Merge sqlite-release(3.40.1) into prerelease-integration
[sqlcipher.git] / tool / lemon.c
blobfb81292d4d2254fd1212bce4313d7bd0ee03b0ac
1 /*
2 ** This file contains all sources (including headers) to the LEMON
3 ** LALR(1) parser generator. The sources have been combined into a
4 ** single file to make it easy to include LEMON in the source tree
5 ** and Makefile of another program.
6 **
7 ** The author of this program disclaims copyright.
8 */
9 #include <stdio.h>
10 #include <stdarg.h>
11 #include <string.h>
12 #include <ctype.h>
13 #include <stdlib.h>
14 #include <assert.h>
16 #define ISSPACE(X) isspace((unsigned char)(X))
17 #define ISDIGIT(X) isdigit((unsigned char)(X))
18 #define ISALNUM(X) isalnum((unsigned char)(X))
19 #define ISALPHA(X) isalpha((unsigned char)(X))
20 #define ISUPPER(X) isupper((unsigned char)(X))
21 #define ISLOWER(X) islower((unsigned char)(X))
24 #ifndef __WIN32__
25 # if defined(_WIN32) || defined(WIN32)
26 # define __WIN32__
27 # endif
28 #endif
30 #ifdef __WIN32__
31 #ifdef __cplusplus
32 extern "C" {
33 #endif
34 extern int access(const char *path, int mode);
35 #ifdef __cplusplus
37 #endif
38 #else
39 #include <unistd.h>
40 #endif
42 /* #define PRIVATE static */
43 #define PRIVATE
45 #ifdef TEST
46 #define MAXRHS 5 /* Set low to exercise exception code */
47 #else
48 #define MAXRHS 1000
49 #endif
51 extern void memory_error();
52 static int showPrecedenceConflict = 0;
53 static char *msort(char*,char**,int(*)(const char*,const char*));
56 ** Compilers are getting increasingly pedantic about type conversions
57 ** as C evolves ever closer to Ada.... To work around the latest problems
58 ** we have to define the following variant of strlen().
60 #define lemonStrlen(X) ((int)strlen(X))
63 ** Compilers are starting to complain about the use of sprintf() and strcpy(),
64 ** saying they are unsafe. So we define our own versions of those routines too.
66 ** There are three routines here: lemon_sprintf(), lemon_vsprintf(), and
67 ** lemon_addtext(). The first two are replacements for sprintf() and vsprintf().
68 ** The third is a helper routine for vsnprintf() that adds texts to the end of a
69 ** buffer, making sure the buffer is always zero-terminated.
71 ** The string formatter is a minimal subset of stdlib sprintf() supporting only
72 ** a few simply conversions:
74 ** %d
75 ** %s
76 ** %.*s
79 static void lemon_addtext(
80 char *zBuf, /* The buffer to which text is added */
81 int *pnUsed, /* Slots of the buffer used so far */
82 const char *zIn, /* Text to add */
83 int nIn, /* Bytes of text to add. -1 to use strlen() */
84 int iWidth /* Field width. Negative to left justify */
86 if( nIn<0 ) for(nIn=0; zIn[nIn]; nIn++){}
87 while( iWidth>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth--; }
88 if( nIn==0 ) return;
89 memcpy(&zBuf[*pnUsed], zIn, nIn);
90 *pnUsed += nIn;
91 while( (-iWidth)>nIn ){ zBuf[(*pnUsed)++] = ' '; iWidth++; }
92 zBuf[*pnUsed] = 0;
94 static int lemon_vsprintf(char *str, const char *zFormat, va_list ap){
95 int i, j, k, c;
96 int nUsed = 0;
97 const char *z;
98 char zTemp[50];
99 str[0] = 0;
100 for(i=j=0; (c = zFormat[i])!=0; i++){
101 if( c=='%' ){
102 int iWidth = 0;
103 lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0);
104 c = zFormat[++i];
105 if( ISDIGIT(c) || (c=='-' && ISDIGIT(zFormat[i+1])) ){
106 if( c=='-' ) i++;
107 while( ISDIGIT(zFormat[i]) ) iWidth = iWidth*10 + zFormat[i++] - '0';
108 if( c=='-' ) iWidth = -iWidth;
109 c = zFormat[i];
111 if( c=='d' ){
112 int v = va_arg(ap, int);
113 if( v<0 ){
114 lemon_addtext(str, &nUsed, "-", 1, iWidth);
115 v = -v;
116 }else if( v==0 ){
117 lemon_addtext(str, &nUsed, "0", 1, iWidth);
119 k = 0;
120 while( v>0 ){
121 k++;
122 zTemp[sizeof(zTemp)-k] = (v%10) + '0';
123 v /= 10;
125 lemon_addtext(str, &nUsed, &zTemp[sizeof(zTemp)-k], k, iWidth);
126 }else if( c=='s' ){
127 z = va_arg(ap, const char*);
128 lemon_addtext(str, &nUsed, z, -1, iWidth);
129 }else if( c=='.' && memcmp(&zFormat[i], ".*s", 3)==0 ){
130 i += 2;
131 k = va_arg(ap, int);
132 z = va_arg(ap, const char*);
133 lemon_addtext(str, &nUsed, z, k, iWidth);
134 }else if( c=='%' ){
135 lemon_addtext(str, &nUsed, "%", 1, 0);
136 }else{
137 fprintf(stderr, "illegal format\n");
138 exit(1);
140 j = i+1;
143 lemon_addtext(str, &nUsed, &zFormat[j], i-j, 0);
144 return nUsed;
146 static int lemon_sprintf(char *str, const char *format, ...){
147 va_list ap;
148 int rc;
149 va_start(ap, format);
150 rc = lemon_vsprintf(str, format, ap);
151 va_end(ap);
152 return rc;
154 static void lemon_strcpy(char *dest, const char *src){
155 while( (*(dest++) = *(src++))!=0 ){}
157 static void lemon_strcat(char *dest, const char *src){
158 while( *dest ) dest++;
159 lemon_strcpy(dest, src);
163 /* a few forward declarations... */
164 struct rule;
165 struct lemon;
166 struct action;
168 static struct action *Action_new(void);
169 static struct action *Action_sort(struct action *);
171 /********** From the file "build.h" ************************************/
172 void FindRulePrecedences(struct lemon*);
173 void FindFirstSets(struct lemon*);
174 void FindStates(struct lemon*);
175 void FindLinks(struct lemon*);
176 void FindFollowSets(struct lemon*);
177 void FindActions(struct lemon*);
179 /********* From the file "configlist.h" *********************************/
180 void Configlist_init(void);
181 struct config *Configlist_add(struct rule *, int);
182 struct config *Configlist_addbasis(struct rule *, int);
183 void Configlist_closure(struct lemon *);
184 void Configlist_sort(void);
185 void Configlist_sortbasis(void);
186 struct config *Configlist_return(void);
187 struct config *Configlist_basis(void);
188 void Configlist_eat(struct config *);
189 void Configlist_reset(void);
191 /********* From the file "error.h" ***************************************/
192 void ErrorMsg(const char *, int,const char *, ...);
194 /****** From the file "option.h" ******************************************/
195 enum option_type { OPT_FLAG=1, OPT_INT, OPT_DBL, OPT_STR,
196 OPT_FFLAG, OPT_FINT, OPT_FDBL, OPT_FSTR};
197 struct s_options {
198 enum option_type type;
199 const char *label;
200 char *arg;
201 const char *message;
203 int OptInit(char**,struct s_options*,FILE*);
204 int OptNArgs(void);
205 char *OptArg(int);
206 void OptErr(int);
207 void OptPrint(void);
209 /******** From the file "parse.h" *****************************************/
210 void Parse(struct lemon *lemp);
212 /********* From the file "plink.h" ***************************************/
213 struct plink *Plink_new(void);
214 void Plink_add(struct plink **, struct config *);
215 void Plink_copy(struct plink **, struct plink *);
216 void Plink_delete(struct plink *);
218 /********** From the file "report.h" *************************************/
219 void Reprint(struct lemon *);
220 void ReportOutput(struct lemon *);
221 void ReportTable(struct lemon *, int, int);
222 void ReportHeader(struct lemon *);
223 void CompressTables(struct lemon *);
224 void ResortStates(struct lemon *);
226 /********** From the file "set.h" ****************************************/
227 void SetSize(int); /* All sets will be of size N */
228 char *SetNew(void); /* A new set for element 0..N */
229 void SetFree(char*); /* Deallocate a set */
230 int SetAdd(char*,int); /* Add element to a set */
231 int SetUnion(char *,char *); /* A <- A U B, thru element N */
232 #define SetFind(X,Y) (X[Y]) /* True if Y is in set X */
234 /********** From the file "struct.h" *************************************/
236 ** Principal data structures for the LEMON parser generator.
239 typedef enum {LEMON_FALSE=0, LEMON_TRUE} Boolean;
241 /* Symbols (terminals and nonterminals) of the grammar are stored
242 ** in the following: */
243 enum symbol_type {
244 TERMINAL,
245 NONTERMINAL,
246 MULTITERMINAL
248 enum e_assoc {
249 LEFT,
250 RIGHT,
251 NONE,
254 struct symbol {
255 const char *name; /* Name of the symbol */
256 int index; /* Index number for this symbol */
257 enum symbol_type type; /* Symbols are all either TERMINALS or NTs */
258 struct rule *rule; /* Linked list of rules of this (if an NT) */
259 struct symbol *fallback; /* fallback token in case this token doesn't parse */
260 int prec; /* Precedence if defined (-1 otherwise) */
261 enum e_assoc assoc; /* Associativity if precedence is defined */
262 char *firstset; /* First-set for all rules of this symbol */
263 Boolean lambda; /* True if NT and can generate an empty string */
264 int useCnt; /* Number of times used */
265 char *destructor; /* Code which executes whenever this symbol is
266 ** popped from the stack during error processing */
267 int destLineno; /* Line number for start of destructor. Set to
268 ** -1 for duplicate destructors. */
269 char *datatype; /* The data type of information held by this
270 ** object. Only used if type==NONTERMINAL */
271 int dtnum; /* The data type number. In the parser, the value
272 ** stack is a union. The .yy%d element of this
273 ** union is the correct data type for this object */
274 int bContent; /* True if this symbol ever carries content - if
275 ** it is ever more than just syntax */
276 /* The following fields are used by MULTITERMINALs only */
277 int nsubsym; /* Number of constituent symbols in the MULTI */
278 struct symbol **subsym; /* Array of constituent symbols */
281 /* Each production rule in the grammar is stored in the following
282 ** structure. */
283 struct rule {
284 struct symbol *lhs; /* Left-hand side of the rule */
285 const char *lhsalias; /* Alias for the LHS (NULL if none) */
286 int lhsStart; /* True if left-hand side is the start symbol */
287 int ruleline; /* Line number for the rule */
288 int nrhs; /* Number of RHS symbols */
289 struct symbol **rhs; /* The RHS symbols */
290 const char **rhsalias; /* An alias for each RHS symbol (NULL if none) */
291 int line; /* Line number at which code begins */
292 const char *code; /* The code executed when this rule is reduced */
293 const char *codePrefix; /* Setup code before code[] above */
294 const char *codeSuffix; /* Breakdown code after code[] above */
295 struct symbol *precsym; /* Precedence symbol for this rule */
296 int index; /* An index number for this rule */
297 int iRule; /* Rule number as used in the generated tables */
298 Boolean noCode; /* True if this rule has no associated C code */
299 Boolean codeEmitted; /* True if the code has been emitted already */
300 Boolean canReduce; /* True if this rule is ever reduced */
301 Boolean doesReduce; /* Reduce actions occur after optimization */
302 Boolean neverReduce; /* Reduce is theoretically possible, but prevented
303 ** by actions or other outside implementation */
304 struct rule *nextlhs; /* Next rule with the same LHS */
305 struct rule *next; /* Next rule in the global list */
308 /* A configuration is a production rule of the grammar together with
309 ** a mark (dot) showing how much of that rule has been processed so far.
310 ** Configurations also contain a follow-set which is a list of terminal
311 ** symbols which are allowed to immediately follow the end of the rule.
312 ** Every configuration is recorded as an instance of the following: */
313 enum cfgstatus {
314 COMPLETE,
315 INCOMPLETE
317 struct config {
318 struct rule *rp; /* The rule upon which the configuration is based */
319 int dot; /* The parse point */
320 char *fws; /* Follow-set for this configuration only */
321 struct plink *fplp; /* Follow-set forward propagation links */
322 struct plink *bplp; /* Follow-set backwards propagation links */
323 struct state *stp; /* Pointer to state which contains this */
324 enum cfgstatus status; /* used during followset and shift computations */
325 struct config *next; /* Next configuration in the state */
326 struct config *bp; /* The next basis configuration */
329 enum e_action {
330 SHIFT,
331 ACCEPT,
332 REDUCE,
333 ERROR,
334 SSCONFLICT, /* A shift/shift conflict */
335 SRCONFLICT, /* Was a reduce, but part of a conflict */
336 RRCONFLICT, /* Was a reduce, but part of a conflict */
337 SH_RESOLVED, /* Was a shift. Precedence resolved conflict */
338 RD_RESOLVED, /* Was reduce. Precedence resolved conflict */
339 NOT_USED, /* Deleted by compression */
340 SHIFTREDUCE /* Shift first, then reduce */
343 /* Every shift or reduce operation is stored as one of the following */
344 struct action {
345 struct symbol *sp; /* The look-ahead symbol */
346 enum e_action type;
347 union {
348 struct state *stp; /* The new state, if a shift */
349 struct rule *rp; /* The rule, if a reduce */
350 } x;
351 struct symbol *spOpt; /* SHIFTREDUCE optimization to this symbol */
352 struct action *next; /* Next action for this state */
353 struct action *collide; /* Next action with the same hash */
356 /* Each state of the generated parser's finite state machine
357 ** is encoded as an instance of the following structure. */
358 struct state {
359 struct config *bp; /* The basis configurations for this state */
360 struct config *cfp; /* All configurations in this set */
361 int statenum; /* Sequential number for this state */
362 struct action *ap; /* List of actions for this state */
363 int nTknAct, nNtAct; /* Number of actions on terminals and nonterminals */
364 int iTknOfst, iNtOfst; /* yy_action[] offset for terminals and nonterms */
365 int iDfltReduce; /* Default action is to REDUCE by this rule */
366 struct rule *pDfltReduce;/* The default REDUCE rule. */
367 int autoReduce; /* True if this is an auto-reduce state */
369 #define NO_OFFSET (-2147483647)
371 /* A followset propagation link indicates that the contents of one
372 ** configuration followset should be propagated to another whenever
373 ** the first changes. */
374 struct plink {
375 struct config *cfp; /* The configuration to which linked */
376 struct plink *next; /* The next propagate link */
379 /* The state vector for the entire parser generator is recorded as
380 ** follows. (LEMON uses no global variables and makes little use of
381 ** static variables. Fields in the following structure can be thought
382 ** of as begin global variables in the program.) */
383 struct lemon {
384 struct state **sorted; /* Table of states sorted by state number */
385 struct rule *rule; /* List of all rules */
386 struct rule *startRule; /* First rule */
387 int nstate; /* Number of states */
388 int nxstate; /* nstate with tail degenerate states removed */
389 int nrule; /* Number of rules */
390 int nruleWithAction; /* Number of rules with actions */
391 int nsymbol; /* Number of terminal and nonterminal symbols */
392 int nterminal; /* Number of terminal symbols */
393 int minShiftReduce; /* Minimum shift-reduce action value */
394 int errAction; /* Error action value */
395 int accAction; /* Accept action value */
396 int noAction; /* No-op action value */
397 int minReduce; /* Minimum reduce action */
398 int maxAction; /* Maximum action value of any kind */
399 struct symbol **symbols; /* Sorted array of pointers to symbols */
400 int errorcnt; /* Number of errors */
401 struct symbol *errsym; /* The error symbol */
402 struct symbol *wildcard; /* Token that matches anything */
403 char *name; /* Name of the generated parser */
404 char *arg; /* Declaration of the 3rd argument to parser */
405 char *ctx; /* Declaration of 2nd argument to constructor */
406 char *tokentype; /* Type of terminal symbols in the parser stack */
407 char *vartype; /* The default type of non-terminal symbols */
408 char *start; /* Name of the start symbol for the grammar */
409 char *stacksize; /* Size of the parser stack */
410 char *include; /* Code to put at the start of the C file */
411 char *error; /* Code to execute when an error is seen */
412 char *overflow; /* Code to execute on a stack overflow */
413 char *failure; /* Code to execute on parser failure */
414 char *accept; /* Code to execute when the parser excepts */
415 char *extracode; /* Code appended to the generated file */
416 char *tokendest; /* Code to execute to destroy token data */
417 char *vardest; /* Code for the default non-terminal destructor */
418 char *filename; /* Name of the input file */
419 char *outname; /* Name of the current output file */
420 char *tokenprefix; /* A prefix added to token names in the .h file */
421 int nconflict; /* Number of parsing conflicts */
422 int nactiontab; /* Number of entries in the yy_action[] table */
423 int nlookaheadtab; /* Number of entries in yy_lookahead[] */
424 int tablesize; /* Total table size of all tables in bytes */
425 int basisflag; /* Print only basis configurations */
426 int printPreprocessed; /* Show preprocessor output on stdout */
427 int has_fallback; /* True if any %fallback is seen in the grammar */
428 int nolinenosflag; /* True if #line statements should not be printed */
429 char *argv0; /* Name of the program */
432 #define MemoryCheck(X) if((X)==0){ \
433 extern void memory_error(); \
434 memory_error(); \
437 /**************** From the file "table.h" *********************************/
439 ** All code in this file has been automatically generated
440 ** from a specification in the file
441 ** "table.q"
442 ** by the associative array code building program "aagen".
443 ** Do not edit this file! Instead, edit the specification
444 ** file, then rerun aagen.
447 ** Code for processing tables in the LEMON parser generator.
449 /* Routines for handling a strings */
451 const char *Strsafe(const char *);
453 void Strsafe_init(void);
454 int Strsafe_insert(const char *);
455 const char *Strsafe_find(const char *);
457 /* Routines for handling symbols of the grammar */
459 struct symbol *Symbol_new(const char *);
460 int Symbolcmpp(const void *, const void *);
461 void Symbol_init(void);
462 int Symbol_insert(struct symbol *, const char *);
463 struct symbol *Symbol_find(const char *);
464 struct symbol *Symbol_Nth(int);
465 int Symbol_count(void);
466 struct symbol **Symbol_arrayof(void);
468 /* Routines to manage the state table */
470 int Configcmp(const char *, const char *);
471 struct state *State_new(void);
472 void State_init(void);
473 int State_insert(struct state *, struct config *);
474 struct state *State_find(struct config *);
475 struct state **State_arrayof(void);
477 /* Routines used for efficiency in Configlist_add */
479 void Configtable_init(void);
480 int Configtable_insert(struct config *);
481 struct config *Configtable_find(struct config *);
482 void Configtable_clear(int(*)(struct config *));
484 /****************** From the file "action.c" *******************************/
486 ** Routines processing parser actions in the LEMON parser generator.
489 /* Allocate a new parser action */
490 static struct action *Action_new(void){
491 static struct action *actionfreelist = 0;
492 struct action *newaction;
494 if( actionfreelist==0 ){
495 int i;
496 int amt = 100;
497 actionfreelist = (struct action *)calloc(amt, sizeof(struct action));
498 if( actionfreelist==0 ){
499 fprintf(stderr,"Unable to allocate memory for a new parser action.");
500 exit(1);
502 for(i=0; i<amt-1; i++) actionfreelist[i].next = &actionfreelist[i+1];
503 actionfreelist[amt-1].next = 0;
505 newaction = actionfreelist;
506 actionfreelist = actionfreelist->next;
507 return newaction;
510 /* Compare two actions for sorting purposes. Return negative, zero, or
511 ** positive if the first action is less than, equal to, or greater than
512 ** the first
514 static int actioncmp(
515 struct action *ap1,
516 struct action *ap2
518 int rc;
519 rc = ap1->sp->index - ap2->sp->index;
520 if( rc==0 ){
521 rc = (int)ap1->type - (int)ap2->type;
523 if( rc==0 && (ap1->type==REDUCE || ap1->type==SHIFTREDUCE) ){
524 rc = ap1->x.rp->index - ap2->x.rp->index;
526 if( rc==0 ){
527 rc = (int) (ap2 - ap1);
529 return rc;
532 /* Sort parser actions */
533 static struct action *Action_sort(
534 struct action *ap
536 ap = (struct action *)msort((char *)ap,(char **)&ap->next,
537 (int(*)(const char*,const char*))actioncmp);
538 return ap;
541 void Action_add(
542 struct action **app,
543 enum e_action type,
544 struct symbol *sp,
545 char *arg
547 struct action *newaction;
548 newaction = Action_new();
549 newaction->next = *app;
550 *app = newaction;
551 newaction->type = type;
552 newaction->sp = sp;
553 newaction->spOpt = 0;
554 if( type==SHIFT ){
555 newaction->x.stp = (struct state *)arg;
556 }else{
557 newaction->x.rp = (struct rule *)arg;
560 /********************** New code to implement the "acttab" module ***********/
562 ** This module implements routines use to construct the yy_action[] table.
566 ** The state of the yy_action table under construction is an instance of
567 ** the following structure.
569 ** The yy_action table maps the pair (state_number, lookahead) into an
570 ** action_number. The table is an array of integers pairs. The state_number
571 ** determines an initial offset into the yy_action array. The lookahead
572 ** value is then added to this initial offset to get an index X into the
573 ** yy_action array. If the aAction[X].lookahead equals the value of the
574 ** of the lookahead input, then the value of the action_number output is
575 ** aAction[X].action. If the lookaheads do not match then the
576 ** default action for the state_number is returned.
578 ** All actions associated with a single state_number are first entered
579 ** into aLookahead[] using multiple calls to acttab_action(). Then the
580 ** actions for that single state_number are placed into the aAction[]
581 ** array with a single call to acttab_insert(). The acttab_insert() call
582 ** also resets the aLookahead[] array in preparation for the next
583 ** state number.
585 struct lookahead_action {
586 int lookahead; /* Value of the lookahead token */
587 int action; /* Action to take on the given lookahead */
589 typedef struct acttab acttab;
590 struct acttab {
591 int nAction; /* Number of used slots in aAction[] */
592 int nActionAlloc; /* Slots allocated for aAction[] */
593 struct lookahead_action
594 *aAction, /* The yy_action[] table under construction */
595 *aLookahead; /* A single new transaction set */
596 int mnLookahead; /* Minimum aLookahead[].lookahead */
597 int mnAction; /* Action associated with mnLookahead */
598 int mxLookahead; /* Maximum aLookahead[].lookahead */
599 int nLookahead; /* Used slots in aLookahead[] */
600 int nLookaheadAlloc; /* Slots allocated in aLookahead[] */
601 int nterminal; /* Number of terminal symbols */
602 int nsymbol; /* total number of symbols */
605 /* Return the number of entries in the yy_action table */
606 #define acttab_lookahead_size(X) ((X)->nAction)
608 /* The value for the N-th entry in yy_action */
609 #define acttab_yyaction(X,N) ((X)->aAction[N].action)
611 /* The value for the N-th entry in yy_lookahead */
612 #define acttab_yylookahead(X,N) ((X)->aAction[N].lookahead)
614 /* Free all memory associated with the given acttab */
615 void acttab_free(acttab *p){
616 free( p->aAction );
617 free( p->aLookahead );
618 free( p );
621 /* Allocate a new acttab structure */
622 acttab *acttab_alloc(int nsymbol, int nterminal){
623 acttab *p = (acttab *) calloc( 1, sizeof(*p) );
624 if( p==0 ){
625 fprintf(stderr,"Unable to allocate memory for a new acttab.");
626 exit(1);
628 memset(p, 0, sizeof(*p));
629 p->nsymbol = nsymbol;
630 p->nterminal = nterminal;
631 return p;
634 /* Add a new action to the current transaction set.
636 ** This routine is called once for each lookahead for a particular
637 ** state.
639 void acttab_action(acttab *p, int lookahead, int action){
640 if( p->nLookahead>=p->nLookaheadAlloc ){
641 p->nLookaheadAlloc += 25;
642 p->aLookahead = (struct lookahead_action *) realloc( p->aLookahead,
643 sizeof(p->aLookahead[0])*p->nLookaheadAlloc );
644 if( p->aLookahead==0 ){
645 fprintf(stderr,"malloc failed\n");
646 exit(1);
649 if( p->nLookahead==0 ){
650 p->mxLookahead = lookahead;
651 p->mnLookahead = lookahead;
652 p->mnAction = action;
653 }else{
654 if( p->mxLookahead<lookahead ) p->mxLookahead = lookahead;
655 if( p->mnLookahead>lookahead ){
656 p->mnLookahead = lookahead;
657 p->mnAction = action;
660 p->aLookahead[p->nLookahead].lookahead = lookahead;
661 p->aLookahead[p->nLookahead].action = action;
662 p->nLookahead++;
666 ** Add the transaction set built up with prior calls to acttab_action()
667 ** into the current action table. Then reset the transaction set back
668 ** to an empty set in preparation for a new round of acttab_action() calls.
670 ** Return the offset into the action table of the new transaction.
672 ** If the makeItSafe parameter is true, then the offset is chosen so that
673 ** it is impossible to overread the yy_lookaside[] table regardless of
674 ** the lookaside token. This is done for the terminal symbols, as they
675 ** come from external inputs and can contain syntax errors. When makeItSafe
676 ** is false, there is more flexibility in selecting offsets, resulting in
677 ** a smaller table. For non-terminal symbols, which are never syntax errors,
678 ** makeItSafe can be false.
680 int acttab_insert(acttab *p, int makeItSafe){
681 int i, j, k, n, end;
682 assert( p->nLookahead>0 );
684 /* Make sure we have enough space to hold the expanded action table
685 ** in the worst case. The worst case occurs if the transaction set
686 ** must be appended to the current action table
688 n = p->nsymbol + 1;
689 if( p->nAction + n >= p->nActionAlloc ){
690 int oldAlloc = p->nActionAlloc;
691 p->nActionAlloc = p->nAction + n + p->nActionAlloc + 20;
692 p->aAction = (struct lookahead_action *) realloc( p->aAction,
693 sizeof(p->aAction[0])*p->nActionAlloc);
694 if( p->aAction==0 ){
695 fprintf(stderr,"malloc failed\n");
696 exit(1);
698 for(i=oldAlloc; i<p->nActionAlloc; i++){
699 p->aAction[i].lookahead = -1;
700 p->aAction[i].action = -1;
704 /* Scan the existing action table looking for an offset that is a
705 ** duplicate of the current transaction set. Fall out of the loop
706 ** if and when the duplicate is found.
708 ** i is the index in p->aAction[] where p->mnLookahead is inserted.
710 end = makeItSafe ? p->mnLookahead : 0;
711 for(i=p->nAction-1; i>=end; i--){
712 if( p->aAction[i].lookahead==p->mnLookahead ){
713 /* All lookaheads and actions in the aLookahead[] transaction
714 ** must match against the candidate aAction[i] entry. */
715 if( p->aAction[i].action!=p->mnAction ) continue;
716 for(j=0; j<p->nLookahead; j++){
717 k = p->aLookahead[j].lookahead - p->mnLookahead + i;
718 if( k<0 || k>=p->nAction ) break;
719 if( p->aLookahead[j].lookahead!=p->aAction[k].lookahead ) break;
720 if( p->aLookahead[j].action!=p->aAction[k].action ) break;
722 if( j<p->nLookahead ) continue;
724 /* No possible lookahead value that is not in the aLookahead[]
725 ** transaction is allowed to match aAction[i] */
726 n = 0;
727 for(j=0; j<p->nAction; j++){
728 if( p->aAction[j].lookahead<0 ) continue;
729 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) n++;
731 if( n==p->nLookahead ){
732 break; /* An exact match is found at offset i */
737 /* If no existing offsets exactly match the current transaction, find an
738 ** an empty offset in the aAction[] table in which we can add the
739 ** aLookahead[] transaction.
