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, reg2
);
1376 assert( !pParse
->bReturning
);
1377 pParse
->u1
.addrCrTab
=
1378 sqlite3VdbeAddOp3(v
, OP_CreateBtree
, iDb
, reg2
, BTREE_INTKEY
);
1380 sqlite3OpenSchemaTable(pParse
, iDb
);
1381 sqlite3VdbeAddOp2(v
, OP_NewRowid
, 0, reg1
);
1382 sqlite3VdbeAddOp4(v
, OP_Blob
, 6, reg3
, 0, nullRow
, P4_STATIC
);
1383 sqlite3VdbeAddOp3(v
, OP_Insert
, 0, reg3
, reg1
);
1384 sqlite3VdbeChangeP5(v
, OPFLAG_APPEND
);
1385 sqlite3VdbeAddOp0(v
, OP_Close
);
1388 /* Normal (non-error) return. */
1391 /* If an error occurs, we jump here */
1393 pParse
->checkSchema
= 1;
1394 sqlite3DbFree(db
, zName
);
1398 /* Set properties of a table column based on the (magical)
1399 ** name of the column.
1401 #if SQLITE_ENABLE_HIDDEN_COLUMNS
1402 void sqlite3ColumnPropertiesFromName(Table
*pTab
, Column
*pCol
){
1403 if( sqlite3_strnicmp(pCol
->zCnName
, "__hidden__", 10)==0 ){
1404 pCol
->colFlags
|= COLFLAG_HIDDEN
;
1405 if( pTab
) pTab
->tabFlags
|= TF_HasHidden
;
1406 }else if( pTab
&& pCol
!=pTab
->aCol
&& (pCol
[-1].colFlags
& COLFLAG_HIDDEN
) ){
1407 pTab
->tabFlags
|= TF_OOOHidden
;
1413 ** Name of the special TEMP trigger used to implement RETURNING. The
1414 ** name begins with "sqlite_" so that it is guaranteed not to collide
1415 ** with any application-generated triggers.
1417 #define RETURNING_TRIGGER_NAME "sqlite_returning"
1420 ** Clean up the data structures associated with the RETURNING clause.
1422 static void sqlite3DeleteReturning(sqlite3
*db
, Returning
*pRet
){
1424 pHash
= &(db
->aDb
[1].pSchema
->trigHash
);
1425 sqlite3HashInsert(pHash
, RETURNING_TRIGGER_NAME
, 0);
1426 sqlite3ExprListDelete(db
, pRet
->pReturnEL
);
1427 sqlite3DbFree(db
, pRet
);
1431 ** Add the RETURNING clause to the parse currently underway.
1433 ** This routine creates a special TEMP trigger that will fire for each row
1434 ** of the DML statement. That TEMP trigger contains a single SELECT
1435 ** statement with a result set that is the argument of the RETURNING clause.
1436 ** The trigger has the Trigger.bReturning flag and an opcode of
1437 ** TK_RETURNING instead of TK_SELECT, so that the trigger code generator
1438 ** knows to handle it specially. The TEMP trigger is automatically
1439 ** removed at the end of the parse.
1441 ** When this routine is called, we do not yet know if the RETURNING clause
1442 ** is attached to a DELETE, INSERT, or UPDATE, so construct it as a
1443 ** RETURNING trigger instead. It will then be converted into the appropriate
1444 ** type on the first call to sqlite3TriggersExist().
1446 void sqlite3AddReturning(Parse
*pParse
, ExprList
*pList
){
1449 sqlite3
*db
= pParse
->db
;
1450 if( pParse
->pNewTrigger
){
1451 sqlite3ErrorMsg(pParse
, "cannot use RETURNING in a trigger");
1453 assert( pParse
->bReturning
==0 );
1455 pParse
->bReturning
= 1;
1456 pRet
= sqlite3DbMallocZero(db
, sizeof(*pRet
));
1458 sqlite3ExprListDelete(db
, pList
);
1461 pParse
->u1
.pReturning
= pRet
;
1462 pRet
->pParse
= pParse
;
1463 pRet
->pReturnEL
= pList
;
1464 sqlite3ParserAddCleanup(pParse
,
1465 (void(*)(sqlite3
*,void*))sqlite3DeleteReturning
, pRet
);
1466 testcase( pParse
->earlyCleanup
);
1467 if( db
->mallocFailed
) return;
1468 pRet
->retTrig
.zName
= RETURNING_TRIGGER_NAME
;
1469 pRet
->retTrig
.op
= TK_RETURNING
;
1470 pRet
->retTrig
.tr_tm
= TRIGGER_AFTER
;
1471 pRet
->retTrig
.bReturning
= 1;
1472 pRet
->retTrig
.pSchema
= db
->aDb
[1].pSchema
;
1473 pRet
->retTrig
.pTabSchema
= db
->aDb
[1].pSchema
;
1474 pRet
->retTrig
.step_list
= &pRet
->retTStep
;
1475 pRet
->retTStep
.op
= TK_RETURNING
;
1476 pRet
->retTStep
.pTrig
= &pRet
->retTrig
;
1477 pRet
->retTStep
.pExprList
= pList
;
1478 pHash
= &(db
->aDb
[1].pSchema
->trigHash
);
1479 assert( sqlite3HashFind(pHash
, RETURNING_TRIGGER_NAME
)==0 || pParse
->nErr
);
1480 if( sqlite3HashInsert(pHash
, RETURNING_TRIGGER_NAME
, &pRet
->retTrig
)
1482 sqlite3OomFault(db
);
1487 ** Add a new column to the table currently being constructed.
1489 ** The parser calls this routine once for each column declaration
1490 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
1491 ** first to get things going. Then this routine is called for each
1494 void sqlite3AddColumn(Parse
*pParse
, Token sName
, Token sType
){
1500 sqlite3
*db
= pParse
->db
;
1503 u8 eType
= COLTYPE_CUSTOM
;
1505 char affinity
= SQLITE_AFF_BLOB
;
1507 if( (p
= pParse
->pNewTable
)==0 ) return;
1508 if( p
->nCol
+1>db
->aLimit
[SQLITE_LIMIT_COLUMN
] ){
1509 sqlite3ErrorMsg(pParse
, "too many columns on %s", p
->zName
);
1512 if( !IN_RENAME_OBJECT
) sqlite3DequoteToken(&sName
);
1514 /* Because keywords GENERATE ALWAYS can be converted into indentifiers
1515 ** by the parser, we can sometimes end up with a typename that ends
1516 ** with "generated always". Check for this case and omit the surplus
1519 && sqlite3_strnicmp(sType
.z
+(sType
.n
-6),"always",6)==0
1522 while( ALWAYS(sType
.n
>0) && sqlite3Isspace(sType
.z
[sType
.n
-1]) ) sType
.n
--;
1524 && sqlite3_strnicmp(sType
.z
+(sType
.n
-9),"generated",9)==0
1527 while( sType
.n
>0 && sqlite3Isspace(sType
.z
[sType
.n
-1]) ) sType
.n
--;
1531 /* Check for standard typenames. For standard typenames we will
1532 ** set the Column.eType field rather than storing the typename after
1533 ** the column name, in order to save space. */
1535 sqlite3DequoteToken(&sType
);
1536 for(i
=0; i
<SQLITE_N_STDTYPE
; i
++){
1537 if( sType
.n
==sqlite3StdTypeLen
[i
]
1538 && sqlite3_strnicmp(sType
.z
, sqlite3StdType
[i
], sType
.n
)==0
1542 affinity
= sqlite3StdTypeAffinity
[i
];
1543 if( affinity
<=SQLITE_AFF_TEXT
) szEst
= 5;
1549 z
= sqlite3DbMallocRaw(db
, (i64
)sName
.n
+ 1 + (i64
)sType
.n
+ (sType
.n
>0) );
1551 if( IN_RENAME_OBJECT
) sqlite3RenameTokenMap(pParse
, (void*)z
, &sName
);
1552 memcpy(z
, sName
.z
, sName
.n
);
1555 hName
= sqlite3StrIHash(z
);
1556 for(i
=0; i
<p
->nCol
; i
++){
1557 if( p
->aCol
[i
].hName
==hName
&& sqlite3StrICmp(z
, p
->aCol
[i
].zCnName
)==0 ){
1558 sqlite3ErrorMsg(pParse
, "duplicate column name: %s", z
);
1559 sqlite3DbFree(db
, z
);
1563 aNew
= sqlite3DbRealloc(db
,p
->aCol
,((i64
)p
->nCol
+1)*sizeof(p
->aCol
[0]));
1565 sqlite3DbFree(db
, z
);
1569 pCol
= &p
->aCol
[p
->nCol
];
1570 memset(pCol
, 0, sizeof(p
->aCol
[0]));
1572 pCol
->hName
= hName
;
1573 sqlite3ColumnPropertiesFromName(p
, pCol
);
1576 /* If there is no type specified, columns have the default affinity
1577 ** 'BLOB' with a default size of 4 bytes. */
1578 pCol
->affinity
= affinity
;
1579 pCol
->eCType
= eType
;
1580 pCol
->szEst
= szEst
;
1581 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1582 if( affinity
==SQLITE_AFF_BLOB
){
1583 if( 4>=sqlite3GlobalConfig
.szSorterRef
){
1584 pCol
->colFlags
|= COLFLAG_SORTERREF
;
1589 zType
= z
+ sqlite3Strlen30(z
) + 1;
1590 memcpy(zType
, sType
.z
, sType
.n
);
1592 sqlite3Dequote(zType
);
1593 pCol
->affinity
= sqlite3AffinityType(zType
, pCol
);
1594 pCol
->colFlags
|= COLFLAG_HASTYPE
;
1598 pParse
->constraintName
.n
= 0;
1602 ** This routine is called by the parser while in the middle of
1603 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
1604 ** been seen on a column. This routine sets the notNull flag on
1605 ** the column currently under construction.
1607 void sqlite3AddNotNull(Parse
*pParse
, int onError
){
1610 p
= pParse
->pNewTable
;
1611 if( p
==0 || NEVER(p
->nCol
<1) ) return;
1612 pCol
= &p
->aCol
[p
->nCol
-1];
1613 pCol
->notNull
= (u8
)onError
;
1614 p
->tabFlags
|= TF_HasNotNull
;
1616 /* Set the uniqNotNull flag on any UNIQUE or PK indexes already created
1617 ** on this column. */
1618 if( pCol
->colFlags
& COLFLAG_UNIQUE
){
1620 for(pIdx
=p
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
1621 assert( pIdx
->nKeyCol
==1 && pIdx
->onError
!=OE_None
);
1622 if( pIdx
->aiColumn
[0]==p
->nCol
-1 ){
1623 pIdx
->uniqNotNull
= 1;
1630 ** Scan the column type name zType (length nType) and return the
1631 ** associated affinity type.
1633 ** This routine does a case-independent search of zType for the
1634 ** substrings in the following table. If one of the substrings is
1635 ** found, the corresponding affinity is returned. If zType contains
1636 ** more than one of the substrings, entries toward the top of
1637 ** the table take priority. For example, if zType is 'BLOBINT',
1638 ** SQLITE_AFF_INTEGER is returned.
1640 ** Substring | Affinity
1641 ** --------------------------------
1642 ** 'INT' | SQLITE_AFF_INTEGER
1643 ** 'CHAR' | SQLITE_AFF_TEXT
1644 ** 'CLOB' | SQLITE_AFF_TEXT
1645 ** 'TEXT' | SQLITE_AFF_TEXT
1646 ** 'BLOB' | SQLITE_AFF_BLOB
1647 ** 'REAL' | SQLITE_AFF_REAL
1648 ** 'FLOA' | SQLITE_AFF_REAL
1649 ** 'DOUB' | SQLITE_AFF_REAL
1651 ** If none of the substrings in the above table are found,
1652 ** SQLITE_AFF_NUMERIC is returned.
1654 char sqlite3AffinityType(const char *zIn
, Column
*pCol
){
1656 char aff
= SQLITE_AFF_NUMERIC
;
1657 const char *zChar
= 0;
1661 h
= (h
<<8) + sqlite3UpperToLower
[(*zIn
)&0xff];
1663 if( h
==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1664 aff
= SQLITE_AFF_TEXT
;
1666 }else if( h
==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1667 aff
= SQLITE_AFF_TEXT
;
1668 }else if( h
==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1669 aff
= SQLITE_AFF_TEXT
;
1670 }else if( h
==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1671 && (aff
==SQLITE_AFF_NUMERIC
|| aff
==SQLITE_AFF_REAL
) ){
1672 aff
= SQLITE_AFF_BLOB
;
1673 if( zIn
[0]=='(' ) zChar
= zIn
;
1674 #ifndef SQLITE_OMIT_FLOATING_POINT
1675 }else if( h
==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1676 && aff
==SQLITE_AFF_NUMERIC
){
1677 aff
= SQLITE_AFF_REAL
;
1678 }else if( h
==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1679 && aff
==SQLITE_AFF_NUMERIC
){
1680 aff
= SQLITE_AFF_REAL
;
1681 }else if( h
==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1682 && aff
==SQLITE_AFF_NUMERIC
){
1683 aff
= SQLITE_AFF_REAL
;
1685 }else if( (h
&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1686 aff
= SQLITE_AFF_INTEGER
;
1691 /* If pCol is not NULL, store an estimate of the field size. The
1692 ** estimate is scaled so that the size of an integer is 1. */
1694 int v
= 0; /* default size is approx 4 bytes */
1695 if( aff
<SQLITE_AFF_NUMERIC
){
1698 if( sqlite3Isdigit(zChar
[0]) ){
1699 /* BLOB(k), VARCHAR(k), CHAR(k) -> r=(k/4+1) */
1700 sqlite3GetInt32(zChar
, &v
);
1706 v
= 16; /* BLOB, TEXT, CLOB -> r=5 (approx 20 bytes)*/
1709 #ifdef SQLITE_ENABLE_SORTER_REFERENCES
1710 if( v
>=sqlite3GlobalConfig
.szSorterRef
){
1711 pCol
->colFlags
|= COLFLAG_SORTERREF
;
1715 if( v
>255 ) v
= 255;
1722 ** The expression is the default value for the most recently added column
1723 ** of the table currently under construction.
1725 ** Default value expressions must be constant. Raise an exception if this
1728 ** This routine is called by the parser while in the middle of
1729 ** parsing a CREATE TABLE statement.
1731 void sqlite3AddDefaultValue(
1732 Parse
*pParse
, /* Parsing context */
1733 Expr
*pExpr
, /* The parsed expression of the default value */
1734 const char *zStart
, /* Start of the default value text */
1735 const char *zEnd
/* First character past end of defaut value text */
1739 sqlite3
*db
= pParse
->db
;
1740 p
= pParse
->pNewTable
;
1742 int isInit
= db
->init
.busy
&& db
->init
.iDb
!=1;
1743 pCol
= &(p
->aCol
[p
->nCol
-1]);
1744 if( !sqlite3ExprIsConstantOrFunction(pExpr
, isInit
) ){
1745 sqlite3ErrorMsg(pParse
, "default value of column [%s] is not constant",
1747 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1748 }else if( pCol
->colFlags
& COLFLAG_GENERATED
){
1749 testcase( pCol
->colFlags
& COLFLAG_VIRTUAL
);
1750 testcase( pCol
->colFlags
& COLFLAG_STORED
);
1751 sqlite3ErrorMsg(pParse
, "cannot use DEFAULT on a generated column");
1754 /* A copy of pExpr is used instead of the original, as pExpr contains
1755 ** tokens that point to volatile memory.
1758 memset(&x
, 0, sizeof(x
));
1760 x
.u
.zToken
= sqlite3DbSpanDup(db
, zStart
, zEnd
);
1763 pDfltExpr
= sqlite3ExprDup(db
, &x
, EXPRDUP_REDUCE
);
1764 sqlite3DbFree(db
, x
.u
.zToken
);
1765 sqlite3ColumnSetExpr(pParse
, p
, pCol
, pDfltExpr
);
1768 if( IN_RENAME_OBJECT
){
1769 sqlite3RenameExprUnmap(pParse
, pExpr
);
1771 sqlite3ExprDelete(db
, pExpr
);
1775 ** Backwards Compatibility Hack:
1777 ** Historical versions of SQLite accepted strings as column names in
1778 ** indexes and PRIMARY KEY constraints and in UNIQUE constraints. Example:
1780 ** CREATE TABLE xyz(a,b,c,d,e,PRIMARY KEY('a'),UNIQUE('b','c' COLLATE trim)
1781 ** CREATE INDEX abc ON xyz('c','d' DESC,'e' COLLATE nocase DESC);
1783 ** This is goofy. But to preserve backwards compatibility we continue to
1784 ** accept it. This routine does the necessary conversion. It converts
1785 ** the expression given in its argument from a TK_STRING into a TK_ID
1786 ** if the expression is just a TK_STRING with an optional COLLATE clause.
1787 ** If the expression is anything other than TK_STRING, the expression is
1790 static void sqlite3StringToId(Expr
*p
){
1791 if( p
->op
==TK_STRING
){
1793 }else if( p
->op
==TK_COLLATE
&& p
->pLeft
->op
==TK_STRING
){
1794 p
->pLeft
->op
= TK_ID
;
1799 ** Tag the given column as being part of the PRIMARY KEY
1801 static void makeColumnPartOfPrimaryKey(Parse
*pParse
, Column
*pCol
){
1802 pCol
->colFlags
|= COLFLAG_PRIMKEY
;
1803 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1804 if( pCol
->colFlags
& COLFLAG_GENERATED
){
1805 testcase( pCol
->colFlags
& COLFLAG_VIRTUAL
);
1806 testcase( pCol
->colFlags
& COLFLAG_STORED
);
1807 sqlite3ErrorMsg(pParse
,
1808 "generated columns cannot be part of the PRIMARY KEY");
1814 ** Designate the PRIMARY KEY for the table. pList is a list of names
1815 ** of columns that form the primary key. If pList is NULL, then the
1816 ** most recently added column of the table is the primary key.
1818 ** A table can have at most one primary key. If the table already has
1819 ** a primary key (and this is the second primary key) then create an
1822 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1823 ** then we will try to use that column as the rowid. Set the Table.iPKey
1824 ** field of the table under construction to be the index of the
1825 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1826 ** no INTEGER PRIMARY KEY.
1828 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1829 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1831 void sqlite3AddPrimaryKey(
1832 Parse
*pParse
, /* Parsing context */
1833 ExprList
*pList
, /* List of field names to be indexed */
1834 int onError
, /* What to do with a uniqueness conflict */
1835 int autoInc
, /* True if the AUTOINCREMENT keyword is present */
1836 int sortOrder
/* SQLITE_SO_ASC or SQLITE_SO_DESC */
1838 Table
*pTab
= pParse
->pNewTable
;
1842 if( pTab
==0 ) goto primary_key_exit
;
1843 if( pTab
->tabFlags
& TF_HasPrimaryKey
){
1844 sqlite3ErrorMsg(pParse
,
1845 "table \"%s\" has more than one primary key", pTab
->zName
);
1846 goto primary_key_exit
;
1848 pTab
->tabFlags
|= TF_HasPrimaryKey
;
1850 iCol
= pTab
->nCol
- 1;
1851 pCol
= &pTab
->aCol
[iCol
];
1852 makeColumnPartOfPrimaryKey(pParse
, pCol
);
1855 nTerm
= pList
->nExpr
;
1856 for(i
=0; i
<nTerm
; i
++){
1857 Expr
*pCExpr
= sqlite3ExprSkipCollate(pList
->a
[i
].pExpr
);
1858 assert( pCExpr
!=0 );
1859 sqlite3StringToId(pCExpr
);
1860 if( pCExpr
->op
==TK_ID
){
1862 assert( !ExprHasProperty(pCExpr
, EP_IntValue
) );
1863 zCName
= pCExpr
->u
.zToken
;
1864 for(iCol
=0; iCol
<pTab
->nCol
; iCol
++){
1865 if( sqlite3StrICmp(zCName
, pTab
->aCol
[iCol
].zCnName
)==0 ){
1866 pCol
= &pTab
->aCol
[iCol
];
1867 makeColumnPartOfPrimaryKey(pParse
, pCol
);
1876 && pCol
->eCType
==COLTYPE_INTEGER
1877 && sortOrder
!=SQLITE_SO_DESC
1879 if( IN_RENAME_OBJECT
&& pList
){
1880 Expr
*pCExpr
= sqlite3ExprSkipCollate(pList
->a
[0].pExpr
);
1881 sqlite3RenameTokenRemap(pParse
, &pTab
->iPKey
, pCExpr
);
1884 pTab
->keyConf
= (u8
)onError
;
1885 assert( autoInc
==0 || autoInc
==1 );
1886 pTab
->tabFlags
|= autoInc
*TF_Autoincrement
;
1887 if( pList
) pParse
->iPkSortOrder
= pList
->a
[0].fg
.sortFlags
;
1888 (void)sqlite3HasExplicitNulls(pParse
, pList
);
1889 }else if( autoInc
){
1890 #ifndef SQLITE_OMIT_AUTOINCREMENT
1891 sqlite3ErrorMsg(pParse
, "AUTOINCREMENT is only allowed on an "
1892 "INTEGER PRIMARY KEY");
1895 sqlite3CreateIndex(pParse
, 0, 0, 0, pList
, onError
, 0,
1896 0, sortOrder
, 0, SQLITE_IDXTYPE_PRIMARYKEY
);
1901 sqlite3ExprListDelete(pParse
->db
, pList
);
1906 ** Add a new CHECK constraint to the table currently under construction.
