4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** Utility functions used throughout sqlite.
14 ** This file contains functions for allocating memory, comparing
15 ** strings, and stuff like that.
18 #include "sqliteInt.h"
20 #ifndef SQLITE_OMIT_FLOATING_POINT
25 ** Calls to sqlite3FaultSim() are used to simulate a failure during testing,
26 ** or to bypass normal error detection during testing in order to let
27 ** execute proceed further downstream.
29 ** In deployment, sqlite3FaultSim() *always* return SQLITE_OK (0). The
30 ** sqlite3FaultSim() function only returns non-zero during testing.
32 ** During testing, if the test harness has set a fault-sim callback using
33 ** a call to sqlite3_test_control(SQLITE_TESTCTRL_FAULT_INSTALL), then
34 ** each call to sqlite3FaultSim() is relayed to that application-supplied
35 ** callback and the integer return value form the application-supplied
36 ** callback is returned by sqlite3FaultSim().
38 ** The integer argument to sqlite3FaultSim() is a code to identify which
39 ** sqlite3FaultSim() instance is being invoked. Each call to sqlite3FaultSim()
40 ** should have a unique code. To prevent legacy testing applications from
41 ** breaking, the codes should not be changed or reused.
43 #ifndef SQLITE_UNTESTABLE
44 int sqlite3FaultSim(int iTest
){
45 int (*xCallback
)(int) = sqlite3GlobalConfig
.xTestCallback
;
46 return xCallback
? xCallback(iTest
) : SQLITE_OK
;
50 #ifndef SQLITE_OMIT_FLOATING_POINT
52 ** Return true if the floating point value is Not a Number (NaN).
54 ** Use the math library isnan() function if compiled with SQLITE_HAVE_ISNAN.
55 ** Otherwise, we have our own implementation that works on most systems.
57 int sqlite3IsNaN(double x
){
58 int rc
; /* The value return */
59 #if !SQLITE_HAVE_ISNAN && !HAVE_ISNAN
61 memcpy(&y
,&x
,sizeof(y
));
65 #endif /* HAVE_ISNAN */
69 #endif /* SQLITE_OMIT_FLOATING_POINT */
71 #ifndef SQLITE_OMIT_FLOATING_POINT
73 ** Return true if the floating point value is NaN or +Inf or -Inf.
75 int sqlite3IsOverflow(double x
){
76 int rc
; /* The value return */
78 memcpy(&y
,&x
,sizeof(y
));
82 #endif /* SQLITE_OMIT_FLOATING_POINT */
85 ** Compute a string length that is limited to what can be stored in
86 ** lower 30 bits of a 32-bit signed integer.
88 ** The value returned will never be negative. Nor will it ever be greater
89 ** than the actual length of the string. For very long strings (greater
90 ** than 1GiB) the value returned might be less than the true string length.
92 int sqlite3Strlen30(const char *z
){
94 return 0x3fffffff & (int)strlen(z
);
98 ** Return the declared type of a column. Or return zDflt if the column
99 ** has no declared type.
101 ** The column type is an extra string stored after the zero-terminator on
102 ** the column name if and only if the COLFLAG_HASTYPE flag is set.
104 char *sqlite3ColumnType(Column
*pCol
, char *zDflt
){
105 if( pCol
->colFlags
& COLFLAG_HASTYPE
){
106 return pCol
->zCnName
+ strlen(pCol
->zCnName
) + 1;
107 }else if( pCol
->eCType
){
108 assert( pCol
->eCType
<=SQLITE_N_STDTYPE
);
109 return (char*)sqlite3StdType
[pCol
->eCType
-1];
116 ** Helper function for sqlite3Error() - called rarely. Broken out into
117 ** a separate routine to avoid unnecessary register saves on entry to
120 static SQLITE_NOINLINE
void sqlite3ErrorFinish(sqlite3
*db
, int err_code
){
121 if( db
->pErr
) sqlite3ValueSetNull(db
->pErr
);
122 sqlite3SystemError(db
, err_code
);
126 ** Set the current error code to err_code and clear any prior error message.
127 ** Also set iSysErrno (by calling sqlite3System) if the err_code indicates
128 ** that would be appropriate.
130 void sqlite3Error(sqlite3
*db
, int err_code
){
132 db
->errCode
= err_code
;
133 if( err_code
|| db
->pErr
){
134 sqlite3ErrorFinish(db
, err_code
);
136 db
->errByteOffset
= -1;
141 ** The equivalent of sqlite3Error(db, SQLITE_OK). Clear the error state
142 ** and error message.
144 void sqlite3ErrorClear(sqlite3
*db
){
146 db
->errCode
= SQLITE_OK
;
147 db
->errByteOffset
= -1;
148 if( db
->pErr
) sqlite3ValueSetNull(db
->pErr
);
152 ** Load the sqlite3.iSysErrno field if that is an appropriate thing
153 ** to do based on the SQLite error code in rc.
155 void sqlite3SystemError(sqlite3
*db
, int rc
){
156 if( rc
==SQLITE_IOERR_NOMEM
) return;
157 #if defined(SQLITE_USE_SEH) && !defined(SQLITE_OMIT_WAL)
158 if( rc
==SQLITE_IOERR_IN_PAGE
){
161 sqlite3BtreeEnterAll(db
);
162 for(ii
=0; ii
<db
->nDb
; ii
++){
163 if( db
->aDb
[ii
].pBt
){
164 iErr
= sqlite3PagerWalSystemErrno(sqlite3BtreePager(db
->aDb
[ii
].pBt
));
166 db
->iSysErrno
= iErr
;
170 sqlite3BtreeLeaveAll(db
);
175 if( rc
==SQLITE_CANTOPEN
|| rc
==SQLITE_IOERR
){
176 db
->iSysErrno
= sqlite3OsGetLastError(db
->pVfs
);
181 ** Set the most recent error code and error string for the sqlite
182 ** handle "db". The error code is set to "err_code".
184 ** If it is not NULL, string zFormat specifies the format of the
185 ** error string. zFormat and any string tokens that follow it are
186 ** assumed to be encoded in UTF-8.
188 ** To clear the most recent error for sqlite handle "db", sqlite3Error
189 ** should be called with err_code set to SQLITE_OK and zFormat set
192 void sqlite3ErrorWithMsg(sqlite3
*db
, int err_code
, const char *zFormat
, ...){
194 db
->errCode
= err_code
;
195 sqlite3SystemError(db
, err_code
);
197 sqlite3Error(db
, err_code
);
198 }else if( db
->pErr
|| (db
->pErr
= sqlite3ValueNew(db
))!=0 ){
201 va_start(ap
, zFormat
);
202 z
= sqlite3VMPrintf(db
, zFormat
, ap
);
204 sqlite3ValueSetStr(db
->pErr
, -1, z
, SQLITE_UTF8
, SQLITE_DYNAMIC
);
209 ** Check for interrupts and invoke progress callback.
