4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements. This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows. Indices are selected and used to speed the search when doing
16 ** so is applicable. Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
19 #include "sqliteInt.h"
23 ** Trace output macros
25 #if defined(SQLITE_TEST) || defined(SQLITE_DEBUG)
26 /***/ int sqlite3WhereTrace
= 0;
28 #if defined(SQLITE_DEBUG) \
29 && (defined(SQLITE_TEST) || defined(SQLITE_ENABLE_WHERETRACE))
30 # define WHERETRACE(X) if(sqlite3WhereTrace) sqlite3DebugPrintf X
32 # define WHERETRACE(X)
37 typedef struct WhereClause WhereClause
;
38 typedef struct WhereMaskSet WhereMaskSet
;
39 typedef struct WhereOrInfo WhereOrInfo
;
40 typedef struct WhereAndInfo WhereAndInfo
;
41 typedef struct WhereCost WhereCost
;
44 ** The query generator uses an array of instances of this structure to
45 ** help it analyze the subexpressions of the WHERE clause. Each WHERE
46 ** clause subexpression is separated from the others by AND operators,
47 ** usually, or sometimes subexpressions separated by OR.
49 ** All WhereTerms are collected into a single WhereClause structure.
50 ** The following identity holds:
52 ** WhereTerm.pWC->a[WhereTerm.idx] == WhereTerm
54 ** When a term is of the form:
58 ** where X is a column name and <op> is one of certain operators,
59 ** then WhereTerm.leftCursor and WhereTerm.u.leftColumn record the
60 ** cursor number and column number for X. WhereTerm.eOperator records
61 ** the <op> using a bitmask encoding defined by WO_xxx below. The
62 ** use of a bitmask encoding for the operator allows us to search
63 ** quickly for terms that match any of several different operators.
65 ** A WhereTerm might also be two or more subterms connected by OR:
67 ** (t1.X <op> <expr>) OR (t1.Y <op> <expr>) OR ....
69 ** In this second case, wtFlag as the TERM_ORINFO set and eOperator==WO_OR
70 ** and the WhereTerm.u.pOrInfo field points to auxiliary information that
71 ** is collected about the
73 ** If a term in the WHERE clause does not match either of the two previous
74 ** categories, then eOperator==0. The WhereTerm.pExpr field is still set
75 ** to the original subexpression content and wtFlags is set up appropriately
76 ** but no other fields in the WhereTerm object are meaningful.
78 ** When eOperator!=0, prereqRight and prereqAll record sets of cursor numbers,
79 ** but they do so indirectly. A single WhereMaskSet structure translates
80 ** cursor number into bits and the translated bit is stored in the prereq
81 ** fields. The translation is used in order to maximize the number of
82 ** bits that will fit in a Bitmask. The VDBE cursor numbers might be
83 ** spread out over the non-negative integers. For example, the cursor
84 ** numbers might be 3, 8, 9, 10, 20, 23, 41, and 45. The WhereMaskSet
85 ** translates these sparse cursor numbers into consecutive integers
86 ** beginning with 0 in order to make the best possible use of the available
87 ** bits in the Bitmask. So, in the example above, the cursor numbers
88 ** would be mapped into integers 0 through 7.
90 ** The number of terms in a join is limited by the number of bits
91 ** in prereqRight and prereqAll. The default is 64 bits, hence SQLite
92 ** is only able to process joins with 64 or fewer tables.
94 typedef struct WhereTerm WhereTerm
;
96 Expr
*pExpr
; /* Pointer to the subexpression that is this term */
97 int iParent
; /* Disable pWC->a[iParent] when this term disabled */
98 int leftCursor
; /* Cursor number of X in "X <op> <expr>" */
100 int leftColumn
; /* Column number of X in "X <op> <expr>" */
101 WhereOrInfo
*pOrInfo
; /* Extra information if (eOperator & WO_OR)!=0 */
102 WhereAndInfo
*pAndInfo
; /* Extra information if (eOperator& WO_AND)!=0 */
104 u16 eOperator
; /* A WO_xx value describing <op> */
105 u8 wtFlags
; /* TERM_xxx bit flags. See below */
106 u8 nChild
; /* Number of children that must disable us */
107 WhereClause
*pWC
; /* The clause this term is part of */
108 Bitmask prereqRight
; /* Bitmask of tables used by pExpr->pRight */
109 Bitmask prereqAll
; /* Bitmask of tables referenced by pExpr */
113 ** Allowed values of WhereTerm.wtFlags
115 #define TERM_DYNAMIC 0x01 /* Need to call sqlite3ExprDelete(db, pExpr) */
116 #define TERM_VIRTUAL 0x02 /* Added by the optimizer. Do not code */
117 #define TERM_CODED 0x04 /* This term is already coded */
118 #define TERM_COPIED 0x08 /* Has a child */
119 #define TERM_ORINFO 0x10 /* Need to free the WhereTerm.u.pOrInfo object */
120 #define TERM_ANDINFO 0x20 /* Need to free the WhereTerm.u.pAndInfo obj */
121 #define TERM_OR_OK 0x40 /* Used during OR-clause processing */
122 #ifdef SQLITE_ENABLE_STAT3
123 # define TERM_VNULL 0x80 /* Manufactured x>NULL or x<=NULL term */
125 # define TERM_VNULL 0x00 /* Disabled if not using stat3 */
129 ** An instance of the following structure holds all information about a
130 ** WHERE clause. Mostly this is a container for one or more WhereTerms.
132 ** Explanation of pOuter: For a WHERE clause of the form
134 ** a AND ((b AND c) OR (d AND e)) AND f
136 ** There are separate WhereClause objects for the whole clause and for
137 ** the subclauses "(b AND c)" and "(d AND e)". The pOuter field of the
138 ** subclauses points to the WhereClause object for the whole clause.
141 Parse
*pParse
; /* The parser context */
142 WhereMaskSet
*pMaskSet
; /* Mapping of table cursor numbers to bitmasks */
143 WhereClause
*pOuter
; /* Outer conjunction */
144 u8 op
; /* Split operator. TK_AND or TK_OR */
145 u16 wctrlFlags
; /* Might include WHERE_AND_ONLY */
146 int nTerm
; /* Number of terms */
147 int nSlot
; /* Number of entries in a[] */
148 WhereTerm
*a
; /* Each a[] describes a term of the WHERE cluase */
149 #if defined(SQLITE_SMALL_STACK)
150 WhereTerm aStatic
[1]; /* Initial static space for a[] */
152 WhereTerm aStatic
[8]; /* Initial static space for a[] */
157 ** A WhereTerm with eOperator==WO_OR has its u.pOrInfo pointer set to
158 ** a dynamically allocated instance of the following structure.
161 WhereClause wc
; /* Decomposition into subterms */
162 Bitmask indexable
; /* Bitmask of all indexable tables in the clause */
166 ** A WhereTerm with eOperator==WO_AND has its u.pAndInfo pointer set to
167 ** a dynamically allocated instance of the following structure.
169 struct WhereAndInfo
{
170 WhereClause wc
; /* The subexpression broken out */
174 ** An instance of the following structure keeps track of a mapping
175 ** between VDBE cursor numbers and bits of the bitmasks in WhereTerm.
177 ** The VDBE cursor numbers are small integers contained in
178 ** SrcList_item.iCursor and Expr.iTable fields. For any given WHERE
179 ** clause, the cursor numbers might not begin with 0 and they might
180 ** contain gaps in the numbering sequence. But we want to make maximum
181 ** use of the bits in our bitmasks. This structure provides a mapping
182 ** from the sparse cursor numbers into consecutive integers beginning
185 ** If WhereMaskSet.ix[A]==B it means that The A-th bit of a Bitmask
186 ** corresponds VDBE cursor number B. The A-th bit of a bitmask is 1<<A.
188 ** For example, if the WHERE clause expression used these VDBE
189 ** cursors: 4, 5, 8, 29, 57, 73. Then the WhereMaskSet structure
190 ** would map those cursor numbers into bits 0 through 5.
192 ** Note that the mapping is not necessarily ordered. In the example
193 ** above, the mapping might go like this: 4->3, 5->1, 8->2, 29->0,
194 ** 57->5, 73->4. Or one of 719 other combinations might be used. It
195 ** does not really matter. What is important is that sparse cursor
196 ** numbers all get mapped into bit numbers that begin with 0 and contain
199 struct WhereMaskSet
{
200 int n
; /* Number of assigned cursor values */
201 int ix
[BMS
]; /* Cursor assigned to each bit */
205 ** A WhereCost object records a lookup strategy and the estimated
206 ** cost of pursuing that strategy.
209 WherePlan plan
; /* The lookup strategy */
210 double rCost
; /* Overall cost of pursuing this search strategy */
211 Bitmask used
; /* Bitmask of cursors used by this plan */
215 ** Bitmasks for the operators that indices are able to exploit. An
216 ** OR-ed combination of these values can be used when searching for
217 ** terms in the where clause.
221 #define WO_LT (WO_EQ<<(TK_LT-TK_EQ))
222 #define WO_LE (WO_EQ<<(TK_LE-TK_EQ))
223 #define WO_GT (WO_EQ<<(TK_GT-TK_EQ))
224 #define WO_GE (WO_EQ<<(TK_GE-TK_EQ))
225 #define WO_MATCH 0x040
226 #define WO_ISNULL 0x080
227 #define WO_OR 0x100 /* Two or more OR-connected terms */
228 #define WO_AND 0x200 /* Two or more AND-connected terms */
229 #define WO_EQUIV 0x400 /* Of the form A==B, both columns */
230 #define WO_NOOP 0x800 /* This term does not restrict search space */
232 #define WO_ALL 0xfff /* Mask of all possible WO_* values */
233 #define WO_SINGLE 0x0ff /* Mask of all non-compound WO_* values */
236 ** Value for wsFlags returned by bestIndex() and stored in
237 ** WhereLevel.wsFlags. These flags determine which search
238 ** strategies are appropriate.
240 ** The least significant 12 bits is reserved as a mask for WO_ values above.
241 ** The WhereLevel.wsFlags field is usually set to WO_IN|WO_EQ|WO_ISNULL.
242 ** But if the table is the right table of a left join, WhereLevel.wsFlags
243 ** is set to WO_IN|WO_EQ. The WhereLevel.wsFlags field can then be used as
244 ** the "op" parameter to findTerm when we are resolving equality constraints.
245 ** ISNULL constraints will then not be used on the right table of a left
246 ** join. Tickets #2177 and #2189.
248 #define WHERE_ROWID_EQ 0x00001000 /* rowid=EXPR or rowid IN (...) */
249 #define WHERE_ROWID_RANGE 0x00002000 /* rowid<EXPR and/or rowid>EXPR */
250 #define WHERE_COLUMN_EQ 0x00010000 /* x=EXPR or x IN (...) or x IS NULL */
251 #define WHERE_COLUMN_RANGE 0x00020000 /* x<EXPR and/or x>EXPR */
252 #define WHERE_COLUMN_IN 0x00040000 /* x IN (...) */
253 #define WHERE_COLUMN_NULL 0x00080000 /* x IS NULL */
254 #define WHERE_INDEXED 0x000f0000 /* Anything that uses an index */
255 #define WHERE_NOT_FULLSCAN 0x100f3000 /* Does not do a full table scan */
256 #define WHERE_IN_ABLE 0x080f1000 /* Able to support an IN operator */
257 #define WHERE_TOP_LIMIT 0x00100000 /* x<EXPR or x<=EXPR constraint */
258 #define WHERE_BTM_LIMIT 0x00200000 /* x>EXPR or x>=EXPR constraint */
259 #define WHERE_BOTH_LIMIT 0x00300000 /* Both x>EXPR and x<EXPR */
260 #define WHERE_IDX_ONLY 0x00400000 /* Use index only - omit table */
261 #define WHERE_ORDERED 0x00800000 /* Output will appear in correct order */
262 #define WHERE_REVERSE 0x01000000 /* Scan in reverse order */
263 #define WHERE_UNIQUE 0x02000000 /* Selects no more than one row */
264 #define WHERE_ALL_UNIQUE 0x04000000 /* This and all prior have one row */
265 #define WHERE_OB_UNIQUE 0x00004000 /* Values in ORDER BY columns are
266 ** different for every output row */
267 #define WHERE_VIRTUALTABLE 0x08000000 /* Use virtual-table processing */
268 #define WHERE_MULTI_OR 0x10000000 /* OR using multiple indices */
269 #define WHERE_TEMP_INDEX 0x20000000 /* Uses an ephemeral index */
270 #define WHERE_DISTINCT 0x40000000 /* Correct order for DISTINCT */
271 #define WHERE_COVER_SCAN 0x80000000 /* Full scan of a covering index */
274 ** This module contains many separate subroutines that work together to
275 ** find the best indices to use for accessing a particular table in a query.
276 ** An instance of the following structure holds context information about the
277 ** index search so that it can be more easily passed between the various
280 typedef struct WhereBestIdx WhereBestIdx
;
281 struct WhereBestIdx
{
282 Parse
*pParse
; /* Parser context */
283 WhereClause
*pWC
; /* The WHERE clause */
284 struct SrcList_item
*pSrc
; /* The FROM clause term to search */
285 Bitmask notReady
; /* Mask of cursors not available */
286 Bitmask notValid
; /* Cursors not available for any purpose */
287 ExprList
*pOrderBy
; /* The ORDER BY clause */
288 ExprList
*pDistinct
; /* The select-list if query is DISTINCT */
289 sqlite3_index_info
**ppIdxInfo
; /* Index information passed to xBestIndex */
290 int i
, n
; /* Which loop is being coded; # of loops */
291 WhereLevel
*aLevel
; /* Info about outer loops */
292 WhereCost cost
; /* Lowest cost query plan */
296 ** Return TRUE if the probe cost is less than the baseline cost
298 static int compareCost(const WhereCost
*pProbe
, const WhereCost
*pBaseline
){
299 if( pProbe
->rCost
<pBaseline
->rCost
) return 1;
300 if( pProbe
->rCost
>pBaseline
->rCost
) return 0;
301 if( pProbe
->plan
.nOBSat
>pBaseline
->plan
.nOBSat
) return 1;
302 if( pProbe
->plan
.nRow
<pBaseline
->plan
.nRow
) return 1;
307 ** Initialize a preallocated WhereClause structure.
309 static void whereClauseInit(
310 WhereClause
*pWC
, /* The WhereClause to be initialized */
311 Parse
*pParse
, /* The parsing context */
312 WhereMaskSet
*pMaskSet
, /* Mapping from table cursor numbers to bitmasks */
313 u16 wctrlFlags
/* Might include WHERE_AND_ONLY */
315 pWC
->pParse
= pParse
;
316 pWC
->pMaskSet
= pMaskSet
;
319 pWC
->nSlot
= ArraySize(pWC
->aStatic
);
320 pWC
->a
= pWC
->aStatic
;
321 pWC
->wctrlFlags
= wctrlFlags
;
324 /* Forward reference */
325 static void whereClauseClear(WhereClause
*);
328 ** Deallocate all memory associated with a WhereOrInfo object.
330 static void whereOrInfoDelete(sqlite3
*db
, WhereOrInfo
*p
){
331 whereClauseClear(&p
->wc
);
332 sqlite3DbFree(db
, p
);
336 ** Deallocate all memory associated with a WhereAndInfo object.
338 static void whereAndInfoDelete(sqlite3
*db
, WhereAndInfo
*p
){
339 whereClauseClear(&p
->wc
);
340 sqlite3DbFree(db
, p
);
344 ** Deallocate a WhereClause structure. The WhereClause structure
345 ** itself is not freed. This routine is the inverse of whereClauseInit().
347 static void whereClauseClear(WhereClause
*pWC
){
350 sqlite3
*db
= pWC
->pParse
->db
;
351 for(i
=pWC
->nTerm
-1, a
=pWC
->a
; i
>=0; i
--, a
++){
352 if( a
->wtFlags
& TERM_DYNAMIC
){
353 sqlite3ExprDelete(db
, a
->pExpr
);
355 if( a
->wtFlags
& TERM_ORINFO
){
356 whereOrInfoDelete(db
, a
->u
.pOrInfo
);
357 }else if( a
->wtFlags
& TERM_ANDINFO
){
358 whereAndInfoDelete(db
, a
->u
.pAndInfo
);
361 if( pWC
->a
!=pWC
->aStatic
){
362 sqlite3DbFree(db
, pWC
->a
);
367 ** Add a single new WhereTerm entry to the WhereClause object pWC.
368 ** The new WhereTerm object is constructed from Expr p and with wtFlags.
369 ** The index in pWC->a[] of the new WhereTerm is returned on success.
370 ** 0 is returned if the new WhereTerm could not be added due to a memory
371 ** allocation error. The memory allocation failure will be recorded in
372 ** the db->mallocFailed flag so that higher-level functions can detect it.
374 ** This routine will increase the size of the pWC->a[] array as necessary.
376 ** If the wtFlags argument includes TERM_DYNAMIC, then responsibility
377 ** for freeing the expression p is assumed by the WhereClause object pWC.
378 ** This is true even if this routine fails to allocate a new WhereTerm.
380 ** WARNING: This routine might reallocate the space used to store
381 ** WhereTerms. All pointers to WhereTerms should be invalidated after
382 ** calling this routine. Such pointers may be reinitialized by referencing
383 ** the pWC->a[] array.
385 static int whereClauseInsert(WhereClause
*pWC
, Expr
*p
, u8 wtFlags
){
388 testcase( wtFlags
& TERM_VIRTUAL
); /* EV: R-00211-15100 */
389 if( pWC
->nTerm
>=pWC
->nSlot
){
390 WhereTerm
*pOld
= pWC
->a
;
391 sqlite3
*db
= pWC
->pParse
->db
;
392 pWC
->a
= sqlite3DbMallocRaw(db
, sizeof(pWC
->a
[0])*pWC
->nSlot
*2 );
394 if( wtFlags
& TERM_DYNAMIC
){
395 sqlite3ExprDelete(db
, p
);
400 memcpy(pWC
->a
, pOld
, sizeof(pWC
->a
[0])*pWC
->nTerm
);
401 if( pOld
!=pWC
->aStatic
){
402 sqlite3DbFree(db
, pOld
);
404 pWC
->nSlot
= sqlite3DbMallocSize(db
, pWC
->a
)/sizeof(pWC
->a
[0]);
406 pTerm
= &pWC
->a
[idx
= pWC
->nTerm
++];
407 pTerm
->pExpr
= sqlite3ExprSkipCollate(p
);
408 pTerm
->wtFlags
= wtFlags
;
415 ** This routine identifies subexpressions in the WHERE clause where
416 ** each subexpression is separated by the AND operator or some other
417 ** operator specified in the op parameter. The WhereClause structure
418 ** is filled with pointers to subexpressions. For example:
420 ** WHERE a=='hello' AND coalesce(b,11)<10 AND (c+12!=d OR c==22)
421 ** \________/ \_______________/ \________________/
422 ** slot[0] slot[1] slot[2]
424 ** The original WHERE clause in pExpr is unaltered. All this routine
425 ** does is make slot[] entries point to substructure within pExpr.
427 ** In the previous sentence and in the diagram, "slot[]" refers to
428 ** the WhereClause.a[] array. The slot[] array grows as needed to contain
429 ** all terms of the WHERE clause.
431 static void whereSplit(WhereClause
*pWC
, Expr
*pExpr
, int op
){
433 if( pExpr
==0 ) return;
435 whereClauseInsert(pWC
, pExpr
, 0);
437 whereSplit(pWC
, pExpr
->pLeft
, op
);
438 whereSplit(pWC
, pExpr
->pRight
, op
);
443 ** Initialize an expression mask set (a WhereMaskSet object)
445 #define initMaskSet(P) memset(P, 0, sizeof(*P))
448 ** Return the bitmask for the given cursor number. Return 0 if
449 ** iCursor is not in the set.
451 static Bitmask
getMask(WhereMaskSet
*pMaskSet
, int iCursor
){
453 assert( pMaskSet
->n
<=(int)sizeof(Bitmask
)*8 );
454 for(i
=0; i
<pMaskSet
->n
; i
++){
455 if( pMaskSet
->ix
[i
]==iCursor
){
456 return ((Bitmask
)1)<<i
;
463 ** Create a new mask for cursor iCursor.
465 ** There is one cursor per table in the FROM clause. The number of
466 ** tables in the FROM clause is limited by a test early in the
467 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
468 ** array will never overflow.
470 static void createMask(WhereMaskSet
*pMaskSet
, int iCursor
){
471 assert( pMaskSet
->n
< ArraySize(pMaskSet
->ix
) );
472 pMaskSet
->ix
[pMaskSet
->n
++] = iCursor
;
476 ** This routine walks (recursively) an expression tree and generates
477 ** a bitmask indicating which tables are used in that expression
480 ** In order for this routine to work, the calling function must have
481 ** previously invoked sqlite3ResolveExprNames() on the expression. See
482 ** the header comment on that routine for additional information.
483 ** The sqlite3ResolveExprNames() routines looks for column names and
484 ** sets their opcodes to TK_COLUMN and their Expr.iTable fields to
485 ** the VDBE cursor number of the table. This routine just has to
486 ** translate the cursor numbers into bitmask values and OR all
487 ** the bitmasks together.
489 static Bitmask
exprListTableUsage(WhereMaskSet
*, ExprList
*);
490 static Bitmask
exprSelectTableUsage(WhereMaskSet
*, Select
*);
491 static Bitmask
exprTableUsage(WhereMaskSet
*pMaskSet
, Expr
*p
){
494 if( p
->op
==TK_COLUMN
){
495 mask
= getMask(pMaskSet
, p
->iTable
);
498 mask
= exprTableUsage(pMaskSet
, p
->pRight
);
499 mask
|= exprTableUsage(pMaskSet
, p
->pLeft
);
500 if( ExprHasProperty(p
, EP_xIsSelect
) ){
501 mask
|= exprSelectTableUsage(pMaskSet
, p
->x
.pSelect
);
503 mask
|= exprListTableUsage(pMaskSet
, p
->x
.pList
);
507 static Bitmask
exprListTableUsage(WhereMaskSet
*pMaskSet
, ExprList
*pList
){
511 for(i
=0; i
<pList
->nExpr
; i
++){
512 mask
|= exprTableUsage(pMaskSet
, pList
->a
[i
].pExpr
);
517 static Bitmask
exprSelectTableUsage(WhereMaskSet
*pMaskSet
, Select
*pS
){
520 SrcList
*pSrc
= pS
->pSrc
;
521 mask
|= exprListTableUsage(pMaskSet
, pS
->pEList
);
522 mask
|= exprListTableUsage(pMaskSet
, pS
->pGroupBy
);
523 mask
|= exprListTableUsage(pMaskSet
, pS
->pOrderBy
);
524 mask
|= exprTableUsage(pMaskSet
, pS
->pWhere
);
525 mask
|= exprTableUsage(pMaskSet
, pS
->pHaving
);
526 if( ALWAYS(pSrc
!=0) ){
528 for(i
=0; i
<pSrc
->nSrc
; i
++){
529 mask
|= exprSelectTableUsage(pMaskSet
, pSrc
->a
[i
].pSelect
);
530 mask
|= exprTableUsage(pMaskSet
, pSrc
->a
[i
].pOn
);
539 ** Return TRUE if the given operator is one of the operators that is
540 ** allowed for an indexable WHERE clause term. The allowed operators are
541 ** "=", "<", ">", "<=", ">=", and "IN".
543 ** IMPLEMENTATION-OF: R-59926-26393 To be usable by an index a term must be
544 ** of one of the following forms: column = expression column > expression
545 ** column >= expression column < expression column <= expression
546 ** expression = column expression > column expression >= column
547 ** expression < column expression <= column column IN
548 ** (expression-list) column IN (subquery) column IS NULL
550 static int allowedOp(int op
){
551 assert( TK_GT
>TK_EQ
&& TK_GT
<TK_GE
);
552 assert( TK_LT
>TK_EQ
&& TK_LT
<TK_GE
);
553 assert( TK_LE
>TK_EQ
&& TK_LE
<TK_GE
);
554 assert( TK_GE
==TK_EQ
+4 );
555 return op
==TK_IN
|| (op
>=TK_EQ
&& op
<=TK_GE
) || op
==TK_ISNULL
;
559 ** Swap two objects of type TYPE.
561 #define SWAP(TYPE,A,B) {TYPE t=A; A=B; B=t;}
564 ** Commute a comparison operator. Expressions of the form "X op Y"
565 ** are converted into "Y op X".
567 ** If left/right precedence rules come into play when determining the
569 ** side of the comparison, it remains associated with the same side after
570 ** the commutation. So "Y collate NOCASE op X" becomes
571 ** "X op Y". This is because any collation sequence on
572 ** the left hand side of a comparison overrides any collation sequence
573 ** attached to the right. For the same reason the EP_Collate flag
576 static void exprCommute(Parse
*pParse
, Expr
*pExpr
){
577 u16 expRight
= (pExpr
->pRight
->flags
& EP_Collate
);
578 u16 expLeft
= (pExpr
->pLeft
->flags
& EP_Collate
);
579 assert( allowedOp(pExpr
->op
) && pExpr
->op
!=TK_IN
);
580 if( expRight
==expLeft
){
581 /* Either X and Y both have COLLATE operator or neither do */
583 /* Both X and Y have COLLATE operators. Make sure X is always
584 ** used by clearing the EP_Collate flag from Y. */
585 pExpr
->pRight
->flags
&= ~EP_Collate
;
586 }else if( sqlite3ExprCollSeq(pParse
, pExpr
->pLeft
)!=0 ){
587 /* Neither X nor Y have COLLATE operators, but X has a non-default
588 ** collating sequence. So add the EP_Collate marker on X to cause
589 ** it to be searched first. */
590 pExpr
->pLeft
->flags
|= EP_Collate
;
593 SWAP(Expr
*,pExpr
->pRight
,pExpr
->pLeft
);
594 if( pExpr
->op
>=TK_GT
){
595 assert( TK_LT
==TK_GT
+2 );
596 assert( TK_GE
==TK_LE
+2 );
597 assert( TK_GT
>TK_EQ
);
598 assert( TK_GT
<TK_LE
);
599 assert( pExpr
->op
>=TK_GT
&& pExpr
->op
<=TK_GE
);
600 pExpr
->op
= ((pExpr
->op
-TK_GT
)^2)+TK_GT
;
605 ** Translate from TK_xx operator to WO_xx bitmask.
607 static u16
operatorMask(int op
){
609 assert( allowedOp(op
) );
612 }else if( op
==TK_ISNULL
){
615 assert( (WO_EQ
<<(op
-TK_EQ
)) < 0x7fff );
616 c
= (u16
)(WO_EQ
<<(op
-TK_EQ
));
618 assert( op
!=TK_ISNULL
|| c
==WO_ISNULL
);
619 assert( op
!=TK_IN
|| c
==WO_IN
);
620 assert( op
!=TK_EQ
|| c
==WO_EQ
);
621 assert( op
!=TK_LT
|| c
==WO_LT
);
622 assert( op
!=TK_LE
|| c
==WO_LE
);
623 assert( op
!=TK_GT
|| c
==WO_GT
);
624 assert( op
!=TK_GE
|| c
==WO_GE
);
629 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
630 ** where X is a reference to the iColumn of table iCur and <op> is one of
631 ** the WO_xx operator codes specified by the op parameter.
632 ** Return a pointer to the term. Return 0 if not found.
634 ** The term returned might by Y=<expr> if there is another constraint in
635 ** the WHERE clause that specifies that X=Y. Any such constraints will be
636 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The
637 ** aEquiv[] array holds X and all its equivalents, with each SQL variable
638 ** taking up two slots in aEquiv[]. The first slot is for the cursor number
639 ** and the second is for the column number. There are 22 slots in aEquiv[]
640 ** so that means we can look for X plus up to 10 other equivalent values.
641 ** Hence a search for X will return <expr> if X=A1 and A1=A2 and A2=A3
642 ** and ... and A9=A10 and A10=<expr>.
644 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
645 ** then try for the one with no dependencies on <expr> - in other words where
646 ** <expr> is a constant expression of some kind. Only return entries of
647 ** the form "X <op> Y" where Y is a column in another table if no terms of
648 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS
649 ** exist, try to return a term that does not use WO_EQUIV.
651 static WhereTerm
*findTerm(
652 WhereClause
*pWC
, /* The WHERE clause to be searched */
653 int iCur
, /* Cursor number of LHS */
654 int iColumn
, /* Column number of LHS */
655 Bitmask notReady
, /* RHS must not overlap with this mask */
656 u32 op
, /* Mask of WO_xx values describing operator */
657 Index
*pIdx
/* Must be compatible with this index, if not NULL */
659 WhereTerm
*pTerm
; /* Term being examined as possible result */
660 WhereTerm
*pResult
= 0; /* The answer to return */
661 WhereClause
*pWCOrig
= pWC
; /* Original pWC value */
662 int j
, k
; /* Loop counters */
663 Expr
*pX
; /* Pointer to an expression */
664 Parse
*pParse
; /* Parsing context */
665 int iOrigCol
= iColumn
; /* Original value of iColumn */
666 int nEquiv
= 2; /* Number of entires in aEquiv[] */
667 int iEquiv
= 2; /* Number of entries of aEquiv[] processed so far */
668 int aEquiv
[22]; /* iCur,iColumn and up to 10 other equivalents */
674 for(pWC
=pWCOrig
; pWC
; pWC
=pWC
->pOuter
){
675 for(pTerm
=pWC
->a
, k
=pWC
->nTerm
; k
; k
--, pTerm
++){
676 if( pTerm
->leftCursor
==iCur
677 && pTerm
->u
.leftColumn
==iColumn
679 if( (pTerm
->prereqRight
& notReady
)==0
680 && (pTerm
->eOperator
& op
& WO_ALL
)!=0
682 if( iOrigCol
>=0 && pIdx
&& (pTerm
->eOperator
& WO_ISNULL
)==0 ){
687 pParse
= pWC
->pParse
;
688 idxaff
= pIdx
->pTable
->aCol
[iOrigCol
].affinity
;
689 if( !sqlite3IndexAffinityOk(pX
, idxaff
) ){
693 /* Figure out the collation sequence required from an index for
694 ** it to be useful for optimising expression pX. Store this
695 ** value in variable pColl.
698 pColl
= sqlite3BinaryCompareCollSeq(pParse
,pX
->pLeft
,pX
->pRight
);
699 if( pColl
==0 ) pColl
= pParse
->db
->pDfltColl
;
701 for(j
=0; pIdx
->aiColumn
[j
]!=iOrigCol
; j
++){
702 if( NEVER(j
>=pIdx
->nColumn
) ) return 0;
704 if( sqlite3StrICmp(pColl
->zName
, pIdx
->azColl
[j
]) ){
708 if( pTerm
->prereqRight
==0 && (pTerm
->eOperator
&WO_EQ
)!=0 ){
710 goto findTerm_success
;
711 }else if( pResult
==0 ){
715 if( (pTerm
->eOperator
& WO_EQUIV
)!=0
716 && nEquiv
<ArraySize(aEquiv
)
718 pX
= sqlite3ExprSkipCollate(pTerm
->pExpr
->pRight
);
719 assert( pX
->op
==TK_COLUMN
);
720 for(j
=0; j
<nEquiv
; j
+=2){
721 if( aEquiv
[j
]==pX
->iTable
&& aEquiv
[j
+1]==pX
->iColumn
) break;
724 aEquiv
[j
] = pX
->iTable
;
725 aEquiv
[j
+1] = pX
->iColumn
;
732 if( iEquiv
>=nEquiv
) break;
733 iCur
= aEquiv
[iEquiv
++];
734 iColumn
= aEquiv
[iEquiv
++];
740 /* Forward reference */
741 static void exprAnalyze(SrcList
*, WhereClause
*, int);
744 ** Call exprAnalyze on all terms in a WHERE clause.
748 static void exprAnalyzeAll(
749 SrcList
*pTabList
, /* the FROM clause */
750 WhereClause
*pWC
/* the WHERE clause to be analyzed */
753 for(i
=pWC
->nTerm
-1; i
>=0; i
--){
754 exprAnalyze(pTabList
, pWC
, i
);
758 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
760 ** Check to see if the given expression is a LIKE or GLOB operator that
761 ** can be optimized using inequality constraints. Return TRUE if it is
762 ** so and false if not.
764 ** In order for the operator to be optimizible, the RHS must be a string
765 ** literal that does not begin with a wildcard.
