4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains the C functions that implement a memory
13 ** allocation subsystem for use by SQLite.
15 ** This version of the memory allocation subsystem omits all
16 ** use of malloc(). The application gives SQLite a block of memory
17 ** before calling sqlite3_initialize() from which allocations
18 ** are made and returned by the xMalloc() and xRealloc()
19 ** implementations. Once sqlite3_initialize() has been called,
20 ** the amount of memory available to SQLite is fixed and cannot
23 ** This version of the memory allocation subsystem is included
24 ** in the build only if SQLITE_ENABLE_MEMSYS5 is defined.
26 ** This memory allocator uses the following algorithm:
28 ** 1. All memory allocation sizes are rounded up to a power of 2.
30 ** 2. If two adjacent free blocks are the halves of a larger block,
31 ** then the two blocks are coalesced into the single larger block.
33 ** 3. New memory is allocated from the first available free block.
35 ** This algorithm is described in: J. M. Robson. "Bounds for Some Functions
36 ** Concerning Dynamic Storage Allocation". Journal of the Association for
37 ** Computing Machinery, Volume 21, Number 8, July 1974, pages 491-499.
39 ** Let n be the size of the largest allocation divided by the minimum
40 ** allocation size (after rounding all sizes up to a power of 2.) Let M
41 ** be the maximum amount of memory ever outstanding at one time. Let
42 ** N be the total amount of memory available for allocation. Robson
43 ** proved that this memory allocator will never breakdown due to
44 ** fragmentation as long as the following constraint holds:
46 ** N >= M*(1 + log2(n)/2) - n + 1
48 ** The sqlite3_status() logic tracks the maximum values of n and M so
49 ** that an application can, at any time, verify this constraint.
51 #include "sqliteInt.h"
54 ** This version of the memory allocator is used only when
55 ** SQLITE_ENABLE_MEMSYS5 is defined.
57 #ifdef SQLITE_ENABLE_MEMSYS5
60 ** A minimum allocation is an instance of the following structure.
61 ** Larger allocations are an array of these structures where the
62 ** size of the array is a power of 2.
64 ** The size of this object must be a power of two. That fact is
65 ** verified in memsys5Init().
67 typedef struct Mem5Link Mem5Link
;
69 int next
; /* Index of next free chunk */
70 int prev
; /* Index of previous free chunk */
74 ** Maximum size of any allocation is ((1<<LOGMAX)*mem5.szAtom). Since
75 ** mem5.szAtom is always at least 8 and 32-bit integers are used,
76 ** it is not actually possible to reach this limit.
81 ** Masks used for mem5.aCtrl[] elements.
83 #define CTRL_LOGSIZE 0x1f /* Log2 Size of this block */
84 #define CTRL_FREE 0x20 /* True if not checked out */
87 ** All of the static variables used by this module are collected
88 ** into a single structure named "mem5". This is to keep the
89 ** static variables organized and to reduce namespace pollution
90 ** when this module is combined with other in the amalgamation.
92 static SQLITE_WSD
struct Mem5Global
{
94 ** Memory available for allocation
96 int szAtom
; /* Smallest possible allocation in bytes */
97 int nBlock
; /* Number of szAtom sized blocks in zPool */
98 u8
*zPool
; /* Memory available to be allocated */
101 ** Mutex to control access to the memory allocation subsystem.
103 sqlite3_mutex
*mutex
;
105 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
107 ** Performance statistics
109 u64 nAlloc
; /* Total number of calls to malloc */
110 u64 totalAlloc
; /* Total of all malloc calls - includes internal frag */
111 u64 totalExcess
; /* Total internal fragmentation */
112 u32 currentOut
; /* Current checkout, including internal fragmentation */
113 u32 currentCount
; /* Current number of distinct checkouts */
114 u32 maxOut
; /* Maximum instantaneous currentOut */
115 u32 maxCount
; /* Maximum instantaneous currentCount */
116 u32 maxRequest
; /* Largest allocation (exclusive of internal frag) */
120 ** Lists of free blocks. aiFreelist[0] is a list of free blocks of
121 ** size mem5.szAtom. aiFreelist[1] holds blocks of size szAtom*2.
