4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files. The formatting
17 ** of the code in this file is, therefore, important. See other comments
18 ** in this file for details. If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
21 #include "sqliteInt.h"
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell. This macro verifies that shallow copies are
27 ** not misused. A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content. If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy. This macro verifies that nothing
31 ** like that ever happens.
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
36 # define memAboutToChange(P,M)
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly. This variable has no function other than to
44 ** help verify the correct operation of the library.
47 int sqlite3_search_count
= 0;
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
55 ** This facility is used for testing purposes only. It does not function
56 ** in an ordinary build.
59 int sqlite3_interrupt_count
= 0;
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed. The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times. This variable
66 ** has no function other than to help verify the correct operation of the
70 int sqlite3_sort_count
= 0;
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly. This variable has no function other than to
78 ** help verify the correct operation of the library.
81 int sqlite3_max_blobsize
= 0;
82 static void updateMaxBlobsize(Mem
*p
){
83 if( (p
->flags
& (MEM_Str
|MEM_Blob
))!=0 && p
->n
>sqlite3_max_blobsize
){
84 sqlite3_max_blobsize
= p
->n
;
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
107 int sqlite3_found_count
= 0;
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
117 # define UPDATE_MAX_BLOBSIZE(P)
121 /* This routine provides a convenient place to set a breakpoint during
122 ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after
123 ** each opcode is printed. Variables "pc" (program counter) and pOp are
124 ** available to add conditionals to the breakpoint. GDB example:
126 ** break test_trace_breakpoint if pc=22
128 ** Other useful labels for breakpoints include:
129 ** test_addop_breakpoint(pc,pOp)
130 ** sqlite3CorruptError(lineno)
131 ** sqlite3MisuseError(lineno)
132 ** sqlite3CantopenError(lineno)
134 static void test_trace_breakpoint(int pc
, Op
*pOp
, Vdbe
*v
){
141 ** Invoke the VDBE coverage callback, if that callback is defined. This
142 ** feature is used for test suite validation only and does not appear an
143 ** production builds.
145 ** M is the type of branch. I is the direction taken for this instance of
148 ** M: 2 - two-way branch (I=0: fall-thru 1: jump )
149 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL )
150 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3)
152 ** In other words, if M is 2, then I is either 0 (for fall-through) or
153 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an
154 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2
155 ** if the result of comparison is NULL. For M=3, I=2 the jump may or
156 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
157 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2
158 ** depending on if the operands are less than, equal, or greater than.
160 ** iSrcLine is the source code line (from the __LINE__ macro) that
161 ** generated the VDBE instruction combined with flag bits. The source
162 ** code line number is in the lower 24 bits of iSrcLine and the upper
163 ** 8 bytes are flags. The lower three bits of the flags indicate
164 ** values for I that should never occur. For example, if the branch is
165 ** always taken, the flags should be 0x05 since the fall-through and
166 ** alternate branch are never taken. If a branch is never taken then
167 ** flags should be 0x06 since only the fall-through approach is allowed.
169 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
170 ** interested in equal or not-equal. In other words, I==0 and I==2
171 ** should be treated as equivalent
173 ** Since only a line number is retained, not the filename, this macro
174 ** only works for amalgamation builds. But that is ok, since these macros
175 ** should be no-ops except for special builds used to measure test coverage.
177 #if !defined(SQLITE_VDBE_COVERAGE)
178 # define VdbeBranchTaken(I,M)
180 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
181 static void vdbeTakeBranch(u32 iSrcLine
, u8 I
, u8 M
){
183 assert( I
<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */
184 assert( M
<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
185 assert( I
<M
); /* I can only be 2 if M is 3 or 4 */
186 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
188 /* The upper 8 bits of iSrcLine are flags. The lower three bits of
189 ** the flags indicate directions that the branch can never go. If
190 ** a branch really does go in one of those directions, assert right
192 mNever
= iSrcLine
>> 24;
193 assert( (I
& mNever
)==0 );
194 if( sqlite3GlobalConfig
.xVdbeBranch
==0 ) return; /*NO_TEST*/
195 /* Invoke the branch coverage callback with three arguments:
196 ** iSrcLine - the line number of the VdbeCoverage() macro, with
198 ** I - Mask of bits 0x07 indicating which cases are are
199 ** fulfilled by this instance of the jump. 0x01 means
200 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any
201 ** impossible cases (ex: if the comparison is never NULL)
202 ** are filled in automatically so that the coverage
203 ** measurement logic does not flag those impossible cases
204 ** as missed coverage.
205 ** M - Type of jump. Same as M argument above
208 if( M
==2 ) I
|= 0x04;
211 if( (mNever
&0x08)!=0 && (I
&0x05)!=0) I
|= 0x05; /*NO_TEST*/
213 sqlite3GlobalConfig
.xVdbeBranch(sqlite3GlobalConfig
.pVdbeBranchArg
,
214 iSrcLine
&0xffffff, I
, M
);
219 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
220 ** a pointer to a dynamically allocated string where some other entity
221 ** is responsible for deallocating that string. Because the register
222 ** does not control the string, it might be deleted without the register
225 ** This routine converts an ephemeral string into a dynamically allocated
226 ** string that the register itself controls. In other words, it
227 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
229 #define Deephemeralize(P) \
230 if( ((P)->flags&MEM_Ephem)!=0 \
231 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
233 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
234 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
237 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
238 ** if we run out of memory.
240 static VdbeCursor
*allocateCursor(
241 Vdbe
*p
, /* The virtual machine */
242 int iCur
, /* Index of the new VdbeCursor */
243 int nField
, /* Number of fields in the table or index */
244 u8 eCurType
/* Type of the new cursor */
246 /* Find the memory cell that will be used to store the blob of memory
247 ** required for this VdbeCursor structure. It is convenient to use a
248 ** vdbe memory cell to manage the memory allocation required for a
249 ** VdbeCursor structure for the following reasons:
251 ** * Sometimes cursor numbers are used for a couple of different
252 ** purposes in a vdbe program. The different uses might require
253 ** different sized allocations. Memory cells provide growable
256 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
257 ** be freed lazily via the sqlite3_release_memory() API. This
258 ** minimizes the number of malloc calls made by the system.
260 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
261 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1].
262 ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
264 Mem
*pMem
= iCur
>0 ? &p
->aMem
[p
->nMem
-iCur
] : p
->aMem
;
269 ROUND8P(sizeof(VdbeCursor
)) + 2*sizeof(u32
)*nField
+
270 (eCurType
==CURTYPE_BTREE
?sqlite3BtreeCursorSize():0);
272 assert( iCur
>=0 && iCur
<p
->nCursor
);
273 if( p
->apCsr
[iCur
] ){ /*OPTIMIZATION-IF-FALSE*/
274 sqlite3VdbeFreeCursorNN(p
, p
->apCsr
[iCur
]);
278 /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure
279 ** the pMem used to hold space for the cursor has enough storage available
280 ** in pMem->zMalloc. But for the special case of the aMem[] entries used
281 ** to hold cursors, it is faster to in-line the logic. */
282 assert( pMem
->flags
==MEM_Undefined
);
283 assert( (pMem
->flags
& MEM_Dyn
)==0 );
284 assert( pMem
->szMalloc
==0 || pMem
->z
==pMem
->zMalloc
);
285 if( pMem
->szMalloc
<nByte
){
286 if( pMem
->szMalloc
>0 ){
287 sqlite3DbFreeNN(pMem
->db
, pMem
->zMalloc
);
289 pMem
->z
= pMem
->zMalloc
= sqlite3DbMallocRaw(pMem
->db
, nByte
);
290 if( pMem
->zMalloc
==0 ){
294 pMem
->szMalloc
= nByte
;
297 p
->apCsr
[iCur
] = pCx
= (VdbeCursor
*)pMem
->zMalloc
;
298 memset(pCx
, 0, offsetof(VdbeCursor
,pAltCursor
));
299 pCx
->eCurType
= eCurType
;
300 pCx
->nField
= nField
;
301 pCx
->aOffset
= &pCx
->aType
[nField
];
302 if( eCurType
==CURTYPE_BTREE
){
303 pCx
->uc
.pCursor
= (BtCursor
*)
304 &pMem
->z
[ROUND8P(sizeof(VdbeCursor
))+2*sizeof(u32
)*nField
];
305 sqlite3BtreeCursorZero(pCx
->uc
.pCursor
);
311 ** The string in pRec is known to look like an integer and to have a
312 ** floating point value of rValue. Return true and set *piValue to the
313 ** integer value if the string is in range to be an integer. Otherwise,
316 static int alsoAnInt(Mem
*pRec
, double rValue
, i64
*piValue
){
318 iValue
= sqlite3RealToI64(rValue
);
319 if( sqlite3RealSameAsInt(rValue
,iValue
) ){
323 return 0==sqlite3Atoi64(pRec
->z
, piValue
, pRec
->n
, pRec
->enc
);
327 ** Try to convert a value into a numeric representation if we can
328 ** do so without loss of information. In other words, if the string
329 ** looks like a number, convert it into a number. If it does not
330 ** look like a number, leave it alone.
332 ** If the bTryForInt flag is true, then extra effort is made to give
333 ** an integer representation. Strings that look like floating point
334 ** values but which have no fractional component (example: '48.00')
335 ** will have a MEM_Int representation when bTryForInt is true.
337 ** If bTryForInt is false, then if the input string contains a decimal
338 ** point or exponential notation, the result is only MEM_Real, even
339 ** if there is an exact integer representation of the quantity.
341 static void applyNumericAffinity(Mem
*pRec
, int bTryForInt
){
345 assert( (pRec
->flags
& (MEM_Str
|MEM_Int
|MEM_Real
|MEM_IntReal
))==MEM_Str
);
346 rc
= sqlite3AtoF(pRec
->z
, &rValue
, pRec
->n
, enc
);
348 if( rc
==1 && alsoAnInt(pRec
, rValue
, &pRec
->u
.i
) ){
349 pRec
->flags
|= MEM_Int
;
352 pRec
->flags
|= MEM_Real
;
353 if( bTryForInt
) sqlite3VdbeIntegerAffinity(pRec
);
355 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the
356 ** string representation after computing a numeric equivalent, because the
357 ** string representation might not be the canonical representation for the
358 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */
359 pRec
->flags
&= ~MEM_Str
;
363 ** Processing is determine by the affinity parameter:
365 ** SQLITE_AFF_INTEGER:
367 ** SQLITE_AFF_NUMERIC:
368 ** Try to convert pRec to an integer representation or a
369 ** floating-point representation if an integer representation
370 ** is not possible. Note that the integer representation is
371 ** always preferred, even if the affinity is REAL, because
372 ** an integer representation is more space efficient on disk.
375 ** Convert pRec to a text representation.
379 ** No-op. pRec is unchanged.
381 static void applyAffinity(
382 Mem
*pRec
, /* The value to apply affinity to */
383 char affinity
, /* The affinity to be applied */
384 u8 enc
/* Use this text encoding */
386 if( affinity
>=SQLITE_AFF_NUMERIC
){
387 assert( affinity
==SQLITE_AFF_INTEGER
|| affinity
==SQLITE_AFF_REAL
388 || affinity
==SQLITE_AFF_NUMERIC
);
389 if( (pRec
->flags
& MEM_Int
)==0 ){ /*OPTIMIZATION-IF-FALSE*/
390 if( (pRec
->flags
& MEM_Real
)==0 ){
391 if( pRec
->flags
& MEM_Str
) applyNumericAffinity(pRec
,1);
393 sqlite3VdbeIntegerAffinity(pRec
);
396 }else if( affinity
==SQLITE_AFF_TEXT
){
397 /* Only attempt the conversion to TEXT if there is an integer or real
398 ** representation (blob and NULL do not get converted) but no string
399 ** representation. It would be harmless to repeat the conversion if
400 ** there is already a string rep, but it is pointless to waste those
402 if( 0==(pRec
->flags
&MEM_Str
) ){ /*OPTIMIZATION-IF-FALSE*/
403 if( (pRec
->flags
&(MEM_Real
|MEM_Int
|MEM_IntReal
)) ){
404 testcase( pRec
->flags
& MEM_Int
);
405 testcase( pRec
->flags
& MEM_Real
);
406 testcase( pRec
->flags
& MEM_IntReal
);
407 sqlite3VdbeMemStringify(pRec
, enc
, 1);
410 pRec
->flags
&= ~(MEM_Real
|MEM_Int
|MEM_IntReal
);
415 ** Try to convert the type of a function argument or a result column
416 ** into a numeric representation. Use either INTEGER or REAL whichever
417 ** is appropriate. But only do the conversion if it is possible without
418 ** loss of information and return the revised type of the argument.
420 int sqlite3_value_numeric_type(sqlite3_value
*pVal
){
421 int eType
= sqlite3_value_type(pVal
);
422 if( eType
==SQLITE_TEXT
){
423 Mem
*pMem
= (Mem
*)pVal
;
424 applyNumericAffinity(pMem
, 0);
425 eType
= sqlite3_value_type(pVal
);
431 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
432 ** not the internal Mem* type.
434 void sqlite3ValueApplyAffinity(
439 applyAffinity((Mem
*)pVal
, affinity
, enc
);
443 ** pMem currently only holds a string type (or maybe a BLOB that we can
444 ** interpret as a string if we want to). Compute its corresponding
445 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
448 static u16 SQLITE_NOINLINE
computeNumericType(Mem
*pMem
){
451 assert( (pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
))==0 );
452 assert( (pMem
->flags
& (MEM_Str
|MEM_Blob
))!=0 );
453 if( ExpandBlob(pMem
) ){
457 rc
= sqlite3AtoF(pMem
->z
, &pMem
->u
.r
, pMem
->n
, pMem
->enc
);
459 if( rc
==0 && sqlite3Atoi64(pMem
->z
, &ix
, pMem
->n
, pMem
->enc
)<=1 ){
465 }else if( rc
==1 && sqlite3Atoi64(pMem
->z
, &ix
, pMem
->n
, pMem
->enc
)==0 ){
473 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
476 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
477 ** But it does set pMem->u.r and pMem->u.i appropriately.
479 static u16
numericType(Mem
*pMem
){
480 assert( (pMem
->flags
& MEM_Null
)==0
481 || pMem
->db
==0 || pMem
->db
->mallocFailed
);
482 if( pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
|MEM_Null
) ){
483 testcase( pMem
->flags
& MEM_Int
);
484 testcase( pMem
->flags
& MEM_Real
);
485 testcase( pMem
->flags
& MEM_IntReal
);
486 return pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
|MEM_Null
);
488 assert( pMem
->flags
& (MEM_Str
|MEM_Blob
) );
489 testcase( pMem
->flags
& MEM_Str
);
490 testcase( pMem
->flags
& MEM_Blob
);
491 return computeNumericType(pMem
);
497 ** Write a nice string representation of the contents of cell pMem
498 ** into buffer zBuf, length nBuf.
500 void sqlite3VdbeMemPrettyPrint(Mem
*pMem
, StrAccum
*pStr
){
502 static const char *const encnames
[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
508 assert( (f
& (MEM_Static
|MEM_Ephem
))==0 );
509 }else if( f
& MEM_Static
){
511 assert( (f
& (MEM_Dyn
|MEM_Ephem
))==0 );
512 }else if( f
& MEM_Ephem
){
514 assert( (f
& (MEM_Static
|MEM_Dyn
))==0 );
518 sqlite3_str_appendf(pStr
, "%cx[", c
);
519 for(i
=0; i
<25 && i
<pMem
->n
; i
++){
520 sqlite3_str_appendf(pStr
, "%02X", ((int)pMem
->z
[i
] & 0xFF));
522 sqlite3_str_appendf(pStr
, "|");
523 for(i
=0; i
<25 && i
<pMem
->n
; i
++){
525 sqlite3_str_appendchar(pStr
, 1, (z
<32||z
>126)?'.':z
);
527 sqlite3_str_appendf(pStr
,"]");
529 sqlite3_str_appendf(pStr
, "+%dz",pMem
->u
.nZero
);
531 }else if( f
& MEM_Str
){
536 assert( (f
& (MEM_Static
|MEM_Ephem
))==0 );
537 }else if( f
& MEM_Static
){
539 assert( (f
& (MEM_Dyn
|MEM_Ephem
))==0 );
540 }else if( f
& MEM_Ephem
){
542 assert( (f
& (MEM_Static
|MEM_Dyn
))==0 );
546 sqlite3_str_appendf(pStr
, " %c%d[", c
, pMem
->n
);
547 for(j
=0; j
<25 && j
<pMem
->n
; j
++){
549 sqlite3_str_appendchar(pStr
, 1, (c
>=0x20&&c
<=0x7f) ? c
: '.');
551 sqlite3_str_appendf(pStr
, "]%s", encnames
[pMem
->enc
]);
558 ** Print the value of a register for tracing purposes:
560 static void memTracePrint(Mem
*p
){
561 if( p
->flags
& MEM_Undefined
){
562 printf(" undefined");
563 }else if( p
->flags
& MEM_Null
){
564 printf(p
->flags
& MEM_Zero
? " NULL-nochng" : " NULL");
565 }else if( (p
->flags
& (MEM_Int
|MEM_Str
))==(MEM_Int
|MEM_Str
) ){
566 printf(" si:%lld", p
->u
.i
);
567 }else if( (p
->flags
& (MEM_IntReal
))!=0 ){
568 printf(" ir:%lld", p
->u
.i
);
569 }else if( p
->flags
& MEM_Int
){
570 printf(" i:%lld", p
->u
.i
);
571 #ifndef SQLITE_OMIT_FLOATING_POINT
572 }else if( p
->flags
& MEM_Real
){
573 printf(" r:%.17g", p
->u
.r
);
575 }else if( sqlite3VdbeMemIsRowSet(p
) ){
580 sqlite3StrAccumInit(&acc
, 0, zBuf
, sizeof(zBuf
), 0);
581 sqlite3VdbeMemPrettyPrint(p
, &acc
);
582 printf(" %s", sqlite3StrAccumFinish(&acc
));
584 if( p
->flags
& MEM_Subtype
) printf(" subtype=0x%02x", p
->eSubtype
);
586 static void registerTrace(int iReg
, Mem
*p
){
587 printf("R[%d] = ", iReg
);
590 printf(" <== R[%d]", (int)(p
->pScopyFrom
- &p
[-iReg
]));
593 sqlite3VdbeCheckMemInvariants(p
);
595 /**/ void sqlite3PrintMem(Mem
*pMem
){
604 ** Show the values of all registers in the virtual machine. Used for
605 ** interactive debugging.
607 void sqlite3VdbeRegisterDump(Vdbe
*v
){
609 for(i
=1; i
<v
->nMem
; i
++) registerTrace(i
, v
->aMem
+i
);
611 #endif /* SQLITE_DEBUG */
615 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
617 # define REGISTER_TRACE(R,M)
624 ** hwtime.h contains inline assembler code for implementing
625 ** high-performance timing routines.
633 ** This function is only called from within an assert() expression. It
634 ** checks that the sqlite3.nTransaction variable is correctly set to
635 ** the number of non-transaction savepoints currently in the
636 ** linked list starting at sqlite3.pSavepoint.
640 ** assert( checkSavepointCount(db) );
642 static int checkSavepointCount(sqlite3
*db
){
645 for(p
=db
->pSavepoint
; p
; p
=p
->pNext
) n
++;
646 assert( n
==(db
->nSavepoint
+ db
->isTransactionSavepoint
) );
652 ** Return the register of pOp->p2 after first preparing it to be
653 ** overwritten with an integer value.
655 static SQLITE_NOINLINE Mem
*out2PrereleaseWithClear(Mem
*pOut
){
656 sqlite3VdbeMemSetNull(pOut
);
657 pOut
->flags
= MEM_Int
;
660 static Mem
*out2Prerelease(Vdbe
*p
, VdbeOp
*pOp
){
663 assert( pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
) );
664 pOut
= &p
->aMem
[pOp
->p2
];
665 memAboutToChange(p
, pOut
);
666 if( VdbeMemDynamic(pOut
) ){ /*OPTIMIZATION-IF-FALSE*/
667 return out2PrereleaseWithClear(pOut
);
669 pOut
->flags
= MEM_Int
;
675 ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning
676 ** with pOp->p3. Return the hash.
678 static u64
filterHash(const Mem
*aMem
, const Op
*pOp
){
682 assert( pOp
->p4type
==P4_INT32
);
683 for(i
=pOp
->p3
, mx
=i
+pOp
->p4
.i
; i
<mx
; i
++){
684 const Mem
*p
= &aMem
[i
];
685 if( p
->flags
& (MEM_Int
|MEM_IntReal
) ){
687 }else if( p
->flags
& MEM_Real
){
688 h
+= sqlite3VdbeIntValue(p
);
689 }else if( p
->flags
& (MEM_Str
|MEM_Blob
) ){
691 if( p
->flags
& MEM_Zero
) h
+= p
->u
.nZero
;
698 ** Return the symbolic name for the data type of a pMem
700 static const char *vdbeMemTypeName(Mem
*pMem
){
701 static const char *azTypes
[] = {
702 /* SQLITE_INTEGER */ "INT",
703 /* SQLITE_FLOAT */ "REAL",
704 /* SQLITE_TEXT */ "TEXT",
705 /* SQLITE_BLOB */ "BLOB",
706 /* SQLITE_NULL */ "NULL"
708 return azTypes
[sqlite3_value_type(pMem
)-1];
712 ** Execute as much of a VDBE program as we can.
713 ** This is the core of sqlite3_step().
716 Vdbe
*p
/* The VDBE */
718 Op
*aOp
= p
->aOp
; /* Copy of p->aOp */
719 Op
*pOp
= aOp
; /* Current operation */
720 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
721 Op
*pOrigOp
; /* Value of pOp at the top of the loop */
724 int nExtraDelete
= 0; /* Verifies FORDELETE and AUXDELETE flags */
726 int rc
= SQLITE_OK
; /* Value to return */
727 sqlite3
*db
= p
->db
; /* The database */
728 u8 resetSchemaOnFault
= 0; /* Reset schema after an error if positive */
729 u8 encoding
= ENC(db
); /* The database encoding */
730 int iCompare
= 0; /* Result of last comparison */
731 u64 nVmStep
= 0; /* Number of virtual machine steps */
732 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
733 u64 nProgressLimit
; /* Invoke xProgress() when nVmStep reaches this */
735 Mem
*aMem
= p
->aMem
; /* Copy of p->aMem */
736 Mem
*pIn1
= 0; /* 1st input operand */
737 Mem
*pIn2
= 0; /* 2nd input operand */
738 Mem
*pIn3
= 0; /* 3rd input operand */
739 Mem
*pOut
= 0; /* Output operand */
741 u64 start
; /* CPU clock count at start of opcode */
743 /*** INSERT STACK UNION HERE ***/
745 assert( p
->eVdbeState
==VDBE_RUN_STATE
); /* sqlite3_step() verifies this */
747 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
749 u32 iPrior
= p
->aCounter
[SQLITE_STMTSTATUS_VM_STEP
];
750 assert( 0 < db
->nProgressOps
);
751 nProgressLimit
= db
->nProgressOps
- (iPrior
% db
->nProgressOps
);
753 nProgressLimit
= LARGEST_UINT64
;
756 if( p
->rc
==SQLITE_NOMEM
){
757 /* This happens if a malloc() inside a call to sqlite3_column_text() or
758 ** sqlite3_column_text16() failed. */
761 assert( p
->rc
==SQLITE_OK
|| (p
->rc
&0xff)==SQLITE_BUSY
);
762 testcase( p
->rc
!=SQLITE_OK
);
764 assert( p
->bIsReader
|| p
->readOnly
!=0 );
766 assert( p
->explain
==0 );
768 db
->busyHandler
.nBusy
= 0;
769 if( AtomicLoad(&db
->u1
.isInterrupted
) ) goto abort_due_to_interrupt
;
770 sqlite3VdbeIOTraceSql(p
);
772 sqlite3BeginBenignMalloc();
774 && (p
->db
->flags
& (SQLITE_VdbeListing
|SQLITE_VdbeEQP
|SQLITE_VdbeTrace
))!=0
778 sqlite3VdbePrintSql(p
);
779 if( p
->db
->flags
& SQLITE_VdbeListing
){
780 printf("VDBE Program Listing:\n");
781 for(i
=0; i
<p
->nOp
; i
++){
782 sqlite3VdbePrintOp(stdout
, i
, &aOp
[i
]);
785 if( p
->db
->flags
& SQLITE_VdbeEQP
){
786 for(i
=0; i
<p
->nOp
; i
++){
787 if( aOp
[i
].opcode
==OP_Explain
){
788 if( once
) printf("VDBE Query Plan:\n");
789 printf("%s\n", aOp
[i
].p4
.z
);
794 if( p
->db
->flags
& SQLITE_VdbeTrace
) printf("VDBE Trace:\n");
796 sqlite3EndBenignMalloc();
798 for(pOp
=&aOp
[p
->pc
]; 1; pOp
++){
799 /* Errors are detected by individual opcodes, with an immediate
800 ** jumps to abort_due_to_error. */
801 assert( rc
==SQLITE_OK
);
803 assert( pOp
>=aOp
&& pOp
<&aOp
[p
->nOp
]);
805 start
= sqlite3NProfileCnt
? sqlite3NProfileCnt
: sqlite3Hwtime();
808 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
809 if( p
->anExec
) p
->anExec
[(int)(pOp
-aOp
)]++;
812 /* Only allow tracing if SQLITE_DEBUG is defined.
815 if( db
->flags
& SQLITE_VdbeTrace
){
816 sqlite3VdbePrintOp(stdout
, (int)(pOp
- aOp
), pOp
);
817 test_trace_breakpoint((int)(pOp
- aOp
),pOp
,p
);
822 /* Check to see if we need to simulate an interrupt. This only happens
823 ** if we have a special test build.
826 if( sqlite3_interrupt_count
>0 ){
827 sqlite3_interrupt_count
--;
828 if( sqlite3_interrupt_count
==0 ){
829 sqlite3_interrupt(db
);
834 /* Sanity checking on other operands */
837 u8 opProperty
= sqlite3OpcodeProperty
[pOp
->opcode
];
838 if( (opProperty
& OPFLG_IN1
)!=0 ){
840 assert( pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
841 assert( memIsValid(&aMem
[pOp
->p1
]) );
842 assert( sqlite3VdbeCheckMemInvariants(&aMem
[pOp
->p1
]) );
843 REGISTER_TRACE(pOp
->p1
, &aMem
[pOp
->p1
]);
845 if( (opProperty
& OPFLG_IN2
)!=0 ){
847 assert( pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
) );
848 assert( memIsValid(&aMem
[pOp
->p2
]) );
849 assert( sqlite3VdbeCheckMemInvariants(&aMem
[pOp
->p2
]) );
850 REGISTER_TRACE(pOp
->p2
, &aMem
[pOp
->p2
]);
852 if( (opProperty
& OPFLG_IN3
)!=0 ){
854 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
855 assert( memIsValid(&aMem
[pOp
->p3
]) );
856 assert( sqlite3VdbeCheckMemInvariants(&aMem
[pOp
->p3
]) );
857 REGISTER_TRACE(pOp
->p3
, &aMem
[pOp
->p3
]);
859 if( (opProperty
& OPFLG_OUT2
)!=0 ){
861 assert( pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
) );
862 memAboutToChange(p
, &aMem
[pOp
->p2
]);
864 if( (opProperty
& OPFLG_OUT3
)!=0 ){
866 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
867 memAboutToChange(p
, &aMem
[pOp
->p3
]);
871 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
875 switch( pOp
->opcode
){
877 /*****************************************************************************
878 ** What follows is a massive switch statement where each case implements a
879 ** separate instruction in the virtual machine. If we follow the usual
880 ** indentation conventions, each case should be indented by 6 spaces. But
881 ** that is a lot of wasted space on the left margin. So the code within
882 ** the switch statement will break with convention and be flush-left. Another
883 ** big comment (similar to this one) will mark the point in the code where
884 ** we transition back to normal indentation.
886 ** The formatting of each case is important. The makefile for SQLite
887 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
888 ** file looking for lines that begin with "case OP_". The opcodes.h files
889 ** will be filled with #defines that give unique integer values to each
890 ** opcode and the opcodes.c file is filled with an array of strings where
891 ** each string is the symbolic name for the corresponding opcode. If the
892 ** case statement is followed by a comment of the form "/# same as ... #/"
893 ** that comment is used to determine the particular value of the opcode.
895 ** Other keywords in the comment that follows each case are used to
896 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
897 ** Keywords include: in1, in2, in3, out2, out3. See
898 ** the mkopcodeh.awk script for additional information.
900 ** Documentation about VDBE opcodes is generated by scanning this file
901 ** for lines of that contain "Opcode:". That line and all subsequent
902 ** comment lines are used in the generation of the opcode.html documentation
907 ** Formatting is important to scripts that scan this file.
908 ** Do not deviate from the formatting style currently in use.
910 *****************************************************************************/
912 /* Opcode: Goto * P2 * * *
914 ** An unconditional jump to address P2.
915 ** The next instruction executed will be
916 ** the one at index P2 from the beginning of
919 ** The P1 parameter is not actually used by this opcode. However, it
920 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
921 ** that this Goto is the bottom of a loop and that the lines from P2 down
922 ** to the current line should be indented for EXPLAIN output.
924 case OP_Goto
: { /* jump */
927 /* In debuggging mode, when the p5 flags is set on an OP_Goto, that
928 ** means we should really jump back to the preceeding OP_ReleaseReg
931 assert( pOp
->p2
< (int)(pOp
- aOp
) );
932 assert( pOp
->p2
> 1 );
933 pOp
= &aOp
[pOp
->p2
- 2];
934 assert( pOp
[1].opcode
==OP_ReleaseReg
);
935 goto check_for_interrupt
;
939 jump_to_p2_and_check_for_interrupt
:
940 pOp
= &aOp
[pOp
->p2
- 1];
942 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
943 ** OP_VNext, or OP_SorterNext) all jump here upon
944 ** completion. Check to see if sqlite3_interrupt() has been called
945 ** or if the progress callback needs to be invoked.
947 ** This code uses unstructured "goto" statements and does not look clean.
948 ** But that is not due to sloppy coding habits. The code is written this
949 ** way for performance, to avoid having to run the interrupt and progress
950 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
951 ** faster according to "valgrind --tool=cachegrind" */
953 if( AtomicLoad(&db
->u1
.isInterrupted
) ) goto abort_due_to_interrupt
;
954 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
955 /* Call the progress callback if it is configured and the required number
956 ** of VDBE ops have been executed (either since this invocation of
957 ** sqlite3VdbeExec() or since last time the progress callback was called).
958 ** If the progress callback returns non-zero, exit the virtual machine with
959 ** a return code SQLITE_ABORT.
961 while( nVmStep
>=nProgressLimit
&& db
->xProgress
!=0 ){
962 assert( db
->nProgressOps
!=0 );
963 nProgressLimit
+= db
->nProgressOps
;
964 if( db
->xProgress(db
->pProgressArg
) ){
965 nProgressLimit
= LARGEST_UINT64
;
966 rc
= SQLITE_INTERRUPT
;
967 goto abort_due_to_error
;
975 /* Opcode: Gosub P1 P2 * * *
977 ** Write the current address onto register P1
978 ** and then jump to address P2.
980 case OP_Gosub
: { /* jump */
981 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
982 pIn1
= &aMem
[pOp
->p1
];
983 assert( VdbeMemDynamic(pIn1
)==0 );
984 memAboutToChange(p
, pIn1
);
985 pIn1
->flags
= MEM_Int
;
986 pIn1
->u
.i
= (int)(pOp
-aOp
);
987 REGISTER_TRACE(pOp
->p1
, pIn1
);
988 goto jump_to_p2_and_check_for_interrupt
;
991 /* Opcode: Return P1 P2 P3 * *
993 ** Jump to the address stored in register P1. If P1 is a return address
994 ** register, then this accomplishes a return from a subroutine.
996 ** If P3 is 1, then the jump is only taken if register P1 holds an integer
997 ** values, otherwise execution falls through to the next opcode, and the
998 ** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an
999 ** integer or else an assert() is raised. P3 should be set to 1 when
1000 ** this opcode is used in combination with OP_BeginSubrtn, and set to 0
1003 ** The value in register P1 is unchanged by this opcode.
1005 ** P2 is not used by the byte-code engine. However, if P2 is positive
1006 ** and also less than the current address, then the "EXPLAIN" output
1007 ** formatter in the CLI will indent all opcodes from the P2 opcode up
1008 ** to be not including the current Return. P2 should be the first opcode
1009 ** in the subroutine from which this opcode is returning. Thus the P2
1010 ** value is a byte-code indentation hint. See tag-20220407a in
1011 ** wherecode.c and shell.c.
1013 case OP_Return
: { /* in1 */
1014 pIn1
= &aMem
[pOp
->p1
];
1015 if( pIn1
->flags
& MEM_Int
){
1016 if( pOp
->p3
){ VdbeBranchTaken(1, 2); }
1017 pOp
= &aOp
[pIn1
->u
.i
];
1018 }else if( ALWAYS(pOp
->p3
) ){
1019 VdbeBranchTaken(0, 2);
1024 /* Opcode: InitCoroutine P1 P2 P3 * *
1026 ** Set up register P1 so that it will Yield to the coroutine
1027 ** located at address P3.
1029 ** If P2!=0 then the coroutine implementation immediately follows
1030 ** this opcode. So jump over the coroutine implementation to
1033 ** See also: EndCoroutine
1035 case OP_InitCoroutine
: { /* jump */
1036 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
1037 assert( pOp
->p2
>=0 && pOp
->p2
<p
->nOp
);
1038 assert( pOp
->p3
>=0 && pOp
->p3
<p
->nOp
);
1039 pOut
= &aMem
[pOp
->p1
];
1040 assert( !VdbeMemDynamic(pOut
) );
1041 pOut
->u
.i
= pOp
->p3
- 1;
1042 pOut
->flags
= MEM_Int
;
1043 if( pOp
->p2
==0 ) break;
1045 /* Most jump operations do a goto to this spot in order to update
1046 ** the pOp pointer. */
1048 assert( pOp
->p2
>0 ); /* There are never any jumps to instruction 0 */
1049 assert( pOp
->p2
<p
->nOp
); /* Jumps must be in range */
1050 pOp
= &aOp
[pOp
->p2
- 1];
1054 /* Opcode: EndCoroutine P1 * * * *
1056 ** The instruction at the address in register P1 is a Yield.
1057 ** Jump to the P2 parameter of that Yield.
1058 ** After the jump, register P1 becomes undefined.
1060 ** See also: InitCoroutine
1062 case OP_EndCoroutine
: { /* in1 */
1064 pIn1
= &aMem
[pOp
->p1
];
1065 assert( pIn1
->flags
==MEM_Int
);
1066 assert( pIn1
->u
.i
>=0 && pIn1
->u
.i
<p
->nOp
);
1067 pCaller
= &aOp
[pIn1
->u
.i
];
1068 assert( pCaller
->opcode
==OP_Yield
);
1069 assert( pCaller
->p2
>=0 && pCaller
->p2
<p
->nOp
);
1070 pOp
= &aOp
[pCaller
->p2
- 1];
1071 pIn1
->flags
= MEM_Undefined
;
1075 /* Opcode: Yield P1 P2 * * *
1077 ** Swap the program counter with the value in register P1. This
1078 ** has the effect of yielding to a coroutine.
1080 ** If the coroutine that is launched by this instruction ends with
1081 ** Yield or Return then continue to the next instruction. But if
1082 ** the coroutine launched by this instruction ends with
1083 ** EndCoroutine, then jump to P2 rather than continuing with the
1084 ** next instruction.
1086 ** See also: InitCoroutine
1088 case OP_Yield
: { /* in1, jump */
1090 pIn1
= &aMem
[pOp
->p1
];
1091 assert( VdbeMemDynamic(pIn1
)==0 );
1092 pIn1
->flags
= MEM_Int
;
1093 pcDest
= (int)pIn1
->u
.i
;
1094 pIn1
->u
.i
= (int)(pOp
- aOp
);
1095 REGISTER_TRACE(pOp
->p1
, pIn1
);
1100 /* Opcode: HaltIfNull P1 P2 P3 P4 P5
1101 ** Synopsis: if r[P3]=null halt
1103 ** Check the value in register P3. If it is NULL then Halt using
1104 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the
1105 ** value in register P3 is not NULL, then this routine is a no-op.
1106 ** The P5 parameter should be 1.
1108 case OP_HaltIfNull
: { /* in3 */
1109 pIn3
= &aMem
[pOp
->p3
];
1111 if( pOp
->p2
==OE_Abort
){ sqlite3VdbeAssertAbortable(p
); }
1113 if( (pIn3
->flags
& MEM_Null
)==0 ) break;
1114 /* Fall through into OP_Halt */
1115 /* no break */ deliberate_fall_through
1118 /* Opcode: Halt P1 P2 * P4 P5
1120 ** Exit immediately. All open cursors, etc are closed
1123 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
1124 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
1125 ** For errors, it can be some other value. If P1!=0 then P2 will determine
1126 ** whether or not to rollback the current transaction. Do not rollback
1127 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
1128 ** then back out all changes that have occurred during this execution of the
1129 ** VDBE, but do not rollback the transaction.
1131 ** If P4 is not null then it is an error message string.
1133 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
1136 ** 1: NOT NULL contraint failed: P4
1137 ** 2: UNIQUE constraint failed: P4
1138 ** 3: CHECK constraint failed: P4
1139 ** 4: FOREIGN KEY constraint failed: P4
1141 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
1144 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
1145 ** every program. So a jump past the last instruction of the program
1146 ** is the same as executing Halt.
1153 if( pOp
->p2
==OE_Abort
){ sqlite3VdbeAssertAbortable(p
); }
1155 if( p
->pFrame
&& pOp
->p1
==SQLITE_OK
){
1156 /* Halt the sub-program. Return control to the parent frame. */
1158 p
->pFrame
= pFrame
->pParent
;
1160 sqlite3VdbeSetChanges(db
, p
->nChange
);
1161 pcx
= sqlite3VdbeFrameRestore(pFrame
);
1162 if( pOp
->p2
==OE_Ignore
){
1163 /* Instruction pcx is the OP_Program that invoked the sub-program
1164 ** currently being halted. If the p2 instruction of this OP_Halt
1165 ** instruction is set to OE_Ignore, then the sub-program is throwing
1166 ** an IGNORE exception. In this case jump to the address specified
1167 ** as the p2 of the calling OP_Program. */
1168 pcx
= p
->aOp
[pcx
].p2
-1;
1176 p
->errorAction
= (u8
)pOp
->p2
;
1177 assert( pOp
->p5
<=4 );
1180 static const char * const azType
[] = { "NOT NULL", "UNIQUE", "CHECK",
1182 testcase( pOp
->p5
==1 );
1183 testcase( pOp
->p5
==2 );
1184 testcase( pOp
->p5
==3 );
1185 testcase( pOp
->p5
==4 );
1186 sqlite3VdbeError(p
, "%s constraint failed", azType
[pOp
->p5
-1]);
1188 p
->zErrMsg
= sqlite3MPrintf(db
, "%z: %s", p
->zErrMsg
, pOp
->p4
.z
);
1191 sqlite3VdbeError(p
, "%s", pOp
->p4
.z
);
1193 pcx
= (int)(pOp
- aOp
);
1194 sqlite3_log(pOp
->p1
, "abort at %d in [%s]: %s", pcx
, p
->zSql
, p
->zErrMsg
);
1196 rc
= sqlite3VdbeHalt(p
);
1197 assert( rc
==SQLITE_BUSY
|| rc
==SQLITE_OK
|| rc
==SQLITE_ERROR
);
1198 if( rc
==SQLITE_BUSY
){
1199 p
->rc
= SQLITE_BUSY
;
1201 assert( rc
==SQLITE_OK
|| (p
->rc
&0xff)==SQLITE_CONSTRAINT
);
1202 assert( rc
==SQLITE_OK
|| db
->nDeferredCons
>0 || db
->nDeferredImmCons
>0 );
1203 rc
= p
->rc
? SQLITE_ERROR
: SQLITE_DONE
;
1208 /* Opcode: Integer P1 P2 * * *
1209 ** Synopsis: r[P2]=P1
1211 ** The 32-bit integer value P1 is written into register P2.
1213 case OP_Integer
: { /* out2 */
1214 pOut
= out2Prerelease(p
, pOp
);
1215 pOut
->u
.i
= pOp
->p1
;
1219 /* Opcode: Int64 * P2 * P4 *
1220 ** Synopsis: r[P2]=P4
1222 ** P4 is a pointer to a 64-bit integer value.
1223 ** Write that value into register P2.
1225 case OP_Int64
: { /* out2 */
1226 pOut
= out2Prerelease(p
, pOp
);
1227 assert( pOp
->p4
.pI64
!=0 );
1228 pOut
->u
.i
= *pOp
->p4
.pI64
;
1232 #ifndef SQLITE_OMIT_FLOATING_POINT
1233 /* Opcode: Real * P2 * P4 *
1234 ** Synopsis: r[P2]=P4
1236 ** P4 is a pointer to a 64-bit floating point value.
1237 ** Write that value into register P2.
1239 case OP_Real
: { /* same as TK_FLOAT, out2 */
1240 pOut
= out2Prerelease(p
, pOp
);
1241 pOut
->flags
= MEM_Real
;
1242 assert( !sqlite3IsNaN(*pOp
->p4
.pReal
) );
1243 pOut
->u
.r
= *pOp
->p4
.pReal
;
1248 /* Opcode: String8 * P2 * P4 *
1249 ** Synopsis: r[P2]='P4'
1251 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1252 ** into a String opcode before it is executed for the first time. During
1253 ** this transformation, the length of string P4 is computed and stored
1254 ** as the P1 parameter.
