Merge branch 'deb' into prerelease-int
[sqlcipher.git] / src / expr.c
blob660397e078ae48b2e7175e3385677819722ddd6c
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
15 #include "sqliteInt.h"
18 ** Return the 'affinity' of the expression pExpr if any.
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
25 ** i.e. the WHERE clause expresssions in the following statements all
26 ** have an affinity:
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
33 char sqlite3ExprAffinity(Expr *pExpr){
34 int op;
35 pExpr = sqlite3ExprSkipCollate(pExpr);
36 op = pExpr->op;
37 if( op==TK_SELECT ){
38 assert( pExpr->flags&EP_xIsSelect );
39 return sqlite3ExprAffinity(pExpr->x.pSelect->pEList->a[0].pExpr);
41 #ifndef SQLITE_OMIT_CAST
42 if( op==TK_CAST ){
43 assert( !ExprHasProperty(pExpr, EP_IntValue) );
44 return sqlite3AffinityType(pExpr->u.zToken);
46 #endif
47 if( (op==TK_AGG_COLUMN || op==TK_COLUMN || op==TK_REGISTER)
48 && pExpr->pTab!=0
50 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
51 ** a TK_COLUMN but was previously evaluated and cached in a register */
52 int j = pExpr->iColumn;
53 if( j<0 ) return SQLITE_AFF_INTEGER;
54 assert( pExpr->pTab && j<pExpr->pTab->nCol );
55 return pExpr->pTab->aCol[j].affinity;
57 return pExpr->affinity;
61 ** Set the collating sequence for expression pExpr to be the collating
62 ** sequence named by pToken. Return a pointer to a new Expr node that
63 ** implements the COLLATE operator.
65 ** If a memory allocation error occurs, that fact is recorded in pParse->db
66 ** and the pExpr parameter is returned unchanged.
68 Expr *sqlite3ExprAddCollateToken(Parse *pParse, Expr *pExpr, Token *pCollName){
69 if( pCollName->n>0 ){
70 Expr *pNew = sqlite3ExprAlloc(pParse->db, TK_COLLATE, pCollName, 1);
71 if( pNew ){
72 pNew->pLeft = pExpr;
73 pNew->flags |= EP_Collate;
74 pExpr = pNew;
77 return pExpr;
79 Expr *sqlite3ExprAddCollateString(Parse *pParse, Expr *pExpr, const char *zC){
80 Token s;
81 assert( zC!=0 );
82 s.z = zC;
83 s.n = sqlite3Strlen30(s.z);
84 return sqlite3ExprAddCollateToken(pParse, pExpr, &s);
88 ** Skip over any TK_COLLATE and/or TK_AS operators at the root of
89 ** an expression.
91 Expr *sqlite3ExprSkipCollate(Expr *pExpr){
92 while( pExpr && (pExpr->op==TK_COLLATE || pExpr->op==TK_AS) ){
93 pExpr = pExpr->pLeft;
95 return pExpr;
99 ** Return the collation sequence for the expression pExpr. If
100 ** there is no defined collating sequence, return NULL.
102 ** The collating sequence might be determined by a COLLATE operator
103 ** or by the presence of a column with a defined collating sequence.
104 ** COLLATE operators take first precedence. Left operands take
105 ** precedence over right operands.
107 CollSeq *sqlite3ExprCollSeq(Parse *pParse, Expr *pExpr){
108 sqlite3 *db = pParse->db;
109 CollSeq *pColl = 0;
110 Expr *p = pExpr;
111 while( p ){
112 int op = p->op;
113 if( op==TK_CAST || op==TK_UPLUS ){
114 p = p->pLeft;
115 continue;
117 assert( op!=TK_REGISTER || p->op2!=TK_COLLATE );
118 if( op==TK_COLLATE ){
119 pColl = sqlite3GetCollSeq(pParse, ENC(db), 0, p->u.zToken);
120 break;
122 if( p->pTab!=0
123 && (op==TK_AGG_COLUMN || op==TK_COLUMN
124 || op==TK_REGISTER || op==TK_TRIGGER)
126 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
127 ** a TK_COLUMN but was previously evaluated and cached in a register */
128 int j = p->iColumn;
129 if( j>=0 ){
130 const char *zColl = p->pTab->aCol[j].zColl;
131 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
133 break;
135 if( p->flags & EP_Collate ){
136 if( ALWAYS(p->pLeft) && (p->pLeft->flags & EP_Collate)!=0 ){
137 p = p->pLeft;
138 }else{
139 p = p->pRight;
141 }else{
142 break;
145 if( sqlite3CheckCollSeq(pParse, pColl) ){
146 pColl = 0;
148 return pColl;
152 ** pExpr is an operand of a comparison operator. aff2 is the
153 ** type affinity of the other operand. This routine returns the
154 ** type affinity that should be used for the comparison operator.
156 char sqlite3CompareAffinity(Expr *pExpr, char aff2){
157 char aff1 = sqlite3ExprAffinity(pExpr);
158 if( aff1 && aff2 ){
159 /* Both sides of the comparison are columns. If one has numeric
160 ** affinity, use that. Otherwise use no affinity.
162 if( sqlite3IsNumericAffinity(aff1) || sqlite3IsNumericAffinity(aff2) ){
163 return SQLITE_AFF_NUMERIC;
164 }else{
165 return SQLITE_AFF_NONE;
167 }else if( !aff1 && !aff2 ){
168 /* Neither side of the comparison is a column. Compare the
169 ** results directly.
171 return SQLITE_AFF_NONE;
172 }else{
173 /* One side is a column, the other is not. Use the columns affinity. */
174 assert( aff1==0 || aff2==0 );
175 return (aff1 + aff2);
180 ** pExpr is a comparison operator. Return the type affinity that should
181 ** be applied to both operands prior to doing the comparison.
183 static char comparisonAffinity(Expr *pExpr){
184 char aff;
185 assert( pExpr->op==TK_EQ || pExpr->op==TK_IN || pExpr->op==TK_LT ||
186 pExpr->op==TK_GT || pExpr->op==TK_GE || pExpr->op==TK_LE ||
187 pExpr->op==TK_NE || pExpr->op==TK_IS || pExpr->op==TK_ISNOT );
188 assert( pExpr->pLeft );
189 aff = sqlite3ExprAffinity(pExpr->pLeft);
190 if( pExpr->pRight ){
191 aff = sqlite3CompareAffinity(pExpr->pRight, aff);
192 }else if( ExprHasProperty(pExpr, EP_xIsSelect) ){
193 aff = sqlite3CompareAffinity(pExpr->x.pSelect->pEList->a[0].pExpr, aff);
194 }else if( !aff ){
195 aff = SQLITE_AFF_NONE;
197 return aff;
201 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
202 ** idx_affinity is the affinity of an indexed column. Return true
203 ** if the index with affinity idx_affinity may be used to implement
204 ** the comparison in pExpr.
206 int sqlite3IndexAffinityOk(Expr *pExpr, char idx_affinity){
207 char aff = comparisonAffinity(pExpr);
208 switch( aff ){
209 case SQLITE_AFF_NONE:
210 return 1;
211 case SQLITE_AFF_TEXT:
212 return idx_affinity==SQLITE_AFF_TEXT;
213 default:
214 return sqlite3IsNumericAffinity(idx_affinity);
219 ** Return the P5 value that should be used for a binary comparison
220 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
222 static u8 binaryCompareP5(Expr *pExpr1, Expr *pExpr2, int jumpIfNull){
223 u8 aff = (char)sqlite3ExprAffinity(pExpr2);
224 aff = (u8)sqlite3CompareAffinity(pExpr1, aff) | (u8)jumpIfNull;
225 return aff;
229 ** Return a pointer to the collation sequence that should be used by
230 ** a binary comparison operator comparing pLeft and pRight.
232 ** If the left hand expression has a collating sequence type, then it is
233 ** used. Otherwise the collation sequence for the right hand expression
234 ** is used, or the default (BINARY) if neither expression has a collating
235 ** type.
237 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
238 ** it is not considered.
240 CollSeq *sqlite3BinaryCompareCollSeq(
241 Parse *pParse,
242 Expr *pLeft,
243 Expr *pRight
245 CollSeq *pColl;
246 assert( pLeft );
247 if( pLeft->flags & EP_Collate ){
248 pColl = sqlite3ExprCollSeq(pParse, pLeft);
249 }else if( pRight && (pRight->flags & EP_Collate)!=0 ){
250 pColl = sqlite3ExprCollSeq(pParse, pRight);
251 }else{
252 pColl = sqlite3ExprCollSeq(pParse, pLeft);
253 if( !pColl ){
254 pColl = sqlite3ExprCollSeq(pParse, pRight);
257 return pColl;
261 ** Generate code for a comparison operator.
263 static int codeCompare(
264 Parse *pParse, /* The parsing (and code generating) context */
265 Expr *pLeft, /* The left operand */
266 Expr *pRight, /* The right operand */
267 int opcode, /* The comparison opcode */
268 int in1, int in2, /* Register holding operands */
269 int dest, /* Jump here if true. */
270 int jumpIfNull /* If true, jump if either operand is NULL */
272 int p5;
273 int addr;
274 CollSeq *p4;
276 p4 = sqlite3BinaryCompareCollSeq(pParse, pLeft, pRight);
277 p5 = binaryCompareP5(pLeft, pRight, jumpIfNull);
278 addr = sqlite3VdbeAddOp4(pParse->pVdbe, opcode, in2, dest, in1,
279 (void*)p4, P4_COLLSEQ);
280 sqlite3VdbeChangeP5(pParse->pVdbe, (u8)p5);
281 return addr;
284 #if SQLITE_MAX_EXPR_DEPTH>0
286 ** Check that argument nHeight is less than or equal to the maximum
287 ** expression depth allowed. If it is not, leave an error message in
288 ** pParse.
290 int sqlite3ExprCheckHeight(Parse *pParse, int nHeight){
291 int rc = SQLITE_OK;
292 int mxHeight = pParse->db->aLimit[SQLITE_LIMIT_EXPR_DEPTH];
293 if( nHeight>mxHeight ){
294 sqlite3ErrorMsg(pParse,
295 "Expression tree is too large (maximum depth %d)", mxHeight
297 rc = SQLITE_ERROR;
299 return rc;
302 /* The following three functions, heightOfExpr(), heightOfExprList()
303 ** and heightOfSelect(), are used to determine the maximum height
304 ** of any expression tree referenced by the structure passed as the
305 ** first argument.
307 ** If this maximum height is greater than the current value pointed
308 ** to by pnHeight, the second parameter, then set *pnHeight to that
309 ** value.
311 static void heightOfExpr(Expr *p, int *pnHeight){
312 if( p ){
313 if( p->nHeight>*pnHeight ){
314 *pnHeight = p->nHeight;
318 static void heightOfExprList(ExprList *p, int *pnHeight){
319 if( p ){
320 int i;
321 for(i=0; i<p->nExpr; i++){
322 heightOfExpr(p->a[i].pExpr, pnHeight);
326 static void heightOfSelect(Select *p, int *pnHeight){
327 if( p ){
328 heightOfExpr(p->pWhere, pnHeight);
329 heightOfExpr(p->pHaving, pnHeight);
330 heightOfExpr(p->pLimit, pnHeight);
331 heightOfExpr(p->pOffset, pnHeight);
332 heightOfExprList(p->pEList, pnHeight);
333 heightOfExprList(p->pGroupBy, pnHeight);
334 heightOfExprList(p->pOrderBy, pnHeight);
335 heightOfSelect(p->pPrior, pnHeight);
340 ** Set the Expr.nHeight variable in the structure passed as an
341 ** argument. An expression with no children, Expr.pList or
342 ** Expr.pSelect member has a height of 1. Any other expression
343 ** has a height equal to the maximum height of any other
344 ** referenced Expr plus one.
346 static void exprSetHeight(Expr *p){
347 int nHeight = 0;
348 heightOfExpr(p->pLeft, &nHeight);
349 heightOfExpr(p->pRight, &nHeight);
350 if( ExprHasProperty(p, EP_xIsSelect) ){
351 heightOfSelect(p->x.pSelect, &nHeight);
352 }else{
353 heightOfExprList(p->x.pList, &nHeight);
355 p->nHeight = nHeight + 1;
359 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
360 ** the height is greater than the maximum allowed expression depth,
361 ** leave an error in pParse.
363 void sqlite3ExprSetHeight(Parse *pParse, Expr *p){
364 exprSetHeight(p);
365 sqlite3ExprCheckHeight(pParse, p->nHeight);
369 ** Return the maximum height of any expression tree referenced
370 ** by the select statement passed as an argument.
372 int sqlite3SelectExprHeight(Select *p){
373 int nHeight = 0;
374 heightOfSelect(p, &nHeight);
375 return nHeight;
377 #else
378 #define exprSetHeight(y)
379 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
382 ** This routine is the core allocator for Expr nodes.
384 ** Construct a new expression node and return a pointer to it. Memory
385 ** for this node and for the pToken argument is a single allocation
386 ** obtained from sqlite3DbMalloc(). The calling function
387 ** is responsible for making sure the node eventually gets freed.
389 ** If dequote is true, then the token (if it exists) is dequoted.
390 ** If dequote is false, no dequoting is performance. The deQuote
391 ** parameter is ignored if pToken is NULL or if the token does not
392 ** appear to be quoted. If the quotes were of the form "..." (double-quotes)
393 ** then the EP_DblQuoted flag is set on the expression node.
395 ** Special case: If op==TK_INTEGER and pToken points to a string that
396 ** can be translated into a 32-bit integer, then the token is not
397 ** stored in u.zToken. Instead, the integer values is written
398 ** into u.iValue and the EP_IntValue flag is set. No extra storage
399 ** is allocated to hold the integer text and the dequote flag is ignored.
401 Expr *sqlite3ExprAlloc(
402 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
403 int op, /* Expression opcode */
404 const Token *pToken, /* Token argument. Might be NULL */
405 int dequote /* True to dequote */
407 Expr *pNew;
408 int nExtra = 0;
409 int iValue = 0;
411 if( pToken ){
412 if( op!=TK_INTEGER || pToken->z==0
413 || sqlite3GetInt32(pToken->z, &iValue)==0 ){
414 nExtra = pToken->n+1;
415 assert( iValue>=0 );
418 pNew = sqlite3DbMallocZero(db, sizeof(Expr)+nExtra);
419 if( pNew ){
420 pNew->op = (u8)op;
421 pNew->iAgg = -1;
422 if( pToken ){
423 if( nExtra==0 ){
424 pNew->flags |= EP_IntValue;
425 pNew->u.iValue = iValue;
426 }else{
427 int c;
428 pNew->u.zToken = (char*)&pNew[1];
429 assert( pToken->z!=0 || pToken->n==0 );
430 if( pToken->n ) memcpy(pNew->u.zToken, pToken->z, pToken->n);
431 pNew->u.zToken[pToken->n] = 0;
432 if( dequote && nExtra>=3
433 && ((c = pToken->z[0])=='\'' || c=='"' || c=='[' || c=='`') ){
434 sqlite3Dequote(pNew->u.zToken);
435 if( c=='"' ) pNew->flags |= EP_DblQuoted;
439 #if SQLITE_MAX_EXPR_DEPTH>0
440 pNew->nHeight = 1;
441 #endif
443 return pNew;
447 ** Allocate a new expression node from a zero-terminated token that has
448 ** already been dequoted.
450 Expr *sqlite3Expr(
451 sqlite3 *db, /* Handle for sqlite3DbMallocZero() (may be null) */
452 int op, /* Expression opcode */
453 const char *zToken /* Token argument. Might be NULL */
455 Token x;
456 x.z = zToken;
457 x.n = zToken ? sqlite3Strlen30(zToken) : 0;
458 return sqlite3ExprAlloc(db, op, &x, 0);
462 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
464 ** If pRoot==NULL that means that a memory allocation error has occurred.
465 ** In that case, delete the subtrees pLeft and pRight.
467 void sqlite3ExprAttachSubtrees(
468 sqlite3 *db,
469 Expr *pRoot,
470 Expr *pLeft,
471 Expr *pRight
473 if( pRoot==0 ){
474 assert( db->mallocFailed );
475 sqlite3ExprDelete(db, pLeft);
476 sqlite3ExprDelete(db, pRight);
477 }else{
478 if( pRight ){
479 pRoot->pRight = pRight;
480 pRoot->flags |= EP_Collate & pRight->flags;
482 if( pLeft ){
483 pRoot->pLeft = pLeft;
484 pRoot->flags |= EP_Collate & pLeft->flags;
486 exprSetHeight(pRoot);
491 ** Allocate a Expr node which joins as many as two subtrees.
493 ** One or both of the subtrees can be NULL. Return a pointer to the new
494 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
495 ** free the subtrees and return NULL.
497 Expr *sqlite3PExpr(
498 Parse *pParse, /* Parsing context */
499 int op, /* Expression opcode */
500 Expr *pLeft, /* Left operand */
501 Expr *pRight, /* Right operand */
502 const Token *pToken /* Argument token */
504 Expr *p;
505 if( op==TK_AND && pLeft && pRight ){
506 /* Take advantage of short-circuit false optimization for AND */
507 p = sqlite3ExprAnd(pParse->db, pLeft, pRight);
508 }else{
509 p = sqlite3ExprAlloc(pParse->db, op, pToken, 1);
510 sqlite3ExprAttachSubtrees(pParse->db, p, pLeft, pRight);
512 if( p ) {
513 sqlite3ExprCheckHeight(pParse, p->nHeight);
515 return p;
519 ** Return 1 if an expression must be FALSE in all cases and 0 if the
520 ** expression might be true. This is an optimization. If is OK to
521 ** return 0 here even if the expression really is always false (a
522 ** false negative). But it is a bug to return 1 if the expression
523 ** might be true in some rare circumstances (a false positive.)
525 ** Note that if the expression is part of conditional for a
526 ** LEFT JOIN, then we cannot determine at compile-time whether or not
527 ** is it true or false, so always return 0.
529 static int exprAlwaysFalse(Expr *p){
530 int v = 0;
531 if( ExprHasProperty(p, EP_FromJoin) ) return 0;
532 if( !sqlite3ExprIsInteger(p, &v) ) return 0;
533 return v==0;
537 ** Join two expressions using an AND operator. If either expression is
538 ** NULL, then just return the other expression.
540 ** If one side or the other of the AND is known to be false, then instead
541 ** of returning an AND expression, just return a constant expression with
542 ** a value of false.
544 Expr *sqlite3ExprAnd(sqlite3 *db, Expr *pLeft, Expr *pRight){
545 if( pLeft==0 ){
546 return pRight;
547 }else if( pRight==0 ){
548 return pLeft;
549 }else if( exprAlwaysFalse(pLeft) || exprAlwaysFalse(pRight) ){
550 sqlite3ExprDelete(db, pLeft);
551 sqlite3ExprDelete(db, pRight);
552 return sqlite3ExprAlloc(db, TK_INTEGER, &sqlite3IntTokens[0], 0);
553 }else{
554 Expr *pNew = sqlite3ExprAlloc(db, TK_AND, 0, 0);
555 sqlite3ExprAttachSubtrees(db, pNew, pLeft, pRight);
556 return pNew;
561 ** Construct a new expression node for a function with multiple
562 ** arguments.
564 Expr *sqlite3ExprFunction(Parse *pParse, ExprList *pList, Token *pToken){
565 Expr *pNew;
566 sqlite3 *db = pParse->db;
567 assert( pToken );
568 pNew = sqlite3ExprAlloc(db, TK_FUNCTION, pToken, 1);
569 if( pNew==0 ){
570 sqlite3ExprListDelete(db, pList); /* Avoid memory leak when malloc fails */
571 return 0;
573 pNew->x.pList = pList;
574 assert( !ExprHasProperty(pNew, EP_xIsSelect) );
575 sqlite3ExprSetHeight(pParse, pNew);
576 return pNew;
580 ** Assign a variable number to an expression that encodes a wildcard
581 ** in the original SQL statement.
583 ** Wildcards consisting of a single "?" are assigned the next sequential
584 ** variable number.
586 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make
587 ** sure "nnn" is not too be to avoid a denial of service attack when
588 ** the SQL statement comes from an external source.
590 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
591 ** as the previous instance of the same wildcard. Or if this is the first
592 ** instance of the wildcard, the next sequenial variable number is
593 ** assigned.