122 ** aiFreelist[2] holds free blocks of size szAtom*4. And so forth.
124 int aiFreelist
[LOGMAX
+1];
127 ** Space for tracking which blocks are checked out and the size
128 ** of each block. One byte per block.
135 ** Access the static variable through a macro for SQLITE_OMIT_WSD.
137 #define mem5 GLOBAL(struct Mem5Global, mem5)
140 ** Assuming mem5.zPool is divided up into an array of Mem5Link
141 ** structures, return a pointer to the idx-th such link.
143 #define MEM5LINK(idx) ((Mem5Link *)(&mem5.zPool[(idx)*mem5.szAtom]))
146 ** Unlink the chunk at mem5.aPool[i] from list it is currently
147 ** on. It should be found on mem5.aiFreelist[iLogsize].
149 static void memsys5Unlink(int i
, int iLogsize
){
151 assert( i
>=0 && i
<mem5
.nBlock
);
152 assert( iLogsize
>=0 && iLogsize
<=LOGMAX
);
153 assert( (mem5
.aCtrl
[i
] & CTRL_LOGSIZE
)==iLogsize
);
155 next
= MEM5LINK(i
)->next
;
156 prev
= MEM5LINK(i
)->prev
;
158 mem5
.aiFreelist
[iLogsize
] = next
;
160 MEM5LINK(prev
)->next
= next
;
163 MEM5LINK(next
)->prev
= prev
;
168 ** Link the chunk at mem5.aPool[i] so that is on the iLogsize
171 static void memsys5Link(int i
, int iLogsize
){
173 assert( sqlite3_mutex_held(mem5
.mutex
) );
174 assert( i
>=0 && i
<mem5
.nBlock
);
175 assert( iLogsize
>=0 && iLogsize
<=LOGMAX
);
176 assert( (mem5
.aCtrl
[i
] & CTRL_LOGSIZE
)==iLogsize
);
178 x
= MEM5LINK(i
)->next
= mem5
.aiFreelist
[iLogsize
];
179 MEM5LINK(i
)->prev
= -1;
181 assert( x
<mem5
.nBlock
);
182 MEM5LINK(x
)->prev
= i
;
184 mem5
.aiFreelist
[iLogsize
] = i
;
188 ** Obtain or release the mutex needed to access global data structures.
190 static void memsys5Enter(void){
191 sqlite3_mutex_enter(mem5
.mutex
);
193 static void memsys5Leave(void){
194 sqlite3_mutex_leave(mem5
.mutex
);
198 ** Return the size of an outstanding allocation, in bytes.
199 ** This only works for chunks that are currently checked out.
201 static int memsys5Size(void *p
){
204 i
= (int)(((u8
*)p
-mem5
.zPool
)/mem5
.szAtom
);
205 assert( i
>=0 && i
<mem5
.nBlock
);
206 iSize
= mem5
.szAtom
* (1 << (mem5
.aCtrl
[i
]&CTRL_LOGSIZE
));
211 ** Return a block of memory of at least nBytes in size.
212 ** Return NULL if unable. Return NULL if nBytes==0.
214 ** The caller guarantees that nByte is positive.
216 ** The caller has obtained a mutex prior to invoking this
217 ** routine so there is never any chance that two or more
218 ** threads can be in this routine at the same time.
220 static void *memsys5MallocUnsafe(int nByte
){
221 int i
; /* Index of a mem5.aPool[] slot */
222 int iBin
; /* Index into mem5.aiFreelist[] */
223 int iFullSz
; /* Size of allocation rounded up to power of 2 */
224 int iLogsize
; /* Log2 of iFullSz/POW2_MIN */
226 /* nByte must be a positive */
229 /* No more than 1GiB per allocation */
230 if( nByte
> 0x40000000 ) return 0;
232 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
233 /* Keep track of the maximum allocation request. Even unfulfilled
234 ** requests are counted */
235 if( (u32
)nByte
>mem5
.maxRequest
){
236 mem5
.maxRequest
= nByte
;
241 /* Round nByte up to the next valid power of two */
242 for(iFullSz
=mem5
.szAtom
,iLogsize
=0; iFullSz
<nByte
; iFullSz
*=2,iLogsize
++){}
244 /* Make sure mem5.aiFreelist[iLogsize] contains at least one free
245 ** block. If not, then split a block of the next larger power of
246 ** two in order to create a new free block of size iLogsize.
