Merge sqlite-release(3.40.1) into prerelease-integration
[sqlcipher.git] / src / util.c
blob419dc0e8dfbefad481309b5b7750991b4052b00e
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
18 #include "sqliteInt.h"
19 #include <stdarg.h>
20 #ifndef SQLITE_OMIT_FLOATING_POINT
21 #include <math.h>
22 #endif
25 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing,
26 ** or to bypass normal error detection during testing in order to let
27 ** execute proceed futher downstream.
29 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The
30 ** sqlite3FaultSim() function only returns non-zero during testing.
32 ** During testing, if the test harness has set a fault-sim callback using
33 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then
34 ** each call to sqlite3FaultSim() is relayed to that application-supplied
35 ** callback and the integer return value form the application-supplied
36 ** callback is returned by sqlite3FaultSim().
38 ** The integer argument to sqlite3FaultSim() is a code to identify which
39 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim()
40 ** should have a unique code. To prevent legacy testing applications from
41 ** breaking, the codes should not be changed or reused.
43 #ifndef SQLITE_UNTESTABLE
44 int sqlite3FaultSim(int iTest){
45 int (*xCallback)(int) = sqlite3GlobalConfig.xTestCallback;
46 return xCallback ? xCallback(iTest) : SQLITE_OK;
48 #endif
50 #ifndef SQLITE_OMIT_FLOATING_POINT
52 ** Return true if the floating point value is Not a Number (NaN).
54 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
55 ** Otherwise, we have our own implementation that works on most systems.
57 int sqlite3IsNaN(double x){
58 int rc; /* The value return */
59 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
60 u64 y;
61 memcpy(&y,&x,sizeof(y));
62 rc = IsNaN(y);
63 #else
64 rc = isnan(x);
65 #endif /* HAVE_ISNAN */
66 testcase( rc );
67 return rc;
69 #endif /* SQLITE_OMIT_FLOATING_POINT */
72 ** Compute a string length that is limited to what can be stored in
73 ** lower 30 bits of a 32-bit signed integer.
75 ** The value returned will never be negative. Nor will it ever be greater
76 ** than the actual length of the string. For very long strings (greater
77 ** than 1GiB) the value returned might be less than the true string length.
79 int sqlite3Strlen30(const char *z){
80 if( z==0 ) return 0;
81 return 0x3fffffff & (int)strlen(z);
85 ** Return the declared type of a column. Or return zDflt if the column
86 ** has no declared type.
88 ** The column type is an extra string stored after the zero-terminator on
89 ** the column name if and only if the COLFLAG_HASTYPE flag is set.
91 char *sqlite3ColumnType(Column *pCol, char *zDflt){
92 if( pCol->colFlags & COLFLAG_HASTYPE ){
93 return pCol->zCnName + strlen(pCol->zCnName) + 1;
94 }else if( pCol->eCType ){
95 assert( pCol->eCType<=SQLITE_N_STDTYPE );
96 return (char*)sqlite3StdType[pCol->eCType-1];
97 }else{
98 return zDflt;
103 ** Helper function for sqlite3Error() - called rarely. Broken out into
104 ** a separate routine to avoid unnecessary register saves on entry to
105 ** sqlite3Error().
107 static SQLITE_NOINLINE void sqlite3ErrorFinish(sqlite3 *db, int err_code){
108 if( db->pErr ) sqlite3ValueSetNull(db->pErr);
109 sqlite3SystemError(db, err_code);
113 ** Set the current error code to err_code and clear any prior error message.
114 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
115 ** that would be appropriate.
117 void sqlite3Error(sqlite3 *db, int err_code){
118 assert( db!=0 );
119 db->errCode = err_code;
120 if( err_code || db->pErr ){
121 sqlite3ErrorFinish(db, err_code);
122 }else{
123 db->errByteOffset = -1;
128 ** The equivalent of sqlite3Error(db, SQLITE_OK). Clear the error state
129 ** and error message.
131 void sqlite3ErrorClear(sqlite3 *db){
132 assert( db!=0 );
133 db->errCode = SQLITE_OK;
134 db->errByteOffset = -1;
135 if( db->pErr ) sqlite3ValueSetNull(db->pErr);
139 ** Load the sqlite3.iSysErrno field if that is an appropriate thing
140 ** to do based on the SQLite error code in rc.
142 void sqlite3SystemError(sqlite3 *db, int rc){
143 if( rc==SQLITE_IOERR_NOMEM ) return;
144 rc &= 0xff;
145 if( rc==SQLITE_CANTOPEN || rc==SQLITE_IOERR ){
146 db->iSysErrno = sqlite3OsGetLastError(db->pVfs);
151 ** Set the most recent error code and error string for the sqlite
152 ** handle "db". The error code is set to "err_code".
154 ** If it is not NULL, string zFormat specifies the format of the
155 ** error string. zFormat and any string tokens that follow it are
156 ** assumed to be encoded in UTF-8.
158 ** To clear the most recent error for sqlite handle "db", sqlite3Error
159 ** should be called with err_code set to SQLITE_OK and zFormat set
160 ** to NULL.
162 void sqlite3ErrorWithMsg(sqlite3 *db, int err_code, const char *zFormat, ...){
163 assert( db!=0 );
164 db->errCode = err_code;
165 sqlite3SystemError(db, err_code);
166 if( zFormat==0 ){
167 sqlite3Error(db, err_code);
168 }else if( db->pErr || (db->pErr = sqlite3ValueNew(db))!=0 ){
169 char *z;
170 va_list ap;
171 va_start(ap, zFormat);
172 z = sqlite3VMPrintf(db, zFormat, ap);
173 va_end(ap);
174 sqlite3ValueSetStr(db->pErr, -1, z, SQLITE_UTF8, SQLITE_DYNAMIC);
179 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
181 ** This function should be used to report any error that occurs while
182 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
183 ** last thing the sqlite3_prepare() function does is copy the error
184 ** stored by this function into the database handle using sqlite3Error().
185 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
186 ** during statement execution (sqlite3_step() etc.).
188 void sqlite3ErrorMsg(Parse *pParse, const char *zFormat, ...){
189 char *zMsg;
190 va_list ap;
191 sqlite3 *db = pParse->db;
192 assert( db!=0 );
193 assert( db->pParse==pParse || db->pParse->pToplevel==pParse );
194 db->errByteOffset = -2;
195 va_start(ap, zFormat);
196 zMsg = sqlite3VMPrintf(db, zFormat, ap);
197 va_end(ap);
198 if( db->errByteOffset<-1 ) db->errByteOffset = -1;
199 if( db->suppressErr ){
200 sqlite3DbFree(db, zMsg);
201 if( db->mallocFailed ){
202 pParse->nErr++;
203 pParse->rc = SQLITE_NOMEM;
205 }else{
206 pParse->nErr++;
207 sqlite3DbFree(db, pParse->zErrMsg);
208 pParse->zErrMsg = zMsg;
209 pParse->rc = SQLITE_ERROR;
210 pParse->pWith = 0;
215 ** If database connection db is currently parsing SQL, then transfer
216 ** error code errCode to that parser if the parser has not already
217 ** encountered some other kind of error.
