4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
18 #include "sqliteInt.h"
20 #ifndef SQLITE_OMIT_FLOATING_POINT
25 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing,
26 ** or to bypass normal error detection during testing in order to let
27 ** execute proceed futher downstream.
29 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The
30 ** sqlite3FaultSim() function only returns non-zero during testing.
32 ** During testing, if the test harness has set a fault-sim callback using
33 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then
34 ** each call to sqlite3FaultSim() is relayed to that application-supplied
35 ** callback and the integer return value form the application-supplied
36 ** callback is returned by sqlite3FaultSim().
38 ** The integer argument to sqlite3FaultSim() is a code to identify which
39 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim()
40 ** should have a unique code. To prevent legacy testing applications from
41 ** breaking, the codes should not be changed or reused.
43 #ifndef SQLITE_UNTESTABLE
44 int sqlite3FaultSim(int iTest
){
45 int (*xCallback
)(int) = sqlite3GlobalConfig
.xTestCallback
;
46 return xCallback
? xCallback(iTest
) : SQLITE_OK
;
50 #ifndef SQLITE_OMIT_FLOATING_POINT
52 ** Return true if the floating point value is Not a Number (NaN).
54 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
55 ** Otherwise, we have our own implementation that works on most systems.
57 int sqlite3IsNaN(double x
){
58 int rc
; /* The value return */
59 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
61 memcpy(&y
,&x
,sizeof(y
));
65 #endif /* HAVE_ISNAN */
69 #endif /* SQLITE_OMIT_FLOATING_POINT */
72 ** Compute a string length that is limited to what can be stored in
73 ** lower 30 bits of a 32-bit signed integer.
75 ** The value returned will never be negative. Nor will it ever be greater
76 ** than the actual length of the string. For very long strings (greater
77 ** than 1GiB) the value returned might be less than the true string length.
79 int sqlite3Strlen30(const char *z
){
81 return 0x3fffffff & (int)strlen(z
);
85 ** Return the declared type of a column. Or return zDflt if the column
86 ** has no declared type.
88 ** The column type is an extra string stored after the zero-terminator on
89 ** the column name if and only if the COLFLAG_HASTYPE flag is set.
91 char *sqlite3ColumnType(Column
*pCol
, char *zDflt
){
92 if( pCol
->colFlags
& COLFLAG_HASTYPE
){
93 return pCol
->zCnName
+ strlen(pCol
->zCnName
) + 1;
94 }else if( pCol
->eCType
){
95 assert( pCol
->eCType
<=SQLITE_N_STDTYPE
);
96 return (char*)sqlite3StdType
[pCol
->eCType
-1];
103 ** Helper function for sqlite3Error() - called rarely. Broken out into
104 ** a separate routine to avoid unnecessary register saves on entry to
107 static SQLITE_NOINLINE
void sqlite3ErrorFinish(sqlite3
*db
, int err_code
){
108 if( db
->pErr
) sqlite3ValueSetNull(db
->pErr
);
109 sqlite3SystemError(db
, err_code
);
113 ** Set the current error code to err_code and clear any prior error message.
114 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
115 ** that would be appropriate.
117 void sqlite3Error(sqlite3
*db
, int err_code
){
119 db
->errCode
= err_code
;
120 if( err_code
|| db
->pErr
){
121 sqlite3ErrorFinish(db
, err_code
);
123 db
->errByteOffset
= -1;
128 ** The equivalent of sqlite3Error(db, SQLITE_OK). Clear the error state
129 ** and error message.
131 void sqlite3ErrorClear(sqlite3
*db
){
133 db
->errCode
= SQLITE_OK
;
134 db
->errByteOffset
= -1;
135 if( db
->pErr
) sqlite3ValueSetNull(db
->pErr
);
139 ** Load the sqlite3.iSysErrno field if that is an appropriate thing
140 ** to do based on the SQLite error code in rc.
142 void sqlite3SystemError(sqlite3
*db
, int rc
){
143 if( rc
==SQLITE_IOERR_NOMEM
) return;
145 if( rc
==SQLITE_CANTOPEN
|| rc
==SQLITE_IOERR
){
146 db
->iSysErrno
= sqlite3OsGetLastError(db
->pVfs
);
151 ** Set the most recent error code and error string for the sqlite
152 ** handle "db". The error code is set to "err_code".
154 ** If it is not NULL, string zFormat specifies the format of the
155 ** error string. zFormat and any string tokens that follow it are
156 ** assumed to be encoded in UTF-8.
158 ** To clear the most recent error for sqlite handle "db", sqlite3Error
159 ** should be called with err_code set to SQLITE_OK and zFormat set
162 void sqlite3ErrorWithMsg(sqlite3
*db
, int err_code
, const char *zFormat
, ...){
164 db
->errCode
= err_code
;
165 sqlite3SystemError(db
, err_code
);
167 sqlite3Error(db
, err_code
);
168 }else if( db
->pErr
|| (db
->pErr
= sqlite3ValueNew(db
))!=0 ){
171 va_start(ap
, zFormat
);
172 z
= sqlite3VMPrintf(db
, zFormat
, ap
);
174 sqlite3ValueSetStr(db
->pErr
, -1, z
, SQLITE_UTF8
, SQLITE_DYNAMIC
);
179 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
181 ** This function should be used to report any error that occurs while
182 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
183 ** last thing the sqlite3_prepare() function does is copy the error
184 ** stored by this function into the database handle using sqlite3Error().
185 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
186 ** during statement execution (sqlite3_step() etc.).