211 void sqlite3ProgressCheck(Parse
*p
){
213 if( AtomicLoad(&db
->u1
.isInterrupted
) ){
215 p
->rc
= SQLITE_INTERRUPT
;
217 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
219 if( p
->rc
==SQLITE_INTERRUPT
){
220 p
->nProgressSteps
= 0;
221 }else if( (++p
->nProgressSteps
)>=db
->nProgressOps
){
222 if( db
->xProgress(db
->pProgressArg
) ){
224 p
->rc
= SQLITE_INTERRUPT
;
226 p
->nProgressSteps
= 0;
233 ** Add an error message to pParse->zErrMsg and increment pParse->nErr.
235 ** This function should be used to report any error that occurs while
236 ** compiling an SQL statement (i.e. within sqlite3_prepare()). The
237 ** last thing the sqlite3_prepare() function does is copy the error
238 ** stored by this function into the database handle using sqlite3Error().
239 ** Functions sqlite3Error() or sqlite3ErrorWithMsg() should be used
240 ** during statement execution (sqlite3_step() etc.).
242 void sqlite3ErrorMsg(Parse
*pParse
, const char *zFormat
, ...){
245 sqlite3
*db
= pParse
->db
;
247 assert( db
->pParse
==pParse
|| db
->pParse
->pToplevel
==pParse
);
248 db
->errByteOffset
= -2;
249 va_start(ap
, zFormat
);
250 zMsg
= sqlite3VMPrintf(db
, zFormat
, ap
);
252 if( db
->errByteOffset
<-1 ) db
->errByteOffset
= -1;
253 if( db
->suppressErr
){
254 sqlite3DbFree(db
, zMsg
);
255 if( db
->mallocFailed
){
257 pParse
->rc
= SQLITE_NOMEM
;
261 sqlite3DbFree(db
, pParse
->zErrMsg
);
262 pParse
->zErrMsg
= zMsg
;
263 pParse
->rc
= SQLITE_ERROR
;
269 ** If database connection db is currently parsing SQL, then transfer
270 ** error code errCode to that parser if the parser has not already
271 ** encountered some other kind of error.
273 int sqlite3ErrorToParser(sqlite3
*db
, int errCode
){
275 if( db
==0 || (pParse
= db
->pParse
)==0 ) return errCode
;
276 pParse
->rc
= errCode
;
282 ** Convert an SQL-style quoted string into a normal string by removing
283 ** the quote characters. The conversion is done in-place. If the
284 ** input does not begin with a quote character, then this routine
287 ** The input string must be zero-terminated. A new zero-terminator
288 ** is added to the dequoted string.
290 ** The return value is -1 if no dequoting occurs or the length of the
291 ** dequoted string, exclusive of the zero terminator, if dequoting does
294 ** 2002-02-14: This routine is extended to remove MS-Access style
295 ** brackets from around identifiers. For example: "[a-b-c]" becomes
298 void sqlite3Dequote(char *z
){
303 if( !sqlite3Isquote(quote
) ) return;
304 if( quote
=='[' ) quote
= ']';
320 void sqlite3DequoteExpr(Expr
*p
){
321 assert( !ExprHasProperty(p
, EP_IntValue
) );
322 assert( sqlite3Isquote(p
->u
.zToken
[0]) );
323 p
->flags
|= p
->u
.zToken
[0]=='"' ? EP_Quoted
|EP_DblQuoted
: EP_Quoted
;
324 sqlite3Dequote(p
->u
.zToken
);
328 ** Expression p is a QNUMBER (quoted number). Dequote the value in p->u.zToken
329 ** and set the type to INTEGER or FLOAT. "Quoted" integers or floats are those
330 ** that contain '_' characters that must be removed before further processing.
332 void sqlite3DequoteNumber(Parse
*pParse
, Expr
*p
){
333 assert( p
!=0 || pParse
->db
->mallocFailed
);
335 const char *pIn
= p
->u
.zToken
;
336 char *pOut
= p
->u
.zToken
;
337 int bHex
= (pIn
[0]=='0' && (pIn
[1]=='x' || pIn
[1]=='X'));
339 assert( p
->op
==TK_QNUMBER
);
342 if( *pIn
!=SQLITE_DIGIT_SEPARATOR
){
344 if( *pIn
=='e' || *pIn
=='E' || *pIn
=='.' ) p
->op
= TK_FLOAT
;
346 if( (bHex
==0 && (!sqlite3Isdigit(pIn
[-1]) || !sqlite3Isdigit(pIn
[1])))
347 || (bHex
==1 && (!sqlite3Isxdigit(pIn
[-1]) || !sqlite3Isxdigit(pIn
[1])))
349 sqlite3ErrorMsg(pParse
, "unrecognized token: \"%s\"", p
->u
.zToken
);
353 if( bHex
) p
->op
= TK_INTEGER
;
355 /* tag-20240227-a: If after dequoting, the number is an integer that
356 ** fits in 32 bits, then it must be converted into EP_IntValue. Other
357 ** parts of the code expect this. See also tag-20240227-b. */
358 if( p
->op
==TK_INTEGER
&& sqlite3GetInt32(p
->u
.zToken
, &iValue
) ){
359 p
->u
.iValue
= iValue
;
360 p
->flags
|= EP_IntValue
;
366 ** If the input token p is quoted, try to adjust the token to remove
367 ** the quotes. This is not always possible:
370 ** "ab""cd" -> (not possible because of the interior "")
372 ** Remove the quotes if possible. This is a optimization. The overall
373 ** system should still return the correct answer even if this routine
374 ** is always a no-op.
376 void sqlite3DequoteToken(Token
*p
){
379 if( !sqlite3Isquote(p
->z
[0]) ) return;
380 for(i
=1; i
<p
->n
-1; i
++){
381 if( sqlite3Isquote(p
->z
[i
]) ) return;
388 ** Generate a Token object from a string
390 void sqlite3TokenInit(Token
*p
, char *z
){
392 p
->n
= sqlite3Strlen30(z
);
395 /* Convenient short-hand */
396 #define UpperToLower sqlite3UpperToLower
399 ** Some systems have stricmp(). Others have strcasecmp(). Because
400 ** there is no consistency, we will define our own.
402 ** IMPLEMENTATION-OF: R-30243-02494 The sqlite3_stricmp() and
403 ** sqlite3_strnicmp() APIs allow applications and extensions to compare
404 ** the contents of two buffers containing UTF-8 strings in a
405 ** case-independent fashion, using the same definition of "case
406 ** independence" that SQLite uses internally when comparing identifiers.