767 static int isLikeOrGlob(
768 Parse
*pParse
, /* Parsing and code generating context */
769 Expr
*pExpr
, /* Test this expression */
770 Expr
**ppPrefix
, /* Pointer to TK_STRING expression with pattern prefix */
771 int *pisComplete
, /* True if the only wildcard is % in the last character */
772 int *pnoCase
/* True if uppercase is equivalent to lowercase */
774 const char *z
= 0; /* String on RHS of LIKE operator */
775 Expr
*pRight
, *pLeft
; /* Right and left size of LIKE operator */
776 ExprList
*pList
; /* List of operands to the LIKE operator */
777 int c
; /* One character in z[] */
778 int cnt
; /* Number of non-wildcard prefix characters */
779 char wc
[3]; /* Wildcard characters */
780 sqlite3
*db
= pParse
->db
; /* Database connection */
781 sqlite3_value
*pVal
= 0;
782 int op
; /* Opcode of pRight */
784 if( !sqlite3IsLikeFunction(db
, pExpr
, pnoCase
, wc
) ){
788 if( *pnoCase
) return 0;
790 pList
= pExpr
->x
.pList
;
791 pLeft
= pList
->a
[1].pExpr
;
792 if( pLeft
->op
!=TK_COLUMN
793 || sqlite3ExprAffinity(pLeft
)!=SQLITE_AFF_TEXT
794 || IsVirtual(pLeft
->pTab
)
796 /* IMP: R-02065-49465 The left-hand side of the LIKE or GLOB operator must
797 ** be the name of an indexed column with TEXT affinity. */
800 assert( pLeft
->iColumn
!=(-1) ); /* Because IPK never has AFF_TEXT */
802 pRight
= pList
->a
[0].pExpr
;
804 if( op
==TK_REGISTER
){
807 if( op
==TK_VARIABLE
){
808 Vdbe
*pReprepare
= pParse
->pReprepare
;
809 int iCol
= pRight
->iColumn
;
810 pVal
= sqlite3VdbeGetValue(pReprepare
, iCol
, SQLITE_AFF_NONE
);
811 if( pVal
&& sqlite3_value_type(pVal
)==SQLITE_TEXT
){
812 z
= (char *)sqlite3_value_text(pVal
);
814 sqlite3VdbeSetVarmask(pParse
->pVdbe
, iCol
);
815 assert( pRight
->op
==TK_VARIABLE
|| pRight
->op
==TK_REGISTER
);
816 }else if( op
==TK_STRING
){
817 z
= pRight
->u
.zToken
;
821 while( (c
=z
[cnt
])!=0 && c
!=wc
[0] && c
!=wc
[1] && c
!=wc
[2] ){
824 if( cnt
!=0 && 255!=(u8
)z
[cnt
-1] ){
826 *pisComplete
= c
==wc
[0] && z
[cnt
+1]==0;
827 pPrefix
= sqlite3Expr(db
, TK_STRING
, z
);
828 if( pPrefix
) pPrefix
->u
.zToken
[cnt
] = 0;
830 if( op
==TK_VARIABLE
){
831 Vdbe
*v
= pParse
->pVdbe
;
832 sqlite3VdbeSetVarmask(v
, pRight
->iColumn
);
833 if( *pisComplete
&& pRight
->u
.zToken
[1] ){
834 /* If the rhs of the LIKE expression is a variable, and the current
835 ** value of the variable means there is no need to invoke the LIKE
836 ** function, then no OP_Variable will be added to the program.
837 ** This causes problems for the sqlite3_bind_parameter_name()
838 ** API. To workaround them, add a dummy OP_Variable here.
840 int r1
= sqlite3GetTempReg(pParse
);
841 sqlite3ExprCodeTarget(pParse
, pRight
, r1
);
842 sqlite3VdbeChangeP3(v
, sqlite3VdbeCurrentAddr(v
)-1, 0);
843 sqlite3ReleaseTempReg(pParse
, r1
);
851 sqlite3ValueFree(pVal
);
854 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
857 #ifndef SQLITE_OMIT_VIRTUALTABLE
859 ** Check to see if the given expression is of the form
863 ** If it is then return TRUE. If not, return FALSE.
865 static int isMatchOfColumn(
866 Expr
*pExpr
/* Test this expression */
870 if( pExpr
->op
!=TK_FUNCTION
){
873 if( sqlite3StrICmp(pExpr
->u
.zToken
,"match")!=0 ){
876 pList
= pExpr
->x
.pList
;
877 if( pList
->nExpr
!=2 ){
880 if( pList
->a
[1].pExpr
->op
!= TK_COLUMN
){
885 #endif /* SQLITE_OMIT_VIRTUALTABLE */
888 ** If the pBase expression originated in the ON or USING clause of
889 ** a join, then transfer the appropriate markings over to derived.
891 static void transferJoinMarkings(Expr
*pDerived
, Expr
*pBase
){
892 pDerived
->flags
|= pBase
->flags
& EP_FromJoin
;
893 pDerived
->iRightJoinTable
= pBase
->iRightJoinTable
;
896 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
898 ** Analyze a term that consists of two or more OR-connected
901 ** ... WHERE (a=5) AND (b=7 OR c=9 OR d=13) AND (d=13)
902 ** ^^^^^^^^^^^^^^^^^^^^
904 ** This routine analyzes terms such as the middle term in the above example.
905 ** A WhereOrTerm object is computed and attached to the term under
906 ** analysis, regardless of the outcome of the analysis. Hence:
908 ** WhereTerm.wtFlags |= TERM_ORINFO
909 ** WhereTerm.u.pOrInfo = a dynamically allocated WhereOrTerm object
911 ** The term being analyzed must have two or more of OR-connected subterms.
912 ** A single subterm might be a set of AND-connected sub-subterms.
913 ** Examples of terms under analysis:
915 ** (A) t1.x=t2.y OR t1.x=t2.z OR t1.y=15 OR t1.z=t3.a+5
916 ** (B) x=expr1 OR expr2=x OR x=expr3
917 ** (C) t1.x=t2.y OR (t1.x=t2.z AND t1.y=15)
918 ** (D) x=expr1 OR (y>11 AND y<22 AND z LIKE '*hello*')
919 ** (E) (p.a=1 AND q.b=2 AND r.c=3) OR (p.x=4 AND q.y=5 AND r.z=6)
923 ** If all subterms are of the form T.C=expr for some single column of C and
924 ** a single table T (as shown in example B above) then create a new virtual
925 ** term that is an equivalent IN expression. In other words, if the term
926 ** being analyzed is:
928 ** x = expr1 OR expr2 = x OR x = expr3
930 ** then create a new virtual term like this:
932 ** x IN (expr1,expr2,expr3)
936 ** If all subterms are indexable by a single table T, then set
938 ** WhereTerm.eOperator = WO_OR
939 ** WhereTerm.u.pOrInfo->indexable |= the cursor number for table T
941 ** A subterm is "indexable" if it is of the form
942 ** "T.C <op> <expr>" where C is any column of table T and
943 ** <op> is one of "=", "<", "<=", ">", ">=", "IS NULL", or "IN".
944 ** A subterm is also indexable if it is an AND of two or more
945 ** subsubterms at least one of which is indexable. Indexable AND
946 ** subterms have their eOperator set to WO_AND and they have
947 ** u.pAndInfo set to a dynamically allocated WhereAndTerm object.
949 ** From another point of view, "indexable" means that the subterm could
950 ** potentially be used with an index if an appropriate index exists.
951 ** This analysis does not consider whether or not the index exists; that
952 ** is something the bestIndex() routine will determine. This analysis
953 ** only looks at whether subterms appropriate for indexing exist.
955 ** All examples A through E above all satisfy case 2. But if a term
956 ** also statisfies case 1 (such as B) we know that the optimizer will
957 ** always prefer case 1, so in that case we pretend that case 2 is not
960 ** It might be the case that multiple tables are indexable. For example,
961 ** (E) above is indexable on tables P, Q, and R.
963 ** Terms that satisfy case 2 are candidates for lookup by using
964 ** separate indices to find rowids for each subterm and composing
965 ** the union of all rowids using a RowSet object. This is similar
966 ** to "bitmap indices" in other database engines.
970 ** If neither case 1 nor case 2 apply, then leave the eOperator set to
971 ** zero. This term is not useful for search.
973 static void exprAnalyzeOrTerm(
974 SrcList
*pSrc
, /* the FROM clause */
975 WhereClause
*pWC
, /* the complete WHERE clause */
976 int idxTerm
/* Index of the OR-term to be analyzed */
978 Parse
*pParse
= pWC
->pParse
; /* Parser context */
979 sqlite3
*db
= pParse
->db
; /* Database connection */
980 WhereTerm
*pTerm
= &pWC
->a
[idxTerm
]; /* The term to be analyzed */
981 Expr
*pExpr
= pTerm
->pExpr
; /* The expression of the term */
982 WhereMaskSet
*pMaskSet
= pWC
->pMaskSet
; /* Table use masks */
983 int i
; /* Loop counters */
984 WhereClause
*pOrWc
; /* Breakup of pTerm into subterms */
985 WhereTerm
*pOrTerm
; /* A Sub-term within the pOrWc */
986 WhereOrInfo
*pOrInfo
; /* Additional information associated with pTerm */
987 Bitmask chngToIN
; /* Tables that might satisfy case 1 */
988 Bitmask indexable
; /* Tables that are indexable, satisfying case 2 */
991 ** Break the OR clause into its separate subterms. The subterms are
992 ** stored in a WhereClause structure containing within the WhereOrInfo
993 ** object that is attached to the original OR clause term.
995 assert( (pTerm
->wtFlags
& (TERM_DYNAMIC
|TERM_ORINFO
|TERM_ANDINFO
))==0 );
996 assert( pExpr
->op
==TK_OR
);
997 pTerm
->u
.pOrInfo
= pOrInfo
= sqlite3DbMallocZero(db
, sizeof(*pOrInfo
));
998 if( pOrInfo
==0 ) return;
999 pTerm
->wtFlags
|= TERM_ORINFO
;
1000 pOrWc
= &pOrInfo
->wc
;
1001 whereClauseInit(pOrWc
, pWC
->pParse
, pMaskSet
, pWC
->wctrlFlags
);
1002 whereSplit(pOrWc
, pExpr
, TK_OR
);
1003 exprAnalyzeAll(pSrc
, pOrWc
);
1004 if( db
->mallocFailed
) return;
1005 assert( pOrWc
->nTerm
>=2 );
1008 ** Compute the set of tables that might satisfy cases 1 or 2.
1010 indexable
= ~(Bitmask
)0;
1011 chngToIN
= ~(Bitmask
)0;
1012 for(i
=pOrWc
->nTerm
-1, pOrTerm
=pOrWc
->a
; i
>=0 && indexable
; i
--, pOrTerm
++){
1013 if( (pOrTerm
->eOperator
& WO_SINGLE
)==0 ){
1014 WhereAndInfo
*pAndInfo
;
1015 assert( (pOrTerm
->wtFlags
& (TERM_ANDINFO
|TERM_ORINFO
))==0 );
1017 pAndInfo
= sqlite3DbMallocRaw(db
, sizeof(*pAndInfo
));
1019 WhereClause
*pAndWC
;
1020 WhereTerm
*pAndTerm
;
1023 pOrTerm
->u
.pAndInfo
= pAndInfo
;
1024 pOrTerm
->wtFlags
|= TERM_ANDINFO
;
1025 pOrTerm
->eOperator
= WO_AND
;
1026 pAndWC
= &pAndInfo
->wc
;
1027 whereClauseInit(pAndWC
, pWC
->pParse
, pMaskSet
, pWC
->wctrlFlags
);
1028 whereSplit(pAndWC
, pOrTerm
->pExpr
, TK_AND
);
1029 exprAnalyzeAll(pSrc
, pAndWC
);
1030 pAndWC
->pOuter
= pWC
;
1031 testcase( db
->mallocFailed
);
1032 if( !db
->mallocFailed
){
1033 for(j
=0, pAndTerm
=pAndWC
->a
; j
<pAndWC
->nTerm
; j
++, pAndTerm
++){
1034 assert( pAndTerm
->pExpr
);
1035 if( allowedOp(pAndTerm
->pExpr
->op
) ){
1036 b
|= getMask(pMaskSet
, pAndTerm
->leftCursor
);
1042 }else if( pOrTerm
->wtFlags
& TERM_COPIED
){
1043 /* Skip this term for now. We revisit it when we process the
1044 ** corresponding TERM_VIRTUAL term */
1047 b
= getMask(pMaskSet
, pOrTerm
->leftCursor
);
1048 if( pOrTerm
->wtFlags
& TERM_VIRTUAL
){
1049 WhereTerm
*pOther
= &pOrWc
->a
[pOrTerm
->iParent
];
1050 b
|= getMask(pMaskSet
, pOther
->leftCursor
);
1053 if( (pOrTerm
->eOperator
& WO_EQ
)==0 ){
1062 ** Record the set of tables that satisfy case 2. The set might be
1065 pOrInfo
->indexable
= indexable
;
1066 pTerm
->eOperator
= indexable
==0 ? 0 : WO_OR
;
1069 ** chngToIN holds a set of tables that *might* satisfy case 1. But
1070 ** we have to do some additional checking to see if case 1 really
1073 ** chngToIN will hold either 0, 1, or 2 bits. The 0-bit case means
1074 ** that there is no possibility of transforming the OR clause into an
1075 ** IN operator because one or more terms in the OR clause contain
1076 ** something other than == on a column in the single table. The 1-bit
1077 ** case means that every term of the OR clause is of the form
1078 ** "table.column=expr" for some single table. The one bit that is set
1079 ** will correspond to the common table. We still need to check to make
1080 ** sure the same column is used on all terms. The 2-bit case is when
1081 ** the all terms are of the form "table1.column=table2.column". It
1082 ** might be possible to form an IN operator with either table1.column
1083 ** or table2.column as the LHS if either is common to every term of
1086 ** Note that terms of the form "table.column1=table.column2" (the
1087 ** same table on both sizes of the ==) cannot be optimized.
1090 int okToChngToIN
= 0; /* True if the conversion to IN is valid */
1091 int iColumn
= -1; /* Column index on lhs of IN operator */
1092 int iCursor
= -1; /* Table cursor common to all terms */
1093 int j
= 0; /* Loop counter */
1095 /* Search for a table and column that appears on one side or the
1096 ** other of the == operator in every subterm. That table and column
1097 ** will be recorded in iCursor and iColumn. There might not be any
1098 ** such table and column. Set okToChngToIN if an appropriate table
1099 ** and column is found but leave okToChngToIN false if not found.
1101 for(j
=0; j
<2 && !okToChngToIN
; j
++){
1103 for(i
=pOrWc
->nTerm
-1; i
>=0; i
--, pOrTerm
++){
1104 assert( pOrTerm
->eOperator
& WO_EQ
);
1105 pOrTerm
->wtFlags
&= ~TERM_OR_OK
;
1106 if( pOrTerm
->leftCursor
==iCursor
){
1107 /* This is the 2-bit case and we are on the second iteration and
1108 ** current term is from the first iteration. So skip this term. */
1112 if( (chngToIN
& getMask(pMaskSet
, pOrTerm
->leftCursor
))==0 ){
1113 /* This term must be of the form t1.a==t2.b where t2 is in the
1114 ** chngToIN set but t1 is not. This term will be either preceeded
1115 ** or follwed by an inverted copy (t2.b==t1.a). Skip this term
1116 ** and use its inversion. */
1117 testcase( pOrTerm
->wtFlags
& TERM_COPIED
);
1118 testcase( pOrTerm
->wtFlags
& TERM_VIRTUAL
);
1119 assert( pOrTerm
->wtFlags
& (TERM_COPIED
|TERM_VIRTUAL
) );
1122 iColumn
= pOrTerm
->u
.leftColumn
;
1123 iCursor
= pOrTerm
->leftCursor
;
1127 /* No candidate table+column was found. This can only occur
1128 ** on the second iteration */
1130 assert( IsPowerOfTwo(chngToIN
) );
1131 assert( chngToIN
==getMask(pMaskSet
, iCursor
) );
1136 /* We have found a candidate table and column. Check to see if that
1137 ** table and column is common to every term in the OR clause */
1139 for(; i
>=0 && okToChngToIN
; i
--, pOrTerm
++){
1140 assert( pOrTerm
->eOperator
& WO_EQ
);
1141 if( pOrTerm
->leftCursor
!=iCursor
){
1142 pOrTerm
->wtFlags
&= ~TERM_OR_OK
;
1143 }else if( pOrTerm
->u
.leftColumn
!=iColumn
){
1146 int affLeft
, affRight
;
1147 /* If the right-hand side is also a column, then the affinities
1148 ** of both right and left sides must be such that no type
1149 ** conversions are required on the right. (Ticket #2249)
1151 affRight
= sqlite3ExprAffinity(pOrTerm
->pExpr
->pRight
);
1152 affLeft
= sqlite3ExprAffinity(pOrTerm
->pExpr
->pLeft
);
1153 if( affRight
!=0 && affRight
!=affLeft
){
1156 pOrTerm
->wtFlags
|= TERM_OR_OK
;
1162 /* At this point, okToChngToIN is true if original pTerm satisfies
1163 ** case 1. In that case, construct a new virtual term that is
1164 ** pTerm converted into an IN operator.
1166 ** EV: R-00211-15100
1169 Expr
*pDup
; /* A transient duplicate expression */
1170 ExprList
*pList
= 0; /* The RHS of the IN operator */
1171 Expr
*pLeft
= 0; /* The LHS of the IN operator */
1172 Expr
*pNew
; /* The complete IN operator */
1174 for(i
=pOrWc
->nTerm
-1, pOrTerm
=pOrWc
->a
; i
>=0; i
--, pOrTerm
++){
1175 if( (pOrTerm
->wtFlags
& TERM_OR_OK
)==0 ) continue;
1176 assert( pOrTerm
->eOperator
& WO_EQ
);
1177 assert( pOrTerm
->leftCursor
==iCursor
);
1178 assert( pOrTerm
->u
.leftColumn
==iColumn
);
1179 pDup
= sqlite3ExprDup(db
, pOrTerm
->pExpr
->pRight
, 0);
1180 pList
= sqlite3ExprListAppend(pWC
->pParse
, pList
, pDup
);
1181 pLeft
= pOrTerm
->pExpr
->pLeft
;
1184 pDup
= sqlite3ExprDup(db
, pLeft
, 0);
1185 pNew
= sqlite3PExpr(pParse
, TK_IN
, pDup
, 0, 0);
1188 transferJoinMarkings(pNew
, pExpr
);
1189 assert( !ExprHasProperty(pNew
, EP_xIsSelect
) );
1190 pNew
->x
.pList
= pList
;
1191 idxNew
= whereClauseInsert(pWC
, pNew
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1192 testcase( idxNew
==0 );
1193 exprAnalyze(pSrc
, pWC
, idxNew
);
1194 pTerm
= &pWC
->a
[idxTerm
];
1195 pWC
->a
[idxNew
].iParent
= idxTerm
;
1198 sqlite3ExprListDelete(db
, pList
);
1200 pTerm
->eOperator
= WO_NOOP
; /* case 1 trumps case 2 */
1204 #endif /* !SQLITE_OMIT_OR_OPTIMIZATION && !SQLITE_OMIT_SUBQUERY */
1207 ** The input to this routine is an WhereTerm structure with only the
1208 ** "pExpr" field filled in. The job of this routine is to analyze the
1209 ** subexpression and populate all the other fields of the WhereTerm
1212 ** If the expression is of the form "<expr> <op> X" it gets commuted
1213 ** to the standard form of "X <op> <expr>".
1215 ** If the expression is of the form "X <op> Y" where both X and Y are
1216 ** columns, then the original expression is unchanged and a new virtual
1217 ** term of the form "Y <op> X" is added to the WHERE clause and
1218 ** analyzed separately. The original term is marked with TERM_COPIED
1219 ** and the new term is marked with TERM_DYNAMIC (because it's pExpr
1220 ** needs to be freed with the WhereClause) and TERM_VIRTUAL (because it
1221 ** is a commuted copy of a prior term.) The original term has nChild=1
1222 ** and the copy has idxParent set to the index of the original term.
1224 static void exprAnalyze(
1225 SrcList
*pSrc
, /* the FROM clause */
1226 WhereClause
*pWC
, /* the WHERE clause */
1227 int idxTerm
/* Index of the term to be analyzed */
1229 WhereTerm
*pTerm
; /* The term to be analyzed */
1230 WhereMaskSet
*pMaskSet
; /* Set of table index masks */
1231 Expr
*pExpr
; /* The expression to be analyzed */
1232 Bitmask prereqLeft
; /* Prerequesites of the pExpr->pLeft */
1233 Bitmask prereqAll
; /* Prerequesites of pExpr */
1234 Bitmask extraRight
= 0; /* Extra dependencies on LEFT JOIN */
1235 Expr
*pStr1
= 0; /* RHS of LIKE/GLOB operator */
1236 int isComplete
= 0; /* RHS of LIKE/GLOB ends with wildcard */
1237 int noCase
= 0; /* LIKE/GLOB distinguishes case */
1238 int op
; /* Top-level operator. pExpr->op */
1239 Parse
*pParse
= pWC
->pParse
; /* Parsing context */
1240 sqlite3
*db
= pParse
->db
; /* Database connection */
1242 if( db
->mallocFailed
){
1245 pTerm
= &pWC
->a
[idxTerm
];
1246 pMaskSet
= pWC
->pMaskSet
;
1247 pExpr
= pTerm
->pExpr
;
1248 assert( pExpr
->op
!=TK_AS
&& pExpr
->op
!=TK_COLLATE
);
1249 prereqLeft
= exprTableUsage(pMaskSet
, pExpr
->pLeft
);
1252 assert( pExpr
->pRight
==0 );
1253 if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
1254 pTerm
->prereqRight
= exprSelectTableUsage(pMaskSet
, pExpr
->x
.pSelect
);
1256 pTerm
->prereqRight
= exprListTableUsage(pMaskSet
, pExpr
->x
.pList
);
1258 }else if( op
==TK_ISNULL
){
1259 pTerm
->prereqRight
= 0;
1261 pTerm
->prereqRight
= exprTableUsage(pMaskSet
, pExpr
->pRight
);
1263 prereqAll
= exprTableUsage(pMaskSet
, pExpr
);
1264 if( ExprHasProperty(pExpr
, EP_FromJoin
) ){
1265 Bitmask x
= getMask(pMaskSet
, pExpr
->iRightJoinTable
);
1267 extraRight
= x
-1; /* ON clause terms may not be used with an index
1268 ** on left table of a LEFT JOIN. Ticket #3015 */
1270 pTerm
->prereqAll
= prereqAll
;
1271 pTerm
->leftCursor
= -1;
1272 pTerm
->iParent
= -1;
1273 pTerm
->eOperator
= 0;
1274 if( allowedOp(op
) ){
1275 Expr
*pLeft
= sqlite3ExprSkipCollate(pExpr
->pLeft
);
1276 Expr
*pRight
= sqlite3ExprSkipCollate(pExpr
->pRight
);
1277 u16 opMask
= (pTerm
->prereqRight
& prereqLeft
)==0 ? WO_ALL
: WO_EQUIV
;
1278 if( pLeft
->op
==TK_COLUMN
){
1279 pTerm
->leftCursor
= pLeft
->iTable
;
1280 pTerm
->u
.leftColumn
= pLeft
->iColumn
;
1281 pTerm
->eOperator
= operatorMask(op
) & opMask
;
1283 if( pRight
&& pRight
->op
==TK_COLUMN
){
1286 u16 eExtraOp
= 0; /* Extra bits for pNew->eOperator */
1287 if( pTerm
->leftCursor
>=0 ){
1289 pDup
= sqlite3ExprDup(db
, pExpr
, 0);
1290 if( db
->mallocFailed
){
1291 sqlite3ExprDelete(db
, pDup
);
1294 idxNew
= whereClauseInsert(pWC
, pDup
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1295 if( idxNew
==0 ) return;
1296 pNew
= &pWC
->a
[idxNew
];
1297 pNew
->iParent
= idxTerm
;
1298 pTerm
= &pWC
->a
[idxTerm
];
1300 pTerm
->wtFlags
|= TERM_COPIED
;
1301 if( pExpr
->op
==TK_EQ
1302 && !ExprHasProperty(pExpr
, EP_FromJoin
)
1303 && OptimizationEnabled(db
, SQLITE_Transitive
)
1305 pTerm
->eOperator
|= WO_EQUIV
;
1306 eExtraOp
= WO_EQUIV
;
1312 exprCommute(pParse
, pDup
);
1313 pLeft
= sqlite3ExprSkipCollate(pDup
->pLeft
);
1314 pNew
->leftCursor
= pLeft
->iTable
;
1315 pNew
->u
.leftColumn
= pLeft
->iColumn
;
1316 testcase( (prereqLeft
| extraRight
) != prereqLeft
);
1317 pNew
->prereqRight
= prereqLeft
| extraRight
;
1318 pNew
->prereqAll
= prereqAll
;
1319 pNew
->eOperator
= (operatorMask(pDup
->op
) + eExtraOp
) & opMask
;
1323 #ifndef SQLITE_OMIT_BETWEEN_OPTIMIZATION
1324 /* If a term is the BETWEEN operator, create two new virtual terms
1325 ** that define the range that the BETWEEN implements. For example:
1327 ** a BETWEEN b AND c
1329 ** is converted into:
1331 ** (a BETWEEN b AND c) AND (a>=b) AND (a<=c)
1333 ** The two new terms are added onto the end of the WhereClause object.
1334 ** The new terms are "dynamic" and are children of the original BETWEEN
1335 ** term. That means that if the BETWEEN term is coded, the children are
1336 ** skipped. Or, if the children are satisfied by an index, the original
1337 ** BETWEEN term is skipped.
1339 else if( pExpr
->op
==TK_BETWEEN
&& pWC
->op
==TK_AND
){
1340 ExprList
*pList
= pExpr
->x
.pList
;
1342 static const u8 ops
[] = {TK_GE
, TK_LE
};
1344 assert( pList
->nExpr
==2 );
1348 pNewExpr
= sqlite3PExpr(pParse
, ops
[i
],
1349 sqlite3ExprDup(db
, pExpr
->pLeft
, 0),
1350 sqlite3ExprDup(db
, pList
->a
[i
].pExpr
, 0), 0);
1351 idxNew
= whereClauseInsert(pWC
, pNewExpr
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1352 testcase( idxNew
==0 );
1353 exprAnalyze(pSrc
, pWC
, idxNew
);
1354 pTerm
= &pWC
->a
[idxTerm
];
1355 pWC
->a
[idxNew
].iParent
= idxTerm
;
1359 #endif /* SQLITE_OMIT_BETWEEN_OPTIMIZATION */
1361 #if !defined(SQLITE_OMIT_OR_OPTIMIZATION) && !defined(SQLITE_OMIT_SUBQUERY)
1362 /* Analyze a term that is composed of two or more subterms connected by
1365 else if( pExpr
->op
==TK_OR
){
1366 assert( pWC
->op
==TK_AND
);
1367 exprAnalyzeOrTerm(pSrc
, pWC
, idxTerm
);
1368 pTerm
= &pWC
->a
[idxTerm
];
1370 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1372 #ifndef SQLITE_OMIT_LIKE_OPTIMIZATION
1373 /* Add constraints to reduce the search space on a LIKE or GLOB
1376 ** A like pattern of the form "x LIKE 'abc%'" is changed into constraints
1378 ** x>='abc' AND x<'abd' AND x LIKE 'abc%'
1380 ** The last character of the prefix "abc" is incremented to form the
1381 ** termination condition "abd".
1384 && isLikeOrGlob(pParse
, pExpr
, &pStr1
, &isComplete
, &noCase
)
1386 Expr
*pLeft
; /* LHS of LIKE/GLOB operator */
1387 Expr
*pStr2
; /* Copy of pStr1 - RHS of LIKE/GLOB operator */
1392 Token sCollSeqName
; /* Name of collating sequence */
1394 pLeft
= pExpr
->x
.pList
->a
[1].pExpr
;
1395 pStr2
= sqlite3ExprDup(db
, pStr1
, 0);
1396 if( !db
->mallocFailed
){
1397 u8 c
, *pC
; /* Last character before the first wildcard */
1398 pC
= (u8
*)&pStr2
->u
.zToken
[sqlite3Strlen30(pStr2
->u
.zToken
)-1];
1401 /* The point is to increment the last character before the first
1402 ** wildcard. But if we increment '@', that will push it into the
1403 ** alphabetic range where case conversions will mess up the
1404 ** inequality. To avoid this, make sure to also run the full
1405 ** LIKE on all candidate expressions by clearing the isComplete flag
1407 if( c
=='A'-1 ) isComplete
= 0; /* EV: R-64339-08207 */
1410 c
= sqlite3UpperToLower
[c
];
1414 sCollSeqName
.z
= noCase
? "NOCASE" : "BINARY";
1416 pNewExpr1
= sqlite3ExprDup(db
, pLeft
, 0);
1417 pNewExpr1
= sqlite3PExpr(pParse
, TK_GE
,
1418 sqlite3ExprAddCollateToken(pParse
,pNewExpr1
,&sCollSeqName
),
1420 idxNew1
= whereClauseInsert(pWC
, pNewExpr1
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1421 testcase( idxNew1
==0 );
1422 exprAnalyze(pSrc
, pWC
, idxNew1
);
1423 pNewExpr2
= sqlite3ExprDup(db
, pLeft
, 0);
1424 pNewExpr2
= sqlite3PExpr(pParse
, TK_LT
,
1425 sqlite3ExprAddCollateToken(pParse
,pNewExpr2
,&sCollSeqName
),
1427 idxNew2
= whereClauseInsert(pWC
, pNewExpr2
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1428 testcase( idxNew2
==0 );
1429 exprAnalyze(pSrc
, pWC
, idxNew2
);
1430 pTerm
= &pWC
->a
[idxTerm
];
1432 pWC
->a
[idxNew1
].iParent
= idxTerm
;
1433 pWC
->a
[idxNew2
].iParent
= idxTerm
;
1437 #endif /* SQLITE_OMIT_LIKE_OPTIMIZATION */
1439 #ifndef SQLITE_OMIT_VIRTUALTABLE
1440 /* Add a WO_MATCH auxiliary term to the constraint set if the
1441 ** current expression is of the form: column MATCH expr.
1442 ** This information is used by the xBestIndex methods of
1443 ** virtual tables. The native query optimizer does not attempt
1444 ** to do anything with MATCH functions.
1446 if( isMatchOfColumn(pExpr
) ){
1448 Expr
*pRight
, *pLeft
;
1449 WhereTerm
*pNewTerm
;
1450 Bitmask prereqColumn
, prereqExpr
;
1452 pRight
= pExpr
->x
.pList
->a
[0].pExpr
;
1453 pLeft
= pExpr
->x
.pList
->a
[1].pExpr
;
1454 prereqExpr
= exprTableUsage(pMaskSet
, pRight
);
1455 prereqColumn
= exprTableUsage(pMaskSet
, pLeft
);
1456 if( (prereqExpr
& prereqColumn
)==0 ){
1458 pNewExpr
= sqlite3PExpr(pParse
, TK_MATCH
,
1459 0, sqlite3ExprDup(db
, pRight
, 0), 0);
1460 idxNew
= whereClauseInsert(pWC
, pNewExpr
, TERM_VIRTUAL
|TERM_DYNAMIC
);
1461 testcase( idxNew
==0 );
1462 pNewTerm
= &pWC
->a
[idxNew
];
1463 pNewTerm
->prereqRight
= prereqExpr
;
1464 pNewTerm
->leftCursor
= pLeft
->iTable
;
1465 pNewTerm
->u
.leftColumn
= pLeft
->iColumn
;
1466 pNewTerm
->eOperator
= WO_MATCH
;
1467 pNewTerm
->iParent
= idxTerm
;
1468 pTerm
= &pWC
->a
[idxTerm
];
1470 pTerm
->wtFlags
|= TERM_COPIED
;
1471 pNewTerm
->prereqAll
= pTerm
->prereqAll
;
1474 #endif /* SQLITE_OMIT_VIRTUALTABLE */
1476 #ifdef SQLITE_ENABLE_STAT3
1477 /* When sqlite_stat3 histogram data is available an operator of the
1478 ** form "x IS NOT NULL" can sometimes be evaluated more efficiently
1479 ** as "x>NULL" if x is not an INTEGER PRIMARY KEY. So construct a
1480 ** virtual term of that form.
1482 ** Note that the virtual term must be tagged with TERM_VNULL. This
1483 ** TERM_VNULL tag will suppress the not-null check at the beginning
1484 ** of the loop. Without the TERM_VNULL flag, the not-null check at
1485 ** the start of the loop will prevent any results from being returned.
