4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file implements an object that represents a fixed-length
13 ** bitmap. Bits are numbered starting with 1.
15 ** A bitmap is used to record which pages of a database file have been
16 ** journalled during a transaction, or which pages have the "dont-write"
17 ** property. Usually only a few pages are meet either condition.
18 ** So the bitmap is usually sparse and has low cardinality.
19 ** But sometimes (for example when during a DROP of a large table) most
20 ** or all of the pages in a database can get journalled. In those cases,
21 ** the bitmap becomes dense with high cardinality. The algorithm needs
22 ** to handle both cases well.
24 ** The size of the bitmap is fixed when the object is created.
26 ** All bits are clear when the bitmap is created. Individual bits
27 ** may be set or cleared one at a time.
29 ** Test operations are about 100 times more common that set operations.
30 ** Clear operations are exceedingly rare. There are usually between
31 ** 5 and 500 set operations per Bitvec object, though the number of sets can
32 ** sometimes grow into tens of thousands or larger. The size of the
33 ** Bitvec object is the number of pages in the database file at the
34 ** start of a transaction, and is thus usually less than a few thousand,
35 ** but can be as large as 2 billion for a really big database.
37 #include "sqliteInt.h"
39 /* Size of the Bitvec structure in bytes. */
42 /* Round the union size down to the nearest pointer boundary, since that's how
43 ** it will be aligned within the Bitvec struct. */
44 #define BITVEC_USIZE (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*))
46 /* Type of the array "element" for the bitmap representation.
47 ** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE.
48 ** Setting this to the "natural word" size of your CPU may improve
50 #define BITVEC_TELEM u8
51 /* Size, in bits, of the bitmap element. */
52 #define BITVEC_SZELEM 8
53 /* Number of elements in a bitmap array. */
54 #define BITVEC_NELEM (BITVEC_USIZE/sizeof(BITVEC_TELEM))
55 /* Number of bits in the bitmap array. */
56 #define BITVEC_NBIT (BITVEC_NELEM*BITVEC_SZELEM)
58 /* Number of u32 values in hash table. */
59 #define BITVEC_NINT (BITVEC_USIZE/sizeof(u32))
60 /* Maximum number of entries in hash table before
61 ** sub-dividing and re-hashing. */
62 #define BITVEC_MXHASH (BITVEC_NINT/2)
63 /* Hashing function for the aHash representation.
64 ** Empirical testing showed that the *37 multiplier
65 ** (an arbitrary prime)in the hash function provided
66 ** no fewer collisions than the no-op *1. */
67 #define BITVEC_HASH(X) (((X)*1)%BITVEC_NINT)
69 #define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *))
73 ** A bitmap is an instance of the following structure.
75 ** This bitmap records the existence of zero or more bits
76 ** with values between 1 and iSize, inclusive.
78 ** There are three possible representations of the bitmap.
79 ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
80 ** bitmap. The least significant bit is bit 1.
82 ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
83 ** a hash table that will hold up to BITVEC_MXHASH distinct values.
85 ** Otherwise, the value i is redirected into one of BITVEC_NPTR
86 ** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap
87 ** handles up to iDivisor separate values of i. apSub[0] holds
88 ** values between 1 and iDivisor. apSub[1] holds values between
89 ** iDivisor+1 and 2*iDivisor. apSub[N] holds values between
90 ** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized
91 ** to hold deal with values between 1 and iDivisor.
94 u32 iSize
; /* Maximum bit index. Max iSize is 4,294,967,296. */
95 u32 nSet
; /* Number of bits that are set - only valid for aHash
96 ** element. Max is BITVEC_NINT. For BITVEC_SZ of 512,
97 ** this would be 125. */
98 u32 iDivisor
; /* Number of bits handled by each apSub[] entry. */
99 /* Should >=0 for apSub element. */
100 /* Max iDivisor is max(u32) / BITVEC_NPTR + 1. */
101 /* For a BITVEC_SZ of 512, this would be 34,359,739. */
103 BITVEC_TELEM aBitmap
[BITVEC_NELEM
]; /* Bitmap representation */
104 u32 aHash
[BITVEC_NINT
]; /* Hash table representation */
105 Bitvec
*apSub
[BITVEC_NPTR
]; /* Recursive representation */
110 ** Create a new bitmap object able to handle bits between 0 and iSize,
111 ** inclusive. Return a pointer to the new object. Return NULL if
114 Bitvec
*sqlite3BitvecCreate(u32 iSize
){
116 assert( sizeof(*p
)==BITVEC_SZ
);
117 p
= sqlite3MallocZero( sizeof(*p
) );
125 ** Check to see if the i-th bit is set. Return true or false.
