4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains the C functions that implement date and time
13 ** functions for SQLite.
15 ** There is only one exported symbol in this file - the function
16 ** sqlite3RegisterDateTimeFunctions() found at the bottom of the file.
17 ** All other code has file scope.
19 ** SQLite processes all times and dates as julian day numbers. The
20 ** dates and times are stored as the number of days since noon
21 ** in Greenwich on November 24, 4714 B.C. according to the Gregorian
24 ** 1970-01-01 00:00:00 is JD 2440587.5
25 ** 2000-01-01 00:00:00 is JD 2451544.5
27 ** This implementation requires years to be expressed as a 4-digit number
28 ** which means that only dates between 0000-01-01 and 9999-12-31 can
29 ** be represented, even though julian day numbers allow a much wider
32 ** The Gregorian calendar system is used for all dates and times,
33 ** even those that predate the Gregorian calendar. Historians usually
34 ** use the julian calendar for dates prior to 1582-10-15 and for some
35 ** dates afterwards, depending on locale. Beware of this difference.
37 ** The conversion algorithms are implemented based on descriptions
38 ** in the following text:
41 ** Astronomical Algorithms, 2nd Edition, 1998
44 ** Richmond, Virginia (USA)
46 #include "sqliteInt.h"
51 #ifndef SQLITE_OMIT_DATETIME_FUNCS
54 ** The MSVC CRT on Windows CE may not have a localtime() function.
55 ** So declare a substitute. The substitute function itself is
56 ** defined in "os_win.c".
58 #if !defined(SQLITE_OMIT_LOCALTIME) && defined(_WIN32_WCE) && \
59 (!defined(SQLITE_MSVC_LOCALTIME_API) || !SQLITE_MSVC_LOCALTIME_API)
60 struct tm
*__cdecl
localtime(const time_t *);
64 ** A structure for holding a single date and time.
66 typedef struct DateTime DateTime
;
68 sqlite3_int64 iJD
; /* The julian day number times 86400000 */
69 int Y
, M
, D
; /* Year, month, and day */
70 int h
, m
; /* Hour and minutes */
71 int tz
; /* Timezone offset in minutes */
72 double s
; /* Seconds */
73 char validJD
; /* True (1) if iJD is valid */
74 char rawS
; /* Raw numeric value stored in s */
75 char validYMD
; /* True (1) if Y,M,D are valid */
76 char validHMS
; /* True (1) if h,m,s are valid */
77 char validTZ
; /* True (1) if tz is valid */
78 char tzSet
; /* Timezone was set explicitly */
79 char isError
; /* An overflow has occurred */
84 ** Convert zDate into one or more integers according to the conversion
87 ** zFormat[] contains 4 characters for each integer converted, except for
88 ** the last integer which is specified by three characters. The meaning
89 ** of a four-character format specifiers ABCD is:
91 ** A: number of digits to convert. Always "2" or "4".
92 ** B: minimum value. Always "0" or "1".
93 ** C: maximum value, decoded as:
100 ** D: the separator character, or \000 to indicate this is the
101 ** last number to convert.
103 ** Example: To translate an ISO-8601 date YYYY-MM-DD, the format would
104 ** be "40f-21a-20c". The "40f-" indicates the 4-digit year followed by "-".
105 ** The "21a-" indicates the 2-digit month followed by "-". The "20c" indicates
106 ** the 2-digit day which is the last integer in the set.
108 ** The function returns the number of successful conversions.
110 static int getDigits(const char *zDate
, const char *zFormat
, ...){
111 /* The aMx[] array translates the 3rd character of each format
112 ** spec into a max size: a b c d e f */
113 static const u16 aMx
[] = { 12, 14, 24, 31, 59, 9999 };
117 va_start(ap
, zFormat
);
119 char N
= zFormat
[0] - '0';
120 char min
= zFormat
[1] - '0';
124 assert( zFormat
[2]>='a' && zFormat
[2]<='f' );
125 max
= aMx
[zFormat
[2] - 'a'];
129 if( !sqlite3Isdigit(*zDate
) ){
132 val
= val
*10 + *zDate
- '0';
135 if( val
<(int)min
|| val
>(int)max
|| (nextC
!=0 && nextC
!=*zDate
) ){
138 *va_arg(ap
,int*) = val
;
149 ** Parse a timezone extension on the end of a date-time.
150 ** The extension is of the form:
154 ** Or the "zulu" notation:
158 ** If the parse is successful, write the number of minutes
159 ** of change in p->tz and return 0. If a parser error occurs,
162 ** A missing specifier is not considered an error.