595 void sqlite3ExprAssignVarNumber(Parse *pParse, Expr *pExpr){
596 sqlite3 *db = pParse->db;
597 const char *z;
599 if( pExpr==0 ) return;
600 assert( !ExprHasAnyProperty(pExpr, EP_IntValue|EP_Reduced|EP_TokenOnly) );
601 z = pExpr->u.zToken;
602 assert( z!=0 );
603 assert( z[0]!=0 );
604 if( z[1]==0 ){
605 /* Wildcard of the form "?". Assign the next variable number */
606 assert( z[0]=='?' );
607 pExpr->iColumn = (ynVar)(++pParse->nVar);
608 }else{
609 ynVar x = 0;
610 u32 n = sqlite3Strlen30(z);
611 if( z[0]=='?' ){
612 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
613 ** use it as the variable number */
614 i64 i;
615 int bOk = 0==sqlite3Atoi64(&z[1], &i, n-1, SQLITE_UTF8);
616 pExpr->iColumn = x = (ynVar)i;
617 testcase( i==0 );
618 testcase( i==1 );
619 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]-1 );
620 testcase( i==db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] );
621 if( bOk==0 || i<1 || i>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
622 sqlite3ErrorMsg(pParse, "variable number must be between ?1 and ?%d",
623 db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER]);
624 x = 0;
626 if( i>pParse->nVar ){
627 pParse->nVar = (int)i;
629 }else{
630 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
631 ** number as the prior appearance of the same name, or if the name
632 ** has never appeared before, reuse the same variable number
634 ynVar i;
635 for(i=0; i<pParse->nzVar; i++){
636 if( pParse->azVar[i] && strcmp(pParse->azVar[i],z)==0 ){
637 pExpr->iColumn = x = (ynVar)i+1;
638 break;
641 if( x==0 ) x = pExpr->iColumn = (ynVar)(++pParse->nVar);
643 if( x>0 ){
644 if( x>pParse->nzVar ){
645 char **a;
646 a = sqlite3DbRealloc(db, pParse->azVar, x*sizeof(a[0]));
647 if( a==0 ) return; /* Error reported through db->mallocFailed */
648 pParse->azVar = a;
649 memset(&a[pParse->nzVar], 0, (x-pParse->nzVar)*sizeof(a[0]));
650 pParse->nzVar = x;
652 if( z[0]!='?' || pParse->azVar[x-1]==0 ){
653 sqlite3DbFree(db, pParse->azVar[x-1]);
654 pParse->azVar[x-1] = sqlite3DbStrNDup(db, z, n);
658 if( !pParse->nErr && pParse->nVar>db->aLimit[SQLITE_LIMIT_VARIABLE_NUMBER] ){
659 sqlite3ErrorMsg(pParse, "too many SQL variables");
664 ** Recursively delete an expression tree.
666 void sqlite3ExprDelete(sqlite3 *db, Expr *p){
667 if( p==0 ) return;
668 /* Sanity check: Assert that the IntValue is non-negative if it exists */
669 assert( !ExprHasProperty(p, EP_IntValue) || p->u.iValue>=0 );
670 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
671 sqlite3ExprDelete(db, p->pLeft);
672 sqlite3ExprDelete(db, p->pRight);
673 if( !ExprHasProperty(p, EP_Reduced) && (p->flags2 & EP2_MallocedToken)!=0 ){
674 sqlite3DbFree(db, p->u.zToken);
676 if( ExprHasProperty(p, EP_xIsSelect) ){
677 sqlite3SelectDelete(db, p->x.pSelect);
678 }else{
679 sqlite3ExprListDelete(db, p->x.pList);
682 if( !ExprHasProperty(p, EP_Static) ){
683 sqlite3DbFree(db, p);
688 ** Return the number of bytes allocated for the expression structure
689 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
690 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
692 static int exprStructSize(Expr *p){
693 if( ExprHasProperty(p, EP_TokenOnly) ) return EXPR_TOKENONLYSIZE;
694 if( ExprHasProperty(p, EP_Reduced) ) return EXPR_REDUCEDSIZE;
695 return EXPR_FULLSIZE;
699 ** The dupedExpr*Size() routines each return the number of bytes required
700 ** to store a copy of an expression or expression tree. They differ in
701 ** how much of the tree is measured.
703 ** dupedExprStructSize() Size of only the Expr structure
704 ** dupedExprNodeSize() Size of Expr + space for token
705 ** dupedExprSize() Expr + token + subtree components
707 ***************************************************************************
709 ** The dupedExprStructSize() function returns two values OR-ed together:
710 ** (1) the space required for a copy of the Expr structure only and
711 ** (2) the EP_xxx flags that indicate what the structure size should be.
712 ** The return values is always one of:
714 ** EXPR_FULLSIZE
715 ** EXPR_REDUCEDSIZE | EP_Reduced
716 ** EXPR_TOKENONLYSIZE | EP_TokenOnly
718 ** The size of the structure can be found by masking the return value
719 ** of this routine with 0xfff. The flags can be found by masking the
720 ** return value with EP_Reduced|EP_TokenOnly.
722 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
723 ** (unreduced) Expr objects as they or originally constructed by the parser.
724 ** During expression analysis, extra information is computed and moved into
725 ** later parts of teh Expr object and that extra information might get chopped
726 ** off if the expression is reduced. Note also that it does not work to
727 ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal
728 ** to reduce a pristine expression tree from the parser. The implementation
729 ** of dupedExprStructSize() contain multiple assert() statements that attempt
730 ** to enforce this constraint.
732 static int dupedExprStructSize(Expr *p, int flags){
733 int nSize;
734 assert( flags==EXPRDUP_REDUCE || flags==0 ); /* Only one flag value allowed */
735 if( 0==(flags&EXPRDUP_REDUCE) ){
736 nSize = EXPR_FULLSIZE;
737 }else{
738 assert( !ExprHasAnyProperty(p, EP_TokenOnly|EP_Reduced) );
739 assert( !ExprHasProperty(p, EP_FromJoin) );
740 assert( (p->flags2 & EP2_MallocedToken)==0 );
741 assert( (p->flags2 & EP2_Irreducible)==0 );
742 if( p->pLeft || p->pRight || p->x.pList ){
743 nSize = EXPR_REDUCEDSIZE | EP_Reduced;
744 }else{
745 nSize = EXPR_TOKENONLYSIZE | EP_TokenOnly;
748 return nSize;
752 ** This function returns the space in bytes required to store the copy
753 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
754 ** string is defined.)
756 static int dupedExprNodeSize(Expr *p, int flags){
757 int nByte = dupedExprStructSize(p, flags) & 0xfff;
758 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
759 nByte += sqlite3Strlen30(p->u.zToken)+1;
761 return ROUND8(nByte);
765 ** Return the number of bytes required to create a duplicate of the
766 ** expression passed as the first argument. The second argument is a
767 ** mask containing EXPRDUP_XXX flags.
769 ** The value returned includes space to create a copy of the Expr struct
770 ** itself and the buffer referred to by Expr.u.zToken, if any.
772 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
773 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
774 ** and Expr.pRight variables (but not for any structures pointed to or
775 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
777 static int dupedExprSize(Expr *p, int flags){
778 int nByte = 0;
779 if( p ){
780 nByte = dupedExprNodeSize(p, flags);
781 if( flags&EXPRDUP_REDUCE ){
782 nByte += dupedExprSize(p->pLeft, flags) + dupedExprSize(p->pRight, flags);
785 return nByte;
789 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
790 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
791 ** to store the copy of expression p, the copies of p->u.zToken
792 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
793 ** if any. Before returning, *pzBuffer is set to the first byte passed the
794 ** portion of the buffer copied into by this function.
796 static Expr *exprDup(sqlite3 *db, Expr *p, int flags, u8 **pzBuffer){
797 Expr *pNew = 0; /* Value to return */
798 if( p ){
799 const int isReduced = (flags&EXPRDUP_REDUCE);
800 u8 *zAlloc;
801 u32 staticFlag = 0;
803 assert( pzBuffer==0 || isReduced );
805 /* Figure out where to write the new Expr structure. */
806 if( pzBuffer ){
807 zAlloc = *pzBuffer;
808 staticFlag = EP_Static;
809 }else{
810 zAlloc = sqlite3DbMallocRaw(db, dupedExprSize(p, flags));
812 pNew = (Expr *)zAlloc;
814 if( pNew ){
815 /* Set nNewSize to the size allocated for the structure pointed to
816 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
817 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
818 ** by the copy of the p->u.zToken string (if any).
820 const unsigned nStructSize = dupedExprStructSize(p, flags);
821 const int nNewSize = nStructSize & 0xfff;
822 int nToken;
823 if( !ExprHasProperty(p, EP_IntValue) && p->u.zToken ){
824 nToken = sqlite3Strlen30(p->u.zToken) + 1;
825 }else{
826 nToken = 0;
828 if( isReduced ){
829 assert( ExprHasProperty(p, EP_Reduced)==0 );
830 memcpy(zAlloc, p, nNewSize);
831 }else{
832 int nSize = exprStructSize(p);
833 memcpy(zAlloc, p, nSize);
834 memset(&zAlloc[nSize], 0, EXPR_FULLSIZE-nSize);
837 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
838 pNew->flags &= ~(EP_Reduced|EP_TokenOnly|EP_Static);
839 pNew->flags |= nStructSize & (EP_Reduced|EP_TokenOnly);
840 pNew->flags |= staticFlag;
842 /* Copy the p->u.zToken string, if any. */
843 if( nToken ){
844 char *zToken = pNew->u.zToken = (char*)&zAlloc[nNewSize];
845 memcpy(zToken, p->u.zToken, nToken);
848 if( 0==((p->flags|pNew->flags) & EP_TokenOnly) ){
849 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
850 if( ExprHasProperty(p, EP_xIsSelect) ){
851 pNew->x.pSelect = sqlite3SelectDup(db, p->x.pSelect, isReduced);
852 }else{
853 pNew->x.pList = sqlite3ExprListDup(db, p->x.pList, isReduced);
857 /* Fill in pNew->pLeft and pNew->pRight. */
858 if( ExprHasAnyProperty(pNew, EP_Reduced|EP_TokenOnly) ){
859 zAlloc += dupedExprNodeSize(p, flags);
860 if( ExprHasProperty(pNew, EP_Reduced) ){
861 pNew->pLeft = exprDup(db, p->pLeft, EXPRDUP_REDUCE, &zAlloc);
862 pNew->pRight = exprDup(db, p->pRight, EXPRDUP_REDUCE, &zAlloc);
864 if( pzBuffer ){
865 *pzBuffer = zAlloc;
867 }else{
868 pNew->flags2 = 0;
869 if( !ExprHasAnyProperty(p, EP_TokenOnly) ){
870 pNew->pLeft = sqlite3ExprDup(db, p->pLeft, 0);
871 pNew->pRight = sqlite3ExprDup(db, p->pRight, 0);
877 return pNew;
881 ** The following group of routines make deep copies of expressions,
882 ** expression lists, ID lists, and select statements. The copies can
883 ** be deleted (by being passed to their respective ...Delete() routines)
884 ** without effecting the originals.
886 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
887 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
888 ** by subsequent calls to sqlite*ListAppend() routines.
890 ** Any tables that the SrcList might point to are not duplicated.
892 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
893 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
894 ** truncated version of the usual Expr structure that will be stored as
895 ** part of the in-memory representation of the database schema.
897 Expr *sqlite3ExprDup(sqlite3 *db, Expr *p, int flags){
898 return exprDup(db, p, flags, 0);
900 ExprList *sqlite3ExprListDup(sqlite3 *db, ExprList *p, int flags){
901 ExprList *pNew;
902 struct ExprList_item *pItem, *pOldItem;
903 int i;
904 if( p==0 ) return 0;
905 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
906 if( pNew==0 ) return 0;
907 pNew->iECursor = 0;
908 pNew->nExpr = i = p->nExpr;
909 if( (flags & EXPRDUP_REDUCE)==0 ) for(i=1; i<p->nExpr; i+=i){}
910 pNew->a = pItem = sqlite3DbMallocRaw(db, i*sizeof(p->a[0]) );
911 if( pItem==0 ){
912 sqlite3DbFree(db, pNew);
913 return 0;
915 pOldItem = p->a;
916 for(i=0; i<p->nExpr; i++, pItem++, pOldItem++){
917 Expr *pOldExpr = pOldItem->pExpr;
918 pItem->pExpr = sqlite3ExprDup(db, pOldExpr, flags);
919 pItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
920 pItem->zSpan = sqlite3DbStrDup(db, pOldItem->zSpan);
921 pItem->sortOrder = pOldItem->sortOrder;
922 pItem->done = 0;
923 pItem->iOrderByCol = pOldItem->iOrderByCol;
924 pItem->iAlias = pOldItem->iAlias;
926 return pNew;
930 ** If cursors, triggers, views and subqueries are all omitted from
931 ** the build, then none of the following routines, except for
932 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
933 ** called with a NULL argument.
935 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
936 || !defined(SQLITE_OMIT_SUBQUERY)
937 SrcList *sqlite3SrcListDup(sqlite3 *db, SrcList *p, int flags){
938 SrcList *pNew;
939 int i;
940 int nByte;
941 if( p==0 ) return 0;
942 nByte = sizeof(*p) + (p->nSrc>0 ? sizeof(p->a[0]) * (p->nSrc-1) : 0);
943 pNew = sqlite3DbMallocRaw(db, nByte );
944 if( pNew==0 ) return 0;
945 pNew->nSrc = pNew->nAlloc = p->nSrc;
946 for(i=0; i<p->nSrc; i++){
947 struct SrcList_item *pNewItem = &pNew->a[i];
948 struct SrcList_item *pOldItem = &p->a[i];
949 Table *pTab;
950 pNewItem->pSchema = pOldItem->pSchema;
951 pNewItem->zDatabase = sqlite3DbStrDup(db, pOldItem->zDatabase);
952 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
953 pNewItem->zAlias = sqlite3DbStrDup(db, pOldItem->zAlias);
954 pNewItem->jointype = pOldItem->jointype;
955 pNewItem->iCursor = pOldItem->iCursor;
956 pNewItem->addrFillSub = pOldItem->addrFillSub;
957 pNewItem->regReturn = pOldItem->regReturn;
958 pNewItem->isCorrelated = pOldItem->isCorrelated;
959 pNewItem->viaCoroutine = pOldItem->viaCoroutine;
960 pNewItem->zIndex = sqlite3DbStrDup(db, pOldItem->zIndex);
961 pNewItem->notIndexed = pOldItem->notIndexed;
962 pNewItem->pIndex = pOldItem->pIndex;
963 pTab = pNewItem->pTab = pOldItem->pTab;
964 if( pTab ){
965 pTab->nRef++;
967 pNewItem->pSelect = sqlite3SelectDup(db, pOldItem->pSelect, flags);
968 pNewItem->pOn = sqlite3ExprDup(db, pOldItem->pOn, flags);
969 pNewItem->pUsing = sqlite3IdListDup(db, pOldItem->pUsing);
970 pNewItem->colUsed = pOldItem->colUsed;
972 return pNew;
974 IdList *sqlite3IdListDup(sqlite3 *db, IdList *p){
975 IdList *pNew;
976 int i;
977 if( p==0 ) return 0;
978 pNew = sqlite3DbMallocRaw(db, sizeof(*pNew) );
979 if( pNew==0 ) return 0;
980 pNew->nId = p->nId;
981 pNew->a = sqlite3DbMallocRaw(db, p->nId*sizeof(p->a[0]) );
982 if( pNew->a==0 ){
983 sqlite3DbFree(db, pNew);
984 return 0;
986 /* Note that because the size of the allocation for p->a[] is not
987 ** necessarily a power of two, sqlite3IdListAppend() may not be called
988 ** on the duplicate created by this function. */
989 for(i=0; i<p->nId; i++){
990 struct IdList_item *pNewItem = &pNew->a[i];
991 struct IdList_item *pOldItem = &p->a[i];
992 pNewItem->zName = sqlite3DbStrDup(db, pOldItem->zName);
993 pNewItem->idx = pOldItem->idx;
995 return pNew;
997 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
998 Select *pNew, *pPrior;
999 if( p==0 ) return 0;
1000 pNew = sqlite3DbMallocRaw(db, sizeof(*p) );
1001 if( pNew==0 ) return 0;
1002 pNew->pEList = sqlite3ExprListDup(db, p->pEList, flags);
1003 pNew->pSrc = sqlite3SrcListDup(db, p->pSrc, flags);
1004 pNew->pWhere = sqlite3ExprDup(db, p->pWhere, flags);
1005 pNew->pGroupBy = sqlite3ExprListDup(db, p->pGroupBy, flags);
1006 pNew->pHaving = sqlite3ExprDup(db, p->pHaving, flags);
1007 pNew->pOrderBy = sqlite3ExprListDup(db, p->pOrderBy, flags);
1008 pNew->op = p->op;
1009 pNew->pPrior = pPrior = sqlite3SelectDup(db, p->pPrior, flags);
1010 if( pPrior ) pPrior->pNext = pNew;
1011 pNew->pNext = 0;
1012 pNew->pLimit = sqlite3ExprDup(db, p->pLimit, flags);
1013 pNew->pOffset = sqlite3ExprDup(db, p->pOffset, flags);
1014 pNew->iLimit = 0;
1015 pNew->iOffset = 0;
1016 pNew->selFlags = p->selFlags & ~SF_UsesEphemeral;
1017 pNew->pRightmost = 0;
1018 pNew->addrOpenEphm[0] = -1;
1019 pNew->addrOpenEphm[1] = -1;
1020 pNew->addrOpenEphm[2] = -1;
1021 return pNew;
1023 #else
1024 Select *sqlite3SelectDup(sqlite3 *db, Select *p, int flags){
1025 assert( p==0 );
1026 return 0;
1028 #endif
1032 ** Add a new element to the end of an expression list. If pList is
1033 ** initially NULL, then create a new expression list.
1035 ** If a memory allocation error occurs, the entire list is freed and
1036 ** NULL is returned. If non-NULL is returned, then it is guaranteed
1037 ** that the new entry was successfully appended.
1039 ExprList *sqlite3ExprListAppend(
1040 Parse *pParse, /* Parsing context */
1041 ExprList *pList, /* List to which to append. Might be NULL */
1042 Expr *pExpr /* Expression to be appended. Might be NULL */
1044 sqlite3 *db = pParse->db;
1045 if( pList==0 ){
1046 pList = sqlite3DbMallocZero(db, sizeof(ExprList) );
1047 if( pList==0 ){
1048 goto no_mem;
1050 pList->a = sqlite3DbMallocRaw(db, sizeof(pList->a[0]));
1051 if( pList->a==0 ) goto no_mem;
1052 }else if( (pList->nExpr & (pList->nExpr-1))==0 ){
1053 struct ExprList_item *a;
1054 assert( pList->nExpr>0 );
1055 a = sqlite3DbRealloc(db, pList->a, pList->nExpr*2*sizeof(pList->a[0]));
1056 if( a==0 ){
1057 goto no_mem;
1059 pList->a = a;
1061 assert( pList->a!=0 );
1062 if( 1 ){
1063 struct ExprList_item *pItem = &pList->a[pList->nExpr++];
1064 memset(pItem, 0, sizeof(*pItem));
1065 pItem->pExpr = pExpr;
1067 return pList;
1069 no_mem:
1070 /* Avoid leaking memory if malloc has failed. */
1071 sqlite3ExprDelete(db, pExpr);
1072 sqlite3ExprListDelete(db, pList);
1073 return 0;
1077 ** Set the ExprList.a[].zName element of the most recently added item
1078 ** on the expression list.
1080 ** pList might be NULL following an OOM error. But pName should never be
1081 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
1082 ** is set.
1084 void sqlite3ExprListSetName(
1085 Parse *pParse, /* Parsing context */
1086 ExprList *pList, /* List to which to add the span. */
1087 Token *pName, /* Name to be added */
1088 int dequote /* True to cause the name to be dequoted */
1090 assert( pList!=0 || pParse->db->mallocFailed!=0 );
1091 if( pList ){
1092 struct ExprList_item *pItem;
1093 assert( pList->nExpr>0 );
1094 pItem = &pList->a[pList->nExpr-1];
1095 assert( pItem->zName==0 );
1096 pItem->zName = sqlite3DbStrNDup(pParse->db, pName->z, pName->n);
1097 if( dequote && pItem->zName ) sqlite3Dequote(pItem->zName);
1102 ** Set the ExprList.a[].zSpan element of the most recently added item
1103 ** on the expression list.
1105 ** pList might be NULL following an OOM error. But pSpan should never be
1106 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
1107 ** is set.