741 if( i<end ){
742 /* Look for holes in the aAction[] table that fit the current
743 ** aLookahead[] transaction. Leave i set to the offset of the hole.
744 ** If no holes are found, i is left at p->nAction, which means the
745 ** transaction will be appended. */
746 i = makeItSafe ? p->mnLookahead : 0;
747 for(; i<p->nActionAlloc - p->mxLookahead; i++){
748 if( p->aAction[i].lookahead<0 ){
749 for(j=0; j<p->nLookahead; j++){
750 k = p->aLookahead[j].lookahead - p->mnLookahead + i;
751 if( k<0 ) break;
752 if( p->aAction[k].lookahead>=0 ) break;
754 if( j<p->nLookahead ) continue;
755 for(j=0; j<p->nAction; j++){
756 if( p->aAction[j].lookahead==j+p->mnLookahead-i ) break;
758 if( j==p->nAction ){
759 break; /* Fits in empty slots */
764 /* Insert transaction set at index i. */
765 #if 0
766 printf("Acttab:");
767 for(j=0; j<p->nLookahead; j++){
768 printf(" %d", p->aLookahead[j].lookahead);
770 printf(" inserted at %d\n", i);
771 #endif
772 for(j=0; j<p->nLookahead; j++){
773 k = p->aLookahead[j].lookahead - p->mnLookahead + i;
774 p->aAction[k] = p->aLookahead[j];
775 if( k>=p->nAction ) p->nAction = k+1;
777 if( makeItSafe && i+p->nterminal>=p->nAction ) p->nAction = i+p->nterminal+1;
778 p->nLookahead = 0;
780 /* Return the offset that is added to the lookahead in order to get the
781 ** index into yy_action of the action */
782 return i - p->mnLookahead;
786 ** Return the size of the action table without the trailing syntax error
787 ** entries.
789 int acttab_action_size(acttab *p){
790 int n = p->nAction;
791 while( n>0 && p->aAction[n-1].lookahead<0 ){ n--; }
792 return n;
795 /********************** From the file "build.c" *****************************/
797 ** Routines to construction the finite state machine for the LEMON
798 ** parser generator.
801 /* Find a precedence symbol of every rule in the grammar.
803 ** Those rules which have a precedence symbol coded in the input
804 ** grammar using the "[symbol]" construct will already have the
805 ** rp->precsym field filled. Other rules take as their precedence
806 ** symbol the first RHS symbol with a defined precedence. If there
807 ** are not RHS symbols with a defined precedence, the precedence
808 ** symbol field is left blank.
810 void FindRulePrecedences(struct lemon *xp)
812 struct rule *rp;
813 for(rp=xp->rule; rp; rp=rp->next){
814 if( rp->precsym==0 ){
815 int i, j;
816 for(i=0; i<rp->nrhs && rp->precsym==0; i++){
817 struct symbol *sp = rp->rhs[i];
818 if( sp->type==MULTITERMINAL ){
819 for(j=0; j<sp->nsubsym; j++){
820 if( sp->subsym[j]->prec>=0 ){
821 rp->precsym = sp->subsym[j];
822 break;
825 }else if( sp->prec>=0 ){
826 rp->precsym = rp->rhs[i];
831 return;
834 /* Find all nonterminals which will generate the empty string.
835 ** Then go back and compute the first sets of every nonterminal.
836 ** The first set is the set of all terminal symbols which can begin
837 ** a string generated by that nonterminal.
839 void FindFirstSets(struct lemon *lemp)
841 int i, j;
842 struct rule *rp;
843 int progress;
845 for(i=0; i<lemp->nsymbol; i++){
846 lemp->symbols[i]->lambda = LEMON_FALSE;
848 for(i=lemp->nterminal; i<lemp->nsymbol; i++){
849 lemp->symbols[i]->firstset = SetNew();
852 /* First compute all lambdas */
854 progress = 0;
855 for(rp=lemp->rule; rp; rp=rp->next){
856 if( rp->lhs->lambda ) continue;
857 for(i=0; i<rp->nrhs; i++){
858 struct symbol *sp = rp->rhs[i];
859 assert( sp->type==NONTERMINAL || sp->lambda==LEMON_FALSE );
860 if( sp->lambda==LEMON_FALSE ) break;
862 if( i==rp->nrhs ){
863 rp->lhs->lambda = LEMON_TRUE;
864 progress = 1;
867 }while( progress );
869 /* Now compute all first sets */
871 struct symbol *s1, *s2;
872 progress = 0;
873 for(rp=lemp->rule; rp; rp=rp->next){
874 s1 = rp->lhs;
875 for(i=0; i<rp->nrhs; i++){
876 s2 = rp->rhs[i];
877 if( s2->type==TERMINAL ){
878 progress += SetAdd(s1->firstset,s2->index);
879 break;
880 }else if( s2->type==MULTITERMINAL ){
881 for(j=0; j<s2->nsubsym; j++){
882 progress += SetAdd(s1->firstset,s2->subsym[j]->index);
884 break;
885 }else if( s1==s2 ){
886 if( s1->lambda==LEMON_FALSE ) break;
887 }else{
888 progress += SetUnion(s1->firstset,s2->firstset);
889 if( s2->lambda==LEMON_FALSE ) break;
893 }while( progress );
894 return;
897 /* Compute all LR(0) states for the grammar. Links
898 ** are added to between some states so that the LR(1) follow sets
899 ** can be computed later.
901 PRIVATE struct state *getstate(struct lemon *); /* forward reference */
902 void FindStates(struct lemon *lemp)
904 struct symbol *sp;
905 struct rule *rp;
907 Configlist_init();
909 /* Find the start symbol */
910 if( lemp->start ){
911 sp = Symbol_find(lemp->start);
912 if( sp==0 ){
913 ErrorMsg(lemp->filename,0,
914 "The specified start symbol \"%s\" is not "
915 "in a nonterminal of the grammar. \"%s\" will be used as the start "
916 "symbol instead.",lemp->start,lemp->startRule->lhs->name);
917 lemp->errorcnt++;
918 sp = lemp->startRule->lhs;
920 }else if( lemp->startRule ){
921 sp = lemp->startRule->lhs;
922 }else{
923 ErrorMsg(lemp->filename,0,"Internal error - no start rule\n");
924 exit(1);
927 /* Make sure the start symbol doesn't occur on the right-hand side of
928 ** any rule. Report an error if it does. (YACC would generate a new
929 ** start symbol in this case.) */
930 for(rp=lemp->rule; rp; rp=rp->next){
931 int i;
932 for(i=0; i<rp->nrhs; i++){
933 if( rp->rhs[i]==sp ){ /* FIX ME: Deal with multiterminals */
934 ErrorMsg(lemp->filename,0,
935 "The start symbol \"%s\" occurs on the "
936 "right-hand side of a rule. This will result in a parser which "
937 "does not work properly.",sp->name);
938 lemp->errorcnt++;
943 /* The basis configuration set for the first state
944 ** is all rules which have the start symbol as their
945 ** left-hand side */
946 for(rp=sp->rule; rp; rp=rp->nextlhs){
947 struct config *newcfp;
948 rp->lhsStart = 1;
949 newcfp = Configlist_addbasis(rp,0);
950 SetAdd(newcfp->fws,0);
953 /* Compute the first state. All other states will be
954 ** computed automatically during the computation of the first one.
955 ** The returned pointer to the first state is not used. */
956 (void)getstate(lemp);
957 return;
960 /* Return a pointer to a state which is described by the configuration
961 ** list which has been built from calls to Configlist_add.
963 PRIVATE void buildshifts(struct lemon *, struct state *); /* Forwd ref */
964 PRIVATE struct state *getstate(struct lemon *lemp)
966 struct config *cfp, *bp;
967 struct state *stp;
969 /* Extract the sorted basis of the new state. The basis was constructed
970 ** by prior calls to "Configlist_addbasis()". */
971 Configlist_sortbasis();
972 bp = Configlist_basis();
974 /* Get a state with the same basis */
975 stp = State_find(bp);
976 if( stp ){
977 /* A state with the same basis already exists! Copy all the follow-set
978 ** propagation links from the state under construction into the
979 ** preexisting state, then return a pointer to the preexisting state */
980 struct config *x, *y;
981 for(x=bp, y=stp->bp; x && y; x=x->bp, y=y->bp){
982 Plink_copy(&y->bplp,x->bplp);
983 Plink_delete(x->fplp);
984 x->fplp = x->bplp = 0;
986 cfp = Configlist_return();
987 Configlist_eat(cfp);
988 }else{
989 /* This really is a new state. Construct all the details */
990 Configlist_closure(lemp); /* Compute the configuration closure */
991 Configlist_sort(); /* Sort the configuration closure */
992 cfp = Configlist_return(); /* Get a pointer to the config list */
993 stp = State_new(); /* A new state structure */
994 MemoryCheck(stp);
995 stp->bp = bp; /* Remember the configuration basis */
996 stp->cfp = cfp; /* Remember the configuration closure */
997 stp->statenum = lemp->nstate++; /* Every state gets a sequence number */
998 stp->ap = 0; /* No actions, yet. */
999 State_insert(stp,stp->bp); /* Add to the state table */
1000 buildshifts(lemp,stp); /* Recursively compute successor states */
1002 return stp;
1006 ** Return true if two symbols are the same.
1008 int same_symbol(struct symbol *a, struct symbol *b)
1010 int i;
1011 if( a==b ) return 1;
1012 if( a->type!=MULTITERMINAL ) return 0;
1013 if( b->type!=MULTITERMINAL ) return 0;
1014 if( a->nsubsym!=b->nsubsym ) return 0;
1015 for(i=0; i<a->nsubsym; i++){
1016 if( a->subsym[i]!=b->subsym[i] ) return 0;
1018 return 1;
1021 /* Construct all successor states to the given state. A "successor"
1022 ** state is any state which can be reached by a shift action.
1024 PRIVATE void buildshifts(struct lemon *lemp, struct state *stp)
1026 struct config *cfp; /* For looping thru the config closure of "stp" */
1027 struct config *bcfp; /* For the inner loop on config closure of "stp" */
1028 struct config *newcfg; /* */
1029 struct symbol *sp; /* Symbol following the dot in configuration "cfp" */
1030 struct symbol *bsp; /* Symbol following the dot in configuration "bcfp" */
1031 struct state *newstp; /* A pointer to a successor state */
1033 /* Each configuration becomes complete after it contributes to a successor
1034 ** state. Initially, all configurations are incomplete */
1035 for(cfp=stp->cfp; cfp; cfp=cfp->next) cfp->status = INCOMPLETE;
1037 /* Loop through all configurations of the state "stp" */
1038 for(cfp=stp->cfp; cfp; cfp=cfp->next){
1039 if( cfp->status==COMPLETE ) continue; /* Already used by inner loop */
1040 if( cfp->dot>=cfp->rp->nrhs ) continue; /* Can't shift this config */
1041 Configlist_reset(); /* Reset the new config set */
1042 sp = cfp->rp->rhs[cfp->dot]; /* Symbol after the dot */
1044 /* For every configuration in the state "stp" which has the symbol "sp"
1045 ** following its dot, add the same configuration to the basis set under
1046 ** construction but with the dot shifted one symbol to the right. */
1047 for(bcfp=cfp; bcfp; bcfp=bcfp->next){
1048 if( bcfp->status==COMPLETE ) continue; /* Already used */
1049 if( bcfp->dot>=bcfp->rp->nrhs ) continue; /* Can't shift this one */
1050 bsp = bcfp->rp->rhs[bcfp->dot]; /* Get symbol after dot */
1051 if( !same_symbol(bsp,sp) ) continue; /* Must be same as for "cfp" */
1052 bcfp->status = COMPLETE; /* Mark this config as used */
1053 newcfg = Configlist_addbasis(bcfp->rp,bcfp->dot+1);
1054 Plink_add(&newcfg->bplp,bcfp);
1057 /* Get a pointer to the state described by the basis configuration set
1058 ** constructed in the preceding loop */
1059 newstp = getstate(lemp);
1061 /* The state "newstp" is reached from the state "stp" by a shift action
1062 ** on the symbol "sp" */
1063 if( sp->type==MULTITERMINAL ){
1064 int i;
1065 for(i=0; i<sp->nsubsym; i++){
1066 Action_add(&stp->ap,SHIFT,sp->subsym[i],(char*)newstp);
1068 }else{
1069 Action_add(&stp->ap,SHIFT,sp,(char *)newstp);
1075 ** Construct the propagation links
1077 void FindLinks(struct lemon *lemp)
1079 int i;
1080 struct config *cfp, *other;
1081 struct state *stp;
1082 struct plink *plp;
1084 /* Housekeeping detail:
1085 ** Add to every propagate link a pointer back to the state to
1086 ** which the link is attached. */
1087 for(i=0; i<lemp->nstate; i++){
1088 stp = lemp->sorted[i];
1089 for(cfp=stp?stp->cfp:0; cfp; cfp=cfp->next){
1090 cfp->stp = stp;
1094 /* Convert all backlinks into forward links. Only the forward
1095 ** links are used in the follow-set computation. */
1096 for(i=0; i<lemp->nstate; i++){
1097 stp = lemp->sorted[i];
1098 for(cfp=stp?stp->cfp:0; cfp; cfp=cfp->next){
1099 for(plp=cfp->bplp; plp; plp=plp->next){
1100 other = plp->cfp;
1101 Plink_add(&other->fplp,cfp);
1107 /* Compute all followsets.
1109 ** A followset is the set of all symbols which can come immediately
1110 ** after a configuration.
1112 void FindFollowSets(struct lemon *lemp)
1114 int i;
1115 struct config *cfp;
1116 struct plink *plp;
1117 int progress;
1118 int change;
1120 for(i=0; i<lemp->nstate; i++){
1121 assert( lemp->sorted[i]!=0 );
1122 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
1123 cfp->status = INCOMPLETE;
1128 progress = 0;
1129 for(i=0; i<lemp->nstate; i++){
1130 assert( lemp->sorted[i]!=0 );
1131 for(cfp=lemp->sorted[i]->cfp; cfp; cfp=cfp->next){
1132 if( cfp->status==COMPLETE ) continue;
1133 for(plp=cfp->fplp; plp; plp=plp->next){
1134 change = SetUnion(plp->cfp->fws,cfp->fws);
1135 if( change ){
1136 plp->cfp->status = INCOMPLETE;
1137 progress = 1;
1140 cfp->status = COMPLETE;
1143 }while( progress );
1146 static int resolve_conflict(struct action *,struct action *);
1148 /* Compute the reduce actions, and resolve conflicts.
1150 void FindActions(struct lemon *lemp)
1152 int i,j;
1153 struct config *cfp;
1154 struct state *stp;
1155 struct symbol *sp;
1156 struct rule *rp;
1158 /* Add all of the reduce actions
1159 ** A reduce action is added for each element of the followset of
1160 ** a configuration which has its dot at the extreme right.
1162 for(i=0; i<lemp->nstate; i++){ /* Loop over all states */
1163 stp = lemp->sorted[i];
1164 for(cfp=stp->cfp; cfp; cfp=cfp->next){ /* Loop over all configurations */
1165 if( cfp->rp->nrhs==cfp->dot ){ /* Is dot at extreme right? */
1166 for(j=0; j<lemp->nterminal; j++){
1167 if( SetFind(cfp->fws,j) ){
1168 /* Add a reduce action to the state "stp" which will reduce by the
1169 ** rule "cfp->rp" if the lookahead symbol is "lemp->symbols[j]" */
1170 Action_add(&stp->ap,REDUCE,lemp->symbols[j],(char *)cfp->rp);
1177 /* Add the accepting token */
1178 if( lemp->start ){
1179 sp = Symbol_find(lemp->start);
1180 if( sp==0 ){
1181 if( lemp->startRule==0 ){
1182 fprintf(stderr, "internal error on source line %d: no start rule\n",
1183 __LINE__);
1184 exit(1);
1186 sp = lemp->startRule->lhs;
1188 }else{
1189 sp = lemp->startRule->lhs;
1191 /* Add to the first state (which is always the starting state of the
1192 ** finite state machine) an action to ACCEPT if the lookahead is the
1193 ** start nonterminal. */
1194 Action_add(&lemp->sorted[0]->ap,ACCEPT,sp,0);
1196 /* Resolve conflicts */
1197 for(i=0; i<lemp->nstate; i++){
1198 struct action *ap, *nap;
1199 stp = lemp->sorted[i];
1200 /* assert( stp->ap ); */
1201 stp->ap = Action_sort(stp->ap);
1202 for(ap=stp->ap; ap && ap->next; ap=ap->next){
1203 for(nap=ap->next; nap && nap->sp==ap->sp; nap=nap->next){
1204 /* The two actions "ap" and "nap" have the same lookahead.
1205 ** Figure out which one should be used */
1206 lemp->nconflict += resolve_conflict(ap,nap);
1211 /* Report an error for each rule that can never be reduced. */
1212 for(rp=lemp->rule; rp; rp=rp->next) rp->canReduce = LEMON_FALSE;
1213 for(i=0; i<lemp->nstate; i++){
1214 struct action *ap;
1215 for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
1216 if( ap->type==REDUCE ) ap->x.rp->canReduce = LEMON_TRUE;
1219 for(rp=lemp->rule; rp; rp=rp->next){
1220 if( rp->canReduce ) continue;
1221 ErrorMsg(lemp->filename,rp->ruleline,"This rule can not be reduced.\n");
1222 lemp->errorcnt++;
1226 /* Resolve a conflict between the two given actions. If the
1227 ** conflict can't be resolved, return non-zero.
1229 ** NO LONGER TRUE:
1230 ** To resolve a conflict, first look to see if either action
1231 ** is on an error rule. In that case, take the action which
1232 ** is not associated with the error rule. If neither or both
1233 ** actions are associated with an error rule, then try to
1234 ** use precedence to resolve the conflict.
1236 ** If either action is a SHIFT, then it must be apx. This
1237 ** function won't work if apx->type==REDUCE and apy->type==SHIFT.
1239 static int resolve_conflict(
1240 struct action *apx,
1241 struct action *apy
1243 struct symbol *spx, *spy;
1244 int errcnt = 0;
1245 assert( apx->sp==apy->sp ); /* Otherwise there would be no conflict */
1246 if( apx->type==SHIFT && apy->type==SHIFT ){
1247 apy->type = SSCONFLICT;
1248 errcnt++;
1250 if( apx->type==SHIFT && apy->type==REDUCE ){
1251 spx = apx->sp;
1252 spy = apy->x.rp->precsym;
1253 if( spy==0 || spx->prec<0 || spy->prec<0 ){
1254 /* Not enough precedence information. */
1255 apy->type = SRCONFLICT;
1256 errcnt++;
1257 }else if( spx->prec>spy->prec ){ /* higher precedence wins */
1258 apy->type = RD_RESOLVED;
1259 }else if( spx->prec<spy->prec ){
1260 apx->type = SH_RESOLVED;
1261 }else if( spx->prec==spy->prec && spx->assoc==RIGHT ){ /* Use operator */
1262 apy->type = RD_RESOLVED; /* associativity */
1263 }else if( spx->prec==spy->prec && spx->assoc==LEFT ){ /* to break tie */
1264 apx->type = SH_RESOLVED;
1265 }else{
1266 assert( spx->prec==spy->prec && spx->assoc==NONE );
1267 apx->type = ERROR;
1269 }else if( apx->type==REDUCE && apy->type==REDUCE ){
1270 spx = apx->x.rp->precsym;
1271 spy = apy->x.rp->precsym;
1272 if( spx==0 || spy==0 || spx->prec<0 ||
1273 spy->prec<0 || spx->prec==spy->prec ){
1274 apy->type = RRCONFLICT;
1275 errcnt++;
1276 }else if( spx->prec>spy->prec ){
1277 apy->type = RD_RESOLVED;
1278 }else if( spx->prec<spy->prec ){
1279 apx->type = RD_RESOLVED;
1281 }else{
1282 assert(
1283 apx->type==SH_RESOLVED ||
1284 apx->type==RD_RESOLVED ||
1285 apx->type==SSCONFLICT ||
1286 apx->type==SRCONFLICT ||
1287 apx->type==RRCONFLICT ||
1288 apy->type==SH_RESOLVED ||
1289 apy->type==RD_RESOLVED ||
1290 apy->type==SSCONFLICT ||
1291 apy->type==SRCONFLICT ||
1292 apy->type==RRCONFLICT
1294 /* The REDUCE/SHIFT case cannot happen because SHIFTs come before
1295 ** REDUCEs on the list. If we reach this point it must be because
1296 ** the parser conflict had already been resolved. */
1298 return errcnt;
1300 /********************* From the file "configlist.c" *************************/
1302 ** Routines to processing a configuration list and building a state
1303 ** in the LEMON parser generator.
1306 static struct config *freelist = 0; /* List of free configurations */
1307 static struct config *current = 0; /* Top of list of configurations */
1308 static struct config **currentend = 0; /* Last on list of configs */
1309 static struct config *basis = 0; /* Top of list of basis configs */
1310 static struct config **basisend = 0; /* End of list of basis configs */
1312 /* Return a pointer to a new configuration */
1313 PRIVATE struct config *newconfig(void){
1314 return (struct config*)calloc(1, sizeof(struct config));
1317 /* The configuration "old" is no longer used */
1318 PRIVATE void deleteconfig(struct config *old)
1320 old->next = freelist;
1321 freelist = old;
1324 /* Initialized the configuration list builder */
1325 void Configlist_init(void){
1326 current = 0;
1327 currentend = &current;
1328 basis = 0;
1329 basisend = &basis;
1330 Configtable_init();
1331 return;
1334 /* Initialized the configuration list builder */
1335 void Configlist_reset(void){
1336 current = 0;
1337 currentend = &current;
1338 basis = 0;
1339 basisend = &basis;
1340 Configtable_clear(0);
1341 return;
1344 /* Add another configuration to the configuration list */
1345 struct config *Configlist_add(
1346 struct rule *rp, /* The rule */
1347 int dot /* Index into the RHS of the rule where the dot goes */
1349 struct config *cfp, model;
1351 assert( currentend!=0 );
1352 model.rp = rp;
1353 model.dot = dot;
1354 cfp = Configtable_find(&model);
1355 if( cfp==0 ){
1356 cfp = newconfig();
1357 cfp->rp = rp;
1358 cfp->dot = dot;
1359 cfp->fws = SetNew();
1360 cfp->stp = 0;
1361 cfp->fplp = cfp->bplp = 0;
1362 cfp->next = 0;
1363 cfp->bp = 0;
1364 *currentend = cfp;
1365 currentend = &cfp->next;
1366 Configtable_insert(cfp);
1368 return cfp;
1371 /* Add a basis configuration to the configuration list */
1372 struct config *Configlist_addbasis(struct rule *rp, int dot)
1374 struct config *cfp, model;
1376 assert( basisend!=0 );
1377 assert( currentend!=0 );
1378 model.rp = rp;
1379 model.dot = dot;
1380 cfp = Configtable_find(&model);
1381 if( cfp==0 ){
1382 cfp = newconfig();
1383 cfp->rp = rp;
1384 cfp->dot = dot;
1385 cfp->fws = SetNew();
1386 cfp->stp = 0;
1387 cfp->fplp = cfp->bplp = 0;
1388 cfp->next = 0;
1389 cfp->bp = 0;
1390 *currentend = cfp;
1391 currentend = &cfp->next;
1392 *basisend = cfp;
1393 basisend = &cfp->bp;
1394 Configtable_insert(cfp);
1396 return cfp;
1399 /* Compute the closure of the configuration list */
1400 void Configlist_closure(struct lemon *lemp)
1402 struct config *cfp, *newcfp;
1403 struct rule *rp, *newrp;
1404 struct symbol *sp, *xsp;
1405 int i, dot;
1407 assert( currentend!=0 );
1408 for(cfp=current; cfp; cfp=cfp->next){
1409 rp = cfp->rp;
1410 dot = cfp->dot;
1411 if( dot>=rp->nrhs ) continue;
1412 sp = rp->rhs[dot];
1413 if( sp->type==NONTERMINAL ){
1414 if( sp->rule==0 && sp!=lemp->errsym ){
1415 ErrorMsg(lemp->filename,rp->line,"Nonterminal \"%s\" has no rules.",
1416 sp->name);
1417 lemp->errorcnt++;
1419 for(newrp=sp->rule; newrp; newrp=newrp->nextlhs){
1420 newcfp = Configlist_add(newrp,0);
1421 for(i=dot+1; i<rp->nrhs; i++){
1422 xsp = rp->rhs[i];
1423 if( xsp->type==TERMINAL ){
1424 SetAdd(newcfp->fws,xsp->index);
1425 break;
1426 }else if( xsp->type==MULTITERMINAL ){
1427 int k;
1428 for(k=0; k<xsp->nsubsym; k++){
1429 SetAdd(newcfp->fws, xsp->subsym[k]->index);
1431 break;
1432 }else{
1433 SetUnion(newcfp->fws,xsp->firstset);
1434 if( xsp->lambda==LEMON_FALSE ) break;
1437 if( i==rp->nrhs ) Plink_add(&cfp->fplp,newcfp);
1441 return;
1444 /* Sort the configuration list */
1445 void Configlist_sort(void){
1446 current = (struct config*)msort((char*)current,(char**)&(current->next),
1447 Configcmp);
1448 currentend = 0;
1449 return;
1452 /* Sort the basis configuration list */
1453 void Configlist_sortbasis(void){
1454 basis = (struct config*)msort((char*)current,(char**)&(current->bp),
1455 Configcmp);
1456 basisend = 0;
1457 return;
1460 /* Return a pointer to the head of the configuration list and
1461 ** reset the list */
1462 struct config *Configlist_return(void){
1463 struct config *old;
1464 old = current;
1465 current = 0;
1466 currentend = 0;
1467 return old;
1470 /* Return a pointer to the head of the configuration list and
1471 ** reset the list */
1472 struct config *Configlist_basis(void){
1473 struct config *old;
1474 old = basis;
1475 basis = 0;
1476 basisend = 0;
1477 return old;
1480 /* Free all elements of the given configuration list */
1481 void Configlist_eat(struct config *cfp)
1483 struct config *nextcfp;
1484 for(; cfp; cfp=nextcfp){
1485 nextcfp = cfp->next;
1486 assert( cfp->fplp==0 );
1487 assert( cfp->bplp==0 );
1488 if( cfp->fws ) SetFree(cfp->fws);
1489 deleteconfig(cfp);
1491 return;
1493 /***************** From the file "error.c" *********************************/
1495 ** Code for printing error message.
1498 void ErrorMsg(const char *filename, int lineno, const char *format, ...){
1499 va_list ap;
1500 fprintf(stderr, "%s:%d: ", filename, lineno);
1501 va_start(ap, format);
1502 vfprintf(stderr,format,ap);
1503 va_end(ap);
1504 fprintf(stderr, "\n");
1506 /**************** From the file "main.c" ************************************/
1508 ** Main program file for the LEMON parser generator.