1487 if( pExpr
->op
==TK_NOTNULL
1488 && pExpr
->pLeft
->op
==TK_COLUMN
1489 && pExpr
->pLeft
->iColumn
>=0
1492 Expr
*pLeft
= pExpr
->pLeft
;
1494 WhereTerm
*pNewTerm
;
1496 pNewExpr
= sqlite3PExpr(pParse
, TK_GT
,
1497 sqlite3ExprDup(db
, pLeft
, 0),
1498 sqlite3PExpr(pParse
, TK_NULL
, 0, 0, 0), 0);
1500 idxNew
= whereClauseInsert(pWC
, pNewExpr
,
1501 TERM_VIRTUAL
|TERM_DYNAMIC
|TERM_VNULL
);
1503 pNewTerm
= &pWC
->a
[idxNew
];
1504 pNewTerm
->prereqRight
= 0;
1505 pNewTerm
->leftCursor
= pLeft
->iTable
;
1506 pNewTerm
->u
.leftColumn
= pLeft
->iColumn
;
1507 pNewTerm
->eOperator
= WO_GT
;
1508 pNewTerm
->iParent
= idxTerm
;
1509 pTerm
= &pWC
->a
[idxTerm
];
1511 pTerm
->wtFlags
|= TERM_COPIED
;
1512 pNewTerm
->prereqAll
= pTerm
->prereqAll
;
1515 #endif /* SQLITE_ENABLE_STAT */
1517 /* Prevent ON clause terms of a LEFT JOIN from being used to drive
1518 ** an index for tables to the left of the join.
1520 pTerm
->prereqRight
|= extraRight
;
1524 ** This function searches the expression list passed as the second argument
1525 ** for an expression of type TK_COLUMN that refers to the same column and
1526 ** uses the same collation sequence as the iCol'th column of index pIdx.
1527 ** Argument iBase is the cursor number used for the table that pIdx refers
1530 ** If such an expression is found, its index in pList->a[] is returned. If
1531 ** no expression is found, -1 is returned.
1533 static int findIndexCol(
1534 Parse
*pParse
, /* Parse context */
1535 ExprList
*pList
, /* Expression list to search */
1536 int iBase
, /* Cursor for table associated with pIdx */
1537 Index
*pIdx
, /* Index to match column of */
1538 int iCol
/* Column of index to match */
1541 const char *zColl
= pIdx
->azColl
[iCol
];
1543 for(i
=0; i
<pList
->nExpr
; i
++){
1544 Expr
*p
= sqlite3ExprSkipCollate(pList
->a
[i
].pExpr
);
1545 if( p
->op
==TK_COLUMN
1546 && p
->iColumn
==pIdx
->aiColumn
[iCol
]
1549 CollSeq
*pColl
= sqlite3ExprCollSeq(pParse
, pList
->a
[i
].pExpr
);
1550 if( ALWAYS(pColl
) && 0==sqlite3StrICmp(pColl
->zName
, zColl
) ){
1560 ** This routine determines if pIdx can be used to assist in processing a
1561 ** DISTINCT qualifier. In other words, it tests whether or not using this
1562 ** index for the outer loop guarantees that rows with equal values for
1563 ** all expressions in the pDistinct list are delivered grouped together.
1565 ** For example, the query
1567 ** SELECT DISTINCT a, b, c FROM tbl WHERE a = ?
1569 ** can benefit from any index on columns "b" and "c".
1571 static int isDistinctIndex(
1572 Parse
*pParse
, /* Parsing context */
1573 WhereClause
*pWC
, /* The WHERE clause */
1574 Index
*pIdx
, /* The index being considered */
1575 int base
, /* Cursor number for the table pIdx is on */
1576 ExprList
*pDistinct
, /* The DISTINCT expressions */
1577 int nEqCol
/* Number of index columns with == */
1579 Bitmask mask
= 0; /* Mask of unaccounted for pDistinct exprs */
1580 int i
; /* Iterator variable */
1582 assert( pDistinct
!=0 );
1583 if( pIdx
->zName
==0 || pDistinct
->nExpr
>=BMS
) return 0;
1584 testcase( pDistinct
->nExpr
==BMS
-1 );
1586 /* Loop through all the expressions in the distinct list. If any of them
1587 ** are not simple column references, return early. Otherwise, test if the
1588 ** WHERE clause contains a "col=X" clause. If it does, the expression
1589 ** can be ignored. If it does not, and the column does not belong to the
1590 ** same table as index pIdx, return early. Finally, if there is no
1591 ** matching "col=X" expression and the column is on the same table as pIdx,
1592 ** set the corresponding bit in variable mask.
1594 for(i
=0; i
<pDistinct
->nExpr
; i
++){
1596 Expr
*p
= sqlite3ExprSkipCollate(pDistinct
->a
[i
].pExpr
);
1597 if( p
->op
!=TK_COLUMN
) return 0;
1598 pTerm
= findTerm(pWC
, p
->iTable
, p
->iColumn
, ~(Bitmask
)0, WO_EQ
, 0);
1600 Expr
*pX
= pTerm
->pExpr
;
1601 CollSeq
*p1
= sqlite3BinaryCompareCollSeq(pParse
, pX
->pLeft
, pX
->pRight
);
1602 CollSeq
*p2
= sqlite3ExprCollSeq(pParse
, p
);
1603 if( p1
==p2
) continue;
1605 if( p
->iTable
!=base
) return 0;
1606 mask
|= (((Bitmask
)1) << i
);
1609 for(i
=nEqCol
; mask
&& i
<pIdx
->nColumn
; i
++){
1610 int iExpr
= findIndexCol(pParse
, pDistinct
, base
, pIdx
, i
);
1611 if( iExpr
<0 ) break;
1612 mask
&= ~(((Bitmask
)1) << iExpr
);
1620 ** Return true if the DISTINCT expression-list passed as the third argument
1621 ** is redundant. A DISTINCT list is redundant if the database contains a
1622 ** UNIQUE index that guarantees that the result of the query will be distinct
1625 static int isDistinctRedundant(
1636 /* If there is more than one table or sub-select in the FROM clause of
1637 ** this query, then it will not be possible to show that the DISTINCT
1638 ** clause is redundant. */
1639 if( pTabList
->nSrc
!=1 ) return 0;
1640 iBase
= pTabList
->a
[0].iCursor
;
1641 pTab
= pTabList
->a
[0].pTab
;
1643 /* If any of the expressions is an IPK column on table iBase, then return
1644 ** true. Note: The (p->iTable==iBase) part of this test may be false if the
1645 ** current SELECT is a correlated sub-query.
1647 for(i
=0; i
<pDistinct
->nExpr
; i
++){
1648 Expr
*p
= sqlite3ExprSkipCollate(pDistinct
->a
[i
].pExpr
);
1649 if( p
->op
==TK_COLUMN
&& p
->iTable
==iBase
&& p
->iColumn
<0 ) return 1;
1652 /* Loop through all indices on the table, checking each to see if it makes
1653 ** the DISTINCT qualifier redundant. It does so if:
1655 ** 1. The index is itself UNIQUE, and
1657 ** 2. All of the columns in the index are either part of the pDistinct
1658 ** list, or else the WHERE clause contains a term of the form "col=X",
1659 ** where X is a constant value. The collation sequences of the
1660 ** comparison and select-list expressions must match those of the index.
1662 ** 3. All of those index columns for which the WHERE clause does not
1663 ** contain a "col=X" term are subject to a NOT NULL constraint.
1665 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
1666 if( pIdx
->onError
==OE_None
) continue;
1667 for(i
=0; i
<pIdx
->nColumn
; i
++){
1668 int iCol
= pIdx
->aiColumn
[i
];
1669 if( 0==findTerm(pWC
, iBase
, iCol
, ~(Bitmask
)0, WO_EQ
, pIdx
) ){
1670 int iIdxCol
= findIndexCol(pParse
, pDistinct
, iBase
, pIdx
, i
);
1671 if( iIdxCol
<0 || pTab
->aCol
[pIdx
->aiColumn
[i
]].notNull
==0 ){
1676 if( i
==pIdx
->nColumn
){
1677 /* This index implies that the DISTINCT qualifier is redundant. */
1686 ** Prepare a crude estimate of the logarithm of the input value.
1687 ** The results need not be exact. This is only used for estimating
1688 ** the total cost of performing operations with O(logN) or O(NlogN)
1689 ** complexity. Because N is just a guess, it is no great tragedy if
1690 ** logN is a little off.
1692 static double estLog(double N
){
1703 ** Two routines for printing the content of an sqlite3_index_info
1704 ** structure. Used for testing and debugging only. If neither
1705 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
1708 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(SQLITE_DEBUG)
1709 static void TRACE_IDX_INPUTS(sqlite3_index_info
*p
){
1711 if( !sqlite3WhereTrace
) return;
1712 for(i
=0; i
<p
->nConstraint
; i
++){
1713 sqlite3DebugPrintf(" constraint[%d]: col=%d termid=%d op=%d usabled=%d\n",
1715 p
->aConstraint
[i
].iColumn
,
1716 p
->aConstraint
[i
].iTermOffset
,
1717 p
->aConstraint
[i
].op
,
1718 p
->aConstraint
[i
].usable
);
1720 for(i
=0; i
<p
->nOrderBy
; i
++){
1721 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
1723 p
->aOrderBy
[i
].iColumn
,
1724 p
->aOrderBy
[i
].desc
);
1727 static void TRACE_IDX_OUTPUTS(sqlite3_index_info
*p
){
1729 if( !sqlite3WhereTrace
) return;
1730 for(i
=0; i
<p
->nConstraint
; i
++){
1731 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
1733 p
->aConstraintUsage
[i
].argvIndex
,
1734 p
->aConstraintUsage
[i
].omit
);
1736 sqlite3DebugPrintf(" idxNum=%d\n", p
->idxNum
);
1737 sqlite3DebugPrintf(" idxStr=%s\n", p
->idxStr
);
1738 sqlite3DebugPrintf(" orderByConsumed=%d\n", p
->orderByConsumed
);
1739 sqlite3DebugPrintf(" estimatedCost=%g\n", p
->estimatedCost
);
1742 #define TRACE_IDX_INPUTS(A)
1743 #define TRACE_IDX_OUTPUTS(A)
1747 ** Required because bestIndex() is called by bestOrClauseIndex()
1749 static void bestIndex(WhereBestIdx
*);
1752 ** This routine attempts to find an scanning strategy that can be used
1753 ** to optimize an 'OR' expression that is part of a WHERE clause.
1755 ** The table associated with FROM clause term pSrc may be either a
1756 ** regular B-Tree table or a virtual table.
1758 static void bestOrClauseIndex(WhereBestIdx
*p
){
1759 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
1760 WhereClause
*pWC
= p
->pWC
; /* The WHERE clause */
1761 struct SrcList_item
*pSrc
= p
->pSrc
; /* The FROM clause term to search */
1762 const int iCur
= pSrc
->iCursor
; /* The cursor of the table */
1763 const Bitmask maskSrc
= getMask(pWC
->pMaskSet
, iCur
); /* Bitmask for pSrc */
1764 WhereTerm
* const pWCEnd
= &pWC
->a
[pWC
->nTerm
]; /* End of pWC->a[] */
1765 WhereTerm
*pTerm
; /* A single term of the WHERE clause */
1767 /* The OR-clause optimization is disallowed if the INDEXED BY or
1768 ** NOT INDEXED clauses are used or if the WHERE_AND_ONLY bit is set. */
1769 if( pSrc
->notIndexed
|| pSrc
->pIndex
!=0 ){
1772 if( pWC
->wctrlFlags
& WHERE_AND_ONLY
){
1776 /* Search the WHERE clause terms for a usable WO_OR term. */
1777 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
; pTerm
++){
1778 if( (pTerm
->eOperator
& WO_OR
)!=0
1779 && ((pTerm
->prereqAll
& ~maskSrc
) & p
->notReady
)==0
1780 && (pTerm
->u
.pOrInfo
->indexable
& maskSrc
)!=0
1782 WhereClause
* const pOrWC
= &pTerm
->u
.pOrInfo
->wc
;
1783 WhereTerm
* const pOrWCEnd
= &pOrWC
->a
[pOrWC
->nTerm
];
1785 int flags
= WHERE_MULTI_OR
;
1795 for(pOrTerm
=pOrWC
->a
; pOrTerm
<pOrWCEnd
; pOrTerm
++){
1796 WHERETRACE(("... Multi-index OR testing for term %d of %d....\n",
1797 (pOrTerm
- pOrWC
->a
), (pTerm
- pWC
->a
)
1799 if( (pOrTerm
->eOperator
& WO_AND
)!=0 ){
1800 sBOI
.pWC
= &pOrTerm
->u
.pAndInfo
->wc
;
1802 }else if( pOrTerm
->leftCursor
==iCur
){
1804 tempWC
.pParse
= pWC
->pParse
;
1805 tempWC
.pMaskSet
= pWC
->pMaskSet
;
1806 tempWC
.pOuter
= pWC
;
1809 tempWC
.wctrlFlags
= 0;
1816 rTotal
+= sBOI
.cost
.rCost
;
1817 nRow
+= sBOI
.cost
.plan
.nRow
;
1818 used
|= sBOI
.cost
.used
;
1819 if( rTotal
>=p
->cost
.rCost
) break;
1822 /* If there is an ORDER BY clause, increase the scan cost to account
1823 ** for the cost of the sort. */
1824 if( p
->pOrderBy
!=0 ){
1825 WHERETRACE(("... sorting increases OR cost %.9g to %.9g\n",
1826 rTotal
, rTotal
+nRow
*estLog(nRow
)));
1827 rTotal
+= nRow
*estLog(nRow
);
1830 /* If the cost of scanning using this OR term for optimization is
1831 ** less than the current cost stored in pCost, replace the contents
1833 WHERETRACE(("... multi-index OR cost=%.9g nrow=%.9g\n", rTotal
, nRow
));
1834 if( rTotal
<p
->cost
.rCost
){
1835 p
->cost
.rCost
= rTotal
;
1836 p
->cost
.used
= used
;
1837 p
->cost
.plan
.nRow
= nRow
;
1838 p
->cost
.plan
.nOBSat
= p
->i
? p
->aLevel
[p
->i
-1].plan
.nOBSat
: 0;
1839 p
->cost
.plan
.wsFlags
= flags
;
1840 p
->cost
.plan
.u
.pTerm
= pTerm
;
1844 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
1847 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
1849 ** Return TRUE if the WHERE clause term pTerm is of a form where it
1850 ** could be used with an index to access pSrc, assuming an appropriate
1853 static int termCanDriveIndex(
1854 WhereTerm
*pTerm
, /* WHERE clause term to check */
1855 struct SrcList_item
*pSrc
, /* Table we are trying to access */
1856 Bitmask notReady
/* Tables in outer loops of the join */
1859 if( pTerm
->leftCursor
!=pSrc
->iCursor
) return 0;
1860 if( (pTerm
->eOperator
& WO_EQ
)==0 ) return 0;
1861 if( (pTerm
->prereqRight
& notReady
)!=0 ) return 0;
1862 aff
= pSrc
->pTab
->aCol
[pTerm
->u
.leftColumn
].affinity
;
1863 if( !sqlite3IndexAffinityOk(pTerm
->pExpr
, aff
) ) return 0;
1868 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
1870 ** If the query plan for pSrc specified in pCost is a full table scan
1871 ** and indexing is allows (if there is no NOT INDEXED clause) and it
1872 ** possible to construct a transient index that would perform better
1873 ** than a full table scan even when the cost of constructing the index
1874 ** is taken into account, then alter the query plan to use the
1877 static void bestAutomaticIndex(WhereBestIdx
*p
){
1878 Parse
*pParse
= p
->pParse
; /* The parsing context */
1879 WhereClause
*pWC
= p
->pWC
; /* The WHERE clause */
1880 struct SrcList_item
*pSrc
= p
->pSrc
; /* The FROM clause term to search */
1881 double nTableRow
; /* Rows in the input table */
1882 double logN
; /* log(nTableRow) */
1883 double costTempIdx
; /* per-query cost of the transient index */
1884 WhereTerm
*pTerm
; /* A single term of the WHERE clause */
1885 WhereTerm
*pWCEnd
; /* End of pWC->a[] */
1886 Table
*pTable
; /* Table tht might be indexed */
1888 if( pParse
->nQueryLoop
<=(double)1 ){
1889 /* There is no point in building an automatic index for a single scan */
1892 if( (pParse
->db
->flags
& SQLITE_AutoIndex
)==0 ){
1893 /* Automatic indices are disabled at run-time */
1896 if( (p
->cost
.plan
.wsFlags
& WHERE_NOT_FULLSCAN
)!=0
1897 && (p
->cost
.plan
.wsFlags
& WHERE_COVER_SCAN
)==0
1899 /* We already have some kind of index in use for this query. */
1902 if( pSrc
->viaCoroutine
){
1903 /* Cannot index a co-routine */
1906 if( pSrc
->notIndexed
){
1907 /* The NOT INDEXED clause appears in the SQL. */
1910 if( pSrc
->isCorrelated
){
1911 /* The source is a correlated sub-query. No point in indexing it. */
1915 assert( pParse
->nQueryLoop
>= (double)1 );
1916 pTable
= pSrc
->pTab
;
1917 nTableRow
= pTable
->nRowEst
;
1918 logN
= estLog(nTableRow
);
1919 costTempIdx
= 2*logN
*(nTableRow
/pParse
->nQueryLoop
+ 1);
1920 if( costTempIdx
>=p
->cost
.rCost
){
1921 /* The cost of creating the transient table would be greater than
1922 ** doing the full table scan */
1926 /* Search for any equality comparison term */
1927 pWCEnd
= &pWC
->a
[pWC
->nTerm
];
1928 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
; pTerm
++){
1929 if( termCanDriveIndex(pTerm
, pSrc
, p
->notReady
) ){
1930 WHERETRACE(("auto-index reduces cost from %.1f to %.1f\n",
1931 p
->cost
.rCost
, costTempIdx
));
1932 p
->cost
.rCost
= costTempIdx
;
1933 p
->cost
.plan
.nRow
= logN
+ 1;
1934 p
->cost
.plan
.wsFlags
= WHERE_TEMP_INDEX
;
1935 p
->cost
.used
= pTerm
->prereqRight
;
1941 # define bestAutomaticIndex(A) /* no-op */
1942 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
1945 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
1947 ** Generate code to construct the Index object for an automatic index
1948 ** and to set up the WhereLevel object pLevel so that the code generator
1949 ** makes use of the automatic index.
1951 static void constructAutomaticIndex(
1952 Parse
*pParse
, /* The parsing context */
1953 WhereClause
*pWC
, /* The WHERE clause */
1954 struct SrcList_item
*pSrc
, /* The FROM clause term to get the next index */
1955 Bitmask notReady
, /* Mask of cursors that are not available */
1956 WhereLevel
*pLevel
/* Write new index here */
1958 int nColumn
; /* Number of columns in the constructed index */
1959 WhereTerm
*pTerm
; /* A single term of the WHERE clause */
1960 WhereTerm
*pWCEnd
; /* End of pWC->a[] */
1961 int nByte
; /* Byte of memory needed for pIdx */
1962 Index
*pIdx
; /* Object describing the transient index */
1963 Vdbe
*v
; /* Prepared statement under construction */
1964 int addrInit
; /* Address of the initialization bypass jump */
1965 Table
*pTable
; /* The table being indexed */
1966 KeyInfo
*pKeyinfo
; /* Key information for the index */
1967 int addrTop
; /* Top of the index fill loop */
1968 int regRecord
; /* Register holding an index record */
1969 int n
; /* Column counter */
1970 int i
; /* Loop counter */
1971 int mxBitCol
; /* Maximum column in pSrc->colUsed */
1972 CollSeq
*pColl
; /* Collating sequence to on a column */
1973 Bitmask idxCols
; /* Bitmap of columns used for indexing */
1974 Bitmask extraCols
; /* Bitmap of additional columns */
1976 /* Generate code to skip over the creation and initialization of the
1977 ** transient index on 2nd and subsequent iterations of the loop. */
1980 addrInit
= sqlite3CodeOnce(pParse
);
1982 /* Count the number of columns that will be added to the index
1983 ** and used to match WHERE clause constraints */
1985 pTable
= pSrc
->pTab
;
1986 pWCEnd
= &pWC
->a
[pWC
->nTerm
];
1988 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
; pTerm
++){
1989 if( termCanDriveIndex(pTerm
, pSrc
, notReady
) ){
1990 int iCol
= pTerm
->u
.leftColumn
;
1991 Bitmask cMask
= iCol
>=BMS
? ((Bitmask
)1)<<(BMS
-1) : ((Bitmask
)1)<<iCol
;
1992 testcase( iCol
==BMS
);
1993 testcase( iCol
==BMS
-1 );
1994 if( (idxCols
& cMask
)==0 ){
2000 assert( nColumn
>0 );
2001 pLevel
->plan
.nEq
= nColumn
;
2003 /* Count the number of additional columns needed to create a
2004 ** covering index. A "covering index" is an index that contains all
2005 ** columns that are needed by the query. With a covering index, the
2006 ** original table never needs to be accessed. Automatic indices must
2007 ** be a covering index because the index will not be updated if the
2008 ** original table changes and the index and table cannot both be used
2009 ** if they go out of sync.
2011 extraCols
= pSrc
->colUsed
& (~idxCols
| (((Bitmask
)1)<<(BMS
-1)));
2012 mxBitCol
= (pTable
->nCol
>= BMS
-1) ? BMS
-1 : pTable
->nCol
;
2013 testcase( pTable
->nCol
==BMS
-1 );
2014 testcase( pTable
->nCol
==BMS
-2 );
2015 for(i
=0; i
<mxBitCol
; i
++){
2016 if( extraCols
& (((Bitmask
)1)<<i
) ) nColumn
++;
2018 if( pSrc
->colUsed
& (((Bitmask
)1)<<(BMS
-1)) ){
2019 nColumn
+= pTable
->nCol
- BMS
+ 1;
2021 pLevel
->plan
.wsFlags
|= WHERE_COLUMN_EQ
| WHERE_IDX_ONLY
| WO_EQ
;
2023 /* Construct the Index object to describe this index */
2024 nByte
= sizeof(Index
);
2025 nByte
+= nColumn
*sizeof(int); /* Index.aiColumn */
2026 nByte
+= nColumn
*sizeof(char*); /* Index.azColl */
2027 nByte
+= nColumn
; /* Index.aSortOrder */
2028 pIdx
= sqlite3DbMallocZero(pParse
->db
, nByte
);
2029 if( pIdx
==0 ) return;
2030 pLevel
->plan
.u
.pIdx
= pIdx
;
2031 pIdx
->azColl
= (char**)&pIdx
[1];
2032 pIdx
->aiColumn
= (int*)&pIdx
->azColl
[nColumn
];
2033 pIdx
->aSortOrder
= (u8
*)&pIdx
->aiColumn
[nColumn
];
2034 pIdx
->zName
= "auto-index";
2035 pIdx
->nColumn
= nColumn
;
2036 pIdx
->pTable
= pTable
;
2039 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
; pTerm
++){
2040 if( termCanDriveIndex(pTerm
, pSrc
, notReady
) ){
2041 int iCol
= pTerm
->u
.leftColumn
;
2042 Bitmask cMask
= iCol
>=BMS
? ((Bitmask
)1)<<(BMS
-1) : ((Bitmask
)1)<<iCol
;
2043 if( (idxCols
& cMask
)==0 ){
2044 Expr
*pX
= pTerm
->pExpr
;
2046 pIdx
->aiColumn
[n
] = pTerm
->u
.leftColumn
;
2047 pColl
= sqlite3BinaryCompareCollSeq(pParse
, pX
->pLeft
, pX
->pRight
);
2048 pIdx
->azColl
[n
] = ALWAYS(pColl
) ? pColl
->zName
: "BINARY";
2053 assert( (u32
)n
==pLevel
->plan
.nEq
);
2055 /* Add additional columns needed to make the automatic index into
2056 ** a covering index */
2057 for(i
=0; i
<mxBitCol
; i
++){
2058 if( extraCols
& (((Bitmask
)1)<<i
) ){
2059 pIdx
->aiColumn
[n
] = i
;
2060 pIdx
->azColl
[n
] = "BINARY";
2064 if( pSrc
->colUsed
& (((Bitmask
)1)<<(BMS
-1)) ){
2065 for(i
=BMS
-1; i
<pTable
->nCol
; i
++){
2066 pIdx
->aiColumn
[n
] = i
;
2067 pIdx
->azColl
[n
] = "BINARY";
2071 assert( n
==nColumn
);
2073 /* Create the automatic index */
2074 pKeyinfo
= sqlite3IndexKeyinfo(pParse
, pIdx
);
2075 assert( pLevel
->iIdxCur
>=0 );
2076 sqlite3VdbeAddOp4(v
, OP_OpenAutoindex
, pLevel
->iIdxCur
, nColumn
+1, 0,
2077 (char*)pKeyinfo
, P4_KEYINFO_HANDOFF
);
2078 VdbeComment((v
, "for %s", pTable
->zName
));
2080 /* Fill the automatic index with content */
2081 addrTop
= sqlite3VdbeAddOp1(v
, OP_Rewind
, pLevel
->iTabCur
);
2082 regRecord
= sqlite3GetTempReg(pParse
);
2083 sqlite3GenerateIndexKey(pParse
, pIdx
, pLevel
->iTabCur
, regRecord
, 1);
2084 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, pLevel
->iIdxCur
, regRecord
);
2085 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
2086 sqlite3VdbeAddOp2(v
, OP_Next
, pLevel
->iTabCur
, addrTop
+1);
2087 sqlite3VdbeChangeP5(v
, SQLITE_STMTSTATUS_AUTOINDEX
);
2088 sqlite3VdbeJumpHere(v
, addrTop
);
2089 sqlite3ReleaseTempReg(pParse
, regRecord
);
2091 /* Jump here when skipping the initialization */
2092 sqlite3VdbeJumpHere(v
, addrInit
);
2094 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
2096 #ifndef SQLITE_OMIT_VIRTUALTABLE
2098 ** Allocate and populate an sqlite3_index_info structure. It is the
2099 ** responsibility of the caller to eventually release the structure
2100 ** by passing the pointer returned by this function to sqlite3_free().
2102 static sqlite3_index_info
*allocateIndexInfo(WhereBestIdx
*p
){
2103 Parse
*pParse
= p
->pParse
;
2104 WhereClause
*pWC
= p
->pWC
;
2105 struct SrcList_item
*pSrc
= p
->pSrc
;
2106 ExprList
*pOrderBy
= p
->pOrderBy
;
2109 struct sqlite3_index_constraint
*pIdxCons
;
2110 struct sqlite3_index_orderby
*pIdxOrderBy
;
2111 struct sqlite3_index_constraint_usage
*pUsage
;
2114 sqlite3_index_info
*pIdxInfo
;
2116 WHERETRACE(("Recomputing index info for %s...\n", pSrc
->pTab
->zName
));
2118 /* Count the number of possible WHERE clause constraints referring
2119 ** to this virtual table */
2120 for(i
=nTerm
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
2121 if( pTerm
->leftCursor
!= pSrc
->iCursor
) continue;
2122 assert( IsPowerOfTwo(pTerm
->eOperator
& ~WO_EQUIV
) );
2123 testcase( pTerm
->eOperator
& WO_IN
);
2124 testcase( pTerm
->eOperator
& WO_ISNULL
);
2125 if( pTerm
->eOperator
& (WO_ISNULL
) ) continue;
2126 if( pTerm
->wtFlags
& TERM_VNULL
) continue;
2130 /* If the ORDER BY clause contains only columns in the current
2131 ** virtual table then allocate space for the aOrderBy part of
2132 ** the sqlite3_index_info structure.
2136 int n
= pOrderBy
->nExpr
;
2138 Expr
*pExpr
= pOrderBy
->a
[i
].pExpr
;
2139 if( pExpr
->op
!=TK_COLUMN
|| pExpr
->iTable
!=pSrc
->iCursor
) break;
2146 /* Allocate the sqlite3_index_info structure
2148 pIdxInfo
= sqlite3DbMallocZero(pParse
->db
, sizeof(*pIdxInfo
)
2149 + (sizeof(*pIdxCons
) + sizeof(*pUsage
))*nTerm
2150 + sizeof(*pIdxOrderBy
)*nOrderBy
);
2152 sqlite3ErrorMsg(pParse
, "out of memory");
2153 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
2157 /* Initialize the structure. The sqlite3_index_info structure contains
2158 ** many fields that are declared "const" to prevent xBestIndex from
2159 ** changing them. We have to do some funky casting in order to
2160 ** initialize those fields.
2162 pIdxCons
= (struct sqlite3_index_constraint
*)&pIdxInfo
[1];
2163 pIdxOrderBy
= (struct sqlite3_index_orderby
*)&pIdxCons
[nTerm
];
2164 pUsage
= (struct sqlite3_index_constraint_usage
*)&pIdxOrderBy
[nOrderBy
];
2165 *(int*)&pIdxInfo
->nConstraint
= nTerm
;
2166 *(int*)&pIdxInfo
->nOrderBy
= nOrderBy
;
2167 *(struct sqlite3_index_constraint
**)&pIdxInfo
->aConstraint
= pIdxCons
;
2168 *(struct sqlite3_index_orderby
**)&pIdxInfo
->aOrderBy
= pIdxOrderBy
;
2169 *(struct sqlite3_index_constraint_usage
**)&pIdxInfo
->aConstraintUsage
=
2172 for(i
=j
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
2174 if( pTerm
->leftCursor
!= pSrc
->iCursor
) continue;
2175 assert( IsPowerOfTwo(pTerm
->eOperator
& ~WO_EQUIV
) );
2176 testcase( pTerm
->eOperator
& WO_IN
);
2177 testcase( pTerm
->eOperator
& WO_ISNULL
);
2178 if( pTerm
->eOperator
& (WO_ISNULL
) ) continue;
2179 if( pTerm
->wtFlags
& TERM_VNULL
) continue;
2180 pIdxCons
[j
].iColumn
= pTerm
->u
.leftColumn
;
2181 pIdxCons
[j
].iTermOffset
= i
;
2182 op
= (u8
)pTerm
->eOperator
& WO_ALL
;
2183 if( op
==WO_IN
) op
= WO_EQ
;
2184 pIdxCons
[j
].op
= op
;
2185 /* The direct assignment in the previous line is possible only because
2186 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
2187 ** following asserts verify this fact. */
2188 assert( WO_EQ
==SQLITE_INDEX_CONSTRAINT_EQ
);
2189 assert( WO_LT
==SQLITE_INDEX_CONSTRAINT_LT
);
2190 assert( WO_LE
==SQLITE_INDEX_CONSTRAINT_LE
);
2191 assert( WO_GT
==SQLITE_INDEX_CONSTRAINT_GT
);
2192 assert( WO_GE
==SQLITE_INDEX_CONSTRAINT_GE
);
2193 assert( WO_MATCH
==SQLITE_INDEX_CONSTRAINT_MATCH
);
2194 assert( pTerm
->eOperator
& (WO_IN
|WO_EQ
|WO_LT
|WO_LE
|WO_GT
|WO_GE
|WO_MATCH
) );
2197 for(i
=0; i
<nOrderBy
; i
++){
2198 Expr
*pExpr
= pOrderBy
->a
[i
].pExpr
;
2199 pIdxOrderBy
[i
].iColumn
= pExpr
->iColumn
;
2200 pIdxOrderBy
[i
].desc
= pOrderBy
->a
[i
].sortOrder
;
2207 ** The table object reference passed as the second argument to this function
2208 ** must represent a virtual table. This function invokes the xBestIndex()
2209 ** method of the virtual table with the sqlite3_index_info pointer passed
2212 ** If an error occurs, pParse is populated with an error message and a
2213 ** non-zero value is returned. Otherwise, 0 is returned and the output
2214 ** part of the sqlite3_index_info structure is left populated.
2216 ** Whether or not an error is returned, it is the responsibility of the
2217 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
2218 ** that this is required.
2220 static int vtabBestIndex(Parse
*pParse
, Table
*pTab
, sqlite3_index_info
*p
){
2221 sqlite3_vtab
*pVtab
= sqlite3GetVTable(pParse
->db
, pTab
)->pVtab
;
2225 WHERETRACE(("xBestIndex for %s\n", pTab
->zName
));
2226 TRACE_IDX_INPUTS(p
);
2227 rc
= pVtab
->pModule
->xBestIndex(pVtab
, p
);
2228 TRACE_IDX_OUTPUTS(p
);
2230 if( rc
!=SQLITE_OK
){
2231 if( rc
==SQLITE_NOMEM
){
2232 pParse
->db
->mallocFailed
= 1;
2233 }else if( !pVtab
->zErrMsg
){
2234 sqlite3ErrorMsg(pParse
, "%s", sqlite3ErrStr(rc
));
2236 sqlite3ErrorMsg(pParse
, "%s", pVtab
->zErrMsg
);
2239 sqlite3_free(pVtab
->zErrMsg
);
2242 for(i
=0; i
<p
->nConstraint
; i
++){
2243 if( !p
->aConstraint
[i
].usable
&& p
->aConstraintUsage
[i
].argvIndex
>0 ){
2244 sqlite3ErrorMsg(pParse
,
2245 "table %s: xBestIndex returned an invalid plan", pTab
->zName
);
2249 return pParse
->nErr
;
2254 ** Compute the best index for a virtual table.