219 int sqlite3ErrorToParser(sqlite3 *db, int errCode){
220 Parse *pParse;
221 if( db==0 || (pParse = db->pParse)==0 ) return errCode;
222 pParse->rc = errCode;
223 pParse->nErr++;
224 return errCode;
228 ** Convert an SQL-style quoted string into a normal string by removing
229 ** the quote characters. The conversion is done in-place. If the
230 ** input does not begin with a quote character, then this routine
231 ** is a no-op.
233 ** The input string must be zero-terminated. A new zero-terminator
234 ** is added to the dequoted string.
236 ** The return value is -1 if no dequoting occurs or the length of the
237 ** dequoted string, exclusive of the zero terminator, if dequoting does
238 ** occur.
240 ** 2002-02-14: This routine is extended to remove MS-Access style
241 ** brackets from around identifiers. For example: "[a-b-c]" becomes
242 ** "a-b-c".
244 void sqlite3Dequote(char *z){
245 char quote;
246 int i, j;
247 if( z==0 ) return;
248 quote = z[0];
249 if( !sqlite3Isquote(quote) ) return;
250 if( quote=='[' ) quote = ']';
251 for(i=1, j=0;; i++){
252 assert( z[i] );
253 if( z[i]==quote ){
254 if( z[i+1]==quote ){
255 z[j++] = quote;
256 i++;
257 }else{
258 break;
260 }else{
261 z[j++] = z[i];
264 z[j] = 0;
266 void sqlite3DequoteExpr(Expr *p){
267 assert( !ExprHasProperty(p, EP_IntValue) );
268 assert( sqlite3Isquote(p->u.zToken[0]) );
269 p->flags |= p->u.zToken[0]=='"' ? EP_Quoted|EP_DblQuoted : EP_Quoted;
270 sqlite3Dequote(p->u.zToken);
274 ** If the input token p is quoted, try to adjust the token to remove
275 ** the quotes. This is not always possible:
277 ** "abc" -> abc
278 ** "ab""cd" -> (not possible because of the interior "")
280 ** Remove the quotes if possible. This is a optimization. The overall
281 ** system should still return the correct answer even if this routine
282 ** is always a no-op.
284 void sqlite3DequoteToken(Token *p){
285 unsigned int i;
286 if( p->n<2 ) return;
287 if( !sqlite3Isquote(p->z[0]) ) return;
288 for(i=1; i<p->n-1; i++){
289 if( sqlite3Isquote(p->z[i]) ) return;
291 p->n -= 2;
292 p->z++;
296 ** Generate a Token object from a string
298 void sqlite3TokenInit(Token *p, char *z){
299 p->z = z;
300 p->n = sqlite3Strlen30(z);
303 /* Convenient short-hand */
304 #define UpperToLower sqlite3UpperToLower
307 ** Some systems have stricmp(). Others have strcasecmp(). Because
308 ** there is no consistency, we will define our own.
310 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
311 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
312 ** the contents of two buffers containing UTF-8 strings in a
313 ** case-independent fashion, using the same definition of "case
314 ** independence" that SQLite uses internally when comparing identifiers.
316 int sqlite3_stricmp(const char *zLeft, const char *zRight){
317 if( zLeft==0 ){
318 return zRight ? -1 : 0;
319 }else if( zRight==0 ){
320 return 1;
322 return sqlite3StrICmp(zLeft, zRight);
324 int sqlite3StrICmp(const char *zLeft, const char *zRight){
325 unsigned char *a, *b;
326 int c, x;
327 a = (unsigned char *)zLeft;
328 b = (unsigned char *)zRight;
329 for(;;){
330 c = *a;
331 x = *b;
332 if( c==x ){
333 if( c==0 ) break;
334 }else{
335 c = (int)UpperToLower[c] - (int)UpperToLower[x];
336 if( c ) break;
338 a++;
339 b++;
341 return c;
343 int sqlite3_strnicmp(const char *zLeft, const char *zRight, int N){
344 register unsigned char *a, *b;
345 if( zLeft==0 ){
346 return zRight ? -1 : 0;
347 }else if( zRight==0 ){
348 return 1;
350 a = (unsigned char *)zLeft;
351 b = (unsigned char *)zRight;
352 while( N-- > 0 && *a!=0 && UpperToLower[*a]==UpperToLower[*b]){ a++; b++; }
353 return N<0 ? 0 : UpperToLower[*a] - UpperToLower[*b];
357 ** Compute an 8-bit hash on a string that is insensitive to case differences
359 u8 sqlite3StrIHash(const char *z){
360 u8 h = 0;
361 if( z==0 ) return 0;
362 while( z[0] ){
363 h += UpperToLower[(unsigned char)z[0]];
364 z++;
366 return h;
370 ** Compute 10 to the E-th power. Examples: E==1 results in 10.
371 ** E==2 results in 100. E==50 results in 1.0e50.
373 ** This routine only works for values of E between 1 and 341.
375 static LONGDOUBLE_TYPE sqlite3Pow10(int E){
376 #if defined(_MSC_VER)
377 static const LONGDOUBLE_TYPE x[] = {
378 1.0e+001L,
379 1.0e+002L,
380 1.0e+004L,
381 1.0e+008L,
382 1.0e+016L,
383 1.0e+032L,
384 1.0e+064L,
385 1.0e+128L,
386 1.0e+256L
388 LONGDOUBLE_TYPE r = 1.0;
389 int i;
390 assert( E>=0 && E<=307 );
391 for(i=0; E!=0; i++, E >>=1){
392 if( E & 1 ) r *= x[i];
394 return r;
395 #else
396 LONGDOUBLE_TYPE x = 10.0;
397 LONGDOUBLE_TYPE r = 1.0;
398 while(1){
399 if( E & 1 ) r *= x;
400 E >>= 1;
401 if( E==0 ) break;
402 x *= x;
404 return r;
405 #endif
409 ** The string z[] is an text representation of a real number.
410 ** Convert this string to a double and write it into *pResult.
412 ** The string z[] is length bytes in length (bytes, not characters) and
413 ** uses the encoding enc. The string is not necessarily zero-terminated.
415 ** Return TRUE if the result is a valid real number (or integer) and FALSE
416 ** if the string is empty or contains extraneous text. More specifically
417 ** return
418 ** 1 => The input string is a pure integer
419 ** 2 or more => The input has a decimal point or eNNN clause
420 ** 0 or less => The input string is not a valid number
421 ** -1 => Not a valid number, but has a valid prefix which
422 ** includes a decimal point and/or an eNNN clause
424 ** Valid numbers are in one of these formats:
426 ** [+-]digits[E[+-]digits]
427 ** [+-]digits.[digits][E[+-]digits]
428 ** [+-].digits[E[+-]digits]
430 ** Leading and trailing whitespace is ignored for the purpose of determining
431 ** validity.
