Adds PRAGMA cipher_log_subsystem to restrict output of log messages
[sqlcipher.git] / src / malloc.c
blob03c8284face128ee28c7b7a84a282e0c25a04bc5
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
13 ** Memory allocation functions used throughout sqlite.
15 #include "sqliteInt.h"
16 #include <stdarg.h>
19 ** Attempt to release up to n bytes of non-essential memory currently
20 ** held by SQLite. An example of non-essential memory is memory used to
21 ** cache database pages that are not currently in use.
23 int sqlite3_release_memory(int n){
24 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
25 return sqlite3PcacheReleaseMemory(n);
26 #else
27 /* IMPLEMENTATION-OF: R-34391-24921 The sqlite3_release_memory() routine
28 ** is a no-op returning zero if SQLite is not compiled with
29 ** SQLITE_ENABLE_MEMORY_MANAGEMENT. */
30 UNUSED_PARAMETER(n);
31 return 0;
32 #endif
36 ** Default value of the hard heap limit. 0 means "no limit".
38 #ifndef SQLITE_MAX_MEMORY
39 # define SQLITE_MAX_MEMORY 0
40 #endif
43 ** State information local to the memory allocation subsystem.
45 static SQLITE_WSD struct Mem0Global {
46 sqlite3_mutex *mutex; /* Mutex to serialize access */
47 sqlite3_int64 alarmThreshold; /* The soft heap limit */
48 sqlite3_int64 hardLimit; /* The hard upper bound on memory */
51 ** True if heap is nearly "full" where "full" is defined by the
52 ** sqlite3_soft_heap_limit() setting.
54 int nearlyFull;
55 } mem0 = { 0, SQLITE_MAX_MEMORY, SQLITE_MAX_MEMORY, 0 };
57 #define mem0 GLOBAL(struct Mem0Global, mem0)
60 ** Return the memory allocator mutex. sqlite3_status() needs it.
62 sqlite3_mutex *sqlite3MallocMutex(void){
63 return mem0.mutex;
66 #ifndef SQLITE_OMIT_DEPRECATED
68 ** Deprecated external interface. It used to set an alarm callback
69 ** that was invoked when memory usage grew too large. Now it is a
70 ** no-op.
72 int sqlite3_memory_alarm(
73 void(*xCallback)(void *pArg, sqlite3_int64 used,int N),
74 void *pArg,
75 sqlite3_int64 iThreshold
77 (void)xCallback;
78 (void)pArg;
79 (void)iThreshold;
80 return SQLITE_OK;
82 #endif
85 ** Set the soft heap-size limit for the library. An argument of
86 ** zero disables the limit. A negative argument is a no-op used to
87 ** obtain the return value.
89 ** The return value is the value of the heap limit just before this
90 ** interface was called.
92 ** If the hard heap limit is enabled, then the soft heap limit cannot
93 ** be disabled nor raised above the hard heap limit.
95 sqlite3_int64 sqlite3_soft_heap_limit64(sqlite3_int64 n){
96 sqlite3_int64 priorLimit;
97 sqlite3_int64 excess;
98 sqlite3_int64 nUsed;
99 #ifndef SQLITE_OMIT_AUTOINIT
100 int rc = sqlite3_initialize();
101 if( rc ) return -1;
102 #endif
103 sqlite3_mutex_enter(mem0.mutex);
104 priorLimit = mem0.alarmThreshold;
105 if( n<0 ){
106 sqlite3_mutex_leave(mem0.mutex);
107 return priorLimit;
109 if( mem0.hardLimit>0 && (n>mem0.hardLimit || n==0) ){
110 n = mem0.hardLimit;
112 mem0.alarmThreshold = n;
113 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
114 AtomicStore(&mem0.nearlyFull, n>0 && n<=nUsed);
115 sqlite3_mutex_leave(mem0.mutex);
116 excess = sqlite3_memory_used() - n;
117 if( excess>0 ) sqlite3_release_memory((int)(excess & 0x7fffffff));
118 return priorLimit;
120 void sqlite3_soft_heap_limit(int n){
121 if( n<0 ) n = 0;
122 sqlite3_soft_heap_limit64(n);
126 ** Set the hard heap-size limit for the library. An argument of zero
127 ** disables the hard heap limit. A negative argument is a no-op used
128 ** to obtain the return value without affecting the hard heap limit.
