4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains routines used for analyzing expressions and
13 ** for generating VDBE code that evaluates expressions in SQLite.
15 #include "sqliteInt.h"
18 ** Return the 'affinity' of the expression pExpr if any.
20 ** If pExpr is a column, a reference to a column via an 'AS' alias,
21 ** or a sub-select with a column as the return value, then the
22 ** affinity of that column is returned. Otherwise, 0x00 is returned,
23 ** indicating no affinity for the expression.
25 ** i.e. the WHERE clause expresssions in the following statements all
28 ** CREATE TABLE t1(a);
29 ** SELECT * FROM t1 WHERE a;
30 ** SELECT a AS b FROM t1 WHERE b;
31 ** SELECT * FROM t1 WHERE (select a from t1);
33 char sqlite3ExprAffinity(Expr
*pExpr
){
35 pExpr
= sqlite3ExprSkipCollate(pExpr
);
38 assert( pExpr
->flags
&EP_xIsSelect
);
39 return sqlite3ExprAffinity(pExpr
->x
.pSelect
->pEList
->a
[0].pExpr
);
41 #ifndef SQLITE_OMIT_CAST
43 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
44 return sqlite3AffinityType(pExpr
->u
.zToken
);
47 if( (op
==TK_AGG_COLUMN
|| op
==TK_COLUMN
|| op
==TK_REGISTER
)
50 /* op==TK_REGISTER && pExpr->pTab!=0 happens when pExpr was originally
51 ** a TK_COLUMN but was previously evaluated and cached in a register */
52 int j
= pExpr
->iColumn
;
53 if( j
<0 ) return SQLITE_AFF_INTEGER
;
54 assert( pExpr
->pTab
&& j
<pExpr
->pTab
->nCol
);
55 return pExpr
->pTab
->aCol
[j
].affinity
;
57 return pExpr
->affinity
;
61 ** Set the collating sequence for expression pExpr to be the collating
62 ** sequence named by pToken. Return a pointer to a new Expr node that
63 ** implements the COLLATE operator.
65 ** If a memory allocation error occurs, that fact is recorded in pParse->db
66 ** and the pExpr parameter is returned unchanged.
68 Expr
*sqlite3ExprAddCollateToken(Parse
*pParse
, Expr
*pExpr
, Token
*pCollName
){
70 Expr
*pNew
= sqlite3ExprAlloc(pParse
->db
, TK_COLLATE
, pCollName
, 1);
73 pNew
->flags
|= EP_Collate
;
79 Expr
*sqlite3ExprAddCollateString(Parse
*pParse
, Expr
*pExpr
, const char *zC
){
83 s
.n
= sqlite3Strlen30(s
.z
);
84 return sqlite3ExprAddCollateToken(pParse
, pExpr
, &s
);
88 ** Skip over any TK_COLLATE and/or TK_AS operators at the root of
91 Expr
*sqlite3ExprSkipCollate(Expr
*pExpr
){
92 while( pExpr
&& (pExpr
->op
==TK_COLLATE
|| pExpr
->op
==TK_AS
) ){
99 ** Return the collation sequence for the expression pExpr. If
100 ** there is no defined collating sequence, return NULL.
102 ** The collating sequence might be determined by a COLLATE operator
103 ** or by the presence of a column with a defined collating sequence.
104 ** COLLATE operators take first precedence. Left operands take
105 ** precedence over right operands.
107 CollSeq
*sqlite3ExprCollSeq(Parse
*pParse
, Expr
*pExpr
){
108 sqlite3
*db
= pParse
->db
;
113 if( op
==TK_CAST
|| op
==TK_UPLUS
){
117 assert( op
!=TK_REGISTER
|| p
->op2
!=TK_COLLATE
);
118 if( op
==TK_COLLATE
){
119 pColl
= sqlite3GetCollSeq(pParse
, ENC(db
), 0, p
->u
.zToken
);
123 && (op
==TK_AGG_COLUMN
|| op
==TK_COLUMN
124 || op
==TK_REGISTER
|| op
==TK_TRIGGER
)
126 /* op==TK_REGISTER && p->pTab!=0 happens when pExpr was originally
127 ** a TK_COLUMN but was previously evaluated and cached in a register */
130 const char *zColl
= p
->pTab
->aCol
[j
].zColl
;
131 pColl
= sqlite3FindCollSeq(db
, ENC(db
), zColl
, 0);
135 if( p
->flags
& EP_Collate
){
136 if( ALWAYS(p
->pLeft
) && (p
->pLeft
->flags
& EP_Collate
)!=0 ){
145 if( sqlite3CheckCollSeq(pParse
, pColl
) ){
152 ** pExpr is an operand of a comparison operator. aff2 is the
153 ** type affinity of the other operand. This routine returns the
154 ** type affinity that should be used for the comparison operator.
156 char sqlite3CompareAffinity(Expr
*pExpr
, char aff2
){
157 char aff1
= sqlite3ExprAffinity(pExpr
);
159 /* Both sides of the comparison are columns. If one has numeric
160 ** affinity, use that. Otherwise use no affinity.
162 if( sqlite3IsNumericAffinity(aff1
) || sqlite3IsNumericAffinity(aff2
) ){
163 return SQLITE_AFF_NUMERIC
;
165 return SQLITE_AFF_NONE
;
167 }else if( !aff1
&& !aff2
){
168 /* Neither side of the comparison is a column. Compare the
171 return SQLITE_AFF_NONE
;
173 /* One side is a column, the other is not. Use the columns affinity. */
174 assert( aff1
==0 || aff2
==0 );
175 return (aff1
+ aff2
);
180 ** pExpr is a comparison operator. Return the type affinity that should
181 ** be applied to both operands prior to doing the comparison.
183 static char comparisonAffinity(Expr
*pExpr
){
185 assert( pExpr
->op
==TK_EQ
|| pExpr
->op
==TK_IN
|| pExpr
->op
==TK_LT
||
186 pExpr
->op
==TK_GT
|| pExpr
->op
==TK_GE
|| pExpr
->op
==TK_LE
||
187 pExpr
->op
==TK_NE
|| pExpr
->op
==TK_IS
|| pExpr
->op
==TK_ISNOT
);
188 assert( pExpr
->pLeft
);
189 aff
= sqlite3ExprAffinity(pExpr
->pLeft
);
191 aff
= sqlite3CompareAffinity(pExpr
->pRight
, aff
);
192 }else if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
193 aff
= sqlite3CompareAffinity(pExpr
->x
.pSelect
->pEList
->a
[0].pExpr
, aff
);
195 aff
= SQLITE_AFF_NONE
;
201 ** pExpr is a comparison expression, eg. '=', '<', IN(...) etc.
202 ** idx_affinity is the affinity of an indexed column. Return true
203 ** if the index with affinity idx_affinity may be used to implement
204 ** the comparison in pExpr.
206 int sqlite3IndexAffinityOk(Expr
*pExpr
, char idx_affinity
){
207 char aff
= comparisonAffinity(pExpr
);
209 case SQLITE_AFF_NONE
:
211 case SQLITE_AFF_TEXT
:
212 return idx_affinity
==SQLITE_AFF_TEXT
;
214 return sqlite3IsNumericAffinity(idx_affinity
);
219 ** Return the P5 value that should be used for a binary comparison
220 ** opcode (OP_Eq, OP_Ge etc.) used to compare pExpr1 and pExpr2.
222 static u8
binaryCompareP5(Expr
*pExpr1
, Expr
*pExpr2
, int jumpIfNull
){
223 u8 aff
= (char)sqlite3ExprAffinity(pExpr2
);
224 aff
= (u8
)sqlite3CompareAffinity(pExpr1
, aff
) | (u8
)jumpIfNull
;
229 ** Return a pointer to the collation sequence that should be used by
230 ** a binary comparison operator comparing pLeft and pRight.
232 ** If the left hand expression has a collating sequence type, then it is
233 ** used. Otherwise the collation sequence for the right hand expression
234 ** is used, or the default (BINARY) if neither expression has a collating
237 ** Argument pRight (but not pLeft) may be a null pointer. In this case,
238 ** it is not considered.
240 CollSeq
*sqlite3BinaryCompareCollSeq(
247 if( pLeft
->flags
& EP_Collate
){
248 pColl
= sqlite3ExprCollSeq(pParse
, pLeft
);
249 }else if( pRight
&& (pRight
->flags
& EP_Collate
)!=0 ){
250 pColl
= sqlite3ExprCollSeq(pParse
, pRight
);
252 pColl
= sqlite3ExprCollSeq(pParse
, pLeft
);
254 pColl
= sqlite3ExprCollSeq(pParse
, pRight
);
261 ** Generate code for a comparison operator.
263 static int codeCompare(
264 Parse
*pParse
, /* The parsing (and code generating) context */
265 Expr
*pLeft
, /* The left operand */
266 Expr
*pRight
, /* The right operand */
267 int opcode
, /* The comparison opcode */
268 int in1
, int in2
, /* Register holding operands */
269 int dest
, /* Jump here if true. */
270 int jumpIfNull
/* If true, jump if either operand is NULL */
276 p4
= sqlite3BinaryCompareCollSeq(pParse
, pLeft
, pRight
);
277 p5
= binaryCompareP5(pLeft
, pRight
, jumpIfNull
);
278 addr
= sqlite3VdbeAddOp4(pParse
->pVdbe
, opcode
, in2
, dest
, in1
,
279 (void*)p4
, P4_COLLSEQ
);
280 sqlite3VdbeChangeP5(pParse
->pVdbe
, (u8
)p5
);
284 #if SQLITE_MAX_EXPR_DEPTH>0
286 ** Check that argument nHeight is less than or equal to the maximum
287 ** expression depth allowed. If it is not, leave an error message in
290 int sqlite3ExprCheckHeight(Parse
*pParse
, int nHeight
){
292 int mxHeight
= pParse
->db
->aLimit
[SQLITE_LIMIT_EXPR_DEPTH
];
293 if( nHeight
>mxHeight
){
294 sqlite3ErrorMsg(pParse
,
295 "Expression tree is too large (maximum depth %d)", mxHeight
302 /* The following three functions, heightOfExpr(), heightOfExprList()
303 ** and heightOfSelect(), are used to determine the maximum height
304 ** of any expression tree referenced by the structure passed as the
307 ** If this maximum height is greater than the current value pointed
308 ** to by pnHeight, the second parameter, then set *pnHeight to that
311 static void heightOfExpr(Expr
*p
, int *pnHeight
){
313 if( p
->nHeight
>*pnHeight
){
314 *pnHeight
= p
->nHeight
;
318 static void heightOfExprList(ExprList
*p
, int *pnHeight
){
321 for(i
=0; i
<p
->nExpr
; i
++){
322 heightOfExpr(p
->a
[i
].pExpr
, pnHeight
);
326 static void heightOfSelect(Select
*p
, int *pnHeight
){
328 heightOfExpr(p
->pWhere
, pnHeight
);
329 heightOfExpr(p
->pHaving
, pnHeight
);
330 heightOfExpr(p
->pLimit
, pnHeight
);
331 heightOfExpr(p
->pOffset
, pnHeight
);
332 heightOfExprList(p
->pEList
, pnHeight
);
333 heightOfExprList(p
->pGroupBy
, pnHeight
);
334 heightOfExprList(p
->pOrderBy
, pnHeight
);
335 heightOfSelect(p
->pPrior
, pnHeight
);
340 ** Set the Expr.nHeight variable in the structure passed as an
341 ** argument. An expression with no children, Expr.pList or
342 ** Expr.pSelect member has a height of 1. Any other expression
343 ** has a height equal to the maximum height of any other
344 ** referenced Expr plus one.
346 static void exprSetHeight(Expr
*p
){
348 heightOfExpr(p
->pLeft
, &nHeight
);
349 heightOfExpr(p
->pRight
, &nHeight
);
350 if( ExprHasProperty(p
, EP_xIsSelect
) ){
351 heightOfSelect(p
->x
.pSelect
, &nHeight
);
353 heightOfExprList(p
->x
.pList
, &nHeight
);
355 p
->nHeight
= nHeight
+ 1;
359 ** Set the Expr.nHeight variable using the exprSetHeight() function. If
360 ** the height is greater than the maximum allowed expression depth,
361 ** leave an error in pParse.
363 void sqlite3ExprSetHeight(Parse
*pParse
, Expr
*p
){
365 sqlite3ExprCheckHeight(pParse
, p
->nHeight
);
369 ** Return the maximum height of any expression tree referenced
370 ** by the select statement passed as an argument.
372 int sqlite3SelectExprHeight(Select
*p
){
374 heightOfSelect(p
, &nHeight
);
378 #define exprSetHeight(y)
379 #endif /* SQLITE_MAX_EXPR_DEPTH>0 */
382 ** This routine is the core allocator for Expr nodes.
384 ** Construct a new expression node and return a pointer to it. Memory
385 ** for this node and for the pToken argument is a single allocation
386 ** obtained from sqlite3DbMalloc(). The calling function
387 ** is responsible for making sure the node eventually gets freed.
389 ** If dequote is true, then the token (if it exists) is dequoted.
390 ** If dequote is false, no dequoting is performance. The deQuote
391 ** parameter is ignored if pToken is NULL or if the token does not
392 ** appear to be quoted. If the quotes were of the form "..." (double-quotes)
393 ** then the EP_DblQuoted flag is set on the expression node.
395 ** Special case: If op==TK_INTEGER and pToken points to a string that
396 ** can be translated into a 32-bit integer, then the token is not
397 ** stored in u.zToken. Instead, the integer values is written
398 ** into u.iValue and the EP_IntValue flag is set. No extra storage
399 ** is allocated to hold the integer text and the dequote flag is ignored.
401 Expr
*sqlite3ExprAlloc(
402 sqlite3
*db
, /* Handle for sqlite3DbMallocZero() (may be null) */
403 int op
, /* Expression opcode */
404 const Token
*pToken
, /* Token argument. Might be NULL */
405 int dequote
/* True to dequote */
412 if( op
!=TK_INTEGER
|| pToken
->z
==0
413 || sqlite3GetInt32(pToken
->z
, &iValue
)==0 ){
414 nExtra
= pToken
->n
+1;
418 pNew
= sqlite3DbMallocZero(db
, sizeof(Expr
)+nExtra
);
424 pNew
->flags
|= EP_IntValue
;
425 pNew
->u
.iValue
= iValue
;
428 pNew
->u
.zToken
= (char*)&pNew
[1];
429 assert( pToken
->z
!=0 || pToken
->n
==0 );
430 if( pToken
->n
) memcpy(pNew
->u
.zToken
, pToken
->z
, pToken
->n
);
431 pNew
->u
.zToken
[pToken
->n
] = 0;
432 if( dequote
&& nExtra
>=3
433 && ((c
= pToken
->z
[0])=='\'' || c
=='"' || c
=='[' || c
=='`') ){
434 sqlite3Dequote(pNew
->u
.zToken
);
435 if( c
=='"' ) pNew
->flags
|= EP_DblQuoted
;
439 #if SQLITE_MAX_EXPR_DEPTH>0
447 ** Allocate a new expression node from a zero-terminated token that has
448 ** already been dequoted.
451 sqlite3
*db
, /* Handle for sqlite3DbMallocZero() (may be null) */
452 int op
, /* Expression opcode */
453 const char *zToken
/* Token argument. Might be NULL */
457 x
.n
= zToken
? sqlite3Strlen30(zToken
) : 0;
458 return sqlite3ExprAlloc(db
, op
, &x
, 0);
462 ** Attach subtrees pLeft and pRight to the Expr node pRoot.
464 ** If pRoot==NULL that means that a memory allocation error has occurred.
465 ** In that case, delete the subtrees pLeft and pRight.
467 void sqlite3ExprAttachSubtrees(
474 assert( db
->mallocFailed
);
475 sqlite3ExprDelete(db
, pLeft
);
476 sqlite3ExprDelete(db
, pRight
);
479 pRoot
->pRight
= pRight
;
480 pRoot
->flags
|= EP_Collate
& pRight
->flags
;
483 pRoot
->pLeft
= pLeft
;
484 pRoot
->flags
|= EP_Collate
& pLeft
->flags
;
486 exprSetHeight(pRoot
);
491 ** Allocate a Expr node which joins as many as two subtrees.
493 ** One or both of the subtrees can be NULL. Return a pointer to the new
494 ** Expr node. Or, if an OOM error occurs, set pParse->db->mallocFailed,
495 ** free the subtrees and return NULL.
498 Parse
*pParse
, /* Parsing context */
499 int op
, /* Expression opcode */
500 Expr
*pLeft
, /* Left operand */
501 Expr
*pRight
, /* Right operand */
502 const Token
*pToken
/* Argument token */
505 if( op
==TK_AND
&& pLeft
&& pRight
){
506 /* Take advantage of short-circuit false optimization for AND */
507 p
= sqlite3ExprAnd(pParse
->db
, pLeft
, pRight
);
509 p
= sqlite3ExprAlloc(pParse
->db
, op
, pToken
, 1);
510 sqlite3ExprAttachSubtrees(pParse
->db
, p
, pLeft
, pRight
);
513 sqlite3ExprCheckHeight(pParse
, p
->nHeight
);
519 ** Return 1 if an expression must be FALSE in all cases and 0 if the
520 ** expression might be true. This is an optimization. If is OK to
521 ** return 0 here even if the expression really is always false (a
522 ** false negative). But it is a bug to return 1 if the expression
523 ** might be true in some rare circumstances (a false positive.)
525 ** Note that if the expression is part of conditional for a
526 ** LEFT JOIN, then we cannot determine at compile-time whether or not
527 ** is it true or false, so always return 0.
529 static int exprAlwaysFalse(Expr
*p
){
531 if( ExprHasProperty(p
, EP_FromJoin
) ) return 0;
532 if( !sqlite3ExprIsInteger(p
, &v
) ) return 0;
537 ** Join two expressions using an AND operator. If either expression is
538 ** NULL, then just return the other expression.
540 ** If one side or the other of the AND is known to be false, then instead
541 ** of returning an AND expression, just return a constant expression with
544 Expr
*sqlite3ExprAnd(sqlite3
*db
, Expr
*pLeft
, Expr
*pRight
){
547 }else if( pRight
==0 ){
549 }else if( exprAlwaysFalse(pLeft
) || exprAlwaysFalse(pRight
) ){
550 sqlite3ExprDelete(db
, pLeft
);
551 sqlite3ExprDelete(db
, pRight
);
552 return sqlite3ExprAlloc(db
, TK_INTEGER
, &sqlite3IntTokens
[0], 0);
554 Expr
*pNew
= sqlite3ExprAlloc(db
, TK_AND
, 0, 0);
555 sqlite3ExprAttachSubtrees(db
, pNew
, pLeft
, pRight
);
561 ** Construct a new expression node for a function with multiple
564 Expr
*sqlite3ExprFunction(Parse
*pParse
, ExprList
*pList
, Token
*pToken
){
566 sqlite3
*db
= pParse
->db
;
568 pNew
= sqlite3ExprAlloc(db
, TK_FUNCTION
, pToken
, 1);
570 sqlite3ExprListDelete(db
, pList
); /* Avoid memory leak when malloc fails */
573 pNew
->x
.pList
= pList
;
574 assert( !ExprHasProperty(pNew
, EP_xIsSelect
) );
575 sqlite3ExprSetHeight(pParse
, pNew
);
580 ** Assign a variable number to an expression that encodes a wildcard
581 ** in the original SQL statement.
583 ** Wildcards consisting of a single "?" are assigned the next sequential
586 ** Wildcards of the form "?nnn" are assigned the number "nnn". We make
587 ** sure "nnn" is not too be to avoid a denial of service attack when
588 ** the SQL statement comes from an external source.