1511 /* Report an out-of-memory condition and abort. This function
1512 ** is used mostly by the "MemoryCheck" macro in struct.h
1514 void memory_error(void){
1515 fprintf(stderr,"Out of memory. Aborting...\n");
1516 exit(1);
1519 static int nDefine = 0; /* Number of -D options on the command line */
1520 static char **azDefine = 0; /* Name of the -D macros */
1522 /* This routine is called with the argument to each -D command-line option.
1523 ** Add the macro defined to the azDefine array.
1525 static void handle_D_option(char *z){
1526 char **paz;
1527 nDefine++;
1528 azDefine = (char **) realloc(azDefine, sizeof(azDefine[0])*nDefine);
1529 if( azDefine==0 ){
1530 fprintf(stderr,"out of memory\n");
1531 exit(1);
1533 paz = &azDefine[nDefine-1];
1534 *paz = (char *) malloc( lemonStrlen(z)+1 );
1535 if( *paz==0 ){
1536 fprintf(stderr,"out of memory\n");
1537 exit(1);
1539 lemon_strcpy(*paz, z);
1540 for(z=*paz; *z && *z!='='; z++){}
1541 *z = 0;
1544 /* Rember the name of the output directory
1546 static char *outputDir = NULL;
1547 static void handle_d_option(char *z){
1548 outputDir = (char *) malloc( lemonStrlen(z)+1 );
1549 if( outputDir==0 ){
1550 fprintf(stderr,"out of memory\n");
1551 exit(1);
1553 lemon_strcpy(outputDir, z);
1556 static char *user_templatename = NULL;
1557 static void handle_T_option(char *z){
1558 user_templatename = (char *) malloc( lemonStrlen(z)+1 );
1559 if( user_templatename==0 ){
1560 memory_error();
1562 lemon_strcpy(user_templatename, z);
1565 /* Merge together to lists of rules ordered by rule.iRule */
1566 static struct rule *Rule_merge(struct rule *pA, struct rule *pB){
1567 struct rule *pFirst = 0;
1568 struct rule **ppPrev = &pFirst;
1569 while( pA && pB ){
1570 if( pA->iRule<pB->iRule ){
1571 *ppPrev = pA;
1572 ppPrev = &pA->next;
1573 pA = pA->next;
1574 }else{
1575 *ppPrev = pB;
1576 ppPrev = &pB->next;
1577 pB = pB->next;
1580 if( pA ){
1581 *ppPrev = pA;
1582 }else{
1583 *ppPrev = pB;
1585 return pFirst;
1589 ** Sort a list of rules in order of increasing iRule value
1591 static struct rule *Rule_sort(struct rule *rp){
1592 unsigned int i;
1593 struct rule *pNext;
1594 struct rule *x[32];
1595 memset(x, 0, sizeof(x));
1596 while( rp ){
1597 pNext = rp->next;
1598 rp->next = 0;
1599 for(i=0; i<sizeof(x)/sizeof(x[0])-1 && x[i]; i++){
1600 rp = Rule_merge(x[i], rp);
1601 x[i] = 0;
1603 x[i] = rp;
1604 rp = pNext;
1606 rp = 0;
1607 for(i=0; i<sizeof(x)/sizeof(x[0]); i++){
1608 rp = Rule_merge(x[i], rp);
1610 return rp;
1613 /* forward reference */
1614 static const char *minimum_size_type(int lwr, int upr, int *pnByte);
1616 /* Print a single line of the "Parser Stats" output
1618 static void stats_line(const char *zLabel, int iValue){
1619 int nLabel = lemonStrlen(zLabel);
1620 printf(" %s%.*s %5d\n", zLabel,
1621 35-nLabel, "................................",
1622 iValue);
1625 /* The main program. Parse the command line and do it... */
1626 int main(int argc, char **argv){
1627 static int version = 0;
1628 static int rpflag = 0;
1629 static int basisflag = 0;
1630 static int compress = 0;
1631 static int quiet = 0;
1632 static int statistics = 0;
1633 static int mhflag = 0;
1634 static int nolinenosflag = 0;
1635 static int noResort = 0;
1636 static int sqlFlag = 0;
1637 static int printPP = 0;
1639 static struct s_options options[] = {
1640 {OPT_FLAG, "b", (char*)&basisflag, "Print only the basis in report."},
1641 {OPT_FLAG, "c", (char*)&compress, "Don't compress the action table."},
1642 {OPT_FSTR, "d", (char*)&handle_d_option, "Output directory. Default '.'"},
1643 {OPT_FSTR, "D", (char*)handle_D_option, "Define an %ifdef macro."},
1644 {OPT_FLAG, "E", (char*)&printPP, "Print input file after preprocessing."},
1645 {OPT_FSTR, "f", 0, "Ignored. (Placeholder for -f compiler options.)"},
1646 {OPT_FLAG, "g", (char*)&rpflag, "Print grammar without actions."},
1647 {OPT_FSTR, "I", 0, "Ignored. (Placeholder for '-I' compiler options.)"},
1648 {OPT_FLAG, "m", (char*)&mhflag, "Output a makeheaders compatible file."},
1649 {OPT_FLAG, "l", (char*)&nolinenosflag, "Do not print #line statements."},
1650 {OPT_FSTR, "O", 0, "Ignored. (Placeholder for '-O' compiler options.)"},
1651 {OPT_FLAG, "p", (char*)&showPrecedenceConflict,
1652 "Show conflicts resolved by precedence rules"},
1653 {OPT_FLAG, "q", (char*)&quiet, "(Quiet) Don't print the report file."},
1654 {OPT_FLAG, "r", (char*)&noResort, "Do not sort or renumber states"},
1655 {OPT_FLAG, "s", (char*)&statistics,
1656 "Print parser stats to standard output."},
1657 {OPT_FLAG, "S", (char*)&sqlFlag,
1658 "Generate the *.sql file describing the parser tables."},
1659 {OPT_FLAG, "x", (char*)&version, "Print the version number."},
1660 {OPT_FSTR, "T", (char*)handle_T_option, "Specify a template file."},
1661 {OPT_FSTR, "W", 0, "Ignored. (Placeholder for '-W' compiler options.)"},
1662 {OPT_FLAG,0,0,0}
1664 int i;
1665 int exitcode;
1666 struct lemon lem;
1667 struct rule *rp;
1669 (void)argc;
1670 OptInit(argv,options,stderr);
1671 if( version ){
1672 printf("Lemon version 1.0\n");
1673 exit(0);
1675 if( OptNArgs()!=1 ){
1676 fprintf(stderr,"Exactly one filename argument is required.\n");
1677 exit(1);
1679 memset(&lem, 0, sizeof(lem));
1680 lem.errorcnt = 0;
1682 /* Initialize the machine */
1683 Strsafe_init();
1684 Symbol_init();
1685 State_init();
1686 lem.argv0 = argv[0];
1687 lem.filename = OptArg(0);
1688 lem.basisflag = basisflag;
1689 lem.nolinenosflag = nolinenosflag;
1690 lem.printPreprocessed = printPP;
1691 Symbol_new("$");
1693 /* Parse the input file */
1694 Parse(&lem);
1695 if( lem.printPreprocessed || lem.errorcnt ) exit(lem.errorcnt);
1696 if( lem.nrule==0 ){
1697 fprintf(stderr,"Empty grammar.\n");
1698 exit(1);
1700 lem.errsym = Symbol_find("error");
1702 /* Count and index the symbols of the grammar */
1703 Symbol_new("{default}");
1704 lem.nsymbol = Symbol_count();
1705 lem.symbols = Symbol_arrayof();
1706 for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i;
1707 qsort(lem.symbols,lem.nsymbol,sizeof(struct symbol*), Symbolcmpp);
1708 for(i=0; i<lem.nsymbol; i++) lem.symbols[i]->index = i;
1709 while( lem.symbols[i-1]->type==MULTITERMINAL ){ i--; }
1710 assert( strcmp(lem.symbols[i-1]->name,"{default}")==0 );
1711 lem.nsymbol = i - 1;
1712 for(i=1; ISUPPER(lem.symbols[i]->name[0]); i++);
1713 lem.nterminal = i;
1715 /* Assign sequential rule numbers. Start with 0. Put rules that have no
1716 ** reduce action C-code associated with them last, so that the switch()
1717 ** statement that selects reduction actions will have a smaller jump table.
1719 for(i=0, rp=lem.rule; rp; rp=rp->next){
1720 rp->iRule = rp->code ? i++ : -1;
1722 lem.nruleWithAction = i;
1723 for(rp=lem.rule; rp; rp=rp->next){
1724 if( rp->iRule<0 ) rp->iRule = i++;
1726 lem.startRule = lem.rule;
1727 lem.rule = Rule_sort(lem.rule);
1729 /* Generate a reprint of the grammar, if requested on the command line */
1730 if( rpflag ){
1731 Reprint(&lem);
1732 }else{
1733 /* Initialize the size for all follow and first sets */
1734 SetSize(lem.nterminal+1);
1736 /* Find the precedence for every production rule (that has one) */
1737 FindRulePrecedences(&lem);
1739 /* Compute the lambda-nonterminals and the first-sets for every
1740 ** nonterminal */
1741 FindFirstSets(&lem);
1743 /* Compute all LR(0) states. Also record follow-set propagation
1744 ** links so that the follow-set can be computed later */
1745 lem.nstate = 0;
1746 FindStates(&lem);
1747 lem.sorted = State_arrayof();
1749 /* Tie up loose ends on the propagation links */
1750 FindLinks(&lem);
1752 /* Compute the follow set of every reducible configuration */
1753 FindFollowSets(&lem);
1755 /* Compute the action tables */
1756 FindActions(&lem);
1758 /* Compress the action tables */
1759 if( compress==0 ) CompressTables(&lem);
1761 /* Reorder and renumber the states so that states with fewer choices
1762 ** occur at the end. This is an optimization that helps make the
1763 ** generated parser tables smaller. */
1764 if( noResort==0 ) ResortStates(&lem);
1766 /* Generate a report of the parser generated. (the "y.output" file) */
1767 if( !quiet ) ReportOutput(&lem);
1769 /* Generate the source code for the parser */
1770 ReportTable(&lem, mhflag, sqlFlag);
1772 /* Produce a header file for use by the scanner. (This step is
1773 ** omitted if the "-m" option is used because makeheaders will
1774 ** generate the file for us.) */
1775 if( !mhflag ) ReportHeader(&lem);
1777 if( statistics ){
1778 printf("Parser statistics:\n");
1779 stats_line("terminal symbols", lem.nterminal);
1780 stats_line("non-terminal symbols", lem.nsymbol - lem.nterminal);
1781 stats_line("total symbols", lem.nsymbol);
1782 stats_line("rules", lem.nrule);
1783 stats_line("states", lem.nxstate);
1784 stats_line("conflicts", lem.nconflict);
1785 stats_line("action table entries", lem.nactiontab);
1786 stats_line("lookahead table entries", lem.nlookaheadtab);
1787 stats_line("total table size (bytes)", lem.tablesize);
1789 if( lem.nconflict > 0 ){
1790 fprintf(stderr,"%d parsing conflicts.\n",lem.nconflict);
1793 /* return 0 on success, 1 on failure. */
1794 exitcode = ((lem.errorcnt > 0) || (lem.nconflict > 0)) ? 1 : 0;
1795 exit(exitcode);
1796 return (exitcode);
1798 /******************** From the file "msort.c" *******************************/
1800 ** A generic merge-sort program.
1802 ** USAGE:
1803 ** Let "ptr" be a pointer to some structure which is at the head of
1804 ** a null-terminated list. Then to sort the list call:
1806 ** ptr = msort(ptr,&(ptr->next),cmpfnc);
1808 ** In the above, "cmpfnc" is a pointer to a function which compares
1809 ** two instances of the structure and returns an integer, as in
1810 ** strcmp. The second argument is a pointer to the pointer to the
1811 ** second element of the linked list. This address is used to compute
1812 ** the offset to the "next" field within the structure. The offset to
1813 ** the "next" field must be constant for all structures in the list.
1815 ** The function returns a new pointer which is the head of the list
1816 ** after sorting.
1818 ** ALGORITHM:
1819 ** Merge-sort.
1823 ** Return a pointer to the next structure in the linked list.
1825 #define NEXT(A) (*(char**)(((char*)A)+offset))
1828 ** Inputs:
1829 ** a: A sorted, null-terminated linked list. (May be null).
1830 ** b: A sorted, null-terminated linked list. (May be null).
1831 ** cmp: A pointer to the comparison function.
1832 ** offset: Offset in the structure to the "next" field.
1834 ** Return Value:
1835 ** A pointer to the head of a sorted list containing the elements
1836 ** of both a and b.
1838 ** Side effects:
1839 ** The "next" pointers for elements in the lists a and b are
1840 ** changed.
1842 static char *merge(
1843 char *a,
1844 char *b,
1845 int (*cmp)(const char*,const char*),
1846 int offset
1848 char *ptr, *head;
1850 if( a==0 ){
1851 head = b;
1852 }else if( b==0 ){
1853 head = a;
1854 }else{
1855 if( (*cmp)(a,b)<=0 ){
1856 ptr = a;
1857 a = NEXT(a);
1858 }else{
1859 ptr = b;
1860 b = NEXT(b);
1862 head = ptr;
1863 while( a && b ){
1864 if( (*cmp)(a,b)<=0 ){
1865 NEXT(ptr) = a;
1866 ptr = a;
1867 a = NEXT(a);
1868 }else{
1869 NEXT(ptr) = b;
1870 ptr = b;
1871 b = NEXT(b);
1874 if( a ) NEXT(ptr) = a;
1875 else NEXT(ptr) = b;
1877 return head;
1881 ** Inputs:
1882 ** list: Pointer to a singly-linked list of structures.
1883 ** next: Pointer to pointer to the second element of the list.
1884 ** cmp: A comparison function.
1886 ** Return Value:
1887 ** A pointer to the head of a sorted list containing the elements
1888 ** originally in list.
1890 ** Side effects:
1891 ** The "next" pointers for elements in list are changed.
1893 #define LISTSIZE 30
1894 static char *msort(
1895 char *list,
1896 char **next,
1897 int (*cmp)(const char*,const char*)
1899 unsigned long offset;
1900 char *ep;
1901 char *set[LISTSIZE];
1902 int i;
1903 offset = (unsigned long)((char*)next - (char*)list);
1904 for(i=0; i<LISTSIZE; i++) set[i] = 0;
1905 while( list ){
1906 ep = list;
1907 list = NEXT(list);
1908 NEXT(ep) = 0;
1909 for(i=0; i<LISTSIZE-1 && set[i]!=0; i++){
1910 ep = merge(ep,set[i],cmp,offset);
1911 set[i] = 0;
1913 set[i] = ep;
1915 ep = 0;
1916 for(i=0; i<LISTSIZE; i++) if( set[i] ) ep = merge(set[i],ep,cmp,offset);
1917 return ep;
1919 /************************ From the file "option.c" **************************/
1920 static char **g_argv;
1921 static struct s_options *op;
1922 static FILE *errstream;
1924 #define ISOPT(X) ((X)[0]=='-'||(X)[0]=='+'||strchr((X),'=')!=0)
1927 ** Print the command line with a carrot pointing to the k-th character
1928 ** of the n-th field.
1930 static void errline(int n, int k, FILE *err)
1932 int spcnt, i;
1933 if( g_argv[0] ){
1934 fprintf(err,"%s",g_argv[0]);
1935 spcnt = lemonStrlen(g_argv[0]) + 1;
1936 }else{
1937 spcnt = 0;
1939 for(i=1; i<n && g_argv[i]; i++){
1940 fprintf(err," %s",g_argv[i]);
1941 spcnt += lemonStrlen(g_argv[i])+1;
1943 spcnt += k;
1944 for(; g_argv[i]; i++) fprintf(err," %s",g_argv[i]);
1945 if( spcnt<20 ){
1946 fprintf(err,"\n%*s^-- here\n",spcnt,"");
1947 }else{
1948 fprintf(err,"\n%*shere --^\n",spcnt-7,"");
1953 ** Return the index of the N-th non-switch argument. Return -1
1954 ** if N is out of range.
1956 static int argindex(int n)
1958 int i;
1959 int dashdash = 0;
1960 if( g_argv!=0 && *g_argv!=0 ){
1961 for(i=1; g_argv[i]; i++){
1962 if( dashdash || !ISOPT(g_argv[i]) ){
1963 if( n==0 ) return i;
1964 n--;
1966 if( strcmp(g_argv[i],"--")==0 ) dashdash = 1;
1969 return -1;
1972 static char emsg[] = "Command line syntax error: ";
1975 ** Process a flag command line argument.
1977 static int handleflags(int i, FILE *err)
1979 int v;
1980 int errcnt = 0;
1981 int j;
1982 for(j=0; op[j].label; j++){
1983 if( strncmp(&g_argv[i][1],op[j].label,lemonStrlen(op[j].label))==0 ) break;
1985 v = g_argv[i][0]=='-' ? 1 : 0;
1986 if( op[j].label==0 ){
1987 if( err ){
1988 fprintf(err,"%sundefined option.\n",emsg);
1989 errline(i,1,err);
1991 errcnt++;
1992 }else if( op[j].arg==0 ){
1993 /* Ignore this option */
1994 }else if( op[j].type==OPT_FLAG ){
1995 *((int*)op[j].arg) = v;
1996 }else if( op[j].type==OPT_FFLAG ){
1997 (*(void(*)(int))(op[j].arg))(v);
1998 }else if( op[j].type==OPT_FSTR ){
1999 (*(void(*)(char *))(op[j].arg))(&g_argv[i][2]);
2000 }else{
2001 if( err ){
2002 fprintf(err,"%smissing argument on switch.\n",emsg);
2003 errline(i,1,err);
2005 errcnt++;
2007 return errcnt;
2011 ** Process a command line switch which has an argument.
2013 static int handleswitch(int i, FILE *err)
2015 int lv = 0;
2016 double dv = 0.0;
2017 char *sv = 0, *end;
2018 char *cp;
2019 int j;
2020 int errcnt = 0;
2021 cp = strchr(g_argv[i],'=');
2022 assert( cp!=0 );
2023 *cp = 0;
2024 for(j=0; op[j].label; j++){
2025 if( strcmp(g_argv[i],op[j].label)==0 ) break;
2027 *cp = '=';
2028 if( op[j].label==0 ){
2029 if( err ){
2030 fprintf(err,"%sundefined option.\n",emsg);
2031 errline(i,0,err);
2033 errcnt++;
2034 }else{
2035 cp++;
2036 switch( op[j].type ){
2037 case OPT_FLAG:
2038 case OPT_FFLAG:
2039 if( err ){
2040 fprintf(err,"%soption requires an argument.\n",emsg);
2041 errline(i,0,err);
2043 errcnt++;
2044 break;
2045 case OPT_DBL:
2046 case OPT_FDBL:
2047 dv = strtod(cp,&end);
2048 if( *end ){
2049 if( err ){
2050 fprintf(err,
2051 "%sillegal character in floating-point argument.\n",emsg);
2052 errline(i,(int)((char*)end-(char*)g_argv[i]),err);
2054 errcnt++;
2056 break;
2057 case OPT_INT:
2058 case OPT_FINT:
2059 lv = strtol(cp,&end,0);
2060 if( *end ){
2061 if( err ){
2062 fprintf(err,"%sillegal character in integer argument.\n",emsg);
2063 errline(i,(int)((char*)end-(char*)g_argv[i]),err);
2065 errcnt++;
2067 break;
2068 case OPT_STR:
2069 case OPT_FSTR:
2070 sv = cp;
2071 break;
2073 switch( op[j].type ){
2074 case OPT_FLAG:
2075 case OPT_FFLAG:
2076 break;
2077 case OPT_DBL:
2078 *(double*)(op[j].arg) = dv;
2079 break;
2080 case OPT_FDBL:
2081 (*(void(*)(double))(op[j].arg))(dv);
2082 break;
2083 case OPT_INT:
2084 *(int*)(op[j].arg) = lv;
2085 break;
2086 case OPT_FINT:
2087 (*(void(*)(int))(op[j].arg))((int)lv);
2088 break;
2089 case OPT_STR:
2090 *(char**)(op[j].arg) = sv;
2091 break;
2092 case OPT_FSTR:
2093 (*(void(*)(char *))(op[j].arg))(sv);
2094 break;
2097 return errcnt;
2100 int OptInit(char **a, struct s_options *o, FILE *err)
2102 int errcnt = 0;
2103 g_argv = a;
2104 op = o;
2105 errstream = err;
2106 if( g_argv && *g_argv && op ){
2107 int i;
2108 for(i=1; g_argv[i]; i++){
2109 if( g_argv[i][0]=='+' || g_argv[i][0]=='-' ){
2110 errcnt += handleflags(i,err);
2111 }else if( strchr(g_argv[i],'=') ){
2112 errcnt += handleswitch(i,err);
2116 if( errcnt>0 ){
2117 fprintf(err,"Valid command line options for \"%s\" are:\n",*a);
2118 OptPrint();
2119 exit(1);
2121 return 0;
2124 int OptNArgs(void){
2125 int cnt = 0;
2126 int dashdash = 0;
2127 int i;
2128 if( g_argv!=0 && g_argv[0]!=0 ){
2129 for(i=1; g_argv[i]; i++){
2130 if( dashdash || !ISOPT(g_argv[i]) ) cnt++;
2131 if( strcmp(g_argv[i],"--")==0 ) dashdash = 1;
2134 return cnt;
2137 char *OptArg(int n)
2139 int i;
2140 i = argindex(n);
2141 return i>=0 ? g_argv[i] : 0;
2144 void OptErr(int n)
2146 int i;
2147 i = argindex(n);
2148 if( i>=0 ) errline(i,0,errstream);
2151 void OptPrint(void){
2152 int i;
2153 int max, len;
2154 max = 0;
2155 for(i=0; op[i].label; i++){
2156 len = lemonStrlen(op[i].label) + 1;
2157 switch( op[i].type ){
2158 case OPT_FLAG:
2159 case OPT_FFLAG:
2160 break;
2161 case OPT_INT:
2162 case OPT_FINT:
2163 len += 9; /* length of "<integer>" */
2164 break;
2165 case OPT_DBL:
2166 case OPT_FDBL:
2167 len += 6; /* length of "<real>" */
2168 break;
2169 case OPT_STR:
2170 case OPT_FSTR:
2171 len += 8; /* length of "<string>" */
2172 break;
2174 if( len>max ) max = len;
2176 for(i=0; op[i].label; i++){
2177 switch( op[i].type ){
2178 case OPT_FLAG:
2179 case OPT_FFLAG:
2180 fprintf(errstream," -%-*s %s\n",max,op[i].label,op[i].message);
2181 break;
2182 case OPT_INT:
2183 case OPT_FINT:
2184 fprintf(errstream," -%s<integer>%*s %s\n",op[i].label,
2185 (int)(max-lemonStrlen(op[i].label)-9),"",op[i].message);
2186 break;
2187 case OPT_DBL:
2188 case OPT_FDBL:
2189 fprintf(errstream," -%s<real>%*s %s\n",op[i].label,
2190 (int)(max-lemonStrlen(op[i].label)-6),"",op[i].message);
2191 break;
2192 case OPT_STR:
2193 case OPT_FSTR:
2194 fprintf(errstream," -%s<string>%*s %s\n",op[i].label,
2195 (int)(max-lemonStrlen(op[i].label)-8),"",op[i].message);
2196 break;
2200 /*********************** From the file "parse.c" ****************************/
2202 ** Input file parser for the LEMON parser generator.