164 static int parseTimezone(const char *zDate
, DateTime
*p
){
168 while( sqlite3Isspace(*zDate
) ){ zDate
++; }
175 }else if( c
=='Z' || c
=='z' ){
182 if( getDigits(zDate
, "20b:20e", &nHr
, &nMn
)!=2 ){
186 p
->tz
= sgn
*(nMn
+ nHr
*60);
188 while( sqlite3Isspace(*zDate
) ){ zDate
++; }
194 ** Parse times of the form HH:MM or HH:MM:SS or HH:MM:SS.FFFF.
195 ** The HH, MM, and SS must each be exactly 2 digits. The
196 ** fractional seconds FFFF can be one or more digits.
198 ** Return 1 if there is a parsing error and 0 on success.
200 static int parseHhMmSs(const char *zDate
, DateTime
*p
){
203 if( getDigits(zDate
, "20c:20e", &h
, &m
)!=2 ){
209 if( getDigits(zDate
, "20e", &s
)!=1 ){
213 if( *zDate
=='.' && sqlite3Isdigit(zDate
[1]) ){
216 while( sqlite3Isdigit(*zDate
) ){
217 ms
= ms
*10.0 + *zDate
- '0';
232 if( parseTimezone(zDate
, p
) ) return 1;
233 p
->validTZ
= (p
->tz
!=0)?1:0;
238 ** Put the DateTime object into its error state.
240 static void datetimeError(DateTime
*p
){
241 memset(p
, 0, sizeof(*p
));
246 ** Convert from YYYY-MM-DD HH:MM:SS to julian day. We always assume
247 ** that the YYYY-MM-DD is according to the Gregorian calendar.
249 ** Reference: Meeus page 61
251 static void computeJD(DateTime
*p
){
252 int Y
, M
, D
, A
, B
, X1
, X2
;
254 if( p
->validJD
) return;
260 Y
= 2000; /* If no YMD specified, assume 2000-Jan-01 */
264 if( Y
<-4713 || Y
>9999 || p
->rawS
){
274 X1
= 36525*(Y
+4716)/100;
275 X2
= 306001*(M
+1)/10000;
276 p
->iJD
= (sqlite3_int64
)((X1
+ X2
+ D
+ B
- 1524.5 ) * 86400000);
279 p
->iJD
+= p
->h
*3600000 + p
->m
*60000 + (sqlite3_int64
)(p
->s
*1000 + 0.5);
281 p
->iJD
-= p
->tz
*60000;
290 ** Parse dates of the form
292 ** YYYY-MM-DD HH:MM:SS.FFF
293 ** YYYY-MM-DD HH:MM:SS
297 ** Write the result into the DateTime structure and return 0
298 ** on success and 1 if the input string is not a well-formed
301 static int parseYyyyMmDd(const char *zDate
, DateTime
*p
){
310 if( getDigits(zDate
, "40f-21a-21d", &Y
, &M
, &D
)!=3 ){
314 while( sqlite3Isspace(*zDate
) || 'T'==*(u8
*)zDate
){ zDate
++; }
315 if( parseHhMmSs(zDate
, p
)==0 ){
316 /* We got the time */
317 }else if( *zDate
==0 ){
334 ** Set the time to the current time reported by the VFS.
336 ** Return the number of errors.
338 static int setDateTimeToCurrent(sqlite3_context
*context
, DateTime
*p
){
339 p
->iJD
= sqlite3StmtCurrentTime(context
);
349 ** Input "r" is a numeric quantity which might be a julian day number,
350 ** or the number of seconds since 1970. If the value if r is within
351 ** range of a julian day number, install it as such and set validJD.
352 ** If the value is a valid unix timestamp, put it in p->s and set p->rawS.
354 static void setRawDateNumber(DateTime
*p
, double r
){
357 if( r
>=0.0 && r
<5373484.5 ){
358 p
->iJD
= (sqlite3_int64
)(r
*86400000.0 + 0.5);
364 ** Attempt to parse the given string into a julian day number. Return
365 ** the number of errors.
367 ** The following are acceptable forms for the input string:
369 ** YYYY-MM-DD HH:MM:SS.FFF +/-HH:MM
373 ** In the first form, the +/-HH:MM is always optional. The fractional
374 ** seconds extension (the ".FFF") is optional. The seconds portion
375 ** (":SS.FFF") is option. The year and date can be omitted as long
376 ** as there is a time string. The time string can be omitted as long
377 ** as there is a year and date.