590 ** Wildcards of the form ":aaa", "@aaa", or "$aaa" are assigned the same number
591 ** as the previous instance of the same wildcard. Or if this is the first
592 ** instance of the wildcard, the next sequenial variable number is
595 void sqlite3ExprAssignVarNumber(Parse
*pParse
, Expr
*pExpr
){
596 sqlite3
*db
= pParse
->db
;
599 if( pExpr
==0 ) return;
600 assert( !ExprHasAnyProperty(pExpr
, EP_IntValue
|EP_Reduced
|EP_TokenOnly
) );
605 /* Wildcard of the form "?". Assign the next variable number */
607 pExpr
->iColumn
= (ynVar
)(++pParse
->nVar
);
610 u32 n
= sqlite3Strlen30(z
);
612 /* Wildcard of the form "?nnn". Convert "nnn" to an integer and
613 ** use it as the variable number */
615 int bOk
= 0==sqlite3Atoi64(&z
[1], &i
, n
-1, SQLITE_UTF8
);
616 pExpr
->iColumn
= x
= (ynVar
)i
;
619 testcase( i
==db
->aLimit
[SQLITE_LIMIT_VARIABLE_NUMBER
]-1 );
620 testcase( i
==db
->aLimit
[SQLITE_LIMIT_VARIABLE_NUMBER
] );
621 if( bOk
==0 || i
<1 || i
>db
->aLimit
[SQLITE_LIMIT_VARIABLE_NUMBER
] ){
622 sqlite3ErrorMsg(pParse
, "variable number must be between ?1 and ?%d",
623 db
->aLimit
[SQLITE_LIMIT_VARIABLE_NUMBER
]);
626 if( i
>pParse
->nVar
){
627 pParse
->nVar
= (int)i
;
630 /* Wildcards like ":aaa", "$aaa" or "@aaa". Reuse the same variable
631 ** number as the prior appearance of the same name, or if the name
632 ** has never appeared before, reuse the same variable number
635 for(i
=0; i
<pParse
->nzVar
; i
++){
636 if( pParse
->azVar
[i
] && strcmp(pParse
->azVar
[i
],z
)==0 ){
637 pExpr
->iColumn
= x
= (ynVar
)i
+1;
641 if( x
==0 ) x
= pExpr
->iColumn
= (ynVar
)(++pParse
->nVar
);
644 if( x
>pParse
->nzVar
){
646 a
= sqlite3DbRealloc(db
, pParse
->azVar
, x
*sizeof(a
[0]));
647 if( a
==0 ) return; /* Error reported through db->mallocFailed */
649 memset(&a
[pParse
->nzVar
], 0, (x
-pParse
->nzVar
)*sizeof(a
[0]));
652 if( z
[0]!='?' || pParse
->azVar
[x
-1]==0 ){
653 sqlite3DbFree(db
, pParse
->azVar
[x
-1]);
654 pParse
->azVar
[x
-1] = sqlite3DbStrNDup(db
, z
, n
);
658 if( !pParse
->nErr
&& pParse
->nVar
>db
->aLimit
[SQLITE_LIMIT_VARIABLE_NUMBER
] ){
659 sqlite3ErrorMsg(pParse
, "too many SQL variables");
664 ** Recursively delete an expression tree.
666 void sqlite3ExprDelete(sqlite3
*db
, Expr
*p
){
668 /* Sanity check: Assert that the IntValue is non-negative if it exists */
669 assert( !ExprHasProperty(p
, EP_IntValue
) || p
->u
.iValue
>=0 );
670 if( !ExprHasAnyProperty(p
, EP_TokenOnly
) ){
671 sqlite3ExprDelete(db
, p
->pLeft
);
672 sqlite3ExprDelete(db
, p
->pRight
);
673 if( !ExprHasProperty(p
, EP_Reduced
) && (p
->flags2
& EP2_MallocedToken
)!=0 ){
674 sqlite3DbFree(db
, p
->u
.zToken
);
676 if( ExprHasProperty(p
, EP_xIsSelect
) ){
677 sqlite3SelectDelete(db
, p
->x
.pSelect
);
679 sqlite3ExprListDelete(db
, p
->x
.pList
);
682 if( !ExprHasProperty(p
, EP_Static
) ){
683 sqlite3DbFree(db
, p
);
688 ** Return the number of bytes allocated for the expression structure
689 ** passed as the first argument. This is always one of EXPR_FULLSIZE,
690 ** EXPR_REDUCEDSIZE or EXPR_TOKENONLYSIZE.
692 static int exprStructSize(Expr
*p
){
693 if( ExprHasProperty(p
, EP_TokenOnly
) ) return EXPR_TOKENONLYSIZE
;
694 if( ExprHasProperty(p
, EP_Reduced
) ) return EXPR_REDUCEDSIZE
;
695 return EXPR_FULLSIZE
;
699 ** The dupedExpr*Size() routines each return the number of bytes required
700 ** to store a copy of an expression or expression tree. They differ in
701 ** how much of the tree is measured.
703 ** dupedExprStructSize() Size of only the Expr structure
704 ** dupedExprNodeSize() Size of Expr + space for token
705 ** dupedExprSize() Expr + token + subtree components
707 ***************************************************************************
709 ** The dupedExprStructSize() function returns two values OR-ed together:
710 ** (1) the space required for a copy of the Expr structure only and
711 ** (2) the EP_xxx flags that indicate what the structure size should be.
712 ** The return values is always one of:
715 ** EXPR_REDUCEDSIZE | EP_Reduced
716 ** EXPR_TOKENONLYSIZE | EP_TokenOnly
718 ** The size of the structure can be found by masking the return value
719 ** of this routine with 0xfff. The flags can be found by masking the
720 ** return value with EP_Reduced|EP_TokenOnly.
722 ** Note that with flags==EXPRDUP_REDUCE, this routines works on full-size
723 ** (unreduced) Expr objects as they or originally constructed by the parser.
724 ** During expression analysis, extra information is computed and moved into
725 ** later parts of teh Expr object and that extra information might get chopped
726 ** off if the expression is reduced. Note also that it does not work to
727 ** make a EXPRDUP_REDUCE copy of a reduced expression. It is only legal
728 ** to reduce a pristine expression tree from the parser. The implementation
729 ** of dupedExprStructSize() contain multiple assert() statements that attempt
730 ** to enforce this constraint.
732 static int dupedExprStructSize(Expr
*p
, int flags
){
734 assert( flags
==EXPRDUP_REDUCE
|| flags
==0 ); /* Only one flag value allowed */
735 if( 0==(flags
&EXPRDUP_REDUCE
) ){
736 nSize
= EXPR_FULLSIZE
;
738 assert( !ExprHasAnyProperty(p
, EP_TokenOnly
|EP_Reduced
) );
739 assert( !ExprHasProperty(p
, EP_FromJoin
) );
740 assert( (p
->flags2
& EP2_MallocedToken
)==0 );
741 assert( (p
->flags2
& EP2_Irreducible
)==0 );
742 if( p
->pLeft
|| p
->pRight
|| p
->x
.pList
){
743 nSize
= EXPR_REDUCEDSIZE
| EP_Reduced
;
745 nSize
= EXPR_TOKENONLYSIZE
| EP_TokenOnly
;
752 ** This function returns the space in bytes required to store the copy
753 ** of the Expr structure and a copy of the Expr.u.zToken string (if that
754 ** string is defined.)
756 static int dupedExprNodeSize(Expr
*p
, int flags
){
757 int nByte
= dupedExprStructSize(p
, flags
) & 0xfff;
758 if( !ExprHasProperty(p
, EP_IntValue
) && p
->u
.zToken
){
759 nByte
+= sqlite3Strlen30(p
->u
.zToken
)+1;
761 return ROUND8(nByte
);
765 ** Return the number of bytes required to create a duplicate of the
766 ** expression passed as the first argument. The second argument is a
767 ** mask containing EXPRDUP_XXX flags.
769 ** The value returned includes space to create a copy of the Expr struct
770 ** itself and the buffer referred to by Expr.u.zToken, if any.
772 ** If the EXPRDUP_REDUCE flag is set, then the return value includes
773 ** space to duplicate all Expr nodes in the tree formed by Expr.pLeft
774 ** and Expr.pRight variables (but not for any structures pointed to or
775 ** descended from the Expr.x.pList or Expr.x.pSelect variables).
777 static int dupedExprSize(Expr
*p
, int flags
){
780 nByte
= dupedExprNodeSize(p
, flags
);
781 if( flags
&EXPRDUP_REDUCE
){
782 nByte
+= dupedExprSize(p
->pLeft
, flags
) + dupedExprSize(p
->pRight
, flags
);
789 ** This function is similar to sqlite3ExprDup(), except that if pzBuffer
790 ** is not NULL then *pzBuffer is assumed to point to a buffer large enough
791 ** to store the copy of expression p, the copies of p->u.zToken
792 ** (if applicable), and the copies of the p->pLeft and p->pRight expressions,
793 ** if any. Before returning, *pzBuffer is set to the first byte passed the
794 ** portion of the buffer copied into by this function.
796 static Expr
*exprDup(sqlite3
*db
, Expr
*p
, int flags
, u8
**pzBuffer
){
797 Expr
*pNew
= 0; /* Value to return */
799 const int isReduced
= (flags
&EXPRDUP_REDUCE
);
803 assert( pzBuffer
==0 || isReduced
);
805 /* Figure out where to write the new Expr structure. */
808 staticFlag
= EP_Static
;
810 zAlloc
= sqlite3DbMallocRaw(db
, dupedExprSize(p
, flags
));
812 pNew
= (Expr
*)zAlloc
;
815 /* Set nNewSize to the size allocated for the structure pointed to
816 ** by pNew. This is either EXPR_FULLSIZE, EXPR_REDUCEDSIZE or
817 ** EXPR_TOKENONLYSIZE. nToken is set to the number of bytes consumed
818 ** by the copy of the p->u.zToken string (if any).
820 const unsigned nStructSize
= dupedExprStructSize(p
, flags
);
821 const int nNewSize
= nStructSize
& 0xfff;
823 if( !ExprHasProperty(p
, EP_IntValue
) && p
->u
.zToken
){
824 nToken
= sqlite3Strlen30(p
->u
.zToken
) + 1;
829 assert( ExprHasProperty(p
, EP_Reduced
)==0 );
830 memcpy(zAlloc
, p
, nNewSize
);
832 int nSize
= exprStructSize(p
);
833 memcpy(zAlloc
, p
, nSize
);
834 memset(&zAlloc
[nSize
], 0, EXPR_FULLSIZE
-nSize
);
837 /* Set the EP_Reduced, EP_TokenOnly, and EP_Static flags appropriately. */
838 pNew
->flags
&= ~(EP_Reduced
|EP_TokenOnly
|EP_Static
);
839 pNew
->flags
|= nStructSize
& (EP_Reduced
|EP_TokenOnly
);
840 pNew
->flags
|= staticFlag
;
842 /* Copy the p->u.zToken string, if any. */
844 char *zToken
= pNew
->u
.zToken
= (char*)&zAlloc
[nNewSize
];
845 memcpy(zToken
, p
->u
.zToken
, nToken
);
848 if( 0==((p
->flags
|pNew
->flags
) & EP_TokenOnly
) ){
849 /* Fill in the pNew->x.pSelect or pNew->x.pList member. */
850 if( ExprHasProperty(p
, EP_xIsSelect
) ){
851 pNew
->x
.pSelect
= sqlite3SelectDup(db
, p
->x
.pSelect
, isReduced
);
853 pNew
->x
.pList
= sqlite3ExprListDup(db
, p
->x
.pList
, isReduced
);
857 /* Fill in pNew->pLeft and pNew->pRight. */
858 if( ExprHasAnyProperty(pNew
, EP_Reduced
|EP_TokenOnly
) ){
859 zAlloc
+= dupedExprNodeSize(p
, flags
);
860 if( ExprHasProperty(pNew
, EP_Reduced
) ){
861 pNew
->pLeft
= exprDup(db
, p
->pLeft
, EXPRDUP_REDUCE
, &zAlloc
);
862 pNew
->pRight
= exprDup(db
, p
->pRight
, EXPRDUP_REDUCE
, &zAlloc
);
869 if( !ExprHasAnyProperty(p
, EP_TokenOnly
) ){
870 pNew
->pLeft
= sqlite3ExprDup(db
, p
->pLeft
, 0);
871 pNew
->pRight
= sqlite3ExprDup(db
, p
->pRight
, 0);
881 ** The following group of routines make deep copies of expressions,
882 ** expression lists, ID lists, and select statements. The copies can
883 ** be deleted (by being passed to their respective ...Delete() routines)
884 ** without effecting the originals.
886 ** The expression list, ID, and source lists return by sqlite3ExprListDup(),
887 ** sqlite3IdListDup(), and sqlite3SrcListDup() can not be further expanded
888 ** by subsequent calls to sqlite*ListAppend() routines.
890 ** Any tables that the SrcList might point to are not duplicated.
892 ** The flags parameter contains a combination of the EXPRDUP_XXX flags.
893 ** If the EXPRDUP_REDUCE flag is set, then the structure returned is a
894 ** truncated version of the usual Expr structure that will be stored as
895 ** part of the in-memory representation of the database schema.
897 Expr
*sqlite3ExprDup(sqlite3
*db
, Expr
*p
, int flags
){
898 return exprDup(db
, p
, flags
, 0);
900 ExprList
*sqlite3ExprListDup(sqlite3
*db
, ExprList
*p
, int flags
){
902 struct ExprList_item
*pItem
, *pOldItem
;
905 pNew
= sqlite3DbMallocRaw(db
, sizeof(*pNew
) );
906 if( pNew
==0 ) return 0;
908 pNew
->nExpr
= i
= p
->nExpr
;
909 if( (flags
& EXPRDUP_REDUCE
)==0 ) for(i
=1; i
<p
->nExpr
; i
+=i
){}
910 pNew
->a
= pItem
= sqlite3DbMallocRaw(db
, i
*sizeof(p
->a
[0]) );
912 sqlite3DbFree(db
, pNew
);
916 for(i
=0; i
<p
->nExpr
; i
++, pItem
++, pOldItem
++){
917 Expr
*pOldExpr
= pOldItem
->pExpr
;
918 pItem
->pExpr
= sqlite3ExprDup(db
, pOldExpr
, flags
);
919 pItem
->zName
= sqlite3DbStrDup(db
, pOldItem
->zName
);
920 pItem
->zSpan
= sqlite3DbStrDup(db
, pOldItem
->zSpan
);
921 pItem
->sortOrder
= pOldItem
->sortOrder
;
923 pItem
->iOrderByCol
= pOldItem
->iOrderByCol
;
924 pItem
->iAlias
= pOldItem
->iAlias
;
930 ** If cursors, triggers, views and subqueries are all omitted from
931 ** the build, then none of the following routines, except for
932 ** sqlite3SelectDup(), can be called. sqlite3SelectDup() is sometimes
933 ** called with a NULL argument.
935 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_TRIGGER) \
936 || !defined(SQLITE_OMIT_SUBQUERY)
937 SrcList
*sqlite3SrcListDup(sqlite3
*db
, SrcList
*p
, int flags
){
942 nByte
= sizeof(*p
) + (p
->nSrc
>0 ? sizeof(p
->a
[0]) * (p
->nSrc
-1) : 0);
943 pNew
= sqlite3DbMallocRaw(db
, nByte
);
944 if( pNew
==0 ) return 0;
945 pNew
->nSrc
= pNew
->nAlloc
= p
->nSrc
;
946 for(i
=0; i
<p
->nSrc
; i
++){
947 struct SrcList_item
*pNewItem
= &pNew
->a
[i
];
948 struct SrcList_item
*pOldItem
= &p
->a
[i
];
950 pNewItem
->pSchema
= pOldItem
->pSchema
;
951 pNewItem
->zDatabase
= sqlite3DbStrDup(db
, pOldItem
->zDatabase
);
952 pNewItem
->zName
= sqlite3DbStrDup(db
, pOldItem
->zName
);
953 pNewItem
->zAlias
= sqlite3DbStrDup(db
, pOldItem
->zAlias
);
954 pNewItem
->jointype
= pOldItem
->jointype
;
955 pNewItem
->iCursor
= pOldItem
->iCursor
;
956 pNewItem
->addrFillSub
= pOldItem
->addrFillSub
;
957 pNewItem
->regReturn
= pOldItem
->regReturn
;
958 pNewItem
->isCorrelated
= pOldItem
->isCorrelated
;
959 pNewItem
->viaCoroutine
= pOldItem
->viaCoroutine
;
960 pNewItem
->zIndex
= sqlite3DbStrDup(db
, pOldItem
->zIndex
);
961 pNewItem
->notIndexed
= pOldItem
->notIndexed
;
962 pNewItem
->pIndex
= pOldItem
->pIndex
;
963 pTab
= pNewItem
->pTab
= pOldItem
->pTab
;
967 pNewItem
->pSelect
= sqlite3SelectDup(db
, pOldItem
->pSelect
, flags
);
968 pNewItem
->pOn
= sqlite3ExprDup(db
, pOldItem
->pOn
, flags
);
969 pNewItem
->pUsing
= sqlite3IdListDup(db
, pOldItem
->pUsing
);
970 pNewItem
->colUsed
= pOldItem
->colUsed
;
974 IdList
*sqlite3IdListDup(sqlite3
*db
, IdList
*p
){
978 pNew
= sqlite3DbMallocRaw(db
, sizeof(*pNew
) );
979 if( pNew
==0 ) return 0;
981 pNew
->a
= sqlite3DbMallocRaw(db
, p
->nId
*sizeof(p
->a
[0]) );
983 sqlite3DbFree(db
, pNew
);
986 /* Note that because the size of the allocation for p->a[] is not
987 ** necessarily a power of two, sqlite3IdListAppend() may not be called
988 ** on the duplicate created by this function. */
989 for(i
=0; i
<p
->nId
; i
++){
990 struct IdList_item
*pNewItem
= &pNew
->a
[i
];
991 struct IdList_item
*pOldItem
= &p
->a
[i
];
992 pNewItem
->zName
= sqlite3DbStrDup(db
, pOldItem
->zName
);
993 pNewItem
->idx
= pOldItem
->idx
;
997 Select
*sqlite3SelectDup(sqlite3
*db
, Select
*p
, int flags
){
998 Select
*pNew
, *pPrior
;
1000 pNew
= sqlite3DbMallocRaw(db
, sizeof(*p
) );
1001 if( pNew
==0 ) return 0;
1002 pNew
->pEList
= sqlite3ExprListDup(db
, p
->pEList
, flags
);
1003 pNew
->pSrc
= sqlite3SrcListDup(db
, p
->pSrc
, flags
);
1004 pNew
->pWhere
= sqlite3ExprDup(db
, p
->pWhere
, flags
);
1005 pNew
->pGroupBy
= sqlite3ExprListDup(db
, p
->pGroupBy
, flags
);
1006 pNew
->pHaving
= sqlite3ExprDup(db
, p
->pHaving
, flags
);
1007 pNew
->pOrderBy
= sqlite3ExprListDup(db
, p
->pOrderBy
, flags
);
1009 pNew
->pPrior
= pPrior
= sqlite3SelectDup(db
, p
->pPrior
, flags
);
1010 if( pPrior
) pPrior
->pNext
= pNew
;
1012 pNew
->pLimit
= sqlite3ExprDup(db
, p
->pLimit
, flags
);
1013 pNew
->pOffset
= sqlite3ExprDup(db
, p
->pOffset
, flags
);
1016 pNew
->selFlags
= p
->selFlags
& ~SF_UsesEphemeral
;
1017 pNew
->pRightmost
= 0;
1018 pNew
->addrOpenEphm
[0] = -1;
1019 pNew
->addrOpenEphm
[1] = -1;
1020 pNew
->addrOpenEphm
[2] = -1;
1024 Select
*sqlite3SelectDup(sqlite3
*db
, Select
*p
, int flags
){
1032 ** Add a new element to the end of an expression list. If pList is
1033 ** initially NULL, then create a new expression list.
1035 ** If a memory allocation error occurs, the entire list is freed and
1036 ** NULL is returned. If non-NULL is returned, then it is guaranteed
1037 ** that the new entry was successfully appended.
1039 ExprList
*sqlite3ExprListAppend(
1040 Parse
*pParse
, /* Parsing context */
1041 ExprList
*pList
, /* List to which to append. Might be NULL */
1042 Expr
*pExpr
/* Expression to be appended. Might be NULL */
1044 sqlite3
*db
= pParse
->db
;
1046 pList
= sqlite3DbMallocZero(db
, sizeof(ExprList
) );
1050 pList
->a
= sqlite3DbMallocRaw(db
, sizeof(pList
->a
[0]));
1051 if( pList
->a
==0 ) goto no_mem
;
1052 }else if( (pList
->nExpr
& (pList
->nExpr
-1))==0 ){
1053 struct ExprList_item
*a
;
1054 assert( pList
->nExpr
>0 );
1055 a
= sqlite3DbRealloc(db
, pList
->a
, pList
->nExpr
*2*sizeof(pList
->a
[0]));
1061 assert( pList
->a
!=0 );
1063 struct ExprList_item
*pItem
= &pList
->a
[pList
->nExpr
++];
1064 memset(pItem
, 0, sizeof(*pItem
));
1065 pItem
->pExpr
= pExpr
;
1070 /* Avoid leaking memory if malloc has failed. */
1071 sqlite3ExprDelete(db
, pExpr
);
1072 sqlite3ExprListDelete(db
, pList
);
1077 ** Set the ExprList.a[].zName element of the most recently added item
1078 ** on the expression list.
1080 ** pList might be NULL following an OOM error. But pName should never be
1081 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
1084 void sqlite3ExprListSetName(
1085 Parse
*pParse
, /* Parsing context */
1086 ExprList
*pList
, /* List to which to add the span. */
1087 Token
*pName
, /* Name to be added */
1088 int dequote
/* True to cause the name to be dequoted */
1090 assert( pList
!=0 || pParse
->db
->mallocFailed
!=0 );
1092 struct ExprList_item
*pItem
;
1093 assert( pList
->nExpr
>0 );
1094 pItem
= &pList
->a
[pList
->nExpr
-1];
1095 assert( pItem
->zName
==0 );
1096 pItem
->zName
= sqlite3DbStrNDup(pParse
->db
, pName
->z
, pName
->n
);
1097 if( dequote
&& pItem
->zName
) sqlite3Dequote(pItem
->zName
);
1102 ** Set the ExprList.a[].zSpan element of the most recently added item
1103 ** on the expression list.