408 int sqlite3_stricmp(const char *zLeft
, const char *zRight
){
410 return zRight
? -1 : 0;
411 }else if( zRight
==0 ){
414 return sqlite3StrICmp(zLeft
, zRight
);
416 int sqlite3StrICmp(const char *zLeft
, const char *zRight
){
417 unsigned char *a
, *b
;
419 a
= (unsigned char *)zLeft
;
420 b
= (unsigned char *)zRight
;
427 c
= (int)UpperToLower
[c
] - (int)UpperToLower
[x
];
435 int sqlite3_strnicmp(const char *zLeft
, const char *zRight
, int N
){
436 register unsigned char *a
, *b
;
438 return zRight
? -1 : 0;
439 }else if( zRight
==0 ){
442 a
= (unsigned char *)zLeft
;
443 b
= (unsigned char *)zRight
;
444 while( N
-- > 0 && *a
!=0 && UpperToLower
[*a
]==UpperToLower
[*b
]){ a
++; b
++; }
445 return N
<0 ? 0 : UpperToLower
[*a
] - UpperToLower
[*b
];
449 ** Compute an 8-bit hash on a string that is insensitive to case differences
451 u8
sqlite3StrIHash(const char *z
){
455 h
+= UpperToLower
[(unsigned char)z
[0]];
461 /* Double-Double multiplication. (x[0],x[1]) *= (y,yy)
464 ** T. J. Dekker, "A Floating-Point Technique for Extending the
465 ** Available Precision". 1971-07-26.
467 static void dekkerMul2(volatile double *x
, double y
, double yy
){
469 ** The "volatile" keywords on parameter x[] and on local variables
470 ** below are needed force intermediate results to be truncated to
471 ** binary64 rather than be carried around in an extended-precision
472 ** format. The truncation is necessary for the Dekker algorithm to
473 ** work. Intel x86 floating point might omit the truncation without
474 ** the use of volatile.
476 volatile double tx
, ty
, p
, q
, c
, cc
;
479 memcpy(&m
, (void*)&x
[0], 8);
480 m
&= 0xfffffffffc000000LL
;
484 m
&= 0xfffffffffc000000LL
;
490 cc
= p
- c
+ q
+ tx
*ty
;
491 cc
= x
[0]*yy
+ x
[1]*y
+ cc
;
498 ** The string z[] is an text representation of a real number.
499 ** Convert this string to a double and write it into *pResult.
501 ** The string z[] is length bytes in length (bytes, not characters) and
502 ** uses the encoding enc. The string is not necessarily zero-terminated.
504 ** Return TRUE if the result is a valid real number (or integer) and FALSE
505 ** if the string is empty or contains extraneous text. More specifically
507 ** 1 => The input string is a pure integer
508 ** 2 or more => The input has a decimal point or eNNN clause
509 ** 0 or less => The input string is not a valid number
510 ** -1 => Not a valid number, but has a valid prefix which
511 ** includes a decimal point and/or an eNNN clause
513 ** Valid numbers are in one of these formats:
515 ** [+-]digits[E[+-]digits]
516 ** [+-]digits.[digits][E[+-]digits]
517 ** [+-].digits[E[+-]digits]
519 ** Leading and trailing whitespace is ignored for the purpose of determining
522 ** If some prefix of the input string is a valid number, this routine
523 ** returns FALSE but it still converts the prefix and writes the result
526 #if defined(_MSC_VER)
527 #pragma warning(disable : 4756)
529 int sqlite3AtoF(const char *z
, double *pResult
, int length
, u8 enc
){
530 #ifndef SQLITE_OMIT_FLOATING_POINT
533 /* sign * significand * (10 ^ (esign * exponent)) */
534 int sign
= 1; /* sign of significand */
535 u64 s
= 0; /* significand */
536 int d
= 0; /* adjust exponent for shifting decimal point */
537 int esign
= 1; /* sign of exponent */
538 int e
= 0; /* exponent */
539 int eValid
= 1; /* True exponent is either not used or is well-formed */
540 int nDigit
= 0; /* Number of digits processed */
541 int eType
= 1; /* 1: pure integer, 2+: fractional -1 or less: bad UTF16 */
543 assert( enc
==SQLITE_UTF8
|| enc
==SQLITE_UTF16LE
|| enc
==SQLITE_UTF16BE
);
544 *pResult
= 0.0; /* Default return value, in case of an error */
545 if( length
==0 ) return 0;
547 if( enc
==SQLITE_UTF8
){
554 assert( SQLITE_UTF16LE
==2 && SQLITE_UTF16BE
==3 );
555 testcase( enc
==SQLITE_UTF16LE
);
556 testcase( enc
==SQLITE_UTF16BE
);
557 for(i
=3-enc
; i
<length
&& z
[i
]==0; i
+=2){}
558 if( i
<length
) eType
= -100;
563 /* skip leading spaces */
564 while( z
<zEnd
&& sqlite3Isspace(*z
) ) z
+=incr
;
565 if( z
>=zEnd
) return 0;
567 /* get sign of significand */
575 /* copy max significant digits to significand */
576 while( z
<zEnd
&& sqlite3Isdigit(*z
) ){
577 s
= s
*10 + (*z
- '0');
579 if( s
>=((LARGEST_UINT64
-9)/10) ){
580 /* skip non-significant significand digits
581 ** (increase exponent by d to shift decimal left) */
582 while( z
<zEnd
&& sqlite3Isdigit(*z
) ){ z
+=incr
; d
++; }
585 if( z
>=zEnd
) goto do_atof_calc
;
587 /* if decimal point is present */
591 /* copy digits from after decimal to significand
592 ** (decrease exponent by d to shift decimal right) */
593 while( z
<zEnd
&& sqlite3Isdigit(*z
) ){
594 if( s
<((LARGEST_UINT64
-9)/10) ){
595 s
= s
*10 + (*z
- '0');
602 if( z
>=zEnd
) goto do_atof_calc
;
604 /* if exponent is present */
605 if( *z
=='e' || *z
=='E' ){
610 /* This branch is needed to avoid a (harmless) buffer overread. The
611 ** special comment alerts the mutation tester that the correct answer
612 ** is obtained even if the branch is omitted */
613 if( z
>=zEnd
) goto do_atof_calc
; /*PREVENTS-HARMLESS-OVERREAD*/
615 /* get sign of exponent */
622 /* copy digits to exponent */
623 while( z
<zEnd
&& sqlite3Isdigit(*z
) ){
624 e
= e
<10000 ? (e
*10 + (*z
- '0')) : 10000;
630 /* skip trailing spaces */
631 while( z
<zEnd
&& sqlite3Isspace(*z
) ) z
+=incr
;
634 /* Zero is a special case */
636 *pResult
= sign
<0 ? -0.0 : +0.0;
640 /* adjust exponent by d, and update sign */
643 /* Try to adjust the exponent to make it smaller */
644 while( e
>0 && s
<(LARGEST_UINT64
/10) ){
648 while( e
<0 && (s
%10)==0 ){
655 }else if( sqlite3Config
.bUseLongDouble
){
656 LONGDOUBLE_TYPE r
= (LONGDOUBLE_TYPE
)s
;
658 while( e
>=100 ){ e
-=100; r
*= 1.0e+100L; }
659 while( e
>=10 ){ e
-=10; r
*= 1.0e+10L; }
660 while( e
>=1 ){ e
-=1; r
*= 1.0e+01L; }
662 while( e
<=-100 ){ e
+=100; r
*= 1.0e-100L; }
663 while( e
<=-10 ){ e
+=10; r
*= 1.0e-10L; }
664 while( e
<=-1 ){ e
+=1; r
*= 1.0e-01L; }
667 if( r
>+1.7976931348623157081452742373e+308L ){
669 *pResult
= +INFINITY
;
671 *pResult
= 1.0e308
*10.0;
674 *pResult
= (double)r
;
681 #if defined(_MSC_VER) && _MSC_VER<1700
682 if( s2
==0x8000000000000000LL
){ s2
= 2*(u64
)(0.5*rr
[0]); }
684 rr
[1] = s
>=s2
? (double)(s
- s2
) : -(double)(s2
- s
);
688 dekkerMul2(rr
, 1.0e+100, -1.5902891109759918046e+83);
692 dekkerMul2(rr
, 1.0e+10, 0.0);
696 dekkerMul2(rr
, 1.0e+01, 0.0);
701 dekkerMul2(rr
, 1.0e-100, -1.99918998026028836196e-117);
705 dekkerMul2(rr
, 1.0e-10, -3.6432197315497741579e-27);
709 dekkerMul2(rr
, 1.0e-01, -5.5511151231257827021e-18);
712 *pResult
= rr
[0]+rr
[1];
713 if( sqlite3IsNaN(*pResult
) ) *pResult
= 1e300
*1e300
;
715 if( sign
<0 ) *pResult
= -*pResult
;
716 assert( !sqlite3IsNaN(*pResult
) );
719 /* return true if number and no extra non-whitespace characters after */
720 if( z
==zEnd
&& nDigit
>0 && eValid
&& eType
>0 ){
722 }else if( eType
>=2 && (eType
==3 || eValid
) && nDigit
>0 ){
728 return !sqlite3Atoi64(z
, pResult
, length
, enc
);
729 #endif /* SQLITE_OMIT_FLOATING_POINT */
731 #if defined(_MSC_VER)
732 #pragma warning(default : 4756)
736 ** Render an signed 64-bit integer as text. Store the result in zOut[] and
737 ** return the length of the string that was stored, in bytes. The value
738 ** returned does not include the zero terminator at the end of the output
741 ** The caller must ensure that zOut[] is at least 21 bytes in size.