2256 ** The best index is computed by the xBestIndex method of the virtual
2257 ** table module. This routine is really just a wrapper that sets up
2258 ** the sqlite3_index_info structure that is used to communicate with
2261 ** In a join, this routine might be called multiple times for the
2262 ** same virtual table. The sqlite3_index_info structure is created
2263 ** and initialized on the first invocation and reused on all subsequent
2264 ** invocations. The sqlite3_index_info structure is also used when
2265 ** code is generated to access the virtual table. The whereInfoDelete()
2266 ** routine takes care of freeing the sqlite3_index_info structure after
2267 ** everybody has finished with it.
2269 static void bestVirtualIndex(WhereBestIdx
*p
){
2270 Parse
*pParse
= p
->pParse
; /* The parsing context */
2271 WhereClause
*pWC
= p
->pWC
; /* The WHERE clause */
2272 struct SrcList_item
*pSrc
= p
->pSrc
; /* The FROM clause term to search */
2273 Table
*pTab
= pSrc
->pTab
;
2274 sqlite3_index_info
*pIdxInfo
;
2275 struct sqlite3_index_constraint
*pIdxCons
;
2276 struct sqlite3_index_constraint_usage
*pUsage
;
2280 int bAllowIN
; /* Allow IN optimizations */
2283 /* Make sure wsFlags is initialized to some sane value. Otherwise, if the
2284 ** malloc in allocateIndexInfo() fails and this function returns leaving
2285 ** wsFlags in an uninitialized state, the caller may behave unpredictably.
2287 memset(&p
->cost
, 0, sizeof(p
->cost
));
2288 p
->cost
.plan
.wsFlags
= WHERE_VIRTUALTABLE
;
2290 /* If the sqlite3_index_info structure has not been previously
2291 ** allocated and initialized, then allocate and initialize it now.
2293 pIdxInfo
= *p
->ppIdxInfo
;
2295 *p
->ppIdxInfo
= pIdxInfo
= allocateIndexInfo(p
);
2301 /* At this point, the sqlite3_index_info structure that pIdxInfo points
2302 ** to will have been initialized, either during the current invocation or
2303 ** during some prior invocation. Now we just have to customize the
2304 ** details of pIdxInfo for the current invocation and pass it to
2308 /* The module name must be defined. Also, by this point there must
2309 ** be a pointer to an sqlite3_vtab structure. Otherwise
2310 ** sqlite3ViewGetColumnNames() would have picked up the error.
2312 assert( pTab
->azModuleArg
&& pTab
->azModuleArg
[0] );
2313 assert( sqlite3GetVTable(pParse
->db
, pTab
) );
2315 /* Try once or twice. On the first attempt, allow IN optimizations.
2316 ** If an IN optimization is accepted by the virtual table xBestIndex
2317 ** method, but the pInfo->aConstrainUsage.omit flag is not set, then
2318 ** the query will not work because it might allow duplicate rows in
2319 ** output. In that case, run the xBestIndex method a second time
2320 ** without the IN constraints. Usually this loop only runs once.
2321 ** The loop will exit using a "break" statement.
2323 for(bAllowIN
=1; 1; bAllowIN
--){
2324 assert( bAllowIN
==0 || bAllowIN
==1 );
2326 /* Set the aConstraint[].usable fields and initialize all
2327 ** output variables to zero.
2329 ** aConstraint[].usable is true for constraints where the right-hand
2330 ** side contains only references to tables to the left of the current
2331 ** table. In other words, if the constraint is of the form:
2335 ** and we are evaluating a join, then the constraint on column is
2336 ** only valid if all tables referenced in expr occur to the left
2337 ** of the table containing column.
2339 ** The aConstraints[] array contains entries for all constraints
2340 ** on the current table. That way we only have to compute it once
2341 ** even though we might try to pick the best index multiple times.
2342 ** For each attempt at picking an index, the order of tables in the
2343 ** join might be different so we have to recompute the usable flag
2346 pIdxCons
= *(struct sqlite3_index_constraint
**)&pIdxInfo
->aConstraint
;
2347 pUsage
= pIdxInfo
->aConstraintUsage
;
2348 for(i
=0; i
<pIdxInfo
->nConstraint
; i
++, pIdxCons
++){
2349 j
= pIdxCons
->iTermOffset
;
2351 if( (pTerm
->prereqRight
&p
->notReady
)==0
2352 && (bAllowIN
|| (pTerm
->eOperator
& WO_IN
)==0)
2354 pIdxCons
->usable
= 1;
2356 pIdxCons
->usable
= 0;
2359 memset(pUsage
, 0, sizeof(pUsage
[0])*pIdxInfo
->nConstraint
);
2360 if( pIdxInfo
->needToFreeIdxStr
){
2361 sqlite3_free(pIdxInfo
->idxStr
);
2363 pIdxInfo
->idxStr
= 0;
2364 pIdxInfo
->idxNum
= 0;
2365 pIdxInfo
->needToFreeIdxStr
= 0;
2366 pIdxInfo
->orderByConsumed
= 0;
2367 /* ((double)2) In case of SQLITE_OMIT_FLOATING_POINT... */
2368 pIdxInfo
->estimatedCost
= SQLITE_BIG_DBL
/ ((double)2);
2369 nOrderBy
= pIdxInfo
->nOrderBy
;
2371 pIdxInfo
->nOrderBy
= 0;
2374 if( vtabBestIndex(pParse
, pTab
, pIdxInfo
) ){
2378 pIdxCons
= *(struct sqlite3_index_constraint
**)&pIdxInfo
->aConstraint
;
2379 for(i
=0; i
<pIdxInfo
->nConstraint
; i
++, pIdxCons
++){
2380 if( pUsage
[i
].argvIndex
>0 ){
2381 j
= pIdxCons
->iTermOffset
;
2383 p
->cost
.used
|= pTerm
->prereqRight
;
2384 if( (pTerm
->eOperator
& WO_IN
)!=0 ){
2385 if( pUsage
[i
].omit
==0 ){
2386 /* Do not attempt to use an IN constraint if the virtual table
2387 ** says that the equivalent EQ constraint cannot be safely omitted.
2388 ** If we do attempt to use such a constraint, some rows might be
2389 ** repeated in the output. */
2392 /* A virtual table that is constrained by an IN clause may not
2393 ** consume the ORDER BY clause because (1) the order of IN terms
2394 ** is not necessarily related to the order of output terms and
2395 ** (2) Multiple outputs from a single IN value will not merge
2397 pIdxInfo
->orderByConsumed
= 0;
2401 if( i
>=pIdxInfo
->nConstraint
) break;
2404 /* The orderByConsumed signal is only valid if all outer loops collectively
2405 ** generate just a single row of output.
2407 if( pIdxInfo
->orderByConsumed
){
2408 for(i
=0; i
<p
->i
; i
++){
2409 if( (p
->aLevel
[i
].plan
.wsFlags
& WHERE_UNIQUE
)==0 ){
2410 pIdxInfo
->orderByConsumed
= 0;
2415 /* If there is an ORDER BY clause, and the selected virtual table index
2416 ** does not satisfy it, increase the cost of the scan accordingly. This
2417 ** matches the processing for non-virtual tables in bestBtreeIndex().
2419 rCost
= pIdxInfo
->estimatedCost
;
2420 if( p
->pOrderBy
&& pIdxInfo
->orderByConsumed
==0 ){
2421 rCost
+= estLog(rCost
)*rCost
;
2424 /* The cost is not allowed to be larger than SQLITE_BIG_DBL (the
2425 ** inital value of lowestCost in this loop. If it is, then the
2426 ** (cost<lowestCost) test below will never be true.
2428 ** Use "(double)2" instead of "2.0" in case OMIT_FLOATING_POINT
2431 if( (SQLITE_BIG_DBL
/((double)2))<rCost
){
2432 p
->cost
.rCost
= (SQLITE_BIG_DBL
/((double)2));
2434 p
->cost
.rCost
= rCost
;
2436 p
->cost
.plan
.u
.pVtabIdx
= pIdxInfo
;
2437 if( pIdxInfo
->orderByConsumed
){
2438 p
->cost
.plan
.wsFlags
|= WHERE_ORDERED
;
2439 p
->cost
.plan
.nOBSat
= nOrderBy
;
2441 p
->cost
.plan
.nOBSat
= p
->i
? p
->aLevel
[p
->i
-1].plan
.nOBSat
: 0;
2443 p
->cost
.plan
.nEq
= 0;
2444 pIdxInfo
->nOrderBy
= nOrderBy
;
2446 /* Try to find a more efficient access pattern by using multiple indexes
2447 ** to optimize an OR expression within the WHERE clause.
2449 bestOrClauseIndex(p
);
2451 #endif /* SQLITE_OMIT_VIRTUALTABLE */
2453 #ifdef SQLITE_ENABLE_STAT3
2455 ** Estimate the location of a particular key among all keys in an
2456 ** index. Store the results in aStat as follows:
2458 ** aStat[0] Est. number of rows less than pVal
2459 ** aStat[1] Est. number of rows equal to pVal
2461 ** Return SQLITE_OK on success.
2463 static int whereKeyStats(
2464 Parse
*pParse
, /* Database connection */
2465 Index
*pIdx
, /* Index to consider domain of */
2466 sqlite3_value
*pVal
, /* Value to consider */
2467 int roundUp
, /* Round up if true. Round down if false */
2468 tRowcnt
*aStat
/* OUT: stats written here */
2471 IndexSample
*aSample
;
2477 assert( roundUp
==0 || roundUp
==1 );
2478 assert( pIdx
->nSample
>0 );
2479 if( pVal
==0 ) return SQLITE_ERROR
;
2480 n
= pIdx
->aiRowEst
[0];
2481 aSample
= pIdx
->aSample
;
2482 eType
= sqlite3_value_type(pVal
);
2484 if( eType
==SQLITE_INTEGER
){
2485 v
= sqlite3_value_int64(pVal
);
2487 for(i
=0; i
<pIdx
->nSample
; i
++){
2488 if( aSample
[i
].eType
==SQLITE_NULL
) continue;
2489 if( aSample
[i
].eType
>=SQLITE_TEXT
) break;
2490 if( aSample
[i
].eType
==SQLITE_INTEGER
){
2491 if( aSample
[i
].u
.i
>=v
){
2492 isEq
= aSample
[i
].u
.i
==v
;
2496 assert( aSample
[i
].eType
==SQLITE_FLOAT
);
2497 if( aSample
[i
].u
.r
>=r
){
2498 isEq
= aSample
[i
].u
.r
==r
;
2503 }else if( eType
==SQLITE_FLOAT
){
2504 r
= sqlite3_value_double(pVal
);
2505 for(i
=0; i
<pIdx
->nSample
; i
++){
2506 if( aSample
[i
].eType
==SQLITE_NULL
) continue;
2507 if( aSample
[i
].eType
>=SQLITE_TEXT
) break;
2508 if( aSample
[i
].eType
==SQLITE_FLOAT
){
2509 rS
= aSample
[i
].u
.r
;
2511 rS
= aSample
[i
].u
.i
;
2518 }else if( eType
==SQLITE_NULL
){
2520 if( aSample
[0].eType
==SQLITE_NULL
) isEq
= 1;
2522 assert( eType
==SQLITE_TEXT
|| eType
==SQLITE_BLOB
);
2523 for(i
=0; i
<pIdx
->nSample
; i
++){
2524 if( aSample
[i
].eType
==SQLITE_TEXT
|| aSample
[i
].eType
==SQLITE_BLOB
){
2528 if( i
<pIdx
->nSample
){
2529 sqlite3
*db
= pParse
->db
;
2532 if( eType
==SQLITE_BLOB
){
2533 z
= (const u8
*)sqlite3_value_blob(pVal
);
2534 pColl
= db
->pDfltColl
;
2535 assert( pColl
->enc
==SQLITE_UTF8
);
2537 pColl
= sqlite3GetCollSeq(pParse
, SQLITE_UTF8
, 0, *pIdx
->azColl
);
2539 return SQLITE_ERROR
;
2541 z
= (const u8
*)sqlite3ValueText(pVal
, pColl
->enc
);
2543 return SQLITE_NOMEM
;
2545 assert( z
&& pColl
&& pColl
->xCmp
);
2547 n
= sqlite3ValueBytes(pVal
, pColl
->enc
);
2549 for(; i
<pIdx
->nSample
; i
++){
2551 int eSampletype
= aSample
[i
].eType
;
2552 if( eSampletype
<eType
) continue;
2553 if( eSampletype
!=eType
) break;
2554 #ifndef SQLITE_OMIT_UTF16
2555 if( pColl
->enc
!=SQLITE_UTF8
){
2557 char *zSample
= sqlite3Utf8to16(
2558 db
, pColl
->enc
, aSample
[i
].u
.z
, aSample
[i
].nByte
, &nSample
2561 assert( db
->mallocFailed
);
2562 return SQLITE_NOMEM
;
2564 c
= pColl
->xCmp(pColl
->pUser
, nSample
, zSample
, n
, z
);
2565 sqlite3DbFree(db
, zSample
);
2569 c
= pColl
->xCmp(pColl
->pUser
, aSample
[i
].nByte
, aSample
[i
].u
.z
, n
, z
);
2572 if( c
==0 ) isEq
= 1;
2579 /* At this point, aSample[i] is the first sample that is greater than
2580 ** or equal to pVal. Or if i==pIdx->nSample, then all samples are less
2581 ** than pVal. If aSample[i]==pVal, then isEq==1.
2584 assert( i
<pIdx
->nSample
);
2585 aStat
[0] = aSample
[i
].nLt
;
2586 aStat
[1] = aSample
[i
].nEq
;
2588 tRowcnt iLower
, iUpper
, iGap
;
2591 iUpper
= aSample
[0].nLt
;
2593 iUpper
= i
>=pIdx
->nSample
? n
: aSample
[i
].nLt
;
2594 iLower
= aSample
[i
-1].nEq
+ aSample
[i
-1].nLt
;
2596 aStat
[1] = pIdx
->avgEq
;
2597 if( iLower
>=iUpper
){
2600 iGap
= iUpper
- iLower
;
2607 aStat
[0] = iLower
+ iGap
;
2611 #endif /* SQLITE_ENABLE_STAT3 */
2614 ** If expression pExpr represents a literal value, set *pp to point to
2615 ** an sqlite3_value structure containing the same value, with affinity
2616 ** aff applied to it, before returning. It is the responsibility of the
2617 ** caller to eventually release this structure by passing it to
2618 ** sqlite3ValueFree().
2620 ** If the current parse is a recompile (sqlite3Reprepare()) and pExpr
2621 ** is an SQL variable that currently has a non-NULL value bound to it,
2622 ** create an sqlite3_value structure containing this value, again with
2623 ** affinity aff applied to it, instead.
2625 ** If neither of the above apply, set *pp to NULL.
2627 ** If an error occurs, return an error code. Otherwise, SQLITE_OK.
2629 #ifdef SQLITE_ENABLE_STAT3
2630 static int valueFromExpr(
2636 if( pExpr
->op
==TK_VARIABLE
2637 || (pExpr
->op
==TK_REGISTER
&& pExpr
->op2
==TK_VARIABLE
)
2639 int iVar
= pExpr
->iColumn
;
2640 sqlite3VdbeSetVarmask(pParse
->pVdbe
, iVar
);
2641 *pp
= sqlite3VdbeGetValue(pParse
->pReprepare
, iVar
, aff
);
2644 return sqlite3ValueFromExpr(pParse
->db
, pExpr
, SQLITE_UTF8
, aff
, pp
);
2649 ** This function is used to estimate the number of rows that will be visited
2650 ** by scanning an index for a range of values. The range may have an upper
2651 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
2652 ** and lower bounds are represented by pLower and pUpper respectively. For
2653 ** example, assuming that index p is on t1(a):
2655 ** ... FROM t1 WHERE a > ? AND a < ? ...
2660 ** If either of the upper or lower bound is not present, then NULL is passed in
2661 ** place of the corresponding WhereTerm.
2663 ** The nEq parameter is passed the index of the index column subject to the
2664 ** range constraint. Or, equivalently, the number of equality constraints
2665 ** optimized by the proposed index scan. For example, assuming index p is
2666 ** on t1(a, b), and the SQL query is:
2668 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
2670 ** then nEq should be passed the value 1 (as the range restricted column,
2671 ** b, is the second left-most column of the index). Or, if the query is:
2673 ** ... FROM t1 WHERE a > ? AND a < ? ...
2675 ** then nEq should be passed 0.
2677 ** The returned value is an integer divisor to reduce the estimated
2678 ** search space. A return value of 1 means that range constraints are
2679 ** no help at all. A return value of 2 means range constraints are
2680 ** expected to reduce the search space by half. And so forth...
2682 ** In the absence of sqlite_stat3 ANALYZE data, each range inequality
2683 ** reduces the search space by a factor of 4. Hence a single constraint (x>?)
2684 ** results in a return of 4 and a range constraint (x>? AND x<?) results
2685 ** in a return of 16.
2687 static int whereRangeScanEst(
2688 Parse
*pParse
, /* Parsing & code generating context */
2689 Index
*p
, /* The index containing the range-compared column; "x" */
2690 int nEq
, /* index into p->aCol[] of the range-compared column */
2691 WhereTerm
*pLower
, /* Lower bound on the range. ex: "x>123" Might be NULL */
2692 WhereTerm
*pUpper
, /* Upper bound on the range. ex: "x<455" Might be NULL */
2693 double *pRangeDiv
/* OUT: Reduce search space by this divisor */
2697 #ifdef SQLITE_ENABLE_STAT3
2699 if( nEq
==0 && p
->nSample
){
2700 sqlite3_value
*pRangeVal
;
2702 tRowcnt iUpper
= p
->aiRowEst
[0];
2704 u8 aff
= p
->pTable
->aCol
[p
->aiColumn
[0]].affinity
;
2707 Expr
*pExpr
= pLower
->pExpr
->pRight
;
2708 rc
= valueFromExpr(pParse
, pExpr
, aff
, &pRangeVal
);
2709 assert( (pLower
->eOperator
& (WO_GT
|WO_GE
))!=0 );
2711 && whereKeyStats(pParse
, p
, pRangeVal
, 0, a
)==SQLITE_OK
2714 if( (pLower
->eOperator
& WO_GT
)!=0 ) iLower
+= a
[1];
2716 sqlite3ValueFree(pRangeVal
);
2718 if( rc
==SQLITE_OK
&& pUpper
){
2719 Expr
*pExpr
= pUpper
->pExpr
->pRight
;
2720 rc
= valueFromExpr(pParse
, pExpr
, aff
, &pRangeVal
);
2721 assert( (pUpper
->eOperator
& (WO_LT
|WO_LE
))!=0 );
2723 && whereKeyStats(pParse
, p
, pRangeVal
, 1, a
)==SQLITE_OK
2726 if( (pUpper
->eOperator
& WO_LE
)!=0 ) iUpper
+= a
[1];
2728 sqlite3ValueFree(pRangeVal
);
2730 if( rc
==SQLITE_OK
){
2731 if( iUpper
<=iLower
){
2732 *pRangeDiv
= (double)p
->aiRowEst
[0];
2734 *pRangeDiv
= (double)p
->aiRowEst
[0]/(double)(iUpper
- iLower
);
2736 WHERETRACE(("range scan regions: %u..%u div=%g\n",
2737 (u32
)iLower
, (u32
)iUpper
, *pRangeDiv
));
2742 UNUSED_PARAMETER(pParse
);
2743 UNUSED_PARAMETER(p
);
2744 UNUSED_PARAMETER(nEq
);
2746 assert( pLower
|| pUpper
);
2747 *pRangeDiv
= (double)1;
2748 if( pLower
&& (pLower
->wtFlags
& TERM_VNULL
)==0 ) *pRangeDiv
*= (double)4;
2749 if( pUpper
) *pRangeDiv
*= (double)4;
2753 #ifdef SQLITE_ENABLE_STAT3
2755 ** Estimate the number of rows that will be returned based on
2756 ** an equality constraint x=VALUE and where that VALUE occurs in
2757 ** the histogram data. This only works when x is the left-most
2758 ** column of an index and sqlite_stat3 histogram data is available
2759 ** for that index. When pExpr==NULL that means the constraint is
2760 ** "x IS NULL" instead of "x=VALUE".
2762 ** Write the estimated row count into *pnRow and return SQLITE_OK.
2763 ** If unable to make an estimate, leave *pnRow unchanged and return
2766 ** This routine can fail if it is unable to load a collating sequence
2767 ** required for string comparison, or if unable to allocate memory
2768 ** for a UTF conversion required for comparison. The error is stored
2769 ** in the pParse structure.
2771 static int whereEqualScanEst(
2772 Parse
*pParse
, /* Parsing & code generating context */
2773 Index
*p
, /* The index whose left-most column is pTerm */
2774 Expr
*pExpr
, /* Expression for VALUE in the x=VALUE constraint */
2775 double *pnRow
/* Write the revised row estimate here */
2777 sqlite3_value
*pRhs
= 0; /* VALUE on right-hand side of pTerm */
2778 u8 aff
; /* Column affinity */
2779 int rc
; /* Subfunction return code */
2780 tRowcnt a
[2]; /* Statistics */
2782 assert( p
->aSample
!=0 );
2783 assert( p
->nSample
>0 );
2784 aff
= p
->pTable
->aCol
[p
->aiColumn
[0]].affinity
;
2786 rc
= valueFromExpr(pParse
, pExpr
, aff
, &pRhs
);
2787 if( rc
) goto whereEqualScanEst_cancel
;
2789 pRhs
= sqlite3ValueNew(pParse
->db
);
2791 if( pRhs
==0 ) return SQLITE_NOTFOUND
;
2792 rc
= whereKeyStats(pParse
, p
, pRhs
, 0, a
);
2793 if( rc
==SQLITE_OK
){
2794 WHERETRACE(("equality scan regions: %d\n", (int)a
[1]));
2797 whereEqualScanEst_cancel
:
2798 sqlite3ValueFree(pRhs
);
2801 #endif /* defined(SQLITE_ENABLE_STAT3) */
2803 #ifdef SQLITE_ENABLE_STAT3
2805 ** Estimate the number of rows that will be returned based on
2806 ** an IN constraint where the right-hand side of the IN operator
2807 ** is a list of values. Example:
2809 ** WHERE x IN (1,2,3,4)
2811 ** Write the estimated row count into *pnRow and return SQLITE_OK.
2812 ** If unable to make an estimate, leave *pnRow unchanged and return
2815 ** This routine can fail if it is unable to load a collating sequence
2816 ** required for string comparison, or if unable to allocate memory
2817 ** for a UTF conversion required for comparison. The error is stored
2818 ** in the pParse structure.
2820 static int whereInScanEst(
2821 Parse
*pParse
, /* Parsing & code generating context */
2822 Index
*p
, /* The index whose left-most column is pTerm */
2823 ExprList
*pList
, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
2824 double *pnRow
/* Write the revised row estimate here */
2826 int rc
= SQLITE_OK
; /* Subfunction return code */
2827 double nEst
; /* Number of rows for a single term */
2828 double nRowEst
= (double)0; /* New estimate of the number of rows */
2829 int i
; /* Loop counter */
2831 assert( p
->aSample
!=0 );
2832 for(i
=0; rc
==SQLITE_OK
&& i
<pList
->nExpr
; i
++){
2833 nEst
= p
->aiRowEst
[0];
2834 rc
= whereEqualScanEst(pParse
, p
, pList
->a
[i
].pExpr
, &nEst
);
2837 if( rc
==SQLITE_OK
){
2838 if( nRowEst
> p
->aiRowEst
[0] ) nRowEst
= p
->aiRowEst
[0];
2840 WHERETRACE(("IN row estimate: est=%g\n", nRowEst
));
2844 #endif /* defined(SQLITE_ENABLE_STAT3) */
2847 ** Check to see if column iCol of the table with cursor iTab will appear
2848 ** in sorted order according to the current query plan.
2852 ** 0 iCol is not ordered
2853 ** 1 iCol has only a single value
2854 ** 2 iCol is in ASC order
2855 ** 3 iCol is in DESC order
2857 static int isOrderedColumn(
2863 WhereLevel
*pLevel
= &p
->aLevel
[p
->i
-1];
2866 for(i
=p
->i
-1; i
>=0; i
--, pLevel
--){
2867 if( pLevel
->iTabCur
!=iTab
) continue;
2868 if( (pLevel
->plan
.wsFlags
& WHERE_ALL_UNIQUE
)!=0 ){
2871 assert( (pLevel
->plan
.wsFlags
& WHERE_ORDERED
)!=0 );
2872 if( (pIdx
= pLevel
->plan
.u
.pIdx
)!=0 ){
2875 testcase( (pLevel
->plan
.wsFlags
& WHERE_REVERSE
)!=0 );
2877 int n
= pIdx
->nColumn
;
2879 if( iCol
==pIdx
->aiColumn
[j
] ) break;
2881 if( j
>=n
) return 0;
2882 sortOrder
= pIdx
->aSortOrder
[j
];
2883 testcase( (pLevel
->plan
.wsFlags
& WHERE_REVERSE
)!=0 );
2886 if( iCol
!=(-1) ) return 0;
2888 testcase( (pLevel
->plan
.wsFlags
& WHERE_REVERSE
)!=0 );
2890 if( (pLevel
->plan
.wsFlags
& WHERE_REVERSE
)!=0 ){
2891 assert( sortOrder
==0 || sortOrder
==1 );
2892 testcase( sortOrder
==1 );
2893 sortOrder
= 1 - sortOrder
;
2901 ** This routine decides if pIdx can be used to satisfy the ORDER BY
2902 ** clause, either in whole or in part. The return value is the
2903 ** cumulative number of terms in the ORDER BY clause that are satisfied
2904 ** by the index pIdx and other indices in outer loops.
2906 ** The table being queried has a cursor number of "base". pIdx is the
2907 ** index that is postulated for use to access the table.
2909 ** The *pbRev value is set to 0 order 1 depending on whether or not
2910 ** pIdx should be run in the forward order or in reverse order.
2912 static int isSortingIndex(
2913 WhereBestIdx
*p
, /* Best index search context */
2914 Index
*pIdx
, /* The index we are testing */
2915 int base
, /* Cursor number for the table to be sorted */
2916 int *pbRev
, /* Set to 1 for reverse-order scan of pIdx */
2917 int *pbObUnique
/* ORDER BY column values will different in every row */
2919 int i
; /* Number of pIdx terms used */
2920 int j
; /* Number of ORDER BY terms satisfied */
2921 int sortOrder
= 2; /* 0: forward. 1: backward. 2: unknown */
2922 int nTerm
; /* Number of ORDER BY terms */
2923 struct ExprList_item
*pOBItem
;/* A term of the ORDER BY clause */
2924 Table
*pTab
= pIdx
->pTable
; /* Table that owns index pIdx */
2925 ExprList
*pOrderBy
; /* The ORDER BY clause */
2926 Parse
*pParse
= p
->pParse
; /* Parser context */
2927 sqlite3
*db
= pParse
->db
; /* Database connection */
2928 int nPriorSat
; /* ORDER BY terms satisfied by outer loops */
2929 int seenRowid
= 0; /* True if an ORDER BY rowid term is seen */
2930 int uniqueNotNull
; /* pIdx is UNIQUE with all terms are NOT NULL */
2931 int outerObUnique
; /* Outer loops generate different values in
2932 ** every row for the ORDER BY columns */
2938 u32 wsFlags
= p
->aLevel
[p
->i
-1].plan
.wsFlags
;
2939 nPriorSat
= p
->aLevel
[p
->i
-1].plan
.nOBSat
;
2940 if( (wsFlags
& WHERE_ORDERED
)==0 ){
2941 /* This loop cannot be ordered unless the next outer loop is
2945 if( OptimizationDisabled(db
, SQLITE_OrderByIdxJoin
) ){
2946 /* Only look at the outer-most loop if the OrderByIdxJoin
2947 ** optimization is disabled */
2950 testcase( wsFlags
& WHERE_OB_UNIQUE
);
2951 testcase( wsFlags
& WHERE_ALL_UNIQUE
);
2952 outerObUnique
= (wsFlags
& (WHERE_OB_UNIQUE
|WHERE_ALL_UNIQUE
))!=0;
2954 pOrderBy
= p
->pOrderBy
;
2955 assert( pOrderBy
!=0 );
2956 if( pIdx
->bUnordered
){
2957 /* Hash indices (indicated by the "unordered" tag on sqlite_stat1) cannot
2958 ** be used for sorting */
2961 nTerm
= pOrderBy
->nExpr
;
2962 uniqueNotNull
= pIdx
->onError
!=OE_None
;
2965 /* Argument pIdx must either point to a 'real' named index structure,
2966 ** or an index structure allocated on the stack by bestBtreeIndex() to
2967 ** represent the rowid index that is part of every table. */
2968 assert( pIdx
->zName
|| (pIdx
->nColumn
==1 && pIdx
->aiColumn
[0]==-1) );
2970 /* Match terms of the ORDER BY clause against columns of
2973 ** Note that indices have pIdx->nColumn regular columns plus
2974 ** one additional column containing the rowid. The rowid column
2975 ** of the index is also allowed to match against the ORDER BY
2979 for(i
=0,pOBItem
=&pOrderBy
->a
[j
]; j
<nTerm
&& i
<=pIdx
->nColumn
; i
++){
2980 Expr
*pOBExpr
; /* The expression of the ORDER BY pOBItem */
2981 CollSeq
*pColl
; /* The collating sequence of pOBExpr */
2982 int termSortOrder
; /* Sort order for this term */
2983 int iColumn
; /* The i-th column of the index. -1 for rowid */
2984 int iSortOrder
; /* 1 for DESC, 0 for ASC on the i-th index term */
2985 int isEq
; /* Subject to an == or IS NULL constraint */
2986 int isMatch
; /* ORDER BY term matches the index term */
2987 const char *zColl
; /* Name of collating sequence for i-th index term */
2988 WhereTerm
*pConstraint
; /* A constraint in the WHERE clause */
2990 /* If the next term of the ORDER BY clause refers to anything other than
2991 ** a column in the "base" table, then this index will not be of any
2992 ** further use in handling the ORDER BY. */
2993 pOBExpr
= sqlite3ExprSkipCollate(pOBItem
->pExpr
);
2994 if( pOBExpr
->op
!=TK_COLUMN
|| pOBExpr
->iTable
!=base
){
2998 /* Find column number and collating sequence for the next entry
3000 if( pIdx
->zName
&& i
<pIdx
->nColumn
){
3001 iColumn
= pIdx
->aiColumn
[i
];
3002 if( iColumn
==pIdx
->pTable
->iPKey
){
3005 iSortOrder
= pIdx
->aSortOrder
[i
];
3006 zColl
= pIdx
->azColl
[i
];
3014 /* Check to see if the column number and collating sequence of the
3015 ** index match the column number and collating sequence of the ORDER BY
3016 ** clause entry. Set isMatch to 1 if they both match. */
3017 if( pOBExpr
->iColumn
==iColumn
){
3019 pColl
= sqlite3ExprCollSeq(pParse
, pOBItem
->pExpr
);
3020 if( !pColl
) pColl
= db
->pDfltColl
;
3021 isMatch
= sqlite3StrICmp(pColl
->zName
, zColl
)==0;
3029 /* termSortOrder is 0 or 1 for whether or not the access loop should
3030 ** run forward or backwards (respectively) in order to satisfy this
3031 ** term of the ORDER BY clause. */
3032 assert( pOBItem
->sortOrder
==0 || pOBItem
->sortOrder
==1 );
3033 assert( iSortOrder
==0 || iSortOrder
==1 );
3034 termSortOrder
= iSortOrder
^ pOBItem
->sortOrder
;
3036 /* If X is the column in the index and ORDER BY clause, check to see
3037 ** if there are any X= or X IS NULL constraints in the WHERE clause. */
3038 pConstraint
= findTerm(p
->pWC
, base
, iColumn
, p
->notReady
,
3039 WO_EQ
|WO_ISNULL
|WO_IN
, pIdx
);
3040 if( pConstraint
==0 ){
3042 }else if( (pConstraint
->eOperator
& WO_IN
)!=0 ){
3044 }else if( (pConstraint
->eOperator
& WO_ISNULL
)!=0 ){
3046 isEq
= 1; /* "X IS NULL" means X has only a single value */
3047 }else if( pConstraint
->prereqRight
==0 ){
3048 isEq
= 1; /* Constraint "X=constant" means X has only a single value */
3050 Expr
*pRight
= pConstraint
->pExpr
->pRight
;
3051 if( pRight
->op
==TK_COLUMN
){
3052 WHERETRACE((" .. isOrderedColumn(tab=%d,col=%d)",
3053 pRight
->iTable
, pRight
->iColumn
));
3054 isEq
= isOrderedColumn(p
, pRight
->iTable
, pRight
->iColumn
);
3055 WHERETRACE((" -> isEq=%d\n", isEq
));
3057 /* If the constraint is of the form X=Y where Y is an ordered value
3058 ** in an outer loop, then make sure the sort order of Y matches the
3059 ** sort order required for X. */
3060 if( isMatch
&& isEq
>=2 && isEq
!=pOBItem
->sortOrder
+2 ){
3061 testcase( isEq
==2 );
3062 testcase( isEq
==3 );
3066 isEq
= 0; /* "X=expr" places no ordering constraints on X */
3075 }else if( isEq
!=1 ){
3077 sortOrder
= termSortOrder
;
3078 }else if( termSortOrder
!=sortOrder
){
3087 }else if( pTab
->aCol
[iColumn
].notNull
==0 && isEq
!=1 ){
3088 testcase( isEq
==0 );
3089 testcase( isEq
==2 );
3090 testcase( isEq
==3 );
3096 }else if( uniqueNotNull
==0 || i
<pIdx
->nColumn
){
3100 /* If we have not found at least one ORDER BY term that matches the
3101 ** index, then show no progress. */
3102 if( pOBItem
==&pOrderBy
->a
[nPriorSat
] ) return nPriorSat
;
3104 /* Either the outer queries must generate rows where there are no two
3105 ** rows with the same values in all ORDER BY columns, or else this
3106 ** loop must generate just a single row of output. Example: Suppose
3107 ** the outer loops generate A=1 and A=1, and this loop generates B=3
3108 ** and B=4. Then without the following test, ORDER BY A,B would
3109 ** generate the wrong order output: 1,3 1,4 1,3 1,4
3111 if( outerObUnique
==0 && uniqueNotNull
==0 ) return nPriorSat
;
3112 *pbObUnique
= uniqueNotNull
;
3114 /* Return the necessary scan order back to the caller */
3115 *pbRev
= sortOrder
& 1;
3117 /* If there was an "ORDER BY rowid" term that matched, or it is only
3118 ** possible for a single row from this table to match, then skip over
3119 ** any additional ORDER BY terms dealing with this table.