379 static int parseDateOrTime(
380 sqlite3_context
*context
,
385 if( parseYyyyMmDd(zDate
,p
)==0 ){
387 }else if( parseHhMmSs(zDate
, p
)==0 ){
389 }else if( sqlite3StrICmp(zDate
,"now")==0 && sqlite3NotPureFunc(context
) ){
390 return setDateTimeToCurrent(context
, p
);
391 }else if( sqlite3AtoF(zDate
, &r
, sqlite3Strlen30(zDate
), SQLITE_UTF8
)>0 ){
392 setRawDateNumber(p
, r
);
398 /* The julian day number for 9999-12-31 23:59:59.999 is 5373484.4999999.
399 ** Multiplying this by 86400000 gives 464269060799999 as the maximum value
402 ** But some older compilers (ex: gcc 4.2.1 on older Macs) cannot deal with
403 ** such a large integer literal, so we have to encode it.
405 #define INT_464269060799999 ((((i64)0x1a640)<<32)|0x1072fdff)
408 ** Return TRUE if the given julian day number is within range.
410 ** The input is the JulianDay times 86400000.
412 static int validJulianDay(sqlite3_int64 iJD
){
413 return iJD
>=0 && iJD
<=INT_464269060799999
;
417 ** Compute the Year, Month, and Day from the julian day number.
419 static void computeYMD(DateTime
*p
){
420 int Z
, A
, B
, C
, D
, E
, X1
;
421 if( p
->validYMD
) return;
426 }else if( !validJulianDay(p
->iJD
) ){
430 Z
= (int)((p
->iJD
+ 43200000)/86400000);
431 A
= (int)((Z
- 1867216.25)/36524.25);
432 A
= Z
+ 1 + A
- (A
/4);
434 C
= (int)((B
- 122.1)/365.25);
435 D
= (36525*(C
&32767))/100;
436 E
= (int)((B
-D
)/30.6001);
437 X1
= (int)(30.6001*E
);
439 p
->M
= E
<14 ? E
-1 : E
-13;
440 p
->Y
= p
->M
>2 ? C
- 4716 : C
- 4715;
446 ** Compute the Hour, Minute, and Seconds from the julian day number.
448 static void computeHMS(DateTime
*p
){
450 if( p
->validHMS
) return;
452 s
= (int)((p
->iJD
+ 43200000) % 86400000);
465 ** Compute both YMD and HMS
467 static void computeYMD_HMS(DateTime
*p
){
473 ** Clear the YMD and HMS and the TZ
475 static void clearYMD_HMS_TZ(DateTime
*p
){
481 #ifndef SQLITE_OMIT_LOCALTIME
483 ** On recent Windows platforms, the localtime_s() function is available
484 ** as part of the "Secure CRT". It is essentially equivalent to
485 ** localtime_r() available under most POSIX platforms, except that the
486 ** order of the parameters is reversed.
488 ** See http://msdn.microsoft.com/en-us/library/a442x3ye(VS.80).aspx.
490 ** If the user has not indicated to use localtime_r() or localtime_s()
491 ** already, check for an MSVC build environment that provides
494 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S \
495 && defined(_MSC_VER) && defined(_CRT_INSECURE_DEPRECATE)
496 #undef HAVE_LOCALTIME_S
497 #define HAVE_LOCALTIME_S 1
501 ** The following routine implements the rough equivalent of localtime_r()
502 ** using whatever operating-system specific localtime facility that
503 ** is available. This routine returns 0 on success and
504 ** non-zero on any kind of error.
506 ** If the sqlite3GlobalConfig.bLocaltimeFault variable is non-zero then this
507 ** routine will always fail. If bLocaltimeFault is nonzero and
508 ** sqlite3GlobalConfig.xAltLocaltime is not NULL, then xAltLocaltime() is
509 ** invoked in place of the OS-defined localtime() function.