743 int sqlite3Int64ToText(i64 v
, char *zOut
){
748 x
= (v
==SMALLEST_INT64
) ? ((u64
)1)<<63 : (u64
)-v
;
753 zTemp
[sizeof(zTemp
)-1] = 0;
754 while( 1 /*exit-by-break*/ ){
755 zTemp
[i
] = (x
%10) + '0';
760 if( v
<0 ) zTemp
[--i
] = '-';
761 memcpy(zOut
, &zTemp
[i
], sizeof(zTemp
)-i
);
762 return sizeof(zTemp
)-1-i
;
766 ** Compare the 19-character string zNum against the text representation
767 ** value 2^63: 9223372036854775808. Return negative, zero, or positive
768 ** if zNum is less than, equal to, or greater than the string.
769 ** Note that zNum must contain exactly 19 characters.
771 ** Unlike memcmp() this routine is guaranteed to return the difference
772 ** in the values of the last digit if the only difference is in the
773 ** last digit. So, for example,
775 ** compare2pow63("9223372036854775800", 1)
779 static int compare2pow63(const char *zNum
, int incr
){
782 /* 012345678901234567 */
783 const char *pow63
= "922337203685477580";
784 for(i
=0; c
==0 && i
<18; i
++){
785 c
= (zNum
[i
*incr
]-pow63
[i
])*10;
788 c
= zNum
[18*incr
] - '8';
797 ** Convert zNum to a 64-bit signed integer. zNum must be decimal. This
798 ** routine does *not* accept hexadecimal notation.
802 ** -1 Not even a prefix of the input text looks like an integer
803 ** 0 Successful transformation. Fits in a 64-bit signed integer.
804 ** 1 Excess non-space text after the integer value
805 ** 2 Integer too large for a 64-bit signed integer or is malformed
806 ** 3 Special case of 9223372036854775808
808 ** length is the number of bytes in the string (bytes, not characters).
809 ** The string is not necessarily zero-terminated. The encoding is
812 int sqlite3Atoi64(const char *zNum
, i64
*pNum
, int length
, u8 enc
){
815 int neg
= 0; /* assume positive */
818 int nonNum
= 0; /* True if input contains UTF16 with high byte non-zero */
819 int rc
; /* Baseline return code */
821 const char *zEnd
= zNum
+ length
;
822 assert( enc
==SQLITE_UTF8
|| enc
==SQLITE_UTF16LE
|| enc
==SQLITE_UTF16BE
);
823 if( enc
==SQLITE_UTF8
){
828 assert( SQLITE_UTF16LE
==2 && SQLITE_UTF16BE
==3 );
829 for(i
=3-enc
; i
<length
&& zNum
[i
]==0; i
+=2){}
834 while( zNum
<zEnd
&& sqlite3Isspace(*zNum
) ) zNum
+=incr
;
839 }else if( *zNum
=='+' ){
844 while( zNum
<zEnd
&& zNum
[0]=='0' ){ zNum
+=incr
; } /* Skip leading zeros. */
845 for(i
=0; &zNum
[i
]<zEnd
&& (c
=zNum
[i
])>='0' && c
<='9'; i
+=incr
){
848 testcase( i
==18*incr
);
849 testcase( i
==19*incr
);
850 testcase( i
==20*incr
);
851 if( u
>LARGEST_INT64
){
852 /* This test and assignment is needed only to suppress UB warnings
853 ** from clang and -fsanitize=undefined. This test and assignment make
854 ** the code a little larger and slower, and no harm comes from omitting
855 ** them, but we must appease the undefined-behavior pharisees. */
856 *pNum
= neg
? SMALLEST_INT64
: LARGEST_INT64
;
863 if( i
==0 && zStart
==zNum
){ /* No digits */
865 }else if( nonNum
){ /* UTF16 with high-order bytes non-zero */
867 }else if( &zNum
[i
]<zEnd
){ /* Extra bytes at the end */
870 if( !sqlite3Isspace(zNum
[jj
]) ){
871 rc
= 1; /* Extra non-space text after the integer */
875 }while( &zNum
[jj
]<zEnd
);
878 /* Less than 19 digits, so we know that it fits in 64 bits */
879 assert( u
<=LARGEST_INT64
);
882 /* zNum is a 19-digit numbers. Compare it against 9223372036854775808. */
883 c
= i
>19*incr
? 1 : compare2pow63(zNum
, incr
);
885 /* zNum is less than 9223372036854775808 so it fits */
886 assert( u
<=LARGEST_INT64
);
889 *pNum
= neg
? SMALLEST_INT64
: LARGEST_INT64
;
891 /* zNum is greater than 9223372036854775808 so it overflows */
894 /* zNum is exactly 9223372036854775808. Fits if negative. The
895 ** special case 2 overflow if positive */
896 assert( u
-1==LARGEST_INT64
);
904 ** Transform a UTF-8 integer literal, in either decimal or hexadecimal,
905 ** into a 64-bit signed integer. This routine accepts hexadecimal literals,
906 ** whereas sqlite3Atoi64() does not.