3121 if( uniqueNotNull
){
3122 /* Advance j over additional ORDER BY terms associated with base */
3123 WhereMaskSet
*pMS
= p
->pWC
->pMaskSet
;
3124 Bitmask m
= ~getMask(pMS
, base
);
3125 while( j
<nTerm
&& (exprTableUsage(pMS
, pOrderBy
->a
[j
].pExpr
)&m
)==0 ){
3133 ** Find the best query plan for accessing a particular table. Write the
3134 ** best query plan and its cost into the p->cost.
3136 ** The lowest cost plan wins. The cost is an estimate of the amount of
3137 ** CPU and disk I/O needed to process the requested result.
3138 ** Factors that influence cost include:
3140 ** * The estimated number of rows that will be retrieved. (The
3141 ** fewer the better.)
3143 ** * Whether or not sorting must occur.
3145 ** * Whether or not there must be separate lookups in the
3146 ** index and in the main table.
3148 ** If there was an INDEXED BY clause (pSrc->pIndex) attached to the table in
3149 ** the SQL statement, then this function only considers plans using the
3150 ** named index. If no such plan is found, then the returned cost is
3151 ** SQLITE_BIG_DBL. If a plan is found that uses the named index,
3152 ** then the cost is calculated in the usual way.
3154 ** If a NOT INDEXED clause was attached to the table
3155 ** in the SELECT statement, then no indexes are considered. However, the
3156 ** selected plan may still take advantage of the built-in rowid primary key
3159 static void bestBtreeIndex(WhereBestIdx
*p
){
3160 Parse
*pParse
= p
->pParse
; /* The parsing context */
3161 WhereClause
*pWC
= p
->pWC
; /* The WHERE clause */
3162 struct SrcList_item
*pSrc
= p
->pSrc
; /* The FROM clause term to search */
3163 int iCur
= pSrc
->iCursor
; /* The cursor of the table to be accessed */
3164 Index
*pProbe
; /* An index we are evaluating */
3165 Index
*pIdx
; /* Copy of pProbe, or zero for IPK index */
3166 int eqTermMask
; /* Current mask of valid equality operators */
3167 int idxEqTermMask
; /* Index mask of valid equality operators */
3168 Index sPk
; /* A fake index object for the primary key */
3169 tRowcnt aiRowEstPk
[2]; /* The aiRowEst[] value for the sPk index */
3170 int aiColumnPk
= -1; /* The aColumn[] value for the sPk index */
3171 int wsFlagMask
; /* Allowed flags in p->cost.plan.wsFlag */
3172 int nPriorSat
; /* ORDER BY terms satisfied by outer loops */
3173 int nOrderBy
; /* Number of ORDER BY terms */
3174 char bSortInit
; /* Initializer for bSort in inner loop */
3175 char bDistInit
; /* Initializer for bDist in inner loop */
3178 /* Initialize the cost to a worst-case value */
3179 memset(&p
->cost
, 0, sizeof(p
->cost
));
3180 p
->cost
.rCost
= SQLITE_BIG_DBL
;
3182 /* If the pSrc table is the right table of a LEFT JOIN then we may not
3183 ** use an index to satisfy IS NULL constraints on that table. This is
3184 ** because columns might end up being NULL if the table does not match -
3185 ** a circumstance which the index cannot help us discover. Ticket #2177.
3187 if( pSrc
->jointype
& JT_LEFT
){
3188 idxEqTermMask
= WO_EQ
|WO_IN
;
3190 idxEqTermMask
= WO_EQ
|WO_IN
|WO_ISNULL
;
3194 /* An INDEXED BY clause specifies a particular index to use */
3195 pIdx
= pProbe
= pSrc
->pIndex
;
3196 wsFlagMask
= ~(WHERE_ROWID_EQ
|WHERE_ROWID_RANGE
);
3197 eqTermMask
= idxEqTermMask
;
3199 /* There is no INDEXED BY clause. Create a fake Index object in local
3200 ** variable sPk to represent the rowid primary key index. Make this
3201 ** fake index the first in a chain of Index objects with all of the real
3202 ** indices to follow */
3203 Index
*pFirst
; /* First of real indices on the table */
3204 memset(&sPk
, 0, sizeof(Index
));
3206 sPk
.aiColumn
= &aiColumnPk
;
3207 sPk
.aiRowEst
= aiRowEstPk
;
3208 sPk
.onError
= OE_Replace
;
3209 sPk
.pTable
= pSrc
->pTab
;
3210 aiRowEstPk
[0] = pSrc
->pTab
->nRowEst
;
3212 pFirst
= pSrc
->pTab
->pIndex
;
3213 if( pSrc
->notIndexed
==0 ){
3214 /* The real indices of the table are only considered if the
3215 ** NOT INDEXED qualifier is omitted from the FROM clause */
3220 WHERE_COLUMN_IN
|WHERE_COLUMN_EQ
|WHERE_COLUMN_NULL
|WHERE_COLUMN_RANGE
3222 eqTermMask
= WO_EQ
|WO_IN
;
3226 nOrderBy
= p
->pOrderBy
? p
->pOrderBy
->nExpr
: 0;
3228 nPriorSat
= p
->aLevel
[p
->i
-1].plan
.nOBSat
;
3229 bSortInit
= nPriorSat
<nOrderBy
;
3233 bSortInit
= nOrderBy
>0;
3234 bDistInit
= p
->pDistinct
!=0;
3237 /* Loop over all indices looking for the best one to use
3239 for(; pProbe
; pIdx
=pProbe
=pProbe
->pNext
){
3240 const tRowcnt
* const aiRowEst
= pProbe
->aiRowEst
;
3241 WhereCost pc
; /* Cost of using pProbe */
3242 double log10N
= (double)1; /* base-10 logarithm of nRow (inexact) */
3244 /* The following variables are populated based on the properties of
3245 ** index being evaluated. They are then used to determine the expected
3246 ** cost and number of rows returned.
3249 ** Number of equality terms that can be implemented using the index.
3250 ** In other words, the number of initial fields in the index that
3251 ** are used in == or IN or NOT NULL constraints of the WHERE clause.
3254 ** The "in-multiplier". This is an estimate of how many seek operations
3255 ** SQLite must perform on the index in question. For example, if the
3258 ** WHERE a IN (1, 2, 3) AND b IN (4, 5, 6)
3260 ** SQLite must perform 9 lookups on an index on (a, b), so nInMul is
3261 ** set to 9. Given the same schema and either of the following WHERE
3267 ** nInMul is set to 1.
3269 ** If there exists a WHERE term of the form "x IN (SELECT ...)", then
3270 ** the sub-select is assumed to return 25 rows for the purposes of
3271 ** determining nInMul.
3274 ** Set to true if there was at least one "x IN (SELECT ...)" term used
3275 ** in determining the value of nInMul. Note that the RHS of the
3276 ** IN operator must be a SELECT, not a value list, for this variable
3280 ** An estimate of a divisor by which to reduce the search space due
3281 ** to inequality constraints. In the absence of sqlite_stat3 ANALYZE
3282 ** data, a single inequality reduces the search space to 1/4rd its
3283 ** original size (rangeDiv==4). Two inequalities reduce the search
3284 ** space to 1/16th of its original size (rangeDiv==16).
3287 ** Boolean. True if there is an ORDER BY clause that will require an
3288 ** external sort (i.e. scanning the index being evaluated will not
3289 ** correctly order records).
3292 ** Boolean. True if there is a DISTINCT clause that will require an
3296 ** Boolean. True if a table lookup is required for each index entry
3297 ** visited. In other words, true if this is not a covering index.
3298 ** This is always false for the rowid primary key index of a table.
3299 ** For other indexes, it is true unless all the columns of the table
3300 ** used by the SELECT statement are present in the index (such an
3301 ** index is sometimes described as a covering index).
3302 ** For example, given the index on (a, b), the second of the following
3303 ** two queries requires table b-tree lookups in order to find the value
3304 ** of column c, but the first does not because columns a and b are
3305 ** both available in the index.
3307 ** SELECT a, b FROM tbl WHERE a = 1;
3308 ** SELECT a, b, c FROM tbl WHERE a = 1;
3310 int bInEst
= 0; /* True if "x IN (SELECT...)" seen */
3311 int nInMul
= 1; /* Number of distinct equalities to lookup */
3312 double rangeDiv
= (double)1; /* Estimated reduction in search space */
3313 int nBound
= 0; /* Number of range constraints seen */
3314 char bSort
= bSortInit
; /* True if external sort required */
3315 char bDist
= bDistInit
; /* True if index cannot help with DISTINCT */
3316 char bLookup
= 0; /* True if not a covering index */
3317 WhereTerm
*pTerm
; /* A single term of the WHERE clause */
3318 #ifdef SQLITE_ENABLE_STAT3
3319 WhereTerm
*pFirstTerm
= 0; /* First term matching the index */
3324 pSrc
->pTab
->zName
, (pIdx
? pIdx
->zName
: "ipk")
3326 memset(&pc
, 0, sizeof(pc
));
3327 pc
.plan
.nOBSat
= nPriorSat
;
3329 /* Determine the values of pc.plan.nEq and nInMul */
3330 for(pc
.plan
.nEq
=0; pc
.plan
.nEq
<pProbe
->nColumn
; pc
.plan
.nEq
++){
3331 int j
= pProbe
->aiColumn
[pc
.plan
.nEq
];
3332 pTerm
= findTerm(pWC
, iCur
, j
, p
->notReady
, eqTermMask
, pIdx
);
3333 if( pTerm
==0 ) break;
3334 pc
.plan
.wsFlags
|= (WHERE_COLUMN_EQ
|WHERE_ROWID_EQ
);
3335 testcase( pTerm
->pWC
!=pWC
);
3336 if( pTerm
->eOperator
& WO_IN
){
3337 Expr
*pExpr
= pTerm
->pExpr
;
3338 pc
.plan
.wsFlags
|= WHERE_COLUMN_IN
;
3339 if( ExprHasProperty(pExpr
, EP_xIsSelect
) ){
3340 /* "x IN (SELECT ...)": Assume the SELECT returns 25 rows */
3343 }else if( ALWAYS(pExpr
->x
.pList
&& pExpr
->x
.pList
->nExpr
) ){
3344 /* "x IN (value, value, ...)" */
3345 nInMul
*= pExpr
->x
.pList
->nExpr
;
3347 }else if( pTerm
->eOperator
& WO_ISNULL
){
3348 pc
.plan
.wsFlags
|= WHERE_COLUMN_NULL
;
3350 #ifdef SQLITE_ENABLE_STAT3
3351 if( pc
.plan
.nEq
==0 && pProbe
->aSample
) pFirstTerm
= pTerm
;
3353 pc
.used
|= pTerm
->prereqRight
;
3356 /* If the index being considered is UNIQUE, and there is an equality
3357 ** constraint for all columns in the index, then this search will find
3358 ** at most a single row. In this case set the WHERE_UNIQUE flag to
3359 ** indicate this to the caller.
3361 ** Otherwise, if the search may find more than one row, test to see if
3362 ** there is a range constraint on indexed column (pc.plan.nEq+1) that
3363 ** can be optimized using the index.
3365 if( pc
.plan
.nEq
==pProbe
->nColumn
&& pProbe
->onError
!=OE_None
){
3366 testcase( pc
.plan
.wsFlags
& WHERE_COLUMN_IN
);
3367 testcase( pc
.plan
.wsFlags
& WHERE_COLUMN_NULL
);
3368 if( (pc
.plan
.wsFlags
& (WHERE_COLUMN_IN
|WHERE_COLUMN_NULL
))==0 ){
3369 pc
.plan
.wsFlags
|= WHERE_UNIQUE
;
3370 if( p
->i
==0 || (p
->aLevel
[p
->i
-1].plan
.wsFlags
& WHERE_ALL_UNIQUE
)!=0 ){
3371 pc
.plan
.wsFlags
|= WHERE_ALL_UNIQUE
;
3374 }else if( pProbe
->bUnordered
==0 ){
3376 j
= (pc
.plan
.nEq
==pProbe
->nColumn
? -1 : pProbe
->aiColumn
[pc
.plan
.nEq
]);
3377 if( findTerm(pWC
, iCur
, j
, p
->notReady
, WO_LT
|WO_LE
|WO_GT
|WO_GE
, pIdx
) ){
3378 WhereTerm
*pTop
, *pBtm
;
3379 pTop
= findTerm(pWC
, iCur
, j
, p
->notReady
, WO_LT
|WO_LE
, pIdx
);
3380 pBtm
= findTerm(pWC
, iCur
, j
, p
->notReady
, WO_GT
|WO_GE
, pIdx
);
3381 whereRangeScanEst(pParse
, pProbe
, pc
.plan
.nEq
, pBtm
, pTop
, &rangeDiv
);
3384 pc
.plan
.wsFlags
|= WHERE_TOP_LIMIT
;
3385 pc
.used
|= pTop
->prereqRight
;
3386 testcase( pTop
->pWC
!=pWC
);
3390 pc
.plan
.wsFlags
|= WHERE_BTM_LIMIT
;
3391 pc
.used
|= pBtm
->prereqRight
;
3392 testcase( pBtm
->pWC
!=pWC
);
3394 pc
.plan
.wsFlags
|= (WHERE_COLUMN_RANGE
|WHERE_ROWID_RANGE
);
3398 /* If there is an ORDER BY clause and the index being considered will
3399 ** naturally scan rows in the required order, set the appropriate flags
3400 ** in pc.plan.wsFlags. Otherwise, if there is an ORDER BY clause but
3401 ** the index will scan rows in a different order, set the bSort
3403 if( bSort
&& (pSrc
->jointype
& JT_LEFT
)==0 ){
3406 WHERETRACE((" --> before isSortIndex: nPriorSat=%d\n",nPriorSat
));
3407 pc
.plan
.nOBSat
= isSortingIndex(p
, pProbe
, iCur
, &bRev
, &bObUnique
);
3408 WHERETRACE((" --> after isSortIndex: bRev=%d bObU=%d nOBSat=%d\n",
3409 bRev
, bObUnique
, pc
.plan
.nOBSat
));
3410 if( nPriorSat
<pc
.plan
.nOBSat
|| (pc
.plan
.wsFlags
& WHERE_ALL_UNIQUE
)!=0 ){
3411 pc
.plan
.wsFlags
|= WHERE_ORDERED
;
3412 if( bObUnique
) pc
.plan
.wsFlags
|= WHERE_OB_UNIQUE
;
3414 if( nOrderBy
==pc
.plan
.nOBSat
){
3416 pc
.plan
.wsFlags
|= WHERE_ROWID_RANGE
|WHERE_COLUMN_RANGE
;
3418 if( bRev
& 1 ) pc
.plan
.wsFlags
|= WHERE_REVERSE
;
3421 /* If there is a DISTINCT qualifier and this index will scan rows in
3422 ** order of the DISTINCT expressions, clear bDist and set the appropriate
3423 ** flags in pc.plan.wsFlags. */
3425 && isDistinctIndex(pParse
, pWC
, pProbe
, iCur
, p
->pDistinct
, pc
.plan
.nEq
)
3426 && (pc
.plan
.wsFlags
& WHERE_COLUMN_IN
)==0
3429 pc
.plan
.wsFlags
|= WHERE_ROWID_RANGE
|WHERE_COLUMN_RANGE
|WHERE_DISTINCT
;
3432 /* If currently calculating the cost of using an index (not the IPK
3433 ** index), determine if all required column data may be obtained without
3434 ** using the main table (i.e. if the index is a covering
3435 ** index for this query). If it is, set the WHERE_IDX_ONLY flag in
3436 ** pc.plan.wsFlags. Otherwise, set the bLookup variable to true. */
3438 Bitmask m
= pSrc
->colUsed
;
3440 for(j
=0; j
<pIdx
->nColumn
; j
++){
3441 int x
= pIdx
->aiColumn
[j
];
3443 m
&= ~(((Bitmask
)1)<<x
);
3447 pc
.plan
.wsFlags
|= WHERE_IDX_ONLY
;
3454 ** Estimate the number of rows of output. For an "x IN (SELECT...)"
3455 ** constraint, do not let the estimate exceed half the rows in the table.
3457 pc
.plan
.nRow
= (double)(aiRowEst
[pc
.plan
.nEq
] * nInMul
);
3458 if( bInEst
&& pc
.plan
.nRow
*2>aiRowEst
[0] ){
3459 pc
.plan
.nRow
= aiRowEst
[0]/2;
3460 nInMul
= (int)(pc
.plan
.nRow
/ aiRowEst
[pc
.plan
.nEq
]);
3463 #ifdef SQLITE_ENABLE_STAT3
3464 /* If the constraint is of the form x=VALUE or x IN (E1,E2,...)
3465 ** and we do not think that values of x are unique and if histogram
3466 ** data is available for column x, then it might be possible
3467 ** to get a better estimate on the number of rows based on
3468 ** VALUE and how common that value is according to the histogram.
3470 if( pc
.plan
.nRow
>(double)1 && pc
.plan
.nEq
==1
3471 && pFirstTerm
!=0 && aiRowEst
[1]>1 ){
3472 assert( (pFirstTerm
->eOperator
& (WO_EQ
|WO_ISNULL
|WO_IN
))!=0 );
3473 if( pFirstTerm
->eOperator
& (WO_EQ
|WO_ISNULL
) ){
3474 testcase( pFirstTerm
->eOperator
& WO_EQ
);
3475 testcase( pFirstTerm
->eOperator
& WO_EQUIV
);
3476 testcase( pFirstTerm
->eOperator
& WO_ISNULL
);
3477 whereEqualScanEst(pParse
, pProbe
, pFirstTerm
->pExpr
->pRight
,
3479 }else if( bInEst
==0 ){
3480 assert( pFirstTerm
->eOperator
& WO_IN
);
3481 whereInScanEst(pParse
, pProbe
, pFirstTerm
->pExpr
->x
.pList
,
3485 #endif /* SQLITE_ENABLE_STAT3 */
3487 /* Adjust the number of output rows and downward to reflect rows
3488 ** that are excluded by range constraints.
3490 pc
.plan
.nRow
= pc
.plan
.nRow
/rangeDiv
;
3491 if( pc
.plan
.nRow
<1 ) pc
.plan
.nRow
= 1;
3493 /* Experiments run on real SQLite databases show that the time needed
3494 ** to do a binary search to locate a row in a table or index is roughly
3495 ** log10(N) times the time to move from one row to the next row within
3496 ** a table or index. The actual times can vary, with the size of
3497 ** records being an important factor. Both moves and searches are
3498 ** slower with larger records, presumably because fewer records fit
3499 ** on one page and hence more pages have to be fetched.
3501 ** The ANALYZE command and the sqlite_stat1 and sqlite_stat3 tables do
3502 ** not give us data on the relative sizes of table and index records.
3503 ** So this computation assumes table records are about twice as big
3506 if( (pc
.plan
.wsFlags
&~(WHERE_REVERSE
|WHERE_ORDERED
|WHERE_OB_UNIQUE
))
3508 && (pWC
->wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0
3509 && sqlite3GlobalConfig
.bUseCis
3510 && OptimizationEnabled(pParse
->db
, SQLITE_CoverIdxScan
)
3512 /* This index is not useful for indexing, but it is a covering index.
3513 ** A full-scan of the index might be a little faster than a full-scan
3514 ** of the table, so give this case a cost slightly less than a table
3516 pc
.rCost
= aiRowEst
[0]*3 + pProbe
->nColumn
;
3517 pc
.plan
.wsFlags
|= WHERE_COVER_SCAN
|WHERE_COLUMN_RANGE
;
3518 }else if( (pc
.plan
.wsFlags
& WHERE_NOT_FULLSCAN
)==0 ){
3519 /* The cost of a full table scan is a number of move operations equal
3520 ** to the number of rows in the table.
3522 ** We add an additional 4x penalty to full table scans. This causes
3523 ** the cost function to err on the side of choosing an index over
3524 ** choosing a full scan. This 4x full-scan penalty is an arguable
3525 ** decision and one which we expect to revisit in the future. But
3526 ** it seems to be working well enough at the moment.
3528 pc
.rCost
= aiRowEst
[0]*4;
3529 pc
.plan
.wsFlags
&= ~WHERE_IDX_ONLY
;
3531 pc
.plan
.wsFlags
&= ~WHERE_ORDERED
;
3532 pc
.plan
.nOBSat
= nPriorSat
;
3535 log10N
= estLog(aiRowEst
[0]);
3536 pc
.rCost
= pc
.plan
.nRow
;
3539 /* For an index lookup followed by a table lookup:
3540 ** nInMul index searches to find the start of each index range
3541 ** + nRow steps through the index
3542 ** + nRow table searches to lookup the table entry using the rowid
3544 pc
.rCost
+= (nInMul
+ pc
.plan
.nRow
)*log10N
;
3546 /* For a covering index:
3547 ** nInMul index searches to find the initial entry
3548 ** + nRow steps through the index
3550 pc
.rCost
+= nInMul
*log10N
;
3553 /* For a rowid primary key lookup:
3554 ** nInMult table searches to find the initial entry for each range
3555 ** + nRow steps through the table
3557 pc
.rCost
+= nInMul
*log10N
;
3561 /* Add in the estimated cost of sorting the result. Actual experimental
3562 ** measurements of sorting performance in SQLite show that sorting time
3563 ** adds C*N*log10(N) to the cost, where N is the number of rows to be
3564 ** sorted and C is a factor between 1.95 and 4.3. We will split the
3565 ** difference and select C of 3.0.
3568 double m
= estLog(pc
.plan
.nRow
*(nOrderBy
- pc
.plan
.nOBSat
)/nOrderBy
);
3569 m
*= (double)(pc
.plan
.nOBSat
? 2 : 3);
3570 pc
.rCost
+= pc
.plan
.nRow
*m
;
3573 pc
.rCost
+= pc
.plan
.nRow
*estLog(pc
.plan
.nRow
)*3;
3576 /**** Cost of using this index has now been computed ****/
3578 /* If there are additional constraints on this table that cannot
3579 ** be used with the current index, but which might lower the number
3580 ** of output rows, adjust the nRow value accordingly. This only
3581 ** matters if the current index is the least costly, so do not bother
3582 ** with this step if we already know this index will not be chosen.
3583 ** Also, never reduce the output row count below 2 using this step.
3585 ** It is critical that the notValid mask be used here instead of
3586 ** the notReady mask. When computing an "optimal" index, the notReady
3587 ** mask will only have one bit set - the bit for the current table.
3588 ** The notValid mask, on the other hand, always has all bits set for
3589 ** tables that are not in outer loops. If notReady is used here instead
3590 ** of notValid, then a optimal index that depends on inner joins loops
3591 ** might be selected even when there exists an optimal index that has
3592 ** no such dependency.
3594 if( pc
.plan
.nRow
>2 && pc
.rCost
<=p
->cost
.rCost
){
3595 int k
; /* Loop counter */
3596 int nSkipEq
= pc
.plan
.nEq
; /* Number of == constraints to skip */
3597 int nSkipRange
= nBound
; /* Number of < constraints to skip */
3598 Bitmask thisTab
; /* Bitmap for pSrc */
3600 thisTab
= getMask(pWC
->pMaskSet
, iCur
);
3601 for(pTerm
=pWC
->a
, k
=pWC
->nTerm
; pc
.plan
.nRow
>2 && k
; k
--, pTerm
++){
3602 if( pTerm
->wtFlags
& TERM_VIRTUAL
) continue;
3603 if( (pTerm
->prereqAll
& p
->notValid
)!=thisTab
) continue;
3604 if( pTerm
->eOperator
& (WO_EQ
|WO_IN
|WO_ISNULL
) ){
3606 /* Ignore the first pc.plan.nEq equality matches since the index
3607 ** has already accounted for these */
3610 /* Assume each additional equality match reduces the result
3611 ** set size by a factor of 10 */
3614 }else if( pTerm
->eOperator
& (WO_LT
|WO_LE
|WO_GT
|WO_GE
) ){
3616 /* Ignore the first nSkipRange range constraints since the index
3617 ** has already accounted for these */
3620 /* Assume each additional range constraint reduces the result
3621 ** set size by a factor of 3. Indexed range constraints reduce
3622 ** the search space by a larger factor: 4. We make indexed range
3623 ** more selective intentionally because of the subjective
3624 ** observation that indexed range constraints really are more
3625 ** selective in practice, on average. */
3628 }else if( (pTerm
->eOperator
& WO_NOOP
)==0 ){
3629 /* Any other expression lowers the output row count by half */
3633 if( pc
.plan
.nRow
<2 ) pc
.plan
.nRow
= 2;
3638 " nEq=%d nInMul=%d rangeDiv=%d bSort=%d bLookup=%d wsFlags=0x%08x\n"
3639 " notReady=0x%llx log10N=%.1f nRow=%.1f cost=%.1f\n"
3640 " used=0x%llx nOBSat=%d\n",
3641 pc
.plan
.nEq
, nInMul
, (int)rangeDiv
, bSort
, bLookup
, pc
.plan
.wsFlags
,
3642 p
->notReady
, log10N
, pc
.plan
.nRow
, pc
.rCost
, pc
.used
,
3646 /* If this index is the best we have seen so far, then record this
3647 ** index and its cost in the p->cost structure.
3649 if( (!pIdx
|| pc
.plan
.wsFlags
) && compareCost(&pc
, &p
->cost
) ){
3651 p
->cost
.plan
.wsFlags
&= wsFlagMask
;
3652 p
->cost
.plan
.u
.pIdx
= pIdx
;
3655 /* If there was an INDEXED BY clause, then only that one index is
3657 if( pSrc
->pIndex
) break;
3659 /* Reset masks for the next index in the loop */
3660 wsFlagMask
= ~(WHERE_ROWID_EQ
|WHERE_ROWID_RANGE
);
3661 eqTermMask
= idxEqTermMask
;
3664 /* If there is no ORDER BY clause and the SQLITE_ReverseOrder flag
3665 ** is set, then reverse the order that the index will be scanned
3666 ** in. This is used for application testing, to help find cases
3667 ** where application behavior depends on the (undefined) order that
3668 ** SQLite outputs rows in in the absence of an ORDER BY clause. */
3669 if( !p
->pOrderBy
&& pParse
->db
->flags
& SQLITE_ReverseOrder
){
3670 p
->cost
.plan
.wsFlags
|= WHERE_REVERSE
;
3673 assert( p
->pOrderBy
|| (p
->cost
.plan
.wsFlags
&WHERE_ORDERED
)==0 );
3674 assert( p
->cost
.plan
.u
.pIdx
==0 || (p
->cost
.plan
.wsFlags
&WHERE_ROWID_EQ
)==0 );
3675 assert( pSrc
->pIndex
==0
3676 || p
->cost
.plan
.u
.pIdx
==0
3677 || p
->cost
.plan
.u
.pIdx
==pSrc
->pIndex
3680 WHERETRACE((" best index is %s cost=%.1f\n",
3681 p
->cost
.plan
.u
.pIdx
? p
->cost
.plan
.u
.pIdx
->zName
: "ipk",
3684 bestOrClauseIndex(p
);
3685 bestAutomaticIndex(p
);
3686 p
->cost
.plan
.wsFlags
|= eqTermMask
;
3690 ** Find the query plan for accessing table pSrc->pTab. Write the
3691 ** best query plan and its cost into the WhereCost object supplied
3692 ** as the last parameter. This function may calculate the cost of
3693 ** both real and virtual table scans.
3695 ** This function does not take ORDER BY or DISTINCT into account. Nor
3696 ** does it remember the virtual table query plan. All it does is compute
3697 ** the cost while determining if an OR optimization is applicable. The
3698 ** details will be reconsidered later if the optimization is found to be
3701 static void bestIndex(WhereBestIdx
*p
){
3702 #ifndef SQLITE_OMIT_VIRTUALTABLE
3703 if( IsVirtual(p
->pSrc
->pTab
) ){
3704 sqlite3_index_info
*pIdxInfo
= 0;
3705 p
->ppIdxInfo
= &pIdxInfo
;
3706 bestVirtualIndex(p
);
3707 assert( pIdxInfo
!=0 || p
->pParse
->db
->mallocFailed
);
3708 if( pIdxInfo
&& pIdxInfo
->needToFreeIdxStr
){
3709 sqlite3_free(pIdxInfo
->idxStr
);
3711 sqlite3DbFree(p
->pParse
->db
, pIdxInfo
);
3720 ** Disable a term in the WHERE clause. Except, do not disable the term
3721 ** if it controls a LEFT OUTER JOIN and it did not originate in the ON
3722 ** or USING clause of that join.
3724 ** Consider the term t2.z='ok' in the following queries:
3726 ** (1) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x WHERE t2.z='ok'
3727 ** (2) SELECT * FROM t1 LEFT JOIN t2 ON t1.a=t2.x AND t2.z='ok'
3728 ** (3) SELECT * FROM t1, t2 WHERE t1.a=t2.x AND t2.z='ok'
3730 ** The t2.z='ok' is disabled in the in (2) because it originates
3731 ** in the ON clause. The term is disabled in (3) because it is not part
3732 ** of a LEFT OUTER JOIN. In (1), the term is not disabled.
3734 ** IMPLEMENTATION-OF: R-24597-58655 No tests are done for terms that are
3735 ** completely satisfied by indices.
3737 ** Disabling a term causes that term to not be tested in the inner loop
3738 ** of the join. Disabling is an optimization. When terms are satisfied
3739 ** by indices, we disable them to prevent redundant tests in the inner
3740 ** loop. We would get the correct results if nothing were ever disabled,
3741 ** but joins might run a little slower. The trick is to disable as much
3742 ** as we can without disabling too much. If we disabled in (1), we'd get
3743 ** the wrong answer. See ticket #813.
3745 static void disableTerm(WhereLevel
*pLevel
, WhereTerm
*pTerm
){
3747 && (pTerm
->wtFlags
& TERM_CODED
)==0
3748 && (pLevel
->iLeftJoin
==0 || ExprHasProperty(pTerm
->pExpr
, EP_FromJoin
))
3750 pTerm
->wtFlags
|= TERM_CODED
;
3751 if( pTerm
->iParent
>=0 ){
3752 WhereTerm
*pOther
= &pTerm
->pWC
->a
[pTerm
->iParent
];
3753 if( (--pOther
->nChild
)==0 ){
3754 disableTerm(pLevel
, pOther
);
3761 ** Code an OP_Affinity opcode to apply the column affinity string zAff
3762 ** to the n registers starting at base.