248 for(iBin
=iLogsize
; iBin
<=LOGMAX
&& mem5
.aiFreelist
[iBin
]<0; iBin
++){}
250 testcase( sqlite3GlobalConfig
.xLog
!=0 );
251 sqlite3_log(SQLITE_NOMEM
, "failed to allocate %u bytes", nByte
);
254 i
= mem5
.aiFreelist
[iBin
];
255 memsys5Unlink(i
, iBin
);
256 while( iBin
>iLogsize
){
261 mem5
.aCtrl
[i
+newSize
] = CTRL_FREE
| iBin
;
262 memsys5Link(i
+newSize
, iBin
);
264 mem5
.aCtrl
[i
] = iLogsize
;
266 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
267 /* Update allocator performance statistics. */
269 mem5
.totalAlloc
+= iFullSz
;
270 mem5
.totalExcess
+= iFullSz
- nByte
;
272 mem5
.currentOut
+= iFullSz
;
273 if( mem5
.maxCount
<mem5
.currentCount
) mem5
.maxCount
= mem5
.currentCount
;
274 if( mem5
.maxOut
<mem5
.currentOut
) mem5
.maxOut
= mem5
.currentOut
;
278 /* Make sure the allocated memory does not assume that it is set to zero
279 ** or retains a value from a previous allocation */
280 memset(&mem5
.zPool
[i
*mem5
.szAtom
], 0xAA, iFullSz
);
283 /* Return a pointer to the allocated memory. */
284 return (void*)&mem5
.zPool
[i
*mem5
.szAtom
];
288 ** Free an outstanding memory allocation.
290 static void memsys5FreeUnsafe(void *pOld
){
294 /* Set iBlock to the index of the block pointed to by pOld in
295 ** the array of mem5.szAtom byte blocks pointed to by mem5.zPool.
297 iBlock
= (int)(((u8
*)pOld
-mem5
.zPool
)/mem5
.szAtom
);
299 /* Check that the pointer pOld points to a valid, non-free block. */
300 assert( iBlock
>=0 && iBlock
<mem5
.nBlock
);
301 assert( ((u8
*)pOld
-mem5
.zPool
)%mem5
.szAtom
==0 );
302 assert( (mem5
.aCtrl
[iBlock
] & CTRL_FREE
)==0 );
304 iLogsize
= mem5
.aCtrl
[iBlock
] & CTRL_LOGSIZE
;
306 assert( iBlock
+size
-1<(u32
)mem5
.nBlock
);
308 mem5
.aCtrl
[iBlock
] |= CTRL_FREE
;
309 mem5
.aCtrl
[iBlock
+size
-1] |= CTRL_FREE
;
311 #if defined(SQLITE_DEBUG) || defined(SQLITE_TEST)
312 assert( mem5
.currentCount
>0 );
313 assert( mem5
.currentOut
>=(size
*mem5
.szAtom
) );
315 mem5
.currentOut
-= size
*mem5
.szAtom
;
316 assert( mem5
.currentOut
>0 || mem5
.currentCount
==0 );
317 assert( mem5
.currentCount
>0 || mem5
.currentOut
==0 );
320 mem5
.aCtrl
[iBlock
] = CTRL_FREE
| iLogsize
;
321 while( ALWAYS(iLogsize
<LOGMAX
) ){
323 if( (iBlock
>>iLogsize
) & 1 ){
324 iBuddy
= iBlock
- size
;
327 iBuddy
= iBlock
+ size
;
328 if( iBuddy
>=mem5
.nBlock
) break;
330 if( mem5
.aCtrl
[iBuddy
]!=(CTRL_FREE
| iLogsize
) ) break;
331 memsys5Unlink(iBuddy
, iLogsize
);
334 mem5
.aCtrl
[iBuddy
] = CTRL_FREE
| iLogsize
;
335 mem5
.aCtrl
[iBlock
] = 0;
338 mem5
.aCtrl
[iBlock
] = CTRL_FREE
| iLogsize
;
339 mem5
.aCtrl
[iBuddy
] = 0;
345 /* Overwrite freed memory with the 0x55 bit pattern to verify that it is
346 ** not used after being freed */
347 memset(&mem5
.zPool
[iBlock
*mem5
.szAtom
], 0x55, size
);
350 memsys5Link(iBlock
, iLogsize
);
354 ** Allocate nBytes of memory.