2205 /* The state of the parser */
2206 enum e_state {
2207 INITIALIZE,
2208 WAITING_FOR_DECL_OR_RULE,
2209 WAITING_FOR_DECL_KEYWORD,
2210 WAITING_FOR_DECL_ARG,
2211 WAITING_FOR_PRECEDENCE_SYMBOL,
2212 WAITING_FOR_ARROW,
2213 IN_RHS,
2214 LHS_ALIAS_1,
2215 LHS_ALIAS_2,
2216 LHS_ALIAS_3,
2217 RHS_ALIAS_1,
2218 RHS_ALIAS_2,
2219 PRECEDENCE_MARK_1,
2220 PRECEDENCE_MARK_2,
2221 RESYNC_AFTER_RULE_ERROR,
2222 RESYNC_AFTER_DECL_ERROR,
2223 WAITING_FOR_DESTRUCTOR_SYMBOL,
2224 WAITING_FOR_DATATYPE_SYMBOL,
2225 WAITING_FOR_FALLBACK_ID,
2226 WAITING_FOR_WILDCARD_ID,
2227 WAITING_FOR_CLASS_ID,
2228 WAITING_FOR_CLASS_TOKEN,
2229 WAITING_FOR_TOKEN_NAME
2231 struct pstate {
2232 char *filename; /* Name of the input file */
2233 int tokenlineno; /* Linenumber at which current token starts */
2234 int errorcnt; /* Number of errors so far */
2235 char *tokenstart; /* Text of current token */
2236 struct lemon *gp; /* Global state vector */
2237 enum e_state state; /* The state of the parser */
2238 struct symbol *fallback; /* The fallback token */
2239 struct symbol *tkclass; /* Token class symbol */
2240 struct symbol *lhs; /* Left-hand side of current rule */
2241 const char *lhsalias; /* Alias for the LHS */
2242 int nrhs; /* Number of right-hand side symbols seen */
2243 struct symbol *rhs[MAXRHS]; /* RHS symbols */
2244 const char *alias[MAXRHS]; /* Aliases for each RHS symbol (or NULL) */
2245 struct rule *prevrule; /* Previous rule parsed */
2246 const char *declkeyword; /* Keyword of a declaration */
2247 char **declargslot; /* Where the declaration argument should be put */
2248 int insertLineMacro; /* Add #line before declaration insert */
2249 int *decllinenoslot; /* Where to write declaration line number */
2250 enum e_assoc declassoc; /* Assign this association to decl arguments */
2251 int preccounter; /* Assign this precedence to decl arguments */
2252 struct rule *firstrule; /* Pointer to first rule in the grammar */
2253 struct rule *lastrule; /* Pointer to the most recently parsed rule */
2256 /* Parse a single token */
2257 static void parseonetoken(struct pstate *psp)
2259 const char *x;
2260 x = Strsafe(psp->tokenstart); /* Save the token permanently */
2261 #if 0
2262 printf("%s:%d: Token=[%s] state=%d\n",psp->filename,psp->tokenlineno,
2263 x,psp->state);
2264 #endif
2265 switch( psp->state ){
2266 case INITIALIZE:
2267 psp->prevrule = 0;
2268 psp->preccounter = 0;
2269 psp->firstrule = psp->lastrule = 0;
2270 psp->gp->nrule = 0;
2271 /* fall through */
2272 case WAITING_FOR_DECL_OR_RULE:
2273 if( x[0]=='%' ){
2274 psp->state = WAITING_FOR_DECL_KEYWORD;
2275 }else if( ISLOWER(x[0]) ){
2276 psp->lhs = Symbol_new(x);
2277 psp->nrhs = 0;
2278 psp->lhsalias = 0;
2279 psp->state = WAITING_FOR_ARROW;
2280 }else if( x[0]=='{' ){
2281 if( psp->prevrule==0 ){
2282 ErrorMsg(psp->filename,psp->tokenlineno,
2283 "There is no prior rule upon which to attach the code "
2284 "fragment which begins on this line.");
2285 psp->errorcnt++;
2286 }else if( psp->prevrule->code!=0 ){
2287 ErrorMsg(psp->filename,psp->tokenlineno,
2288 "Code fragment beginning on this line is not the first "
2289 "to follow the previous rule.");
2290 psp->errorcnt++;
2291 }else if( strcmp(x, "{NEVER-REDUCE")==0 ){
2292 psp->prevrule->neverReduce = 1;
2293 }else{
2294 psp->prevrule->line = psp->tokenlineno;
2295 psp->prevrule->code = &x[1];
2296 psp->prevrule->noCode = 0;
2298 }else if( x[0]=='[' ){
2299 psp->state = PRECEDENCE_MARK_1;
2300 }else{
2301 ErrorMsg(psp->filename,psp->tokenlineno,
2302 "Token \"%s\" should be either \"%%\" or a nonterminal name.",
2304 psp->errorcnt++;
2306 break;
2307 case PRECEDENCE_MARK_1:
2308 if( !ISUPPER(x[0]) ){
2309 ErrorMsg(psp->filename,psp->tokenlineno,
2310 "The precedence symbol must be a terminal.");
2311 psp->errorcnt++;
2312 }else if( psp->prevrule==0 ){
2313 ErrorMsg(psp->filename,psp->tokenlineno,
2314 "There is no prior rule to assign precedence \"[%s]\".",x);
2315 psp->errorcnt++;
2316 }else if( psp->prevrule->precsym!=0 ){
2317 ErrorMsg(psp->filename,psp->tokenlineno,
2318 "Precedence mark on this line is not the first "
2319 "to follow the previous rule.");
2320 psp->errorcnt++;
2321 }else{
2322 psp->prevrule->precsym = Symbol_new(x);
2324 psp->state = PRECEDENCE_MARK_2;
2325 break;
2326 case PRECEDENCE_MARK_2:
2327 if( x[0]!=']' ){
2328 ErrorMsg(psp->filename,psp->tokenlineno,
2329 "Missing \"]\" on precedence mark.");
2330 psp->errorcnt++;
2332 psp->state = WAITING_FOR_DECL_OR_RULE;
2333 break;
2334 case WAITING_FOR_ARROW:
2335 if( x[0]==':' && x[1]==':' && x[2]=='=' ){
2336 psp->state = IN_RHS;
2337 }else if( x[0]=='(' ){
2338 psp->state = LHS_ALIAS_1;
2339 }else{
2340 ErrorMsg(psp->filename,psp->tokenlineno,
2341 "Expected to see a \":\" following the LHS symbol \"%s\".",
2342 psp->lhs->name);
2343 psp->errorcnt++;
2344 psp->state = RESYNC_AFTER_RULE_ERROR;
2346 break;
2347 case LHS_ALIAS_1:
2348 if( ISALPHA(x[0]) ){
2349 psp->lhsalias = x;
2350 psp->state = LHS_ALIAS_2;
2351 }else{
2352 ErrorMsg(psp->filename,psp->tokenlineno,
2353 "\"%s\" is not a valid alias for the LHS \"%s\"\n",
2354 x,psp->lhs->name);
2355 psp->errorcnt++;
2356 psp->state = RESYNC_AFTER_RULE_ERROR;
2358 break;
2359 case LHS_ALIAS_2:
2360 if( x[0]==')' ){
2361 psp->state = LHS_ALIAS_3;
2362 }else{
2363 ErrorMsg(psp->filename,psp->tokenlineno,
2364 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2365 psp->errorcnt++;
2366 psp->state = RESYNC_AFTER_RULE_ERROR;
2368 break;
2369 case LHS_ALIAS_3:
2370 if( x[0]==':' && x[1]==':' && x[2]=='=' ){
2371 psp->state = IN_RHS;
2372 }else{
2373 ErrorMsg(psp->filename,psp->tokenlineno,
2374 "Missing \"->\" following: \"%s(%s)\".",
2375 psp->lhs->name,psp->lhsalias);
2376 psp->errorcnt++;
2377 psp->state = RESYNC_AFTER_RULE_ERROR;
2379 break;
2380 case IN_RHS:
2381 if( x[0]=='.' ){
2382 struct rule *rp;
2383 rp = (struct rule *)calloc( sizeof(struct rule) +
2384 sizeof(struct symbol*)*psp->nrhs + sizeof(char*)*psp->nrhs, 1);
2385 if( rp==0 ){
2386 ErrorMsg(psp->filename,psp->tokenlineno,
2387 "Can't allocate enough memory for this rule.");
2388 psp->errorcnt++;
2389 psp->prevrule = 0;
2390 }else{
2391 int i;
2392 rp->ruleline = psp->tokenlineno;
2393 rp->rhs = (struct symbol**)&rp[1];
2394 rp->rhsalias = (const char**)&(rp->rhs[psp->nrhs]);
2395 for(i=0; i<psp->nrhs; i++){
2396 rp->rhs[i] = psp->rhs[i];
2397 rp->rhsalias[i] = psp->alias[i];
2398 if( rp->rhsalias[i]!=0 ){ rp->rhs[i]->bContent = 1; }
2400 rp->lhs = psp->lhs;
2401 rp->lhsalias = psp->lhsalias;
2402 rp->nrhs = psp->nrhs;
2403 rp->code = 0;
2404 rp->noCode = 1;
2405 rp->precsym = 0;
2406 rp->index = psp->gp->nrule++;
2407 rp->nextlhs = rp->lhs->rule;
2408 rp->lhs->rule = rp;
2409 rp->next = 0;
2410 if( psp->firstrule==0 ){
2411 psp->firstrule = psp->lastrule = rp;
2412 }else{
2413 psp->lastrule->next = rp;
2414 psp->lastrule = rp;
2416 psp->prevrule = rp;
2418 psp->state = WAITING_FOR_DECL_OR_RULE;
2419 }else if( ISALPHA(x[0]) ){
2420 if( psp->nrhs>=MAXRHS ){
2421 ErrorMsg(psp->filename,psp->tokenlineno,
2422 "Too many symbols on RHS of rule beginning at \"%s\".",
2424 psp->errorcnt++;
2425 psp->state = RESYNC_AFTER_RULE_ERROR;
2426 }else{
2427 psp->rhs[psp->nrhs] = Symbol_new(x);
2428 psp->alias[psp->nrhs] = 0;
2429 psp->nrhs++;
2431 }else if( (x[0]=='|' || x[0]=='/') && psp->nrhs>0 && ISUPPER(x[1]) ){
2432 struct symbol *msp = psp->rhs[psp->nrhs-1];
2433 if( msp->type!=MULTITERMINAL ){
2434 struct symbol *origsp = msp;
2435 msp = (struct symbol *) calloc(1,sizeof(*msp));
2436 memset(msp, 0, sizeof(*msp));
2437 msp->type = MULTITERMINAL;
2438 msp->nsubsym = 1;
2439 msp->subsym = (struct symbol **) calloc(1,sizeof(struct symbol*));
2440 msp->subsym[0] = origsp;
2441 msp->name = origsp->name;
2442 psp->rhs[psp->nrhs-1] = msp;
2444 msp->nsubsym++;
2445 msp->subsym = (struct symbol **) realloc(msp->subsym,
2446 sizeof(struct symbol*)*msp->nsubsym);
2447 msp->subsym[msp->nsubsym-1] = Symbol_new(&x[1]);
2448 if( ISLOWER(x[1]) || ISLOWER(msp->subsym[0]->name[0]) ){
2449 ErrorMsg(psp->filename,psp->tokenlineno,
2450 "Cannot form a compound containing a non-terminal");
2451 psp->errorcnt++;
2453 }else if( x[0]=='(' && psp->nrhs>0 ){
2454 psp->state = RHS_ALIAS_1;
2455 }else{
2456 ErrorMsg(psp->filename,psp->tokenlineno,
2457 "Illegal character on RHS of rule: \"%s\".",x);
2458 psp->errorcnt++;
2459 psp->state = RESYNC_AFTER_RULE_ERROR;
2461 break;
2462 case RHS_ALIAS_1:
2463 if( ISALPHA(x[0]) ){
2464 psp->alias[psp->nrhs-1] = x;
2465 psp->state = RHS_ALIAS_2;
2466 }else{
2467 ErrorMsg(psp->filename,psp->tokenlineno,
2468 "\"%s\" is not a valid alias for the RHS symbol \"%s\"\n",
2469 x,psp->rhs[psp->nrhs-1]->name);
2470 psp->errorcnt++;
2471 psp->state = RESYNC_AFTER_RULE_ERROR;
2473 break;
2474 case RHS_ALIAS_2:
2475 if( x[0]==')' ){
2476 psp->state = IN_RHS;
2477 }else{
2478 ErrorMsg(psp->filename,psp->tokenlineno,
2479 "Missing \")\" following LHS alias name \"%s\".",psp->lhsalias);
2480 psp->errorcnt++;
2481 psp->state = RESYNC_AFTER_RULE_ERROR;
2483 break;
2484 case WAITING_FOR_DECL_KEYWORD:
2485 if( ISALPHA(x[0]) ){
2486 psp->declkeyword = x;
2487 psp->declargslot = 0;
2488 psp->decllinenoslot = 0;
2489 psp->insertLineMacro = 1;
2490 psp->state = WAITING_FOR_DECL_ARG;
2491 if( strcmp(x,"name")==0 ){
2492 psp->declargslot = &(psp->gp->name);
2493 psp->insertLineMacro = 0;
2494 }else if( strcmp(x,"include")==0 ){
2495 psp->declargslot = &(psp->gp->include);
2496 }else if( strcmp(x,"code")==0 ){
2497 psp->declargslot = &(psp->gp->extracode);
2498 }else if( strcmp(x,"token_destructor")==0 ){
2499 psp->declargslot = &psp->gp->tokendest;
2500 }else if( strcmp(x,"default_destructor")==0 ){
2501 psp->declargslot = &psp->gp->vardest;
2502 }else if( strcmp(x,"token_prefix")==0 ){
2503 psp->declargslot = &psp->gp->tokenprefix;
2504 psp->insertLineMacro = 0;
2505 }else if( strcmp(x,"syntax_error")==0 ){
2506 psp->declargslot = &(psp->gp->error);
2507 }else if( strcmp(x,"parse_accept")==0 ){
2508 psp->declargslot = &(psp->gp->accept);
2509 }else if( strcmp(x,"parse_failure")==0 ){
2510 psp->declargslot = &(psp->gp->failure);
2511 }else if( strcmp(x,"stack_overflow")==0 ){
2512 psp->declargslot = &(psp->gp->overflow);
2513 }else if( strcmp(x,"extra_argument")==0 ){
2514 psp->declargslot = &(psp->gp->arg);
2515 psp->insertLineMacro = 0;
2516 }else if( strcmp(x,"extra_context")==0 ){
2517 psp->declargslot = &(psp->gp->ctx);
2518 psp->insertLineMacro = 0;
2519 }else if( strcmp(x,"token_type")==0 ){
2520 psp->declargslot = &(psp->gp->tokentype);
2521 psp->insertLineMacro = 0;
2522 }else if( strcmp(x,"default_type")==0 ){
2523 psp->declargslot = &(psp->gp->vartype);
2524 psp->insertLineMacro = 0;
2525 }else if( strcmp(x,"stack_size")==0 ){
2526 psp->declargslot = &(psp->gp->stacksize);
2527 psp->insertLineMacro = 0;
2528 }else if( strcmp(x,"start_symbol")==0 ){
2529 psp->declargslot = &(psp->gp->start);
2530 psp->insertLineMacro = 0;
2531 }else if( strcmp(x,"left")==0 ){
2532 psp->preccounter++;
2533 psp->declassoc = LEFT;
2534 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2535 }else if( strcmp(x,"right")==0 ){
2536 psp->preccounter++;
2537 psp->declassoc = RIGHT;
2538 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2539 }else if( strcmp(x,"nonassoc")==0 ){
2540 psp->preccounter++;
2541 psp->declassoc = NONE;
2542 psp->state = WAITING_FOR_PRECEDENCE_SYMBOL;
2543 }else if( strcmp(x,"destructor")==0 ){
2544 psp->state = WAITING_FOR_DESTRUCTOR_SYMBOL;
2545 }else if( strcmp(x,"type")==0 ){
2546 psp->state = WAITING_FOR_DATATYPE_SYMBOL;
2547 }else if( strcmp(x,"fallback")==0 ){
2548 psp->fallback = 0;
2549 psp->state = WAITING_FOR_FALLBACK_ID;
2550 }else if( strcmp(x,"token")==0 ){
2551 psp->state = WAITING_FOR_TOKEN_NAME;
2552 }else if( strcmp(x,"wildcard")==0 ){
2553 psp->state = WAITING_FOR_WILDCARD_ID;
2554 }else if( strcmp(x,"token_class")==0 ){
2555 psp->state = WAITING_FOR_CLASS_ID;
2556 }else{
2557 ErrorMsg(psp->filename,psp->tokenlineno,
2558 "Unknown declaration keyword: \"%%%s\".",x);
2559 psp->errorcnt++;
2560 psp->state = RESYNC_AFTER_DECL_ERROR;
2562 }else{
2563 ErrorMsg(psp->filename,psp->tokenlineno,
2564 "Illegal declaration keyword: \"%s\".",x);
2565 psp->errorcnt++;
2566 psp->state = RESYNC_AFTER_DECL_ERROR;
2568 break;
2569 case WAITING_FOR_DESTRUCTOR_SYMBOL:
2570 if( !ISALPHA(x[0]) ){
2571 ErrorMsg(psp->filename,psp->tokenlineno,
2572 "Symbol name missing after %%destructor keyword");
2573 psp->errorcnt++;
2574 psp->state = RESYNC_AFTER_DECL_ERROR;
2575 }else{
2576 struct symbol *sp = Symbol_new(x);
2577 psp->declargslot = &sp->destructor;
2578 psp->decllinenoslot = &sp->destLineno;
2579 psp->insertLineMacro = 1;
2580 psp->state = WAITING_FOR_DECL_ARG;
2582 break;
2583 case WAITING_FOR_DATATYPE_SYMBOL:
2584 if( !ISALPHA(x[0]) ){
2585 ErrorMsg(psp->filename,psp->tokenlineno,
2586 "Symbol name missing after %%type keyword");
2587 psp->errorcnt++;
2588 psp->state = RESYNC_AFTER_DECL_ERROR;
2589 }else{
2590 struct symbol *sp = Symbol_find(x);
2591 if((sp) && (sp->datatype)){
2592 ErrorMsg(psp->filename,psp->tokenlineno,
2593 "Symbol %%type \"%s\" already defined", x);
2594 psp->errorcnt++;
2595 psp->state = RESYNC_AFTER_DECL_ERROR;
2596 }else{
2597 if (!sp){
2598 sp = Symbol_new(x);
2600 psp->declargslot = &sp->datatype;
2601 psp->insertLineMacro = 0;
2602 psp->state = WAITING_FOR_DECL_ARG;
2605 break;
2606 case WAITING_FOR_PRECEDENCE_SYMBOL:
2607 if( x[0]=='.' ){
2608 psp->state = WAITING_FOR_DECL_OR_RULE;
2609 }else if( ISUPPER(x[0]) ){
2610 struct symbol *sp;
2611 sp = Symbol_new(x);
2612 if( sp->prec>=0 ){
2613 ErrorMsg(psp->filename,psp->tokenlineno,
2614 "Symbol \"%s\" has already be given a precedence.",x);
2615 psp->errorcnt++;
2616 }else{
2617 sp->prec = psp->preccounter;
2618 sp->assoc = psp->declassoc;
2620 }else{
2621 ErrorMsg(psp->filename,psp->tokenlineno,
2622 "Can't assign a precedence to \"%s\".",x);
2623 psp->errorcnt++;
2625 break;
2626 case WAITING_FOR_DECL_ARG:
2627 if( x[0]=='{' || x[0]=='\"' || ISALNUM(x[0]) ){
2628 const char *zOld, *zNew;
2629 char *zBuf, *z;
2630 int nOld, n, nLine = 0, nNew, nBack;
2631 int addLineMacro;
2632 char zLine[50];
2633 zNew = x;
2634 if( zNew[0]=='"' || zNew[0]=='{' ) zNew++;
2635 nNew = lemonStrlen(zNew);
2636 if( *psp->declargslot ){
2637 zOld = *psp->declargslot;
2638 }else{
2639 zOld = "";
2641 nOld = lemonStrlen(zOld);
2642 n = nOld + nNew + 20;
2643 addLineMacro = !psp->gp->nolinenosflag
2644 && psp->insertLineMacro
2645 && psp->tokenlineno>1
2646 && (psp->decllinenoslot==0 || psp->decllinenoslot[0]!=0);
2647 if( addLineMacro ){
2648 for(z=psp->filename, nBack=0; *z; z++){
2649 if( *z=='\\' ) nBack++;
2651 lemon_sprintf(zLine, "#line %d ", psp->tokenlineno);
2652 nLine = lemonStrlen(zLine);
2653 n += nLine + lemonStrlen(psp->filename) + nBack;
2655 *psp->declargslot = (char *) realloc(*psp->declargslot, n);
2656 zBuf = *psp->declargslot + nOld;
2657 if( addLineMacro ){
2658 if( nOld && zBuf[-1]!='\n' ){
2659 *(zBuf++) = '\n';
2661 memcpy(zBuf, zLine, nLine);
2662 zBuf += nLine;
2663 *(zBuf++) = '"';
2664 for(z=psp->filename; *z; z++){
2665 if( *z=='\\' ){
2666 *(zBuf++) = '\\';
2668 *(zBuf++) = *z;
2670 *(zBuf++) = '"';
2671 *(zBuf++) = '\n';
2673 if( psp->decllinenoslot && psp->decllinenoslot[0]==0 ){
2674 psp->decllinenoslot[0] = psp->tokenlineno;
2676 memcpy(zBuf, zNew, nNew);
2677 zBuf += nNew;
2678 *zBuf = 0;
2679 psp->state = WAITING_FOR_DECL_OR_RULE;
2680 }else{
2681 ErrorMsg(psp->filename,psp->tokenlineno,
2682 "Illegal argument to %%%s: %s",psp->declkeyword,x);
2683 psp->errorcnt++;
2684 psp->state = RESYNC_AFTER_DECL_ERROR;
2686 break;
2687 case WAITING_FOR_FALLBACK_ID:
2688 if( x[0]=='.' ){
2689 psp->state = WAITING_FOR_DECL_OR_RULE;
2690 }else if( !ISUPPER(x[0]) ){
2691 ErrorMsg(psp->filename, psp->tokenlineno,
2692 "%%fallback argument \"%s\" should be a token", x);
2693 psp->errorcnt++;
2694 }else{
2695 struct symbol *sp = Symbol_new(x);
2696 if( psp->fallback==0 ){
2697 psp->fallback = sp;
2698 }else if( sp->fallback ){
2699 ErrorMsg(psp->filename, psp->tokenlineno,
2700 "More than one fallback assigned to token %s", x);
2701 psp->errorcnt++;
2702 }else{
2703 sp->fallback = psp->fallback;
2704 psp->gp->has_fallback = 1;
2707 break;
2708 case WAITING_FOR_TOKEN_NAME:
2709 /* Tokens do not have to be declared before use. But they can be
2710 ** in order to control their assigned integer number. The number for
2711 ** each token is assigned when it is first seen. So by including
2713 ** %token ONE TWO THREE.
2715 ** early in the grammar file, that assigns small consecutive values
2716 ** to each of the tokens ONE TWO and THREE.
2718 if( x[0]=='.' ){
2719 psp->state = WAITING_FOR_DECL_OR_RULE;
2720 }else if( !ISUPPER(x[0]) ){
2721 ErrorMsg(psp->filename, psp->tokenlineno,
2722 "%%token argument \"%s\" should be a token", x);
2723 psp->errorcnt++;
2724 }else{
2725 (void)Symbol_new(x);
2727 break;
2728 case WAITING_FOR_WILDCARD_ID:
2729 if( x[0]=='.' ){
2730 psp->state = WAITING_FOR_DECL_OR_RULE;
2731 }else if( !ISUPPER(x[0]) ){
2732 ErrorMsg(psp->filename, psp->tokenlineno,
2733 "%%wildcard argument \"%s\" should be a token", x);
2734 psp->errorcnt++;
2735 }else{
2736 struct symbol *sp = Symbol_new(x);
2737 if( psp->gp->wildcard==0 ){
2738 psp->gp->wildcard = sp;
2739 }else{
2740 ErrorMsg(psp->filename, psp->tokenlineno,
2741 "Extra wildcard to token: %s", x);
2742 psp->errorcnt++;
2745 break;
2746 case WAITING_FOR_CLASS_ID:
2747 if( !ISLOWER(x[0]) ){
2748 ErrorMsg(psp->filename, psp->tokenlineno,
2749 "%%token_class must be followed by an identifier: %s", x);
2750 psp->errorcnt++;
2751 psp->state = RESYNC_AFTER_DECL_ERROR;
2752 }else if( Symbol_find(x) ){
2753 ErrorMsg(psp->filename, psp->tokenlineno,
2754 "Symbol \"%s\" already used", x);
2755 psp->errorcnt++;
2756 psp->state = RESYNC_AFTER_DECL_ERROR;
2757 }else{
2758 psp->tkclass = Symbol_new(x);
2759 psp->tkclass->type = MULTITERMINAL;
2760 psp->state = WAITING_FOR_CLASS_TOKEN;
2762 break;
2763 case WAITING_FOR_CLASS_TOKEN:
2764 if( x[0]=='.' ){
2765 psp->state = WAITING_FOR_DECL_OR_RULE;
2766 }else if( ISUPPER(x[0]) || ((x[0]=='|' || x[0]=='/') && ISUPPER(x[1])) ){
2767 struct symbol *msp = psp->tkclass;
2768 msp->nsubsym++;
2769 msp->subsym = (struct symbol **) realloc(msp->subsym,
2770 sizeof(struct symbol*)*msp->nsubsym);
2771 if( !ISUPPER(x[0]) ) x++;
2772 msp->subsym[msp->nsubsym-1] = Symbol_new(x);
2773 }else{
2774 ErrorMsg(psp->filename, psp->tokenlineno,
2775 "%%token_class argument \"%s\" should be a token", x);
2776 psp->errorcnt++;
2777 psp->state = RESYNC_AFTER_DECL_ERROR;
2779 break;
2780 case RESYNC_AFTER_RULE_ERROR:
2781 /* if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2782 ** break; */
2783 case RESYNC_AFTER_DECL_ERROR:
2784 if( x[0]=='.' ) psp->state = WAITING_FOR_DECL_OR_RULE;
2785 if( x[0]=='%' ) psp->state = WAITING_FOR_DECL_KEYWORD;
2786 break;
2790 /* The text in the input is part of the argument to an %ifdef or %ifndef.
2791 ** Evaluate the text as a boolean expression. Return true or false.
2793 static int eval_preprocessor_boolean(char *z, int lineno){
2794 int neg = 0;
2795 int res = 0;
2796 int okTerm = 1;
2797 int i;
2798 for(i=0; z[i]!=0; i++){
2799 if( ISSPACE(z[i]) ) continue;
2800 if( z[i]=='!' ){
2801 if( !okTerm ) goto pp_syntax_error;
2802 neg = !neg;
2803 continue;
2805 if( z[i]=='|' && z[i+1]=='|' ){
2806 if( okTerm ) goto pp_syntax_error;
2807 if( res ) return 1;
2808 i++;
2809 okTerm = 1;
2810 continue;
2812 if( z[i]=='&' && z[i+1]=='&' ){
2813 if( okTerm ) goto pp_syntax_error;
2814 if( !res ) return 0;
2815 i++;
2816 okTerm = 1;
2817 continue;
2819 if( z[i]=='(' ){
2820 int k;
2821 int n = 1;
2822 if( !okTerm ) goto pp_syntax_error;
2823 for(k=i+1; z[k]; k++){
2824 if( z[k]==')' ){
2825 n--;
2826 if( n==0 ){
2827 z[k] = 0;
2828 res = eval_preprocessor_boolean(&z[i+1], -1);
2829 z[k] = ')';
2830 if( res<0 ){
2831 i = i-res;
2832 goto pp_syntax_error;
2834 i = k;
2835 break;
2837 }else if( z[k]=='(' ){
2838 n++;
2839 }else if( z[k]==0 ){
2840 i = k;
2841 goto pp_syntax_error;
2844 if( neg ){
2845 res = !res;
2846 neg = 0;
2848 okTerm = 0;
2849 continue;
2851 if( ISALPHA(z[i]) ){
2852 int j, k, n;
2853 if( !okTerm ) goto pp_syntax_error;
2854 for(k=i+1; ISALNUM(z[k]) || z[k]=='_'; k++){}
2855 n = k - i;
2856 res = 0;
2857 for(j=0; j<nDefine; j++){
2858 if( strncmp(azDefine[j],&z[i],n)==0 && azDefine[j][n]==0 ){
2859 res = 1;
2860 break;
2863 i = k-1;
2864 if( neg ){
2865 res = !res;
2866 neg = 0;
2868 okTerm = 0;
2869 continue;
2871 goto pp_syntax_error;
2873 return res;
2875 pp_syntax_error:
2876 if( lineno>0 ){
2877 fprintf(stderr, "%%if syntax error on line %d.\n", lineno);
2878 fprintf(stderr, " %.*s <-- syntax error here\n", i+1, z);
2879 exit(1);
2880 }else{
2881 return -(i+1);
2885 /* Run the preprocessor over the input file text. The global variables
2886 ** azDefine[0] through azDefine[nDefine-1] contains the names of all defined
2887 ** macros. This routine looks for "%ifdef" and "%ifndef" and "%endif" and
2888 ** comments them out. Text in between is also commented out as appropriate.
2890 static void preprocess_input(char *z){
2891 int i, j, k;
2892 int exclude = 0;
2893 int start = 0;
2894 int lineno = 1;
2895 int start_lineno = 1;
2896 for(i=0; z[i]; i++){
2897 if( z[i]=='\n' ) lineno++;
2898 if( z[i]!='%' || (i>0 && z[i-1]!='\n') ) continue;
2899 if( strncmp(&z[i],"%endif",6)==0 && ISSPACE(z[i+6]) ){
2900 if( exclude ){
2901 exclude--;
2902 if( exclude==0 ){
2903 for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' ';
2906 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
2907 }else if( strncmp(&z[i],"%else",5)==0 && ISSPACE(z[i+5]) ){
2908 if( exclude==1){
2909 exclude = 0;
2910 for(j=start; j<i; j++) if( z[j]!='\n' ) z[j] = ' ';
2911 }else if( exclude==0 ){
2912 exclude = 1;
2913 start = i;
2914 start_lineno = lineno;
2916 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
2917 }else if( strncmp(&z[i],"%ifdef ",7)==0
2918 || strncmp(&z[i],"%if ",4)==0
2919 || strncmp(&z[i],"%ifndef ",8)==0 ){
2920 if( exclude ){
2921 exclude++;
2922 }else{
2923 int isNot;
2924 int iBool;
2925 for(j=i; z[j] && !ISSPACE(z[j]); j++){}
2926 iBool = j;
2927 isNot = (j==i+7);
2928 while( z[j] && z[j]!='\n' ){ j++; }
2929 k = z[j];
2930 z[j] = 0;
2931 exclude = eval_preprocessor_boolean(&z[iBool], lineno);
2932 z[j] = k;
2933 if( !isNot ) exclude = !exclude;
2934 if( exclude ){
2935 start = i;
2936 start_lineno = lineno;
2939 for(j=i; z[j] && z[j]!='\n'; j++) z[j] = ' ';
2942 if( exclude ){
2943 fprintf(stderr,"unterminated %%ifdef starting on line %d\n", start_lineno);
2944 exit(1);
2948 /* In spite of its name, this function is really a scanner. It read
2949 ** in the entire input file (all at once) then tokenizes it. Each
2950 ** token is passed to the function "parseonetoken" which builds all
2951 ** the appropriate data structures in the global state vector "gp".
