Adds PRAGMA cipher_log_subsystem to restrict output of log messages
[sqlcipher.git] / src / btmutex.c
blob232831e037140ba890482e1f1c3a37dce038b6ce
1 /*
2 ** 2007 August 27
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** This file contains code used to implement mutexes on Btree objects.
14 ** This code really belongs in btree.c. But btree.c is getting too
15 ** big and we want to break it down some. This packaged seemed like
16 ** a good breakout.
18 #include "btreeInt.h"
19 #ifndef SQLITE_OMIT_SHARED_CACHE
20 #if SQLITE_THREADSAFE
23 ** Obtain the BtShared mutex associated with B-Tree handle p. Also,
24 ** set BtShared.db to the database handle associated with p and the
25 ** p->locked boolean to true.
27 static void lockBtreeMutex(Btree *p){
28 assert( p->locked==0 );
29 assert( sqlite3_mutex_notheld(p->pBt->mutex) );
30 assert( sqlite3_mutex_held(p->db->mutex) );
32 sqlite3_mutex_enter(p->pBt->mutex);
33 p->pBt->db = p->db;
34 p->locked = 1;
38 ** Release the BtShared mutex associated with B-Tree handle p and
39 ** clear the p->locked boolean.
41 static void SQLITE_NOINLINE unlockBtreeMutex(Btree *p){
42 BtShared *pBt = p->pBt;
43 assert( p->locked==1 );
44 assert( sqlite3_mutex_held(pBt->mutex) );
45 assert( sqlite3_mutex_held(p->db->mutex) );
46 assert( p->db==pBt->db );
48 sqlite3_mutex_leave(pBt->mutex);
49 p->locked = 0;
52 /* Forward reference */
53 static void SQLITE_NOINLINE btreeLockCarefully(Btree *p);
56 ** Enter a mutex on the given BTree object.
58 ** If the object is not sharable, then no mutex is ever required
59 ** and this routine is a no-op. The underlying mutex is non-recursive.
60 ** But we keep a reference count in Btree.wantToLock so the behavior
61 ** of this interface is recursive.
63 ** To avoid deadlocks, multiple Btrees are locked in the same order
64 ** by all database connections. The p->pNext is a list of other
65 ** Btrees belonging to the same database connection as the p Btree
66 ** which need to be locked after p. If we cannot get a lock on
67 ** p, then first unlock all of the others on p->pNext, then wait
68 ** for the lock to become available on p, then relock all of the
69 ** subsequent Btrees that desire a lock.
71 void sqlite3BtreeEnter(Btree *p){
72 /* Some basic sanity checking on the Btree. The list of Btrees
73 ** connected by pNext and pPrev should be in sorted order by
74 ** Btree.pBt value. All elements of the list should belong to
75 ** the same connection. Only shared Btrees are on the list. */
76 assert( p->pNext==0 || p->pNext->pBt>p->pBt );
77 assert( p->pPrev==0 || p->pPrev->pBt<p->pBt );
78 assert( p->pNext==0 || p->pNext->db==p->db );
79 assert( p->pPrev==0 || p->pPrev->db==p->db );
80 assert( p->sharable || (p->pNext==0 && p->pPrev==0) );
82 /* Check for locking consistency */
83 assert( !p->locked || p->wantToLock>0 );
84 assert( p->sharable || p->wantToLock==0 );
86 /* We should already hold a lock on the database connection */
87 assert( sqlite3_mutex_held(p->db->mutex) );
89 /* Unless the database is sharable and unlocked, then BtShared.db
90 ** should already be set correctly. */
91 assert( (p->locked==0 && p->sharable) || p->pBt->db==p->db );
93 if( !p->sharable ) return;
94 p->wantToLock++;
95 if( p->locked ) return;
96 btreeLockCarefully(p);
99 /* This is a helper function for sqlite3BtreeLock(). By moving
100 ** complex, but seldom used logic, out of sqlite3BtreeLock() and
101 ** into this routine, we avoid unnecessary stack pointer changes
102 ** and thus help the sqlite3BtreeLock() routine to run much faster
103 ** in the common case.
105 static void SQLITE_NOINLINE btreeLockCarefully(Btree *p){
106 Btree *pLater;
108 /* In most cases, we should be able to acquire the lock we
109 ** want without having to go through the ascending lock
110 ** procedure that follows. Just be sure not to block.
112 if( sqlite3_mutex_try(p->pBt->mutex)==SQLITE_OK ){
113 p->pBt->db = p->db;
114 p->locked = 1;
115 return;
118 /* To avoid deadlock, first release all locks with a larger
119 ** BtShared address. Then acquire our lock. Then reacquire
120 ** the other BtShared locks that we used to hold in ascending
121 ** order.
123 for(pLater=p->pNext; pLater; pLater=pLater->pNext){
124 assert( pLater->sharable );
125 assert( pLater->pNext==0 || pLater->pNext->pBt>pLater->pBt );
126 assert( !pLater->locked || pLater->wantToLock>0 );
127 if( pLater->locked ){
128 unlockBtreeMutex(pLater);
131 lockBtreeMutex(p);
132 for(pLater=p->pNext; pLater; pLater=pLater->pNext){
133 if( pLater->wantToLock ){
134 lockBtreeMutex(pLater);
141 ** Exit the recursive mutex on a Btree.
143 void sqlite3BtreeLeave(Btree *p){
144 assert( sqlite3_mutex_held(p->db->mutex) );
145 if( p->sharable ){
146 assert( p->wantToLock>0 );
147 p->wantToLock--;
148 if( p->wantToLock==0 ){
149 unlockBtreeMutex(p);
154 #ifndef NDEBUG
156 ** Return true if the BtShared mutex is held on the btree, or if the
157 ** B-Tree is not marked as sharable.