433 ** If some prefix of the input string is a valid number, this routine
434 ** returns FALSE but it still converts the prefix and writes the result
435 ** into *pResult.
437 #if defined(_MSC_VER)
438 #pragma warning(disable : 4756)
439 #endif
440 int sqlite3AtoF(const char *z, double *pResult, int length, u8 enc){
441 #ifndef SQLITE_OMIT_FLOATING_POINT
442 int incr;
443 const char *zEnd;
444 /* sign * significand * (10 ^ (esign * exponent)) */
445 int sign = 1; /* sign of significand */
446 i64 s = 0; /* significand */
447 int d = 0; /* adjust exponent for shifting decimal point */
448 int esign = 1; /* sign of exponent */
449 int e = 0; /* exponent */
450 int eValid = 1; /* True exponent is either not used or is well-formed */
451 double result;
452 int nDigit = 0; /* Number of digits processed */
453 int eType = 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */
455 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
456 *pResult = 0.0; /* Default return value, in case of an error */
457 if( length==0 ) return 0;
459 if( enc==SQLITE_UTF8 ){
460 incr = 1;
461 zEnd = z + length;
462 }else{
463 int i;
464 incr = 2;
465 length &= ~1;
466 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
467 testcase( enc==SQLITE_UTF16LE );
468 testcase( enc==SQLITE_UTF16BE );
469 for(i=3-enc; i<length && z[i]==0; i+=2){}
470 if( i<length ) eType = -100;
471 zEnd = &z[i^1];
472 z += (enc&1);
475 /* skip leading spaces */
476 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
477 if( z>=zEnd ) return 0;
479 /* get sign of significand */
480 if( *z=='-' ){
481 sign = -1;
482 z+=incr;
483 }else if( *z=='+' ){
484 z+=incr;
487 /* copy max significant digits to significand */
488 while( z<zEnd && sqlite3Isdigit(*z) ){
489 s = s*10 + (*z - '0');
490 z+=incr; nDigit++;
491 if( s>=((LARGEST_INT64-9)/10) ){
492 /* skip non-significant significand digits
493 ** (increase exponent by d to shift decimal left) */
494 while( z<zEnd && sqlite3Isdigit(*z) ){ z+=incr; d++; }
497 if( z>=zEnd ) goto do_atof_calc;
499 /* if decimal point is present */
500 if( *z=='.' ){
501 z+=incr;
502 eType++;
503 /* copy digits from after decimal to significand
504 ** (decrease exponent by d to shift decimal right) */
505 while( z<zEnd && sqlite3Isdigit(*z) ){
506 if( s<((LARGEST_INT64-9)/10) ){
507 s = s*10 + (*z - '0');
508 d--;
509 nDigit++;
511 z+=incr;
514 if( z>=zEnd ) goto do_atof_calc;
516 /* if exponent is present */
517 if( *z=='e' || *z=='E' ){
518 z+=incr;
519 eValid = 0;
520 eType++;
522 /* This branch is needed to avoid a (harmless) buffer overread. The
523 ** special comment alerts the mutation tester that the correct answer
524 ** is obtained even if the branch is omitted */
525 if( z>=zEnd ) goto do_atof_calc; /*PREVENTS-HARMLESS-OVERREAD*/
527 /* get sign of exponent */
528 if( *z=='-' ){
529 esign = -1;
530 z+=incr;
531 }else if( *z=='+' ){
532 z+=incr;
534 /* copy digits to exponent */
535 while( z<zEnd && sqlite3Isdigit(*z) ){
536 e = e<10000 ? (e*10 + (*z - '0')) : 10000;
537 z+=incr;
538 eValid = 1;
542 /* skip trailing spaces */
543 while( z<zEnd && sqlite3Isspace(*z) ) z+=incr;
545 do_atof_calc:
546 /* adjust exponent by d, and update sign */
547 e = (e*esign) + d;
548 if( e<0 ) {
549 esign = -1;
550 e *= -1;
551 } else {
552 esign = 1;
555 if( s==0 ) {
556 /* In the IEEE 754 standard, zero is signed. */
557 result = sign<0 ? -(double)0 : (double)0;
558 } else {
559 /* Attempt to reduce exponent.
561 ** Branches that are not required for the correct answer but which only
562 ** help to obtain the correct answer faster are marked with special
563 ** comments, as a hint to the mutation tester.
565 while( e>0 ){ /*OPTIMIZATION-IF-TRUE*/
566 if( esign>0 ){
567 if( s>=(LARGEST_INT64/10) ) break; /*OPTIMIZATION-IF-FALSE*/
568 s *= 10;
569 }else{
570 if( s%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/
571 s /= 10;
573 e--;
576 /* adjust the sign of significand */
577 s = sign<0 ? -s : s;
579 if( e==0 ){ /*OPTIMIZATION-IF-TRUE*/
580 result = (double)s;
581 }else{
582 /* attempt to handle extremely small/large numbers better */
583 if( e>307 ){ /*OPTIMIZATION-IF-TRUE*/
584 if( e<342 ){ /*OPTIMIZATION-IF-TRUE*/
585 LONGDOUBLE_TYPE scale = sqlite3Pow10(e-308);
586 if( esign<0 ){
587 result = s / scale;
588 result /= 1.0e+308;
589 }else{
590 result = s * scale;
591 result *= 1.0e+308;
593 }else{ assert( e>=342 );
594 if( esign<0 ){
595 result = 0.0*s;
596 }else{
597 #ifdef INFINITY
598 result = INFINITY*s;
599 #else
600 result = 1e308*1e308*s; /* Infinity */
601 #endif
604 }else{
605 LONGDOUBLE_TYPE scale = sqlite3Pow10(e);
606 if( esign<0 ){
607 result = s / scale;
608 }else{
609 result = s * scale;
615 /* store the result */
616 *pResult = result;
618 /* return true if number and no extra non-whitespace chracters after */
619 if( z==zEnd && nDigit>0 && eValid && eType>0 ){
620 return eType;
621 }else if( eType>=2 && (eType==3 || eValid) && nDigit>0 ){
622 return -1;
623 }else{
624 return 0;
626 #else
627 return !sqlite3Atoi64(z, pResult, length, enc);
628 #endif /* SQLITE_OMIT_FLOATING_POINT */
630 #if defined(_MSC_VER)
631 #pragma warning(default : 4756)
632 #endif
635 ** Render an signed 64-bit integer as text. Store the result in zOut[].
637 ** The caller must ensure that zOut[] is at least 21 bytes in size.
639 void sqlite3Int64ToText(i64 v, char *zOut){
640 int i;
641 u64 x;
642 char zTemp[22];
643 if( v<0 ){
644 x = (v==SMALLEST_INT64) ? ((u64)1)<<63 : (u64)-v;
645 }else{
646 x = v;
648 i = sizeof(zTemp)-2;
649 zTemp[sizeof(zTemp)-1] = 0;
651 zTemp[i--] = (x%10) + '0';
652 x = x/10;
653 }while( x );
654 if( v<0 ) zTemp[i--] = '-';
655 memcpy(zOut, &zTemp[i+1], sizeof(zTemp)-1-i);
659 ** Compare the 19-character string zNum against the text representation
660 ** value 2^63: 9223372036854775808. Return negative, zero, or positive
661 ** if zNum is less than, equal to, or greater than the string.