2953 void Parse(struct lemon *gp)
2955 struct pstate ps;
2956 FILE *fp;
2957 char *filebuf;
2958 unsigned int filesize;
2959 int lineno;
2960 int c;
2961 char *cp, *nextcp;
2962 int startline = 0;
2964 memset(&ps, '\0', sizeof(ps));
2965 ps.gp = gp;
2966 ps.filename = gp->filename;
2967 ps.errorcnt = 0;
2968 ps.state = INITIALIZE;
2970 /* Begin by reading the input file */
2971 fp = fopen(ps.filename,"rb");
2972 if( fp==0 ){
2973 ErrorMsg(ps.filename,0,"Can't open this file for reading.");
2974 gp->errorcnt++;
2975 return;
2977 fseek(fp,0,2);
2978 filesize = ftell(fp);
2979 rewind(fp);
2980 filebuf = (char *)malloc( filesize+1 );
2981 if( filesize>100000000 || filebuf==0 ){
2982 ErrorMsg(ps.filename,0,"Input file too large.");
2983 free(filebuf);
2984 gp->errorcnt++;
2985 fclose(fp);
2986 return;
2988 if( fread(filebuf,1,filesize,fp)!=filesize ){
2989 ErrorMsg(ps.filename,0,"Can't read in all %d bytes of this file.",
2990 filesize);
2991 free(filebuf);
2992 gp->errorcnt++;
2993 fclose(fp);
2994 return;
2996 fclose(fp);
2997 filebuf[filesize] = 0;
2999 /* Make an initial pass through the file to handle %ifdef and %ifndef */
3000 preprocess_input(filebuf);
3001 if( gp->printPreprocessed ){
3002 printf("%s\n", filebuf);
3003 return;
3006 /* Now scan the text of the input file */
3007 lineno = 1;
3008 for(cp=filebuf; (c= *cp)!=0; ){
3009 if( c=='\n' ) lineno++; /* Keep track of the line number */
3010 if( ISSPACE(c) ){ cp++; continue; } /* Skip all white space */
3011 if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments */
3012 cp+=2;
3013 while( (c= *cp)!=0 && c!='\n' ) cp++;
3014 continue;
3016 if( c=='/' && cp[1]=='*' ){ /* Skip C style comments */
3017 cp+=2;
3018 if( (*cp)=='/' ) cp++;
3019 while( (c= *cp)!=0 && (c!='/' || cp[-1]!='*') ){
3020 if( c=='\n' ) lineno++;
3021 cp++;
3023 if( c ) cp++;
3024 continue;
3026 ps.tokenstart = cp; /* Mark the beginning of the token */
3027 ps.tokenlineno = lineno; /* Linenumber on which token begins */
3028 if( c=='\"' ){ /* String literals */
3029 cp++;
3030 while( (c= *cp)!=0 && c!='\"' ){
3031 if( c=='\n' ) lineno++;
3032 cp++;
3034 if( c==0 ){
3035 ErrorMsg(ps.filename,startline,
3036 "String starting on this line is not terminated before "
3037 "the end of the file.");
3038 ps.errorcnt++;
3039 nextcp = cp;
3040 }else{
3041 nextcp = cp+1;
3043 }else if( c=='{' ){ /* A block of C code */
3044 int level;
3045 cp++;
3046 for(level=1; (c= *cp)!=0 && (level>1 || c!='}'); cp++){
3047 if( c=='\n' ) lineno++;
3048 else if( c=='{' ) level++;
3049 else if( c=='}' ) level--;
3050 else if( c=='/' && cp[1]=='*' ){ /* Skip comments */
3051 int prevc;
3052 cp = &cp[2];
3053 prevc = 0;
3054 while( (c= *cp)!=0 && (c!='/' || prevc!='*') ){
3055 if( c=='\n' ) lineno++;
3056 prevc = c;
3057 cp++;
3059 }else if( c=='/' && cp[1]=='/' ){ /* Skip C++ style comments too */
3060 cp = &cp[2];
3061 while( (c= *cp)!=0 && c!='\n' ) cp++;
3062 if( c ) lineno++;
3063 }else if( c=='\'' || c=='\"' ){ /* String a character literals */
3064 int startchar, prevc;
3065 startchar = c;
3066 prevc = 0;
3067 for(cp++; (c= *cp)!=0 && (c!=startchar || prevc=='\\'); cp++){
3068 if( c=='\n' ) lineno++;
3069 if( prevc=='\\' ) prevc = 0;
3070 else prevc = c;
3074 if( c==0 ){
3075 ErrorMsg(ps.filename,ps.tokenlineno,
3076 "C code starting on this line is not terminated before "
3077 "the end of the file.");
3078 ps.errorcnt++;
3079 nextcp = cp;
3080 }else{
3081 nextcp = cp+1;
3083 }else if( ISALNUM(c) ){ /* Identifiers */
3084 while( (c= *cp)!=0 && (ISALNUM(c) || c=='_') ) cp++;
3085 nextcp = cp;
3086 }else if( c==':' && cp[1]==':' && cp[2]=='=' ){ /* The operator "::=" */
3087 cp += 3;
3088 nextcp = cp;
3089 }else if( (c=='/' || c=='|') && ISALPHA(cp[1]) ){
3090 cp += 2;
3091 while( (c = *cp)!=0 && (ISALNUM(c) || c=='_') ) cp++;
3092 nextcp = cp;
3093 }else{ /* All other (one character) operators */
3094 cp++;
3095 nextcp = cp;
3097 c = *cp;
3098 *cp = 0; /* Null terminate the token */
3099 parseonetoken(&ps); /* Parse the token */
3100 *cp = (char)c; /* Restore the buffer */
3101 cp = nextcp;
3103 free(filebuf); /* Release the buffer after parsing */
3104 gp->rule = ps.firstrule;
3105 gp->errorcnt = ps.errorcnt;
3107 /*************************** From the file "plink.c" *********************/
3109 ** Routines processing configuration follow-set propagation links
3110 ** in the LEMON parser generator.
3112 static struct plink *plink_freelist = 0;
3114 /* Allocate a new plink */
3115 struct plink *Plink_new(void){
3116 struct plink *newlink;
3118 if( plink_freelist==0 ){
3119 int i;
3120 int amt = 100;
3121 plink_freelist = (struct plink *)calloc( amt, sizeof(struct plink) );
3122 if( plink_freelist==0 ){
3123 fprintf(stderr,
3124 "Unable to allocate memory for a new follow-set propagation link.\n");
3125 exit(1);
3127 for(i=0; i<amt-1; i++) plink_freelist[i].next = &plink_freelist[i+1];
3128 plink_freelist[amt-1].next = 0;
3130 newlink = plink_freelist;
3131 plink_freelist = plink_freelist->next;
3132 return newlink;
3135 /* Add a plink to a plink list */
3136 void Plink_add(struct plink **plpp, struct config *cfp)
3138 struct plink *newlink;
3139 newlink = Plink_new();
3140 newlink->next = *plpp;
3141 *plpp = newlink;
3142 newlink->cfp = cfp;
3145 /* Transfer every plink on the list "from" to the list "to" */
3146 void Plink_copy(struct plink **to, struct plink *from)
3148 struct plink *nextpl;
3149 while( from ){
3150 nextpl = from->next;
3151 from->next = *to;
3152 *to = from;
3153 from = nextpl;
3157 /* Delete every plink on the list */
3158 void Plink_delete(struct plink *plp)
3160 struct plink *nextpl;
3162 while( plp ){
3163 nextpl = plp->next;
3164 plp->next = plink_freelist;
3165 plink_freelist = plp;
3166 plp = nextpl;
3169 /*********************** From the file "report.c" **************************/
3171 ** Procedures for generating reports and tables in the LEMON parser generator.
3174 /* Generate a filename with the given suffix. Space to hold the
3175 ** name comes from malloc() and must be freed by the calling
3176 ** function.
3178 PRIVATE char *file_makename(struct lemon *lemp, const char *suffix)
3180 char *name;
3181 char *cp;
3182 char *filename = lemp->filename;
3183 int sz;
3185 if( outputDir ){
3186 cp = strrchr(filename, '/');
3187 if( cp ) filename = cp + 1;
3189 sz = lemonStrlen(filename);
3190 sz += lemonStrlen(suffix);
3191 if( outputDir ) sz += lemonStrlen(outputDir) + 1;
3192 sz += 5;
3193 name = (char*)malloc( sz );
3194 if( name==0 ){
3195 fprintf(stderr,"Can't allocate space for a filename.\n");
3196 exit(1);
3198 name[0] = 0;
3199 if( outputDir ){
3200 lemon_strcpy(name, outputDir);
3201 lemon_strcat(name, "/");
3203 lemon_strcat(name,filename);
3204 cp = strrchr(name,'.');
3205 if( cp ) *cp = 0;
3206 lemon_strcat(name,suffix);
3207 return name;
3210 /* Open a file with a name based on the name of the input file,
3211 ** but with a different (specified) suffix, and return a pointer
3212 ** to the stream */
3213 PRIVATE FILE *file_open(
3214 struct lemon *lemp,
3215 const char *suffix,
3216 const char *mode
3218 FILE *fp;
3220 if( lemp->outname ) free(lemp->outname);
3221 lemp->outname = file_makename(lemp, suffix);
3222 fp = fopen(lemp->outname,mode);
3223 if( fp==0 && *mode=='w' ){
3224 fprintf(stderr,"Can't open file \"%s\".\n",lemp->outname);
3225 lemp->errorcnt++;
3226 return 0;
3228 return fp;
3231 /* Print the text of a rule
3233 void rule_print(FILE *out, struct rule *rp){
3234 int i, j;
3235 fprintf(out, "%s",rp->lhs->name);
3236 /* if( rp->lhsalias ) fprintf(out,"(%s)",rp->lhsalias); */
3237 fprintf(out," ::=");
3238 for(i=0; i<rp->nrhs; i++){
3239 struct symbol *sp = rp->rhs[i];
3240 if( sp->type==MULTITERMINAL ){
3241 fprintf(out," %s", sp->subsym[0]->name);
3242 for(j=1; j<sp->nsubsym; j++){
3243 fprintf(out,"|%s", sp->subsym[j]->name);
3245 }else{
3246 fprintf(out," %s", sp->name);
3248 /* if( rp->rhsalias[i] ) fprintf(out,"(%s)",rp->rhsalias[i]); */
3252 /* Duplicate the input file without comments and without actions
3253 ** on rules */
3254 void Reprint(struct lemon *lemp)
3256 struct rule *rp;
3257 struct symbol *sp;
3258 int i, j, maxlen, len, ncolumns, skip;
3259 printf("// Reprint of input file \"%s\".\n// Symbols:\n",lemp->filename);
3260 maxlen = 10;
3261 for(i=0; i<lemp->nsymbol; i++){
3262 sp = lemp->symbols[i];
3263 len = lemonStrlen(sp->name);
3264 if( len>maxlen ) maxlen = len;
3266 ncolumns = 76/(maxlen+5);
3267 if( ncolumns<1 ) ncolumns = 1;
3268 skip = (lemp->nsymbol + ncolumns - 1)/ncolumns;
3269 for(i=0; i<skip; i++){
3270 printf("//");
3271 for(j=i; j<lemp->nsymbol; j+=skip){
3272 sp = lemp->symbols[j];
3273 assert( sp->index==j );
3274 printf(" %3d %-*.*s",j,maxlen,maxlen,sp->name);
3276 printf("\n");
3278 for(rp=lemp->rule; rp; rp=rp->next){
3279 rule_print(stdout, rp);
3280 printf(".");
3281 if( rp->precsym ) printf(" [%s]",rp->precsym->name);
3282 /* if( rp->code ) printf("\n %s",rp->code); */
3283 printf("\n");
3287 /* Print a single rule.
3289 void RulePrint(FILE *fp, struct rule *rp, int iCursor){
3290 struct symbol *sp;
3291 int i, j;
3292 fprintf(fp,"%s ::=",rp->lhs->name);
3293 for(i=0; i<=rp->nrhs; i++){
3294 if( i==iCursor ) fprintf(fp," *");
3295 if( i==rp->nrhs ) break;
3296 sp = rp->rhs[i];
3297 if( sp->type==MULTITERMINAL ){
3298 fprintf(fp," %s", sp->subsym[0]->name);
3299 for(j=1; j<sp->nsubsym; j++){
3300 fprintf(fp,"|%s",sp->subsym[j]->name);
3302 }else{
3303 fprintf(fp," %s", sp->name);
3308 /* Print the rule for a configuration.
3310 void ConfigPrint(FILE *fp, struct config *cfp){
3311 RulePrint(fp, cfp->rp, cfp->dot);
3314 /* #define TEST */
3315 #if 0
3316 /* Print a set */
3317 PRIVATE void SetPrint(out,set,lemp)
3318 FILE *out;
3319 char *set;
3320 struct lemon *lemp;
3322 int i;
3323 char *spacer;
3324 spacer = "";
3325 fprintf(out,"%12s[","");
3326 for(i=0; i<lemp->nterminal; i++){
3327 if( SetFind(set,i) ){
3328 fprintf(out,"%s%s",spacer,lemp->symbols[i]->name);
3329 spacer = " ";
3332 fprintf(out,"]\n");
3335 /* Print a plink chain */
3336 PRIVATE void PlinkPrint(out,plp,tag)
3337 FILE *out;
3338 struct plink *plp;
3339 char *tag;
3341 while( plp ){
3342 fprintf(out,"%12s%s (state %2d) ","",tag,plp->cfp->stp->statenum);
3343 ConfigPrint(out,plp->cfp);
3344 fprintf(out,"\n");
3345 plp = plp->next;
3348 #endif
3350 /* Print an action to the given file descriptor. Return FALSE if
3351 ** nothing was actually printed.
3353 int PrintAction(
3354 struct action *ap, /* The action to print */
3355 FILE *fp, /* Print the action here */
3356 int indent /* Indent by this amount */
3358 int result = 1;
3359 switch( ap->type ){
3360 case SHIFT: {
3361 struct state *stp = ap->x.stp;
3362 fprintf(fp,"%*s shift %-7d",indent,ap->sp->name,stp->statenum);
3363 break;
3365 case REDUCE: {
3366 struct rule *rp = ap->x.rp;
3367 fprintf(fp,"%*s reduce %-7d",indent,ap->sp->name,rp->iRule);
3368 RulePrint(fp, rp, -1);
3369 break;
3371 case SHIFTREDUCE: {
3372 struct rule *rp = ap->x.rp;
3373 fprintf(fp,"%*s shift-reduce %-7d",indent,ap->sp->name,rp->iRule);
3374 RulePrint(fp, rp, -1);
3375 break;
3377 case ACCEPT:
3378 fprintf(fp,"%*s accept",indent,ap->sp->name);
3379 break;
3380 case ERROR:
3381 fprintf(fp,"%*s error",indent,ap->sp->name);
3382 break;
3383 case SRCONFLICT:
3384 case RRCONFLICT:
3385 fprintf(fp,"%*s reduce %-7d ** Parsing conflict **",
3386 indent,ap->sp->name,ap->x.rp->iRule);
3387 break;
3388 case SSCONFLICT:
3389 fprintf(fp,"%*s shift %-7d ** Parsing conflict **",
3390 indent,ap->sp->name,ap->x.stp->statenum);
3391 break;
3392 case SH_RESOLVED:
3393 if( showPrecedenceConflict ){
3394 fprintf(fp,"%*s shift %-7d -- dropped by precedence",
3395 indent,ap->sp->name,ap->x.stp->statenum);
3396 }else{
3397 result = 0;
3399 break;
3400 case RD_RESOLVED:
3401 if( showPrecedenceConflict ){
3402 fprintf(fp,"%*s reduce %-7d -- dropped by precedence",
3403 indent,ap->sp->name,ap->x.rp->iRule);
3404 }else{
3405 result = 0;
3407 break;
3408 case NOT_USED:
3409 result = 0;
3410 break;
3412 if( result && ap->spOpt ){
3413 fprintf(fp," /* because %s==%s */", ap->sp->name, ap->spOpt->name);
3415 return result;
3418 /* Generate the "*.out" log file */
3419 void ReportOutput(struct lemon *lemp)
3421 int i, n;
3422 struct state *stp;
3423 struct config *cfp;
3424 struct action *ap;
3425 struct rule *rp;
3426 FILE *fp;
3428 fp = file_open(lemp,".out","wb");
3429 if( fp==0 ) return;
3430 for(i=0; i<lemp->nxstate; i++){
3431 stp = lemp->sorted[i];
3432 fprintf(fp,"State %d:\n",stp->statenum);
3433 if( lemp->basisflag ) cfp=stp->bp;
3434 else cfp=stp->cfp;
3435 while( cfp ){
3436 char buf[20];
3437 if( cfp->dot==cfp->rp->nrhs ){
3438 lemon_sprintf(buf,"(%d)",cfp->rp->iRule);
3439 fprintf(fp," %5s ",buf);
3440 }else{
3441 fprintf(fp," ");
3443 ConfigPrint(fp,cfp);
3444 fprintf(fp,"\n");
3445 #if 0
3446 SetPrint(fp,cfp->fws,lemp);
3447 PlinkPrint(fp,cfp->fplp,"To ");
3448 PlinkPrint(fp,cfp->bplp,"From");
3449 #endif
3450 if( lemp->basisflag ) cfp=cfp->bp;
3451 else cfp=cfp->next;
3453 fprintf(fp,"\n");
3454 for(ap=stp->ap; ap; ap=ap->next){
3455 if( PrintAction(ap,fp,30) ) fprintf(fp,"\n");
3457 fprintf(fp,"\n");
3459 fprintf(fp, "----------------------------------------------------\n");
3460 fprintf(fp, "Symbols:\n");
3461 fprintf(fp, "The first-set of non-terminals is shown after the name.\n\n");
3462 for(i=0; i<lemp->nsymbol; i++){
3463 int j;
3464 struct symbol *sp;
3466 sp = lemp->symbols[i];
3467 fprintf(fp, " %3d: %s", i, sp->name);
3468 if( sp->type==NONTERMINAL ){
3469 fprintf(fp, ":");
3470 if( sp->lambda ){
3471 fprintf(fp, " <lambda>");
3473 for(j=0; j<lemp->nterminal; j++){
3474 if( sp->firstset && SetFind(sp->firstset, j) ){
3475 fprintf(fp, " %s", lemp->symbols[j]->name);
3479 if( sp->prec>=0 ) fprintf(fp," (precedence=%d)", sp->prec);
3480 fprintf(fp, "\n");
3482 fprintf(fp, "----------------------------------------------------\n");
3483 fprintf(fp, "Syntax-only Symbols:\n");
3484 fprintf(fp, "The following symbols never carry semantic content.\n\n");
3485 for(i=n=0; i<lemp->nsymbol; i++){
3486 int w;
3487 struct symbol *sp = lemp->symbols[i];
3488 if( sp->bContent ) continue;
3489 w = (int)strlen(sp->name);
3490 if( n>0 && n+w>75 ){
3491 fprintf(fp,"\n");
3492 n = 0;
3494 if( n>0 ){
3495 fprintf(fp, " ");
3496 n++;
3498 fprintf(fp, "%s", sp->name);
3499 n += w;
3501 if( n>0 ) fprintf(fp, "\n");
3502 fprintf(fp, "----------------------------------------------------\n");
3503 fprintf(fp, "Rules:\n");
3504 for(rp=lemp->rule; rp; rp=rp->next){
3505 fprintf(fp, "%4d: ", rp->iRule);
3506 rule_print(fp, rp);
3507 fprintf(fp,".");
3508 if( rp->precsym ){
3509 fprintf(fp," [%s precedence=%d]",
3510 rp->precsym->name, rp->precsym->prec);
3512 fprintf(fp,"\n");
3514 fclose(fp);
3515 return;
3518 /* Search for the file "name" which is in the same directory as
3519 ** the executable */
3520 PRIVATE char *pathsearch(char *argv0, char *name, int modemask)
3522 const char *pathlist;
3523 char *pathbufptr = 0;
3524 char *pathbuf = 0;
3525 char *path,*cp;
3526 char c;
3528 #ifdef __WIN32__
3529 cp = strrchr(argv0,'\\');
3530 #else
3531 cp = strrchr(argv0,'/');
3532 #endif
3533 if( cp ){
3534 c = *cp;
3535 *cp = 0;
3536 path = (char *)malloc( lemonStrlen(argv0) + lemonStrlen(name) + 2 );
3537 if( path ) lemon_sprintf(path,"%s/%s",argv0,name);
3538 *cp = c;
3539 }else{
3540 pathlist = getenv("PATH");
3541 if( pathlist==0 ) pathlist = ".:/bin:/usr/bin";
3542 pathbuf = (char *) malloc( lemonStrlen(pathlist) + 1 );
3543 path = (char *)malloc( lemonStrlen(pathlist)+lemonStrlen(name)+2 );
3544 if( (pathbuf != 0) && (path!=0) ){
3545 pathbufptr = pathbuf;
3546 lemon_strcpy(pathbuf, pathlist);
3547 while( *pathbuf ){
3548 cp = strchr(pathbuf,':');
3549 if( cp==0 ) cp = &pathbuf[lemonStrlen(pathbuf)];
3550 c = *cp;
3551 *cp = 0;
3552 lemon_sprintf(path,"%s/%s",pathbuf,name);
3553 *cp = c;
3554 if( c==0 ) pathbuf[0] = 0;
3555 else pathbuf = &cp[1];
3556 if( access(path,modemask)==0 ) break;
3559 free(pathbufptr);
3561 return path;
3564 /* Given an action, compute the integer value for that action
3565 ** which is to be put in the action table of the generated machine.
3566 ** Return negative if no action should be generated.
3568 PRIVATE int compute_action(struct lemon *lemp, struct action *ap)
3570 int act;
3571 switch( ap->type ){
3572 case SHIFT: act = ap->x.stp->statenum; break;
3573 case SHIFTREDUCE: {
3574 /* Since a SHIFT is inherient after a prior REDUCE, convert any
3575 ** SHIFTREDUCE action with a nonterminal on the LHS into a simple
3576 ** REDUCE action: */
3577 if( ap->sp->index>=lemp->nterminal
3578 && (lemp->errsym==0 || ap->sp->index!=lemp->errsym->index)
3580 act = lemp->minReduce + ap->x.rp->iRule;
3581 }else{
3582 act = lemp->minShiftReduce + ap->x.rp->iRule;
3584 break;
3586 case REDUCE: act = lemp->minReduce + ap->x.rp->iRule; break;
3587 case ERROR: act = lemp->errAction; break;
3588 case ACCEPT: act = lemp->accAction; break;
3589 default: act = -1; break;
3591 return act;
3594 #define LINESIZE 1000
3595 /* The next cluster of routines are for reading the template file
3596 ** and writing the results to the generated parser */
3597 /* The first function transfers data from "in" to "out" until
3598 ** a line is seen which begins with "%%". The line number is
3599 ** tracked.
3601 ** if name!=0, then any word that begin with "Parse" is changed to
3602 ** begin with *name instead.
3604 PRIVATE void tplt_xfer(char *name, FILE *in, FILE *out, int *lineno)
3606 int i, iStart;
3607 char line[LINESIZE];
3608 while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
3609 (*lineno)++;
3610 iStart = 0;
3611 if( name ){
3612 for(i=0; line[i]; i++){
3613 if( line[i]=='P' && strncmp(&line[i],"Parse",5)==0
3614 && (i==0 || !ISALPHA(line[i-1]))
3616 if( i>iStart ) fprintf(out,"%.*s",i-iStart,&line[iStart]);
3617 fprintf(out,"%s",name);
3618 i += 4;
3619 iStart = i+1;
3623 fprintf(out,"%s",&line[iStart]);
3627 /* Skip forward past the header of the template file to the first "%%"
3629 PRIVATE void tplt_skip_header(FILE *in, int *lineno)
3631 char line[LINESIZE];
3632 while( fgets(line,LINESIZE,in) && (line[0]!='%' || line[1]!='%') ){
3633 (*lineno)++;
3637 /* The next function finds the template file and opens it, returning
3638 ** a pointer to the opened file. */
3639 PRIVATE FILE *tplt_open(struct lemon *lemp)
3641 static char templatename[] = "lempar.c";
3642 char buf[1000];
3643 FILE *in;
3644 char *tpltname;
3645 char *toFree = 0;
3646 char *cp;
3648 /* first, see if user specified a template filename on the command line. */
3649 if (user_templatename != 0) {
3650 if( access(user_templatename,004)==-1 ){
3651 fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
3652 user_templatename);
3653 lemp->errorcnt++;
3654 return 0;
3656 in = fopen(user_templatename,"rb");
3657 if( in==0 ){
3658 fprintf(stderr,"Can't open the template file \"%s\".\n",
3659 user_templatename);
3660 lemp->errorcnt++;
3661 return 0;
3663 return in;
3666 cp = strrchr(lemp->filename,'.');
3667 if( cp ){
3668 lemon_sprintf(buf,"%.*s.lt",(int)(cp-lemp->filename),lemp->filename);
3669 }else{
3670 lemon_sprintf(buf,"%s.lt",lemp->filename);
3672 if( access(buf,004)==0 ){
3673 tpltname = buf;
3674 }else if( access(templatename,004)==0 ){
3675 tpltname = templatename;
3676 }else{
3677 toFree = tpltname = pathsearch(lemp->argv0,templatename,0);
3679 if( tpltname==0 ){
3680 fprintf(stderr,"Can't find the parser driver template file \"%s\".\n",
3681 templatename);
3682 lemp->errorcnt++;
3683 return 0;
3685 in = fopen(tpltname,"rb");
3686 if( in==0 ){
3687 fprintf(stderr,"Can't open the template file \"%s\".\n",tpltname);
3688 lemp->errorcnt++;
3690 free(toFree);
3691 return in;
3694 /* Print a #line directive line to the output file. */
3695 PRIVATE void tplt_linedir(FILE *out, int lineno, char *filename)
3697 fprintf(out,"#line %d \"",lineno);
3698 while( *filename ){
3699 if( *filename == '\\' ) putc('\\',out);
3700 putc(*filename,out);
3701 filename++;
3703 fprintf(out,"\"\n");
3706 /* Print a string to the file and keep the linenumber up to date */
3707 PRIVATE void tplt_print(FILE *out, struct lemon *lemp, char *str, int *lineno)
3709 if( str==0 ) return;
3710 while( *str ){
3711 putc(*str,out);
3712 if( *str=='\n' ) (*lineno)++;
3713 str++;
3715 if( str[-1]!='\n' ){
3716 putc('\n',out);
3717 (*lineno)++;
3719 if (!lemp->nolinenosflag) {
3720 (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
3722 return;
3726 ** The following routine emits code for the destructor for the
3727 ** symbol sp
3729 void emit_destructor_code(
3730 FILE *out,
3731 struct symbol *sp,
3732 struct lemon *lemp,
3733 int *lineno
3735 char *cp = 0;
3737 if( sp->type==TERMINAL ){
3738 cp = lemp->tokendest;
3739 if( cp==0 ) return;
3740 fprintf(out,"{\n"); (*lineno)++;
3741 }else if( sp->destructor ){
3742 cp = sp->destructor;
3743 fprintf(out,"{\n"); (*lineno)++;
3744 if( !lemp->nolinenosflag ){
3745 (*lineno)++;
3746 tplt_linedir(out,sp->destLineno,lemp->filename);
3748 }else if( lemp->vardest ){
3749 cp = lemp->vardest;
3750 if( cp==0 ) return;
3751 fprintf(out,"{\n"); (*lineno)++;
3752 }else{
3753 assert( 0 ); /* Cannot happen */
3755 for(; *cp; cp++){
3756 if( *cp=='$' && cp[1]=='$' ){
3757 fprintf(out,"(yypminor->yy%d)",sp->dtnum);
3758 cp++;
3759 continue;
3761 if( *cp=='\n' ) (*lineno)++;
3762 fputc(*cp,out);
3764 fprintf(out,"\n"); (*lineno)++;
3765 if (!lemp->nolinenosflag) {
3766 (*lineno)++; tplt_linedir(out,*lineno,lemp->outname);
3768 fprintf(out,"}\n"); (*lineno)++;
3769 return;
3773 ** Return TRUE (non-zero) if the given symbol has a destructor.