511 ** EVIDENCE-OF: R-62172-00036 In this implementation, the standard C
512 ** library function localtime_r() is used to assist in the calculation of
515 static int osLocaltime(time_t *t
, struct tm
*pTm
){
517 #if !HAVE_LOCALTIME_R && !HAVE_LOCALTIME_S
519 #if SQLITE_THREADSAFE>0
520 sqlite3_mutex
*mutex
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN
);
522 sqlite3_mutex_enter(mutex
);
524 #ifndef SQLITE_UNTESTABLE
525 if( sqlite3GlobalConfig
.bLocaltimeFault
){
526 if( sqlite3GlobalConfig
.xAltLocaltime
!=0
527 && 0==sqlite3GlobalConfig
.xAltLocaltime((const void*)t
,(void*)pTm
)
536 #if SQLITE_THREADSAFE>0
537 sqlite3_mutex_leave(mutex
);
541 #ifndef SQLITE_UNTESTABLE
542 if( sqlite3GlobalConfig
.bLocaltimeFault
){
543 if( sqlite3GlobalConfig
.xAltLocaltime
!=0 ){
544 return sqlite3GlobalConfig
.xAltLocaltime((const void*)t
,(void*)pTm
);
551 rc
= localtime_r(t
, pTm
)==0;
553 rc
= localtime_s(pTm
, t
);
554 #endif /* HAVE_LOCALTIME_R */
555 #endif /* HAVE_LOCALTIME_R || HAVE_LOCALTIME_S */
558 #endif /* SQLITE_OMIT_LOCALTIME */
561 #ifndef SQLITE_OMIT_LOCALTIME
563 ** Assuming the input DateTime is UTC, move it to its localtime equivalent.
565 static int toLocaltime(
566 DateTime
*p
, /* Date at which to calculate offset */
567 sqlite3_context
*pCtx
/* Write error here if one occurs */
573 /* Initialize the contents of sLocal to avoid a compiler warning. */
574 memset(&sLocal
, 0, sizeof(sLocal
));
577 if( p
->iJD
<2108667600*(i64
)100000 /* 1970-01-01 */
578 || p
->iJD
>2130141456*(i64
)100000 /* 2038-01-18 */
580 /* EVIDENCE-OF: R-55269-29598 The localtime_r() C function normally only
581 ** works for years between 1970 and 2037. For dates outside this range,
582 ** SQLite attempts to map the year into an equivalent year within this
583 ** range, do the calculation, then map the year back.
587 iYearDiff
= (2000 + x
.Y
%4) - x
.Y
;
591 t
= (time_t)(x
.iJD
/1000 - 21086676*(i64
)10000);
594 t
= (time_t)(p
->iJD
/1000 - 21086676*(i64
)10000);
596 if( osLocaltime(&t
, &sLocal
) ){
597 sqlite3_result_error(pCtx
, "local time unavailable", -1);
600 p
->Y
= sLocal
.tm_year
+ 1900 - iYearDiff
;
601 p
->M
= sLocal
.tm_mon
+ 1;
602 p
->D
= sLocal
.tm_mday
;
603 p
->h
= sLocal
.tm_hour
;
604 p
->m
= sLocal
.tm_min
;
605 p
->s
= sLocal
.tm_sec
+ (p
->iJD
%1000)*0.001;
614 #endif /* SQLITE_OMIT_LOCALTIME */
617 ** The following table defines various date transformations of the form
621 ** Where NNN is an arbitrary floating-point number and "days" can be one
622 ** of several units of time.
624 static const struct {
625 u8 nName
; /* Length of the name */
626 char zName
[7]; /* Name of the transformation */
627 float rLimit
; /* Maximum NNN value for this transform */
628 float rXform
; /* Constant used for this transform */
630 { 6, "second", 4.6427e+14, 1.0 },
631 { 6, "minute", 7.7379e+12, 60.0 },
632 { 4, "hour", 1.2897e+11, 3600.0 },
633 { 3, "day", 5373485.0, 86400.0 },
634 { 5, "month", 176546.0, 2592000.0 },
635 { 4, "year", 14713.0, 31536000.0 },
639 ** Process a modifier to a date-time stamp. The modifiers are
657 ** Return 0 on success and 1 if there is any kind of error. If the error
658 ** is in a system call (i.e. localtime()), then an error message is written
659 ** to context pCtx. If the error is an unrecognized modifier, no error is
662 static int parseModifier(
663 sqlite3_context
*pCtx
, /* Function context */
664 const char *z
, /* The text of the modifier */
665 int n
, /* Length of zMod in bytes */
666 DateTime
*p
, /* The date/time value to be modified */
667 int idx
/* Parameter index of the modifier */
671 switch(sqlite3UpperToLower
[(u8
)z
[0]] ){
676 ** If rawS is available, then interpret as a julian day number, or
677 ** a unix timestamp, depending on its magnitude.
679 if( sqlite3_stricmp(z
, "auto")==0 ){
680 if( idx
>1 ) return 1; /* IMP: R-33611-57934 */
681 if( !p
->rawS
|| p
->validJD
){
684 }else if( p
->s
>=-21086676*(i64
)10000 /* -4713-11-24 12:00:00 */
685 && p
->s
<=(25340230*(i64
)10000)+799 /* 9999-12-31 23:59:59 */
687 r
= p
->s
*1000.0 + 210866760000000.0;
689 p
->iJD
= (sqlite3_int64
)(r
+ 0.5);
701 ** Always interpret the prior number as a julian-day value. If this
702 ** is not the first modifier, or if the prior argument is not a numeric
703 ** value in the allowed range of julian day numbers understood by
704 ** SQLite (0..5373484.5) then the result will be NULL.