1105 ** pList might be NULL following an OOM error. But pSpan should never be
1106 ** NULL. If a memory allocation fails, the pParse->db->mallocFailed flag
1109 void sqlite3ExprListSetSpan(
1110 Parse
*pParse
, /* Parsing context */
1111 ExprList
*pList
, /* List to which to add the span. */
1112 ExprSpan
*pSpan
/* The span to be added */
1114 sqlite3
*db
= pParse
->db
;
1115 assert( pList
!=0 || db
->mallocFailed
!=0 );
1117 struct ExprList_item
*pItem
= &pList
->a
[pList
->nExpr
-1];
1118 assert( pList
->nExpr
>0 );
1119 assert( db
->mallocFailed
|| pItem
->pExpr
==pSpan
->pExpr
);
1120 sqlite3DbFree(db
, pItem
->zSpan
);
1121 pItem
->zSpan
= sqlite3DbStrNDup(db
, (char*)pSpan
->zStart
,
1122 (int)(pSpan
->zEnd
- pSpan
->zStart
));
1127 ** If the expression list pEList contains more than iLimit elements,
1128 ** leave an error message in pParse.
1130 void sqlite3ExprListCheckLength(
1135 int mx
= pParse
->db
->aLimit
[SQLITE_LIMIT_COLUMN
];
1136 testcase( pEList
&& pEList
->nExpr
==mx
);
1137 testcase( pEList
&& pEList
->nExpr
==mx
+1 );
1138 if( pEList
&& pEList
->nExpr
>mx
){
1139 sqlite3ErrorMsg(pParse
, "too many columns in %s", zObject
);
1144 ** Delete an entire expression list.
1146 void sqlite3ExprListDelete(sqlite3
*db
, ExprList
*pList
){
1148 struct ExprList_item
*pItem
;
1149 if( pList
==0 ) return;
1150 assert( pList
->a
!=0 || pList
->nExpr
==0 );
1151 for(pItem
=pList
->a
, i
=0; i
<pList
->nExpr
; i
++, pItem
++){
1152 sqlite3ExprDelete(db
, pItem
->pExpr
);
1153 sqlite3DbFree(db
, pItem
->zName
);
1154 sqlite3DbFree(db
, pItem
->zSpan
);
1156 sqlite3DbFree(db
, pList
->a
);
1157 sqlite3DbFree(db
, pList
);
1161 ** These routines are Walker callbacks. Walker.u.pi is a pointer
1162 ** to an integer. These routines are checking an expression to see
1163 ** if it is a constant. Set *Walker.u.pi to 0 if the expression is
1166 ** These callback routines are used to implement the following:
1168 ** sqlite3ExprIsConstant()
1169 ** sqlite3ExprIsConstantNotJoin()
1170 ** sqlite3ExprIsConstantOrFunction()
1173 static int exprNodeIsConstant(Walker
*pWalker
, Expr
*pExpr
){
1175 /* If pWalker->u.i is 3 then any term of the expression that comes from
1176 ** the ON or USING clauses of a join disqualifies the expression
1177 ** from being considered constant. */
1178 if( pWalker
->u
.i
==3 && ExprHasAnyProperty(pExpr
, EP_FromJoin
) ){
1183 switch( pExpr
->op
){
1184 /* Consider functions to be constant if all their arguments are constant
1185 ** and pWalker->u.i==2 */
1187 if( pWalker
->u
.i
==2 ) return 0;
1191 case TK_AGG_FUNCTION
:
1193 testcase( pExpr
->op
==TK_ID
);
1194 testcase( pExpr
->op
==TK_COLUMN
);
1195 testcase( pExpr
->op
==TK_AGG_FUNCTION
);
1196 testcase( pExpr
->op
==TK_AGG_COLUMN
);
1200 testcase( pExpr
->op
==TK_SELECT
); /* selectNodeIsConstant will disallow */
1201 testcase( pExpr
->op
==TK_EXISTS
); /* selectNodeIsConstant will disallow */
1202 return WRC_Continue
;
1205 static int selectNodeIsConstant(Walker
*pWalker
, Select
*NotUsed
){
1206 UNUSED_PARAMETER(NotUsed
);
1210 static int exprIsConst(Expr
*p
, int initFlag
){
1212 memset(&w
, 0, sizeof(w
));
1214 w
.xExprCallback
= exprNodeIsConstant
;
1215 w
.xSelectCallback
= selectNodeIsConstant
;
1216 sqlite3WalkExpr(&w
, p
);
1221 ** Walk an expression tree. Return 1 if the expression is constant
1222 ** and 0 if it involves variables or function calls.
1224 ** For the purposes of this function, a double-quoted string (ex: "abc")
1225 ** is considered a variable but a single-quoted string (ex: 'abc') is
1228 int sqlite3ExprIsConstant(Expr
*p
){
1229 return exprIsConst(p
, 1);
1233 ** Walk an expression tree. Return 1 if the expression is constant
1234 ** that does no originate from the ON or USING clauses of a join.
1235 ** Return 0 if it involves variables or function calls or terms from
1236 ** an ON or USING clause.
1238 int sqlite3ExprIsConstantNotJoin(Expr
*p
){
1239 return exprIsConst(p
, 3);
1243 ** Walk an expression tree. Return 1 if the expression is constant
1244 ** or a function call with constant arguments. Return and 0 if there
1245 ** are any variables.
1247 ** For the purposes of this function, a double-quoted string (ex: "abc")
1248 ** is considered a variable but a single-quoted string (ex: 'abc') is
1251 int sqlite3ExprIsConstantOrFunction(Expr
*p
){
1252 return exprIsConst(p
, 2);
1256 ** If the expression p codes a constant integer that is small enough
1257 ** to fit in a 32-bit integer, return 1 and put the value of the integer
1258 ** in *pValue. If the expression is not an integer or if it is too big
1259 ** to fit in a signed 32-bit integer, return 0 and leave *pValue unchanged.
1261 int sqlite3ExprIsInteger(Expr
*p
, int *pValue
){
1264 /* If an expression is an integer literal that fits in a signed 32-bit
1265 ** integer, then the EP_IntValue flag will have already been set */
1266 assert( p
->op
!=TK_INTEGER
|| (p
->flags
& EP_IntValue
)!=0
1267 || sqlite3GetInt32(p
->u
.zToken
, &rc
)==0 );
1269 if( p
->flags
& EP_IntValue
){
1270 *pValue
= p
->u
.iValue
;
1275 rc
= sqlite3ExprIsInteger(p
->pLeft
, pValue
);
1280 if( sqlite3ExprIsInteger(p
->pLeft
, &v
) ){
1292 ** Return FALSE if there is no chance that the expression can be NULL.
1294 ** If the expression might be NULL or if the expression is too complex
1295 ** to tell return TRUE.
1297 ** This routine is used as an optimization, to skip OP_IsNull opcodes
1298 ** when we know that a value cannot be NULL. Hence, a false positive
1299 ** (returning TRUE when in fact the expression can never be NULL) might
1300 ** be a small performance hit but is otherwise harmless. On the other
1301 ** hand, a false negative (returning FALSE when the result could be NULL)
1302 ** will likely result in an incorrect answer. So when in doubt, return
1305 int sqlite3ExprCanBeNull(const Expr
*p
){
1307 while( p
->op
==TK_UPLUS
|| p
->op
==TK_UMINUS
){ p
= p
->pLeft
; }
1309 if( op
==TK_REGISTER
) op
= p
->op2
;
1322 ** Generate an OP_IsNull instruction that tests register iReg and jumps
1323 ** to location iDest if the value in iReg is NULL. The value in iReg
1324 ** was computed by pExpr. If we can look at pExpr at compile-time and
1325 ** determine that it can never generate a NULL, then the OP_IsNull operation
1328 void sqlite3ExprCodeIsNullJump(
1329 Vdbe
*v
, /* The VDBE under construction */
1330 const Expr
*pExpr
, /* Only generate OP_IsNull if this expr can be NULL */
1331 int iReg
, /* Test the value in this register for NULL */
1332 int iDest
/* Jump here if the value is null */
1334 if( sqlite3ExprCanBeNull(pExpr
) ){
1335 sqlite3VdbeAddOp2(v
, OP_IsNull
, iReg
, iDest
);
1340 ** Return TRUE if the given expression is a constant which would be
1341 ** unchanged by OP_Affinity with the affinity given in the second
1344 ** This routine is used to determine if the OP_Affinity operation
1345 ** can be omitted. When in doubt return FALSE. A false negative
1346 ** is harmless. A false positive, however, can result in the wrong
1349 int sqlite3ExprNeedsNoAffinityChange(const Expr
*p
, char aff
){
1351 if( aff
==SQLITE_AFF_NONE
) return 1;
1352 while( p
->op
==TK_UPLUS
|| p
->op
==TK_UMINUS
){ p
= p
->pLeft
; }
1354 if( op
==TK_REGISTER
) op
= p
->op2
;
1357 return aff
==SQLITE_AFF_INTEGER
|| aff
==SQLITE_AFF_NUMERIC
;
1360 return aff
==SQLITE_AFF_REAL
|| aff
==SQLITE_AFF_NUMERIC
;
1363 return aff
==SQLITE_AFF_TEXT
;
1369 assert( p
->iTable
>=0 ); /* p cannot be part of a CHECK constraint */
1371 && (aff
==SQLITE_AFF_INTEGER
|| aff
==SQLITE_AFF_NUMERIC
);
1380 ** Return TRUE if the given string is a row-id column name.
1382 int sqlite3IsRowid(const char *z
){
1383 if( sqlite3StrICmp(z
, "_ROWID_")==0 ) return 1;
1384 if( sqlite3StrICmp(z
, "ROWID")==0 ) return 1;
1385 if( sqlite3StrICmp(z
, "OID")==0 ) return 1;
1390 ** Return true if we are able to the IN operator optimization on a
1391 ** query of the form
1393 ** x IN (SELECT ...)
1395 ** Where the SELECT... clause is as specified by the parameter to this
1398 ** The Select object passed in has already been preprocessed and no
1399 ** errors have been found.
1401 #ifndef SQLITE_OMIT_SUBQUERY
1402 static int isCandidateForInOpt(Select
*p
){
1406 if( p
==0 ) return 0; /* right-hand side of IN is SELECT */
1407 if( p
->pPrior
) return 0; /* Not a compound SELECT */
1408 if( p
->selFlags
& (SF_Distinct
|SF_Aggregate
) ){
1409 testcase( (p
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Distinct
);
1410 testcase( (p
->selFlags
& (SF_Distinct
|SF_Aggregate
))==SF_Aggregate
);
1411 return 0; /* No DISTINCT keyword and no aggregate functions */
1413 assert( p
->pGroupBy
==0 ); /* Has no GROUP BY clause */
1414 if( p
->pLimit
) return 0; /* Has no LIMIT clause */
1415 assert( p
->pOffset
==0 ); /* No LIMIT means no OFFSET */
1416 if( p
->pWhere
) return 0; /* Has no WHERE clause */
1419 if( pSrc
->nSrc
!=1 ) return 0; /* Single term in FROM clause */
1420 if( pSrc
->a
[0].pSelect
) return 0; /* FROM is not a subquery or view */
1421 pTab
= pSrc
->a
[0].pTab
;
1422 if( NEVER(pTab
==0) ) return 0;
1423 assert( pTab
->pSelect
==0 ); /* FROM clause is not a view */
1424 if( IsVirtual(pTab
) ) return 0; /* FROM clause not a virtual table */
1426 if( pEList
->nExpr
!=1 ) return 0; /* One column in the result set */
1427 if( pEList
->a
[0].pExpr
->op
!=TK_COLUMN
) return 0; /* Result is a column */
1430 #endif /* SQLITE_OMIT_SUBQUERY */
1433 ** Code an OP_Once instruction and allocate space for its flag. Return the
1434 ** address of the new instruction.
1436 int sqlite3CodeOnce(Parse
*pParse
){
1437 Vdbe
*v
= sqlite3GetVdbe(pParse
); /* Virtual machine being coded */
1438 return sqlite3VdbeAddOp1(v
, OP_Once
, pParse
->nOnce
++);
1442 ** This function is used by the implementation of the IN (...) operator.
1443 ** The pX parameter is the expression on the RHS of the IN operator, which
1444 ** might be either a list of expressions or a subquery.
1446 ** The job of this routine is to find or create a b-tree object that can
1447 ** be used either to test for membership in the RHS set or to iterate through
1448 ** all members of the RHS set, skipping duplicates.
1450 ** A cursor is opened on the b-tree object that the RHS of the IN operator
1451 ** and pX->iTable is set to the index of that cursor.
1453 ** The returned value of this function indicates the b-tree type, as follows:
1455 ** IN_INDEX_ROWID - The cursor was opened on a database table.
1456 ** IN_INDEX_INDEX_ASC - The cursor was opened on an ascending index.
1457 ** IN_INDEX_INDEX_DESC - The cursor was opened on a descending index.
1458 ** IN_INDEX_EPH - The cursor was opened on a specially created and
1459 ** populated epheremal table.
1461 ** An existing b-tree might be used if the RHS expression pX is a simple
1462 ** subquery such as:
1464 ** SELECT <column> FROM <table>
1466 ** If the RHS of the IN operator is a list or a more complex subquery, then
1467 ** an ephemeral table might need to be generated from the RHS and then
1468 ** pX->iTable made to point to the ephermeral table instead of an
1471 ** If the prNotFound parameter is 0, then the b-tree will be used to iterate
1472 ** through the set members, skipping any duplicates. In this case an
1473 ** epheremal table must be used unless the selected <column> is guaranteed
1474 ** to be unique - either because it is an INTEGER PRIMARY KEY or it
1475 ** has a UNIQUE constraint or UNIQUE index.
1477 ** If the prNotFound parameter is not 0, then the b-tree will be used
1478 ** for fast set membership tests. In this case an epheremal table must
1479 ** be used unless <column> is an INTEGER PRIMARY KEY or an index can
1480 ** be found with <column> as its left-most column.
1482 ** When the b-tree is being used for membership tests, the calling function
1483 ** needs to know whether or not the structure contains an SQL NULL
1484 ** value in order to correctly evaluate expressions like "X IN (Y, Z)".
1485 ** If there is any chance that the (...) might contain a NULL value at
1486 ** runtime, then a register is allocated and the register number written
1487 ** to *prNotFound. If there is no chance that the (...) contains a
1488 ** NULL value, then *prNotFound is left unchanged.
1490 ** If a register is allocated and its location stored in *prNotFound, then
1491 ** its initial value is NULL. If the (...) does not remain constant
1492 ** for the duration of the query (i.e. the SELECT within the (...)
1493 ** is a correlated subquery) then the value of the allocated register is
1494 ** reset to NULL each time the subquery is rerun. This allows the
1495 ** caller to use vdbe code equivalent to the following:
1497 ** if( register==NULL ){
1498 ** has_null = <test if data structure contains null>
1502 ** in order to avoid running the <test if data structure contains null>
1503 ** test more often than is necessary.
1505 #ifndef SQLITE_OMIT_SUBQUERY
1506 int sqlite3FindInIndex(Parse
*pParse
, Expr
*pX
, int *prNotFound
){
1507 Select
*p
; /* SELECT to the right of IN operator */
1508 int eType
= 0; /* Type of RHS table. IN_INDEX_* */
1509 int iTab
= pParse
->nTab
++; /* Cursor of the RHS table */
1510 int mustBeUnique
= (prNotFound
==0); /* True if RHS must be unique */
1511 Vdbe
*v
= sqlite3GetVdbe(pParse
); /* Virtual machine being coded */
1513 assert( pX
->op
==TK_IN
);
1515 /* Check to see if an existing table or index can be used to
1516 ** satisfy the query. This is preferable to generating a new
1519 p
= (ExprHasProperty(pX
, EP_xIsSelect
) ? pX
->x
.pSelect
: 0);
1520 if( ALWAYS(pParse
->nErr
==0) && isCandidateForInOpt(p
) ){
1521 sqlite3
*db
= pParse
->db
; /* Database connection */
1522 Table
*pTab
; /* Table <table>. */
1523 Expr
*pExpr
; /* Expression <column> */
1524 int iCol
; /* Index of column <column> */
1525 int iDb
; /* Database idx for pTab */
1527 assert( p
); /* Because of isCandidateForInOpt(p) */
1528 assert( p
->pEList
!=0 ); /* Because of isCandidateForInOpt(p) */
1529 assert( p
->pEList
->a
[0].pExpr
!=0 ); /* Because of isCandidateForInOpt(p) */
1530 assert( p
->pSrc
!=0 ); /* Because of isCandidateForInOpt(p) */
1531 pTab
= p
->pSrc
->a
[0].pTab
;
1532 pExpr
= p
->pEList
->a
[0].pExpr
;
1533 iCol
= pExpr
->iColumn
;
1535 /* Code an OP_VerifyCookie and OP_TableLock for <table>. */
1536 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
1537 sqlite3CodeVerifySchema(pParse
, iDb
);
1538 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
1540 /* This function is only called from two places. In both cases the vdbe
1541 ** has already been allocated. So assume sqlite3GetVdbe() is always
1548 iAddr
= sqlite3CodeOnce(pParse
);
1550 sqlite3OpenTable(pParse
, iTab
, iDb
, pTab
, OP_OpenRead
);
1551 eType
= IN_INDEX_ROWID
;
1553 sqlite3VdbeJumpHere(v
, iAddr
);
1555 Index
*pIdx
; /* Iterator variable */
1557 /* The collation sequence used by the comparison. If an index is to
1558 ** be used in place of a temp-table, it must be ordered according
1559 ** to this collation sequence. */
1560 CollSeq
*pReq
= sqlite3BinaryCompareCollSeq(pParse
, pX
->pLeft
, pExpr
);
1562 /* Check that the affinity that will be used to perform the
1563 ** comparison is the same as the affinity of the column. If
1564 ** it is not, it is not possible to use any index.
1566 int affinity_ok
= sqlite3IndexAffinityOk(pX
, pTab
->aCol
[iCol
].affinity
);
1568 for(pIdx
=pTab
->pIndex
; pIdx
&& eType
==0 && affinity_ok
; pIdx
=pIdx
->pNext
){
1569 if( (pIdx
->aiColumn
[0]==iCol
)
1570 && sqlite3FindCollSeq(db
, ENC(db
), pIdx
->azColl
[0], 0)==pReq
1571 && (!mustBeUnique
|| (pIdx
->nColumn
==1 && pIdx
->onError
!=OE_None
))
1576 pKey
= (char *)sqlite3IndexKeyinfo(pParse
, pIdx
);
1577 iAddr
= sqlite3CodeOnce(pParse
);
1579 sqlite3VdbeAddOp4(v
, OP_OpenRead
, iTab
, pIdx
->tnum
, iDb
,
1580 pKey
,P4_KEYINFO_HANDOFF
);
1581 VdbeComment((v
, "%s", pIdx
->zName
));
1582 assert( IN_INDEX_INDEX_DESC
== IN_INDEX_INDEX_ASC
+1 );
1583 eType
= IN_INDEX_INDEX_ASC
+ pIdx
->aSortOrder
[0];
1585 sqlite3VdbeJumpHere(v
, iAddr
);
1586 if( prNotFound
&& !pTab
->aCol
[iCol
].notNull
){
1587 *prNotFound
= ++pParse
->nMem
;
1588 sqlite3VdbeAddOp2(v
, OP_Null
, 0, *prNotFound
);
1596 /* Could not found an existing table or index to use as the RHS b-tree.
1597 ** We will have to generate an ephemeral table to do the job.
1599 double savedNQueryLoop
= pParse
->nQueryLoop
;
1600 int rMayHaveNull
= 0;
1601 eType
= IN_INDEX_EPH
;
1603 *prNotFound
= rMayHaveNull
= ++pParse
->nMem
;
1604 sqlite3VdbeAddOp2(v
, OP_Null
, 0, *prNotFound
);
1606 testcase( pParse
->nQueryLoop
>(double)1 );
1607 pParse
->nQueryLoop
= (double)1;
1608 if( pX
->pLeft
->iColumn
<0 && !ExprHasAnyProperty(pX
, EP_xIsSelect
) ){
1609 eType
= IN_INDEX_ROWID
;
1612 sqlite3CodeSubselect(pParse
, pX
, rMayHaveNull
, eType
==IN_INDEX_ROWID
);
1613 pParse
->nQueryLoop
= savedNQueryLoop
;
1622 ** Generate code for scalar subqueries used as a subquery expression, EXISTS,
1623 ** or IN operators. Examples:
1625 ** (SELECT a FROM b) -- subquery
1626 ** EXISTS (SELECT a FROM b) -- EXISTS subquery
1627 ** x IN (4,5,11) -- IN operator with list on right-hand side
1628 ** x IN (SELECT a FROM b) -- IN operator with subquery on the right
1630 ** The pExpr parameter describes the expression that contains the IN
1631 ** operator or subquery.