662 ** Note that zNum must contain exactly 19 characters.
664 ** Unlike memcmp() this routine is guaranteed to return the difference
665 ** in the values of the last digit if the only difference is in the
666 ** last digit. So, for example,
668 ** compare2pow63("9223372036854775800", 1)
670 ** will return -8.
672 static int compare2pow63(const char *zNum, int incr){
673 int c = 0;
674 int i;
675 /* 012345678901234567 */
676 const char *pow63 = "922337203685477580";
677 for(i=0; c==0 && i<18; i++){
678 c = (zNum[i*incr]-pow63[i])*10;
680 if( c==0 ){
681 c = zNum[18*incr] - '8';
682 testcase( c==(-1) );
683 testcase( c==0 );
684 testcase( c==(+1) );
686 return c;
690 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
691 ** routine does *not* accept hexadecimal notation.
693 ** Returns:
695 ** -1 Not even a prefix of the input text looks like an integer
696 ** 0 Successful transformation. Fits in a 64-bit signed integer.
697 ** 1 Excess non-space text after the integer value
698 ** 2 Integer too large for a 64-bit signed integer or is malformed
699 ** 3 Special case of 9223372036854775808
701 ** length is the number of bytes in the string (bytes, not characters).
702 ** The string is not necessarily zero-terminated. The encoding is
703 ** given by enc.
705 int sqlite3Atoi64(const char *zNum, i64 *pNum, int length, u8 enc){
706 int incr;
707 u64 u = 0;
708 int neg = 0; /* assume positive */
709 int i;
710 int c = 0;
711 int nonNum = 0; /* True if input contains UTF16 with high byte non-zero */
712 int rc; /* Baseline return code */
713 const char *zStart;
714 const char *zEnd = zNum + length;
715 assert( enc==SQLITE_UTF8 || enc==SQLITE_UTF16LE || enc==SQLITE_UTF16BE );
716 if( enc==SQLITE_UTF8 ){
717 incr = 1;
718 }else{
719 incr = 2;
720 length &= ~1;
721 assert( SQLITE_UTF16LE==2 && SQLITE_UTF16BE==3 );
722 for(i=3-enc; i<length && zNum[i]==0; i+=2){}
723 nonNum = i<length;
724 zEnd = &zNum[i^1];
725 zNum += (enc&1);
727 while( zNum<zEnd && sqlite3Isspace(*zNum) ) zNum+=incr;
728 if( zNum<zEnd ){
729 if( *zNum=='-' ){
730 neg = 1;
731 zNum+=incr;
732 }else if( *zNum=='+' ){
733 zNum+=incr;
736 zStart = zNum;
737 while( zNum<zEnd && zNum[0]=='0' ){ zNum+=incr; } /* Skip leading zeros. */
738 for(i=0; &zNum[i]<zEnd && (c=zNum[i])>='0' && c<='9'; i+=incr){
739 u = u*10 + c - '0';
741 testcase( i==18*incr );
742 testcase( i==19*incr );
743 testcase( i==20*incr );
744 if( u>LARGEST_INT64 ){
745 /* This test and assignment is needed only to suppress UB warnings
746 ** from clang and -fsanitize=undefined. This test and assignment make
747 ** the code a little larger and slower, and no harm comes from omitting
748 ** them, but we must appaise the undefined-behavior pharisees. */
749 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
750 }else if( neg ){
751 *pNum = -(i64)u;
752 }else{
753 *pNum = (i64)u;
755 rc = 0;
756 if( i==0 && zStart==zNum ){ /* No digits */
757 rc = -1;
758 }else if( nonNum ){ /* UTF16 with high-order bytes non-zero */
759 rc = 1;
760 }else if( &zNum[i]<zEnd ){ /* Extra bytes at the end */
761 int jj = i;
763 if( !sqlite3Isspace(zNum[jj]) ){
764 rc = 1; /* Extra non-space text after the integer */
765 break;
767 jj += incr;
768 }while( &zNum[jj]<zEnd );
770 if( i<19*incr ){
771 /* Less than 19 digits, so we know that it fits in 64 bits */
772 assert( u<=LARGEST_INT64 );
773 return rc;
774 }else{
775 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
776 c = i>19*incr ? 1 : compare2pow63(zNum, incr);
777 if( c<0 ){
778 /* zNum is less than 9223372036854775808 so it fits */
779 assert( u<=LARGEST_INT64 );
780 return rc;
781 }else{
782 *pNum = neg ? SMALLEST_INT64 : LARGEST_INT64;
783 if( c>0 ){
784 /* zNum is greater than 9223372036854775808 so it overflows */
785 return 2;
786 }else{
787 /* zNum is exactly 9223372036854775808. Fits if negative. The
788 ** special case 2 overflow if positive */
789 assert( u-1==LARGEST_INT64 );
790 return neg ? rc : 3;
797 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
798 ** into a 64-bit signed integer. This routine accepts hexadecimal literals,
799 ** whereas sqlite3Atoi64() does not.
801 ** Returns:
803 ** 0 Successful transformation. Fits in a 64-bit signed integer.
804 ** 1 Excess text after the integer value
805 ** 2 Integer too large for a 64-bit signed integer or is malformed
806 ** 3 Special case of 9223372036854775808
808 int sqlite3DecOrHexToI64(const char *z, i64 *pOut){
809 #ifndef SQLITE_OMIT_HEX_INTEGER
810 if( z[0]=='0'
811 && (z[1]=='x' || z[1]=='X')
813 u64 u = 0;
814 int i, k;
815 for(i=2; z[i]=='0'; i++){}
816 for(k=i; sqlite3Isxdigit(z[k]); k++){
817 u = u*16 + sqlite3HexToInt(z[k]);
819 memcpy(pOut, &u, 8);
820 return (z[k]==0 && k-i<=16) ? 0 : 2;
821 }else
822 #endif /* SQLITE_OMIT_HEX_INTEGER */
824 return sqlite3Atoi64(z, pOut, sqlite3Strlen30(z), SQLITE_UTF8);
829 ** If zNum represents an integer that will fit in 32-bits, then set
830 ** *pValue to that integer and return true. Otherwise return false.
832 ** This routine accepts both decimal and hexadecimal notation for integers.
834 ** Any non-numeric characters that following zNum are ignored.
835 ** This is different from sqlite3Atoi64() which requires the
836 ** input number to be zero-terminated.