1256 case OP_String8
: { /* same as TK_STRING, out2 */
1257 assert( pOp
->p4
.z
!=0 );
1258 pOut
= out2Prerelease(p
, pOp
);
1259 pOp
->p1
= sqlite3Strlen30(pOp
->p4
.z
);
1261 #ifndef SQLITE_OMIT_UTF16
1262 if( encoding
!=SQLITE_UTF8
){
1263 rc
= sqlite3VdbeMemSetStr(pOut
, pOp
->p4
.z
, -1, SQLITE_UTF8
, SQLITE_STATIC
);
1264 assert( rc
==SQLITE_OK
|| rc
==SQLITE_TOOBIG
);
1265 if( rc
) goto too_big
;
1266 if( SQLITE_OK
!=sqlite3VdbeChangeEncoding(pOut
, encoding
) ) goto no_mem
;
1267 assert( pOut
->szMalloc
>0 && pOut
->zMalloc
==pOut
->z
);
1268 assert( VdbeMemDynamic(pOut
)==0 );
1270 pOut
->flags
|= MEM_Static
;
1271 if( pOp
->p4type
==P4_DYNAMIC
){
1272 sqlite3DbFree(db
, pOp
->p4
.z
);
1274 pOp
->p4type
= P4_DYNAMIC
;
1275 pOp
->p4
.z
= pOut
->z
;
1279 if( pOp
->p1
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
1282 pOp
->opcode
= OP_String
;
1283 assert( rc
==SQLITE_OK
);
1284 /* Fall through to the next case, OP_String */
1285 /* no break */ deliberate_fall_through
1288 /* Opcode: String P1 P2 P3 P4 P5
1289 ** Synopsis: r[P2]='P4' (len=P1)
1291 ** The string value P4 of length P1 (bytes) is stored in register P2.
1293 ** If P3 is not zero and the content of register P3 is equal to P5, then
1294 ** the datatype of the register P2 is converted to BLOB. The content is
1295 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1296 ** of a string, as if it had been CAST. In other words:
1298 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1300 case OP_String
: { /* out2 */
1301 assert( pOp
->p4
.z
!=0 );
1302 pOut
= out2Prerelease(p
, pOp
);
1303 pOut
->flags
= MEM_Str
|MEM_Static
|MEM_Term
;
1304 pOut
->z
= pOp
->p4
.z
;
1306 pOut
->enc
= encoding
;
1307 UPDATE_MAX_BLOBSIZE(pOut
);
1308 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1310 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
1311 pIn3
= &aMem
[pOp
->p3
];
1312 assert( pIn3
->flags
& MEM_Int
);
1313 if( pIn3
->u
.i
==pOp
->p5
) pOut
->flags
= MEM_Blob
|MEM_Static
|MEM_Term
;
1319 /* Opcode: BeginSubrtn * P2 * * *
1320 ** Synopsis: r[P2]=NULL
1322 ** Mark the beginning of a subroutine that can be entered in-line
1323 ** or that can be called using OP_Gosub. The subroutine should
1324 ** be terminated by an OP_Return instruction that has a P1 operand that
1325 ** is the same as the P2 operand to this opcode and that has P3 set to 1.
1326 ** If the subroutine is entered in-line, then the OP_Return will simply
1327 ** fall through. But if the subroutine is entered using OP_Gosub, then
1328 ** the OP_Return will jump back to the first instruction after the OP_Gosub.
1330 ** This routine works by loading a NULL into the P2 register. When the
1331 ** return address register contains a NULL, the OP_Return instruction is
1332 ** a no-op that simply falls through to the next instruction (assuming that
1333 ** the OP_Return opcode has a P3 value of 1). Thus if the subroutine is
1334 ** entered in-line, then the OP_Return will cause in-line execution to
1335 ** continue. But if the subroutine is entered via OP_Gosub, then the
1336 ** OP_Return will cause a return to the address following the OP_Gosub.
1338 ** This opcode is identical to OP_Null. It has a different name
1339 ** only to make the byte code easier to read and verify.
1341 /* Opcode: Null P1 P2 P3 * *
1342 ** Synopsis: r[P2..P3]=NULL
1344 ** Write a NULL into registers P2. If P3 greater than P2, then also write
1345 ** NULL into register P3 and every register in between P2 and P3. If P3
1346 ** is less than P2 (typically P3 is zero) then only register P2 is
1349 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1350 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1353 case OP_BeginSubrtn
:
1354 case OP_Null
: { /* out2 */
1357 pOut
= out2Prerelease(p
, pOp
);
1358 cnt
= pOp
->p3
-pOp
->p2
;
1359 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
1360 pOut
->flags
= nullFlag
= pOp
->p1
? (MEM_Null
|MEM_Cleared
) : MEM_Null
;
1367 memAboutToChange(p
, pOut
);
1368 sqlite3VdbeMemSetNull(pOut
);
1369 pOut
->flags
= nullFlag
;
1376 /* Opcode: SoftNull P1 * * * *
1377 ** Synopsis: r[P1]=NULL
1379 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1380 ** instruction, but do not free any string or blob memory associated with
1381 ** the register, so that if the value was a string or blob that was
1382 ** previously copied using OP_SCopy, the copies will continue to be valid.
1385 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
1386 pOut
= &aMem
[pOp
->p1
];
1387 pOut
->flags
= (pOut
->flags
&~(MEM_Undefined
|MEM_AffMask
))|MEM_Null
;
1391 /* Opcode: Blob P1 P2 * P4 *
1392 ** Synopsis: r[P2]=P4 (len=P1)
1394 ** P4 points to a blob of data P1 bytes long. Store this
1395 ** blob in register P2. If P4 is a NULL pointer, then construct
1396 ** a zero-filled blob that is P1 bytes long in P2.
1398 case OP_Blob
: { /* out2 */
1399 assert( pOp
->p1
<= SQLITE_MAX_LENGTH
);
1400 pOut
= out2Prerelease(p
, pOp
);
1402 sqlite3VdbeMemSetZeroBlob(pOut
, pOp
->p1
);
1403 if( sqlite3VdbeMemExpandBlob(pOut
) ) goto no_mem
;
1405 sqlite3VdbeMemSetStr(pOut
, pOp
->p4
.z
, pOp
->p1
, 0, 0);
1407 pOut
->enc
= encoding
;
1408 UPDATE_MAX_BLOBSIZE(pOut
);
1412 /* Opcode: Variable P1 P2 * P4 *
1413 ** Synopsis: r[P2]=parameter(P1,P4)
1415 ** Transfer the values of bound parameter P1 into register P2
1417 ** If the parameter is named, then its name appears in P4.
1418 ** The P4 value is used by sqlite3_bind_parameter_name().
1420 case OP_Variable
: { /* out2 */
1421 Mem
*pVar
; /* Value being transferred */
1423 assert( pOp
->p1
>0 && pOp
->p1
<=p
->nVar
);
1424 assert( pOp
->p4
.z
==0 || pOp
->p4
.z
==sqlite3VListNumToName(p
->pVList
,pOp
->p1
) );
1425 pVar
= &p
->aVar
[pOp
->p1
- 1];
1426 if( sqlite3VdbeMemTooBig(pVar
) ){
1429 pOut
= &aMem
[pOp
->p2
];
1430 if( VdbeMemDynamic(pOut
) ) sqlite3VdbeMemSetNull(pOut
);
1431 memcpy(pOut
, pVar
, MEMCELLSIZE
);
1432 pOut
->flags
&= ~(MEM_Dyn
|MEM_Ephem
);
1433 pOut
->flags
|= MEM_Static
|MEM_FromBind
;
1434 UPDATE_MAX_BLOBSIZE(pOut
);
1438 /* Opcode: Move P1 P2 P3 * *
1439 ** Synopsis: r[P2@P3]=r[P1@P3]
1441 ** Move the P3 values in register P1..P1+P3-1 over into
1442 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
1443 ** left holding a NULL. It is an error for register ranges
1444 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1445 ** for P3 to be less than 1.
1448 int n
; /* Number of registers left to copy */
1449 int p1
; /* Register to copy from */
1450 int p2
; /* Register to copy to */
1455 assert( n
>0 && p1
>0 && p2
>0 );
1456 assert( p1
+n
<=p2
|| p2
+n
<=p1
);
1461 assert( pOut
<=&aMem
[(p
->nMem
+1 - p
->nCursor
)] );
1462 assert( pIn1
<=&aMem
[(p
->nMem
+1 - p
->nCursor
)] );
1463 assert( memIsValid(pIn1
) );
1464 memAboutToChange(p
, pOut
);
1465 sqlite3VdbeMemMove(pOut
, pIn1
);
1467 pIn1
->pScopyFrom
= 0;
1469 for(i
=1; i
<p
->nMem
; i
++){
1470 if( aMem
[i
].pScopyFrom
==pIn1
){
1471 aMem
[i
].pScopyFrom
= pOut
;
1476 Deephemeralize(pOut
);
1477 REGISTER_TRACE(p2
++, pOut
);
1484 /* Opcode: Copy P1 P2 P3 * P5
1485 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1487 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1489 ** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the
1490 ** destination. The 0x0001 bit of P5 indicates that this Copy opcode cannot
1491 ** be merged. The 0x0001 bit is used by the query planner and does not
1492 ** come into play during query execution.
1494 ** This instruction makes a deep copy of the value. A duplicate
1495 ** is made of any string or blob constant. See also OP_SCopy.
1501 pIn1
= &aMem
[pOp
->p1
];
1502 pOut
= &aMem
[pOp
->p2
];
1503 assert( pOut
!=pIn1
);
1505 memAboutToChange(p
, pOut
);
1506 sqlite3VdbeMemShallowCopy(pOut
, pIn1
, MEM_Ephem
);
1507 Deephemeralize(pOut
);
1508 if( (pOut
->flags
& MEM_Subtype
)!=0 && (pOp
->p5
& 0x0002)!=0 ){
1509 pOut
->flags
&= ~MEM_Subtype
;
1512 pOut
->pScopyFrom
= 0;
1514 REGISTER_TRACE(pOp
->p2
+pOp
->p3
-n
, pOut
);
1515 if( (n
--)==0 ) break;
1522 /* Opcode: SCopy P1 P2 * * *
1523 ** Synopsis: r[P2]=r[P1]
1525 ** Make a shallow copy of register P1 into register P2.
1527 ** This instruction makes a shallow copy of the value. If the value
1528 ** is a string or blob, then the copy is only a pointer to the
1529 ** original and hence if the original changes so will the copy.
1530 ** Worse, if the original is deallocated, the copy becomes invalid.
1531 ** Thus the program must guarantee that the original will not change
1532 ** during the lifetime of the copy. Use OP_Copy to make a complete
1535 case OP_SCopy
: { /* out2 */
1536 pIn1
= &aMem
[pOp
->p1
];
1537 pOut
= &aMem
[pOp
->p2
];
1538 assert( pOut
!=pIn1
);
1539 sqlite3VdbeMemShallowCopy(pOut
, pIn1
, MEM_Ephem
);
1541 pOut
->pScopyFrom
= pIn1
;
1542 pOut
->mScopyFlags
= pIn1
->flags
;
1547 /* Opcode: IntCopy P1 P2 * * *
1548 ** Synopsis: r[P2]=r[P1]
1550 ** Transfer the integer value held in register P1 into register P2.
1552 ** This is an optimized version of SCopy that works only for integer
1555 case OP_IntCopy
: { /* out2 */
1556 pIn1
= &aMem
[pOp
->p1
];
1557 assert( (pIn1
->flags
& MEM_Int
)!=0 );
1558 pOut
= &aMem
[pOp
->p2
];
1559 sqlite3VdbeMemSetInt64(pOut
, pIn1
->u
.i
);
1563 /* Opcode: FkCheck * * * * *
1565 ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved
1566 ** foreign key constraint violations. If there are no foreign key
1567 ** constraint violations, this is a no-op.
1569 ** FK constraint violations are also checked when the prepared statement
1570 ** exits. This opcode is used to raise foreign key constraint errors prior
1571 ** to returning results such as a row change count or the result of a
1572 ** RETURNING clause.
1575 if( (rc
= sqlite3VdbeCheckFk(p
,0))!=SQLITE_OK
){
1576 goto abort_due_to_error
;
1581 /* Opcode: ResultRow P1 P2 * * *
1582 ** Synopsis: output=r[P1@P2]
1584 ** The registers P1 through P1+P2-1 contain a single row of
1585 ** results. This opcode causes the sqlite3_step() call to terminate
1586 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1587 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1590 case OP_ResultRow
: {
1591 assert( p
->nResColumn
==pOp
->p2
);
1592 assert( pOp
->p1
>0 || CORRUPT_DB
);
1593 assert( pOp
->p1
+pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
)+1 );
1595 p
->cacheCtr
= (p
->cacheCtr
+ 2)|1;
1596 p
->pResultSet
= &aMem
[pOp
->p1
];
1599 Mem
*pMem
= p
->pResultSet
;
1601 for(i
=0; i
<pOp
->p2
; i
++){
1602 assert( memIsValid(&pMem
[i
]) );
1603 REGISTER_TRACE(pOp
->p1
+i
, &pMem
[i
]);
1604 /* The registers in the result will not be used again when the
1605 ** prepared statement restarts. This is because sqlite3_column()
1606 ** APIs might have caused type conversions of made other changes to
1607 ** the register values. Therefore, we can go ahead and break any
1608 ** OP_SCopy dependencies. */
1609 pMem
[i
].pScopyFrom
= 0;
1613 if( db
->mallocFailed
) goto no_mem
;
1614 if( db
->mTrace
& SQLITE_TRACE_ROW
){
1615 db
->trace
.xV2(SQLITE_TRACE_ROW
, db
->pTraceArg
, p
, 0);
1617 p
->pc
= (int)(pOp
- aOp
) + 1;
1622 /* Opcode: Concat P1 P2 P3 * *
1623 ** Synopsis: r[P3]=r[P2]+r[P1]
1625 ** Add the text in register P1 onto the end of the text in
1626 ** register P2 and store the result in register P3.
1627 ** If either the P1 or P2 text are NULL then store NULL in P3.
1631 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1632 ** if P3 is the same register as P2, the implementation is able
1633 ** to avoid a memcpy().
1635 case OP_Concat
: { /* same as TK_CONCAT, in1, in2, out3 */
1636 i64 nByte
; /* Total size of the output string or blob */
1637 u16 flags1
; /* Initial flags for P1 */
1638 u16 flags2
; /* Initial flags for P2 */
1640 pIn1
= &aMem
[pOp
->p1
];
1641 pIn2
= &aMem
[pOp
->p2
];
1642 pOut
= &aMem
[pOp
->p3
];
1643 testcase( pOut
==pIn2
);
1644 assert( pIn1
!=pOut
);
1645 flags1
= pIn1
->flags
;
1646 testcase( flags1
& MEM_Null
);
1647 testcase( pIn2
->flags
& MEM_Null
);
1648 if( (flags1
| pIn2
->flags
) & MEM_Null
){
1649 sqlite3VdbeMemSetNull(pOut
);
1652 if( (flags1
& (MEM_Str
|MEM_Blob
))==0 ){
1653 if( sqlite3VdbeMemStringify(pIn1
,encoding
,0) ) goto no_mem
;
1654 flags1
= pIn1
->flags
& ~MEM_Str
;
1655 }else if( (flags1
& MEM_Zero
)!=0 ){
1656 if( sqlite3VdbeMemExpandBlob(pIn1
) ) goto no_mem
;
1657 flags1
= pIn1
->flags
& ~MEM_Str
;
1659 flags2
= pIn2
->flags
;
1660 if( (flags2
& (MEM_Str
|MEM_Blob
))==0 ){
1661 if( sqlite3VdbeMemStringify(pIn2
,encoding
,0) ) goto no_mem
;
1662 flags2
= pIn2
->flags
& ~MEM_Str
;
1663 }else if( (flags2
& MEM_Zero
)!=0 ){
1664 if( sqlite3VdbeMemExpandBlob(pIn2
) ) goto no_mem
;
1665 flags2
= pIn2
->flags
& ~MEM_Str
;
1667 nByte
= pIn1
->n
+ pIn2
->n
;
1668 if( nByte
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
1671 if( sqlite3VdbeMemGrow(pOut
, (int)nByte
+2, pOut
==pIn2
) ){
1674 MemSetTypeFlag(pOut
, MEM_Str
);
1676 memcpy(pOut
->z
, pIn2
->z
, pIn2
->n
);
1677 assert( (pIn2
->flags
& MEM_Dyn
) == (flags2
& MEM_Dyn
) );
1678 pIn2
->flags
= flags2
;
1680 memcpy(&pOut
->z
[pIn2
->n
], pIn1
->z
, pIn1
->n
);
1681 assert( (pIn1
->flags
& MEM_Dyn
) == (flags1
& MEM_Dyn
) );
1682 pIn1
->flags
= flags1
;
1683 if( encoding
>SQLITE_UTF8
) nByte
&= ~1;
1685 pOut
->z
[nByte
+1] = 0;
1686 pOut
->flags
|= MEM_Term
;
1687 pOut
->n
= (int)nByte
;
1688 pOut
->enc
= encoding
;
1689 UPDATE_MAX_BLOBSIZE(pOut
);
1693 /* Opcode: Add P1 P2 P3 * *
1694 ** Synopsis: r[P3]=r[P1]+r[P2]
1696 ** Add the value in register P1 to the value in register P2
1697 ** and store the result in register P3.
1698 ** If either input is NULL, the result is NULL.
1700 /* Opcode: Multiply P1 P2 P3 * *
1701 ** Synopsis: r[P3]=r[P1]*r[P2]
1704 ** Multiply the value in register P1 by the value in register P2
1705 ** and store the result in register P3.
1706 ** If either input is NULL, the result is NULL.
1708 /* Opcode: Subtract P1 P2 P3 * *
1709 ** Synopsis: r[P3]=r[P2]-r[P1]
1711 ** Subtract the value in register P1 from the value in register P2
1712 ** and store the result in register P3.
1713 ** If either input is NULL, the result is NULL.
1715 /* Opcode: Divide P1 P2 P3 * *
1716 ** Synopsis: r[P3]=r[P2]/r[P1]
1718 ** Divide the value in register P1 by the value in register P2
1719 ** and store the result in register P3 (P3=P2/P1). If the value in
1720 ** register P1 is zero, then the result is NULL. If either input is
1721 ** NULL, the result is NULL.
1723 /* Opcode: Remainder P1 P2 P3 * *
1724 ** Synopsis: r[P3]=r[P2]%r[P1]
1726 ** Compute the remainder after integer register P2 is divided by
1727 ** register P1 and store the result in register P3.
1728 ** If the value in register P1 is zero the result is NULL.
1729 ** If either operand is NULL, the result is NULL.
1731 case OP_Add
: /* same as TK_PLUS, in1, in2, out3 */
1732 case OP_Subtract
: /* same as TK_MINUS, in1, in2, out3 */
1733 case OP_Multiply
: /* same as TK_STAR, in1, in2, out3 */
1734 case OP_Divide
: /* same as TK_SLASH, in1, in2, out3 */
1735 case OP_Remainder
: { /* same as TK_REM, in1, in2, out3 */
1736 u16 type1
; /* Numeric type of left operand */
1737 u16 type2
; /* Numeric type of right operand */
1738 i64 iA
; /* Integer value of left operand */
1739 i64 iB
; /* Integer value of right operand */
1740 double rA
; /* Real value of left operand */
1741 double rB
; /* Real value of right operand */
1743 pIn1
= &aMem
[pOp
->p1
];
1744 type1
= pIn1
->flags
;
1745 pIn2
= &aMem
[pOp
->p2
];
1746 type2
= pIn2
->flags
;
1747 pOut
= &aMem
[pOp
->p3
];
1748 if( (type1
& type2
& MEM_Int
)!=0 ){
1752 switch( pOp
->opcode
){
1753 case OP_Add
: if( sqlite3AddInt64(&iB
,iA
) ) goto fp_math
; break;
1754 case OP_Subtract
: if( sqlite3SubInt64(&iB
,iA
) ) goto fp_math
; break;
1755 case OP_Multiply
: if( sqlite3MulInt64(&iB
,iA
) ) goto fp_math
; break;
1757 if( iA
==0 ) goto arithmetic_result_is_null
;
1758 if( iA
==-1 && iB
==SMALLEST_INT64
) goto fp_math
;
1763 if( iA
==0 ) goto arithmetic_result_is_null
;
1764 if( iA
==-1 ) iA
= 1;
1770 MemSetTypeFlag(pOut
, MEM_Int
);
1771 }else if( ((type1
| type2
) & MEM_Null
)!=0 ){
1772 goto arithmetic_result_is_null
;
1774 type1
= numericType(pIn1
);
1775 type2
= numericType(pIn2
);
1776 if( (type1
& type2
& MEM_Int
)!=0 ) goto int_math
;
1778 rA
= sqlite3VdbeRealValue(pIn1
);
1779 rB
= sqlite3VdbeRealValue(pIn2
);
1780 switch( pOp
->opcode
){
1781 case OP_Add
: rB
+= rA
; break;
1782 case OP_Subtract
: rB
-= rA
; break;
1783 case OP_Multiply
: rB
*= rA
; break;
1785 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1786 if( rA
==(double)0 ) goto arithmetic_result_is_null
;
1791 iA
= sqlite3VdbeIntValue(pIn1
);
1792 iB
= sqlite3VdbeIntValue(pIn2
);
1793 if( iA
==0 ) goto arithmetic_result_is_null
;
1794 if( iA
==-1 ) iA
= 1;
1795 rB
= (double)(iB
% iA
);
1799 #ifdef SQLITE_OMIT_FLOATING_POINT
1801 MemSetTypeFlag(pOut
, MEM_Int
);
1803 if( sqlite3IsNaN(rB
) ){
1804 goto arithmetic_result_is_null
;
1807 MemSetTypeFlag(pOut
, MEM_Real
);
1812 arithmetic_result_is_null
:
1813 sqlite3VdbeMemSetNull(pOut
);
1817 /* Opcode: CollSeq P1 * * P4
1819 ** P4 is a pointer to a CollSeq object. If the next call to a user function
1820 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1821 ** be returned. This is used by the built-in min(), max() and nullif()
1824 ** If P1 is not zero, then it is a register that a subsequent min() or
1825 ** max() aggregate will set to 1 if the current row is not the minimum or
1826 ** maximum. The P1 register is initialized to 0 by this instruction.
1828 ** The interface used by the implementation of the aforementioned functions
1829 ** to retrieve the collation sequence set by this opcode is not available
1830 ** publicly. Only built-in functions have access to this feature.
1833 assert( pOp
->p4type
==P4_COLLSEQ
);
1835 sqlite3VdbeMemSetInt64(&aMem
[pOp
->p1
], 0);
1840 /* Opcode: BitAnd P1 P2 P3 * *
1841 ** Synopsis: r[P3]=r[P1]&r[P2]
1843 ** Take the bit-wise AND of the values in register P1 and P2 and
1844 ** store the result in register P3.
1845 ** If either input is NULL, the result is NULL.
1847 /* Opcode: BitOr P1 P2 P3 * *
1848 ** Synopsis: r[P3]=r[P1]|r[P2]
1850 ** Take the bit-wise OR of the values in register P1 and P2 and
1851 ** store the result in register P3.
1852 ** If either input is NULL, the result is NULL.
1854 /* Opcode: ShiftLeft P1 P2 P3 * *
1855 ** Synopsis: r[P3]=r[P2]<<r[P1]
1857 ** Shift the integer value in register P2 to the left by the
1858 ** number of bits specified by the integer in register P1.
1859 ** Store the result in register P3.
1860 ** If either input is NULL, the result is NULL.
1862 /* Opcode: ShiftRight P1 P2 P3 * *
1863 ** Synopsis: r[P3]=r[P2]>>r[P1]
1865 ** Shift the integer value in register P2 to the right by the
1866 ** number of bits specified by the integer in register P1.
1867 ** Store the result in register P3.
1868 ** If either input is NULL, the result is NULL.
1870 case OP_BitAnd
: /* same as TK_BITAND, in1, in2, out3 */
1871 case OP_BitOr
: /* same as TK_BITOR, in1, in2, out3 */
1872 case OP_ShiftLeft
: /* same as TK_LSHIFT, in1, in2, out3 */
1873 case OP_ShiftRight
: { /* same as TK_RSHIFT, in1, in2, out3 */
1879 pIn1
= &aMem
[pOp
->p1
];
1880 pIn2
= &aMem
[pOp
->p2
];
1881 pOut
= &aMem
[pOp
->p3
];
1882 if( (pIn1
->flags
| pIn2
->flags
) & MEM_Null
){
1883 sqlite3VdbeMemSetNull(pOut
);
1886 iA
= sqlite3VdbeIntValue(pIn2
);
1887 iB
= sqlite3VdbeIntValue(pIn1
);
1889 if( op
==OP_BitAnd
){
1891 }else if( op
==OP_BitOr
){
1894 assert( op
==OP_ShiftRight
|| op
==OP_ShiftLeft
);
1896 /* If shifting by a negative amount, shift in the other direction */
1898 assert( OP_ShiftRight
==OP_ShiftLeft
+1 );
1899 op
= 2*OP_ShiftLeft
+ 1 - op
;
1900 iB
= iB
>(-64) ? -iB
: 64;
1904 iA
= (iA
>=0 || op
==OP_ShiftLeft
) ? 0 : -1;
1906 memcpy(&uA
, &iA
, sizeof(uA
));
1907 if( op
==OP_ShiftLeft
){
1911 /* Sign-extend on a right shift of a negative number */
1912 if( iA
<0 ) uA
|= ((((u64
)0xffffffff)<<32)|0xffffffff) << (64-iB
);
1914 memcpy(&iA
, &uA
, sizeof(iA
));
1918 MemSetTypeFlag(pOut
, MEM_Int
);
1922 /* Opcode: AddImm P1 P2 * * *
1923 ** Synopsis: r[P1]=r[P1]+P2
1925 ** Add the constant P2 to the value in register P1.
1926 ** The result is always an integer.
1928 ** To force any register to be an integer, just add 0.
1930 case OP_AddImm
: { /* in1 */
1931 pIn1
= &aMem
[pOp
->p1
];
1932 memAboutToChange(p
, pIn1
);
1933 sqlite3VdbeMemIntegerify(pIn1
);
1934 pIn1
->u
.i
+= pOp
->p2
;
1938 /* Opcode: MustBeInt P1 P2 * * *
1940 ** Force the value in register P1 to be an integer. If the value
1941 ** in P1 is not an integer and cannot be converted into an integer
1942 ** without data loss, then jump immediately to P2, or if P2==0
1943 ** raise an SQLITE_MISMATCH exception.
1945 case OP_MustBeInt
: { /* jump, in1 */
1946 pIn1
= &aMem
[pOp
->p1
];
1947 if( (pIn1
->flags
& MEM_Int
)==0 ){
1948 applyAffinity(pIn1
, SQLITE_AFF_NUMERIC
, encoding
);
1949 if( (pIn1
->flags
& MEM_Int
)==0 ){
1950 VdbeBranchTaken(1, 2);
1952 rc
= SQLITE_MISMATCH
;
1953 goto abort_due_to_error
;
1959 VdbeBranchTaken(0, 2);
1960 MemSetTypeFlag(pIn1
, MEM_Int
);
1964 #ifndef SQLITE_OMIT_FLOATING_POINT
1965 /* Opcode: RealAffinity P1 * * * *
1967 ** If register P1 holds an integer convert it to a real value.
1969 ** This opcode is used when extracting information from a column that
1970 ** has REAL affinity. Such column values may still be stored as
1971 ** integers, for space efficiency, but after extraction we want them
1972 ** to have only a real value.
1974 case OP_RealAffinity
: { /* in1 */
1975 pIn1
= &aMem
[pOp
->p1
];
1976 if( pIn1
->flags
& (MEM_Int
|MEM_IntReal
) ){
1977 testcase( pIn1
->flags
& MEM_Int
);
1978 testcase( pIn1
->flags
& MEM_IntReal
);
1979 sqlite3VdbeMemRealify(pIn1
);
1980 REGISTER_TRACE(pOp
->p1
, pIn1
);
1986 #ifndef SQLITE_OMIT_CAST
1987 /* Opcode: Cast P1 P2 * * *
1988 ** Synopsis: affinity(r[P1])
1990 ** Force the value in register P1 to be the type defined by P2.
1993 ** <li> P2=='A' → BLOB
1994 ** <li> P2=='B' → TEXT
1995 ** <li> P2=='C' → NUMERIC
1996 ** <li> P2=='D' → INTEGER
1997 ** <li> P2=='E' → REAL
2000 ** A NULL value is not changed by this routine. It remains NULL.
2002 case OP_Cast
: { /* in1 */
2003 assert( pOp
->p2
>=SQLITE_AFF_BLOB
&& pOp
->p2
<=SQLITE_AFF_REAL
);
2004 testcase( pOp
->p2
==SQLITE_AFF_TEXT
);
2005 testcase( pOp
->p2
==SQLITE_AFF_BLOB
);
2006 testcase( pOp
->p2
==SQLITE_AFF_NUMERIC
);
2007 testcase( pOp
->p2
==SQLITE_AFF_INTEGER
);
2008 testcase( pOp
->p2
==SQLITE_AFF_REAL
);
2009 pIn1
= &aMem
[pOp
->p1
];
2010 memAboutToChange(p
, pIn1
);
2011 rc
= ExpandBlob(pIn1
);
2012 if( rc
) goto abort_due_to_error
;
2013 rc
= sqlite3VdbeMemCast(pIn1
, pOp
->p2
, encoding
);
2014 if( rc
) goto abort_due_to_error
;
2015 UPDATE_MAX_BLOBSIZE(pIn1
);
2016 REGISTER_TRACE(pOp
->p1
, pIn1
);
2019 #endif /* SQLITE_OMIT_CAST */
2021 /* Opcode: Eq P1 P2 P3 P4 P5
2022 ** Synopsis: IF r[P3]==r[P1]
2024 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then
2025 ** jump to address P2.
2027 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2028 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2029 ** to coerce both inputs according to this affinity before the
2030 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2031 ** affinity is used. Note that the affinity conversions are stored
2032 ** back into the input registers P1 and P3. So this opcode can cause
2033 ** persistent changes to registers P1 and P3.
2035 ** Once any conversions have taken place, and neither value is NULL,
2036 ** the values are compared. If both values are blobs then memcmp() is
2037 ** used to determine the results of the comparison. If both values
2038 ** are text, then the appropriate collating function specified in
2039 ** P4 is used to do the comparison. If P4 is not specified then
2040 ** memcmp() is used to compare text string. If both values are
2041 ** numeric, then a numeric comparison is used. If the two values
2042 ** are of different types, then numbers are considered less than
2043 ** strings and strings are considered less than blobs.
2045 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
2046 ** true or false and is never NULL. If both operands are NULL then the result
2047 ** of comparison is true. If either operand is NULL then the result is false.
2048 ** If neither operand is NULL the result is the same as it would be if
2049 ** the SQLITE_NULLEQ flag were omitted from P5.
2051 ** This opcode saves the result of comparison for use by the new
2054 /* Opcode: Ne P1 P2 P3 P4 P5
2055 ** Synopsis: IF r[P3]!=r[P1]
2057 ** This works just like the Eq opcode except that the jump is taken if
2058 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for
2059 ** additional information.
2061 /* Opcode: Lt P1 P2 P3 P4 P5
2062 ** Synopsis: IF r[P3]<r[P1]
2064 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
2065 ** jump to address P2.
2067 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
2068 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL
2069 ** bit is clear then fall through if either operand is NULL.
2071 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2072 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2073 ** to coerce both inputs according to this affinity before the
2074 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2075 ** affinity is used. Note that the affinity conversions are stored
2076 ** back into the input registers P1 and P3. So this opcode can cause
2077 ** persistent changes to registers P1 and P3.
2079 ** Once any conversions have taken place, and neither value is NULL,
2080 ** the values are compared. If both values are blobs then memcmp() is
2081 ** used to determine the results of the comparison. If both values
2082 ** are text, then the appropriate collating function specified in
2083 ** P4 is used to do the comparison. If P4 is not specified then
2084 ** memcmp() is used to compare text string. If both values are
2085 ** numeric, then a numeric comparison is used. If the two values
2086 ** are of different types, then numbers are considered less than
2087 ** strings and strings are considered less than blobs.
2089 ** This opcode saves the result of comparison for use by the new
2092 /* Opcode: Le P1 P2 P3 P4 P5
2093 ** Synopsis: IF r[P3]<=r[P1]
2095 ** This works just like the Lt opcode except that the jump is taken if
2096 ** the content of register P3 is less than or equal to the content of
2097 ** register P1. See the Lt opcode for additional information.
2099 /* Opcode: Gt P1 P2 P3 P4 P5
2100 ** Synopsis: IF r[P3]>r[P1]
2102 ** This works just like the Lt opcode except that the jump is taken if
2103 ** the content of register P3 is greater than the content of
2104 ** register P1. See the Lt opcode for additional information.
2106 /* Opcode: Ge P1 P2 P3 P4 P5
2107 ** Synopsis: IF r[P3]>=r[P1]
2109 ** This works just like the Lt opcode except that the jump is taken if
2110 ** the content of register P3 is greater than or equal to the content of
2111 ** register P1. See the Lt opcode for additional information.
2113 case OP_Eq
: /* same as TK_EQ, jump, in1, in3 */
2114 case OP_Ne
: /* same as TK_NE, jump, in1, in3 */
2115 case OP_Lt
: /* same as TK_LT, jump, in1, in3 */
2116 case OP_Le
: /* same as TK_LE, jump, in1, in3 */
2117 case OP_Gt
: /* same as TK_GT, jump, in1, in3 */
2118 case OP_Ge
: { /* same as TK_GE, jump, in1, in3 */
2119 int res
, res2
; /* Result of the comparison of pIn1 against pIn3 */
2120 char affinity
; /* Affinity to use for comparison */
2121 u16 flags1
; /* Copy of initial value of pIn1->flags */
2122 u16 flags3
; /* Copy of initial value of pIn3->flags */
2124 pIn1
= &aMem
[pOp
->p1
];
2125 pIn3
= &aMem
[pOp
->p3
];
2126 flags1
= pIn1
->flags
;
2127 flags3
= pIn3
->flags
;
2128 if( (flags1
& flags3
& MEM_Int
)!=0 ){
2129 assert( (pOp
->p5
& SQLITE_AFF_MASK
)!=SQLITE_AFF_TEXT
|| CORRUPT_DB
);
2130 /* Common case of comparison of two integers */
2131 if( pIn3
->u
.i
> pIn1
->u
.i
){
2132 if( sqlite3aGTb
[pOp
->opcode
] ){
2133 VdbeBranchTaken(1, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
2137 }else if( pIn3
->u
.i
< pIn1
->u
.i
){
2138 if( sqlite3aLTb
[pOp
->opcode
] ){
2139 VdbeBranchTaken(1, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
2144 if( sqlite3aEQb
[pOp
->opcode
] ){
2145 VdbeBranchTaken(1, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
2150 VdbeBranchTaken(0, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
2153 if( (flags1
| flags3
)&MEM_Null
){
2154 /* One or both operands are NULL */
2155 if( pOp
->p5
& SQLITE_NULLEQ
){
2156 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
2157 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
2158 ** or not both operands are null.
2160 assert( (flags1
& MEM_Cleared
)==0 );
2161 assert( (pOp
->p5
& SQLITE_JUMPIFNULL
)==0 || CORRUPT_DB
);
2162 testcase( (pOp
->p5
& SQLITE_JUMPIFNULL
)!=0 );
2163 if( (flags1
&flags3
&MEM_Null
)!=0
2164 && (flags3
&MEM_Cleared
)==0
2166 res
= 0; /* Operands are equal */
2168 res
= ((flags3
& MEM_Null
) ? -1 : +1); /* Operands are not equal */
2171 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2172 ** then the result is always NULL.
2173 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2175 VdbeBranchTaken(2,3);
2176 if( pOp
->p5
& SQLITE_JUMPIFNULL
){
2179 iCompare
= 1; /* Operands are not equal */
2183 /* Neither operand is NULL and we couldn't do the special high-speed
2184 ** integer comparison case. So do a general-case comparison. */
2185 affinity
= pOp
->p5
& SQLITE_AFF_MASK
;
2186 if( affinity
>=SQLITE_AFF_NUMERIC
){
2187 if( (flags1
| flags3
)&MEM_Str
){
2188 if( (flags1
& (MEM_Int
|MEM_IntReal
|MEM_Real
|MEM_Str
))==MEM_Str
){
2189 applyNumericAffinity(pIn1
,0);
2190 testcase( flags3
==pIn3
->flags
);
2191 flags3
= pIn3
->flags
;
2193 if( (flags3
& (MEM_Int
|MEM_IntReal
|MEM_Real
|MEM_Str
))==MEM_Str
){
2194 applyNumericAffinity(pIn3
,0);
2197 }else if( affinity
==SQLITE_AFF_TEXT
){
2198 if( (flags1
& MEM_Str
)==0 && (flags1
&(MEM_Int
|MEM_Real
|MEM_IntReal
))!=0 ){
2199 testcase( pIn1
->flags
& MEM_Int
);
2200 testcase( pIn1
->flags
& MEM_Real
);
2201 testcase( pIn1
->flags
& MEM_IntReal
);
2202 sqlite3VdbeMemStringify(pIn1
, encoding
, 1);
2203 testcase( (flags1
&MEM_Dyn
) != (pIn1
->flags
&MEM_Dyn
) );
2204 flags1
= (pIn1
->flags
& ~MEM_TypeMask
) | (flags1
& MEM_TypeMask
);
2205 if( pIn1
==pIn3
) flags3
= flags1
| MEM_Str
;
2207 if( (flags3
& MEM_Str
)==0 && (flags3
&(MEM_Int
|MEM_Real
|MEM_IntReal
))!=0 ){
2208 testcase( pIn3
->flags
& MEM_Int
);
2209 testcase( pIn3
->flags
& MEM_Real
);
2210 testcase( pIn3
->flags
& MEM_IntReal
);
2211 sqlite3VdbeMemStringify(pIn3
, encoding
, 1);
2212 testcase( (flags3
&MEM_Dyn
) != (pIn3
->flags
&MEM_Dyn
) );
2213 flags3
= (pIn3
->flags
& ~MEM_TypeMask
) | (flags3
& MEM_TypeMask
);
2216 assert( pOp
->p4type
==P4_COLLSEQ
|| pOp
->p4
.pColl
==0 );
2217 res
= sqlite3MemCompare(pIn3
, pIn1
, pOp
->p4
.pColl
);
2220 /* At this point, res is negative, zero, or positive if reg[P1] is
2221 ** less than, equal to, or greater than reg[P3], respectively. Compute
2222 ** the answer to this operator in res2, depending on what the comparison
2223 ** operator actually is. The next block of code depends on the fact
2224 ** that the 6 comparison operators are consecutive integers in this
2225 ** order: NE, EQ, GT, LE, LT, GE */
2226 assert( OP_Eq
==OP_Ne
+1 ); assert( OP_Gt
==OP_Ne
+2 ); assert( OP_Le
==OP_Ne
+3 );
2227 assert( OP_Lt
==OP_Ne
+4 ); assert( OP_Ge
==OP_Ne
+5 );
2229 res2
= sqlite3aLTb
[pOp
->opcode
];
2231 res2
= sqlite3aEQb
[pOp
->opcode
];
2233 res2
= sqlite3aGTb
[pOp
->opcode
];
2237 /* Undo any changes made by applyAffinity() to the input registers. */
2238 assert( (pIn3
->flags
& MEM_Dyn
) == (flags3
& MEM_Dyn
) );
2239 pIn3
->flags
= flags3
;
2240 assert( (pIn1
->flags
& MEM_Dyn
) == (flags1
& MEM_Dyn
) );
2241 pIn1
->flags
= flags1
;
2243 VdbeBranchTaken(res2
!=0, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
2250 /* Opcode: ElseEq * P2 * * *
2252 ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There
2253 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other
2254 ** opcodes are allowed to occur between this instruction and the previous
2257 ** If result of an OP_Eq comparison on the same two operands as the
2258 ** prior OP_Lt or OP_Gt would have been true, then jump to P2.
2259 ** If the result of an OP_Eq comparison on the two previous
2260 ** operands would have been false or NULL, then fall through.
2262 case OP_ElseEq
: { /* same as TK_ESCAPE, jump */
2265 /* Verify the preconditions of this opcode - that it follows an OP_Lt or
2266 ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */
2268 for(iAddr
= (int)(pOp
- aOp
) - 1; ALWAYS(iAddr
>=0); iAddr
--){
2269 if( aOp
[iAddr
].opcode
==OP_ReleaseReg
) continue;
2270 assert( aOp
[iAddr
].opcode
==OP_Lt
|| aOp
[iAddr
].opcode
==OP_Gt
);
2273 #endif /* SQLITE_DEBUG */
2274 VdbeBranchTaken(iCompare
==0, 2);
2275 if( iCompare
==0 ) goto jump_to_p2
;
2280 /* Opcode: Permutation * * * P4 *
2282 ** Set the permutation used by the OP_Compare operator in the next
2283 ** instruction. The permutation is stored in the P4 operand.
2285 ** The permutation is only valid for the next opcode which must be
2286 ** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5.
2288 ** The first integer in the P4 integer array is the length of the array
2289 ** and does not become part of the permutation.
2291 case OP_Permutation
: {
2292 assert( pOp
->p4type
==P4_INTARRAY
);
2293 assert( pOp
->p4
.ai
);
2294 assert( pOp
[1].opcode
==OP_Compare
);
2295 assert( pOp
[1].p5
& OPFLAG_PERMUTE
);
2299 /* Opcode: Compare P1 P2 P3 P4 P5
2300 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2302 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2303 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
2304 ** the comparison for use by the next OP_Jump instruct.