188 void sqlite3ErrorMsg(Parse
*pParse
, const char *zFormat
, ...){
191 sqlite3
*db
= pParse
->db
;
193 assert( db
->pParse
==pParse
|| db
->pParse
->pToplevel
==pParse
);
194 db
->errByteOffset
= -2;
195 va_start(ap
, zFormat
);
196 zMsg
= sqlite3VMPrintf(db
, zFormat
, ap
);
198 if( db
->errByteOffset
<-1 ) db
->errByteOffset
= -1;
199 if( db
->suppressErr
){
200 sqlite3DbFree(db
, zMsg
);
201 if( db
->mallocFailed
){
203 pParse
->rc
= SQLITE_NOMEM
;
207 sqlite3DbFree(db
, pParse
->zErrMsg
);
208 pParse
->zErrMsg
= zMsg
;
209 pParse
->rc
= SQLITE_ERROR
;
215 ** If database connection db is currently parsing SQL, then transfer
216 ** error code errCode to that parser if the parser has not already
217 ** encountered some other kind of error.
219 int sqlite3ErrorToParser(sqlite3
*db
, int errCode
){
221 if( db
==0 || (pParse
= db
->pParse
)==0 ) return errCode
;
222 pParse
->rc
= errCode
;
228 ** Convert an SQL-style quoted string into a normal string by removing
229 ** the quote characters. The conversion is done in-place. If the
230 ** input does not begin with a quote character, then this routine
233 ** The input string must be zero-terminated. A new zero-terminator
234 ** is added to the dequoted string.
236 ** The return value is -1 if no dequoting occurs or the length of the
237 ** dequoted string, exclusive of the zero terminator, if dequoting does
240 ** 2002-02-14: This routine is extended to remove MS-Access style
241 ** brackets from around identifiers. For example: "[a-b-c]" becomes
244 void sqlite3Dequote(char *z
){
249 if( !sqlite3Isquote(quote
) ) return;
250 if( quote
=='[' ) quote
= ']';
266 void sqlite3DequoteExpr(Expr
*p
){
267 assert( !ExprHasProperty(p
, EP_IntValue
) );
268 assert( sqlite3Isquote(p
->u
.zToken
[0]) );
269 p
->flags
|= p
->u
.zToken
[0]=='"' ? EP_Quoted
|EP_DblQuoted
: EP_Quoted
;
270 sqlite3Dequote(p
->u
.zToken
);
274 ** If the input token p is quoted, try to adjust the token to remove
275 ** the quotes. This is not always possible:
278 ** "ab""cd" -> (not possible because of the interior "")
280 ** Remove the quotes if possible. This is a optimization. The overall
281 ** system should still return the correct answer even if this routine
282 ** is always a no-op.
284 void sqlite3DequoteToken(Token
*p
){
287 if( !sqlite3Isquote(p
->z
[0]) ) return;
288 for(i
=1; i
<p
->n
-1; i
++){
289 if( sqlite3Isquote(p
->z
[i
]) ) return;
296 ** Generate a Token object from a string
298 void sqlite3TokenInit(Token
*p
, char *z
){
300 p
->n
= sqlite3Strlen30(z
);
303 /* Convenient short-hand */
304 #define UpperToLower sqlite3UpperToLower
307 ** Some systems have stricmp(). Others have strcasecmp(). Because
308 ** there is no consistency, we will define our own.
310 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
311 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
312 ** the contents of two buffers containing UTF-8 strings in a
313 ** case-independent fashion, using the same definition of "case
314 ** independence" that SQLite uses internally when comparing identifiers.
316 int sqlite3_stricmp(const char *zLeft
, const char *zRight
){
318 return zRight
? -1 : 0;
319 }else if( zRight
==0 ){
322 return sqlite3StrICmp(zLeft
, zRight
);
324 int sqlite3StrICmp(const char *zLeft
, const char *zRight
){
325 unsigned char *a
, *b
;
327 a
= (unsigned char *)zLeft
;
328 b
= (unsigned char *)zRight
;
335 c
= (int)UpperToLower
[c
] - (int)UpperToLower
[x
];
343 int sqlite3_strnicmp(const char *zLeft
, const char *zRight
, int N
){
344 register unsigned char *a
, *b
;
346 return zRight
? -1 : 0;
347 }else if( zRight
==0 ){
350 a
= (unsigned char *)zLeft
;
351 b
= (unsigned char *)zRight
;
352 while( N
-- > 0 && *a
!=0 && UpperToLower
[*a
]==UpperToLower
[*b
]){ a
++; b
++; }
353 return N
<0 ? 0 : UpperToLower
[*a
] - UpperToLower
[*b
];
357 ** Compute an 8-bit hash on a string that is insensitive to case differences
359 u8
sqlite3StrIHash(const char *z
){
363 h
+= UpperToLower
[(unsigned char)z
[0]];
370 ** Compute 10 to the E-th power. Examples: E==1 results in 10.
371 ** E==2 results in 100. E==50 results in 1.0e50.
373 ** This routine only works for values of E between 1 and 341.
375 static LONGDOUBLE_TYPE
sqlite3Pow10(int E
){
376 #if defined(_MSC_VER)
377 static const LONGDOUBLE_TYPE x
[] = {
388 LONGDOUBLE_TYPE r
= 1.0;
390 assert( E
>=0 && E
<=307 );
391 for(i
=0; E
!=0; i
++, E
>>=1){
392 if( E
& 1 ) r
*= x
[i
];
396 LONGDOUBLE_TYPE x
= 10.0;
397 LONGDOUBLE_TYPE r
= 1.0;
409 ** The string z[] is an text representation of a real number.