1109 void sqlite3ExprListSetSpan(
1110 Parse *pParse, /* Parsing context */
1111 ExprList *pList, /* List to which to add the span. */
1112 ExprSpan *pSpan /* The span to be added */
1114 sqlite3 *db = pParse->db;
1115 assert( pList!=0 || db->mallocFailed!=0 );
1116 if( pList ){
1117 struct ExprList_item *pItem = &pList->a[pList->nExpr-1];
1118 assert( pList->nExpr>0 );
1119 assert( db->mallocFailed || pItem->pExpr==pSpan->pExpr );
1120 sqlite3DbFree(db, pItem->zSpan);
1121 pItem->zSpan = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1122 (int)(pSpan->zEnd - pSpan->zStart));
1127 ** If the expression list pEList contains more than iLimit elements,
1128 ** leave an error message in pParse.
1130 void sqlite3ExprListCheckLength(
1131 Parse *pParse,
1132 ExprList *pEList,
1133 const char *zObject
1135 int mx = pParse->db->aLimit[SQLITE_LIMIT_COLUMN];
1136 testcase( pEList && pEList->nExpr==mx );
1137 testcase( pEList && pEList->nExpr==mx+1 );
1138 if( pEList && pEList->nExpr>mx ){
1139 sqlite3ErrorMsg(pParse, "too many columns in %s", zObject);
1144 ** Delete an entire expression list.
1146 void sqlite3ExprListDelete(sqlite3 *db, ExprList *pList){
1147 int i;
1148 struct ExprList_item *pItem;
1149 if( pList==0 ) return;
1150 assert( pList->a!=0 || pList->nExpr==0 );
1151 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
1152 sqlite3ExprDelete(db, pItem->pExpr);
1153 sqlite3DbFree(db, pItem->zName);
1154 sqlite3DbFree(db, pItem->zSpan);
1156 sqlite3DbFree(db, pList->a);
1157 sqlite3DbFree(db, pList);
1161 ** These routines are Walker callbacks. Walker.u.pi is a pointer
1162 ** to an integer. These routines are checking an expression to see
1163 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is
1164 ** not constant.
1166 ** These callback routines are used to implement the following:
1168 ** sqlite3ExprIsConstant()
1169 ** sqlite3ExprIsConstantNotJoin()
1170 ** sqlite3ExprIsConstantOrFunction()
1173 static int exprNodeIsConstant(Walker *pWalker, Expr *pExpr){
1175 /* If pWalker->u.i is 3 then any term of the expression that comes from
1176 ** the ON or USING clauses of a join disqualifies the expression
1177 ** from being considered constant. */
1178 if( pWalker->u.i==3 && ExprHasAnyProperty(pExpr, EP_FromJoin) ){
1179 pWalker->u.i = 0;
1180 return WRC_Abort;
1183 switch( pExpr->op ){
1184 /* Consider functions to be constant if all their arguments are constant
1185 ** and pWalker->u.i==2 */
1186 case TK_FUNCTION:
1187 if( pWalker->u.i==2 ) return 0;
1188 /* Fall through */
1189 case TK_ID:
1190 case TK_COLUMN:
1191 case TK_AGG_FUNCTION:
1192 case TK_AGG_COLUMN:
1193 testcase( pExpr->op==TK_ID );
1194 testcase( pExpr->op==TK_COLUMN );
1195 testcase( pExpr->op==TK_AGG_FUNCTION );
1196 testcase( pExpr->op==TK_AGG_COLUMN );
1197 pWalker->u.i = 0;
1198 return WRC_Abort;
1199 default:
1200 testcase( pExpr->op==TK_SELECT ); /* selectNodeIsConstant will disallow */
1201 testcase( pExpr->op==TK_EXISTS ); /* selectNodeIsConstant will disallow */
1202 return WRC_Continue;
1205 static int selectNodeIsConstant(Walker *pWalker, Select *NotUsed){
1206 UNUSED_PARAMETER(NotUsed);
1207 pWalker->u.i = 0;
1208 return WRC_Abort;
1210 static int exprIsConst(Expr *p, int initFlag){
1211 Walker w;
1212 memset(&w, 0, sizeof(w));
1213 w.u.i = initFlag;
1214 w.xExprCallback = exprNodeIsConstant;
1215 w.xSelectCallback = selectNodeIsConstant;
1216 sqlite3WalkExpr(&w, p);
1217 return w.u.i;
1221 ** Walk an expression tree. Return 1 if the expression is constant
1222 ** and 0 if it involves variables or function calls.
1224 ** For the purposes of this function, a double-quoted string (ex: "abc")
1225 ** is considered a variable but a single-quoted string (ex: 'abc') is
1226 ** a constant.
1228 int sqlite3ExprIsConstant(Expr *p){
1229 return exprIsConst(p, 1);
1233 ** Walk an expression tree. Return 1 if the expression is constant
1234 ** that does no originate from the ON or USING clauses of a join.
1235 ** Return 0 if it involves variables or function calls or terms from
1236 ** an ON or USING clause.
1238 int sqlite3ExprIsConstantNotJoin(Expr *p){
1239 return exprIsConst(p, 3);
1243 ** Walk an expression tree. Return 1 if the expression is constant
1244 ** or a function call with constant arguments. Return and 0 if there
1245 ** are any variables.
1247 ** For the purposes of this function, a double-quoted string (ex: "abc")
1248 ** is considered a variable but a single-quoted string (ex: 'abc') is
1249 ** a constant.
1251 int sqlite3ExprIsConstantOrFunction(Expr *p){
1252 return exprIsConst(p, 2);
1256 ** If the expression p codes a constant integer that is small enough
1257 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1258 ** in *pValue. If the expression is not an integer or if it is too big
1259 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1261 int sqlite3ExprIsInteger(Expr *p, int *pValue){
1262 int rc = 0;
1264 /* If an expression is an integer literal that fits in a signed 32-bit
1265 ** integer, then the EP_IntValue flag will have already been set */
1266 assert( p->op!=TK_INTEGER || (p->flags & EP_IntValue)!=0
1267 || sqlite3GetInt32(p->u.zToken, &rc)==0 );
1269 if( p->flags & EP_IntValue ){
1270 *pValue = p->u.iValue;
1271 return 1;
1273 switch( p->op ){
1274 case TK_UPLUS: {
1275 rc = sqlite3ExprIsInteger(p->pLeft, pValue);
1276 break;
1278 case TK_UMINUS: {
1279 int v;
1280 if( sqlite3ExprIsInteger(p->pLeft, &v) ){
1281 *pValue = -v;
1282 rc = 1;
1284 break;
1286 default: break;
1288 return rc;
1292 ** Return FALSE if there is no chance that the expression can be NULL.
1294 ** If the expression might be NULL or if the expression is too complex
1295 ** to tell return TRUE.
1297 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1298 ** when we know that a value cannot be NULL. Hence, a false positive
1299 ** (returning TRUE when in fact the expression can never be NULL) might
1300 ** be a small performance hit but is otherwise harmless. On the other
1301 ** hand, a false negative (returning FALSE when the result could be NULL)
1302 ** will likely result in an incorrect answer. So when in doubt, return
1303 ** TRUE.
1305 int sqlite3ExprCanBeNull(const Expr *p){
1306 u8 op;
1307 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1308 op = p->op;
1309 if( op==TK_REGISTER ) op = p->op2;
1310 switch( op ){
1311 case TK_INTEGER:
1312 case TK_STRING:
1313 case TK_FLOAT:
1314 case TK_BLOB:
1315 return 0;
1316 default:
1317 return 1;
1322 ** Generate an OP_IsNull instruction that tests register iReg and jumps
1323 ** to location iDest if the value in iReg is NULL. The value in iReg
1324 ** was computed by pExpr. If we can look at pExpr at compile-time and
1325 ** determine that it can never generate a NULL, then the OP_IsNull operation
1326 ** can be omitted.
1328 void sqlite3ExprCodeIsNullJump(
1329 Vdbe *v, /* The VDBE under construction */
1330 const Expr *pExpr, /* Only generate OP_IsNull if this expr can be NULL */
1331 int iReg, /* Test the value in this register for NULL */
1332 int iDest /* Jump here if the value is null */
1334 if( sqlite3ExprCanBeNull(pExpr) ){
1335 sqlite3VdbeAddOp2(v, OP_IsNull, iReg, iDest);
1340 ** Return TRUE if the given expression is a constant which would be
1341 ** unchanged by OP_Affinity with the affinity given in the second
1342 ** argument.
1344 ** This routine is used to determine if the OP_Affinity operation
1345 ** can be omitted. When in doubt return FALSE. A false negative
1346 ** is harmless. A false positive, however, can result in the wrong
1347 ** answer.
1349 int sqlite3ExprNeedsNoAffinityChange(const Expr *p, char aff){
1350 u8 op;
1351 if( aff==SQLITE_AFF_NONE ) return 1;
1352 while( p->op==TK_UPLUS || p->op==TK_UMINUS ){ p = p->pLeft; }
1353 op = p->op;
1354 if( op==TK_REGISTER ) op = p->op2;
1355 switch( op ){
1356 case TK_INTEGER: {
1357 return aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC;
1359 case TK_FLOAT: {
1360 return aff==SQLITE_AFF_REAL || aff==SQLITE_AFF_NUMERIC;
1362 case TK_STRING: {
1363 return aff==SQLITE_AFF_TEXT;
1365 case TK_BLOB: {
1366 return 1;
1368 case TK_COLUMN: {
1369 assert( p->iTable>=0 ); /* p cannot be part of a CHECK constraint */
1370 return p->iColumn<0
1371 && (aff==SQLITE_AFF_INTEGER || aff==SQLITE_AFF_NUMERIC);
1373 default: {
1374 return 0;
1380 ** Return TRUE if the given string is a row-id column name.
1382 int sqlite3IsRowid(const char *z){
1383 if( sqlite3StrICmp(z, "_ROWID_")==0 ) return 1;
1384 if( sqlite3StrICmp(z, "ROWID")==0 ) return 1;
1385 if( sqlite3StrICmp(z, "OID")==0 ) return 1;
1386 return 0;
1390 ** Return true if we are able to the IN operator optimization on a
1391 ** query of the form
1393 ** x IN (SELECT ...)
1395 ** Where the SELECT... clause is as specified by the parameter to this
1396 ** routine.
1398 ** The Select object passed in has already been preprocessed and no
1399 ** errors have been found.
1401 #ifndef SQLITE_OMIT_SUBQUERY
1402 static int isCandidateForInOpt(Select *p){
1403 SrcList *pSrc;
1404 ExprList *pEList;
1405 Table *pTab;
1406 if( p==0 ) return 0; /* right-hand side of IN is SELECT */
1407 if( p->pPrior ) return 0; /* Not a compound SELECT */
1408 if( p->selFlags & (SF_Distinct|SF_Aggregate) ){
1409 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Distinct );
1410 testcase( (p->selFlags & (SF_Distinct|SF_Aggregate))==SF_Aggregate );
1411 return 0; /* No DISTINCT keyword and no aggregate functions */
1413 assert( p->pGroupBy==0 ); /* Has no GROUP BY clause */
1414 if( p->pLimit ) return 0; /* Has no LIMIT clause */
1415 assert( p->pOffset==0 ); /* No LIMIT means no OFFSET */
1416 if( p->pWhere ) return 0; /* Has no WHERE clause */
1417 pSrc = p->pSrc;
1418 assert( pSrc!=0 );
1419 if( pSrc->nSrc!=1 ) return 0; /* Single term in FROM clause */
1420 if( pSrc->a[0].pSelect ) return 0; /* FROM is not a subquery or view */
1421 pTab = pSrc->a[0].pTab;
1422 if( NEVER(pTab==0) ) return 0;
1423 assert( pTab->pSelect==0 ); /* FROM clause is not a view */
1424 if( IsVirtual(pTab) ) return 0; /* FROM clause not a virtual table */
1425 pEList = p->pEList;
1426 if( pEList->nExpr!=1 ) return 0; /* One column in the result set */
1427 if( pEList->a[0].pExpr->op!=TK_COLUMN ) return 0; /* Result is a column */
1428 return 1;
1430 #endif /* SQLITE_OMIT_SUBQUERY */
1433 ** Code an OP_Once instruction and allocate space for its flag. Return the
1434 ** address of the new instruction.
1436 int sqlite3CodeOnce(Parse *pParse){
1437 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
1438 return sqlite3VdbeAddOp1(v, OP_Once, pParse->nOnce++);
1442 ** This function is used by the implementation of the IN (...) operator.
1443 ** The pX parameter is the expression on the RHS of the IN operator, which
1444 ** might be either a list of expressions or a subquery.
1446 ** The job of this routine is to find or create a b-tree object that can
1447 ** be used either to test for membership in the RHS set or to iterate through
1448 ** all members of the RHS set, skipping duplicates.
1450 ** A cursor is opened on the b-tree object that the RHS of the IN operator
1451 ** and pX->iTable is set to the index of that cursor.
1453 ** The returned value of this function indicates the b-tree type, as follows:
1455 ** IN_INDEX_ROWID - The cursor was opened on a database table.
1456 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index.
1457 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
1458 ** IN_INDEX_EPH - The cursor was opened on a specially created and
1459 ** populated epheremal table.
1461 ** An existing b-tree might be used if the RHS expression pX is a simple
1462 ** subquery such as:
1464 ** SELECT <column> FROM <table>
1466 ** If the RHS of the IN operator is a list or a more complex subquery, then
1467 ** an ephemeral table might need to be generated from the RHS and then
1468 ** pX->iTable made to point to the ephermeral table instead of an
1469 ** existing table.
1471 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate
1472 ** through the set members, skipping any duplicates. In this case an
1473 ** epheremal table must be used unless the selected <column> is guaranteed
1474 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1475 ** has a UNIQUE constraint or UNIQUE index.
1477 ** If the prNotFound parameter is not 0, then the b-tree will be used
1478 ** for fast set membership tests. In this case an epheremal table must
1479 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1480 ** be found with <column> as its left-most column.
1482 ** When the b-tree is being used for membership tests, the calling function
1483 ** needs to know whether or not the structure contains an SQL NULL
1484 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
1485 ** If there is any chance that the (...) might contain a NULL value at
1486 ** runtime, then a register is allocated and the register number written
1487 ** to *prNotFound. If there is no chance that the (...) contains a
1488 ** NULL value, then *prNotFound is left unchanged.
1490 ** If a register is allocated and its location stored in *prNotFound, then
1491 ** its initial value is NULL. If the (...) does not remain constant
1492 ** for the duration of the query (i.e. the SELECT within the (...)
1493 ** is a correlated subquery) then the value of the allocated register is
1494 ** reset to NULL each time the subquery is rerun. This allows the
1495 ** caller to use vdbe code equivalent to the following:
1497 ** if( register==NULL ){
1498 ** has_null = <test if data structure contains null>
1499 ** register = 1
1500 ** }
1502 ** in order to avoid running the <test if data structure contains null>
1503 ** test more often than is necessary.
1505 #ifndef SQLITE_OMIT_SUBQUERY
1506 int sqlite3FindInIndex(Parse *pParse, Expr *pX, int *prNotFound){
1507 Select *p; /* SELECT to the right of IN operator */
1508 int eType = 0; /* Type of RHS table. IN_INDEX_* */
1509 int iTab = pParse->nTab++; /* Cursor of the RHS table */
1510 int mustBeUnique = (prNotFound==0); /* True if RHS must be unique */
1511 Vdbe *v = sqlite3GetVdbe(pParse); /* Virtual machine being coded */
1513 assert( pX->op==TK_IN );
1515 /* Check to see if an existing table or index can be used to
1516 ** satisfy the query. This is preferable to generating a new
1517 ** ephemeral table.
1519 p = (ExprHasProperty(pX, EP_xIsSelect) ? pX->x.pSelect : 0);
1520 if( ALWAYS(pParse->nErr==0) && isCandidateForInOpt(p) ){
1521 sqlite3 *db = pParse->db; /* Database connection */
1522 Table *pTab; /* Table <table>. */
1523 Expr *pExpr; /* Expression <column> */
1524 int iCol; /* Index of column <column> */
1525 int iDb; /* Database idx for pTab */
1527 assert( p ); /* Because of isCandidateForInOpt(p) */
1528 assert( p->pEList!=0 ); /* Because of isCandidateForInOpt(p) */
1529 assert( p->pEList->a[0].pExpr!=0 ); /* Because of isCandidateForInOpt(p) */
1530 assert( p->pSrc!=0 ); /* Because of isCandidateForInOpt(p) */
1531 pTab = p->pSrc->a[0].pTab;
1532 pExpr = p->pEList->a[0].pExpr;
1533 iCol = pExpr->iColumn;
1535 /* Code an OP_VerifyCookie and OP_TableLock for <table>. */
1536 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
1537 sqlite3CodeVerifySchema(pParse, iDb);
1538 sqlite3TableLock(pParse, iDb, pTab->tnum, 0, pTab->zName);
1540 /* This function is only called from two places. In both cases the vdbe
1541 ** has already been allocated. So assume sqlite3GetVdbe() is always
1542 ** successful here.
1544 assert(v);
1545 if( iCol<0 ){
1546 int iAddr;
1548 iAddr = sqlite3CodeOnce(pParse);
1550 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
1551 eType = IN_INDEX_ROWID;
1553 sqlite3VdbeJumpHere(v, iAddr);
1554 }else{
1555 Index *pIdx; /* Iterator variable */
1557 /* The collation sequence used by the comparison. If an index is to
1558 ** be used in place of a temp-table, it must be ordered according
1559 ** to this collation sequence. */
1560 CollSeq *pReq = sqlite3BinaryCompareCollSeq(pParse, pX->pLeft, pExpr);
1562 /* Check that the affinity that will be used to perform the
1563 ** comparison is the same as the affinity of the column. If
1564 ** it is not, it is not possible to use any index.
1566 int affinity_ok = sqlite3IndexAffinityOk(pX, pTab->aCol[iCol].affinity);
1568 for(pIdx=pTab->pIndex; pIdx && eType==0 && affinity_ok; pIdx=pIdx->pNext){
1569 if( (pIdx->aiColumn[0]==iCol)
1570 && sqlite3FindCollSeq(db, ENC(db), pIdx->azColl[0], 0)==pReq
1571 && (!mustBeUnique || (pIdx->nColumn==1 && pIdx->onError!=OE_None))
1573 int iAddr;
1574 char *pKey;
1576 pKey = (char *)sqlite3IndexKeyinfo(pParse, pIdx);
1577 iAddr = sqlite3CodeOnce(pParse);
1579 sqlite3VdbeAddOp4(v, OP_OpenRead, iTab, pIdx->tnum, iDb,
1580 pKey,P4_KEYINFO_HANDOFF);
1581 VdbeComment((v, "%s", pIdx->zName));
1582 assert( IN_INDEX_INDEX_DESC == IN_INDEX_INDEX_ASC+1 );
1583 eType = IN_INDEX_INDEX_ASC + pIdx->aSortOrder[0];
1585 sqlite3VdbeJumpHere(v, iAddr);
1586 if( prNotFound && !pTab->aCol[iCol].notNull ){
1587 *prNotFound = ++pParse->nMem;
1588 sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
1595 if( eType==0 ){
1596 /* Could not found an existing table or index to use as the RHS b-tree.
1597 ** We will have to generate an ephemeral table to do the job.
1599 double savedNQueryLoop = pParse->nQueryLoop;
1600 int rMayHaveNull = 0;
1601 eType = IN_INDEX_EPH;
1602 if( prNotFound ){
1603 *prNotFound = rMayHaveNull = ++pParse->nMem;
1604 sqlite3VdbeAddOp2(v, OP_Null, 0, *prNotFound);
1605 }else{
1606 testcase( pParse->nQueryLoop>(double)1 );
1607 pParse->nQueryLoop = (double)1;
1608 if( pX->pLeft->iColumn<0 && !ExprHasAnyProperty(pX, EP_xIsSelect) ){
1609 eType = IN_INDEX_ROWID;
1612 sqlite3CodeSubselect(pParse, pX, rMayHaveNull, eType==IN_INDEX_ROWID);
1613 pParse->nQueryLoop = savedNQueryLoop;
1614 }else{
1615 pX->iTable = iTab;
1617 return eType;
1619 #endif
1622 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1623 ** or IN operators. Examples:
1625 ** (SELECT a FROM b) -- subquery
1626 ** EXISTS (SELECT a FROM b) -- EXISTS subquery
1627 ** x IN (4,5,11) -- IN operator with list on right-hand side
1628 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right
1630 ** The pExpr parameter describes the expression that contains the IN
1631 ** operator or subquery.