130 ** The return value is the value of the hard heap limit just prior to
131 ** calling this interface.
133 ** Setting the hard heap limit will also activate the soft heap limit
134 ** and constrain the soft heap limit to be no more than the hard heap
135 ** limit.
137 sqlite3_int64 sqlite3_hard_heap_limit64(sqlite3_int64 n){
138 sqlite3_int64 priorLimit;
139 #ifndef SQLITE_OMIT_AUTOINIT
140 int rc = sqlite3_initialize();
141 if( rc ) return -1;
142 #endif
143 sqlite3_mutex_enter(mem0.mutex);
144 priorLimit = mem0.hardLimit;
145 if( n>=0 ){
146 mem0.hardLimit = n;
147 if( n<mem0.alarmThreshold || mem0.alarmThreshold==0 ){
148 mem0.alarmThreshold = n;
151 sqlite3_mutex_leave(mem0.mutex);
152 return priorLimit;
157 ** Initialize the memory allocation subsystem.
159 int sqlite3MallocInit(void){
160 int rc;
161 if( sqlite3GlobalConfig.m.xMalloc==0 ){
162 sqlite3MemSetDefault();
164 mem0.mutex = sqlite3MutexAlloc(SQLITE_MUTEX_STATIC_MEM);
165 if( sqlite3GlobalConfig.pPage==0 || sqlite3GlobalConfig.szPage<512
166 || sqlite3GlobalConfig.nPage<=0 ){
167 sqlite3GlobalConfig.pPage = 0;
168 sqlite3GlobalConfig.szPage = 0;
170 rc = sqlite3GlobalConfig.m.xInit(sqlite3GlobalConfig.m.pAppData);
171 if( rc!=SQLITE_OK ) memset(&mem0, 0, sizeof(mem0));
172 /* BEGIN SQLCIPHER */
173 #ifdef SQLITE_HAS_CODEC
174 /* install wrapping functions for memory management
175 that will wipe all memory allocated by SQLite
176 when freed */
177 if( rc==SQLITE_OK ) {
178 extern void sqlcipher_init_memmethods(void);
179 sqlcipher_init_memmethods();
181 #endif
182 /* END SQLCIPHER */
183 return rc;
187 ** Return true if the heap is currently under memory pressure - in other
188 ** words if the amount of heap used is close to the limit set by
189 ** sqlite3_soft_heap_limit().
191 int sqlite3HeapNearlyFull(void){
192 return AtomicLoad(&mem0.nearlyFull);
196 ** Deinitialize the memory allocation subsystem.
198 void sqlite3MallocEnd(void){
199 if( sqlite3GlobalConfig.m.xShutdown ){
200 sqlite3GlobalConfig.m.xShutdown(sqlite3GlobalConfig.m.pAppData);
202 memset(&mem0, 0, sizeof(mem0));
206 ** Return the amount of memory currently checked out.
208 sqlite3_int64 sqlite3_memory_used(void){
209 sqlite3_int64 res, mx;
210 sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, 0);
211 return res;
215 ** Return the maximum amount of memory that has ever been
216 ** checked out since either the beginning of this process
217 ** or since the most recent reset.
219 sqlite3_int64 sqlite3_memory_highwater(int resetFlag){
220 sqlite3_int64 res, mx;
221 sqlite3_status64(SQLITE_STATUS_MEMORY_USED, &res, &mx, resetFlag);
222 return mx;
226 ** Trigger the alarm
228 static void sqlite3MallocAlarm(int nByte){
229 if( mem0.alarmThreshold<=0 ) return;
230 sqlite3_mutex_leave(mem0.mutex);
231 sqlite3_release_memory(nByte);
232 sqlite3_mutex_enter(mem0.mutex);
235 #ifdef SQLITE_DEBUG
237 ** This routine is called whenever an out-of-memory condition is seen,
238 ** It's only purpose to to serve as a breakpoint for gdb or similar
239 ** code debuggers when working on out-of-memory conditions, for example
240 ** caused by PRAGMA hard_heap_limit=N.
242 static SQLITE_NOINLINE void test_oom_breakpoint(u64 n){
243 static u64 nOomFault = 0;
244 nOomFault += n;
245 /* The assert() is never reached in a human lifetime. It is here mostly
246 ** to prevent code optimizers from optimizing out this function. */
247 assert( (nOomFault>>32) < 0xffffffff );
249 #else
250 # define test_oom_breakpoint(X) /* No-op for production builds */
251 #endif
254 ** Do a memory allocation with statistics and alarms. Assume the
255 ** lock is already held.