356 static void *memsys5Malloc(int nBytes
){
357 sqlite3_int64
*p
= 0;
360 p
= memsys5MallocUnsafe(nBytes
);
369 ** The outer layer memory allocator prevents this routine from
370 ** being called with pPrior==0.
372 static void memsys5Free(void *pPrior
){
375 memsys5FreeUnsafe(pPrior
);
380 ** Change the size of an existing memory allocation.
382 ** The outer layer memory allocator prevents this routine from
383 ** being called with pPrior==0.
385 ** nBytes is always a value obtained from a prior call to
386 ** memsys5Round(). Hence nBytes is always a non-negative power
387 ** of two. If nBytes==0 that means that an oversize allocation
388 ** (an allocation larger than 0x40000000) was requested and this
389 ** routine should return 0 without freeing pPrior.
391 static void *memsys5Realloc(void *pPrior
, int nBytes
){
395 assert( (nBytes
&(nBytes
-1))==0 ); /* EV: R-46199-30249 */
400 nOld
= memsys5Size(pPrior
);
404 p
= memsys5Malloc(nBytes
);
406 memcpy(p
, pPrior
, nOld
);
413 ** Round up a request size to the next valid allocation size. If
414 ** the allocation is too large to be handled by this allocation system,
417 ** All allocations must be a power of two and must be expressed by a
418 ** 32-bit signed integer. Hence the largest allocation is 0x40000000
419 ** or 1073741824 bytes.
421 static int memsys5Roundup(int n
){
423 if( n
<=mem5
.szAtom
*2 ){
424 if( n
<=mem5
.szAtom
) return mem5
.szAtom
;
425 return mem5
.szAtom
*2;
428 if( n
>0x40000000 ) return 0;
429 if( n
>0x20000000 ) return 0x40000000;
432 for(iFullSz
=mem5
.szAtom
*8; iFullSz
<n
; iFullSz
*= 4);
433 if( (iFullSz
/2)>=(i64
)n
) return iFullSz
/2;
438 ** Return the ceiling of the logarithm base 2 of iValue.
440 ** Examples: memsys5Log(1) -> 0
441 ** memsys5Log(2) -> 1
442 ** memsys5Log(4) -> 2
443 ** memsys5Log(5) -> 3
444 ** memsys5Log(8) -> 3
445 ** memsys5Log(9) -> 4
447 static int memsys5Log(int iValue
){
449 for(iLog
=0; (iLog
<(int)((sizeof(int)*8)-1)) && (1<<iLog
)<iValue
; iLog
++);
454 ** Initialize the memory allocator.
456 ** This routine is not threadsafe. The caller must be holding a mutex
457 ** to prevent multiple threads from entering at the same time.