706 if( sqlite3_stricmp(z
, "julianday")==0 ){
707 if( idx
>1 ) return 1; /* IMP: R-31176-64601 */
708 if( p
->validJD
&& p
->rawS
){
715 #ifndef SQLITE_OMIT_LOCALTIME
719 ** Assuming the current time value is UTC (a.k.a. GMT), shift it to
722 if( sqlite3_stricmp(z
, "localtime")==0 && sqlite3NotPureFunc(pCtx
) ){
723 rc
= toLocaltime(p
, pCtx
);
732 ** Treat the current value of p->s as the number of
733 ** seconds since 1970. Convert to a real julian day number.
735 if( sqlite3_stricmp(z
, "unixepoch")==0 && p
->rawS
){
736 if( idx
>1 ) return 1; /* IMP: R-49255-55373 */
737 r
= p
->s
*1000.0 + 210866760000000.0;
738 if( r
>=0.0 && r
<464269060800000.0 ){
740 p
->iJD
= (sqlite3_int64
)(r
+ 0.5);
746 #ifndef SQLITE_OMIT_LOCALTIME
747 else if( sqlite3_stricmp(z
, "utc")==0 && sqlite3NotPureFunc(pCtx
) ){
749 i64 iOrigJD
; /* Original localtime */
750 i64 iGuess
; /* Guess at the corresponding utc time */
751 int cnt
= 0; /* Safety to prevent infinite loop */
752 int iErr
; /* Guess is off by this much */
755 iGuess
= iOrigJD
= p
->iJD
;
759 memset(&new, 0, sizeof(new));
763 rc
= toLocaltime(&new, pCtx
);
766 iErr
= new.iJD
- iOrigJD
;
767 }while( iErr
&& cnt
++<3 );
768 memset(p
, 0, sizeof(*p
));
782 ** Move the date to the same time on the next occurrence of
783 ** weekday N where 0==Sunday, 1==Monday, and so forth. If the
784 ** date is already on the appropriate weekday, this is a no-op.
786 if( sqlite3_strnicmp(z
, "weekday ", 8)==0
787 && sqlite3AtoF(&z
[8], &r
, sqlite3Strlen30(&z
[8]), SQLITE_UTF8
)>0
788 && r
>=0.0 && r
<7.0 && (n
=(int)r
)==r
){
794 Z
= ((p
->iJD
+ 129600000)/86400000) % 7;
796 p
->iJD
+= (n
- Z
)*86400000;
806 ** Move the date backwards to the beginning of the current day,
809 if( sqlite3_strnicmp(z
, "start of ", 9)!=0 ) break;
810 if( !p
->validJD
&& !p
->validYMD
&& !p
->validHMS
) break;
819 if( sqlite3_stricmp(z
,"month")==0 ){
822 }else if( sqlite3_stricmp(z
,"year")==0 ){
826 }else if( sqlite3_stricmp(z
,"day")==0 ){
845 for(n
=1; z
[n
] && z
[n
]!=':' && !sqlite3Isspace(z
[n
]); n
++){}
846 if( sqlite3AtoF(z
, &r
, n
, SQLITE_UTF8
)<=0 ){
851 /* A modifier of the form (+|-)HH:MM:SS.FFF adds (or subtracts) the
852 ** specified number of hours, minutes, seconds, and fractional seconds
853 ** to the time. The ".FFF" may be omitted. The ":SS.FFF" may be
859 if( !sqlite3Isdigit(*z2
) ) z2
++;
860 memset(&tx
, 0, sizeof(tx
));
861 if( parseHhMmSs(z2
, &tx
) ) break;
864 day
= tx
.iJD
/86400000;
865 tx
.iJD
-= day
*86400000;
866 if( z
[0]=='-' ) tx
.iJD
= -tx
.iJD
;
874 /* If control reaches this point, it means the transformation is
875 ** one of the forms like "+NNN days". */
877 while( sqlite3Isspace(*z
) ) z
++;
878 n
= sqlite3Strlen30(z
);
879 if( n
>10 || n
<3 ) break;
880 if( sqlite3UpperToLower
[(u8
)z
[n
-1]]=='s' ) n
--;
883 rRounder
= r
<0 ? -0.5 : +0.5;
884 for(i
=0; i
<ArraySize(aXformType
); i
++){
885 if( aXformType
[i
].nName
==n
886 && sqlite3_strnicmp(aXformType
[i
].zName
, z
, n
)==0
887 && r
>-aXformType
[i
].rLimit
&& r
<aXformType
[i
].rLimit
890 case 4: { /* Special processing to add months */
892 assert( strcmp(aXformType
[i
].zName
,"month")==0 );
895 x
= p
->M
>0 ? (p
->M
-1)/12 : (p
->M
-12)/12;
902 case 5: { /* Special processing to add years */
904 assert( strcmp(aXformType
[i
].zName
,"year")==0 );
913 p
->iJD
+= (sqlite3_int64
)(r
*1000.0*aXformType
[i
].rXform
+ rRounder
);
929 ** Process time function arguments. argv[0] is a date-time stamp.