1908 void sqlite3AddCheckConstraint(
1909 Parse
*pParse
, /* Parsing context */
1910 Expr
*pCheckExpr
, /* The check expression */
1911 const char *zStart
, /* Opening "(" */
1912 const char *zEnd
/* Closing ")" */
1914 #ifndef SQLITE_OMIT_CHECK
1915 Table
*pTab
= pParse
->pNewTable
;
1916 sqlite3
*db
= pParse
->db
;
1917 if( pTab
&& !IN_DECLARE_VTAB
1918 && !sqlite3BtreeIsReadonly(db
->aDb
[db
->init
.iDb
].pBt
)
1920 pTab
->pCheck
= sqlite3ExprListAppend(pParse
, pTab
->pCheck
, pCheckExpr
);
1921 if( pParse
->constraintName
.n
){
1922 sqlite3ExprListSetName(pParse
, pTab
->pCheck
, &pParse
->constraintName
, 1);
1925 for(zStart
++; sqlite3Isspace(zStart
[0]); zStart
++){}
1926 while( sqlite3Isspace(zEnd
[-1]) ){ zEnd
--; }
1928 t
.n
= (int)(zEnd
- t
.z
);
1929 sqlite3ExprListSetName(pParse
, pTab
->pCheck
, &t
, 1);
1934 sqlite3ExprDelete(pParse
->db
, pCheckExpr
);
1939 ** Set the collation function of the most recently parsed table column
1940 ** to the CollSeq given.
1942 void sqlite3AddCollateType(Parse
*pParse
, Token
*pToken
){
1945 char *zColl
; /* Dequoted name of collation sequence */
1948 if( (p
= pParse
->pNewTable
)==0 || IN_RENAME_OBJECT
) return;
1951 zColl
= sqlite3NameFromToken(db
, pToken
);
1952 if( !zColl
) return;
1954 if( sqlite3LocateCollSeq(pParse
, zColl
) ){
1956 sqlite3ColumnSetColl(db
, &p
->aCol
[i
], zColl
);
1958 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1959 ** then an index may have been created on this column before the
1960 ** collation type was added. Correct this if it is the case.
1962 for(pIdx
=p
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
1963 assert( pIdx
->nKeyCol
==1 );
1964 if( pIdx
->aiColumn
[0]==i
){
1965 pIdx
->azColl
[0] = sqlite3ColumnColl(&p
->aCol
[i
]);
1969 sqlite3DbFree(db
, zColl
);
1972 /* Change the most recently parsed column to be a GENERATED ALWAYS AS
1975 void sqlite3AddGenerated(Parse
*pParse
, Expr
*pExpr
, Token
*pType
){
1976 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
1977 u8 eType
= COLFLAG_VIRTUAL
;
1978 Table
*pTab
= pParse
->pNewTable
;
1981 /* generated column in an CREATE TABLE IF NOT EXISTS that already exists */
1982 goto generated_done
;
1984 pCol
= &(pTab
->aCol
[pTab
->nCol
-1]);
1985 if( IN_DECLARE_VTAB
){
1986 sqlite3ErrorMsg(pParse
, "virtual tables cannot use computed columns");
1987 goto generated_done
;
1989 if( pCol
->iDflt
>0 ) goto generated_error
;
1991 if( pType
->n
==7 && sqlite3StrNICmp("virtual",pType
->z
,7)==0 ){
1993 }else if( pType
->n
==6 && sqlite3StrNICmp("stored",pType
->z
,6)==0 ){
1994 eType
= COLFLAG_STORED
;
1996 goto generated_error
;
1999 if( eType
==COLFLAG_VIRTUAL
) pTab
->nNVCol
--;
2000 pCol
->colFlags
|= eType
;
2001 assert( TF_HasVirtual
==COLFLAG_VIRTUAL
);
2002 assert( TF_HasStored
==COLFLAG_STORED
);
2003 pTab
->tabFlags
|= eType
;
2004 if( pCol
->colFlags
& COLFLAG_PRIMKEY
){
2005 makeColumnPartOfPrimaryKey(pParse
, pCol
); /* For the error message */
2007 sqlite3ColumnSetExpr(pParse
, pTab
, pCol
, pExpr
);
2009 goto generated_done
;
2012 sqlite3ErrorMsg(pParse
, "error in generated column \"%s\"",
2015 sqlite3ExprDelete(pParse
->db
, pExpr
);
2017 /* Throw and error for the GENERATED ALWAYS AS clause if the
2018 ** SQLITE_OMIT_GENERATED_COLUMNS compile-time option is used. */
2019 sqlite3ErrorMsg(pParse
, "generated columns not supported");
2020 sqlite3ExprDelete(pParse
->db
, pExpr
);
2025 ** Generate code that will increment the schema cookie.
2027 ** The schema cookie is used to determine when the schema for the
2028 ** database changes. After each schema change, the cookie value
2029 ** changes. When a process first reads the schema it records the
2030 ** cookie. Thereafter, whenever it goes to access the database,
2031 ** it checks the cookie to make sure the schema has not changed
2032 ** since it was last read.
2034 ** This plan is not completely bullet-proof. It is possible for
2035 ** the schema to change multiple times and for the cookie to be
2036 ** set back to prior value. But schema changes are infrequent
2037 ** and the probability of hitting the same cookie value is only
2038 ** 1 chance in 2^32. So we're safe enough.
2040 ** IMPLEMENTATION-OF: R-34230-56049 SQLite automatically increments
2041 ** the schema-version whenever the schema changes.
2043 void sqlite3ChangeCookie(Parse
*pParse
, int iDb
){
2044 sqlite3
*db
= pParse
->db
;
2045 Vdbe
*v
= pParse
->pVdbe
;
2046 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
2047 sqlite3VdbeAddOp3(v
, OP_SetCookie
, iDb
, BTREE_SCHEMA_VERSION
,
2048 (int)(1+(unsigned)db
->aDb
[iDb
].pSchema
->schema_cookie
));
2052 ** Measure the number of characters needed to output the given
2053 ** identifier. The number returned includes any quotes used
2054 ** but does not include the null terminator.
2056 ** The estimate is conservative. It might be larger that what is
2059 static int identLength(const char *z
){
2061 for(n
=0; *z
; n
++, z
++){
2062 if( *z
=='"' ){ n
++; }
2068 ** The first parameter is a pointer to an output buffer. The second
2069 ** parameter is a pointer to an integer that contains the offset at
2070 ** which to write into the output buffer. This function copies the
2071 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
2072 ** to the specified offset in the buffer and updates *pIdx to refer
2073 ** to the first byte after the last byte written before returning.
2075 ** If the string zSignedIdent consists entirely of alpha-numeric
2076 ** characters, does not begin with a digit and is not an SQL keyword,
2077 ** then it is copied to the output buffer exactly as it is. Otherwise,
2078 ** it is quoted using double-quotes.
2080 static void identPut(char *z
, int *pIdx
, char *zSignedIdent
){
2081 unsigned char *zIdent
= (unsigned char*)zSignedIdent
;
2082 int i
, j
, needQuote
;
2085 for(j
=0; zIdent
[j
]; j
++){
2086 if( !sqlite3Isalnum(zIdent
[j
]) && zIdent
[j
]!='_' ) break;
2088 needQuote
= sqlite3Isdigit(zIdent
[0])
2089 || sqlite3KeywordCode(zIdent
, j
)!=TK_ID
2093 if( needQuote
) z
[i
++] = '"';
2094 for(j
=0; zIdent
[j
]; j
++){
2096 if( zIdent
[j
]=='"' ) z
[i
++] = '"';
2098 if( needQuote
) z
[i
++] = '"';
2104 ** Generate a CREATE TABLE statement appropriate for the given
2105 ** table. Memory to hold the text of the statement is obtained
2106 ** from sqliteMalloc() and must be freed by the calling function.
2108 static char *createTableStmt(sqlite3
*db
, Table
*p
){
2111 char *zSep
, *zSep2
, *zEnd
;
2114 for(pCol
= p
->aCol
, i
=0; i
<p
->nCol
; i
++, pCol
++){
2115 n
+= identLength(pCol
->zCnName
) + 5;
2117 n
+= identLength(p
->zName
);
2127 n
+= 35 + 6*p
->nCol
;
2128 zStmt
= sqlite3DbMallocRaw(0, n
);
2130 sqlite3OomFault(db
);
2133 sqlite3_snprintf(n
, zStmt
, "CREATE TABLE ");
2134 k
= sqlite3Strlen30(zStmt
);
2135 identPut(zStmt
, &k
, p
->zName
);
2137 for(pCol
=p
->aCol
, i
=0; i
<p
->nCol
; i
++, pCol
++){
2138 static const char * const azType
[] = {
2139 /* SQLITE_AFF_BLOB */ "",
2140 /* SQLITE_AFF_TEXT */ " TEXT",
2141 /* SQLITE_AFF_NUMERIC */ " NUM",
2142 /* SQLITE_AFF_INTEGER */ " INT",
2143 /* SQLITE_AFF_REAL */ " REAL"
2148 sqlite3_snprintf(n
-k
, &zStmt
[k
], zSep
);
2149 k
+= sqlite3Strlen30(&zStmt
[k
]);
2151 identPut(zStmt
, &k
, pCol
->zCnName
);
2152 assert( pCol
->affinity
-SQLITE_AFF_BLOB
>= 0 );
2153 assert( pCol
->affinity
-SQLITE_AFF_BLOB
< ArraySize(azType
) );
2154 testcase( pCol
->affinity
==SQLITE_AFF_BLOB
);
2155 testcase( pCol
->affinity
==SQLITE_AFF_TEXT
);
2156 testcase( pCol
->affinity
==SQLITE_AFF_NUMERIC
);
2157 testcase( pCol
->affinity
==SQLITE_AFF_INTEGER
);
2158 testcase( pCol
->affinity
==SQLITE_AFF_REAL
);
2160 zType
= azType
[pCol
->affinity
- SQLITE_AFF_BLOB
];
2161 len
= sqlite3Strlen30(zType
);
2162 assert( pCol
->affinity
==SQLITE_AFF_BLOB
2163 || pCol
->affinity
==sqlite3AffinityType(zType
, 0) );
2164 memcpy(&zStmt
[k
], zType
, len
);
2168 sqlite3_snprintf(n
-k
, &zStmt
[k
], "%s", zEnd
);
2173 ** Resize an Index object to hold N columns total. Return SQLITE_OK
2174 ** on success and SQLITE_NOMEM on an OOM error.
2176 static int resizeIndexObject(sqlite3
*db
, Index
*pIdx
, int N
){
2179 if( pIdx
->nColumn
>=N
) return SQLITE_OK
;
2180 assert( pIdx
->isResized
==0 );
2181 nByte
= (sizeof(char*) + sizeof(LogEst
) + sizeof(i16
) + 1)*N
;
2182 zExtra
= sqlite3DbMallocZero(db
, nByte
);
2183 if( zExtra
==0 ) return SQLITE_NOMEM_BKPT
;
2184 memcpy(zExtra
, pIdx
->azColl
, sizeof(char*)*pIdx
->nColumn
);
2185 pIdx
->azColl
= (const char**)zExtra
;
2186 zExtra
+= sizeof(char*)*N
;
2187 memcpy(zExtra
, pIdx
->aiRowLogEst
, sizeof(LogEst
)*(pIdx
->nKeyCol
+1));
2188 pIdx
->aiRowLogEst
= (LogEst
*)zExtra
;
2189 zExtra
+= sizeof(LogEst
)*N
;
2190 memcpy(zExtra
, pIdx
->aiColumn
, sizeof(i16
)*pIdx
->nColumn
);
2191 pIdx
->aiColumn
= (i16
*)zExtra
;
2192 zExtra
+= sizeof(i16
)*N
;
2193 memcpy(zExtra
, pIdx
->aSortOrder
, pIdx
->nColumn
);
2194 pIdx
->aSortOrder
= (u8
*)zExtra
;
2196 pIdx
->isResized
= 1;
2201 ** Estimate the total row width for a table.
2203 static void estimateTableWidth(Table
*pTab
){
2204 unsigned wTable
= 0;
2205 const Column
*pTabCol
;
2207 for(i
=pTab
->nCol
, pTabCol
=pTab
->aCol
; i
>0; i
--, pTabCol
++){
2208 wTable
+= pTabCol
->szEst
;
2210 if( pTab
->iPKey
<0 ) wTable
++;
2211 pTab
->szTabRow
= sqlite3LogEst(wTable
*4);
2215 ** Estimate the average size of a row for an index.
2217 static void estimateIndexWidth(Index
*pIdx
){
2218 unsigned wIndex
= 0;
2220 const Column
*aCol
= pIdx
->pTable
->aCol
;
2221 for(i
=0; i
<pIdx
->nColumn
; i
++){
2222 i16 x
= pIdx
->aiColumn
[i
];
2223 assert( x
<pIdx
->pTable
->nCol
);
2224 wIndex
+= x
<0 ? 1 : aCol
[pIdx
->aiColumn
[i
]].szEst
;
2226 pIdx
->szIdxRow
= sqlite3LogEst(wIndex
*4);
2229 /* Return true if column number x is any of the first nCol entries of aiCol[].
2230 ** This is used to determine if the column number x appears in any of the
2231 ** first nCol entries of an index.
2233 static int hasColumn(const i16
*aiCol
, int nCol
, int x
){
2234 while( nCol
-- > 0 ){
2235 if( x
==*(aiCol
++) ){
2243 ** Return true if any of the first nKey entries of index pIdx exactly
2244 ** match the iCol-th entry of pPk. pPk is always a WITHOUT ROWID
2245 ** PRIMARY KEY index. pIdx is an index on the same table. pIdx may
2246 ** or may not be the same index as pPk.
2248 ** The first nKey entries of pIdx are guaranteed to be ordinary columns,
2249 ** not a rowid or expression.
2251 ** This routine differs from hasColumn() in that both the column and the
2252 ** collating sequence must match for this routine, but for hasColumn() only
2253 ** the column name must match.
2255 static int isDupColumn(Index
*pIdx
, int nKey
, Index
*pPk
, int iCol
){
2257 assert( nKey
<=pIdx
->nColumn
);
2258 assert( iCol
<MAX(pPk
->nColumn
,pPk
->nKeyCol
) );
2259 assert( pPk
->idxType
==SQLITE_IDXTYPE_PRIMARYKEY
);
2260 assert( pPk
->pTable
->tabFlags
& TF_WithoutRowid
);
2261 assert( pPk
->pTable
==pIdx
->pTable
);
2262 testcase( pPk
==pIdx
);
2263 j
= pPk
->aiColumn
[iCol
];
2264 assert( j
!=XN_ROWID
&& j
!=XN_EXPR
);
2265 for(i
=0; i
<nKey
; i
++){
2266 assert( pIdx
->aiColumn
[i
]>=0 || j
>=0 );
2267 if( pIdx
->aiColumn
[i
]==j
2268 && sqlite3StrICmp(pIdx
->azColl
[i
], pPk
->azColl
[iCol
])==0
2276 /* Recompute the colNotIdxed field of the Index.
2278 ** colNotIdxed is a bitmask that has a 0 bit representing each indexed
2279 ** columns that are within the first 63 columns of the table and a 1 for
2280 ** all other bits (all columns that are not in the index). The
2281 ** high-order bit of colNotIdxed is always 1. All unindexed columns
2282 ** of the table have a 1.
2284 ** 2019-10-24: For the purpose of this computation, virtual columns are
2285 ** not considered to be covered by the index, even if they are in the
2286 ** index, because we do not trust the logic in whereIndexExprTrans() to be
2287 ** able to find all instances of a reference to the indexed table column
2288 ** and convert them into references to the index. Hence we always want
2289 ** the actual table at hand in order to recompute the virtual column, if
2292 ** The colNotIdxed mask is AND-ed with the SrcList.a[].colUsed mask
2293 ** to determine if the index is covering index.
2295 static void recomputeColumnsNotIndexed(Index
*pIdx
){
2298 Table
*pTab
= pIdx
->pTable
;
2299 for(j
=pIdx
->nColumn
-1; j
>=0; j
--){
2300 int x
= pIdx
->aiColumn
[j
];
2301 if( x
>=0 && (pTab
->aCol
[x
].colFlags
& COLFLAG_VIRTUAL
)==0 ){
2302 testcase( x
==BMS
-1 );
2303 testcase( x
==BMS
-2 );
2304 if( x
<BMS
-1 ) m
|= MASKBIT(x
);
2307 pIdx
->colNotIdxed
= ~m
;
2308 assert( (pIdx
->colNotIdxed
>>63)==1 ); /* See note-20221022-a */
2312 ** This routine runs at the end of parsing a CREATE TABLE statement that
2313 ** has a WITHOUT ROWID clause. The job of this routine is to convert both
2314 ** internal schema data structures and the generated VDBE code so that they
2315 ** are appropriate for a WITHOUT ROWID table instead of a rowid table.
2318 ** (1) Set all columns of the PRIMARY KEY schema object to be NOT NULL.
2319 ** (2) Convert P3 parameter of the OP_CreateBtree from BTREE_INTKEY
2320 ** into BTREE_BLOBKEY.
2321 ** (3) Bypass the creation of the sqlite_schema table entry
2322 ** for the PRIMARY KEY as the primary key index is now
2323 ** identified by the sqlite_schema table entry of the table itself.
2324 ** (4) Set the Index.tnum of the PRIMARY KEY Index object in the
2325 ** schema to the rootpage from the main table.
2326 ** (5) Add all table columns to the PRIMARY KEY Index object
2327 ** so that the PRIMARY KEY is a covering index. The surplus
2328 ** columns are part of KeyInfo.nAllField and are not used for
2329 ** sorting or lookup or uniqueness checks.
2330 ** (6) Replace the rowid tail on all automatically generated UNIQUE
2331 ** indices with the PRIMARY KEY columns.
2333 ** For virtual tables, only (1) is performed.
2335 static void convertToWithoutRowidTable(Parse
*pParse
, Table
*pTab
){
2341 sqlite3
*db
= pParse
->db
;
2342 Vdbe
*v
= pParse
->pVdbe
;
2344 /* Mark every PRIMARY KEY column as NOT NULL (except for imposter tables)
2346 if( !db
->init
.imposterTable
){
2347 for(i
=0; i
<pTab
->nCol
; i
++){
2348 if( (pTab
->aCol
[i
].colFlags
& COLFLAG_PRIMKEY
)!=0
2349 && (pTab
->aCol
[i
].notNull
==OE_None
)
2351 pTab
->aCol
[i
].notNull
= OE_Abort
;
2354 pTab
->tabFlags
|= TF_HasNotNull
;
2357 /* Convert the P3 operand of the OP_CreateBtree opcode from BTREE_INTKEY
2358 ** into BTREE_BLOBKEY.
2360 assert( !pParse
->bReturning
);
2361 if( pParse
->u1
.addrCrTab
){
2363 sqlite3VdbeChangeP3(v
, pParse
->u1
.addrCrTab
, BTREE_BLOBKEY
);
2366 /* Locate the PRIMARY KEY index. Or, if this table was originally
2367 ** an INTEGER PRIMARY KEY table, create a new PRIMARY KEY index.
2369 if( pTab
->iPKey
>=0 ){
2372 sqlite3TokenInit(&ipkToken
, pTab
->aCol
[pTab
->iPKey
].zCnName
);
2373 pList
= sqlite3ExprListAppend(pParse
, 0,
2374 sqlite3ExprAlloc(db
, TK_ID
, &ipkToken
, 0));
2376 pTab
->tabFlags
&= ~TF_WithoutRowid
;
2379 if( IN_RENAME_OBJECT
){
2380 sqlite3RenameTokenRemap(pParse
, pList
->a
[0].pExpr
, &pTab
->iPKey
);
2382 pList
->a
[0].fg
.sortFlags
= pParse
->iPkSortOrder
;
2383 assert( pParse
->pNewTable
==pTab
);
2385 sqlite3CreateIndex(pParse
, 0, 0, 0, pList
, pTab
->keyConf
, 0, 0, 0, 0,
2386 SQLITE_IDXTYPE_PRIMARYKEY
);
2388 pTab
->tabFlags
&= ~TF_WithoutRowid
;
2391 assert( db
->mallocFailed
==0 );
2392 pPk
= sqlite3PrimaryKeyIndex(pTab
);
2393 assert( pPk
->nKeyCol
==1 );
2395 pPk
= sqlite3PrimaryKeyIndex(pTab
);
2399 ** Remove all redundant columns from the PRIMARY KEY. For example, change
2400 ** "PRIMARY KEY(a,b,a,b,c,b,c,d)" into just "PRIMARY KEY(a,b,c,d)". Later
2401 ** code assumes the PRIMARY KEY contains no repeated columns.
2403 for(i
=j
=1; i
<pPk
->nKeyCol
; i
++){
2404 if( isDupColumn(pPk
, j
, pPk
, i
) ){
2407 testcase( hasColumn(pPk
->aiColumn
, j
, pPk
->aiColumn
[i
]) );
2408 pPk
->azColl
[j
] = pPk
->azColl
[i
];
2409 pPk
->aSortOrder
[j
] = pPk
->aSortOrder
[i
];
2410 pPk
->aiColumn
[j
++] = pPk
->aiColumn
[i
];
2416 pPk
->isCovering
= 1;
2417 if( !db
->init
.imposterTable
) pPk
->uniqNotNull
= 1;
2418 nPk
= pPk
->nColumn
= pPk
->nKeyCol
;
2420 /* Bypass the creation of the PRIMARY KEY btree and the sqlite_schema
2421 ** table entry. This is only required if currently generating VDBE
2422 ** code for a CREATE TABLE (not when parsing one as part of reading
2423 ** a database schema). */
2424 if( v
&& pPk
->tnum
>0 ){
2425 assert( db
->init
.busy
==0 );
2426 sqlite3VdbeChangeOpcode(v
, (int)pPk
->tnum
, OP_Goto
);
2429 /* The root page of the PRIMARY KEY is the table root page */
2430 pPk
->tnum
= pTab
->tnum
;
2432 /* Update the in-memory representation of all UNIQUE indices by converting
2433 ** the final rowid column into one or more columns of the PRIMARY KEY.