2306 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2307 ** determined by the most recent OP_Permutation operator. If the
2308 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2311 ** P4 is a KeyInfo structure that defines collating sequences and sort
2312 ** orders for the comparison. The permutation applies to registers
2313 ** only. The KeyInfo elements are used sequentially.
2315 ** The comparison is a sort comparison, so NULLs compare equal,
2316 ** NULLs are less than numbers, numbers are less than strings,
2317 ** and strings are less than blobs.
2319 ** This opcode must be immediately followed by an OP_Jump opcode.
2326 const KeyInfo
*pKeyInfo
;
2328 CollSeq
*pColl
; /* Collating sequence to use on this term */
2329 int bRev
; /* True for DESCENDING sort order */
2330 u32
*aPermute
; /* The permutation */
2332 if( (pOp
->p5
& OPFLAG_PERMUTE
)==0 ){
2336 assert( pOp
[-1].opcode
==OP_Permutation
);
2337 assert( pOp
[-1].p4type
==P4_INTARRAY
);
2338 aPermute
= pOp
[-1].p4
.ai
+ 1;
2339 assert( aPermute
!=0 );
2342 pKeyInfo
= pOp
->p4
.pKeyInfo
;
2344 assert( pKeyInfo
!=0 );
2350 for(k
=0; k
<n
; k
++) if( aPermute
[k
]>(u32
)mx
) mx
= aPermute
[k
];
2351 assert( p1
>0 && p1
+mx
<=(p
->nMem
+1 - p
->nCursor
)+1 );
2352 assert( p2
>0 && p2
+mx
<=(p
->nMem
+1 - p
->nCursor
)+1 );
2354 assert( p1
>0 && p1
+n
<=(p
->nMem
+1 - p
->nCursor
)+1 );
2355 assert( p2
>0 && p2
+n
<=(p
->nMem
+1 - p
->nCursor
)+1 );
2357 #endif /* SQLITE_DEBUG */
2359 idx
= aPermute
? aPermute
[i
] : (u32
)i
;
2360 assert( memIsValid(&aMem
[p1
+idx
]) );
2361 assert( memIsValid(&aMem
[p2
+idx
]) );
2362 REGISTER_TRACE(p1
+idx
, &aMem
[p1
+idx
]);
2363 REGISTER_TRACE(p2
+idx
, &aMem
[p2
+idx
]);
2364 assert( i
<pKeyInfo
->nKeyField
);
2365 pColl
= pKeyInfo
->aColl
[i
];
2366 bRev
= (pKeyInfo
->aSortFlags
[i
] & KEYINFO_ORDER_DESC
);
2367 iCompare
= sqlite3MemCompare(&aMem
[p1
+idx
], &aMem
[p2
+idx
], pColl
);
2369 if( (pKeyInfo
->aSortFlags
[i
] & KEYINFO_ORDER_BIGNULL
)
2370 && ((aMem
[p1
+idx
].flags
& MEM_Null
) || (aMem
[p2
+idx
].flags
& MEM_Null
))
2372 iCompare
= -iCompare
;
2374 if( bRev
) iCompare
= -iCompare
;
2378 assert( pOp
[1].opcode
==OP_Jump
);
2382 /* Opcode: Jump P1 P2 P3 * *
2384 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2385 ** in the most recent OP_Compare instruction the P1 vector was less than
2386 ** equal to, or greater than the P2 vector, respectively.
2388 ** This opcode must immediately follow an OP_Compare opcode.
2390 case OP_Jump
: { /* jump */
2391 assert( pOp
>aOp
&& pOp
[-1].opcode
==OP_Compare
);
2393 VdbeBranchTaken(0,4); pOp
= &aOp
[pOp
->p1
- 1];
2394 }else if( iCompare
==0 ){
2395 VdbeBranchTaken(1,4); pOp
= &aOp
[pOp
->p2
- 1];
2397 VdbeBranchTaken(2,4); pOp
= &aOp
[pOp
->p3
- 1];
2402 /* Opcode: And P1 P2 P3 * *
2403 ** Synopsis: r[P3]=(r[P1] && r[P2])
2405 ** Take the logical AND of the values in registers P1 and P2 and
2406 ** write the result into register P3.
2408 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2409 ** the other input is NULL. A NULL and true or two NULLs give
2412 /* Opcode: Or P1 P2 P3 * *
2413 ** Synopsis: r[P3]=(r[P1] || r[P2])
2415 ** Take the logical OR of the values in register P1 and P2 and
2416 ** store the answer in register P3.
2418 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2419 ** even if the other input is NULL. A NULL and false or two NULLs
2420 ** give a NULL output.
2422 case OP_And
: /* same as TK_AND, in1, in2, out3 */
2423 case OP_Or
: { /* same as TK_OR, in1, in2, out3 */
2424 int v1
; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2425 int v2
; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2427 v1
= sqlite3VdbeBooleanValue(&aMem
[pOp
->p1
], 2);
2428 v2
= sqlite3VdbeBooleanValue(&aMem
[pOp
->p2
], 2);
2429 if( pOp
->opcode
==OP_And
){
2430 static const unsigned char and_logic
[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2431 v1
= and_logic
[v1
*3+v2
];
2433 static const unsigned char or_logic
[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2434 v1
= or_logic
[v1
*3+v2
];
2436 pOut
= &aMem
[pOp
->p3
];
2438 MemSetTypeFlag(pOut
, MEM_Null
);
2441 MemSetTypeFlag(pOut
, MEM_Int
);
2446 /* Opcode: IsTrue P1 P2 P3 P4 *
2447 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2449 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2450 ** IS NOT FALSE operators.
2452 ** Interpret the value in register P1 as a boolean value. Store that
2453 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is
2454 ** NULL, then the P3 is stored in register P2. Invert the answer if P4
2457 ** The logic is summarized like this:
2460 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE
2461 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE
2462 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE
2463 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE
2466 case OP_IsTrue
: { /* in1, out2 */
2467 assert( pOp
->p4type
==P4_INT32
);
2468 assert( pOp
->p4
.i
==0 || pOp
->p4
.i
==1 );
2469 assert( pOp
->p3
==0 || pOp
->p3
==1 );
2470 sqlite3VdbeMemSetInt64(&aMem
[pOp
->p2
],
2471 sqlite3VdbeBooleanValue(&aMem
[pOp
->p1
], pOp
->p3
) ^ pOp
->p4
.i
);
2475 /* Opcode: Not P1 P2 * * *
2476 ** Synopsis: r[P2]= !r[P1]
2478 ** Interpret the value in register P1 as a boolean value. Store the
2479 ** boolean complement in register P2. If the value in register P1 is
2480 ** NULL, then a NULL is stored in P2.
2482 case OP_Not
: { /* same as TK_NOT, in1, out2 */
2483 pIn1
= &aMem
[pOp
->p1
];
2484 pOut
= &aMem
[pOp
->p2
];
2485 if( (pIn1
->flags
& MEM_Null
)==0 ){
2486 sqlite3VdbeMemSetInt64(pOut
, !sqlite3VdbeBooleanValue(pIn1
,0));
2488 sqlite3VdbeMemSetNull(pOut
);
2493 /* Opcode: BitNot P1 P2 * * *
2494 ** Synopsis: r[P2]= ~r[P1]
2496 ** Interpret the content of register P1 as an integer. Store the
2497 ** ones-complement of the P1 value into register P2. If P1 holds
2498 ** a NULL then store a NULL in P2.
2500 case OP_BitNot
: { /* same as TK_BITNOT, in1, out2 */
2501 pIn1
= &aMem
[pOp
->p1
];
2502 pOut
= &aMem
[pOp
->p2
];
2503 sqlite3VdbeMemSetNull(pOut
);
2504 if( (pIn1
->flags
& MEM_Null
)==0 ){
2505 pOut
->flags
= MEM_Int
;
2506 pOut
->u
.i
= ~sqlite3VdbeIntValue(pIn1
);
2511 /* Opcode: Once P1 P2 * * *
2513 ** Fall through to the next instruction the first time this opcode is
2514 ** encountered on each invocation of the byte-code program. Jump to P2
2515 ** on the second and all subsequent encounters during the same invocation.
2517 ** Top-level programs determine first invocation by comparing the P1
2518 ** operand against the P1 operand on the OP_Init opcode at the beginning
2519 ** of the program. If the P1 values differ, then fall through and make
2520 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are
2521 ** the same then take the jump.
2523 ** For subprograms, there is a bitmask in the VdbeFrame that determines
2524 ** whether or not the jump should be taken. The bitmask is necessary
2525 ** because the self-altering code trick does not work for recursive
2528 case OP_Once
: { /* jump */
2529 u32 iAddr
; /* Address of this instruction */
2530 assert( p
->aOp
[0].opcode
==OP_Init
);
2532 iAddr
= (int)(pOp
- p
->aOp
);
2533 if( (p
->pFrame
->aOnce
[iAddr
/8] & (1<<(iAddr
& 7)))!=0 ){
2534 VdbeBranchTaken(1, 2);
2537 p
->pFrame
->aOnce
[iAddr
/8] |= 1<<(iAddr
& 7);
2539 if( p
->aOp
[0].p1
==pOp
->p1
){
2540 VdbeBranchTaken(1, 2);
2544 VdbeBranchTaken(0, 2);
2545 pOp
->p1
= p
->aOp
[0].p1
;
2549 /* Opcode: If P1 P2 P3 * *
2551 ** Jump to P2 if the value in register P1 is true. The value
2552 ** is considered true if it is numeric and non-zero. If the value
2553 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2555 case OP_If
: { /* jump, in1 */
2557 c
= sqlite3VdbeBooleanValue(&aMem
[pOp
->p1
], pOp
->p3
);
2558 VdbeBranchTaken(c
!=0, 2);
2559 if( c
) goto jump_to_p2
;
2563 /* Opcode: IfNot P1 P2 P3 * *
2565 ** Jump to P2 if the value in register P1 is False. The value
2566 ** is considered false if it has a numeric value of zero. If the value
2567 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2569 case OP_IfNot
: { /* jump, in1 */
2571 c
= !sqlite3VdbeBooleanValue(&aMem
[pOp
->p1
], !pOp
->p3
);
2572 VdbeBranchTaken(c
!=0, 2);
2573 if( c
) goto jump_to_p2
;
2577 /* Opcode: IsNull P1 P2 * * *
2578 ** Synopsis: if r[P1]==NULL goto P2
2580 ** Jump to P2 if the value in register P1 is NULL.
2582 case OP_IsNull
: { /* same as TK_ISNULL, jump, in1 */
2583 pIn1
= &aMem
[pOp
->p1
];
2584 VdbeBranchTaken( (pIn1
->flags
& MEM_Null
)!=0, 2);
2585 if( (pIn1
->flags
& MEM_Null
)!=0 ){
2591 /* Opcode: IsType P1 P2 P3 P4 P5
2592 ** Synopsis: if typeof(P1.P3) in P5 goto P2
2594 ** Jump to P2 if the type of a column in a btree is one of the types specified
2595 ** by the P5 bitmask.
2597 ** P1 is normally a cursor on a btree for which the row decode cache is
2598 ** valid through at least column P3. In other words, there should have been
2599 ** a prior OP_Column for column P3 or greater. If the cursor is not valid,
2600 ** then this opcode might give spurious results.
2601 ** The the btree row has fewer than P3 columns, then use P4 as the
2604 ** If P1 is -1, then P3 is a register number and the datatype is taken
2605 ** from the value in that register.
2607 ** P5 is a bitmask of data types. SQLITE_INTEGER is the least significant
2608 ** (0x01) bit. SQLITE_FLOAT is the 0x02 bit. SQLITE_TEXT is 0x04.
2609 ** SQLITE_BLOB is 0x08. SQLITE_NULL is 0x10.
2611 ** Take the jump to address P2 if and only if the datatype of the
2612 ** value determined by P1 and P3 corresponds to one of the bits in the
2616 case OP_IsType
: { /* jump */
2621 assert( pOp
->p1
>=(-1) && pOp
->p1
<p
->nCursor
);
2622 assert( pOp
->p1
>=0 || (pOp
->p3
>=0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
)) );
2624 pC
= p
->apCsr
[pOp
->p1
];
2626 assert( pOp
->p3
>=0 );
2627 if( pOp
->p3
<pC
->nHdrParsed
){
2628 serialType
= pC
->aType
[pOp
->p3
];
2629 if( serialType
>=12 ){
2631 typeMask
= 0x04; /* SQLITE_TEXT */
2633 typeMask
= 0x08; /* SQLITE_BLOB */
2636 static const unsigned char aMask
[] = {
2637 0x10, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x2,
2638 0x01, 0x01, 0x10, 0x10
2640 testcase( serialType
==0 );
2641 testcase( serialType
==1 );
2642 testcase( serialType
==2 );
2643 testcase( serialType
==3 );
2644 testcase( serialType
==4 );
2645 testcase( serialType
==5 );
2646 testcase( serialType
==6 );
2647 testcase( serialType
==7 );
2648 testcase( serialType
==8 );
2649 testcase( serialType
==9 );
2650 testcase( serialType
==10 );
2651 testcase( serialType
==11 );
2652 typeMask
= aMask
[serialType
];
2655 typeMask
= 1 << (pOp
->p4
.i
- 1);
2656 testcase( typeMask
==0x01 );
2657 testcase( typeMask
==0x02 );
2658 testcase( typeMask
==0x04 );
2659 testcase( typeMask
==0x08 );
2660 testcase( typeMask
==0x10 );
2663 assert( memIsValid(&aMem
[pOp
->p3
]) );
2664 typeMask
= 1 << (sqlite3_value_type((sqlite3_value
*)&aMem
[pOp
->p3
])-1);
2665 testcase( typeMask
==0x01 );
2666 testcase( typeMask
==0x02 );
2667 testcase( typeMask
==0x04 );
2668 testcase( typeMask
==0x08 );
2669 testcase( typeMask
==0x10 );
2671 VdbeBranchTaken( (typeMask
& pOp
->p5
)!=0, 2);
2672 if( typeMask
& pOp
->p5
){
2678 /* Opcode: ZeroOrNull P1 P2 P3 * *
2679 ** Synopsis: r[P2] = 0 OR NULL
2681 ** If all both registers P1 and P3 are NOT NULL, then store a zero in
2682 ** register P2. If either registers P1 or P3 are NULL then put
2683 ** a NULL in register P2.
2685 case OP_ZeroOrNull
: { /* in1, in2, out2, in3 */
2686 if( (aMem
[pOp
->p1
].flags
& MEM_Null
)!=0
2687 || (aMem
[pOp
->p3
].flags
& MEM_Null
)!=0
2689 sqlite3VdbeMemSetNull(aMem
+ pOp
->p2
);
2691 sqlite3VdbeMemSetInt64(aMem
+ pOp
->p2
, 0);
2696 /* Opcode: NotNull P1 P2 * * *
2697 ** Synopsis: if r[P1]!=NULL goto P2
2699 ** Jump to P2 if the value in register P1 is not NULL.
2701 case OP_NotNull
: { /* same as TK_NOTNULL, jump, in1 */
2702 pIn1
= &aMem
[pOp
->p1
];
2703 VdbeBranchTaken( (pIn1
->flags
& MEM_Null
)==0, 2);
2704 if( (pIn1
->flags
& MEM_Null
)==0 ){
2710 /* Opcode: IfNullRow P1 P2 P3 * *
2711 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2713 ** Check the cursor P1 to see if it is currently pointing at a NULL row.
2714 ** If it is, then set register P3 to NULL and jump immediately to P2.
2715 ** If P1 is not on a NULL row, then fall through without making any
2718 ** If P1 is not an open cursor, then this opcode is a no-op.
2720 case OP_IfNullRow
: { /* jump */
2722 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
2723 pC
= p
->apCsr
[pOp
->p1
];
2724 if( ALWAYS(pC
) && pC
->nullRow
){
2725 sqlite3VdbeMemSetNull(aMem
+ pOp
->p3
);
2731 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2732 /* Opcode: Offset P1 P2 P3 * *
2733 ** Synopsis: r[P3] = sqlite_offset(P1)
2735 ** Store in register r[P3] the byte offset into the database file that is the
2736 ** start of the payload for the record at which that cursor P1 is currently
2739 ** P2 is the column number for the argument to the sqlite_offset() function.
2740 ** This opcode does not use P2 itself, but the P2 value is used by the
2741 ** code generator. The P1, P2, and P3 operands to this opcode are the
2742 ** same as for OP_Column.
2744 ** This opcode is only available if SQLite is compiled with the
2745 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
2747 case OP_Offset
: { /* out3 */
2748 VdbeCursor
*pC
; /* The VDBE cursor */
2749 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
2750 pC
= p
->apCsr
[pOp
->p1
];
2751 pOut
= &p
->aMem
[pOp
->p3
];
2752 if( pC
==0 || pC
->eCurType
!=CURTYPE_BTREE
){
2753 sqlite3VdbeMemSetNull(pOut
);
2755 if( pC
->deferredMoveto
){
2756 rc
= sqlite3VdbeFinishMoveto(pC
);
2757 if( rc
) goto abort_due_to_error
;
2759 if( sqlite3BtreeEof(pC
->uc
.pCursor
) ){
2760 sqlite3VdbeMemSetNull(pOut
);
2762 sqlite3VdbeMemSetInt64(pOut
, sqlite3BtreeOffset(pC
->uc
.pCursor
));
2767 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
2769 /* Opcode: Column P1 P2 P3 P4 P5
2770 ** Synopsis: r[P3]=PX cursor P1 column P2
2772 ** Interpret the data that cursor P1 points to as a structure built using
2773 ** the MakeRecord instruction. (See the MakeRecord opcode for additional
2774 ** information about the format of the data.) Extract the P2-th column
2775 ** from this record. If there are less than (P2+1)
2776 ** values in the record, extract a NULL.
2778 ** The value extracted is stored in register P3.
2780 ** If the record contains fewer than P2 fields, then extract a NULL. Or,
2781 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2784 ** If the OPFLAG_LENGTHARG bit is set in P5 then the result is guaranteed
2785 ** to only be used by the length() function or the equivalent. The content
2786 ** of large blobs is not loaded, thus saving CPU cycles. If the
2787 ** OPFLAG_TYPEOFARG bit is set then the result will only be used by the
2788 ** typeof() function or the IS NULL or IS NOT NULL operators or the
2789 ** equivalent. In this case, all content loading can be omitted.
2792 u32 p2
; /* column number to retrieve */
2793 VdbeCursor
*pC
; /* The VDBE cursor */
2794 BtCursor
*pCrsr
; /* The B-Tree cursor corresponding to pC */
2795 u32
*aOffset
; /* aOffset[i] is offset to start of data for i-th column */
2796 int len
; /* The length of the serialized data for the column */
2797 int i
; /* Loop counter */
2798 Mem
*pDest
; /* Where to write the extracted value */
2799 Mem sMem
; /* For storing the record being decoded */
2800 const u8
*zData
; /* Part of the record being decoded */
2801 const u8
*zHdr
; /* Next unparsed byte of the header */
2802 const u8
*zEndHdr
; /* Pointer to first byte after the header */
2803 u64 offset64
; /* 64-bit offset */
2804 u32 t
; /* A type code from the record header */
2805 Mem
*pReg
; /* PseudoTable input register */
2807 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
2808 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
2809 pC
= p
->apCsr
[pOp
->p1
];
2814 assert( p2
<(u32
)pC
->nField
2815 || (pC
->eCurType
==CURTYPE_PSEUDO
&& pC
->seekResult
==0) );
2816 aOffset
= pC
->aOffset
;
2817 assert( aOffset
==pC
->aType
+pC
->nField
);
2818 assert( pC
->eCurType
!=CURTYPE_VTAB
);
2819 assert( pC
->eCurType
!=CURTYPE_PSEUDO
|| pC
->nullRow
);
2820 assert( pC
->eCurType
!=CURTYPE_SORTER
);
2822 if( pC
->cacheStatus
!=p
->cacheCtr
){ /*OPTIMIZATION-IF-FALSE*/
2824 if( pC
->eCurType
==CURTYPE_PSEUDO
&& pC
->seekResult
>0 ){
2825 /* For the special case of as pseudo-cursor, the seekResult field
2826 ** identifies the register that holds the record */
2827 pReg
= &aMem
[pC
->seekResult
];
2828 assert( pReg
->flags
& MEM_Blob
);
2829 assert( memIsValid(pReg
) );
2830 pC
->payloadSize
= pC
->szRow
= pReg
->n
;
2831 pC
->aRow
= (u8
*)pReg
->z
;
2833 pDest
= &aMem
[pOp
->p3
];
2834 memAboutToChange(p
, pDest
);
2835 sqlite3VdbeMemSetNull(pDest
);
2839 pCrsr
= pC
->uc
.pCursor
;
2840 if( pC
->deferredMoveto
){
2842 assert( !pC
->isEphemeral
);
2843 if( pC
->ub
.aAltMap
&& (iMap
= pC
->ub
.aAltMap
[1+p2
])>0 ){
2844 pC
= pC
->pAltCursor
;
2846 goto op_column_restart
;
2848 rc
= sqlite3VdbeFinishMoveto(pC
);
2849 if( rc
) goto abort_due_to_error
;
2850 }else if( sqlite3BtreeCursorHasMoved(pCrsr
) ){
2851 rc
= sqlite3VdbeHandleMovedCursor(pC
);
2852 if( rc
) goto abort_due_to_error
;
2853 goto op_column_restart
;
2855 assert( pC
->eCurType
==CURTYPE_BTREE
);
2857 assert( sqlite3BtreeCursorIsValid(pCrsr
) );
2858 pC
->payloadSize
= sqlite3BtreePayloadSize(pCrsr
);
2859 pC
->aRow
= sqlite3BtreePayloadFetch(pCrsr
, &pC
->szRow
);
2860 assert( pC
->szRow
<=pC
->payloadSize
);
2861 assert( pC
->szRow
<=65536 ); /* Maximum page size is 64KiB */
2863 pC
->cacheStatus
= p
->cacheCtr
;
2864 if( (aOffset
[0] = pC
->aRow
[0])<0x80 ){
2867 pC
->iHdrOffset
= sqlite3GetVarint32(pC
->aRow
, aOffset
);
2871 if( pC
->szRow
<aOffset
[0] ){ /*OPTIMIZATION-IF-FALSE*/
2872 /* pC->aRow does not have to hold the entire row, but it does at least
2873 ** need to cover the header of the record. If pC->aRow does not contain
2874 ** the complete header, then set it to zero, forcing the header to be
2875 ** dynamically allocated. */
2879 /* Make sure a corrupt database has not given us an oversize header.
2880 ** Do this now to avoid an oversize memory allocation.
2882 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
2883 ** types use so much data space that there can only be 4096 and 32 of
2884 ** them, respectively. So the maximum header length results from a
2885 ** 3-byte type for each of the maximum of 32768 columns plus three
2886 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
2888 if( aOffset
[0] > 98307 || aOffset
[0] > pC
->payloadSize
){
2889 goto op_column_corrupt
;
2892 /* This is an optimization. By skipping over the first few tests
2893 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
2894 ** measurable performance gain.
2896 ** This branch is taken even if aOffset[0]==0. Such a record is never
2897 ** generated by SQLite, and could be considered corruption, but we
2898 ** accept it for historical reasons. When aOffset[0]==0, the code this
2899 ** branch jumps to reads past the end of the record, but never more
2900 ** than a few bytes. Even if the record occurs at the end of the page
2901 ** content area, the "page header" comes after the page content and so
2902 ** this overread is harmless. Similar overreads can occur for a corrupt
2906 assert( pC
->nHdrParsed
<=p2
); /* Conditional skipped */
2907 testcase( aOffset
[0]==0 );
2908 goto op_column_read_header
;
2910 }else if( sqlite3BtreeCursorHasMoved(pC
->uc
.pCursor
) ){
2911 rc
= sqlite3VdbeHandleMovedCursor(pC
);
2912 if( rc
) goto abort_due_to_error
;
2913 goto op_column_restart
;
2916 /* Make sure at least the first p2+1 entries of the header have been
2917 ** parsed and valid information is in aOffset[] and pC->aType[].
2919 if( pC
->nHdrParsed
<=p2
){
2920 /* If there is more header available for parsing in the record, try
2921 ** to extract additional fields up through the p2+1-th field
2923 if( pC
->iHdrOffset
<aOffset
[0] ){
2924 /* Make sure zData points to enough of the record to cover the header. */
2926 memset(&sMem
, 0, sizeof(sMem
));
2927 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pC
->uc
.pCursor
,aOffset
[0],&sMem
);
2928 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
2929 zData
= (u8
*)sMem
.z
;
2934 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
2935 op_column_read_header
:
2937 offset64
= aOffset
[i
];
2938 zHdr
= zData
+ pC
->iHdrOffset
;
2939 zEndHdr
= zData
+ aOffset
[0];
2940 testcase( zHdr
>=zEndHdr
);
2942 if( (pC
->aType
[i
] = t
= zHdr
[0])<0x80 ){
2944 offset64
+= sqlite3VdbeOneByteSerialTypeLen(t
);
2946 zHdr
+= sqlite3GetVarint32(zHdr
, &t
);
2948 offset64
+= sqlite3VdbeSerialTypeLen(t
);
2950 aOffset
[++i
] = (u32
)(offset64
& 0xffffffff);
2951 }while( (u32
)i
<=p2
&& zHdr
<zEndHdr
);
2953 /* The record is corrupt if any of the following are true:
2954 ** (1) the bytes of the header extend past the declared header size
2955 ** (2) the entire header was used but not all data was used
2956 ** (3) the end of the data extends beyond the end of the record.
2958 if( (zHdr
>=zEndHdr
&& (zHdr
>zEndHdr
|| offset64
!=pC
->payloadSize
))
2959 || (offset64
> pC
->payloadSize
)
2961 if( aOffset
[0]==0 ){
2965 if( pC
->aRow
==0 ) sqlite3VdbeMemRelease(&sMem
);
2966 goto op_column_corrupt
;
2971 pC
->iHdrOffset
= (u32
)(zHdr
- zData
);
2972 if( pC
->aRow
==0 ) sqlite3VdbeMemRelease(&sMem
);
2977 /* If after trying to extract new entries from the header, nHdrParsed is
2978 ** still not up to p2, that means that the record has fewer than p2
2979 ** columns. So the result will be either the default value or a NULL.
2981 if( pC
->nHdrParsed
<=p2
){
2982 pDest
= &aMem
[pOp
->p3
];
2983 memAboutToChange(p
, pDest
);
2984 if( pOp
->p4type
==P4_MEM
){
2985 sqlite3VdbeMemShallowCopy(pDest
, pOp
->p4
.pMem
, MEM_Static
);
2987 sqlite3VdbeMemSetNull(pDest
);
2995 /* Extract the content for the p2+1-th column. Control can only
2996 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
2999 assert( p2
<pC
->nHdrParsed
);
3000 assert( rc
==SQLITE_OK
);
3001 pDest
= &aMem
[pOp
->p3
];
3002 memAboutToChange(p
, pDest
);
3003 assert( sqlite3VdbeCheckMemInvariants(pDest
) );
3004 if( VdbeMemDynamic(pDest
) ){
3005 sqlite3VdbeMemSetNull(pDest
);
3007 assert( t
==pC
->aType
[p2
] );
3008 if( pC
->szRow
>=aOffset
[p2
+1] ){
3009 /* This is the common case where the desired content fits on the original
3010 ** page - where the content is not on an overflow page */
3011 zData
= pC
->aRow
+ aOffset
[p2
];
3013 sqlite3VdbeSerialGet(zData
, t
, pDest
);
3015 /* If the column value is a string, we need a persistent value, not
3016 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent
3017 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
3019 static const u16 aFlag
[] = { MEM_Blob
, MEM_Str
|MEM_Term
};
3020 pDest
->n
= len
= (t
-12)/2;
3021 pDest
->enc
= encoding
;
3022 if( pDest
->szMalloc
< len
+2 ){
3023 if( len
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ) goto too_big
;
3024 pDest
->flags
= MEM_Null
;
3025 if( sqlite3VdbeMemGrow(pDest
, len
+2, 0) ) goto no_mem
;
3027 pDest
->z
= pDest
->zMalloc
;
3029 memcpy(pDest
->z
, zData
, len
);
3031 pDest
->z
[len
+1] = 0;
3032 pDest
->flags
= aFlag
[t
&1];
3035 pDest
->enc
= encoding
;
3036 /* This branch happens only when content is on overflow pages */
3037 if( ((pOp
->p5
& (OPFLAG_LENGTHARG
|OPFLAG_TYPEOFARG
))!=0
3038 && ((t
>=12 && (t
&1)==0) || (pOp
->p5
& OPFLAG_TYPEOFARG
)!=0))
3039 || (len
= sqlite3VdbeSerialTypeLen(t
))==0
3041 /* Content is irrelevant for
3042 ** 1. the typeof() function,
3043 ** 2. the length(X) function if X is a blob, and
3044 ** 3. if the content length is zero.
3045 ** So we might as well use bogus content rather than reading
3046 ** content from disk.
3048 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
3049 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
3050 ** read more. Use the global constant sqlite3CtypeMap[] as the array,
3051 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
3052 ** and it begins with a bunch of zeros.
3054 sqlite3VdbeSerialGet((u8
*)sqlite3CtypeMap
, t
, pDest
);
3056 if( len
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ) goto too_big
;
3057 rc
= sqlite3VdbeMemFromBtree(pC
->uc
.pCursor
, aOffset
[p2
], len
, pDest
);
3058 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3059 sqlite3VdbeSerialGet((const u8
*)pDest
->z
, t
, pDest
);
3060 pDest
->flags
&= ~MEM_Ephem
;
3065 UPDATE_MAX_BLOBSIZE(pDest
);
3066 REGISTER_TRACE(pOp
->p3
, pDest
);
3071 pOp
= &aOp
[aOp
[0].p3
-1];
3074 rc
= SQLITE_CORRUPT_BKPT
;
3075 goto abort_due_to_error
;
3079 /* Opcode: TypeCheck P1 P2 P3 P4 *
3080 ** Synopsis: typecheck(r[P1@P2])
3082 ** Apply affinities to the range of P2 registers beginning with P1.
3083 ** Take the affinities from the Table object in P4. If any value
3084 ** cannot be coerced into the correct type, then raise an error.
3086 ** This opcode is similar to OP_Affinity except that this opcode
3087 ** forces the register type to the Table column type. This is used
3088 ** to implement "strict affinity".
3090 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3
3091 ** is zero. When P3 is non-zero, no type checking occurs for
3092 ** static generated columns. Virtual columns are computed at query time
3093 ** and so they are never checked.
3098 ** <li> P2 should be the number of non-virtual columns in the
3100 ** <li> Table P4 should be a STRICT table.
3103 ** If any precondition is false, an assertion fault occurs.
3105 case OP_TypeCheck
: {
3110 assert( pOp
->p4type
==P4_TABLE
);
3111 pTab
= pOp
->p4
.pTab
;
3112 assert( pTab
->tabFlags
& TF_Strict
);
3113 assert( pTab
->nNVCol
==pOp
->p2
);
3115 pIn1
= &aMem
[pOp
->p1
];
3116 for(i
=0; i
<pTab
->nCol
; i
++){
3117 if( aCol
[i
].colFlags
& COLFLAG_GENERATED
){
3118 if( aCol
[i
].colFlags
& COLFLAG_VIRTUAL
) continue;
3119 if( pOp
->p3
){ pIn1
++; continue; }
3121 assert( pIn1
< &aMem
[pOp
->p1
+pOp
->p2
] );
3122 applyAffinity(pIn1
, aCol
[i
].affinity
, encoding
);
3123 if( (pIn1
->flags
& MEM_Null
)==0 ){
3124 switch( aCol
[i
].eCType
){
3125 case COLTYPE_BLOB
: {
3126 if( (pIn1
->flags
& MEM_Blob
)==0 ) goto vdbe_type_error
;
3129 case COLTYPE_INTEGER
:
3131 if( (pIn1
->flags
& MEM_Int
)==0 ) goto vdbe_type_error
;
3134 case COLTYPE_TEXT
: {
3135 if( (pIn1
->flags
& MEM_Str
)==0 ) goto vdbe_type_error
;
3138 case COLTYPE_REAL
: {
3139 testcase( (pIn1
->flags
& (MEM_Real
|MEM_IntReal
))==MEM_Real
);
3140 testcase( (pIn1
->flags
& (MEM_Real
|MEM_IntReal
))==MEM_IntReal
);
3141 if( pIn1
->flags
& MEM_Int
){
3142 /* When applying REAL affinity, if the result is still an MEM_Int
3143 ** that will fit in 6 bytes, then change the type to MEM_IntReal
3144 ** so that we keep the high-resolution integer value but know that
3145 ** the type really wants to be REAL. */
3146 testcase( pIn1
->u
.i
==140737488355328LL );
3147 testcase( pIn1
->u
.i
==140737488355327LL );
3148 testcase( pIn1
->u
.i
==-140737488355328LL );
3149 testcase( pIn1
->u
.i
==-140737488355329LL );
3150 if( pIn1
->u
.i
<=140737488355327LL && pIn1
->u
.i
>=-140737488355328LL){
3151 pIn1
->flags
|= MEM_IntReal
;
3152 pIn1
->flags
&= ~MEM_Int
;
3154 pIn1
->u
.r
= (double)pIn1
->u
.i
;
3155 pIn1
->flags
|= MEM_Real
;
3156 pIn1
->flags
&= ~MEM_Int
;
3158 }else if( (pIn1
->flags
& (MEM_Real
|MEM_IntReal
))==0 ){
3159 goto vdbe_type_error
;
3164 /* COLTYPE_ANY. Accept anything. */
3169 REGISTER_TRACE((int)(pIn1
-aMem
), pIn1
);
3172 assert( pIn1
== &aMem
[pOp
->p1
+pOp
->p2
] );
3176 sqlite3VdbeError(p
, "cannot store %s value in %s column %s.%s",
3177 vdbeMemTypeName(pIn1
), sqlite3StdType
[aCol
[i
].eCType
-1],
3178 pTab
->zName
, aCol
[i
].zCnName
);
3179 rc
= SQLITE_CONSTRAINT_DATATYPE
;
3180 goto abort_due_to_error
;
3183 /* Opcode: Affinity P1 P2 * P4 *
3184 ** Synopsis: affinity(r[P1@P2])
3186 ** Apply affinities to a range of P2 registers starting with P1.
3188 ** P4 is a string that is P2 characters long. The N-th character of the
3189 ** string indicates the column affinity that should be used for the N-th
3190 ** memory cell in the range.
3193 const char *zAffinity
; /* The affinity to be applied */
3195 zAffinity
= pOp
->p4
.z
;
3196 assert( zAffinity
!=0 );
3197 assert( pOp
->p2
>0 );
3198 assert( zAffinity
[pOp
->p2
]==0 );
3199 pIn1
= &aMem
[pOp
->p1
];
3200 while( 1 /*exit-by-break*/ ){
3201 assert( pIn1
<= &p
->aMem
[(p
->nMem
+1 - p
->nCursor
)] );
3202 assert( zAffinity
[0]==SQLITE_AFF_NONE
|| memIsValid(pIn1
) );
3203 applyAffinity(pIn1
, zAffinity
[0], encoding
);
3204 if( zAffinity
[0]==SQLITE_AFF_REAL
&& (pIn1
->flags
& MEM_Int
)!=0 ){
3205 /* When applying REAL affinity, if the result is still an MEM_Int
3206 ** that will fit in 6 bytes, then change the type to MEM_IntReal
3207 ** so that we keep the high-resolution integer value but know that
3208 ** the type really wants to be REAL. */
3209 testcase( pIn1
->u
.i
==140737488355328LL );
3210 testcase( pIn1
->u
.i
==140737488355327LL );
3211 testcase( pIn1
->u
.i
==-140737488355328LL );
3212 testcase( pIn1
->u
.i
==-140737488355329LL );
3213 if( pIn1
->u
.i
<=140737488355327LL && pIn1
->u
.i
>=-140737488355328LL ){
3214 pIn1
->flags
|= MEM_IntReal
;
3215 pIn1
->flags
&= ~MEM_Int
;
3217 pIn1
->u
.r
= (double)pIn1
->u
.i
;
3218 pIn1
->flags
|= MEM_Real
;
3219 pIn1
->flags
&= ~MEM_Int
;
3222 REGISTER_TRACE((int)(pIn1
-aMem
), pIn1
);
3224 if( zAffinity
[0]==0 ) break;
3230 /* Opcode: MakeRecord P1 P2 P3 P4 *
3231 ** Synopsis: r[P3]=mkrec(r[P1@P2])
3233 ** Convert P2 registers beginning with P1 into the [record format]
3234 ** use as a data record in a database table or as a key
3235 ** in an index. The OP_Column opcode can decode the record later.
3237 ** P4 may be a string that is P2 characters long. The N-th character of the
3238 ** string indicates the column affinity that should be used for the N-th
3239 ** field of the index key.
3241 ** The mapping from character to affinity is given by the SQLITE_AFF_
3242 ** macros defined in sqliteInt.h.
3244 ** If P4 is NULL then all index fields have the affinity BLOB.
3246 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM
3247 ** compile-time option is enabled:
3249 ** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index
3250 ** of the right-most table that can be null-trimmed.
3252 ** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value
3253 ** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to
3254 ** accept no-change records with serial_type 10. This value is
3255 ** only used inside an assert() and does not affect the end result.
3257 case OP_MakeRecord
: {
3258 Mem
*pRec
; /* The new record */
3259 u64 nData
; /* Number of bytes of data space */
3260 int nHdr
; /* Number of bytes of header space */
3261 i64 nByte
; /* Data space required for this record */
3262 i64 nZero
; /* Number of zero bytes at the end of the record */
3263 int nVarint
; /* Number of bytes in a varint */
3264 u32 serial_type
; /* Type field */
3265 Mem
*pData0
; /* First field to be combined into the record */
3266 Mem
*pLast
; /* Last field of the record */
3267 int nField
; /* Number of fields in the record */
3268 char *zAffinity
; /* The affinity string for the record */
3269 u32 len
; /* Length of a field */
3270 u8
*zHdr
; /* Where to write next byte of the header */
3271 u8
*zPayload
; /* Where to write next byte of the payload */
3273 /* Assuming the record contains N fields, the record format looks
3276 ** ------------------------------------------------------------------------
3277 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
3278 ** ------------------------------------------------------------------------
3280 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
3283 ** Each type field is a varint representing the serial type of the
3284 ** corresponding data element (see sqlite3VdbeSerialType()). The
3285 ** hdr-size field is also a varint which is the offset from the beginning
3286 ** of the record to data0.
3288 nData
= 0; /* Number of bytes of data space */
3289 nHdr
= 0; /* Number of bytes of header space */
3290 nZero
= 0; /* Number of zero bytes at the end of the record */
3292 zAffinity
= pOp
->p4
.z
;
3293 assert( nField
>0 && pOp
->p2
>0 && pOp
->p2
+nField
<=(p
->nMem
+1 - p
->nCursor
)+1 );
3294 pData0
= &aMem
[nField
];
3296 pLast
= &pData0
[nField
-1];
3298 /* Identify the output register */
3299 assert( pOp
->p3
<pOp
->p1
|| pOp
->p3
>=pOp
->p1
+pOp
->p2
);
3300 pOut
= &aMem
[pOp
->p3
];
3301 memAboutToChange(p
, pOut
);
3303 /* Apply the requested affinity to all inputs
3305 assert( pData0
<=pLast
);
3309 applyAffinity(pRec
, zAffinity
[0], encoding
);
3310 if( zAffinity
[0]==SQLITE_AFF_REAL
&& (pRec
->flags
& MEM_Int
) ){
3311 pRec
->flags
|= MEM_IntReal
;
3312 pRec
->flags
&= ~(MEM_Int
);
3314 REGISTER_TRACE((int)(pRec
-aMem
), pRec
);
3317 assert( zAffinity
[0]==0 || pRec
<=pLast
);
3318 }while( zAffinity
[0] );
3321 #ifdef SQLITE_ENABLE_NULL_TRIM
3322 /* NULLs can be safely trimmed from the end of the record, as long as
3323 ** as the schema format is 2 or more and none of the omitted columns
3324 ** have a non-NULL default value. Also, the record must be left with
3325 ** at least one field. If P5>0 then it will be one more than the
3326 ** index of the right-most column with a non-NULL default value */
3328 while( (pLast
->flags
& MEM_Null
)!=0 && nField
>pOp
->p5
){
3335 /* Loop through the elements that will make up the record to figure
3336 ** out how much space is required for the new record. After this loop,
3337 ** the Mem.uTemp field of each term should hold the serial-type that will
3338 ** be used for that term in the generated record:
3340 ** Mem.uTemp value type
3341 ** --------------- ---------------
3343 ** 1 1-byte signed integer
3344 ** 2 2-byte signed integer
3345 ** 3 3-byte signed integer
3346 ** 4 4-byte signed integer
3347 ** 5 6-byte signed integer
3348 ** 6 8-byte signed integer
3350 ** 8 Integer constant 0
3351 ** 9 Integer constant 1
3352 ** 10,11 reserved for expansion
3353 ** N>=12 and even BLOB
3354 ** N>=13 and odd text
3356 ** The following additional values are computed:
3357 ** nHdr Number of bytes needed for the record header
3358 ** nData Number of bytes of data space needed for the record
3359 ** nZero Zero bytes at the end of the record
3363 assert( memIsValid(pRec
) );
3364 if( pRec
->flags
& MEM_Null
){
3365 if( pRec
->flags
& MEM_Zero
){
3366 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
3367 ** table methods that never invoke sqlite3_result_xxxxx() while
3368 ** computing an unchanging column value in an UPDATE statement.