1633 ** If parameter isRowid is non-zero, then expression pExpr is guaranteed
1634 ** to be of the form "<rowid> IN (?, ?, ?)", where <rowid> is a reference
1635 ** to some integer key column of a table B-Tree. In this case, use an
1636 ** intkey B-Tree to store the set of IN(...) values instead of the usual
1637 ** (slower) variable length keys B-Tree.
1639 ** If rMayHaveNull is non-zero, that means that the operation is an IN
1640 ** (not a SELECT or EXISTS) and that the RHS might contains NULLs.
1641 ** Furthermore, the IN is in a WHERE clause and that we really want
1642 ** to iterate over the RHS of the IN operator in order to quickly locate
1643 ** all corresponding LHS elements. All this routine does is initialize
1644 ** the register given by rMayHaveNull to NULL. Calling routines will take
1645 ** care of changing this register value to non-NULL if the RHS is NULL-free.
1647 ** If rMayHaveNull is zero, that means that the subquery is being used
1648 ** for membership testing only. There is no need to initialize any
1649 ** registers to indicate the presense or absence of NULLs on the RHS.
1651 ** For a SELECT or EXISTS operator, return the register that holds the
1652 ** result. For IN operators or if an error occurs, the return value is 0.
1654 #ifndef SQLITE_OMIT_SUBQUERY
1655 int sqlite3CodeSubselect(
1656 Parse
*pParse
, /* Parsing context */
1657 Expr
*pExpr
, /* The IN, SELECT, or EXISTS operator */
1658 int rMayHaveNull
, /* Register that records whether NULLs exist in RHS */
1659 int isRowid
/* If true, LHS of IN operator is a rowid */
1661 int testAddr
= -1; /* One-time test address */
1662 int rReg
= 0; /* Register storing resulting */
1663 Vdbe
*v
= sqlite3GetVdbe(pParse
);
1664 if( NEVER(v
==0) ) return 0;
1665 sqlite3ExprCachePush(pParse
);
1667 /* This code must be run in its entirety every time it is encountered
1668 ** if any of the following is true:
1670 ** * The right-hand side is a correlated subquery
1671 ** * The right-hand side is an expression list containing variables
1672 ** * We are inside a trigger
1674 ** If all of the above are false, then we can run this code just once
1675 ** save the results, and reuse the same result on subsequent invocations.
1677 if( !ExprHasAnyProperty(pExpr
, EP_VarSelect
) ){
1678 testAddr
= sqlite3CodeOnce(pParse
);
1681 #ifndef SQLITE_OMIT_EXPLAIN
1682 if( pParse
->explain
==2 ){
1683 char *zMsg
= sqlite3MPrintf(
1684 pParse
->db
, "EXECUTE %s%s SUBQUERY %d", testAddr
>=0?"":"CORRELATED ",
1685 pExpr
->op
==TK_IN
?"LIST":"SCALAR", pParse
->iNextSelectId
1687 sqlite3VdbeAddOp4(v
, OP_Explain
, pParse
->iSelectId
, 0, 0, zMsg
, P4_DYNAMIC
);
1691 switch( pExpr
->op
){
1693 char affinity
; /* Affinity of the LHS of the IN */
1694 KeyInfo keyInfo
; /* Keyinfo for the generated table */
1695 static u8 sortOrder
= 0; /* Fake aSortOrder for keyInfo */
1696 int addr
; /* Address of OP_OpenEphemeral instruction */
1697 Expr
*pLeft
= pExpr
->pLeft
; /* the LHS of the IN operator */
1700 sqlite3VdbeAddOp2(v
, OP_Null
, 0, rMayHaveNull
);
1703 affinity
= sqlite3ExprAffinity(pLeft
);
1705 /* Whether this is an 'x IN(SELECT...)' or an 'x IN(<exprlist>)'
1706 ** expression it is handled the same way. An ephemeral table is
1707 ** filled with single-field index keys representing the results
1708 ** from the SELECT or the <exprlist>.
1710 ** If the 'x' expression is a column value, or the SELECT...
1711 ** statement returns a column value, then the affinity of that
1712 ** column is used to build the index keys. If both 'x' and the
1713 ** SELECT... statement are columns, then numeric affinity is used
1714 ** if either column has NUMERIC or INTEGER affinity. If neither
1715 ** 'x' nor the SELECT... statement are columns, then numeric affinity
1718 pExpr
->iTable
= pParse
->nTab
++;
1719 addr
= sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pExpr
->iTable
, !isRowid
);
1720 if( rMayHaveNull
==0 ) sqlite3VdbeChangeP5(v
, BTREE_UNORDERED
);
1721 memset(&keyInfo
, 0, sizeof(keyInfo
));
1723 keyInfo
.aSortOrder
= &sortOrder
;
1725 if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
1726 /* Case 1: expr IN (SELECT ...)
1728 ** Generate code to write the results of the select into the temporary
1729 ** table allocated and opened above.
1735 sqlite3SelectDestInit(&dest
, SRT_Set
, pExpr
->iTable
);
1736 dest
.affSdst
= (u8
)affinity
;
1737 assert( (pExpr
->iTable
&0x0000FFFF)==pExpr
->iTable
);
1738 pExpr
->x
.pSelect
->iLimit
= 0;
1739 if( sqlite3Select(pParse
, pExpr
->x
.pSelect
, &dest
) ){
1742 pEList
= pExpr
->x
.pSelect
->pEList
;
1743 if( ALWAYS(pEList
!=0 && pEList
->nExpr
>0) ){
1744 keyInfo
.aColl
[0] = sqlite3BinaryCompareCollSeq(pParse
, pExpr
->pLeft
,
1745 pEList
->a
[0].pExpr
);
1747 }else if( ALWAYS(pExpr
->x
.pList
!=0) ){
1748 /* Case 2: expr IN (exprlist)
1750 ** For each expression, build an index key from the evaluation and
1751 ** store it in the temporary table. If <expr> is a column, then use
1752 ** that columns affinity when building index keys. If <expr> is not
1753 ** a column, use numeric affinity.
1756 ExprList
*pList
= pExpr
->x
.pList
;
1757 struct ExprList_item
*pItem
;
1761 affinity
= SQLITE_AFF_NONE
;
1763 keyInfo
.aColl
[0] = sqlite3ExprCollSeq(pParse
, pExpr
->pLeft
);
1764 keyInfo
.aSortOrder
= &sortOrder
;
1766 /* Loop through each expression in <exprlist>. */
1767 r1
= sqlite3GetTempReg(pParse
);
1768 r2
= sqlite3GetTempReg(pParse
);
1769 sqlite3VdbeAddOp2(v
, OP_Null
, 0, r2
);
1770 for(i
=pList
->nExpr
, pItem
=pList
->a
; i
>0; i
--, pItem
++){
1771 Expr
*pE2
= pItem
->pExpr
;
1774 /* If the expression is not constant then we will need to
1775 ** disable the test that was generated above that makes sure
1776 ** this code only executes once. Because for a non-constant
1777 ** expression we need to rerun this code each time.
1779 if( testAddr
>=0 && !sqlite3ExprIsConstant(pE2
) ){
1780 sqlite3VdbeChangeToNoop(v
, testAddr
);
1784 /* Evaluate the expression and insert it into the temp table */
1785 if( isRowid
&& sqlite3ExprIsInteger(pE2
, &iValToIns
) ){
1786 sqlite3VdbeAddOp3(v
, OP_InsertInt
, pExpr
->iTable
, r2
, iValToIns
);
1788 r3
= sqlite3ExprCodeTarget(pParse
, pE2
, r1
);
1790 sqlite3VdbeAddOp2(v
, OP_MustBeInt
, r3
,
1791 sqlite3VdbeCurrentAddr(v
)+2);
1792 sqlite3VdbeAddOp3(v
, OP_Insert
, pExpr
->iTable
, r2
, r3
);
1794 sqlite3VdbeAddOp4(v
, OP_MakeRecord
, r3
, 1, r2
, &affinity
, 1);
1795 sqlite3ExprCacheAffinityChange(pParse
, r3
, 1);
1796 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, pExpr
->iTable
, r2
);
1800 sqlite3ReleaseTempReg(pParse
, r1
);
1801 sqlite3ReleaseTempReg(pParse
, r2
);
1804 sqlite3VdbeChangeP4(v
, addr
, (void *)&keyInfo
, P4_KEYINFO
);
1812 /* If this has to be a scalar SELECT. Generate code to put the
1813 ** value of this select in a memory cell and record the number
1814 ** of the memory cell in iColumn. If this is an EXISTS, write
1815 ** an integer 0 (not exists) or 1 (exists) into a memory cell
1816 ** and record that memory cell in iColumn.
1818 Select
*pSel
; /* SELECT statement to encode */
1819 SelectDest dest
; /* How to deal with SELECt result */
1821 testcase( pExpr
->op
==TK_EXISTS
);
1822 testcase( pExpr
->op
==TK_SELECT
);
1823 assert( pExpr
->op
==TK_EXISTS
|| pExpr
->op
==TK_SELECT
);
1825 assert( ExprHasProperty(pExpr
, EP_xIsSelect
) );
1826 pSel
= pExpr
->x
.pSelect
;
1827 sqlite3SelectDestInit(&dest
, 0, ++pParse
->nMem
);
1828 if( pExpr
->op
==TK_SELECT
){
1829 dest
.eDest
= SRT_Mem
;
1830 sqlite3VdbeAddOp2(v
, OP_Null
, 0, dest
.iSDParm
);
1831 VdbeComment((v
, "Init subquery result"));
1833 dest
.eDest
= SRT_Exists
;
1834 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, dest
.iSDParm
);
1835 VdbeComment((v
, "Init EXISTS result"));
1837 sqlite3ExprDelete(pParse
->db
, pSel
->pLimit
);
1838 pSel
->pLimit
= sqlite3PExpr(pParse
, TK_INTEGER
, 0, 0,
1839 &sqlite3IntTokens
[1]);
1841 if( sqlite3Select(pParse
, pSel
, &dest
) ){
1844 rReg
= dest
.iSDParm
;
1845 ExprSetIrreducible(pExpr
);
1851 sqlite3VdbeJumpHere(v
, testAddr
);
1853 sqlite3ExprCachePop(pParse
, 1);
1857 #endif /* SQLITE_OMIT_SUBQUERY */
1859 #ifndef SQLITE_OMIT_SUBQUERY
1861 ** Generate code for an IN expression.
1863 ** x IN (SELECT ...)
1864 ** x IN (value, value, ...)
1866 ** The left-hand side (LHS) is a scalar expression. The right-hand side (RHS)
1867 ** is an array of zero or more values. The expression is true if the LHS is
1868 ** contained within the RHS. The value of the expression is unknown (NULL)
1869 ** if the LHS is NULL or if the LHS is not contained within the RHS and the
1870 ** RHS contains one or more NULL values.
1872 ** This routine generates code will jump to destIfFalse if the LHS is not
1873 ** contained within the RHS. If due to NULLs we cannot determine if the LHS
1874 ** is contained in the RHS then jump to destIfNull. If the LHS is contained
1875 ** within the RHS then fall through.
1877 static void sqlite3ExprCodeIN(
1878 Parse
*pParse
, /* Parsing and code generating context */
1879 Expr
*pExpr
, /* The IN expression */
1880 int destIfFalse
, /* Jump here if LHS is not contained in the RHS */
1881 int destIfNull
/* Jump here if the results are unknown due to NULLs */
1883 int rRhsHasNull
= 0; /* Register that is true if RHS contains NULL values */
1884 char affinity
; /* Comparison affinity to use */
1885 int eType
; /* Type of the RHS */
1886 int r1
; /* Temporary use register */
1887 Vdbe
*v
; /* Statement under construction */
1889 /* Compute the RHS. After this step, the table with cursor
1890 ** pExpr->iTable will contains the values that make up the RHS.
1893 assert( v
!=0 ); /* OOM detected prior to this routine */
1894 VdbeNoopComment((v
, "begin IN expr"));
1895 eType
= sqlite3FindInIndex(pParse
, pExpr
, &rRhsHasNull
);
1897 /* Figure out the affinity to use to create a key from the results
1898 ** of the expression. affinityStr stores a static string suitable for
1899 ** P4 of OP_MakeRecord.
1901 affinity
= comparisonAffinity(pExpr
);
1903 /* Code the LHS, the <expr> from "<expr> IN (...)".
1905 sqlite3ExprCachePush(pParse
);
1906 r1
= sqlite3GetTempReg(pParse
);
1907 sqlite3ExprCode(pParse
, pExpr
->pLeft
, r1
);
1909 /* If the LHS is NULL, then the result is either false or NULL depending
1910 ** on whether the RHS is empty or not, respectively.
1912 if( destIfNull
==destIfFalse
){
1913 /* Shortcut for the common case where the false and NULL outcomes are
1915 sqlite3VdbeAddOp2(v
, OP_IsNull
, r1
, destIfNull
);
1917 int addr1
= sqlite3VdbeAddOp1(v
, OP_NotNull
, r1
);
1918 sqlite3VdbeAddOp2(v
, OP_Rewind
, pExpr
->iTable
, destIfFalse
);
1919 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, destIfNull
);
1920 sqlite3VdbeJumpHere(v
, addr1
);
1923 if( eType
==IN_INDEX_ROWID
){
1924 /* In this case, the RHS is the ROWID of table b-tree
1926 sqlite3VdbeAddOp2(v
, OP_MustBeInt
, r1
, destIfFalse
);
1927 sqlite3VdbeAddOp3(v
, OP_NotExists
, pExpr
->iTable
, destIfFalse
, r1
);
1929 /* In this case, the RHS is an index b-tree.
1931 sqlite3VdbeAddOp4(v
, OP_Affinity
, r1
, 1, 0, &affinity
, 1);
1933 /* If the set membership test fails, then the result of the
1934 ** "x IN (...)" expression must be either 0 or NULL. If the set
1935 ** contains no NULL values, then the result is 0. If the set
1936 ** contains one or more NULL values, then the result of the
1937 ** expression is also NULL.
1939 if( rRhsHasNull
==0 || destIfFalse
==destIfNull
){
1940 /* This branch runs if it is known at compile time that the RHS
1941 ** cannot contain NULL values. This happens as the result
1942 ** of a "NOT NULL" constraint in the database schema.
1944 ** Also run this branch if NULL is equivalent to FALSE
1945 ** for this particular IN operator.
1947 sqlite3VdbeAddOp4Int(v
, OP_NotFound
, pExpr
->iTable
, destIfFalse
, r1
, 1);
1950 /* In this branch, the RHS of the IN might contain a NULL and
1951 ** the presence of a NULL on the RHS makes a difference in the
1956 /* First check to see if the LHS is contained in the RHS. If so,
1957 ** then the presence of NULLs in the RHS does not matter, so jump
1958 ** over all of the code that follows.
1960 j1
= sqlite3VdbeAddOp4Int(v
, OP_Found
, pExpr
->iTable
, 0, r1
, 1);
1962 /* Here we begin generating code that runs if the LHS is not
1963 ** contained within the RHS. Generate additional code that
1964 ** tests the RHS for NULLs. If the RHS contains a NULL then
1965 ** jump to destIfNull. If there are no NULLs in the RHS then
1966 ** jump to destIfFalse.
1968 j2
= sqlite3VdbeAddOp1(v
, OP_NotNull
, rRhsHasNull
);
1969 j3
= sqlite3VdbeAddOp4Int(v
, OP_Found
, pExpr
->iTable
, 0, rRhsHasNull
, 1);
1970 sqlite3VdbeAddOp2(v
, OP_Integer
, -1, rRhsHasNull
);
1971 sqlite3VdbeJumpHere(v
, j3
);
1972 sqlite3VdbeAddOp2(v
, OP_AddImm
, rRhsHasNull
, 1);
1973 sqlite3VdbeJumpHere(v
, j2
);
1975 /* Jump to the appropriate target depending on whether or not
1976 ** the RHS contains a NULL
1978 sqlite3VdbeAddOp2(v
, OP_If
, rRhsHasNull
, destIfNull
);
1979 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, destIfFalse
);
1981 /* The OP_Found at the top of this branch jumps here when true,
1982 ** causing the overall IN expression evaluation to fall through.
1984 sqlite3VdbeJumpHere(v
, j1
);
1987 sqlite3ReleaseTempReg(pParse
, r1
);
1988 sqlite3ExprCachePop(pParse
, 1);
1989 VdbeComment((v
, "end IN expr"));
1991 #endif /* SQLITE_OMIT_SUBQUERY */
1994 ** Duplicate an 8-byte value
1996 static char *dup8bytes(Vdbe
*v
, const char *in
){
1997 char *out
= sqlite3DbMallocRaw(sqlite3VdbeDb(v
), 8);
2004 #ifndef SQLITE_OMIT_FLOATING_POINT
2006 ** Generate an instruction that will put the floating point
2007 ** value described by z[0..n-1] into register iMem.
2009 ** The z[] string will probably not be zero-terminated. But the
2010 ** z[n] character is guaranteed to be something that does not look
2011 ** like the continuation of the number.
2013 static void codeReal(Vdbe
*v
, const char *z
, int negateFlag
, int iMem
){
2017 sqlite3AtoF(z
, &value
, sqlite3Strlen30(z
), SQLITE_UTF8
);
2018 assert( !sqlite3IsNaN(value
) ); /* The new AtoF never returns NaN */
2019 if( negateFlag
) value
= -value
;
2020 zV
= dup8bytes(v
, (char*)&value
);
2021 sqlite3VdbeAddOp4(v
, OP_Real
, 0, iMem
, 0, zV
, P4_REAL
);
2028 ** Generate an instruction that will put the integer describe by
2029 ** text z[0..n-1] into register iMem.
2031 ** Expr.u.zToken is always UTF8 and zero-terminated.
2033 static void codeInteger(Parse
*pParse
, Expr
*pExpr
, int negFlag
, int iMem
){
2034 Vdbe
*v
= pParse
->pVdbe
;
2035 if( pExpr
->flags
& EP_IntValue
){
2036 int i
= pExpr
->u
.iValue
;
2038 if( negFlag
) i
= -i
;
2039 sqlite3VdbeAddOp2(v
, OP_Integer
, i
, iMem
);
2043 const char *z
= pExpr
->u
.zToken
;
2045 c
= sqlite3Atoi64(z
, &value
, sqlite3Strlen30(z
), SQLITE_UTF8
);
2046 if( c
==0 || (c
==2 && negFlag
) ){
2048 if( negFlag
){ value
= c
==2 ? SMALLEST_INT64
: -value
; }
2049 zV
= dup8bytes(v
, (char*)&value
);
2050 sqlite3VdbeAddOp4(v
, OP_Int64
, 0, iMem
, 0, zV
, P4_INT64
);
2052 #ifdef SQLITE_OMIT_FLOATING_POINT
2053 sqlite3ErrorMsg(pParse
, "oversized integer: %s%s", negFlag
? "-" : "", z
);
2055 codeReal(v
, z
, negFlag
, iMem
);
2062 ** Clear a cache entry.
2064 static void cacheEntryClear(Parse
*pParse
, struct yColCache
*p
){
2066 if( pParse
->nTempReg
<ArraySize(pParse
->aTempReg
) ){
2067 pParse
->aTempReg
[pParse
->nTempReg
++] = p
->iReg
;
2075 ** Record in the column cache that a particular column from a
2076 ** particular table is stored in a particular register.
2078 void sqlite3ExprCacheStore(Parse
*pParse
, int iTab
, int iCol
, int iReg
){
2082 struct yColCache
*p
;
2084 assert( iReg
>0 ); /* Register numbers are always positive */
2085 assert( iCol
>=-1 && iCol
<32768 ); /* Finite column numbers */
2087 /* The SQLITE_ColumnCache flag disables the column cache. This is used
2088 ** for testing only - to verify that SQLite always gets the same answer
2089 ** with and without the column cache.
2091 if( OptimizationDisabled(pParse
->db
, SQLITE_ColumnCache
) ) return;
2093 /* First replace any existing entry.
2095 ** Actually, the way the column cache is currently used, we are guaranteed
2096 ** that the object will never already be in cache. Verify this guarantee.