2435 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
2437 if( IsPrimaryKeyIndex(pIdx
) ) continue;
2438 for(i
=n
=0; i
<nPk
; i
++){
2439 if( !isDupColumn(pIdx
, pIdx
->nKeyCol
, pPk
, i
) ){
2440 testcase( hasColumn(pIdx
->aiColumn
, pIdx
->nKeyCol
, pPk
->aiColumn
[i
]) );
2445 /* This index is a superset of the primary key */
2446 pIdx
->nColumn
= pIdx
->nKeyCol
;
2449 if( resizeIndexObject(db
, pIdx
, pIdx
->nKeyCol
+n
) ) return;
2450 for(i
=0, j
=pIdx
->nKeyCol
; i
<nPk
; i
++){
2451 if( !isDupColumn(pIdx
, pIdx
->nKeyCol
, pPk
, i
) ){
2452 testcase( hasColumn(pIdx
->aiColumn
, pIdx
->nKeyCol
, pPk
->aiColumn
[i
]) );
2453 pIdx
->aiColumn
[j
] = pPk
->aiColumn
[i
];
2454 pIdx
->azColl
[j
] = pPk
->azColl
[i
];
2455 if( pPk
->aSortOrder
[i
] ){
2456 /* See ticket https://www.sqlite.org/src/info/bba7b69f9849b5bf */
2457 pIdx
->bAscKeyBug
= 1;
2462 assert( pIdx
->nColumn
>=pIdx
->nKeyCol
+n
);
2463 assert( pIdx
->nColumn
>=j
);
2466 /* Add all table columns to the PRIMARY KEY index
2469 for(i
=0; i
<pTab
->nCol
; i
++){
2470 if( !hasColumn(pPk
->aiColumn
, nPk
, i
)
2471 && (pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
)==0 ) nExtra
++;
2473 if( resizeIndexObject(db
, pPk
, nPk
+nExtra
) ) return;
2474 for(i
=0, j
=nPk
; i
<pTab
->nCol
; i
++){
2475 if( !hasColumn(pPk
->aiColumn
, j
, i
)
2476 && (pTab
->aCol
[i
].colFlags
& COLFLAG_VIRTUAL
)==0
2478 assert( j
<pPk
->nColumn
);
2479 pPk
->aiColumn
[j
] = i
;
2480 pPk
->azColl
[j
] = sqlite3StrBINARY
;
2484 assert( pPk
->nColumn
==j
);
2485 assert( pTab
->nNVCol
<=j
);
2486 recomputeColumnsNotIndexed(pPk
);
2490 #ifndef SQLITE_OMIT_VIRTUALTABLE
2492 ** Return true if pTab is a virtual table and zName is a shadow table name
2493 ** for that virtual table.
2495 int sqlite3IsShadowTableOf(sqlite3
*db
, Table
*pTab
, const char *zName
){
2496 int nName
; /* Length of zName */
2497 Module
*pMod
; /* Module for the virtual table */
2499 if( !IsVirtual(pTab
) ) return 0;
2500 nName
= sqlite3Strlen30(pTab
->zName
);
2501 if( sqlite3_strnicmp(zName
, pTab
->zName
, nName
)!=0 ) return 0;
2502 if( zName
[nName
]!='_' ) return 0;
2503 pMod
= (Module
*)sqlite3HashFind(&db
->aModule
, pTab
->u
.vtab
.azArg
[0]);
2504 if( pMod
==0 ) return 0;
2505 if( pMod
->pModule
->iVersion
<3 ) return 0;
2506 if( pMod
->pModule
->xShadowName
==0 ) return 0;
2507 return pMod
->pModule
->xShadowName(zName
+nName
+1);
2509 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2511 #ifndef SQLITE_OMIT_VIRTUALTABLE
2513 ** Table pTab is a virtual table. If it the virtual table implementation
2514 ** exists and has an xShadowName method, then loop over all other ordinary
2515 ** tables within the same schema looking for shadow tables of pTab, and mark
2516 ** any shadow tables seen using the TF_Shadow flag.
2518 void sqlite3MarkAllShadowTablesOf(sqlite3
*db
, Table
*pTab
){
2519 int nName
; /* Length of pTab->zName */
2520 Module
*pMod
; /* Module for the virtual table */
2521 HashElem
*k
; /* For looping through the symbol table */
2523 assert( IsVirtual(pTab
) );
2524 pMod
= (Module
*)sqlite3HashFind(&db
->aModule
, pTab
->u
.vtab
.azArg
[0]);
2525 if( pMod
==0 ) return;
2526 if( NEVER(pMod
->pModule
==0) ) return;
2527 if( pMod
->pModule
->iVersion
<3 ) return;
2528 if( pMod
->pModule
->xShadowName
==0 ) return;
2529 assert( pTab
->zName
!=0 );
2530 nName
= sqlite3Strlen30(pTab
->zName
);
2531 for(k
=sqliteHashFirst(&pTab
->pSchema
->tblHash
); k
; k
=sqliteHashNext(k
)){
2532 Table
*pOther
= sqliteHashData(k
);
2533 assert( pOther
->zName
!=0 );
2534 if( !IsOrdinaryTable(pOther
) ) continue;
2535 if( pOther
->tabFlags
& TF_Shadow
) continue;
2536 if( sqlite3StrNICmp(pOther
->zName
, pTab
->zName
, nName
)==0
2537 && pOther
->zName
[nName
]=='_'
2538 && pMod
->pModule
->xShadowName(pOther
->zName
+nName
+1)
2540 pOther
->tabFlags
|= TF_Shadow
;
2544 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2546 #ifndef SQLITE_OMIT_VIRTUALTABLE
2548 ** Return true if zName is a shadow table name in the current database
2551 ** zName is temporarily modified while this routine is running, but is
2552 ** restored to its original value prior to this routine returning.
2554 int sqlite3ShadowTableName(sqlite3
*db
, const char *zName
){
2555 char *zTail
; /* Pointer to the last "_" in zName */
2556 Table
*pTab
; /* Table that zName is a shadow of */
2557 zTail
= strrchr(zName
, '_');
2558 if( zTail
==0 ) return 0;
2560 pTab
= sqlite3FindTable(db
, zName
, 0);
2562 if( pTab
==0 ) return 0;
2563 if( !IsVirtual(pTab
) ) return 0;
2564 return sqlite3IsShadowTableOf(db
, pTab
, zName
);
2566 #endif /* ifndef SQLITE_OMIT_VIRTUALTABLE */
2571 ** Mark all nodes of an expression as EP_Immutable, indicating that
2572 ** they should not be changed. Expressions attached to a table or
2573 ** index definition are tagged this way to help ensure that we do
2574 ** not pass them into code generator routines by mistake.
2576 static int markImmutableExprStep(Walker
*pWalker
, Expr
*pExpr
){
2577 ExprSetVVAProperty(pExpr
, EP_Immutable
);
2578 return WRC_Continue
;
2580 static void markExprListImmutable(ExprList
*pList
){
2583 memset(&w
, 0, sizeof(w
));
2584 w
.xExprCallback
= markImmutableExprStep
;
2585 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
2586 w
.xSelectCallback2
= 0;
2587 sqlite3WalkExprList(&w
, pList
);
2591 #define markExprListImmutable(X) /* no-op */
2592 #endif /* SQLITE_DEBUG */
2596 ** This routine is called to report the final ")" that terminates
2597 ** a CREATE TABLE statement.
2599 ** The table structure that other action routines have been building
2600 ** is added to the internal hash tables, assuming no errors have
2603 ** An entry for the table is made in the schema table on disk, unless
2604 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
2605 ** it means we are reading the sqlite_schema table because we just
2606 ** connected to the database or because the sqlite_schema table has
2607 ** recently changed, so the entry for this table already exists in
2608 ** the sqlite_schema table. We do not want to create it again.
2610 ** If the pSelect argument is not NULL, it means that this routine
2611 ** was called to create a table generated from a
2612 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
2613 ** the new table will match the result set of the SELECT.
2615 void sqlite3EndTable(
2616 Parse
*pParse
, /* Parse context */
2617 Token
*pCons
, /* The ',' token after the last column defn. */
2618 Token
*pEnd
, /* The ')' before options in the CREATE TABLE */
2619 u32 tabOpts
, /* Extra table options. Usually 0. */
2620 Select
*pSelect
/* Select from a "CREATE ... AS SELECT" */
2622 Table
*p
; /* The new table */
2623 sqlite3
*db
= pParse
->db
; /* The database connection */
2624 int iDb
; /* Database in which the table lives */
2625 Index
*pIdx
; /* An implied index of the table */
2627 if( pEnd
==0 && pSelect
==0 ){
2630 p
= pParse
->pNewTable
;
2633 if( pSelect
==0 && sqlite3ShadowTableName(db
, p
->zName
) ){
2634 p
->tabFlags
|= TF_Shadow
;
2637 /* If the db->init.busy is 1 it means we are reading the SQL off the
2638 ** "sqlite_schema" or "sqlite_temp_schema" table on the disk.
2639 ** So do not write to the disk again. Extract the root page number
2640 ** for the table from the db->init.newTnum field. (The page number
2641 ** should have been put there by the sqliteOpenCb routine.)
2643 ** If the root page number is 1, that means this is the sqlite_schema
2644 ** table itself. So mark it read-only.
2646 if( db
->init
.busy
){
2647 if( pSelect
|| (!IsOrdinaryTable(p
) && db
->init
.newTnum
) ){
2648 sqlite3ErrorMsg(pParse
, "");
2651 p
->tnum
= db
->init
.newTnum
;
2652 if( p
->tnum
==1 ) p
->tabFlags
|= TF_Readonly
;
2655 /* Special processing for tables that include the STRICT keyword:
2657 ** * Do not allow custom column datatypes. Every column must have
2658 ** a datatype that is one of INT, INTEGER, REAL, TEXT, or BLOB.
2660 ** * If a PRIMARY KEY is defined, other than the INTEGER PRIMARY KEY,
2661 ** then all columns of the PRIMARY KEY must have a NOT NULL
2664 if( tabOpts
& TF_Strict
){
2666 p
->tabFlags
|= TF_Strict
;
2667 for(ii
=0; ii
<p
->nCol
; ii
++){
2668 Column
*pCol
= &p
->aCol
[ii
];
2669 if( pCol
->eCType
==COLTYPE_CUSTOM
){
2670 if( pCol
->colFlags
& COLFLAG_HASTYPE
){
2671 sqlite3ErrorMsg(pParse
,
2672 "unknown datatype for %s.%s: \"%s\"",
2673 p
->zName
, pCol
->zCnName
, sqlite3ColumnType(pCol
, "")
2676 sqlite3ErrorMsg(pParse
, "missing datatype for %s.%s",
2677 p
->zName
, pCol
->zCnName
);
2680 }else if( pCol
->eCType
==COLTYPE_ANY
){
2681 pCol
->affinity
= SQLITE_AFF_BLOB
;
2683 if( (pCol
->colFlags
& COLFLAG_PRIMKEY
)!=0
2685 && pCol
->notNull
== OE_None
2687 pCol
->notNull
= OE_Abort
;
2688 p
->tabFlags
|= TF_HasNotNull
;
2693 assert( (p
->tabFlags
& TF_HasPrimaryKey
)==0
2694 || p
->iPKey
>=0 || sqlite3PrimaryKeyIndex(p
)!=0 );
2695 assert( (p
->tabFlags
& TF_HasPrimaryKey
)!=0
2696 || (p
->iPKey
<0 && sqlite3PrimaryKeyIndex(p
)==0) );
2698 /* Special processing for WITHOUT ROWID Tables */
2699 if( tabOpts
& TF_WithoutRowid
){
2700 if( (p
->tabFlags
& TF_Autoincrement
) ){
2701 sqlite3ErrorMsg(pParse
,
2702 "AUTOINCREMENT not allowed on WITHOUT ROWID tables");
2705 if( (p
->tabFlags
& TF_HasPrimaryKey
)==0 ){
2706 sqlite3ErrorMsg(pParse
, "PRIMARY KEY missing on table %s", p
->zName
);
2709 p
->tabFlags
|= TF_WithoutRowid
| TF_NoVisibleRowid
;
2710 convertToWithoutRowidTable(pParse
, p
);
2712 iDb
= sqlite3SchemaToIndex(db
, p
->pSchema
);
2714 #ifndef SQLITE_OMIT_CHECK
2715 /* Resolve names in all CHECK constraint expressions.
2718 sqlite3ResolveSelfReference(pParse
, p
, NC_IsCheck
, 0, p
->pCheck
);
2720 /* If errors are seen, delete the CHECK constraints now, else they might
2721 ** actually be used if PRAGMA writable_schema=ON is set. */
2722 sqlite3ExprListDelete(db
, p
->pCheck
);
2725 markExprListImmutable(p
->pCheck
);
2728 #endif /* !defined(SQLITE_OMIT_CHECK) */
2729 #ifndef SQLITE_OMIT_GENERATED_COLUMNS
2730 if( p
->tabFlags
& TF_HasGenerated
){
2732 testcase( p
->tabFlags
& TF_HasVirtual
);
2733 testcase( p
->tabFlags
& TF_HasStored
);
2734 for(ii
=0; ii
<p
->nCol
; ii
++){
2735 u32 colFlags
= p
->aCol
[ii
].colFlags
;
2736 if( (colFlags
& COLFLAG_GENERATED
)!=0 ){
2737 Expr
*pX
= sqlite3ColumnExpr(p
, &p
->aCol
[ii
]);
2738 testcase( colFlags
& COLFLAG_VIRTUAL
);
2739 testcase( colFlags
& COLFLAG_STORED
);
2740 if( sqlite3ResolveSelfReference(pParse
, p
, NC_GenCol
, pX
, 0) ){
2741 /* If there are errors in resolving the expression, change the
2742 ** expression to a NULL. This prevents code generators that operate
2743 ** on the expression from inserting extra parts into the expression
2744 ** tree that have been allocated from lookaside memory, which is
2745 ** illegal in a schema and will lead to errors or heap corruption
2746 ** when the database connection closes. */
2747 sqlite3ColumnSetExpr(pParse
, p
, &p
->aCol
[ii
],
2748 sqlite3ExprAlloc(db
, TK_NULL
, 0, 0));
2755 sqlite3ErrorMsg(pParse
, "must have at least one non-generated column");
2761 /* Estimate the average row size for the table and for all implied indices */
2762 estimateTableWidth(p
);
2763 for(pIdx
=p
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
2764 estimateIndexWidth(pIdx
);
2767 /* If not initializing, then create a record for the new table
2768 ** in the schema table of the database.
2770 ** If this is a TEMPORARY table, write the entry into the auxiliary
2771 ** file instead of into the main database file.
2773 if( !db
->init
.busy
){
2776 char *zType
; /* "view" or "table" */
2777 char *zType2
; /* "VIEW" or "TABLE" */
2778 char *zStmt
; /* Text of the CREATE TABLE or CREATE VIEW statement */
2780 v
= sqlite3GetVdbe(pParse
);
2781 if( NEVER(v
==0) ) return;
2783 sqlite3VdbeAddOp1(v
, OP_Close
, 0);
2786 ** Initialize zType for the new view or table.
2788 if( IsOrdinaryTable(p
) ){
2789 /* A regular table */
2792 #ifndef SQLITE_OMIT_VIEW
2800 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
2801 ** statement to populate the new table. The root-page number for the
2802 ** new table is in register pParse->regRoot.
2804 ** Once the SELECT has been coded by sqlite3Select(), it is in a
2805 ** suitable state to query for the column names and types to be used
2806 ** by the new table.
2808 ** A shared-cache write-lock is not required to write to the new table,
2809 ** as a schema-lock must have already been obtained to create it. Since
2810 ** a schema-lock excludes all other database users, the write-lock would
2814 SelectDest dest
; /* Where the SELECT should store results */
2815 int regYield
; /* Register holding co-routine entry-point */
2816 int addrTop
; /* Top of the co-routine */
2817 int regRec
; /* A record to be insert into the new table */
2818 int regRowid
; /* Rowid of the next row to insert */
2819 int addrInsLoop
; /* Top of the loop for inserting rows */
2820 Table
*pSelTab
; /* A table that describes the SELECT results */
2822 if( IN_SPECIAL_PARSE
){
2823 pParse
->rc
= SQLITE_ERROR
;
2827 regYield
= ++pParse
->nMem
;
2828 regRec
= ++pParse
->nMem
;
2829 regRowid
= ++pParse
->nMem
;
2830 assert(pParse
->nTab
==1);
2831 sqlite3MayAbort(pParse
);
2832 sqlite3VdbeAddOp3(v
, OP_OpenWrite
, 1, pParse
->regRoot
, iDb
);
2833 sqlite3VdbeChangeP5(v
, OPFLAG_P2ISREG
);
2835 addrTop
= sqlite3VdbeCurrentAddr(v
) + 1;
2836 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regYield
, 0, addrTop
);
2837 if( pParse
->nErr
) return;
2838 pSelTab
= sqlite3ResultSetOfSelect(pParse
, pSelect
, SQLITE_AFF_BLOB
);
2839 if( pSelTab
==0 ) return;
2840 assert( p
->aCol
==0 );
2841 p
->nCol
= p
->nNVCol
= pSelTab
->nCol
;
2842 p
->aCol
= pSelTab
->aCol
;
2845 sqlite3DeleteTable(db
, pSelTab
);
2846 sqlite3SelectDestInit(&dest
, SRT_Coroutine
, regYield
);
2847 sqlite3Select(pParse
, pSelect
, &dest
);
2848 if( pParse
->nErr
) return;
2849 sqlite3VdbeEndCoroutine(v
, regYield
);
2850 sqlite3VdbeJumpHere(v
, addrTop
- 1);
2851 addrInsLoop
= sqlite3VdbeAddOp1(v
, OP_Yield
, dest
.iSDParm
);
2853 sqlite3VdbeAddOp3(v
, OP_MakeRecord
, dest
.iSdst
, dest
.nSdst
, regRec
);
2854 sqlite3TableAffinity(v
, p
, 0);
2855 sqlite3VdbeAddOp2(v
, OP_NewRowid
, 1, regRowid
);
2856 sqlite3VdbeAddOp3(v
, OP_Insert
, 1, regRec
, regRowid
);
2857 sqlite3VdbeGoto(v
, addrInsLoop
);
2858 sqlite3VdbeJumpHere(v
, addrInsLoop
);
2859 sqlite3VdbeAddOp1(v
, OP_Close
, 1);
2862 /* Compute the complete text of the CREATE statement */
2864 zStmt
= createTableStmt(db
, p
);
2866 Token
*pEnd2
= tabOpts
? &pParse
->sLastToken
: pEnd
;
2867 n
= (int)(pEnd2
->z
- pParse
->sNameToken
.z
);
2868 if( pEnd2
->z
[0]!=';' ) n
+= pEnd2
->n
;
2869 zStmt
= sqlite3MPrintf(db
,
2870 "CREATE %s %.*s", zType2
, n
, pParse
->sNameToken
.z
2874 /* A slot for the record has already been allocated in the
2875 ** schema table. We just need to update that slot with all
2876 ** the information we've collected.
2878 sqlite3NestedParse(pParse
,
2879 "UPDATE %Q." LEGACY_SCHEMA_TABLE
2880 " SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q"
2882 db
->aDb
[iDb
].zDbSName
,
2890 sqlite3DbFree(db
, zStmt
);
2891 sqlite3ChangeCookie(pParse
, iDb
);
2893 #ifndef SQLITE_OMIT_AUTOINCREMENT
2894 /* Check to see if we need to create an sqlite_sequence table for
2895 ** keeping track of autoincrement keys.
2897 if( (p
->tabFlags
& TF_Autoincrement
)!=0 && !IN_SPECIAL_PARSE
){
2898 Db
*pDb
= &db
->aDb
[iDb
];
2899 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
2900 if( pDb
->pSchema
->pSeqTab
==0 ){
2901 sqlite3NestedParse(pParse
,
2902 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
2909 /* Reparse everything to update our internal data structures */
2910 sqlite3VdbeAddParseSchemaOp(v
, iDb
,
2911 sqlite3MPrintf(db
, "tbl_name='%q' AND type!='trigger'", p
->zName
),0);
2914 /* Add the table to the in-memory representation of the database.
2916 if( db
->init
.busy
){
2918 Schema
*pSchema
= p
->pSchema
;
2919 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
2920 assert( HasRowid(p
) || p
->iPKey
<0 );
2921 pOld
= sqlite3HashInsert(&pSchema
->tblHash
, p
->zName
, p
);
2923 assert( p
==pOld
); /* Malloc must have failed inside HashInsert() */
2924 sqlite3OomFault(db
);
2927 pParse
->pNewTable
= 0;
2928 db
->mDbFlags
|= DBFLAG_SchemaChange
;
2930 /* If this is the magic sqlite_sequence table used by autoincrement,
2931 ** then record a pointer to this table in the main database structure
2932 ** so that INSERT can find the table easily. */
2933 assert( !pParse
->nested
);
2934 #ifndef SQLITE_OMIT_AUTOINCREMENT
2935 if( strcmp(p
->zName
, "sqlite_sequence")==0 ){
2936 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
2937 p
->pSchema
->pSeqTab
= p
;
2942 #ifndef SQLITE_OMIT_ALTERTABLE
2943 if( !pSelect
&& IsOrdinaryTable(p
) ){
2944 assert( pCons
&& pEnd
);
2948 p
->u
.tab
.addColOffset
= 13 + (int)(pCons
->z
- pParse
->sNameToken
.z
);
2953 #ifndef SQLITE_OMIT_VIEW
2955 ** The parser calls this routine in order to create a new VIEW
2957 void sqlite3CreateView(
2958 Parse
*pParse
, /* The parsing context */
2959 Token
*pBegin
, /* The CREATE token that begins the statement */
2960 Token
*pName1
, /* The token that holds the name of the view */
2961 Token
*pName2
, /* The token that holds the name of the view */
2962 ExprList
*pCNames
, /* Optional list of view column names */
2963 Select
*pSelect
, /* A SELECT statement that will become the new view */
2964 int isTemp
, /* TRUE for a TEMPORARY view */
2965 int noErr
/* Suppress error messages if VIEW already exists */
2974 sqlite3
*db
= pParse
->db
;
2976 if( pParse
->nVar
>0 ){
2977 sqlite3ErrorMsg(pParse
, "parameters are not allowed in views");
2978 goto create_view_fail
;
2980 sqlite3StartTable(pParse
, pName1
, pName2
, isTemp
, 1, 0, noErr
);
2981 p
= pParse
->pNewTable
;
2982 if( p
==0 || pParse
->nErr
) goto create_view_fail
;
2984 /* Legacy versions of SQLite allowed the use of the magic "rowid" column
2985 ** on a view, even though views do not have rowids. The following flag
2986 ** setting fixes this problem. But the fix can be disabled by compiling
2987 ** with -DSQLITE_ALLOW_ROWID_IN_VIEW in case there are legacy apps that
2988 ** depend upon the old buggy behavior. */
2989 #ifndef SQLITE_ALLOW_ROWID_IN_VIEW
2990 p
->tabFlags
|= TF_NoVisibleRowid
;
2993 sqlite3TwoPartName(pParse
, pName1
, pName2
, &pName
);
2994 iDb
= sqlite3SchemaToIndex(db
, p
->pSchema
);
2995 sqlite3FixInit(&sFix
, pParse
, iDb
, "view", pName
);
2996 if( sqlite3FixSelect(&sFix
, pSelect
) ) goto create_view_fail
;
2998 /* Make a copy of the entire SELECT statement that defines the view.