410 ** Convert this string to a double and write it into *pResult.
412 ** The string z[] is length bytes in length (bytes, not characters) and
413 ** uses the encoding enc. The string is not necessarily zero-terminated.
415 ** Return TRUE if the result is a valid real number (or integer) and FALSE
416 ** if the string is empty or contains extraneous text. More specifically
418 ** 1 => The input string is a pure integer
419 ** 2 or more => The input has a decimal point or eNNN clause
420 ** 0 or less => The input string is not a valid number
421 ** -1 => Not a valid number, but has a valid prefix which
422 ** includes a decimal point and/or an eNNN clause
424 ** Valid numbers are in one of these formats:
426 ** [+-]digits[E[+-]digits]
427 ** [+-]digits.[digits][E[+-]digits]
428 ** [+-].digits[E[+-]digits]
430 ** Leading and trailing whitespace is ignored for the purpose of determining
433 ** If some prefix of the input string is a valid number, this routine
434 ** returns FALSE but it still converts the prefix and writes the result
437 #if defined(_MSC_VER)
438 #pragma warning(disable : 4756)
440 int sqlite3AtoF(const char *z
, double *pResult
, int length
, u8 enc
){
441 #ifndef SQLITE_OMIT_FLOATING_POINT
444 /* sign * significand * (10 ^ (esign * exponent)) */
445 int sign
= 1; /* sign of significand */
446 i64 s
= 0; /* significand */
447 int d
= 0; /* adjust exponent for shifting decimal point */
448 int esign
= 1; /* sign of exponent */
449 int e
= 0; /* exponent */
450 int eValid
= 1; /* True exponent is either not used or is well-formed */
452 int nDigit
= 0; /* Number of digits processed */
453 int eType
= 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */
455 assert( enc
==SQLITE_UTF8
|| enc
==SQLITE_UTF16LE
|| enc
==SQLITE_UTF16BE
);
456 *pResult
= 0.0; /* Default return value, in case of an error */
457 if( length
==0 ) return 0;
459 if( enc
==SQLITE_UTF8
){
466 assert( SQLITE_UTF16LE
==2 && SQLITE_UTF16BE
==3 );
467 testcase( enc
==SQLITE_UTF16LE
);
468 testcase( enc
==SQLITE_UTF16BE
);
469 for(i
=3-enc
; i
<length
&& z
[i
]==0; i
+=2){}
470 if( i
<length
) eType
= -100;
475 /* skip leading spaces */
476 while( z
<zEnd
&& sqlite3Isspace(*z
) ) z
+=incr
;
477 if( z
>=zEnd
) return 0;
479 /* get sign of significand */
487 /* copy max significant digits to significand */
488 while( z
<zEnd
&& sqlite3Isdigit(*z
) ){
489 s
= s
*10 + (*z
- '0');
491 if( s
>=((LARGEST_INT64
-9)/10) ){
492 /* skip non-significant significand digits
493 ** (increase exponent by d to shift decimal left) */
494 while( z
<zEnd
&& sqlite3Isdigit(*z
) ){ z
+=incr
; d
++; }
497 if( z
>=zEnd
) goto do_atof_calc
;
499 /* if decimal point is present */
503 /* copy digits from after decimal to significand
504 ** (decrease exponent by d to shift decimal right) */
505 while( z
<zEnd
&& sqlite3Isdigit(*z
) ){
506 if( s
<((LARGEST_INT64
-9)/10) ){
507 s
= s
*10 + (*z
- '0');
514 if( z
>=zEnd
) goto do_atof_calc
;
516 /* if exponent is present */
517 if( *z
=='e' || *z
=='E' ){
522 /* This branch is needed to avoid a (harmless) buffer overread. The
523 ** special comment alerts the mutation tester that the correct answer
524 ** is obtained even if the branch is omitted */
525 if( z
>=zEnd
) goto do_atof_calc
; /*PREVENTS-HARMLESS-OVERREAD*/
527 /* get sign of exponent */
534 /* copy digits to exponent */
535 while( z
<zEnd
&& sqlite3Isdigit(*z
) ){
536 e
= e
<10000 ? (e
*10 + (*z
- '0')) : 10000;
542 /* skip trailing spaces */
543 while( z
<zEnd
&& sqlite3Isspace(*z
) ) z
+=incr
;
546 /* adjust exponent by d, and update sign */
556 /* In the IEEE 754 standard, zero is signed. */
557 result
= sign
<0 ? -(double)0 : (double)0;
559 /* Attempt to reduce exponent.
561 ** Branches that are not required for the correct answer but which only
562 ** help to obtain the correct answer faster are marked with special
563 ** comments, as a hint to the mutation tester.
565 while( e
>0 ){ /*OPTIMIZATION-IF-TRUE*/
567 if( s
>=(LARGEST_INT64
/10) ) break; /*OPTIMIZATION-IF-FALSE*/
570 if( s
%10!=0 ) break; /*OPTIMIZATION-IF-FALSE*/
576 /* adjust the sign of significand */
579 if( e
==0 ){ /*OPTIMIZATION-IF-TRUE*/
582 /* attempt to handle extremely small/large numbers better */
583 if( e
>307 ){ /*OPTIMIZATION-IF-TRUE*/
584 if( e
<342 ){ /*OPTIMIZATION-IF-TRUE*/
585 LONGDOUBLE_TYPE scale
= sqlite3Pow10(e
-308);
593 }else{ assert( e
>=342 );
600 result
= 1e308
*1e308
*s
; /* Infinity */
605 LONGDOUBLE_TYPE scale
= sqlite3Pow10(e
);
615 /* store the result */
618 /* return true if number and no extra non-whitespace chracters after */
619 if( z
==zEnd
&& nDigit
>0 && eValid
&& eType
>0 ){
621 }else if( eType
>=2 && (eType
==3 || eValid
) && nDigit
>0 ){
627 return !sqlite3Atoi64(z
, pResult
, length
, enc
);
628 #endif /* SQLITE_OMIT_FLOATING_POINT */
630 #if defined(_MSC_VER)
631 #pragma warning(default : 4756)
635 ** Render an signed 64-bit integer as text. Store the result in zOut[].