1633 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1634 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1635 ** to some integer key column of a table B-Tree. In this case, use an
1636 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1637 ** (slower) variable length keys B-Tree.
1639 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1640 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1641 ** Furthermore, the IN is in a WHERE clause and that we really want
1642 ** to iterate over the RHS of the IN operator in order to quickly locate
1643 ** all corresponding LHS elements. All this routine does is initialize
1644 ** the register given by rMayHaveNull to NULL. Calling routines will take
1645 ** care of changing this register value to non-NULL if the RHS is NULL-free.
1647 ** If rMayHaveNull is zero, that means that the subquery is being used
1648 ** for membership testing only. There is no need to initialize any
1649 ** registers to indicate the presense or absence of NULLs on the RHS.
1651 ** For a SELECT or EXISTS operator, return the register that holds the
1652 ** result. For IN operators or if an error occurs, the return value is 0.
1654 #ifndef SQLITE_OMIT_SUBQUERY
1655 int sqlite3CodeSubselect(
1656 Parse *pParse, /* Parsing context */
1657 Expr *pExpr, /* The IN, SELECT, or EXISTS operator */
1658 int rMayHaveNull, /* Register that records whether NULLs exist in RHS */
1659 int isRowid /* If true, LHS of IN operator is a rowid */
1661 int testAddr = -1; /* One-time test address */
1662 int rReg = 0; /* Register storing resulting */
1663 Vdbe *v = sqlite3GetVdbe(pParse);
1664 if( NEVER(v==0) ) return 0;
1665 sqlite3ExprCachePush(pParse);
1667 /* This code must be run in its entirety every time it is encountered
1668 ** if any of the following is true:
1670 ** * The right-hand side is a correlated subquery
1671 ** * The right-hand side is an expression list containing variables
1672 ** * We are inside a trigger
1674 ** If all of the above are false, then we can run this code just once
1675 ** save the results, and reuse the same result on subsequent invocations.
1677 if( !ExprHasAnyProperty(pExpr, EP_VarSelect) ){
1678 testAddr = sqlite3CodeOnce(pParse);
1681 #ifndef SQLITE_OMIT_EXPLAIN
1682 if( pParse->explain==2 ){
1683 char *zMsg = sqlite3MPrintf(
1684 pParse->db, "EXECUTE %s%s SUBQUERY %d", testAddr>=0?"":"CORRELATED ",
1685 pExpr->op==TK_IN?"LIST":"SCALAR", pParse->iNextSelectId
1687 sqlite3VdbeAddOp4(v, OP_Explain, pParse->iSelectId, 0, 0, zMsg, P4_DYNAMIC);
1689 #endif
1691 switch( pExpr->op ){
1692 case TK_IN: {
1693 char affinity; /* Affinity of the LHS of the IN */
1694 KeyInfo keyInfo; /* Keyinfo for the generated table */
1695 static u8 sortOrder = 0; /* Fake aSortOrder for keyInfo */
1696 int addr; /* Address of OP_OpenEphemeral instruction */
1697 Expr *pLeft = pExpr->pLeft; /* the LHS of the IN operator */
1699 if( rMayHaveNull ){
1700 sqlite3VdbeAddOp2(v, OP_Null, 0, rMayHaveNull);
1703 affinity = sqlite3ExprAffinity(pLeft);
1705 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1706 ** expression it is handled the same way. An ephemeral table is
1707 ** filled with single-field index keys representing the results
1708 ** from the SELECT or the <exprlist>.
1710 ** If the 'x' expression is a column value, or the SELECT...
1711 ** statement returns a column value, then the affinity of that
1712 ** column is used to build the index keys. If both 'x' and the
1713 ** SELECT... statement are columns, then numeric affinity is used
1714 ** if either column has NUMERIC or INTEGER affinity. If neither
1715 ** 'x' nor the SELECT... statement are columns, then numeric affinity
1716 ** is used.
1718 pExpr->iTable = pParse->nTab++;
1719 addr = sqlite3VdbeAddOp2(v, OP_OpenEphemeral, pExpr->iTable, !isRowid);
1720 if( rMayHaveNull==0 ) sqlite3VdbeChangeP5(v, BTREE_UNORDERED);
1721 memset(&keyInfo, 0, sizeof(keyInfo));
1722 keyInfo.nField = 1;
1723 keyInfo.aSortOrder = &sortOrder;
1725 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
1726 /* Case 1: expr IN (SELECT ...)
1728 ** Generate code to write the results of the select into the temporary
1729 ** table allocated and opened above.
1731 SelectDest dest;
1732 ExprList *pEList;
1734 assert( !isRowid );
1735 sqlite3SelectDestInit(&dest, SRT_Set, pExpr->iTable);
1736 dest.affSdst = (u8)affinity;
1737 assert( (pExpr->iTable&0x0000FFFF)==pExpr->iTable );
1738 pExpr->x.pSelect->iLimit = 0;
1739 if( sqlite3Select(pParse, pExpr->x.pSelect, &dest) ){
1740 return 0;
1742 pEList = pExpr->x.pSelect->pEList;
1743 if( ALWAYS(pEList!=0 && pEList->nExpr>0) ){
1744 keyInfo.aColl[0] = sqlite3BinaryCompareCollSeq(pParse, pExpr->pLeft,
1745 pEList->a[0].pExpr);
1747 }else if( ALWAYS(pExpr->x.pList!=0) ){
1748 /* Case 2: expr IN (exprlist)
1750 ** For each expression, build an index key from the evaluation and
1751 ** store it in the temporary table. If <expr> is a column, then use
1752 ** that columns affinity when building index keys. If <expr> is not
1753 ** a column, use numeric affinity.
1755 int i;
1756 ExprList *pList = pExpr->x.pList;
1757 struct ExprList_item *pItem;
1758 int r1, r2, r3;
1760 if( !affinity ){
1761 affinity = SQLITE_AFF_NONE;
1763 keyInfo.aColl[0] = sqlite3ExprCollSeq(pParse, pExpr->pLeft);
1764 keyInfo.aSortOrder = &sortOrder;
1766 /* Loop through each expression in <exprlist>. */
1767 r1 = sqlite3GetTempReg(pParse);
1768 r2 = sqlite3GetTempReg(pParse);
1769 sqlite3VdbeAddOp2(v, OP_Null, 0, r2);
1770 for(i=pList->nExpr, pItem=pList->a; i>0; i--, pItem++){
1771 Expr *pE2 = pItem->pExpr;
1772 int iValToIns;
1774 /* If the expression is not constant then we will need to
1775 ** disable the test that was generated above that makes sure
1776 ** this code only executes once. Because for a non-constant
1777 ** expression we need to rerun this code each time.
1779 if( testAddr>=0 && !sqlite3ExprIsConstant(pE2) ){
1780 sqlite3VdbeChangeToNoop(v, testAddr);
1781 testAddr = -1;
1784 /* Evaluate the expression and insert it into the temp table */
1785 if( isRowid && sqlite3ExprIsInteger(pE2, &iValToIns) ){
1786 sqlite3VdbeAddOp3(v, OP_InsertInt, pExpr->iTable, r2, iValToIns);
1787 }else{
1788 r3 = sqlite3ExprCodeTarget(pParse, pE2, r1);
1789 if( isRowid ){
1790 sqlite3VdbeAddOp2(v, OP_MustBeInt, r3,
1791 sqlite3VdbeCurrentAddr(v)+2);
1792 sqlite3VdbeAddOp3(v, OP_Insert, pExpr->iTable, r2, r3);
1793 }else{
1794 sqlite3VdbeAddOp4(v, OP_MakeRecord, r3, 1, r2, &affinity, 1);
1795 sqlite3ExprCacheAffinityChange(pParse, r3, 1);
1796 sqlite3VdbeAddOp2(v, OP_IdxInsert, pExpr->iTable, r2);
1800 sqlite3ReleaseTempReg(pParse, r1);
1801 sqlite3ReleaseTempReg(pParse, r2);
1803 if( !isRowid ){
1804 sqlite3VdbeChangeP4(v, addr, (void *)&keyInfo, P4_KEYINFO);
1806 break;
1809 case TK_EXISTS:
1810 case TK_SELECT:
1811 default: {
1812 /* If this has to be a scalar SELECT. Generate code to put the
1813 ** value of this select in a memory cell and record the number
1814 ** of the memory cell in iColumn. If this is an EXISTS, write
1815 ** an integer 0 (not exists) or 1 (exists) into a memory cell
1816 ** and record that memory cell in iColumn.
1818 Select *pSel; /* SELECT statement to encode */
1819 SelectDest dest; /* How to deal with SELECt result */
1821 testcase( pExpr->op==TK_EXISTS );
1822 testcase( pExpr->op==TK_SELECT );
1823 assert( pExpr->op==TK_EXISTS || pExpr->op==TK_SELECT );
1825 assert( ExprHasProperty(pExpr, EP_xIsSelect) );
1826 pSel = pExpr->x.pSelect;
1827 sqlite3SelectDestInit(&dest, 0, ++pParse->nMem);
1828 if( pExpr->op==TK_SELECT ){
1829 dest.eDest = SRT_Mem;
1830 sqlite3VdbeAddOp2(v, OP_Null, 0, dest.iSDParm);
1831 VdbeComment((v, "Init subquery result"));
1832 }else{
1833 dest.eDest = SRT_Exists;
1834 sqlite3VdbeAddOp2(v, OP_Integer, 0, dest.iSDParm);
1835 VdbeComment((v, "Init EXISTS result"));
1837 sqlite3ExprDelete(pParse->db, pSel->pLimit);
1838 pSel->pLimit = sqlite3PExpr(pParse, TK_INTEGER, 0, 0,
1839 &sqlite3IntTokens[1]);
1840 pSel->iLimit = 0;
1841 if( sqlite3Select(pParse, pSel, &dest) ){
1842 return 0;
1844 rReg = dest.iSDParm;
1845 ExprSetIrreducible(pExpr);
1846 break;
1850 if( testAddr>=0 ){
1851 sqlite3VdbeJumpHere(v, testAddr);
1853 sqlite3ExprCachePop(pParse, 1);
1855 return rReg;
1857 #endif /* SQLITE_OMIT_SUBQUERY */
1859 #ifndef SQLITE_OMIT_SUBQUERY
1861 ** Generate code for an IN expression.
1863 ** x IN (SELECT ...)
1864 ** x IN (value, value, ...)
1866 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS)
1867 ** is an array of zero or more values. The expression is true if the LHS is
1868 ** contained within the RHS. The value of the expression is unknown (NULL)
1869 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
1870 ** RHS contains one or more NULL values.
1872 ** This routine generates code will jump to destIfFalse if the LHS is not
1873 ** contained within the RHS. If due to NULLs we cannot determine if the LHS
1874 ** is contained in the RHS then jump to destIfNull. If the LHS is contained
1875 ** within the RHS then fall through.
1877 static void sqlite3ExprCodeIN(
1878 Parse *pParse, /* Parsing and code generating context */
1879 Expr *pExpr, /* The IN expression */
1880 int destIfFalse, /* Jump here if LHS is not contained in the RHS */
1881 int destIfNull /* Jump here if the results are unknown due to NULLs */
1883 int rRhsHasNull = 0; /* Register that is true if RHS contains NULL values */
1884 char affinity; /* Comparison affinity to use */
1885 int eType; /* Type of the RHS */
1886 int r1; /* Temporary use register */
1887 Vdbe *v; /* Statement under construction */
1889 /* Compute the RHS. After this step, the table with cursor
1890 ** pExpr->iTable will contains the values that make up the RHS.
1892 v = pParse->pVdbe;
1893 assert( v!=0 ); /* OOM detected prior to this routine */
1894 VdbeNoopComment((v, "begin IN expr"));
1895 eType = sqlite3FindInIndex(pParse, pExpr, &rRhsHasNull);
1897 /* Figure out the affinity to use to create a key from the results
1898 ** of the expression. affinityStr stores a static string suitable for
1899 ** P4 of OP_MakeRecord.
1901 affinity = comparisonAffinity(pExpr);
1903 /* Code the LHS, the <expr> from "<expr> IN (...)".
1905 sqlite3ExprCachePush(pParse);
1906 r1 = sqlite3GetTempReg(pParse);
1907 sqlite3ExprCode(pParse, pExpr->pLeft, r1);
1909 /* If the LHS is NULL, then the result is either false or NULL depending
1910 ** on whether the RHS is empty or not, respectively.
1912 if( destIfNull==destIfFalse ){
1913 /* Shortcut for the common case where the false and NULL outcomes are
1914 ** the same. */
1915 sqlite3VdbeAddOp2(v, OP_IsNull, r1, destIfNull);
1916 }else{
1917 int addr1 = sqlite3VdbeAddOp1(v, OP_NotNull, r1);
1918 sqlite3VdbeAddOp2(v, OP_Rewind, pExpr->iTable, destIfFalse);
1919 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfNull);
1920 sqlite3VdbeJumpHere(v, addr1);
1923 if( eType==IN_INDEX_ROWID ){
1924 /* In this case, the RHS is the ROWID of table b-tree
1926 sqlite3VdbeAddOp2(v, OP_MustBeInt, r1, destIfFalse);
1927 sqlite3VdbeAddOp3(v, OP_NotExists, pExpr->iTable, destIfFalse, r1);
1928 }else{
1929 /* In this case, the RHS is an index b-tree.
1931 sqlite3VdbeAddOp4(v, OP_Affinity, r1, 1, 0, &affinity, 1);
1933 /* If the set membership test fails, then the result of the
1934 ** "x IN (...)" expression must be either 0 or NULL. If the set
1935 ** contains no NULL values, then the result is 0. If the set
1936 ** contains one or more NULL values, then the result of the
1937 ** expression is also NULL.
1939 if( rRhsHasNull==0 || destIfFalse==destIfNull ){
1940 /* This branch runs if it is known at compile time that the RHS
1941 ** cannot contain NULL values. This happens as the result
1942 ** of a "NOT NULL" constraint in the database schema.
1944 ** Also run this branch if NULL is equivalent to FALSE
1945 ** for this particular IN operator.
1947 sqlite3VdbeAddOp4Int(v, OP_NotFound, pExpr->iTable, destIfFalse, r1, 1);
1949 }else{
1950 /* In this branch, the RHS of the IN might contain a NULL and
1951 ** the presence of a NULL on the RHS makes a difference in the
1952 ** outcome.
1954 int j1, j2, j3;
1956 /* First check to see if the LHS is contained in the RHS. If so,
1957 ** then the presence of NULLs in the RHS does not matter, so jump
1958 ** over all of the code that follows.
1960 j1 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, r1, 1);
1962 /* Here we begin generating code that runs if the LHS is not
1963 ** contained within the RHS. Generate additional code that
1964 ** tests the RHS for NULLs. If the RHS contains a NULL then
1965 ** jump to destIfNull. If there are no NULLs in the RHS then
1966 ** jump to destIfFalse.
1968 j2 = sqlite3VdbeAddOp1(v, OP_NotNull, rRhsHasNull);
1969 j3 = sqlite3VdbeAddOp4Int(v, OP_Found, pExpr->iTable, 0, rRhsHasNull, 1);
1970 sqlite3VdbeAddOp2(v, OP_Integer, -1, rRhsHasNull);
1971 sqlite3VdbeJumpHere(v, j3);
1972 sqlite3VdbeAddOp2(v, OP_AddImm, rRhsHasNull, 1);
1973 sqlite3VdbeJumpHere(v, j2);
1975 /* Jump to the appropriate target depending on whether or not
1976 ** the RHS contains a NULL
1978 sqlite3VdbeAddOp2(v, OP_If, rRhsHasNull, destIfNull);
1979 sqlite3VdbeAddOp2(v, OP_Goto, 0, destIfFalse);
1981 /* The OP_Found at the top of this branch jumps here when true,
1982 ** causing the overall IN expression evaluation to fall through.
1984 sqlite3VdbeJumpHere(v, j1);
1987 sqlite3ReleaseTempReg(pParse, r1);
1988 sqlite3ExprCachePop(pParse, 1);
1989 VdbeComment((v, "end IN expr"));
1991 #endif /* SQLITE_OMIT_SUBQUERY */
1994 ** Duplicate an 8-byte value
1996 static char *dup8bytes(Vdbe *v, const char *in){
1997 char *out = sqlite3DbMallocRaw(sqlite3VdbeDb(v), 8);
1998 if( out ){
1999 memcpy(out, in, 8);
2001 return out;
2004 #ifndef SQLITE_OMIT_FLOATING_POINT
2006 ** Generate an instruction that will put the floating point
2007 ** value described by z[0..n-1] into register iMem.
2009 ** The z[] string will probably not be zero-terminated. But the
2010 ** z[n] character is guaranteed to be something that does not look
2011 ** like the continuation of the number.
2013 static void codeReal(Vdbe *v, const char *z, int negateFlag, int iMem){
2014 if( ALWAYS(z!=0) ){
2015 double value;
2016 char *zV;
2017 sqlite3AtoF(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2018 assert( !sqlite3IsNaN(value) ); /* The new AtoF never returns NaN */
2019 if( negateFlag ) value = -value;
2020 zV = dup8bytes(v, (char*)&value);
2021 sqlite3VdbeAddOp4(v, OP_Real, 0, iMem, 0, zV, P4_REAL);
2024 #endif
2028 ** Generate an instruction that will put the integer describe by
2029 ** text z[0..n-1] into register iMem.
2031 ** Expr.u.zToken is always UTF8 and zero-terminated.
2033 static void codeInteger(Parse *pParse, Expr *pExpr, int negFlag, int iMem){
2034 Vdbe *v = pParse->pVdbe;
2035 if( pExpr->flags & EP_IntValue ){
2036 int i = pExpr->u.iValue;
2037 assert( i>=0 );
2038 if( negFlag ) i = -i;
2039 sqlite3VdbeAddOp2(v, OP_Integer, i, iMem);
2040 }else{
2041 int c;
2042 i64 value;
2043 const char *z = pExpr->u.zToken;
2044 assert( z!=0 );
2045 c = sqlite3Atoi64(z, &value, sqlite3Strlen30(z), SQLITE_UTF8);
2046 if( c==0 || (c==2 && negFlag) ){
2047 char *zV;
2048 if( negFlag ){ value = c==2 ? SMALLEST_INT64 : -value; }
2049 zV = dup8bytes(v, (char*)&value);
2050 sqlite3VdbeAddOp4(v, OP_Int64, 0, iMem, 0, zV, P4_INT64);
2051 }else{
2052 #ifdef SQLITE_OMIT_FLOATING_POINT
2053 sqlite3ErrorMsg(pParse, "oversized integer: %s%s", negFlag ? "-" : "", z);
2054 #else
2055 codeReal(v, z, negFlag, iMem);
2056 #endif
2062 ** Clear a cache entry.
2064 static void cacheEntryClear(Parse *pParse, struct yColCache *p){
2065 if( p->tempReg ){
2066 if( pParse->nTempReg<ArraySize(pParse->aTempReg) ){
2067 pParse->aTempReg[pParse->nTempReg++] = p->iReg;
2069 p->tempReg = 0;
2075 ** Record in the column cache that a particular column from a
2076 ** particular table is stored in a particular register.
2078 void sqlite3ExprCacheStore(Parse *pParse, int iTab, int iCol, int iReg){
2079 int i;
2080 int minLru;
2081 int idxLru;
2082 struct yColCache *p;
2084 assert( iReg>0 ); /* Register numbers are always positive */
2085 assert( iCol>=-1 && iCol<32768 ); /* Finite column numbers */
2087 /* The SQLITE_ColumnCache flag disables the column cache. This is used
2088 ** for testing only - to verify that SQLite always gets the same answer
2089 ** with and without the column cache.
2091 if( OptimizationDisabled(pParse->db, SQLITE_ColumnCache) ) return;
2093 /* First replace any existing entry.
2095 ** Actually, the way the column cache is currently used, we are guaranteed
2096 ** that the object will never already be in cache. Verify this guarantee.