2999 ** This will force all the Expr.token.z values to be dynamically
3000 ** allocated rather than point to the input string - which means that
3001 ** they will persist after the current sqlite3_exec() call returns.
3003 pSelect
->selFlags
|= SF_View
;
3004 if( IN_RENAME_OBJECT
){
3005 p
->u
.view
.pSelect
= pSelect
;
3008 p
->u
.view
.pSelect
= sqlite3SelectDup(db
, pSelect
, EXPRDUP_REDUCE
);
3010 p
->pCheck
= sqlite3ExprListDup(db
, pCNames
, EXPRDUP_REDUCE
);
3011 p
->eTabType
= TABTYP_VIEW
;
3012 if( db
->mallocFailed
) goto create_view_fail
;
3014 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
3017 sEnd
= pParse
->sLastToken
;
3018 assert( sEnd
.z
[0]!=0 || sEnd
.n
==0 );
3019 if( sEnd
.z
[0]!=';' ){
3023 n
= (int)(sEnd
.z
- pBegin
->z
);
3026 while( sqlite3Isspace(z
[n
-1]) ){ n
--; }
3030 /* Use sqlite3EndTable() to add the view to the schema table */
3031 sqlite3EndTable(pParse
, 0, &sEnd
, 0, 0);
3034 sqlite3SelectDelete(db
, pSelect
);
3035 if( IN_RENAME_OBJECT
){
3036 sqlite3RenameExprlistUnmap(pParse
, pCNames
);
3038 sqlite3ExprListDelete(db
, pCNames
);
3041 #endif /* SQLITE_OMIT_VIEW */
3043 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
3045 ** The Table structure pTable is really a VIEW. Fill in the names of
3046 ** the columns of the view in the pTable structure. Return the number
3047 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
3049 static SQLITE_NOINLINE
int viewGetColumnNames(Parse
*pParse
, Table
*pTable
){
3050 Table
*pSelTab
; /* A fake table from which we get the result set */
3051 Select
*pSel
; /* Copy of the SELECT that implements the view */
3052 int nErr
= 0; /* Number of errors encountered */
3053 sqlite3
*db
= pParse
->db
; /* Database connection for malloc errors */
3054 #ifndef SQLITE_OMIT_VIRTUALTABLE
3057 #ifndef SQLITE_OMIT_AUTHORIZATION
3058 sqlite3_xauth xAuth
; /* Saved xAuth pointer */
3063 #ifndef SQLITE_OMIT_VIRTUALTABLE
3064 if( IsVirtual(pTable
) ){
3066 rc
= sqlite3VtabCallConnect(pParse
, pTable
);
3072 #ifndef SQLITE_OMIT_VIEW
3073 /* A positive nCol means the columns names for this view are
3074 ** already known. This routine is not called unless either the
3075 ** table is virtual or nCol is zero.
3077 assert( pTable
->nCol
<=0 );
3079 /* A negative nCol is a special marker meaning that we are currently
3080 ** trying to compute the column names. If we enter this routine with
3081 ** a negative nCol, it means two or more views form a loop, like this:
3083 ** CREATE VIEW one AS SELECT * FROM two;
3084 ** CREATE VIEW two AS SELECT * FROM one;
3086 ** Actually, the error above is now caught prior to reaching this point.
3087 ** But the following test is still important as it does come up
3088 ** in the following:
3090 ** CREATE TABLE main.ex1(a);
3091 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
3092 ** SELECT * FROM temp.ex1;
3094 if( pTable
->nCol
<0 ){
3095 sqlite3ErrorMsg(pParse
, "view %s is circularly defined", pTable
->zName
);
3098 assert( pTable
->nCol
>=0 );
3100 /* If we get this far, it means we need to compute the table names.
3101 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
3102 ** "*" elements in the results set of the view and will assign cursors
3103 ** to the elements of the FROM clause. But we do not want these changes
3104 ** to be permanent. So the computation is done on a copy of the SELECT
3105 ** statement that defines the view.
3107 assert( IsView(pTable
) );
3108 pSel
= sqlite3SelectDup(db
, pTable
->u
.view
.pSelect
, 0);
3110 u8 eParseMode
= pParse
->eParseMode
;
3111 int nTab
= pParse
->nTab
;
3112 int nSelect
= pParse
->nSelect
;
3113 pParse
->eParseMode
= PARSE_MODE_NORMAL
;
3114 sqlite3SrcListAssignCursors(pParse
, pSel
->pSrc
);
3117 #ifndef SQLITE_OMIT_AUTHORIZATION
3120 pSelTab
= sqlite3ResultSetOfSelect(pParse
, pSel
, SQLITE_AFF_NONE
);
3123 pSelTab
= sqlite3ResultSetOfSelect(pParse
, pSel
, SQLITE_AFF_NONE
);
3125 pParse
->nTab
= nTab
;
3126 pParse
->nSelect
= nSelect
;
3130 }else if( pTable
->pCheck
){
3131 /* CREATE VIEW name(arglist) AS ...
3132 ** The names of the columns in the table are taken from
3133 ** arglist which is stored in pTable->pCheck. The pCheck field
3134 ** normally holds CHECK constraints on an ordinary table, but for
3135 ** a VIEW it holds the list of column names.
3137 sqlite3ColumnsFromExprList(pParse
, pTable
->pCheck
,
3138 &pTable
->nCol
, &pTable
->aCol
);
3140 && pTable
->nCol
==pSel
->pEList
->nExpr
3142 assert( db
->mallocFailed
==0 );
3143 sqlite3SelectAddColumnTypeAndCollation(pParse
, pTable
, pSel
,
3147 /* CREATE VIEW name AS... without an argument list. Construct
3148 ** the column names from the SELECT statement that defines the view.
3150 assert( pTable
->aCol
==0 );
3151 pTable
->nCol
= pSelTab
->nCol
;
3152 pTable
->aCol
= pSelTab
->aCol
;
3153 pTable
->tabFlags
|= (pSelTab
->tabFlags
& COLFLAG_NOINSERT
);
3156 assert( sqlite3SchemaMutexHeld(db
, 0, pTable
->pSchema
) );
3158 pTable
->nNVCol
= pTable
->nCol
;
3159 sqlite3DeleteTable(db
, pSelTab
);
3160 sqlite3SelectDelete(db
, pSel
);
3162 pParse
->eParseMode
= eParseMode
;
3166 pTable
->pSchema
->schemaFlags
|= DB_UnresetViews
;
3167 if( db
->mallocFailed
){
3168 sqlite3DeleteColumnNames(db
, pTable
);
3170 #endif /* SQLITE_OMIT_VIEW */
3173 int sqlite3ViewGetColumnNames(Parse
*pParse
, Table
*pTable
){
3174 assert( pTable
!=0 );
3175 if( !IsVirtual(pTable
) && pTable
->nCol
>0 ) return 0;
3176 return viewGetColumnNames(pParse
, pTable
);
3178 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
3180 #ifndef SQLITE_OMIT_VIEW
3182 ** Clear the column names from every VIEW in database idx.
3184 static void sqliteViewResetAll(sqlite3
*db
, int idx
){
3186 assert( sqlite3SchemaMutexHeld(db
, idx
, 0) );
3187 if( !DbHasProperty(db
, idx
, DB_UnresetViews
) ) return;
3188 for(i
=sqliteHashFirst(&db
->aDb
[idx
].pSchema
->tblHash
); i
;i
=sqliteHashNext(i
)){
3189 Table
*pTab
= sqliteHashData(i
);
3191 sqlite3DeleteColumnNames(db
, pTab
);
3194 DbClearProperty(db
, idx
, DB_UnresetViews
);
3197 # define sqliteViewResetAll(A,B)
3198 #endif /* SQLITE_OMIT_VIEW */
3201 ** This function is called by the VDBE to adjust the internal schema
3202 ** used by SQLite when the btree layer moves a table root page. The
3203 ** root-page of a table or index in database iDb has changed from iFrom
3206 ** Ticket #1728: The symbol table might still contain information
3207 ** on tables and/or indices that are the process of being deleted.
3208 ** If you are unlucky, one of those deleted indices or tables might
3209 ** have the same rootpage number as the real table or index that is
3210 ** being moved. So we cannot stop searching after the first match
3211 ** because the first match might be for one of the deleted indices
3212 ** or tables and not the table/index that is actually being moved.
3213 ** We must continue looping until all tables and indices with
3214 ** rootpage==iFrom have been converted to have a rootpage of iTo
3215 ** in order to be certain that we got the right one.
3217 #ifndef SQLITE_OMIT_AUTOVACUUM
3218 void sqlite3RootPageMoved(sqlite3
*db
, int iDb
, Pgno iFrom
, Pgno iTo
){
3223 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
3224 pDb
= &db
->aDb
[iDb
];
3225 pHash
= &pDb
->pSchema
->tblHash
;
3226 for(pElem
=sqliteHashFirst(pHash
); pElem
; pElem
=sqliteHashNext(pElem
)){
3227 Table
*pTab
= sqliteHashData(pElem
);
3228 if( pTab
->tnum
==iFrom
){
3232 pHash
= &pDb
->pSchema
->idxHash
;
3233 for(pElem
=sqliteHashFirst(pHash
); pElem
; pElem
=sqliteHashNext(pElem
)){
3234 Index
*pIdx
= sqliteHashData(pElem
);
3235 if( pIdx
->tnum
==iFrom
){
3243 ** Write code to erase the table with root-page iTable from database iDb.
3244 ** Also write code to modify the sqlite_schema table and internal schema
3245 ** if a root-page of another table is moved by the btree-layer whilst
3246 ** erasing iTable (this can happen with an auto-vacuum database).
3248 static void destroyRootPage(Parse
*pParse
, int iTable
, int iDb
){
3249 Vdbe
*v
= sqlite3GetVdbe(pParse
);
3250 int r1
= sqlite3GetTempReg(pParse
);
3251 if( iTable
<2 ) sqlite3ErrorMsg(pParse
, "corrupt schema");
3252 sqlite3VdbeAddOp3(v
, OP_Destroy
, iTable
, r1
, iDb
);
3253 sqlite3MayAbort(pParse
);
3254 #ifndef SQLITE_OMIT_AUTOVACUUM
3255 /* OP_Destroy stores an in integer r1. If this integer
3256 ** is non-zero, then it is the root page number of a table moved to
3257 ** location iTable. The following code modifies the sqlite_schema table to
3260 ** The "#NNN" in the SQL is a special constant that means whatever value
3261 ** is in register NNN. See grammar rules associated with the TK_REGISTER
3262 ** token for additional information.
3264 sqlite3NestedParse(pParse
,
3265 "UPDATE %Q." LEGACY_SCHEMA_TABLE
3266 " SET rootpage=%d WHERE #%d AND rootpage=#%d",
3267 pParse
->db
->aDb
[iDb
].zDbSName
, iTable
, r1
, r1
);
3269 sqlite3ReleaseTempReg(pParse
, r1
);
3273 ** Write VDBE code to erase table pTab and all associated indices on disk.
3274 ** Code to update the sqlite_schema tables and internal schema definitions
3275 ** in case a root-page belonging to another table is moved by the btree layer
3276 ** is also added (this can happen with an auto-vacuum database).
3278 static void destroyTable(Parse
*pParse
, Table
*pTab
){
3279 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
3280 ** is not defined), then it is important to call OP_Destroy on the
3281 ** table and index root-pages in order, starting with the numerically
3282 ** largest root-page number. This guarantees that none of the root-pages
3283 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
3284 ** following were coded:
3290 ** and root page 5 happened to be the largest root-page number in the
3291 ** database, then root page 5 would be moved to page 4 by the
3292 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
3293 ** a free-list page.
3295 Pgno iTab
= pTab
->tnum
;
3296 Pgno iDestroyed
= 0;
3302 if( iDestroyed
==0 || iTab
<iDestroyed
){
3305 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
3306 Pgno iIdx
= pIdx
->tnum
;
3307 assert( pIdx
->pSchema
==pTab
->pSchema
);
3308 if( (iDestroyed
==0 || (iIdx
<iDestroyed
)) && iIdx
>iLargest
){
3315 int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
3316 assert( iDb
>=0 && iDb
<pParse
->db
->nDb
);
3317 destroyRootPage(pParse
, iLargest
, iDb
);
3318 iDestroyed
= iLargest
;
3324 ** Remove entries from the sqlite_statN tables (for N in (1,2,3))
3325 ** after a DROP INDEX or DROP TABLE command.
3327 static void sqlite3ClearStatTables(
3328 Parse
*pParse
, /* The parsing context */
3329 int iDb
, /* The database number */
3330 const char *zType
, /* "idx" or "tbl" */
3331 const char *zName
/* Name of index or table */
3334 const char *zDbName
= pParse
->db
->aDb
[iDb
].zDbSName
;
3335 for(i
=1; i
<=4; i
++){
3337 sqlite3_snprintf(sizeof(zTab
),zTab
,"sqlite_stat%d",i
);
3338 if( sqlite3FindTable(pParse
->db
, zTab
, zDbName
) ){
3339 sqlite3NestedParse(pParse
,
3340 "DELETE FROM %Q.%s WHERE %s=%Q",
3341 zDbName
, zTab
, zType
, zName
3348 ** Generate code to drop a table.
3350 void sqlite3CodeDropTable(Parse
*pParse
, Table
*pTab
, int iDb
, int isView
){
3352 sqlite3
*db
= pParse
->db
;
3354 Db
*pDb
= &db
->aDb
[iDb
];
3356 v
= sqlite3GetVdbe(pParse
);
3358 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
3360 #ifndef SQLITE_OMIT_VIRTUALTABLE
3361 if( IsVirtual(pTab
) ){
3362 sqlite3VdbeAddOp0(v
, OP_VBegin
);
3366 /* Drop all triggers associated with the table being dropped. Code
3367 ** is generated to remove entries from sqlite_schema and/or
3368 ** sqlite_temp_schema if required.
3370 pTrigger
= sqlite3TriggerList(pParse
, pTab
);
3372 assert( pTrigger
->pSchema
==pTab
->pSchema
||
3373 pTrigger
->pSchema
==db
->aDb
[1].pSchema
);
3374 sqlite3DropTriggerPtr(pParse
, pTrigger
);
3375 pTrigger
= pTrigger
->pNext
;
3378 #ifndef SQLITE_OMIT_AUTOINCREMENT
3379 /* Remove any entries of the sqlite_sequence table associated with
3380 ** the table being dropped. This is done before the table is dropped
3381 ** at the btree level, in case the sqlite_sequence table needs to
3382 ** move as a result of the drop (can happen in auto-vacuum mode).
3384 if( pTab
->tabFlags
& TF_Autoincrement
){
3385 sqlite3NestedParse(pParse
,
3386 "DELETE FROM %Q.sqlite_sequence WHERE name=%Q",
3387 pDb
->zDbSName
, pTab
->zName
3392 /* Drop all entries in the schema table that refer to the
3393 ** table. The program name loops through the schema table and deletes
3394 ** every row that refers to a table of the same name as the one being
3395 ** dropped. Triggers are handled separately because a trigger can be
3396 ** created in the temp database that refers to a table in another
3399 sqlite3NestedParse(pParse
,
3400 "DELETE FROM %Q." LEGACY_SCHEMA_TABLE
3401 " WHERE tbl_name=%Q and type!='trigger'",
3402 pDb
->zDbSName
, pTab
->zName
);
3403 if( !isView
&& !IsVirtual(pTab
) ){
3404 destroyTable(pParse
, pTab
);
3407 /* Remove the table entry from SQLite's internal schema and modify
3408 ** the schema cookie.
3410 if( IsVirtual(pTab
) ){
3411 sqlite3VdbeAddOp4(v
, OP_VDestroy
, iDb
, 0, 0, pTab
->zName
, 0);
3412 sqlite3MayAbort(pParse
);
3414 sqlite3VdbeAddOp4(v
, OP_DropTable
, iDb
, 0, 0, pTab
->zName
, 0);
3415 sqlite3ChangeCookie(pParse
, iDb
);
3416 sqliteViewResetAll(db
, iDb
);
3420 ** Return TRUE if shadow tables should be read-only in the current
3423 int sqlite3ReadOnlyShadowTables(sqlite3
*db
){
3424 #ifndef SQLITE_OMIT_VIRTUALTABLE
3425 if( (db
->flags
& SQLITE_Defensive
)!=0
3428 && !sqlite3VtabInSync(db
)
3437 ** Return true if it is not allowed to drop the given table
3439 static int tableMayNotBeDropped(sqlite3
*db
, Table
*pTab
){
3440 if( sqlite3StrNICmp(pTab
->zName
, "sqlite_", 7)==0 ){
3441 if( sqlite3StrNICmp(pTab
->zName
+7, "stat", 4)==0 ) return 0;
3442 if( sqlite3StrNICmp(pTab
->zName
+7, "parameters", 10)==0 ) return 0;
3445 if( (pTab
->tabFlags
& TF_Shadow
)!=0 && sqlite3ReadOnlyShadowTables(db
) ){
3448 if( pTab
->tabFlags
& TF_Eponymous
){
3455 ** This routine is called to do the work of a DROP TABLE statement.
3456 ** pName is the name of the table to be dropped.
3458 void sqlite3DropTable(Parse
*pParse
, SrcList
*pName
, int isView
, int noErr
){
3461 sqlite3
*db
= pParse
->db
;
3464 if( db
->mallocFailed
){
3465 goto exit_drop_table
;
3467 assert( pParse
->nErr
==0 );
3468 assert( pName
->nSrc
==1 );
3469 if( sqlite3ReadSchema(pParse
) ) goto exit_drop_table
;
3470 if( noErr
) db
->suppressErr
++;
3471 assert( isView
==0 || isView
==LOCATE_VIEW
);
3472 pTab
= sqlite3LocateTableItem(pParse
, isView
, &pName
->a
[0]);
3473 if( noErr
) db
->suppressErr
--;
3477 sqlite3CodeVerifyNamedSchema(pParse
, pName
->a
[0].zDatabase
);
3478 sqlite3ForceNotReadOnly(pParse
);
3480 goto exit_drop_table
;
3482 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
3483 assert( iDb
>=0 && iDb
<db
->nDb
);
3485 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
3486 ** it is initialized.
3488 if( IsVirtual(pTab
) && sqlite3ViewGetColumnNames(pParse
, pTab
) ){
3489 goto exit_drop_table
;
3491 #ifndef SQLITE_OMIT_AUTHORIZATION
3494 const char *zTab
= SCHEMA_TABLE(iDb
);
3495 const char *zDb
= db
->aDb
[iDb
].zDbSName
;
3496 const char *zArg2
= 0;
3497 if( sqlite3AuthCheck(pParse
, SQLITE_DELETE
, zTab
, 0, zDb
)){
3498 goto exit_drop_table
;
3501 if( !OMIT_TEMPDB
&& iDb
==1 ){
3502 code
= SQLITE_DROP_TEMP_VIEW
;
3504 code
= SQLITE_DROP_VIEW
;
3506 #ifndef SQLITE_OMIT_VIRTUALTABLE
3507 }else if( IsVirtual(pTab
) ){
3508 code
= SQLITE_DROP_VTABLE
;
3509 zArg2
= sqlite3GetVTable(db
, pTab
)->pMod
->zName
;
3512 if( !OMIT_TEMPDB
&& iDb
==1 ){
3513 code
= SQLITE_DROP_TEMP_TABLE
;
3515 code
= SQLITE_DROP_TABLE
;
3518 if( sqlite3AuthCheck(pParse
, code
, pTab
->zName
, zArg2
, zDb
) ){
3519 goto exit_drop_table
;
3521 if( sqlite3AuthCheck(pParse
, SQLITE_DELETE
, pTab
->zName
, 0, zDb
) ){
3522 goto exit_drop_table
;
3526 if( tableMayNotBeDropped(db
, pTab
) ){
3527 sqlite3ErrorMsg(pParse
, "table %s may not be dropped", pTab
->zName
);
3528 goto exit_drop_table
;
3531 #ifndef SQLITE_OMIT_VIEW
3532 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
3535 if( isView
&& !IsView(pTab
) ){
3536 sqlite3ErrorMsg(pParse
, "use DROP TABLE to delete table %s", pTab
->zName
);
3537 goto exit_drop_table
;
3539 if( !isView
&& IsView(pTab
) ){
3540 sqlite3ErrorMsg(pParse
, "use DROP VIEW to delete view %s", pTab
->zName
);
3541 goto exit_drop_table
;
3545 /* Generate code to remove the table from the schema table
3548 v
= sqlite3GetVdbe(pParse
);
3550 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
3552 sqlite3ClearStatTables(pParse
, iDb
, "tbl", pTab
->zName
);
3553 sqlite3FkDropTable(pParse
, pName
, pTab
);
3555 sqlite3CodeDropTable(pParse
, pTab
, iDb
, isView
);
3559 sqlite3SrcListDelete(db
, pName
);
3563 ** This routine is called to create a new foreign key on the table
3564 ** currently under construction. pFromCol determines which columns
3565 ** in the current table point to the foreign key. If pFromCol==0 then
3566 ** connect the key to the last column inserted. pTo is the name of
3567 ** the table referred to (a.k.a the "parent" table). pToCol is a list
3568 ** of tables in the parent pTo table. flags contains all
3569 ** information about the conflict resolution algorithms specified
3570 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
3572 ** An FKey structure is created and added to the table currently
3573 ** under construction in the pParse->pNewTable field.