3764 ** As an optimization, SQLITE_AFF_NONE entries (which are no-ops) at the
3765 ** beginning and end of zAff are ignored. If all entries in zAff are
3766 ** SQLITE_AFF_NONE, then no code gets generated.
3768 ** This routine makes its own copy of zAff so that the caller is free
3769 ** to modify zAff after this routine returns.
3771 static void codeApplyAffinity(Parse
*pParse
, int base
, int n
, char *zAff
){
3772 Vdbe
*v
= pParse
->pVdbe
;
3774 assert( pParse
->db
->mallocFailed
);
3779 /* Adjust base and n to skip over SQLITE_AFF_NONE entries at the beginning
3780 ** and end of the affinity string.
3782 while( n
>0 && zAff
[0]==SQLITE_AFF_NONE
){
3787 while( n
>1 && zAff
[n
-1]==SQLITE_AFF_NONE
){
3791 /* Code the OP_Affinity opcode if there is anything left to do. */
3793 sqlite3VdbeAddOp2(v
, OP_Affinity
, base
, n
);
3794 sqlite3VdbeChangeP4(v
, -1, zAff
, n
);
3795 sqlite3ExprCacheAffinityChange(pParse
, base
, n
);
3801 ** Generate code for a single equality term of the WHERE clause. An equality
3802 ** term can be either X=expr or X IN (...). pTerm is the term to be
3805 ** The current value for the constraint is left in register iReg.
3807 ** For a constraint of the form X=expr, the expression is evaluated and its
3808 ** result is left on the stack. For constraints of the form X IN (...)
3809 ** this routine sets up a loop that will iterate over all values of X.
3811 static int codeEqualityTerm(
3812 Parse
*pParse
, /* The parsing context */
3813 WhereTerm
*pTerm
, /* The term of the WHERE clause to be coded */
3814 WhereLevel
*pLevel
, /* The level of the FROM clause we are working on */
3815 int iEq
, /* Index of the equality term within this level */
3816 int iTarget
/* Attempt to leave results in this register */
3818 Expr
*pX
= pTerm
->pExpr
;
3819 Vdbe
*v
= pParse
->pVdbe
;
3820 int iReg
; /* Register holding results */
3822 assert( iTarget
>0 );
3823 if( pX
->op
==TK_EQ
){
3824 iReg
= sqlite3ExprCodeTarget(pParse
, pX
->pRight
, iTarget
);
3825 }else if( pX
->op
==TK_ISNULL
){
3827 sqlite3VdbeAddOp2(v
, OP_Null
, 0, iReg
);
3828 #ifndef SQLITE_OMIT_SUBQUERY
3833 u8 bRev
= (pLevel
->plan
.wsFlags
& WHERE_REVERSE
)!=0;
3835 if( (pLevel
->plan
.wsFlags
& WHERE_INDEXED
)!=0
3836 && pLevel
->plan
.u
.pIdx
->aSortOrder
[iEq
]
3839 testcase( iEq
==pLevel
->plan
.u
.pIdx
->nColumn
-1 );
3840 testcase( iEq
>0 && iEq
+1<pLevel
->plan
.u
.pIdx
->nColumn
);
3844 assert( pX
->op
==TK_IN
);
3846 eType
= sqlite3FindInIndex(pParse
, pX
, 0);
3847 if( eType
==IN_INDEX_INDEX_DESC
){
3852 sqlite3VdbeAddOp2(v
, bRev
? OP_Last
: OP_Rewind
, iTab
, 0);
3853 assert( pLevel
->plan
.wsFlags
& WHERE_IN_ABLE
);
3854 if( pLevel
->u
.in
.nIn
==0 ){
3855 pLevel
->addrNxt
= sqlite3VdbeMakeLabel(v
);
3858 pLevel
->u
.in
.aInLoop
=
3859 sqlite3DbReallocOrFree(pParse
->db
, pLevel
->u
.in
.aInLoop
,
3860 sizeof(pLevel
->u
.in
.aInLoop
[0])*pLevel
->u
.in
.nIn
);
3861 pIn
= pLevel
->u
.in
.aInLoop
;
3863 pIn
+= pLevel
->u
.in
.nIn
- 1;
3865 if( eType
==IN_INDEX_ROWID
){
3866 pIn
->addrInTop
= sqlite3VdbeAddOp2(v
, OP_Rowid
, iTab
, iReg
);
3868 pIn
->addrInTop
= sqlite3VdbeAddOp3(v
, OP_Column
, iTab
, 0, iReg
);
3870 pIn
->eEndLoopOp
= bRev
? OP_Prev
: OP_Next
;
3871 sqlite3VdbeAddOp1(v
, OP_IsNull
, iReg
);
3873 pLevel
->u
.in
.nIn
= 0;
3877 disableTerm(pLevel
, pTerm
);
3882 ** Generate code that will evaluate all == and IN constraints for an
3885 ** For example, consider table t1(a,b,c,d,e,f) with index i1(a,b,c).
3886 ** Suppose the WHERE clause is this: a==5 AND b IN (1,2,3) AND c>5 AND c<10
3887 ** The index has as many as three equality constraints, but in this
3888 ** example, the third "c" value is an inequality. So only two
3889 ** constraints are coded. This routine will generate code to evaluate
3890 ** a==5 and b IN (1,2,3). The current values for a and b will be stored
3891 ** in consecutive registers and the index of the first register is returned.
3893 ** In the example above nEq==2. But this subroutine works for any value
3894 ** of nEq including 0. If nEq==0, this routine is nearly a no-op.
3895 ** The only thing it does is allocate the pLevel->iMem memory cell and
3896 ** compute the affinity string.
3898 ** This routine always allocates at least one memory cell and returns
3899 ** the index of that memory cell. The code that
3900 ** calls this routine will use that memory cell to store the termination
3901 ** key value of the loop. If one or more IN operators appear, then
3902 ** this routine allocates an additional nEq memory cells for internal
3905 ** Before returning, *pzAff is set to point to a buffer containing a
3906 ** copy of the column affinity string of the index allocated using
3907 ** sqlite3DbMalloc(). Except, entries in the copy of the string associated
3908 ** with equality constraints that use NONE affinity are set to
3909 ** SQLITE_AFF_NONE. This is to deal with SQL such as the following:
3911 ** CREATE TABLE t1(a TEXT PRIMARY KEY, b);
3912 ** SELECT ... FROM t1 AS t2, t1 WHERE t1.a = t2.b;
3914 ** In the example above, the index on t1(a) has TEXT affinity. But since
3915 ** the right hand side of the equality constraint (t2.b) has NONE affinity,
3916 ** no conversion should be attempted before using a t2.b value as part of
3917 ** a key to search the index. Hence the first byte in the returned affinity
3918 ** string in this example would be set to SQLITE_AFF_NONE.
3920 static int codeAllEqualityTerms(
3921 Parse
*pParse
, /* Parsing context */
3922 WhereLevel
*pLevel
, /* Which nested loop of the FROM we are coding */
3923 WhereClause
*pWC
, /* The WHERE clause */
3924 Bitmask notReady
, /* Which parts of FROM have not yet been coded */
3925 int nExtraReg
, /* Number of extra registers to allocate */
3926 char **pzAff
/* OUT: Set to point to affinity string */
3928 int nEq
= pLevel
->plan
.nEq
; /* The number of == or IN constraints to code */
3929 Vdbe
*v
= pParse
->pVdbe
; /* The vm under construction */
3930 Index
*pIdx
; /* The index being used for this loop */
3931 int iCur
= pLevel
->iTabCur
; /* The cursor of the table */
3932 WhereTerm
*pTerm
; /* A single constraint term */
3933 int j
; /* Loop counter */
3934 int regBase
; /* Base register */
3935 int nReg
; /* Number of registers to allocate */
3936 char *zAff
; /* Affinity string to return */
3938 /* This module is only called on query plans that use an index. */
3939 assert( pLevel
->plan
.wsFlags
& WHERE_INDEXED
);
3940 pIdx
= pLevel
->plan
.u
.pIdx
;
3942 /* Figure out how many memory cells we will need then allocate them.
3944 regBase
= pParse
->nMem
+ 1;
3945 nReg
= pLevel
->plan
.nEq
+ nExtraReg
;
3946 pParse
->nMem
+= nReg
;
3948 zAff
= sqlite3DbStrDup(pParse
->db
, sqlite3IndexAffinityStr(v
, pIdx
));
3950 pParse
->db
->mallocFailed
= 1;
3953 /* Evaluate the equality constraints
3955 assert( pIdx
->nColumn
>=nEq
);
3956 for(j
=0; j
<nEq
; j
++){
3958 int k
= pIdx
->aiColumn
[j
];
3959 pTerm
= findTerm(pWC
, iCur
, k
, notReady
, pLevel
->plan
.wsFlags
, pIdx
);
3960 if( pTerm
==0 ) break;
3961 /* The following true for indices with redundant columns.
3962 ** Ex: CREATE INDEX i1 ON t1(a,b,a); SELECT * FROM t1 WHERE a=0 AND b=0; */
3963 testcase( (pTerm
->wtFlags
& TERM_CODED
)!=0 );
3964 testcase( pTerm
->wtFlags
& TERM_VIRTUAL
); /* EV: R-30575-11662 */
3965 r1
= codeEqualityTerm(pParse
, pTerm
, pLevel
, j
, regBase
+j
);
3966 if( r1
!=regBase
+j
){
3968 sqlite3ReleaseTempReg(pParse
, regBase
);
3971 sqlite3VdbeAddOp2(v
, OP_SCopy
, r1
, regBase
+j
);
3974 testcase( pTerm
->eOperator
& WO_ISNULL
);
3975 testcase( pTerm
->eOperator
& WO_IN
);
3976 if( (pTerm
->eOperator
& (WO_ISNULL
|WO_IN
))==0 ){
3977 Expr
*pRight
= pTerm
->pExpr
->pRight
;
3978 sqlite3ExprCodeIsNullJump(v
, pRight
, regBase
+j
, pLevel
->addrBrk
);
3980 if( sqlite3CompareAffinity(pRight
, zAff
[j
])==SQLITE_AFF_NONE
){
3981 zAff
[j
] = SQLITE_AFF_NONE
;
3983 if( sqlite3ExprNeedsNoAffinityChange(pRight
, zAff
[j
]) ){
3984 zAff
[j
] = SQLITE_AFF_NONE
;
3993 #ifndef SQLITE_OMIT_EXPLAIN
3995 ** This routine is a helper for explainIndexRange() below
3997 ** pStr holds the text of an expression that we are building up one term
3998 ** at a time. This routine adds a new term to the end of the expression.
3999 ** Terms are separated by AND so add the "AND" text for second and subsequent
4002 static void explainAppendTerm(
4003 StrAccum
*pStr
, /* The text expression being built */
4004 int iTerm
, /* Index of this term. First is zero */
4005 const char *zColumn
, /* Name of the column */
4006 const char *zOp
/* Name of the operator */
4008 if( iTerm
) sqlite3StrAccumAppend(pStr
, " AND ", 5);
4009 sqlite3StrAccumAppend(pStr
, zColumn
, -1);
4010 sqlite3StrAccumAppend(pStr
, zOp
, 1);
4011 sqlite3StrAccumAppend(pStr
, "?", 1);
4015 ** Argument pLevel describes a strategy for scanning table pTab. This
4016 ** function returns a pointer to a string buffer containing a description
4017 ** of the subset of table rows scanned by the strategy in the form of an
4018 ** SQL expression. Or, if all rows are scanned, NULL is returned.
4020 ** For example, if the query:
4022 ** SELECT * FROM t1 WHERE a=1 AND b>2;
4024 ** is run and there is an index on (a, b), then this function returns a
4025 ** string similar to:
4029 ** The returned pointer points to memory obtained from sqlite3DbMalloc().
4030 ** It is the responsibility of the caller to free the buffer when it is
4031 ** no longer required.
4033 static char *explainIndexRange(sqlite3
*db
, WhereLevel
*pLevel
, Table
*pTab
){
4034 WherePlan
*pPlan
= &pLevel
->plan
;
4035 Index
*pIndex
= pPlan
->u
.pIdx
;
4036 int nEq
= pPlan
->nEq
;
4038 Column
*aCol
= pTab
->aCol
;
4039 int *aiColumn
= pIndex
->aiColumn
;
4042 if( nEq
==0 && (pPlan
->wsFlags
& (WHERE_BTM_LIMIT
|WHERE_TOP_LIMIT
))==0 ){
4045 sqlite3StrAccumInit(&txt
, 0, 0, SQLITE_MAX_LENGTH
);
4047 sqlite3StrAccumAppend(&txt
, " (", 2);
4048 for(i
=0; i
<nEq
; i
++){
4049 explainAppendTerm(&txt
, i
, aCol
[aiColumn
[i
]].zName
, "=");
4053 if( pPlan
->wsFlags
&WHERE_BTM_LIMIT
){
4054 char *z
= (j
==pIndex
->nColumn
) ? "rowid" : aCol
[aiColumn
[j
]].zName
;
4055 explainAppendTerm(&txt
, i
++, z
, ">");
4057 if( pPlan
->wsFlags
&WHERE_TOP_LIMIT
){
4058 char *z
= (j
==pIndex
->nColumn
) ? "rowid" : aCol
[aiColumn
[j
]].zName
;
4059 explainAppendTerm(&txt
, i
, z
, "<");
4061 sqlite3StrAccumAppend(&txt
, ")", 1);
4062 return sqlite3StrAccumFinish(&txt
);
4066 ** This function is a no-op unless currently processing an EXPLAIN QUERY PLAN
4067 ** command. If the query being compiled is an EXPLAIN QUERY PLAN, a single
4068 ** record is added to the output to describe the table scan strategy in
4071 static void explainOneScan(
4072 Parse
*pParse
, /* Parse context */
4073 SrcList
*pTabList
, /* Table list this loop refers to */
4074 WhereLevel
*pLevel
, /* Scan to write OP_Explain opcode for */
4075 int iLevel
, /* Value for "level" column of output */
4076 int iFrom
, /* Value for "from" column of output */
4077 u16 wctrlFlags
/* Flags passed to sqlite3WhereBegin() */
4079 if( pParse
->explain
==2 ){
4080 u32 flags
= pLevel
->plan
.wsFlags
;
4081 struct SrcList_item
*pItem
= &pTabList
->a
[pLevel
->iFrom
];
4082 Vdbe
*v
= pParse
->pVdbe
; /* VM being constructed */
4083 sqlite3
*db
= pParse
->db
; /* Database handle */
4084 char *zMsg
; /* Text to add to EQP output */
4085 sqlite3_int64 nRow
; /* Expected number of rows visited by scan */
4086 int iId
= pParse
->iSelectId
; /* Select id (left-most output column) */
4087 int isSearch
; /* True for a SEARCH. False for SCAN. */
4089 if( (flags
&WHERE_MULTI_OR
) || (wctrlFlags
&WHERE_ONETABLE_ONLY
) ) return;
4091 isSearch
= (pLevel
->plan
.nEq
>0)
4092 || (flags
&(WHERE_BTM_LIMIT
|WHERE_TOP_LIMIT
))!=0
4093 || (wctrlFlags
&(WHERE_ORDERBY_MIN
|WHERE_ORDERBY_MAX
));
4095 zMsg
= sqlite3MPrintf(db
, "%s", isSearch
?"SEARCH":"SCAN");
4096 if( pItem
->pSelect
){
4097 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s SUBQUERY %d", zMsg
,pItem
->iSelectId
);
4099 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s TABLE %s", zMsg
, pItem
->zName
);
4102 if( pItem
->zAlias
){
4103 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s AS %s", zMsg
, pItem
->zAlias
);
4105 if( (flags
& WHERE_INDEXED
)!=0 ){
4106 char *zWhere
= explainIndexRange(db
, pLevel
, pItem
->pTab
);
4107 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s USING %s%sINDEX%s%s%s", zMsg
,
4108 ((flags
& WHERE_TEMP_INDEX
)?"AUTOMATIC ":""),
4109 ((flags
& WHERE_IDX_ONLY
)?"COVERING ":""),
4110 ((flags
& WHERE_TEMP_INDEX
)?"":" "),
4111 ((flags
& WHERE_TEMP_INDEX
)?"": pLevel
->plan
.u
.pIdx
->zName
),
4114 sqlite3DbFree(db
, zWhere
);
4115 }else if( flags
& (WHERE_ROWID_EQ
|WHERE_ROWID_RANGE
) ){
4116 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s USING INTEGER PRIMARY KEY", zMsg
);
4118 if( flags
&WHERE_ROWID_EQ
){
4119 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s (rowid=?)", zMsg
);
4120 }else if( (flags
&WHERE_BOTH_LIMIT
)==WHERE_BOTH_LIMIT
){
4121 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s (rowid>? AND rowid<?)", zMsg
);
4122 }else if( flags
&WHERE_BTM_LIMIT
){
4123 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s (rowid>?)", zMsg
);
4124 }else if( flags
&WHERE_TOP_LIMIT
){
4125 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s (rowid<?)", zMsg
);
4128 #ifndef SQLITE_OMIT_VIRTUALTABLE
4129 else if( (flags
& WHERE_VIRTUALTABLE
)!=0 ){
4130 sqlite3_index_info
*pVtabIdx
= pLevel
->plan
.u
.pVtabIdx
;
4131 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s VIRTUAL TABLE INDEX %d:%s", zMsg
,
4132 pVtabIdx
->idxNum
, pVtabIdx
->idxStr
);
4135 if( wctrlFlags
&(WHERE_ORDERBY_MIN
|WHERE_ORDERBY_MAX
) ){
4136 testcase( wctrlFlags
& WHERE_ORDERBY_MIN
);
4139 nRow
= (sqlite3_int64
)pLevel
->plan
.nRow
;
4141 zMsg
= sqlite3MAppendf(db
, zMsg
, "%s (~%lld rows)", zMsg
, nRow
);
4142 sqlite3VdbeAddOp4(v
, OP_Explain
, iId
, iLevel
, iFrom
, zMsg
, P4_DYNAMIC
);
4146 # define explainOneScan(u,v,w,x,y,z)
4147 #endif /* SQLITE_OMIT_EXPLAIN */
4151 ** Generate code for the start of the iLevel-th loop in the WHERE clause
4152 ** implementation described by pWInfo.
4154 static Bitmask
codeOneLoopStart(
4155 WhereInfo
*pWInfo
, /* Complete information about the WHERE clause */
4156 int iLevel
, /* Which level of pWInfo->a[] should be coded */
4157 u16 wctrlFlags
, /* One of the WHERE_* flags defined in sqliteInt.h */
4158 Bitmask notReady
/* Which tables are currently available */
4160 int j
, k
; /* Loop counters */
4161 int iCur
; /* The VDBE cursor for the table */
4162 int addrNxt
; /* Where to jump to continue with the next IN case */
4163 int omitTable
; /* True if we use the index only */
4164 int bRev
; /* True if we need to scan in reverse order */
4165 WhereLevel
*pLevel
; /* The where level to be coded */
4166 WhereClause
*pWC
; /* Decomposition of the entire WHERE clause */
4167 WhereTerm
*pTerm
; /* A WHERE clause term */
4168 Parse
*pParse
; /* Parsing context */
4169 Vdbe
*v
; /* The prepared stmt under constructions */
4170 struct SrcList_item
*pTabItem
; /* FROM clause term being coded */
4171 int addrBrk
; /* Jump here to break out of the loop */
4172 int addrCont
; /* Jump here to continue with next cycle */
4173 int iRowidReg
= 0; /* Rowid is stored in this register, if not zero */
4174 int iReleaseReg
= 0; /* Temp register to free before returning */
4175 Bitmask newNotReady
; /* Return value */
4177 pParse
= pWInfo
->pParse
;
4180 pLevel
= &pWInfo
->a
[iLevel
];
4181 pTabItem
= &pWInfo
->pTabList
->a
[pLevel
->iFrom
];
4182 iCur
= pTabItem
->iCursor
;
4183 bRev
= (pLevel
->plan
.wsFlags
& WHERE_REVERSE
)!=0;
4184 omitTable
= (pLevel
->plan
.wsFlags
& WHERE_IDX_ONLY
)!=0
4185 && (wctrlFlags
& WHERE_FORCE_TABLE
)==0;
4186 VdbeNoopComment((v
, "Begin Join Loop %d", iLevel
));
4188 /* Create labels for the "break" and "continue" instructions
4189 ** for the current loop. Jump to addrBrk to break out of a loop.
4190 ** Jump to cont to go immediately to the next iteration of the
4193 ** When there is an IN operator, we also have a "addrNxt" label that
4194 ** means to continue with the next IN value combination. When
4195 ** there are no IN operators in the constraints, the "addrNxt" label
4196 ** is the same as "addrBrk".
4198 addrBrk
= pLevel
->addrBrk
= pLevel
->addrNxt
= sqlite3VdbeMakeLabel(v
);
4199 addrCont
= pLevel
->addrCont
= sqlite3VdbeMakeLabel(v
);
4201 /* If this is the right table of a LEFT OUTER JOIN, allocate and
4202 ** initialize a memory cell that records if this table matches any
4203 ** row of the left table of the join.
4205 if( pLevel
->iFrom
>0 && (pTabItem
[0].jointype
& JT_LEFT
)!=0 ){
4206 pLevel
->iLeftJoin
= ++pParse
->nMem
;
4207 sqlite3VdbeAddOp2(v
, OP_Integer
, 0, pLevel
->iLeftJoin
);
4208 VdbeComment((v
, "init LEFT JOIN no-match flag"));
4211 /* Special case of a FROM clause subquery implemented as a co-routine */
4212 if( pTabItem
->viaCoroutine
){
4213 int regYield
= pTabItem
->regReturn
;
4214 sqlite3VdbeAddOp2(v
, OP_Integer
, pTabItem
->addrFillSub
-1, regYield
);
4215 pLevel
->p2
= sqlite3VdbeAddOp1(v
, OP_Yield
, regYield
);
4216 VdbeComment((v
, "next row of co-routine %s", pTabItem
->pTab
->zName
));
4217 sqlite3VdbeAddOp2(v
, OP_If
, regYield
+1, addrBrk
);
4218 pLevel
->op
= OP_Goto
;
4221 #ifndef SQLITE_OMIT_VIRTUALTABLE
4222 if( (pLevel
->plan
.wsFlags
& WHERE_VIRTUALTABLE
)!=0 ){
4223 /* Case 0: The table is a virtual-table. Use the VFilter and VNext
4224 ** to access the data.
4226 int iReg
; /* P3 Value for OP_VFilter */
4228 sqlite3_index_info
*pVtabIdx
= pLevel
->plan
.u
.pVtabIdx
;
4229 int nConstraint
= pVtabIdx
->nConstraint
;
4230 struct sqlite3_index_constraint_usage
*aUsage
=
4231 pVtabIdx
->aConstraintUsage
;
4232 const struct sqlite3_index_constraint
*aConstraint
=
4233 pVtabIdx
->aConstraint
;
4235 sqlite3ExprCachePush(pParse
);
4236 iReg
= sqlite3GetTempRange(pParse
, nConstraint
+2);
4237 addrNotFound
= pLevel
->addrBrk
;
4238 for(j
=1; j
<=nConstraint
; j
++){
4239 for(k
=0; k
<nConstraint
; k
++){
4240 if( aUsage
[k
].argvIndex
==j
){
4241 int iTarget
= iReg
+j
+1;
4242 pTerm
= &pWC
->a
[aConstraint
[k
].iTermOffset
];
4243 if( pTerm
->eOperator
& WO_IN
){
4244 codeEqualityTerm(pParse
, pTerm
, pLevel
, k
, iTarget
);
4245 addrNotFound
= pLevel
->addrNxt
;
4247 sqlite3ExprCode(pParse
, pTerm
->pExpr
->pRight
, iTarget
);
4252 if( k
==nConstraint
) break;
4254 sqlite3VdbeAddOp2(v
, OP_Integer
, pVtabIdx
->idxNum
, iReg
);
4255 sqlite3VdbeAddOp2(v
, OP_Integer
, j
-1, iReg
+1);
4256 sqlite3VdbeAddOp4(v
, OP_VFilter
, iCur
, addrNotFound
, iReg
, pVtabIdx
->idxStr
,
4257 pVtabIdx
->needToFreeIdxStr
? P4_MPRINTF
: P4_STATIC
);
4258 pVtabIdx
->needToFreeIdxStr
= 0;
4259 for(j
=0; j
<nConstraint
; j
++){
4260 if( aUsage
[j
].omit
){
4261 int iTerm
= aConstraint
[j
].iTermOffset
;
4262 disableTerm(pLevel
, &pWC
->a
[iTerm
]);
4265 pLevel
->op
= OP_VNext
;
4267 pLevel
->p2
= sqlite3VdbeCurrentAddr(v
);
4268 sqlite3ReleaseTempRange(pParse
, iReg
, nConstraint
+2);
4269 sqlite3ExprCachePop(pParse
, 1);
4271 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4273 if( pLevel
->plan
.wsFlags
& WHERE_ROWID_EQ
){
4274 /* Case 1: We can directly reference a single row using an
4275 ** equality comparison against the ROWID field. Or
4276 ** we reference multiple rows using a "rowid IN (...)"
4279 iReleaseReg
= sqlite3GetTempReg(pParse
);
4280 pTerm
= findTerm(pWC
, iCur
, -1, notReady
, WO_EQ
|WO_IN
, 0);
4282 assert( pTerm
->pExpr
!=0 );
4283 assert( omitTable
==0 );
4284 testcase( pTerm
->wtFlags
& TERM_VIRTUAL
); /* EV: R-30575-11662 */
4285 iRowidReg
= codeEqualityTerm(pParse
, pTerm
, pLevel
, 0, iReleaseReg
);
4286 addrNxt
= pLevel
->addrNxt
;
4287 sqlite3VdbeAddOp2(v
, OP_MustBeInt
, iRowidReg
, addrNxt
);
4288 sqlite3VdbeAddOp3(v
, OP_NotExists
, iCur
, addrNxt
, iRowidReg
);
4289 sqlite3ExprCacheAffinityChange(pParse
, iRowidReg
, 1);
4290 sqlite3ExprCacheStore(pParse
, iCur
, -1, iRowidReg
);
4291 VdbeComment((v
, "pk"));
4292 pLevel
->op
= OP_Noop
;
4293 }else if( pLevel
->plan
.wsFlags
& WHERE_ROWID_RANGE
){
4294 /* Case 2: We have an inequality comparison against the ROWID field.
4296 int testOp
= OP_Noop
;
4298 int memEndValue
= 0;
4299 WhereTerm
*pStart
, *pEnd
;
4301 assert( omitTable
==0 );
4302 pStart
= findTerm(pWC
, iCur
, -1, notReady
, WO_GT
|WO_GE
, 0);
4303 pEnd
= findTerm(pWC
, iCur
, -1, notReady
, WO_LT
|WO_LE
, 0);
4310 Expr
*pX
; /* The expression that defines the start bound */
4311 int r1
, rTemp
; /* Registers for holding the start boundary */
4313 /* The following constant maps TK_xx codes into corresponding
4314 ** seek opcodes. It depends on a particular ordering of TK_xx
4316 const u8 aMoveOp
[] = {
4317 /* TK_GT */ OP_SeekGt
,
4318 /* TK_LE */ OP_SeekLe
,
4319 /* TK_LT */ OP_SeekLt
,
4320 /* TK_GE */ OP_SeekGe
4322 assert( TK_LE
==TK_GT
+1 ); /* Make sure the ordering.. */
4323 assert( TK_LT
==TK_GT
+2 ); /* ... of the TK_xx values... */
4324 assert( TK_GE
==TK_GT
+3 ); /* ... is correcct. */
4326 testcase( pStart
->wtFlags
& TERM_VIRTUAL
); /* EV: R-30575-11662 */
4329 assert( pStart
->leftCursor
==iCur
);
4330 r1
= sqlite3ExprCodeTemp(pParse
, pX
->pRight
, &rTemp
);
4331 sqlite3VdbeAddOp3(v
, aMoveOp
[pX
->op
-TK_GT
], iCur
, addrBrk
, r1
);
4332 VdbeComment((v
, "pk"));
4333 sqlite3ExprCacheAffinityChange(pParse
, r1
, 1);
4334 sqlite3ReleaseTempReg(pParse
, rTemp
);
4335 disableTerm(pLevel
, pStart
);
4337 sqlite3VdbeAddOp2(v
, bRev
? OP_Last
: OP_Rewind
, iCur
, addrBrk
);
4343 assert( pEnd
->leftCursor
==iCur
);
4344 testcase( pEnd
->wtFlags
& TERM_VIRTUAL
); /* EV: R-30575-11662 */
4345 memEndValue
= ++pParse
->nMem
;
4346 sqlite3ExprCode(pParse
, pX
->pRight
, memEndValue
);
4347 if( pX
->op
==TK_LT
|| pX
->op
==TK_GT
){
4348 testOp
= bRev
? OP_Le
: OP_Ge
;
4350 testOp
= bRev
? OP_Lt
: OP_Gt
;
4352 disableTerm(pLevel
, pEnd
);
4354 start
= sqlite3VdbeCurrentAddr(v
);
4355 pLevel
->op
= bRev
? OP_Prev
: OP_Next
;
4358 if( pStart
==0 && pEnd
==0 ){
4359 pLevel
->p5
= SQLITE_STMTSTATUS_FULLSCAN_STEP
;
4361 assert( pLevel
->p5
==0 );
4363 if( testOp
!=OP_Noop
){
4364 iRowidReg
= iReleaseReg
= sqlite3GetTempReg(pParse
);
4365 sqlite3VdbeAddOp2(v
, OP_Rowid
, iCur
, iRowidReg
);
4366 sqlite3ExprCacheStore(pParse
, iCur
, -1, iRowidReg
);
4367 sqlite3VdbeAddOp3(v
, testOp
, memEndValue
, addrBrk
, iRowidReg
);
4368 sqlite3VdbeChangeP5(v
, SQLITE_AFF_NUMERIC
| SQLITE_JUMPIFNULL
);
4370 }else if( pLevel
->plan
.wsFlags
& (WHERE_COLUMN_RANGE
|WHERE_COLUMN_EQ
) ){
4371 /* Case 3: A scan using an index.
4373 ** The WHERE clause may contain zero or more equality
4374 ** terms ("==" or "IN" operators) that refer to the N
4375 ** left-most columns of the index. It may also contain
4376 ** inequality constraints (>, <, >= or <=) on the indexed
4377 ** column that immediately follows the N equalities. Only
4378 ** the right-most column can be an inequality - the rest must
4379 ** use the "==" and "IN" operators. For example, if the
4380 ** index is on (x,y,z), then the following clauses are all
4386 ** x=5 AND y>5 AND y<10
4387 ** x=5 AND y=5 AND z<=10
4389 ** The z<10 term of the following cannot be used, only
4394 ** N may be zero if there are inequality constraints.
4395 ** If there are no inequality constraints, then N is at
4398 ** This case is also used when there are no WHERE clause
4399 ** constraints but an index is selected anyway, in order
4400 ** to force the output order to conform to an ORDER BY.
4402 static const u8 aStartOp
[] = {
4405 OP_Rewind
, /* 2: (!start_constraints && startEq && !bRev) */
4406 OP_Last
, /* 3: (!start_constraints && startEq && bRev) */
4407 OP_SeekGt
, /* 4: (start_constraints && !startEq && !bRev) */
4408 OP_SeekLt
, /* 5: (start_constraints && !startEq && bRev) */
4409 OP_SeekGe
, /* 6: (start_constraints && startEq && !bRev) */
4410 OP_SeekLe
/* 7: (start_constraints && startEq && bRev) */
4412 static const u8 aEndOp
[] = {
4413 OP_Noop
, /* 0: (!end_constraints) */
4414 OP_IdxGE
, /* 1: (end_constraints && !bRev) */
4415 OP_IdxLT
/* 2: (end_constraints && bRev) */
4417 int nEq
= pLevel
->plan
.nEq
; /* Number of == or IN terms */
4418 int isMinQuery
= 0; /* If this is an optimized SELECT min(x).. */
4419 int regBase
; /* Base register holding constraint values */
4420 int r1
; /* Temp register */
4421 WhereTerm
*pRangeStart
= 0; /* Inequality constraint at range start */
4422 WhereTerm
*pRangeEnd
= 0; /* Inequality constraint at range end */
4423 int startEq
; /* True if range start uses ==, >= or <= */
4424 int endEq
; /* True if range end uses ==, >= or <= */
4425 int start_constraints
; /* Start of range is constrained */
4426 int nConstraint
; /* Number of constraint terms */
4427 Index
*pIdx
; /* The index we will be using */
4428 int iIdxCur
; /* The VDBE cursor for the index */
4429 int nExtraReg
= 0; /* Number of extra registers needed */
4430 int op
; /* Instruction opcode */
4431 char *zStartAff
; /* Affinity for start of range constraint */
4432 char *zEndAff
; /* Affinity for end of range constraint */
4434 pIdx
= pLevel
->plan
.u
.pIdx
;
4435 iIdxCur
= pLevel
->iIdxCur
;
4436 k
= (nEq
==pIdx
->nColumn
? -1 : pIdx
->aiColumn
[nEq
]);
4438 /* If this loop satisfies a sort order (pOrderBy) request that
4439 ** was passed to this function to implement a "SELECT min(x) ..."