257 static void mallocWithAlarm(int n, void **pp){
258 void *p;
259 int nFull;
260 assert( sqlite3_mutex_held(mem0.mutex) );
261 assert( n>0 );
263 /* In Firefox (circa 2017-02-08), xRoundup() is remapped to an internal
264 ** implementation of malloc_good_size(), which must be called in debug
265 ** mode and specifically when the DMD "Dark Matter Detector" is enabled
266 ** or else a crash results. Hence, do not attempt to optimize out the
267 ** following xRoundup() call. */
268 nFull = sqlite3GlobalConfig.m.xRoundup(n);
270 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, n);
271 if( mem0.alarmThreshold>0 ){
272 sqlite3_int64 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
273 if( nUsed >= mem0.alarmThreshold - nFull ){
274 AtomicStore(&mem0.nearlyFull, 1);
275 sqlite3MallocAlarm(nFull);
276 if( mem0.hardLimit ){
277 nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED);
278 if( nUsed >= mem0.hardLimit - nFull ){
279 test_oom_breakpoint(1);
280 *pp = 0;
281 return;
284 }else{
285 AtomicStore(&mem0.nearlyFull, 0);
288 p = sqlite3GlobalConfig.m.xMalloc(nFull);
289 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
290 if( p==0 && mem0.alarmThreshold>0 ){
291 sqlite3MallocAlarm(nFull);
292 p = sqlite3GlobalConfig.m.xMalloc(nFull);
294 #endif
295 if( p ){
296 nFull = sqlite3MallocSize(p);
297 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nFull);
298 sqlite3StatusUp(SQLITE_STATUS_MALLOC_COUNT, 1);
300 *pp = p;
304 ** Maximum size of any single memory allocation.
306 ** This is not a limit on the total amount of memory used. This is
307 ** a limit on the size parameter to sqlite3_malloc() and sqlite3_realloc().
309 ** The upper bound is slightly less than 2GiB: 0x7ffffeff == 2,147,483,391
310 ** This provides a 256-byte safety margin for defense against 32-bit
311 ** signed integer overflow bugs when computing memory allocation sizes.
312 ** Paranoid applications might want to reduce the maximum allocation size
313 ** further for an even larger safety margin. 0x3fffffff or 0x0fffffff
314 ** or even smaller would be reasonable upper bounds on the size of a memory
315 ** allocations for most applications.
317 #ifndef SQLITE_MAX_ALLOCATION_SIZE
318 # define SQLITE_MAX_ALLOCATION_SIZE 2147483391
319 #endif
320 #if SQLITE_MAX_ALLOCATION_SIZE>2147483391
321 # error Maximum size for SQLITE_MAX_ALLOCATION_SIZE is 2147483391
322 #endif
325 ** Allocate memory. This routine is like sqlite3_malloc() except that it
326 ** assumes the memory subsystem has already been initialized.
328 void *sqlite3Malloc(u64 n){
329 void *p;
330 if( n==0 || n>SQLITE_MAX_ALLOCATION_SIZE ){
331 p = 0;
332 }else if( sqlite3GlobalConfig.bMemstat ){
333 sqlite3_mutex_enter(mem0.mutex);
334 mallocWithAlarm((int)n, &p);
335 sqlite3_mutex_leave(mem0.mutex);
336 }else{
337 p = sqlite3GlobalConfig.m.xMalloc((int)n);
339 assert( EIGHT_BYTE_ALIGNMENT(p) ); /* IMP: R-11148-40995 */
340 return p;
344 ** This version of the memory allocation is for use by the application.
345 ** First make sure the memory subsystem is initialized, then do the
346 ** allocation.
348 void *sqlite3_malloc(int n){
349 #ifndef SQLITE_OMIT_AUTOINIT
350 if( sqlite3_initialize() ) return 0;
351 #endif
352 return n<=0 ? 0 : sqlite3Malloc(n);
354 void *sqlite3_malloc64(sqlite3_uint64 n){
355 #ifndef SQLITE_OMIT_AUTOINIT
356 if( sqlite3_initialize() ) return 0;
357 #endif
358 return sqlite3Malloc(n);
362 ** TRUE if p is a lookaside memory allocation from db
364 #ifndef SQLITE_OMIT_LOOKASIDE
365 static int isLookaside(sqlite3 *db, const void *p){
366 return SQLITE_WITHIN(p, db->lookaside.pStart, db->lookaside.pTrueEnd);
368 #else
369 #define isLookaside(A,B) 0
370 #endif
373 ** Return the size of a memory allocation previously obtained from
374 ** sqlite3Malloc() or sqlite3_malloc().