126 ** If p is NULL (if the bitmap has not been created) or if
127 ** i is out of range, then return false.
129 int sqlite3BitvecTest(Bitvec
*p
, u32 i
){
131 if( i
>p
->iSize
|| i
==0 ) return 0;
133 while( p
->iDivisor
){
134 u32 bin
= i
/p
->iDivisor
;
141 if( p
->iSize
<=BITVEC_NBIT
){
142 return (p
->u
.aBitmap
[i
/BITVEC_SZELEM
] & (1<<(i
&(BITVEC_SZELEM
-1))))!=0;
144 u32 h
= BITVEC_HASH(i
++);
145 while( p
->u
.aHash
[h
] ){
146 if( p
->u
.aHash
[h
]==i
) return 1;
147 h
= (h
+1) % BITVEC_NINT
;
154 ** Set the i-th bit. Return 0 on success and an error code if
155 ** anything goes wrong.
157 ** This routine might cause sub-bitmaps to be allocated. Failing
158 ** to get the memory needed to hold the sub-bitmap is the only
159 ** that can go wrong with an insert, assuming p and i are valid.
161 ** The calling function must ensure that p is a valid Bitvec object
162 ** and that the value for "i" is within range of the Bitvec object.
163 ** Otherwise the behavior is undefined.
165 int sqlite3BitvecSet(Bitvec
*p
, u32 i
){
167 if( p
==0 ) return SQLITE_OK
;
169 assert( i
<=p
->iSize
);
171 while((p
->iSize
> BITVEC_NBIT
) && p
->iDivisor
) {
172 u32 bin
= i
/p
->iDivisor
;
174 if( p
->u
.apSub
[bin
]==0 ){
175 p
->u
.apSub
[bin
] = sqlite3BitvecCreate( p
->iDivisor
);
176 if( p
->u
.apSub
[bin
]==0 ) return SQLITE_NOMEM
;
180 if( p
->iSize
<=BITVEC_NBIT
){
181 p
->u
.aBitmap
[i
/BITVEC_SZELEM
] |= 1 << (i
&(BITVEC_SZELEM
-1));
184 h
= BITVEC_HASH(i
++);
185 /* if there wasn't a hash collision, and this doesn't */
186 /* completely fill the hash, then just add it without */
187 /* worring about sub-dividing and re-hashing. */
188 if( !p
->u
.aHash
[h
] ){
189 if (p
->nSet
<(BITVEC_NINT
-1)) {
192 goto bitvec_set_rehash
;
195 /* there was a collision, check to see if it's already */
196 /* in hash, if not, try to find a spot for it */
198 if( p
->u
.aHash
[h
]==i
) return SQLITE_OK
;
200 if( h
>=BITVEC_NINT
) h
= 0;
201 } while( p
->u
.aHash
[h
] );
202 /* we didn't find it in the hash. h points to the first */
203 /* available free spot. check to see if this is going to */
204 /* make our hash too "full". */
206 if( p
->nSet
>=BITVEC_MXHASH
){
209 u32
*aiValues
= sqlite3StackAllocRaw(0, sizeof(p
->u
.aHash
));
213 memcpy(aiValues
, p
->u
.aHash
, sizeof(p
->u
.aHash
));
214 memset(p
->u
.apSub
, 0, sizeof(p
->u
.apSub
));
215 p
->iDivisor
= (p
->iSize
+ BITVEC_NPTR
- 1)/BITVEC_NPTR
;
216 rc
= sqlite3BitvecSet(p
, i
);
217 for(j
=0; j
<BITVEC_NINT
; j
++){
218 if( aiValues
[j
] ) rc
|= sqlite3BitvecSet(p
, aiValues
[j
]);
220 sqlite3StackFree(0, aiValues
);
231 ** Clear the i-th bit.
233 ** pBuf must be a pointer to at least BITVEC_SZ bytes of temporary storage
234 ** that BitvecClear can use to rebuilt its hash table.
236 void sqlite3BitvecClear(Bitvec
*p
, u32 i
, void *pBuf
){
240 while( p
->iDivisor
){
241 u32 bin
= i
/p
->iDivisor
;
248 if( p
->iSize
<=BITVEC_NBIT
){
249 p
->u
.aBitmap
[i
/BITVEC_SZELEM
] &= ~(1 << (i
&(BITVEC_SZELEM
-1)));
252 u32
*aiValues
= pBuf
;
253 memcpy(aiValues
, p
->u
.aHash
, sizeof(p
->u
.aHash
));
254 memset(p
->u
.aHash
, 0, sizeof(p
->u
.aHash
));
256 for(j
=0; j
<BITVEC_NINT
; j
++){
257 if( aiValues
[j
] && aiValues
[j
]!=(i
+1) ){
258 u32 h
= BITVEC_HASH(aiValues
[j
]-1);
260 while( p
->u
.aHash
[h
] ){
262 if( h
>=BITVEC_NINT
) h
= 0;
264 p
->u
.aHash
[h
] = aiValues
[j
];
271 ** Destroy a bitmap object. Reclaim all memory used.