637 ** The caller must ensure that zOut[] is at least 21 bytes in size.
639 void sqlite3Int64ToText(i64 v
, char *zOut
){
644 x
= (v
==SMALLEST_INT64
) ? ((u64
)1)<<63 : (u64
)-v
;
649 zTemp
[sizeof(zTemp
)-1] = 0;
651 zTemp
[i
--] = (x
%10) + '0';
654 if( v
<0 ) zTemp
[i
--] = '-';
655 memcpy(zOut
, &zTemp
[i
+1], sizeof(zTemp
)-1-i
);
659 ** Compare the 19-character string zNum against the text representation
660 ** value 2^63: 9223372036854775808. Return negative, zero, or positive
661 ** if zNum is less than, equal to, or greater than the string.
662 ** Note that zNum must contain exactly 19 characters.
664 ** Unlike memcmp() this routine is guaranteed to return the difference
665 ** in the values of the last digit if the only difference is in the
666 ** last digit. So, for example,
668 ** compare2pow63("9223372036854775800", 1)
672 static int compare2pow63(const char *zNum
, int incr
){
675 /* 012345678901234567 */
676 const char *pow63
= "922337203685477580";
677 for(i
=0; c
==0 && i
<18; i
++){
678 c
= (zNum
[i
*incr
]-pow63
[i
])*10;
681 c
= zNum
[18*incr
] - '8';
690 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
691 ** routine does *not* accept hexadecimal notation.
695 ** -1 Not even a prefix of the input text looks like an integer
696 ** 0 Successful transformation. Fits in a 64-bit signed integer.
697 ** 1 Excess non-space text after the integer value
698 ** 2 Integer too large for a 64-bit signed integer or is malformed
699 ** 3 Special case of 9223372036854775808
701 ** length is the number of bytes in the string (bytes, not characters).
702 ** The string is not necessarily zero-terminated. The encoding is
705 int sqlite3Atoi64(const char *zNum
, i64
*pNum
, int length
, u8 enc
){
708 int neg
= 0; /* assume positive */
711 int nonNum
= 0; /* True if input contains UTF16 with high byte non-zero */
712 int rc
; /* Baseline return code */
714 const char *zEnd
= zNum
+ length
;
715 assert( enc
==SQLITE_UTF8
|| enc
==SQLITE_UTF16LE
|| enc
==SQLITE_UTF16BE
);
716 if( enc
==SQLITE_UTF8
){
721 assert( SQLITE_UTF16LE
==2 && SQLITE_UTF16BE
==3 );
722 for(i
=3-enc
; i
<length
&& zNum
[i
]==0; i
+=2){}
727 while( zNum
<zEnd
&& sqlite3Isspace(*zNum
) ) zNum
+=incr
;
732 }else if( *zNum
=='+' ){
737 while( zNum
<zEnd
&& zNum
[0]=='0' ){ zNum
+=incr
; } /* Skip leading zeros. */
738 for(i
=0; &zNum
[i
]<zEnd
&& (c
=zNum
[i
])>='0' && c
<='9'; i
+=incr
){
741 testcase( i
==18*incr
);
742 testcase( i
==19*incr
);
743 testcase( i
==20*incr
);
744 if( u
>LARGEST_INT64
){
745 /* This test and assignment is needed only to suppress UB warnings
746 ** from clang and -fsanitize=undefined. This test and assignment make
747 ** the code a little larger and slower, and no harm comes from omitting
748 ** them, but we must appaise the undefined-behavior pharisees. */
749 *pNum
= neg
? SMALLEST_INT64
: LARGEST_INT64
;
756 if( i
==0 && zStart
==zNum
){ /* No digits */
758 }else if( nonNum
){ /* UTF16 with high-order bytes non-zero */
760 }else if( &zNum
[i
]<zEnd
){ /* Extra bytes at the end */
763 if( !sqlite3Isspace(zNum
[jj
]) ){
764 rc
= 1; /* Extra non-space text after the integer */
768 }while( &zNum
[jj
]<zEnd
);
771 /* Less than 19 digits, so we know that it fits in 64 bits */
772 assert( u
<=LARGEST_INT64
);
775 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
776 c
= i
>19*incr
? 1 : compare2pow63(zNum
, incr
);
778 /* zNum is less than 9223372036854775808 so it fits */
779 assert( u
<=LARGEST_INT64
);
782 *pNum
= neg
? SMALLEST_INT64
: LARGEST_INT64
;
784 /* zNum is greater than 9223372036854775808 so it overflows */
787 /* zNum is exactly 9223372036854775808. Fits if negative. The
788 ** special case 2 overflow if positive */
789 assert( u
-1==LARGEST_INT64
);
797 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
798 ** into a 64-bit signed integer. This routine accepts hexadecimal literals,
799 ** whereas sqlite3Atoi64() does not.
803 ** 0 Successful transformation. Fits in a 64-bit signed integer.