376 int sqlite3MallocSize(const void *p){
377 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
378 return sqlite3GlobalConfig.m.xSize((void*)p);
380 static int lookasideMallocSize(sqlite3 *db, const void *p){
381 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
382 return p<db->lookaside.pMiddle ? db->lookaside.szTrue : LOOKASIDE_SMALL;
383 #else
384 return db->lookaside.szTrue;
385 #endif
387 int sqlite3DbMallocSize(sqlite3 *db, const void *p){
388 assert( p!=0 );
389 #ifdef SQLITE_DEBUG
390 if( db==0 ){
391 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
392 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
393 }else if( !isLookaside(db,p) ){
394 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
395 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
397 #endif
398 if( db ){
399 if( ((uptr)p)<(uptr)(db->lookaside.pTrueEnd) ){
400 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
401 if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){
402 assert( sqlite3_mutex_held(db->mutex) );
403 return LOOKASIDE_SMALL;
405 #endif
406 if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){
407 assert( sqlite3_mutex_held(db->mutex) );
408 return db->lookaside.szTrue;
412 return sqlite3GlobalConfig.m.xSize((void*)p);
414 sqlite3_uint64 sqlite3_msize(void *p){
415 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
416 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
417 return p ? sqlite3GlobalConfig.m.xSize(p) : 0;
421 ** Free memory previously obtained from sqlite3Malloc().
423 void sqlite3_free(void *p){
424 if( p==0 ) return; /* IMP: R-49053-54554 */
425 assert( sqlite3MemdebugHasType(p, MEMTYPE_HEAP) );
426 assert( sqlite3MemdebugNoType(p, (u8)~MEMTYPE_HEAP) );
427 if( sqlite3GlobalConfig.bMemstat ){
428 sqlite3_mutex_enter(mem0.mutex);
429 sqlite3StatusDown(SQLITE_STATUS_MEMORY_USED, sqlite3MallocSize(p));
430 sqlite3StatusDown(SQLITE_STATUS_MALLOC_COUNT, 1);
431 sqlite3GlobalConfig.m.xFree(p);
432 sqlite3_mutex_leave(mem0.mutex);
433 }else{
434 sqlite3GlobalConfig.m.xFree(p);
439 ** Add the size of memory allocation "p" to the count in
440 ** *db->pnBytesFreed.
442 static SQLITE_NOINLINE void measureAllocationSize(sqlite3 *db, void *p){
443 *db->pnBytesFreed += sqlite3DbMallocSize(db,p);
447 ** Free memory that might be associated with a particular database
448 ** connection. Calling sqlite3DbFree(D,X) for X==0 is a harmless no-op.
449 ** The sqlite3DbFreeNN(D,X) version requires that X be non-NULL.