3775 int has_destructor(struct symbol *sp, struct lemon *lemp)
3777 int ret;
3778 if( sp->type==TERMINAL ){
3779 ret = lemp->tokendest!=0;
3780 }else{
3781 ret = lemp->vardest!=0 || sp->destructor!=0;
3783 return ret;
3787 ** Append text to a dynamically allocated string. If zText is 0 then
3788 ** reset the string to be empty again. Always return the complete text
3789 ** of the string (which is overwritten with each call).
3791 ** n bytes of zText are stored. If n==0 then all of zText up to the first
3792 ** \000 terminator is stored. zText can contain up to two instances of
3793 ** %d. The values of p1 and p2 are written into the first and second
3794 ** %d.
3796 ** If n==-1, then the previous character is overwritten.
3798 PRIVATE char *append_str(const char *zText, int n, int p1, int p2){
3799 static char empty[1] = { 0 };
3800 static char *z = 0;
3801 static int alloced = 0;
3802 static int used = 0;
3803 int c;
3804 char zInt[40];
3805 if( zText==0 ){
3806 if( used==0 && z!=0 ) z[0] = 0;
3807 used = 0;
3808 return z;
3810 if( n<=0 ){
3811 if( n<0 ){
3812 used += n;
3813 assert( used>=0 );
3815 n = lemonStrlen(zText);
3817 if( (int) (n+sizeof(zInt)*2+used) >= alloced ){
3818 alloced = n + sizeof(zInt)*2 + used + 200;
3819 z = (char *) realloc(z, alloced);
3821 if( z==0 ) return empty;
3822 while( n-- > 0 ){
3823 c = *(zText++);
3824 if( c=='%' && n>0 && zText[0]=='d' ){
3825 lemon_sprintf(zInt, "%d", p1);
3826 p1 = p2;
3827 lemon_strcpy(&z[used], zInt);
3828 used += lemonStrlen(&z[used]);
3829 zText++;
3830 n--;
3831 }else{
3832 z[used++] = (char)c;
3835 z[used] = 0;
3836 return z;
3840 ** Write and transform the rp->code string so that symbols are expanded.
3841 ** Populate the rp->codePrefix and rp->codeSuffix strings, as appropriate.
3843 ** Return 1 if the expanded code requires that "yylhsminor" local variable
3844 ** to be defined.
3846 PRIVATE int translate_code(struct lemon *lemp, struct rule *rp){
3847 char *cp, *xp;
3848 int i;
3849 int rc = 0; /* True if yylhsminor is used */
3850 int dontUseRhs0 = 0; /* If true, use of left-most RHS label is illegal */
3851 const char *zSkip = 0; /* The zOvwrt comment within rp->code, or NULL */
3852 char lhsused = 0; /* True if the LHS element has been used */
3853 char lhsdirect; /* True if LHS writes directly into stack */
3854 char used[MAXRHS]; /* True for each RHS element which is used */
3855 char zLhs[50]; /* Convert the LHS symbol into this string */
3856 char zOvwrt[900]; /* Comment that to allow LHS to overwrite RHS */
3858 for(i=0; i<rp->nrhs; i++) used[i] = 0;
3859 lhsused = 0;
3861 if( rp->code==0 ){
3862 static char newlinestr[2] = { '\n', '\0' };
3863 rp->code = newlinestr;
3864 rp->line = rp->ruleline;
3865 rp->noCode = 1;
3866 }else{
3867 rp->noCode = 0;
3871 if( rp->nrhs==0 ){
3872 /* If there are no RHS symbols, then writing directly to the LHS is ok */
3873 lhsdirect = 1;
3874 }else if( rp->rhsalias[0]==0 ){
3875 /* The left-most RHS symbol has no value. LHS direct is ok. But
3876 ** we have to call the destructor on the RHS symbol first. */
3877 lhsdirect = 1;
3878 if( has_destructor(rp->rhs[0],lemp) ){
3879 append_str(0,0,0,0);
3880 append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
3881 rp->rhs[0]->index,1-rp->nrhs);
3882 rp->codePrefix = Strsafe(append_str(0,0,0,0));
3883 rp->noCode = 0;
3885 }else if( rp->lhsalias==0 ){
3886 /* There is no LHS value symbol. */
3887 lhsdirect = 1;
3888 }else if( strcmp(rp->lhsalias,rp->rhsalias[0])==0 ){
3889 /* The LHS symbol and the left-most RHS symbol are the same, so
3890 ** direct writing is allowed */
3891 lhsdirect = 1;
3892 lhsused = 1;
3893 used[0] = 1;
3894 if( rp->lhs->dtnum!=rp->rhs[0]->dtnum ){
3895 ErrorMsg(lemp->filename,rp->ruleline,
3896 "%s(%s) and %s(%s) share the same label but have "
3897 "different datatypes.",
3898 rp->lhs->name, rp->lhsalias, rp->rhs[0]->name, rp->rhsalias[0]);
3899 lemp->errorcnt++;
3901 }else{
3902 lemon_sprintf(zOvwrt, "/*%s-overwrites-%s*/",
3903 rp->lhsalias, rp->rhsalias[0]);
3904 zSkip = strstr(rp->code, zOvwrt);
3905 if( zSkip!=0 ){
3906 /* The code contains a special comment that indicates that it is safe
3907 ** for the LHS label to overwrite left-most RHS label. */
3908 lhsdirect = 1;
3909 }else{
3910 lhsdirect = 0;
3913 if( lhsdirect ){
3914 sprintf(zLhs, "yymsp[%d].minor.yy%d",1-rp->nrhs,rp->lhs->dtnum);
3915 }else{
3916 rc = 1;
3917 sprintf(zLhs, "yylhsminor.yy%d",rp->lhs->dtnum);
3920 append_str(0,0,0,0);
3922 /* This const cast is wrong but harmless, if we're careful. */
3923 for(cp=(char *)rp->code; *cp; cp++){
3924 if( cp==zSkip ){
3925 append_str(zOvwrt,0,0,0);
3926 cp += lemonStrlen(zOvwrt)-1;
3927 dontUseRhs0 = 1;
3928 continue;
3930 if( ISALPHA(*cp) && (cp==rp->code || (!ISALNUM(cp[-1]) && cp[-1]!='_')) ){
3931 char saved;
3932 for(xp= &cp[1]; ISALNUM(*xp) || *xp=='_'; xp++);
3933 saved = *xp;
3934 *xp = 0;
3935 if( rp->lhsalias && strcmp(cp,rp->lhsalias)==0 ){
3936 append_str(zLhs,0,0,0);
3937 cp = xp;
3938 lhsused = 1;
3939 }else{
3940 for(i=0; i<rp->nrhs; i++){
3941 if( rp->rhsalias[i] && strcmp(cp,rp->rhsalias[i])==0 ){
3942 if( i==0 && dontUseRhs0 ){
3943 ErrorMsg(lemp->filename,rp->ruleline,
3944 "Label %s used after '%s'.",
3945 rp->rhsalias[0], zOvwrt);
3946 lemp->errorcnt++;
3947 }else if( cp!=rp->code && cp[-1]=='@' ){
3948 /* If the argument is of the form @X then substituted
3949 ** the token number of X, not the value of X */
3950 append_str("yymsp[%d].major",-1,i-rp->nrhs+1,0);
3951 }else{
3952 struct symbol *sp = rp->rhs[i];
3953 int dtnum;
3954 if( sp->type==MULTITERMINAL ){
3955 dtnum = sp->subsym[0]->dtnum;
3956 }else{
3957 dtnum = sp->dtnum;
3959 append_str("yymsp[%d].minor.yy%d",0,i-rp->nrhs+1, dtnum);
3961 cp = xp;
3962 used[i] = 1;
3963 break;
3967 *xp = saved;
3969 append_str(cp, 1, 0, 0);
3970 } /* End loop */
3972 /* Main code generation completed */
3973 cp = append_str(0,0,0,0);
3974 if( cp && cp[0] ) rp->code = Strsafe(cp);
3975 append_str(0,0,0,0);
3977 /* Check to make sure the LHS has been used */
3978 if( rp->lhsalias && !lhsused ){
3979 ErrorMsg(lemp->filename,rp->ruleline,
3980 "Label \"%s\" for \"%s(%s)\" is never used.",
3981 rp->lhsalias,rp->lhs->name,rp->lhsalias);
3982 lemp->errorcnt++;
3985 /* Generate destructor code for RHS minor values which are not referenced.
3986 ** Generate error messages for unused labels and duplicate labels.
3988 for(i=0; i<rp->nrhs; i++){
3989 if( rp->rhsalias[i] ){
3990 if( i>0 ){
3991 int j;
3992 if( rp->lhsalias && strcmp(rp->lhsalias,rp->rhsalias[i])==0 ){
3993 ErrorMsg(lemp->filename,rp->ruleline,
3994 "%s(%s) has the same label as the LHS but is not the left-most "
3995 "symbol on the RHS.",
3996 rp->rhs[i]->name, rp->rhsalias[i]);
3997 lemp->errorcnt++;
3999 for(j=0; j<i; j++){
4000 if( rp->rhsalias[j] && strcmp(rp->rhsalias[j],rp->rhsalias[i])==0 ){
4001 ErrorMsg(lemp->filename,rp->ruleline,
4002 "Label %s used for multiple symbols on the RHS of a rule.",
4003 rp->rhsalias[i]);
4004 lemp->errorcnt++;
4005 break;
4009 if( !used[i] ){
4010 ErrorMsg(lemp->filename,rp->ruleline,
4011 "Label %s for \"%s(%s)\" is never used.",
4012 rp->rhsalias[i],rp->rhs[i]->name,rp->rhsalias[i]);
4013 lemp->errorcnt++;
4015 }else if( i>0 && has_destructor(rp->rhs[i],lemp) ){
4016 append_str(" yy_destructor(yypParser,%d,&yymsp[%d].minor);\n", 0,
4017 rp->rhs[i]->index,i-rp->nrhs+1);
4021 /* If unable to write LHS values directly into the stack, write the
4022 ** saved LHS value now. */
4023 if( lhsdirect==0 ){
4024 append_str(" yymsp[%d].minor.yy%d = ", 0, 1-rp->nrhs, rp->lhs->dtnum);
4025 append_str(zLhs, 0, 0, 0);
4026 append_str(";\n", 0, 0, 0);
4029 /* Suffix code generation complete */
4030 cp = append_str(0,0,0,0);
4031 if( cp && cp[0] ){
4032 rp->codeSuffix = Strsafe(cp);
4033 rp->noCode = 0;
4036 return rc;
4040 ** Generate code which executes when the rule "rp" is reduced. Write
4041 ** the code to "out". Make sure lineno stays up-to-date.
4043 PRIVATE void emit_code(
4044 FILE *out,
4045 struct rule *rp,
4046 struct lemon *lemp,
4047 int *lineno
4049 const char *cp;
4051 /* Setup code prior to the #line directive */
4052 if( rp->codePrefix && rp->codePrefix[0] ){
4053 fprintf(out, "{%s", rp->codePrefix);
4054 for(cp=rp->codePrefix; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }
4057 /* Generate code to do the reduce action */
4058 if( rp->code ){
4059 if( !lemp->nolinenosflag ){
4060 (*lineno)++;
4061 tplt_linedir(out,rp->line,lemp->filename);
4063 fprintf(out,"{%s",rp->code);
4064 for(cp=rp->code; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }
4065 fprintf(out,"}\n"); (*lineno)++;
4066 if( !lemp->nolinenosflag ){
4067 (*lineno)++;
4068 tplt_linedir(out,*lineno,lemp->outname);
4072 /* Generate breakdown code that occurs after the #line directive */
4073 if( rp->codeSuffix && rp->codeSuffix[0] ){
4074 fprintf(out, "%s", rp->codeSuffix);
4075 for(cp=rp->codeSuffix; *cp; cp++){ if( *cp=='\n' ) (*lineno)++; }
4078 if( rp->codePrefix ){
4079 fprintf(out, "}\n"); (*lineno)++;
4082 return;
4086 ** Print the definition of the union used for the parser's data stack.
4087 ** This union contains fields for every possible data type for tokens
4088 ** and nonterminals. In the process of computing and printing this
4089 ** union, also set the ".dtnum" field of every terminal and nonterminal
4090 ** symbol.
4092 void print_stack_union(
4093 FILE *out, /* The output stream */
4094 struct lemon *lemp, /* The main info structure for this parser */
4095 int *plineno, /* Pointer to the line number */
4096 int mhflag /* True if generating makeheaders output */
4098 int lineno; /* The line number of the output */
4099 char **types; /* A hash table of datatypes */
4100 int arraysize; /* Size of the "types" array */
4101 int maxdtlength; /* Maximum length of any ".datatype" field. */
4102 char *stddt; /* Standardized name for a datatype */
4103 int i,j; /* Loop counters */
4104 unsigned hash; /* For hashing the name of a type */
4105 const char *name; /* Name of the parser */
4107 /* Allocate and initialize types[] and allocate stddt[] */
4108 arraysize = lemp->nsymbol * 2;
4109 types = (char**)calloc( arraysize, sizeof(char*) );
4110 if( types==0 ){
4111 fprintf(stderr,"Out of memory.\n");
4112 exit(1);
4114 for(i=0; i<arraysize; i++) types[i] = 0;
4115 maxdtlength = 0;
4116 if( lemp->vartype ){
4117 maxdtlength = lemonStrlen(lemp->vartype);
4119 for(i=0; i<lemp->nsymbol; i++){
4120 int len;
4121 struct symbol *sp = lemp->symbols[i];
4122 if( sp->datatype==0 ) continue;
4123 len = lemonStrlen(sp->datatype);
4124 if( len>maxdtlength ) maxdtlength = len;
4126 stddt = (char*)malloc( maxdtlength*2 + 1 );
4127 if( stddt==0 ){
4128 fprintf(stderr,"Out of memory.\n");
4129 exit(1);
4132 /* Build a hash table of datatypes. The ".dtnum" field of each symbol
4133 ** is filled in with the hash index plus 1. A ".dtnum" value of 0 is
4134 ** used for terminal symbols. If there is no %default_type defined then
4135 ** 0 is also used as the .dtnum value for nonterminals which do not specify
4136 ** a datatype using the %type directive.
4138 for(i=0; i<lemp->nsymbol; i++){
4139 struct symbol *sp = lemp->symbols[i];
4140 char *cp;
4141 if( sp==lemp->errsym ){
4142 sp->dtnum = arraysize+1;
4143 continue;
4145 if( sp->type!=NONTERMINAL || (sp->datatype==0 && lemp->vartype==0) ){
4146 sp->dtnum = 0;
4147 continue;
4149 cp = sp->datatype;
4150 if( cp==0 ) cp = lemp->vartype;
4151 j = 0;
4152 while( ISSPACE(*cp) ) cp++;
4153 while( *cp ) stddt[j++] = *cp++;
4154 while( j>0 && ISSPACE(stddt[j-1]) ) j--;
4155 stddt[j] = 0;
4156 if( lemp->tokentype && strcmp(stddt, lemp->tokentype)==0 ){
4157 sp->dtnum = 0;
4158 continue;
4160 hash = 0;
4161 for(j=0; stddt[j]; j++){
4162 hash = hash*53 + stddt[j];
4164 hash = (hash & 0x7fffffff)%arraysize;
4165 while( types[hash] ){
4166 if( strcmp(types[hash],stddt)==0 ){
4167 sp->dtnum = hash + 1;
4168 break;
4170 hash++;
4171 if( hash>=(unsigned)arraysize ) hash = 0;
4173 if( types[hash]==0 ){
4174 sp->dtnum = hash + 1;
4175 types[hash] = (char*)malloc( lemonStrlen(stddt)+1 );
4176 if( types[hash]==0 ){
4177 fprintf(stderr,"Out of memory.\n");
4178 exit(1);
4180 lemon_strcpy(types[hash],stddt);
4184 /* Print out the definition of YYTOKENTYPE and YYMINORTYPE */
4185 name = lemp->name ? lemp->name : "Parse";
4186 lineno = *plineno;
4187 if( mhflag ){ fprintf(out,"#if INTERFACE\n"); lineno++; }
4188 fprintf(out,"#define %sTOKENTYPE %s\n",name,
4189 lemp->tokentype?lemp->tokentype:"void*"); lineno++;
4190 if( mhflag ){ fprintf(out,"#endif\n"); lineno++; }
4191 fprintf(out,"typedef union {\n"); lineno++;
4192 fprintf(out," int yyinit;\n"); lineno++;
4193 fprintf(out," %sTOKENTYPE yy0;\n",name); lineno++;
4194 for(i=0; i<arraysize; i++){
4195 if( types[i]==0 ) continue;
4196 fprintf(out," %s yy%d;\n",types[i],i+1); lineno++;
4197 free(types[i]);
4199 if( lemp->errsym && lemp->errsym->useCnt ){
4200 fprintf(out," int yy%d;\n",lemp->errsym->dtnum); lineno++;
4202 free(stddt);
4203 free(types);
4204 fprintf(out,"} YYMINORTYPE;\n"); lineno++;
4205 *plineno = lineno;
4209 ** Return the name of a C datatype able to represent values between
4210 ** lwr and upr, inclusive. If pnByte!=NULL then also write the sizeof
4211 ** for that type (1, 2, or 4) into *pnByte.
4213 static const char *minimum_size_type(int lwr, int upr, int *pnByte){
4214 const char *zType = "int";
4215 int nByte = 4;
4216 if( lwr>=0 ){
4217 if( upr<=255 ){
4218 zType = "unsigned char";
4219 nByte = 1;
4220 }else if( upr<65535 ){
4221 zType = "unsigned short int";
4222 nByte = 2;
4223 }else{
4224 zType = "unsigned int";
4225 nByte = 4;
4227 }else if( lwr>=-127 && upr<=127 ){
4228 zType = "signed char";
4229 nByte = 1;
4230 }else if( lwr>=-32767 && upr<32767 ){
4231 zType = "short";
4232 nByte = 2;
4234 if( pnByte ) *pnByte = nByte;
4235 return zType;
4239 ** Each state contains a set of token transaction and a set of
4240 ** nonterminal transactions. Each of these sets makes an instance
4241 ** of the following structure. An array of these structures is used
4242 ** to order the creation of entries in the yy_action[] table.
4244 struct axset {
4245 struct state *stp; /* A pointer to a state */
4246 int isTkn; /* True to use tokens. False for non-terminals */
4247 int nAction; /* Number of actions */
4248 int iOrder; /* Original order of action sets */
4252 ** Compare to axset structures for sorting purposes
4254 static int axset_compare(const void *a, const void *b){
4255 struct axset *p1 = (struct axset*)a;
4256 struct axset *p2 = (struct axset*)b;
4257 int c;
4258 c = p2->nAction - p1->nAction;
4259 if( c==0 ){
4260 c = p1->iOrder - p2->iOrder;
4262 assert( c!=0 || p1==p2 );
4263 return c;
4267 ** Write text on "out" that describes the rule "rp".
4269 static void writeRuleText(FILE *out, struct rule *rp){
4270 int j;
4271 fprintf(out,"%s ::=", rp->lhs->name);
4272 for(j=0; j<rp->nrhs; j++){
4273 struct symbol *sp = rp->rhs[j];
4274 if( sp->type!=MULTITERMINAL ){
4275 fprintf(out," %s", sp->name);
4276 }else{
4277 int k;
4278 fprintf(out," %s", sp->subsym[0]->name);
4279 for(k=1; k<sp->nsubsym; k++){
4280 fprintf(out,"|%s",sp->subsym[k]->name);
4287 /* Generate C source code for the parser */
4288 void ReportTable(
4289 struct lemon *lemp,
4290 int mhflag, /* Output in makeheaders format if true */
4291 int sqlFlag /* Generate the *.sql file too */
4293 FILE *out, *in, *sql;
4294 int lineno;
4295 struct state *stp;
4296 struct action *ap;
4297 struct rule *rp;
4298 struct acttab *pActtab;
4299 int i, j, n, sz;
4300 int nLookAhead;
4301 int szActionType; /* sizeof(YYACTIONTYPE) */
4302 int szCodeType; /* sizeof(YYCODETYPE) */
4303 const char *name;
4304 int mnTknOfst, mxTknOfst;
4305 int mnNtOfst, mxNtOfst;
4306 struct axset *ax;
4307 char *prefix;
4309 lemp->minShiftReduce = lemp->nstate;
4310 lemp->errAction = lemp->minShiftReduce + lemp->nrule;
4311 lemp->accAction = lemp->errAction + 1;
4312 lemp->noAction = lemp->accAction + 1;
4313 lemp->minReduce = lemp->noAction + 1;
4314 lemp->maxAction = lemp->minReduce + lemp->nrule;
4316 in = tplt_open(lemp);
4317 if( in==0 ) return;
4318 out = file_open(lemp,".c","wb");
4319 if( out==0 ){
4320 fclose(in);
4321 return;
4323 if( sqlFlag==0 ){
4324 sql = 0;
4325 }else{
4326 sql = file_open(lemp, ".sql", "wb");
4327 if( sql==0 ){
4328 fclose(in);
4329 fclose(out);
4330 return;
4332 fprintf(sql,
4333 "BEGIN;\n"
4334 "CREATE TABLE symbol(\n"
4335 " id INTEGER PRIMARY KEY,\n"
4336 " name TEXT NOT NULL,\n"
4337 " isTerminal BOOLEAN NOT NULL,\n"
4338 " fallback INTEGER REFERENCES symbol"
4339 " DEFERRABLE INITIALLY DEFERRED\n"
4340 ");\n"
4342 for(i=0; i<lemp->nsymbol; i++){
4343 fprintf(sql,
4344 "INSERT INTO symbol(id,name,isTerminal,fallback)"
4345 "VALUES(%d,'%s',%s",
4346 i, lemp->symbols[i]->name,
4347 i<lemp->nterminal ? "TRUE" : "FALSE"
4349 if( lemp->symbols[i]->fallback ){
4350 fprintf(sql, ",%d);\n", lemp->symbols[i]->fallback->index);
4351 }else{
4352 fprintf(sql, ",NULL);\n");
4355 fprintf(sql,
4356 "CREATE TABLE rule(\n"
4357 " ruleid INTEGER PRIMARY KEY,\n"
4358 " lhs INTEGER REFERENCES symbol(id),\n"
4359 " txt TEXT\n"
4360 ");\n"
4361 "CREATE TABLE rulerhs(\n"
4362 " ruleid INTEGER REFERENCES rule(ruleid),\n"
4363 " pos INTEGER,\n"
4364 " sym INTEGER REFERENCES symbol(id)\n"
4365 ");\n"
4367 for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
4368 assert( i==rp->iRule );
4369 fprintf(sql,
4370 "INSERT INTO rule(ruleid,lhs,txt)VALUES(%d,%d,'",
4371 rp->iRule, rp->lhs->index
4373 writeRuleText(sql, rp);
4374 fprintf(sql,"');\n");
4375 for(j=0; j<rp->nrhs; j++){
4376 struct symbol *sp = rp->rhs[j];
4377 if( sp->type!=MULTITERMINAL ){
4378 fprintf(sql,
4379 "INSERT INTO rulerhs(ruleid,pos,sym)VALUES(%d,%d,%d);\n",
4380 i,j,sp->index
4382 }else{
4383 int k;
4384 for(k=0; k<sp->nsubsym; k++){
4385 fprintf(sql,
4386 "INSERT INTO rulerhs(ruleid,pos,sym)VALUES(%d,%d,%d);\n",
4387 i,j,sp->subsym[k]->index
4393 fprintf(sql, "COMMIT;\n");
4395 lineno = 1;
4397 fprintf(out,
4398 "/* This file is automatically generated by Lemon from input grammar\n"
4399 "** source file \"%s\". */\n", lemp->filename); lineno += 2;
4401 /* The first %include directive begins with a C-language comment,
4402 ** then skip over the header comment of the template file
4404 if( lemp->include==0 ) lemp->include = "";
4405 for(i=0; ISSPACE(lemp->include[i]); i++){
4406 if( lemp->include[i]=='\n' ){
4407 lemp->include += i+1;
4408 i = -1;
4411 if( lemp->include[0]=='/' ){
4412 tplt_skip_header(in,&lineno);
4413 }else{
4414 tplt_xfer(lemp->name,in,out,&lineno);
4417 /* Generate the include code, if any */
4418 tplt_print(out,lemp,lemp->include,&lineno);
4419 if( mhflag ){
4420 char *incName = file_makename(lemp, ".h");
4421 fprintf(out,"#include \"%s\"\n", incName); lineno++;
4422 free(incName);
4424 tplt_xfer(lemp->name,in,out,&lineno);
4426 /* Generate #defines for all tokens */
4427 if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
4428 else prefix = "";
4429 if( mhflag ){
4430 fprintf(out,"#if INTERFACE\n"); lineno++;
4431 }else{
4432 fprintf(out,"#ifndef %s%s\n", prefix, lemp->symbols[1]->name);
4434 for(i=1; i<lemp->nterminal; i++){
4435 fprintf(out,"#define %s%-30s %2d\n",prefix,lemp->symbols[i]->name,i);
4436 lineno++;
4438 fprintf(out,"#endif\n"); lineno++;
4439 tplt_xfer(lemp->name,in,out,&lineno);
4441 /* Generate the defines */
4442 fprintf(out,"#define YYCODETYPE %s\n",
4443 minimum_size_type(0, lemp->nsymbol, &szCodeType)); lineno++;
4444 fprintf(out,"#define YYNOCODE %d\n",lemp->nsymbol); lineno++;
4445 fprintf(out,"#define YYACTIONTYPE %s\n",
4446 minimum_size_type(0,lemp->maxAction,&szActionType)); lineno++;
4447 if( lemp->wildcard ){
4448 fprintf(out,"#define YYWILDCARD %d\n",
4449 lemp->wildcard->index); lineno++;
4451 print_stack_union(out,lemp,&lineno,mhflag);
4452 fprintf(out, "#ifndef YYSTACKDEPTH\n"); lineno++;
4453 if( lemp->stacksize ){
4454 fprintf(out,"#define YYSTACKDEPTH %s\n",lemp->stacksize); lineno++;
4455 }else{
4456 fprintf(out,"#define YYSTACKDEPTH 100\n"); lineno++;
4458 fprintf(out, "#endif\n"); lineno++;
4459 if( mhflag ){
4460 fprintf(out,"#if INTERFACE\n"); lineno++;
4462 name = lemp->name ? lemp->name : "Parse";
4463 if( lemp->arg && lemp->arg[0] ){
4464 i = lemonStrlen(lemp->arg);
4465 while( i>=1 && ISSPACE(lemp->arg[i-1]) ) i--;
4466 while( i>=1 && (ISALNUM(lemp->arg[i-1]) || lemp->arg[i-1]=='_') ) i--;
4467 fprintf(out,"#define %sARG_SDECL %s;\n",name,lemp->arg); lineno++;
4468 fprintf(out,"#define %sARG_PDECL ,%s\n",name,lemp->arg); lineno++;
4469 fprintf(out,"#define %sARG_PARAM ,%s\n",name,&lemp->arg[i]); lineno++;
4470 fprintf(out,"#define %sARG_FETCH %s=yypParser->%s;\n",
4471 name,lemp->arg,&lemp->arg[i]); lineno++;
4472 fprintf(out,"#define %sARG_STORE yypParser->%s=%s;\n",
4473 name,&lemp->arg[i],&lemp->arg[i]); lineno++;
4474 }else{
4475 fprintf(out,"#define %sARG_SDECL\n",name); lineno++;
4476 fprintf(out,"#define %sARG_PDECL\n",name); lineno++;
4477 fprintf(out,"#define %sARG_PARAM\n",name); lineno++;
4478 fprintf(out,"#define %sARG_FETCH\n",name); lineno++;
4479 fprintf(out,"#define %sARG_STORE\n",name); lineno++;
4481 if( lemp->ctx && lemp->ctx[0] ){
4482 i = lemonStrlen(lemp->ctx);
4483 while( i>=1 && ISSPACE(lemp->ctx[i-1]) ) i--;
4484 while( i>=1 && (ISALNUM(lemp->ctx[i-1]) || lemp->ctx[i-1]=='_') ) i--;
4485 fprintf(out,"#define %sCTX_SDECL %s;\n",name,lemp->ctx); lineno++;
4486 fprintf(out,"#define %sCTX_PDECL ,%s\n",name,lemp->ctx); lineno++;
4487 fprintf(out,"#define %sCTX_PARAM ,%s\n",name,&lemp->ctx[i]); lineno++;
4488 fprintf(out,"#define %sCTX_FETCH %s=yypParser->%s;\n",
4489 name,lemp->ctx,&lemp->ctx[i]); lineno++;
4490 fprintf(out,"#define %sCTX_STORE yypParser->%s=%s;\n",
4491 name,&lemp->ctx[i],&lemp->ctx[i]); lineno++;
4492 }else{
4493 fprintf(out,"#define %sCTX_SDECL\n",name); lineno++;
4494 fprintf(out,"#define %sCTX_PDECL\n",name); lineno++;
4495 fprintf(out,"#define %sCTX_PARAM\n",name); lineno++;
4496 fprintf(out,"#define %sCTX_FETCH\n",name); lineno++;
4497 fprintf(out,"#define %sCTX_STORE\n",name); lineno++;
4499 if( mhflag ){
4500 fprintf(out,"#endif\n"); lineno++;
4502 if( lemp->errsym && lemp->errsym->useCnt ){
4503 fprintf(out,"#define YYERRORSYMBOL %d\n",lemp->errsym->index); lineno++;
4504 fprintf(out,"#define YYERRSYMDT yy%d\n",lemp->errsym->dtnum); lineno++;
4506 if( lemp->has_fallback ){
4507 fprintf(out,"#define YYFALLBACK 1\n"); lineno++;
4510 /* Compute the action table, but do not output it yet. The action
4511 ** table must be computed before generating the YYNSTATE macro because
4512 ** we need to know how many states can be eliminated.