159 ** This routine is used only from within assert() statements.
161 int sqlite3BtreeHoldsMutex(Btree *p){
162 assert( p->sharable==0 || p->locked==0 || p->wantToLock>0 );
163 assert( p->sharable==0 || p->locked==0 || p->db==p->pBt->db );
164 assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->pBt->mutex) );
165 assert( p->sharable==0 || p->locked==0 || sqlite3_mutex_held(p->db->mutex) );
167 return (p->sharable==0 || p->locked);
169 #endif
173 ** Enter the mutex on every Btree associated with a database
174 ** connection. This is needed (for example) prior to parsing
175 ** a statement since we will be comparing table and column names
176 ** against all schemas and we do not want those schemas being
177 ** reset out from under us.
179 ** There is a corresponding leave-all procedures.
181 ** Enter the mutexes in ascending order by BtShared pointer address
182 ** to avoid the possibility of deadlock when two threads with
183 ** two or more btrees in common both try to lock all their btrees
184 ** at the same instant.
186 static void SQLITE_NOINLINE btreeEnterAll(sqlite3 *db){
187 int i;
188 int skipOk = 1;
189 Btree *p;
190 assert( sqlite3_mutex_held(db->mutex) );
191 for(i=0; i<db->nDb; i++){
192 p = db->aDb[i].pBt;
193 if( p && p->sharable ){
194 sqlite3BtreeEnter(p);
195 skipOk = 0;
198 db->noSharedCache = skipOk;
200 void sqlite3BtreeEnterAll(sqlite3 *db){
201 if( db->noSharedCache==0 ) btreeEnterAll(db);
203 static void SQLITE_NOINLINE btreeLeaveAll(sqlite3 *db){
204 int i;
205 Btree *p;
206 assert( sqlite3_mutex_held(db->mutex) );
207 for(i=0; i<db->nDb; i++){
208 p = db->aDb[i].pBt;
209 if( p ) sqlite3BtreeLeave(p);
212 void sqlite3BtreeLeaveAll(sqlite3 *db){
213 if( db->noSharedCache==0 ) btreeLeaveAll(db);
216 #ifndef NDEBUG
218 ** Return true if the current thread holds the database connection
219 ** mutex and all required BtShared mutexes.
221 ** This routine is used inside assert() statements only.
223 int sqlite3BtreeHoldsAllMutexes(sqlite3 *db){
224 int i;
225 if( !sqlite3_mutex_held(db->mutex) ){
226 return 0;
228 for(i=0; i<db->nDb; i++){
229 Btree *p;
230 p = db->aDb[i].pBt;
231 if( p && p->sharable &&
232 (p->wantToLock==0 || !sqlite3_mutex_held(p->pBt->mutex)) ){
233 return 0;
236 return 1;
238 #endif /* NDEBUG */
240 #ifndef NDEBUG
242 ** Return true if the correct mutexes are held for accessing the
243 ** db->aDb[iDb].pSchema structure. The mutexes required for schema
244 ** access are:
246 ** (1) The mutex on db
247 ** (2) if iDb!=1, then the mutex on db->aDb[iDb].pBt.
249 ** If pSchema is not NULL, then iDb is computed from pSchema and
250 ** db using sqlite3SchemaToIndex().
252 int sqlite3SchemaMutexHeld(sqlite3 *db, int iDb, Schema *pSchema){
253 Btree *p;
254 assert( db!=0 );
255 if( db->pVfs==0 && db->nDb==0 ) return 1;
256 if( pSchema ) iDb = sqlite3SchemaToIndex(db, pSchema);
257 assert( iDb>=0 && iDb<db->nDb );
258 if( !sqlite3_mutex_held(db->mutex) ) return 0;
259 if( iDb==1 ) return 1;
260 p = db->aDb[iDb].pBt;
261 assert( p!=0 );
262 return p->sharable==0 || p->locked==1;
264 #endif /* NDEBUG */
266 #else /* SQLITE_THREADSAFE>0 above. SQLITE_THREADSAFE==0 below */
268 ** The following are special cases for mutex enter routines for use
269 ** in single threaded applications that use shared cache. Except for
270 ** these two routines, all mutex operations are no-ops in that case and
271 ** are null #defines in btree.h.
273 ** If shared cache is disabled, then all btree mutex routines, including
274 ** the ones below, are no-ops and are null #defines in btree.h.
277 void sqlite3BtreeEnter(Btree *p){
278 p->pBt->db = p->db;
280 void sqlite3BtreeEnterAll(sqlite3 *db){
281 int i;
282 for(i=0; i<db->nDb; i++){
283 Btree *p = db->aDb[i].pBt;
284 if( p ){
285 p->pBt->db = p->db;
289 #endif /* if SQLITE_THREADSAFE */
291 #ifndef SQLITE_OMIT_INCRBLOB
293 ** Enter a mutex on a Btree given a cursor owned by that Btree.
295 ** These entry points are used by incremental I/O only. Enter() is required
296 ** any time OMIT_SHARED_CACHE is not defined, regardless of whether or not
297 ** the build is threadsafe. Leave() is only required by threadsafe builds.
299 void sqlite3BtreeEnterCursor(BtCursor *pCur){
300 sqlite3BtreeEnter(pCur->pBtree);
302 # if SQLITE_THREADSAFE
303 void sqlite3BtreeLeaveCursor(BtCursor *pCur){
304 sqlite3BtreeLeave(pCur->pBtree);
306 # endif
307 #endif /* ifndef SQLITE_OMIT_INCRBLOB */
309 #endif /* ifndef SQLITE_OMIT_SHARED_CACHE */