451 void sqlite3DbFreeNN(sqlite3 *db, void *p){
452 assert( db==0 || sqlite3_mutex_held(db->mutex) );
453 assert( p!=0 );
454 if( db ){
455 if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){
456 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
457 if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){
458 LookasideSlot *pBuf = (LookasideSlot*)p;
459 assert( db->pnBytesFreed==0 );
460 #ifdef SQLITE_DEBUG
461 memset(p, 0xaa, LOOKASIDE_SMALL); /* Trash freed content */
462 #endif
463 pBuf->pNext = db->lookaside.pSmallFree;
464 db->lookaside.pSmallFree = pBuf;
465 return;
467 #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
468 if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){
469 LookasideSlot *pBuf = (LookasideSlot*)p;
470 assert( db->pnBytesFreed==0 );
471 #ifdef SQLITE_DEBUG
472 memset(p, 0xaa, db->lookaside.szTrue); /* Trash freed content */
473 #endif
474 pBuf->pNext = db->lookaside.pFree;
475 db->lookaside.pFree = pBuf;
476 return;
479 if( db->pnBytesFreed ){
480 measureAllocationSize(db, p);
481 return;
484 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
485 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
486 assert( db!=0 || sqlite3MemdebugNoType(p, MEMTYPE_LOOKASIDE) );
487 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
488 sqlite3_free(p);
490 void sqlite3DbNNFreeNN(sqlite3 *db, void *p){
491 assert( db!=0 );
492 assert( sqlite3_mutex_held(db->mutex) );
493 assert( p!=0 );
494 if( ((uptr)p)<(uptr)(db->lookaside.pEnd) ){
495 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
496 if( ((uptr)p)>=(uptr)(db->lookaside.pMiddle) ){
497 LookasideSlot *pBuf = (LookasideSlot*)p;
498 assert( db->pnBytesFreed==0 );
499 #ifdef SQLITE_DEBUG
500 memset(p, 0xaa, LOOKASIDE_SMALL); /* Trash freed content */
501 #endif
502 pBuf->pNext = db->lookaside.pSmallFree;
503 db->lookaside.pSmallFree = pBuf;
504 return;
506 #endif /* SQLITE_OMIT_TWOSIZE_LOOKASIDE */
507 if( ((uptr)p)>=(uptr)(db->lookaside.pStart) ){
508 LookasideSlot *pBuf = (LookasideSlot*)p;
509 assert( db->pnBytesFreed==0 );
510 #ifdef SQLITE_DEBUG
511 memset(p, 0xaa, db->lookaside.szTrue); /* Trash freed content */
512 #endif
513 pBuf->pNext = db->lookaside.pFree;
514 db->lookaside.pFree = pBuf;
515 return;
518 if( db->pnBytesFreed ){
519 measureAllocationSize(db, p);
520 return;
522 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
523 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
524 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
525 sqlite3_free(p);
527 void sqlite3DbFree(sqlite3 *db, void *p){
528 assert( db==0 || sqlite3_mutex_held(db->mutex) );
529 if( p ) sqlite3DbFreeNN(db, p);
533 ** Change the size of an existing memory allocation
535 void *sqlite3Realloc(void *pOld, u64 nBytes){
536 int nOld, nNew, nDiff;
537 void *pNew;
538 assert( sqlite3MemdebugHasType(pOld, MEMTYPE_HEAP) );
539 assert( sqlite3MemdebugNoType(pOld, (u8)~MEMTYPE_HEAP) );
540 if( pOld==0 ){
541 return sqlite3Malloc(nBytes); /* IMP: R-04300-56712 */
543 if( nBytes==0 ){
544 sqlite3_free(pOld); /* IMP: R-26507-47431 */
545 return 0;
547 if( nBytes>=0x7fffff00 ){
548 /* The 0x7ffff00 limit term is explained in comments on sqlite3Malloc() */
549 return 0;
551 nOld = sqlite3MallocSize(pOld);
552 /* IMPLEMENTATION-OF: R-46199-30249 SQLite guarantees that the second
553 ** argument to xRealloc is always a value returned by a prior call to
554 ** xRoundup. */
555 nNew = sqlite3GlobalConfig.m.xRoundup((int)nBytes);
556 if( nOld==nNew ){
557 pNew = pOld;
558 }else if( sqlite3GlobalConfig.bMemstat ){
559 sqlite3_int64 nUsed;
560 sqlite3_mutex_enter(mem0.mutex);
561 sqlite3StatusHighwater(SQLITE_STATUS_MALLOC_SIZE, (int)nBytes);
562 nDiff = nNew - nOld;
563 if( nDiff>0 && (nUsed = sqlite3StatusValue(SQLITE_STATUS_MEMORY_USED)) >=
564 mem0.alarmThreshold-nDiff ){
565 sqlite3MallocAlarm(nDiff);
566 if( mem0.hardLimit>0 && nUsed >= mem0.hardLimit - nDiff ){
567 sqlite3_mutex_leave(mem0.mutex);
568 test_oom_breakpoint(1);
569 return 0;
572 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
573 #ifdef SQLITE_ENABLE_MEMORY_MANAGEMENT
574 if( pNew==0 && mem0.alarmThreshold>0 ){
575 sqlite3MallocAlarm((int)nBytes);
576 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
578 #endif
579 if( pNew ){
580 nNew = sqlite3MallocSize(pNew);
581 sqlite3StatusUp(SQLITE_STATUS_MEMORY_USED, nNew-nOld);
583 sqlite3_mutex_leave(mem0.mutex);
584 }else{
585 pNew = sqlite3GlobalConfig.m.xRealloc(pOld, nNew);
587 assert( EIGHT_BYTE_ALIGNMENT(pNew) ); /* IMP: R-11148-40995 */
588 return pNew;
592 ** The public interface to sqlite3Realloc. Make sure that the memory
593 ** subsystem is initialized prior to invoking sqliteRealloc.