2099 for(i
=0, p
=pParse
->aColCache
; i
<SQLITE_N_COLCACHE
; i
++, p
++){
2100 assert( p
->iReg
==0 || p
->iTable
!=iTab
|| p
->iColumn
!=iCol
);
2104 /* Find an empty slot and replace it */
2105 for(i
=0, p
=pParse
->aColCache
; i
<SQLITE_N_COLCACHE
; i
++, p
++){
2107 p
->iLevel
= pParse
->iCacheLevel
;
2112 p
->lru
= pParse
->iCacheCnt
++;
2117 /* Replace the last recently used */
2118 minLru
= 0x7fffffff;
2120 for(i
=0, p
=pParse
->aColCache
; i
<SQLITE_N_COLCACHE
; i
++, p
++){
2121 if( p
->lru
<minLru
){
2126 if( ALWAYS(idxLru
>=0) ){
2127 p
= &pParse
->aColCache
[idxLru
];
2128 p
->iLevel
= pParse
->iCacheLevel
;
2133 p
->lru
= pParse
->iCacheCnt
++;
2139 ** Indicate that registers between iReg..iReg+nReg-1 are being overwritten.
2140 ** Purge the range of registers from the column cache.
2142 void sqlite3ExprCacheRemove(Parse
*pParse
, int iReg
, int nReg
){
2144 int iLast
= iReg
+ nReg
- 1;
2145 struct yColCache
*p
;
2146 for(i
=0, p
=pParse
->aColCache
; i
<SQLITE_N_COLCACHE
; i
++, p
++){
2148 if( r
>=iReg
&& r
<=iLast
){
2149 cacheEntryClear(pParse
, p
);
2156 ** Remember the current column cache context. Any new entries added
2157 ** added to the column cache after this call are removed when the
2158 ** corresponding pop occurs.
2160 void sqlite3ExprCachePush(Parse
*pParse
){
2161 pParse
->iCacheLevel
++;
2165 ** Remove from the column cache any entries that were added since the
2166 ** the previous N Push operations. In other words, restore the cache
2167 ** to the state it was in N Pushes ago.
2169 void sqlite3ExprCachePop(Parse
*pParse
, int N
){
2171 struct yColCache
*p
;
2173 assert( pParse
->iCacheLevel
>=N
);
2174 pParse
->iCacheLevel
-= N
;
2175 for(i
=0, p
=pParse
->aColCache
; i
<SQLITE_N_COLCACHE
; i
++, p
++){
2176 if( p
->iReg
&& p
->iLevel
>pParse
->iCacheLevel
){
2177 cacheEntryClear(pParse
, p
);
2184 ** When a cached column is reused, make sure that its register is
2185 ** no longer available as a temp register. ticket #3879: that same
2186 ** register might be in the cache in multiple places, so be sure to
2189 static void sqlite3ExprCachePinRegister(Parse
*pParse
, int iReg
){
2191 struct yColCache
*p
;
2192 for(i
=0, p
=pParse
->aColCache
; i
<SQLITE_N_COLCACHE
; i
++, p
++){
2193 if( p
->iReg
==iReg
){
2200 ** Generate code to extract the value of the iCol-th column of a table.
2202 void sqlite3ExprCodeGetColumnOfTable(
2203 Vdbe
*v
, /* The VDBE under construction */
2204 Table
*pTab
, /* The table containing the value */
2205 int iTabCur
, /* The cursor for this table */
2206 int iCol
, /* Index of the column to extract */
2207 int regOut
/* Extract the valud into this register */
2209 if( iCol
<0 || iCol
==pTab
->iPKey
){
2210 sqlite3VdbeAddOp2(v
, OP_Rowid
, iTabCur
, regOut
);
2212 int op
= IsVirtual(pTab
) ? OP_VColumn
: OP_Column
;
2213 sqlite3VdbeAddOp3(v
, op
, iTabCur
, iCol
, regOut
);
2216 sqlite3ColumnDefault(v
, pTab
, iCol
, regOut
);
2221 ** Generate code that will extract the iColumn-th column from
2222 ** table pTab and store the column value in a register. An effort
2223 ** is made to store the column value in register iReg, but this is
2224 ** not guaranteed. The location of the column value is returned.
2226 ** There must be an open cursor to pTab in iTable when this routine
2227 ** is called. If iColumn<0 then code is generated that extracts the rowid.
2229 int sqlite3ExprCodeGetColumn(
2230 Parse
*pParse
, /* Parsing and code generating context */
2231 Table
*pTab
, /* Description of the table we are reading from */
2232 int iColumn
, /* Index of the table column */
2233 int iTable
, /* The cursor pointing to the table */
2234 int iReg
, /* Store results here */
2235 u8 p5
/* P5 value for OP_Column */
2237 Vdbe
*v
= pParse
->pVdbe
;
2239 struct yColCache
*p
;
2241 for(i
=0, p
=pParse
->aColCache
; i
<SQLITE_N_COLCACHE
; i
++, p
++){
2242 if( p
->iReg
>0 && p
->iTable
==iTable
&& p
->iColumn
==iColumn
){
2243 p
->lru
= pParse
->iCacheCnt
++;
2244 sqlite3ExprCachePinRegister(pParse
, p
->iReg
);
2249 sqlite3ExprCodeGetColumnOfTable(v
, pTab
, iTable
, iColumn
, iReg
);
2251 sqlite3VdbeChangeP5(v
, p5
);
2253 sqlite3ExprCacheStore(pParse
, iTable
, iColumn
, iReg
);
2259 ** Clear all column cache entries.
2261 void sqlite3ExprCacheClear(Parse
*pParse
){
2263 struct yColCache
*p
;
2265 for(i
=0, p
=pParse
->aColCache
; i
<SQLITE_N_COLCACHE
; i
++, p
++){
2267 cacheEntryClear(pParse
, p
);
2274 ** Record the fact that an affinity change has occurred on iCount
2275 ** registers starting with iStart.
2277 void sqlite3ExprCacheAffinityChange(Parse
*pParse
, int iStart
, int iCount
){
2278 sqlite3ExprCacheRemove(pParse
, iStart
, iCount
);
2282 ** Generate code to move content from registers iFrom...iFrom+nReg-1
2283 ** over to iTo..iTo+nReg-1. Keep the column cache up-to-date.
2285 void sqlite3ExprCodeMove(Parse
*pParse
, int iFrom
, int iTo
, int nReg
){
2287 struct yColCache
*p
;
2288 assert( iFrom
>=iTo
+nReg
|| iFrom
+nReg
<=iTo
);
2289 sqlite3VdbeAddOp3(pParse
->pVdbe
, OP_Move
, iFrom
, iTo
, nReg
-1);
2290 for(i
=0, p
=pParse
->aColCache
; i
<SQLITE_N_COLCACHE
; i
++, p
++){
2292 if( x
>=iFrom
&& x
<iFrom
+nReg
){
2293 p
->iReg
+= iTo
-iFrom
;
2298 #if defined(SQLITE_DEBUG) || defined(SQLITE_COVERAGE_TEST)
2300 ** Return true if any register in the range iFrom..iTo (inclusive)
2301 ** is used as part of the column cache.
2303 ** This routine is used within assert() and testcase() macros only
2304 ** and does not appear in a normal build.
2306 static int usedAsColumnCache(Parse
*pParse
, int iFrom
, int iTo
){
2308 struct yColCache
*p
;
2309 for(i
=0, p
=pParse
->aColCache
; i
<SQLITE_N_COLCACHE
; i
++, p
++){
2311 if( r
>=iFrom
&& r
<=iTo
) return 1; /*NO_TEST*/
2315 #endif /* SQLITE_DEBUG || SQLITE_COVERAGE_TEST */
2318 ** Generate code into the current Vdbe to evaluate the given
2319 ** expression. Attempt to store the results in register "target".
2320 ** Return the register where results are stored.
2322 ** With this routine, there is no guarantee that results will
2323 ** be stored in target. The result might be stored in some other
2324 ** register if it is convenient to do so. The calling function
2325 ** must check the return code and move the results to the desired
2328 int sqlite3ExprCodeTarget(Parse
*pParse
, Expr
*pExpr
, int target
){
2329 Vdbe
*v
= pParse
->pVdbe
; /* The VM under construction */
2330 int op
; /* The opcode being coded */
2331 int inReg
= target
; /* Results stored in register inReg */
2332 int regFree1
= 0; /* If non-zero free this temporary register */
2333 int regFree2
= 0; /* If non-zero free this temporary register */
2334 int r1
, r2
, r3
, r4
; /* Various register numbers */
2335 sqlite3
*db
= pParse
->db
; /* The database connection */
2337 assert( target
>0 && target
<=pParse
->nMem
);
2339 assert( pParse
->db
->mallocFailed
);
2349 case TK_AGG_COLUMN
: {
2350 AggInfo
*pAggInfo
= pExpr
->pAggInfo
;
2351 struct AggInfo_col
*pCol
= &pAggInfo
->aCol
[pExpr
->iAgg
];
2352 if( !pAggInfo
->directMode
){
2353 assert( pCol
->iMem
>0 );
2356 }else if( pAggInfo
->useSortingIdx
){
2357 sqlite3VdbeAddOp3(v
, OP_Column
, pAggInfo
->sortingIdxPTab
,
2358 pCol
->iSorterColumn
, target
);
2361 /* Otherwise, fall thru into the TK_COLUMN case */
2364 if( pExpr
->iTable
<0 ){
2365 /* This only happens when coding check constraints */
2366 assert( pParse
->ckBase
>0 );
2367 inReg
= pExpr
->iColumn
+ pParse
->ckBase
;
2369 inReg
= sqlite3ExprCodeGetColumn(pParse
, pExpr
->pTab
,
2370 pExpr
->iColumn
, pExpr
->iTable
, target
,
2376 codeInteger(pParse
, pExpr
, 0, target
);
2379 #ifndef SQLITE_OMIT_FLOATING_POINT
2381 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
2382 codeReal(v
, pExpr
->u
.zToken
, 0, target
);
2387 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
2388 sqlite3VdbeAddOp4(v
, OP_String8
, 0, target
, 0, pExpr
->u
.zToken
, 0);
2392 sqlite3VdbeAddOp2(v
, OP_Null
, 0, target
);
2395 #ifndef SQLITE_OMIT_BLOB_LITERAL
2400 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
2401 assert( pExpr
->u
.zToken
[0]=='x' || pExpr
->u
.zToken
[0]=='X' );
2402 assert( pExpr
->u
.zToken
[1]=='\'' );
2403 z
= &pExpr
->u
.zToken
[2];
2404 n
= sqlite3Strlen30(z
) - 1;
2405 assert( z
[n
]=='\'' );
2406 zBlob
= sqlite3HexToBlob(sqlite3VdbeDb(v
), z
, n
);
2407 sqlite3VdbeAddOp4(v
, OP_Blob
, n
/2, target
, 0, zBlob
, P4_DYNAMIC
);
2412 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
2413 assert( pExpr
->u
.zToken
!=0 );
2414 assert( pExpr
->u
.zToken
[0]!=0 );
2415 sqlite3VdbeAddOp2(v
, OP_Variable
, pExpr
->iColumn
, target
);
2416 if( pExpr
->u
.zToken
[1]!=0 ){
2417 assert( pExpr
->u
.zToken
[0]=='?'
2418 || strcmp(pExpr
->u
.zToken
, pParse
->azVar
[pExpr
->iColumn
-1])==0 );
2419 sqlite3VdbeChangeP4(v
, -1, pParse
->azVar
[pExpr
->iColumn
-1], P4_STATIC
);
2424 inReg
= pExpr
->iTable
;
2428 inReg
= sqlite3ExprCodeTarget(pParse
, pExpr
->pLeft
, target
);
2431 #ifndef SQLITE_OMIT_CAST
2433 /* Expressions of the form: CAST(pLeft AS token) */
2435 inReg
= sqlite3ExprCodeTarget(pParse
, pExpr
->pLeft
, target
);
2436 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
2437 aff
= sqlite3AffinityType(pExpr
->u
.zToken
);
2438 to_op
= aff
- SQLITE_AFF_TEXT
+ OP_ToText
;
2439 assert( to_op
==OP_ToText
|| aff
!=SQLITE_AFF_TEXT
);
2440 assert( to_op
==OP_ToBlob
|| aff
!=SQLITE_AFF_NONE
);
2441 assert( to_op
==OP_ToNumeric
|| aff
!=SQLITE_AFF_NUMERIC
);
2442 assert( to_op
==OP_ToInt
|| aff
!=SQLITE_AFF_INTEGER
);
2443 assert( to_op
==OP_ToReal
|| aff
!=SQLITE_AFF_REAL
);
2444 testcase( to_op
==OP_ToText
);
2445 testcase( to_op
==OP_ToBlob
);
2446 testcase( to_op
==OP_ToNumeric
);
2447 testcase( to_op
==OP_ToInt
);
2448 testcase( to_op
==OP_ToReal
);
2449 if( inReg
!=target
){
2450 sqlite3VdbeAddOp2(v
, OP_SCopy
, inReg
, target
);
2453 sqlite3VdbeAddOp1(v
, to_op
, inReg
);
2454 testcase( usedAsColumnCache(pParse
, inReg
, inReg
) );
2455 sqlite3ExprCacheAffinityChange(pParse
, inReg
, 1);
2458 #endif /* SQLITE_OMIT_CAST */
2465 assert( TK_LT
==OP_Lt
);
2466 assert( TK_LE
==OP_Le
);
2467 assert( TK_GT
==OP_Gt
);
2468 assert( TK_GE
==OP_Ge
);
2469 assert( TK_EQ
==OP_Eq
);
2470 assert( TK_NE
==OP_Ne
);
2471 testcase( op
==TK_LT
);
2472 testcase( op
==TK_LE
);
2473 testcase( op
==TK_GT
);
2474 testcase( op
==TK_GE
);
2475 testcase( op
==TK_EQ
);
2476 testcase( op
==TK_NE
);
2477 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
2478 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pRight
, ®Free2
);
2479 codeCompare(pParse
, pExpr
->pLeft
, pExpr
->pRight
, op
,
2480 r1
, r2
, inReg
, SQLITE_STOREP2
);
2481 testcase( regFree1
==0 );
2482 testcase( regFree2
==0 );
2487 testcase( op
==TK_IS
);
2488 testcase( op
==TK_ISNOT
);
2489 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
2490 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pRight
, ®Free2
);
2491 op
= (op
==TK_IS
) ? TK_EQ
: TK_NE
;
2492 codeCompare(pParse
, pExpr
->pLeft
, pExpr
->pRight
, op
,
2493 r1
, r2
, inReg
, SQLITE_STOREP2
| SQLITE_NULLEQ
);
2494 testcase( regFree1
==0 );
2495 testcase( regFree2
==0 );
2510 assert( TK_AND
==OP_And
);
2511 assert( TK_OR
==OP_Or
);
2512 assert( TK_PLUS
==OP_Add
);
2513 assert( TK_MINUS
==OP_Subtract
);
2514 assert( TK_REM
==OP_Remainder
);
2515 assert( TK_BITAND
==OP_BitAnd
);
2516 assert( TK_BITOR
==OP_BitOr
);
2517 assert( TK_SLASH
==OP_Divide
);
2518 assert( TK_LSHIFT
==OP_ShiftLeft
);
2519 assert( TK_RSHIFT
==OP_ShiftRight
);
2520 assert( TK_CONCAT
==OP_Concat
);
2521 testcase( op
==TK_AND
);
2522 testcase( op
==TK_OR
);
2523 testcase( op
==TK_PLUS
);
2524 testcase( op
==TK_MINUS
);
2525 testcase( op
==TK_REM
);
2526 testcase( op
==TK_BITAND
);
2527 testcase( op
==TK_BITOR
);
2528 testcase( op
==TK_SLASH
);
2529 testcase( op
==TK_LSHIFT
);
2530 testcase( op
==TK_RSHIFT
);
2531 testcase( op
==TK_CONCAT
);
2532 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
2533 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pRight
, ®Free2
);
2534 sqlite3VdbeAddOp3(v
, op
, r2
, r1
, target
);
2535 testcase( regFree1
==0 );
2536 testcase( regFree2
==0 );
2540 Expr
*pLeft
= pExpr
->pLeft
;
2542 if( pLeft
->op
==TK_INTEGER
){
2543 codeInteger(pParse
, pLeft
, 1, target
);
2544 #ifndef SQLITE_OMIT_FLOATING_POINT
2545 }else if( pLeft
->op
==TK_FLOAT
){
2546 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
2547 codeReal(v
, pLeft
->u
.zToken
, 1, target
);
2550 regFree1
= r1
= sqlite3GetTempReg(pParse
);
2551 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, r1
);
2552 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free2
);
2553 sqlite3VdbeAddOp3(v
, OP_Subtract
, r2
, r1
, target
);
2554 testcase( regFree2
==0 );
2561 assert( TK_BITNOT
==OP_BitNot
);
2562 assert( TK_NOT
==OP_Not
);
2563 testcase( op
==TK_BITNOT
);
2564 testcase( op
==TK_NOT
);
2565 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
2566 testcase( regFree1
==0 );
2568 sqlite3VdbeAddOp2(v
, op
, r1
, inReg
);
2574 assert( TK_ISNULL
==OP_IsNull
);
2575 assert( TK_NOTNULL
==OP_NotNull
);
2576 testcase( op
==TK_ISNULL
);
2577 testcase( op
==TK_NOTNULL
);
2578 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, target
);
2579 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
2580 testcase( regFree1
==0 );
2581 addr
= sqlite3VdbeAddOp1(v
, op
, r1
);
2582 sqlite3VdbeAddOp2(v
, OP_AddImm
, target
, -1);
2583 sqlite3VdbeJumpHere(v
, addr
);
2586 case TK_AGG_FUNCTION
: {
2587 AggInfo
*pInfo
= pExpr
->pAggInfo
;
2589 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
2590 sqlite3ErrorMsg(pParse
, "misuse of aggregate: %s()", pExpr
->u
.zToken
);
2592 inReg
= pInfo
->aFunc
[pExpr
->iAgg
].iMem
;
2598 ExprList
*pFarg
; /* List of function arguments */
2599 int nFarg
; /* Number of function arguments */
2600 FuncDef
*pDef
; /* The function definition object */
2601 int nId
; /* Length of the function name in bytes */
2602 const char *zId
; /* The function name */
2603 int constMask
= 0; /* Mask of function arguments that are constant */
2604 int i
; /* Loop counter */
2605 u8 enc
= ENC(db
); /* The text encoding used by this database */
2606 CollSeq
*pColl
= 0; /* A collating sequence */
2608 assert( !ExprHasProperty(pExpr
, EP_xIsSelect
) );
2609 testcase( op
==TK_CONST_FUNC
);
2610 testcase( op
==TK_FUNCTION
);
2611 if( ExprHasAnyProperty(pExpr
, EP_TokenOnly
) ){
2614 pFarg
= pExpr
->x
.pList
;
2616 nFarg
= pFarg
? pFarg
->nExpr
: 0;
2617 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
2618 zId
= pExpr
->u
.zToken
;
2619 nId
= sqlite3Strlen30(zId
);
2620 pDef
= sqlite3FindFunction(db
, zId
, nId
, nFarg
, enc
, 0);
2622 sqlite3ErrorMsg(pParse
, "unknown function: %.*s()", nId
, zId
);
2626 /* Attempt a direct implementation of the built-in COALESCE() and
2627 ** IFNULL() functions. This avoids unnecessary evalation of
2628 ** arguments past the first non-NULL argument.
2630 if( pDef
->flags
& SQLITE_FUNC_COALESCE
){
2631 int endCoalesce
= sqlite3VdbeMakeLabel(v
);
2633 sqlite3ExprCode(pParse
, pFarg
->a
[0].pExpr
, target
);
2634 for(i
=1; i
<nFarg
; i
++){
2635 sqlite3VdbeAddOp2(v
, OP_NotNull
, target
, endCoalesce
);
2636 sqlite3ExprCacheRemove(pParse
, target
, 1);
2637 sqlite3ExprCachePush(pParse
);
2638 sqlite3ExprCode(pParse
, pFarg
->a
[i
].pExpr
, target
);
2639 sqlite3ExprCachePop(pParse
, 1);
2641 sqlite3VdbeResolveLabel(v
, endCoalesce
);
2647 r1
= sqlite3GetTempRange(pParse
, nFarg
);
2649 /* For length() and typeof() functions with a column argument,
2650 ** set the P5 parameter to the OP_Column opcode to OPFLAG_LENGTHARG
2651 ** or OPFLAG_TYPEOFARG respectively, to avoid unnecessary data
2654 if( (pDef
->flags
& (SQLITE_FUNC_LENGTH
|SQLITE_FUNC_TYPEOF
))!=0 ){
2657 assert( pFarg
->a
[0].pExpr
!=0 );
2658 exprOp
= pFarg
->a
[0].pExpr
->op
;
2659 if( exprOp
==TK_COLUMN
|| exprOp
==TK_AGG_COLUMN
){
2660 assert( SQLITE_FUNC_LENGTH
==OPFLAG_LENGTHARG
);
2661 assert( SQLITE_FUNC_TYPEOF
==OPFLAG_TYPEOFARG
);
2662 testcase( pDef
->flags
==SQLITE_FUNC_LENGTH
);
2663 pFarg
->a
[0].pExpr
->op2
= pDef
->flags
;
2667 sqlite3ExprCachePush(pParse
); /* Ticket 2ea2425d34be */
2668 sqlite3ExprCodeExprList(pParse
, pFarg
, r1
, 1);
2669 sqlite3ExprCachePop(pParse
, 1); /* Ticket 2ea2425d34be */
2673 #ifndef SQLITE_OMIT_VIRTUALTABLE
2674 /* Possibly overload the function if the first argument is
2675 ** a virtual table column.