3369 ** Give such values a special internal-use-only serial-type of 10
3370 ** so that they can be passed through to xUpdate and have
3371 ** a true sqlite3_value_nochange(). */
3372 #ifndef SQLITE_ENABLE_NULL_TRIM
3373 assert( pOp
->p5
==OPFLAG_NOCHNG_MAGIC
|| CORRUPT_DB
);
3380 }else if( pRec
->flags
& (MEM_Int
|MEM_IntReal
) ){
3381 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3384 testcase( pRec
->flags
& MEM_Int
);
3385 testcase( pRec
->flags
& MEM_IntReal
);
3392 testcase( uu
==127 ); testcase( uu
==128 );
3393 testcase( uu
==32767 ); testcase( uu
==32768 );
3394 testcase( uu
==8388607 ); testcase( uu
==8388608 );
3395 testcase( uu
==2147483647 ); testcase( uu
==2147483648LL );
3396 testcase( uu
==140737488355327LL ); testcase( uu
==140737488355328LL );
3398 if( (i
&1)==i
&& p
->minWriteFileFormat
>=4 ){
3399 pRec
->uTemp
= 8+(u32
)uu
;
3404 }else if( uu
<=32767 ){
3407 }else if( uu
<=8388607 ){
3410 }else if( uu
<=2147483647 ){
3413 }else if( uu
<=140737488355327LL ){
3418 if( pRec
->flags
& MEM_IntReal
){
3419 /* If the value is IntReal and is going to take up 8 bytes to store
3420 ** as an integer, then we might as well make it an 8-byte floating
3422 pRec
->u
.r
= (double)pRec
->u
.i
;
3423 pRec
->flags
&= ~MEM_IntReal
;
3424 pRec
->flags
|= MEM_Real
;
3430 }else if( pRec
->flags
& MEM_Real
){
3435 assert( db
->mallocFailed
|| pRec
->flags
&(MEM_Str
|MEM_Blob
) );
3436 assert( pRec
->n
>=0 );
3438 serial_type
= (len
*2) + 12 + ((pRec
->flags
& MEM_Str
)!=0);
3439 if( pRec
->flags
& MEM_Zero
){
3440 serial_type
+= pRec
->u
.nZero
*2;
3442 if( sqlite3VdbeMemExpandBlob(pRec
) ) goto no_mem
;
3443 len
+= pRec
->u
.nZero
;
3445 nZero
+= pRec
->u
.nZero
;
3449 nHdr
+= sqlite3VarintLen(serial_type
);
3450 pRec
->uTemp
= serial_type
;
3452 if( pRec
==pData0
) break;
3456 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
3457 ** which determines the total number of bytes in the header. The varint
3458 ** value is the size of the header in bytes including the size varint
3460 testcase( nHdr
==126 );
3461 testcase( nHdr
==127 );
3463 /* The common case */
3466 /* Rare case of a really large header */
3467 nVarint
= sqlite3VarintLen(nHdr
);
3469 if( nVarint
<sqlite3VarintLen(nHdr
) ) nHdr
++;
3473 /* Make sure the output register has a buffer large enough to store
3474 ** the new record. The output register (pOp->p3) is not allowed to
3475 ** be one of the input registers (because the following call to
3476 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
3478 if( nByte
+nZero
<=pOut
->szMalloc
){
3479 /* The output register is already large enough to hold the record.
3480 ** No error checks or buffer enlargement is required */
3481 pOut
->z
= pOut
->zMalloc
;
3483 /* Need to make sure that the output is not too big and then enlarge
3484 ** the output register to hold the full result */
3485 if( nByte
+nZero
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
3488 if( sqlite3VdbeMemClearAndResize(pOut
, (int)nByte
) ){
3492 pOut
->n
= (int)nByte
;
3493 pOut
->flags
= MEM_Blob
;
3495 pOut
->u
.nZero
= nZero
;
3496 pOut
->flags
|= MEM_Zero
;
3498 UPDATE_MAX_BLOBSIZE(pOut
);
3499 zHdr
= (u8
*)pOut
->z
;
3500 zPayload
= zHdr
+ nHdr
;
3502 /* Write the record */
3506 zHdr
+= sqlite3PutVarint(zHdr
,nHdr
);
3508 assert( pData0
<=pLast
);
3510 while( 1 /*exit-by-break*/ ){
3511 serial_type
= pRec
->uTemp
;
3512 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
3513 ** additional varints, one per column.
3514 ** EVIDENCE-OF: R-64536-51728 The values for each column in the record
3515 ** immediately follow the header. */
3516 if( serial_type
<=7 ){
3517 *(zHdr
++) = serial_type
;
3518 if( serial_type
==0 ){
3519 /* NULL value. No change in zPayload */
3523 if( serial_type
==7 ){
3524 assert( sizeof(v
)==sizeof(pRec
->u
.r
) );
3525 memcpy(&v
, &pRec
->u
.r
, sizeof(v
));
3526 swapMixedEndianFloat(v
);
3530 len
= i
= sqlite3SmallTypeSizes
[serial_type
];
3532 while( 1 /*exit-by-break*/ ){
3533 zPayload
[--i
] = (u8
)(v
&0xFF);
3539 }else if( serial_type
<0x80 ){
3540 *(zHdr
++) = serial_type
;
3541 if( serial_type
>=14 && pRec
->n
>0 ){
3542 assert( pRec
->z
!=0 );
3543 memcpy(zPayload
, pRec
->z
, pRec
->n
);
3544 zPayload
+= pRec
->n
;
3547 zHdr
+= sqlite3PutVarint(zHdr
, serial_type
);
3549 assert( pRec
->z
!=0 );
3550 memcpy(zPayload
, pRec
->z
, pRec
->n
);
3551 zPayload
+= pRec
->n
;
3554 if( pRec
==pLast
) break;
3557 assert( nHdr
==(int)(zHdr
- (u8
*)pOut
->z
) );
3558 assert( nByte
==(int)(zPayload
- (u8
*)pOut
->z
) );
3560 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
3561 REGISTER_TRACE(pOp
->p3
, pOut
);
3565 /* Opcode: Count P1 P2 P3 * *
3566 ** Synopsis: r[P2]=count()
3568 ** Store the number of entries (an integer value) in the table or index
3569 ** opened by cursor P1 in register P2.
3571 ** If P3==0, then an exact count is obtained, which involves visiting
3572 ** every btree page of the table. But if P3 is non-zero, an estimate
3573 ** is returned based on the current cursor position.
3575 case OP_Count
: { /* out2 */
3579 assert( p
->apCsr
[pOp
->p1
]->eCurType
==CURTYPE_BTREE
);
3580 pCrsr
= p
->apCsr
[pOp
->p1
]->uc
.pCursor
;
3583 nEntry
= sqlite3BtreeRowCountEst(pCrsr
);
3585 nEntry
= 0; /* Not needed. Only used to silence a warning. */
3586 rc
= sqlite3BtreeCount(db
, pCrsr
, &nEntry
);
3587 if( rc
) goto abort_due_to_error
;
3589 pOut
= out2Prerelease(p
, pOp
);
3591 goto check_for_interrupt
;
3594 /* Opcode: Savepoint P1 * * P4 *
3596 ** Open, release or rollback the savepoint named by parameter P4, depending
3597 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
3598 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
3599 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
3601 case OP_Savepoint
: {
3602 int p1
; /* Value of P1 operand */
3603 char *zName
; /* Name of savepoint */
3606 Savepoint
*pSavepoint
;
3614 /* Assert that the p1 parameter is valid. Also that if there is no open
3615 ** transaction, then there cannot be any savepoints.
3617 assert( db
->pSavepoint
==0 || db
->autoCommit
==0 );
3618 assert( p1
==SAVEPOINT_BEGIN
||p1
==SAVEPOINT_RELEASE
||p1
==SAVEPOINT_ROLLBACK
);
3619 assert( db
->pSavepoint
|| db
->isTransactionSavepoint
==0 );
3620 assert( checkSavepointCount(db
) );
3621 assert( p
->bIsReader
);
3623 if( p1
==SAVEPOINT_BEGIN
){
3624 if( db
->nVdbeWrite
>0 ){
3625 /* A new savepoint cannot be created if there are active write
3626 ** statements (i.e. open read/write incremental blob handles).
3628 sqlite3VdbeError(p
, "cannot open savepoint - SQL statements in progress");
3631 nName
= sqlite3Strlen30(zName
);
3633 #ifndef SQLITE_OMIT_VIRTUALTABLE
3634 /* This call is Ok even if this savepoint is actually a transaction
3635 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
3636 ** If this is a transaction savepoint being opened, it is guaranteed
3637 ** that the db->aVTrans[] array is empty. */
3638 assert( db
->autoCommit
==0 || db
->nVTrans
==0 );
3639 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_BEGIN
,
3640 db
->nStatement
+db
->nSavepoint
);
3641 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3644 /* Create a new savepoint structure. */
3645 pNew
= sqlite3DbMallocRawNN(db
, sizeof(Savepoint
)+nName
+1);
3647 pNew
->zName
= (char *)&pNew
[1];
3648 memcpy(pNew
->zName
, zName
, nName
+1);
3650 /* If there is no open transaction, then mark this as a special
3651 ** "transaction savepoint". */
3652 if( db
->autoCommit
){
3654 db
->isTransactionSavepoint
= 1;
3659 /* Link the new savepoint into the database handle's list. */
3660 pNew
->pNext
= db
->pSavepoint
;
3661 db
->pSavepoint
= pNew
;
3662 pNew
->nDeferredCons
= db
->nDeferredCons
;
3663 pNew
->nDeferredImmCons
= db
->nDeferredImmCons
;
3667 assert( p1
==SAVEPOINT_RELEASE
|| p1
==SAVEPOINT_ROLLBACK
);
3670 /* Find the named savepoint. If there is no such savepoint, then an
3671 ** an error is returned to the user. */
3673 pSavepoint
= db
->pSavepoint
;
3674 pSavepoint
&& sqlite3StrICmp(pSavepoint
->zName
, zName
);
3675 pSavepoint
= pSavepoint
->pNext
3680 sqlite3VdbeError(p
, "no such savepoint: %s", zName
);
3682 }else if( db
->nVdbeWrite
>0 && p1
==SAVEPOINT_RELEASE
){
3683 /* It is not possible to release (commit) a savepoint if there are
3684 ** active write statements.
3686 sqlite3VdbeError(p
, "cannot release savepoint - "
3687 "SQL statements in progress");
3691 /* Determine whether or not this is a transaction savepoint. If so,
3692 ** and this is a RELEASE command, then the current transaction
3695 int isTransaction
= pSavepoint
->pNext
==0 && db
->isTransactionSavepoint
;
3696 if( isTransaction
&& p1
==SAVEPOINT_RELEASE
){
3697 if( (rc
= sqlite3VdbeCheckFk(p
, 1))!=SQLITE_OK
){
3701 if( sqlite3VdbeHalt(p
)==SQLITE_BUSY
){
3702 p
->pc
= (int)(pOp
- aOp
);
3704 p
->rc
= rc
= SQLITE_BUSY
;
3711 db
->isTransactionSavepoint
= 0;
3715 iSavepoint
= db
->nSavepoint
- iSavepoint
- 1;
3716 if( p1
==SAVEPOINT_ROLLBACK
){
3717 isSchemaChange
= (db
->mDbFlags
& DBFLAG_SchemaChange
)!=0;
3718 for(ii
=0; ii
<db
->nDb
; ii
++){
3719 rc
= sqlite3BtreeTripAllCursors(db
->aDb
[ii
].pBt
,
3720 SQLITE_ABORT_ROLLBACK
,
3722 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3725 assert( p1
==SAVEPOINT_RELEASE
);
3728 for(ii
=0; ii
<db
->nDb
; ii
++){
3729 rc
= sqlite3BtreeSavepoint(db
->aDb
[ii
].pBt
, p1
, iSavepoint
);
3730 if( rc
!=SQLITE_OK
){
3731 goto abort_due_to_error
;
3734 if( isSchemaChange
){
3735 sqlite3ExpirePreparedStatements(db
, 0);
3736 sqlite3ResetAllSchemasOfConnection(db
);
3737 db
->mDbFlags
|= DBFLAG_SchemaChange
;
3740 if( rc
) goto abort_due_to_error
;
3742 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3743 ** savepoints nested inside of the savepoint being operated on. */
3744 while( db
->pSavepoint
!=pSavepoint
){
3745 pTmp
= db
->pSavepoint
;
3746 db
->pSavepoint
= pTmp
->pNext
;
3747 sqlite3DbFree(db
, pTmp
);
3751 /* If it is a RELEASE, then destroy the savepoint being operated on
3752 ** too. If it is a ROLLBACK TO, then set the number of deferred
3753 ** constraint violations present in the database to the value stored
3754 ** when the savepoint was created. */
3755 if( p1
==SAVEPOINT_RELEASE
){
3756 assert( pSavepoint
==db
->pSavepoint
);
3757 db
->pSavepoint
= pSavepoint
->pNext
;
3758 sqlite3DbFree(db
, pSavepoint
);
3759 if( !isTransaction
){
3763 assert( p1
==SAVEPOINT_ROLLBACK
);
3764 db
->nDeferredCons
= pSavepoint
->nDeferredCons
;
3765 db
->nDeferredImmCons
= pSavepoint
->nDeferredImmCons
;
3768 if( !isTransaction
|| p1
==SAVEPOINT_ROLLBACK
){
3769 rc
= sqlite3VtabSavepoint(db
, p1
, iSavepoint
);
3770 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3774 if( rc
) goto abort_due_to_error
;
3775 if( p
->eVdbeState
==VDBE_HALT_STATE
){
3782 /* Opcode: AutoCommit P1 P2 * * *
3784 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3785 ** back any currently active btree transactions. If there are any active
3786 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
3787 ** there are active writing VMs or active VMs that use shared cache.
3789 ** This instruction causes the VM to halt.
3791 case OP_AutoCommit
: {
3792 int desiredAutoCommit
;
3795 desiredAutoCommit
= pOp
->p1
;
3796 iRollback
= pOp
->p2
;
3797 assert( desiredAutoCommit
==1 || desiredAutoCommit
==0 );
3798 assert( desiredAutoCommit
==1 || iRollback
==0 );
3799 assert( db
->nVdbeActive
>0 ); /* At least this one VM is active */
3800 assert( p
->bIsReader
);
3802 if( desiredAutoCommit
!=db
->autoCommit
){
3804 assert( desiredAutoCommit
==1 );
3805 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
3807 }else if( desiredAutoCommit
&& db
->nVdbeWrite
>0 ){
3808 /* If this instruction implements a COMMIT and other VMs are writing
3809 ** return an error indicating that the other VMs must complete first.
3811 sqlite3VdbeError(p
, "cannot commit transaction - "
3812 "SQL statements in progress");
3814 goto abort_due_to_error
;
3815 }else if( (rc
= sqlite3VdbeCheckFk(p
, 1))!=SQLITE_OK
){
3818 db
->autoCommit
= (u8
)desiredAutoCommit
;
3820 if( sqlite3VdbeHalt(p
)==SQLITE_BUSY
){
3821 p
->pc
= (int)(pOp
- aOp
);
3822 db
->autoCommit
= (u8
)(1-desiredAutoCommit
);
3823 p
->rc
= rc
= SQLITE_BUSY
;
3826 sqlite3CloseSavepoints(db
);
3827 if( p
->rc
==SQLITE_OK
){
3835 (!desiredAutoCommit
)?"cannot start a transaction within a transaction":(
3836 (iRollback
)?"cannot rollback - no transaction is active":
3837 "cannot commit - no transaction is active"));
3840 goto abort_due_to_error
;
3842 /*NOTREACHED*/ assert(0);
3845 /* Opcode: Transaction P1 P2 P3 P4 P5
3847 ** Begin a transaction on database P1 if a transaction is not already
3849 ** If P2 is non-zero, then a write-transaction is started, or if a
3850 ** read-transaction is already active, it is upgraded to a write-transaction.
3851 ** If P2 is zero, then a read-transaction is started. If P2 is 2 or more
3852 ** then an exclusive transaction is started.
3854 ** P1 is the index of the database file on which the transaction is
3855 ** started. Index 0 is the main database file and index 1 is the
3856 ** file used for temporary tables. Indices of 2 or more are used for
3857 ** attached databases.
3859 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3860 ** true (this flag is set if the Vdbe may modify more than one row and may
3861 ** throw an ABORT exception), a statement transaction may also be opened.
3862 ** More specifically, a statement transaction is opened iff the database
3863 ** connection is currently not in autocommit mode, or if there are other
3864 ** active statements. A statement transaction allows the changes made by this
3865 ** VDBE to be rolled back after an error without having to roll back the
3866 ** entire transaction. If no error is encountered, the statement transaction
3867 ** will automatically commit when the VDBE halts.
3869 ** If P5!=0 then this opcode also checks the schema cookie against P3
3870 ** and the schema generation counter against P4.
3871 ** The cookie changes its value whenever the database schema changes.
3872 ** This operation is used to detect when that the cookie has changed
3873 ** and that the current process needs to reread the schema. If the schema
3874 ** cookie in P3 differs from the schema cookie in the database header or
3875 ** if the schema generation counter in P4 differs from the current
3876 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
3877 ** halts. The sqlite3_step() wrapper function might then reprepare the
3878 ** statement and rerun it from the beginning.
3880 case OP_Transaction
: {
3885 assert( p
->bIsReader
);
3886 assert( p
->readOnly
==0 || pOp
->p2
==0 );
3887 assert( pOp
->p2
>=0 && pOp
->p2
<=2 );
3888 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
3889 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
3890 assert( rc
==SQLITE_OK
);
3891 if( pOp
->p2
&& (db
->flags
& (SQLITE_QueryOnly
|SQLITE_CorruptRdOnly
))!=0 ){
3892 if( db
->flags
& SQLITE_QueryOnly
){
3893 /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */
3894 rc
= SQLITE_READONLY
;
3896 /* Writes prohibited due to a prior SQLITE_CORRUPT in the current
3898 rc
= SQLITE_CORRUPT
;
3900 goto abort_due_to_error
;
3902 pDb
= &db
->aDb
[pOp
->p1
];
3906 rc
= sqlite3BtreeBeginTrans(pBt
, pOp
->p2
, &iMeta
);
3907 testcase( rc
==SQLITE_BUSY_SNAPSHOT
);
3908 testcase( rc
==SQLITE_BUSY_RECOVERY
);
3909 if( rc
!=SQLITE_OK
){
3910 if( (rc
&0xff)==SQLITE_BUSY
){
3911 p
->pc
= (int)(pOp
- aOp
);
3915 goto abort_due_to_error
;
3918 if( p
->usesStmtJournal
3920 && (db
->autoCommit
==0 || db
->nVdbeRead
>1)
3922 assert( sqlite3BtreeTxnState(pBt
)==SQLITE_TXN_WRITE
);
3923 if( p
->iStatement
==0 ){
3924 assert( db
->nStatement
>=0 && db
->nSavepoint
>=0 );
3926 p
->iStatement
= db
->nSavepoint
+ db
->nStatement
;
3929 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_BEGIN
, p
->iStatement
-1);
3930 if( rc
==SQLITE_OK
){
3931 rc
= sqlite3BtreeBeginStmt(pBt
, p
->iStatement
);
3934 /* Store the current value of the database handles deferred constraint
3935 ** counter. If the statement transaction needs to be rolled back,
3936 ** the value of this counter needs to be restored too. */
3937 p
->nStmtDefCons
= db
->nDeferredCons
;
3938 p
->nStmtDefImmCons
= db
->nDeferredImmCons
;
3941 assert( pOp
->p5
==0 || pOp
->p4type
==P4_INT32
);
3944 && (iMeta
!=pOp
->p3
|| pDb
->pSchema
->iGeneration
!=pOp
->p4
.i
)
3947 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
3948 ** version is checked to ensure that the schema has not changed since the
3949 ** SQL statement was prepared.
3951 sqlite3DbFree(db
, p
->zErrMsg
);
3952 p
->zErrMsg
= sqlite3DbStrDup(db
, "database schema has changed");
3953 /* If the schema-cookie from the database file matches the cookie
3954 ** stored with the in-memory representation of the schema, do
3955 ** not reload the schema from the database file.
3957 ** If virtual-tables are in use, this is not just an optimization.
3958 ** Often, v-tables store their data in other SQLite tables, which
3959 ** are queried from within xNext() and other v-table methods using
3960 ** prepared queries. If such a query is out-of-date, we do not want to
3961 ** discard the database schema, as the user code implementing the
3962 ** v-table would have to be ready for the sqlite3_vtab structure itself
3963 ** to be invalidated whenever sqlite3_step() is called from within
3964 ** a v-table method.
3966 if( db
->aDb
[pOp
->p1
].pSchema
->schema_cookie
!=iMeta
){
3967 sqlite3ResetOneSchema(db
, pOp
->p1
);
3972 /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes()
3973 ** from being modified in sqlite3VdbeHalt(). If this statement is
3974 ** reprepared, changeCntOn will be set again. */
3977 if( rc
) goto abort_due_to_error
;
3981 /* Opcode: ReadCookie P1 P2 P3 * *
3983 ** Read cookie number P3 from database P1 and write it into register P2.
3984 ** P3==1 is the schema version. P3==2 is the database format.
3985 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is
3986 ** the main database file and P1==1 is the database file used to store
3987 ** temporary tables.
3989 ** There must be a read-lock on the database (either a transaction
3990 ** must be started or there must be an open cursor) before
3991 ** executing this instruction.
3993 case OP_ReadCookie
: { /* out2 */
3998 assert( p
->bIsReader
);
4001 assert( pOp
->p3
<SQLITE_N_BTREE_META
);
4002 assert( iDb
>=0 && iDb
<db
->nDb
);
4003 assert( db
->aDb
[iDb
].pBt
!=0 );
4004 assert( DbMaskTest(p
->btreeMask
, iDb
) );
4006 sqlite3BtreeGetMeta(db
->aDb
[iDb
].pBt
, iCookie
, (u32
*)&iMeta
);
4007 pOut
= out2Prerelease(p
, pOp
);
4012 /* Opcode: SetCookie P1 P2 P3 * P5
4014 ** Write the integer value P3 into cookie number P2 of database P1.
4015 ** P2==1 is the schema version. P2==2 is the database format.
4016 ** P2==3 is the recommended pager cache
4017 ** size, and so forth. P1==0 is the main database file and P1==1 is the
4018 ** database file used to store temporary tables.
4020 ** A transaction must be started before executing this opcode.
4022 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal
4023 ** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement
4024 ** has P5 set to 1, so that the internal schema version will be different
4025 ** from the database schema version, resulting in a schema reset.
4027 case OP_SetCookie
: {
4030 sqlite3VdbeIncrWriteCounter(p
, 0);
4031 assert( pOp
->p2
<SQLITE_N_BTREE_META
);
4032 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
4033 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
4034 assert( p
->readOnly
==0 );
4035 pDb
= &db
->aDb
[pOp
->p1
];
4036 assert( pDb
->pBt
!=0 );
4037 assert( sqlite3SchemaMutexHeld(db
, pOp
->p1
, 0) );
4038 /* See note about index shifting on OP_ReadCookie */
4039 rc
= sqlite3BtreeUpdateMeta(pDb
->pBt
, pOp
->p2
, pOp
->p3
);
4040 if( pOp
->p2
==BTREE_SCHEMA_VERSION
){
4041 /* When the schema cookie changes, record the new cookie internally */
4042 *(u32
*)&pDb
->pSchema
->schema_cookie
= *(u32
*)&pOp
->p3
- pOp
->p5
;
4043 db
->mDbFlags
|= DBFLAG_SchemaChange
;
4044 sqlite3FkClearTriggerCache(db
, pOp
->p1
);
4045 }else if( pOp
->p2
==BTREE_FILE_FORMAT
){
4046 /* Record changes in the file format */
4047 pDb
->pSchema
->file_format
= pOp
->p3
;
4050 /* Invalidate all prepared statements whenever the TEMP database
4051 ** schema is changed. Ticket #1644 */
4052 sqlite3ExpirePreparedStatements(db
, 0);
4055 if( rc
) goto abort_due_to_error
;
4059 /* Opcode: OpenRead P1 P2 P3 P4 P5
4060 ** Synopsis: root=P2 iDb=P3
4062 ** Open a read-only cursor for the database table whose root page is
4063 ** P2 in a database file. The database file is determined by P3.
4064 ** P3==0 means the main database, P3==1 means the database used for
4065 ** temporary tables, and P3>1 means used the corresponding attached
4066 ** database. Give the new cursor an identifier of P1. The P1
4067 ** values need not be contiguous but all P1 values should be small integers.
4068 ** It is an error for P1 to be negative.
4072 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4073 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4074 ** of OP_SeekLE/OP_IdxLT)
4077 ** The P4 value may be either an integer (P4_INT32) or a pointer to
4078 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
4079 ** object, then table being opened must be an [index b-tree] where the
4080 ** KeyInfo object defines the content and collating
4081 ** sequence of that index b-tree. Otherwise, if P4 is an integer
4082 ** value, then the table being opened must be a [table b-tree] with a
4083 ** number of columns no less than the value of P4.
4085 ** See also: OpenWrite, ReopenIdx
4087 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
4088 ** Synopsis: root=P2 iDb=P3
4090 ** The ReopenIdx opcode works like OP_OpenRead except that it first
4091 ** checks to see if the cursor on P1 is already open on the same
4092 ** b-tree and if it is this opcode becomes a no-op. In other words,
4093 ** if the cursor is already open, do not reopen it.
4095 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
4096 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must
4097 ** be the same as every other ReopenIdx or OpenRead for the same cursor
4102 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4103 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4104 ** of OP_SeekLE/OP_IdxLT)
4107 ** See also: OP_OpenRead, OP_OpenWrite
4109 /* Opcode: OpenWrite P1 P2 P3 P4 P5
4110 ** Synopsis: root=P2 iDb=P3
4112 ** Open a read/write cursor named P1 on the table or index whose root
4113 ** page is P2 (or whose root page is held in register P2 if the
4114 ** OPFLAG_P2ISREG bit is set in P5 - see below).
4116 ** The P4 value may be either an integer (P4_INT32) or a pointer to
4117 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
4118 ** object, then table being opened must be an [index b-tree] where the
4119 ** KeyInfo object defines the content and collating
4120 ** sequence of that index b-tree. Otherwise, if P4 is an integer
4121 ** value, then the table being opened must be a [table b-tree] with a
4122 ** number of columns no less than the value of P4.
4126 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4127 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4128 ** of OP_SeekLE/OP_IdxLT)
4129 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
4130 ** and subsequently delete entries in an index btree. This is a
4131 ** hint to the storage engine that the storage engine is allowed to
4132 ** ignore. The hint is not used by the official SQLite b*tree storage
4133 ** engine, but is used by COMDB2.
4134 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
4135 ** as the root page, not the value of P2 itself.
4138 ** This instruction works like OpenRead except that it opens the cursor
4139 ** in read/write mode.
4141 ** See also: OP_OpenRead, OP_ReopenIdx
4143 case OP_ReopenIdx
: {
4153 assert( pOp
->p5
==0 || pOp
->p5
==OPFLAG_SEEKEQ
);
4154 assert( pOp
->p4type
==P4_KEYINFO
);
4155 pCur
= p
->apCsr
[pOp
->p1
];
4156 if( pCur
&& pCur
->pgnoRoot
==(u32
)pOp
->p2
){
4157 assert( pCur
->iDb
==pOp
->p3
); /* Guaranteed by the code generator */
4158 assert( pCur
->eCurType
==CURTYPE_BTREE
);
4159 sqlite3BtreeClearCursor(pCur
->uc
.pCursor
);
4160 goto open_cursor_set_hints
;
4162 /* If the cursor is not currently open or is open on a different
4163 ** index, then fall through into OP_OpenRead to force a reopen */
4167 assert( pOp
->opcode
==OP_OpenWrite
|| pOp
->p5
==0 || pOp
->p5
==OPFLAG_SEEKEQ
);
4168 assert( p
->bIsReader
);
4169 assert( pOp
->opcode
==OP_OpenRead
|| pOp
->opcode
==OP_ReopenIdx
4170 || p
->readOnly
==0 );
4172 if( p
->expired
==1 ){
4173 rc
= SQLITE_ABORT_ROLLBACK
;
4174 goto abort_due_to_error
;
4181 assert( iDb
>=0 && iDb
<db
->nDb
);
4182 assert( DbMaskTest(p
->btreeMask
, iDb
) );
4183 pDb
= &db
->aDb
[iDb
];
4186 if( pOp
->opcode
==OP_OpenWrite
){
4187 assert( OPFLAG_FORDELETE
==BTREE_FORDELETE
);
4188 wrFlag
= BTREE_WRCSR
| (pOp
->p5
& OPFLAG_FORDELETE
);
4189 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
4190 if( pDb
->pSchema
->file_format
< p
->minWriteFileFormat
){
4191 p
->minWriteFileFormat
= pDb
->pSchema
->file_format
;
4196 if( pOp
->p5
& OPFLAG_P2ISREG
){
4198 assert( p2
<=(u32
)(p
->nMem
+1 - p
->nCursor
) );
4199 assert( pOp
->opcode
==OP_OpenWrite
);
4201 assert( memIsValid(pIn2
) );
4202 assert( (pIn2
->flags
& MEM_Int
)!=0 );
4203 sqlite3VdbeMemIntegerify(pIn2
);
4204 p2
= (int)pIn2
->u
.i
;
4205 /* The p2 value always comes from a prior OP_CreateBtree opcode and
4206 ** that opcode will always set the p2 value to 2 or more or else fail.
4207 ** If there were a failure, the prepared statement would have halted
4208 ** before reaching this instruction. */
4211 if( pOp
->p4type
==P4_KEYINFO
){
4212 pKeyInfo
= pOp
->p4
.pKeyInfo
;
4213 assert( pKeyInfo
->enc
==ENC(db
) );
4214 assert( pKeyInfo
->db
==db
);
4215 nField
= pKeyInfo
->nAllField
;
4216 }else if( pOp
->p4type
==P4_INT32
){
4219 assert( pOp
->p1
>=0 );
4220 assert( nField
>=0 );
4221 testcase( nField
==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
4222 pCur
= allocateCursor(p
, pOp
->p1
, nField
, CURTYPE_BTREE
);
4223 if( pCur
==0 ) goto no_mem
;
4226 pCur
->isOrdered
= 1;
4227 pCur
->pgnoRoot
= p2
;
4229 pCur
->wrFlag
= wrFlag
;
4231 rc
= sqlite3BtreeCursor(pX
, p2
, wrFlag
, pKeyInfo
, pCur
->uc
.pCursor
);
4232 pCur
->pKeyInfo
= pKeyInfo
;
4233 /* Set the VdbeCursor.isTable variable. Previous versions of
4234 ** SQLite used to check if the root-page flags were sane at this point
4235 ** and report database corruption if they were not, but this check has
4236 ** since moved into the btree layer. */
4237 pCur
->isTable
= pOp
->p4type
!=P4_KEYINFO
;
4239 open_cursor_set_hints
:
4240 assert( OPFLAG_BULKCSR
==BTREE_BULKLOAD
);
4241 assert( OPFLAG_SEEKEQ
==BTREE_SEEK_EQ
);
4242 testcase( pOp
->p5
& OPFLAG_BULKCSR
);
4243 testcase( pOp
->p2
& OPFLAG_SEEKEQ
);
4244 sqlite3BtreeCursorHintFlags(pCur
->uc
.pCursor
,
4245 (pOp
->p5
& (OPFLAG_BULKCSR
|OPFLAG_SEEKEQ
)));
4246 if( rc
) goto abort_due_to_error
;
4250 /* Opcode: OpenDup P1 P2 * * *
4252 ** Open a new cursor P1 that points to the same ephemeral table as
4253 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral
4254 ** opcode. Only ephemeral cursors may be duplicated.
4256 ** Duplicate ephemeral cursors are used for self-joins of materialized views.
4259 VdbeCursor
*pOrig
; /* The original cursor to be duplicated */
4260 VdbeCursor
*pCx
; /* The new cursor */
4262 pOrig
= p
->apCsr
[pOp
->p2
];
4264 assert( pOrig
->isEphemeral
); /* Only ephemeral cursors can be duplicated */
4266 pCx
= allocateCursor(p
, pOp
->p1
, pOrig
->nField
, CURTYPE_BTREE
);
4267 if( pCx
==0 ) goto no_mem
;
4269 pCx
->isEphemeral
= 1;
4270 pCx
->pKeyInfo
= pOrig
->pKeyInfo
;
4271 pCx
->isTable
= pOrig
->isTable
;
4272 pCx
->pgnoRoot
= pOrig
->pgnoRoot
;
4273 pCx
->isOrdered
= pOrig
->isOrdered
;
4274 pCx
->ub
.pBtx
= pOrig
->ub
.pBtx
;
4277 rc
= sqlite3BtreeCursor(pCx
->ub
.pBtx
, pCx
->pgnoRoot
, BTREE_WRCSR
,
4278 pCx
->pKeyInfo
, pCx
->uc
.pCursor
);
4279 /* The sqlite3BtreeCursor() routine can only fail for the first cursor
4280 ** opened for a database. Since there is already an open cursor when this
4281 ** opcode is run, the sqlite3BtreeCursor() cannot fail */
4282 assert( rc
==SQLITE_OK
);
4287 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5
4288 ** Synopsis: nColumn=P2
4290 ** Open a new cursor P1 to a transient table.
4291 ** The cursor is always opened read/write even if
4292 ** the main database is read-only. The ephemeral
4293 ** table is deleted automatically when the cursor is closed.
4295 ** If the cursor P1 is already opened on an ephemeral table, the table
4296 ** is cleared (all content is erased).
4298 ** P2 is the number of columns in the ephemeral table.
4299 ** The cursor points to a BTree table if P4==0 and to a BTree index
4300 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
4301 ** that defines the format of keys in the index.
4303 ** The P5 parameter can be a mask of the BTREE_* flags defined
4304 ** in btree.h. These flags control aspects of the operation of
4305 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
4306 ** added automatically.
4308 ** If P3 is positive, then reg[P3] is modified slightly so that it
4309 ** can be used as zero-length data for OP_Insert. This is an optimization
4310 ** that avoids an extra OP_Blob opcode to initialize that register.
4312 /* Opcode: OpenAutoindex P1 P2 * P4 *
4313 ** Synopsis: nColumn=P2
4315 ** This opcode works the same as OP_OpenEphemeral. It has a
4316 ** different name to distinguish its use. Tables created using
4317 ** by this opcode will be used for automatically created transient
4318 ** indices in joins.
4320 case OP_OpenAutoindex
:
4321 case OP_OpenEphemeral
: {
4325 static const int vfsFlags
=
4326 SQLITE_OPEN_READWRITE
|
4327 SQLITE_OPEN_CREATE
|
4328 SQLITE_OPEN_EXCLUSIVE
|
4329 SQLITE_OPEN_DELETEONCLOSE
|
4330 SQLITE_OPEN_TRANSIENT_DB
;
4331 assert( pOp
->p1
>=0 );
4332 assert( pOp
->p2
>=0 );
4334 /* Make register reg[P3] into a value that can be used as the data
4335 ** form sqlite3BtreeInsert() where the length of the data is zero. */
4336 assert( pOp
->p2
==0 ); /* Only used when number of columns is zero */
4337 assert( pOp
->opcode
==OP_OpenEphemeral
);
4338 assert( aMem
[pOp
->p3
].flags
& MEM_Null
);
4339 aMem
[pOp
->p3
].n
= 0;
4340 aMem
[pOp
->p3
].z
= "";
4342 pCx
= p
->apCsr
[pOp
->p1
];
4343 if( pCx
&& !pCx
->noReuse
&& ALWAYS(pOp
->p2
<=pCx
->nField
) ){
4344 /* If the ephermeral table is already open and has no duplicates from
4345 ** OP_OpenDup, then erase all existing content so that the table is
4346 ** empty again, rather than creating a new table. */
4347 assert( pCx
->isEphemeral
);
4349 pCx
->cacheStatus
= CACHE_STALE
;
4350 rc
= sqlite3BtreeClearTable(pCx
->ub
.pBtx
, pCx
->pgnoRoot
, 0);
4352 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p2
, CURTYPE_BTREE
);
4353 if( pCx
==0 ) goto no_mem
;
4354 pCx
->isEphemeral
= 1;
4355 rc
= sqlite3BtreeOpen(db
->pVfs
, 0, db
, &pCx
->ub
.pBtx
,
4356 BTREE_OMIT_JOURNAL
| BTREE_SINGLE
| pOp
->p5
,
4358 if( rc
==SQLITE_OK
){
4359 rc
= sqlite3BtreeBeginTrans(pCx
->ub
.pBtx
, 1, 0);
4360 if( rc
==SQLITE_OK
){
4361 /* If a transient index is required, create it by calling
4362 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
4363 ** opening it. If a transient table is required, just use the
4364 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
4366 if( (pCx
->pKeyInfo
= pKeyInfo
= pOp
->p4
.pKeyInfo
)!=0 ){
4367 assert( pOp
->p4type
==P4_KEYINFO
);
4368 rc
= sqlite3BtreeCreateTable(pCx
->ub
.pBtx
, &pCx
->pgnoRoot
,
4369 BTREE_BLOBKEY
| pOp
->p5
);
4370 if( rc
==SQLITE_OK
){
4371 assert( pCx
->pgnoRoot
==SCHEMA_ROOT
+1 );
4372 assert( pKeyInfo
->db
==db
);
4373 assert( pKeyInfo
->enc
==ENC(db
) );
4374 rc
= sqlite3BtreeCursor(pCx
->ub
.pBtx
, pCx
->pgnoRoot
, BTREE_WRCSR
,
4375 pKeyInfo
, pCx
->uc
.pCursor
);
4379 pCx
->pgnoRoot
= SCHEMA_ROOT
;
4380 rc
= sqlite3BtreeCursor(pCx
->ub
.pBtx
, SCHEMA_ROOT
, BTREE_WRCSR
,
4381 0, pCx
->uc
.pCursor
);
4385 pCx
->isOrdered
= (pOp
->p5
!=BTREE_UNORDERED
);
4387 sqlite3BtreeClose(pCx
->ub
.pBtx
);
4391 if( rc
) goto abort_due_to_error
;
4396 /* Opcode: SorterOpen P1 P2 P3 P4 *
4398 ** This opcode works like OP_OpenEphemeral except that it opens
4399 ** a transient index that is specifically designed to sort large
4400 ** tables using an external merge-sort algorithm.
4402 ** If argument P3 is non-zero, then it indicates that the sorter may
4403 ** assume that a stable sort considering the first P3 fields of each
4404 ** key is sufficient to produce the required results.
4406 case OP_SorterOpen
: {
4409 assert( pOp
->p1
>=0 );
4410 assert( pOp
->p2
>=0 );
4411 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p2
, CURTYPE_SORTER
);
4412 if( pCx
==0 ) goto no_mem
;
4413 pCx
->pKeyInfo
= pOp
->p4
.pKeyInfo
;
4414 assert( pCx
->pKeyInfo
->db
==db
);
4415 assert( pCx
->pKeyInfo
->enc
==ENC(db
) );
4416 rc
= sqlite3VdbeSorterInit(db
, pOp
->p3
, pCx
);
4417 if( rc
) goto abort_due_to_error
;
4421 /* Opcode: SequenceTest P1 P2 * * *
4422 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
4424 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
4425 ** to P2. Regardless of whether or not the jump is taken, increment the
4426 ** the sequence value.
4428 case OP_SequenceTest
: {
4430 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4431 pC
= p
->apCsr
[pOp
->p1
];
4432 assert( isSorter(pC
) );
4433 if( (pC
->seqCount
++)==0 ){
4439 /* Opcode: OpenPseudo P1 P2 P3 * *
4440 ** Synopsis: P3 columns in r[P2]
4442 ** Open a new cursor that points to a fake table that contains a single
4443 ** row of data. The content of that one row is the content of memory
4444 ** register P2. In other words, cursor P1 becomes an alias for the
4445 ** MEM_Blob content contained in register P2.
4447 ** A pseudo-table created by this opcode is used to hold a single
4448 ** row output from the sorter so that the row can be decomposed into
4449 ** individual columns using the OP_Column opcode. The OP_Column opcode
4450 ** is the only cursor opcode that works with a pseudo-table.
4452 ** P3 is the number of fields in the records that will be stored by
4453 ** the pseudo-table.
4455 case OP_OpenPseudo
: {
4458 assert( pOp
->p1
>=0 );
4459 assert( pOp
->p3
>=0 );
4460 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p3
, CURTYPE_PSEUDO
);
4461 if( pCx
==0 ) goto no_mem
;
4463 pCx
->seekResult
= pOp
->p2
;
4465 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
4466 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test
4467 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
4468 ** which is a performance optimization */
4469 pCx
->uc
.pCursor
= sqlite3BtreeFakeValidCursor();
4470 assert( pOp
->p5
==0 );
4474 /* Opcode: Close P1 * * * *
4476 ** Close a cursor previously opened as P1. If P1 is not
4477 ** currently open, this instruction is a no-op.
4480 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4481 sqlite3VdbeFreeCursor(p
, p
->apCsr
[pOp
->p1
]);
4482 p
->apCsr
[pOp
->p1
] = 0;
4486 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4487 /* Opcode: ColumnsUsed P1 * * P4 *
4489 ** This opcode (which only exists if SQLite was compiled with
4490 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
4491 ** table or index for cursor P1 are used. P4 is a 64-bit integer
4492 ** (P4_INT64) in which the first 63 bits are one for each of the
4493 ** first 63 columns of the table or index that are actually used
4494 ** by the cursor. The high-order bit is set if any column after
4495 ** the 64th is used.