2098 #ifndef NDEBUG
2099 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2100 assert( p->iReg==0 || p->iTable!=iTab || p->iColumn!=iCol );
2102 #endif
2104 /* Find an empty slot and replace it */
2105 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2106 if( p->iReg==0 ){
2107 p->iLevel = pParse->iCacheLevel;
2108 p->iTable = iTab;
2109 p->iColumn = iCol;
2110 p->iReg = iReg;
2111 p->tempReg = 0;
2112 p->lru = pParse->iCacheCnt++;
2113 return;
2117 /* Replace the last recently used */
2118 minLru = 0x7fffffff;
2119 idxLru = -1;
2120 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2121 if( p->lru<minLru ){
2122 idxLru = i;
2123 minLru = p->lru;
2126 if( ALWAYS(idxLru>=0) ){
2127 p = &pParse->aColCache[idxLru];
2128 p->iLevel = pParse->iCacheLevel;
2129 p->iTable = iTab;
2130 p->iColumn = iCol;
2131 p->iReg = iReg;
2132 p->tempReg = 0;
2133 p->lru = pParse->iCacheCnt++;
2134 return;
2139 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2140 ** Purge the range of registers from the column cache.
2142 void sqlite3ExprCacheRemove(Parse *pParse, int iReg, int nReg){
2143 int i;
2144 int iLast = iReg + nReg - 1;
2145 struct yColCache *p;
2146 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2147 int r = p->iReg;
2148 if( r>=iReg && r<=iLast ){
2149 cacheEntryClear(pParse, p);
2150 p->iReg = 0;
2156 ** Remember the current column cache context. Any new entries added
2157 ** added to the column cache after this call are removed when the
2158 ** corresponding pop occurs.
2160 void sqlite3ExprCachePush(Parse *pParse){
2161 pParse->iCacheLevel++;
2165 ** Remove from the column cache any entries that were added since the
2166 ** the previous N Push operations. In other words, restore the cache
2167 ** to the state it was in N Pushes ago.
2169 void sqlite3ExprCachePop(Parse *pParse, int N){
2170 int i;
2171 struct yColCache *p;
2172 assert( N>0 );
2173 assert( pParse->iCacheLevel>=N );
2174 pParse->iCacheLevel -= N;
2175 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2176 if( p->iReg && p->iLevel>pParse->iCacheLevel ){
2177 cacheEntryClear(pParse, p);
2178 p->iReg = 0;
2184 ** When a cached column is reused, make sure that its register is
2185 ** no longer available as a temp register. ticket #3879: that same
2186 ** register might be in the cache in multiple places, so be sure to
2187 ** get them all.
2189 static void sqlite3ExprCachePinRegister(Parse *pParse, int iReg){
2190 int i;
2191 struct yColCache *p;
2192 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2193 if( p->iReg==iReg ){
2194 p->tempReg = 0;
2200 ** Generate code to extract the value of the iCol-th column of a table.
2202 void sqlite3ExprCodeGetColumnOfTable(
2203 Vdbe *v, /* The VDBE under construction */
2204 Table *pTab, /* The table containing the value */
2205 int iTabCur, /* The cursor for this table */
2206 int iCol, /* Index of the column to extract */
2207 int regOut /* Extract the valud into this register */
2209 if( iCol<0 || iCol==pTab->iPKey ){
2210 sqlite3VdbeAddOp2(v, OP_Rowid, iTabCur, regOut);
2211 }else{
2212 int op = IsVirtual(pTab) ? OP_VColumn : OP_Column;
2213 sqlite3VdbeAddOp3(v, op, iTabCur, iCol, regOut);
2215 if( iCol>=0 ){
2216 sqlite3ColumnDefault(v, pTab, iCol, regOut);
2221 ** Generate code that will extract the iColumn-th column from
2222 ** table pTab and store the column value in a register. An effort
2223 ** is made to store the column value in register iReg, but this is
2224 ** not guaranteed. The location of the column value is returned.
2226 ** There must be an open cursor to pTab in iTable when this routine
2227 ** is called. If iColumn<0 then code is generated that extracts the rowid.
2229 int sqlite3ExprCodeGetColumn(
2230 Parse *pParse, /* Parsing and code generating context */
2231 Table *pTab, /* Description of the table we are reading from */
2232 int iColumn, /* Index of the table column */
2233 int iTable, /* The cursor pointing to the table */
2234 int iReg, /* Store results here */
2235 u8 p5 /* P5 value for OP_Column */
2237 Vdbe *v = pParse->pVdbe;
2238 int i;
2239 struct yColCache *p;
2241 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2242 if( p->iReg>0 && p->iTable==iTable && p->iColumn==iColumn ){
2243 p->lru = pParse->iCacheCnt++;
2244 sqlite3ExprCachePinRegister(pParse, p->iReg);
2245 return p->iReg;
2248 assert( v!=0 );
2249 sqlite3ExprCodeGetColumnOfTable(v, pTab, iTable, iColumn, iReg);
2250 if( p5 ){
2251 sqlite3VdbeChangeP5(v, p5);
2252 }else{
2253 sqlite3ExprCacheStore(pParse, iTable, iColumn, iReg);
2255 return iReg;
2259 ** Clear all column cache entries.
2261 void sqlite3ExprCacheClear(Parse *pParse){
2262 int i;
2263 struct yColCache *p;
2265 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2266 if( p->iReg ){
2267 cacheEntryClear(pParse, p);
2268 p->iReg = 0;
2274 ** Record the fact that an affinity change has occurred on iCount
2275 ** registers starting with iStart.
2277 void sqlite3ExprCacheAffinityChange(Parse *pParse, int iStart, int iCount){
2278 sqlite3ExprCacheRemove(pParse, iStart, iCount);
2282 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2283 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2285 void sqlite3ExprCodeMove(Parse *pParse, int iFrom, int iTo, int nReg){
2286 int i;
2287 struct yColCache *p;
2288 assert( iFrom>=iTo+nReg || iFrom+nReg<=iTo );
2289 sqlite3VdbeAddOp3(pParse->pVdbe, OP_Move, iFrom, iTo, nReg-1);
2290 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2291 int x = p->iReg;
2292 if( x>=iFrom && x<iFrom+nReg ){
2293 p->iReg += iTo-iFrom;
2298 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2300 ** Return true if any register in the range iFrom..iTo (inclusive)
2301 ** is used as part of the column cache.
2303 ** This routine is used within assert() and testcase() macros only
2304 ** and does not appear in a normal build.
2306 static int usedAsColumnCache(Parse *pParse, int iFrom, int iTo){
2307 int i;
2308 struct yColCache *p;
2309 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
2310 int r = p->iReg;
2311 if( r>=iFrom && r<=iTo ) return 1; /*NO_TEST*/
2313 return 0;
2315 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2318 ** Generate code into the current Vdbe to evaluate the given
2319 ** expression. Attempt to store the results in register "target".
2320 ** Return the register where results are stored.
2322 ** With this routine, there is no guarantee that results will
2323 ** be stored in target. The result might be stored in some other
2324 ** register if it is convenient to do so. The calling function
2325 ** must check the return code and move the results to the desired
2326 ** register.
2328 int sqlite3ExprCodeTarget(Parse *pParse, Expr *pExpr, int target){
2329 Vdbe *v = pParse->pVdbe; /* The VM under construction */
2330 int op; /* The opcode being coded */
2331 int inReg = target; /* Results stored in register inReg */
2332 int regFree1 = 0; /* If non-zero free this temporary register */
2333 int regFree2 = 0; /* If non-zero free this temporary register */
2334 int r1, r2, r3, r4; /* Various register numbers */
2335 sqlite3 *db = pParse->db; /* The database connection */
2337 assert( target>0 && target<=pParse->nMem );
2338 if( v==0 ){
2339 assert( pParse->db->mallocFailed );
2340 return 0;
2343 if( pExpr==0 ){
2344 op = TK_NULL;
2345 }else{
2346 op = pExpr->op;
2348 switch( op ){
2349 case TK_AGG_COLUMN: {
2350 AggInfo *pAggInfo = pExpr->pAggInfo;
2351 struct AggInfo_col *pCol = &pAggInfo->aCol[pExpr->iAgg];
2352 if( !pAggInfo->directMode ){
2353 assert( pCol->iMem>0 );
2354 inReg = pCol->iMem;
2355 break;
2356 }else if( pAggInfo->useSortingIdx ){
2357 sqlite3VdbeAddOp3(v, OP_Column, pAggInfo->sortingIdxPTab,
2358 pCol->iSorterColumn, target);
2359 break;
2361 /* Otherwise, fall thru into the TK_COLUMN case */
2363 case TK_COLUMN: {
2364 if( pExpr->iTable<0 ){
2365 /* This only happens when coding check constraints */
2366 assert( pParse->ckBase>0 );
2367 inReg = pExpr->iColumn + pParse->ckBase;
2368 }else{
2369 inReg = sqlite3ExprCodeGetColumn(pParse, pExpr->pTab,
2370 pExpr->iColumn, pExpr->iTable, target,
2371 pExpr->op2);
2373 break;
2375 case TK_INTEGER: {
2376 codeInteger(pParse, pExpr, 0, target);
2377 break;
2379 #ifndef SQLITE_OMIT_FLOATING_POINT
2380 case TK_FLOAT: {
2381 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2382 codeReal(v, pExpr->u.zToken, 0, target);
2383 break;
2385 #endif
2386 case TK_STRING: {
2387 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2388 sqlite3VdbeAddOp4(v, OP_String8, 0, target, 0, pExpr->u.zToken, 0);
2389 break;
2391 case TK_NULL: {
2392 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2393 break;
2395 #ifndef SQLITE_OMIT_BLOB_LITERAL
2396 case TK_BLOB: {
2397 int n;
2398 const char *z;
2399 char *zBlob;
2400 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2401 assert( pExpr->u.zToken[0]=='x' || pExpr->u.zToken[0]=='X' );
2402 assert( pExpr->u.zToken[1]=='\'' );
2403 z = &pExpr->u.zToken[2];
2404 n = sqlite3Strlen30(z) - 1;
2405 assert( z[n]=='\'' );
2406 zBlob = sqlite3HexToBlob(sqlite3VdbeDb(v), z, n);
2407 sqlite3VdbeAddOp4(v, OP_Blob, n/2, target, 0, zBlob, P4_DYNAMIC);
2408 break;
2410 #endif
2411 case TK_VARIABLE: {
2412 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2413 assert( pExpr->u.zToken!=0 );
2414 assert( pExpr->u.zToken[0]!=0 );
2415 sqlite3VdbeAddOp2(v, OP_Variable, pExpr->iColumn, target);
2416 if( pExpr->u.zToken[1]!=0 ){
2417 assert( pExpr->u.zToken[0]=='?'
2418 || strcmp(pExpr->u.zToken, pParse->azVar[pExpr->iColumn-1])==0 );
2419 sqlite3VdbeChangeP4(v, -1, pParse->azVar[pExpr->iColumn-1], P4_STATIC);
2421 break;
2423 case TK_REGISTER: {
2424 inReg = pExpr->iTable;
2425 break;
2427 case TK_AS: {
2428 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2429 break;
2431 #ifndef SQLITE_OMIT_CAST
2432 case TK_CAST: {
2433 /* Expressions of the form: CAST(pLeft AS token) */
2434 int aff, to_op;
2435 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2436 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2437 aff = sqlite3AffinityType(pExpr->u.zToken);
2438 to_op = aff - SQLITE_AFF_TEXT + OP_ToText;
2439 assert( to_op==OP_ToText || aff!=SQLITE_AFF_TEXT );
2440 assert( to_op==OP_ToBlob || aff!=SQLITE_AFF_NONE );
2441 assert( to_op==OP_ToNumeric || aff!=SQLITE_AFF_NUMERIC );
2442 assert( to_op==OP_ToInt || aff!=SQLITE_AFF_INTEGER );
2443 assert( to_op==OP_ToReal || aff!=SQLITE_AFF_REAL );
2444 testcase( to_op==OP_ToText );
2445 testcase( to_op==OP_ToBlob );
2446 testcase( to_op==OP_ToNumeric );
2447 testcase( to_op==OP_ToInt );
2448 testcase( to_op==OP_ToReal );
2449 if( inReg!=target ){
2450 sqlite3VdbeAddOp2(v, OP_SCopy, inReg, target);
2451 inReg = target;
2453 sqlite3VdbeAddOp1(v, to_op, inReg);
2454 testcase( usedAsColumnCache(pParse, inReg, inReg) );
2455 sqlite3ExprCacheAffinityChange(pParse, inReg, 1);
2456 break;
2458 #endif /* SQLITE_OMIT_CAST */
2459 case TK_LT:
2460 case TK_LE:
2461 case TK_GT:
2462 case TK_GE:
2463 case TK_NE:
2464 case TK_EQ: {
2465 assert( TK_LT==OP_Lt );
2466 assert( TK_LE==OP_Le );
2467 assert( TK_GT==OP_Gt );
2468 assert( TK_GE==OP_Ge );
2469 assert( TK_EQ==OP_Eq );
2470 assert( TK_NE==OP_Ne );
2471 testcase( op==TK_LT );
2472 testcase( op==TK_LE );
2473 testcase( op==TK_GT );
2474 testcase( op==TK_GE );
2475 testcase( op==TK_EQ );
2476 testcase( op==TK_NE );
2477 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2478 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2479 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2480 r1, r2, inReg, SQLITE_STOREP2);
2481 testcase( regFree1==0 );
2482 testcase( regFree2==0 );
2483 break;
2485 case TK_IS:
2486 case TK_ISNOT: {
2487 testcase( op==TK_IS );
2488 testcase( op==TK_ISNOT );
2489 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2490 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2491 op = (op==TK_IS) ? TK_EQ : TK_NE;
2492 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
2493 r1, r2, inReg, SQLITE_STOREP2 | SQLITE_NULLEQ);
2494 testcase( regFree1==0 );
2495 testcase( regFree2==0 );
2496 break;
2498 case TK_AND:
2499 case TK_OR:
2500 case TK_PLUS:
2501 case TK_STAR:
2502 case TK_MINUS:
2503 case TK_REM:
2504 case TK_BITAND:
2505 case TK_BITOR:
2506 case TK_SLASH:
2507 case TK_LSHIFT:
2508 case TK_RSHIFT:
2509 case TK_CONCAT: {
2510 assert( TK_AND==OP_And );
2511 assert( TK_OR==OP_Or );
2512 assert( TK_PLUS==OP_Add );
2513 assert( TK_MINUS==OP_Subtract );
2514 assert( TK_REM==OP_Remainder );
2515 assert( TK_BITAND==OP_BitAnd );
2516 assert( TK_BITOR==OP_BitOr );
2517 assert( TK_SLASH==OP_Divide );
2518 assert( TK_LSHIFT==OP_ShiftLeft );
2519 assert( TK_RSHIFT==OP_ShiftRight );
2520 assert( TK_CONCAT==OP_Concat );
2521 testcase( op==TK_AND );
2522 testcase( op==TK_OR );
2523 testcase( op==TK_PLUS );
2524 testcase( op==TK_MINUS );
2525 testcase( op==TK_REM );
2526 testcase( op==TK_BITAND );
2527 testcase( op==TK_BITOR );
2528 testcase( op==TK_SLASH );
2529 testcase( op==TK_LSHIFT );
2530 testcase( op==TK_RSHIFT );
2531 testcase( op==TK_CONCAT );
2532 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2533 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
2534 sqlite3VdbeAddOp3(v, op, r2, r1, target);
2535 testcase( regFree1==0 );
2536 testcase( regFree2==0 );
2537 break;
2539 case TK_UMINUS: {
2540 Expr *pLeft = pExpr->pLeft;
2541 assert( pLeft );
2542 if( pLeft->op==TK_INTEGER ){
2543 codeInteger(pParse, pLeft, 1, target);
2544 #ifndef SQLITE_OMIT_FLOATING_POINT
2545 }else if( pLeft->op==TK_FLOAT ){
2546 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2547 codeReal(v, pLeft->u.zToken, 1, target);
2548 #endif
2549 }else{
2550 regFree1 = r1 = sqlite3GetTempReg(pParse);
2551 sqlite3VdbeAddOp2(v, OP_Integer, 0, r1);
2552 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree2);
2553 sqlite3VdbeAddOp3(v, OP_Subtract, r2, r1, target);
2554 testcase( regFree2==0 );
2556 inReg = target;
2557 break;
2559 case TK_BITNOT:
2560 case TK_NOT: {
2561 assert( TK_BITNOT==OP_BitNot );
2562 assert( TK_NOT==OP_Not );
2563 testcase( op==TK_BITNOT );
2564 testcase( op==TK_NOT );
2565 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2566 testcase( regFree1==0 );
2567 inReg = target;
2568 sqlite3VdbeAddOp2(v, op, r1, inReg);
2569 break;
2571 case TK_ISNULL:
2572 case TK_NOTNULL: {
2573 int addr;
2574 assert( TK_ISNULL==OP_IsNull );
2575 assert( TK_NOTNULL==OP_NotNull );
2576 testcase( op==TK_ISNULL );
2577 testcase( op==TK_NOTNULL );
2578 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2579 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
2580 testcase( regFree1==0 );
2581 addr = sqlite3VdbeAddOp1(v, op, r1);
2582 sqlite3VdbeAddOp2(v, OP_AddImm, target, -1);
2583 sqlite3VdbeJumpHere(v, addr);
2584 break;
2586 case TK_AGG_FUNCTION: {
2587 AggInfo *pInfo = pExpr->pAggInfo;
2588 if( pInfo==0 ){
2589 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2590 sqlite3ErrorMsg(pParse, "misuse of aggregate: %s()", pExpr->u.zToken);
2591 }else{
2592 inReg = pInfo->aFunc[pExpr->iAgg].iMem;
2594 break;
2596 case TK_CONST_FUNC:
2597 case TK_FUNCTION: {
2598 ExprList *pFarg; /* List of function arguments */
2599 int nFarg; /* Number of function arguments */
2600 FuncDef *pDef; /* The function definition object */
2601 int nId; /* Length of the function name in bytes */
2602 const char *zId; /* The function name */
2603 int constMask = 0; /* Mask of function arguments that are constant */
2604 int i; /* Loop counter */
2605 u8 enc = ENC(db); /* The text encoding used by this database */
2606 CollSeq *pColl = 0; /* A collating sequence */
2608 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
2609 testcase( op==TK_CONST_FUNC );
2610 testcase( op==TK_FUNCTION );
2611 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
2612 pFarg = 0;
2613 }else{
2614 pFarg = pExpr->x.pList;
2616 nFarg = pFarg ? pFarg->nExpr : 0;
2617 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2618 zId = pExpr->u.zToken;
2619 nId = sqlite3Strlen30(zId);
2620 pDef = sqlite3FindFunction(db, zId, nId, nFarg, enc, 0);
2621 if( pDef==0 ){
2622 sqlite3ErrorMsg(pParse, "unknown function: %.*s()", nId, zId);
2623 break;
2626 /* Attempt a direct implementation of the built-in COALESCE() and
2627 ** IFNULL() functions. This avoids unnecessary evalation of
2628 ** arguments past the first non-NULL argument.
2630 if( pDef->flags & SQLITE_FUNC_COALESCE ){
2631 int endCoalesce = sqlite3VdbeMakeLabel(v);
2632 assert( nFarg>=2 );
2633 sqlite3ExprCode(pParse, pFarg->a[0].pExpr, target);
2634 for(i=1; i<nFarg; i++){
2635 sqlite3VdbeAddOp2(v, OP_NotNull, target, endCoalesce);
2636 sqlite3ExprCacheRemove(pParse, target, 1);
2637 sqlite3ExprCachePush(pParse);
2638 sqlite3ExprCode(pParse, pFarg->a[i].pExpr, target);
2639 sqlite3ExprCachePop(pParse, 1);
2641 sqlite3VdbeResolveLabel(v, endCoalesce);
2642 break;
2646 if( pFarg ){
2647 r1 = sqlite3GetTempRange(pParse, nFarg);
2649 /* For length() and typeof() functions with a column argument,
2650 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
2651 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
2652 ** loading.
2654 if( (pDef->flags & (SQLITE_FUNC_LENGTH|SQLITE_FUNC_TYPEOF))!=0 ){
2655 u8 exprOp;
2656 assert( nFarg==1 );
2657 assert( pFarg->a[0].pExpr!=0 );
2658 exprOp = pFarg->a[0].pExpr->op;
2659 if( exprOp==TK_COLUMN || exprOp==TK_AGG_COLUMN ){
2660 assert( SQLITE_FUNC_LENGTH==OPFLAG_LENGTHARG );
2661 assert( SQLITE_FUNC_TYPEOF==OPFLAG_TYPEOFARG );
2662 testcase( pDef->flags==SQLITE_FUNC_LENGTH );
2663 pFarg->a[0].pExpr->op2 = pDef->flags;
2667 sqlite3ExprCachePush(pParse); /* Ticket 2ea2425d34be */
2668 sqlite3ExprCodeExprList(pParse, pFarg, r1, 1);
2669 sqlite3ExprCachePop(pParse, 1); /* Ticket 2ea2425d34be */
2670 }else{
2671 r1 = 0;
2673 #ifndef SQLITE_OMIT_VIRTUALTABLE
2674 /* Possibly overload the function if the first argument is
2675 ** a virtual table column.