4514 ax = (struct axset *) calloc(lemp->nxstate*2, sizeof(ax[0]));
4515 if( ax==0 ){
4516 fprintf(stderr,"malloc failed\n");
4517 exit(1);
4519 for(i=0; i<lemp->nxstate; i++){
4520 stp = lemp->sorted[i];
4521 ax[i*2].stp = stp;
4522 ax[i*2].isTkn = 1;
4523 ax[i*2].nAction = stp->nTknAct;
4524 ax[i*2+1].stp = stp;
4525 ax[i*2+1].isTkn = 0;
4526 ax[i*2+1].nAction = stp->nNtAct;
4528 mxTknOfst = mnTknOfst = 0;
4529 mxNtOfst = mnNtOfst = 0;
4530 /* In an effort to minimize the action table size, use the heuristic
4531 ** of placing the largest action sets first */
4532 for(i=0; i<lemp->nxstate*2; i++) ax[i].iOrder = i;
4533 qsort(ax, lemp->nxstate*2, sizeof(ax[0]), axset_compare);
4534 pActtab = acttab_alloc(lemp->nsymbol, lemp->nterminal);
4535 for(i=0; i<lemp->nxstate*2 && ax[i].nAction>0; i++){
4536 stp = ax[i].stp;
4537 if( ax[i].isTkn ){
4538 for(ap=stp->ap; ap; ap=ap->next){
4539 int action;
4540 if( ap->sp->index>=lemp->nterminal ) continue;
4541 action = compute_action(lemp, ap);
4542 if( action<0 ) continue;
4543 acttab_action(pActtab, ap->sp->index, action);
4545 stp->iTknOfst = acttab_insert(pActtab, 1);
4546 if( stp->iTknOfst<mnTknOfst ) mnTknOfst = stp->iTknOfst;
4547 if( stp->iTknOfst>mxTknOfst ) mxTknOfst = stp->iTknOfst;
4548 }else{
4549 for(ap=stp->ap; ap; ap=ap->next){
4550 int action;
4551 if( ap->sp->index<lemp->nterminal ) continue;
4552 if( ap->sp->index==lemp->nsymbol ) continue;
4553 action = compute_action(lemp, ap);
4554 if( action<0 ) continue;
4555 acttab_action(pActtab, ap->sp->index, action);
4557 stp->iNtOfst = acttab_insert(pActtab, 0);
4558 if( stp->iNtOfst<mnNtOfst ) mnNtOfst = stp->iNtOfst;
4559 if( stp->iNtOfst>mxNtOfst ) mxNtOfst = stp->iNtOfst;
4561 #if 0 /* Uncomment for a trace of how the yy_action[] table fills out */
4562 { int jj, nn;
4563 for(jj=nn=0; jj<pActtab->nAction; jj++){
4564 if( pActtab->aAction[jj].action<0 ) nn++;
4566 printf("%4d: State %3d %s n: %2d size: %5d freespace: %d\n",
4567 i, stp->statenum, ax[i].isTkn ? "Token" : "Var ",
4568 ax[i].nAction, pActtab->nAction, nn);
4570 #endif
4572 free(ax);
4574 /* Mark rules that are actually used for reduce actions after all
4575 ** optimizations have been applied
4577 for(rp=lemp->rule; rp; rp=rp->next) rp->doesReduce = LEMON_FALSE;
4578 for(i=0; i<lemp->nxstate; i++){
4579 for(ap=lemp->sorted[i]->ap; ap; ap=ap->next){
4580 if( ap->type==REDUCE || ap->type==SHIFTREDUCE ){
4581 ap->x.rp->doesReduce = 1;
4586 /* Finish rendering the constants now that the action table has
4587 ** been computed */
4588 fprintf(out,"#define YYNSTATE %d\n",lemp->nxstate); lineno++;
4589 fprintf(out,"#define YYNRULE %d\n",lemp->nrule); lineno++;
4590 fprintf(out,"#define YYNRULE_WITH_ACTION %d\n",lemp->nruleWithAction);
4591 lineno++;
4592 fprintf(out,"#define YYNTOKEN %d\n",lemp->nterminal); lineno++;
4593 fprintf(out,"#define YY_MAX_SHIFT %d\n",lemp->nxstate-1); lineno++;
4594 i = lemp->minShiftReduce;
4595 fprintf(out,"#define YY_MIN_SHIFTREDUCE %d\n",i); lineno++;
4596 i += lemp->nrule;
4597 fprintf(out,"#define YY_MAX_SHIFTREDUCE %d\n", i-1); lineno++;
4598 fprintf(out,"#define YY_ERROR_ACTION %d\n", lemp->errAction); lineno++;
4599 fprintf(out,"#define YY_ACCEPT_ACTION %d\n", lemp->accAction); lineno++;
4600 fprintf(out,"#define YY_NO_ACTION %d\n", lemp->noAction); lineno++;
4601 fprintf(out,"#define YY_MIN_REDUCE %d\n", lemp->minReduce); lineno++;
4602 i = lemp->minReduce + lemp->nrule;
4603 fprintf(out,"#define YY_MAX_REDUCE %d\n", i-1); lineno++;
4604 tplt_xfer(lemp->name,in,out,&lineno);
4606 /* Now output the action table and its associates:
4608 ** yy_action[] A single table containing all actions.
4609 ** yy_lookahead[] A table containing the lookahead for each entry in
4610 ** yy_action. Used to detect hash collisions.
4611 ** yy_shift_ofst[] For each state, the offset into yy_action for
4612 ** shifting terminals.
4613 ** yy_reduce_ofst[] For each state, the offset into yy_action for
4614 ** shifting non-terminals after a reduce.
4615 ** yy_default[] Default action for each state.
4618 /* Output the yy_action table */
4619 lemp->nactiontab = n = acttab_action_size(pActtab);
4620 lemp->tablesize += n*szActionType;
4621 fprintf(out,"#define YY_ACTTAB_COUNT (%d)\n", n); lineno++;
4622 fprintf(out,"static const YYACTIONTYPE yy_action[] = {\n"); lineno++;
4623 for(i=j=0; i<n; i++){
4624 int action = acttab_yyaction(pActtab, i);
4625 if( action<0 ) action = lemp->noAction;
4626 if( j==0 ) fprintf(out," /* %5d */ ", i);
4627 fprintf(out, " %4d,", action);
4628 if( j==9 || i==n-1 ){
4629 fprintf(out, "\n"); lineno++;
4630 j = 0;
4631 }else{
4632 j++;
4635 fprintf(out, "};\n"); lineno++;
4637 /* Output the yy_lookahead table */
4638 lemp->nlookaheadtab = n = acttab_lookahead_size(pActtab);
4639 lemp->tablesize += n*szCodeType;
4640 fprintf(out,"static const YYCODETYPE yy_lookahead[] = {\n"); lineno++;
4641 for(i=j=0; i<n; i++){
4642 int la = acttab_yylookahead(pActtab, i);
4643 if( la<0 ) la = lemp->nsymbol;
4644 if( j==0 ) fprintf(out," /* %5d */ ", i);
4645 fprintf(out, " %4d,", la);
4646 if( j==9 ){
4647 fprintf(out, "\n"); lineno++;
4648 j = 0;
4649 }else{
4650 j++;
4653 /* Add extra entries to the end of the yy_lookahead[] table so that
4654 ** yy_shift_ofst[]+iToken will always be a valid index into the array,
4655 ** even for the largest possible value of yy_shift_ofst[] and iToken. */
4656 nLookAhead = lemp->nterminal + lemp->nactiontab;
4657 while( i<nLookAhead ){
4658 if( j==0 ) fprintf(out," /* %5d */ ", i);
4659 fprintf(out, " %4d,", lemp->nterminal);
4660 if( j==9 ){
4661 fprintf(out, "\n"); lineno++;
4662 j = 0;
4663 }else{
4664 j++;
4666 i++;
4668 if( j>0 ){ fprintf(out, "\n"); lineno++; }
4669 fprintf(out, "};\n"); lineno++;
4671 /* Output the yy_shift_ofst[] table */
4672 n = lemp->nxstate;
4673 while( n>0 && lemp->sorted[n-1]->iTknOfst==NO_OFFSET ) n--;
4674 fprintf(out, "#define YY_SHIFT_COUNT (%d)\n", n-1); lineno++;
4675 fprintf(out, "#define YY_SHIFT_MIN (%d)\n", mnTknOfst); lineno++;
4676 fprintf(out, "#define YY_SHIFT_MAX (%d)\n", mxTknOfst); lineno++;
4677 fprintf(out, "static const %s yy_shift_ofst[] = {\n",
4678 minimum_size_type(mnTknOfst, lemp->nterminal+lemp->nactiontab, &sz));
4679 lineno++;
4680 lemp->tablesize += n*sz;
4681 for(i=j=0; i<n; i++){
4682 int ofst;
4683 stp = lemp->sorted[i];
4684 ofst = stp->iTknOfst;
4685 if( ofst==NO_OFFSET ) ofst = lemp->nactiontab;
4686 if( j==0 ) fprintf(out," /* %5d */ ", i);
4687 fprintf(out, " %4d,", ofst);
4688 if( j==9 || i==n-1 ){
4689 fprintf(out, "\n"); lineno++;
4690 j = 0;
4691 }else{
4692 j++;
4695 fprintf(out, "};\n"); lineno++;
4697 /* Output the yy_reduce_ofst[] table */
4698 n = lemp->nxstate;
4699 while( n>0 && lemp->sorted[n-1]->iNtOfst==NO_OFFSET ) n--;
4700 fprintf(out, "#define YY_REDUCE_COUNT (%d)\n", n-1); lineno++;
4701 fprintf(out, "#define YY_REDUCE_MIN (%d)\n", mnNtOfst); lineno++;
4702 fprintf(out, "#define YY_REDUCE_MAX (%d)\n", mxNtOfst); lineno++;
4703 fprintf(out, "static const %s yy_reduce_ofst[] = {\n",
4704 minimum_size_type(mnNtOfst-1, mxNtOfst, &sz)); lineno++;
4705 lemp->tablesize += n*sz;
4706 for(i=j=0; i<n; i++){
4707 int ofst;
4708 stp = lemp->sorted[i];
4709 ofst = stp->iNtOfst;
4710 if( ofst==NO_OFFSET ) ofst = mnNtOfst - 1;
4711 if( j==0 ) fprintf(out," /* %5d */ ", i);
4712 fprintf(out, " %4d,", ofst);
4713 if( j==9 || i==n-1 ){
4714 fprintf(out, "\n"); lineno++;
4715 j = 0;
4716 }else{
4717 j++;
4720 fprintf(out, "};\n"); lineno++;
4722 /* Output the default action table */
4723 fprintf(out, "static const YYACTIONTYPE yy_default[] = {\n"); lineno++;
4724 n = lemp->nxstate;
4725 lemp->tablesize += n*szActionType;
4726 for(i=j=0; i<n; i++){
4727 stp = lemp->sorted[i];
4728 if( j==0 ) fprintf(out," /* %5d */ ", i);
4729 if( stp->iDfltReduce<0 ){
4730 fprintf(out, " %4d,", lemp->errAction);
4731 }else{
4732 fprintf(out, " %4d,", stp->iDfltReduce + lemp->minReduce);
4734 if( j==9 || i==n-1 ){
4735 fprintf(out, "\n"); lineno++;
4736 j = 0;
4737 }else{
4738 j++;
4741 fprintf(out, "};\n"); lineno++;
4742 tplt_xfer(lemp->name,in,out,&lineno);
4744 /* Generate the table of fallback tokens.
4746 if( lemp->has_fallback ){
4747 int mx = lemp->nterminal - 1;
4748 /* 2019-08-28: Generate fallback entries for every token to avoid
4749 ** having to do a range check on the index */
4750 /* while( mx>0 && lemp->symbols[mx]->fallback==0 ){ mx--; } */
4751 lemp->tablesize += (mx+1)*szCodeType;
4752 for(i=0; i<=mx; i++){
4753 struct symbol *p = lemp->symbols[i];
4754 if( p->fallback==0 ){
4755 fprintf(out, " 0, /* %10s => nothing */\n", p->name);
4756 }else{
4757 fprintf(out, " %3d, /* %10s => %s */\n", p->fallback->index,
4758 p->name, p->fallback->name);
4760 lineno++;
4763 tplt_xfer(lemp->name, in, out, &lineno);
4765 /* Generate a table containing the symbolic name of every symbol
4767 for(i=0; i<lemp->nsymbol; i++){
4768 fprintf(out," /* %4d */ \"%s\",\n",i, lemp->symbols[i]->name); lineno++;
4770 tplt_xfer(lemp->name,in,out,&lineno);
4772 /* Generate a table containing a text string that describes every
4773 ** rule in the rule set of the grammar. This information is used
4774 ** when tracing REDUCE actions.
4776 for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
4777 assert( rp->iRule==i );
4778 fprintf(out," /* %3d */ \"", i);
4779 writeRuleText(out, rp);
4780 fprintf(out,"\",\n"); lineno++;
4782 tplt_xfer(lemp->name,in,out,&lineno);
4784 /* Generate code which executes every time a symbol is popped from
4785 ** the stack while processing errors or while destroying the parser.
4786 ** (In other words, generate the %destructor actions)
4788 if( lemp->tokendest ){
4789 int once = 1;
4790 for(i=0; i<lemp->nsymbol; i++){
4791 struct symbol *sp = lemp->symbols[i];
4792 if( sp==0 || sp->type!=TERMINAL ) continue;
4793 if( once ){
4794 fprintf(out, " /* TERMINAL Destructor */\n"); lineno++;
4795 once = 0;
4797 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
4799 for(i=0; i<lemp->nsymbol && lemp->symbols[i]->type!=TERMINAL; i++);
4800 if( i<lemp->nsymbol ){
4801 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
4802 fprintf(out," break;\n"); lineno++;
4805 if( lemp->vardest ){
4806 struct symbol *dflt_sp = 0;
4807 int once = 1;
4808 for(i=0; i<lemp->nsymbol; i++){
4809 struct symbol *sp = lemp->symbols[i];
4810 if( sp==0 || sp->type==TERMINAL ||
4811 sp->index<=0 || sp->destructor!=0 ) continue;
4812 if( once ){
4813 fprintf(out, " /* Default NON-TERMINAL Destructor */\n");lineno++;
4814 once = 0;
4816 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
4817 dflt_sp = sp;
4819 if( dflt_sp!=0 ){
4820 emit_destructor_code(out,dflt_sp,lemp,&lineno);
4822 fprintf(out," break;\n"); lineno++;
4824 for(i=0; i<lemp->nsymbol; i++){
4825 struct symbol *sp = lemp->symbols[i];
4826 if( sp==0 || sp->type==TERMINAL || sp->destructor==0 ) continue;
4827 if( sp->destLineno<0 ) continue; /* Already emitted */
4828 fprintf(out," case %d: /* %s */\n", sp->index, sp->name); lineno++;
4830 /* Combine duplicate destructors into a single case */
4831 for(j=i+1; j<lemp->nsymbol; j++){
4832 struct symbol *sp2 = lemp->symbols[j];
4833 if( sp2 && sp2->type!=TERMINAL && sp2->destructor
4834 && sp2->dtnum==sp->dtnum
4835 && strcmp(sp->destructor,sp2->destructor)==0 ){
4836 fprintf(out," case %d: /* %s */\n",
4837 sp2->index, sp2->name); lineno++;
4838 sp2->destLineno = -1; /* Avoid emitting this destructor again */
4842 emit_destructor_code(out,lemp->symbols[i],lemp,&lineno);
4843 fprintf(out," break;\n"); lineno++;
4845 tplt_xfer(lemp->name,in,out,&lineno);
4847 /* Generate code which executes whenever the parser stack overflows */
4848 tplt_print(out,lemp,lemp->overflow,&lineno);
4849 tplt_xfer(lemp->name,in,out,&lineno);
4851 /* Generate the tables of rule information. yyRuleInfoLhs[] and
4852 ** yyRuleInfoNRhs[].
4854 ** Note: This code depends on the fact that rules are number
4855 ** sequentially beginning with 0.
4857 for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
4858 fprintf(out," %4d, /* (%d) ", rp->lhs->index, i);
4859 rule_print(out, rp);
4860 fprintf(out," */\n"); lineno++;
4862 tplt_xfer(lemp->name,in,out,&lineno);
4863 for(i=0, rp=lemp->rule; rp; rp=rp->next, i++){
4864 fprintf(out," %3d, /* (%d) ", -rp->nrhs, i);
4865 rule_print(out, rp);
4866 fprintf(out," */\n"); lineno++;
4868 tplt_xfer(lemp->name,in,out,&lineno);
4870 /* Generate code which execution during each REDUCE action */
4871 i = 0;
4872 for(rp=lemp->rule; rp; rp=rp->next){
4873 i += translate_code(lemp, rp);
4875 if( i ){
4876 fprintf(out," YYMINORTYPE yylhsminor;\n"); lineno++;
4878 /* First output rules other than the default: rule */
4879 for(rp=lemp->rule; rp; rp=rp->next){
4880 struct rule *rp2; /* Other rules with the same action */
4881 if( rp->codeEmitted ) continue;
4882 if( rp->noCode ){
4883 /* No C code actions, so this will be part of the "default:" rule */
4884 continue;
4886 fprintf(out," case %d: /* ", rp->iRule);
4887 writeRuleText(out, rp);
4888 fprintf(out, " */\n"); lineno++;
4889 for(rp2=rp->next; rp2; rp2=rp2->next){
4890 if( rp2->code==rp->code && rp2->codePrefix==rp->codePrefix
4891 && rp2->codeSuffix==rp->codeSuffix ){
4892 fprintf(out," case %d: /* ", rp2->iRule);
4893 writeRuleText(out, rp2);
4894 fprintf(out," */ yytestcase(yyruleno==%d);\n", rp2->iRule); lineno++;
4895 rp2->codeEmitted = 1;
4898 emit_code(out,rp,lemp,&lineno);
4899 fprintf(out," break;\n"); lineno++;
4900 rp->codeEmitted = 1;
4902 /* Finally, output the default: rule. We choose as the default: all
4903 ** empty actions. */
4904 fprintf(out," default:\n"); lineno++;
4905 for(rp=lemp->rule; rp; rp=rp->next){
4906 if( rp->codeEmitted ) continue;
4907 assert( rp->noCode );
4908 fprintf(out," /* (%d) ", rp->iRule);
4909 writeRuleText(out, rp);
4910 if( rp->neverReduce ){
4911 fprintf(out, " (NEVER REDUCES) */ assert(yyruleno!=%d);\n",
4912 rp->iRule); lineno++;
4913 }else if( rp->doesReduce ){
4914 fprintf(out, " */ yytestcase(yyruleno==%d);\n", rp->iRule); lineno++;
4915 }else{
4916 fprintf(out, " (OPTIMIZED OUT) */ assert(yyruleno!=%d);\n",
4917 rp->iRule); lineno++;
4920 fprintf(out," break;\n"); lineno++;
4921 tplt_xfer(lemp->name,in,out,&lineno);
4923 /* Generate code which executes if a parse fails */
4924 tplt_print(out,lemp,lemp->failure,&lineno);
4925 tplt_xfer(lemp->name,in,out,&lineno);
4927 /* Generate code which executes when a syntax error occurs */
4928 tplt_print(out,lemp,lemp->error,&lineno);
4929 tplt_xfer(lemp->name,in,out,&lineno);
4931 /* Generate code which executes when the parser accepts its input */
4932 tplt_print(out,lemp,lemp->accept,&lineno);
4933 tplt_xfer(lemp->name,in,out,&lineno);
4935 /* Append any addition code the user desires */
4936 tplt_print(out,lemp,lemp->extracode,&lineno);
4938 acttab_free(pActtab);
4939 fclose(in);
4940 fclose(out);
4941 if( sql ) fclose(sql);
4942 return;
4945 /* Generate a header file for the parser */
4946 void ReportHeader(struct lemon *lemp)
4948 FILE *out, *in;
4949 const char *prefix;
4950 char line[LINESIZE];
4951 char pattern[LINESIZE];
4952 int i;
4954 if( lemp->tokenprefix ) prefix = lemp->tokenprefix;
4955 else prefix = "";
4956 in = file_open(lemp,".h","rb");
4957 if( in ){
4958 int nextChar;
4959 for(i=1; i<lemp->nterminal && fgets(line,LINESIZE,in); i++){
4960 lemon_sprintf(pattern,"#define %s%-30s %3d\n",
4961 prefix,lemp->symbols[i]->name,i);
4962 if( strcmp(line,pattern) ) break;
4964 nextChar = fgetc(in);
4965 fclose(in);
4966 if( i==lemp->nterminal && nextChar==EOF ){
4967 /* No change in the file. Don't rewrite it. */
4968 return;
4971 out = file_open(lemp,".h","wb");
4972 if( out ){
4973 for(i=1; i<lemp->nterminal; i++){
4974 fprintf(out,"#define %s%-30s %3d\n",prefix,lemp->symbols[i]->name,i);
4976 fclose(out);
4978 return;
4981 /* Reduce the size of the action tables, if possible, by making use
4982 ** of defaults.
4984 ** In this version, we take the most frequent REDUCE action and make
4985 ** it the default. Except, there is no default if the wildcard token
4986 ** is a possible look-ahead.
4988 void CompressTables(struct lemon *lemp)
4990 struct state *stp;
4991 struct action *ap, *ap2, *nextap;
4992 struct rule *rp, *rp2, *rbest;
4993 int nbest, n;
4994 int i;
4995 int usesWildcard;
4997 for(i=0; i<lemp->nstate; i++){
4998 stp = lemp->sorted[i];
4999 nbest = 0;
5000 rbest = 0;
5001 usesWildcard = 0;
5003 for(ap=stp->ap; ap; ap=ap->next){
5004 if( ap->type==SHIFT && ap->sp==lemp->wildcard ){
5005 usesWildcard = 1;
5007 if( ap->type!=REDUCE ) continue;
5008 rp = ap->x.rp;
5009 if( rp->lhsStart ) continue;
5010 if( rp==rbest ) continue;
5011 n = 1;
5012 for(ap2=ap->next; ap2; ap2=ap2->next){
5013 if( ap2->type!=REDUCE ) continue;
5014 rp2 = ap2->x.rp;
5015 if( rp2==rbest ) continue;
5016 if( rp2==rp ) n++;
5018 if( n>nbest ){
5019 nbest = n;
5020 rbest = rp;
5024 /* Do not make a default if the number of rules to default
5025 ** is not at least 1 or if the wildcard token is a possible
5026 ** lookahead.
5028 if( nbest<1 || usesWildcard ) continue;
5031 /* Combine matching REDUCE actions into a single default */
5032 for(ap=stp->ap; ap; ap=ap->next){
5033 if( ap->type==REDUCE && ap->x.rp==rbest ) break;
5035 assert( ap );
5036 ap->sp = Symbol_new("{default}");
5037 for(ap=ap->next; ap; ap=ap->next){
5038 if( ap->type==REDUCE && ap->x.rp==rbest ) ap->type = NOT_USED;
5040 stp->ap = Action_sort(stp->ap);
5042 for(ap=stp->ap; ap; ap=ap->next){
5043 if( ap->type==SHIFT ) break;
5044 if( ap->type==REDUCE && ap->x.rp!=rbest ) break;
5046 if( ap==0 ){
5047 stp->autoReduce = 1;
5048 stp->pDfltReduce = rbest;
5052 /* Make a second pass over all states and actions. Convert
5053 ** every action that is a SHIFT to an autoReduce state into
5054 ** a SHIFTREDUCE action.
5056 for(i=0; i<lemp->nstate; i++){
5057 stp = lemp->sorted[i];
5058 for(ap=stp->ap; ap; ap=ap->next){
5059 struct state *pNextState;
5060 if( ap->type!=SHIFT ) continue;
5061 pNextState = ap->x.stp;
5062 if( pNextState->autoReduce && pNextState->pDfltReduce!=0 ){
5063 ap->type = SHIFTREDUCE;
5064 ap->x.rp = pNextState->pDfltReduce;
5069 /* If a SHIFTREDUCE action specifies a rule that has a single RHS term
5070 ** (meaning that the SHIFTREDUCE will land back in the state where it
5071 ** started) and if there is no C-code associated with the reduce action,
5072 ** then we can go ahead and convert the action to be the same as the
5073 ** action for the RHS of the rule.