4497 case OP_ColumnsUsed
: {
4499 pC
= p
->apCsr
[pOp
->p1
];
4500 assert( pC
->eCurType
==CURTYPE_BTREE
);
4501 pC
->maskUsed
= *(u64
*)pOp
->p4
.pI64
;
4506 /* Opcode: SeekGE P1 P2 P3 P4 *
4507 ** Synopsis: key=r[P3@P4]
4509 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4510 ** use the value in register P3 as the key. If cursor P1 refers
4511 ** to an SQL index, then P3 is the first in an array of P4 registers
4512 ** that are used as an unpacked index key.
4514 ** Reposition cursor P1 so that it points to the smallest entry that
4515 ** is greater than or equal to the key value. If there are no records
4516 ** greater than or equal to the key and P2 is not zero, then jump to P2.
4518 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4519 ** opcode will either land on a record that exactly matches the key, or
4520 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
4521 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4522 ** The IdxGT opcode will be skipped if this opcode succeeds, but the
4523 ** IdxGT opcode will be used on subsequent loop iterations. The
4524 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4525 ** is an equality search.
4527 ** This opcode leaves the cursor configured to move in forward order,
4528 ** from the beginning toward the end. In other words, the cursor is
4529 ** configured to use Next, not Prev.
4531 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
4533 /* Opcode: SeekGT P1 P2 P3 P4 *
4534 ** Synopsis: key=r[P3@P4]
4536 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4537 ** use the value in register P3 as a key. If cursor P1 refers
4538 ** to an SQL index, then P3 is the first in an array of P4 registers
4539 ** that are used as an unpacked index key.
4541 ** Reposition cursor P1 so that it points to the smallest entry that
4542 ** is greater than the key value. If there are no records greater than
4543 ** the key and P2 is not zero, then jump to P2.
4545 ** This opcode leaves the cursor configured to move in forward order,
4546 ** from the beginning toward the end. In other words, the cursor is
4547 ** configured to use Next, not Prev.
4549 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
4551 /* Opcode: SeekLT P1 P2 P3 P4 *
4552 ** Synopsis: key=r[P3@P4]
4554 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4555 ** use the value in register P3 as a key. If cursor P1 refers
4556 ** to an SQL index, then P3 is the first in an array of P4 registers
4557 ** that are used as an unpacked index key.
4559 ** Reposition cursor P1 so that it points to the largest entry that
4560 ** is less than the key value. If there are no records less than
4561 ** the key and P2 is not zero, then jump to P2.
4563 ** This opcode leaves the cursor configured to move in reverse order,
4564 ** from the end toward the beginning. In other words, the cursor is
4565 ** configured to use Prev, not Next.
4567 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
4569 /* Opcode: SeekLE P1 P2 P3 P4 *
4570 ** Synopsis: key=r[P3@P4]
4572 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4573 ** use the value in register P3 as a key. If cursor P1 refers
4574 ** to an SQL index, then P3 is the first in an array of P4 registers
4575 ** that are used as an unpacked index key.
4577 ** Reposition cursor P1 so that it points to the largest entry that
4578 ** is less than or equal to the key value. If there are no records
4579 ** less than or equal to the key and P2 is not zero, then jump to P2.
4581 ** This opcode leaves the cursor configured to move in reverse order,
4582 ** from the end toward the beginning. In other words, the cursor is
4583 ** configured to use Prev, not Next.
4585 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4586 ** opcode will either land on a record that exactly matches the key, or
4587 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
4588 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4589 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
4590 ** IdxGE opcode will be used on subsequent loop iterations. The
4591 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4592 ** is an equality search.
4594 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
4596 case OP_SeekLT
: /* jump, in3, group */
4597 case OP_SeekLE
: /* jump, in3, group */
4598 case OP_SeekGE
: /* jump, in3, group */
4599 case OP_SeekGT
: { /* jump, in3, group */
4600 int res
; /* Comparison result */
4601 int oc
; /* Opcode */
4602 VdbeCursor
*pC
; /* The cursor to seek */
4603 UnpackedRecord r
; /* The key to seek for */
4604 int nField
; /* Number of columns or fields in the key */
4605 i64 iKey
; /* The rowid we are to seek to */
4606 int eqOnly
; /* Only interested in == results */
4608 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4609 assert( pOp
->p2
!=0 );
4610 pC
= p
->apCsr
[pOp
->p1
];
4612 assert( pC
->eCurType
==CURTYPE_BTREE
);
4613 assert( OP_SeekLE
== OP_SeekLT
+1 );
4614 assert( OP_SeekGE
== OP_SeekLT
+2 );
4615 assert( OP_SeekGT
== OP_SeekLT
+3 );
4616 assert( pC
->isOrdered
);
4617 assert( pC
->uc
.pCursor
!=0 );
4622 pC
->seekOp
= pOp
->opcode
;
4625 pC
->deferredMoveto
= 0;
4626 pC
->cacheStatus
= CACHE_STALE
;
4628 u16 flags3
, newType
;
4629 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */
4630 assert( sqlite3BtreeCursorHasHint(pC
->uc
.pCursor
, BTREE_SEEK_EQ
)==0
4633 /* The input value in P3 might be of any type: integer, real, string,
4634 ** blob, or NULL. But it needs to be an integer before we can do
4635 ** the seek, so convert it. */
4636 pIn3
= &aMem
[pOp
->p3
];
4637 flags3
= pIn3
->flags
;
4638 if( (flags3
& (MEM_Int
|MEM_Real
|MEM_IntReal
|MEM_Str
))==MEM_Str
){
4639 applyNumericAffinity(pIn3
, 0);
4641 iKey
= sqlite3VdbeIntValue(pIn3
); /* Get the integer key value */
4642 newType
= pIn3
->flags
; /* Record the type after applying numeric affinity */
4643 pIn3
->flags
= flags3
; /* But convert the type back to its original */
4645 /* If the P3 value could not be converted into an integer without
4646 ** loss of information, then special processing is required... */
4647 if( (newType
& (MEM_Int
|MEM_IntReal
))==0 ){
4649 if( (newType
& MEM_Real
)==0 ){
4650 if( (newType
& MEM_Null
) || oc
>=OP_SeekGE
){
4651 VdbeBranchTaken(1,2);
4654 rc
= sqlite3BtreeLast(pC
->uc
.pCursor
, &res
);
4655 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
4656 goto seek_not_found
;
4659 c
= sqlite3IntFloatCompare(iKey
, pIn3
->u
.r
);
4661 /* If the approximation iKey is larger than the actual real search
4662 ** term, substitute >= for > and < for <=. e.g. if the search term
4663 ** is 4.9 and the integer approximation 5:
4665 ** (x > 4.9) -> (x >= 5)
4666 ** (x <= 4.9) -> (x < 5)
4669 assert( OP_SeekGE
==(OP_SeekGT
-1) );
4670 assert( OP_SeekLT
==(OP_SeekLE
-1) );
4671 assert( (OP_SeekLE
& 0x0001)==(OP_SeekGT
& 0x0001) );
4672 if( (oc
& 0x0001)==(OP_SeekGT
& 0x0001) ) oc
--;
4675 /* If the approximation iKey is smaller than the actual real search
4676 ** term, substitute <= for < and > for >=. */
4678 assert( OP_SeekLE
==(OP_SeekLT
+1) );
4679 assert( OP_SeekGT
==(OP_SeekGE
+1) );
4680 assert( (OP_SeekLT
& 0x0001)==(OP_SeekGE
& 0x0001) );
4681 if( (oc
& 0x0001)==(OP_SeekLT
& 0x0001) ) oc
++;
4684 rc
= sqlite3BtreeTableMoveto(pC
->uc
.pCursor
, (u64
)iKey
, 0, &res
);
4685 pC
->movetoTarget
= iKey
; /* Used by OP_Delete */
4686 if( rc
!=SQLITE_OK
){
4687 goto abort_due_to_error
;
4690 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the
4691 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be
4692 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively,
4693 ** with the same key.
4695 if( sqlite3BtreeCursorHasHint(pC
->uc
.pCursor
, BTREE_SEEK_EQ
) ){
4697 assert( pOp
->opcode
==OP_SeekGE
|| pOp
->opcode
==OP_SeekLE
);
4698 assert( pOp
[1].opcode
==OP_IdxLT
|| pOp
[1].opcode
==OP_IdxGT
);
4699 assert( pOp
->opcode
==OP_SeekGE
|| pOp
[1].opcode
==OP_IdxLT
);
4700 assert( pOp
->opcode
==OP_SeekLE
|| pOp
[1].opcode
==OP_IdxGT
);
4701 assert( pOp
[1].p1
==pOp
[0].p1
);
4702 assert( pOp
[1].p2
==pOp
[0].p2
);
4703 assert( pOp
[1].p3
==pOp
[0].p3
);
4704 assert( pOp
[1].p4
.i
==pOp
[0].p4
.i
);
4708 assert( pOp
->p4type
==P4_INT32
);
4710 r
.pKeyInfo
= pC
->pKeyInfo
;
4711 r
.nField
= (u16
)nField
;
4713 /* The next line of code computes as follows, only faster:
4714 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
4715 ** r.default_rc = -1;
4717 ** r.default_rc = +1;
4720 r
.default_rc
= ((1 & (oc
- OP_SeekLT
)) ? -1 : +1);
4721 assert( oc
!=OP_SeekGT
|| r
.default_rc
==-1 );
4722 assert( oc
!=OP_SeekLE
|| r
.default_rc
==-1 );
4723 assert( oc
!=OP_SeekGE
|| r
.default_rc
==+1 );
4724 assert( oc
!=OP_SeekLT
|| r
.default_rc
==+1 );
4726 r
.aMem
= &aMem
[pOp
->p3
];
4730 for(i
=0; i
<r
.nField
; i
++){
4731 assert( memIsValid(&r
.aMem
[i
]) );
4732 if( i
>0 ) REGISTER_TRACE(pOp
->p3
+i
, &r
.aMem
[i
]);
4737 rc
= sqlite3BtreeIndexMoveto(pC
->uc
.pCursor
, &r
, &res
);
4738 if( rc
!=SQLITE_OK
){
4739 goto abort_due_to_error
;
4741 if( eqOnly
&& r
.eqSeen
==0 ){
4743 goto seek_not_found
;
4747 sqlite3_search_count
++;
4749 if( oc
>=OP_SeekGE
){ assert( oc
==OP_SeekGE
|| oc
==OP_SeekGT
);
4750 if( res
<0 || (res
==0 && oc
==OP_SeekGT
) ){
4752 rc
= sqlite3BtreeNext(pC
->uc
.pCursor
, 0);
4753 if( rc
!=SQLITE_OK
){
4754 if( rc
==SQLITE_DONE
){
4758 goto abort_due_to_error
;
4765 assert( oc
==OP_SeekLT
|| oc
==OP_SeekLE
);
4766 if( res
>0 || (res
==0 && oc
==OP_SeekLT
) ){
4768 rc
= sqlite3BtreePrevious(pC
->uc
.pCursor
, 0);
4769 if( rc
!=SQLITE_OK
){
4770 if( rc
==SQLITE_DONE
){
4774 goto abort_due_to_error
;
4778 /* res might be negative because the table is empty. Check to
4779 ** see if this is the case.
4781 res
= sqlite3BtreeEof(pC
->uc
.pCursor
);
4785 assert( pOp
->p2
>0 );
4786 VdbeBranchTaken(res
!=0,2);
4790 assert( pOp
[1].opcode
==OP_IdxLT
|| pOp
[1].opcode
==OP_IdxGT
);
4791 pOp
++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
4797 /* Opcode: SeekScan P1 P2 * * P5
4798 ** Synopsis: Scan-ahead up to P1 rows
4800 ** This opcode is a prefix opcode to OP_SeekGE. In other words, this
4801 ** opcode must be immediately followed by OP_SeekGE. This constraint is
4802 ** checked by assert() statements.
4804 ** This opcode uses the P1 through P4 operands of the subsequent
4805 ** OP_SeekGE. In the text that follows, the operands of the subsequent
4806 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only
4807 ** the P1, P2 and P5 operands of this opcode are also used, and are called
4808 ** This.P1, This.P2 and This.P5.
4810 ** This opcode helps to optimize IN operators on a multi-column index
4811 ** where the IN operator is on the later terms of the index by avoiding
4812 ** unnecessary seeks on the btree, substituting steps to the next row
4813 ** of the b-tree instead. A correct answer is obtained if this opcode
4814 ** is omitted or is a no-op.
4816 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which
4817 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing
4818 ** to. Call this SeekGE.P3/P4 row the "target".
4820 ** If the SeekGE.P1 cursor is not currently pointing to a valid row,
4821 ** then this opcode is a no-op and control passes through into the OP_SeekGE.
4823 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row
4824 ** might be the target row, or it might be near and slightly before the
4825 ** target row, or it might be after the target row. If the cursor is
4826 ** currently before the target row, then this opcode attempts to position
4827 ** the cursor on or after the target row by invoking sqlite3BtreeStep()
4828 ** on the cursor between 1 and This.P1 times.
4830 ** The This.P5 parameter is a flag that indicates what to do if the
4831 ** cursor ends up pointing at a valid row that is past the target
4832 ** row. If This.P5 is false (0) then a jump is made to SeekGE.P2. If
4833 ** This.P5 is true (non-zero) then a jump is made to This.P2. The P5==0
4834 ** case occurs when there are no inequality constraints to the right of
4835 ** the IN constraing. The jump to SeekGE.P2 ends the loop. The P5!=0 case
4836 ** occurs when there are inequality constraints to the right of the IN
4837 ** operator. In that case, the This.P2 will point either directly to or
4838 ** to setup code prior to the OP_IdxGT or OP_IdxGE opcode that checks for
4841 ** Possible outcomes from this opcode:<ol>
4843 ** <li> If the cursor is initally not pointed to any valid row, then
4844 ** fall through into the subsequent OP_SeekGE opcode.
4846 ** <li> If the cursor is left pointing to a row that is before the target
4847 ** row, even after making as many as This.P1 calls to
4848 ** sqlite3BtreeNext(), then also fall through into OP_SeekGE.
4850 ** <li> If the cursor is left pointing at the target row, either because it
4851 ** was at the target row to begin with or because one or more
4852 ** sqlite3BtreeNext() calls moved the cursor to the target row,
4853 ** then jump to This.P2..,
4855 ** <li> If the cursor started out before the target row and a call to
4856 ** to sqlite3BtreeNext() moved the cursor off the end of the index
4857 ** (indicating that the target row definitely does not exist in the
4858 ** btree) then jump to SeekGE.P2, ending the loop.
4860 ** <li> If the cursor ends up on a valid row that is past the target row
4861 ** (indicating that the target row does not exist in the btree) then
4862 ** jump to SeekOP.P2 if This.P5==0 or to This.P2 if This.P5>0.
4871 assert( pOp
[1].opcode
==OP_SeekGE
);
4873 /* If pOp->p5 is clear, then pOp->p2 points to the first instruction past the
4874 ** OP_IdxGT that follows the OP_SeekGE. Otherwise, it points to the first
4875 ** opcode past the OP_SeekGE itself. */
4876 assert( pOp
->p2
>=(int)(pOp
-aOp
)+2 );
4879 /* There are no inequality constraints following the IN constraint. */
4880 assert( pOp
[1].p1
==aOp
[pOp
->p2
-1].p1
);
4881 assert( pOp
[1].p2
==aOp
[pOp
->p2
-1].p2
);
4882 assert( pOp
[1].p3
==aOp
[pOp
->p2
-1].p3
);
4883 assert( aOp
[pOp
->p2
-1].opcode
==OP_IdxGT
4884 || aOp
[pOp
->p2
-1].opcode
==OP_IdxGE
);
4885 testcase( aOp
[pOp
->p2
-1].opcode
==OP_IdxGE
);
4887 /* There are inequality constraints. */
4888 assert( pOp
->p2
==(int)(pOp
-aOp
)+2 );
4889 assert( aOp
[pOp
->p2
-1].opcode
==OP_SeekGE
);
4893 assert( pOp
->p1
>0 );
4894 pC
= p
->apCsr
[pOp
[1].p1
];
4896 assert( pC
->eCurType
==CURTYPE_BTREE
);
4897 assert( !pC
->isTable
);
4898 if( !sqlite3BtreeCursorIsValidNN(pC
->uc
.pCursor
) ){
4900 if( db
->flags
&SQLITE_VdbeTrace
){
4901 printf("... cursor not valid - fall through\n");
4908 r
.pKeyInfo
= pC
->pKeyInfo
;
4909 r
.nField
= (u16
)pOp
[1].p4
.i
;
4911 r
.aMem
= &aMem
[pOp
[1].p3
];
4915 for(i
=0; i
<r
.nField
; i
++){
4916 assert( memIsValid(&r
.aMem
[i
]) );
4917 REGISTER_TRACE(pOp
[1].p3
+i
, &aMem
[pOp
[1].p3
+i
]);
4921 res
= 0; /* Not needed. Only used to silence a warning. */
4923 rc
= sqlite3VdbeIdxKeyCompare(db
, pC
, &r
, &res
);
4924 if( rc
) goto abort_due_to_error
;
4925 if( res
>0 && pOp
->p5
==0 ){
4926 seekscan_search_fail
:
4927 /* Jump to SeekGE.P2, ending the loop */
4929 if( db
->flags
&SQLITE_VdbeTrace
){
4930 printf("... %d steps and then skip\n", pOp
->p1
- nStep
);
4933 VdbeBranchTaken(1,3);
4938 /* Jump to This.P2, bypassing the OP_SeekGE opcode */
4940 if( db
->flags
&SQLITE_VdbeTrace
){
4941 printf("... %d steps and then success\n", pOp
->p1
- nStep
);
4944 VdbeBranchTaken(2,3);
4950 if( db
->flags
&SQLITE_VdbeTrace
){
4951 printf("... fall through after %d steps\n", pOp
->p1
);
4954 VdbeBranchTaken(0,3);
4958 rc
= sqlite3BtreeNext(pC
->uc
.pCursor
, 0);
4960 if( rc
==SQLITE_DONE
){
4962 goto seekscan_search_fail
;
4964 goto abort_due_to_error
;
4973 /* Opcode: SeekHit P1 P2 P3 * *
4974 ** Synopsis: set P2<=seekHit<=P3
4976 ** Increase or decrease the seekHit value for cursor P1, if necessary,
4977 ** so that it is no less than P2 and no greater than P3.
4979 ** The seekHit integer represents the maximum of terms in an index for which
4980 ** there is known to be at least one match. If the seekHit value is smaller
4981 ** than the total number of equality terms in an index lookup, then the
4982 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned
4983 ** early, thus saving work. This is part of the IN-early-out optimization.
4985 ** P1 must be a valid b-tree cursor.
4989 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4990 pC
= p
->apCsr
[pOp
->p1
];
4992 assert( pOp
->p3
>=pOp
->p2
);
4993 if( pC
->seekHit
<pOp
->p2
){
4995 if( db
->flags
&SQLITE_VdbeTrace
){
4996 printf("seekHit changes from %d to %d\n", pC
->seekHit
, pOp
->p2
);
4999 pC
->seekHit
= pOp
->p2
;
5000 }else if( pC
->seekHit
>pOp
->p3
){
5002 if( db
->flags
&SQLITE_VdbeTrace
){
5003 printf("seekHit changes from %d to %d\n", pC
->seekHit
, pOp
->p3
);
5006 pC
->seekHit
= pOp
->p3
;
5011 /* Opcode: IfNotOpen P1 P2 * * *
5012 ** Synopsis: if( !csr[P1] ) goto P2
5014 ** If cursor P1 is not open or if P1 is set to a NULL row using the
5015 ** OP_NullRow opcode, then jump to instruction P2. Otherwise, fall through.
5017 case OP_IfNotOpen
: { /* jump */
5020 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5021 pCur
= p
->apCsr
[pOp
->p1
];
5022 VdbeBranchTaken(pCur
==0 || pCur
->nullRow
, 2);
5023 if( pCur
==0 || pCur
->nullRow
){
5024 goto jump_to_p2_and_check_for_interrupt
;
5029 /* Opcode: Found P1 P2 P3 P4 *
5030 ** Synopsis: key=r[P3@P4]
5032 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
5033 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5036 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
5037 ** is a prefix of any entry in P1 then a jump is made to P2 and
5038 ** P1 is left pointing at the matching entry.
5040 ** This operation leaves the cursor in a state where it can be
5041 ** advanced in the forward direction. The Next instruction will work,
5042 ** but not the Prev instruction.
5044 ** See also: NotFound, NoConflict, NotExists. SeekGe
5046 /* Opcode: NotFound P1 P2 P3 P4 *
5047 ** Synopsis: key=r[P3@P4]
5049 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
5050 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5053 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
5054 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1
5055 ** does contain an entry whose prefix matches the P3/P4 record then control
5056 ** falls through to the next instruction and P1 is left pointing at the
5059 ** This operation leaves the cursor in a state where it cannot be
5060 ** advanced in either direction. In other words, the Next and Prev
5061 ** opcodes do not work after this operation.
5063 ** See also: Found, NotExists, NoConflict, IfNoHope
5065 /* Opcode: IfNoHope P1 P2 P3 P4 *
5066 ** Synopsis: key=r[P3@P4]
5068 ** Register P3 is the first of P4 registers that form an unpacked
5069 ** record. Cursor P1 is an index btree. P2 is a jump destination.
5070 ** In other words, the operands to this opcode are the same as the
5071 ** operands to OP_NotFound and OP_IdxGT.
5073 ** This opcode is an optimization attempt only. If this opcode always
5074 ** falls through, the correct answer is still obtained, but extra works
5077 ** A value of N in the seekHit flag of cursor P1 means that there exists
5078 ** a key P3:N that will match some record in the index. We want to know
5079 ** if it is possible for a record P3:P4 to match some record in the
5080 ** index. If it is not possible, we can skips some work. So if seekHit
5081 ** is less than P4, attempt to find out if a match is possible by running
5084 ** This opcode is used in IN clause processing for a multi-column key.
5085 ** If an IN clause is attached to an element of the key other than the
5086 ** left-most element, and if there are no matches on the most recent
5087 ** seek over the whole key, then it might be that one of the key element
5088 ** to the left is prohibiting a match, and hence there is "no hope" of
5089 ** any match regardless of how many IN clause elements are checked.
5090 ** In such a case, we abandon the IN clause search early, using this
5091 ** opcode. The opcode name comes from the fact that the
5092 ** jump is taken if there is "no hope" of achieving a match.
5094 ** See also: NotFound, SeekHit
5096 /* Opcode: NoConflict P1 P2 P3 P4 *
5097 ** Synopsis: key=r[P3@P4]
5099 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
5100 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5103 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
5104 ** contains any NULL value, jump immediately to P2. If all terms of the
5105 ** record are not-NULL then a check is done to determine if any row in the
5106 ** P1 index btree has a matching key prefix. If there are no matches, jump
5107 ** immediately to P2. If there is a match, fall through and leave the P1
5108 ** cursor pointing to the matching row.
5110 ** This opcode is similar to OP_NotFound with the exceptions that the
5111 ** branch is always taken if any part of the search key input is NULL.
5113 ** This operation leaves the cursor in a state where it cannot be
5114 ** advanced in either direction. In other words, the Next and Prev
5115 ** opcodes do not work after this operation.
5117 ** See also: NotFound, Found, NotExists
5119 case OP_IfNoHope
: { /* jump, in3 */
5121 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5122 pC
= p
->apCsr
[pOp
->p1
];
5125 if( db
->flags
&SQLITE_VdbeTrace
){
5126 printf("seekHit is %d\n", pC
->seekHit
);
5129 if( pC
->seekHit
>=pOp
->p4
.i
) break;
5130 /* Fall through into OP_NotFound */
5131 /* no break */ deliberate_fall_through
5133 case OP_NoConflict
: /* jump, in3 */
5134 case OP_NotFound
: /* jump, in3 */
5135 case OP_Found
: { /* jump, in3 */
5139 UnpackedRecord
*pIdxKey
;
5143 if( pOp
->opcode
!=OP_NoConflict
) sqlite3_found_count
++;
5146 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5147 assert( pOp
->p4type
==P4_INT32
);
5148 pC
= p
->apCsr
[pOp
->p1
];
5151 pC
->seekOp
= pOp
->opcode
;
5153 r
.aMem
= &aMem
[pOp
->p3
];
5154 assert( pC
->eCurType
==CURTYPE_BTREE
);
5155 assert( pC
->uc
.pCursor
!=0 );
5156 assert( pC
->isTable
==0 );
5157 r
.nField
= (u16
)pOp
->p4
.i
;
5159 /* Key values in an array of registers */
5160 r
.pKeyInfo
= pC
->pKeyInfo
;
5163 for(ii
=0; ii
<r
.nField
; ii
++){
5164 assert( memIsValid(&r
.aMem
[ii
]) );
5165 assert( (r
.aMem
[ii
].flags
& MEM_Zero
)==0 || r
.aMem
[ii
].n
==0 );
5166 if( ii
) REGISTER_TRACE(pOp
->p3
+ii
, &r
.aMem
[ii
]);
5169 rc
= sqlite3BtreeIndexMoveto(pC
->uc
.pCursor
, &r
, &pC
->seekResult
);
5171 /* Composite key generated by OP_MakeRecord */
5172 assert( r
.aMem
->flags
& MEM_Blob
);
5173 assert( pOp
->opcode
!=OP_NoConflict
);
5174 rc
= ExpandBlob(r
.aMem
);
5175 assert( rc
==SQLITE_OK
|| rc
==SQLITE_NOMEM
);
5176 if( rc
) goto no_mem
;
5177 pIdxKey
= sqlite3VdbeAllocUnpackedRecord(pC
->pKeyInfo
);
5178 if( pIdxKey
==0 ) goto no_mem
;
5179 sqlite3VdbeRecordUnpack(pC
->pKeyInfo
, r
.aMem
->n
, r
.aMem
->z
, pIdxKey
);
5180 pIdxKey
->default_rc
= 0;
5181 rc
= sqlite3BtreeIndexMoveto(pC
->uc
.pCursor
, pIdxKey
, &pC
->seekResult
);
5182 sqlite3DbFreeNN(db
, pIdxKey
);
5184 if( rc
!=SQLITE_OK
){
5185 goto abort_due_to_error
;
5187 alreadyExists
= (pC
->seekResult
==0);
5188 pC
->nullRow
= 1-alreadyExists
;
5189 pC
->deferredMoveto
= 0;
5190 pC
->cacheStatus
= CACHE_STALE
;
5191 if( pOp
->opcode
==OP_Found
){
5192 VdbeBranchTaken(alreadyExists
!=0,2);
5193 if( alreadyExists
) goto jump_to_p2
;
5195 if( !alreadyExists
){
5196 VdbeBranchTaken(1,2);
5199 if( pOp
->opcode
==OP_NoConflict
){
5200 /* For the OP_NoConflict opcode, take the jump if any of the
5201 ** input fields are NULL, since any key with a NULL will not
5203 for(ii
=0; ii
<r
.nField
; ii
++){
5204 if( r
.aMem
[ii
].flags
& MEM_Null
){
5205 VdbeBranchTaken(1,2);
5210 VdbeBranchTaken(0,2);
5211 if( pOp
->opcode
==OP_IfNoHope
){
5212 pC
->seekHit
= pOp
->p4
.i
;
5218 /* Opcode: SeekRowid P1 P2 P3 * *
5219 ** Synopsis: intkey=r[P3]
5221 ** P1 is the index of a cursor open on an SQL table btree (with integer
5222 ** keys). If register P3 does not contain an integer or if P1 does not
5223 ** contain a record with rowid P3 then jump immediately to P2.
5224 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
5225 ** a record with rowid P3 then
5226 ** leave the cursor pointing at that record and fall through to the next
5229 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
5230 ** the P3 register must be guaranteed to contain an integer value. With this
5231 ** opcode, register P3 might not contain an integer.
5233 ** The OP_NotFound opcode performs the same operation on index btrees
5234 ** (with arbitrary multi-value keys).
5236 ** This opcode leaves the cursor in a state where it cannot be advanced
5237 ** in either direction. In other words, the Next and Prev opcodes will
5238 ** not work following this opcode.
5240 ** See also: Found, NotFound, NoConflict, SeekRowid
5242 /* Opcode: NotExists P1 P2 P3 * *
5243 ** Synopsis: intkey=r[P3]
5245 ** P1 is the index of a cursor open on an SQL table btree (with integer
5246 ** keys). P3 is an integer rowid. If P1 does not contain a record with
5247 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
5248 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
5249 ** leave the cursor pointing at that record and fall through to the next
5252 ** The OP_SeekRowid opcode performs the same operation but also allows the
5253 ** P3 register to contain a non-integer value, in which case the jump is
5254 ** always taken. This opcode requires that P3 always contain an integer.
5256 ** The OP_NotFound opcode performs the same operation on index btrees
5257 ** (with arbitrary multi-value keys).
5259 ** This opcode leaves the cursor in a state where it cannot be advanced
5260 ** in either direction. In other words, the Next and Prev opcodes will
5261 ** not work following this opcode.
5263 ** See also: Found, NotFound, NoConflict, SeekRowid
5265 case OP_SeekRowid
: { /* jump, in3 */
5271 pIn3
= &aMem
[pOp
->p3
];
5272 testcase( pIn3
->flags
& MEM_Int
);
5273 testcase( pIn3
->flags
& MEM_IntReal
);
5274 testcase( pIn3
->flags
& MEM_Real
);
5275 testcase( (pIn3
->flags
& (MEM_Str
|MEM_Int
))==MEM_Str
);
5276 if( (pIn3
->flags
& (MEM_Int
|MEM_IntReal
))==0 ){
5277 /* If pIn3->u.i does not contain an integer, compute iKey as the
5278 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted
5279 ** into an integer without loss of information. Take care to avoid
5280 ** changing the datatype of pIn3, however, as it is used by other
5281 ** parts of the prepared statement. */
5283 applyAffinity(&x
, SQLITE_AFF_NUMERIC
, encoding
);
5284 if( (x
.flags
& MEM_Int
)==0 ) goto jump_to_p2
;
5286 goto notExistsWithKey
;
5288 /* Fall through into OP_NotExists */
5289 /* no break */ deliberate_fall_through
5290 case OP_NotExists
: /* jump, in3 */
5291 pIn3
= &aMem
[pOp
->p3
];
5292 assert( (pIn3
->flags
& MEM_Int
)!=0 || pOp
->opcode
==OP_SeekRowid
);
5293 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5296 pC
= p
->apCsr
[pOp
->p1
];
5299 if( pOp
->opcode
==OP_SeekRowid
) pC
->seekOp
= OP_SeekRowid
;
5301 assert( pC
->isTable
);
5302 assert( pC
->eCurType
==CURTYPE_BTREE
);
5303 pCrsr
= pC
->uc
.pCursor
;
5306 rc
= sqlite3BtreeTableMoveto(pCrsr
, iKey
, 0, &res
);
5307 assert( rc
==SQLITE_OK
|| res
==0 );
5308 pC
->movetoTarget
= iKey
; /* Used by OP_Delete */
5310 pC
->cacheStatus
= CACHE_STALE
;
5311 pC
->deferredMoveto
= 0;
5312 VdbeBranchTaken(res
!=0,2);
5313 pC
->seekResult
= res
;
5315 assert( rc
==SQLITE_OK
);
5317 rc
= SQLITE_CORRUPT_BKPT
;
5322 if( rc
) goto abort_due_to_error
;
5326 /* Opcode: Sequence P1 P2 * * *
5327 ** Synopsis: r[P2]=cursor[P1].ctr++
5329 ** Find the next available sequence number for cursor P1.
5330 ** Write the sequence number into register P2.
5331 ** The sequence number on the cursor is incremented after this
5334 case OP_Sequence
: { /* out2 */
5335 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5336 assert( p
->apCsr
[pOp
->p1
]!=0 );
5337 assert( p
->apCsr
[pOp
->p1
]->eCurType
!=CURTYPE_VTAB
);
5338 pOut
= out2Prerelease(p
, pOp
);
5339 pOut
->u
.i
= p
->apCsr
[pOp
->p1
]->seqCount
++;
5344 /* Opcode: NewRowid P1 P2 P3 * *
5345 ** Synopsis: r[P2]=rowid
5347 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
5348 ** The record number is not previously used as a key in the database
5349 ** table that cursor P1 points to. The new record number is written
5350 ** written to register P2.
5352 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
5353 ** the largest previously generated record number. No new record numbers are
5354 ** allowed to be less than this value. When this value reaches its maximum,
5355 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
5356 ** generated record number. This P3 mechanism is used to help implement the
5357 ** AUTOINCREMENT feature.
5359 case OP_NewRowid
: { /* out2 */
5360 i64 v
; /* The new rowid */
5361 VdbeCursor
*pC
; /* Cursor of table to get the new rowid */
5362 int res
; /* Result of an sqlite3BtreeLast() */
5363 int cnt
; /* Counter to limit the number of searches */
5364 #ifndef SQLITE_OMIT_AUTOINCREMENT
5365 Mem
*pMem
; /* Register holding largest rowid for AUTOINCREMENT */
5366 VdbeFrame
*pFrame
; /* Root frame of VDBE */
5371 pOut
= out2Prerelease(p
, pOp
);
5372 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5373 pC
= p
->apCsr
[pOp
->p1
];
5375 assert( pC
->isTable
);
5376 assert( pC
->eCurType
==CURTYPE_BTREE
);
5377 assert( pC
->uc
.pCursor
!=0 );
5379 /* The next rowid or record number (different terms for the same
5380 ** thing) is obtained in a two-step algorithm.
5382 ** First we attempt to find the largest existing rowid and add one
5383 ** to that. But if the largest existing rowid is already the maximum
5384 ** positive integer, we have to fall through to the second
5385 ** probabilistic algorithm
5387 ** The second algorithm is to select a rowid at random and see if
5388 ** it already exists in the table. If it does not exist, we have
5389 ** succeeded. If the random rowid does exist, we select a new one
5390 ** and try again, up to 100 times.
5392 assert( pC
->isTable
);
5394 #ifdef SQLITE_32BIT_ROWID
5395 # define MAX_ROWID 0x7fffffff
5397 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
5398 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
5399 ** to provide the constant while making all compilers happy.
5401 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
5404 if( !pC
->useRandomRowid
){
5405 rc
= sqlite3BtreeLast(pC
->uc
.pCursor
, &res
);
5406 if( rc
!=SQLITE_OK
){
5407 goto abort_due_to_error
;
5410 v
= 1; /* IMP: R-61914-48074 */
5412 assert( sqlite3BtreeCursorIsValid(pC
->uc
.pCursor
) );
5413 v
= sqlite3BtreeIntegerKey(pC
->uc
.pCursor
);
5415 pC
->useRandomRowid
= 1;
5417 v
++; /* IMP: R-29538-34987 */
5422 #ifndef SQLITE_OMIT_AUTOINCREMENT
5424 /* Assert that P3 is a valid memory cell. */
5425 assert( pOp
->p3
>0 );
5427 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
5428 /* Assert that P3 is a valid memory cell. */
5429 assert( pOp
->p3
<=pFrame
->nMem
);
5430 pMem
= &pFrame
->aMem
[pOp
->p3
];
5432 /* Assert that P3 is a valid memory cell. */
5433 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
5434 pMem
= &aMem
[pOp
->p3
];
5435 memAboutToChange(p
, pMem
);
5437 assert( memIsValid(pMem
) );
5439 REGISTER_TRACE(pOp
->p3
, pMem
);
5440 sqlite3VdbeMemIntegerify(pMem
);
5441 assert( (pMem
->flags
& MEM_Int
)!=0 ); /* mem(P3) holds an integer */
5442 if( pMem
->u
.i
==MAX_ROWID
|| pC
->useRandomRowid
){
5443 rc
= SQLITE_FULL
; /* IMP: R-17817-00630 */
5444 goto abort_due_to_error
;
5446 if( v
<pMem
->u
.i
+1 ){
5452 if( pC
->useRandomRowid
){
5453 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
5454 ** largest possible integer (9223372036854775807) then the database
5455 ** engine starts picking positive candidate ROWIDs at random until
5456 ** it finds one that is not previously used. */
5457 assert( pOp
->p3
==0 ); /* We cannot be in random rowid mode if this is
5458 ** an AUTOINCREMENT table. */
5461 sqlite3_randomness(sizeof(v
), &v
);
5462 v
&= (MAX_ROWID
>>1); v
++; /* Ensure that v is greater than zero */
5463 }while( ((rc
= sqlite3BtreeTableMoveto(pC
->uc
.pCursor
, (u64
)v
,
5464 0, &res
))==SQLITE_OK
)
5467 if( rc
) goto abort_due_to_error
;
5469 rc
= SQLITE_FULL
; /* IMP: R-38219-53002 */
5470 goto abort_due_to_error
;
5472 assert( v
>0 ); /* EV: R-40812-03570 */
5474 pC
->deferredMoveto
= 0;
5475 pC
->cacheStatus
= CACHE_STALE
;
5481 /* Opcode: Insert P1 P2 P3 P4 P5
5482 ** Synopsis: intkey=r[P3] data=r[P2]
5484 ** Write an entry into the table of cursor P1. A new entry is
5485 ** created if it doesn't already exist or the data for an existing
5486 ** entry is overwritten. The data is the value MEM_Blob stored in register
5487 ** number P2. The key is stored in register P3. The key must
5490 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
5491 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
5492 ** then rowid is stored for subsequent return by the
5493 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
5495 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5496 ** run faster by avoiding an unnecessary seek on cursor P1. However,
5497 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5498 ** seeks on the cursor or if the most recent seek used a key equal to P3.
5500 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
5501 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode
5502 ** is part of an INSERT operation. The difference is only important to
5505 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
5506 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
5507 ** following a successful insert.
5509 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
5510 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
5511 ** and register P2 becomes ephemeral. If the cursor is changed, the
5512 ** value of register P2 will then change. Make sure this does not
5513 ** cause any problems.)
5515 ** This instruction only works on tables. The equivalent instruction
5516 ** for indices is OP_IdxInsert.
5519 Mem
*pData
; /* MEM cell holding data for the record to be inserted */
5520 Mem
*pKey
; /* MEM cell holding key for the record */
5521 VdbeCursor
*pC
; /* Cursor to table into which insert is written */
5522 int seekResult
; /* Result of prior seek or 0 if no USESEEKRESULT flag */
5523 const char *zDb
; /* database name - used by the update hook */
5524 Table
*pTab
; /* Table structure - used by update and pre-update hooks */
5525 BtreePayload x
; /* Payload to be inserted */
5527 pData
= &aMem
[pOp
->p2
];
5528 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5529 assert( memIsValid(pData
) );
5530 pC
= p
->apCsr
[pOp
->p1
];
5532 assert( pC
->eCurType
==CURTYPE_BTREE
);
5533 assert( pC
->deferredMoveto
==0 );
5534 assert( pC
->uc
.pCursor
!=0 );
5535 assert( (pOp
->p5
& OPFLAG_ISNOOP
) || pC
->isTable
);
5536 assert( pOp
->p4type
==P4_TABLE
|| pOp
->p4type
>=P4_STATIC
);
5537 REGISTER_TRACE(pOp
->p2
, pData
);
5538 sqlite3VdbeIncrWriteCounter(p
, pC
);
5540 pKey
= &aMem
[pOp
->p3
];
5541 assert( pKey
->flags
& MEM_Int
);
5542 assert( memIsValid(pKey
) );
5543 REGISTER_TRACE(pOp
->p3
, pKey
);
5546 if( pOp
->p4type
==P4_TABLE
&& HAS_UPDATE_HOOK(db
) ){
5547 assert( pC
->iDb
>=0 );
5548 zDb
= db
->aDb
[pC
->iDb
].zDbSName
;
5549 pTab
= pOp
->p4
.pTab
;
5550 assert( (pOp
->p5
& OPFLAG_ISNOOP
) || HasRowid(pTab
) );
5556 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5557 /* Invoke the pre-update hook, if any */
5559 if( db
->xPreUpdateCallback
&& !(pOp
->p5
& OPFLAG_ISUPDATE
) ){
5560 sqlite3VdbePreUpdateHook(p
,pC
,SQLITE_INSERT
,zDb
,pTab
,x
.nKey
,pOp
->p2
,-1);
5562 if( db
->xUpdateCallback
==0 || pTab
->aCol
==0 ){
5563 /* Prevent post-update hook from running in cases when it should not */
5567 if( pOp
->p5
& OPFLAG_ISNOOP
) break;
5570 if( pOp
->p5
& OPFLAG_NCHANGE
) p
->nChange
++;
5571 if( pOp
->p5
& OPFLAG_LASTROWID
) db
->lastRowid
= x
.nKey
;
5572 assert( (pData
->flags
& (MEM_Blob
|MEM_Str
))!=0 || pData
->n
==0 );
5575 seekResult
= ((pOp
->p5
& OPFLAG_USESEEKRESULT
) ? pC
->seekResult
: 0);
5576 if( pData
->flags
& MEM_Zero
){
5577 x
.nZero
= pData
->u
.nZero
;
5582 rc
= sqlite3BtreeInsert(pC
->uc
.pCursor
, &x
,
5583 (pOp
->p5
& (OPFLAG_APPEND
|OPFLAG_SAVEPOSITION
|OPFLAG_PREFORMAT
)),
5586 pC
->deferredMoveto
= 0;
5587 pC
->cacheStatus
= CACHE_STALE
;
5589 /* Invoke the update-hook if required. */
5590 if( rc
) goto abort_due_to_error
;
5592 assert( db
->xUpdateCallback
!=0 );
5593 assert( pTab
->aCol
!=0 );
5594 db
->xUpdateCallback(db
->pUpdateArg
,
5595 (pOp
->p5
& OPFLAG_ISUPDATE
) ? SQLITE_UPDATE
: SQLITE_INSERT
,
5596 zDb
, pTab
->zName
, x
.nKey
);
5601 /* Opcode: RowCell P1 P2 P3 * *
5603 ** P1 and P2 are both open cursors. Both must be opened on the same type
5604 ** of table - intkey or index. This opcode is used as part of copying
5605 ** the current row from P2 into P1. If the cursors are opened on intkey
5606 ** tables, register P3 contains the rowid to use with the new record in
5607 ** P1. If they are opened on index tables, P3 is not used.