838 int sqlite3GetInt32(const char *zNum, int *pValue){
839 sqlite_int64 v = 0;
840 int i, c;
841 int neg = 0;
842 if( zNum[0]=='-' ){
843 neg = 1;
844 zNum++;
845 }else if( zNum[0]=='+' ){
846 zNum++;
848 #ifndef SQLITE_OMIT_HEX_INTEGER
849 else if( zNum[0]=='0'
850 && (zNum[1]=='x' || zNum[1]=='X')
851 && sqlite3Isxdigit(zNum[2])
853 u32 u = 0;
854 zNum += 2;
855 while( zNum[0]=='0' ) zNum++;
856 for(i=0; sqlite3Isxdigit(zNum[i]) && i<8; i++){
857 u = u*16 + sqlite3HexToInt(zNum[i]);
859 if( (u&0x80000000)==0 && sqlite3Isxdigit(zNum[i])==0 ){
860 memcpy(pValue, &u, 4);
861 return 1;
862 }else{
863 return 0;
866 #endif
867 if( !sqlite3Isdigit(zNum[0]) ) return 0;
868 while( zNum[0]=='0' ) zNum++;
869 for(i=0; i<11 && (c = zNum[i] - '0')>=0 && c<=9; i++){
870 v = v*10 + c;
873 /* The longest decimal representation of a 32 bit integer is 10 digits:
875 ** 1234567890
876 ** 2^31 -> 2147483648
878 testcase( i==10 );
879 if( i>10 ){
880 return 0;
882 testcase( v-neg==2147483647 );
883 if( v-neg>2147483647 ){
884 return 0;
886 if( neg ){
887 v = -v;
889 *pValue = (int)v;
890 return 1;
894 ** Return a 32-bit integer value extracted from a string. If the
895 ** string is not an integer, just return 0.
897 int sqlite3Atoi(const char *z){
898 int x = 0;
899 sqlite3GetInt32(z, &x);
900 return x;
904 ** Try to convert z into an unsigned 32-bit integer. Return true on
905 ** success and false if there is an error.
907 ** Only decimal notation is accepted.
909 int sqlite3GetUInt32(const char *z, u32 *pI){
910 u64 v = 0;
911 int i;
912 for(i=0; sqlite3Isdigit(z[i]); i++){
913 v = v*10 + z[i] - '0';
914 if( v>4294967296LL ){ *pI = 0; return 0; }
916 if( i==0 || z[i]!=0 ){ *pI = 0; return 0; }
917 *pI = (u32)v;
918 return 1;
922 ** The variable-length integer encoding is as follows:
924 ** KEY:
925 ** A = 0xxxxxxx 7 bits of data and one flag bit
926 ** B = 1xxxxxxx 7 bits of data and one flag bit
927 ** C = xxxxxxxx 8 bits of data
929 ** 7 bits - A
930 ** 14 bits - BA
931 ** 21 bits - BBA
932 ** 28 bits - BBBA
933 ** 35 bits - BBBBA
934 ** 42 bits - BBBBBA
935 ** 49 bits - BBBBBBA
936 ** 56 bits - BBBBBBBA
937 ** 64 bits - BBBBBBBBC
941 ** Write a 64-bit variable-length integer to memory starting at p[0].
942 ** The length of data write will be between 1 and 9 bytes. The number
943 ** of bytes written is returned.
945 ** A variable-length integer consists of the lower 7 bits of each byte
946 ** for all bytes that have the 8th bit set and one byte with the 8th
947 ** bit clear. Except, if we get to the 9th byte, it stores the full
948 ** 8 bits and is the last byte.
950 static int SQLITE_NOINLINE putVarint64(unsigned char *p, u64 v){
951 int i, j, n;
952 u8 buf[10];
953 if( v & (((u64)0xff000000)<<32) ){
954 p[8] = (u8)v;
955 v >>= 8;
956 for(i=7; i>=0; i--){
957 p[i] = (u8)((v & 0x7f) | 0x80);
958 v >>= 7;
960 return 9;
962 n = 0;
964 buf[n++] = (u8)((v & 0x7f) | 0x80);
965 v >>= 7;
966 }while( v!=0 );
967 buf[0] &= 0x7f;
968 assert( n<=9 );
969 for(i=0, j=n-1; j>=0; j--, i++){
970 p[i] = buf[j];
972 return n;
974 int sqlite3PutVarint(unsigned char *p, u64 v){
975 if( v<=0x7f ){
976 p[0] = v&0x7f;
977 return 1;
979 if( v<=0x3fff ){
980 p[0] = ((v>>7)&0x7f)|0x80;
981 p[1] = v&0x7f;
982 return 2;
984 return putVarint64(p,v);
988 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants
989 ** are defined here rather than simply putting the constant expressions
990 ** inline in order to work around bugs in the RVT compiler.
992 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
994 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
996 #define SLOT_2_0 0x001fc07f
997 #define SLOT_4_2_0 0xf01fc07f
1001 ** Read a 64-bit variable-length integer from memory starting at p[0].
1002 ** Return the number of bytes read. The value is stored in *v.
1004 u8 sqlite3GetVarint(const unsigned char *p, u64 *v){
1005 u32 a,b,s;
1007 if( ((signed char*)p)[0]>=0 ){
1008 *v = *p;
1009 return 1;
1011 if( ((signed char*)p)[1]>=0 ){
1012 *v = ((u32)(p[0]&0x7f)<<7) | p[1];
1013 return 2;
1016 /* Verify that constants are precomputed correctly */
1017 assert( SLOT_2_0 == ((0x7f<<14) | (0x7f)) );
1018 assert( SLOT_4_2_0 == ((0xfU<<28) | (0x7f<<14) | (0x7f)) );
1020 a = ((u32)p[0])<<14;
1021 b = p[1];
1022 p += 2;
1023 a |= *p;
1024 /* a: p0<<14 | p2 (unmasked) */
1025 if (!(a&0x80))
1027 a &= SLOT_2_0;
1028 b &= 0x7f;
1029 b = b<<7;
1030 a |= b;
1031 *v = a;
1032 return 3;
1035 /* CSE1 from below */
1036 a &= SLOT_2_0;
1037 p++;
1038 b = b<<14;
1039 b |= *p;
1040 /* b: p1<<14 | p3 (unmasked) */
1041 if (!(b&0x80))
1043 b &= SLOT_2_0;
1044 /* moved CSE1 up */
1045 /* a &= (0x7f<<14)|(0x7f); */
1046 a = a<<7;
1047 a |= b;
1048 *v = a;
1049 return 4;
1052 /* a: p0<<14 | p2 (masked) */
1053 /* b: p1<<14 | p3 (unmasked) */
1054 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1055 /* moved CSE1 up */
1056 /* a &= (0x7f<<14)|(0x7f); */
1057 b &= SLOT_2_0;
1058 s = a;
1059 /* s: p0<<14 | p2 (masked) */
1061 p++;
1062 a = a<<14;
1063 a |= *p;
1064 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1065 if (!(a&0x80))
1067 /* we can skip these cause they were (effectively) done above
1068 ** while calculating s */
1069 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1070 /* b &= (0x7f<<14)|(0x7f); */
1071 b = b<<7;
1072 a |= b;
1073 s = s>>18;
1074 *v = ((u64)s)<<32 | a;
1075 return 5;
1078 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1079 s = s<<7;
1080 s |= b;
1081 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1083 p++;
1084 b = b<<14;
1085 b |= *p;
1086 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
1087 if (!(b&0x80))
1089 /* we can skip this cause it was (effectively) done above in calc'ing s */
1090 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1091 a &= SLOT_2_0;
1092 a = a<<7;
1093 a |= b;
1094 s = s>>18;
1095 *v = ((u64)s)<<32 | a;
1096 return 6;
1099 p++;
1100 a = a<<14;
1101 a |= *p;
1102 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
1103 if (!(a&0x80))
1105 a &= SLOT_4_2_0;
1106 b &= SLOT_2_0;
1107 b = b<<7;
1108 a |= b;
1109 s = s>>11;
1110 *v = ((u64)s)<<32 | a;
1111 return 7;
1114 /* CSE2 from below */
1115 a &= SLOT_2_0;
1116 p++;
1117 b = b<<14;
1118 b |= *p;
1119 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
1120 if (!(b&0x80))
1122 b &= SLOT_4_2_0;
1123 /* moved CSE2 up */
1124 /* a &= (0x7f<<14)|(0x7f); */
1125 a = a<<7;
1126 a |= b;
1127 s = s>>4;
1128 *v = ((u64)s)<<32 | a;
1129 return 8;
1132 p++;
1133 a = a<<15;
1134 a |= *p;
1135 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
1137 /* moved CSE2 up */
1138 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
1139 b &= SLOT_2_0;
1140 b = b<<8;
1141 a |= b;
1143 s = s<<4;
1144 b = p[-4];
1145 b &= 0x7f;
1146 b = b>>3;
1147 s |= b;
1149 *v = ((u64)s)<<32 | a;
1151 return 9;
1155 ** Read a 32-bit variable-length integer from memory starting at p[0].