804 ** 1 Excess text after the integer value
805 ** 2 Integer too large for a 64-bit signed integer or is malformed
806 ** 3 Special case of 9223372036854775808
808 int sqlite3DecOrHexToI64(const char *z
, i64
*pOut
){
809 #ifndef SQLITE_OMIT_HEX_INTEGER
811 && (z
[1]=='x' || z
[1]=='X')
815 for(i
=2; z
[i
]=='0'; i
++){}
816 for(k
=i
; sqlite3Isxdigit(z
[k
]); k
++){
817 u
= u
*16 + sqlite3HexToInt(z
[k
]);
820 return (z
[k
]==0 && k
-i
<=16) ? 0 : 2;
822 #endif /* SQLITE_OMIT_HEX_INTEGER */
824 return sqlite3Atoi64(z
, pOut
, sqlite3Strlen30(z
), SQLITE_UTF8
);
829 ** If zNum represents an integer that will fit in 32-bits, then set
830 ** *pValue to that integer and return true. Otherwise return false.
832 ** This routine accepts both decimal and hexadecimal notation for integers.
834 ** Any non-numeric characters that following zNum are ignored.
835 ** This is different from sqlite3Atoi64() which requires the
836 ** input number to be zero-terminated.
838 int sqlite3GetInt32(const char *zNum
, int *pValue
){
845 }else if( zNum
[0]=='+' ){
848 #ifndef SQLITE_OMIT_HEX_INTEGER
849 else if( zNum
[0]=='0'
850 && (zNum
[1]=='x' || zNum
[1]=='X')
851 && sqlite3Isxdigit(zNum
[2])
855 while( zNum
[0]=='0' ) zNum
++;
856 for(i
=0; sqlite3Isxdigit(zNum
[i
]) && i
<8; i
++){
857 u
= u
*16 + sqlite3HexToInt(zNum
[i
]);
859 if( (u
&0x80000000)==0 && sqlite3Isxdigit(zNum
[i
])==0 ){
860 memcpy(pValue
, &u
, 4);
867 if( !sqlite3Isdigit(zNum
[0]) ) return 0;
868 while( zNum
[0]=='0' ) zNum
++;
869 for(i
=0; i
<11 && (c
= zNum
[i
] - '0')>=0 && c
<=9; i
++){
873 /* The longest decimal representation of a 32 bit integer is 10 digits:
876 ** 2^31 -> 2147483648
882 testcase( v
-neg
==2147483647 );
883 if( v
-neg
>2147483647 ){
894 ** Return a 32-bit integer value extracted from a string. If the
895 ** string is not an integer, just return 0.
897 int sqlite3Atoi(const char *z
){
899 sqlite3GetInt32(z
, &x
);
904 ** Try to convert z into an unsigned 32-bit integer. Return true on
905 ** success and false if there is an error.
907 ** Only decimal notation is accepted.
909 int sqlite3GetUInt32(const char *z
, u32
*pI
){
912 for(i
=0; sqlite3Isdigit(z
[i
]); i
++){
913 v
= v
*10 + z
[i
] - '0';
914 if( v
>4294967296LL ){ *pI
= 0; return 0; }
916 if( i
==0 || z
[i
]!=0 ){ *pI
= 0; return 0; }
922 ** The variable-length integer encoding is as follows:
925 ** A = 0xxxxxxx 7 bits of data and one flag bit
926 ** B = 1xxxxxxx 7 bits of data and one flag bit
927 ** C = xxxxxxxx 8 bits of data
936 ** 56 bits - BBBBBBBA
937 ** 64 bits - BBBBBBBBC
941 ** Write a 64-bit variable-length integer to memory starting at p[0].
942 ** The length of data write will be between 1 and 9 bytes. The number
943 ** of bytes written is returned.
945 ** A variable-length integer consists of the lower 7 bits of each byte
946 ** for all bytes that have the 8th bit set and one byte with the 8th
947 ** bit clear. Except, if we get to the 9th byte, it stores the full
948 ** 8 bits and is the last byte.
950 static int SQLITE_NOINLINE
putVarint64(unsigned char *p
, u64 v
){
953 if( v
& (((u64
)0xff000000)<<32) ){
957 p
[i
] = (u8
)((v
& 0x7f) | 0x80);
964 buf
[n
++] = (u8
)((v
& 0x7f) | 0x80);
969 for(i
=0, j
=n
-1; j
>=0; j
--, i
++){
974 int sqlite3PutVarint(unsigned char *p
, u64 v
){
980 p
[0] = ((v
>>7)&0x7f)|0x80;
984 return putVarint64(p
,v
);
988 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants
989 ** are defined here rather than simply putting the constant expressions
990 ** inline in order to work around bugs in the RVT compiler.
992 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
994 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
996 #define SLOT_2_0 0x001fc07f
997 #define SLOT_4_2_0 0xf01fc07f
1001 ** Read a 64-bit variable-length integer from memory starting at p[0].
1002 ** Return the number of bytes read. The value is stored in *v.