930 ** argv[1] and following are modifiers. Parse them all and write
931 ** the resulting time into the DateTime structure p. Return 0
932 ** on success and 1 if there are any errors.
934 ** If there are zero parameters (if even argv[0] is undefined)
935 ** then assume a default value of "now" for argv[0].
938 sqlite3_context
*context
,
940 sqlite3_value
**argv
,
944 const unsigned char *z
;
946 memset(p
, 0, sizeof(*p
));
948 if( !sqlite3NotPureFunc(context
) ) return 1;
949 return setDateTimeToCurrent(context
, p
);
951 if( (eType
= sqlite3_value_type(argv
[0]))==SQLITE_FLOAT
952 || eType
==SQLITE_INTEGER
){
953 setRawDateNumber(p
, sqlite3_value_double(argv
[0]));
955 z
= sqlite3_value_text(argv
[0]);
956 if( !z
|| parseDateOrTime(context
, (char*)z
, p
) ){
960 for(i
=1; i
<argc
; i
++){
961 z
= sqlite3_value_text(argv
[i
]);
962 n
= sqlite3_value_bytes(argv
[i
]);
963 if( z
==0 || parseModifier(context
, (char*)z
, n
, p
, i
) ) return 1;
966 if( p
->isError
|| !validJulianDay(p
->iJD
) ) return 1;
972 ** The following routines implement the various date and time functions
977 ** julianday( TIMESTRING, MOD, MOD, ...)
979 ** Return the julian day number of the date specified in the arguments
981 static void juliandayFunc(
982 sqlite3_context
*context
,
987 if( isDate(context
, argc
, argv
, &x
)==0 ){
989 sqlite3_result_double(context
, x
.iJD
/86400000.0);
994 ** unixepoch( TIMESTRING, MOD, MOD, ...)
996 ** Return the number of seconds (including fractional seconds) since
997 ** the unix epoch of 1970-01-01 00:00:00 GMT.
999 static void unixepochFunc(
1000 sqlite3_context
*context
,
1002 sqlite3_value
**argv
1005 if( isDate(context
, argc
, argv
, &x
)==0 ){
1007 sqlite3_result_int64(context
, x
.iJD
/1000 - 21086676*(i64
)10000);
1012 ** datetime( TIMESTRING, MOD, MOD, ...)
1014 ** Return YYYY-MM-DD HH:MM:SS
1016 static void datetimeFunc(
1017 sqlite3_context
*context
,
1019 sqlite3_value
**argv
1022 if( isDate(context
, argc
, argv
, &x
)==0 ){
1028 zBuf
[1] = '0' + (Y
/1000)%10;
1029 zBuf
[2] = '0' + (Y
/100)%10;
1030 zBuf
[3] = '0' + (Y
/10)%10;
1031 zBuf
[4] = '0' + (Y
)%10;
1033 zBuf
[6] = '0' + (x
.M
/10)%10;
1034 zBuf
[7] = '0' + (x
.M
)%10;
1036 zBuf
[9] = '0' + (x
.D
/10)%10;
1037 zBuf
[10] = '0' + (x
.D
)%10;
1039 zBuf
[12] = '0' + (x
.h
/10)%10;
1040 zBuf
[13] = '0' + (x
.h
)%10;
1042 zBuf
[15] = '0' + (x
.m
/10)%10;
1043 zBuf
[16] = '0' + (x
.m
)%10;
1046 zBuf
[18] = '0' + (s
/10)%10;
1047 zBuf
[19] = '0' + (s
)%10;
1051 sqlite3_result_text(context
, zBuf
, 20, SQLITE_TRANSIENT
);
1053 sqlite3_result_text(context
, &zBuf
[1], 19, SQLITE_TRANSIENT
);
1059 ** time( TIMESTRING, MOD, MOD, ...)