2677 ** For infix functions (LIKE, GLOB, REGEXP, and MATCH) use the
2678 ** second argument, not the first, as the argument to test to
2679 ** see if it is a column in a virtual table. This is done because
2680 ** the left operand of infix functions (the operand we want to
2681 ** control overloading) ends up as the second argument to the
2682 ** function. The expression "A glob B" is equivalent to
2683 ** "glob(B,A). We want to use the A in "A glob B" to test
2684 ** for function overloading. But we use the B term in "glob(B,A)".
2686 if( nFarg
>=2 && (pExpr
->flags
& EP_InfixFunc
) ){
2687 pDef
= sqlite3VtabOverloadFunction(db
, pDef
, nFarg
, pFarg
->a
[1].pExpr
);
2688 }else if( nFarg
>0 ){
2689 pDef
= sqlite3VtabOverloadFunction(db
, pDef
, nFarg
, pFarg
->a
[0].pExpr
);
2692 for(i
=0; i
<nFarg
; i
++){
2693 if( i
<32 && sqlite3ExprIsConstant(pFarg
->a
[i
].pExpr
) ){
2694 constMask
|= (1<<i
);
2696 if( (pDef
->flags
& SQLITE_FUNC_NEEDCOLL
)!=0 && !pColl
){
2697 pColl
= sqlite3ExprCollSeq(pParse
, pFarg
->a
[i
].pExpr
);
2700 if( pDef
->flags
& SQLITE_FUNC_NEEDCOLL
){
2701 if( !pColl
) pColl
= db
->pDfltColl
;
2702 sqlite3VdbeAddOp4(v
, OP_CollSeq
, 0, 0, 0, (char *)pColl
, P4_COLLSEQ
);
2704 sqlite3VdbeAddOp4(v
, OP_Function
, constMask
, r1
, target
,
2705 (char*)pDef
, P4_FUNCDEF
);
2706 sqlite3VdbeChangeP5(v
, (u8
)nFarg
);
2708 sqlite3ReleaseTempRange(pParse
, r1
, nFarg
);
2712 #ifndef SQLITE_OMIT_SUBQUERY
2715 testcase( op
==TK_EXISTS
);
2716 testcase( op
==TK_SELECT
);
2717 inReg
= sqlite3CodeSubselect(pParse
, pExpr
, 0, 0);
2721 int destIfFalse
= sqlite3VdbeMakeLabel(v
);
2722 int destIfNull
= sqlite3VdbeMakeLabel(v
);
2723 sqlite3VdbeAddOp2(v
, OP_Null
, 0, target
);
2724 sqlite3ExprCodeIN(pParse
, pExpr
, destIfFalse
, destIfNull
);
2725 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, target
);
2726 sqlite3VdbeResolveLabel(v
, destIfFalse
);
2727 sqlite3VdbeAddOp2(v
, OP_AddImm
, target
, 0);
2728 sqlite3VdbeResolveLabel(v
, destIfNull
);
2731 #endif /* SQLITE_OMIT_SUBQUERY */
2735 ** x BETWEEN y AND z
2737 ** This is equivalent to
2741 ** X is stored in pExpr->pLeft.
2742 ** Y is stored in pExpr->pList->a[0].pExpr.
2743 ** Z is stored in pExpr->pList->a[1].pExpr.
2746 Expr
*pLeft
= pExpr
->pLeft
;
2747 struct ExprList_item
*pLItem
= pExpr
->x
.pList
->a
;
2748 Expr
*pRight
= pLItem
->pExpr
;
2750 r1
= sqlite3ExprCodeTemp(pParse
, pLeft
, ®Free1
);
2751 r2
= sqlite3ExprCodeTemp(pParse
, pRight
, ®Free2
);
2752 testcase( regFree1
==0 );
2753 testcase( regFree2
==0 );
2754 r3
= sqlite3GetTempReg(pParse
);
2755 r4
= sqlite3GetTempReg(pParse
);
2756 codeCompare(pParse
, pLeft
, pRight
, OP_Ge
,
2757 r1
, r2
, r3
, SQLITE_STOREP2
);
2759 pRight
= pLItem
->pExpr
;
2760 sqlite3ReleaseTempReg(pParse
, regFree2
);
2761 r2
= sqlite3ExprCodeTemp(pParse
, pRight
, ®Free2
);
2762 testcase( regFree2
==0 );
2763 codeCompare(pParse
, pLeft
, pRight
, OP_Le
, r1
, r2
, r4
, SQLITE_STOREP2
);
2764 sqlite3VdbeAddOp3(v
, OP_And
, r3
, r4
, target
);
2765 sqlite3ReleaseTempReg(pParse
, r3
);
2766 sqlite3ReleaseTempReg(pParse
, r4
);
2771 inReg
= sqlite3ExprCodeTarget(pParse
, pExpr
->pLeft
, target
);
2776 /* If the opcode is TK_TRIGGER, then the expression is a reference
2777 ** to a column in the new.* or old.* pseudo-tables available to
2778 ** trigger programs. In this case Expr.iTable is set to 1 for the
2779 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
2780 ** is set to the column of the pseudo-table to read, or to -1 to
2781 ** read the rowid field.
2783 ** The expression is implemented using an OP_Param opcode. The p1
2784 ** parameter is set to 0 for an old.rowid reference, or to (i+1)
2785 ** to reference another column of the old.* pseudo-table, where
2786 ** i is the index of the column. For a new.rowid reference, p1 is
2787 ** set to (n+1), where n is the number of columns in each pseudo-table.
2788 ** For a reference to any other column in the new.* pseudo-table, p1
2789 ** is set to (n+2+i), where n and i are as defined previously. For
2790 ** example, if the table on which triggers are being fired is
2793 ** CREATE TABLE t1(a, b);
2795 ** Then p1 is interpreted as follows:
2797 ** p1==0 -> old.rowid p1==3 -> new.rowid
2798 ** p1==1 -> old.a p1==4 -> new.a
2799 ** p1==2 -> old.b p1==5 -> new.b
2801 Table
*pTab
= pExpr
->pTab
;
2802 int p1
= pExpr
->iTable
* (pTab
->nCol
+1) + 1 + pExpr
->iColumn
;
2804 assert( pExpr
->iTable
==0 || pExpr
->iTable
==1 );
2805 assert( pExpr
->iColumn
>=-1 && pExpr
->iColumn
<pTab
->nCol
);
2806 assert( pTab
->iPKey
<0 || pExpr
->iColumn
!=pTab
->iPKey
);
2807 assert( p1
>=0 && p1
<(pTab
->nCol
*2+2) );
2809 sqlite3VdbeAddOp2(v
, OP_Param
, p1
, target
);
2810 VdbeComment((v
, "%s.%s -> $%d",
2811 (pExpr
->iTable
? "new" : "old"),
2812 (pExpr
->iColumn
<0 ? "rowid" : pExpr
->pTab
->aCol
[pExpr
->iColumn
].zName
),
2816 #ifndef SQLITE_OMIT_FLOATING_POINT
2817 /* If the column has REAL affinity, it may currently be stored as an
2818 ** integer. Use OP_RealAffinity to make sure it is really real. */
2819 if( pExpr
->iColumn
>=0
2820 && pTab
->aCol
[pExpr
->iColumn
].affinity
==SQLITE_AFF_REAL
2822 sqlite3VdbeAddOp1(v
, OP_RealAffinity
, target
);
2831 ** CASE x WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2834 ** CASE WHEN e1 THEN r1 WHEN e2 THEN r2 ... WHEN eN THEN rN ELSE y END
2836 ** Form A is can be transformed into the equivalent form B as follows:
2837 ** CASE WHEN x=e1 THEN r1 WHEN x=e2 THEN r2 ...
2838 ** WHEN x=eN THEN rN ELSE y END
2840 ** X (if it exists) is in pExpr->pLeft.
2841 ** Y is in pExpr->pRight. The Y is also optional. If there is no
2842 ** ELSE clause and no other term matches, then the result of the
2843 ** exprssion is NULL.
2844 ** Ei is in pExpr->pList->a[i*2] and Ri is pExpr->pList->a[i*2+1].
2846 ** The result of the expression is the Ri for the first matching Ei,
2847 ** or if there is no matching Ei, the ELSE term Y, or if there is
2848 ** no ELSE term, NULL.
2850 default: assert( op
==TK_CASE
); {
2851 int endLabel
; /* GOTO label for end of CASE stmt */
2852 int nextCase
; /* GOTO label for next WHEN clause */
2853 int nExpr
; /* 2x number of WHEN terms */
2854 int i
; /* Loop counter */
2855 ExprList
*pEList
; /* List of WHEN terms */
2856 struct ExprList_item
*aListelem
; /* Array of WHEN terms */
2857 Expr opCompare
; /* The X==Ei expression */
2858 Expr cacheX
; /* Cached expression X */
2859 Expr
*pX
; /* The X expression */
2860 Expr
*pTest
= 0; /* X==Ei (form A) or just Ei (form B) */
2861 VVA_ONLY( int iCacheLevel
= pParse
->iCacheLevel
; )
2863 assert( !ExprHasProperty(pExpr
, EP_xIsSelect
) && pExpr
->x
.pList
);
2864 assert((pExpr
->x
.pList
->nExpr
% 2) == 0);
2865 assert(pExpr
->x
.pList
->nExpr
> 0);
2866 pEList
= pExpr
->x
.pList
;
2867 aListelem
= pEList
->a
;
2868 nExpr
= pEList
->nExpr
;
2869 endLabel
= sqlite3VdbeMakeLabel(v
);
2870 if( (pX
= pExpr
->pLeft
)!=0 ){
2872 testcase( pX
->op
==TK_COLUMN
);
2873 testcase( pX
->op
==TK_REGISTER
);
2874 cacheX
.iTable
= sqlite3ExprCodeTemp(pParse
, pX
, ®Free1
);
2875 testcase( regFree1
==0 );
2876 cacheX
.op
= TK_REGISTER
;
2877 opCompare
.op
= TK_EQ
;
2878 opCompare
.pLeft
= &cacheX
;
2880 /* Ticket b351d95f9cd5ef17e9d9dbae18f5ca8611190001:
2881 ** The value in regFree1 might get SCopy-ed into the file result.
2882 ** So make sure that the regFree1 register is not reused for other
2883 ** purposes and possibly overwritten. */
2886 for(i
=0; i
<nExpr
; i
=i
+2){
2887 sqlite3ExprCachePush(pParse
);
2890 opCompare
.pRight
= aListelem
[i
].pExpr
;
2892 pTest
= aListelem
[i
].pExpr
;
2894 nextCase
= sqlite3VdbeMakeLabel(v
);
2895 testcase( pTest
->op
==TK_COLUMN
);
2896 sqlite3ExprIfFalse(pParse
, pTest
, nextCase
, SQLITE_JUMPIFNULL
);
2897 testcase( aListelem
[i
+1].pExpr
->op
==TK_COLUMN
);
2898 testcase( aListelem
[i
+1].pExpr
->op
==TK_REGISTER
);
2899 sqlite3ExprCode(pParse
, aListelem
[i
+1].pExpr
, target
);
2900 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, endLabel
);
2901 sqlite3ExprCachePop(pParse
, 1);
2902 sqlite3VdbeResolveLabel(v
, nextCase
);
2904 if( pExpr
->pRight
){
2905 sqlite3ExprCachePush(pParse
);
2906 sqlite3ExprCode(pParse
, pExpr
->pRight
, target
);
2907 sqlite3ExprCachePop(pParse
, 1);
2909 sqlite3VdbeAddOp2(v
, OP_Null
, 0, target
);
2911 assert( db
->mallocFailed
|| pParse
->nErr
>0
2912 || pParse
->iCacheLevel
==iCacheLevel
);
2913 sqlite3VdbeResolveLabel(v
, endLabel
);
2916 #ifndef SQLITE_OMIT_TRIGGER
2918 assert( pExpr
->affinity
==OE_Rollback
2919 || pExpr
->affinity
==OE_Abort
2920 || pExpr
->affinity
==OE_Fail
2921 || pExpr
->affinity
==OE_Ignore
2923 if( !pParse
->pTriggerTab
){
2924 sqlite3ErrorMsg(pParse
,
2925 "RAISE() may only be used within a trigger-program");
2928 if( pExpr
->affinity
==OE_Abort
){
2929 sqlite3MayAbort(pParse
);
2931 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
2932 if( pExpr
->affinity
==OE_Ignore
){
2934 v
, OP_Halt
, SQLITE_OK
, OE_Ignore
, 0, pExpr
->u
.zToken
,0);
2936 sqlite3HaltConstraint(pParse
, SQLITE_CONSTRAINT_TRIGGER
,
2937 pExpr
->affinity
, pExpr
->u
.zToken
, 0);
2944 sqlite3ReleaseTempReg(pParse
, regFree1
);
2945 sqlite3ReleaseTempReg(pParse
, regFree2
);
2950 ** Generate code to evaluate an expression and store the results
2951 ** into a register. Return the register number where the results
2954 ** If the register is a temporary register that can be deallocated,
2955 ** then write its number into *pReg. If the result register is not
2956 ** a temporary, then set *pReg to zero.
2958 int sqlite3ExprCodeTemp(Parse
*pParse
, Expr
*pExpr
, int *pReg
){
2959 int r1
= sqlite3GetTempReg(pParse
);
2960 int r2
= sqlite3ExprCodeTarget(pParse
, pExpr
, r1
);
2964 sqlite3ReleaseTempReg(pParse
, r1
);
2971 ** Generate code that will evaluate expression pExpr and store the
2972 ** results in register target. The results are guaranteed to appear
2973 ** in register target.
2975 int sqlite3ExprCode(Parse
*pParse
, Expr
*pExpr
, int target
){
2978 assert( target
>0 && target
<=pParse
->nMem
);
2979 if( pExpr
&& pExpr
->op
==TK_REGISTER
){
2980 sqlite3VdbeAddOp2(pParse
->pVdbe
, OP_Copy
, pExpr
->iTable
, target
);
2982 inReg
= sqlite3ExprCodeTarget(pParse
, pExpr
, target
);
2983 assert( pParse
->pVdbe
|| pParse
->db
->mallocFailed
);
2984 if( inReg
!=target
&& pParse
->pVdbe
){
2985 sqlite3VdbeAddOp2(pParse
->pVdbe
, OP_SCopy
, inReg
, target
);
2992 ** Generate code that evalutes the given expression and puts the result
2993 ** in register target.
2995 ** Also make a copy of the expression results into another "cache" register
2996 ** and modify the expression so that the next time it is evaluated,
2997 ** the result is a copy of the cache register.
2999 ** This routine is used for expressions that are used multiple
3000 ** times. They are evaluated once and the results of the expression
3003 int sqlite3ExprCodeAndCache(Parse
*pParse
, Expr
*pExpr
, int target
){
3004 Vdbe
*v
= pParse
->pVdbe
;
3006 inReg
= sqlite3ExprCode(pParse
, pExpr
, target
);
3008 /* This routine is called for terms to INSERT or UPDATE. And the only
3009 ** other place where expressions can be converted into TK_REGISTER is
3010 ** in WHERE clause processing. So as currently implemented, there is
3011 ** no way for a TK_REGISTER to exist here. But it seems prudent to
3012 ** keep the ALWAYS() in case the conditions above change with future
3013 ** modifications or enhancements. */
3014 if( ALWAYS(pExpr
->op
!=TK_REGISTER
) ){
3016 iMem
= ++pParse
->nMem
;
3017 sqlite3VdbeAddOp2(v
, OP_Copy
, inReg
, iMem
);
3018 pExpr
->iTable
= iMem
;
3019 pExpr
->op2
= pExpr
->op
;
3020 pExpr
->op
= TK_REGISTER
;
3025 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
3027 ** Generate a human-readable explanation of an expression tree.
3029 void sqlite3ExplainExpr(Vdbe
*pOut
, Expr
*pExpr
){
3030 int op
; /* The opcode being coded */
3031 const char *zBinOp
= 0; /* Binary operator */
3032 const char *zUniOp
= 0; /* Unary operator */
3039 case TK_AGG_COLUMN
: {
3040 sqlite3ExplainPrintf(pOut
, "AGG{%d:%d}",
3041 pExpr
->iTable
, pExpr
->iColumn
);
3045 if( pExpr
->iTable
<0 ){
3046 /* This only happens when coding check constraints */
3047 sqlite3ExplainPrintf(pOut
, "COLUMN(%d)", pExpr
->iColumn
);
3049 sqlite3ExplainPrintf(pOut
, "{%d:%d}",
3050 pExpr
->iTable
, pExpr
->iColumn
);
3055 if( pExpr
->flags
& EP_IntValue
){
3056 sqlite3ExplainPrintf(pOut
, "%d", pExpr
->u
.iValue
);
3058 sqlite3ExplainPrintf(pOut
, "%s", pExpr
->u
.zToken
);
3062 #ifndef SQLITE_OMIT_FLOATING_POINT
3064 sqlite3ExplainPrintf(pOut
,"%s", pExpr
->u
.zToken
);
3069 sqlite3ExplainPrintf(pOut
,"%Q", pExpr
->u
.zToken
);
3073 sqlite3ExplainPrintf(pOut
,"NULL");
3076 #ifndef SQLITE_OMIT_BLOB_LITERAL
3078 sqlite3ExplainPrintf(pOut
,"%s", pExpr
->u
.zToken
);
3083 sqlite3ExplainPrintf(pOut
,"VARIABLE(%s,%d)",
3084 pExpr
->u
.zToken
, pExpr
->iColumn
);
3088 sqlite3ExplainPrintf(pOut
,"REGISTER(%d)", pExpr
->iTable
);
3092 sqlite3ExplainExpr(pOut
, pExpr
->pLeft
);
3095 #ifndef SQLITE_OMIT_CAST
3097 /* Expressions of the form: CAST(pLeft AS token) */
3098 const char *zAff
= "unk";
3099 switch( sqlite3AffinityType(pExpr
->u
.zToken
) ){
3100 case SQLITE_AFF_TEXT
: zAff
= "TEXT"; break;
3101 case SQLITE_AFF_NONE
: zAff
= "NONE"; break;
3102 case SQLITE_AFF_NUMERIC
: zAff
= "NUMERIC"; break;
3103 case SQLITE_AFF_INTEGER
: zAff
= "INTEGER"; break;
3104 case SQLITE_AFF_REAL
: zAff
= "REAL"; break;
3106 sqlite3ExplainPrintf(pOut
, "CAST-%s(", zAff
);
3107 sqlite3ExplainExpr(pOut
, pExpr
->pLeft
);
3108 sqlite3ExplainPrintf(pOut
, ")");
3111 #endif /* SQLITE_OMIT_CAST */
3112 case TK_LT
: zBinOp
= "LT"; break;
3113 case TK_LE
: zBinOp
= "LE"; break;
3114 case TK_GT
: zBinOp
= "GT"; break;
3115 case TK_GE
: zBinOp
= "GE"; break;
3116 case TK_NE
: zBinOp
= "NE"; break;
3117 case TK_EQ
: zBinOp
= "EQ"; break;
3118 case TK_IS
: zBinOp
= "IS"; break;
3119 case TK_ISNOT
: zBinOp
= "ISNOT"; break;
3120 case TK_AND
: zBinOp
= "AND"; break;
3121 case TK_OR
: zBinOp
= "OR"; break;
3122 case TK_PLUS
: zBinOp
= "ADD"; break;
3123 case TK_STAR
: zBinOp
= "MUL"; break;
3124 case TK_MINUS
: zBinOp
= "SUB"; break;
3125 case TK_REM
: zBinOp
= "REM"; break;
3126 case TK_BITAND
: zBinOp
= "BITAND"; break;
3127 case TK_BITOR
: zBinOp
= "BITOR"; break;
3128 case TK_SLASH
: zBinOp
= "DIV"; break;
3129 case TK_LSHIFT
: zBinOp
= "LSHIFT"; break;
3130 case TK_RSHIFT
: zBinOp
= "RSHIFT"; break;
3131 case TK_CONCAT
: zBinOp
= "CONCAT"; break;
3133 case TK_UMINUS
: zUniOp
= "UMINUS"; break;
3134 case TK_UPLUS
: zUniOp
= "UPLUS"; break;
3135 case TK_BITNOT
: zUniOp
= "BITNOT"; break;
3136 case TK_NOT
: zUniOp
= "NOT"; break;
3137 case TK_ISNULL
: zUniOp
= "ISNULL"; break;
3138 case TK_NOTNULL
: zUniOp
= "NOTNULL"; break;
3141 sqlite3ExplainExpr(pOut
, pExpr
->pLeft
);
3142 sqlite3ExplainPrintf(pOut
,".COLLATE(%s)",pExpr
->u
.zToken
);
3146 case TK_AGG_FUNCTION
:
3149 ExprList
*pFarg
; /* List of function arguments */
3150 if( ExprHasAnyProperty(pExpr
, EP_TokenOnly
) ){
3153 pFarg
= pExpr
->x
.pList
;
3155 if( op
==TK_AGG_FUNCTION
){
3156 sqlite3ExplainPrintf(pOut
, "AGG_FUNCTION%d:%s(",
3157 pExpr
->op2
, pExpr
->u
.zToken
);
3159 sqlite3ExplainPrintf(pOut
, "FUNCTION:%s(", pExpr
->u
.zToken
);
3162 sqlite3ExplainExprList(pOut
, pFarg
);
3164 sqlite3ExplainPrintf(pOut
, ")");
3167 #ifndef SQLITE_OMIT_SUBQUERY
3169 sqlite3ExplainPrintf(pOut
, "EXISTS(");
3170 sqlite3ExplainSelect(pOut
, pExpr
->x
.pSelect
);
3171 sqlite3ExplainPrintf(pOut
,")");
3175 sqlite3ExplainPrintf(pOut
, "(");
3176 sqlite3ExplainSelect(pOut
, pExpr
->x
.pSelect
);
3177 sqlite3ExplainPrintf(pOut
, ")");
3181 sqlite3ExplainPrintf(pOut
, "IN(");
3182 sqlite3ExplainExpr(pOut
, pExpr
->pLeft
);
3183 sqlite3ExplainPrintf(pOut
, ",");
3184 if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
3185 sqlite3ExplainSelect(pOut
, pExpr
->x
.pSelect
);
3187 sqlite3ExplainExprList(pOut
, pExpr
->x
.pList
);
3189 sqlite3ExplainPrintf(pOut
, ")");
3192 #endif /* SQLITE_OMIT_SUBQUERY */
3195 ** x BETWEEN y AND z
3197 ** This is equivalent to
3201 ** X is stored in pExpr->pLeft.