4440 ** query, then the caller will only allow the loop to run for
4441 ** a single iteration. This means that the first row returned
4442 ** should not have a NULL value stored in 'x'. If column 'x' is
4443 ** the first one after the nEq equality constraints in the index,
4444 ** this requires some special handling.
4446 if( (wctrlFlags
&WHERE_ORDERBY_MIN
)!=0
4447 && (pLevel
->plan
.wsFlags
&WHERE_ORDERED
)
4448 && (pIdx
->nColumn
>nEq
)
4450 /* assert( pOrderBy->nExpr==1 ); */
4451 /* assert( pOrderBy->a[0].pExpr->iColumn==pIdx->aiColumn[nEq] ); */
4456 /* Find any inequality constraint terms for the start and end
4459 if( pLevel
->plan
.wsFlags
& WHERE_TOP_LIMIT
){
4460 pRangeEnd
= findTerm(pWC
, iCur
, k
, notReady
, (WO_LT
|WO_LE
), pIdx
);
4463 if( pLevel
->plan
.wsFlags
& WHERE_BTM_LIMIT
){
4464 pRangeStart
= findTerm(pWC
, iCur
, k
, notReady
, (WO_GT
|WO_GE
), pIdx
);
4468 /* Generate code to evaluate all constraint terms using == or IN
4469 ** and store the values of those terms in an array of registers
4470 ** starting at regBase.
4472 regBase
= codeAllEqualityTerms(
4473 pParse
, pLevel
, pWC
, notReady
, nExtraReg
, &zStartAff
4475 zEndAff
= sqlite3DbStrDup(pParse
->db
, zStartAff
);
4476 addrNxt
= pLevel
->addrNxt
;
4478 /* If we are doing a reverse order scan on an ascending index, or
4479 ** a forward order scan on a descending index, interchange the
4480 ** start and end terms (pRangeStart and pRangeEnd).
4482 if( (nEq
<pIdx
->nColumn
&& bRev
==(pIdx
->aSortOrder
[nEq
]==SQLITE_SO_ASC
))
4483 || (bRev
&& pIdx
->nColumn
==nEq
)
4485 SWAP(WhereTerm
*, pRangeEnd
, pRangeStart
);
4488 testcase( pRangeStart
&& pRangeStart
->eOperator
& WO_LE
);
4489 testcase( pRangeStart
&& pRangeStart
->eOperator
& WO_GE
);
4490 testcase( pRangeEnd
&& pRangeEnd
->eOperator
& WO_LE
);
4491 testcase( pRangeEnd
&& pRangeEnd
->eOperator
& WO_GE
);
4492 startEq
= !pRangeStart
|| pRangeStart
->eOperator
& (WO_LE
|WO_GE
);
4493 endEq
= !pRangeEnd
|| pRangeEnd
->eOperator
& (WO_LE
|WO_GE
);
4494 start_constraints
= pRangeStart
|| nEq
>0;
4496 /* Seek the index cursor to the start of the range. */
4499 Expr
*pRight
= pRangeStart
->pExpr
->pRight
;
4500 sqlite3ExprCode(pParse
, pRight
, regBase
+nEq
);
4501 if( (pRangeStart
->wtFlags
& TERM_VNULL
)==0 ){
4502 sqlite3ExprCodeIsNullJump(v
, pRight
, regBase
+nEq
, addrNxt
);
4505 if( sqlite3CompareAffinity(pRight
, zStartAff
[nEq
])==SQLITE_AFF_NONE
){
4506 /* Since the comparison is to be performed with no conversions
4507 ** applied to the operands, set the affinity to apply to pRight to
4508 ** SQLITE_AFF_NONE. */
4509 zStartAff
[nEq
] = SQLITE_AFF_NONE
;
4511 if( sqlite3ExprNeedsNoAffinityChange(pRight
, zStartAff
[nEq
]) ){
4512 zStartAff
[nEq
] = SQLITE_AFF_NONE
;
4516 testcase( pRangeStart
->wtFlags
& TERM_VIRTUAL
); /* EV: R-30575-11662 */
4517 }else if( isMinQuery
){
4518 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regBase
+nEq
);
4521 start_constraints
= 1;
4523 codeApplyAffinity(pParse
, regBase
, nConstraint
, zStartAff
);
4524 op
= aStartOp
[(start_constraints
<<2) + (startEq
<<1) + bRev
];
4526 testcase( op
==OP_Rewind
);
4527 testcase( op
==OP_Last
);
4528 testcase( op
==OP_SeekGt
);
4529 testcase( op
==OP_SeekGe
);
4530 testcase( op
==OP_SeekLe
);
4531 testcase( op
==OP_SeekLt
);
4532 sqlite3VdbeAddOp4Int(v
, op
, iIdxCur
, addrNxt
, regBase
, nConstraint
);
4534 /* Load the value for the inequality constraint at the end of the
4539 Expr
*pRight
= pRangeEnd
->pExpr
->pRight
;
4540 sqlite3ExprCacheRemove(pParse
, regBase
+nEq
, 1);
4541 sqlite3ExprCode(pParse
, pRight
, regBase
+nEq
);
4542 if( (pRangeEnd
->wtFlags
& TERM_VNULL
)==0 ){
4543 sqlite3ExprCodeIsNullJump(v
, pRight
, regBase
+nEq
, addrNxt
);
4546 if( sqlite3CompareAffinity(pRight
, zEndAff
[nEq
])==SQLITE_AFF_NONE
){
4547 /* Since the comparison is to be performed with no conversions
4548 ** applied to the operands, set the affinity to apply to pRight to
4549 ** SQLITE_AFF_NONE. */
4550 zEndAff
[nEq
] = SQLITE_AFF_NONE
;
4552 if( sqlite3ExprNeedsNoAffinityChange(pRight
, zEndAff
[nEq
]) ){
4553 zEndAff
[nEq
] = SQLITE_AFF_NONE
;
4556 codeApplyAffinity(pParse
, regBase
, nEq
+1, zEndAff
);
4558 testcase( pRangeEnd
->wtFlags
& TERM_VIRTUAL
); /* EV: R-30575-11662 */
4560 sqlite3DbFree(pParse
->db
, zStartAff
);
4561 sqlite3DbFree(pParse
->db
, zEndAff
);
4563 /* Top of the loop body */
4564 pLevel
->p2
= sqlite3VdbeCurrentAddr(v
);
4566 /* Check if the index cursor is past the end of the range. */
4567 op
= aEndOp
[(pRangeEnd
|| nEq
) * (1 + bRev
)];
4568 testcase( op
==OP_Noop
);
4569 testcase( op
==OP_IdxGE
);
4570 testcase( op
==OP_IdxLT
);
4572 sqlite3VdbeAddOp4Int(v
, op
, iIdxCur
, addrNxt
, regBase
, nConstraint
);
4573 sqlite3VdbeChangeP5(v
, endEq
!=bRev
?1:0);
4576 /* If there are inequality constraints, check that the value
4577 ** of the table column that the inequality contrains is not NULL.
4578 ** If it is, jump to the next iteration of the loop.
4580 r1
= sqlite3GetTempReg(pParse
);
4581 testcase( pLevel
->plan
.wsFlags
& WHERE_BTM_LIMIT
);
4582 testcase( pLevel
->plan
.wsFlags
& WHERE_TOP_LIMIT
);
4583 if( (pLevel
->plan
.wsFlags
& (WHERE_BTM_LIMIT
|WHERE_TOP_LIMIT
))!=0 ){
4584 sqlite3VdbeAddOp3(v
, OP_Column
, iIdxCur
, nEq
, r1
);
4585 sqlite3VdbeAddOp2(v
, OP_IsNull
, r1
, addrCont
);
4587 sqlite3ReleaseTempReg(pParse
, r1
);
4589 /* Seek the table cursor, if required */
4590 disableTerm(pLevel
, pRangeStart
);
4591 disableTerm(pLevel
, pRangeEnd
);
4593 iRowidReg
= iReleaseReg
= sqlite3GetTempReg(pParse
);
4594 sqlite3VdbeAddOp2(v
, OP_IdxRowid
, iIdxCur
, iRowidReg
);
4595 sqlite3ExprCacheStore(pParse
, iCur
, -1, iRowidReg
);
4596 sqlite3VdbeAddOp2(v
, OP_Seek
, iCur
, iRowidReg
); /* Deferred seek */
4599 /* Record the instruction used to terminate the loop. Disable
4600 ** WHERE clause terms made redundant by the index range scan.
4602 if( pLevel
->plan
.wsFlags
& WHERE_UNIQUE
){
4603 pLevel
->op
= OP_Noop
;
4605 pLevel
->op
= OP_Prev
;
4607 pLevel
->op
= OP_Next
;
4609 pLevel
->p1
= iIdxCur
;
4610 if( pLevel
->plan
.wsFlags
& WHERE_COVER_SCAN
){
4611 pLevel
->p5
= SQLITE_STMTSTATUS_FULLSCAN_STEP
;
4613 assert( pLevel
->p5
==0 );
4617 #ifndef SQLITE_OMIT_OR_OPTIMIZATION
4618 if( pLevel
->plan
.wsFlags
& WHERE_MULTI_OR
){
4619 /* Case 4: Two or more separately indexed terms connected by OR
4623 ** CREATE TABLE t1(a,b,c,d);
4624 ** CREATE INDEX i1 ON t1(a);
4625 ** CREATE INDEX i2 ON t1(b);
4626 ** CREATE INDEX i3 ON t1(c);
4628 ** SELECT * FROM t1 WHERE a=5 OR b=7 OR (c=11 AND d=13)
4630 ** In the example, there are three indexed terms connected by OR.
4631 ** The top of the loop looks like this:
4633 ** Null 1 # Zero the rowset in reg 1
4635 ** Then, for each indexed term, the following. The arguments to
4636 ** RowSetTest are such that the rowid of the current row is inserted
4637 ** into the RowSet. If it is already present, control skips the
4638 ** Gosub opcode and jumps straight to the code generated by WhereEnd().
4640 ** sqlite3WhereBegin(<term>)
4641 ** RowSetTest # Insert rowid into rowset
4643 ** sqlite3WhereEnd()
4645 ** Following the above, code to terminate the loop. Label A, the target
4646 ** of the Gosub above, jumps to the instruction right after the Goto.
4648 ** Null 1 # Zero the rowset in reg 1
4649 ** Goto B # The loop is finished.
4651 ** A: <loop body> # Return data, whatever.
4653 ** Return 2 # Jump back to the Gosub
4655 ** B: <after the loop>
4658 WhereClause
*pOrWc
; /* The OR-clause broken out into subterms */
4659 SrcList
*pOrTab
; /* Shortened table list or OR-clause generation */
4660 Index
*pCov
= 0; /* Potential covering index (or NULL) */
4661 int iCovCur
= pParse
->nTab
++; /* Cursor used for index scans (if any) */
4663 int regReturn
= ++pParse
->nMem
; /* Register used with OP_Gosub */
4664 int regRowset
= 0; /* Register for RowSet object */
4665 int regRowid
= 0; /* Register holding rowid */
4666 int iLoopBody
= sqlite3VdbeMakeLabel(v
); /* Start of loop body */
4667 int iRetInit
; /* Address of regReturn init */
4668 int untestedTerms
= 0; /* Some terms not completely tested */
4669 int ii
; /* Loop counter */
4670 Expr
*pAndExpr
= 0; /* An ".. AND (...)" expression */
4672 pTerm
= pLevel
->plan
.u
.pTerm
;
4674 assert( pTerm
->eOperator
& WO_OR
);
4675 assert( (pTerm
->wtFlags
& TERM_ORINFO
)!=0 );
4676 pOrWc
= &pTerm
->u
.pOrInfo
->wc
;
4677 pLevel
->op
= OP_Return
;
4678 pLevel
->p1
= regReturn
;
4680 /* Set up a new SrcList in pOrTab containing the table being scanned
4681 ** by this loop in the a[0] slot and all notReady tables in a[1..] slots.
4682 ** This becomes the SrcList in the recursive call to sqlite3WhereBegin().
4684 if( pWInfo
->nLevel
>1 ){
4685 int nNotReady
; /* The number of notReady tables */
4686 struct SrcList_item
*origSrc
; /* Original list of tables */
4687 nNotReady
= pWInfo
->nLevel
- iLevel
- 1;
4688 pOrTab
= sqlite3StackAllocRaw(pParse
->db
,
4689 sizeof(*pOrTab
)+ nNotReady
*sizeof(pOrTab
->a
[0]));
4690 if( pOrTab
==0 ) return notReady
;
4691 pOrTab
->nAlloc
= (i16
)(nNotReady
+ 1);
4692 pOrTab
->nSrc
= pOrTab
->nAlloc
;
4693 memcpy(pOrTab
->a
, pTabItem
, sizeof(*pTabItem
));
4694 origSrc
= pWInfo
->pTabList
->a
;
4695 for(k
=1; k
<=nNotReady
; k
++){
4696 memcpy(&pOrTab
->a
[k
], &origSrc
[pLevel
[k
].iFrom
], sizeof(pOrTab
->a
[k
]));
4699 pOrTab
= pWInfo
->pTabList
;
4702 /* Initialize the rowset register to contain NULL. An SQL NULL is
4703 ** equivalent to an empty rowset.
4705 ** Also initialize regReturn to contain the address of the instruction
4706 ** immediately following the OP_Return at the bottom of the loop. This
4707 ** is required in a few obscure LEFT JOIN cases where control jumps
4708 ** over the top of the loop into the body of it. In this case the
4709 ** correct response for the end-of-loop code (the OP_Return) is to
4710 ** fall through to the next instruction, just as an OP_Next does if
4711 ** called on an uninitialized cursor.
4713 if( (wctrlFlags
& WHERE_DUPLICATES_OK
)==0 ){
4714 regRowset
= ++pParse
->nMem
;
4715 regRowid
= ++pParse
->nMem
;
4716 sqlite3VdbeAddOp2(v
, OP_Null
, 0, regRowset
);
4718 iRetInit
= sqlite3VdbeAddOp2(v
, OP_Integer
, 0, regReturn
);
4720 /* If the original WHERE clause is z of the form: (x1 OR x2 OR ...) AND y
4721 ** Then for every term xN, evaluate as the subexpression: xN AND z
4722 ** That way, terms in y that are factored into the disjunction will
4723 ** be picked up by the recursive calls to sqlite3WhereBegin() below.
4725 ** Actually, each subexpression is converted to "xN AND w" where w is
4726 ** the "interesting" terms of z - terms that did not originate in the
4727 ** ON or USING clause of a LEFT JOIN, and terms that are usable as
4730 ** This optimization also only applies if the (x1 OR x2 OR ...) term
4731 ** is not contained in the ON clause of a LEFT JOIN.
4732 ** See ticket http://www.sqlite.org/src/info/f2369304e4
4736 for(iTerm
=0; iTerm
<pWC
->nTerm
; iTerm
++){
4737 Expr
*pExpr
= pWC
->a
[iTerm
].pExpr
;
4738 if( ExprHasProperty(pExpr
, EP_FromJoin
) ) continue;
4739 if( pWC
->a
[iTerm
].wtFlags
& (TERM_VIRTUAL
|TERM_ORINFO
) ) continue;
4740 if( (pWC
->a
[iTerm
].eOperator
& WO_ALL
)==0 ) continue;
4741 pExpr
= sqlite3ExprDup(pParse
->db
, pExpr
, 0);
4742 pAndExpr
= sqlite3ExprAnd(pParse
->db
, pAndExpr
, pExpr
);
4745 pAndExpr
= sqlite3PExpr(pParse
, TK_AND
, 0, pAndExpr
, 0);
4749 for(ii
=0; ii
<pOrWc
->nTerm
; ii
++){
4750 WhereTerm
*pOrTerm
= &pOrWc
->a
[ii
];
4751 if( pOrTerm
->leftCursor
==iCur
|| (pOrTerm
->eOperator
& WO_AND
)!=0 ){
4752 WhereInfo
*pSubWInfo
; /* Info for single OR-term scan */
4753 Expr
*pOrExpr
= pOrTerm
->pExpr
;
4754 if( pAndExpr
&& !ExprHasProperty(pOrExpr
, EP_FromJoin
) ){
4755 pAndExpr
->pLeft
= pOrExpr
;
4758 /* Loop through table entries that match term pOrTerm. */
4759 pSubWInfo
= sqlite3WhereBegin(pParse
, pOrTab
, pOrExpr
, 0, 0,
4760 WHERE_OMIT_OPEN_CLOSE
| WHERE_AND_ONLY
|
4761 WHERE_FORCE_TABLE
| WHERE_ONETABLE_ONLY
, iCovCur
);
4762 assert( pSubWInfo
|| pParse
->nErr
|| pParse
->db
->mallocFailed
);
4766 pParse
, pOrTab
, &pSubWInfo
->a
[0], iLevel
, pLevel
->iFrom
, 0
4768 if( (wctrlFlags
& WHERE_DUPLICATES_OK
)==0 ){
4769 int iSet
= ((ii
==pOrWc
->nTerm
-1)?-1:ii
);
4771 r
= sqlite3ExprCodeGetColumn(pParse
, pTabItem
->pTab
, -1, iCur
,
4773 sqlite3VdbeAddOp4Int(v
, OP_RowSetTest
, regRowset
,
4774 sqlite3VdbeCurrentAddr(v
)+2, r
, iSet
);
4776 sqlite3VdbeAddOp2(v
, OP_Gosub
, regReturn
, iLoopBody
);
4778 /* The pSubWInfo->untestedTerms flag means that this OR term
4779 ** contained one or more AND term from a notReady table. The
4780 ** terms from the notReady table could not be tested and will
4781 ** need to be tested later.
4783 if( pSubWInfo
->untestedTerms
) untestedTerms
= 1;
4785 /* If all of the OR-connected terms are optimized using the same
4786 ** index, and the index is opened using the same cursor number
4787 ** by each call to sqlite3WhereBegin() made by this loop, it may
4788 ** be possible to use that index as a covering index.
4790 ** If the call to sqlite3WhereBegin() above resulted in a scan that
4791 ** uses an index, and this is either the first OR-connected term
4792 ** processed or the index is the same as that used by all previous
4793 ** terms, set pCov to the candidate covering index. Otherwise, set
4794 ** pCov to NULL to indicate that no candidate covering index will
4797 pLvl
= &pSubWInfo
->a
[0];
4798 if( (pLvl
->plan
.wsFlags
& WHERE_INDEXED
)!=0
4799 && (pLvl
->plan
.wsFlags
& WHERE_TEMP_INDEX
)==0
4800 && (ii
==0 || pLvl
->plan
.u
.pIdx
==pCov
)
4802 assert( pLvl
->iIdxCur
==iCovCur
);
4803 pCov
= pLvl
->plan
.u
.pIdx
;
4808 /* Finish the loop through table entries that match term pOrTerm. */
4809 sqlite3WhereEnd(pSubWInfo
);
4813 pLevel
->u
.pCovidx
= pCov
;
4814 if( pCov
) pLevel
->iIdxCur
= iCovCur
;
4816 pAndExpr
->pLeft
= 0;
4817 sqlite3ExprDelete(pParse
->db
, pAndExpr
);
4819 sqlite3VdbeChangeP1(v
, iRetInit
, sqlite3VdbeCurrentAddr(v
));
4820 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, pLevel
->addrBrk
);
4821 sqlite3VdbeResolveLabel(v
, iLoopBody
);
4823 if( pWInfo
->nLevel
>1 ) sqlite3StackFree(pParse
->db
, pOrTab
);
4824 if( !untestedTerms
) disableTerm(pLevel
, pTerm
);
4826 #endif /* SQLITE_OMIT_OR_OPTIMIZATION */
4829 /* Case 5: There is no usable index. We must do a complete
4830 ** scan of the entire table.
4832 static const u8 aStep
[] = { OP_Next
, OP_Prev
};
4833 static const u8 aStart
[] = { OP_Rewind
, OP_Last
};
4834 assert( bRev
==0 || bRev
==1 );
4835 assert( omitTable
==0 );
4836 pLevel
->op
= aStep
[bRev
];
4838 pLevel
->p2
= 1 + sqlite3VdbeAddOp2(v
, aStart
[bRev
], iCur
, addrBrk
);
4839 pLevel
->p5
= SQLITE_STMTSTATUS_FULLSCAN_STEP
;
4841 newNotReady
= notReady
& ~getMask(pWC
->pMaskSet
, iCur
);
4843 /* Insert code to test every subexpression that can be completely
4844 ** computed using the current set of tables.
4846 ** IMPLEMENTATION-OF: R-49525-50935 Terms that cannot be satisfied through
4847 ** the use of indices become tests that are evaluated against each row of
4848 ** the relevant input tables.
4850 for(pTerm
=pWC
->a
, j
=pWC
->nTerm
; j
>0; j
--, pTerm
++){
4852 testcase( pTerm
->wtFlags
& TERM_VIRTUAL
); /* IMP: R-30575-11662 */
4853 testcase( pTerm
->wtFlags
& TERM_CODED
);
4854 if( pTerm
->wtFlags
& (TERM_VIRTUAL
|TERM_CODED
) ) continue;
4855 if( (pTerm
->prereqAll
& newNotReady
)!=0 ){
4856 testcase( pWInfo
->untestedTerms
==0
4857 && (pWInfo
->wctrlFlags
& WHERE_ONETABLE_ONLY
)!=0 );
4858 pWInfo
->untestedTerms
= 1;
4863 if( pLevel
->iLeftJoin
&& !ExprHasProperty(pE
, EP_FromJoin
) ){
4866 sqlite3ExprIfFalse(pParse
, pE
, addrCont
, SQLITE_JUMPIFNULL
);
4867 pTerm
->wtFlags
|= TERM_CODED
;
4870 /* Insert code to test for implied constraints based on transitivity
4871 ** of the "==" operator.
4873 ** Example: If the WHERE clause contains "t1.a=t2.b" and "t2.b=123"
4874 ** and we are coding the t1 loop and the t2 loop has not yet coded,
4875 ** then we cannot use the "t1.a=t2.b" constraint, but we can code
4876 ** the implied "t1.a=123" constraint.
4878 for(pTerm
=pWC
->a
, j
=pWC
->nTerm
; j
>0; j
--, pTerm
++){
4882 if( pTerm
->wtFlags
& (TERM_VIRTUAL
|TERM_CODED
) ) continue;
4883 if( pTerm
->eOperator
!=(WO_EQUIV
|WO_EQ
) ) continue;
4884 if( pTerm
->leftCursor
!=iCur
) continue;
4886 assert( !ExprHasProperty(pE
, EP_FromJoin
) );
4887 assert( (pTerm
->prereqRight
& newNotReady
)!=0 );
4888 pAlt
= findTerm(pWC
, iCur
, pTerm
->u
.leftColumn
, notReady
, WO_EQ
|WO_IN
, 0);
4889 if( pAlt
==0 ) continue;
4890 if( pAlt
->wtFlags
& (TERM_CODED
) ) continue;
4891 VdbeNoopComment((v
, "begin transitive constraint"));
4893 sEq
.pLeft
= pE
->pLeft
;
4894 sqlite3ExprIfFalse(pParse
, &sEq
, addrCont
, SQLITE_JUMPIFNULL
);
4897 /* For a LEFT OUTER JOIN, generate code that will record the fact that
4898 ** at least one row of the right table has matched the left table.
4900 if( pLevel
->iLeftJoin
){
4901 pLevel
->addrFirst
= sqlite3VdbeCurrentAddr(v
);
4902 sqlite3VdbeAddOp2(v
, OP_Integer
, 1, pLevel
->iLeftJoin
);
4903 VdbeComment((v
, "record LEFT JOIN hit"));
4904 sqlite3ExprCacheClear(pParse
);
4905 for(pTerm
=pWC
->a
, j
=0; j
<pWC
->nTerm
; j
++, pTerm
++){
4906 testcase( pTerm
->wtFlags
& TERM_VIRTUAL
); /* IMP: R-30575-11662 */
4907 testcase( pTerm
->wtFlags
& TERM_CODED
);
4908 if( pTerm
->wtFlags
& (TERM_VIRTUAL
|TERM_CODED
) ) continue;
4909 if( (pTerm
->prereqAll
& newNotReady
)!=0 ){
4910 assert( pWInfo
->untestedTerms
);
4913 assert( pTerm
->pExpr
);
4914 sqlite3ExprIfFalse(pParse
, pTerm
->pExpr
, addrCont
, SQLITE_JUMPIFNULL
);
4915 pTerm
->wtFlags
|= TERM_CODED
;
4918 sqlite3ReleaseTempReg(pParse
, iReleaseReg
);
4923 #if defined(SQLITE_TEST)
4925 ** The following variable holds a text description of query plan generated
4926 ** by the most recent call to sqlite3WhereBegin(). Each call to WhereBegin
4927 ** overwrites the previous. This information is used for testing and
4930 char sqlite3_query_plan
[BMS
*2*40]; /* Text of the join */
4931 static int nQPlan
= 0; /* Next free slow in _query_plan[] */
4933 #endif /* SQLITE_TEST */
4937 ** Free a WhereInfo structure
4939 static void whereInfoFree(sqlite3
*db
, WhereInfo
*pWInfo
){
4940 if( ALWAYS(pWInfo
) ){
4942 for(i
=0; i
<pWInfo
->nLevel
; i
++){
4943 sqlite3_index_info
*pInfo
= pWInfo
->a
[i
].pIdxInfo
;
4945 /* assert( pInfo->needToFreeIdxStr==0 || db->mallocFailed ); */
4946 if( pInfo
->needToFreeIdxStr
){
4947 sqlite3_free(pInfo
->idxStr
);
4949 sqlite3DbFree(db
, pInfo
);
4951 if( pWInfo
->a
[i
].plan
.wsFlags
& WHERE_TEMP_INDEX
){
4952 Index
*pIdx
= pWInfo
->a
[i
].plan
.u
.pIdx
;
4954 sqlite3DbFree(db
, pIdx
->zColAff
);
4955 sqlite3DbFree(db
, pIdx
);
4959 whereClauseClear(pWInfo
->pWC
);
4960 sqlite3DbFree(db
, pWInfo
);
4966 ** Generate the beginning of the loop used for WHERE clause processing.
4967 ** The return value is a pointer to an opaque structure that contains
4968 ** information needed to terminate the loop. Later, the calling routine
4969 ** should invoke sqlite3WhereEnd() with the return value of this function
4970 ** in order to complete the WHERE clause processing.
4972 ** If an error occurs, this routine returns NULL.
4974 ** The basic idea is to do a nested loop, one loop for each table in
4975 ** the FROM clause of a select. (INSERT and UPDATE statements are the
4976 ** same as a SELECT with only a single table in the FROM clause.) For
4977 ** example, if the SQL is this:
4979 ** SELECT * FROM t1, t2, t3 WHERE ...;
4981 ** Then the code generated is conceptually like the following:
4983 ** foreach row1 in t1 do \ Code generated
4984 ** foreach row2 in t2 do |-- by sqlite3WhereBegin()
4985 ** foreach row3 in t3 do /
4987 ** end \ Code generated
4988 ** end |-- by sqlite3WhereEnd()
4991 ** Note that the loops might not be nested in the order in which they
4992 ** appear in the FROM clause if a different order is better able to make
4993 ** use of indices. Note also that when the IN operator appears in
4994 ** the WHERE clause, it might result in additional nested loops for
4995 ** scanning through all values on the right-hand side of the IN.
4997 ** There are Btree cursors associated with each table. t1 uses cursor
4998 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
4999 ** And so forth. This routine generates code to open those VDBE cursors
5000 ** and sqlite3WhereEnd() generates the code to close them.
5002 ** The code that sqlite3WhereBegin() generates leaves the cursors named
5003 ** in pTabList pointing at their appropriate entries. The [...] code
5004 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
5005 ** data from the various tables of the loop.
5007 ** If the WHERE clause is empty, the foreach loops must each scan their
5008 ** entire tables. Thus a three-way join is an O(N^3) operation. But if
5009 ** the tables have indices and there are terms in the WHERE clause that
5010 ** refer to those indices, a complete table scan can be avoided and the
5011 ** code will run much faster. Most of the work of this routine is checking
5012 ** to see if there are indices that can be used to speed up the loop.
5014 ** Terms of the WHERE clause are also used to limit which rows actually
5015 ** make it to the "..." in the middle of the loop. After each "foreach",
5016 ** terms of the WHERE clause that use only terms in that loop and outer
5017 ** loops are evaluated and if false a jump is made around all subsequent
5018 ** inner loops (or around the "..." if the test occurs within the inner-
5023 ** An outer join of tables t1 and t2 is conceptally coded as follows:
5025 ** foreach row1 in t1 do
5027 ** foreach row2 in t2 do
5033 ** move the row2 cursor to a null row
5038 ** ORDER BY CLAUSE PROCESSING
5040 ** pOrderBy is a pointer to the ORDER BY clause of a SELECT statement,
5041 ** if there is one. If there is no ORDER BY clause or if this routine
5042 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
5044 ** If an index can be used so that the natural output order of the table
5045 ** scan is correct for the ORDER BY clause, then that index is used and
5046 ** the returned WhereInfo.nOBSat field is set to pOrderBy->nExpr. This
5047 ** is an optimization that prevents an unnecessary sort of the result set
5048 ** if an index appropriate for the ORDER BY clause already exists.
5050 ** If the where clause loops cannot be arranged to provide the correct
5051 ** output order, then WhereInfo.nOBSat is 0.
5053 WhereInfo
*sqlite3WhereBegin(
5054 Parse
*pParse
, /* The parser context */
5055 SrcList
*pTabList
, /* A list of all tables to be scanned */
5056 Expr
*pWhere
, /* The WHERE clause */
5057 ExprList
*pOrderBy
, /* An ORDER BY clause, or NULL */
5058 ExprList
*pDistinct
, /* The select-list for DISTINCT queries - or NULL */
5059 u16 wctrlFlags
, /* One of the WHERE_* flags defined in sqliteInt.h */
5060 int iIdxCur
/* If WHERE_ONETABLE_ONLY is set, index cursor number */
5062 int nByteWInfo
; /* Num. bytes allocated for WhereInfo struct */
5063 int nTabList
; /* Number of elements in pTabList */
5064 WhereInfo
*pWInfo
; /* Will become the return value of this function */
5065 Vdbe
*v
= pParse
->pVdbe
; /* The virtual database engine */
5066 Bitmask notReady
; /* Cursors that are not yet positioned */
5067 WhereBestIdx sWBI
; /* Best index search context */
5068 WhereMaskSet
*pMaskSet
; /* The expression mask set */
5069 WhereLevel
*pLevel
; /* A single level in pWInfo->a[] */
5070 int iFrom
; /* First unused FROM clause element */
5071 int andFlags
; /* AND-ed combination of all pWC->a[].wtFlags */
5072 int ii
; /* Loop counter */
5073 sqlite3
*db
; /* Database connection */
5076 /* Variable initialization */
5077 memset(&sWBI
, 0, sizeof(sWBI
));
5078 sWBI
.pParse
= pParse
;
5080 /* The number of tables in the FROM clause is limited by the number of
5081 ** bits in a Bitmask
5083 testcase( pTabList
->nSrc
==BMS
);
5084 if( pTabList
->nSrc
>BMS
){
5085 sqlite3ErrorMsg(pParse
, "at most %d tables in a join", BMS
);
5089 /* This function normally generates a nested loop for all tables in
5090 ** pTabList. But if the WHERE_ONETABLE_ONLY flag is set, then we should
5091 ** only generate code for the first table in pTabList and assume that
5092 ** any cursors associated with subsequent tables are uninitialized.
5094 nTabList
= (wctrlFlags
& WHERE_ONETABLE_ONLY
) ? 1 : pTabList
->nSrc
;
5096 /* Allocate and initialize the WhereInfo structure that will become the
5097 ** return value. A single allocation is used to store the WhereInfo
5098 ** struct, the contents of WhereInfo.a[], the WhereClause structure
5099 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
5100 ** field (type Bitmask) it must be aligned on an 8-byte boundary on
5101 ** some architectures. Hence the ROUND8() below.