1063 static void timeFunc(
1064 sqlite3_context
*context
,
1066 sqlite3_value
**argv
1069 if( isDate(context
, argc
, argv
, &x
)==0 ){
1073 zBuf
[0] = '0' + (x
.h
/10)%10;
1074 zBuf
[1] = '0' + (x
.h
)%10;
1076 zBuf
[3] = '0' + (x
.m
/10)%10;
1077 zBuf
[4] = '0' + (x
.m
)%10;
1080 zBuf
[6] = '0' + (s
/10)%10;
1081 zBuf
[7] = '0' + (s
)%10;
1083 sqlite3_result_text(context
, zBuf
, 8, SQLITE_TRANSIENT
);
1088 ** date( TIMESTRING, MOD, MOD, ...)
1090 ** Return YYYY-MM-DD
1092 static void dateFunc(
1093 sqlite3_context
*context
,
1095 sqlite3_value
**argv
1098 if( isDate(context
, argc
, argv
, &x
)==0 ){
1104 zBuf
[1] = '0' + (Y
/1000)%10;
1105 zBuf
[2] = '0' + (Y
/100)%10;
1106 zBuf
[3] = '0' + (Y
/10)%10;
1107 zBuf
[4] = '0' + (Y
)%10;
1109 zBuf
[6] = '0' + (x
.M
/10)%10;
1110 zBuf
[7] = '0' + (x
.M
)%10;
1112 zBuf
[9] = '0' + (x
.D
/10)%10;
1113 zBuf
[10] = '0' + (x
.D
)%10;
1117 sqlite3_result_text(context
, zBuf
, 11, SQLITE_TRANSIENT
);
1119 sqlite3_result_text(context
, &zBuf
[1], 10, SQLITE_TRANSIENT
);
1125 ** strftime( FORMAT, TIMESTRING, MOD, MOD, ...)
1127 ** Return a string described by FORMAT. Conversions as follows:
1130 ** %f ** fractional seconds SS.SSS
1132 ** %j day of year 000-366
1133 ** %J ** julian day number
1136 ** %s seconds since 1970-01-01
1138 ** %w day of week 0-6 sunday==0
1139 ** %W week of year 00-53
1140 ** %Y year 0000-9999
1143 static void strftimeFunc(
1144 sqlite3_context
*context
,
1146 sqlite3_value
**argv
1155 if( argc
==0 ) return;
1156 zFmt
= (const char*)sqlite3_value_text(argv
[0]);
1157 if( zFmt
==0 || isDate(context
, argc
-1, argv
+1, &x
) ) return;
1158 db
= sqlite3_context_db_handle(context
);
1159 sqlite3StrAccumInit(&sRes
, 0, 0, 0, db
->aLimit
[SQLITE_LIMIT_LENGTH
]);
1163 for(i
=j
=0; zFmt
[i
]; i
++){
1164 if( zFmt
[i
]!='%' ) continue;
1165 if( j
<i
) sqlite3_str_append(&sRes
, zFmt
+j
, (int)(i
-j
));
1170 sqlite3_str_appendf(&sRes
, "%02d", x
.D
);
1175 if( s
>59.999 ) s
= 59.999;
1176 sqlite3_str_appendf(&sRes
, "%06.3f", s
);
1180 sqlite3_str_appendf(&sRes
, "%02d", x
.h
);
1183 case 'W': /* Fall thru */
1185 int nDay
; /* Number of days since 1st day of year */
1191 nDay
= (int)((x
.iJD
-y
.iJD
+43200000)/86400000);
1193 int wd
; /* 0=Monday, 1=Tuesday, ... 6=Sunday */
1194 wd
= (int)(((x
.iJD
+43200000)/86400000)%7);
1195 sqlite3_str_appendf(&sRes
,"%02d",(nDay
+7-wd
)/7);
1197 sqlite3_str_appendf(&sRes
,"%03d",nDay
+1);
1202 sqlite3_str_appendf(&sRes
,"%.16g",x
.iJD
/86400000.0);
1206 sqlite3_str_appendf(&sRes
,"%02d",x
.M
);
1210 sqlite3_str_appendf(&sRes
,"%02d",x
.m
);
1214 i64 iS
= (i64
)(x
.iJD
/1000 - 21086676*(i64
)10000);
1215 sqlite3_str_appendf(&sRes
,"%lld",iS
);
1219 sqlite3_str_appendf(&sRes
,"%02d",(int)x
.s
);
1223 sqlite3_str_appendchar(&sRes
, 1,
1224 (char)(((x
.iJD
+129600000)/86400000) % 7) + '0');
1228 sqlite3_str_appendf(&sRes
,"%04d",x
.Y
);
1232 sqlite3_str_appendchar(&sRes
, 1, '%');
1236 sqlite3_str_reset(&sRes
);
1241 if( j
<i
) sqlite3_str_append(&sRes
, zFmt
+j
, (int)(i
-j
));
1242 sqlite3ResultStrAccum(context
, &sRes
);
1248 ** This function returns the same value as time('now').