1004 u8
sqlite3GetVarint(const unsigned char *p
, u64
*v
){
1007 if( ((signed char*)p
)[0]>=0 ){
1011 if( ((signed char*)p
)[1]>=0 ){
1012 *v
= ((u32
)(p
[0]&0x7f)<<7) | p
[1];
1016 /* Verify that constants are precomputed correctly */
1017 assert( SLOT_2_0
== ((0x7f<<14) | (0x7f)) );
1018 assert( SLOT_4_2_0
== ((0xfU
<<28) | (0x7f<<14) | (0x7f)) );
1020 a
= ((u32
)p
[0])<<14;
1024 /* a: p0<<14 | p2 (unmasked) */
1035 /* CSE1 from below */
1040 /* b: p1<<14 | p3 (unmasked) */
1045 /* a &= (0x7f<<14)|(0x7f); */
1052 /* a: p0<<14 | p2 (masked) */
1053 /* b: p1<<14 | p3 (unmasked) */
1054 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1056 /* a &= (0x7f<<14)|(0x7f); */
1059 /* s: p0<<14 | p2 (masked) */
1064 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1067 /* we can skip these cause they were (effectively) done above
1068 ** while calculating s */
1069 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1070 /* b &= (0x7f<<14)|(0x7f); */
1074 *v
= ((u64
)s
)<<32 | a
;
1078 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1081 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1086 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
1089 /* we can skip this cause it was (effectively) done above in calc'ing s */
1090 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1095 *v
= ((u64
)s
)<<32 | a
;
1102 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
1110 *v
= ((u64
)s
)<<32 | a
;
1114 /* CSE2 from below */
1119 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
1124 /* a &= (0x7f<<14)|(0x7f); */
1128 *v
= ((u64
)s
)<<32 | a
;
1135 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
1138 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
1149 *v
= ((u64
)s
)<<32 | a
;
1155 ** Read a 32-bit variable-length integer from memory starting at p[0].
1156 ** Return the number of bytes read. The value is stored in *v.
1158 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1159 ** integer, then set *v to 0xffffffff.
1161 ** A MACRO version, getVarint32, is provided which inlines the
1162 ** single-byte case. All code should use the MACRO version as
1163 ** this function assumes the single-byte case has already been handled.
1165 u8
sqlite3GetVarint32(const unsigned char *p
, u32
*v
){
1168 /* The 1-byte case. Overwhelmingly the most common. Handled inline
1169 ** by the getVarin32() macro */
1171 /* a: p0 (unmasked) */
1175 /* Values between 0 and 127 */
1181 /* The 2-byte case */
1184 /* b: p1 (unmasked) */
1187 /* Values between 128 and 16383 */
1194 /* The 3-byte case */
1198 /* a: p0<<14 | p2 (unmasked) */
1201 /* Values between 16384 and 2097151 */
1202 a
&= (0x7f<<14)|(0x7f);
1209 /* A 32-bit varint is used to store size information in btrees.
1210 ** Objects are rarely larger than 2MiB limit of a 3-byte varint.
1211 ** A 3-byte varint is sufficient, for example, to record the size
1212 ** of a 1048569-byte BLOB or string.
1214 ** We only unroll the first 1-, 2-, and 3- byte cases. The very
1215 ** rare larger cases can be handled by the slower 64-bit varint
1223 n
= sqlite3GetVarint(p
-2, &v64
);
1224 assert( n
>3 && n
<=9 );
1225 if( (v64
& SQLITE_MAX_U32
)!=v64
){
1234 /* For following code (kept for historical record only) shows an
1235 ** unrolling for the 3- and 4-byte varint cases. This code is
1236 ** slightly faster, but it is also larger and much harder to test.
1241 /* b: p1<<14 | p3 (unmasked) */
1244 /* Values between 2097152 and 268435455 */
1245 b
&= (0x7f<<14)|(0x7f);
1246 a
&= (0x7f<<14)|(0x7f);
1255 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1258 /* Values between 268435456 and 34359738367 */
1266 /* We can only reach this point when reading a corrupt database
1267 ** file. In that case we are not in any hurry. Use the (relatively
1268 ** slow) general-purpose sqlite3GetVarint() routine to extract the
1275 n
= sqlite3GetVarint(p
, &v64
);
1276 assert( n
>5 && n
<=9 );
1284 ** Return the number of bytes that will be needed to store the given
1287 int sqlite3VarintLen(u64 v
){
1289 for(i
=1; (v
>>= 7)!=0; i
++){ assert( i
<10 ); }
1295 ** Read or write a four-byte big-endian integer value.
1297 u32
sqlite3Get4byte(const u8
*p
){
1298 #if SQLITE_BYTEORDER==4321
1302 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1305 return __builtin_bswap32(x
);
1306 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1309 return _byteswap_ulong(x
);
1311 testcase( p
[0]&0x80 );
1312 return ((unsigned)p
[0]<<24) | (p
[1]<<16) | (p
[2]<<8) | p
[3];
1315 void sqlite3Put4byte(unsigned char *p
, u32 v
){
1316 #if SQLITE_BYTEORDER==4321
1318 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1319 u32 x
= __builtin_bswap32(v
);
1321 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1322 u32 x
= _byteswap_ulong(v
);
1335 ** Translate a single byte of Hex into an integer.
1336 ** This routine only works if h really is a valid hexadecimal
1337 ** character: 0..9a..fA..F
1339 u8
sqlite3HexToInt(int h
){
1340 assert( (h
>='0' && h
<='9') || (h
>='a' && h
<='f') || (h
>='A' && h
<='F') );
1344 #ifdef SQLITE_EBCDIC
1347 return (u8
)(h
& 0xf);
1350 /* BEGIN SQLCIPHER */
1351 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1353 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1354 ** value. Return a pointer to its binary value. Space to hold the
1355 ** binary value has been obtained from malloc and must be freed by
1356 ** the calling routine.