910 ** 0 Successful transformation. Fits in a 64-bit signed integer.
911 ** 1 Excess text after the integer value
912 ** 2 Integer too large for a 64-bit signed integer or is malformed
913 ** 3 Special case of 9223372036854775808
915 int sqlite3DecOrHexToI64(const char *z
, i64
*pOut
){
916 #ifndef SQLITE_OMIT_HEX_INTEGER
918 && (z
[1]=='x' || z
[1]=='X')
922 for(i
=2; z
[i
]=='0'; i
++){}
923 for(k
=i
; sqlite3Isxdigit(z
[k
]); k
++){
924 u
= u
*16 + sqlite3HexToInt(z
[k
]);
927 if( k
-i
>16 ) return 2;
928 if( z
[k
]!=0 ) return 1;
931 #endif /* SQLITE_OMIT_HEX_INTEGER */
933 int n
= (int)(0x3fffffff&strspn(z
,"+- \n\t0123456789"));
935 return sqlite3Atoi64(z
, pOut
, n
, SQLITE_UTF8
);
940 ** If zNum represents an integer that will fit in 32-bits, then set
941 ** *pValue to that integer and return true. Otherwise return false.
943 ** This routine accepts both decimal and hexadecimal notation for integers.
945 ** Any non-numeric characters that following zNum are ignored.
946 ** This is different from sqlite3Atoi64() which requires the
947 ** input number to be zero-terminated.
949 int sqlite3GetInt32(const char *zNum
, int *pValue
){
956 }else if( zNum
[0]=='+' ){
959 #ifndef SQLITE_OMIT_HEX_INTEGER
960 else if( zNum
[0]=='0'
961 && (zNum
[1]=='x' || zNum
[1]=='X')
962 && sqlite3Isxdigit(zNum
[2])
966 while( zNum
[0]=='0' ) zNum
++;
967 for(i
=0; i
<8 && sqlite3Isxdigit(zNum
[i
]); i
++){
968 u
= u
*16 + sqlite3HexToInt(zNum
[i
]);
970 if( (u
&0x80000000)==0 && sqlite3Isxdigit(zNum
[i
])==0 ){
971 memcpy(pValue
, &u
, 4);
978 if( !sqlite3Isdigit(zNum
[0]) ) return 0;
979 while( zNum
[0]=='0' ) zNum
++;
980 for(i
=0; i
<11 && (c
= zNum
[i
] - '0')>=0 && c
<=9; i
++){
984 /* The longest decimal representation of a 32 bit integer is 10 digits:
987 ** 2^31 -> 2147483648
993 testcase( v
-neg
==2147483647 );
994 if( v
-neg
>2147483647 ){
1005 ** Return a 32-bit integer value extracted from a string. If the
1006 ** string is not an integer, just return 0.
1008 int sqlite3Atoi(const char *z
){
1010 sqlite3GetInt32(z
, &x
);
1015 ** Decode a floating-point value into an approximate decimal
1018 ** Round the decimal representation to n significant digits if
1019 ** n is positive. Or round to -n signficant digits after the
1020 ** decimal point if n is negative. No rounding is performed if
1023 ** The significant digits of the decimal representation are
1024 ** stored in p->z[] which is a often (but not always) a pointer
1025 ** into the middle of p->zBuf[]. There are p->n significant digits.
1026 ** The p->z[] array is *not* zero-terminated.
1028 void sqlite3FpDecode(FpDecode
*p
, double r
, int iRound
, int mxRound
){
1035 /* Convert negative numbers to positive. Deal with Infinity, 0.0, and
1051 if( (e
&0x7ff)==0x7ff ){
1052 p
->isSpecial
= 1 + (v
!=0x7ff0000000000000LL
);
1058 /* Multiply r by powers of ten until it lands somewhere in between
1059 ** 1.0e+19 and 1.0e+17.
1061 if( sqlite3Config
.bUseLongDouble
){
1062 LONGDOUBLE_TYPE rr
= r
;
1064 while( rr
>=1.0e+119L ){ exp
+=100; rr
*= 1.0e-100L; }
1065 while( rr
>=1.0e+29L ){ exp
+=10; rr
*= 1.0e-10L; }
1066 while( rr
>=1.0e+19L ){ exp
++; rr
*= 1.0e-1L; }
1068 while( rr
<1.0e-97L ){ exp
-=100; rr
*= 1.0e+100L; }
1069 while( rr
<1.0e+07L ){ exp
-=10; rr
*= 1.0e+10L; }
1070 while( rr
<1.0e+17L ){ exp
--; rr
*= 1.0e+1L; }
1074 /* If high-precision floating point is not available using "long double",
1075 ** then use Dekker-style double-double computation to increase the
1078 ** The error terms on constants like 1.0e+100 computed using the
1079 ** decimal extension, for example as follows:
1081 ** SELECT decimal_exp(decimal_sub('1.0e+100',decimal(1.0e+100)));
1086 if( rr
[0]>9.223372036854774784e+18 ){
1087 while( rr
[0]>9.223372036854774784e+118 ){
1089 dekkerMul2(rr
, 1.0e-100, -1.99918998026028836196e-117);
1091 while( rr
[0]>9.223372036854774784e+28 ){
1093 dekkerMul2(rr
, 1.0e-10, -3.6432197315497741579e-27);
1095 while( rr
[0]>9.223372036854774784e+18 ){
1097 dekkerMul2(rr
, 1.0e-01, -5.5511151231257827021e-18);
1100 while( rr
[0]<9.223372036854774784e-83 ){
1102 dekkerMul2(rr
, 1.0e+100, -1.5902891109759918046e+83);
1104 while( rr
[0]<9.223372036854774784e+07 ){
1106 dekkerMul2(rr
, 1.0e+10, 0.0);
1108 while( rr
[0]<9.22337203685477478e+17 ){
1110 dekkerMul2(rr
, 1.0e+01, 0.0);
1113 v
= rr
[1]<0.0 ? (u64
)rr
[0]-(u64
)(-rr
[1]) : (u64
)rr
[0]+(u64
)rr
[1];
1117 /* Extract significant digits. */
1118 i
= sizeof(p
->zBuf
)-1;
1120 while( v
){ p
->zBuf
[i
--] = (v
%10) + '0'; v
/= 10; }
1121 assert( i
>=0 && i
<sizeof(p
->zBuf
)-1 );
1122 p
->n
= sizeof(p
->zBuf
) - 1 - i
;
1124 assert( p
->n
<sizeof(p
->zBuf
) );
1125 p
->iDP
= p
->n
+ exp
;
1127 iRound
= p
->iDP
- iRound
;
1128 if( iRound
==0 && p
->zBuf
[i
+1]>='5' ){
1135 if( iRound
>0 && (iRound
<p
->n
|| p
->n
>mxRound
) ){
1136 char *z
= &p
->zBuf
[i
+1];
1137 if( iRound
>mxRound
) iRound
= mxRound
;
1139 if( z
[iRound
]>='5' ){
1141 while( 1 /*exit-by-break*/ ){
1143 if( z
[j
]<='9' ) break;
1156 p
->z
= &p
->zBuf
[i
+1];
1157 assert( i
+p
->n
< sizeof(p
->zBuf
) );
1158 while( ALWAYS(p
->n
>0) && p
->z
[p
->n
-1]=='0' ){ p
->n
--; }
1162 ** Try to convert z into an unsigned 32-bit integer. Return true on
1163 ** success and false if there is an error.