1250 static void ctimeFunc(
1251 sqlite3_context
*context
,
1253 sqlite3_value
**NotUsed2
1255 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
1256 timeFunc(context
, 0, 0);
1262 ** This function returns the same value as date('now').
1264 static void cdateFunc(
1265 sqlite3_context
*context
,
1267 sqlite3_value
**NotUsed2
1269 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
1270 dateFunc(context
, 0, 0);
1274 ** current_timestamp()
1276 ** This function returns the same value as datetime('now').
1278 static void ctimestampFunc(
1279 sqlite3_context
*context
,
1281 sqlite3_value
**NotUsed2
1283 UNUSED_PARAMETER2(NotUsed
, NotUsed2
);
1284 datetimeFunc(context
, 0, 0);
1286 #endif /* !defined(SQLITE_OMIT_DATETIME_FUNCS) */
1288 #ifdef SQLITE_OMIT_DATETIME_FUNCS
1290 ** If the library is compiled to omit the full-scale date and time
1291 ** handling (to get a smaller binary), the following minimal version
1292 ** of the functions current_time(), current_date() and current_timestamp()
1293 ** are included instead. This is to support column declarations that
1294 ** include "DEFAULT CURRENT_TIME" etc.
1296 ** This function uses the C-library functions time(), gmtime()
1297 ** and strftime(). The format string to pass to strftime() is supplied
1298 ** as the user-data for the function.
1300 static void currentTimeFunc(
1301 sqlite3_context
*context
,
1303 sqlite3_value
**argv
1306 char *zFormat
= (char *)sqlite3_user_data(context
);
1312 UNUSED_PARAMETER(argc
);
1313 UNUSED_PARAMETER(argv
);
1315 iT
= sqlite3StmtCurrentTime(context
);
1317 t
= iT
/1000 - 10000*(sqlite3_int64
)21086676;
1319 pTm
= gmtime_r(&t
, &sNow
);
1321 sqlite3_mutex_enter(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN
));
1323 if( pTm
) memcpy(&sNow
, pTm
, sizeof(sNow
));
1324 sqlite3_mutex_leave(sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MAIN
));
1327 strftime(zBuf
, 20, zFormat
, &sNow
);
1328 sqlite3_result_text(context
, zBuf
, -1, SQLITE_TRANSIENT
);
1334 ** This function registered all of the above C functions as SQL
1335 ** functions. This should be the only routine in this file with
1336 ** external linkage.
1338 void sqlite3RegisterDateTimeFunctions(void){
1339 static FuncDef aDateTimeFuncs
[] = {
1340 #ifndef SQLITE_OMIT_DATETIME_FUNCS
1341 PURE_DATE(julianday
, -1, 0, 0, juliandayFunc
),
1342 PURE_DATE(unixepoch
, -1, 0, 0, unixepochFunc
),
1343 PURE_DATE(date
, -1, 0, 0, dateFunc
),
1344 PURE_DATE(time
, -1, 0, 0, timeFunc
),
1345 PURE_DATE(datetime
, -1, 0, 0, datetimeFunc
),
1346 PURE_DATE(strftime
, -1, 0, 0, strftimeFunc
),
1347 DFUNCTION(current_time
, 0, 0, 0, ctimeFunc
),
1348 DFUNCTION(current_timestamp
, 0, 0, 0, ctimestampFunc
),
1349 DFUNCTION(current_date
, 0, 0, 0, cdateFunc
),
1351 STR_FUNCTION(current_time
, 0, "%H:%M:%S", 0, currentTimeFunc
),
1352 STR_FUNCTION(current_date
, 0, "%Y-%m-%d", 0, currentTimeFunc
),
1353 STR_FUNCTION(current_timestamp
, 0, "%Y-%m-%d %H:%M:%S", 0, currentTimeFunc
),
1356 sqlite3InsertBuiltinFuncs(aDateTimeFuncs
, ArraySize(aDateTimeFuncs
));