3575 ** The foreign key is set for IMMEDIATE processing. A subsequent call
3576 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
3578 void sqlite3CreateForeignKey(
3579 Parse
*pParse
, /* Parsing context */
3580 ExprList
*pFromCol
, /* Columns in this table that point to other table */
3581 Token
*pTo
, /* Name of the other table */
3582 ExprList
*pToCol
, /* Columns in the other table */
3583 int flags
/* Conflict resolution algorithms. */
3585 sqlite3
*db
= pParse
->db
;
3586 #ifndef SQLITE_OMIT_FOREIGN_KEY
3589 Table
*p
= pParse
->pNewTable
;
3596 if( p
==0 || IN_DECLARE_VTAB
) goto fk_end
;
3598 int iCol
= p
->nCol
-1;
3599 if( NEVER(iCol
<0) ) goto fk_end
;
3600 if( pToCol
&& pToCol
->nExpr
!=1 ){
3601 sqlite3ErrorMsg(pParse
, "foreign key on %s"
3602 " should reference only one column of table %T",
3603 p
->aCol
[iCol
].zCnName
, pTo
);
3607 }else if( pToCol
&& pToCol
->nExpr
!=pFromCol
->nExpr
){
3608 sqlite3ErrorMsg(pParse
,
3609 "number of columns in foreign key does not match the number of "
3610 "columns in the referenced table");
3613 nCol
= pFromCol
->nExpr
;
3615 nByte
= sizeof(*pFKey
) + (nCol
-1)*sizeof(pFKey
->aCol
[0]) + pTo
->n
+ 1;
3617 for(i
=0; i
<pToCol
->nExpr
; i
++){
3618 nByte
+= sqlite3Strlen30(pToCol
->a
[i
].zEName
) + 1;
3621 pFKey
= sqlite3DbMallocZero(db
, nByte
);
3626 assert( IsOrdinaryTable(p
) );
3627 pFKey
->pNextFrom
= p
->u
.tab
.pFKey
;
3628 z
= (char*)&pFKey
->aCol
[nCol
];
3630 if( IN_RENAME_OBJECT
){
3631 sqlite3RenameTokenMap(pParse
, (void*)z
, pTo
);
3633 memcpy(z
, pTo
->z
, pTo
->n
);
3639 pFKey
->aCol
[0].iFrom
= p
->nCol
-1;
3641 for(i
=0; i
<nCol
; i
++){
3643 for(j
=0; j
<p
->nCol
; j
++){
3644 if( sqlite3StrICmp(p
->aCol
[j
].zCnName
, pFromCol
->a
[i
].zEName
)==0 ){
3645 pFKey
->aCol
[i
].iFrom
= j
;
3650 sqlite3ErrorMsg(pParse
,
3651 "unknown column \"%s\" in foreign key definition",
3652 pFromCol
->a
[i
].zEName
);
3655 if( IN_RENAME_OBJECT
){
3656 sqlite3RenameTokenRemap(pParse
, &pFKey
->aCol
[i
], pFromCol
->a
[i
].zEName
);
3661 for(i
=0; i
<nCol
; i
++){
3662 int n
= sqlite3Strlen30(pToCol
->a
[i
].zEName
);
3663 pFKey
->aCol
[i
].zCol
= z
;
3664 if( IN_RENAME_OBJECT
){
3665 sqlite3RenameTokenRemap(pParse
, z
, pToCol
->a
[i
].zEName
);
3667 memcpy(z
, pToCol
->a
[i
].zEName
, n
);
3672 pFKey
->isDeferred
= 0;
3673 pFKey
->aAction
[0] = (u8
)(flags
& 0xff); /* ON DELETE action */
3674 pFKey
->aAction
[1] = (u8
)((flags
>> 8 ) & 0xff); /* ON UPDATE action */
3676 assert( sqlite3SchemaMutexHeld(db
, 0, p
->pSchema
) );
3677 pNextTo
= (FKey
*)sqlite3HashInsert(&p
->pSchema
->fkeyHash
,
3678 pFKey
->zTo
, (void *)pFKey
3680 if( pNextTo
==pFKey
){
3681 sqlite3OomFault(db
);
3685 assert( pNextTo
->pPrevTo
==0 );
3686 pFKey
->pNextTo
= pNextTo
;
3687 pNextTo
->pPrevTo
= pFKey
;
3690 /* Link the foreign key to the table as the last step.
3692 assert( IsOrdinaryTable(p
) );
3693 p
->u
.tab
.pFKey
= pFKey
;
3697 sqlite3DbFree(db
, pFKey
);
3698 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
3699 sqlite3ExprListDelete(db
, pFromCol
);
3700 sqlite3ExprListDelete(db
, pToCol
);
3704 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
3705 ** clause is seen as part of a foreign key definition. The isDeferred
3706 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
3707 ** The behavior of the most recently created foreign key is adjusted
3710 void sqlite3DeferForeignKey(Parse
*pParse
, int isDeferred
){
3711 #ifndef SQLITE_OMIT_FOREIGN_KEY
3714 if( (pTab
= pParse
->pNewTable
)==0 ) return;
3715 if( NEVER(!IsOrdinaryTable(pTab
)) ) return;
3716 if( (pFKey
= pTab
->u
.tab
.pFKey
)==0 ) return;
3717 assert( isDeferred
==0 || isDeferred
==1 ); /* EV: R-30323-21917 */
3718 pFKey
->isDeferred
= (u8
)isDeferred
;
3723 ** Generate code that will erase and refill index *pIdx. This is
3724 ** used to initialize a newly created index or to recompute the
3725 ** content of an index in response to a REINDEX command.
3727 ** if memRootPage is not negative, it means that the index is newly
3728 ** created. The register specified by memRootPage contains the
3729 ** root page number of the index. If memRootPage is negative, then
3730 ** the index already exists and must be cleared before being refilled and
3731 ** the root page number of the index is taken from pIndex->tnum.
3733 static void sqlite3RefillIndex(Parse
*pParse
, Index
*pIndex
, int memRootPage
){
3734 Table
*pTab
= pIndex
->pTable
; /* The table that is indexed */
3735 int iTab
= pParse
->nTab
++; /* Btree cursor used for pTab */
3736 int iIdx
= pParse
->nTab
++; /* Btree cursor used for pIndex */
3737 int iSorter
; /* Cursor opened by OpenSorter (if in use) */
3738 int addr1
; /* Address of top of loop */
3739 int addr2
; /* Address to jump to for next iteration */
3740 Pgno tnum
; /* Root page of index */
3741 int iPartIdxLabel
; /* Jump to this label to skip a row */
3742 Vdbe
*v
; /* Generate code into this virtual machine */
3743 KeyInfo
*pKey
; /* KeyInfo for index */
3744 int regRecord
; /* Register holding assembled index record */
3745 sqlite3
*db
= pParse
->db
; /* The database connection */
3746 int iDb
= sqlite3SchemaToIndex(db
, pIndex
->pSchema
);
3748 #ifndef SQLITE_OMIT_AUTHORIZATION
3749 if( sqlite3AuthCheck(pParse
, SQLITE_REINDEX
, pIndex
->zName
, 0,
3750 db
->aDb
[iDb
].zDbSName
) ){
3755 /* Require a write-lock on the table to perform this operation */
3756 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 1, pTab
->zName
);
3758 v
= sqlite3GetVdbe(pParse
);
3760 if( memRootPage
>=0 ){
3761 tnum
= (Pgno
)memRootPage
;
3763 tnum
= pIndex
->tnum
;
3765 pKey
= sqlite3KeyInfoOfIndex(pParse
, pIndex
);
3766 assert( pKey
!=0 || pParse
->nErr
);
3768 /* Open the sorter cursor if we are to use one. */
3769 iSorter
= pParse
->nTab
++;
3770 sqlite3VdbeAddOp4(v
, OP_SorterOpen
, iSorter
, 0, pIndex
->nKeyCol
, (char*)
3771 sqlite3KeyInfoRef(pKey
), P4_KEYINFO
);
3773 /* Open the table. Loop through all rows of the table, inserting index
3774 ** records into the sorter. */
3775 sqlite3OpenTable(pParse
, iTab
, iDb
, pTab
, OP_OpenRead
);
3776 addr1
= sqlite3VdbeAddOp2(v
, OP_Rewind
, iTab
, 0); VdbeCoverage(v
);
3777 regRecord
= sqlite3GetTempReg(pParse
);
3778 sqlite3MultiWrite(pParse
);
3780 sqlite3GenerateIndexKey(pParse
,pIndex
,iTab
,regRecord
,0,&iPartIdxLabel
,0,0);
3781 sqlite3VdbeAddOp2(v
, OP_SorterInsert
, iSorter
, regRecord
);
3782 sqlite3ResolvePartIdxLabel(pParse
, iPartIdxLabel
);
3783 sqlite3VdbeAddOp2(v
, OP_Next
, iTab
, addr1
+1); VdbeCoverage(v
);
3784 sqlite3VdbeJumpHere(v
, addr1
);
3785 if( memRootPage
<0 ) sqlite3VdbeAddOp2(v
, OP_Clear
, tnum
, iDb
);
3786 sqlite3VdbeAddOp4(v
, OP_OpenWrite
, iIdx
, (int)tnum
, iDb
,
3787 (char *)pKey
, P4_KEYINFO
);
3788 sqlite3VdbeChangeP5(v
, OPFLAG_BULKCSR
|((memRootPage
>=0)?OPFLAG_P2ISREG
:0));
3790 addr1
= sqlite3VdbeAddOp2(v
, OP_SorterSort
, iSorter
, 0); VdbeCoverage(v
);
3791 if( IsUniqueIndex(pIndex
) ){
3792 int j2
= sqlite3VdbeGoto(v
, 1);
3793 addr2
= sqlite3VdbeCurrentAddr(v
);
3794 sqlite3VdbeVerifyAbortable(v
, OE_Abort
);
3795 sqlite3VdbeAddOp4Int(v
, OP_SorterCompare
, iSorter
, j2
, regRecord
,
3796 pIndex
->nKeyCol
); VdbeCoverage(v
);
3797 sqlite3UniqueConstraint(pParse
, OE_Abort
, pIndex
);
3798 sqlite3VdbeJumpHere(v
, j2
);
3800 /* Most CREATE INDEX and REINDEX statements that are not UNIQUE can not
3801 ** abort. The exception is if one of the indexed expressions contains a
3802 ** user function that throws an exception when it is evaluated. But the
3803 ** overhead of adding a statement journal to a CREATE INDEX statement is
3804 ** very small (since most of the pages written do not contain content that
3805 ** needs to be restored if the statement aborts), so we call
3806 ** sqlite3MayAbort() for all CREATE INDEX statements. */
3807 sqlite3MayAbort(pParse
);
3808 addr2
= sqlite3VdbeCurrentAddr(v
);
3810 sqlite3VdbeAddOp3(v
, OP_SorterData
, iSorter
, regRecord
, iIdx
);
3811 if( !pIndex
->bAscKeyBug
){
3812 /* This OP_SeekEnd opcode makes index insert for a REINDEX go much
3813 ** faster by avoiding unnecessary seeks. But the optimization does
3814 ** not work for UNIQUE constraint indexes on WITHOUT ROWID tables
3815 ** with DESC primary keys, since those indexes have there keys in
3816 ** a different order from the main table.
3817 ** See ticket: https://www.sqlite.org/src/info/bba7b69f9849b5bf
3819 sqlite3VdbeAddOp1(v
, OP_SeekEnd
, iIdx
);
3821 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, iIdx
, regRecord
);
3822 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
3823 sqlite3ReleaseTempReg(pParse
, regRecord
);
3824 sqlite3VdbeAddOp2(v
, OP_SorterNext
, iSorter
, addr2
); VdbeCoverage(v
);
3825 sqlite3VdbeJumpHere(v
, addr1
);
3827 sqlite3VdbeAddOp1(v
, OP_Close
, iTab
);
3828 sqlite3VdbeAddOp1(v
, OP_Close
, iIdx
);
3829 sqlite3VdbeAddOp1(v
, OP_Close
, iSorter
);
3833 ** Allocate heap space to hold an Index object with nCol columns.
3835 ** Increase the allocation size to provide an extra nExtra bytes
3836 ** of 8-byte aligned space after the Index object and return a
3837 ** pointer to this extra space in *ppExtra.
3839 Index
*sqlite3AllocateIndexObject(
3840 sqlite3
*db
, /* Database connection */
3841 i16 nCol
, /* Total number of columns in the index */
3842 int nExtra
, /* Number of bytes of extra space to alloc */
3843 char **ppExtra
/* Pointer to the "extra" space */
3845 Index
*p
; /* Allocated index object */
3846 int nByte
; /* Bytes of space for Index object + arrays */
3848 nByte
= ROUND8(sizeof(Index
)) + /* Index structure */
3849 ROUND8(sizeof(char*)*nCol
) + /* Index.azColl */
3850 ROUND8(sizeof(LogEst
)*(nCol
+1) + /* Index.aiRowLogEst */
3851 sizeof(i16
)*nCol
+ /* Index.aiColumn */
3852 sizeof(u8
)*nCol
); /* Index.aSortOrder */
3853 p
= sqlite3DbMallocZero(db
, nByte
+ nExtra
);
3855 char *pExtra
= ((char*)p
)+ROUND8(sizeof(Index
));
3856 p
->azColl
= (const char**)pExtra
; pExtra
+= ROUND8(sizeof(char*)*nCol
);
3857 p
->aiRowLogEst
= (LogEst
*)pExtra
; pExtra
+= sizeof(LogEst
)*(nCol
+1);
3858 p
->aiColumn
= (i16
*)pExtra
; pExtra
+= sizeof(i16
)*nCol
;
3859 p
->aSortOrder
= (u8
*)pExtra
;
3861 p
->nKeyCol
= nCol
- 1;
3862 *ppExtra
= ((char*)p
) + nByte
;
3868 ** If expression list pList contains an expression that was parsed with
3869 ** an explicit "NULLS FIRST" or "NULLS LAST" clause, leave an error in
3870 ** pParse and return non-zero. Otherwise, return zero.
3872 int sqlite3HasExplicitNulls(Parse
*pParse
, ExprList
*pList
){
3875 for(i
=0; i
<pList
->nExpr
; i
++){
3876 if( pList
->a
[i
].fg
.bNulls
){
3877 u8 sf
= pList
->a
[i
].fg
.sortFlags
;
3878 sqlite3ErrorMsg(pParse
, "unsupported use of NULLS %s",
3879 (sf
==0 || sf
==3) ? "FIRST" : "LAST"
3889 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
3890 ** and pTblList is the name of the table that is to be indexed. Both will
3891 ** be NULL for a primary key or an index that is created to satisfy a
3892 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
3893 ** as the table to be indexed. pParse->pNewTable is a table that is
3894 ** currently being constructed by a CREATE TABLE statement.
3896 ** pList is a list of columns to be indexed. pList will be NULL if this
3897 ** is a primary key or unique-constraint on the most recent column added
3898 ** to the table currently under construction.
3900 void sqlite3CreateIndex(
3901 Parse
*pParse
, /* All information about this parse */
3902 Token
*pName1
, /* First part of index name. May be NULL */
3903 Token
*pName2
, /* Second part of index name. May be NULL */
3904 SrcList
*pTblName
, /* Table to index. Use pParse->pNewTable if 0 */
3905 ExprList
*pList
, /* A list of columns to be indexed */
3906 int onError
, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
3907 Token
*pStart
, /* The CREATE token that begins this statement */
3908 Expr
*pPIWhere
, /* WHERE clause for partial indices */
3909 int sortOrder
, /* Sort order of primary key when pList==NULL */
3910 int ifNotExist
, /* Omit error if index already exists */
3911 u8 idxType
/* The index type */
3913 Table
*pTab
= 0; /* Table to be indexed */
3914 Index
*pIndex
= 0; /* The index to be created */
3915 char *zName
= 0; /* Name of the index */
3916 int nName
; /* Number of characters in zName */
3918 DbFixer sFix
; /* For assigning database names to pTable */
3919 int sortOrderMask
; /* 1 to honor DESC in index. 0 to ignore. */
3920 sqlite3
*db
= pParse
->db
;
3921 Db
*pDb
; /* The specific table containing the indexed database */
3922 int iDb
; /* Index of the database that is being written */
3923 Token
*pName
= 0; /* Unqualified name of the index to create */
3924 struct ExprList_item
*pListItem
; /* For looping over pList */
3925 int nExtra
= 0; /* Space allocated for zExtra[] */
3926 int nExtraCol
; /* Number of extra columns needed */
3927 char *zExtra
= 0; /* Extra space after the Index object */
3928 Index
*pPk
= 0; /* PRIMARY KEY index for WITHOUT ROWID tables */
3930 assert( db
->pParse
==pParse
);
3932 goto exit_create_index
;
3934 assert( db
->mallocFailed
==0 );
3935 if( IN_DECLARE_VTAB
&& idxType
!=SQLITE_IDXTYPE_PRIMARYKEY
){
3936 goto exit_create_index
;
3938 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
3939 goto exit_create_index
;
3941 if( sqlite3HasExplicitNulls(pParse
, pList
) ){
3942 goto exit_create_index
;
3946 ** Find the table that is to be indexed. Return early if not found.
3950 /* Use the two-part index name to determine the database
3951 ** to search for the table. 'Fix' the table name to this db
3952 ** before looking up the table.
3954 assert( pName1
&& pName2
);
3955 iDb
= sqlite3TwoPartName(pParse
, pName1
, pName2
, &pName
);
3956 if( iDb
<0 ) goto exit_create_index
;
3957 assert( pName
&& pName
->z
);
3959 #ifndef SQLITE_OMIT_TEMPDB
3960 /* If the index name was unqualified, check if the table
3961 ** is a temp table. If so, set the database to 1. Do not do this
3962 ** if initialising a database schema.
3964 if( !db
->init
.busy
){
3965 pTab
= sqlite3SrcListLookup(pParse
, pTblName
);
3966 if( pName2
->n
==0 && pTab
&& pTab
->pSchema
==db
->aDb
[1].pSchema
){
3972 sqlite3FixInit(&sFix
, pParse
, iDb
, "index", pName
);
3973 if( sqlite3FixSrcList(&sFix
, pTblName
) ){
3974 /* Because the parser constructs pTblName from a single identifier,
3975 ** sqlite3FixSrcList can never fail. */
3978 pTab
= sqlite3LocateTableItem(pParse
, 0, &pTblName
->a
[0]);
3979 assert( db
->mallocFailed
==0 || pTab
==0 );
3980 if( pTab
==0 ) goto exit_create_index
;
3981 if( iDb
==1 && db
->aDb
[iDb
].pSchema
!=pTab
->pSchema
){
3982 sqlite3ErrorMsg(pParse
,
3983 "cannot create a TEMP index on non-TEMP table \"%s\"",
3985 goto exit_create_index
;
3987 if( !HasRowid(pTab
) ) pPk
= sqlite3PrimaryKeyIndex(pTab
);
3990 assert( pStart
==0 );
3991 pTab
= pParse
->pNewTable
;
3992 if( !pTab
) goto exit_create_index
;
3993 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
3995 pDb
= &db
->aDb
[iDb
];
3998 if( sqlite3StrNICmp(pTab
->zName
, "sqlite_", 7)==0
4001 #if SQLITE_USER_AUTHENTICATION
4002 && sqlite3UserAuthTable(pTab
->zName
)==0
4005 sqlite3ErrorMsg(pParse
, "table %s may not be indexed", pTab
->zName
);
4006 goto exit_create_index
;
4008 #ifndef SQLITE_OMIT_VIEW
4010 sqlite3ErrorMsg(pParse
, "views may not be indexed");
4011 goto exit_create_index
;
4014 #ifndef SQLITE_OMIT_VIRTUALTABLE
4015 if( IsVirtual(pTab
) ){
4016 sqlite3ErrorMsg(pParse
, "virtual tables may not be indexed");
4017 goto exit_create_index
;
4022 ** Find the name of the index. Make sure there is not already another
4023 ** index or table with the same name.
4025 ** Exception: If we are reading the names of permanent indices from the
4026 ** sqlite_schema table (because some other process changed the schema) and
4027 ** one of the index names collides with the name of a temporary table or
4028 ** index, then we will continue to process this index.
4030 ** If pName==0 it means that we are
4031 ** dealing with a primary key or UNIQUE constraint. We have to invent our
4035 zName
= sqlite3NameFromToken(db
, pName
);
4036 if( zName
==0 ) goto exit_create_index
;
4037 assert( pName
->z
!=0 );
4038 if( SQLITE_OK
!=sqlite3CheckObjectName(pParse
, zName
,"index",pTab
->zName
) ){
4039 goto exit_create_index
;
4041 if( !IN_RENAME_OBJECT
){
4042 if( !db
->init
.busy
){
4043 if( sqlite3FindTable(db
, zName
, pDb
->zDbSName
)!=0 ){
4044 sqlite3ErrorMsg(pParse
, "there is already a table named %s", zName
);
4045 goto exit_create_index
;
4048 if( sqlite3FindIndex(db
, zName
, pDb
->zDbSName
)!=0 ){
4050 sqlite3ErrorMsg(pParse
, "index %s already exists", zName
);
4052 assert( !db
->init
.busy
);
4053 sqlite3CodeVerifySchema(pParse
, iDb
);
4054 sqlite3ForceNotReadOnly(pParse
);
4056 goto exit_create_index
;
4062 for(pLoop
=pTab
->pIndex
, n
=1; pLoop
; pLoop
=pLoop
->pNext
, n
++){}
4063 zName
= sqlite3MPrintf(db
, "sqlite_autoindex_%s_%d", pTab
->zName
, n
);
4065 goto exit_create_index
;
4068 /* Automatic index names generated from within sqlite3_declare_vtab()
4069 ** must have names that are distinct from normal automatic index names.