5075 for(i=0; i<lemp->nstate; i++){
5076 stp = lemp->sorted[i];
5077 for(ap=stp->ap; ap; ap=nextap){
5078 nextap = ap->next;
5079 if( ap->type!=SHIFTREDUCE ) continue;
5080 rp = ap->x.rp;
5081 if( rp->noCode==0 ) continue;
5082 if( rp->nrhs!=1 ) continue;
5083 #if 1
5084 /* Only apply this optimization to non-terminals. It would be OK to
5085 ** apply it to terminal symbols too, but that makes the parser tables
5086 ** larger. */
5087 if( ap->sp->index<lemp->nterminal ) continue;
5088 #endif
5089 /* If we reach this point, it means the optimization can be applied */
5090 nextap = ap;
5091 for(ap2=stp->ap; ap2 && (ap2==ap || ap2->sp!=rp->lhs); ap2=ap2->next){}
5092 assert( ap2!=0 );
5093 ap->spOpt = ap2->sp;
5094 ap->type = ap2->type;
5095 ap->x = ap2->x;
5102 ** Compare two states for sorting purposes. The smaller state is the
5103 ** one with the most non-terminal actions. If they have the same number
5104 ** of non-terminal actions, then the smaller is the one with the most
5105 ** token actions.
5107 static int stateResortCompare(const void *a, const void *b){
5108 const struct state *pA = *(const struct state**)a;
5109 const struct state *pB = *(const struct state**)b;
5110 int n;
5112 n = pB->nNtAct - pA->nNtAct;
5113 if( n==0 ){
5114 n = pB->nTknAct - pA->nTknAct;
5115 if( n==0 ){
5116 n = pB->statenum - pA->statenum;
5119 assert( n!=0 );
5120 return n;
5125 ** Renumber and resort states so that states with fewer choices
5126 ** occur at the end. Except, keep state 0 as the first state.
5128 void ResortStates(struct lemon *lemp)
5130 int i;
5131 struct state *stp;
5132 struct action *ap;
5134 for(i=0; i<lemp->nstate; i++){
5135 stp = lemp->sorted[i];
5136 stp->nTknAct = stp->nNtAct = 0;
5137 stp->iDfltReduce = -1; /* Init dflt action to "syntax error" */
5138 stp->iTknOfst = NO_OFFSET;
5139 stp->iNtOfst = NO_OFFSET;
5140 for(ap=stp->ap; ap; ap=ap->next){
5141 int iAction = compute_action(lemp,ap);
5142 if( iAction>=0 ){
5143 if( ap->sp->index<lemp->nterminal ){
5144 stp->nTknAct++;
5145 }else if( ap->sp->index<lemp->nsymbol ){
5146 stp->nNtAct++;
5147 }else{
5148 assert( stp->autoReduce==0 || stp->pDfltReduce==ap->x.rp );
5149 stp->iDfltReduce = iAction;
5154 qsort(&lemp->sorted[1], lemp->nstate-1, sizeof(lemp->sorted[0]),
5155 stateResortCompare);
5156 for(i=0; i<lemp->nstate; i++){
5157 lemp->sorted[i]->statenum = i;
5159 lemp->nxstate = lemp->nstate;
5160 while( lemp->nxstate>1 && lemp->sorted[lemp->nxstate-1]->autoReduce ){
5161 lemp->nxstate--;
5166 /***************** From the file "set.c" ************************************/
5168 ** Set manipulation routines for the LEMON parser generator.
5171 static int size = 0;
5173 /* Set the set size */
5174 void SetSize(int n)
5176 size = n+1;
5179 /* Allocate a new set */
5180 char *SetNew(void){
5181 char *s;
5182 s = (char*)calloc( size, 1);
5183 if( s==0 ){
5184 memory_error();
5186 return s;
5189 /* Deallocate a set */
5190 void SetFree(char *s)
5192 free(s);
5195 /* Add a new element to the set. Return TRUE if the element was added
5196 ** and FALSE if it was already there. */
5197 int SetAdd(char *s, int e)
5199 int rv;
5200 assert( e>=0 && e<size );
5201 rv = s[e];
5202 s[e] = 1;
5203 return !rv;
5206 /* Add every element of s2 to s1. Return TRUE if s1 changes. */
5207 int SetUnion(char *s1, char *s2)
5209 int i, progress;
5210 progress = 0;
5211 for(i=0; i<size; i++){
5212 if( s2[i]==0 ) continue;
5213 if( s1[i]==0 ){
5214 progress = 1;
5215 s1[i] = 1;
5218 return progress;
5220 /********************** From the file "table.c" ****************************/
5222 ** All code in this file has been automatically generated
5223 ** from a specification in the file
5224 ** "table.q"
5225 ** by the associative array code building program "aagen".
5226 ** Do not edit this file! Instead, edit the specification
5227 ** file, then rerun aagen.
5230 ** Code for processing tables in the LEMON parser generator.
5233 PRIVATE unsigned strhash(const char *x)
5235 unsigned h = 0;
5236 while( *x ) h = h*13 + *(x++);
5237 return h;
5240 /* Works like strdup, sort of. Save a string in malloced memory, but
5241 ** keep strings in a table so that the same string is not in more
5242 ** than one place.
5244 const char *Strsafe(const char *y)
5246 const char *z;
5247 char *cpy;
5249 if( y==0 ) return 0;
5250 z = Strsafe_find(y);
5251 if( z==0 && (cpy=(char *)malloc( lemonStrlen(y)+1 ))!=0 ){
5252 lemon_strcpy(cpy,y);
5253 z = cpy;
5254 Strsafe_insert(z);
5256 MemoryCheck(z);
5257 return z;
5260 /* There is one instance of the following structure for each
5261 ** associative array of type "x1".
5263 struct s_x1 {
5264 int size; /* The number of available slots. */
5265 /* Must be a power of 2 greater than or */
5266 /* equal to 1 */
5267 int count; /* Number of currently slots filled */
5268 struct s_x1node *tbl; /* The data stored here */
5269 struct s_x1node **ht; /* Hash table for lookups */
5272 /* There is one instance of this structure for every data element
5273 ** in an associative array of type "x1".
5275 typedef struct s_x1node {
5276 const char *data; /* The data */
5277 struct s_x1node *next; /* Next entry with the same hash */
5278 struct s_x1node **from; /* Previous link */
5279 } x1node;
5281 /* There is only one instance of the array, which is the following */
5282 static struct s_x1 *x1a;
5284 /* Allocate a new associative array */
5285 void Strsafe_init(void){
5286 if( x1a ) return;
5287 x1a = (struct s_x1*)malloc( sizeof(struct s_x1) );
5288 if( x1a ){
5289 x1a->size = 1024;
5290 x1a->count = 0;
5291 x1a->tbl = (x1node*)calloc(1024, sizeof(x1node) + sizeof(x1node*));
5292 if( x1a->tbl==0 ){
5293 free(x1a);
5294 x1a = 0;
5295 }else{
5296 int i;
5297 x1a->ht = (x1node**)&(x1a->tbl[1024]);
5298 for(i=0; i<1024; i++) x1a->ht[i] = 0;
5302 /* Insert a new record into the array. Return TRUE if successful.
5303 ** Prior data with the same key is NOT overwritten */
5304 int Strsafe_insert(const char *data)
5306 x1node *np;
5307 unsigned h;
5308 unsigned ph;
5310 if( x1a==0 ) return 0;
5311 ph = strhash(data);
5312 h = ph & (x1a->size-1);
5313 np = x1a->ht[h];
5314 while( np ){
5315 if( strcmp(np->data,data)==0 ){
5316 /* An existing entry with the same key is found. */
5317 /* Fail because overwrite is not allows. */
5318 return 0;
5320 np = np->next;
5322 if( x1a->count>=x1a->size ){
5323 /* Need to make the hash table bigger */
5324 int i,arrSize;
5325 struct s_x1 array;
5326 array.size = arrSize = x1a->size*2;
5327 array.count = x1a->count;
5328 array.tbl = (x1node*)calloc(arrSize, sizeof(x1node) + sizeof(x1node*));
5329 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
5330 array.ht = (x1node**)&(array.tbl[arrSize]);
5331 for(i=0; i<arrSize; i++) array.ht[i] = 0;
5332 for(i=0; i<x1a->count; i++){
5333 x1node *oldnp, *newnp;
5334 oldnp = &(x1a->tbl[i]);
5335 h = strhash(oldnp->data) & (arrSize-1);
5336 newnp = &(array.tbl[i]);
5337 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
5338 newnp->next = array.ht[h];
5339 newnp->data = oldnp->data;
5340 newnp->from = &(array.ht[h]);
5341 array.ht[h] = newnp;
5343 /* free(x1a->tbl); // This program was originally for 16-bit machines.
5344 ** Don't worry about freeing memory on modern platforms. */
5345 *x1a = array;
5347 /* Insert the new data */
5348 h = ph & (x1a->size-1);
5349 np = &(x1a->tbl[x1a->count++]);
5350 np->data = data;
5351 if( x1a->ht[h] ) x1a->ht[h]->from = &(np->next);
5352 np->next = x1a->ht[h];
5353 x1a->ht[h] = np;
5354 np->from = &(x1a->ht[h]);
5355 return 1;
5358 /* Return a pointer to data assigned to the given key. Return NULL
5359 ** if no such key. */
5360 const char *Strsafe_find(const char *key)
5362 unsigned h;
5363 x1node *np;
5365 if( x1a==0 ) return 0;
5366 h = strhash(key) & (x1a->size-1);
5367 np = x1a->ht[h];
5368 while( np ){
5369 if( strcmp(np->data,key)==0 ) break;
5370 np = np->next;
5372 return np ? np->data : 0;
5375 /* Return a pointer to the (terminal or nonterminal) symbol "x".
5376 ** Create a new symbol if this is the first time "x" has been seen.
5378 struct symbol *Symbol_new(const char *x)
5380 struct symbol *sp;
5382 sp = Symbol_find(x);
5383 if( sp==0 ){
5384 sp = (struct symbol *)calloc(1, sizeof(struct symbol) );
5385 MemoryCheck(sp);
5386 sp->name = Strsafe(x);
5387 sp->type = ISUPPER(*x) ? TERMINAL : NONTERMINAL;
5388 sp->rule = 0;
5389 sp->fallback = 0;
5390 sp->prec = -1;
5391 sp->assoc = UNK;
5392 sp->firstset = 0;
5393 sp->lambda = LEMON_FALSE;
5394 sp->destructor = 0;
5395 sp->destLineno = 0;
5396 sp->datatype = 0;
5397 sp->useCnt = 0;
5398 Symbol_insert(sp,sp->name);
5400 sp->useCnt++;
5401 return sp;
5404 /* Compare two symbols for sorting purposes. Return negative,
5405 ** zero, or positive if a is less then, equal to, or greater
5406 ** than b.
5408 ** Symbols that begin with upper case letters (terminals or tokens)
5409 ** must sort before symbols that begin with lower case letters
5410 ** (non-terminals). And MULTITERMINAL symbols (created using the
5411 ** %token_class directive) must sort at the very end. Other than
5412 ** that, the order does not matter.
5414 ** We find experimentally that leaving the symbols in their original
5415 ** order (the order they appeared in the grammar file) gives the
5416 ** smallest parser tables in SQLite.
5418 int Symbolcmpp(const void *_a, const void *_b)
5420 const struct symbol *a = *(const struct symbol **) _a;
5421 const struct symbol *b = *(const struct symbol **) _b;
5422 int i1 = a->type==MULTITERMINAL ? 3 : a->name[0]>'Z' ? 2 : 1;
5423 int i2 = b->type==MULTITERMINAL ? 3 : b->name[0]>'Z' ? 2 : 1;
5424 return i1==i2 ? a->index - b->index : i1 - i2;
5427 /* There is one instance of the following structure for each
5428 ** associative array of type "x2".
5430 struct s_x2 {
5431 int size; /* The number of available slots. */
5432 /* Must be a power of 2 greater than or */
5433 /* equal to 1 */
5434 int count; /* Number of currently slots filled */
5435 struct s_x2node *tbl; /* The data stored here */
5436 struct s_x2node **ht; /* Hash table for lookups */
5439 /* There is one instance of this structure for every data element
5440 ** in an associative array of type "x2".
5442 typedef struct s_x2node {
5443 struct symbol *data; /* The data */
5444 const char *key; /* The key */
5445 struct s_x2node *next; /* Next entry with the same hash */
5446 struct s_x2node **from; /* Previous link */
5447 } x2node;
5449 /* There is only one instance of the array, which is the following */
5450 static struct s_x2 *x2a;
5452 /* Allocate a new associative array */
5453 void Symbol_init(void){
5454 if( x2a ) return;
5455 x2a = (struct s_x2*)malloc( sizeof(struct s_x2) );
5456 if( x2a ){
5457 x2a->size = 128;
5458 x2a->count = 0;
5459 x2a->tbl = (x2node*)calloc(128, sizeof(x2node) + sizeof(x2node*));
5460 if( x2a->tbl==0 ){
5461 free(x2a);
5462 x2a = 0;
5463 }else{
5464 int i;
5465 x2a->ht = (x2node**)&(x2a->tbl[128]);
5466 for(i=0; i<128; i++) x2a->ht[i] = 0;
5470 /* Insert a new record into the array. Return TRUE if successful.
5471 ** Prior data with the same key is NOT overwritten */
5472 int Symbol_insert(struct symbol *data, const char *key)
5474 x2node *np;
5475 unsigned h;
5476 unsigned ph;
5478 if( x2a==0 ) return 0;
5479 ph = strhash(key);
5480 h = ph & (x2a->size-1);
5481 np = x2a->ht[h];
5482 while( np ){
5483 if( strcmp(np->key,key)==0 ){
5484 /* An existing entry with the same key is found. */
5485 /* Fail because overwrite is not allows. */
5486 return 0;
5488 np = np->next;
5490 if( x2a->count>=x2a->size ){
5491 /* Need to make the hash table bigger */
5492 int i,arrSize;
5493 struct s_x2 array;
5494 array.size = arrSize = x2a->size*2;
5495 array.count = x2a->count;
5496 array.tbl = (x2node*)calloc(arrSize, sizeof(x2node) + sizeof(x2node*));
5497 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
5498 array.ht = (x2node**)&(array.tbl[arrSize]);
5499 for(i=0; i<arrSize; i++) array.ht[i] = 0;
5500 for(i=0; i<x2a->count; i++){
5501 x2node *oldnp, *newnp;
5502 oldnp = &(x2a->tbl[i]);
5503 h = strhash(oldnp->key) & (arrSize-1);
5504 newnp = &(array.tbl[i]);
5505 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
5506 newnp->next = array.ht[h];
5507 newnp->key = oldnp->key;
5508 newnp->data = oldnp->data;
5509 newnp->from = &(array.ht[h]);
5510 array.ht[h] = newnp;
5512 /* free(x2a->tbl); // This program was originally written for 16-bit
5513 ** machines. Don't worry about freeing this trivial amount of memory
5514 ** on modern platforms. Just leak it. */
5515 *x2a = array;
5517 /* Insert the new data */
5518 h = ph & (x2a->size-1);
5519 np = &(x2a->tbl[x2a->count++]);
5520 np->key = key;
5521 np->data = data;
5522 if( x2a->ht[h] ) x2a->ht[h]->from = &(np->next);
5523 np->next = x2a->ht[h];
5524 x2a->ht[h] = np;
5525 np->from = &(x2a->ht[h]);
5526 return 1;
5529 /* Return a pointer to data assigned to the given key. Return NULL
5530 ** if no such key. */
5531 struct symbol *Symbol_find(const char *key)
5533 unsigned h;
5534 x2node *np;
5536 if( x2a==0 ) return 0;
5537 h = strhash(key) & (x2a->size-1);
5538 np = x2a->ht[h];
5539 while( np ){
5540 if( strcmp(np->key,key)==0 ) break;
5541 np = np->next;
5543 return np ? np->data : 0;
5546 /* Return the n-th data. Return NULL if n is out of range. */
5547 struct symbol *Symbol_Nth(int n)
5549 struct symbol *data;
5550 if( x2a && n>0 && n<=x2a->count ){
5551 data = x2a->tbl[n-1].data;
5552 }else{
5553 data = 0;
5555 return data;
5558 /* Return the size of the array */
5559 int Symbol_count()
5561 return x2a ? x2a->count : 0;
5564 /* Return an array of pointers to all data in the table.
5565 ** The array is obtained from malloc. Return NULL if memory allocation
5566 ** problems, or if the array is empty. */
5567 struct symbol **Symbol_arrayof()
5569 struct symbol **array;
5570 int i,arrSize;
5571 if( x2a==0 ) return 0;
5572 arrSize = x2a->count;
5573 array = (struct symbol **)calloc(arrSize, sizeof(struct symbol *));
5574 if( array ){
5575 for(i=0; i<arrSize; i++) array[i] = x2a->tbl[i].data;
5577 return array;
5580 /* Compare two configurations */
5581 int Configcmp(const char *_a,const char *_b)
5583 const struct config *a = (struct config *) _a;
5584 const struct config *b = (struct config *) _b;
5585 int x;
5586 x = a->rp->index - b->rp->index;
5587 if( x==0 ) x = a->dot - b->dot;
5588 return x;
5591 /* Compare two states */
5592 PRIVATE int statecmp(struct config *a, struct config *b)
5594 int rc;
5595 for(rc=0; rc==0 && a && b; a=a->bp, b=b->bp){
5596 rc = a->rp->index - b->rp->index;
5597 if( rc==0 ) rc = a->dot - b->dot;
5599 if( rc==0 ){
5600 if( a ) rc = 1;
5601 if( b ) rc = -1;
5603 return rc;
5606 /* Hash a state */
5607 PRIVATE unsigned statehash(struct config *a)
5609 unsigned h=0;
5610 while( a ){
5611 h = h*571 + a->rp->index*37 + a->dot;
5612 a = a->bp;
5614 return h;
5617 /* Allocate a new state structure */
5618 struct state *State_new()
5620 struct state *newstate;
5621 newstate = (struct state *)calloc(1, sizeof(struct state) );
5622 MemoryCheck(newstate);
5623 return newstate;
5626 /* There is one instance of the following structure for each
5627 ** associative array of type "x3".
5629 struct s_x3 {
5630 int size; /* The number of available slots. */
5631 /* Must be a power of 2 greater than or */
5632 /* equal to 1 */
5633 int count; /* Number of currently slots filled */
5634 struct s_x3node *tbl; /* The data stored here */
5635 struct s_x3node **ht; /* Hash table for lookups */
5638 /* There is one instance of this structure for every data element
5639 ** in an associative array of type "x3".
5641 typedef struct s_x3node {
5642 struct state *data; /* The data */
5643 struct config *key; /* The key */
5644 struct s_x3node *next; /* Next entry with the same hash */
5645 struct s_x3node **from; /* Previous link */
5646 } x3node;
5648 /* There is only one instance of the array, which is the following */
5649 static struct s_x3 *x3a;
5651 /* Allocate a new associative array */
5652 void State_init(void){
5653 if( x3a ) return;
5654 x3a = (struct s_x3*)malloc( sizeof(struct s_x3) );
5655 if( x3a ){
5656 x3a->size = 128;
5657 x3a->count = 0;
5658 x3a->tbl = (x3node*)calloc(128, sizeof(x3node) + sizeof(x3node*));
5659 if( x3a->tbl==0 ){
5660 free(x3a);
5661 x3a = 0;
5662 }else{
5663 int i;
5664 x3a->ht = (x3node**)&(x3a->tbl[128]);
5665 for(i=0; i<128; i++) x3a->ht[i] = 0;
5669 /* Insert a new record into the array. Return TRUE if successful.
5670 ** Prior data with the same key is NOT overwritten */
5671 int State_insert(struct state *data, struct config *key)
5673 x3node *np;
5674 unsigned h;
5675 unsigned ph;
5677 if( x3a==0 ) return 0;
5678 ph = statehash(key);
5679 h = ph & (x3a->size-1);
5680 np = x3a->ht[h];
5681 while( np ){
5682 if( statecmp(np->key,key)==0 ){
5683 /* An existing entry with the same key is found. */
5684 /* Fail because overwrite is not allows. */
5685 return 0;
5687 np = np->next;
5689 if( x3a->count>=x3a->size ){
5690 /* Need to make the hash table bigger */
5691 int i,arrSize;
5692 struct s_x3 array;
5693 array.size = arrSize = x3a->size*2;
5694 array.count = x3a->count;
5695 array.tbl = (x3node*)calloc(arrSize, sizeof(x3node) + sizeof(x3node*));
5696 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
5697 array.ht = (x3node**)&(array.tbl[arrSize]);
5698 for(i=0; i<arrSize; i++) array.ht[i] = 0;
5699 for(i=0; i<x3a->count; i++){
5700 x3node *oldnp, *newnp;
5701 oldnp = &(x3a->tbl[i]);
5702 h = statehash(oldnp->key) & (arrSize-1);
5703 newnp = &(array.tbl[i]);
5704 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
5705 newnp->next = array.ht[h];
5706 newnp->key = oldnp->key;
5707 newnp->data = oldnp->data;
5708 newnp->from = &(array.ht[h]);
5709 array.ht[h] = newnp;
5711 free(x3a->tbl);
5712 *x3a = array;
5714 /* Insert the new data */
5715 h = ph & (x3a->size-1);
5716 np = &(x3a->tbl[x3a->count++]);
5717 np->key = key;
5718 np->data = data;
5719 if( x3a->ht[h] ) x3a->ht[h]->from = &(np->next);
5720 np->next = x3a->ht[h];
5721 x3a->ht[h] = np;
5722 np->from = &(x3a->ht[h]);
5723 return 1;
5726 /* Return a pointer to data assigned to the given key. Return NULL
5727 ** if no such key. */
5728 struct state *State_find(struct config *key)
5730 unsigned h;
5731 x3node *np;
5733 if( x3a==0 ) return 0;
5734 h = statehash(key) & (x3a->size-1);
5735 np = x3a->ht[h];
5736 while( np ){
5737 if( statecmp(np->key,key)==0 ) break;
5738 np = np->next;
5740 return np ? np->data : 0;
5743 /* Return an array of pointers to all data in the table.
5744 ** The array is obtained from malloc. Return NULL if memory allocation
5745 ** problems, or if the array is empty. */
5746 struct state **State_arrayof(void)
5748 struct state **array;
5749 int i,arrSize;
5750 if( x3a==0 ) return 0;
5751 arrSize = x3a->count;
5752 array = (struct state **)calloc(arrSize, sizeof(struct state *));
5753 if( array ){
5754 for(i=0; i<arrSize; i++) array[i] = x3a->tbl[i].data;
5756 return array;
5759 /* Hash a configuration */
5760 PRIVATE unsigned confighash(struct config *a)
5762 unsigned h=0;
5763 h = h*571 + a->rp->index*37 + a->dot;
5764 return h;
5767 /* There is one instance of the following structure for each
5768 ** associative array of type "x4".
5770 struct s_x4 {
5771 int size; /* The number of available slots. */
5772 /* Must be a power of 2 greater than or */
5773 /* equal to 1 */
5774 int count; /* Number of currently slots filled */
5775 struct s_x4node *tbl; /* The data stored here */
5776 struct s_x4node **ht; /* Hash table for lookups */
5779 /* There is one instance of this structure for every data element
5780 ** in an associative array of type "x4".
5782 typedef struct s_x4node {
5783 struct config *data; /* The data */
5784 struct s_x4node *next; /* Next entry with the same hash */
5785 struct s_x4node **from; /* Previous link */
5786 } x4node;
5788 /* There is only one instance of the array, which is the following */
5789 static struct s_x4 *x4a;
5791 /* Allocate a new associative array */
5792 void Configtable_init(void){
5793 if( x4a ) return;
5794 x4a = (struct s_x4*)malloc( sizeof(struct s_x4) );
5795 if( x4a ){
5796 x4a->size = 64;
5797 x4a->count = 0;
5798 x4a->tbl = (x4node*)calloc(64, sizeof(x4node) + sizeof(x4node*));
5799 if( x4a->tbl==0 ){
5800 free(x4a);
5801 x4a = 0;
5802 }else{
5803 int i;
5804 x4a->ht = (x4node**)&(x4a->tbl[64]);
5805 for(i=0; i<64; i++) x4a->ht[i] = 0;
5809 /* Insert a new record into the array. Return TRUE if successful.
5810 ** Prior data with the same key is NOT overwritten */
5811 int Configtable_insert(struct config *data)
5813 x4node *np;
5814 unsigned h;
5815 unsigned ph;
5817 if( x4a==0 ) return 0;
5818 ph = confighash(data);
5819 h = ph & (x4a->size-1);
5820 np = x4a->ht[h];
5821 while( np ){
5822 if( Configcmp((const char *) np->data,(const char *) data)==0 ){
5823 /* An existing entry with the same key is found. */
5824 /* Fail because overwrite is not allows. */
5825 return 0;
5827 np = np->next;
5829 if( x4a->count>=x4a->size ){
5830 /* Need to make the hash table bigger */
5831 int i,arrSize;
5832 struct s_x4 array;
5833 array.size = arrSize = x4a->size*2;
5834 array.count = x4a->count;
5835 array.tbl = (x4node*)calloc(arrSize, sizeof(x4node) + sizeof(x4node*));
5836 if( array.tbl==0 ) return 0; /* Fail due to malloc failure */
5837 array.ht = (x4node**)&(array.tbl[arrSize]);
5838 for(i=0; i<arrSize; i++) array.ht[i] = 0;
5839 for(i=0; i<x4a->count; i++){
5840 x4node *oldnp, *newnp;
5841 oldnp = &(x4a->tbl[i]);
5842 h = confighash(oldnp->data) & (arrSize-1);
5843 newnp = &(array.tbl[i]);
5844 if( array.ht[h] ) array.ht[h]->from = &(newnp->next);
5845 newnp->next = array.ht[h];
5846 newnp->data = oldnp->data;
5847 newnp->from = &(array.ht[h]);
5848 array.ht[h] = newnp;
5850 /* free(x4a->tbl); // This code was originall written for 16-bit machines.
5851 ** on modern machines, don't worry about freeing this trival amount of
5852 ** memory. */
5853 *x4a = array;
5855 /* Insert the new data */
5856 h = ph & (x4a->size-1);
5857 np = &(x4a->tbl[x4a->count++]);
5858 np->data = data;
5859 if( x4a->ht[h] ) x4a->ht[h]->from = &(np->next);
5860 np->next = x4a->ht[h];
5861 x4a->ht[h] = np;
5862 np->from = &(x4a->ht[h]);
5863 return 1;
5866 /* Return a pointer to data assigned to the given key. Return NULL
5867 ** if no such key. */
5868 struct config *Configtable_find(struct config *key)
5870 int h;
5871 x4node *np;
5873 if( x4a==0 ) return 0;
5874 h = confighash(key) & (x4a->size-1);
5875 np = x4a->ht[h];
5876 while( np ){
5877 if( Configcmp((const char *) np->data,(const char *) key)==0 ) break;
5878 np = np->next;
5880 return np ? np->data : 0;
5883 /* Remove all data from the table. Pass each data to the function "f"
5884 ** as it is removed. ("f" may be null to avoid this step.) */
5885 void Configtable_clear(int(*f)(struct config *))
5887 int i;
5888 if( x4a==0 || x4a->count==0 ) return;
5889 if( f ) for(i=0; i<x4a->count; i++) (*f)(x4a->tbl[i].data);
5890 for(i=0; i<x4a->size; i++) x4a->ht[i] = 0;
5891 x4a->count = 0;
5892 return;