5104 nByteWInfo
= ROUND8(sizeof(WhereInfo
)+(nTabList
-1)*sizeof(WhereLevel
));
5105 pWInfo
= sqlite3DbMallocZero(db
,
5107 sizeof(WhereClause
) +
5108 sizeof(WhereMaskSet
)
5110 if( db
->mallocFailed
){
5111 sqlite3DbFree(db
, pWInfo
);
5113 goto whereBeginError
;
5115 pWInfo
->nLevel
= nTabList
;
5116 pWInfo
->pParse
= pParse
;
5117 pWInfo
->pTabList
= pTabList
;
5118 pWInfo
->iBreak
= sqlite3VdbeMakeLabel(v
);
5119 pWInfo
->pWC
= sWBI
.pWC
= (WhereClause
*)&((u8
*)pWInfo
)[nByteWInfo
];
5120 pWInfo
->wctrlFlags
= wctrlFlags
;
5121 pWInfo
->savedNQueryLoop
= pParse
->nQueryLoop
;
5122 pMaskSet
= (WhereMaskSet
*)&sWBI
.pWC
[1];
5123 sWBI
.aLevel
= pWInfo
->a
;
5125 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
5126 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
5127 if( OptimizationDisabled(db
, SQLITE_DistinctOpt
) ) pDistinct
= 0;
5129 /* Split the WHERE clause into separate subexpressions where each
5130 ** subexpression is separated by an AND operator.
5132 initMaskSet(pMaskSet
);
5133 whereClauseInit(sWBI
.pWC
, pParse
, pMaskSet
, wctrlFlags
);
5134 sqlite3ExprCodeConstants(pParse
, pWhere
);
5135 whereSplit(sWBI
.pWC
, pWhere
, TK_AND
); /* IMP: R-15842-53296 */
5137 /* Special case: a WHERE clause that is constant. Evaluate the
5138 ** expression and either jump over all of the code or fall thru.
5140 if( pWhere
&& (nTabList
==0 || sqlite3ExprIsConstantNotJoin(pWhere
)) ){
5141 sqlite3ExprIfFalse(pParse
, pWhere
, pWInfo
->iBreak
, SQLITE_JUMPIFNULL
);
5145 /* Assign a bit from the bitmask to every term in the FROM clause.
5147 ** When assigning bitmask values to FROM clause cursors, it must be
5148 ** the case that if X is the bitmask for the N-th FROM clause term then
5149 ** the bitmask for all FROM clause terms to the left of the N-th term
5150 ** is (X-1). An expression from the ON clause of a LEFT JOIN can use
5151 ** its Expr.iRightJoinTable value to find the bitmask of the right table
5152 ** of the join. Subtracting one from the right table bitmask gives a
5153 ** bitmask for all tables to the left of the join. Knowing the bitmask
5154 ** for all tables to the left of a left join is important. Ticket #3015.
5156 ** Note that bitmasks are created for all pTabList->nSrc tables in
5157 ** pTabList, not just the first nTabList tables. nTabList is normally
5158 ** equal to pTabList->nSrc but might be shortened to 1 if the
5159 ** WHERE_ONETABLE_ONLY flag is set.
5161 for(ii
=0; ii
<pTabList
->nSrc
; ii
++){
5162 createMask(pMaskSet
, pTabList
->a
[ii
].iCursor
);
5166 Bitmask toTheLeft
= 0;
5167 for(ii
=0; ii
<pTabList
->nSrc
; ii
++){
5168 Bitmask m
= getMask(pMaskSet
, pTabList
->a
[ii
].iCursor
);
5169 assert( (m
-1)==toTheLeft
);
5175 /* Analyze all of the subexpressions. Note that exprAnalyze() might
5176 ** add new virtual terms onto the end of the WHERE clause. We do not
5177 ** want to analyze these virtual terms, so start analyzing at the end
5178 ** and work forward so that the added virtual terms are never processed.
5180 exprAnalyzeAll(pTabList
, sWBI
.pWC
);
5181 if( db
->mallocFailed
){
5182 goto whereBeginError
;
5185 /* Check if the DISTINCT qualifier, if there is one, is redundant.
5186 ** If it is, then set pDistinct to NULL and WhereInfo.eDistinct to
5187 ** WHERE_DISTINCT_UNIQUE to tell the caller to ignore the DISTINCT.
5189 if( pDistinct
&& isDistinctRedundant(pParse
, pTabList
, sWBI
.pWC
, pDistinct
) ){
5191 pWInfo
->eDistinct
= WHERE_DISTINCT_UNIQUE
;
5194 /* Chose the best index to use for each table in the FROM clause.
5196 ** This loop fills in the following fields:
5198 ** pWInfo->a[].pIdx The index to use for this level of the loop.
5199 ** pWInfo->a[].wsFlags WHERE_xxx flags associated with pIdx
5200 ** pWInfo->a[].nEq The number of == and IN constraints
5201 ** pWInfo->a[].iFrom Which term of the FROM clause is being coded
5202 ** pWInfo->a[].iTabCur The VDBE cursor for the database table
5203 ** pWInfo->a[].iIdxCur The VDBE cursor for the index
5204 ** pWInfo->a[].pTerm When wsFlags==WO_OR, the OR-clause term
5206 ** This loop also figures out the nesting order of tables in the FROM
5209 sWBI
.notValid
= ~(Bitmask
)0;
5210 sWBI
.pOrderBy
= pOrderBy
;
5212 sWBI
.pDistinct
= pDistinct
;
5214 WHERETRACE(("*** Optimizer Start ***\n"));
5215 for(sWBI
.i
=iFrom
=0, pLevel
=pWInfo
->a
; sWBI
.i
<nTabList
; sWBI
.i
++, pLevel
++){
5216 WhereCost bestPlan
; /* Most efficient plan seen so far */
5217 Index
*pIdx
; /* Index for FROM table at pTabItem */
5218 int j
; /* For looping over FROM tables */
5219 int bestJ
= -1; /* The value of j */
5220 Bitmask m
; /* Bitmask value for j or bestJ */
5221 int isOptimal
; /* Iterator for optimal/non-optimal search */
5222 int ckOptimal
; /* Do the optimal scan check */
5223 int nUnconstrained
; /* Number tables without INDEXED BY */
5224 Bitmask notIndexed
; /* Mask of tables that cannot use an index */
5226 memset(&bestPlan
, 0, sizeof(bestPlan
));
5227 bestPlan
.rCost
= SQLITE_BIG_DBL
;
5228 WHERETRACE(("*** Begin search for loop %d ***\n", sWBI
.i
));
5230 /* Loop through the remaining entries in the FROM clause to find the
5231 ** next nested loop. The loop tests all FROM clause entries
5232 ** either once or twice.
5234 ** The first test is always performed if there are two or more entries
5235 ** remaining and never performed if there is only one FROM clause entry
5236 ** to choose from. The first test looks for an "optimal" scan. In
5237 ** this context an optimal scan is one that uses the same strategy
5238 ** for the given FROM clause entry as would be selected if the entry
5239 ** were used as the innermost nested loop. In other words, a table
5240 ** is chosen such that the cost of running that table cannot be reduced
5241 ** by waiting for other tables to run first. This "optimal" test works
5242 ** by first assuming that the FROM clause is on the inner loop and finding
5243 ** its query plan, then checking to see if that query plan uses any
5244 ** other FROM clause terms that are sWBI.notValid. If no notValid terms
5245 ** are used then the "optimal" query plan works.
5247 ** Note that the WhereCost.nRow parameter for an optimal scan might
5248 ** not be as small as it would be if the table really were the innermost
5249 ** join. The nRow value can be reduced by WHERE clause constraints
5250 ** that do not use indices. But this nRow reduction only happens if the
5251 ** table really is the innermost join.
5253 ** The second loop iteration is only performed if no optimal scan
5254 ** strategies were found by the first iteration. This second iteration
5255 ** is used to search for the lowest cost scan overall.
5257 ** Without the optimal scan step (the first iteration) a suboptimal
5258 ** plan might be chosen for queries like this:
5260 ** CREATE TABLE t1(a, b);
5261 ** CREATE TABLE t2(c, d);
5262 ** SELECT * FROM t2, t1 WHERE t2.rowid = t1.a;
5264 ** The best strategy is to iterate through table t1 first. However it
5265 ** is not possible to determine this with a simple greedy algorithm.
5266 ** Since the cost of a linear scan through table t2 is the same
5267 ** as the cost of a linear scan through table t1, a simple greedy
5268 ** algorithm may choose to use t2 for the outer loop, which is a much
5269 ** costlier approach.
5274 /* The optimal scan check only occurs if there are two or more tables
5275 ** available to be reordered */
5276 if( iFrom
==nTabList
-1 ){
5277 ckOptimal
= 0; /* Common case of just one table in the FROM clause */
5280 for(j
=iFrom
, sWBI
.pSrc
=&pTabList
->a
[j
]; j
<nTabList
; j
++, sWBI
.pSrc
++){
5281 m
= getMask(pMaskSet
, sWBI
.pSrc
->iCursor
);
5282 if( (m
& sWBI
.notValid
)==0 ){
5283 if( j
==iFrom
) iFrom
++;
5286 if( j
>iFrom
&& (sWBI
.pSrc
->jointype
& (JT_LEFT
|JT_CROSS
))!=0 ) break;
5287 if( ++ckOptimal
) break;
5288 if( (sWBI
.pSrc
->jointype
& JT_LEFT
)!=0 ) break;
5291 assert( ckOptimal
==0 || ckOptimal
==1 );
5293 for(isOptimal
=ckOptimal
; isOptimal
>=0 && bestJ
<0; isOptimal
--){
5294 for(j
=iFrom
, sWBI
.pSrc
=&pTabList
->a
[j
]; j
<nTabList
; j
++, sWBI
.pSrc
++){
5295 if( j
>iFrom
&& (sWBI
.pSrc
->jointype
& (JT_LEFT
|JT_CROSS
))!=0 ){
5296 /* This break and one like it in the ckOptimal computation loop
5297 ** above prevent table reordering across LEFT and CROSS JOINs.
5298 ** The LEFT JOIN case is necessary for correctness. The prohibition
5299 ** against reordering across a CROSS JOIN is an SQLite feature that
5300 ** allows the developer to control table reordering */
5303 m
= getMask(pMaskSet
, sWBI
.pSrc
->iCursor
);
5304 if( (m
& sWBI
.notValid
)==0 ){
5308 sWBI
.notReady
= (isOptimal
? m
: sWBI
.notValid
);
5309 if( sWBI
.pSrc
->pIndex
==0 ) nUnconstrained
++;
5311 WHERETRACE((" === trying table %d (%s) with isOptimal=%d ===\n",
5312 j
, sWBI
.pSrc
->pTab
->zName
, isOptimal
));
5313 assert( sWBI
.pSrc
->pTab
);
5314 #ifndef SQLITE_OMIT_VIRTUALTABLE
5315 if( IsVirtual(sWBI
.pSrc
->pTab
) ){
5316 sWBI
.ppIdxInfo
= &pWInfo
->a
[j
].pIdxInfo
;
5317 bestVirtualIndex(&sWBI
);
5321 bestBtreeIndex(&sWBI
);
5323 assert( isOptimal
|| (sWBI
.cost
.used
&sWBI
.notValid
)==0 );
5325 /* If an INDEXED BY clause is present, then the plan must use that
5326 ** index if it uses any index at all */
5327 assert( sWBI
.pSrc
->pIndex
==0
5328 || (sWBI
.cost
.plan
.wsFlags
& WHERE_NOT_FULLSCAN
)==0
5329 || sWBI
.cost
.plan
.u
.pIdx
==sWBI
.pSrc
->pIndex
);
5331 if( isOptimal
&& (sWBI
.cost
.plan
.wsFlags
& WHERE_NOT_FULLSCAN
)==0 ){
5335 pWInfo
->a
[j
].rOptCost
= sWBI
.cost
.rCost
;
5336 }else if( ckOptimal
){
5337 /* If two or more tables have nearly the same outer loop cost, but
5338 ** very different inner loop (optimal) cost, we want to choose
5339 ** for the outer loop that table which benefits the least from
5340 ** being in the inner loop. The following code scales the
5341 ** outer loop cost estimate to accomplish that. */
5342 WHERETRACE((" scaling cost from %.1f to %.1f\n",
5344 sWBI
.cost
.rCost
/pWInfo
->a
[j
].rOptCost
));
5345 sWBI
.cost
.rCost
/= pWInfo
->a
[j
].rOptCost
;
5348 /* Conditions under which this table becomes the best so far:
5350 ** (1) The table must not depend on other tables that have not
5351 ** yet run. (In other words, it must not depend on tables
5354 ** (2) (This rule was removed on 2012-11-09. The scaling of the
5355 ** cost using the optimal scan cost made this rule obsolete.)
5357 ** (3) All tables have an INDEXED BY clause or this table lacks an
5358 ** INDEXED BY clause or this table uses the specific
5359 ** index specified by its INDEXED BY clause. This rule ensures
5360 ** that a best-so-far is always selected even if an impossible
5361 ** combination of INDEXED BY clauses are given. The error
5362 ** will be detected and relayed back to the application later.
5363 ** The NEVER() comes about because rule (2) above prevents
5364 ** An indexable full-table-scan from reaching rule (3).
5366 ** (4) The plan cost must be lower than prior plans, where "cost"
5367 ** is defined by the compareCost() function above.
5369 if( (sWBI
.cost
.used
&sWBI
.notValid
)==0 /* (1) */
5370 && (nUnconstrained
==0 || sWBI
.pSrc
->pIndex
==0 /* (3) */
5371 || NEVER((sWBI
.cost
.plan
.wsFlags
& WHERE_NOT_FULLSCAN
)!=0))
5372 && (bestJ
<0 || compareCost(&sWBI
.cost
, &bestPlan
)) /* (4) */
5374 WHERETRACE((" === table %d (%s) is best so far\n"
5375 " cost=%.1f, nRow=%.1f, nOBSat=%d, wsFlags=%08x\n",
5376 j
, sWBI
.pSrc
->pTab
->zName
,
5377 sWBI
.cost
.rCost
, sWBI
.cost
.plan
.nRow
,
5378 sWBI
.cost
.plan
.nOBSat
, sWBI
.cost
.plan
.wsFlags
));
5379 bestPlan
= sWBI
.cost
;
5383 /* In a join like "w JOIN x LEFT JOIN y JOIN z" make sure that
5384 ** table y (and not table z) is always the next inner loop inside
5386 if( (sWBI
.pSrc
->jointype
& JT_LEFT
)!=0 ) break;
5390 assert( sWBI
.notValid
& getMask(pMaskSet
, pTabList
->a
[bestJ
].iCursor
) );
5391 assert( bestJ
==iFrom
|| (pTabList
->a
[iFrom
].jointype
& JT_LEFT
)==0 );
5392 testcase( bestJ
>iFrom
&& (pTabList
->a
[iFrom
].jointype
& JT_CROSS
)!=0 );
5393 testcase( bestJ
>iFrom
&& bestJ
<nTabList
-1
5394 && (pTabList
->a
[bestJ
+1].jointype
& JT_LEFT
)!=0 );
5395 WHERETRACE(("*** Optimizer selects table %d (%s) for loop %d with:\n"
5396 " cost=%.1f, nRow=%.1f, nOBSat=%d, wsFlags=0x%08x\n",
5397 bestJ
, pTabList
->a
[bestJ
].pTab
->zName
,
5398 pLevel
-pWInfo
->a
, bestPlan
.rCost
, bestPlan
.plan
.nRow
,
5399 bestPlan
.plan
.nOBSat
, bestPlan
.plan
.wsFlags
));
5400 if( (bestPlan
.plan
.wsFlags
& WHERE_DISTINCT
)!=0 ){
5401 assert( pWInfo
->eDistinct
==0 );
5402 pWInfo
->eDistinct
= WHERE_DISTINCT_ORDERED
;
5404 andFlags
&= bestPlan
.plan
.wsFlags
;
5405 pLevel
->plan
= bestPlan
.plan
;
5406 pLevel
->iTabCur
= pTabList
->a
[bestJ
].iCursor
;
5407 testcase( bestPlan
.plan
.wsFlags
& WHERE_INDEXED
);
5408 testcase( bestPlan
.plan
.wsFlags
& WHERE_TEMP_INDEX
);
5409 if( bestPlan
.plan
.wsFlags
& (WHERE_INDEXED
|WHERE_TEMP_INDEX
) ){
5410 if( (wctrlFlags
& WHERE_ONETABLE_ONLY
)
5411 && (bestPlan
.plan
.wsFlags
& WHERE_TEMP_INDEX
)==0
5413 pLevel
->iIdxCur
= iIdxCur
;
5415 pLevel
->iIdxCur
= pParse
->nTab
++;
5418 pLevel
->iIdxCur
= -1;
5420 sWBI
.notValid
&= ~getMask(pMaskSet
, pTabList
->a
[bestJ
].iCursor
);
5421 pLevel
->iFrom
= (u8
)bestJ
;
5422 if( bestPlan
.plan
.nRow
>=(double)1 ){
5423 pParse
->nQueryLoop
*= bestPlan
.plan
.nRow
;
5426 /* Check that if the table scanned by this loop iteration had an
5427 ** INDEXED BY clause attached to it, that the named index is being
5428 ** used for the scan. If not, then query compilation has failed.
5431 pIdx
= pTabList
->a
[bestJ
].pIndex
;
5433 if( (bestPlan
.plan
.wsFlags
& WHERE_INDEXED
)==0 ){
5434 sqlite3ErrorMsg(pParse
, "cannot use index: %s", pIdx
->zName
);
5435 goto whereBeginError
;
5437 /* If an INDEXED BY clause is used, the bestIndex() function is
5438 ** guaranteed to find the index specified in the INDEXED BY clause
5439 ** if it find an index at all. */
5440 assert( bestPlan
.plan
.u
.pIdx
==pIdx
);
5444 WHERETRACE(("*** Optimizer Finished ***\n"));
5445 if( pParse
->nErr
|| db
->mallocFailed
){
5446 goto whereBeginError
;
5450 pWInfo
->nOBSat
= pLevel
->plan
.nOBSat
;
5455 /* If the total query only selects a single row, then the ORDER BY
5456 ** clause is irrelevant.
5458 if( (andFlags
& WHERE_UNIQUE
)!=0 && pOrderBy
){
5459 assert( nTabList
==0 || (pLevel
->plan
.wsFlags
& WHERE_ALL_UNIQUE
)!=0 );
5460 pWInfo
->nOBSat
= pOrderBy
->nExpr
;
5463 /* If the caller is an UPDATE or DELETE statement that is requesting
5464 ** to use a one-pass algorithm, determine if this is appropriate.
5465 ** The one-pass algorithm only works if the WHERE clause constraints
5466 ** the statement to update a single row.
5468 assert( (wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0 || pWInfo
->nLevel
==1 );
5469 if( (wctrlFlags
& WHERE_ONEPASS_DESIRED
)!=0 && (andFlags
& WHERE_UNIQUE
)!=0 ){
5470 pWInfo
->okOnePass
= 1;
5471 pWInfo
->a
[0].plan
.wsFlags
&= ~WHERE_IDX_ONLY
;
5474 /* Open all tables in the pTabList and any indices selected for
5475 ** searching those tables.
5477 sqlite3CodeVerifySchema(pParse
, -1); /* Insert the cookie verifier Goto */
5478 notReady
= ~(Bitmask
)0;
5479 pWInfo
->nRowOut
= (double)1;
5480 for(ii
=0, pLevel
=pWInfo
->a
; ii
<nTabList
; ii
++, pLevel
++){
5481 Table
*pTab
; /* Table to open */
5482 int iDb
; /* Index of database containing table/index */
5483 struct SrcList_item
*pTabItem
;
5485 pTabItem
= &pTabList
->a
[pLevel
->iFrom
];
5486 pTab
= pTabItem
->pTab
;
5487 pWInfo
->nRowOut
*= pLevel
->plan
.nRow
;
5488 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
5489 if( (pTab
->tabFlags
& TF_Ephemeral
)!=0 || pTab
->pSelect
){
5492 #ifndef SQLITE_OMIT_VIRTUALTABLE
5493 if( (pLevel
->plan
.wsFlags
& WHERE_VIRTUALTABLE
)!=0 ){
5494 const char *pVTab
= (const char *)sqlite3GetVTable(db
, pTab
);
5495 int iCur
= pTabItem
->iCursor
;
5496 sqlite3VdbeAddOp4(v
, OP_VOpen
, iCur
, 0, 0, pVTab
, P4_VTAB
);
5497 }else if( IsVirtual(pTab
) ){
5501 if( (pLevel
->plan
.wsFlags
& WHERE_IDX_ONLY
)==0
5502 && (wctrlFlags
& WHERE_OMIT_OPEN_CLOSE
)==0 ){
5503 int op
= pWInfo
->okOnePass
? OP_OpenWrite
: OP_OpenRead
;
5504 sqlite3OpenTable(pParse
, pTabItem
->iCursor
, iDb
, pTab
, op
);
5505 testcase( pTab
->nCol
==BMS
-1 );
5506 testcase( pTab
->nCol
==BMS
);
5507 if( !pWInfo
->okOnePass
&& pTab
->nCol
<BMS
){
5508 Bitmask b
= pTabItem
->colUsed
;
5510 for(; b
; b
=b
>>1, n
++){}
5511 sqlite3VdbeChangeP4(v
, sqlite3VdbeCurrentAddr(v
)-1,
5512 SQLITE_INT_TO_PTR(n
), P4_INT32
);
5513 assert( n
<=pTab
->nCol
);
5516 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
5518 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
5519 if( (pLevel
->plan
.wsFlags
& WHERE_TEMP_INDEX
)!=0 ){
5520 constructAutomaticIndex(pParse
, sWBI
.pWC
, pTabItem
, notReady
, pLevel
);
5523 if( (pLevel
->plan
.wsFlags
& WHERE_INDEXED
)!=0 ){
5524 Index
*pIx
= pLevel
->plan
.u
.pIdx
;
5525 KeyInfo
*pKey
= sqlite3IndexKeyinfo(pParse
, pIx
);
5526 int iIndexCur
= pLevel
->iIdxCur
;
5527 assert( pIx
->pSchema
==pTab
->pSchema
);
5528 assert( iIndexCur
>=0 );
5529 sqlite3VdbeAddOp4(v
, OP_OpenRead
, iIndexCur
, pIx
->tnum
, iDb
,
5530 (char*)pKey
, P4_KEYINFO_HANDOFF
);
5531 VdbeComment((v
, "%s", pIx
->zName
));
5533 sqlite3CodeVerifySchema(pParse
, iDb
);
5534 notReady
&= ~getMask(sWBI
.pWC
->pMaskSet
, pTabItem
->iCursor
);
5536 pWInfo
->iTop
= sqlite3VdbeCurrentAddr(v
);
5537 if( db
->mallocFailed
) goto whereBeginError
;
5539 /* Generate the code to do the search. Each iteration of the for
5540 ** loop below generates code for a single nested loop of the VM
5543 notReady
= ~(Bitmask
)0;
5544 for(ii
=0; ii
<nTabList
; ii
++){
5545 pLevel
= &pWInfo
->a
[ii
];
5546 explainOneScan(pParse
, pTabList
, pLevel
, ii
, pLevel
->iFrom
, wctrlFlags
);
5547 notReady
= codeOneLoopStart(pWInfo
, ii
, wctrlFlags
, notReady
);
5548 pWInfo
->iContinue
= pLevel
->addrCont
;
5551 #ifdef SQLITE_TEST /* For testing and debugging use only */
5552 /* Record in the query plan information about the current table
5553 ** and the index used to access it (if any). If the table itself
5554 ** is not used, its name is just '{}'. If no index is used
5555 ** the index is listed as "{}". If the primary key is used the
5556 ** index name is '*'.
5558 for(ii
=0; ii
<nTabList
; ii
++){
5562 struct SrcList_item
*pTabItem
;
5564 pLevel
= &pWInfo
->a
[ii
];
5565 w
= pLevel
->plan
.wsFlags
;
5566 pTabItem
= &pTabList
->a
[pLevel
->iFrom
];
5567 z
= pTabItem
->zAlias
;
5568 if( z
==0 ) z
= pTabItem
->pTab
->zName
;
5569 n
= sqlite3Strlen30(z
);
5570 if( n
+nQPlan
< sizeof(sqlite3_query_plan
)-10 ){
5571 if( (w
& WHERE_IDX_ONLY
)!=0 && (w
& WHERE_COVER_SCAN
)==0 ){
5572 memcpy(&sqlite3_query_plan
[nQPlan
], "{}", 2);
5575 memcpy(&sqlite3_query_plan
[nQPlan
], z
, n
);
5578 sqlite3_query_plan
[nQPlan
++] = ' ';
5580 testcase( w
& WHERE_ROWID_EQ
);
5581 testcase( w
& WHERE_ROWID_RANGE
);
5582 if( w
& (WHERE_ROWID_EQ
|WHERE_ROWID_RANGE
) ){
5583 memcpy(&sqlite3_query_plan
[nQPlan
], "* ", 2);
5585 }else if( (w
& WHERE_INDEXED
)!=0 && (w
& WHERE_COVER_SCAN
)==0 ){
5586 n
= sqlite3Strlen30(pLevel
->plan
.u
.pIdx
->zName
);
5587 if( n
+nQPlan
< sizeof(sqlite3_query_plan
)-2 ){
5588 memcpy(&sqlite3_query_plan
[nQPlan
], pLevel
->plan
.u
.pIdx
->zName
, n
);
5590 sqlite3_query_plan
[nQPlan
++] = ' ';
5593 memcpy(&sqlite3_query_plan
[nQPlan
], "{} ", 3);
5597 while( nQPlan
>0 && sqlite3_query_plan
[nQPlan
-1]==' ' ){
5598 sqlite3_query_plan
[--nQPlan
] = 0;
5600 sqlite3_query_plan
[nQPlan
] = 0;
5602 #endif /* SQLITE_TEST // Testing and debugging use only */
5604 /* Record the continuation address in the WhereInfo structure. Then
5605 ** clean up and return.
5609 /* Jump here if malloc fails */
5612 pParse
->nQueryLoop
= pWInfo
->savedNQueryLoop
;
5613 whereInfoFree(db
, pWInfo
);
5619 ** Generate the end of the WHERE loop. See comments on
5620 ** sqlite3WhereBegin() for additional information.
5622 void sqlite3WhereEnd(WhereInfo
*pWInfo
){
5623 Parse
*pParse
= pWInfo
->pParse
;
5624 Vdbe
*v
= pParse
->pVdbe
;
5627 SrcList
*pTabList
= pWInfo
->pTabList
;
5628 sqlite3
*db
= pParse
->db
;
5630 /* Generate loop termination code.
5632 sqlite3ExprCacheClear(pParse
);
5633 for(i
=pWInfo
->nLevel
-1; i
>=0; i
--){
5634 pLevel
= &pWInfo
->a
[i
];
5635 sqlite3VdbeResolveLabel(v
, pLevel
->addrCont
);
5636 if( pLevel
->op
!=OP_Noop
){
5637 sqlite3VdbeAddOp2(v
, pLevel
->op
, pLevel
->p1
, pLevel
->p2
);
5638 sqlite3VdbeChangeP5(v
, pLevel
->p5
);
5640 if( pLevel
->plan
.wsFlags
& WHERE_IN_ABLE
&& pLevel
->u
.in
.nIn
>0 ){
5643 sqlite3VdbeResolveLabel(v
, pLevel
->addrNxt
);
5644 for(j
=pLevel
->u
.in
.nIn
, pIn
=&pLevel
->u
.in
.aInLoop
[j
-1]; j
>0; j
--, pIn
--){
5645 sqlite3VdbeJumpHere(v
, pIn
->addrInTop
+1);
5646 sqlite3VdbeAddOp2(v
, pIn
->eEndLoopOp
, pIn
->iCur
, pIn
->addrInTop
);
5647 sqlite3VdbeJumpHere(v
, pIn
->addrInTop
-1);
5649 sqlite3DbFree(db
, pLevel
->u
.in
.aInLoop
);
5651 sqlite3VdbeResolveLabel(v
, pLevel
->addrBrk
);
5652 if( pLevel
->iLeftJoin
){
5654 addr
= sqlite3VdbeAddOp1(v
, OP_IfPos
, pLevel
->iLeftJoin
);
5655 assert( (pLevel
->plan
.wsFlags
& WHERE_IDX_ONLY
)==0
5656 || (pLevel
->plan
.wsFlags
& WHERE_INDEXED
)!=0 );
5657 if( (pLevel
->plan
.wsFlags
& WHERE_IDX_ONLY
)==0 ){
5658 sqlite3VdbeAddOp1(v
, OP_NullRow
, pTabList
->a
[i
].iCursor
);
5660 if( pLevel
->iIdxCur
>=0 ){
5661 sqlite3VdbeAddOp1(v
, OP_NullRow
, pLevel
->iIdxCur
);
5663 if( pLevel
->op
==OP_Return
){
5664 sqlite3VdbeAddOp2(v
, OP_Gosub
, pLevel
->p1
, pLevel
->addrFirst
);
5666 sqlite3VdbeAddOp2(v
, OP_Goto
, 0, pLevel
->addrFirst
);
5668 sqlite3VdbeJumpHere(v
, addr
);
5672 /* The "break" point is here, just past the end of the outer loop.
5675 sqlite3VdbeResolveLabel(v
, pWInfo
->iBreak
);
5677 /* Close all of the cursors that were opened by sqlite3WhereBegin.
5679 assert( pWInfo
->nLevel
==1 || pWInfo
->nLevel
==pTabList
->nSrc
);
5680 for(i
=0, pLevel
=pWInfo
->a
; i
<pWInfo
->nLevel
; i
++, pLevel
++){
5682 struct SrcList_item
*pTabItem
= &pTabList
->a
[pLevel
->iFrom
];
5683 Table
*pTab
= pTabItem
->pTab
;
5685 if( (pTab
->tabFlags
& TF_Ephemeral
)==0
5687 && (pWInfo
->wctrlFlags
& WHERE_OMIT_OPEN_CLOSE
)==0
5689 int ws
= pLevel
->plan
.wsFlags
;
5690 if( !pWInfo
->okOnePass
&& (ws
& WHERE_IDX_ONLY
)==0 ){
5691 sqlite3VdbeAddOp1(v
, OP_Close
, pTabItem
->iCursor
);
5693 if( (ws
& WHERE_INDEXED
)!=0 && (ws
& WHERE_TEMP_INDEX
)==0 ){
5694 sqlite3VdbeAddOp1(v
, OP_Close
, pLevel
->iIdxCur
);
5698 /* If this scan uses an index, make code substitutions to read data
5699 ** from the index in preference to the table. Sometimes, this means
5700 ** the table need never be read from. This is a performance boost,
5701 ** as the vdbe level waits until the table is read before actually
5702 ** seeking the table cursor to the record corresponding to the current
5703 ** position in the index.
5705 ** Calls to the code generator in between sqlite3WhereBegin and
5706 ** sqlite3WhereEnd will have created code that references the table
5707 ** directly. This loop scans all that code looking for opcodes
5708 ** that reference the table and converts them into opcodes that
5709 ** reference the index.
5711 if( pLevel
->plan
.wsFlags
& WHERE_INDEXED
){
5712 pIdx
= pLevel
->plan
.u
.pIdx
;
5713 }else if( pLevel
->plan
.wsFlags
& WHERE_MULTI_OR
){
5714 pIdx
= pLevel
->u
.pCovidx
;
5716 if( pIdx
&& !db
->mallocFailed
){
5720 pOp
= sqlite3VdbeGetOp(v
, pWInfo
->iTop
);
5721 last
= sqlite3VdbeCurrentAddr(v
);
5722 for(k
=pWInfo
->iTop
; k
<last
; k
++, pOp
++){
5723 if( pOp
->p1
!=pLevel
->iTabCur
) continue;
5724 if( pOp
->opcode
==OP_Column
){
5725 for(j
=0; j
<pIdx
->nColumn
; j
++){
5726 if( pOp
->p2
==pIdx
->aiColumn
[j
] ){
5728 pOp
->p1
= pLevel
->iIdxCur
;
5732 assert( (pLevel
->plan
.wsFlags
& WHERE_IDX_ONLY
)==0
5733 || j
<pIdx
->nColumn
);
5734 }else if( pOp
->opcode
==OP_Rowid
){
5735 pOp
->p1
= pLevel
->iIdxCur
;
5736 pOp
->opcode
= OP_IdxRowid
;
5744 pParse
->nQueryLoop
= pWInfo
->savedNQueryLoop
;
5745 whereInfoFree(db
, pWInfo
);