459 static int memsys5Init(void *NotUsed
){
460 int ii
; /* Loop counter */
461 int nByte
; /* Number of bytes of memory available to this allocator */
462 u8
*zByte
; /* Memory usable by this allocator */
463 int nMinLog
; /* Log base 2 of minimum allocation size in bytes */
464 int iOffset
; /* An offset into mem5.aCtrl[] */
466 UNUSED_PARAMETER(NotUsed
);
468 /* For the purposes of this routine, disable the mutex */
471 /* The size of a Mem5Link object must be a power of two. Verify that
474 assert( (sizeof(Mem5Link
)&(sizeof(Mem5Link
)-1))==0 );
476 nByte
= sqlite3GlobalConfig
.nHeap
;
477 zByte
= (u8
*)sqlite3GlobalConfig
.pHeap
;
478 assert( zByte
!=0 ); /* sqlite3_config() does not allow otherwise */
480 /* boundaries on sqlite3GlobalConfig.mnReq are enforced in sqlite3_config() */
481 nMinLog
= memsys5Log(sqlite3GlobalConfig
.mnReq
);
482 mem5
.szAtom
= (1<<nMinLog
);
483 while( (int)sizeof(Mem5Link
)>mem5
.szAtom
){
484 mem5
.szAtom
= mem5
.szAtom
<< 1;
487 mem5
.nBlock
= (nByte
/ (mem5
.szAtom
+sizeof(u8
)));
489 mem5
.aCtrl
= (u8
*)&mem5
.zPool
[mem5
.nBlock
*mem5
.szAtom
];
491 for(ii
=0; ii
<=LOGMAX
; ii
++){
492 mem5
.aiFreelist
[ii
] = -1;
496 for(ii
=LOGMAX
; ii
>=0; ii
--){
497 int nAlloc
= (1<<ii
);
498 if( (iOffset
+nAlloc
)<=mem5
.nBlock
){
499 mem5
.aCtrl
[iOffset
] = ii
| CTRL_FREE
;
500 memsys5Link(iOffset
, ii
);
503 assert((iOffset
+nAlloc
)>mem5
.nBlock
);
506 /* If a mutex is required for normal operation, allocate one */
507 if( sqlite3GlobalConfig
.bMemstat
==0 ){
508 mem5
.mutex
= sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM
);
515 ** Deinitialize this module.
517 static void memsys5Shutdown(void *NotUsed
){
518 UNUSED_PARAMETER(NotUsed
);
525 ** Open the file indicated and write a log of all unfreed memory
526 ** allocations into that log.
528 void sqlite3Memsys5Dump(const char *zFilename
){
533 if( zFilename
==0 || zFilename
[0]==0 ){
536 out
= fopen(zFilename
, "w");
538 fprintf(stderr
, "** Unable to output memory debug output log: %s **\n",
544 nMinLog
= memsys5Log(mem5
.szAtom
);
545 for(i
=0; i
<=LOGMAX
&& i
+nMinLog
<32; i
++){
546 for(n
=0, j
=mem5
.aiFreelist
[i
]; j
>=0; j
= MEM5LINK(j
)->next
, n
++){}
547 fprintf(out
, "freelist items of size %d: %d\n", mem5
.szAtom
<< i
, n
);
549 fprintf(out
, "mem5.nAlloc = %llu\n", mem5
.nAlloc
);
550 fprintf(out
, "mem5.totalAlloc = %llu\n", mem5
.totalAlloc
);
551 fprintf(out
, "mem5.totalExcess = %llu\n", mem5
.totalExcess
);
552 fprintf(out
, "mem5.currentOut = %u\n", mem5
.currentOut
);
553 fprintf(out
, "mem5.currentCount = %u\n", mem5
.currentCount
);
554 fprintf(out
, "mem5.maxOut = %u\n", mem5
.maxOut
);
555 fprintf(out
, "mem5.maxCount = %u\n", mem5
.maxCount
);
556 fprintf(out
, "mem5.maxRequest = %u\n", mem5
.maxRequest
);
567 ** This routine is the only routine in this file with external
568 ** linkage. It returns a pointer to a static sqlite3_mem_methods
569 ** struct populated with the memsys5 methods.
571 const sqlite3_mem_methods
*sqlite3MemGetMemsys5(void){
572 static const sqlite3_mem_methods memsys5Methods
= {
582 return &memsys5Methods
;
585 #endif /* SQLITE_ENABLE_MEMSYS5 */