1358 void *sqlite3HexToBlob(sqlite3
*db
, const char *z
, int n
){
1362 zBlob
= (char *)sqlite3DbMallocRawNN(db
, n
/2 + 1);
1365 for(i
=0; i
<n
; i
+=2){
1366 zBlob
[i
/2] = (sqlite3HexToInt(z
[i
])<<4) | sqlite3HexToInt(z
[i
+1]);
1372 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1376 ** Log an error that is an API call on a connection pointer that should
1377 ** not have been used. The "type" of connection pointer is given as the
1378 ** argument. The zType is a word like "NULL" or "closed" or "invalid".
1380 static void logBadConnection(const char *zType
){
1381 sqlite3_log(SQLITE_MISUSE
,
1382 "API call with %s database connection pointer",
1388 ** Check to make sure we have a valid db pointer. This test is not
1389 ** foolproof but it does provide some measure of protection against
1390 ** misuse of the interface such as passing in db pointers that are
1391 ** NULL or which have been previously closed. If this routine returns
1392 ** 1 it means that the db pointer is valid and 0 if it should not be
1393 ** dereferenced for any reason. The calling function should invoke
1394 ** SQLITE_MISUSE immediately.
1396 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1397 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1398 ** open properly and is not fit for general use but which can be
1399 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1401 int sqlite3SafetyCheckOk(sqlite3
*db
){
1404 logBadConnection("NULL");
1407 eOpenState
= db
->eOpenState
;
1408 if( eOpenState
!=SQLITE_STATE_OPEN
){
1409 if( sqlite3SafetyCheckSickOrOk(db
) ){
1410 testcase( sqlite3GlobalConfig
.xLog
!=0 );
1411 logBadConnection("unopened");
1418 int sqlite3SafetyCheckSickOrOk(sqlite3
*db
){
1420 eOpenState
= db
->eOpenState
;
1421 if( eOpenState
!=SQLITE_STATE_SICK
&&
1422 eOpenState
!=SQLITE_STATE_OPEN
&&
1423 eOpenState
!=SQLITE_STATE_BUSY
){
1424 testcase( sqlite3GlobalConfig
.xLog
!=0 );
1425 logBadConnection("invalid");
1433 ** Attempt to add, substract, or multiply the 64-bit signed value iB against
1434 ** the other 64-bit signed integer at *pA and store the result in *pA.
1435 ** Return 0 on success. Or if the operation would have resulted in an
1436 ** overflow, leave *pA unchanged and return 1.
1438 int sqlite3AddInt64(i64
*pA
, i64 iB
){
1439 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1440 return __builtin_add_overflow(*pA
, iB
, pA
);
1443 testcase( iA
==0 ); testcase( iA
==1 );
1444 testcase( iB
==-1 ); testcase( iB
==0 );
1446 testcase( iA
>0 && LARGEST_INT64
- iA
== iB
);
1447 testcase( iA
>0 && LARGEST_INT64
- iA
== iB
- 1 );
1448 if( iA
>0 && LARGEST_INT64
- iA
< iB
) return 1;
1450 testcase( iA
<0 && -(iA
+ LARGEST_INT64
) == iB
+ 1 );
1451 testcase( iA
<0 && -(iA
+ LARGEST_INT64
) == iB
+ 2 );
1452 if( iA
<0 && -(iA
+ LARGEST_INT64
) > iB
+ 1 ) return 1;
1458 int sqlite3SubInt64(i64
*pA
, i64 iB
){
1459 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1460 return __builtin_sub_overflow(*pA
, iB
, pA
);
1462 testcase( iB
==SMALLEST_INT64
+1 );
1463 if( iB
==SMALLEST_INT64
){
1464 testcase( (*pA
)==(-1) ); testcase( (*pA
)==0 );
1465 if( (*pA
)>=0 ) return 1;
1469 return sqlite3AddInt64(pA
, -iB
);
1473 int sqlite3MulInt64(i64
*pA
, i64 iB
){
1474 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1475 return __builtin_mul_overflow(*pA
, iB
, pA
);
1479 if( iA
>LARGEST_INT64
/iB
) return 1;
1480 if( iA
<SMALLEST_INT64
/iB
) return 1;
1483 if( iB
<SMALLEST_INT64
/iA
) return 1;
1485 if( iB
==SMALLEST_INT64
) return 1;
1486 if( iA
==SMALLEST_INT64
) return 1;
1487 if( -iA
>LARGEST_INT64
/-iB
) return 1;
1496 ** Compute the absolute value of a 32-bit signed integer, of possible. Or
1497 ** if the integer has a value of -2147483648, return +2147483647
1499 int sqlite3AbsInt32(int x
){
1500 if( x
>=0 ) return x
;
1501 if( x
==(int)0x80000000 ) return 0x7fffffff;
1505 #ifdef SQLITE_ENABLE_8_3_NAMES
1507 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1508 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1509 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1510 ** three characters, then shorten the suffix on z[] to be the last three
1511 ** characters of the original suffix.
1513 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1514 ** do the suffix shortening regardless of URI parameter.