2677 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2678 ** second argument, not the first, as the argument to test to
2679 ** see if it is a column in a virtual table. This is done because
2680 ** the left operand of infix functions (the operand we want to
2681 ** control overloading) ends up as the second argument to the
2682 ** function. The expression "A glob B" is equivalent to
2683 ** "glob(B,A). We want to use the A in "A glob B" to test
2684 ** for function overloading. But we use the B term in "glob(B,A)".
2686 if( nFarg>=2 && (pExpr->flags & EP_InfixFunc) ){
2687 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[1].pExpr);
2688 }else if( nFarg>0 ){
2689 pDef = sqlite3VtabOverloadFunction(db, pDef, nFarg, pFarg->a[0].pExpr);
2691 #endif
2692 for(i=0; i<nFarg; i++){
2693 if( i<32 && sqlite3ExprIsConstant(pFarg->a[i].pExpr) ){
2694 constMask |= (1<<i);
2696 if( (pDef->flags & SQLITE_FUNC_NEEDCOLL)!=0 && !pColl ){
2697 pColl = sqlite3ExprCollSeq(pParse, pFarg->a[i].pExpr);
2700 if( pDef->flags & SQLITE_FUNC_NEEDCOLL ){
2701 if( !pColl ) pColl = db->pDfltColl;
2702 sqlite3VdbeAddOp4(v, OP_CollSeq, 0, 0, 0, (char *)pColl, P4_COLLSEQ);
2704 sqlite3VdbeAddOp4(v, OP_Function, constMask, r1, target,
2705 (char*)pDef, P4_FUNCDEF);
2706 sqlite3VdbeChangeP5(v, (u8)nFarg);
2707 if( nFarg ){
2708 sqlite3ReleaseTempRange(pParse, r1, nFarg);
2710 break;
2712 #ifndef SQLITE_OMIT_SUBQUERY
2713 case TK_EXISTS:
2714 case TK_SELECT: {
2715 testcase( op==TK_EXISTS );
2716 testcase( op==TK_SELECT );
2717 inReg = sqlite3CodeSubselect(pParse, pExpr, 0, 0);
2718 break;
2720 case TK_IN: {
2721 int destIfFalse = sqlite3VdbeMakeLabel(v);
2722 int destIfNull = sqlite3VdbeMakeLabel(v);
2723 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2724 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
2725 sqlite3VdbeAddOp2(v, OP_Integer, 1, target);
2726 sqlite3VdbeResolveLabel(v, destIfFalse);
2727 sqlite3VdbeAddOp2(v, OP_AddImm, target, 0);
2728 sqlite3VdbeResolveLabel(v, destIfNull);
2729 break;
2731 #endif /* SQLITE_OMIT_SUBQUERY */
2735 ** x BETWEEN y AND z
2737 ** This is equivalent to
2739 ** x>=y AND x<=z
2741 ** X is stored in pExpr->pLeft.
2742 ** Y is stored in pExpr->pList->a[0].pExpr.
2743 ** Z is stored in pExpr->pList->a[1].pExpr.
2745 case TK_BETWEEN: {
2746 Expr *pLeft = pExpr->pLeft;
2747 struct ExprList_item *pLItem = pExpr->x.pList->a;
2748 Expr *pRight = pLItem->pExpr;
2750 r1 = sqlite3ExprCodeTemp(pParse, pLeft, &regFree1);
2751 r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2752 testcase( regFree1==0 );
2753 testcase( regFree2==0 );
2754 r3 = sqlite3GetTempReg(pParse);
2755 r4 = sqlite3GetTempReg(pParse);
2756 codeCompare(pParse, pLeft, pRight, OP_Ge,
2757 r1, r2, r3, SQLITE_STOREP2);
2758 pLItem++;
2759 pRight = pLItem->pExpr;
2760 sqlite3ReleaseTempReg(pParse, regFree2);
2761 r2 = sqlite3ExprCodeTemp(pParse, pRight, &regFree2);
2762 testcase( regFree2==0 );
2763 codeCompare(pParse, pLeft, pRight, OP_Le, r1, r2, r4, SQLITE_STOREP2);
2764 sqlite3VdbeAddOp3(v, OP_And, r3, r4, target);
2765 sqlite3ReleaseTempReg(pParse, r3);
2766 sqlite3ReleaseTempReg(pParse, r4);
2767 break;
2769 case TK_COLLATE:
2770 case TK_UPLUS: {
2771 inReg = sqlite3ExprCodeTarget(pParse, pExpr->pLeft, target);
2772 break;
2775 case TK_TRIGGER: {
2776 /* If the opcode is TK_TRIGGER, then the expression is a reference
2777 ** to a column in the new.* or old.* pseudo-tables available to
2778 ** trigger programs. In this case Expr.iTable is set to 1 for the
2779 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
2780 ** is set to the column of the pseudo-table to read, or to -1 to
2781 ** read the rowid field.
2783 ** The expression is implemented using an OP_Param opcode. The p1
2784 ** parameter is set to 0 for an old.rowid reference, or to (i+1)
2785 ** to reference another column of the old.* pseudo-table, where
2786 ** i is the index of the column. For a new.rowid reference, p1 is
2787 ** set to (n+1), where n is the number of columns in each pseudo-table.
2788 ** For a reference to any other column in the new.* pseudo-table, p1
2789 ** is set to (n+2+i), where n and i are as defined previously. For
2790 ** example, if the table on which triggers are being fired is
2791 ** declared as:
2793 ** CREATE TABLE t1(a, b);
2795 ** Then p1 is interpreted as follows:
2797 ** p1==0 -> old.rowid p1==3 -> new.rowid
2798 ** p1==1 -> old.a p1==4 -> new.a
2799 ** p1==2 -> old.b p1==5 -> new.b
2801 Table *pTab = pExpr->pTab;
2802 int p1 = pExpr->iTable * (pTab->nCol+1) + 1 + pExpr->iColumn;
2804 assert( pExpr->iTable==0 || pExpr->iTable==1 );
2805 assert( pExpr->iColumn>=-1 && pExpr->iColumn<pTab->nCol );
2806 assert( pTab->iPKey<0 || pExpr->iColumn!=pTab->iPKey );
2807 assert( p1>=0 && p1<(pTab->nCol*2+2) );
2809 sqlite3VdbeAddOp2(v, OP_Param, p1, target);
2810 VdbeComment((v, "%s.%s -> $%d",
2811 (pExpr->iTable ? "new" : "old"),
2812 (pExpr->iColumn<0 ? "rowid" : pExpr->pTab->aCol[pExpr->iColumn].zName),
2813 target
2816 #ifndef SQLITE_OMIT_FLOATING_POINT
2817 /* If the column has REAL affinity, it may currently be stored as an
2818 ** integer. Use OP_RealAffinity to make sure it is really real. */
2819 if( pExpr->iColumn>=0
2820 && pTab->aCol[pExpr->iColumn].affinity==SQLITE_AFF_REAL
2822 sqlite3VdbeAddOp1(v, OP_RealAffinity, target);
2824 #endif
2825 break;
2830 ** Form A:
2831 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2833 ** Form B:
2834 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2836 ** Form A is can be transformed into the equivalent form B as follows:
2837 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2838 ** WHEN x=eN THEN rN ELSE y END
2840 ** X (if it exists) is in pExpr->pLeft.
2841 ** Y is in pExpr->pRight. The Y is also optional. If there is no
2842 ** ELSE clause and no other term matches, then the result of the
2843 ** exprssion is NULL.
2844 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2846 ** The result of the expression is the Ri for the first matching Ei,
2847 ** or if there is no matching Ei, the ELSE term Y, or if there is
2848 ** no ELSE term, NULL.
2850 default: assert( op==TK_CASE ); {
2851 int endLabel; /* GOTO label for end of CASE stmt */
2852 int nextCase; /* GOTO label for next WHEN clause */
2853 int nExpr; /* 2x number of WHEN terms */
2854 int i; /* Loop counter */
2855 ExprList *pEList; /* List of WHEN terms */
2856 struct ExprList_item *aListelem; /* Array of WHEN terms */
2857 Expr opCompare; /* The X==Ei expression */
2858 Expr cacheX; /* Cached expression X */
2859 Expr *pX; /* The X expression */
2860 Expr *pTest = 0; /* X==Ei (form A) or just Ei (form B) */
2861 VVA_ONLY( int iCacheLevel = pParse->iCacheLevel; )
2863 assert( !ExprHasProperty(pExpr, EP_xIsSelect) && pExpr->x.pList );
2864 assert((pExpr->x.pList->nExpr % 2) == 0);
2865 assert(pExpr->x.pList->nExpr > 0);
2866 pEList = pExpr->x.pList;
2867 aListelem = pEList->a;
2868 nExpr = pEList->nExpr;
2869 endLabel = sqlite3VdbeMakeLabel(v);
2870 if( (pX = pExpr->pLeft)!=0 ){
2871 cacheX = *pX;
2872 testcase( pX->op==TK_COLUMN );
2873 testcase( pX->op==TK_REGISTER );
2874 cacheX.iTable = sqlite3ExprCodeTemp(pParse, pX, &regFree1);
2875 testcase( regFree1==0 );
2876 cacheX.op = TK_REGISTER;
2877 opCompare.op = TK_EQ;
2878 opCompare.pLeft = &cacheX;
2879 pTest = &opCompare;
2880 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
2881 ** The value in regFree1 might get SCopy-ed into the file result.
2882 ** So make sure that the regFree1 register is not reused for other
2883 ** purposes and possibly overwritten. */
2884 regFree1 = 0;
2886 for(i=0; i<nExpr; i=i+2){
2887 sqlite3ExprCachePush(pParse);
2888 if( pX ){
2889 assert( pTest!=0 );
2890 opCompare.pRight = aListelem[i].pExpr;
2891 }else{
2892 pTest = aListelem[i].pExpr;
2894 nextCase = sqlite3VdbeMakeLabel(v);
2895 testcase( pTest->op==TK_COLUMN );
2896 sqlite3ExprIfFalse(pParse, pTest, nextCase, SQLITE_JUMPIFNULL);
2897 testcase( aListelem[i+1].pExpr->op==TK_COLUMN );
2898 testcase( aListelem[i+1].pExpr->op==TK_REGISTER );
2899 sqlite3ExprCode(pParse, aListelem[i+1].pExpr, target);
2900 sqlite3VdbeAddOp2(v, OP_Goto, 0, endLabel);
2901 sqlite3ExprCachePop(pParse, 1);
2902 sqlite3VdbeResolveLabel(v, nextCase);
2904 if( pExpr->pRight ){
2905 sqlite3ExprCachePush(pParse);
2906 sqlite3ExprCode(pParse, pExpr->pRight, target);
2907 sqlite3ExprCachePop(pParse, 1);
2908 }else{
2909 sqlite3VdbeAddOp2(v, OP_Null, 0, target);
2911 assert( db->mallocFailed || pParse->nErr>0
2912 || pParse->iCacheLevel==iCacheLevel );
2913 sqlite3VdbeResolveLabel(v, endLabel);
2914 break;
2916 #ifndef SQLITE_OMIT_TRIGGER
2917 case TK_RAISE: {
2918 assert( pExpr->affinity==OE_Rollback
2919 || pExpr->affinity==OE_Abort
2920 || pExpr->affinity==OE_Fail
2921 || pExpr->affinity==OE_Ignore
2923 if( !pParse->pTriggerTab ){
2924 sqlite3ErrorMsg(pParse,
2925 "RAISE() may only be used within a trigger-program");
2926 return 0;
2928 if( pExpr->affinity==OE_Abort ){
2929 sqlite3MayAbort(pParse);
2931 assert( !ExprHasProperty(pExpr, EP_IntValue) );
2932 if( pExpr->affinity==OE_Ignore ){
2933 sqlite3VdbeAddOp4(
2934 v, OP_Halt, SQLITE_OK, OE_Ignore, 0, pExpr->u.zToken,0);
2935 }else{
2936 sqlite3HaltConstraint(pParse, SQLITE_CONSTRAINT_TRIGGER,
2937 pExpr->affinity, pExpr->u.zToken, 0);
2940 break;
2942 #endif
2944 sqlite3ReleaseTempReg(pParse, regFree1);
2945 sqlite3ReleaseTempReg(pParse, regFree2);
2946 return inReg;
2950 ** Generate code to evaluate an expression and store the results
2951 ** into a register. Return the register number where the results
2952 ** are stored.
2954 ** If the register is a temporary register that can be deallocated,
2955 ** then write its number into *pReg. If the result register is not
2956 ** a temporary, then set *pReg to zero.
2958 int sqlite3ExprCodeTemp(Parse *pParse, Expr *pExpr, int *pReg){
2959 int r1 = sqlite3GetTempReg(pParse);
2960 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
2961 if( r2==r1 ){
2962 *pReg = r1;
2963 }else{
2964 sqlite3ReleaseTempReg(pParse, r1);
2965 *pReg = 0;
2967 return r2;
2971 ** Generate code that will evaluate expression pExpr and store the
2972 ** results in register target. The results are guaranteed to appear
2973 ** in register target.
2975 int sqlite3ExprCode(Parse *pParse, Expr *pExpr, int target){
2976 int inReg;
2978 assert( target>0 && target<=pParse->nMem );
2979 if( pExpr && pExpr->op==TK_REGISTER ){
2980 sqlite3VdbeAddOp2(pParse->pVdbe, OP_Copy, pExpr->iTable, target);
2981 }else{
2982 inReg = sqlite3ExprCodeTarget(pParse, pExpr, target);
2983 assert( pParse->pVdbe || pParse->db->mallocFailed );
2984 if( inReg!=target && pParse->pVdbe ){
2985 sqlite3VdbeAddOp2(pParse->pVdbe, OP_SCopy, inReg, target);
2988 return target;
2992 ** Generate code that evalutes the given expression and puts the result
2993 ** in register target.
2995 ** Also make a copy of the expression results into another "cache" register
2996 ** and modify the expression so that the next time it is evaluated,
2997 ** the result is a copy of the cache register.
2999 ** This routine is used for expressions that are used multiple
3000 ** times. They are evaluated once and the results of the expression
3001 ** are reused.
3003 int sqlite3ExprCodeAndCache(Parse *pParse, Expr *pExpr, int target){
3004 Vdbe *v = pParse->pVdbe;
3005 int inReg;
3006 inReg = sqlite3ExprCode(pParse, pExpr, target);
3007 assert( target>0 );
3008 /* This routine is called for terms to INSERT or UPDATE. And the only
3009 ** other place where expressions can be converted into TK_REGISTER is
3010 ** in WHERE clause processing. So as currently implemented, there is
3011 ** no way for a TK_REGISTER to exist here. But it seems prudent to
3012 ** keep the ALWAYS() in case the conditions above change with future
3013 ** modifications or enhancements. */
3014 if( ALWAYS(pExpr->op!=TK_REGISTER) ){
3015 int iMem;
3016 iMem = ++pParse->nMem;
3017 sqlite3VdbeAddOp2(v, OP_Copy, inReg, iMem);
3018 pExpr->iTable = iMem;
3019 pExpr->op2 = pExpr->op;
3020 pExpr->op = TK_REGISTER;
3022 return inReg;
3025 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
3027 ** Generate a human-readable explanation of an expression tree.
3029 void sqlite3ExplainExpr(Vdbe *pOut, Expr *pExpr){
3030 int op; /* The opcode being coded */
3031 const char *zBinOp = 0; /* Binary operator */
3032 const char *zUniOp = 0; /* Unary operator */
3033 if( pExpr==0 ){
3034 op = TK_NULL;
3035 }else{
3036 op = pExpr->op;
3038 switch( op ){
3039 case TK_AGG_COLUMN: {
3040 sqlite3ExplainPrintf(pOut, "AGG{%d:%d}",
3041 pExpr->iTable, pExpr->iColumn);
3042 break;
3044 case TK_COLUMN: {
3045 if( pExpr->iTable<0 ){
3046 /* This only happens when coding check constraints */
3047 sqlite3ExplainPrintf(pOut, "COLUMN(%d)", pExpr->iColumn);
3048 }else{
3049 sqlite3ExplainPrintf(pOut, "{%d:%d}",
3050 pExpr->iTable, pExpr->iColumn);
3052 break;
3054 case TK_INTEGER: {
3055 if( pExpr->flags & EP_IntValue ){
3056 sqlite3ExplainPrintf(pOut, "%d", pExpr->u.iValue);
3057 }else{
3058 sqlite3ExplainPrintf(pOut, "%s", pExpr->u.zToken);
3060 break;
3062 #ifndef SQLITE_OMIT_FLOATING_POINT
3063 case TK_FLOAT: {
3064 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
3065 break;
3067 #endif
3068 case TK_STRING: {
3069 sqlite3ExplainPrintf(pOut,"%Q", pExpr->u.zToken);
3070 break;
3072 case TK_NULL: {
3073 sqlite3ExplainPrintf(pOut,"NULL");
3074 break;
3076 #ifndef SQLITE_OMIT_BLOB_LITERAL
3077 case TK_BLOB: {
3078 sqlite3ExplainPrintf(pOut,"%s", pExpr->u.zToken);
3079 break;
3081 #endif
3082 case TK_VARIABLE: {
3083 sqlite3ExplainPrintf(pOut,"VARIABLE(%s,%d)",
3084 pExpr->u.zToken, pExpr->iColumn);
3085 break;
3087 case TK_REGISTER: {
3088 sqlite3ExplainPrintf(pOut,"REGISTER(%d)", pExpr->iTable);
3089 break;
3091 case TK_AS: {
3092 sqlite3ExplainExpr(pOut, pExpr->pLeft);
3093 break;
3095 #ifndef SQLITE_OMIT_CAST
3096 case TK_CAST: {
3097 /* Expressions of the form: CAST(pLeft AS token) */
3098 const char *zAff = "unk";
3099 switch( sqlite3AffinityType(pExpr->u.zToken) ){
3100 case SQLITE_AFF_TEXT: zAff = "TEXT"; break;
3101 case SQLITE_AFF_NONE: zAff = "NONE"; break;
3102 case SQLITE_AFF_NUMERIC: zAff = "NUMERIC"; break;
3103 case SQLITE_AFF_INTEGER: zAff = "INTEGER"; break;
3104 case SQLITE_AFF_REAL: zAff = "REAL"; break;
3106 sqlite3ExplainPrintf(pOut, "CAST-%s(", zAff);
3107 sqlite3ExplainExpr(pOut, pExpr->pLeft);
3108 sqlite3ExplainPrintf(pOut, ")");
3109 break;
3111 #endif /* SQLITE_OMIT_CAST */
3112 case TK_LT: zBinOp = "LT"; break;
3113 case TK_LE: zBinOp = "LE"; break;
3114 case TK_GT: zBinOp = "GT"; break;
3115 case TK_GE: zBinOp = "GE"; break;
3116 case TK_NE: zBinOp = "NE"; break;
3117 case TK_EQ: zBinOp = "EQ"; break;
3118 case TK_IS: zBinOp = "IS"; break;
3119 case TK_ISNOT: zBinOp = "ISNOT"; break;
3120 case TK_AND: zBinOp = "AND"; break;
3121 case TK_OR: zBinOp = "OR"; break;
3122 case TK_PLUS: zBinOp = "ADD"; break;
3123 case TK_STAR: zBinOp = "MUL"; break;
3124 case TK_MINUS: zBinOp = "SUB"; break;
3125 case TK_REM: zBinOp = "REM"; break;
3126 case TK_BITAND: zBinOp = "BITAND"; break;
3127 case TK_BITOR: zBinOp = "BITOR"; break;
3128 case TK_SLASH: zBinOp = "DIV"; break;
3129 case TK_LSHIFT: zBinOp = "LSHIFT"; break;
3130 case TK_RSHIFT: zBinOp = "RSHIFT"; break;
3131 case TK_CONCAT: zBinOp = "CONCAT"; break;
3133 case TK_UMINUS: zUniOp = "UMINUS"; break;
3134 case TK_UPLUS: zUniOp = "UPLUS"; break;
3135 case TK_BITNOT: zUniOp = "BITNOT"; break;
3136 case TK_NOT: zUniOp = "NOT"; break;
3137 case TK_ISNULL: zUniOp = "ISNULL"; break;
3138 case TK_NOTNULL: zUniOp = "NOTNULL"; break;
3140 case TK_COLLATE: {
3141 sqlite3ExplainExpr(pOut, pExpr->pLeft);
3142 sqlite3ExplainPrintf(pOut,".COLLATE(%s)",pExpr->u.zToken);
3143 break;
3146 case TK_AGG_FUNCTION:
3147 case TK_CONST_FUNC:
3148 case TK_FUNCTION: {
3149 ExprList *pFarg; /* List of function arguments */
3150 if( ExprHasAnyProperty(pExpr, EP_TokenOnly) ){
3151 pFarg = 0;
3152 }else{
3153 pFarg = pExpr->x.pList;
3155 if( op==TK_AGG_FUNCTION ){
3156 sqlite3ExplainPrintf(pOut, "AGG_FUNCTION%d:%s(",
3157 pExpr->op2, pExpr->u.zToken);
3158 }else{
3159 sqlite3ExplainPrintf(pOut, "FUNCTION:%s(", pExpr->u.zToken);
3161 if( pFarg ){
3162 sqlite3ExplainExprList(pOut, pFarg);
3164 sqlite3ExplainPrintf(pOut, ")");
3165 break;
3167 #ifndef SQLITE_OMIT_SUBQUERY
3168 case TK_EXISTS: {
3169 sqlite3ExplainPrintf(pOut, "EXISTS(");
3170 sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3171 sqlite3ExplainPrintf(pOut,")");
3172 break;
3174 case TK_SELECT: {
3175 sqlite3ExplainPrintf(pOut, "(");
3176 sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3177 sqlite3ExplainPrintf(pOut, ")");
3178 break;
3180 case TK_IN: {
3181 sqlite3ExplainPrintf(pOut, "IN(");
3182 sqlite3ExplainExpr(pOut, pExpr->pLeft);
3183 sqlite3ExplainPrintf(pOut, ",");
3184 if( ExprHasProperty(pExpr, EP_xIsSelect) ){
3185 sqlite3ExplainSelect(pOut, pExpr->x.pSelect);
3186 }else{
3187 sqlite3ExplainExprList(pOut, pExpr->x.pList);
3189 sqlite3ExplainPrintf(pOut, ")");
3190 break;
3192 #endif /* SQLITE_OMIT_SUBQUERY */
3195 ** x BETWEEN y AND z
3197 ** This is equivalent to
3199 ** x>=y AND x<=z
3201 ** X is stored in pExpr->pLeft.