3202 ** Y is stored in pExpr->pList->a[0].pExpr.
3203 ** Z is stored in pExpr->pList->a[1].pExpr.
3206 Expr
*pX
= pExpr
->pLeft
;
3207 Expr
*pY
= pExpr
->x
.pList
->a
[0].pExpr
;
3208 Expr
*pZ
= pExpr
->x
.pList
->a
[1].pExpr
;
3209 sqlite3ExplainPrintf(pOut
, "BETWEEN(");
3210 sqlite3ExplainExpr(pOut
, pX
);
3211 sqlite3ExplainPrintf(pOut
, ",");
3212 sqlite3ExplainExpr(pOut
, pY
);
3213 sqlite3ExplainPrintf(pOut
, ",");
3214 sqlite3ExplainExpr(pOut
, pZ
);
3215 sqlite3ExplainPrintf(pOut
, ")");
3219 /* If the opcode is TK_TRIGGER, then the expression is a reference
3220 ** to a column in the new.* or old.* pseudo-tables available to
3221 ** trigger programs. In this case Expr.iTable is set to 1 for the
3222 ** new.* pseudo-table, or 0 for the old.* pseudo-table. Expr.iColumn
3223 ** is set to the column of the pseudo-table to read, or to -1 to
3224 ** read the rowid field.
3226 sqlite3ExplainPrintf(pOut
, "%s(%d)",
3227 pExpr
->iTable
? "NEW" : "OLD", pExpr
->iColumn
);
3231 sqlite3ExplainPrintf(pOut
, "CASE(");
3232 sqlite3ExplainExpr(pOut
, pExpr
->pLeft
);
3233 sqlite3ExplainPrintf(pOut
, ",");
3234 sqlite3ExplainExprList(pOut
, pExpr
->x
.pList
);
3237 #ifndef SQLITE_OMIT_TRIGGER
3239 const char *zType
= "unk";
3240 switch( pExpr
->affinity
){
3241 case OE_Rollback
: zType
= "rollback"; break;
3242 case OE_Abort
: zType
= "abort"; break;
3243 case OE_Fail
: zType
= "fail"; break;
3244 case OE_Ignore
: zType
= "ignore"; break;
3246 sqlite3ExplainPrintf(pOut
, "RAISE-%s(%s)", zType
, pExpr
->u
.zToken
);
3252 sqlite3ExplainPrintf(pOut
,"%s(", zBinOp
);
3253 sqlite3ExplainExpr(pOut
, pExpr
->pLeft
);
3254 sqlite3ExplainPrintf(pOut
,",");
3255 sqlite3ExplainExpr(pOut
, pExpr
->pRight
);
3256 sqlite3ExplainPrintf(pOut
,")");
3258 sqlite3ExplainPrintf(pOut
,"%s(", zUniOp
);
3259 sqlite3ExplainExpr(pOut
, pExpr
->pLeft
);
3260 sqlite3ExplainPrintf(pOut
,")");
3263 #endif /* defined(SQLITE_ENABLE_TREE_EXPLAIN) */
3265 #if defined(SQLITE_ENABLE_TREE_EXPLAIN)
3267 ** Generate a human-readable explanation of an expression list.
3269 void sqlite3ExplainExprList(Vdbe
*pOut
, ExprList
*pList
){
3271 if( pList
==0 || pList
->nExpr
==0 ){
3272 sqlite3ExplainPrintf(pOut
, "(empty-list)");
3274 }else if( pList
->nExpr
==1 ){
3275 sqlite3ExplainExpr(pOut
, pList
->a
[0].pExpr
);
3277 sqlite3ExplainPush(pOut
);
3278 for(i
=0; i
<pList
->nExpr
; i
++){
3279 sqlite3ExplainPrintf(pOut
, "item[%d] = ", i
);
3280 sqlite3ExplainPush(pOut
);
3281 sqlite3ExplainExpr(pOut
, pList
->a
[i
].pExpr
);
3282 sqlite3ExplainPop(pOut
);
3283 if( pList
->a
[i
].zName
){
3284 sqlite3ExplainPrintf(pOut
, " AS %s", pList
->a
[i
].zName
);
3286 if( pList
->a
[i
].bSpanIsTab
){
3287 sqlite3ExplainPrintf(pOut
, " (%s)", pList
->a
[i
].zSpan
);
3289 if( i
<pList
->nExpr
-1 ){
3290 sqlite3ExplainNL(pOut
);
3293 sqlite3ExplainPop(pOut
);
3296 #endif /* SQLITE_DEBUG */
3299 ** Return TRUE if pExpr is an constant expression that is appropriate
3300 ** for factoring out of a loop. Appropriate expressions are:
3302 ** * Any expression that evaluates to two or more opcodes.
3304 ** * Any OP_Integer, OP_Real, OP_String, OP_Blob, OP_Null,
3305 ** or OP_Variable that does not need to be placed in a
3306 ** specific register.
3308 ** There is no point in factoring out single-instruction constant
3309 ** expressions that need to be placed in a particular register.
3310 ** We could factor them out, but then we would end up adding an
3311 ** OP_SCopy instruction to move the value into the correct register
3312 ** later. We might as well just use the original instruction and
3313 ** avoid the OP_SCopy.
3315 static int isAppropriateForFactoring(Expr
*p
){
3316 if( !sqlite3ExprIsConstantNotJoin(p
) ){
3317 return 0; /* Only constant expressions are appropriate for factoring */
3319 if( (p
->flags
& EP_FixedDest
)==0 ){
3320 return 1; /* Any constant without a fixed destination is appropriate */
3322 while( p
->op
==TK_UPLUS
) p
= p
->pLeft
;
3324 #ifndef SQLITE_OMIT_BLOB_LITERAL
3332 testcase( p
->op
==TK_BLOB
);
3333 testcase( p
->op
==TK_VARIABLE
);
3334 testcase( p
->op
==TK_INTEGER
);
3335 testcase( p
->op
==TK_FLOAT
);
3336 testcase( p
->op
==TK_NULL
);
3337 testcase( p
->op
==TK_STRING
);
3338 /* Single-instruction constants with a fixed destination are
3339 ** better done in-line. If we factor them, they will just end
3340 ** up generating an OP_SCopy to move the value to the destination
3345 if( p
->pLeft
->op
==TK_FLOAT
|| p
->pLeft
->op
==TK_INTEGER
){
3358 ** If pExpr is a constant expression that is appropriate for
3359 ** factoring out of a loop, then evaluate the expression
3360 ** into a register and convert the expression into a TK_REGISTER
3363 static int evalConstExpr(Walker
*pWalker
, Expr
*pExpr
){
3364 Parse
*pParse
= pWalker
->pParse
;
3365 switch( pExpr
->op
){
3371 return WRC_Continue
;
3374 case TK_AGG_FUNCTION
:
3375 case TK_CONST_FUNC
: {
3376 /* The arguments to a function have a fixed destination.
3377 ** Mark them this way to avoid generated unneeded OP_SCopy
3380 ExprList
*pList
= pExpr
->x
.pList
;
3381 assert( !ExprHasProperty(pExpr
, EP_xIsSelect
) );
3383 int i
= pList
->nExpr
;
3384 struct ExprList_item
*pItem
= pList
->a
;
3385 for(; i
>0; i
--, pItem
++){
3386 if( ALWAYS(pItem
->pExpr
) ) pItem
->pExpr
->flags
|= EP_FixedDest
;
3392 if( isAppropriateForFactoring(pExpr
) ){
3393 int r1
= ++pParse
->nMem
;
3394 int r2
= sqlite3ExprCodeTarget(pParse
, pExpr
, r1
);
3395 /* If r2!=r1, it means that register r1 is never used. That is harmless
3396 ** but suboptimal, so we want to know about the situation to fix it.
3397 ** Hence the following assert: */
3399 pExpr
->op2
= pExpr
->op
;
3400 pExpr
->op
= TK_REGISTER
;
3404 return WRC_Continue
;
3408 ** Preevaluate constant subexpressions within pExpr and store the
3409 ** results in registers. Modify pExpr so that the constant subexpresions
3410 ** are TK_REGISTER opcodes that refer to the precomputed values.
3412 ** This routine is a no-op if the jump to the cookie-check code has
3413 ** already occur. Since the cookie-check jump is generated prior to
3414 ** any other serious processing, this check ensures that there is no
3415 ** way to accidently bypass the constant initializations.
3417 ** This routine is also a no-op if the SQLITE_FactorOutConst optimization
3418 ** is disabled via the sqlite3_test_control(SQLITE_TESTCTRL_OPTIMIZATIONS)
3419 ** interface. This allows test logic to verify that the same answer is
3420 ** obtained for queries regardless of whether or not constants are
3421 ** precomputed into registers or if they are inserted in-line.
3423 void sqlite3ExprCodeConstants(Parse
*pParse
, Expr
*pExpr
){
3425 if( pParse
->cookieGoto
) return;
3426 if( OptimizationDisabled(pParse
->db
, SQLITE_FactorOutConst
) ) return;
3427 memset(&w
, 0, sizeof(w
));
3428 w
.xExprCallback
= evalConstExpr
;
3430 sqlite3WalkExpr(&w
, pExpr
);
3435 ** Generate code that pushes the value of every element of the given
3436 ** expression list into a sequence of registers beginning at target.
3438 ** Return the number of elements evaluated.
3440 int sqlite3ExprCodeExprList(
3441 Parse
*pParse
, /* Parsing context */
3442 ExprList
*pList
, /* The expression list to be coded */
3443 int target
, /* Where to write results */
3444 int doHardCopy
/* Make a hard copy of every element */
3446 struct ExprList_item
*pItem
;
3450 assert( pParse
->pVdbe
!=0 ); /* Never gets this far otherwise */
3452 for(pItem
=pList
->a
, i
=0; i
<n
; i
++, pItem
++){
3453 Expr
*pExpr
= pItem
->pExpr
;
3454 int inReg
= sqlite3ExprCodeTarget(pParse
, pExpr
, target
+i
);
3455 if( inReg
!=target
+i
){
3456 sqlite3VdbeAddOp2(pParse
->pVdbe
, doHardCopy
? OP_Copy
: OP_SCopy
,
3464 ** Generate code for a BETWEEN operator.
3466 ** x BETWEEN y AND z
3468 ** The above is equivalent to
3472 ** Code it as such, taking care to do the common subexpression
3473 ** elementation of x.
3475 static void exprCodeBetween(
3476 Parse
*pParse
, /* Parsing and code generating context */
3477 Expr
*pExpr
, /* The BETWEEN expression */
3478 int dest
, /* Jump here if the jump is taken */
3479 int jumpIfTrue
, /* Take the jump if the BETWEEN is true */
3480 int jumpIfNull
/* Take the jump if the BETWEEN is NULL */
3482 Expr exprAnd
; /* The AND operator in x>=y AND x<=z */
3483 Expr compLeft
; /* The x>=y term */
3484 Expr compRight
; /* The x<=z term */
3485 Expr exprX
; /* The x subexpression */
3486 int regFree1
= 0; /* Temporary use register */
3488 assert( !ExprHasProperty(pExpr
, EP_xIsSelect
) );
3489 exprX
= *pExpr
->pLeft
;
3490 exprAnd
.op
= TK_AND
;
3491 exprAnd
.pLeft
= &compLeft
;
3492 exprAnd
.pRight
= &compRight
;
3493 compLeft
.op
= TK_GE
;
3494 compLeft
.pLeft
= &exprX
;
3495 compLeft
.pRight
= pExpr
->x
.pList
->a
[0].pExpr
;
3496 compRight
.op
= TK_LE
;
3497 compRight
.pLeft
= &exprX
;
3498 compRight
.pRight
= pExpr
->x
.pList
->a
[1].pExpr
;
3499 exprX
.iTable
= sqlite3ExprCodeTemp(pParse
, &exprX
, ®Free1
);
3500 exprX
.op
= TK_REGISTER
;
3502 sqlite3ExprIfTrue(pParse
, &exprAnd
, dest
, jumpIfNull
);
3504 sqlite3ExprIfFalse(pParse
, &exprAnd
, dest
, jumpIfNull
);
3506 sqlite3ReleaseTempReg(pParse
, regFree1
);
3508 /* Ensure adequate test coverage */
3509 testcase( jumpIfTrue
==0 && jumpIfNull
==0 && regFree1
==0 );
3510 testcase( jumpIfTrue
==0 && jumpIfNull
==0 && regFree1
!=0 );
3511 testcase( jumpIfTrue
==0 && jumpIfNull
!=0 && regFree1
==0 );
3512 testcase( jumpIfTrue
==0 && jumpIfNull
!=0 && regFree1
!=0 );
3513 testcase( jumpIfTrue
!=0 && jumpIfNull
==0 && regFree1
==0 );
3514 testcase( jumpIfTrue
!=0 && jumpIfNull
==0 && regFree1
!=0 );
3515 testcase( jumpIfTrue
!=0 && jumpIfNull
!=0 && regFree1
==0 );
3516 testcase( jumpIfTrue
!=0 && jumpIfNull
!=0 && regFree1
!=0 );
3520 ** Generate code for a boolean expression such that a jump is made
3521 ** to the label "dest" if the expression is true but execution
3522 ** continues straight thru if the expression is false.
3524 ** If the expression evaluates to NULL (neither true nor false), then
3525 ** take the jump if the jumpIfNull flag is SQLITE_JUMPIFNULL.
3527 ** This code depends on the fact that certain token values (ex: TK_EQ)
3528 ** are the same as opcode values (ex: OP_Eq) that implement the corresponding
3529 ** operation. Special comments in vdbe.c and the mkopcodeh.awk script in
3530 ** the make process cause these values to align. Assert()s in the code
3531 ** below verify that the numbers are aligned correctly.
3533 void sqlite3ExprIfTrue(Parse
*pParse
, Expr
*pExpr
, int dest
, int jumpIfNull
){
3534 Vdbe
*v
= pParse
->pVdbe
;
3540 assert( jumpIfNull
==SQLITE_JUMPIFNULL
|| jumpIfNull
==0 );
3541 if( NEVER(v
==0) ) return; /* Existence of VDBE checked by caller */
3542 if( NEVER(pExpr
==0) ) return; /* No way this can happen */
3546 int d2
= sqlite3VdbeMakeLabel(v
);
3547 testcase( jumpIfNull
==0 );
3548 sqlite3ExprCachePush(pParse
);
3549 sqlite3ExprIfFalse(pParse
, pExpr
->pLeft
, d2
,jumpIfNull
^SQLITE_JUMPIFNULL
);
3550 sqlite3ExprIfTrue(pParse
, pExpr
->pRight
, dest
, jumpIfNull
);
3551 sqlite3VdbeResolveLabel(v
, d2
);
3552 sqlite3ExprCachePop(pParse
, 1);
3556 testcase( jumpIfNull
==0 );
3557 sqlite3ExprIfTrue(pParse
, pExpr
->pLeft
, dest
, jumpIfNull
);
3558 sqlite3ExprIfTrue(pParse
, pExpr
->pRight
, dest
, jumpIfNull
);
3562 testcase( jumpIfNull
==0 );
3563 sqlite3ExprIfFalse(pParse
, pExpr
->pLeft
, dest
, jumpIfNull
);
3572 assert( TK_LT
==OP_Lt
);
3573 assert( TK_LE
==OP_Le
);
3574 assert( TK_GT
==OP_Gt
);
3575 assert( TK_GE
==OP_Ge
);
3576 assert( TK_EQ
==OP_Eq
);
3577 assert( TK_NE
==OP_Ne
);
3578 testcase( op
==TK_LT
);
3579 testcase( op
==TK_LE
);
3580 testcase( op
==TK_GT
);
3581 testcase( op
==TK_GE
);
3582 testcase( op
==TK_EQ
);
3583 testcase( op
==TK_NE
);
3584 testcase( jumpIfNull
==0 );
3585 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
3586 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pRight
, ®Free2
);
3587 codeCompare(pParse
, pExpr
->pLeft
, pExpr
->pRight
, op
,
3588 r1
, r2
, dest
, jumpIfNull
);
3589 testcase( regFree1
==0 );
3590 testcase( regFree2
==0 );
3595 testcase( op
==TK_IS
);
3596 testcase( op
==TK_ISNOT
);
3597 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
3598 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pRight
, ®Free2
);
3599 op
= (op
==TK_IS
) ? TK_EQ
: TK_NE
;
3600 codeCompare(pParse
, pExpr
->pLeft
, pExpr
->pRight
, op
,
3601 r1
, r2
, dest
, SQLITE_NULLEQ
);
3602 testcase( regFree1
==0 );
3603 testcase( regFree2
==0 );
3608 assert( TK_ISNULL
==OP_IsNull
);
3609 assert( TK_NOTNULL
==OP_NotNull
);
3610 testcase( op
==TK_ISNULL
);
3611 testcase( op
==TK_NOTNULL
);
3612 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
3613 sqlite3VdbeAddOp2(v
, op
, r1
, dest
);
3614 testcase( regFree1
==0 );
3618 testcase( jumpIfNull
==0 );
3619 exprCodeBetween(pParse
, pExpr
, dest
, 1, jumpIfNull
);
3622 #ifndef SQLITE_OMIT_SUBQUERY
3624 int destIfFalse
= sqlite3VdbeMakeLabel(v
);
3625 int destIfNull
= jumpIfNull
? dest
: destIfFalse
;
3626 sqlite3ExprCodeIN(pParse
, pExpr
, destIfFalse
, destIfNull
);
3627 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, dest
);
3628 sqlite3VdbeResolveLabel(v
, destIfFalse
);
3633 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
, ®Free1
);
3634 sqlite3VdbeAddOp3(v
, OP_If
, r1
, dest
, jumpIfNull
!=0);
3635 testcase( regFree1
==0 );
3636 testcase( jumpIfNull
==0 );
3640 sqlite3ReleaseTempReg(pParse
, regFree1
);
3641 sqlite3ReleaseTempReg(pParse
, regFree2
);
3645 ** Generate code for a boolean expression such that a jump is made
3646 ** to the label "dest" if the expression is false but execution
3647 ** continues straight thru if the expression is true.
3649 ** If the expression evaluates to NULL (neither true nor false) then
3650 ** jump if jumpIfNull is SQLITE_JUMPIFNULL or fall through if jumpIfNull
3653 void sqlite3ExprIfFalse(Parse
*pParse
, Expr
*pExpr
, int dest
, int jumpIfNull
){
3654 Vdbe
*v
= pParse
->pVdbe
;
3660 assert( jumpIfNull
==SQLITE_JUMPIFNULL
|| jumpIfNull
==0 );
3661 if( NEVER(v
==0) ) return; /* Existence of VDBE checked by caller */
3662 if( pExpr
==0 ) return;
3664 /* The value of pExpr->op and op are related as follows:
3667 ** --------- ----------
3668 ** TK_ISNULL OP_NotNull
3669 ** TK_NOTNULL OP_IsNull
3677 ** For other values of pExpr->op, op is undefined and unused.