1165 ** Only decimal notation is accepted.
1167 int sqlite3GetUInt32(const char *z
, u32
*pI
){
1170 for(i
=0; sqlite3Isdigit(z
[i
]); i
++){
1171 v
= v
*10 + z
[i
] - '0';
1172 if( v
>4294967296LL ){ *pI
= 0; return 0; }
1174 if( i
==0 || z
[i
]!=0 ){ *pI
= 0; return 0; }
1180 ** The variable-length integer encoding is as follows:
1183 ** A = 0xxxxxxx 7 bits of data and one flag bit
1184 ** B = 1xxxxxxx 7 bits of data and one flag bit
1185 ** C = xxxxxxxx 8 bits of data
1193 ** 49 bits - BBBBBBA
1194 ** 56 bits - BBBBBBBA
1195 ** 64 bits - BBBBBBBBC
1199 ** Write a 64-bit variable-length integer to memory starting at p[0].
1200 ** The length of data write will be between 1 and 9 bytes. The number
1201 ** of bytes written is returned.
1203 ** A variable-length integer consists of the lower 7 bits of each byte
1204 ** for all bytes that have the 8th bit set and one byte with the 8th
1205 ** bit clear. Except, if we get to the 9th byte, it stores the full
1206 ** 8 bits and is the last byte.
1208 static int SQLITE_NOINLINE
putVarint64(unsigned char *p
, u64 v
){
1211 if( v
& (((u64
)0xff000000)<<32) ){
1214 for(i
=7; i
>=0; i
--){
1215 p
[i
] = (u8
)((v
& 0x7f) | 0x80);
1222 buf
[n
++] = (u8
)((v
& 0x7f) | 0x80);
1227 for(i
=0, j
=n
-1; j
>=0; j
--, i
++){
1232 int sqlite3PutVarint(unsigned char *p
, u64 v
){
1238 p
[0] = ((v
>>7)&0x7f)|0x80;
1242 return putVarint64(p
,v
);
1246 ** Bitmasks used by sqlite3GetVarint(). These precomputed constants
1247 ** are defined here rather than simply putting the constant expressions
1248 ** inline in order to work around bugs in the RVT compiler.
1250 ** SLOT_2_0 A mask for (0x7f<<14) | 0x7f
1252 ** SLOT_4_2_0 A mask for (0x7f<<28) | SLOT_2_0
1254 #define SLOT_2_0 0x001fc07f
1255 #define SLOT_4_2_0 0xf01fc07f
1259 ** Read a 64-bit variable-length integer from memory starting at p[0].
1260 ** Return the number of bytes read. The value is stored in *v.
1262 u8
sqlite3GetVarint(const unsigned char *p
, u64
*v
){
1265 if( ((signed char*)p
)[0]>=0 ){
1269 if( ((signed char*)p
)[1]>=0 ){
1270 *v
= ((u32
)(p
[0]&0x7f)<<7) | p
[1];
1274 /* Verify that constants are precomputed correctly */
1275 assert( SLOT_2_0
== ((0x7f<<14) | (0x7f)) );
1276 assert( SLOT_4_2_0
== ((0xfU
<<28) | (0x7f<<14) | (0x7f)) );
1278 a
= ((u32
)p
[0])<<14;
1282 /* a: p0<<14 | p2 (unmasked) */
1293 /* CSE1 from below */
1298 /* b: p1<<14 | p3 (unmasked) */
1303 /* a &= (0x7f<<14)|(0x7f); */
1310 /* a: p0<<14 | p2 (masked) */
1311 /* b: p1<<14 | p3 (unmasked) */
1312 /* 1:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1314 /* a &= (0x7f<<14)|(0x7f); */
1317 /* s: p0<<14 | p2 (masked) */
1322 /* a: p0<<28 | p2<<14 | p4 (unmasked) */
1325 /* we can skip these cause they were (effectively) done above
1326 ** while calculating s */
1327 /* a &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1328 /* b &= (0x7f<<14)|(0x7f); */
1332 *v
= ((u64
)s
)<<32 | a
;
1336 /* 2:save off p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1339 /* s: p0<<21 | p1<<14 | p2<<7 | p3 (masked) */
1344 /* b: p1<<28 | p3<<14 | p5 (unmasked) */
1347 /* we can skip this cause it was (effectively) done above in calc'ing s */
1348 /* b &= (0x7f<<28)|(0x7f<<14)|(0x7f); */
1353 *v
= ((u64
)s
)<<32 | a
;
1360 /* a: p2<<28 | p4<<14 | p6 (unmasked) */
1368 *v
= ((u64
)s
)<<32 | a
;
1372 /* CSE2 from below */
1377 /* b: p3<<28 | p5<<14 | p7 (unmasked) */
1382 /* a &= (0x7f<<14)|(0x7f); */
1386 *v
= ((u64
)s
)<<32 | a
;
1393 /* a: p4<<29 | p6<<15 | p8 (unmasked) */
1396 /* a &= (0x7f<<29)|(0x7f<<15)|(0xff); */
1407 *v
= ((u64
)s
)<<32 | a
;
1413 ** Read a 32-bit variable-length integer from memory starting at p[0].
1414 ** Return the number of bytes read. The value is stored in *v.
1416 ** If the varint stored in p[0] is larger than can fit in a 32-bit unsigned
1417 ** integer, then set *v to 0xffffffff.
1419 ** A MACRO version, getVarint32, is provided which inlines the
1420 ** single-byte case. All code should use the MACRO version as
1421 ** this function assumes the single-byte case has already been handled.
1423 u8
sqlite3GetVarint32(const unsigned char *p
, u32
*v
){
1427 /* Assume that the single-byte case has already been handled by
1428 ** the getVarint32() macro */
1429 assert( (p
[0] & 0x80)!=0 );
1431 if( (p
[1] & 0x80)==0 ){
1432 /* This is the two-byte case */
1433 *v
= ((p
[0]&0x7f)<<7) | p
[1];
1436 if( (p
[2] & 0x80)==0 ){
1437 /* This is the three-byte case */
1438 *v
= ((p
[0]&0x7f)<<14) | ((p
[1]&0x7f)<<7) | p
[2];
1441 /* four or more bytes */
1442 n
= sqlite3GetVarint(p
, &v64
);
1443 assert( n
>3 && n
<=9 );
1444 if( (v64
& SQLITE_MAX_U32
)!=v64
){
1453 ** Return the number of bytes that will be needed to store the given
1456 int sqlite3VarintLen(u64 v
){
1458 for(i
=1; (v
>>= 7)!=0; i
++){ assert( i
<10 ); }
1464 ** Read or write a four-byte big-endian integer value.