3202 ** Y is stored in pExpr->pList->a[0].pExpr.
3203 ** Z is stored in pExpr->pList->a[1].pExpr.
3205 case TK_BETWEEN: {
3206 Expr *pX = pExpr->pLeft;
3207 Expr *pY = pExpr->x.pList->a[0].pExpr;
3208 Expr *pZ = pExpr->x.pList->a[1].pExpr;
3209 sqlite3ExplainPrintf(pOut, "BETWEEN(");
3210 sqlite3ExplainExpr(pOut, pX);
3211 sqlite3ExplainPrintf(pOut, ",");
3212 sqlite3ExplainExpr(pOut, pY);
3213 sqlite3ExplainPrintf(pOut, ",");
3214 sqlite3ExplainExpr(pOut, pZ);
3215 sqlite3ExplainPrintf(pOut, ")");
3216 break;
3218 case TK_TRIGGER: {
3219 /* If the opcode is TK_TRIGGER, then the expression is a reference
3220 ** to a column in the new.* or old.* pseudo-tables available to
3221 ** trigger programs. In this case Expr.iTable is set to 1 for the
3222 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3223 ** is set to the column of the pseudo-table to read, or to -1 to
3224 ** read the rowid field.
3226 sqlite3ExplainPrintf(pOut, "%s(%d)",
3227 pExpr->iTable ? "NEW" : "OLD", pExpr->iColumn);
3228 break;
3230 case TK_CASE: {
3231 sqlite3ExplainPrintf(pOut, "CASE(");
3232 sqlite3ExplainExpr(pOut, pExpr->pLeft);
3233 sqlite3ExplainPrintf(pOut, ",");
3234 sqlite3ExplainExprList(pOut, pExpr->x.pList);
3235 break;
3237 #ifndef SQLITE_OMIT_TRIGGER
3238 case TK_RAISE: {
3239 const char *zType = "unk";
3240 switch( pExpr->affinity ){
3241 case OE_Rollback: zType = "rollback"; break;
3242 case OE_Abort: zType = "abort"; break;
3243 case OE_Fail: zType = "fail"; break;
3244 case OE_Ignore: zType = "ignore"; break;
3246 sqlite3ExplainPrintf(pOut, "RAISE-%s(%s)", zType, pExpr->u.zToken);
3247 break;
3249 #endif
3251 if( zBinOp ){
3252 sqlite3ExplainPrintf(pOut,"%s(", zBinOp);
3253 sqlite3ExplainExpr(pOut, pExpr->pLeft);
3254 sqlite3ExplainPrintf(pOut,",");
3255 sqlite3ExplainExpr(pOut, pExpr->pRight);
3256 sqlite3ExplainPrintf(pOut,")");
3257 }else if( zUniOp ){
3258 sqlite3ExplainPrintf(pOut,"%s(", zUniOp);
3259 sqlite3ExplainExpr(pOut, pExpr->pLeft);
3260 sqlite3ExplainPrintf(pOut,")");
3263 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */
3265 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
3267 ** Generate a human-readable explanation of an expression list.
3269 void sqlite3ExplainExprList(Vdbe *pOut, ExprList *pList){
3270 int i;
3271 if( pList==0 || pList->nExpr==0 ){
3272 sqlite3ExplainPrintf(pOut, "(empty-list)");
3273 return;
3274 }else if( pList->nExpr==1 ){
3275 sqlite3ExplainExpr(pOut, pList->a[0].pExpr);
3276 }else{
3277 sqlite3ExplainPush(pOut);
3278 for(i=0; i<pList->nExpr; i++){
3279 sqlite3ExplainPrintf(pOut, "item[%d] = ", i);
3280 sqlite3ExplainPush(pOut);
3281 sqlite3ExplainExpr(pOut, pList->a[i].pExpr);
3282 sqlite3ExplainPop(pOut);
3283 if( pList->a[i].zName ){
3284 sqlite3ExplainPrintf(pOut, " AS %s", pList->a[i].zName);
3286 if( pList->a[i].bSpanIsTab ){
3287 sqlite3ExplainPrintf(pOut, " (%s)", pList->a[i].zSpan);
3289 if( i<pList->nExpr-1 ){
3290 sqlite3ExplainNL(pOut);
3293 sqlite3ExplainPop(pOut);
3296 #endif /* SQLITE_DEBUG */
3299 ** Return TRUE if pExpr is an constant expression that is appropriate
3300 ** for factoring out of a loop. Appropriate expressions are:
3302 ** * Any expression that evaluates to two or more opcodes.
3304 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
3305 ** or OP_Variable that does not need to be placed in a
3306 ** specific register.
3308 ** There is no point in factoring out single-instruction constant
3309 ** expressions that need to be placed in a particular register.
3310 ** We could factor them out, but then we would end up adding an
3311 ** OP_SCopy instruction to move the value into the correct register
3312 ** later. We might as well just use the original instruction and
3313 ** avoid the OP_SCopy.
3315 static int isAppropriateForFactoring(Expr *p){
3316 if( !sqlite3ExprIsConstantNotJoin(p) ){
3317 return 0; /* Only constant expressions are appropriate for factoring */
3319 if( (p->flags & EP_FixedDest)==0 ){
3320 return 1; /* Any constant without a fixed destination is appropriate */
3322 while( p->op==TK_UPLUS ) p = p->pLeft;
3323 switch( p->op ){
3324 #ifndef SQLITE_OMIT_BLOB_LITERAL
3325 case TK_BLOB:
3326 #endif
3327 case TK_VARIABLE:
3328 case TK_INTEGER:
3329 case TK_FLOAT:
3330 case TK_NULL:
3331 case TK_STRING: {
3332 testcase( p->op==TK_BLOB );
3333 testcase( p->op==TK_VARIABLE );
3334 testcase( p->op==TK_INTEGER );
3335 testcase( p->op==TK_FLOAT );
3336 testcase( p->op==TK_NULL );
3337 testcase( p->op==TK_STRING );
3338 /* Single-instruction constants with a fixed destination are
3339 ** better done in-line. If we factor them, they will just end
3340 ** up generating an OP_SCopy to move the value to the destination
3341 ** register. */
3342 return 0;
3344 case TK_UMINUS: {
3345 if( p->pLeft->op==TK_FLOAT || p->pLeft->op==TK_INTEGER ){
3346 return 0;
3348 break;
3350 default: {
3351 break;
3354 return 1;
3358 ** If pExpr is a constant expression that is appropriate for
3359 ** factoring out of a loop, then evaluate the expression
3360 ** into a register and convert the expression into a TK_REGISTER
3361 ** expression.
3363 static int evalConstExpr(Walker *pWalker, Expr *pExpr){
3364 Parse *pParse = pWalker->pParse;
3365 switch( pExpr->op ){
3366 case TK_IN:
3367 case TK_REGISTER: {
3368 return WRC_Prune;
3370 case TK_COLLATE: {
3371 return WRC_Continue;
3373 case TK_FUNCTION:
3374 case TK_AGG_FUNCTION:
3375 case TK_CONST_FUNC: {
3376 /* The arguments to a function have a fixed destination.
3377 ** Mark them this way to avoid generated unneeded OP_SCopy
3378 ** instructions.
3380 ExprList *pList = pExpr->x.pList;
3381 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3382 if( pList ){
3383 int i = pList->nExpr;
3384 struct ExprList_item *pItem = pList->a;
3385 for(; i>0; i--, pItem++){
3386 if( ALWAYS(pItem->pExpr) ) pItem->pExpr->flags |= EP_FixedDest;
3389 break;
3392 if( isAppropriateForFactoring(pExpr) ){
3393 int r1 = ++pParse->nMem;
3394 int r2 = sqlite3ExprCodeTarget(pParse, pExpr, r1);
3395 /* If r2!=r1, it means that register r1 is never used. That is harmless
3396 ** but suboptimal, so we want to know about the situation to fix it.
3397 ** Hence the following assert: */
3398 assert( r2==r1 );
3399 pExpr->op2 = pExpr->op;
3400 pExpr->op = TK_REGISTER;
3401 pExpr->iTable = r2;
3402 return WRC_Prune;
3404 return WRC_Continue;
3408 ** Preevaluate constant subexpressions within pExpr and store the
3409 ** results in registers. Modify pExpr so that the constant subexpresions
3410 ** are TK_REGISTER opcodes that refer to the precomputed values.
3412 ** This routine is a no-op if the jump to the cookie-check code has
3413 ** already occur. Since the cookie-check jump is generated prior to
3414 ** any other serious processing, this check ensures that there is no
3415 ** way to accidently bypass the constant initializations.
3417 ** This routine is also a no-op if the SQLITE_FactorOutConst optimization
3418 ** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS)
3419 ** interface. This allows test logic to verify that the same answer is
3420 ** obtained for queries regardless of whether or not constants are
3421 ** precomputed into registers or if they are inserted in-line.
3423 void sqlite3ExprCodeConstants(Parse *pParse, Expr *pExpr){
3424 Walker w;
3425 if( pParse->cookieGoto ) return;
3426 if( OptimizationDisabled(pParse->db, SQLITE_FactorOutConst) ) return;
3427 memset(&w, 0, sizeof(w));
3428 w.xExprCallback = evalConstExpr;
3429 w.pParse = pParse;
3430 sqlite3WalkExpr(&w, pExpr);
3435 ** Generate code that pushes the value of every element of the given
3436 ** expression list into a sequence of registers beginning at target.
3438 ** Return the number of elements evaluated.
3440 int sqlite3ExprCodeExprList(
3441 Parse *pParse, /* Parsing context */
3442 ExprList *pList, /* The expression list to be coded */
3443 int target, /* Where to write results */
3444 int doHardCopy /* Make a hard copy of every element */
3446 struct ExprList_item *pItem;
3447 int i, n;
3448 assert( pList!=0 );
3449 assert( target>0 );
3450 assert( pParse->pVdbe!=0 ); /* Never gets this far otherwise */
3451 n = pList->nExpr;
3452 for(pItem=pList->a, i=0; i<n; i++, pItem++){
3453 Expr *pExpr = pItem->pExpr;
3454 int inReg = sqlite3ExprCodeTarget(pParse, pExpr, target+i);
3455 if( inReg!=target+i ){
3456 sqlite3VdbeAddOp2(pParse->pVdbe, doHardCopy ? OP_Copy : OP_SCopy,
3457 inReg, target+i);
3460 return n;
3464 ** Generate code for a BETWEEN operator.
3466 ** x BETWEEN y AND z
3468 ** The above is equivalent to
3470 ** x>=y AND x<=z
3472 ** Code it as such, taking care to do the common subexpression
3473 ** elementation of x.
3475 static void exprCodeBetween(
3476 Parse *pParse, /* Parsing and code generating context */
3477 Expr *pExpr, /* The BETWEEN expression */
3478 int dest, /* Jump here if the jump is taken */
3479 int jumpIfTrue, /* Take the jump if the BETWEEN is true */
3480 int jumpIfNull /* Take the jump if the BETWEEN is NULL */
3482 Expr exprAnd; /* The AND operator in x>=y AND x<=z */
3483 Expr compLeft; /* The x>=y term */
3484 Expr compRight; /* The x<=z term */
3485 Expr exprX; /* The x subexpression */
3486 int regFree1 = 0; /* Temporary use register */
3488 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
3489 exprX = *pExpr->pLeft;
3490 exprAnd.op = TK_AND;
3491 exprAnd.pLeft = &compLeft;
3492 exprAnd.pRight = &compRight;
3493 compLeft.op = TK_GE;
3494 compLeft.pLeft = &exprX;
3495 compLeft.pRight = pExpr->x.pList->a[0].pExpr;
3496 compRight.op = TK_LE;
3497 compRight.pLeft = &exprX;
3498 compRight.pRight = pExpr->x.pList->a[1].pExpr;
3499 exprX.iTable = sqlite3ExprCodeTemp(pParse, &exprX, &regFree1);
3500 exprX.op = TK_REGISTER;
3501 if( jumpIfTrue ){
3502 sqlite3ExprIfTrue(pParse, &exprAnd, dest, jumpIfNull);
3503 }else{
3504 sqlite3ExprIfFalse(pParse, &exprAnd, dest, jumpIfNull);
3506 sqlite3ReleaseTempReg(pParse, regFree1);
3508 /* Ensure adequate test coverage */
3509 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1==0 );
3510 testcase( jumpIfTrue==0 && jumpIfNull==0 && regFree1!=0 );
3511 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1==0 );
3512 testcase( jumpIfTrue==0 && jumpIfNull!=0 && regFree1!=0 );
3513 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1==0 );
3514 testcase( jumpIfTrue!=0 && jumpIfNull==0 && regFree1!=0 );
3515 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1==0 );
3516 testcase( jumpIfTrue!=0 && jumpIfNull!=0 && regFree1!=0 );
3520 ** Generate code for a boolean expression such that a jump is made
3521 ** to the label "dest" if the expression is true but execution
3522 ** continues straight thru if the expression is false.
3524 ** If the expression evaluates to NULL (neither true nor false), then
3525 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3527 ** This code depends on the fact that certain token values (ex: TK_EQ)
3528 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3529 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
3530 ** the make process cause these values to align. Assert()s in the code
3531 ** below verify that the numbers are aligned correctly.
3533 void sqlite3ExprIfTrue(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3534 Vdbe *v = pParse->pVdbe;
3535 int op = 0;
3536 int regFree1 = 0;
3537 int regFree2 = 0;
3538 int r1, r2;
3540 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3541 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3542 if( NEVER(pExpr==0) ) return; /* No way this can happen */
3543 op = pExpr->op;
3544 switch( op ){
3545 case TK_AND: {
3546 int d2 = sqlite3VdbeMakeLabel(v);
3547 testcase( jumpIfNull==0 );
3548 sqlite3ExprCachePush(pParse);
3549 sqlite3ExprIfFalse(pParse, pExpr->pLeft, d2,jumpIfNull^SQLITE_JUMPIFNULL);
3550 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3551 sqlite3VdbeResolveLabel(v, d2);
3552 sqlite3ExprCachePop(pParse, 1);
3553 break;
3555 case TK_OR: {
3556 testcase( jumpIfNull==0 );
3557 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3558 sqlite3ExprIfTrue(pParse, pExpr->pRight, dest, jumpIfNull);
3559 break;
3561 case TK_NOT: {
3562 testcase( jumpIfNull==0 );
3563 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3564 break;
3566 case TK_LT:
3567 case TK_LE:
3568 case TK_GT:
3569 case TK_GE:
3570 case TK_NE:
3571 case TK_EQ: {
3572 assert( TK_LT==OP_Lt );
3573 assert( TK_LE==OP_Le );
3574 assert( TK_GT==OP_Gt );
3575 assert( TK_GE==OP_Ge );
3576 assert( TK_EQ==OP_Eq );
3577 assert( TK_NE==OP_Ne );
3578 testcase( op==TK_LT );
3579 testcase( op==TK_LE );
3580 testcase( op==TK_GT );
3581 testcase( op==TK_GE );
3582 testcase( op==TK_EQ );
3583 testcase( op==TK_NE );
3584 testcase( jumpIfNull==0 );
3585 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3586 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3587 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3588 r1, r2, dest, jumpIfNull);
3589 testcase( regFree1==0 );
3590 testcase( regFree2==0 );
3591 break;
3593 case TK_IS:
3594 case TK_ISNOT: {
3595 testcase( op==TK_IS );
3596 testcase( op==TK_ISNOT );
3597 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3598 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3599 op = (op==TK_IS) ? TK_EQ : TK_NE;
3600 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3601 r1, r2, dest, SQLITE_NULLEQ);
3602 testcase( regFree1==0 );
3603 testcase( regFree2==0 );
3604 break;
3606 case TK_ISNULL:
3607 case TK_NOTNULL: {
3608 assert( TK_ISNULL==OP_IsNull );
3609 assert( TK_NOTNULL==OP_NotNull );
3610 testcase( op==TK_ISNULL );
3611 testcase( op==TK_NOTNULL );
3612 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3613 sqlite3VdbeAddOp2(v, op, r1, dest);
3614 testcase( regFree1==0 );
3615 break;
3617 case TK_BETWEEN: {
3618 testcase( jumpIfNull==0 );
3619 exprCodeBetween(pParse, pExpr, dest, 1, jumpIfNull);
3620 break;
3622 #ifndef SQLITE_OMIT_SUBQUERY
3623 case TK_IN: {
3624 int destIfFalse = sqlite3VdbeMakeLabel(v);
3625 int destIfNull = jumpIfNull ? dest : destIfFalse;
3626 sqlite3ExprCodeIN(pParse, pExpr, destIfFalse, destIfNull);
3627 sqlite3VdbeAddOp2(v, OP_Goto, 0, dest);
3628 sqlite3VdbeResolveLabel(v, destIfFalse);
3629 break;
3631 #endif
3632 default: {
3633 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3634 sqlite3VdbeAddOp3(v, OP_If, r1, dest, jumpIfNull!=0);
3635 testcase( regFree1==0 );
3636 testcase( jumpIfNull==0 );
3637 break;
3640 sqlite3ReleaseTempReg(pParse, regFree1);
3641 sqlite3ReleaseTempReg(pParse, regFree2);
3645 ** Generate code for a boolean expression such that a jump is made
3646 ** to the label "dest" if the expression is false but execution
3647 ** continues straight thru if the expression is true.
3649 ** If the expression evaluates to NULL (neither true nor false) then
3650 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3651 ** is 0.
3653 void sqlite3ExprIfFalse(Parse *pParse, Expr *pExpr, int dest, int jumpIfNull){
3654 Vdbe *v = pParse->pVdbe;
3655 int op = 0;
3656 int regFree1 = 0;
3657 int regFree2 = 0;
3658 int r1, r2;
3660 assert( jumpIfNull==SQLITE_JUMPIFNULL || jumpIfNull==0 );
3661 if( NEVER(v==0) ) return; /* Existence of VDBE checked by caller */
3662 if( pExpr==0 ) return;
3664 /* The value of pExpr->op and op are related as follows:
3666 ** pExpr->op op
3667 ** --------- ----------
3668 ** TK_ISNULL OP_NotNull
3669 ** TK_NOTNULL OP_IsNull
3670 ** TK_NE OP_Eq
3671 ** TK_EQ OP_Ne
3672 ** TK_GT OP_Le
3673 ** TK_LE OP_Gt
3674 ** TK_GE OP_Lt
3675 ** TK_LT OP_Ge
3677 ** For other values of pExpr->op, op is undefined and unused.