4070 ** The following statement converts "sqlite3_autoindex..." into
4071 ** "sqlite3_butoindex..." in order to make the names distinct.
4072 ** The "vtab_err.test" test demonstrates the need of this statement. */
4073 if( IN_SPECIAL_PARSE
) zName
[7]++;
4076 /* Check for authorization to create an index.
4078 #ifndef SQLITE_OMIT_AUTHORIZATION
4079 if( !IN_RENAME_OBJECT
){
4080 const char *zDb
= pDb
->zDbSName
;
4081 if( sqlite3AuthCheck(pParse
, SQLITE_INSERT
, SCHEMA_TABLE(iDb
), 0, zDb
) ){
4082 goto exit_create_index
;
4084 i
= SQLITE_CREATE_INDEX
;
4085 if( !OMIT_TEMPDB
&& iDb
==1 ) i
= SQLITE_CREATE_TEMP_INDEX
;
4086 if( sqlite3AuthCheck(pParse
, i
, zName
, pTab
->zName
, zDb
) ){
4087 goto exit_create_index
;
4092 /* If pList==0, it means this routine was called to make a primary
4093 ** key out of the last column added to the table under construction.
4094 ** So create a fake list to simulate this.
4098 Column
*pCol
= &pTab
->aCol
[pTab
->nCol
-1];
4099 pCol
->colFlags
|= COLFLAG_UNIQUE
;
4100 sqlite3TokenInit(&prevCol
, pCol
->zCnName
);
4101 pList
= sqlite3ExprListAppend(pParse
, 0,
4102 sqlite3ExprAlloc(db
, TK_ID
, &prevCol
, 0));
4103 if( pList
==0 ) goto exit_create_index
;
4104 assert( pList
->nExpr
==1 );
4105 sqlite3ExprListSetSortOrder(pList
, sortOrder
, SQLITE_SO_UNDEFINED
);
4107 sqlite3ExprListCheckLength(pParse
, pList
, "index");
4108 if( pParse
->nErr
) goto exit_create_index
;
4111 /* Figure out how many bytes of space are required to store explicitly
4112 ** specified collation sequence names.
4114 for(i
=0; i
<pList
->nExpr
; i
++){
4115 Expr
*pExpr
= pList
->a
[i
].pExpr
;
4117 if( pExpr
->op
==TK_COLLATE
){
4118 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
4119 nExtra
+= (1 + sqlite3Strlen30(pExpr
->u
.zToken
));
4124 ** Allocate the index structure.
4126 nName
= sqlite3Strlen30(zName
);
4127 nExtraCol
= pPk
? pPk
->nKeyCol
: 1;
4128 assert( pList
->nExpr
+ nExtraCol
<= 32767 /* Fits in i16 */ );
4129 pIndex
= sqlite3AllocateIndexObject(db
, pList
->nExpr
+ nExtraCol
,
4130 nName
+ nExtra
+ 1, &zExtra
);
4131 if( db
->mallocFailed
){
4132 goto exit_create_index
;
4134 assert( EIGHT_BYTE_ALIGNMENT(pIndex
->aiRowLogEst
) );
4135 assert( EIGHT_BYTE_ALIGNMENT(pIndex
->azColl
) );
4136 pIndex
->zName
= zExtra
;
4137 zExtra
+= nName
+ 1;
4138 memcpy(pIndex
->zName
, zName
, nName
+1);
4139 pIndex
->pTable
= pTab
;
4140 pIndex
->onError
= (u8
)onError
;
4141 pIndex
->uniqNotNull
= onError
!=OE_None
;
4142 pIndex
->idxType
= idxType
;
4143 pIndex
->pSchema
= db
->aDb
[iDb
].pSchema
;
4144 pIndex
->nKeyCol
= pList
->nExpr
;
4146 sqlite3ResolveSelfReference(pParse
, pTab
, NC_PartIdx
, pPIWhere
, 0);
4147 pIndex
->pPartIdxWhere
= pPIWhere
;
4150 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
4152 /* Check to see if we should honor DESC requests on index columns
4154 if( pDb
->pSchema
->file_format
>=4 ){
4155 sortOrderMask
= -1; /* Honor DESC */
4157 sortOrderMask
= 0; /* Ignore DESC */
4160 /* Analyze the list of expressions that form the terms of the index and
4161 ** report any errors. In the common case where the expression is exactly
4162 ** a table column, store that column in aiColumn[]. For general expressions,
4163 ** populate pIndex->aColExpr and store XN_EXPR (-2) in aiColumn[].
4165 ** TODO: Issue a warning if two or more columns of the index are identical.
4166 ** TODO: Issue a warning if the table primary key is used as part of the
4169 pListItem
= pList
->a
;
4170 if( IN_RENAME_OBJECT
){
4171 pIndex
->aColExpr
= pList
;
4174 for(i
=0; i
<pIndex
->nKeyCol
; i
++, pListItem
++){
4175 Expr
*pCExpr
; /* The i-th index expression */
4176 int requestedSortOrder
; /* ASC or DESC on the i-th expression */
4177 const char *zColl
; /* Collation sequence name */
4179 sqlite3StringToId(pListItem
->pExpr
);
4180 sqlite3ResolveSelfReference(pParse
, pTab
, NC_IdxExpr
, pListItem
->pExpr
, 0);
4181 if( pParse
->nErr
) goto exit_create_index
;
4182 pCExpr
= sqlite3ExprSkipCollate(pListItem
->pExpr
);
4183 if( pCExpr
->op
!=TK_COLUMN
){
4184 if( pTab
==pParse
->pNewTable
){
4185 sqlite3ErrorMsg(pParse
, "expressions prohibited in PRIMARY KEY and "
4186 "UNIQUE constraints");
4187 goto exit_create_index
;
4189 if( pIndex
->aColExpr
==0 ){
4190 pIndex
->aColExpr
= pList
;
4194 pIndex
->aiColumn
[i
] = XN_EXPR
;
4195 pIndex
->uniqNotNull
= 0;
4196 pIndex
->bHasExpr
= 1;
4198 j
= pCExpr
->iColumn
;
4199 assert( j
<=0x7fff );
4203 if( pTab
->aCol
[j
].notNull
==0 ){
4204 pIndex
->uniqNotNull
= 0;
4206 if( pTab
->aCol
[j
].colFlags
& COLFLAG_VIRTUAL
){
4207 pIndex
->bHasVCol
= 1;
4208 pIndex
->bHasExpr
= 1;
4211 pIndex
->aiColumn
[i
] = (i16
)j
;
4214 if( pListItem
->pExpr
->op
==TK_COLLATE
){
4216 assert( !ExprHasProperty(pListItem
->pExpr
, EP_IntValue
) );
4217 zColl
= pListItem
->pExpr
->u
.zToken
;
4218 nColl
= sqlite3Strlen30(zColl
) + 1;
4219 assert( nExtra
>=nColl
);
4220 memcpy(zExtra
, zColl
, nColl
);
4225 zColl
= sqlite3ColumnColl(&pTab
->aCol
[j
]);
4227 if( !zColl
) zColl
= sqlite3StrBINARY
;
4228 if( !db
->init
.busy
&& !sqlite3LocateCollSeq(pParse
, zColl
) ){
4229 goto exit_create_index
;
4231 pIndex
->azColl
[i
] = zColl
;
4232 requestedSortOrder
= pListItem
->fg
.sortFlags
& sortOrderMask
;
4233 pIndex
->aSortOrder
[i
] = (u8
)requestedSortOrder
;
4236 /* Append the table key to the end of the index. For WITHOUT ROWID
4237 ** tables (when pPk!=0) this will be the declared PRIMARY KEY. For
4238 ** normal tables (when pPk==0) this will be the rowid.
4241 for(j
=0; j
<pPk
->nKeyCol
; j
++){
4242 int x
= pPk
->aiColumn
[j
];
4244 if( isDupColumn(pIndex
, pIndex
->nKeyCol
, pPk
, j
) ){
4247 testcase( hasColumn(pIndex
->aiColumn
,pIndex
->nKeyCol
,x
) );
4248 pIndex
->aiColumn
[i
] = x
;
4249 pIndex
->azColl
[i
] = pPk
->azColl
[j
];
4250 pIndex
->aSortOrder
[i
] = pPk
->aSortOrder
[j
];
4254 assert( i
==pIndex
->nColumn
);
4256 pIndex
->aiColumn
[i
] = XN_ROWID
;
4257 pIndex
->azColl
[i
] = sqlite3StrBINARY
;
4259 sqlite3DefaultRowEst(pIndex
);
4260 if( pParse
->pNewTable
==0 ) estimateIndexWidth(pIndex
);
4262 /* If this index contains every column of its table, then mark
4263 ** it as a covering index */
4264 assert( HasRowid(pTab
)
4265 || pTab
->iPKey
<0 || sqlite3TableColumnToIndex(pIndex
, pTab
->iPKey
)>=0 );
4266 recomputeColumnsNotIndexed(pIndex
);
4267 if( pTblName
!=0 && pIndex
->nColumn
>=pTab
->nCol
){
4268 pIndex
->isCovering
= 1;
4269 for(j
=0; j
<pTab
->nCol
; j
++){
4270 if( j
==pTab
->iPKey
) continue;
4271 if( sqlite3TableColumnToIndex(pIndex
,j
)>=0 ) continue;
4272 pIndex
->isCovering
= 0;
4277 if( pTab
==pParse
->pNewTable
){
4278 /* This routine has been called to create an automatic index as a
4279 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
4280 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
4283 ** CREATE TABLE t(x PRIMARY KEY, y);
4284 ** CREATE TABLE t(x, y, UNIQUE(x, y));
4286 ** Either way, check to see if the table already has such an index. If
4287 ** so, don't bother creating this one. This only applies to
4288 ** automatically created indices. Users can do as they wish with
4289 ** explicit indices.
4291 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
4292 ** (and thus suppressing the second one) even if they have different
4295 ** If there are different collating sequences or if the columns of
4296 ** the constraint occur in different orders, then the constraints are
4297 ** considered distinct and both result in separate indices.
4300 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
4302 assert( IsUniqueIndex(pIdx
) );
4303 assert( pIdx
->idxType
!=SQLITE_IDXTYPE_APPDEF
);
4304 assert( IsUniqueIndex(pIndex
) );
4306 if( pIdx
->nKeyCol
!=pIndex
->nKeyCol
) continue;
4307 for(k
=0; k
<pIdx
->nKeyCol
; k
++){
4310 assert( pIdx
->aiColumn
[k
]>=0 );
4311 if( pIdx
->aiColumn
[k
]!=pIndex
->aiColumn
[k
] ) break;
4312 z1
= pIdx
->azColl
[k
];
4313 z2
= pIndex
->azColl
[k
];
4314 if( sqlite3StrICmp(z1
, z2
) ) break;
4316 if( k
==pIdx
->nKeyCol
){
4317 if( pIdx
->onError
!=pIndex
->onError
){
4318 /* This constraint creates the same index as a previous
4319 ** constraint specified somewhere in the CREATE TABLE statement.
4320 ** However the ON CONFLICT clauses are different. If both this
4321 ** constraint and the previous equivalent constraint have explicit
4322 ** ON CONFLICT clauses this is an error. Otherwise, use the
4323 ** explicitly specified behavior for the index.
4325 if( !(pIdx
->onError
==OE_Default
|| pIndex
->onError
==OE_Default
) ){
4326 sqlite3ErrorMsg(pParse
,
4327 "conflicting ON CONFLICT clauses specified", 0);
4329 if( pIdx
->onError
==OE_Default
){
4330 pIdx
->onError
= pIndex
->onError
;
4333 if( idxType
==SQLITE_IDXTYPE_PRIMARYKEY
) pIdx
->idxType
= idxType
;
4334 if( IN_RENAME_OBJECT
){
4335 pIndex
->pNext
= pParse
->pNewIndex
;
4336 pParse
->pNewIndex
= pIndex
;
4339 goto exit_create_index
;
4344 if( !IN_RENAME_OBJECT
){
4346 /* Link the new Index structure to its table and to the other
4347 ** in-memory database structures.
4349 assert( pParse
->nErr
==0 );
4350 if( db
->init
.busy
){
4352 assert( !IN_SPECIAL_PARSE
);
4353 assert( sqlite3SchemaMutexHeld(db
, 0, pIndex
->pSchema
) );
4355 pIndex
->tnum
= db
->init
.newTnum
;
4356 if( sqlite3IndexHasDuplicateRootPage(pIndex
) ){
4357 sqlite3ErrorMsg(pParse
, "invalid rootpage");
4358 pParse
->rc
= SQLITE_CORRUPT_BKPT
;
4359 goto exit_create_index
;
4362 p
= sqlite3HashInsert(&pIndex
->pSchema
->idxHash
,
4363 pIndex
->zName
, pIndex
);
4365 assert( p
==pIndex
); /* Malloc must have failed */
4366 sqlite3OomFault(db
);
4367 goto exit_create_index
;
4369 db
->mDbFlags
|= DBFLAG_SchemaChange
;
4372 /* If this is the initial CREATE INDEX statement (or CREATE TABLE if the
4373 ** index is an implied index for a UNIQUE or PRIMARY KEY constraint) then
4374 ** emit code to allocate the index rootpage on disk and make an entry for
4375 ** the index in the sqlite_schema table and populate the index with
4376 ** content. But, do not do this if we are simply reading the sqlite_schema
4377 ** table to parse the schema, or if this index is the PRIMARY KEY index
4378 ** of a WITHOUT ROWID table.
4380 ** If pTblName==0 it means this index is generated as an implied PRIMARY KEY
4381 ** or UNIQUE index in a CREATE TABLE statement. Since the table
4382 ** has just been created, it contains no data and the index initialization
4383 ** step can be skipped.
4385 else if( HasRowid(pTab
) || pTblName
!=0 ){
4388 int iMem
= ++pParse
->nMem
;
4390 v
= sqlite3GetVdbe(pParse
);
4391 if( v
==0 ) goto exit_create_index
;
4393 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
4395 /* Create the rootpage for the index using CreateIndex. But before
4396 ** doing so, code a Noop instruction and store its address in
4397 ** Index.tnum. This is required in case this index is actually a
4398 ** PRIMARY KEY and the table is actually a WITHOUT ROWID table. In
4399 ** that case the convertToWithoutRowidTable() routine will replace
4400 ** the Noop with a Goto to jump over the VDBE code generated below. */
4401 pIndex
->tnum
= (Pgno
)sqlite3VdbeAddOp0(v
, OP_Noop
);
4402 sqlite3VdbeAddOp3(v
, OP_CreateBtree
, iDb
, iMem
, BTREE_BLOBKEY
);
4404 /* Gather the complete text of the CREATE INDEX statement into
4405 ** the zStmt variable
4407 assert( pName
!=0 || pStart
==0 );
4409 int n
= (int)(pParse
->sLastToken
.z
- pName
->z
) + pParse
->sLastToken
.n
;
4410 if( pName
->z
[n
-1]==';' ) n
--;
4411 /* A named index with an explicit CREATE INDEX statement */
4412 zStmt
= sqlite3MPrintf(db
, "CREATE%s INDEX %.*s",
4413 onError
==OE_None
? "" : " UNIQUE", n
, pName
->z
);
4415 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
4416 /* zStmt = sqlite3MPrintf(""); */
4420 /* Add an entry in sqlite_schema for this index
4422 sqlite3NestedParse(pParse
,
4423 "INSERT INTO %Q." LEGACY_SCHEMA_TABLE
" VALUES('index',%Q,%Q,#%d,%Q);",
4424 db
->aDb
[iDb
].zDbSName
,
4430 sqlite3DbFree(db
, zStmt
);
4432 /* Fill the index with data and reparse the schema. Code an OP_Expire
4433 ** to invalidate all pre-compiled statements.
4436 sqlite3RefillIndex(pParse
, pIndex
, iMem
);
4437 sqlite3ChangeCookie(pParse
, iDb
);
4438 sqlite3VdbeAddParseSchemaOp(v
, iDb
,
4439 sqlite3MPrintf(db
, "name='%q' AND type='index'", pIndex
->zName
), 0);
4440 sqlite3VdbeAddOp2(v
, OP_Expire
, 0, 1);
4443 sqlite3VdbeJumpHere(v
, (int)pIndex
->tnum
);
4446 if( db
->init
.busy
|| pTblName
==0 ){
4447 pIndex
->pNext
= pTab
->pIndex
;
4448 pTab
->pIndex
= pIndex
;
4451 else if( IN_RENAME_OBJECT
){
4452 assert( pParse
->pNewIndex
==0 );
4453 pParse
->pNewIndex
= pIndex
;
4457 /* Clean up before exiting */
4459 if( pIndex
) sqlite3FreeIndex(db
, pIndex
);
4461 /* Ensure all REPLACE indexes on pTab are at the end of the pIndex list.
4462 ** The list was already ordered when this routine was entered, so at this
4463 ** point at most a single index (the newly added index) will be out of
4464 ** order. So we have to reorder at most one index. */
4467 for(ppFrom
=&pTab
->pIndex
; (pThis
= *ppFrom
)!=0; ppFrom
=&pThis
->pNext
){
4469 if( pThis
->onError
!=OE_Replace
) continue;
4470 while( (pNext
= pThis
->pNext
)!=0 && pNext
->onError
!=OE_Replace
){
4472 pThis
->pNext
= pNext
->pNext
;
4473 pNext
->pNext
= pThis
;
4474 ppFrom
= &pNext
->pNext
;
4479 /* Verify that all REPLACE indexes really are now at the end
4480 ** of the index list. In other words, no other index type ever
4481 ** comes after a REPLACE index on the list. */
4482 for(pThis
= pTab
->pIndex
; pThis
; pThis
=pThis
->pNext
){
4483 assert( pThis
->onError
!=OE_Replace
4485 || pThis
->pNext
->onError
==OE_Replace
);
4489 sqlite3ExprDelete(db
, pPIWhere
);
4490 sqlite3ExprListDelete(db
, pList
);
4491 sqlite3SrcListDelete(db
, pTblName
);
4492 sqlite3DbFree(db
, zName
);
4496 ** Fill the Index.aiRowEst[] array with default information - information
4497 ** to be used when we have not run the ANALYZE command.
4499 ** aiRowEst[0] is supposed to contain the number of elements in the index.
4500 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
4501 ** number of rows in the table that match any particular value of the
4502 ** first column of the index. aiRowEst[2] is an estimate of the number
4503 ** of rows that match any particular combination of the first 2 columns
4504 ** of the index. And so forth. It must always be the case that
4506 ** aiRowEst[N]<=aiRowEst[N-1]
4509 ** Apart from that, we have little to go on besides intuition as to
4510 ** how aiRowEst[] should be initialized. The numbers generated here
4511 ** are based on typical values found in actual indices.
4513 void sqlite3DefaultRowEst(Index
*pIdx
){
4514 /* 10, 9, 8, 7, 6 */
4515 static const LogEst aVal
[] = { 33, 32, 30, 28, 26 };
4516 LogEst
*a
= pIdx
->aiRowLogEst
;
4518 int nCopy
= MIN(ArraySize(aVal
), pIdx
->nKeyCol
);
4521 /* Indexes with default row estimates should not have stat1 data */
4522 assert( !pIdx
->hasStat1
);
4524 /* Set the first entry (number of rows in the index) to the estimated
4525 ** number of rows in the table, or half the number of rows in the table
4526 ** for a partial index.
4528 ** 2020-05-27: If some of the stat data is coming from the sqlite_stat1
4529 ** table but other parts we are having to guess at, then do not let the
4530 ** estimated number of rows in the table be less than 1000 (LogEst 99).
4531 ** Failure to do this can cause the indexes for which we do not have
4532 ** stat1 data to be ignored by the query planner.
4534 x
= pIdx
->pTable
->nRowLogEst
;
4535 assert( 99==sqlite3LogEst(1000) );
4537 pIdx
->pTable
->nRowLogEst
= x
= 99;
4539 if( pIdx
->pPartIdxWhere
!=0 ){ x
-= 10; assert( 10==sqlite3LogEst(2) ); }
4542 /* Estimate that a[1] is 10, a[2] is 9, a[3] is 8, a[4] is 7, a[5] is
4543 ** 6 and each subsequent value (if any) is 5. */
4544 memcpy(&a
[1], aVal
, nCopy
*sizeof(LogEst
));
4545 for(i
=nCopy
+1; i
<=pIdx
->nKeyCol
; i
++){
4546 a
[i
] = 23; assert( 23==sqlite3LogEst(5) );
4549 assert( 0==sqlite3LogEst(1) );
4550 if( IsUniqueIndex(pIdx
) ) a
[pIdx
->nKeyCol
] = 0;
4554 ** This routine will drop an existing named index. This routine
4555 ** implements the DROP INDEX statement.