595 void *sqlite3_realloc(void *pOld, int n){
596 #ifndef SQLITE_OMIT_AUTOINIT
597 if( sqlite3_initialize() ) return 0;
598 #endif
599 if( n<0 ) n = 0; /* IMP: R-26507-47431 */
600 return sqlite3Realloc(pOld, n);
602 void *sqlite3_realloc64(void *pOld, sqlite3_uint64 n){
603 #ifndef SQLITE_OMIT_AUTOINIT
604 if( sqlite3_initialize() ) return 0;
605 #endif
606 return sqlite3Realloc(pOld, n);
611 ** Allocate and zero memory.
613 void *sqlite3MallocZero(u64 n){
614 void *p = sqlite3Malloc(n);
615 if( p ){
616 memset(p, 0, (size_t)n);
618 return p;
622 ** Allocate and zero memory. If the allocation fails, make
623 ** the mallocFailed flag in the connection pointer.
625 void *sqlite3DbMallocZero(sqlite3 *db, u64 n){
626 void *p;
627 testcase( db==0 );
628 p = sqlite3DbMallocRaw(db, n);
629 if( p ) memset(p, 0, (size_t)n);
630 return p;
634 /* Finish the work of sqlite3DbMallocRawNN for the unusual and
635 ** slower case when the allocation cannot be fulfilled using lookaside.
637 static SQLITE_NOINLINE void *dbMallocRawFinish(sqlite3 *db, u64 n){
638 void *p;
639 assert( db!=0 );
640 p = sqlite3Malloc(n);
641 if( !p ) sqlite3OomFault(db);
642 sqlite3MemdebugSetType(p,
643 (db->lookaside.bDisable==0) ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP);
644 return p;
648 ** Allocate memory, either lookaside (if possible) or heap.
649 ** If the allocation fails, set the mallocFailed flag in
650 ** the connection pointer.
652 ** If db!=0 and db->mallocFailed is true (indicating a prior malloc
653 ** failure on the same database connection) then always return 0.
654 ** Hence for a particular database connection, once malloc starts
655 ** failing, it fails consistently until mallocFailed is reset.
656 ** This is an important assumption. There are many places in the
657 ** code that do things like this:
659 ** int *a = (int*)sqlite3DbMallocRaw(db, 100);
660 ** int *b = (int*)sqlite3DbMallocRaw(db, 200);
661 ** if( b ) a[10] = 9;
663 ** In other words, if a subsequent malloc (ex: "b") worked, it is assumed
664 ** that all prior mallocs (ex: "a") worked too.
666 ** The sqlite3MallocRawNN() variant guarantees that the "db" parameter is
667 ** not a NULL pointer.
669 void *sqlite3DbMallocRaw(sqlite3 *db, u64 n){
670 void *p;
671 if( db ) return sqlite3DbMallocRawNN(db, n);
672 p = sqlite3Malloc(n);
673 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
674 return p;
676 void *sqlite3DbMallocRawNN(sqlite3 *db, u64 n){
677 #ifndef SQLITE_OMIT_LOOKASIDE
678 LookasideSlot *pBuf;
679 assert( db!=0 );
680 assert( sqlite3_mutex_held(db->mutex) );
681 assert( db->pnBytesFreed==0 );
682 if( n>db->lookaside.sz ){
683 if( !db->lookaside.bDisable ){
684 db->lookaside.anStat[1]++;
685 }else if( db->mallocFailed ){
686 return 0;
688 return dbMallocRawFinish(db, n);
690 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
691 if( n<=LOOKASIDE_SMALL ){
692 if( (pBuf = db->lookaside.pSmallFree)!=0 ){
693 db->lookaside.pSmallFree = pBuf->pNext;
694 db->lookaside.anStat[0]++;
695 return (void*)pBuf;
696 }else if( (pBuf = db->lookaside.pSmallInit)!=0 ){
697 db->lookaside.pSmallInit = pBuf->pNext;
698 db->lookaside.anStat[0]++;
699 return (void*)pBuf;
702 #endif
703 if( (pBuf = db->lookaside.pFree)!=0 ){
704 db->lookaside.pFree = pBuf->pNext;
705 db->lookaside.anStat[0]++;
706 return (void*)pBuf;
707 }else if( (pBuf = db->lookaside.pInit)!=0 ){
708 db->lookaside.pInit = pBuf->pNext;
709 db->lookaside.anStat[0]++;
710 return (void*)pBuf;
711 }else{
712 db->lookaside.anStat[2]++;
714 #else
715 assert( db!=0 );
716 assert( sqlite3_mutex_held(db->mutex) );
717 assert( db->pnBytesFreed==0 );
718 if( db->mallocFailed ){
719 return 0;
721 #endif
722 return dbMallocRawFinish(db, n);
725 /* Forward declaration */
726 static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n);
729 ** Resize the block of memory pointed to by p to n bytes. If the
730 ** resize fails, set the mallocFailed flag in the connection object.