3678 ** The value of TK_ and OP_ constants are arranged such that we
3679 ** can compute the mapping above using the following expression.
3680 ** Assert()s verify that the computation is correct.
3682 op = ((pExpr->op+(TK_ISNULL&1))^1)-(TK_ISNULL&1);
3684 /* Verify correct alignment of TK_ and OP_ constants
3686 assert( pExpr->op!=TK_ISNULL || op==OP_NotNull );
3687 assert( pExpr->op!=TK_NOTNULL || op==OP_IsNull );
3688 assert( pExpr->op!=TK_NE || op==OP_Eq );
3689 assert( pExpr->op!=TK_EQ || op==OP_Ne );
3690 assert( pExpr->op!=TK_LT || op==OP_Ge );
3691 assert( pExpr->op!=TK_LE || op==OP_Gt );
3692 assert( pExpr->op!=TK_GT || op==OP_Le );
3693 assert( pExpr->op!=TK_GE || op==OP_Lt );
3695 switch( pExpr->op ){
3696 case TK_AND: {
3697 testcase( jumpIfNull==0 );
3698 sqlite3ExprIfFalse(pParse, pExpr->pLeft, dest, jumpIfNull);
3699 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3700 break;
3702 case TK_OR: {
3703 int d2 = sqlite3VdbeMakeLabel(v);
3704 testcase( jumpIfNull==0 );
3705 sqlite3ExprCachePush(pParse);
3706 sqlite3ExprIfTrue(pParse, pExpr->pLeft, d2, jumpIfNull^SQLITE_JUMPIFNULL);
3707 sqlite3ExprIfFalse(pParse, pExpr->pRight, dest, jumpIfNull);
3708 sqlite3VdbeResolveLabel(v, d2);
3709 sqlite3ExprCachePop(pParse, 1);
3710 break;
3712 case TK_NOT: {
3713 testcase( jumpIfNull==0 );
3714 sqlite3ExprIfTrue(pParse, pExpr->pLeft, dest, jumpIfNull);
3715 break;
3717 case TK_LT:
3718 case TK_LE:
3719 case TK_GT:
3720 case TK_GE:
3721 case TK_NE:
3722 case TK_EQ: {
3723 testcase( op==TK_LT );
3724 testcase( op==TK_LE );
3725 testcase( op==TK_GT );
3726 testcase( op==TK_GE );
3727 testcase( op==TK_EQ );
3728 testcase( op==TK_NE );
3729 testcase( jumpIfNull==0 );
3730 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3731 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3732 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3733 r1, r2, dest, jumpIfNull);
3734 testcase( regFree1==0 );
3735 testcase( regFree2==0 );
3736 break;
3738 case TK_IS:
3739 case TK_ISNOT: {
3740 testcase( pExpr->op==TK_IS );
3741 testcase( pExpr->op==TK_ISNOT );
3742 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3743 r2 = sqlite3ExprCodeTemp(pParse, pExpr->pRight, &regFree2);
3744 op = (pExpr->op==TK_IS) ? TK_NE : TK_EQ;
3745 codeCompare(pParse, pExpr->pLeft, pExpr->pRight, op,
3746 r1, r2, dest, SQLITE_NULLEQ);
3747 testcase( regFree1==0 );
3748 testcase( regFree2==0 );
3749 break;
3751 case TK_ISNULL:
3752 case TK_NOTNULL: {
3753 testcase( op==TK_ISNULL );
3754 testcase( op==TK_NOTNULL );
3755 r1 = sqlite3ExprCodeTemp(pParse, pExpr->pLeft, &regFree1);
3756 sqlite3VdbeAddOp2(v, op, r1, dest);
3757 testcase( regFree1==0 );
3758 break;
3760 case TK_BETWEEN: {
3761 testcase( jumpIfNull==0 );
3762 exprCodeBetween(pParse, pExpr, dest, 0, jumpIfNull);
3763 break;
3765 #ifndef SQLITE_OMIT_SUBQUERY
3766 case TK_IN: {
3767 if( jumpIfNull ){
3768 sqlite3ExprCodeIN(pParse, pExpr, dest, dest);
3769 }else{
3770 int destIfNull = sqlite3VdbeMakeLabel(v);
3771 sqlite3ExprCodeIN(pParse, pExpr, dest, destIfNull);
3772 sqlite3VdbeResolveLabel(v, destIfNull);
3774 break;
3776 #endif
3777 default: {
3778 r1 = sqlite3ExprCodeTemp(pParse, pExpr, &regFree1);
3779 sqlite3VdbeAddOp3(v, OP_IfNot, r1, dest, jumpIfNull!=0);
3780 testcase( regFree1==0 );
3781 testcase( jumpIfNull==0 );
3782 break;
3785 sqlite3ReleaseTempReg(pParse, regFree1);
3786 sqlite3ReleaseTempReg(pParse, regFree2);
3790 ** Do a deep comparison of two expression trees. Return 0 if the two
3791 ** expressions are completely identical. Return 1 if they differ only
3792 ** by a COLLATE operator at the top level. Return 2 if there are differences
3793 ** other than the top-level COLLATE operator.
3795 ** Sometimes this routine will return 2 even if the two expressions
3796 ** really are equivalent. If we cannot prove that the expressions are
3797 ** identical, we return 2 just to be safe. So if this routine
3798 ** returns 2, then you do not really know for certain if the two
3799 ** expressions are the same. But if you get a 0 or 1 return, then you
3800 ** can be sure the expressions are the same. In the places where
3801 ** this routine is used, it does not hurt to get an extra 2 - that
3802 ** just might result in some slightly slower code. But returning
3803 ** an incorrect 0 or 1 could lead to a malfunction.
3805 int sqlite3ExprCompare(Expr *pA, Expr *pB){
3806 if( pA==0||pB==0 ){
3807 return pB==pA ? 0 : 2;
3809 assert( !ExprHasAnyProperty(pA, EP_TokenOnly|EP_Reduced) );
3810 assert( !ExprHasAnyProperty(pB, EP_TokenOnly|EP_Reduced) );
3811 if( ExprHasProperty(pA, EP_xIsSelect) || ExprHasProperty(pB, EP_xIsSelect) ){
3812 return 2;
3814 if( (pA->flags & EP_Distinct)!=(pB->flags & EP_Distinct) ) return 2;
3815 if( pA->op!=pB->op ){
3816 if( pA->op==TK_COLLATE && sqlite3ExprCompare(pA->pLeft, pB)<2 ){
3817 return 1;
3819 if( pB->op==TK_COLLATE && sqlite3ExprCompare(pA, pB->pLeft)<2 ){
3820 return 1;
3822 return 2;
3824 if( sqlite3ExprCompare(pA->pLeft, pB->pLeft) ) return 2;
3825 if( sqlite3ExprCompare(pA->pRight, pB->pRight) ) return 2;
3826 if( sqlite3ExprListCompare(pA->x.pList, pB->x.pList) ) return 2;
3827 if( pA->iTable!=pB->iTable || pA->iColumn!=pB->iColumn ) return 2;
3828 if( ExprHasProperty(pA, EP_IntValue) ){
3829 if( !ExprHasProperty(pB, EP_IntValue) || pA->u.iValue!=pB->u.iValue ){
3830 return 2;
3832 }else if( pA->op!=TK_COLUMN && ALWAYS(pA->op!=TK_AGG_COLUMN) && pA->u.zToken){
3833 if( ExprHasProperty(pB, EP_IntValue) || NEVER(pB->u.zToken==0) ) return 2;
3834 if( strcmp(pA->u.zToken,pB->u.zToken)!=0 ){
3835 return pA->op==TK_COLLATE ? 1 : 2;
3838 return 0;
3842 ** Compare two ExprList objects. Return 0 if they are identical and
3843 ** non-zero if they differ in any way.
3845 ** This routine might return non-zero for equivalent ExprLists. The
3846 ** only consequence will be disabled optimizations. But this routine
3847 ** must never return 0 if the two ExprList objects are different, or
3848 ** a malfunction will result.
3850 ** Two NULL pointers are considered to be the same. But a NULL pointer
3851 ** always differs from a non-NULL pointer.
3853 int sqlite3ExprListCompare(ExprList *pA, ExprList *pB){
3854 int i;
3855 if( pA==0 && pB==0 ) return 0;
3856 if( pA==0 || pB==0 ) return 1;
3857 if( pA->nExpr!=pB->nExpr ) return 1;
3858 for(i=0; i<pA->nExpr; i++){
3859 Expr *pExprA = pA->a[i].pExpr;
3860 Expr *pExprB = pB->a[i].pExpr;
3861 if( pA->a[i].sortOrder!=pB->a[i].sortOrder ) return 1;
3862 if( sqlite3ExprCompare(pExprA, pExprB) ) return 1;
3864 return 0;
3868 ** An instance of the following structure is used by the tree walker
3869 ** to count references to table columns in the arguments of an
3870 ** aggregate function, in order to implement the
3871 ** sqlite3FunctionThisSrc() routine.
3873 struct SrcCount {
3874 SrcList *pSrc; /* One particular FROM clause in a nested query */
3875 int nThis; /* Number of references to columns in pSrcList */
3876 int nOther; /* Number of references to columns in other FROM clauses */
3880 ** Count the number of references to columns.
3882 static int exprSrcCount(Walker *pWalker, Expr *pExpr){
3883 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
3884 ** is always called before sqlite3ExprAnalyzeAggregates() and so the
3885 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If
3886 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
3887 ** NEVER() will need to be removed. */
3888 if( pExpr->op==TK_COLUMN || NEVER(pExpr->op==TK_AGG_COLUMN) ){
3889 int i;
3890 struct SrcCount *p = pWalker->u.pSrcCount;
3891 SrcList *pSrc = p->pSrc;
3892 for(i=0; i<pSrc->nSrc; i++){
3893 if( pExpr->iTable==pSrc->a[i].iCursor ) break;
3895 if( i<pSrc->nSrc ){
3896 p->nThis++;
3897 }else{
3898 p->nOther++;
3901 return WRC_Continue;
3905 ** Determine if any of the arguments to the pExpr Function reference
3906 ** pSrcList. Return true if they do. Also return true if the function
3907 ** has no arguments or has only constant arguments. Return false if pExpr
3908 ** references columns but not columns of tables found in pSrcList.
3910 int sqlite3FunctionUsesThisSrc(Expr *pExpr, SrcList *pSrcList){
3911 Walker w;
3912 struct SrcCount cnt;
3913 assert( pExpr->op==TK_AGG_FUNCTION );
3914 memset(&w, 0, sizeof(w));
3915 w.xExprCallback = exprSrcCount;
3916 w.u.pSrcCount = &cnt;
3917 cnt.pSrc = pSrcList;
3918 cnt.nThis = 0;
3919 cnt.nOther = 0;
3920 sqlite3WalkExprList(&w, pExpr->x.pList);
3921 return cnt.nThis>0 || cnt.nOther==0;
3925 ** Add a new element to the pAggInfo->aCol[] array. Return the index of
3926 ** the new element. Return a negative number if malloc fails.
3928 static int addAggInfoColumn(sqlite3 *db, AggInfo *pInfo){
3929 int i;
3930 pInfo->aCol = sqlite3ArrayAllocate(
3932 pInfo->aCol,
3933 sizeof(pInfo->aCol[0]),
3934 &pInfo->nColumn,
3937 return i;
3941 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of
3942 ** the new element. Return a negative number if malloc fails.
3944 static int addAggInfoFunc(sqlite3 *db, AggInfo *pInfo){
3945 int i;
3946 pInfo->aFunc = sqlite3ArrayAllocate(
3947 db,
3948 pInfo->aFunc,
3949 sizeof(pInfo->aFunc[0]),
3950 &pInfo->nFunc,
3953 return i;
3957 ** This is the xExprCallback for a tree walker. It is used to
3958 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
3959 ** for additional information.
3961 static int analyzeAggregate(Walker *pWalker, Expr *pExpr){
3962 int i;
3963 NameContext *pNC = pWalker->u.pNC;
3964 Parse *pParse = pNC->pParse;
3965 SrcList *pSrcList = pNC->pSrcList;
3966 AggInfo *pAggInfo = pNC->pAggInfo;
3968 switch( pExpr->op ){
3969 case TK_AGG_COLUMN:
3970 case TK_COLUMN: {
3971 testcase( pExpr->op==TK_AGG_COLUMN );
3972 testcase( pExpr->op==TK_COLUMN );
3973 /* Check to see if the column is in one of the tables in the FROM
3974 ** clause of the aggregate query */
3975 if( ALWAYS(pSrcList!=0) ){
3976 struct SrcList_item *pItem = pSrcList->a;
3977 for(i=0; i<pSrcList->nSrc; i++, pItem++){
3978 struct AggInfo_col *pCol;
3979 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
3980 if( pExpr->iTable==pItem->iCursor ){
3981 /* If we reach this point, it means that pExpr refers to a table
3982 ** that is in the FROM clause of the aggregate query.
3984 ** Make an entry for the column in pAggInfo->aCol[] if there
3985 ** is not an entry there already.
3987 int k;
3988 pCol = pAggInfo->aCol;
3989 for(k=0; k<pAggInfo->nColumn; k++, pCol++){
3990 if( pCol->iTable==pExpr->iTable &&
3991 pCol->iColumn==pExpr->iColumn ){
3992 break;
3995 if( (k>=pAggInfo->nColumn)
3996 && (k = addAggInfoColumn(pParse->db, pAggInfo))>=0
3998 pCol = &pAggInfo->aCol[k];
3999 pCol->pTab = pExpr->pTab;
4000 pCol->iTable = pExpr->iTable;
4001 pCol->iColumn = pExpr->iColumn;
4002 pCol->iMem = ++pParse->nMem;
4003 pCol->iSorterColumn = -1;
4004 pCol->pExpr = pExpr;
4005 if( pAggInfo->pGroupBy ){
4006 int j, n;
4007 ExprList *pGB = pAggInfo->pGroupBy;
4008 struct ExprList_item *pTerm = pGB->a;
4009 n = pGB->nExpr;
4010 for(j=0; j<n; j++, pTerm++){
4011 Expr *pE = pTerm->pExpr;
4012 if( pE->op==TK_COLUMN && pE->iTable==pExpr->iTable &&
4013 pE->iColumn==pExpr->iColumn ){
4014 pCol->iSorterColumn = j;
4015 break;
4019 if( pCol->iSorterColumn<0 ){
4020 pCol->iSorterColumn = pAggInfo->nSortingColumn++;
4023 /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4024 ** because it was there before or because we just created it).
4025 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4026 ** pAggInfo->aCol[] entry.
4028 ExprSetIrreducible(pExpr);
4029 pExpr->pAggInfo = pAggInfo;
4030 pExpr->op = TK_AGG_COLUMN;
4031 pExpr->iAgg = (i16)k;
4032 break;
4033 } /* endif pExpr->iTable==pItem->iCursor */
4034 } /* end loop over pSrcList */
4036 return WRC_Prune;
4038 case TK_AGG_FUNCTION: {
4039 if( (pNC->ncFlags & NC_InAggFunc)==0
4040 && pWalker->walkerDepth==pExpr->op2
4042 /* Check to see if pExpr is a duplicate of another aggregate
4043 ** function that is already in the pAggInfo structure
4045 struct AggInfo_func *pItem = pAggInfo->aFunc;
4046 for(i=0; i<pAggInfo->nFunc; i++, pItem++){
4047 if( sqlite3ExprCompare(pItem->pExpr, pExpr)==0 ){
4048 break;
4051 if( i>=pAggInfo->nFunc ){
4052 /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
4054 u8 enc = ENC(pParse->db);
4055 i = addAggInfoFunc(pParse->db, pAggInfo);
4056 if( i>=0 ){
4057 assert( !ExprHasProperty(pExpr, EP_xIsSelect) );
4058 pItem = &pAggInfo->aFunc[i];
4059 pItem->pExpr = pExpr;
4060 pItem->iMem = ++pParse->nMem;
4061 assert( !ExprHasProperty(pExpr, EP_IntValue) );
4062 pItem->pFunc = sqlite3FindFunction(pParse->db,
4063 pExpr->u.zToken, sqlite3Strlen30(pExpr->u.zToken),
4064 pExpr->x.pList ? pExpr->x.pList->nExpr : 0, enc, 0);
4065 if( pExpr->flags & EP_Distinct ){
4066 pItem->iDistinct = pParse->nTab++;
4067 }else{
4068 pItem->iDistinct = -1;
4072 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4074 assert( !ExprHasAnyProperty(pExpr, EP_TokenOnly|EP_Reduced) );
4075 ExprSetIrreducible(pExpr);
4076 pExpr->iAgg = (i16)i;
4077 pExpr->pAggInfo = pAggInfo;
4078 return WRC_Prune;
4079 }else{
4080 return WRC_Continue;
4084 return WRC_Continue;
4086 static int analyzeAggregatesInSelect(Walker *pWalker, Select *pSelect){
4087 UNUSED_PARAMETER(pWalker);
4088 UNUSED_PARAMETER(pSelect);
4089 return WRC_Continue;
4093 ** Analyze the pExpr expression looking for aggregate functions and
4094 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4095 ** points to. Additional entries are made on the AggInfo object as
4096 ** necessary.
4098 ** This routine should only be called after the expression has been
4099 ** analyzed by sqlite3ResolveExprNames().
4101 void sqlite3ExprAnalyzeAggregates(NameContext *pNC, Expr *pExpr){
4102 Walker w;
4103 memset(&w, 0, sizeof(w));
4104 w.xExprCallback = analyzeAggregate;
4105 w.xSelectCallback = analyzeAggregatesInSelect;
4106 w.u.pNC = pNC;
4107 assert( pNC->pSrcList!=0 );
4108 sqlite3WalkExpr(&w, pExpr);
4112 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
4113 ** expression list. Return the number of errors.
4115 ** If an error is found, the analysis is cut short.
4117 void sqlite3ExprAnalyzeAggList(NameContext *pNC, ExprList *pList){
4118 struct ExprList_item *pItem;
4119 int i;
4120 if( pList ){
4121 for(pItem=pList->a, i=0; i<pList->nExpr; i++, pItem++){
4122 sqlite3ExprAnalyzeAggregates(pNC, pItem->pExpr);
4128 ** Allocate a single new register for use to hold some intermediate result.
4130 int sqlite3GetTempReg(Parse *pParse){
4131 if( pParse->nTempReg==0 ){
4132 return ++pParse->nMem;
4134 return pParse->aTempReg[--pParse->nTempReg];
4138 ** Deallocate a register, making available for reuse for some other
4139 ** purpose.
4141 ** If a register is currently being used by the column cache, then
4142 ** the dallocation is deferred until the column cache line that uses
4143 ** the register becomes stale.
4145 void sqlite3ReleaseTempReg(Parse *pParse, int iReg){
4146 if( iReg && pParse->nTempReg<ArraySize(pParse->aTempReg) ){
4147 int i;
4148 struct yColCache *p;
4149 for(i=0, p=pParse->aColCache; i<SQLITE_N_COLCACHE; i++, p++){
4150 if( p->iReg==iReg ){
4151 p->tempReg = 1;
4152 return;
4155 pParse->aTempReg[pParse->nTempReg++] = iReg;
4160 ** Allocate or deallocate a block of nReg consecutive registers
4162 int sqlite3GetTempRange(Parse *pParse, int nReg){
4163 int i, n;
4164 i = pParse->iRangeReg;
4165 n = pParse->nRangeReg;
4166 if( nReg<=n ){
4167 assert( !usedAsColumnCache(pParse, i, i+n-1) );
4168 pParse->iRangeReg += nReg;
4169 pParse->nRangeReg -= nReg;
4170 }else{
4171 i = pParse->nMem+1;
4172 pParse->nMem += nReg;
4174 return i;
4176 void sqlite3ReleaseTempRange(Parse *pParse, int iReg, int nReg){
4177 sqlite3ExprCacheRemove(pParse, iReg, nReg);
4178 if( nReg>pParse->nRangeReg ){
4179 pParse->nRangeReg = nReg;
4180 pParse->iRangeReg = iReg;
4185 ** Mark all temporary registers as being unavailable for reuse.
4187 void sqlite3ClearTempRegCache(Parse *pParse){
4188 pParse->nTempReg = 0;
4189 pParse->nRangeReg = 0;