1156 ** Return the number of bytes read. The value is stored in *v.
1158 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1159 ** integer, then set *v to 0xffffffff.
1161 ** A MACRO version, getVarint32, is provided which inlines the
1162 ** single-byte case. All code should use the MACRO version as
1163 ** this function assumes the single-byte case has already been handled.
1165 u8 sqlite3GetVarint32(const unsigned char *p, u32 *v){
1166 u32 a,b;
1168 /* The 1-byte case. Overwhelmingly the most common. Handled inline
1169 ** by the getVarin32() macro */
1170 a = *p;
1171 /* a: p0 (unmasked) */
1172 #ifndef getVarint32
1173 if (!(a&0x80))
1175 /* Values between 0 and 127 */
1176 *v = a;
1177 return 1;
1179 #endif
1181 /* The 2-byte case */
1182 p++;
1183 b = *p;
1184 /* b: p1 (unmasked) */
1185 if (!(b&0x80))
1187 /* Values between 128 and 16383 */
1188 a &= 0x7f;
1189 a = a<<7;
1190 *v = a | b;
1191 return 2;
1194 /* The 3-byte case */
1195 p++;
1196 a = a<<14;
1197 a |= *p;
1198 /* a: p0<<14 | p2 (unmasked) */
1199 if (!(a&0x80))
1201 /* Values between 16384 and 2097151 */
1202 a &= (0x7f<<14)|(0x7f);
1203 b &= 0x7f;
1204 b = b<<7;
1205 *v = a | b;
1206 return 3;
1209 /* A 32-bit varint is used to store size information in btrees.
1210 ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
1211 ** A 3-byte varint is sufficient, for example, to record the size
1212 ** of a 1048569-byte BLOB or string.
1214 ** We only unroll the first 1-, 2-, and 3- byte cases. The very
1215 ** rare larger cases can be handled by the slower 64-bit varint
1216 ** routine.
1218 #if 1
1220 u64 v64;
1221 u8 n;
1223 n = sqlite3GetVarint(p-2, &v64);
1224 assert( n>3 && n<=9 );
1225 if( (v64 & SQLITE_MAX_U32)!=v64 ){
1226 *v = 0xffffffff;
1227 }else{
1228 *v = (u32)v64;
1230 return n;
1233 #else
1234 /* For following code (kept for historical record only) shows an
1235 ** unrolling for the 3- and 4-byte varint cases. This code is
1236 ** slightly faster, but it is also larger and much harder to test.
1238 p++;
1239 b = b<<14;
1240 b |= *p;
1241 /* b: p1<<14 | p3 (unmasked) */
1242 if (!(b&0x80))
1244 /* Values between 2097152 and 268435455 */
1245 b &= (0x7f<<14)|(0x7f);
1246 a &= (0x7f<<14)|(0x7f);
1247 a = a<<7;
1248 *v = a | b;
1249 return 4;
1252 p++;
1253 a = a<<14;
1254 a |= *p;
1255 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1256 if (!(a&0x80))
1258 /* Values between 268435456 and 34359738367 */
1259 a &= SLOT_4_2_0;
1260 b &= SLOT_4_2_0;
1261 b = b<<7;
1262 *v = a | b;
1263 return 5;
1266 /* We can only reach this point when reading a corrupt database
1267 ** file. In that case we are not in any hurry. Use the (relatively
1268 ** slow) general-purpose sqlite3GetVarint() routine to extract the
1269 ** value. */
1271 u64 v64;
1272 u8 n;
1274 p -= 4;
1275 n = sqlite3GetVarint(p, &v64);
1276 assert( n>5 && n<=9 );
1277 *v = (u32)v64;
1278 return n;
1280 #endif
1284 ** Return the number of bytes that will be needed to store the given
1285 ** 64-bit integer.
1287 int sqlite3VarintLen(u64 v){
1288 int i;
1289 for(i=1; (v >>= 7)!=0; i++){ assert( i<10 ); }
1290 return i;
1295 ** Read or write a four-byte big-endian integer value.
1297 u32 sqlite3Get4byte(const u8 *p){
1298 #if SQLITE_BYTEORDER==4321
1299 u32 x;
1300 memcpy(&x,p,4);
1301 return x;
1302 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1303 u32 x;
1304 memcpy(&x,p,4);
1305 return __builtin_bswap32(x);
1306 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1307 u32 x;
1308 memcpy(&x,p,4);
1309 return _byteswap_ulong(x);
1310 #else
1311 testcase( p[0]&0x80 );
1312 return ((unsigned)p[0]<<24) | (p[1]<<16) | (p[2]<<8) | p[3];
1313 #endif
1315 void sqlite3Put4byte(unsigned char *p, u32 v){
1316 #if SQLITE_BYTEORDER==4321
1317 memcpy(p,&v,4);
1318 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1319 u32 x = __builtin_bswap32(v);
1320 memcpy(p,&x,4);
1321 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1322 u32 x = _byteswap_ulong(v);
1323 memcpy(p,&x,4);
1324 #else
1325 p[0] = (u8)(v>>24);
1326 p[1] = (u8)(v>>16);
1327 p[2] = (u8)(v>>8);
1328 p[3] = (u8)v;
1329 #endif
1335 ** Translate a single byte of Hex into an integer.