1466 u32
sqlite3Get4byte(const u8
*p
){
1467 #if SQLITE_BYTEORDER==4321
1471 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1474 return __builtin_bswap32(x
);
1475 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1478 return _byteswap_ulong(x
);
1480 testcase( p
[0]&0x80 );
1481 return ((unsigned)p
[0]<<24) | (p
[1]<<16) | (p
[2]<<8) | p
[3];
1484 void sqlite3Put4byte(unsigned char *p
, u32 v
){
1485 #if SQLITE_BYTEORDER==4321
1487 #elif SQLITE_BYTEORDER==1234 && GCC_VERSION>=4003000
1488 u32 x
= __builtin_bswap32(v
);
1490 #elif SQLITE_BYTEORDER==1234 && MSVC_VERSION>=1300
1491 u32 x
= _byteswap_ulong(v
);
1504 ** Translate a single byte of Hex into an integer.
1505 ** This routine only works if h really is a valid hexadecimal
1506 ** character: 0..9a..fA..F
1508 u8
sqlite3HexToInt(int h
){
1509 assert( (h
>='0' && h
<='9') || (h
>='a' && h
<='f') || (h
>='A' && h
<='F') );
1513 #ifdef SQLITE_EBCDIC
1516 return (u8
)(h
& 0xf);
1519 /* BEGIN SQLCIPHER */
1520 #if !defined(SQLITE_OMIT_BLOB_LITERAL) || defined(SQLITE_HAS_CODEC)
1522 ** Convert a BLOB literal of the form "x'hhhhhh'" into its binary
1523 ** value. Return a pointer to its binary value. Space to hold the
1524 ** binary value has been obtained from malloc and must be freed by
1525 ** the calling routine.
1527 void *sqlite3HexToBlob(sqlite3
*db
, const char *z
, int n
){
1531 zBlob
= (char *)sqlite3DbMallocRawNN(db
, n
/2 + 1);
1534 for(i
=0; i
<n
; i
+=2){
1535 zBlob
[i
/2] = (sqlite3HexToInt(z
[i
])<<4) | sqlite3HexToInt(z
[i
+1]);
1541 #endif /* !SQLITE_OMIT_BLOB_LITERAL || SQLITE_HAS_CODEC */
1545 ** Log an error that is an API call on a connection pointer that should
1546 ** not have been used. The "type" of connection pointer is given as the
1547 ** argument. The zType is a word like "NULL" or "closed" or "invalid".
1549 static void logBadConnection(const char *zType
){
1550 sqlite3_log(SQLITE_MISUSE
,
1551 "API call with %s database connection pointer",
1557 ** Check to make sure we have a valid db pointer. This test is not
1558 ** foolproof but it does provide some measure of protection against
1559 ** misuse of the interface such as passing in db pointers that are
1560 ** NULL or which have been previously closed. If this routine returns
1561 ** 1 it means that the db pointer is valid and 0 if it should not be
1562 ** dereferenced for any reason. The calling function should invoke
1563 ** SQLITE_MISUSE immediately.
1565 ** sqlite3SafetyCheckOk() requires that the db pointer be valid for
1566 ** use. sqlite3SafetyCheckSickOrOk() allows a db pointer that failed to
1567 ** open properly and is not fit for general use but which can be
1568 ** used as an argument to sqlite3_errmsg() or sqlite3_close().
1570 int sqlite3SafetyCheckOk(sqlite3
*db
){
1573 logBadConnection("NULL");
1576 eOpenState
= db
->eOpenState
;
1577 if( eOpenState
!=SQLITE_STATE_OPEN
){
1578 if( sqlite3SafetyCheckSickOrOk(db
) ){
1579 testcase( sqlite3GlobalConfig
.xLog
!=0 );
1580 logBadConnection("unopened");
1587 int sqlite3SafetyCheckSickOrOk(sqlite3
*db
){
1589 eOpenState
= db
->eOpenState
;
1590 if( eOpenState
!=SQLITE_STATE_SICK
&&
1591 eOpenState
!=SQLITE_STATE_OPEN
&&
1592 eOpenState
!=SQLITE_STATE_BUSY
){
1593 testcase( sqlite3GlobalConfig
.xLog
!=0 );
1594 logBadConnection("invalid");
1602 ** Attempt to add, subtract, or multiply the 64-bit signed value iB against
1603 ** the other 64-bit signed integer at *pA and store the result in *pA.
1604 ** Return 0 on success. Or if the operation would have resulted in an
1605 ** overflow, leave *pA unchanged and return 1.
1607 int sqlite3AddInt64(i64
*pA
, i64 iB
){
1608 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1609 return __builtin_add_overflow(*pA
, iB
, pA
);
1612 testcase( iA
==0 ); testcase( iA
==1 );
1613 testcase( iB
==-1 ); testcase( iB
==0 );
1615 testcase( iA
>0 && LARGEST_INT64
- iA
== iB
);
1616 testcase( iA
>0 && LARGEST_INT64
- iA
== iB
- 1 );
1617 if( iA
>0 && LARGEST_INT64
- iA
< iB
) return 1;
1619 testcase( iA
<0 && -(iA
+ LARGEST_INT64
) == iB
+ 1 );
1620 testcase( iA
<0 && -(iA
+ LARGEST_INT64
) == iB
+ 2 );
1621 if( iA
<0 && -(iA
+ LARGEST_INT64
) > iB
+ 1 ) return 1;
1627 int sqlite3SubInt64(i64
*pA
, i64 iB
){
1628 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1629 return __builtin_sub_overflow(*pA
, iB
, pA
);
1631 testcase( iB
==SMALLEST_INT64
+1 );
1632 if( iB
==SMALLEST_INT64
){
1633 testcase( (*pA
)==(-1) ); testcase( (*pA
)==0 );
1634 if( (*pA
)>=0 ) return 1;
1638 return sqlite3AddInt64(pA
, -iB
);
1642 int sqlite3MulInt64(i64
*pA
, i64 iB
){
1643 #if GCC_VERSION>=5004000 && !defined(__INTEL_COMPILER)
1644 return __builtin_mul_overflow(*pA
, iB
, pA
);
1648 if( iA
>LARGEST_INT64
/iB
) return 1;
1649 if( iA
<SMALLEST_INT64
/iB
) return 1;
1652 if( iB
<SMALLEST_INT64
/iA
) return 1;
1654 if( iB
==SMALLEST_INT64
) return 1;
1655 if( iA
==SMALLEST_INT64
) return 1;
1656 if( -iA
>LARGEST_INT64
/-iB
) return 1;
1665 ** Compute the absolute value of a 32-bit signed integer, of possible. Or
1666 ** if the integer has a value of -2147483648, return +2147483647
1668 int sqlite3AbsInt32(int x
){
1669 if( x
>=0 ) return x
;
1670 if( x
==(int)0x80000000 ) return 0x7fffffff;
1674 #ifdef SQLITE_ENABLE_8_3_NAMES
1676 ** If SQLITE_ENABLE_8_3_NAMES is set at compile-time and if the database
1677 ** filename in zBaseFilename is a URI with the "8_3_names=1" parameter and
1678 ** if filename in z[] has a suffix (a.k.a. "extension") that is longer than
1679 ** three characters, then shorten the suffix on z[] to be the last three
1680 ** characters of the original suffix.