5609 ** This opcode must be followed by either an Insert or InsertIdx opcode
5610 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation.
5613 VdbeCursor
*pDest
; /* Cursor to write to */
5614 VdbeCursor
*pSrc
; /* Cursor to read from */
5615 i64 iKey
; /* Rowid value to insert with */
5616 assert( pOp
[1].opcode
==OP_Insert
|| pOp
[1].opcode
==OP_IdxInsert
);
5617 assert( pOp
[1].opcode
==OP_Insert
|| pOp
->p3
==0 );
5618 assert( pOp
[1].opcode
==OP_IdxInsert
|| pOp
->p3
>0 );
5619 assert( pOp
[1].p5
& OPFLAG_PREFORMAT
);
5620 pDest
= p
->apCsr
[pOp
->p1
];
5621 pSrc
= p
->apCsr
[pOp
->p2
];
5622 iKey
= pOp
->p3
? aMem
[pOp
->p3
].u
.i
: 0;
5623 rc
= sqlite3BtreeTransferRow(pDest
->uc
.pCursor
, pSrc
->uc
.pCursor
, iKey
);
5624 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
5628 /* Opcode: Delete P1 P2 P3 P4 P5
5630 ** Delete the record at which the P1 cursor is currently pointing.
5632 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
5633 ** the cursor will be left pointing at either the next or the previous
5634 ** record in the table. If it is left pointing at the next record, then
5635 ** the next Next instruction will be a no-op. As a result, in this case
5636 ** it is ok to delete a record from within a Next loop. If
5637 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
5638 ** left in an undefined state.
5640 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
5641 ** delete one of several associated with deleting a table row and all its
5642 ** associated index entries. Exactly one of those deletes is the "primary"
5643 ** delete. The others are all on OPFLAG_FORDELETE cursors or else are
5644 ** marked with the AUXDELETE flag.
5646 ** If the OPFLAG_NCHANGE flag of P2 (NB: P2 not P5) is set, then the row
5647 ** change count is incremented (otherwise not).
5649 ** P1 must not be pseudo-table. It has to be a real table with
5652 ** If P4 is not NULL then it points to a Table object. In this case either
5653 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
5654 ** have been positioned using OP_NotFound prior to invoking this opcode in
5655 ** this case. Specifically, if one is configured, the pre-update hook is
5656 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
5657 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
5659 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
5660 ** of the memory cell that contains the value that the rowid of the row will
5661 ** be set to by the update.
5670 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5671 pC
= p
->apCsr
[pOp
->p1
];
5673 assert( pC
->eCurType
==CURTYPE_BTREE
);
5674 assert( pC
->uc
.pCursor
!=0 );
5675 assert( pC
->deferredMoveto
==0 );
5676 sqlite3VdbeIncrWriteCounter(p
, pC
);
5679 if( pOp
->p4type
==P4_TABLE
5680 && HasRowid(pOp
->p4
.pTab
)
5682 && sqlite3BtreeCursorIsValidNN(pC
->uc
.pCursor
)
5684 /* If p5 is zero, the seek operation that positioned the cursor prior to
5685 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
5686 ** the row that is being deleted */
5687 i64 iKey
= sqlite3BtreeIntegerKey(pC
->uc
.pCursor
);
5688 assert( CORRUPT_DB
|| pC
->movetoTarget
==iKey
);
5692 /* If the update-hook or pre-update-hook will be invoked, set zDb to
5693 ** the name of the db to pass as to it. Also set local pTab to a copy
5694 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
5695 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
5696 ** VdbeCursor.movetoTarget to the current rowid. */
5697 if( pOp
->p4type
==P4_TABLE
&& HAS_UPDATE_HOOK(db
) ){
5698 assert( pC
->iDb
>=0 );
5699 assert( pOp
->p4
.pTab
!=0 );
5700 zDb
= db
->aDb
[pC
->iDb
].zDbSName
;
5701 pTab
= pOp
->p4
.pTab
;
5702 if( (pOp
->p5
& OPFLAG_SAVEPOSITION
)!=0 && pC
->isTable
){
5703 pC
->movetoTarget
= sqlite3BtreeIntegerKey(pC
->uc
.pCursor
);
5710 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5711 /* Invoke the pre-update-hook if required. */
5712 assert( db
->xPreUpdateCallback
==0 || pTab
==pOp
->p4
.pTab
);
5713 if( db
->xPreUpdateCallback
&& pTab
){
5714 assert( !(opflags
& OPFLAG_ISUPDATE
)
5715 || HasRowid(pTab
)==0
5716 || (aMem
[pOp
->p3
].flags
& MEM_Int
)
5718 sqlite3VdbePreUpdateHook(p
, pC
,
5719 (opflags
& OPFLAG_ISUPDATE
) ? SQLITE_UPDATE
: SQLITE_DELETE
,
5720 zDb
, pTab
, pC
->movetoTarget
,
5724 if( opflags
& OPFLAG_ISNOOP
) break;
5727 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
5728 assert( (pOp
->p5
& ~(OPFLAG_SAVEPOSITION
|OPFLAG_AUXDELETE
))==0 );
5729 assert( OPFLAG_SAVEPOSITION
==BTREE_SAVEPOSITION
);
5730 assert( OPFLAG_AUXDELETE
==BTREE_AUXDELETE
);
5734 if( pC
->isEphemeral
==0
5735 && (pOp
->p5
& OPFLAG_AUXDELETE
)==0
5736 && (pC
->wrFlag
& OPFLAG_FORDELETE
)==0
5740 if( pOp
->p2
& OPFLAG_NCHANGE
){
5746 rc
= sqlite3BtreeDelete(pC
->uc
.pCursor
, pOp
->p5
);
5747 pC
->cacheStatus
= CACHE_STALE
;
5749 if( rc
) goto abort_due_to_error
;
5751 /* Invoke the update-hook if required. */
5752 if( opflags
& OPFLAG_NCHANGE
){
5754 if( db
->xUpdateCallback
&& ALWAYS(pTab
!=0) && HasRowid(pTab
) ){
5755 db
->xUpdateCallback(db
->pUpdateArg
, SQLITE_DELETE
, zDb
, pTab
->zName
,
5757 assert( pC
->iDb
>=0 );
5763 /* Opcode: ResetCount * * * * *
5765 ** The value of the change counter is copied to the database handle
5766 ** change counter (returned by subsequent calls to sqlite3_changes()).
5767 ** Then the VMs internal change counter resets to 0.
5768 ** This is used by trigger programs.
5770 case OP_ResetCount
: {
5771 sqlite3VdbeSetChanges(db
, p
->nChange
);
5776 /* Opcode: SorterCompare P1 P2 P3 P4
5777 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
5779 ** P1 is a sorter cursor. This instruction compares a prefix of the
5780 ** record blob in register P3 against a prefix of the entry that
5781 ** the sorter cursor currently points to. Only the first P4 fields
5782 ** of r[P3] and the sorter record are compared.
5784 ** If either P3 or the sorter contains a NULL in one of their significant
5785 ** fields (not counting the P4 fields at the end which are ignored) then
5786 ** the comparison is assumed to be equal.
5788 ** Fall through to next instruction if the two records compare equal to
5789 ** each other. Jump to P2 if they are different.
5791 case OP_SorterCompare
: {
5796 pC
= p
->apCsr
[pOp
->p1
];
5797 assert( isSorter(pC
) );
5798 assert( pOp
->p4type
==P4_INT32
);
5799 pIn3
= &aMem
[pOp
->p3
];
5800 nKeyCol
= pOp
->p4
.i
;
5802 rc
= sqlite3VdbeSorterCompare(pC
, pIn3
, nKeyCol
, &res
);
5803 VdbeBranchTaken(res
!=0,2);
5804 if( rc
) goto abort_due_to_error
;
5805 if( res
) goto jump_to_p2
;
5809 /* Opcode: SorterData P1 P2 P3 * *
5810 ** Synopsis: r[P2]=data
5812 ** Write into register P2 the current sorter data for sorter cursor P1.
5813 ** Then clear the column header cache on cursor P3.
5815 ** This opcode is normally use to move a record out of the sorter and into
5816 ** a register that is the source for a pseudo-table cursor created using
5817 ** OpenPseudo. That pseudo-table cursor is the one that is identified by
5818 ** parameter P3. Clearing the P3 column cache as part of this opcode saves
5819 ** us from having to issue a separate NullRow instruction to clear that cache.
5821 case OP_SorterData
: {
5824 pOut
= &aMem
[pOp
->p2
];
5825 pC
= p
->apCsr
[pOp
->p1
];
5826 assert( isSorter(pC
) );
5827 rc
= sqlite3VdbeSorterRowkey(pC
, pOut
);
5828 assert( rc
!=SQLITE_OK
|| (pOut
->flags
& MEM_Blob
) );
5829 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5830 if( rc
) goto abort_due_to_error
;
5831 p
->apCsr
[pOp
->p3
]->cacheStatus
= CACHE_STALE
;
5835 /* Opcode: RowData P1 P2 P3 * *
5836 ** Synopsis: r[P2]=data
5838 ** Write into register P2 the complete row content for the row at
5839 ** which cursor P1 is currently pointing.
5840 ** There is no interpretation of the data.
5841 ** It is just copied onto the P2 register exactly as
5842 ** it is found in the database file.
5844 ** If cursor P1 is an index, then the content is the key of the row.
5845 ** If cursor P2 is a table, then the content extracted is the data.
5847 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
5848 ** of a real table, not a pseudo-table.
5850 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer
5851 ** into the database page. That means that the content of the output
5852 ** register will be invalidated as soon as the cursor moves - including
5853 ** moves caused by other cursors that "save" the current cursors
5854 ** position in order that they can write to the same table. If P3==0
5855 ** then a copy of the data is made into memory. P3!=0 is faster, but
5858 ** If P3!=0 then the content of the P2 register is unsuitable for use
5859 ** in OP_Result and any OP_Result will invalidate the P2 register content.
5860 ** The P2 register content is invalidated by opcodes like OP_Function or
5861 ** by any use of another cursor pointing to the same table.
5868 pOut
= out2Prerelease(p
, pOp
);
5870 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5871 pC
= p
->apCsr
[pOp
->p1
];
5873 assert( pC
->eCurType
==CURTYPE_BTREE
);
5874 assert( isSorter(pC
)==0 );
5875 assert( pC
->nullRow
==0 );
5876 assert( pC
->uc
.pCursor
!=0 );
5877 pCrsr
= pC
->uc
.pCursor
;
5879 /* The OP_RowData opcodes always follow OP_NotExists or
5880 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
5881 ** that might invalidate the cursor.
5882 ** If this where not the case, on of the following assert()s
5883 ** would fail. Should this ever change (because of changes in the code
5884 ** generator) then the fix would be to insert a call to
5885 ** sqlite3VdbeCursorMoveto().
5887 assert( pC
->deferredMoveto
==0 );
5888 assert( sqlite3BtreeCursorIsValid(pCrsr
) );
5890 n
= sqlite3BtreePayloadSize(pCrsr
);
5891 if( n
>(u32
)db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
5895 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pCrsr
, n
, pOut
);
5896 if( rc
) goto abort_due_to_error
;
5897 if( !pOp
->p3
) Deephemeralize(pOut
);
5898 UPDATE_MAX_BLOBSIZE(pOut
);
5899 REGISTER_TRACE(pOp
->p2
, pOut
);
5903 /* Opcode: Rowid P1 P2 * * *
5904 ** Synopsis: r[P2]=PX rowid of P1
5906 ** Store in register P2 an integer which is the key of the table entry that
5907 ** P1 is currently point to.
5909 ** P1 can be either an ordinary table or a virtual table. There used to
5910 ** be a separate OP_VRowid opcode for use with virtual tables, but this
5911 ** one opcode now works for both table types.
5913 case OP_Rowid
: { /* out2 */
5916 sqlite3_vtab
*pVtab
;
5917 const sqlite3_module
*pModule
;
5919 pOut
= out2Prerelease(p
, pOp
);
5920 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5921 pC
= p
->apCsr
[pOp
->p1
];
5923 assert( pC
->eCurType
!=CURTYPE_PSEUDO
|| pC
->nullRow
);
5925 pOut
->flags
= MEM_Null
;
5927 }else if( pC
->deferredMoveto
){
5928 v
= pC
->movetoTarget
;
5929 #ifndef SQLITE_OMIT_VIRTUALTABLE
5930 }else if( pC
->eCurType
==CURTYPE_VTAB
){
5931 assert( pC
->uc
.pVCur
!=0 );
5932 pVtab
= pC
->uc
.pVCur
->pVtab
;
5933 pModule
= pVtab
->pModule
;
5934 assert( pModule
->xRowid
);
5935 rc
= pModule
->xRowid(pC
->uc
.pVCur
, &v
);
5936 sqlite3VtabImportErrmsg(p
, pVtab
);
5937 if( rc
) goto abort_due_to_error
;
5938 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5940 assert( pC
->eCurType
==CURTYPE_BTREE
);
5941 assert( pC
->uc
.pCursor
!=0 );
5942 rc
= sqlite3VdbeCursorRestore(pC
);
5943 if( rc
) goto abort_due_to_error
;
5945 pOut
->flags
= MEM_Null
;
5948 v
= sqlite3BtreeIntegerKey(pC
->uc
.pCursor
);
5954 /* Opcode: NullRow P1 * * * *
5956 ** Move the cursor P1 to a null row. Any OP_Column operations
5957 ** that occur while the cursor is on the null row will always
5960 ** If cursor P1 is not previously opened, open it now to a special
5961 ** pseudo-cursor that always returns NULL for every column.
5966 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5967 pC
= p
->apCsr
[pOp
->p1
];
5969 /* If the cursor is not already open, create a special kind of
5970 ** pseudo-cursor that always gives null rows. */
5971 pC
= allocateCursor(p
, pOp
->p1
, 1, CURTYPE_PSEUDO
);
5972 if( pC
==0 ) goto no_mem
;
5976 pC
->uc
.pCursor
= sqlite3BtreeFakeValidCursor();
5979 pC
->cacheStatus
= CACHE_STALE
;
5980 if( pC
->eCurType
==CURTYPE_BTREE
){
5981 assert( pC
->uc
.pCursor
!=0 );
5982 sqlite3BtreeClearCursor(pC
->uc
.pCursor
);
5985 if( pC
->seekOp
==0 ) pC
->seekOp
= OP_NullRow
;
5990 /* Opcode: SeekEnd P1 * * * *
5992 ** Position cursor P1 at the end of the btree for the purpose of
5993 ** appending a new entry onto the btree.
5995 ** It is assumed that the cursor is used only for appending and so
5996 ** if the cursor is valid, then the cursor must already be pointing
5997 ** at the end of the btree and so no changes are made to
6000 /* Opcode: Last P1 P2 * * *
6002 ** The next use of the Rowid or Column or Prev instruction for P1
6003 ** will refer to the last entry in the database table or index.
6004 ** If the table or index is empty and P2>0, then jump immediately to P2.
6005 ** If P2 is 0 or if the table or index is not empty, fall through
6006 ** to the following instruction.
6008 ** This opcode leaves the cursor configured to move in reverse order,
6009 ** from the end toward the beginning. In other words, the cursor is
6010 ** configured to use Prev, not Next.
6013 case OP_Last
: { /* jump */
6018 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6019 pC
= p
->apCsr
[pOp
->p1
];
6021 assert( pC
->eCurType
==CURTYPE_BTREE
);
6022 pCrsr
= pC
->uc
.pCursor
;
6026 pC
->seekOp
= pOp
->opcode
;
6028 if( pOp
->opcode
==OP_SeekEnd
){
6029 assert( pOp
->p2
==0 );
6030 pC
->seekResult
= -1;
6031 if( sqlite3BtreeCursorIsValidNN(pCrsr
) ){
6035 rc
= sqlite3BtreeLast(pCrsr
, &res
);
6036 pC
->nullRow
= (u8
)res
;
6037 pC
->deferredMoveto
= 0;
6038 pC
->cacheStatus
= CACHE_STALE
;
6039 if( rc
) goto abort_due_to_error
;
6041 VdbeBranchTaken(res
!=0,2);
6042 if( res
) goto jump_to_p2
;
6047 /* Opcode: IfSmaller P1 P2 P3 * *
6049 ** Estimate the number of rows in the table P1. Jump to P2 if that
6050 ** estimate is less than approximately 2**(0.1*P3).
6052 case OP_IfSmaller
: { /* jump */
6058 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6059 pC
= p
->apCsr
[pOp
->p1
];
6061 pCrsr
= pC
->uc
.pCursor
;
6063 rc
= sqlite3BtreeFirst(pCrsr
, &res
);
6064 if( rc
) goto abort_due_to_error
;
6066 sz
= sqlite3BtreeRowCountEst(pCrsr
);
6067 if( ALWAYS(sz
>=0) && sqlite3LogEst((u64
)sz
)<pOp
->p3
) res
= 1;
6069 VdbeBranchTaken(res
!=0,2);
6070 if( res
) goto jump_to_p2
;
6075 /* Opcode: SorterSort P1 P2 * * *
6077 ** After all records have been inserted into the Sorter object
6078 ** identified by P1, invoke this opcode to actually do the sorting.
6079 ** Jump to P2 if there are no records to be sorted.
6081 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
6082 ** for Sorter objects.
6084 /* Opcode: Sort P1 P2 * * *
6086 ** This opcode does exactly the same thing as OP_Rewind except that
6087 ** it increments an undocumented global variable used for testing.
6089 ** Sorting is accomplished by writing records into a sorting index,
6090 ** then rewinding that index and playing it back from beginning to
6091 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the
6092 ** rewinding so that the global variable will be incremented and
6093 ** regression tests can determine whether or not the optimizer is
6094 ** correctly optimizing out sorts.
6096 case OP_SorterSort
: /* jump */
6097 case OP_Sort
: { /* jump */
6099 sqlite3_sort_count
++;
6100 sqlite3_search_count
--;
6102 p
->aCounter
[SQLITE_STMTSTATUS_SORT
]++;
6103 /* Fall through into OP_Rewind */
6104 /* no break */ deliberate_fall_through
6106 /* Opcode: Rewind P1 P2 * * *
6108 ** The next use of the Rowid or Column or Next instruction for P1
6109 ** will refer to the first entry in the database table or index.
6110 ** If the table or index is empty, jump immediately to P2.
6111 ** If the table or index is not empty, fall through to the following
6114 ** This opcode leaves the cursor configured to move in forward order,
6115 ** from the beginning toward the end. In other words, the cursor is
6116 ** configured to use Next, not Prev.
6118 case OP_Rewind
: { /* jump */
6123 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6124 assert( pOp
->p5
==0 );
6125 pC
= p
->apCsr
[pOp
->p1
];
6127 assert( isSorter(pC
)==(pOp
->opcode
==OP_SorterSort
) );
6130 pC
->seekOp
= OP_Rewind
;
6133 rc
= sqlite3VdbeSorterRewind(pC
, &res
);
6135 assert( pC
->eCurType
==CURTYPE_BTREE
);
6136 pCrsr
= pC
->uc
.pCursor
;
6138 rc
= sqlite3BtreeFirst(pCrsr
, &res
);
6139 pC
->deferredMoveto
= 0;
6140 pC
->cacheStatus
= CACHE_STALE
;
6142 if( rc
) goto abort_due_to_error
;
6143 pC
->nullRow
= (u8
)res
;
6144 assert( pOp
->p2
>0 && pOp
->p2
<p
->nOp
);
6145 VdbeBranchTaken(res
!=0,2);
6146 if( res
) goto jump_to_p2
;
6150 /* Opcode: Next P1 P2 P3 * P5
6152 ** Advance cursor P1 so that it points to the next key/data pair in its
6153 ** table or index. If there are no more key/value pairs then fall through
6154 ** to the following instruction. But if the cursor advance was successful,
6155 ** jump immediately to P2.
6157 ** The Next opcode is only valid following an SeekGT, SeekGE, or
6158 ** OP_Rewind opcode used to position the cursor. Next is not allowed
6159 ** to follow SeekLT, SeekLE, or OP_Last.
6161 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
6162 ** been opened prior to this opcode or the program will segfault.
6164 ** The P3 value is a hint to the btree implementation. If P3==1, that
6165 ** means P1 is an SQL index and that this instruction could have been
6166 ** omitted if that index had been unique. P3 is usually 0. P3 is
6167 ** always either 0 or 1.
6169 ** If P5 is positive and the jump is taken, then event counter
6170 ** number P5-1 in the prepared statement is incremented.
6174 /* Opcode: Prev P1 P2 P3 * P5
6176 ** Back up cursor P1 so that it points to the previous key/data pair in its
6177 ** table or index. If there is no previous key/value pairs then fall through
6178 ** to the following instruction. But if the cursor backup was successful,
6179 ** jump immediately to P2.
6182 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
6183 ** OP_Last opcode used to position the cursor. Prev is not allowed
6184 ** to follow SeekGT, SeekGE, or OP_Rewind.
6186 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
6187 ** not open then the behavior is undefined.
6189 ** The P3 value is a hint to the btree implementation. If P3==1, that
6190 ** means P1 is an SQL index and that this instruction could have been
6191 ** omitted if that index had been unique. P3 is usually 0. P3 is
6192 ** always either 0 or 1.
6194 ** If P5 is positive and the jump is taken, then event counter
6195 ** number P5-1 in the prepared statement is incremented.
6197 /* Opcode: SorterNext P1 P2 * * P5
6199 ** This opcode works just like OP_Next except that P1 must be a
6200 ** sorter object for which the OP_SorterSort opcode has been
6201 ** invoked. This opcode advances the cursor to the next sorted
6202 ** record, or jumps to P2 if there are no more sorted records.
6204 case OP_SorterNext
: { /* jump */
6207 pC
= p
->apCsr
[pOp
->p1
];
6208 assert( isSorter(pC
) );
6209 rc
= sqlite3VdbeSorterNext(db
, pC
);
6212 case OP_Prev
: /* jump */
6213 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6215 || pOp
->p5
==SQLITE_STMTSTATUS_FULLSCAN_STEP
6216 || pOp
->p5
==SQLITE_STMTSTATUS_AUTOINDEX
);
6217 pC
= p
->apCsr
[pOp
->p1
];
6219 assert( pC
->deferredMoveto
==0 );
6220 assert( pC
->eCurType
==CURTYPE_BTREE
);
6221 assert( pC
->seekOp
==OP_SeekLT
|| pC
->seekOp
==OP_SeekLE
6222 || pC
->seekOp
==OP_Last
|| pC
->seekOp
==OP_IfNoHope
6223 || pC
->seekOp
==OP_NullRow
);
6224 rc
= sqlite3BtreePrevious(pC
->uc
.pCursor
, pOp
->p3
);
6227 case OP_Next
: /* jump */
6228 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6230 || pOp
->p5
==SQLITE_STMTSTATUS_FULLSCAN_STEP
6231 || pOp
->p5
==SQLITE_STMTSTATUS_AUTOINDEX
);
6232 pC
= p
->apCsr
[pOp
->p1
];
6234 assert( pC
->deferredMoveto
==0 );
6235 assert( pC
->eCurType
==CURTYPE_BTREE
);
6236 assert( pC
->seekOp
==OP_SeekGT
|| pC
->seekOp
==OP_SeekGE
6237 || pC
->seekOp
==OP_Rewind
|| pC
->seekOp
==OP_Found
6238 || pC
->seekOp
==OP_NullRow
|| pC
->seekOp
==OP_SeekRowid
6239 || pC
->seekOp
==OP_IfNoHope
);
6240 rc
= sqlite3BtreeNext(pC
->uc
.pCursor
, pOp
->p3
);
6243 pC
->cacheStatus
= CACHE_STALE
;
6244 VdbeBranchTaken(rc
==SQLITE_OK
,2);
6245 if( rc
==SQLITE_OK
){
6247 p
->aCounter
[pOp
->p5
]++;
6249 sqlite3_search_count
++;
6251 goto jump_to_p2_and_check_for_interrupt
;
6253 if( rc
!=SQLITE_DONE
) goto abort_due_to_error
;
6256 goto check_for_interrupt
;
6259 /* Opcode: IdxInsert P1 P2 P3 P4 P5
6260 ** Synopsis: key=r[P2]
6262 ** Register P2 holds an SQL index key made using the
6263 ** MakeRecord instructions. This opcode writes that key
6264 ** into the index P1. Data for the entry is nil.
6266 ** If P4 is not zero, then it is the number of values in the unpacked
6267 ** key of reg(P2). In that case, P3 is the index of the first register
6268 ** for the unpacked key. The availability of the unpacked key can sometimes
6269 ** be an optimization.
6271 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
6272 ** that this insert is likely to be an append.
6274 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
6275 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
6276 ** then the change counter is unchanged.
6278 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
6279 ** run faster by avoiding an unnecessary seek on cursor P1. However,
6280 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
6281 ** seeks on the cursor or if the most recent seek used a key equivalent
6284 ** This instruction only works for indices. The equivalent instruction
6285 ** for tables is OP_Insert.
6287 case OP_IdxInsert
: { /* in2 */
6291 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6292 pC
= p
->apCsr
[pOp
->p1
];
6293 sqlite3VdbeIncrWriteCounter(p
, pC
);
6295 assert( !isSorter(pC
) );
6296 pIn2
= &aMem
[pOp
->p2
];
6297 assert( (pIn2
->flags
& MEM_Blob
) || (pOp
->p5
& OPFLAG_PREFORMAT
) );
6298 if( pOp
->p5
& OPFLAG_NCHANGE
) p
->nChange
++;
6299 assert( pC
->eCurType
==CURTYPE_BTREE
);
6300 assert( pC
->isTable
==0 );
6301 rc
= ExpandBlob(pIn2
);
6302 if( rc
) goto abort_due_to_error
;
6305 x
.aMem
= aMem
+ pOp
->p3
;
6306 x
.nMem
= (u16
)pOp
->p4
.i
;
6307 rc
= sqlite3BtreeInsert(pC
->uc
.pCursor
, &x
,
6308 (pOp
->p5
& (OPFLAG_APPEND
|OPFLAG_SAVEPOSITION
|OPFLAG_PREFORMAT
)),
6309 ((pOp
->p5
& OPFLAG_USESEEKRESULT
) ? pC
->seekResult
: 0)
6311 assert( pC
->deferredMoveto
==0 );
6312 pC
->cacheStatus
= CACHE_STALE
;
6313 if( rc
) goto abort_due_to_error
;
6317 /* Opcode: SorterInsert P1 P2 * * *
6318 ** Synopsis: key=r[P2]
6320 ** Register P2 holds an SQL index key made using the
6321 ** MakeRecord instructions. This opcode writes that key
6322 ** into the sorter P1. Data for the entry is nil.
6324 case OP_SorterInsert
: { /* in2 */
6327 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6328 pC
= p
->apCsr
[pOp
->p1
];
6329 sqlite3VdbeIncrWriteCounter(p
, pC
);
6331 assert( isSorter(pC
) );
6332 pIn2
= &aMem
[pOp
->p2
];
6333 assert( pIn2
->flags
& MEM_Blob
);
6334 assert( pC
->isTable
==0 );
6335 rc
= ExpandBlob(pIn2
);
6336 if( rc
) goto abort_due_to_error
;
6337 rc
= sqlite3VdbeSorterWrite(pC
, pIn2
);
6338 if( rc
) goto abort_due_to_error
;
6342 /* Opcode: IdxDelete P1 P2 P3 * P5
6343 ** Synopsis: key=r[P2@P3]
6345 ** The content of P3 registers starting at register P2 form
6346 ** an unpacked index key. This opcode removes that entry from the
6347 ** index opened by cursor P1.
6349 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error
6350 ** if no matching index entry is found. This happens when running
6351 ** an UPDATE or DELETE statement and the index entry to be updated
6352 ** or deleted is not found. For some uses of IdxDelete
6353 ** (example: the EXCEPT operator) it does not matter that no matching
6354 ** entry is found. For those cases, P5 is zero. Also, do not raise
6355 ** this (self-correcting and non-critical) error if in writable_schema mode.
6357 case OP_IdxDelete
: {
6363 assert( pOp
->p3
>0 );
6364 assert( pOp
->p2
>0 && pOp
->p2
+pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
)+1 );
6365 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6366 pC
= p
->apCsr
[pOp
->p1
];
6368 assert( pC
->eCurType
==CURTYPE_BTREE
);
6369 sqlite3VdbeIncrWriteCounter(p
, pC
);
6370 pCrsr
= pC
->uc
.pCursor
;
6372 r
.pKeyInfo
= pC
->pKeyInfo
;
6373 r
.nField
= (u16
)pOp
->p3
;
6375 r
.aMem
= &aMem
[pOp
->p2
];
6376 rc
= sqlite3BtreeIndexMoveto(pCrsr
, &r
, &res
);
6377 if( rc
) goto abort_due_to_error
;
6379 rc
= sqlite3BtreeDelete(pCrsr
, BTREE_AUXDELETE
);
6380 if( rc
) goto abort_due_to_error
;
6381 }else if( pOp
->p5
&& !sqlite3WritableSchema(db
) ){
6382 rc
= sqlite3ReportError(SQLITE_CORRUPT_INDEX
, __LINE__
, "index corruption");
6383 goto abort_due_to_error
;
6385 assert( pC
->deferredMoveto
==0 );
6386 pC
->cacheStatus
= CACHE_STALE
;
6391 /* Opcode: DeferredSeek P1 * P3 P4 *
6392 ** Synopsis: Move P3 to P1.rowid if needed
6394 ** P1 is an open index cursor and P3 is a cursor on the corresponding
6395 ** table. This opcode does a deferred seek of the P3 table cursor
6396 ** to the row that corresponds to the current row of P1.
6398 ** This is a deferred seek. Nothing actually happens until
6399 ** the cursor is used to read a record. That way, if no reads
6400 ** occur, no unnecessary I/O happens.
6402 ** P4 may be an array of integers (type P4_INTARRAY) containing
6403 ** one entry for each column in the P3 table. If array entry a(i)
6404 ** is non-zero, then reading column a(i)-1 from cursor P3 is
6405 ** equivalent to performing the deferred seek and then reading column i
6406 ** from P1. This information is stored in P3 and used to redirect
6407 ** reads against P3 over to P1, thus possibly avoiding the need to
6408 ** seek and read cursor P3.
6410 /* Opcode: IdxRowid P1 P2 * * *
6411 ** Synopsis: r[P2]=rowid
6413 ** Write into register P2 an integer which is the last entry in the record at
6414 ** the end of the index key pointed to by cursor P1. This integer should be
6415 ** the rowid of the table entry to which this index entry points.
6417 ** See also: Rowid, MakeRecord.
6419 case OP_DeferredSeek
:
6420 case OP_IdxRowid
: { /* out2 */
6421 VdbeCursor
*pC
; /* The P1 index cursor */
6422 VdbeCursor
*pTabCur
; /* The P2 table cursor (OP_DeferredSeek only) */
6423 i64 rowid
; /* Rowid that P1 current points to */
6425 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6426 pC
= p
->apCsr
[pOp
->p1
];
6428 assert( pC
->eCurType
==CURTYPE_BTREE
|| IsNullCursor(pC
) );
6429 assert( pC
->uc
.pCursor
!=0 );
6430 assert( pC
->isTable
==0 || IsNullCursor(pC
) );
6431 assert( pC
->deferredMoveto
==0 );
6432 assert( !pC
->nullRow
|| pOp
->opcode
==OP_IdxRowid
);
6434 /* The IdxRowid and Seek opcodes are combined because of the commonality
6435 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
6436 rc
= sqlite3VdbeCursorRestore(pC
);
6438 /* sqlite3VdbeCursorRestore() may fail if the cursor has been disturbed
6439 ** since it was last positioned and an error (e.g. OOM or an IO error)
6440 ** occurs while trying to reposition it. */
6441 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
6444 rowid
= 0; /* Not needed. Only used to silence a warning. */
6445 rc
= sqlite3VdbeIdxRowid(db
, pC
->uc
.pCursor
, &rowid
);
6446 if( rc
!=SQLITE_OK
){
6447 goto abort_due_to_error
;
6449 if( pOp
->opcode
==OP_DeferredSeek
){
6450 assert( pOp
->p3
>=0 && pOp
->p3
<p
->nCursor
);
6451 pTabCur
= p
->apCsr
[pOp
->p3
];
6452 assert( pTabCur
!=0 );
6453 assert( pTabCur
->eCurType
==CURTYPE_BTREE
);
6454 assert( pTabCur
->uc
.pCursor
!=0 );
6455 assert( pTabCur
->isTable
);
6456 pTabCur
->nullRow
= 0;
6457 pTabCur
->movetoTarget
= rowid
;
6458 pTabCur
->deferredMoveto
= 1;
6459 pTabCur
->cacheStatus
= CACHE_STALE
;
6460 assert( pOp
->p4type
==P4_INTARRAY
|| pOp
->p4
.ai
==0 );
6461 assert( !pTabCur
->isEphemeral
);
6462 pTabCur
->ub
.aAltMap
= pOp
->p4
.ai
;
6463 assert( !pC
->isEphemeral
);
6464 pTabCur
->pAltCursor
= pC
;
6466 pOut
= out2Prerelease(p
, pOp
);
6470 assert( pOp
->opcode
==OP_IdxRowid
);
6471 sqlite3VdbeMemSetNull(&aMem
[pOp
->p2
]);
6476 /* Opcode: FinishSeek P1 * * * *
6478 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that
6479 ** seek operation now, without further delay. If the cursor seek has
6480 ** already occurred, this instruction is a no-op.
6482 case OP_FinishSeek
: {
6483 VdbeCursor
*pC
; /* The P1 index cursor */
6485 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6486 pC
= p
->apCsr
[pOp
->p1
];
6487 if( pC
->deferredMoveto
){
6488 rc
= sqlite3VdbeFinishMoveto(pC
);
6489 if( rc
) goto abort_due_to_error
;
6494 /* Opcode: IdxGE P1 P2 P3 P4 *
6495 ** Synopsis: key=r[P3@P4]
6497 ** The P4 register values beginning with P3 form an unpacked index
6498 ** key that omits the PRIMARY KEY. Compare this key value against the index
6499 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6500 ** fields at the end.
6502 ** If the P1 index entry is greater than or equal to the key value
6503 ** then jump to P2. Otherwise fall through to the next instruction.
6505 /* Opcode: IdxGT P1 P2 P3 P4 *
6506 ** Synopsis: key=r[P3@P4]
6508 ** The P4 register values beginning with P3 form an unpacked index
6509 ** key that omits the PRIMARY KEY. Compare this key value against the index
6510 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6511 ** fields at the end.
6513 ** If the P1 index entry is greater than the key value
6514 ** then jump to P2. Otherwise fall through to the next instruction.
6516 /* Opcode: IdxLT P1 P2 P3 P4 *
6517 ** Synopsis: key=r[P3@P4]
6519 ** The P4 register values beginning with P3 form an unpacked index
6520 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
6521 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6522 ** ROWID on the P1 index.
6524 ** If the P1 index entry is less than the key value then jump to P2.
6525 ** Otherwise fall through to the next instruction.
6527 /* Opcode: IdxLE P1 P2 P3 P4 *
6528 ** Synopsis: key=r[P3@P4]
6530 ** The P4 register values beginning with P3 form an unpacked index
6531 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
6532 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6533 ** ROWID on the P1 index.
6535 ** If the P1 index entry is less than or equal to the key value then jump
6536 ** to P2. Otherwise fall through to the next instruction.
6538 case OP_IdxLE
: /* jump */
6539 case OP_IdxGT
: /* jump */
6540 case OP_IdxLT
: /* jump */
6541 case OP_IdxGE
: { /* jump */
6546 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6547 pC
= p
->apCsr
[pOp
->p1
];
6549 assert( pC
->isOrdered
);
6550 assert( pC
->eCurType
==CURTYPE_BTREE
);
6551 assert( pC
->uc
.pCursor
!=0);
6552 assert( pC
->deferredMoveto
==0 );
6553 assert( pOp
->p4type
==P4_INT32
);
6554 r
.pKeyInfo
= pC
->pKeyInfo
;
6555 r
.nField
= (u16
)pOp
->p4
.i
;
6556 if( pOp
->opcode
<OP_IdxLT
){
6557 assert( pOp
->opcode
==OP_IdxLE
|| pOp
->opcode
==OP_IdxGT
);
6560 assert( pOp
->opcode
==OP_IdxGE
|| pOp
->opcode
==OP_IdxLT
);
6563 r
.aMem
= &aMem
[pOp
->p3
];
6567 for(i
=0; i
<r
.nField
; i
++){
6568 assert( memIsValid(&r
.aMem
[i
]) );
6569 REGISTER_TRACE(pOp
->p3
+i
, &aMem
[pOp
->p3
+i
]);
6574 /* Inlined version of sqlite3VdbeIdxKeyCompare() */
6580 assert( pC
->eCurType
==CURTYPE_BTREE
);
6581 pCur
= pC
->uc
.pCursor
;
6582 assert( sqlite3BtreeCursorIsValid(pCur
) );
6583 nCellKey
= sqlite3BtreePayloadSize(pCur
);
6584 /* nCellKey will always be between 0 and 0xffffffff because of the way
6585 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
6586 if( nCellKey
<=0 || nCellKey
>0x7fffffff ){
6587 rc
= SQLITE_CORRUPT_BKPT
;
6588 goto abort_due_to_error
;
6590 sqlite3VdbeMemInit(&m
, db
, 0);
6591 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pCur
, (u32
)nCellKey
, &m
);
6592 if( rc
) goto abort_due_to_error
;
6593 res
= sqlite3VdbeRecordCompareWithSkip(m
.n
, m
.z
, &r
, 0);
6594 sqlite3VdbeMemReleaseMalloc(&m
);
6596 /* End of inlined sqlite3VdbeIdxKeyCompare() */
6598 assert( (OP_IdxLE
&1)==(OP_IdxLT
&1) && (OP_IdxGE
&1)==(OP_IdxGT
&1) );
6599 if( (pOp
->opcode
&1)==(OP_IdxLT
&1) ){
6600 assert( pOp
->opcode
==OP_IdxLE
|| pOp
->opcode
==OP_IdxLT
);
6603 assert( pOp
->opcode
==OP_IdxGE
|| pOp
->opcode
==OP_IdxGT
);
6606 VdbeBranchTaken(res
>0,2);
6607 assert( rc
==SQLITE_OK
);
6608 if( res
>0 ) goto jump_to_p2
;
6612 /* Opcode: Destroy P1 P2 P3 * *
6614 ** Delete an entire database table or index whose root page in the database
6615 ** file is given by P1.
6617 ** The table being destroyed is in the main database file if P3==0. If
6618 ** P3==1 then the table to be clear is in the auxiliary database file
6619 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6621 ** If AUTOVACUUM is enabled then it is possible that another root page
6622 ** might be moved into the newly deleted root page in order to keep all
6623 ** root pages contiguous at the beginning of the database. The former
6624 ** value of the root page that moved - its value before the move occurred -
6625 ** is stored in register P2. If no page movement was required (because the
6626 ** table being dropped was already the last one in the database) then a
6627 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero
6628 ** is stored in register P2.
6630 ** This opcode throws an error if there are any active reader VMs when
6631 ** it is invoked. This is done to avoid the difficulty associated with
6632 ** updating existing cursors when a root page is moved in an AUTOVACUUM
6633 ** database. This error is thrown even if the database is not an AUTOVACUUM
6634 ** db in order to avoid introducing an incompatibility between autovacuum
6635 ** and non-autovacuum modes.
6639 case OP_Destroy
: { /* out2 */
6643 sqlite3VdbeIncrWriteCounter(p
, 0);
6644 assert( p
->readOnly
==0 );
6645 assert( pOp
->p1
>1 );
6646 pOut
= out2Prerelease(p
, pOp
);
6647 pOut
->flags
= MEM_Null
;
6648 if( db
->nVdbeRead
> db
->nVDestroy
+1 ){
6650 p
->errorAction
= OE_Abort
;
6651 goto abort_due_to_error
;
6654 assert( DbMaskTest(p
->btreeMask
, iDb
) );
6655 iMoved
= 0; /* Not needed. Only to silence a warning. */
6656 rc
= sqlite3BtreeDropTable(db
->aDb
[iDb
].pBt
, pOp
->p1
, &iMoved
);
6657 pOut
->flags
= MEM_Int
;
6659 if( rc
) goto abort_due_to_error
;
6660 #ifndef SQLITE_OMIT_AUTOVACUUM
6662 sqlite3RootPageMoved(db
, iDb
, iMoved
, pOp
->p1
);
6663 /* All OP_Destroy operations occur on the same btree */
6664 assert( resetSchemaOnFault
==0 || resetSchemaOnFault
==iDb
+1 );
6665 resetSchemaOnFault
= iDb
+1;
6672 /* Opcode: Clear P1 P2 P3
6674 ** Delete all contents of the database table or index whose root page
6675 ** in the database file is given by P1. But, unlike Destroy, do not
6676 ** remove the table or index from the database file.
6678 ** The table being clear is in the main database file if P2==0. If
6679 ** P2==1 then the table to be clear is in the auxiliary database file
6680 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6682 ** If the P3 value is non-zero, then the row change count is incremented
6683 ** by the number of rows in the table being cleared. If P3 is greater
6684 ** than zero, then the value stored in register P3 is also incremented
6685 ** by the number of rows in the table being cleared.