1336 ** This routine only works if h really is a valid hexadecimal
1337 ** character: 0..9a..fA..F
1339 u8 sqlite3HexToInt(int h){
1340 assert( (h>='0' && h<='9') || (h>='a' && h<='f') || (h>='A' && h<='F') );
1341 #ifdef SQLITE_ASCII
1342 h += 9*(1&(h>>6));
1343 #endif
1344 #ifdef SQLITE_EBCDIC
1345 h += 9*(1&~(h>>4));
1346 #endif
1347 return (u8)(h & 0xf);
1350 /* BEGIN SQLCIPHER */
1351 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1353 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1354 ** value. Return a pointer to its binary value. Space to hold the
1355 ** binary value has been obtained from malloc and must be freed by
1356 ** the calling routine.
1358 void *sqlite3HexToBlob(sqlite3 *db, const char *z, int n){
1359 char *zBlob;
1360 int i;
1362 zBlob = (char *)sqlite3DbMallocRawNN(db, n/2 + 1);
1363 n--;
1364 if( zBlob ){
1365 for(i=0; i<n; i+=2){
1366 zBlob[i/2] = (sqlite3HexToInt(z[i])<<4) | sqlite3HexToInt(z[i+1]);
1368 zBlob[i/2] = 0;
1370 return zBlob;
1372 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1373 /* END SQLCIPHER */
1376 ** Log an error that is an API call on a connection pointer that should
1377 ** not have been used. The "type" of connection pointer is given as the
1378 ** argument. The zType is a word like "NULL" or "closed" or "invalid".
1380 static void logBadConnection(const char *zType){
1381 sqlite3_log(SQLITE_MISUSE,
1382 "API call with %s database connection pointer",
1383 zType
1388 ** Check to make sure we have a valid db pointer. This test is not
1389 ** foolproof but it does provide some measure of protection against
1390 ** misuse of the interface such as passing in db pointers that are
1391 ** NULL or which have been previously closed. If this routine returns
1392 ** 1 it means that the db pointer is valid and 0 if it should not be
1393 ** dereferenced for any reason. The calling function should invoke
1394 ** SQLITE_MISUSE immediately.
1396 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1397 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1398 ** open properly and is not fit for general use but which can be
1399 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1401 int sqlite3SafetyCheckOk(sqlite3 *db){
1402 u8 eOpenState;
1403 if( db==0 ){
1404 logBadConnection("NULL");
1405 return 0;
1407 eOpenState = db->eOpenState;
1408 if( eOpenState!=SQLITE_STATE_OPEN ){
1409 if( sqlite3SafetyCheckSickOrOk(db) ){
1410 testcase( sqlite3GlobalConfig.xLog!=0 );
1411 logBadConnection("unopened");
1413 return 0;
1414 }else{
1415 return 1;
1418 int sqlite3SafetyCheckSickOrOk(sqlite3 *db){
1419 u8 eOpenState;
1420 eOpenState = db->eOpenState;
1421 if( eOpenState!=SQLITE_STATE_SICK &&
1422 eOpenState!=SQLITE_STATE_OPEN &&
1423 eOpenState!=SQLITE_STATE_BUSY ){
1424 testcase( sqlite3GlobalConfig.xLog!=0 );
1425 logBadConnection("invalid");
1426 return 0;
1427 }else{
1428 return 1;
1433 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1434 ** the other 64-bit signed integer at *pA and store the result in *pA.
1435 ** Return 0 on success. Or if the operation would have resulted in an
1436 ** overflow, leave *pA unchanged and return 1.
1438 int sqlite3AddInt64(i64 *pA, i64 iB){
1439 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1440 return __builtin_add_overflow(*pA, iB, pA);
1441 #else
1442 i64 iA = *pA;
1443 testcase( iA==0 ); testcase( iA==1 );
1444 testcase( iB==-1 ); testcase( iB==0 );
1445 if( iB>=0 ){
1446 testcase( iA>0 && LARGEST_INT64 - iA == iB );
1447 testcase( iA>0 && LARGEST_INT64 - iA == iB - 1 );
1448 if( iA>0 && LARGEST_INT64 - iA < iB ) return 1;
1449 }else{
1450 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 1 );
1451 testcase( iA<0 && -(iA + LARGEST_INT64) == iB + 2 );
1452 if( iA<0 && -(iA + LARGEST_INT64) > iB + 1 ) return 1;
1454 *pA += iB;
1455 return 0;
1456 #endif
1458 int sqlite3SubInt64(i64 *pA, i64 iB){
1459 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1460 return __builtin_sub_overflow(*pA, iB, pA);
1461 #else
1462 testcase( iB==SMALLEST_INT64+1 );
1463 if( iB==SMALLEST_INT64 ){
1464 testcase( (*pA)==(-1) ); testcase( (*pA)==0 );
1465 if( (*pA)>=0 ) return 1;
1466 *pA -= iB;
1467 return 0;
1468 }else{
1469 return sqlite3AddInt64(pA, -iB);
1471 #endif
1473 int sqlite3MulInt64(i64 *pA, i64 iB){
1474 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1475 return __builtin_mul_overflow(*pA, iB, pA);
1476 #else
1477 i64 iA = *pA;
1478 if( iB>0 ){
1479 if( iA>LARGEST_INT64/iB ) return 1;
1480 if( iA<SMALLEST_INT64/iB ) return 1;
1481 }else if( iB<0 ){
1482 if( iA>0 ){
1483 if( iB<SMALLEST_INT64/iA ) return 1;
1484 }else if( iA<0 ){
1485 if( iB==SMALLEST_INT64 ) return 1;
1486 if( iA==SMALLEST_INT64 ) return 1;
1487 if( -iA>LARGEST_INT64/-iB ) return 1;
1490 *pA = iA*iB;
1491 return 0;
1492 #endif
1496 ** Compute the absolute value of a 32-bit signed integer, of possible. Or
1497 ** if the integer has a value of -2147483648, return +2147483647
1499 int sqlite3AbsInt32(int x){
1500 if( x>=0 ) return x;
1501 if( x==(int)0x80000000 ) return 0x7fffffff;
1502 return -x;
1505 #ifdef SQLITE_ENABLE_8_3_NAMES
1507 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1508 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1509 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1510 ** three characters, then shorten the suffix on z[] to be the last three
1511 ** characters of the original suffix.
1513 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1514 ** do the suffix shortening regardless of URI parameter.
1516 ** Examples:
1518 ** test.db-journal => test.nal
1519 ** test.db-wal => test.wal
1520 ** test.db-shm => test.shm
1521 ** test.db-mj7f3319fa => test.9fa
1523 void sqlite3FileSuffix3(const char *zBaseFilename, char *z){
1524 #if SQLITE_ENABLE_8_3_NAMES<2
1525 if( sqlite3_uri_boolean(zBaseFilename, "8_3_names", 0) )
1526 #endif
1528 int i, sz;
1529 sz = sqlite3Strlen30(z);
1530 for(i=sz-1; i>0 && z[i]!='/' && z[i]!='.'; i--){}
1531 if( z[i]=='.' && ALWAYS(sz>i+4) ) memmove(&z[i+1], &z[sz-3], 4);
1534 #endif
1537 ** Find (an approximate) sum of two LogEst values. This computation is
1538 ** not a simple "+" operator because LogEst is stored as a logarithmic
1539 ** value.