1682 ** If SQLITE_ENABLE_8_3_NAMES is set to 2 at compile-time, then always
1683 ** do the suffix shortening regardless of URI parameter.
1687 ** test.db-journal => test.nal
1688 ** test.db-wal => test.wal
1689 ** test.db-shm => test.shm
1690 ** test.db-mj7f3319fa => test.9fa
1692 void sqlite3FileSuffix3(const char *zBaseFilename
, char *z
){
1693 #if SQLITE_ENABLE_8_3_NAMES<2
1694 if( sqlite3_uri_boolean(zBaseFilename
, "8_3_names", 0) )
1698 sz
= sqlite3Strlen30(z
);
1699 for(i
=sz
-1; i
>0 && z
[i
]!='/' && z
[i
]!='.'; i
--){}
1700 if( z
[i
]=='.' && ALWAYS(sz
>i
+4) ) memmove(&z
[i
+1], &z
[sz
-3], 4);
1706 ** Find (an approximate) sum of two LogEst values. This computation is
1707 ** not a simple "+" operator because LogEst is stored as a logarithmic
1711 LogEst
sqlite3LogEstAdd(LogEst a
, LogEst b
){
1712 static const unsigned char x
[] = {
1716 7, 7, 7, /* 6,7,8 */
1717 6, 6, 6, /* 9,10,11 */
1718 5, 5, 5, /* 12-14 */
1719 4, 4, 4, 4, /* 15-18 */
1720 3, 3, 3, 3, 3, 3, /* 19-24 */
1721 2, 2, 2, 2, 2, 2, 2, /* 25-31 */
1724 if( a
>b
+49 ) return a
;
1725 if( a
>b
+31 ) return a
+1;
1728 if( b
>a
+49 ) return b
;
1729 if( b
>a
+31 ) return b
+1;
1735 ** Convert an integer into a LogEst. In other words, compute an
1736 ** approximation for 10*log2(x).
1738 LogEst
sqlite3LogEst(u64 x
){
1739 static LogEst a
[] = { 0, 2, 3, 5, 6, 7, 8, 9 };
1743 while( x
<8 ){ y
-= 10; x
<<= 1; }
1745 #if GCC_VERSION>=5004000
1746 int i
= 60 - __builtin_clzll(x
);
1750 while( x
>255 ){ y
+= 40; x
>>= 4; } /*OPTIMIZATION-IF-TRUE*/
1751 while( x
>15 ){ y
+= 10; x
>>= 1; }
1754 return a
[x
&7] + y
- 10;
1758 ** Convert a double into a LogEst
1759 ** In other words, compute an approximation for 10*log2(x).
1761 LogEst
sqlite3LogEstFromDouble(double x
){
1764 assert( sizeof(x
)==8 && sizeof(a
)==8 );
1765 if( x
<=1 ) return 0;
1766 if( x
<=2000000000 ) return sqlite3LogEst((u64
)x
);
1773 ** Convert a LogEst into an integer.
1775 u64
sqlite3LogEstToInt(LogEst x
){
1780 else if( n
>=1 ) n
-= 1;
1781 if( x
>60 ) return (u64
)LARGEST_INT64
;
1782 return x
>=3 ? (n
+8)<<(x
-3) : (n
+8)>>(3-x
);
1786 ** Add a new name/number pair to a VList. This might require that the
1787 ** VList object be reallocated, so return the new VList. If an OOM
1788 ** error occurs, the original VList returned and the
1789 ** db->mallocFailed flag is set.
1791 ** A VList is really just an array of integers. To destroy a VList,
1792 ** simply pass it to sqlite3DbFree().
1794 ** The first integer is the number of integers allocated for the whole
1795 ** VList. The second integer is the number of integers actually used.
1796 ** Each name/number pair is encoded by subsequent groups of 3 or more
1799 ** Each name/number pair starts with two integers which are the numeric
1800 ** value for the pair and the size of the name/number pair, respectively.
1801 ** The text name overlays one or more following integers. The text name
1802 ** is always zero-terminated.
1807 ** int nAlloc; // Number of allocated slots
1808 ** int nUsed; // Number of used slots
1809 ** struct VListEntry {
1810 ** int iValue; // Value for this entry
1811 ** int nSlot; // Slots used by this entry
1812 ** // ... variable name goes here
1816 ** During code generation, pointers to the variable names within the
1817 ** VList are taken. When that happens, nAlloc is set to zero as an
1818 ** indication that the VList may never again be enlarged, since the
1819 ** accompanying realloc() would invalidate the pointers.
1821 VList
*sqlite3VListAdd(
1822 sqlite3
*db
, /* The database connection used for malloc() */
1823 VList
*pIn
, /* The input VList. Might be NULL */
1824 const char *zName
, /* Name of symbol to add */
1825 int nName
, /* Bytes of text in zName */
1826 int iVal
/* Value to associate with zName */
1828 int nInt
; /* number of sizeof(int) objects needed for zName */
1829 char *z
; /* Pointer to where zName will be stored */
1830 int i
; /* Index in pIn[] where zName is stored */
1833 assert( pIn
==0 || pIn
[0]>=3 ); /* Verify ok to add new elements */
1834 if( pIn
==0 || pIn
[1]+nInt
> pIn
[0] ){
1835 /* Enlarge the allocation */
1836 sqlite3_int64 nAlloc
= (pIn
? 2*(sqlite3_int64
)pIn
[0] : 10) + nInt
;
1837 VList
*pOut
= sqlite3DbRealloc(db
, pIn
, nAlloc
*sizeof(int));
1838 if( pOut
==0 ) return pIn
;
1839 if( pIn
==0 ) pOut
[1] = 2;
1846 z
= (char*)&pIn
[i
+2];
1848 assert( pIn
[1]<=pIn
[0] );
1849 memcpy(z
, zName
, nName
);
1855 ** Return a pointer to the name of a variable in the given VList that
1856 ** has the value iVal. Or return a NULL if there is no such variable in
1859 const char *sqlite3VListNumToName(VList
*pIn
, int iVal
){
1861 if( pIn
==0 ) return 0;
1865 if( pIn
[i
]==iVal
) return (char*)&pIn
[i
+2];
1872 ** Return the number of the variable named zName, if it is in VList.
1873 ** or return 0 if there is no such variable.
1875 int sqlite3VListNameToNum(VList
*pIn
, const char *zName
, int nName
){
1877 if( pIn
==0 ) return 0;
1881 const char *z
= (const char*)&pIn
[i
+2];
1882 if( strncmp(z
,zName
,nName
)==0 && z
[nName
]==0 ) return pIn
[i
];
1889 ** High-resolution hardware timer used for debugging and testing only.
1891 #if defined(VDBE_PROFILE) \
1892 || defined(SQLITE_PERFORMANCE_TRACE) \
1893 || defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1894 # include "hwtime.h"