273 void sqlite3BitvecDestroy(Bitvec
*p
){
277 for(i
=0; i
<BITVEC_NPTR
; i
++){
278 sqlite3BitvecDestroy(p
->u
.apSub
[i
]);
285 ** Return the value of the iSize parameter specified when Bitvec *p
288 u32
sqlite3BitvecSize(Bitvec
*p
){
292 #ifndef SQLITE_OMIT_BUILTIN_TEST
294 ** Let V[] be an array of unsigned characters sufficient to hold
295 ** up to N bits. Let I be an integer between 0 and N. 0<=I<N.
296 ** Then the following macros can be used to set, clear, or test
297 ** individual bits within V.
299 #define SETBIT(V,I) V[I>>3] |= (1<<(I&7))
300 #define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7))
301 #define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0
304 ** This routine runs an extensive test of the Bitvec code.
306 ** The input is an array of integers that acts as a program
307 ** to test the Bitvec. The integers are opcodes followed
308 ** by 0, 1, or 3 operands, depending on the opcode. Another
309 ** opcode follows immediately after the last operand.
311 ** There are 6 opcodes numbered from 0 through 5. 0 is the
312 ** "halt" opcode and causes the test to end.
314 ** 0 Halt and return the number of errors
315 ** 1 N S X Set N bits beginning with S and incrementing by X
316 ** 2 N S X Clear N bits beginning with S and incrementing by X
317 ** 3 N Set N randomly chosen bits
318 ** 4 N Clear N randomly chosen bits
319 ** 5 N S X Set N bits from S increment X in array only, not in bitvec
321 ** The opcodes 1 through 4 perform set and clear operations are performed
322 ** on both a Bitvec object and on a linear array of bits obtained from malloc.
323 ** Opcode 5 works on the linear array only, not on the Bitvec.
324 ** Opcode 5 is used to deliberately induce a fault in order to
325 ** confirm that error detection works.
327 ** At the conclusion of the test the linear array is compared
328 ** against the Bitvec object. If there are any differences,
329 ** an error is returned. If they are the same, zero is returned.
331 ** If a memory allocation error occurs, return -1.
333 int sqlite3BitvecBuiltinTest(int sz
, int *aOp
){
335 unsigned char *pV
= 0;
340 /* Allocate the Bitvec to be tested and a linear array of
341 ** bits to act as the reference */
342 pBitvec
= sqlite3BitvecCreate( sz
);
343 pV
= sqlite3MallocZero( (sz
+7)/8 + 1 );
344 pTmpSpace
= sqlite3_malloc(BITVEC_SZ
);
345 if( pBitvec
==0 || pV
==0 || pTmpSpace
==0 ) goto bitvec_end
;
347 /* NULL pBitvec tests */
348 sqlite3BitvecSet(0, 1);
349 sqlite3BitvecClear(0, 1, pTmpSpace
);
351 /* Run the program */
353 while( (op
= aOp
[pc
])!=0 ){
360 aOp
[pc
+2] += aOp
[pc
+3];
367 sqlite3_randomness(sizeof(i
), &i
);
371 if( (--aOp
[pc
+1]) > 0 ) nx
= 0;
373 i
= (i
& 0x7fffffff)%sz
;
377 if( sqlite3BitvecSet(pBitvec
, i
+1) ) goto bitvec_end
;
381 sqlite3BitvecClear(pBitvec
, i
+1, pTmpSpace
);
385 /* Test to make sure the linear array exactly matches the
386 ** Bitvec object. Start with the assumption that they do
387 ** match (rc==0). Change rc to non-zero if a discrepancy
390 rc
= sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec
, sz
+1)
391 + sqlite3BitvecTest(pBitvec
, 0)
392 + (sqlite3BitvecSize(pBitvec
) - sz
);
393 for(i
=1; i
<=sz
; i
++){
394 if( (TESTBIT(pV
,i
))!=sqlite3BitvecTest(pBitvec
,i
) ){
400 /* Free allocated structure */
402 sqlite3_free(pTmpSpace
);
404 sqlite3BitvecDestroy(pBitvec
);
407 #endif /* SQLITE_OMIT_BUILTIN_TEST */