1542 LogEst sqlite3LogEstAdd(LogEst a, LogEst b){
1543 static const unsigned char x[] = {
1544 10, 10, /* 0,1 */
1545 9, 9, /* 2,3 */
1546 8, 8, /* 4,5 */
1547 7, 7, 7, /* 6,7,8 */
1548 6, 6, 6, /* 9,10,11 */
1549 5, 5, 5, /* 12-14 */
1550 4, 4, 4, 4, /* 15-18 */
1551 3, 3, 3, 3, 3, 3, /* 19-24 */
1552 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
1554 if( a>=b ){
1555 if( a>b+49 ) return a;
1556 if( a>b+31 ) return a+1;
1557 return a+x[a-b];
1558 }else{
1559 if( b>a+49 ) return b;
1560 if( b>a+31 ) return b+1;
1561 return b+x[b-a];
1566 ** Convert an integer into a LogEst. In other words, compute an
1567 ** approximation for 10*log2(x).
1569 LogEst sqlite3LogEst(u64 x){
1570 static LogEst a[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1571 LogEst y = 40;
1572 if( x<8 ){
1573 if( x<2 ) return 0;
1574 while( x<8 ){ y -= 10; x <<= 1; }
1575 }else{
1576 #if GCC_VERSION>=5004000
1577 int i = 60 - __builtin_clzll(x);
1578 y += i*10;
1579 x >>= i;
1580 #else
1581 while( x>255 ){ y += 40; x >>= 4; } /*OPTIMIZATION-IF-TRUE*/
1582 while( x>15 ){ y += 10; x >>= 1; }
1583 #endif
1585 return a[x&7] + y - 10;
1589 ** Convert a double into a LogEst
1590 ** In other words, compute an approximation for 10*log2(x).
1592 LogEst sqlite3LogEstFromDouble(double x){
1593 u64 a;
1594 LogEst e;
1595 assert( sizeof(x)==8 && sizeof(a)==8 );
1596 if( x<=1 ) return 0;
1597 if( x<=2000000000 ) return sqlite3LogEst((u64)x);
1598 memcpy(&a, &x, 8);
1599 e = (a>>52) - 1022;
1600 return e*10;
1604 ** Convert a LogEst into an integer.
1606 u64 sqlite3LogEstToInt(LogEst x){
1607 u64 n;
1608 n = x%10;
1609 x /= 10;
1610 if( n>=5 ) n -= 2;
1611 else if( n>=1 ) n -= 1;
1612 if( x>60 ) return (u64)LARGEST_INT64;
1613 return x>=3 ? (n+8)<<(x-3) : (n+8)>>(3-x);
1617 ** Add a new name/number pair to a VList. This might require that the
1618 ** VList object be reallocated, so return the new VList. If an OOM
1619 ** error occurs, the original VList returned and the
1620 ** db->mallocFailed flag is set.
1622 ** A VList is really just an array of integers. To destroy a VList,
1623 ** simply pass it to sqlite3DbFree().
1625 ** The first integer is the number of integers allocated for the whole
1626 ** VList. The second integer is the number of integers actually used.
1627 ** Each name/number pair is encoded by subsequent groups of 3 or more
1628 ** integers.
1630 ** Each name/number pair starts with two integers which are the numeric
1631 ** value for the pair and the size of the name/number pair, respectively.
1632 ** The text name overlays one or more following integers. The text name
1633 ** is always zero-terminated.
1635 ** Conceptually:
1637 ** struct VList {
1638 ** int nAlloc; // Number of allocated slots
1639 ** int nUsed; // Number of used slots
1640 ** struct VListEntry {
1641 ** int iValue; // Value for this entry
1642 ** int nSlot; // Slots used by this entry
1643 ** // ... variable name goes here
1644 ** } a[0];
1645 ** }
1647 ** During code generation, pointers to the variable names within the
1648 ** VList are taken. When that happens, nAlloc is set to zero as an
1649 ** indication that the VList may never again be enlarged, since the
1650 ** accompanying realloc() would invalidate the pointers.
1652 VList *sqlite3VListAdd(
1653 sqlite3 *db, /* The database connection used for malloc() */
1654 VList *pIn, /* The input VList. Might be NULL */
1655 const char *zName, /* Name of symbol to add */
1656 int nName, /* Bytes of text in zName */
1657 int iVal /* Value to associate with zName */
1659 int nInt; /* number of sizeof(int) objects needed for zName */
1660 char *z; /* Pointer to where zName will be stored */
1661 int i; /* Index in pIn[] where zName is stored */
1663 nInt = nName/4 + 3;
1664 assert( pIn==0 || pIn[0]>=3 ); /* Verify ok to add new elements */
1665 if( pIn==0 || pIn[1]+nInt > pIn[0] ){
1666 /* Enlarge the allocation */
1667 sqlite3_int64 nAlloc = (pIn ? 2*(sqlite3_int64)pIn[0] : 10) + nInt;
1668 VList *pOut = sqlite3DbRealloc(db, pIn, nAlloc*sizeof(int));
1669 if( pOut==0 ) return pIn;
1670 if( pIn==0 ) pOut[1] = 2;
1671 pIn = pOut;
1672 pIn[0] = nAlloc;
1674 i = pIn[1];
1675 pIn[i] = iVal;
1676 pIn[i+1] = nInt;
1677 z = (char*)&pIn[i+2];
1678 pIn[1] = i+nInt;
1679 assert( pIn[1]<=pIn[0] );
1680 memcpy(z, zName, nName);
1681 z[nName] = 0;
1682 return pIn;
1686 ** Return a pointer to the name of a variable in the given VList that
1687 ** has the value iVal. Or return a NULL if there is no such variable in
1688 ** the list
1690 const char *sqlite3VListNumToName(VList *pIn, int iVal){
1691 int i, mx;
1692 if( pIn==0 ) return 0;
1693 mx = pIn[1];
1694 i = 2;
1696 if( pIn[i]==iVal ) return (char*)&pIn[i+2];
1697 i += pIn[i+1];
1698 }while( i<mx );
1699 return 0;
1703 ** Return the number of the variable named zName, if it is in VList.
1704 ** or return 0 if there is no such variable.
1706 int sqlite3VListNameToNum(VList *pIn, const char *zName, int nName){
1707 int i, mx;
1708 if( pIn==0 ) return 0;
1709 mx = pIn[1];
1710 i = 2;
1712 const char *z = (const char*)&pIn[i+2];
1713 if( strncmp(z,zName,nName)==0 && z[nName]==0 ) return pIn[i];
1714 i += pIn[i+1];
1715 }while( i<mx );
1716 return 0;