732 void *sqlite3DbRealloc(sqlite3 *db, void *p, u64 n){
733 assert( db!=0 );
734 if( p==0 ) return sqlite3DbMallocRawNN(db, n);
735 assert( sqlite3_mutex_held(db->mutex) );
736 if( ((uptr)p)<(uptr)db->lookaside.pEnd ){
737 #ifndef SQLITE_OMIT_TWOSIZE_LOOKASIDE
738 if( ((uptr)p)>=(uptr)db->lookaside.pMiddle ){
739 if( n<=LOOKASIDE_SMALL ) return p;
740 }else
741 #endif
742 if( ((uptr)p)>=(uptr)db->lookaside.pStart ){
743 if( n<=db->lookaside.szTrue ) return p;
746 return dbReallocFinish(db, p, n);
748 static SQLITE_NOINLINE void *dbReallocFinish(sqlite3 *db, void *p, u64 n){
749 void *pNew = 0;
750 assert( db!=0 );
751 assert( p!=0 );
752 if( db->mallocFailed==0 ){
753 if( isLookaside(db, p) ){
754 pNew = sqlite3DbMallocRawNN(db, n);
755 if( pNew ){
756 memcpy(pNew, p, lookasideMallocSize(db, p));
757 sqlite3DbFree(db, p);
759 }else{
760 assert( sqlite3MemdebugHasType(p, (MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
761 assert( sqlite3MemdebugNoType(p, (u8)~(MEMTYPE_LOOKASIDE|MEMTYPE_HEAP)) );
762 sqlite3MemdebugSetType(p, MEMTYPE_HEAP);
763 pNew = sqlite3Realloc(p, n);
764 if( !pNew ){
765 sqlite3OomFault(db);
767 sqlite3MemdebugSetType(pNew,
768 (db->lookaside.bDisable==0 ? MEMTYPE_LOOKASIDE : MEMTYPE_HEAP));
771 return pNew;
775 ** Attempt to reallocate p. If the reallocation fails, then free p
776 ** and set the mallocFailed flag in the database connection.
778 void *sqlite3DbReallocOrFree(sqlite3 *db, void *p, u64 n){
779 void *pNew;
780 pNew = sqlite3DbRealloc(db, p, n);
781 if( !pNew ){
782 sqlite3DbFree(db, p);
784 return pNew;
788 ** Make a copy of a string in memory obtained from sqliteMalloc(). These
789 ** functions call sqlite3MallocRaw() directly instead of sqliteMalloc(). This
790 ** is because when memory debugging is turned on, these two functions are
791 ** called via macros that record the current file and line number in the
792 ** ThreadData structure.
794 char *sqlite3DbStrDup(sqlite3 *db, const char *z){
795 char *zNew;
796 size_t n;
797 if( z==0 ){
798 return 0;
800 n = strlen(z) + 1;
801 zNew = sqlite3DbMallocRaw(db, n);
802 if( zNew ){
803 memcpy(zNew, z, n);
805 return zNew;
807 char *sqlite3DbStrNDup(sqlite3 *db, const char *z, u64 n){
808 char *zNew;
809 assert( db!=0 );
810 assert( z!=0 || n==0 );
811 assert( (n&0x7fffffff)==n );
812 zNew = z ? sqlite3DbMallocRawNN(db, n+1) : 0;
813 if( zNew ){
814 memcpy(zNew, z, (size_t)n);
815 zNew[n] = 0;
817 return zNew;
821 ** The text between zStart and zEnd represents a phrase within a larger
822 ** SQL statement. Make a copy of this phrase in space obtained form
823 ** sqlite3DbMalloc(). Omit leading and trailing whitespace.