6687 ** See also: Destroy
6692 sqlite3VdbeIncrWriteCounter(p
, 0);
6694 assert( p
->readOnly
==0 );
6695 assert( DbMaskTest(p
->btreeMask
, pOp
->p2
) );
6696 rc
= sqlite3BtreeClearTable(db
->aDb
[pOp
->p2
].pBt
, (u32
)pOp
->p1
, &nChange
);
6698 p
->nChange
+= nChange
;
6700 assert( memIsValid(&aMem
[pOp
->p3
]) );
6701 memAboutToChange(p
, &aMem
[pOp
->p3
]);
6702 aMem
[pOp
->p3
].u
.i
+= nChange
;
6705 if( rc
) goto abort_due_to_error
;
6709 /* Opcode: ResetSorter P1 * * * *
6711 ** Delete all contents from the ephemeral table or sorter
6712 ** that is open on cursor P1.
6714 ** This opcode only works for cursors used for sorting and
6715 ** opened with OP_OpenEphemeral or OP_SorterOpen.
6717 case OP_ResetSorter
: {
6720 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6721 pC
= p
->apCsr
[pOp
->p1
];
6724 sqlite3VdbeSorterReset(db
, pC
->uc
.pSorter
);
6726 assert( pC
->eCurType
==CURTYPE_BTREE
);
6727 assert( pC
->isEphemeral
);
6728 rc
= sqlite3BtreeClearTableOfCursor(pC
->uc
.pCursor
);
6729 if( rc
) goto abort_due_to_error
;
6734 /* Opcode: CreateBtree P1 P2 P3 * *
6735 ** Synopsis: r[P2]=root iDb=P1 flags=P3
6737 ** Allocate a new b-tree in the main database file if P1==0 or in the
6738 ** TEMP database file if P1==1 or in an attached database if
6739 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
6740 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
6741 ** The root page number of the new b-tree is stored in register P2.
6743 case OP_CreateBtree
: { /* out2 */
6747 sqlite3VdbeIncrWriteCounter(p
, 0);
6748 pOut
= out2Prerelease(p
, pOp
);
6750 assert( pOp
->p3
==BTREE_INTKEY
|| pOp
->p3
==BTREE_BLOBKEY
);
6751 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
6752 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
6753 assert( p
->readOnly
==0 );
6754 pDb
= &db
->aDb
[pOp
->p1
];
6755 assert( pDb
->pBt
!=0 );
6756 rc
= sqlite3BtreeCreateTable(pDb
->pBt
, &pgno
, pOp
->p3
);
6757 if( rc
) goto abort_due_to_error
;
6762 /* Opcode: SqlExec * * * P4 *
6764 ** Run the SQL statement or statements specified in the P4 string.
6767 sqlite3VdbeIncrWriteCounter(p
, 0);
6769 rc
= sqlite3_exec(db
, pOp
->p4
.z
, 0, 0, 0);
6771 if( rc
) goto abort_due_to_error
;
6775 /* Opcode: ParseSchema P1 * * P4 *
6777 ** Read and parse all entries from the schema table of database P1
6778 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the
6779 ** entire schema for P1 is reparsed.
6781 ** This opcode invokes the parser to create a new virtual machine,
6782 ** then runs the new virtual machine. It is thus a re-entrant opcode.
6784 case OP_ParseSchema
: {
6786 const char *zSchema
;
6790 /* Any prepared statement that invokes this opcode will hold mutexes
6791 ** on every btree. This is a prerequisite for invoking
6792 ** sqlite3InitCallback().
6795 for(iDb
=0; iDb
<db
->nDb
; iDb
++){
6796 assert( iDb
==1 || sqlite3BtreeHoldsMutex(db
->aDb
[iDb
].pBt
) );
6801 assert( iDb
>=0 && iDb
<db
->nDb
);
6802 assert( DbHasProperty(db
, iDb
, DB_SchemaLoaded
)
6804 || (CORRUPT_DB
&& (db
->flags
& SQLITE_NoSchemaError
)!=0) );
6806 #ifndef SQLITE_OMIT_ALTERTABLE
6808 sqlite3SchemaClear(db
->aDb
[iDb
].pSchema
);
6809 db
->mDbFlags
&= ~DBFLAG_SchemaKnownOk
;
6810 rc
= sqlite3InitOne(db
, iDb
, &p
->zErrMsg
, pOp
->p5
);
6811 db
->mDbFlags
|= DBFLAG_SchemaChange
;
6816 zSchema
= LEGACY_SCHEMA_TABLE
;
6819 initData
.pzErrMsg
= &p
->zErrMsg
;
6820 initData
.mInitFlags
= 0;
6821 initData
.mxPage
= sqlite3BtreeLastPage(db
->aDb
[iDb
].pBt
);
6822 zSql
= sqlite3MPrintf(db
,
6823 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
6824 db
->aDb
[iDb
].zDbSName
, zSchema
, pOp
->p4
.z
);
6826 rc
= SQLITE_NOMEM_BKPT
;
6828 assert( db
->init
.busy
==0 );
6830 initData
.rc
= SQLITE_OK
;
6831 initData
.nInitRow
= 0;
6832 assert( !db
->mallocFailed
);
6833 rc
= sqlite3_exec(db
, zSql
, sqlite3InitCallback
, &initData
, 0);
6834 if( rc
==SQLITE_OK
) rc
= initData
.rc
;
6835 if( rc
==SQLITE_OK
&& initData
.nInitRow
==0 ){
6836 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
6837 ** at least one SQL statement. Any less than that indicates that
6838 ** the sqlite_schema table is corrupt. */
6839 rc
= SQLITE_CORRUPT_BKPT
;
6841 sqlite3DbFreeNN(db
, zSql
);
6846 sqlite3ResetAllSchemasOfConnection(db
);
6847 if( rc
==SQLITE_NOMEM
){
6850 goto abort_due_to_error
;
6855 #if !defined(SQLITE_OMIT_ANALYZE)
6856 /* Opcode: LoadAnalysis P1 * * * *
6858 ** Read the sqlite_stat1 table for database P1 and load the content
6859 ** of that table into the internal index hash table. This will cause
6860 ** the analysis to be used when preparing all subsequent queries.
6862 case OP_LoadAnalysis
: {
6863 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
6864 rc
= sqlite3AnalysisLoad(db
, pOp
->p1
);
6865 if( rc
) goto abort_due_to_error
;
6868 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
6870 /* Opcode: DropTable P1 * * P4 *
6872 ** Remove the internal (in-memory) data structures that describe
6873 ** the table named P4 in database P1. This is called after a table
6874 ** is dropped from disk (using the Destroy opcode) in order to keep
6875 ** the internal representation of the
6876 ** schema consistent with what is on disk.
6878 case OP_DropTable
: {
6879 sqlite3VdbeIncrWriteCounter(p
, 0);
6880 sqlite3UnlinkAndDeleteTable(db
, pOp
->p1
, pOp
->p4
.z
);
6884 /* Opcode: DropIndex P1 * * P4 *
6886 ** Remove the internal (in-memory) data structures that describe
6887 ** the index named P4 in database P1. This is called after an index
6888 ** is dropped from disk (using the Destroy opcode)
6889 ** in order to keep the internal representation of the
6890 ** schema consistent with what is on disk.
6892 case OP_DropIndex
: {
6893 sqlite3VdbeIncrWriteCounter(p
, 0);
6894 sqlite3UnlinkAndDeleteIndex(db
, pOp
->p1
, pOp
->p4
.z
);
6898 /* Opcode: DropTrigger P1 * * P4 *
6900 ** Remove the internal (in-memory) data structures that describe
6901 ** the trigger named P4 in database P1. This is called after a trigger
6902 ** is dropped from disk (using the Destroy opcode) in order to keep
6903 ** the internal representation of the
6904 ** schema consistent with what is on disk.
6906 case OP_DropTrigger
: {
6907 sqlite3VdbeIncrWriteCounter(p
, 0);
6908 sqlite3UnlinkAndDeleteTrigger(db
, pOp
->p1
, pOp
->p4
.z
);
6913 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
6914 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
6916 ** Do an analysis of the currently open database. Store in
6917 ** register P1 the text of an error message describing any problems.
6918 ** If no problems are found, store a NULL in register P1.
6920 ** The register P3 contains one less than the maximum number of allowed errors.
6921 ** At most reg(P3) errors will be reported.
6922 ** In other words, the analysis stops as soon as reg(P1) errors are
6923 ** seen. Reg(P1) is updated with the number of errors remaining.
6925 ** The root page numbers of all tables in the database are integers
6926 ** stored in P4_INTARRAY argument.
6928 ** If P5 is not zero, the check is done on the auxiliary database
6929 ** file, not the main database file.
6931 ** This opcode is used to implement the integrity_check pragma.
6933 case OP_IntegrityCk
: {
6934 int nRoot
; /* Number of tables to check. (Number of root pages.) */
6935 Pgno
*aRoot
; /* Array of rootpage numbers for tables to be checked */
6936 int nErr
; /* Number of errors reported */
6937 char *z
; /* Text of the error report */
6938 Mem
*pnErr
; /* Register keeping track of errors remaining */
6940 assert( p
->bIsReader
);
6944 assert( aRoot
[0]==(Pgno
)nRoot
);
6945 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
6946 pnErr
= &aMem
[pOp
->p3
];
6947 assert( (pnErr
->flags
& MEM_Int
)!=0 );
6948 assert( (pnErr
->flags
& (MEM_Str
|MEM_Blob
))==0 );
6949 pIn1
= &aMem
[pOp
->p1
];
6950 assert( pOp
->p5
<db
->nDb
);
6951 assert( DbMaskTest(p
->btreeMask
, pOp
->p5
) );
6952 z
= sqlite3BtreeIntegrityCheck(db
, db
->aDb
[pOp
->p5
].pBt
, &aRoot
[1], nRoot
,
6953 (int)pnErr
->u
.i
+1, &nErr
);
6954 sqlite3VdbeMemSetNull(pIn1
);
6960 pnErr
->u
.i
-= nErr
-1;
6961 sqlite3VdbeMemSetStr(pIn1
, z
, -1, SQLITE_UTF8
, sqlite3_free
);
6963 UPDATE_MAX_BLOBSIZE(pIn1
);
6964 sqlite3VdbeChangeEncoding(pIn1
, encoding
);
6965 goto check_for_interrupt
;
6967 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
6969 /* Opcode: RowSetAdd P1 P2 * * *
6970 ** Synopsis: rowset(P1)=r[P2]
6972 ** Insert the integer value held by register P2 into a RowSet object
6973 ** held in register P1.
6975 ** An assertion fails if P2 is not an integer.
6977 case OP_RowSetAdd
: { /* in1, in2 */
6978 pIn1
= &aMem
[pOp
->p1
];
6979 pIn2
= &aMem
[pOp
->p2
];
6980 assert( (pIn2
->flags
& MEM_Int
)!=0 );
6981 if( (pIn1
->flags
& MEM_Blob
)==0 ){
6982 if( sqlite3VdbeMemSetRowSet(pIn1
) ) goto no_mem
;
6984 assert( sqlite3VdbeMemIsRowSet(pIn1
) );
6985 sqlite3RowSetInsert((RowSet
*)pIn1
->z
, pIn2
->u
.i
);
6989 /* Opcode: RowSetRead P1 P2 P3 * *
6990 ** Synopsis: r[P3]=rowset(P1)
6992 ** Extract the smallest value from the RowSet object in P1
6993 ** and put that value into register P3.
6994 ** Or, if RowSet object P1 is initially empty, leave P3
6995 ** unchanged and jump to instruction P2.
6997 case OP_RowSetRead
: { /* jump, in1, out3 */
7000 pIn1
= &aMem
[pOp
->p1
];
7001 assert( (pIn1
->flags
& MEM_Blob
)==0 || sqlite3VdbeMemIsRowSet(pIn1
) );
7002 if( (pIn1
->flags
& MEM_Blob
)==0
7003 || sqlite3RowSetNext((RowSet
*)pIn1
->z
, &val
)==0
7005 /* The boolean index is empty */
7006 sqlite3VdbeMemSetNull(pIn1
);
7007 VdbeBranchTaken(1,2);
7008 goto jump_to_p2_and_check_for_interrupt
;
7010 /* A value was pulled from the index */
7011 VdbeBranchTaken(0,2);
7012 sqlite3VdbeMemSetInt64(&aMem
[pOp
->p3
], val
);
7014 goto check_for_interrupt
;
7017 /* Opcode: RowSetTest P1 P2 P3 P4
7018 ** Synopsis: if r[P3] in rowset(P1) goto P2
7020 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
7021 ** contains a RowSet object and that RowSet object contains
7022 ** the value held in P3, jump to register P2. Otherwise, insert the
7023 ** integer in P3 into the RowSet and continue on to the
7026 ** The RowSet object is optimized for the case where sets of integers
7027 ** are inserted in distinct phases, which each set contains no duplicates.
7028 ** Each set is identified by a unique P4 value. The first set
7029 ** must have P4==0, the final set must have P4==-1, and for all other sets
7032 ** This allows optimizations: (a) when P4==0 there is no need to test
7033 ** the RowSet object for P3, as it is guaranteed not to contain it,
7034 ** (b) when P4==-1 there is no need to insert the value, as it will
7035 ** never be tested for, and (c) when a value that is part of set X is
7036 ** inserted, there is no need to search to see if the same value was
7037 ** previously inserted as part of set X (only if it was previously
7038 ** inserted as part of some other set).
7040 case OP_RowSetTest
: { /* jump, in1, in3 */
7044 pIn1
= &aMem
[pOp
->p1
];
7045 pIn3
= &aMem
[pOp
->p3
];
7047 assert( pIn3
->flags
&MEM_Int
);
7049 /* If there is anything other than a rowset object in memory cell P1,
7050 ** delete it now and initialize P1 with an empty rowset
7052 if( (pIn1
->flags
& MEM_Blob
)==0 ){
7053 if( sqlite3VdbeMemSetRowSet(pIn1
) ) goto no_mem
;
7055 assert( sqlite3VdbeMemIsRowSet(pIn1
) );
7056 assert( pOp
->p4type
==P4_INT32
);
7057 assert( iSet
==-1 || iSet
>=0 );
7059 exists
= sqlite3RowSetTest((RowSet
*)pIn1
->z
, iSet
, pIn3
->u
.i
);
7060 VdbeBranchTaken(exists
!=0,2);
7061 if( exists
) goto jump_to_p2
;
7064 sqlite3RowSetInsert((RowSet
*)pIn1
->z
, pIn3
->u
.i
);
7070 #ifndef SQLITE_OMIT_TRIGGER
7072 /* Opcode: Program P1 P2 P3 P4 P5
7074 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
7076 ** P1 contains the address of the memory cell that contains the first memory
7077 ** cell in an array of values used as arguments to the sub-program. P2
7078 ** contains the address to jump to if the sub-program throws an IGNORE
7079 ** exception using the RAISE() function. Register P3 contains the address
7080 ** of a memory cell in this (the parent) VM that is used to allocate the
7081 ** memory required by the sub-vdbe at runtime.
7083 ** P4 is a pointer to the VM containing the trigger program.
7085 ** If P5 is non-zero, then recursive program invocation is enabled.
7087 case OP_Program
: { /* jump */
7088 int nMem
; /* Number of memory registers for sub-program */
7089 int nByte
; /* Bytes of runtime space required for sub-program */
7090 Mem
*pRt
; /* Register to allocate runtime space */
7091 Mem
*pMem
; /* Used to iterate through memory cells */
7092 Mem
*pEnd
; /* Last memory cell in new array */
7093 VdbeFrame
*pFrame
; /* New vdbe frame to execute in */
7094 SubProgram
*pProgram
; /* Sub-program to execute */
7095 void *t
; /* Token identifying trigger */
7097 pProgram
= pOp
->p4
.pProgram
;
7098 pRt
= &aMem
[pOp
->p3
];
7099 assert( pProgram
->nOp
>0 );
7101 /* If the p5 flag is clear, then recursive invocation of triggers is
7102 ** disabled for backwards compatibility (p5 is set if this sub-program
7103 ** is really a trigger, not a foreign key action, and the flag set
7104 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
7106 ** It is recursive invocation of triggers, at the SQL level, that is
7107 ** disabled. In some cases a single trigger may generate more than one
7108 ** SubProgram (if the trigger may be executed with more than one different
7109 ** ON CONFLICT algorithm). SubProgram structures associated with a
7110 ** single trigger all have the same value for the SubProgram.token
7113 t
= pProgram
->token
;
7114 for(pFrame
=p
->pFrame
; pFrame
&& pFrame
->token
!=t
; pFrame
=pFrame
->pParent
);
7118 if( p
->nFrame
>=db
->aLimit
[SQLITE_LIMIT_TRIGGER_DEPTH
] ){
7120 sqlite3VdbeError(p
, "too many levels of trigger recursion");
7121 goto abort_due_to_error
;
7124 /* Register pRt is used to store the memory required to save the state
7125 ** of the current program, and the memory required at runtime to execute
7126 ** the trigger program. If this trigger has been fired before, then pRt
7127 ** is already allocated. Otherwise, it must be initialized. */
7128 if( (pRt
->flags
&MEM_Blob
)==0 ){
7129 /* SubProgram.nMem is set to the number of memory cells used by the
7130 ** program stored in SubProgram.aOp. As well as these, one memory
7131 ** cell is required for each cursor used by the program. Set local
7132 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
7134 nMem
= pProgram
->nMem
+ pProgram
->nCsr
;
7136 if( pProgram
->nCsr
==0 ) nMem
++;
7137 nByte
= ROUND8(sizeof(VdbeFrame
))
7138 + nMem
* sizeof(Mem
)
7139 + pProgram
->nCsr
* sizeof(VdbeCursor
*)
7140 + (pProgram
->nOp
+ 7)/8;
7141 pFrame
= sqlite3DbMallocZero(db
, nByte
);
7145 sqlite3VdbeMemRelease(pRt
);
7146 pRt
->flags
= MEM_Blob
|MEM_Dyn
;
7147 pRt
->z
= (char*)pFrame
;
7149 pRt
->xDel
= sqlite3VdbeFrameMemDel
;
7152 pFrame
->nChildMem
= nMem
;
7153 pFrame
->nChildCsr
= pProgram
->nCsr
;
7154 pFrame
->pc
= (int)(pOp
- aOp
);
7155 pFrame
->aMem
= p
->aMem
;
7156 pFrame
->nMem
= p
->nMem
;
7157 pFrame
->apCsr
= p
->apCsr
;
7158 pFrame
->nCursor
= p
->nCursor
;
7159 pFrame
->aOp
= p
->aOp
;
7160 pFrame
->nOp
= p
->nOp
;
7161 pFrame
->token
= pProgram
->token
;
7162 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
7163 pFrame
->anExec
= p
->anExec
;
7166 pFrame
->iFrameMagic
= SQLITE_FRAME_MAGIC
;
7169 pEnd
= &VdbeFrameMem(pFrame
)[pFrame
->nChildMem
];
7170 for(pMem
=VdbeFrameMem(pFrame
); pMem
!=pEnd
; pMem
++){
7171 pMem
->flags
= MEM_Undefined
;
7175 pFrame
= (VdbeFrame
*)pRt
->z
;
7176 assert( pRt
->xDel
==sqlite3VdbeFrameMemDel
);
7177 assert( pProgram
->nMem
+pProgram
->nCsr
==pFrame
->nChildMem
7178 || (pProgram
->nCsr
==0 && pProgram
->nMem
+1==pFrame
->nChildMem
) );
7179 assert( pProgram
->nCsr
==pFrame
->nChildCsr
);
7180 assert( (int)(pOp
- aOp
)==pFrame
->pc
);
7184 pFrame
->pParent
= p
->pFrame
;
7185 pFrame
->lastRowid
= db
->lastRowid
;
7186 pFrame
->nChange
= p
->nChange
;
7187 pFrame
->nDbChange
= p
->db
->nChange
;
7188 assert( pFrame
->pAuxData
==0 );
7189 pFrame
->pAuxData
= p
->pAuxData
;
7193 p
->aMem
= aMem
= VdbeFrameMem(pFrame
);
7194 p
->nMem
= pFrame
->nChildMem
;
7195 p
->nCursor
= (u16
)pFrame
->nChildCsr
;
7196 p
->apCsr
= (VdbeCursor
**)&aMem
[p
->nMem
];
7197 pFrame
->aOnce
= (u8
*)&p
->apCsr
[pProgram
->nCsr
];
7198 memset(pFrame
->aOnce
, 0, (pProgram
->nOp
+ 7)/8);
7199 p
->aOp
= aOp
= pProgram
->aOp
;
7200 p
->nOp
= pProgram
->nOp
;
7201 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
7205 /* Verify that second and subsequent executions of the same trigger do not
7206 ** try to reuse register values from the first use. */
7209 for(i
=0; i
<p
->nMem
; i
++){
7210 aMem
[i
].pScopyFrom
= 0; /* Prevent false-positive AboutToChange() errs */
7211 MemSetTypeFlag(&aMem
[i
], MEM_Undefined
); /* Fault if this reg is reused */
7216 goto check_for_interrupt
;
7219 /* Opcode: Param P1 P2 * * *
7221 ** This opcode is only ever present in sub-programs called via the
7222 ** OP_Program instruction. Copy a value currently stored in a memory
7223 ** cell of the calling (parent) frame to cell P2 in the current frames
7224 ** address space. This is used by trigger programs to access the new.*
7225 ** and old.* values.
7227 ** The address of the cell in the parent frame is determined by adding
7228 ** the value of the P1 argument to the value of the P1 argument to the
7229 ** calling OP_Program instruction.
7231 case OP_Param
: { /* out2 */
7234 pOut
= out2Prerelease(p
, pOp
);
7236 pIn
= &pFrame
->aMem
[pOp
->p1
+ pFrame
->aOp
[pFrame
->pc
].p1
];
7237 sqlite3VdbeMemShallowCopy(pOut
, pIn
, MEM_Ephem
);
7241 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
7243 #ifndef SQLITE_OMIT_FOREIGN_KEY
7244 /* Opcode: FkCounter P1 P2 * * *
7245 ** Synopsis: fkctr[P1]+=P2
7247 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
7248 ** If P1 is non-zero, the database constraint counter is incremented
7249 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
7250 ** statement counter is incremented (immediate foreign key constraints).
7252 case OP_FkCounter
: {
7253 if( db
->flags
& SQLITE_DeferFKs
){
7254 db
->nDeferredImmCons
+= pOp
->p2
;
7255 }else if( pOp
->p1
){
7256 db
->nDeferredCons
+= pOp
->p2
;
7258 p
->nFkConstraint
+= pOp
->p2
;
7263 /* Opcode: FkIfZero P1 P2 * * *
7264 ** Synopsis: if fkctr[P1]==0 goto P2
7266 ** This opcode tests if a foreign key constraint-counter is currently zero.
7267 ** If so, jump to instruction P2. Otherwise, fall through to the next
7270 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
7271 ** is zero (the one that counts deferred constraint violations). If P1 is
7272 ** zero, the jump is taken if the statement constraint-counter is zero
7273 ** (immediate foreign key constraint violations).
7275 case OP_FkIfZero
: { /* jump */
7277 VdbeBranchTaken(db
->nDeferredCons
==0 && db
->nDeferredImmCons
==0, 2);
7278 if( db
->nDeferredCons
==0 && db
->nDeferredImmCons
==0 ) goto jump_to_p2
;
7280 VdbeBranchTaken(p
->nFkConstraint
==0 && db
->nDeferredImmCons
==0, 2);
7281 if( p
->nFkConstraint
==0 && db
->nDeferredImmCons
==0 ) goto jump_to_p2
;
7285 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
7287 #ifndef SQLITE_OMIT_AUTOINCREMENT
7288 /* Opcode: MemMax P1 P2 * * *
7289 ** Synopsis: r[P1]=max(r[P1],r[P2])
7291 ** P1 is a register in the root frame of this VM (the root frame is
7292 ** different from the current frame if this instruction is being executed
7293 ** within a sub-program). Set the value of register P1 to the maximum of
7294 ** its current value and the value in register P2.
7296 ** This instruction throws an error if the memory cell is not initially
7299 case OP_MemMax
: { /* in2 */
7302 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
7303 pIn1
= &pFrame
->aMem
[pOp
->p1
];
7305 pIn1
= &aMem
[pOp
->p1
];
7307 assert( memIsValid(pIn1
) );
7308 sqlite3VdbeMemIntegerify(pIn1
);
7309 pIn2
= &aMem
[pOp
->p2
];
7310 sqlite3VdbeMemIntegerify(pIn2
);
7311 if( pIn1
->u
.i
<pIn2
->u
.i
){
7312 pIn1
->u
.i
= pIn2
->u
.i
;
7316 #endif /* SQLITE_OMIT_AUTOINCREMENT */
7318 /* Opcode: IfPos P1 P2 P3 * *
7319 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
7321 ** Register P1 must contain an integer.
7322 ** If the value of register P1 is 1 or greater, subtract P3 from the
7323 ** value in P1 and jump to P2.
7325 ** If the initial value of register P1 is less than 1, then the
7326 ** value is unchanged and control passes through to the next instruction.
7328 case OP_IfPos
: { /* jump, in1 */
7329 pIn1
= &aMem
[pOp
->p1
];
7330 assert( pIn1
->flags
&MEM_Int
);
7331 VdbeBranchTaken( pIn1
->u
.i
>0, 2);
7333 pIn1
->u
.i
-= pOp
->p3
;
7339 /* Opcode: OffsetLimit P1 P2 P3 * *
7340 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
7342 ** This opcode performs a commonly used computation associated with
7343 ** LIMIT and OFFSET processing. r[P1] holds the limit counter. r[P3]
7344 ** holds the offset counter. The opcode computes the combined value
7345 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2]
7346 ** value computed is the total number of rows that will need to be
7347 ** visited in order to complete the query.
7349 ** If r[P3] is zero or negative, that means there is no OFFSET
7350 ** and r[P2] is set to be the value of the LIMIT, r[P1].
7352 ** if r[P1] is zero or negative, that means there is no LIMIT
7353 ** and r[P2] is set to -1.
7355 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
7357 case OP_OffsetLimit
: { /* in1, out2, in3 */
7359 pIn1
= &aMem
[pOp
->p1
];
7360 pIn3
= &aMem
[pOp
->p3
];
7361 pOut
= out2Prerelease(p
, pOp
);
7362 assert( pIn1
->flags
& MEM_Int
);
7363 assert( pIn3
->flags
& MEM_Int
);
7365 if( x
<=0 || sqlite3AddInt64(&x
, pIn3
->u
.i
>0?pIn3
->u
.i
:0) ){
7366 /* If the LIMIT is less than or equal to zero, loop forever. This
7367 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then
7368 ** also loop forever. This is undocumented. In fact, one could argue
7369 ** that the loop should terminate. But assuming 1 billion iterations
7370 ** per second (far exceeding the capabilities of any current hardware)
7371 ** it would take nearly 300 years to actually reach the limit. So
7372 ** looping forever is a reasonable approximation. */
7380 /* Opcode: IfNotZero P1 P2 * * *
7381 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
7383 ** Register P1 must contain an integer. If the content of register P1 is
7384 ** initially greater than zero, then decrement the value in register P1.
7385 ** If it is non-zero (negative or positive) and then also jump to P2.
7386 ** If register P1 is initially zero, leave it unchanged and fall through.
7388 case OP_IfNotZero
: { /* jump, in1 */
7389 pIn1
= &aMem
[pOp
->p1
];
7390 assert( pIn1
->flags
&MEM_Int
);
7391 VdbeBranchTaken(pIn1
->u
.i
<0, 2);
7393 if( pIn1
->u
.i
>0 ) pIn1
->u
.i
--;
7399 /* Opcode: DecrJumpZero P1 P2 * * *
7400 ** Synopsis: if (--r[P1])==0 goto P2
7402 ** Register P1 must hold an integer. Decrement the value in P1
7403 ** and jump to P2 if the new value is exactly zero.
7405 case OP_DecrJumpZero
: { /* jump, in1 */
7406 pIn1
= &aMem
[pOp
->p1
];
7407 assert( pIn1
->flags
&MEM_Int
);
7408 if( pIn1
->u
.i
>SMALLEST_INT64
) pIn1
->u
.i
--;
7409 VdbeBranchTaken(pIn1
->u
.i
==0, 2);
7410 if( pIn1
->u
.i
==0 ) goto jump_to_p2
;
7415 /* Opcode: AggStep * P2 P3 P4 P5
7416 ** Synopsis: accum=r[P3] step(r[P2@P5])
7418 ** Execute the xStep function for an aggregate.
7419 ** The function has P5 arguments. P4 is a pointer to the
7420 ** FuncDef structure that specifies the function. Register P3 is the
7423 ** The P5 arguments are taken from register P2 and its
7426 /* Opcode: AggInverse * P2 P3 P4 P5
7427 ** Synopsis: accum=r[P3] inverse(r[P2@P5])
7429 ** Execute the xInverse function for an aggregate.
7430 ** The function has P5 arguments. P4 is a pointer to the
7431 ** FuncDef structure that specifies the function. Register P3 is the
7434 ** The P5 arguments are taken from register P2 and its
7437 /* Opcode: AggStep1 P1 P2 P3 P4 P5
7438 ** Synopsis: accum=r[P3] step(r[P2@P5])
7440 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
7441 ** aggregate. The function has P5 arguments. P4 is a pointer to the
7442 ** FuncDef structure that specifies the function. Register P3 is the
7445 ** The P5 arguments are taken from register P2 and its
7448 ** This opcode is initially coded as OP_AggStep0. On first evaluation,
7449 ** the FuncDef stored in P4 is converted into an sqlite3_context and
7450 ** the opcode is changed. In this way, the initialization of the
7451 ** sqlite3_context only happens once, instead of on each call to the
7457 sqlite3_context
*pCtx
;
7459 assert( pOp
->p4type
==P4_FUNCDEF
);
7461 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
7462 assert( n
==0 || (pOp
->p2
>0 && pOp
->p2
+n
<=(p
->nMem
+1 - p
->nCursor
)+1) );
7463 assert( pOp
->p3
<pOp
->p2
|| pOp
->p3
>=pOp
->p2
+n
);
7464 pCtx
= sqlite3DbMallocRawNN(db
, n
*sizeof(sqlite3_value
*) +
7465 (sizeof(pCtx
[0]) + sizeof(Mem
) - sizeof(sqlite3_value
*)));
7466 if( pCtx
==0 ) goto no_mem
;
7468 pCtx
->pOut
= (Mem
*)&(pCtx
->argv
[n
]);
7469 sqlite3VdbeMemInit(pCtx
->pOut
, db
, MEM_Null
);
7470 pCtx
->pFunc
= pOp
->p4
.pFunc
;
7471 pCtx
->iOp
= (int)(pOp
- aOp
);
7475 pCtx
->enc
= encoding
;
7477 pOp
->p4type
= P4_FUNCCTX
;
7478 pOp
->p4
.pCtx
= pCtx
;
7480 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
7481 assert( pOp
->p1
==(pOp
->opcode
==OP_AggInverse
) );
7483 pOp
->opcode
= OP_AggStep1
;
7484 /* Fall through into OP_AggStep */
7485 /* no break */ deliberate_fall_through
7489 sqlite3_context
*pCtx
;
7492 assert( pOp
->p4type
==P4_FUNCCTX
);
7493 pCtx
= pOp
->p4
.pCtx
;
7494 pMem
= &aMem
[pOp
->p3
];
7498 /* This is an OP_AggInverse call. Verify that xStep has always
7499 ** been called at least once prior to any xInverse call. */
7500 assert( pMem
->uTemp
==0x1122e0e3 );
7502 /* This is an OP_AggStep call. Mark it as such. */
7503 pMem
->uTemp
= 0x1122e0e3;
7507 /* If this function is inside of a trigger, the register array in aMem[]
7508 ** might change from one evaluation to the next. The next block of code
7509 ** checks to see if the register array has changed, and if so it
7510 ** reinitializes the relavant parts of the sqlite3_context object */
7511 if( pCtx
->pMem
!= pMem
){
7513 for(i
=pCtx
->argc
-1; i
>=0; i
--) pCtx
->argv
[i
] = &aMem
[pOp
->p2
+i
];
7517 for(i
=0; i
<pCtx
->argc
; i
++){
7518 assert( memIsValid(pCtx
->argv
[i
]) );
7519 REGISTER_TRACE(pOp
->p2
+i
, pCtx
->argv
[i
]);
7524 assert( pCtx
->pOut
->flags
==MEM_Null
);
7525 assert( pCtx
->isError
==0 );
7526 assert( pCtx
->skipFlag
==0 );
7527 #ifndef SQLITE_OMIT_WINDOWFUNC
7529 (pCtx
->pFunc
->xInverse
)(pCtx
,pCtx
->argc
,pCtx
->argv
);
7532 (pCtx
->pFunc
->xSFunc
)(pCtx
,pCtx
->argc
,pCtx
->argv
); /* IMP: R-24505-23230 */
7534 if( pCtx
->isError
){
7535 if( pCtx
->isError
>0 ){
7536 sqlite3VdbeError(p
, "%s", sqlite3_value_text(pCtx
->pOut
));
7539 if( pCtx
->skipFlag
){
7540 assert( pOp
[-1].opcode
==OP_CollSeq
);
7542 if( i
) sqlite3VdbeMemSetInt64(&aMem
[i
], 1);
7545 sqlite3VdbeMemRelease(pCtx
->pOut
);
7546 pCtx
->pOut
->flags
= MEM_Null
;
7548 if( rc
) goto abort_due_to_error
;
7550 assert( pCtx
->pOut
->flags
==MEM_Null
);
7551 assert( pCtx
->skipFlag
==0 );
7555 /* Opcode: AggFinal P1 P2 * P4 *
7556 ** Synopsis: accum=r[P1] N=P2
7558 ** P1 is the memory location that is the accumulator for an aggregate
7559 ** or window function. Execute the finalizer function
7560 ** for an aggregate and store the result in P1.
7562 ** P2 is the number of arguments that the step function takes and
7563 ** P4 is a pointer to the FuncDef for this function. The P2
7564 ** argument is not used by this opcode. It is only there to disambiguate
7565 ** functions that can take varying numbers of arguments. The
7566 ** P4 argument is only needed for the case where
7567 ** the step function was not previously called.
7569 /* Opcode: AggValue * P2 P3 P4 *
7570 ** Synopsis: r[P3]=value N=P2
7572 ** Invoke the xValue() function and store the result in register P3.
7574 ** P2 is the number of arguments that the step function takes and
7575 ** P4 is a pointer to the FuncDef for this function. The P2
7576 ** argument is not used by this opcode. It is only there to disambiguate
7577 ** functions that can take varying numbers of arguments. The
7578 ** P4 argument is only needed for the case where
7579 ** the step function was not previously called.
7584 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
7585 assert( pOp
->p3
==0 || pOp
->opcode
==OP_AggValue
);
7586 pMem
= &aMem
[pOp
->p1
];
7587 assert( (pMem
->flags
& ~(MEM_Null
|MEM_Agg
))==0 );
7588 #ifndef SQLITE_OMIT_WINDOWFUNC
7590 memAboutToChange(p
, &aMem
[pOp
->p3
]);
7591 rc
= sqlite3VdbeMemAggValue(pMem
, &aMem
[pOp
->p3
], pOp
->p4
.pFunc
);
7592 pMem
= &aMem
[pOp
->p3
];
7596 rc
= sqlite3VdbeMemFinalize(pMem
, pOp
->p4
.pFunc
);
7600 sqlite3VdbeError(p
, "%s", sqlite3_value_text(pMem
));
7601 goto abort_due_to_error
;
7603 sqlite3VdbeChangeEncoding(pMem
, encoding
);
7604 UPDATE_MAX_BLOBSIZE(pMem
);
7608 #ifndef SQLITE_OMIT_WAL
7609 /* Opcode: Checkpoint P1 P2 P3 * *
7611 ** Checkpoint database P1. This is a no-op if P1 is not currently in
7612 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
7613 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
7614 ** SQLITE_BUSY or not, respectively. Write the number of pages in the
7615 ** WAL after the checkpoint into mem[P3+1] and the number of pages
7616 ** in the WAL that have been checkpointed after the checkpoint
7617 ** completes into mem[P3+2]. However on an error, mem[P3+1] and
7618 ** mem[P3+2] are initialized to -1.
7620 case OP_Checkpoint
: {
7621 int i
; /* Loop counter */
7622 int aRes
[3]; /* Results */
7623 Mem
*pMem
; /* Write results here */
7625 assert( p
->readOnly
==0 );
7627 aRes
[1] = aRes
[2] = -1;
7628 assert( pOp
->p2
==SQLITE_CHECKPOINT_PASSIVE
7629 || pOp
->p2
==SQLITE_CHECKPOINT_FULL
7630 || pOp
->p2
==SQLITE_CHECKPOINT_RESTART
7631 || pOp
->p2
==SQLITE_CHECKPOINT_TRUNCATE
7633 rc
= sqlite3Checkpoint(db
, pOp
->p1
, pOp
->p2
, &aRes
[1], &aRes
[2]);
7635 if( rc
!=SQLITE_BUSY
) goto abort_due_to_error
;
7639 for(i
=0, pMem
= &aMem
[pOp
->p3
]; i
<3; i
++, pMem
++){
7640 sqlite3VdbeMemSetInt64(pMem
, (i64
)aRes
[i
]);
7646 #ifndef SQLITE_OMIT_PRAGMA
7647 /* Opcode: JournalMode P1 P2 P3 * *
7649 ** Change the journal mode of database P1 to P3. P3 must be one of the
7650 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
7651 ** modes (delete, truncate, persist, off and memory), this is a simple
7652 ** operation. No IO is required.
7654 ** If changing into or out of WAL mode the procedure is more complicated.
7656 ** Write a string containing the final journal-mode to register P2.
7658 case OP_JournalMode
: { /* out2 */
7659 Btree
*pBt
; /* Btree to change journal mode of */
7660 Pager
*pPager
; /* Pager associated with pBt */
7661 int eNew
; /* New journal mode */
7662 int eOld
; /* The old journal mode */
7663 #ifndef SQLITE_OMIT_WAL
7664 const char *zFilename
; /* Name of database file for pPager */
7667 pOut
= out2Prerelease(p
, pOp
);
7669 assert( eNew
==PAGER_JOURNALMODE_DELETE
7670 || eNew
==PAGER_JOURNALMODE_TRUNCATE
7671 || eNew
==PAGER_JOURNALMODE_PERSIST
7672 || eNew
==PAGER_JOURNALMODE_OFF
7673 || eNew
==PAGER_JOURNALMODE_MEMORY
7674 || eNew
==PAGER_JOURNALMODE_WAL
7675 || eNew
==PAGER_JOURNALMODE_QUERY
7677 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
7678 assert( p
->readOnly
==0 );
7680 pBt
= db
->aDb
[pOp
->p1
].pBt
;
7681 pPager
= sqlite3BtreePager(pBt
);
7682 eOld
= sqlite3PagerGetJournalMode(pPager
);
7683 if( eNew
==PAGER_JOURNALMODE_QUERY
) eNew
= eOld
;
7684 assert( sqlite3BtreeHoldsMutex(pBt
) );
7685 if( !sqlite3PagerOkToChangeJournalMode(pPager
) ) eNew
= eOld
;
7687 #ifndef SQLITE_OMIT_WAL
7688 zFilename
= sqlite3PagerFilename(pPager
, 1);
7690 /* Do not allow a transition to journal_mode=WAL for a database
7691 ** in temporary storage or if the VFS does not support shared memory
7693 if( eNew
==PAGER_JOURNALMODE_WAL
7694 && (sqlite3Strlen30(zFilename
)==0 /* Temp file */
7695 || !sqlite3PagerWalSupported(pPager
)) /* No shared-memory support */
7701 && (eOld
==PAGER_JOURNALMODE_WAL
|| eNew
==PAGER_JOURNALMODE_WAL
)
7703 if( !db
->autoCommit
|| db
->nVdbeRead
>1 ){
7706 "cannot change %s wal mode from within a transaction",
7707 (eNew
==PAGER_JOURNALMODE_WAL
? "into" : "out of")
7709 goto abort_due_to_error
;
7712 if( eOld
==PAGER_JOURNALMODE_WAL
){
7713 /* If leaving WAL mode, close the log file. If successful, the call
7714 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
7715 ** file. An EXCLUSIVE lock may still be held on the database file
7716 ** after a successful return.
7718 rc
= sqlite3PagerCloseWal(pPager
, db
);
7719 if( rc
==SQLITE_OK
){
7720 sqlite3PagerSetJournalMode(pPager
, eNew
);
7722 }else if( eOld
==PAGER_JOURNALMODE_MEMORY
){
7723 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
7724 ** as an intermediate */
7725 sqlite3PagerSetJournalMode(pPager
, PAGER_JOURNALMODE_OFF
);
7728 /* Open a transaction on the database file. Regardless of the journal
7729 ** mode, this transaction always uses a rollback journal.
7731 assert( sqlite3BtreeTxnState(pBt
)!=SQLITE_TXN_WRITE
);
7732 if( rc
==SQLITE_OK
){
7733 rc
= sqlite3BtreeSetVersion(pBt
, (eNew
==PAGER_JOURNALMODE_WAL
? 2 : 1));
7737 #endif /* ifndef SQLITE_OMIT_WAL */
7739 if( rc
) eNew
= eOld
;
7740 eNew
= sqlite3PagerSetJournalMode(pPager
, eNew
);
7742 pOut
->flags
= MEM_Str
|MEM_Static
|MEM_Term
;
7743 pOut
->z
= (char *)sqlite3JournalModename(eNew
);
7744 pOut
->n
= sqlite3Strlen30(pOut
->z
);
7745 pOut
->enc
= SQLITE_UTF8
;
7746 sqlite3VdbeChangeEncoding(pOut
, encoding
);
7747 if( rc
) goto abort_due_to_error
;
7750 #endif /* SQLITE_OMIT_PRAGMA */
7752 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
7753 /* Opcode: Vacuum P1 P2 * * *
7755 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more
7756 ** for an attached database. The "temp" database may not be vacuumed.