4557 void sqlite3DropIndex(Parse
*pParse
, SrcList
*pName
, int ifExists
){
4560 sqlite3
*db
= pParse
->db
;
4563 if( db
->mallocFailed
){
4564 goto exit_drop_index
;
4566 assert( pParse
->nErr
==0 ); /* Never called with prior non-OOM errors */
4567 assert( pName
->nSrc
==1 );
4568 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
4569 goto exit_drop_index
;
4571 pIndex
= sqlite3FindIndex(db
, pName
->a
[0].zName
, pName
->a
[0].zDatabase
);
4574 sqlite3ErrorMsg(pParse
, "no such index: %S", pName
->a
);
4576 sqlite3CodeVerifyNamedSchema(pParse
, pName
->a
[0].zDatabase
);
4577 sqlite3ForceNotReadOnly(pParse
);
4579 pParse
->checkSchema
= 1;
4580 goto exit_drop_index
;
4582 if( pIndex
->idxType
!=SQLITE_IDXTYPE_APPDEF
){
4583 sqlite3ErrorMsg(pParse
, "index associated with UNIQUE "
4584 "or PRIMARY KEY constraint cannot be dropped", 0);
4585 goto exit_drop_index
;
4587 iDb
= sqlite3SchemaToIndex(db
, pIndex
->pSchema
);
4588 #ifndef SQLITE_OMIT_AUTHORIZATION
4590 int code
= SQLITE_DROP_INDEX
;
4591 Table
*pTab
= pIndex
->pTable
;
4592 const char *zDb
= db
->aDb
[iDb
].zDbSName
;
4593 const char *zTab
= SCHEMA_TABLE(iDb
);
4594 if( sqlite3AuthCheck(pParse
, SQLITE_DELETE
, zTab
, 0, zDb
) ){
4595 goto exit_drop_index
;
4597 if( !OMIT_TEMPDB
&& iDb
==1 ) code
= SQLITE_DROP_TEMP_INDEX
;
4598 if( sqlite3AuthCheck(pParse
, code
, pIndex
->zName
, pTab
->zName
, zDb
) ){
4599 goto exit_drop_index
;
4604 /* Generate code to remove the index and from the schema table */
4605 v
= sqlite3GetVdbe(pParse
);
4607 sqlite3BeginWriteOperation(pParse
, 1, iDb
);
4608 sqlite3NestedParse(pParse
,
4609 "DELETE FROM %Q." LEGACY_SCHEMA_TABLE
" WHERE name=%Q AND type='index'",
4610 db
->aDb
[iDb
].zDbSName
, pIndex
->zName
4612 sqlite3ClearStatTables(pParse
, iDb
, "idx", pIndex
->zName
);
4613 sqlite3ChangeCookie(pParse
, iDb
);
4614 destroyRootPage(pParse
, pIndex
->tnum
, iDb
);
4615 sqlite3VdbeAddOp4(v
, OP_DropIndex
, iDb
, 0, 0, pIndex
->zName
, 0);
4619 sqlite3SrcListDelete(db
, pName
);
4623 ** pArray is a pointer to an array of objects. Each object in the
4624 ** array is szEntry bytes in size. This routine uses sqlite3DbRealloc()
4625 ** to extend the array so that there is space for a new object at the end.
4627 ** When this function is called, *pnEntry contains the current size of
4628 ** the array (in entries - so the allocation is ((*pnEntry) * szEntry) bytes
4631 ** If the realloc() is successful (i.e. if no OOM condition occurs), the
4632 ** space allocated for the new object is zeroed, *pnEntry updated to
4633 ** reflect the new size of the array and a pointer to the new allocation
4634 ** returned. *pIdx is set to the index of the new array entry in this case.
4636 ** Otherwise, if the realloc() fails, *pIdx is set to -1, *pnEntry remains
4637 ** unchanged and a copy of pArray returned.
4639 void *sqlite3ArrayAllocate(
4640 sqlite3
*db
, /* Connection to notify of malloc failures */
4641 void *pArray
, /* Array of objects. Might be reallocated */
4642 int szEntry
, /* Size of each object in the array */
4643 int *pnEntry
, /* Number of objects currently in use */
4644 int *pIdx
/* Write the index of a new slot here */
4647 sqlite3_int64 n
= *pIdx
= *pnEntry
;
4648 if( (n
& (n
-1))==0 ){
4649 sqlite3_int64 sz
= (n
==0) ? 1 : 2*n
;
4650 void *pNew
= sqlite3DbRealloc(db
, pArray
, sz
*szEntry
);
4658 memset(&z
[n
* szEntry
], 0, szEntry
);
4664 ** Append a new element to the given IdList. Create a new IdList if
4667 ** A new IdList is returned, or NULL if malloc() fails.
4669 IdList
*sqlite3IdListAppend(Parse
*pParse
, IdList
*pList
, Token
*pToken
){
4670 sqlite3
*db
= pParse
->db
;
4673 pList
= sqlite3DbMallocZero(db
, sizeof(IdList
) );
4674 if( pList
==0 ) return 0;
4677 pNew
= sqlite3DbRealloc(db
, pList
,
4678 sizeof(IdList
) + pList
->nId
*sizeof(pList
->a
));
4680 sqlite3IdListDelete(db
, pList
);
4686 pList
->a
[i
].zName
= sqlite3NameFromToken(db
, pToken
);
4687 if( IN_RENAME_OBJECT
&& pList
->a
[i
].zName
){
4688 sqlite3RenameTokenMap(pParse
, (void*)pList
->a
[i
].zName
, pToken
);
4694 ** Delete an IdList.
4696 void sqlite3IdListDelete(sqlite3
*db
, IdList
*pList
){
4699 if( pList
==0 ) return;
4700 assert( pList
->eU4
!=EU4_EXPR
); /* EU4_EXPR mode is not currently used */
4701 for(i
=0; i
<pList
->nId
; i
++){
4702 sqlite3DbFree(db
, pList
->a
[i
].zName
);
4704 sqlite3DbNNFreeNN(db
, pList
);
4708 ** Return the index in pList of the identifier named zId. Return -1
4711 int sqlite3IdListIndex(IdList
*pList
, const char *zName
){
4714 for(i
=0; i
<pList
->nId
; i
++){
4715 if( sqlite3StrICmp(pList
->a
[i
].zName
, zName
)==0 ) return i
;
4721 ** Maximum size of a SrcList object.
4722 ** The SrcList object is used to represent the FROM clause of a
4723 ** SELECT statement, and the query planner cannot deal with more
4724 ** than 64 tables in a join. So any value larger than 64 here
4725 ** is sufficient for most uses. Smaller values, like say 10, are
4726 ** appropriate for small and memory-limited applications.
4728 #ifndef SQLITE_MAX_SRCLIST
4729 # define SQLITE_MAX_SRCLIST 200
4733 ** Expand the space allocated for the given SrcList object by
4734 ** creating nExtra new slots beginning at iStart. iStart is zero based.
4735 ** New slots are zeroed.
4737 ** For example, suppose a SrcList initially contains two entries: A,B.
4738 ** To append 3 new entries onto the end, do this:
4740 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
4742 ** After the call above it would contain: A, B, nil, nil, nil.
4743 ** If the iStart argument had been 1 instead of 2, then the result
4744 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
4745 ** the iStart value would be 0. The result then would
4746 ** be: nil, nil, nil, A, B.
4748 ** If a memory allocation fails or the SrcList becomes too large, leave
4749 ** the original SrcList unchanged, return NULL, and leave an error message
4752 SrcList
*sqlite3SrcListEnlarge(
4753 Parse
*pParse
, /* Parsing context into which errors are reported */
4754 SrcList
*pSrc
, /* The SrcList to be enlarged */
4755 int nExtra
, /* Number of new slots to add to pSrc->a[] */
4756 int iStart
/* Index in pSrc->a[] of first new slot */
4760 /* Sanity checking on calling parameters */
4761 assert( iStart
>=0 );
4762 assert( nExtra
>=1 );
4764 assert( iStart
<=pSrc
->nSrc
);
4766 /* Allocate additional space if needed */
4767 if( (u32
)pSrc
->nSrc
+nExtra
>pSrc
->nAlloc
){
4769 sqlite3_int64 nAlloc
= 2*(sqlite3_int64
)pSrc
->nSrc
+nExtra
;
4770 sqlite3
*db
= pParse
->db
;
4772 if( pSrc
->nSrc
+nExtra
>=SQLITE_MAX_SRCLIST
){
4773 sqlite3ErrorMsg(pParse
, "too many FROM clause terms, max: %d",
4774 SQLITE_MAX_SRCLIST
);
4777 if( nAlloc
>SQLITE_MAX_SRCLIST
) nAlloc
= SQLITE_MAX_SRCLIST
;
4778 pNew
= sqlite3DbRealloc(db
, pSrc
,
4779 sizeof(*pSrc
) + (nAlloc
-1)*sizeof(pSrc
->a
[0]) );
4781 assert( db
->mallocFailed
);
4785 pSrc
->nAlloc
= nAlloc
;
4788 /* Move existing slots that come after the newly inserted slots
4789 ** out of the way */
4790 for(i
=pSrc
->nSrc
-1; i
>=iStart
; i
--){
4791 pSrc
->a
[i
+nExtra
] = pSrc
->a
[i
];
4793 pSrc
->nSrc
+= nExtra
;
4795 /* Zero the newly allocated slots */
4796 memset(&pSrc
->a
[iStart
], 0, sizeof(pSrc
->a
[0])*nExtra
);
4797 for(i
=iStart
; i
<iStart
+nExtra
; i
++){
4798 pSrc
->a
[i
].iCursor
= -1;
4801 /* Return a pointer to the enlarged SrcList */
4807 ** Append a new table name to the given SrcList. Create a new SrcList if
4808 ** need be. A new entry is created in the SrcList even if pTable is NULL.
4810 ** A SrcList is returned, or NULL if there is an OOM error or if the
4811 ** SrcList grows to large. The returned
4812 ** SrcList might be the same as the SrcList that was input or it might be
4813 ** a new one. If an OOM error does occurs, then the prior value of pList
4814 ** that is input to this routine is automatically freed.
4816 ** If pDatabase is not null, it means that the table has an optional
4817 ** database name prefix. Like this: "database.table". The pDatabase
4818 ** points to the table name and the pTable points to the database name.
4819 ** The SrcList.a[].zName field is filled with the table name which might
4820 ** come from pTable (if pDatabase is NULL) or from pDatabase.
4821 ** SrcList.a[].zDatabase is filled with the database name from pTable,
4822 ** or with NULL if no database is specified.
4824 ** In other words, if call like this:
4826 ** sqlite3SrcListAppend(D,A,B,0);
4828 ** Then B is a table name and the database name is unspecified. If called
4831 ** sqlite3SrcListAppend(D,A,B,C);
4833 ** Then C is the table name and B is the database name. If C is defined
4834 ** then so is B. In other words, we never have a case where:
4836 ** sqlite3SrcListAppend(D,A,0,C);
4838 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
4839 ** before being added to the SrcList.
4841 SrcList
*sqlite3SrcListAppend(
4842 Parse
*pParse
, /* Parsing context, in which errors are reported */
4843 SrcList
*pList
, /* Append to this SrcList. NULL creates a new SrcList */
4844 Token
*pTable
, /* Table to append */
4845 Token
*pDatabase
/* Database of the table */
4849 assert( pDatabase
==0 || pTable
!=0 ); /* Cannot have C without B */
4850 assert( pParse
!=0 );
4851 assert( pParse
->db
!=0 );
4854 pList
= sqlite3DbMallocRawNN(pParse
->db
, sizeof(SrcList
) );
4855 if( pList
==0 ) return 0;
4858 memset(&pList
->a
[0], 0, sizeof(pList
->a
[0]));
4859 pList
->a
[0].iCursor
= -1;
4861 SrcList
*pNew
= sqlite3SrcListEnlarge(pParse
, pList
, 1, pList
->nSrc
);
4863 sqlite3SrcListDelete(db
, pList
);
4869 pItem
= &pList
->a
[pList
->nSrc
-1];
4870 if( pDatabase
&& pDatabase
->z
==0 ){
4874 pItem
->zName
= sqlite3NameFromToken(db
, pDatabase
);
4875 pItem
->zDatabase
= sqlite3NameFromToken(db
, pTable
);
4877 pItem
->zName
= sqlite3NameFromToken(db
, pTable
);
4878 pItem
->zDatabase
= 0;
4884 ** Assign VdbeCursor index numbers to all tables in a SrcList
4886 void sqlite3SrcListAssignCursors(Parse
*pParse
, SrcList
*pList
){
4889 assert( pList
|| pParse
->db
->mallocFailed
);
4890 if( ALWAYS(pList
) ){
4891 for(i
=0, pItem
=pList
->a
; i
<pList
->nSrc
; i
++, pItem
++){
4892 if( pItem
->iCursor
>=0 ) continue;
4893 pItem
->iCursor
= pParse
->nTab
++;
4894 if( pItem
->pSelect
){
4895 sqlite3SrcListAssignCursors(pParse
, pItem
->pSelect
->pSrc
);
4902 ** Delete an entire SrcList including all its substructure.
4904 void sqlite3SrcListDelete(sqlite3
*db
, SrcList
*pList
){
4908 if( pList
==0 ) return;
4909 for(pItem
=pList
->a
, i
=0; i
<pList
->nSrc
; i
++, pItem
++){
4910 if( pItem
->zDatabase
) sqlite3DbNNFreeNN(db
, pItem
->zDatabase
);
4911 if( pItem
->zName
) sqlite3DbNNFreeNN(db
, pItem
->zName
);
4912 if( pItem
->zAlias
) sqlite3DbNNFreeNN(db
, pItem
->zAlias
);
4913 if( pItem
->fg
.isIndexedBy
) sqlite3DbFree(db
, pItem
->u1
.zIndexedBy
);
4914 if( pItem
->fg
.isTabFunc
) sqlite3ExprListDelete(db
, pItem
->u1
.pFuncArg
);
4915 sqlite3DeleteTable(db
, pItem
->pTab
);
4916 if( pItem
->pSelect
) sqlite3SelectDelete(db
, pItem
->pSelect
);
4917 if( pItem
->fg
.isUsing
){
4918 sqlite3IdListDelete(db
, pItem
->u3
.pUsing
);
4919 }else if( pItem
->u3
.pOn
){
4920 sqlite3ExprDelete(db
, pItem
->u3
.pOn
);
4923 sqlite3DbNNFreeNN(db
, pList
);
4927 ** This routine is called by the parser to add a new term to the
4928 ** end of a growing FROM clause. The "p" parameter is the part of
4929 ** the FROM clause that has already been constructed. "p" is NULL
4930 ** if this is the first term of the FROM clause. pTable and pDatabase
4931 ** are the name of the table and database named in the FROM clause term.
4932 ** pDatabase is NULL if the database name qualifier is missing - the
4933 ** usual case. If the term has an alias, then pAlias points to the
4934 ** alias token. If the term is a subquery, then pSubquery is the
4935 ** SELECT statement that the subquery encodes. The pTable and
4936 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
4937 ** parameters are the content of the ON and USING clauses.
4939 ** Return a new SrcList which encodes is the FROM with the new
4942 SrcList
*sqlite3SrcListAppendFromTerm(
4943 Parse
*pParse
, /* Parsing context */
4944 SrcList
*p
, /* The left part of the FROM clause already seen */
4945 Token
*pTable
, /* Name of the table to add to the FROM clause */
4946 Token
*pDatabase
, /* Name of the database containing pTable */
4947 Token
*pAlias
, /* The right-hand side of the AS subexpression */
4948 Select
*pSubquery
, /* A subquery used in place of a table name */
4949 OnOrUsing
*pOnUsing
/* Either the ON clause or the USING clause */
4952 sqlite3
*db
= pParse
->db
;
4953 if( !p
&& pOnUsing
!=0 && (pOnUsing
->pOn
|| pOnUsing
->pUsing
) ){
4954 sqlite3ErrorMsg(pParse
, "a JOIN clause is required before %s",
4955 (pOnUsing
->pOn
? "ON" : "USING")
4957 goto append_from_error
;
4959 p
= sqlite3SrcListAppend(pParse
, p
, pTable
, pDatabase
);
4961 goto append_from_error
;
4963 assert( p
->nSrc
>0 );
4964 pItem
= &p
->a
[p
->nSrc
-1];
4965 assert( (pTable
==0)==(pDatabase
==0) );
4966 assert( pItem
->zName
==0 || pDatabase
!=0 );
4967 if( IN_RENAME_OBJECT
&& pItem
->zName
){
4968 Token
*pToken
= (ALWAYS(pDatabase
) && pDatabase
->z
) ? pDatabase
: pTable
;
4969 sqlite3RenameTokenMap(pParse
, pItem
->zName
, pToken
);
4971 assert( pAlias
!=0 );
4973 pItem
->zAlias
= sqlite3NameFromToken(db
, pAlias
);
4976 pItem
->pSelect
= pSubquery
;
4977 if( pSubquery
->selFlags
& SF_NestedFrom
){
4978 pItem
->fg
.isNestedFrom
= 1;
4981 assert( pOnUsing
==0 || pOnUsing
->pOn
==0 || pOnUsing
->pUsing
==0 );
4982 assert( pItem
->fg
.isUsing
==0 );
4985 }else if( pOnUsing
->pUsing
){
4986 pItem
->fg
.isUsing
= 1;
4987 pItem
->u3
.pUsing
= pOnUsing
->pUsing
;
4989 pItem
->u3
.pOn
= pOnUsing
->pOn
;
4995 sqlite3ClearOnOrUsing(db
, pOnUsing
);
4996 sqlite3SelectDelete(db
, pSubquery
);
5001 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
5002 ** element of the source-list passed as the second argument.
5004 void sqlite3SrcListIndexedBy(Parse
*pParse
, SrcList
*p
, Token
*pIndexedBy
){
5005 assert( pIndexedBy
!=0 );
5006 if( p
&& pIndexedBy
->n
>0 ){
5008 assert( p
->nSrc
>0 );
5009 pItem
= &p
->a
[p
->nSrc
-1];
5010 assert( pItem
->fg
.notIndexed
==0 );
5011 assert( pItem
->fg
.isIndexedBy
==0 );
5012 assert( pItem
->fg
.isTabFunc
==0 );
5013 if( pIndexedBy
->n
==1 && !pIndexedBy
->z
){
5014 /* A "NOT INDEXED" clause was supplied. See parse.y
5015 ** construct "indexed_opt" for details. */
5016 pItem
->fg
.notIndexed
= 1;
5018 pItem
->u1
.zIndexedBy
= sqlite3NameFromToken(pParse
->db
, pIndexedBy
);
5019 pItem
->fg
.isIndexedBy
= 1;
5020 assert( pItem
->fg
.isCte
==0 ); /* No collision on union u2 */
5026 ** Append the contents of SrcList p2 to SrcList p1 and return the resulting
5027 ** SrcList. Or, if an error occurs, return NULL. In all cases, p1 and p2
5028 ** are deleted by this function.
5030 SrcList
*sqlite3SrcListAppendList(Parse
*pParse
, SrcList
*p1
, SrcList
*p2
){
5031 assert( p1
&& p1
->nSrc
==1 );
5033 SrcList
*pNew
= sqlite3SrcListEnlarge(pParse
, p1
, p2
->nSrc
, 1);
5035 sqlite3SrcListDelete(pParse
->db
, p2
);
5038 memcpy(&p1
->a
[1], p2
->a
, p2
->nSrc
*sizeof(SrcItem
));
5039 sqlite3DbFree(pParse
->db
, p2
);
5040 p1
->a
[0].fg
.jointype
|= (JT_LTORJ
& p1
->a
[1].fg
.jointype
);
5047 ** Add the list of function arguments to the SrcList entry for a
5048 ** table-valued-function.
5050 void sqlite3SrcListFuncArgs(Parse
*pParse
, SrcList
*p
, ExprList
*pList
){
5052 SrcItem
*pItem
= &p
->a
[p
->nSrc
-1];
5053 assert( pItem
->fg
.notIndexed
==0 );
5054 assert( pItem
->fg
.isIndexedBy
==0 );
5055 assert( pItem
->fg
.isTabFunc
==0 );
5056 pItem
->u1
.pFuncArg
= pList
;
5057 pItem
->fg
.isTabFunc
= 1;
5059 sqlite3ExprListDelete(pParse
->db
, pList
);
5064 ** When building up a FROM clause in the parser, the join operator
5065 ** is initially attached to the left operand. But the code generator
5066 ** expects the join operator to be on the right operand. This routine
5067 ** Shifts all join operators from left to right for an entire FROM
5070 ** Example: Suppose the join is like this:
5072 ** A natural cross join B
5074 ** The operator is "natural cross join". The A and B operands are stored
5075 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
5076 ** operator with A. This routine shifts that operator over to B.
5078 ** Additional changes:
5080 ** * All tables to the left of the right-most RIGHT JOIN are tagged with
5081 ** JT_LTORJ (mnemonic: Left Table Of Right Join) so that the
5082 ** code generator can easily tell that the table is part of
5083 ** the left operand of at least one RIGHT JOIN.
5085 void sqlite3SrcListShiftJoinType(Parse
*pParse
, SrcList
*p
){
5087 if( p
&& p
->nSrc
>1 ){
5091 allFlags
|= p
->a
[i
].fg
.jointype
= p
->a
[i
-1].fg
.jointype
;
5093 p
->a
[0].fg
.jointype
= 0;
5095 /* All terms to the left of a RIGHT JOIN should be tagged with the
5096 ** JT_LTORJ flags */
5097 if( allFlags
& JT_RIGHT
){
5098 for(i
=p
->nSrc
-1; ALWAYS(i
>0) && (p
->a
[i
].fg
.jointype
&JT_RIGHT
)==0; i
--){}
5102 p
->a
[i
].fg
.jointype
|= JT_LTORJ
;
5109 ** Generate VDBE code for a BEGIN statement.