825 char *sqlite3DbSpanDup(sqlite3 *db, const char *zStart, const char *zEnd){
826 int n;
827 #ifdef SQLITE_DEBUG
828 /* Because of the way the parser works, the span is guaranteed to contain
829 ** at least one non-space character */
830 for(n=0; sqlite3Isspace(zStart[n]); n++){ assert( &zStart[n]<zEnd ); }
831 #endif
832 while( sqlite3Isspace(zStart[0]) ) zStart++;
833 n = (int)(zEnd - zStart);
834 while( sqlite3Isspace(zStart[n-1]) ) n--;
835 return sqlite3DbStrNDup(db, zStart, n);
839 ** Free any prior content in *pz and replace it with a copy of zNew.
841 void sqlite3SetString(char **pz, sqlite3 *db, const char *zNew){
842 char *z = sqlite3DbStrDup(db, zNew);
843 sqlite3DbFree(db, *pz);
844 *pz = z;
848 ** Call this routine to record the fact that an OOM (out-of-memory) error
849 ** has happened. This routine will set db->mallocFailed, and also
850 ** temporarily disable the lookaside memory allocator and interrupt
851 ** any running VDBEs.
853 ** Always return a NULL pointer so that this routine can be invoked using
855 ** return sqlite3OomFault(db);
857 ** and thereby avoid unnecessary stack frame allocations for the overwhelmingly
858 ** common case where no OOM occurs.
860 void *sqlite3OomFault(sqlite3 *db){
861 if( db->mallocFailed==0 && db->bBenignMalloc==0 ){
862 db->mallocFailed = 1;
863 if( db->nVdbeExec>0 ){
864 AtomicStore(&db->u1.isInterrupted, 1);
866 DisableLookaside;
867 if( db->pParse ){
868 Parse *pParse;
869 sqlite3ErrorMsg(db->pParse, "out of memory");
870 db->pParse->rc = SQLITE_NOMEM_BKPT;
871 for(pParse=db->pParse->pOuterParse; pParse; pParse = pParse->pOuterParse){
872 pParse->nErr++;
873 pParse->rc = SQLITE_NOMEM;
877 return 0;
881 ** This routine reactivates the memory allocator and clears the
882 ** db->mallocFailed flag as necessary.
884 ** The memory allocator is not restarted if there are running
885 ** VDBEs.
887 void sqlite3OomClear(sqlite3 *db){
888 if( db->mallocFailed && db->nVdbeExec==0 ){
889 db->mallocFailed = 0;
890 AtomicStore(&db->u1.isInterrupted, 0);
891 assert( db->lookaside.bDisable>0 );
892 EnableLookaside;
897 ** Take actions at the end of an API call to deal with error codes.
899 static SQLITE_NOINLINE int apiHandleError(sqlite3 *db, int rc){
900 if( db->mallocFailed || rc==SQLITE_IOERR_NOMEM ){
901 sqlite3OomClear(db);
902 sqlite3Error(db, SQLITE_NOMEM);
903 return SQLITE_NOMEM_BKPT;
905 return rc & db->errMask;
909 ** This function must be called before exiting any API function (i.e.
910 ** returning control to the user) that has called sqlite3_malloc or
911 ** sqlite3_realloc.
913 ** The returned value is normally a copy of the second argument to this
914 ** function. However, if a malloc() failure has occurred since the previous
915 ** invocation SQLITE_NOMEM is returned instead.
917 ** If an OOM as occurred, then the connection error-code (the value
918 ** returned by sqlite3_errcode()) is set to SQLITE_NOMEM.
920 int sqlite3ApiExit(sqlite3* db, int rc){
921 /* If the db handle must hold the connection handle mutex here.
922 ** Otherwise the read (and possible write) of db->mallocFailed
923 ** is unsafe, as is the call to sqlite3Error().
925 assert( db!=0 );
926 assert( sqlite3_mutex_held(db->mutex) );
927 if( db->mallocFailed || rc ){
928 return apiHandleError(db, rc);
930 return 0;