1518 ** test.db-journal => test.nal
1519 ** test.db-wal => test.wal
1520 ** test.db-shm => test.shm
1521 ** test.db-mj7f3319fa => test.9fa
1523 void sqlite3FileSuffix3(const char *zBaseFilename
, char *z
){
1524 #if SQLITE_ENABLE_8_3_NAMES<2
1525 if( sqlite3_uri_boolean(zBaseFilename
, "8_3_names", 0) )
1529 sz
= sqlite3Strlen30(z
);
1530 for(i
=sz
-1; i
>0 && z
[i
]!='/' && z
[i
]!='.'; i
--){}
1531 if( z
[i
]=='.' && ALWAYS(sz
>i
+4) ) memmove(&z
[i
+1], &z
[sz
-3], 4);
1537 ** Find (an approximate) sum of two LogEst values. This computation is
1538 ** not a simple "+" operator because LogEst is stored as a logarithmic
1542 LogEst
sqlite3LogEstAdd(LogEst a
, LogEst b
){
1543 static const unsigned char x
[] = {
1547 7, 7, 7, /* 6,7,8 */
1548 6, 6, 6, /* 9,10,11 */
1549 5, 5, 5, /* 12-14 */
1550 4, 4, 4, 4, /* 15-18 */
1551 3, 3, 3, 3, 3, 3, /* 19-24 */
1552 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
1555 if( a
>b
+49 ) return a
;
1556 if( a
>b
+31 ) return a
+1;
1559 if( b
>a
+49 ) return b
;
1560 if( b
>a
+31 ) return b
+1;
1566 ** Convert an integer into a LogEst. In other words, compute an
1567 ** approximation for 10*log2(x).
1569 LogEst
sqlite3LogEst(u64 x
){
1570 static LogEst a
[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1574 while( x
<8 ){ y
-= 10; x
<<= 1; }
1576 #if GCC_VERSION>=5004000
1577 int i
= 60 - __builtin_clzll(x
);
1581 while( x
>255 ){ y
+= 40; x
>>= 4; } /*OPTIMIZATION-IF-TRUE*/
1582 while( x
>15 ){ y
+= 10; x
>>= 1; }
1585 return a
[x
&7] + y
- 10;
1589 ** Convert a double into a LogEst
1590 ** In other words, compute an approximation for 10*log2(x).
1592 LogEst
sqlite3LogEstFromDouble(double x
){
1595 assert( sizeof(x
)==8 && sizeof(a
)==8 );
1596 if( x
<=1 ) return 0;
1597 if( x
<=2000000000 ) return sqlite3LogEst((u64
)x
);
1604 ** Convert a LogEst into an integer.
1606 u64
sqlite3LogEstToInt(LogEst x
){
1611 else if( n
>=1 ) n
-= 1;
1612 if( x
>60 ) return (u64
)LARGEST_INT64
;
1613 return x
>=3 ? (n
+8)<<(x
-3) : (n
+8)>>(3-x
);
1617 ** Add a new name/number pair to a VList. This might require that the
1618 ** VList object be reallocated, so return the new VList. If an OOM
1619 ** error occurs, the original VList returned and the
1620 ** db->mallocFailed flag is set.
1622 ** A VList is really just an array of integers. To destroy a VList,
1623 ** simply pass it to sqlite3DbFree().
1625 ** The first integer is the number of integers allocated for the whole
1626 ** VList. The second integer is the number of integers actually used.
1627 ** Each name/number pair is encoded by subsequent groups of 3 or more
1630 ** Each name/number pair starts with two integers which are the numeric
1631 ** value for the pair and the size of the name/number pair, respectively.
1632 ** The text name overlays one or more following integers. The text name
1633 ** is always zero-terminated.
1638 ** int nAlloc; // Number of allocated slots
1639 ** int nUsed; // Number of used slots
1640 ** struct VListEntry {
1641 ** int iValue; // Value for this entry
1642 ** int nSlot; // Slots used by this entry
1643 ** // ... variable name goes here
1647 ** During code generation, pointers to the variable names within the
1648 ** VList are taken. When that happens, nAlloc is set to zero as an
1649 ** indication that the VList may never again be enlarged, since the
1650 ** accompanying realloc() would invalidate the pointers.
1652 VList
*sqlite3VListAdd(
1653 sqlite3
*db
, /* The database connection used for malloc() */
1654 VList
*pIn
, /* The input VList. Might be NULL */
1655 const char *zName
, /* Name of symbol to add */
1656 int nName
, /* Bytes of text in zName */
1657 int iVal
/* Value to associate with zName */
1659 int nInt
; /* number of sizeof(int) objects needed for zName */
1660 char *z
; /* Pointer to where zName will be stored */
1661 int i
; /* Index in pIn[] where zName is stored */
1664 assert( pIn
==0 || pIn
[0]>=3 ); /* Verify ok to add new elements */
1665 if( pIn
==0 || pIn
[1]+nInt
> pIn
[0] ){
1666 /* Enlarge the allocation */
1667 sqlite3_int64 nAlloc
= (pIn
? 2*(sqlite3_int64
)pIn
[0] : 10) + nInt
;
1668 VList
*pOut
= sqlite3DbRealloc(db
, pIn
, nAlloc
*sizeof(int));
1669 if( pOut
==0 ) return pIn
;
1670 if( pIn
==0 ) pOut
[1] = 2;
1677 z
= (char*)&pIn
[i
+2];
1679 assert( pIn
[1]<=pIn
[0] );
1680 memcpy(z
, zName
, nName
);
1686 ** Return a pointer to the name of a variable in the given VList that
1687 ** has the value iVal. Or return a NULL if there is no such variable in
1690 const char *sqlite3VListNumToName(VList
*pIn
, int iVal
){
1692 if( pIn
==0 ) return 0;
1696 if( pIn
[i
]==iVal
) return (char*)&pIn
[i
+2];
1703 ** Return the number of the variable named zName, if it is in VList.
1704 ** or return 0 if there is no such variable.
1706 int sqlite3VListNameToNum(VList
*pIn
, const char *zName
, int nName
){
1708 if( pIn
==0 ) return 0;
1712 const char *z
= (const char*)&pIn
[i
+2];
1713 if( strncmp(z
,zName
,nName
)==0 && z
[nName
]==0 ) return pIn
[i
];