5111 void sqlite3BeginTransaction(Parse
*pParse
, int type
){
5116 assert( pParse
!=0 );
5119 if( sqlite3AuthCheck(pParse
, SQLITE_TRANSACTION
, "BEGIN", 0, 0) ){
5122 v
= sqlite3GetVdbe(pParse
);
5124 if( type
!=TK_DEFERRED
){
5125 for(i
=0; i
<db
->nDb
; i
++){
5127 Btree
*pBt
= db
->aDb
[i
].pBt
;
5128 if( pBt
&& sqlite3BtreeIsReadonly(pBt
) ){
5129 eTxnType
= 0; /* Read txn */
5130 }else if( type
==TK_EXCLUSIVE
){
5131 eTxnType
= 2; /* Exclusive txn */
5133 eTxnType
= 1; /* Write txn */
5135 sqlite3VdbeAddOp2(v
, OP_Transaction
, i
, eTxnType
);
5136 sqlite3VdbeUsesBtree(v
, i
);
5139 sqlite3VdbeAddOp0(v
, OP_AutoCommit
);
5143 ** Generate VDBE code for a COMMIT or ROLLBACK statement.
5144 ** Code for ROLLBACK is generated if eType==TK_ROLLBACK. Otherwise
5145 ** code is generated for a COMMIT.
5147 void sqlite3EndTransaction(Parse
*pParse
, int eType
){
5151 assert( pParse
!=0 );
5152 assert( pParse
->db
!=0 );
5153 assert( eType
==TK_COMMIT
|| eType
==TK_END
|| eType
==TK_ROLLBACK
);
5154 isRollback
= eType
==TK_ROLLBACK
;
5155 if( sqlite3AuthCheck(pParse
, SQLITE_TRANSACTION
,
5156 isRollback
? "ROLLBACK" : "COMMIT", 0, 0) ){
5159 v
= sqlite3GetVdbe(pParse
);
5161 sqlite3VdbeAddOp2(v
, OP_AutoCommit
, 1, isRollback
);
5166 ** This function is called by the parser when it parses a command to create,
5167 ** release or rollback an SQL savepoint.
5169 void sqlite3Savepoint(Parse
*pParse
, int op
, Token
*pName
){
5170 char *zName
= sqlite3NameFromToken(pParse
->db
, pName
);
5172 Vdbe
*v
= sqlite3GetVdbe(pParse
);
5173 #ifndef SQLITE_OMIT_AUTHORIZATION
5174 static const char * const az
[] = { "BEGIN", "RELEASE", "ROLLBACK" };
5175 assert( !SAVEPOINT_BEGIN
&& SAVEPOINT_RELEASE
==1 && SAVEPOINT_ROLLBACK
==2 );
5177 if( !v
|| sqlite3AuthCheck(pParse
, SQLITE_SAVEPOINT
, az
[op
], zName
, 0) ){
5178 sqlite3DbFree(pParse
->db
, zName
);
5181 sqlite3VdbeAddOp4(v
, OP_Savepoint
, op
, 0, 0, zName
, P4_DYNAMIC
);
5186 ** Make sure the TEMP database is open and available for use. Return
5187 ** the number of errors. Leave any error messages in the pParse structure.
5189 int sqlite3OpenTempDatabase(Parse
*pParse
){
5190 sqlite3
*db
= pParse
->db
;
5191 if( db
->aDb
[1].pBt
==0 && !pParse
->explain
){
5194 static const int flags
=
5195 SQLITE_OPEN_READWRITE
|
5196 SQLITE_OPEN_CREATE
|
5197 SQLITE_OPEN_EXCLUSIVE
|
5198 SQLITE_OPEN_DELETEONCLOSE
|
5199 SQLITE_OPEN_TEMP_DB
;
5201 rc
= sqlite3BtreeOpen(db
->pVfs
, 0, db
, &pBt
, 0, flags
);
5202 if( rc
!=SQLITE_OK
){
5203 sqlite3ErrorMsg(pParse
, "unable to open a temporary database "
5204 "file for storing temporary tables");
5208 db
->aDb
[1].pBt
= pBt
;
5209 assert( db
->aDb
[1].pSchema
);
5210 if( SQLITE_NOMEM
==sqlite3BtreeSetPageSize(pBt
, db
->nextPagesize
, 0, 0) ){
5211 sqlite3OomFault(db
);
5219 ** Record the fact that the schema cookie will need to be verified
5220 ** for database iDb. The code to actually verify the schema cookie
5221 ** will occur at the end of the top-level VDBE and will be generated
5222 ** later, by sqlite3FinishCoding().
5224 static void sqlite3CodeVerifySchemaAtToplevel(Parse
*pToplevel
, int iDb
){
5225 assert( iDb
>=0 && iDb
<pToplevel
->db
->nDb
);
5226 assert( pToplevel
->db
->aDb
[iDb
].pBt
!=0 || iDb
==1 );
5227 assert( iDb
<SQLITE_MAX_DB
);
5228 assert( sqlite3SchemaMutexHeld(pToplevel
->db
, iDb
, 0) );
5229 if( DbMaskTest(pToplevel
->cookieMask
, iDb
)==0 ){
5230 DbMaskSet(pToplevel
->cookieMask
, iDb
);
5231 if( !OMIT_TEMPDB
&& iDb
==1 ){
5232 sqlite3OpenTempDatabase(pToplevel
);
5236 void sqlite3CodeVerifySchema(Parse
*pParse
, int iDb
){
5237 sqlite3CodeVerifySchemaAtToplevel(sqlite3ParseToplevel(pParse
), iDb
);
5242 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
5243 ** attached database. Otherwise, invoke it for the database named zDb only.
5245 void sqlite3CodeVerifyNamedSchema(Parse
*pParse
, const char *zDb
){
5246 sqlite3
*db
= pParse
->db
;
5248 for(i
=0; i
<db
->nDb
; i
++){
5249 Db
*pDb
= &db
->aDb
[i
];
5250 if( pDb
->pBt
&& (!zDb
|| 0==sqlite3StrICmp(zDb
, pDb
->zDbSName
)) ){
5251 sqlite3CodeVerifySchema(pParse
, i
);
5257 ** Generate VDBE code that prepares for doing an operation that
5258 ** might change the database.
5260 ** This routine starts a new transaction if we are not already within
5261 ** a transaction. If we are already within a transaction, then a checkpoint
5262 ** is set if the setStatement parameter is true. A checkpoint should
5263 ** be set for operations that might fail (due to a constraint) part of
5264 ** the way through and which will need to undo some writes without having to
5265 ** rollback the whole transaction. For operations where all constraints
5266 ** can be checked before any changes are made to the database, it is never
5267 ** necessary to undo a write and the checkpoint should not be set.
5269 void sqlite3BeginWriteOperation(Parse
*pParse
, int setStatement
, int iDb
){
5270 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
5271 sqlite3CodeVerifySchemaAtToplevel(pToplevel
, iDb
);
5272 DbMaskSet(pToplevel
->writeMask
, iDb
);
5273 pToplevel
->isMultiWrite
|= setStatement
;
5277 ** Indicate that the statement currently under construction might write
5278 ** more than one entry (example: deleting one row then inserting another,
5279 ** inserting multiple rows in a table, or inserting a row and index entries.)
5280 ** If an abort occurs after some of these writes have completed, then it will
5281 ** be necessary to undo the completed writes.
5283 void sqlite3MultiWrite(Parse
*pParse
){
5284 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
5285 pToplevel
->isMultiWrite
= 1;
5289 ** The code generator calls this routine if is discovers that it is
5290 ** possible to abort a statement prior to completion. In order to
5291 ** perform this abort without corrupting the database, we need to make
5292 ** sure that the statement is protected by a statement transaction.
5294 ** Technically, we only need to set the mayAbort flag if the
5295 ** isMultiWrite flag was previously set. There is a time dependency
5296 ** such that the abort must occur after the multiwrite. This makes
5297 ** some statements involving the REPLACE conflict resolution algorithm
5298 ** go a little faster. But taking advantage of this time dependency
5299 ** makes it more difficult to prove that the code is correct (in
5300 ** particular, it prevents us from writing an effective
5301 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
5302 ** to take the safe route and skip the optimization.
5304 void sqlite3MayAbort(Parse
*pParse
){
5305 Parse
*pToplevel
= sqlite3ParseToplevel(pParse
);
5306 pToplevel
->mayAbort
= 1;
5310 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
5311 ** error. The onError parameter determines which (if any) of the statement
5312 ** and/or current transaction is rolled back.
5314 void sqlite3HaltConstraint(
5315 Parse
*pParse
, /* Parsing context */
5316 int errCode
, /* extended error code */
5317 int onError
, /* Constraint type */
5318 char *p4
, /* Error message */
5319 i8 p4type
, /* P4_STATIC or P4_TRANSIENT */
5320 u8 p5Errmsg
/* P5_ErrMsg type */
5323 assert( pParse
->pVdbe
!=0 );
5324 v
= sqlite3GetVdbe(pParse
);
5325 assert( (errCode
&0xff)==SQLITE_CONSTRAINT
|| pParse
->nested
);
5326 if( onError
==OE_Abort
){
5327 sqlite3MayAbort(pParse
);
5329 sqlite3VdbeAddOp4(v
, OP_Halt
, errCode
, onError
, 0, p4
, p4type
);
5330 sqlite3VdbeChangeP5(v
, p5Errmsg
);
5334 ** Code an OP_Halt due to UNIQUE or PRIMARY KEY constraint violation.
5336 void sqlite3UniqueConstraint(
5337 Parse
*pParse
, /* Parsing context */
5338 int onError
, /* Constraint type */
5339 Index
*pIdx
/* The index that triggers the constraint */
5344 Table
*pTab
= pIdx
->pTable
;
5346 sqlite3StrAccumInit(&errMsg
, pParse
->db
, 0, 0,
5347 pParse
->db
->aLimit
[SQLITE_LIMIT_LENGTH
]);
5348 if( pIdx
->aColExpr
){
5349 sqlite3_str_appendf(&errMsg
, "index '%q'", pIdx
->zName
);
5351 for(j
=0; j
<pIdx
->nKeyCol
; j
++){
5353 assert( pIdx
->aiColumn
[j
]>=0 );
5354 zCol
= pTab
->aCol
[pIdx
->aiColumn
[j
]].zCnName
;
5355 if( j
) sqlite3_str_append(&errMsg
, ", ", 2);
5356 sqlite3_str_appendall(&errMsg
, pTab
->zName
);
5357 sqlite3_str_append(&errMsg
, ".", 1);
5358 sqlite3_str_appendall(&errMsg
, zCol
);
5361 zErr
= sqlite3StrAccumFinish(&errMsg
);
5362 sqlite3HaltConstraint(pParse
,
5363 IsPrimaryKeyIndex(pIdx
) ? SQLITE_CONSTRAINT_PRIMARYKEY
5364 : SQLITE_CONSTRAINT_UNIQUE
,
5365 onError
, zErr
, P4_DYNAMIC
, P5_ConstraintUnique
);
5370 ** Code an OP_Halt due to non-unique rowid.
5372 void sqlite3RowidConstraint(
5373 Parse
*pParse
, /* Parsing context */
5374 int onError
, /* Conflict resolution algorithm */
5375 Table
*pTab
/* The table with the non-unique rowid */
5379 if( pTab
->iPKey
>=0 ){
5380 zMsg
= sqlite3MPrintf(pParse
->db
, "%s.%s", pTab
->zName
,
5381 pTab
->aCol
[pTab
->iPKey
].zCnName
);
5382 rc
= SQLITE_CONSTRAINT_PRIMARYKEY
;
5384 zMsg
= sqlite3MPrintf(pParse
->db
, "%s.rowid", pTab
->zName
);
5385 rc
= SQLITE_CONSTRAINT_ROWID
;
5387 sqlite3HaltConstraint(pParse
, rc
, onError
, zMsg
, P4_DYNAMIC
,
5388 P5_ConstraintUnique
);
5392 ** Check to see if pIndex uses the collating sequence pColl. Return
5393 ** true if it does and false if it does not.
5395 #ifndef SQLITE_OMIT_REINDEX
5396 static int collationMatch(const char *zColl
, Index
*pIndex
){
5399 for(i
=0; i
<pIndex
->nColumn
; i
++){
5400 const char *z
= pIndex
->azColl
[i
];
5401 assert( z
!=0 || pIndex
->aiColumn
[i
]<0 );
5402 if( pIndex
->aiColumn
[i
]>=0 && 0==sqlite3StrICmp(z
, zColl
) ){
5411 ** Recompute all indices of pTab that use the collating sequence pColl.
5412 ** If pColl==0 then recompute all indices of pTab.
5414 #ifndef SQLITE_OMIT_REINDEX
5415 static void reindexTable(Parse
*pParse
, Table
*pTab
, char const *zColl
){
5416 if( !IsVirtual(pTab
) ){
5417 Index
*pIndex
; /* An index associated with pTab */
5419 for(pIndex
=pTab
->pIndex
; pIndex
; pIndex
=pIndex
->pNext
){
5420 if( zColl
==0 || collationMatch(zColl
, pIndex
) ){
5421 int iDb
= sqlite3SchemaToIndex(pParse
->db
, pTab
->pSchema
);
5422 sqlite3BeginWriteOperation(pParse
, 0, iDb
);
5423 sqlite3RefillIndex(pParse
, pIndex
, -1);
5431 ** Recompute all indices of all tables in all databases where the
5432 ** indices use the collating sequence pColl. If pColl==0 then recompute
5433 ** all indices everywhere.
5435 #ifndef SQLITE_OMIT_REINDEX
5436 static void reindexDatabases(Parse
*pParse
, char const *zColl
){
5437 Db
*pDb
; /* A single database */
5438 int iDb
; /* The database index number */
5439 sqlite3
*db
= pParse
->db
; /* The database connection */
5440 HashElem
*k
; /* For looping over tables in pDb */
5441 Table
*pTab
; /* A table in the database */
5443 assert( sqlite3BtreeHoldsAllMutexes(db
) ); /* Needed for schema access */
5444 for(iDb
=0, pDb
=db
->aDb
; iDb
<db
->nDb
; iDb
++, pDb
++){
5446 for(k
=sqliteHashFirst(&pDb
->pSchema
->tblHash
); k
; k
=sqliteHashNext(k
)){
5447 pTab
= (Table
*)sqliteHashData(k
);
5448 reindexTable(pParse
, pTab
, zColl
);
5455 ** Generate code for the REINDEX command.
5458 ** REINDEX <collation> -- 2
5459 ** REINDEX ?<database>.?<tablename> -- 3
5460 ** REINDEX ?<database>.?<indexname> -- 4
5462 ** Form 1 causes all indices in all attached databases to be rebuilt.
5463 ** Form 2 rebuilds all indices in all databases that use the named
5464 ** collating function. Forms 3 and 4 rebuild the named index or all
5465 ** indices associated with the named table.
5467 #ifndef SQLITE_OMIT_REINDEX
5468 void sqlite3Reindex(Parse
*pParse
, Token
*pName1
, Token
*pName2
){
5469 CollSeq
*pColl
; /* Collating sequence to be reindexed, or NULL */
5470 char *z
; /* Name of a table or index */
5471 const char *zDb
; /* Name of the database */
5472 Table
*pTab
; /* A table in the database */
5473 Index
*pIndex
; /* An index associated with pTab */
5474 int iDb
; /* The database index number */
5475 sqlite3
*db
= pParse
->db
; /* The database connection */
5476 Token
*pObjName
; /* Name of the table or index to be reindexed */
5478 /* Read the database schema. If an error occurs, leave an error message
5479 ** and code in pParse and return NULL. */
5480 if( SQLITE_OK
!=sqlite3ReadSchema(pParse
) ){
5485 reindexDatabases(pParse
, 0);
5487 }else if( NEVER(pName2
==0) || pName2
->z
==0 ){
5489 assert( pName1
->z
);
5490 zColl
= sqlite3NameFromToken(pParse
->db
, pName1
);
5491 if( !zColl
) return;
5492 pColl
= sqlite3FindCollSeq(db
, ENC(db
), zColl
, 0);
5494 reindexDatabases(pParse
, zColl
);
5495 sqlite3DbFree(db
, zColl
);
5498 sqlite3DbFree(db
, zColl
);
5500 iDb
= sqlite3TwoPartName(pParse
, pName1
, pName2
, &pObjName
);
5502 z
= sqlite3NameFromToken(db
, pObjName
);
5504 zDb
= db
->aDb
[iDb
].zDbSName
;
5505 pTab
= sqlite3FindTable(db
, z
, zDb
);
5507 reindexTable(pParse
, pTab
, 0);
5508 sqlite3DbFree(db
, z
);
5511 pIndex
= sqlite3FindIndex(db
, z
, zDb
);
5512 sqlite3DbFree(db
, z
);
5514 sqlite3BeginWriteOperation(pParse
, 0, iDb
);
5515 sqlite3RefillIndex(pParse
, pIndex
, -1);
5518 sqlite3ErrorMsg(pParse
, "unable to identify the object to be reindexed");
5523 ** Return a KeyInfo structure that is appropriate for the given Index.
5525 ** The caller should invoke sqlite3KeyInfoUnref() on the returned object
5526 ** when it has finished using it.
5528 KeyInfo
*sqlite3KeyInfoOfIndex(Parse
*pParse
, Index
*pIdx
){
5530 int nCol
= pIdx
->nColumn
;
5531 int nKey
= pIdx
->nKeyCol
;
5533 if( pParse
->nErr
) return 0;
5534 if( pIdx
->uniqNotNull
){
5535 pKey
= sqlite3KeyInfoAlloc(pParse
->db
, nKey
, nCol
-nKey
);
5537 pKey
= sqlite3KeyInfoAlloc(pParse
->db
, nCol
, 0);
5540 assert( sqlite3KeyInfoIsWriteable(pKey
) );
5541 for(i
=0; i
<nCol
; i
++){
5542 const char *zColl
= pIdx
->azColl
[i
];
5543 pKey
->aColl
[i
] = zColl
==sqlite3StrBINARY
? 0 :
5544 sqlite3LocateCollSeq(pParse
, zColl
);
5545 pKey
->aSortFlags
[i
] = pIdx
->aSortOrder
[i
];
5546 assert( 0==(pKey
->aSortFlags
[i
] & KEYINFO_ORDER_BIGNULL
) );
5549 assert( pParse
->rc
==SQLITE_ERROR_MISSING_COLLSEQ
);
5550 if( pIdx
->bNoQuery
==0 ){
5551 /* Deactivate the index because it contains an unknown collating
5552 ** sequence. The only way to reactive the index is to reload the
5553 ** schema. Adding the missing collating sequence later does not
5554 ** reactive the index. The application had the chance to register
5555 ** the missing index using the collation-needed callback. For
5556 ** simplicity, SQLite will not give the application a second chance.
5559 pParse
->rc
= SQLITE_ERROR_RETRY
;
5561 sqlite3KeyInfoUnref(pKey
);
5568 #ifndef SQLITE_OMIT_CTE
5570 ** Create a new CTE object
5573 Parse
*pParse
, /* Parsing context */
5574 Token
*pName
, /* Name of the common-table */
5575 ExprList
*pArglist
, /* Optional column name list for the table */
5576 Select
*pQuery
, /* Query used to initialize the table */
5577 u8 eM10d
/* The MATERIALIZED flag */
5580 sqlite3
*db
= pParse
->db
;
5582 pNew
= sqlite3DbMallocZero(db
, sizeof(*pNew
));
5583 assert( pNew
!=0 || db
->mallocFailed
);
5585 if( db
->mallocFailed
){
5586 sqlite3ExprListDelete(db
, pArglist
);
5587 sqlite3SelectDelete(db
, pQuery
);
5589 pNew
->pSelect
= pQuery
;
5590 pNew
->pCols
= pArglist
;
5591 pNew
->zName
= sqlite3NameFromToken(pParse
->db
, pName
);
5592 pNew
->eM10d
= eM10d
;
5598 ** Clear information from a Cte object, but do not deallocate storage
5599 ** for the object itself.
5601 static void cteClear(sqlite3
*db
, Cte
*pCte
){
5603 sqlite3ExprListDelete(db
, pCte
->pCols
);
5604 sqlite3SelectDelete(db
, pCte
->pSelect
);
5605 sqlite3DbFree(db
, pCte
->zName
);
5609 ** Free the contents of the CTE object passed as the second argument.
5611 void sqlite3CteDelete(sqlite3
*db
, Cte
*pCte
){
5614 sqlite3DbFree(db
, pCte
);
5618 ** This routine is invoked once per CTE by the parser while parsing a
5619 ** WITH clause. The CTE described by teh third argument is added to
5620 ** the WITH clause of the second argument. If the second argument is
5621 ** NULL, then a new WITH argument is created.
5623 With
*sqlite3WithAdd(
5624 Parse
*pParse
, /* Parsing context */
5625 With
*pWith
, /* Existing WITH clause, or NULL */
5626 Cte
*pCte
/* CTE to add to the WITH clause */
5628 sqlite3
*db
= pParse
->db
;
5636 /* Check that the CTE name is unique within this WITH clause. If
5637 ** not, store an error in the Parse structure. */
5638 zName
= pCte
->zName
;
5639 if( zName
&& pWith
){
5641 for(i
=0; i
<pWith
->nCte
; i
++){
5642 if( sqlite3StrICmp(zName
, pWith
->a
[i
].zName
)==0 ){
5643 sqlite3ErrorMsg(pParse
, "duplicate WITH table name: %s", zName
);
5649 sqlite3_int64 nByte
= sizeof(*pWith
) + (sizeof(pWith
->a
[1]) * pWith
->nCte
);
5650 pNew
= sqlite3DbRealloc(db
, pWith
, nByte
);
5652 pNew
= sqlite3DbMallocZero(db
, sizeof(*pWith
));
5654 assert( (pNew
!=0 && zName
!=0) || db
->mallocFailed
);
5656 if( db
->mallocFailed
){
5657 sqlite3CteDelete(db
, pCte
);
5660 pNew
->a
[pNew
->nCte
++] = *pCte
;
5661 sqlite3DbFree(db
, pCte
);
5668 ** Free the contents of the With object passed as the second argument.
5670 void sqlite3WithDelete(sqlite3
*db
, With
*pWith
){
5673 for(i
=0; i
<pWith
->nCte
; i
++){
5674 cteClear(db
, &pWith
->a
[i
]);
5676 sqlite3DbFree(db
, pWith
);
5679 #endif /* !defined(SQLITE_OMIT_CTE) */