7758 ** If P2 is not zero, then it is a register holding a string which is
7759 ** the file into which the result of vacuum should be written. When
7760 ** P2 is zero, the vacuum overwrites the original database.
7763 assert( p
->readOnly
==0 );
7764 rc
= sqlite3RunVacuum(&p
->zErrMsg
, db
, pOp
->p1
,
7765 pOp
->p2
? &aMem
[pOp
->p2
] : 0);
7766 if( rc
) goto abort_due_to_error
;
7771 #if !defined(SQLITE_OMIT_AUTOVACUUM)
7772 /* Opcode: IncrVacuum P1 P2 * * *
7774 ** Perform a single step of the incremental vacuum procedure on
7775 ** the P1 database. If the vacuum has finished, jump to instruction
7776 ** P2. Otherwise, fall through to the next instruction.
7778 case OP_IncrVacuum
: { /* jump */
7781 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
7782 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
7783 assert( p
->readOnly
==0 );
7784 pBt
= db
->aDb
[pOp
->p1
].pBt
;
7785 rc
= sqlite3BtreeIncrVacuum(pBt
);
7786 VdbeBranchTaken(rc
==SQLITE_DONE
,2);
7788 if( rc
!=SQLITE_DONE
) goto abort_due_to_error
;
7796 /* Opcode: Expire P1 P2 * * *
7798 ** Cause precompiled statements to expire. When an expired statement
7799 ** is executed using sqlite3_step() it will either automatically
7800 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
7801 ** or it will fail with SQLITE_SCHEMA.
7803 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
7804 ** then only the currently executing statement is expired.
7806 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1,
7807 ** then running SQL statements are allowed to continue to run to completion.
7808 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
7809 ** that might help the statement run faster but which does not affect the
7810 ** correctness of operation.
7813 assert( pOp
->p2
==0 || pOp
->p2
==1 );
7815 sqlite3ExpirePreparedStatements(db
, pOp
->p2
);
7817 p
->expired
= pOp
->p2
+1;
7822 /* Opcode: CursorLock P1 * * * *
7824 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be
7825 ** written by an other cursor.
7827 case OP_CursorLock
: {
7829 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
7830 pC
= p
->apCsr
[pOp
->p1
];
7832 assert( pC
->eCurType
==CURTYPE_BTREE
);
7833 sqlite3BtreeCursorPin(pC
->uc
.pCursor
);
7837 /* Opcode: CursorUnlock P1 * * * *
7839 ** Unlock the btree to which cursor P1 is pointing so that it can be
7840 ** written by other cursors.
7842 case OP_CursorUnlock
: {
7844 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
7845 pC
= p
->apCsr
[pOp
->p1
];
7847 assert( pC
->eCurType
==CURTYPE_BTREE
);
7848 sqlite3BtreeCursorUnpin(pC
->uc
.pCursor
);
7852 #ifndef SQLITE_OMIT_SHARED_CACHE
7853 /* Opcode: TableLock P1 P2 P3 P4 *
7854 ** Synopsis: iDb=P1 root=P2 write=P3
7856 ** Obtain a lock on a particular table. This instruction is only used when
7857 ** the shared-cache feature is enabled.
7859 ** P1 is the index of the database in sqlite3.aDb[] of the database
7860 ** on which the lock is acquired. A readlock is obtained if P3==0 or
7861 ** a write lock if P3==1.
7863 ** P2 contains the root-page of the table to lock.
7865 ** P4 contains a pointer to the name of the table being locked. This is only
7866 ** used to generate an error message if the lock cannot be obtained.
7868 case OP_TableLock
: {
7869 u8 isWriteLock
= (u8
)pOp
->p3
;
7870 if( isWriteLock
|| 0==(db
->flags
&SQLITE_ReadUncommit
) ){
7872 assert( p1
>=0 && p1
<db
->nDb
);
7873 assert( DbMaskTest(p
->btreeMask
, p1
) );
7874 assert( isWriteLock
==0 || isWriteLock
==1 );
7875 rc
= sqlite3BtreeLockTable(db
->aDb
[p1
].pBt
, pOp
->p2
, isWriteLock
);
7877 if( (rc
&0xFF)==SQLITE_LOCKED
){
7878 const char *z
= pOp
->p4
.z
;
7879 sqlite3VdbeError(p
, "database table is locked: %s", z
);
7881 goto abort_due_to_error
;
7886 #endif /* SQLITE_OMIT_SHARED_CACHE */
7888 #ifndef SQLITE_OMIT_VIRTUALTABLE
7889 /* Opcode: VBegin * * * P4 *
7891 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
7892 ** xBegin method for that table.
7894 ** Also, whether or not P4 is set, check that this is not being called from
7895 ** within a callback to a virtual table xSync() method. If it is, the error
7896 ** code will be set to SQLITE_LOCKED.
7900 pVTab
= pOp
->p4
.pVtab
;
7901 rc
= sqlite3VtabBegin(db
, pVTab
);
7902 if( pVTab
) sqlite3VtabImportErrmsg(p
, pVTab
->pVtab
);
7903 if( rc
) goto abort_due_to_error
;
7906 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7908 #ifndef SQLITE_OMIT_VIRTUALTABLE
7909 /* Opcode: VCreate P1 P2 * * *
7911 ** P2 is a register that holds the name of a virtual table in database
7912 ** P1. Call the xCreate method for that table.
7915 Mem sMem
; /* For storing the record being decoded */
7916 const char *zTab
; /* Name of the virtual table */
7918 memset(&sMem
, 0, sizeof(sMem
));
7920 /* Because P2 is always a static string, it is impossible for the
7921 ** sqlite3VdbeMemCopy() to fail */
7922 assert( (aMem
[pOp
->p2
].flags
& MEM_Str
)!=0 );
7923 assert( (aMem
[pOp
->p2
].flags
& MEM_Static
)!=0 );
7924 rc
= sqlite3VdbeMemCopy(&sMem
, &aMem
[pOp
->p2
]);
7925 assert( rc
==SQLITE_OK
);
7926 zTab
= (const char*)sqlite3_value_text(&sMem
);
7927 assert( zTab
|| db
->mallocFailed
);
7929 rc
= sqlite3VtabCallCreate(db
, pOp
->p1
, zTab
, &p
->zErrMsg
);
7931 sqlite3VdbeMemRelease(&sMem
);
7932 if( rc
) goto abort_due_to_error
;
7935 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7937 #ifndef SQLITE_OMIT_VIRTUALTABLE
7938 /* Opcode: VDestroy P1 * * P4 *
7940 ** P4 is the name of a virtual table in database P1. Call the xDestroy method
7945 rc
= sqlite3VtabCallDestroy(db
, pOp
->p1
, pOp
->p4
.z
);
7947 assert( p
->errorAction
==OE_Abort
&& p
->usesStmtJournal
);
7948 if( rc
) goto abort_due_to_error
;
7951 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7953 #ifndef SQLITE_OMIT_VIRTUALTABLE
7954 /* Opcode: VOpen P1 * * P4 *
7956 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
7957 ** P1 is a cursor number. This opcode opens a cursor to the virtual
7958 ** table and stores that cursor in P1.
7962 sqlite3_vtab_cursor
*pVCur
;
7963 sqlite3_vtab
*pVtab
;
7964 const sqlite3_module
*pModule
;
7966 assert( p
->bIsReader
);
7969 pVtab
= pOp
->p4
.pVtab
->pVtab
;
7970 if( pVtab
==0 || NEVER(pVtab
->pModule
==0) ){
7972 goto abort_due_to_error
;
7974 pModule
= pVtab
->pModule
;
7975 rc
= pModule
->xOpen(pVtab
, &pVCur
);
7976 sqlite3VtabImportErrmsg(p
, pVtab
);
7977 if( rc
) goto abort_due_to_error
;
7979 /* Initialize sqlite3_vtab_cursor base class */
7980 pVCur
->pVtab
= pVtab
;
7982 /* Initialize vdbe cursor object */
7983 pCur
= allocateCursor(p
, pOp
->p1
, 0, CURTYPE_VTAB
);
7985 pCur
->uc
.pVCur
= pVCur
;
7988 assert( db
->mallocFailed
);
7989 pModule
->xClose(pVCur
);
7994 #endif /* SQLITE_OMIT_VIRTUALTABLE */
7996 #ifndef SQLITE_OMIT_VIRTUALTABLE
7997 /* Opcode: VInitIn P1 P2 P3 * *
7998 ** Synopsis: r[P2]=ValueList(P1,P3)
8000 ** Set register P2 to be a pointer to a ValueList object for cursor P1
8001 ** with cache register P3 and output register P3+1. This ValueList object
8002 ** can be used as the first argument to sqlite3_vtab_in_first() and
8003 ** sqlite3_vtab_in_next() to extract all of the values stored in the P1
8004 ** cursor. Register P3 is used to hold the values returned by
8005 ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next().
8007 case OP_VInitIn
: { /* out2 */
8008 VdbeCursor
*pC
; /* The cursor containing the RHS values */
8009 ValueList
*pRhs
; /* New ValueList object to put in reg[P2] */
8011 pC
= p
->apCsr
[pOp
->p1
];
8012 pRhs
= sqlite3_malloc64( sizeof(*pRhs
) );
8013 if( pRhs
==0 ) goto no_mem
;
8014 pRhs
->pCsr
= pC
->uc
.pCursor
;
8015 pRhs
->pOut
= &aMem
[pOp
->p3
];
8016 pOut
= out2Prerelease(p
, pOp
);
8017 pOut
->flags
= MEM_Null
;
8018 sqlite3VdbeMemSetPointer(pOut
, pRhs
, "ValueList", sqlite3_free
);
8021 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8024 #ifndef SQLITE_OMIT_VIRTUALTABLE
8025 /* Opcode: VFilter P1 P2 P3 P4 *
8026 ** Synopsis: iplan=r[P3] zplan='P4'
8028 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if
8029 ** the filtered result set is empty.
8031 ** P4 is either NULL or a string that was generated by the xBestIndex
8032 ** method of the module. The interpretation of the P4 string is left
8033 ** to the module implementation.
8035 ** This opcode invokes the xFilter method on the virtual table specified
8036 ** by P1. The integer query plan parameter to xFilter is stored in register
8037 ** P3. Register P3+1 stores the argc parameter to be passed to the
8038 ** xFilter method. Registers P3+2..P3+1+argc are the argc
8039 ** additional parameters which are passed to
8040 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
8042 ** A jump is made to P2 if the result set after filtering would be empty.
8044 case OP_VFilter
: { /* jump */
8047 const sqlite3_module
*pModule
;
8050 sqlite3_vtab_cursor
*pVCur
;
8051 sqlite3_vtab
*pVtab
;
8057 pQuery
= &aMem
[pOp
->p3
];
8059 pCur
= p
->apCsr
[pOp
->p1
];
8060 assert( memIsValid(pQuery
) );
8061 REGISTER_TRACE(pOp
->p3
, pQuery
);
8063 assert( pCur
->eCurType
==CURTYPE_VTAB
);
8064 pVCur
= pCur
->uc
.pVCur
;
8065 pVtab
= pVCur
->pVtab
;
8066 pModule
= pVtab
->pModule
;
8068 /* Grab the index number and argc parameters */
8069 assert( (pQuery
->flags
&MEM_Int
)!=0 && pArgc
->flags
==MEM_Int
);
8070 nArg
= (int)pArgc
->u
.i
;
8071 iQuery
= (int)pQuery
->u
.i
;
8073 /* Invoke the xFilter method */
8075 for(i
= 0; i
<nArg
; i
++){
8076 apArg
[i
] = &pArgc
[i
+1];
8078 rc
= pModule
->xFilter(pVCur
, iQuery
, pOp
->p4
.z
, nArg
, apArg
);
8079 sqlite3VtabImportErrmsg(p
, pVtab
);
8080 if( rc
) goto abort_due_to_error
;
8081 res
= pModule
->xEof(pVCur
);
8083 VdbeBranchTaken(res
!=0,2);
8084 if( res
) goto jump_to_p2
;
8087 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8089 #ifndef SQLITE_OMIT_VIRTUALTABLE
8090 /* Opcode: VColumn P1 P2 P3 * P5
8091 ** Synopsis: r[P3]=vcolumn(P2)
8093 ** Store in register P3 the value of the P2-th column of
8094 ** the current row of the virtual-table of cursor P1.
8096 ** If the VColumn opcode is being used to fetch the value of
8097 ** an unchanging column during an UPDATE operation, then the P5
8098 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange()
8099 ** function to return true inside the xColumn method of the virtual
8100 ** table implementation. The P5 column might also contain other
8101 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
8102 ** unused by OP_VColumn.
8105 sqlite3_vtab
*pVtab
;
8106 const sqlite3_module
*pModule
;
8108 sqlite3_context sContext
;
8110 VdbeCursor
*pCur
= p
->apCsr
[pOp
->p1
];
8112 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
8113 pDest
= &aMem
[pOp
->p3
];
8114 memAboutToChange(p
, pDest
);
8115 if( pCur
->nullRow
){
8116 sqlite3VdbeMemSetNull(pDest
);
8119 assert( pCur
->eCurType
==CURTYPE_VTAB
);
8120 pVtab
= pCur
->uc
.pVCur
->pVtab
;
8121 pModule
= pVtab
->pModule
;
8122 assert( pModule
->xColumn
);
8123 memset(&sContext
, 0, sizeof(sContext
));
8124 sContext
.pOut
= pDest
;
8125 sContext
.enc
= encoding
;
8126 assert( pOp
->p5
==OPFLAG_NOCHNG
|| pOp
->p5
==0 );
8127 if( pOp
->p5
& OPFLAG_NOCHNG
){
8128 sqlite3VdbeMemSetNull(pDest
);
8129 pDest
->flags
= MEM_Null
|MEM_Zero
;
8132 MemSetTypeFlag(pDest
, MEM_Null
);
8134 rc
= pModule
->xColumn(pCur
->uc
.pVCur
, &sContext
, pOp
->p2
);
8135 sqlite3VtabImportErrmsg(p
, pVtab
);
8136 if( sContext
.isError
>0 ){
8137 sqlite3VdbeError(p
, "%s", sqlite3_value_text(pDest
));
8138 rc
= sContext
.isError
;
8140 sqlite3VdbeChangeEncoding(pDest
, encoding
);
8141 REGISTER_TRACE(pOp
->p3
, pDest
);
8142 UPDATE_MAX_BLOBSIZE(pDest
);
8144 if( rc
) goto abort_due_to_error
;
8147 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8149 #ifndef SQLITE_OMIT_VIRTUALTABLE
8150 /* Opcode: VNext P1 P2 * * *
8152 ** Advance virtual table P1 to the next row in its result set and
8153 ** jump to instruction P2. Or, if the virtual table has reached
8154 ** the end of its result set, then fall through to the next instruction.
8156 case OP_VNext
: { /* jump */
8157 sqlite3_vtab
*pVtab
;
8158 const sqlite3_module
*pModule
;
8162 pCur
= p
->apCsr
[pOp
->p1
];
8164 assert( pCur
->eCurType
==CURTYPE_VTAB
);
8165 if( pCur
->nullRow
){
8168 pVtab
= pCur
->uc
.pVCur
->pVtab
;
8169 pModule
= pVtab
->pModule
;
8170 assert( pModule
->xNext
);
8172 /* Invoke the xNext() method of the module. There is no way for the
8173 ** underlying implementation to return an error if one occurs during
8174 ** xNext(). Instead, if an error occurs, true is returned (indicating that
8175 ** data is available) and the error code returned when xColumn or
8176 ** some other method is next invoked on the save virtual table cursor.
8178 rc
= pModule
->xNext(pCur
->uc
.pVCur
);
8179 sqlite3VtabImportErrmsg(p
, pVtab
);
8180 if( rc
) goto abort_due_to_error
;
8181 res
= pModule
->xEof(pCur
->uc
.pVCur
);
8182 VdbeBranchTaken(!res
,2);
8184 /* If there is data, jump to P2 */
8185 goto jump_to_p2_and_check_for_interrupt
;
8187 goto check_for_interrupt
;
8189 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8191 #ifndef SQLITE_OMIT_VIRTUALTABLE
8192 /* Opcode: VRename P1 * * P4 *
8194 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8195 ** This opcode invokes the corresponding xRename method. The value
8196 ** in register P1 is passed as the zName argument to the xRename method.
8199 sqlite3_vtab
*pVtab
;
8203 isLegacy
= (db
->flags
& SQLITE_LegacyAlter
);
8204 db
->flags
|= SQLITE_LegacyAlter
;
8205 pVtab
= pOp
->p4
.pVtab
->pVtab
;
8206 pName
= &aMem
[pOp
->p1
];
8207 assert( pVtab
->pModule
->xRename
);
8208 assert( memIsValid(pName
) );
8209 assert( p
->readOnly
==0 );
8210 REGISTER_TRACE(pOp
->p1
, pName
);
8211 assert( pName
->flags
& MEM_Str
);
8212 testcase( pName
->enc
==SQLITE_UTF8
);
8213 testcase( pName
->enc
==SQLITE_UTF16BE
);
8214 testcase( pName
->enc
==SQLITE_UTF16LE
);
8215 rc
= sqlite3VdbeChangeEncoding(pName
, SQLITE_UTF8
);
8216 if( rc
) goto abort_due_to_error
;
8217 rc
= pVtab
->pModule
->xRename(pVtab
, pName
->z
);
8218 if( isLegacy
==0 ) db
->flags
&= ~(u64
)SQLITE_LegacyAlter
;
8219 sqlite3VtabImportErrmsg(p
, pVtab
);
8221 if( rc
) goto abort_due_to_error
;
8226 #ifndef SQLITE_OMIT_VIRTUALTABLE
8227 /* Opcode: VUpdate P1 P2 P3 P4 P5
8228 ** Synopsis: data=r[P3@P2]
8230 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8231 ** This opcode invokes the corresponding xUpdate method. P2 values
8232 ** are contiguous memory cells starting at P3 to pass to the xUpdate
8233 ** invocation. The value in register (P3+P2-1) corresponds to the
8234 ** p2th element of the argv array passed to xUpdate.
8236 ** The xUpdate method will do a DELETE or an INSERT or both.
8237 ** The argv[0] element (which corresponds to memory cell P3)
8238 ** is the rowid of a row to delete. If argv[0] is NULL then no
8239 ** deletion occurs. The argv[1] element is the rowid of the new
8240 ** row. This can be NULL to have the virtual table select the new
8241 ** rowid for itself. The subsequent elements in the array are
8242 ** the values of columns in the new row.
8244 ** If P2==1 then no insert is performed. argv[0] is the rowid of
8247 ** P1 is a boolean flag. If it is set to true and the xUpdate call
8248 ** is successful, then the value returned by sqlite3_last_insert_rowid()
8249 ** is set to the value of the rowid for the row just inserted.
8251 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
8252 ** apply in the case of a constraint failure on an insert or update.
8255 sqlite3_vtab
*pVtab
;
8256 const sqlite3_module
*pModule
;
8259 sqlite_int64 rowid
= 0;
8263 assert( pOp
->p2
==1 || pOp
->p5
==OE_Fail
|| pOp
->p5
==OE_Rollback
8264 || pOp
->p5
==OE_Abort
|| pOp
->p5
==OE_Ignore
|| pOp
->p5
==OE_Replace
8266 assert( p
->readOnly
==0 );
8267 if( db
->mallocFailed
) goto no_mem
;
8268 sqlite3VdbeIncrWriteCounter(p
, 0);
8269 pVtab
= pOp
->p4
.pVtab
->pVtab
;
8270 if( pVtab
==0 || NEVER(pVtab
->pModule
==0) ){
8272 goto abort_due_to_error
;
8274 pModule
= pVtab
->pModule
;
8276 assert( pOp
->p4type
==P4_VTAB
);
8277 if( ALWAYS(pModule
->xUpdate
) ){
8278 u8 vtabOnConflict
= db
->vtabOnConflict
;
8280 pX
= &aMem
[pOp
->p3
];
8281 for(i
=0; i
<nArg
; i
++){
8282 assert( memIsValid(pX
) );
8283 memAboutToChange(p
, pX
);
8287 db
->vtabOnConflict
= pOp
->p5
;
8288 rc
= pModule
->xUpdate(pVtab
, nArg
, apArg
, &rowid
);
8289 db
->vtabOnConflict
= vtabOnConflict
;
8290 sqlite3VtabImportErrmsg(p
, pVtab
);
8291 if( rc
==SQLITE_OK
&& pOp
->p1
){
8292 assert( nArg
>1 && apArg
[0] && (apArg
[0]->flags
&MEM_Null
) );
8293 db
->lastRowid
= rowid
;
8295 if( (rc
&0xff)==SQLITE_CONSTRAINT
&& pOp
->p4
.pVtab
->bConstraint
){
8296 if( pOp
->p5
==OE_Ignore
){
8299 p
->errorAction
= ((pOp
->p5
==OE_Replace
) ? OE_Abort
: pOp
->p5
);
8304 if( rc
) goto abort_due_to_error
;
8308 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8310 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
8311 /* Opcode: Pagecount P1 P2 * * *
8313 ** Write the current number of pages in database P1 to memory cell P2.
8315 case OP_Pagecount
: { /* out2 */
8316 pOut
= out2Prerelease(p
, pOp
);
8317 pOut
->u
.i
= sqlite3BtreeLastPage(db
->aDb
[pOp
->p1
].pBt
);
8323 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
8324 /* Opcode: MaxPgcnt P1 P2 P3 * *
8326 ** Try to set the maximum page count for database P1 to the value in P3.
8327 ** Do not let the maximum page count fall below the current page count and
8328 ** do not change the maximum page count value if P3==0.
8330 ** Store the maximum page count after the change in register P2.
8332 case OP_MaxPgcnt
: { /* out2 */
8333 unsigned int newMax
;
8336 pOut
= out2Prerelease(p
, pOp
);
8337 pBt
= db
->aDb
[pOp
->p1
].pBt
;
8340 newMax
= sqlite3BtreeLastPage(pBt
);
8341 if( newMax
< (unsigned)pOp
->p3
) newMax
= (unsigned)pOp
->p3
;
8343 pOut
->u
.i
= sqlite3BtreeMaxPageCount(pBt
, newMax
);
8348 /* Opcode: Function P1 P2 P3 P4 *
8349 ** Synopsis: r[P3]=func(r[P2@NP])
8351 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8352 ** contains a pointer to the function to be run) with arguments taken
8353 ** from register P2 and successors. The number of arguments is in
8354 ** the sqlite3_context object that P4 points to.
8355 ** The result of the function is stored
8356 ** in register P3. Register P3 must not be one of the function inputs.
8358 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8359 ** function was determined to be constant at compile time. If the first
8360 ** argument was constant then bit 0 of P1 is set. This is used to determine
8361 ** whether meta data associated with a user function argument using the
8362 ** sqlite3_set_auxdata() API may be safely retained until the next
8363 ** invocation of this opcode.
8365 ** See also: AggStep, AggFinal, PureFunc
8367 /* Opcode: PureFunc P1 P2 P3 P4 *
8368 ** Synopsis: r[P3]=func(r[P2@NP])
8370 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8371 ** contains a pointer to the function to be run) with arguments taken
8372 ** from register P2 and successors. The number of arguments is in
8373 ** the sqlite3_context object that P4 points to.
8374 ** The result of the function is stored
8375 ** in register P3. Register P3 must not be one of the function inputs.
8377 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8378 ** function was determined to be constant at compile time. If the first
8379 ** argument was constant then bit 0 of P1 is set. This is used to determine
8380 ** whether meta data associated with a user function argument using the
8381 ** sqlite3_set_auxdata() API may be safely retained until the next
8382 ** invocation of this opcode.
8384 ** This opcode works exactly like OP_Function. The only difference is in
8385 ** its name. This opcode is used in places where the function must be
8386 ** purely non-deterministic. Some built-in date/time functions can be
8387 ** either determinitic of non-deterministic, depending on their arguments.
8388 ** When those function are used in a non-deterministic way, they will check
8389 ** to see if they were called using OP_PureFunc instead of OP_Function, and
8390 ** if they were, they throw an error.
8392 ** See also: AggStep, AggFinal, Function
8394 case OP_PureFunc
: /* group */
8395 case OP_Function
: { /* group */
8397 sqlite3_context
*pCtx
;
8399 assert( pOp
->p4type
==P4_FUNCCTX
);
8400 pCtx
= pOp
->p4
.pCtx
;
8402 /* If this function is inside of a trigger, the register array in aMem[]
8403 ** might change from one evaluation to the next. The next block of code
8404 ** checks to see if the register array has changed, and if so it
8405 ** reinitializes the relavant parts of the sqlite3_context object */
8406 pOut
= &aMem
[pOp
->p3
];
8407 if( pCtx
->pOut
!= pOut
){
8410 pCtx
->enc
= encoding
;
8411 for(i
=pCtx
->argc
-1; i
>=0; i
--) pCtx
->argv
[i
] = &aMem
[pOp
->p2
+i
];
8413 assert( pCtx
->pVdbe
==p
);
8415 memAboutToChange(p
, pOut
);
8417 for(i
=0; i
<pCtx
->argc
; i
++){
8418 assert( memIsValid(pCtx
->argv
[i
]) );
8419 REGISTER_TRACE(pOp
->p2
+i
, pCtx
->argv
[i
]);
8422 MemSetTypeFlag(pOut
, MEM_Null
);
8423 assert( pCtx
->isError
==0 );
8424 (*pCtx
->pFunc
->xSFunc
)(pCtx
, pCtx
->argc
, pCtx
->argv
);/* IMP: R-24505-23230 */
8426 /* If the function returned an error, throw an exception */
8427 if( pCtx
->isError
){
8428 if( pCtx
->isError
>0 ){
8429 sqlite3VdbeError(p
, "%s", sqlite3_value_text(pOut
));
8432 sqlite3VdbeDeleteAuxData(db
, &p
->pAuxData
, pCtx
->iOp
, pOp
->p1
);
8434 if( rc
) goto abort_due_to_error
;
8437 assert( (pOut
->flags
&MEM_Str
)==0
8438 || pOut
->enc
==encoding
8439 || db
->mallocFailed
);
8440 assert( !sqlite3VdbeMemTooBig(pOut
) );
8442 REGISTER_TRACE(pOp
->p3
, pOut
);
8443 UPDATE_MAX_BLOBSIZE(pOut
);
8447 /* Opcode: ClrSubtype P1 * * * *
8448 ** Synopsis: r[P1].subtype = 0
8450 ** Clear the subtype from register P1.
8452 case OP_ClrSubtype
: { /* in1 */
8453 pIn1
= &aMem
[pOp
->p1
];
8454 pIn1
->flags
&= ~MEM_Subtype
;
8458 /* Opcode: FilterAdd P1 * P3 P4 *
8459 ** Synopsis: filter(P1) += key(P3@P4)
8461 ** Compute a hash on the P4 registers starting with r[P3] and
8462 ** add that hash to the bloom filter contained in r[P1].
8464 case OP_FilterAdd
: {
8467 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
8468 pIn1
= &aMem
[pOp
->p1
];
8469 assert( pIn1
->flags
& MEM_Blob
);
8470 assert( pIn1
->n
>0 );
8471 h
= filterHash(aMem
, pOp
);
8473 if( db
->flags
&SQLITE_VdbeTrace
){
8475 for(ii
=pOp
->p3
; ii
<pOp
->p3
+pOp
->p4
.i
; ii
++){
8476 registerTrace(ii
, &aMem
[ii
]);
8478 printf("hash: %llu modulo %d -> %u\n", h
, pIn1
->n
, (int)(h
%pIn1
->n
));
8482 pIn1
->z
[h
/8] |= 1<<(h
&7);
8486 /* Opcode: Filter P1 P2 P3 P4 *
8487 ** Synopsis: if key(P3@P4) not in filter(P1) goto P2
8489 ** Compute a hash on the key contained in the P4 registers starting
8490 ** with r[P3]. Check to see if that hash is found in the
8491 ** bloom filter hosted by register P1. If it is not present then
8492 ** maybe jump to P2. Otherwise fall through.
8494 ** False negatives are harmless. It is always safe to fall through,
8495 ** even if the value is in the bloom filter. A false negative causes
8496 ** more CPU cycles to be used, but it should still yield the correct
8497 ** answer. However, an incorrect answer may well arise from a
8498 ** false positive - if the jump is taken when it should fall through.
8500 case OP_Filter
: { /* jump */
8503 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
8504 pIn1
= &aMem
[pOp
->p1
];
8505 assert( (pIn1
->flags
& MEM_Blob
)!=0 );
8506 assert( pIn1
->n
>= 1 );
8507 h
= filterHash(aMem
, pOp
);
8509 if( db
->flags
&SQLITE_VdbeTrace
){
8511 for(ii
=pOp
->p3
; ii
<pOp
->p3
+pOp
->p4
.i
; ii
++){
8512 registerTrace(ii
, &aMem
[ii
]);
8514 printf("hash: %llu modulo %d -> %u\n", h
, pIn1
->n
, (int)(h
%pIn1
->n
));
8518 if( (pIn1
->z
[h
/8] & (1<<(h
&7)))==0 ){
8519 VdbeBranchTaken(1, 2);
8520 p
->aCounter
[SQLITE_STMTSTATUS_FILTER_HIT
]++;
8523 p
->aCounter
[SQLITE_STMTSTATUS_FILTER_MISS
]++;
8524 VdbeBranchTaken(0, 2);
8529 /* Opcode: Trace P1 P2 * P4 *
8531 ** Write P4 on the statement trace output if statement tracing is
8534 ** Operand P1 must be 0x7fffffff and P2 must positive.
8536 /* Opcode: Init P1 P2 P3 P4 *
8537 ** Synopsis: Start at P2
8539 ** Programs contain a single instance of this opcode as the very first
8542 ** If tracing is enabled (by the sqlite3_trace()) interface, then
8543 ** the UTF-8 string contained in P4 is emitted on the trace callback.
8544 ** Or if P4 is blank, use the string returned by sqlite3_sql().
8546 ** If P2 is not zero, jump to instruction P2.
8548 ** Increment the value of P1 so that OP_Once opcodes will jump the
8549 ** first time they are evaluated for this run.
8551 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
8552 ** error is encountered.
8555 case OP_Init
: { /* jump */
8557 #ifndef SQLITE_OMIT_TRACE
8561 /* If the P4 argument is not NULL, then it must be an SQL comment string.
8562 ** The "--" string is broken up to prevent false-positives with srcck1.c.
8564 ** This assert() provides evidence for:
8565 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
8566 ** would have been returned by the legacy sqlite3_trace() interface by
8567 ** using the X argument when X begins with "--" and invoking
8568 ** sqlite3_expanded_sql(P) otherwise.
8570 assert( pOp
->p4
.z
==0 || strncmp(pOp
->p4
.z
, "-" "- ", 3)==0 );
8572 /* OP_Init is always instruction 0 */
8573 assert( pOp
==p
->aOp
|| pOp
->opcode
==OP_Trace
);
8575 #ifndef SQLITE_OMIT_TRACE
8576 if( (db
->mTrace
& (SQLITE_TRACE_STMT
|SQLITE_TRACE_LEGACY
))!=0
8577 && p
->minWriteFileFormat
!=254 /* tag-20220401a */
8578 && (zTrace
= (pOp
->p4
.z
? pOp
->p4
.z
: p
->zSql
))!=0
8580 #ifndef SQLITE_OMIT_DEPRECATED
8581 if( db
->mTrace
& SQLITE_TRACE_LEGACY
){
8582 char *z
= sqlite3VdbeExpandSql(p
, zTrace
);
8583 db
->trace
.xLegacy(db
->pTraceArg
, z
);
8587 if( db
->nVdbeExec
>1 ){
8588 char *z
= sqlite3MPrintf(db
, "-- %s", zTrace
);
8589 (void)db
->trace
.xV2(SQLITE_TRACE_STMT
, db
->pTraceArg
, p
, z
);
8590 sqlite3DbFree(db
, z
);
8592 (void)db
->trace
.xV2(SQLITE_TRACE_STMT
, db
->pTraceArg
, p
, zTrace
);
8595 #ifdef SQLITE_USE_FCNTL_TRACE
8596 zTrace
= (pOp
->p4
.z
? pOp
->p4
.z
: p
->zSql
);
8599 for(j
=0; j
<db
->nDb
; j
++){
8600 if( DbMaskTest(p
->btreeMask
, j
)==0 ) continue;
8601 sqlite3_file_control(db
, db
->aDb
[j
].zDbSName
, SQLITE_FCNTL_TRACE
, zTrace
);
8604 #endif /* SQLITE_USE_FCNTL_TRACE */
8606 if( (db
->flags
& SQLITE_SqlTrace
)!=0
8607 && (zTrace
= (pOp
->p4
.z
? pOp
->p4
.z
: p
->zSql
))!=0
8609 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace
);
8611 #endif /* SQLITE_DEBUG */
8612 #endif /* SQLITE_OMIT_TRACE */
8613 assert( pOp
->p2
>0 );
8614 if( pOp
->p1
>=sqlite3GlobalConfig
.iOnceResetThreshold
){
8615 if( pOp
->opcode
==OP_Trace
) break;
8616 for(i
=1; i
<p
->nOp
; i
++){
8617 if( p
->aOp
[i
].opcode
==OP_Once
) p
->aOp
[i
].p1
= 0;
8622 p
->aCounter
[SQLITE_STMTSTATUS_RUN
]++;
8626 #ifdef SQLITE_ENABLE_CURSOR_HINTS
8627 /* Opcode: CursorHint P1 * * P4 *
8629 ** Provide a hint to cursor P1 that it only needs to return rows that
8630 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
8631 ** to values currently held in registers. TK_COLUMN terms in the P4
8632 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
8634 case OP_CursorHint
: {
8637 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
8638 assert( pOp
->p4type
==P4_EXPR
);
8639 pC
= p
->apCsr
[pOp
->p1
];
8641 assert( pC
->eCurType
==CURTYPE_BTREE
);
8642 sqlite3BtreeCursorHint(pC
->uc
.pCursor
, BTREE_HINT_RANGE
,
8643 pOp
->p4
.pExpr
, aMem
);
8647 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
8650 /* Opcode: Abortable * * * * *
8652 ** Verify that an Abort can happen. Assert if an Abort at this point
8653 ** might cause database corruption. This opcode only appears in debugging
8656 ** An Abort is safe if either there have been no writes, or if there is
8657 ** an active statement journal.
8659 case OP_Abortable
: {
8660 sqlite3VdbeAssertAbortable(p
);
8666 /* Opcode: ReleaseReg P1 P2 P3 * P5
8667 ** Synopsis: release r[P1@P2] mask P3
8669 ** Release registers from service. Any content that was in the
8670 ** the registers is unreliable after this opcode completes.
8672 ** The registers released will be the P2 registers starting at P1,
8673 ** except if bit ii of P3 set, then do not release register P1+ii.
8674 ** In other words, P3 is a mask of registers to preserve.
8676 ** Releasing a register clears the Mem.pScopyFrom pointer. That means
8677 ** that if the content of the released register was set using OP_SCopy,
8678 ** a change to the value of the source register for the OP_SCopy will no longer
8679 ** generate an assertion fault in sqlite3VdbeMemAboutToChange().
8681 ** If P5 is set, then all released registers have their type set
8682 ** to MEM_Undefined so that any subsequent attempt to read the released
8683 ** register (before it is reinitialized) will generate an assertion fault.
8685 ** P5 ought to be set on every call to this opcode.
8686 ** However, there are places in the code generator will release registers
8687 ** before their are used, under the (valid) assumption that the registers
8688 ** will not be reallocated for some other purpose before they are used and
8689 ** hence are safe to release.
8691 ** This opcode is only available in testing and debugging builds. It is
8692 ** not generated for release builds. The purpose of this opcode is to help
8693 ** validate the generated bytecode. This opcode does not actually contribute
8694 ** to computing an answer.
8696 case OP_ReleaseReg
: {
8700 assert( pOp
->p1
>0 );
8701 assert( pOp
->p1
+pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
)+1 );
8702 pMem
= &aMem
[pOp
->p1
];
8703 constMask
= pOp
->p3
;
8704 for(i
=0; i
<pOp
->p2
; i
++, pMem
++){
8705 if( i
>=32 || (constMask
& MASKBIT32(i
))==0 ){
8706 pMem
->pScopyFrom
= 0;
8707 if( i
<32 && pOp
->p5
) MemSetTypeFlag(pMem
, MEM_Undefined
);
8714 /* Opcode: Noop * * * * *
8716 ** Do nothing. This instruction is often useful as a jump
8720 ** The magic Explain opcode are only inserted when explain==2 (which
8721 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
8722 ** This opcode records information from the optimizer. It is the
8723 ** the same as a no-op. This opcodesnever appears in a real VM program.
8725 default: { /* This is really OP_Noop, OP_Explain */
8726 assert( pOp
->opcode
==OP_Noop
|| pOp
->opcode
==OP_Explain
);
8731 /*****************************************************************************
8732 ** The cases of the switch statement above this line should all be indented
8733 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
8734 ** readability. From this point on down, the normal indentation rules are
8736 *****************************************************************************/
8741 u64 endTime
= sqlite3NProfileCnt
? sqlite3NProfileCnt
: sqlite3Hwtime();
8742 if( endTime
>start
) pOrigOp
->cycles
+= endTime
- start
;
8747 /* The following code adds nothing to the actual functionality
8748 ** of the program. It is only here for testing and debugging.
8749 ** On the other hand, it does burn CPU cycles every time through
8750 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
8753 assert( pOp
>=&aOp
[-1] && pOp
<&aOp
[p
->nOp
-1] );
8756 if( db
->flags
& SQLITE_VdbeTrace
){
8757 u8 opProperty
= sqlite3OpcodeProperty
[pOrigOp
->opcode
];
8758 if( rc
!=0 ) printf("rc=%d\n",rc
);
8759 if( opProperty
& (OPFLG_OUT2
) ){
8760 registerTrace(pOrigOp
->p2
, &aMem
[pOrigOp
->p2
]);
8762 if( opProperty
& OPFLG_OUT3
){
8763 registerTrace(pOrigOp
->p3
, &aMem
[pOrigOp
->p3
]);
8765 if( opProperty
==0xff ){
8766 /* Never happens. This code exists to avoid a harmless linkage
8767 ** warning aboud sqlite3VdbeRegisterDump() being defined but not
8769 sqlite3VdbeRegisterDump(p
);
8772 #endif /* SQLITE_DEBUG */
8774 } /* The end of the for(;;) loop the loops through opcodes */
8776 /* If we reach this point, it means that execution is finished with
8777 ** an error of some kind.
8780 if( db
->mallocFailed
){
8781 rc
= SQLITE_NOMEM_BKPT
;
8782 }else if( rc
==SQLITE_IOERR_CORRUPTFS
){
8783 rc
= SQLITE_CORRUPT_BKPT
;
8787 if( db
->flags
& SQLITE_VdbeTrace
){
8788 const char *zTrace
= p
->zSql
;
8790 if( aOp
[0].opcode
==OP_Trace
){
8791 zTrace
= aOp
[0].p4
.z
;
8793 if( zTrace
==0 ) zTrace
= "???";
8795 printf("ABORT-due-to-error (rc=%d): %s\n", rc
, zTrace
);
8798 if( p
->zErrMsg
==0 && rc
!=SQLITE_IOERR_NOMEM
){
8799 sqlite3VdbeError(p
, "%s", sqlite3ErrStr(rc
));
8802 sqlite3SystemError(db
, rc
);
8803 testcase( sqlite3GlobalConfig
.xLog
!=0 );
8804 sqlite3_log(rc
, "statement aborts at %d: [%s] %s",
8805 (int)(pOp
- aOp
), p
->zSql
, p
->zErrMsg
);
8806 if( p
->eVdbeState
==VDBE_RUN_STATE
) sqlite3VdbeHalt(p
);
8807 if( rc
==SQLITE_IOERR_NOMEM
) sqlite3OomFault(db
);
8808 if( rc
==SQLITE_CORRUPT
&& db
->autoCommit
==0 ){
8809 db
->flags
|= SQLITE_CorruptRdOnly
;
8812 if( resetSchemaOnFault
>0 ){
8813 sqlite3ResetOneSchema(db
, resetSchemaOnFault
-1);
8816 /* This is the only way out of this procedure. We have to
8817 ** release the mutexes on btrees that were acquired at the
8820 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
8821 while( nVmStep
>=nProgressLimit
&& db
->xProgress
!=0 ){
8822 nProgressLimit
+= db
->nProgressOps
;
8823 if( db
->xProgress(db
->pProgressArg
) ){
8824 nProgressLimit
= LARGEST_UINT64
;
8825 rc
= SQLITE_INTERRUPT
;
8826 goto abort_due_to_error
;
8830 p
->aCounter
[SQLITE_STMTSTATUS_VM_STEP
] += (int)nVmStep
;
8831 sqlite3VdbeLeave(p
);
8832 assert( rc
!=SQLITE_OK
|| nExtraDelete
==0
8833 || sqlite3_strlike("DELETE%",p
->zSql
,0)!=0
8837 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
8841 sqlite3VdbeError(p
, "string or blob too big");
8843 goto abort_due_to_error
;
8845 /* Jump to here if a malloc() fails.
8848 sqlite3OomFault(db
);
8849 sqlite3VdbeError(p
, "out of memory");
8850 rc
= SQLITE_NOMEM_BKPT
;
8851 goto abort_due_to_error
;
8853 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
8856 abort_due_to_interrupt
:
8857 assert( AtomicLoad(&db
->u1
.isInterrupted
) );
8858 rc
= SQLITE_INTERRUPT
;
8859 goto abort_due_to_error
;