3678 ** The value of TK_ and OP_ constants are arranged such that we
3679 ** can compute the mapping above using the following expression.
3680 ** Assert()s verify that the computation is correct.
3682 op
= ((pExpr
->op
+(TK_ISNULL
&1))^1)-(TK_ISNULL
&1);
3684 /* Verify correct alignment of TK_ and OP_ constants
3686 assert( pExpr
->op
!=TK_ISNULL
|| op
==OP_NotNull
);
3687 assert( pExpr
->op
!=TK_NOTNULL
|| op
==OP_IsNull
);
3688 assert( pExpr
->op
!=TK_NE
|| op
==OP_Eq
);
3689 assert( pExpr
->op
!=TK_EQ
|| op
==OP_Ne
);
3690 assert( pExpr
->op
!=TK_LT
|| op
==OP_Ge
);
3691 assert( pExpr
->op
!=TK_LE
|| op
==OP_Gt
);
3692 assert( pExpr
->op
!=TK_GT
|| op
==OP_Le
);
3693 assert( pExpr
->op
!=TK_GE
|| op
==OP_Lt
);
3695 switch( pExpr
->op
){
3697 testcase( jumpIfNull
==0 );
3698 sqlite3ExprIfFalse(pParse
, pExpr
->pLeft
, dest
, jumpIfNull
);
3699 sqlite3ExprIfFalse(pParse
, pExpr
->pRight
, dest
, jumpIfNull
);
3703 int d2
= sqlite3VdbeMakeLabel(v
);
3704 testcase( jumpIfNull
==0 );
3705 sqlite3ExprCachePush(pParse
);
3706 sqlite3ExprIfTrue(pParse
, pExpr
->pLeft
, d2
, jumpIfNull
^SQLITE_JUMPIFNULL
);
3707 sqlite3ExprIfFalse(pParse
, pExpr
->pRight
, dest
, jumpIfNull
);
3708 sqlite3VdbeResolveLabel(v
, d2
);
3709 sqlite3ExprCachePop(pParse
, 1);
3713 testcase( jumpIfNull
==0 );
3714 sqlite3ExprIfTrue(pParse
, pExpr
->pLeft
, dest
, jumpIfNull
);
3723 testcase( op
==TK_LT
);
3724 testcase( op
==TK_LE
);
3725 testcase( op
==TK_GT
);
3726 testcase( op
==TK_GE
);
3727 testcase( op
==TK_EQ
);
3728 testcase( op
==TK_NE
);
3729 testcase( jumpIfNull
==0 );
3730 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
3731 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pRight
, ®Free2
);
3732 codeCompare(pParse
, pExpr
->pLeft
, pExpr
->pRight
, op
,
3733 r1
, r2
, dest
, jumpIfNull
);
3734 testcase( regFree1
==0 );
3735 testcase( regFree2
==0 );
3740 testcase( pExpr
->op
==TK_IS
);
3741 testcase( pExpr
->op
==TK_ISNOT
);
3742 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
3743 r2
= sqlite3ExprCodeTemp(pParse
, pExpr
->pRight
, ®Free2
);
3744 op
= (pExpr
->op
==TK_IS
) ? TK_NE
: TK_EQ
;
3745 codeCompare(pParse
, pExpr
->pLeft
, pExpr
->pRight
, op
,
3746 r1
, r2
, dest
, SQLITE_NULLEQ
);
3747 testcase( regFree1
==0 );
3748 testcase( regFree2
==0 );
3753 testcase( op
==TK_ISNULL
);
3754 testcase( op
==TK_NOTNULL
);
3755 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
->pLeft
, ®Free1
);
3756 sqlite3VdbeAddOp2(v
, op
, r1
, dest
);
3757 testcase( regFree1
==0 );
3761 testcase( jumpIfNull
==0 );
3762 exprCodeBetween(pParse
, pExpr
, dest
, 0, jumpIfNull
);
3765 #ifndef SQLITE_OMIT_SUBQUERY
3768 sqlite3ExprCodeIN(pParse
, pExpr
, dest
, dest
);
3770 int destIfNull
= sqlite3VdbeMakeLabel(v
);
3771 sqlite3ExprCodeIN(pParse
, pExpr
, dest
, destIfNull
);
3772 sqlite3VdbeResolveLabel(v
, destIfNull
);
3778 r1
= sqlite3ExprCodeTemp(pParse
, pExpr
, ®Free1
);
3779 sqlite3VdbeAddOp3(v
, OP_IfNot
, r1
, dest
, jumpIfNull
!=0);
3780 testcase( regFree1
==0 );
3781 testcase( jumpIfNull
==0 );
3785 sqlite3ReleaseTempReg(pParse
, regFree1
);
3786 sqlite3ReleaseTempReg(pParse
, regFree2
);
3790 ** Do a deep comparison of two expression trees. Return 0 if the two
3791 ** expressions are completely identical. Return 1 if they differ only
3792 ** by a COLLATE operator at the top level. Return 2 if there are differences
3793 ** other than the top-level COLLATE operator.
3795 ** Sometimes this routine will return 2 even if the two expressions
3796 ** really are equivalent. If we cannot prove that the expressions are
3797 ** identical, we return 2 just to be safe. So if this routine
3798 ** returns 2, then you do not really know for certain if the two
3799 ** expressions are the same. But if you get a 0 or 1 return, then you
3800 ** can be sure the expressions are the same. In the places where
3801 ** this routine is used, it does not hurt to get an extra 2 - that
3802 ** just might result in some slightly slower code. But returning
3803 ** an incorrect 0 or 1 could lead to a malfunction.
3805 int sqlite3ExprCompare(Expr
*pA
, Expr
*pB
){
3807 return pB
==pA
? 0 : 2;
3809 assert( !ExprHasAnyProperty(pA
, EP_TokenOnly
|EP_Reduced
) );
3810 assert( !ExprHasAnyProperty(pB
, EP_TokenOnly
|EP_Reduced
) );
3811 if( ExprHasProperty(pA
, EP_xIsSelect
) || ExprHasProperty(pB
, EP_xIsSelect
) ){
3814 if( (pA
->flags
& EP_Distinct
)!=(pB
->flags
& EP_Distinct
) ) return 2;
3815 if( pA
->op
!=pB
->op
){
3816 if( pA
->op
==TK_COLLATE
&& sqlite3ExprCompare(pA
->pLeft
, pB
)<2 ){
3819 if( pB
->op
==TK_COLLATE
&& sqlite3ExprCompare(pA
, pB
->pLeft
)<2 ){
3824 if( sqlite3ExprCompare(pA
->pLeft
, pB
->pLeft
) ) return 2;
3825 if( sqlite3ExprCompare(pA
->pRight
, pB
->pRight
) ) return 2;
3826 if( sqlite3ExprListCompare(pA
->x
.pList
, pB
->x
.pList
) ) return 2;
3827 if( pA
->iTable
!=pB
->iTable
|| pA
->iColumn
!=pB
->iColumn
) return 2;
3828 if( ExprHasProperty(pA
, EP_IntValue
) ){
3829 if( !ExprHasProperty(pB
, EP_IntValue
) || pA
->u
.iValue
!=pB
->u
.iValue
){
3832 }else if( pA
->op
!=TK_COLUMN
&& ALWAYS(pA
->op
!=TK_AGG_COLUMN
) && pA
->u
.zToken
){
3833 if( ExprHasProperty(pB
, EP_IntValue
) || NEVER(pB
->u
.zToken
==0) ) return 2;
3834 if( strcmp(pA
->u
.zToken
,pB
->u
.zToken
)!=0 ){
3835 return pA
->op
==TK_COLLATE
? 1 : 2;
3842 ** Compare two ExprList objects. Return 0 if they are identical and
3843 ** non-zero if they differ in any way.
3845 ** This routine might return non-zero for equivalent ExprLists. The
3846 ** only consequence will be disabled optimizations. But this routine
3847 ** must never return 0 if the two ExprList objects are different, or
3848 ** a malfunction will result.
3850 ** Two NULL pointers are considered to be the same. But a NULL pointer
3851 ** always differs from a non-NULL pointer.
3853 int sqlite3ExprListCompare(ExprList
*pA
, ExprList
*pB
){
3855 if( pA
==0 && pB
==0 ) return 0;
3856 if( pA
==0 || pB
==0 ) return 1;
3857 if( pA
->nExpr
!=pB
->nExpr
) return 1;
3858 for(i
=0; i
<pA
->nExpr
; i
++){
3859 Expr
*pExprA
= pA
->a
[i
].pExpr
;
3860 Expr
*pExprB
= pB
->a
[i
].pExpr
;
3861 if( pA
->a
[i
].sortOrder
!=pB
->a
[i
].sortOrder
) return 1;
3862 if( sqlite3ExprCompare(pExprA
, pExprB
) ) return 1;
3868 ** An instance of the following structure is used by the tree walker
3869 ** to count references to table columns in the arguments of an
3870 ** aggregate function, in order to implement the
3871 ** sqlite3FunctionThisSrc() routine.
3874 SrcList
*pSrc
; /* One particular FROM clause in a nested query */
3875 int nThis
; /* Number of references to columns in pSrcList */
3876 int nOther
; /* Number of references to columns in other FROM clauses */
3880 ** Count the number of references to columns.
3882 static int exprSrcCount(Walker
*pWalker
, Expr
*pExpr
){
3883 /* The NEVER() on the second term is because sqlite3FunctionUsesThisSrc()
3884 ** is always called before sqlite3ExprAnalyzeAggregates() and so the
3885 ** TK_COLUMNs have not yet been converted into TK_AGG_COLUMN. If
3886 ** sqlite3FunctionUsesThisSrc() is used differently in the future, the
3887 ** NEVER() will need to be removed. */
3888 if( pExpr
->op
==TK_COLUMN
|| NEVER(pExpr
->op
==TK_AGG_COLUMN
) ){
3890 struct SrcCount
*p
= pWalker
->u
.pSrcCount
;
3891 SrcList
*pSrc
= p
->pSrc
;
3892 for(i
=0; i
<pSrc
->nSrc
; i
++){
3893 if( pExpr
->iTable
==pSrc
->a
[i
].iCursor
) break;
3901 return WRC_Continue
;
3905 ** Determine if any of the arguments to the pExpr Function reference
3906 ** pSrcList. Return true if they do. Also return true if the function
3907 ** has no arguments or has only constant arguments. Return false if pExpr
3908 ** references columns but not columns of tables found in pSrcList.
3910 int sqlite3FunctionUsesThisSrc(Expr
*pExpr
, SrcList
*pSrcList
){
3912 struct SrcCount cnt
;
3913 assert( pExpr
->op
==TK_AGG_FUNCTION
);
3914 memset(&w
, 0, sizeof(w
));
3915 w
.xExprCallback
= exprSrcCount
;
3916 w
.u
.pSrcCount
= &cnt
;
3917 cnt
.pSrc
= pSrcList
;
3920 sqlite3WalkExprList(&w
, pExpr
->x
.pList
);
3921 return cnt
.nThis
>0 || cnt
.nOther
==0;
3925 ** Add a new element to the pAggInfo->aCol[] array. Return the index of
3926 ** the new element. Return a negative number if malloc fails.
3928 static int addAggInfoColumn(sqlite3
*db
, AggInfo
*pInfo
){
3930 pInfo
->aCol
= sqlite3ArrayAllocate(
3933 sizeof(pInfo
->aCol
[0]),
3941 ** Add a new element to the pAggInfo->aFunc[] array. Return the index of
3942 ** the new element. Return a negative number if malloc fails.
3944 static int addAggInfoFunc(sqlite3
*db
, AggInfo
*pInfo
){
3946 pInfo
->aFunc
= sqlite3ArrayAllocate(
3949 sizeof(pInfo
->aFunc
[0]),
3957 ** This is the xExprCallback for a tree walker. It is used to
3958 ** implement sqlite3ExprAnalyzeAggregates(). See sqlite3ExprAnalyzeAggregates
3959 ** for additional information.
3961 static int analyzeAggregate(Walker
*pWalker
, Expr
*pExpr
){
3963 NameContext
*pNC
= pWalker
->u
.pNC
;
3964 Parse
*pParse
= pNC
->pParse
;
3965 SrcList
*pSrcList
= pNC
->pSrcList
;
3966 AggInfo
*pAggInfo
= pNC
->pAggInfo
;
3968 switch( pExpr
->op
){
3971 testcase( pExpr
->op
==TK_AGG_COLUMN
);
3972 testcase( pExpr
->op
==TK_COLUMN
);
3973 /* Check to see if the column is in one of the tables in the FROM
3974 ** clause of the aggregate query */
3975 if( ALWAYS(pSrcList
!=0) ){
3976 struct SrcList_item
*pItem
= pSrcList
->a
;
3977 for(i
=0; i
<pSrcList
->nSrc
; i
++, pItem
++){
3978 struct AggInfo_col
*pCol
;
3979 assert( !ExprHasAnyProperty(pExpr
, EP_TokenOnly
|EP_Reduced
) );
3980 if( pExpr
->iTable
==pItem
->iCursor
){
3981 /* If we reach this point, it means that pExpr refers to a table
3982 ** that is in the FROM clause of the aggregate query.
3984 ** Make an entry for the column in pAggInfo->aCol[] if there
3985 ** is not an entry there already.
3988 pCol
= pAggInfo
->aCol
;
3989 for(k
=0; k
<pAggInfo
->nColumn
; k
++, pCol
++){
3990 if( pCol
->iTable
==pExpr
->iTable
&&
3991 pCol
->iColumn
==pExpr
->iColumn
){
3995 if( (k
>=pAggInfo
->nColumn
)
3996 && (k
= addAggInfoColumn(pParse
->db
, pAggInfo
))>=0
3998 pCol
= &pAggInfo
->aCol
[k
];
3999 pCol
->pTab
= pExpr
->pTab
;
4000 pCol
->iTable
= pExpr
->iTable
;
4001 pCol
->iColumn
= pExpr
->iColumn
;
4002 pCol
->iMem
= ++pParse
->nMem
;
4003 pCol
->iSorterColumn
= -1;
4004 pCol
->pExpr
= pExpr
;
4005 if( pAggInfo
->pGroupBy
){
4007 ExprList
*pGB
= pAggInfo
->pGroupBy
;
4008 struct ExprList_item
*pTerm
= pGB
->a
;
4010 for(j
=0; j
<n
; j
++, pTerm
++){
4011 Expr
*pE
= pTerm
->pExpr
;
4012 if( pE
->op
==TK_COLUMN
&& pE
->iTable
==pExpr
->iTable
&&
4013 pE
->iColumn
==pExpr
->iColumn
){
4014 pCol
->iSorterColumn
= j
;
4019 if( pCol
->iSorterColumn
<0 ){
4020 pCol
->iSorterColumn
= pAggInfo
->nSortingColumn
++;
4023 /* There is now an entry for pExpr in pAggInfo->aCol[] (either
4024 ** because it was there before or because we just created it).
4025 ** Convert the pExpr to be a TK_AGG_COLUMN referring to that
4026 ** pAggInfo->aCol[] entry.
4028 ExprSetIrreducible(pExpr
);
4029 pExpr
->pAggInfo
= pAggInfo
;
4030 pExpr
->op
= TK_AGG_COLUMN
;
4031 pExpr
->iAgg
= (i16
)k
;
4033 } /* endif pExpr->iTable==pItem->iCursor */
4034 } /* end loop over pSrcList */
4038 case TK_AGG_FUNCTION
: {
4039 if( (pNC
->ncFlags
& NC_InAggFunc
)==0
4040 && pWalker
->walkerDepth
==pExpr
->op2
4042 /* Check to see if pExpr is a duplicate of another aggregate
4043 ** function that is already in the pAggInfo structure
4045 struct AggInfo_func
*pItem
= pAggInfo
->aFunc
;
4046 for(i
=0; i
<pAggInfo
->nFunc
; i
++, pItem
++){
4047 if( sqlite3ExprCompare(pItem
->pExpr
, pExpr
)==0 ){
4051 if( i
>=pAggInfo
->nFunc
){
4052 /* pExpr is original. Make a new entry in pAggInfo->aFunc[]
4054 u8 enc
= ENC(pParse
->db
);
4055 i
= addAggInfoFunc(pParse
->db
, pAggInfo
);
4057 assert( !ExprHasProperty(pExpr
, EP_xIsSelect
) );
4058 pItem
= &pAggInfo
->aFunc
[i
];
4059 pItem
->pExpr
= pExpr
;
4060 pItem
->iMem
= ++pParse
->nMem
;
4061 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
4062 pItem
->pFunc
= sqlite3FindFunction(pParse
->db
,
4063 pExpr
->u
.zToken
, sqlite3Strlen30(pExpr
->u
.zToken
),
4064 pExpr
->x
.pList
? pExpr
->x
.pList
->nExpr
: 0, enc
, 0);
4065 if( pExpr
->flags
& EP_Distinct
){
4066 pItem
->iDistinct
= pParse
->nTab
++;
4068 pItem
->iDistinct
= -1;
4072 /* Make pExpr point to the appropriate pAggInfo->aFunc[] entry
4074 assert( !ExprHasAnyProperty(pExpr
, EP_TokenOnly
|EP_Reduced
) );
4075 ExprSetIrreducible(pExpr
);
4076 pExpr
->iAgg
= (i16
)i
;
4077 pExpr
->pAggInfo
= pAggInfo
;
4080 return WRC_Continue
;
4084 return WRC_Continue
;
4086 static int analyzeAggregatesInSelect(Walker
*pWalker
, Select
*pSelect
){
4087 UNUSED_PARAMETER(pWalker
);
4088 UNUSED_PARAMETER(pSelect
);
4089 return WRC_Continue
;
4093 ** Analyze the pExpr expression looking for aggregate functions and
4094 ** for variables that need to be added to AggInfo object that pNC->pAggInfo
4095 ** points to. Additional entries are made on the AggInfo object as
4098 ** This routine should only be called after the expression has been
4099 ** analyzed by sqlite3ResolveExprNames().
4101 void sqlite3ExprAnalyzeAggregates(NameContext
*pNC
, Expr
*pExpr
){
4103 memset(&w
, 0, sizeof(w
));
4104 w
.xExprCallback
= analyzeAggregate
;
4105 w
.xSelectCallback
= analyzeAggregatesInSelect
;
4107 assert( pNC
->pSrcList
!=0 );
4108 sqlite3WalkExpr(&w
, pExpr
);
4112 ** Call sqlite3ExprAnalyzeAggregates() for every expression in an
4113 ** expression list. Return the number of errors.
4115 ** If an error is found, the analysis is cut short.
4117 void sqlite3ExprAnalyzeAggList(NameContext
*pNC
, ExprList
*pList
){
4118 struct ExprList_item
*pItem
;
4121 for(pItem
=pList
->a
, i
=0; i
<pList
->nExpr
; i
++, pItem
++){
4122 sqlite3ExprAnalyzeAggregates(pNC
, pItem
->pExpr
);
4128 ** Allocate a single new register for use to hold some intermediate result.
4130 int sqlite3GetTempReg(Parse
*pParse
){
4131 if( pParse
->nTempReg
==0 ){
4132 return ++pParse
->nMem
;
4134 return pParse
->aTempReg
[--pParse
->nTempReg
];
4138 ** Deallocate a register, making available for reuse for some other
4141 ** If a register is currently being used by the column cache, then
4142 ** the dallocation is deferred until the column cache line that uses
4143 ** the register becomes stale.
4145 void sqlite3ReleaseTempReg(Parse
*pParse
, int iReg
){
4146 if( iReg
&& pParse
->nTempReg
<ArraySize(pParse
->aTempReg
) ){
4148 struct yColCache
*p
;
4149 for(i
=0, p
=pParse
->aColCache
; i
<SQLITE_N_COLCACHE
; i
++, p
++){
4150 if( p
->iReg
==iReg
){
4155 pParse
->aTempReg
[pParse
->nTempReg
++] = iReg
;
4160 ** Allocate or deallocate a block of nReg consecutive registers
4162 int sqlite3GetTempRange(Parse
*pParse
, int nReg
){
4164 i
= pParse
->iRangeReg
;
4165 n
= pParse
->nRangeReg
;
4167 assert( !usedAsColumnCache(pParse
, i
, i
+n
-1) );
4168 pParse
->iRangeReg
+= nReg
;
4169 pParse
->nRangeReg
-= nReg
;
4172 pParse
->nMem
+= nReg
;
4176 void sqlite3ReleaseTempRange(Parse
*pParse
, int iReg
, int nReg
){
4177 sqlite3ExprCacheRemove(pParse
, iReg
, nReg
);
4178 if( nReg
>pParse
->nRangeReg
){
4179 pParse
->nRangeReg
= nReg
;
4180 pParse
->iRangeReg
= iReg
;
4185 ** Mark all temporary registers as being unavailable for reuse.
4187 void sqlite3ClearTempRegCache(Parse
*pParse
){
4188 pParse
->nTempReg
= 0;
4189 pParse
->nRangeReg
= 0;