bump version number and changelog
[sqlcipher.git] / src / vtab.c
blobb50ccd24a6a9c660ad1cdaf01c06206edf7de631
1 /*
2 ** 2006 June 10
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used to help implement virtual tables.
14 #ifndef SQLITE_OMIT_VIRTUALTABLE
15 #include "sqliteInt.h"
18 ** Before a virtual table xCreate() or xConnect() method is invoked, the
19 ** sqlite3.pVtabCtx member variable is set to point to an instance of
20 ** this struct allocated on the stack. It is used by the implementation of
21 ** the sqlite3_declare_vtab() and sqlite3_vtab_config() APIs, both of which
22 ** are invoked only from within xCreate and xConnect methods.
24 struct VtabCtx {
25 VTable *pVTable; /* The virtual table being constructed */
26 Table *pTab; /* The Table object to which the virtual table belongs */
27 VtabCtx *pPrior; /* Parent context (if any) */
28 int bDeclared; /* True after sqlite3_declare_vtab() is called */
32 ** Construct and install a Module object for a virtual table. When this
33 ** routine is called, it is guaranteed that all appropriate locks are held
34 ** and the module is not already part of the connection.
36 ** If there already exists a module with zName, replace it with the new one.
37 ** If pModule==0, then delete the module zName if it exists.
39 Module *sqlite3VtabCreateModule(
40 sqlite3 *db, /* Database in which module is registered */
41 const char *zName, /* Name assigned to this module */
42 const sqlite3_module *pModule, /* The definition of the module */
43 void *pAux, /* Context pointer for xCreate/xConnect */
44 void (*xDestroy)(void *) /* Module destructor function */
46 Module *pMod;
47 Module *pDel;
48 char *zCopy;
49 if( pModule==0 ){
50 zCopy = (char*)zName;
51 pMod = 0;
52 }else{
53 int nName = sqlite3Strlen30(zName);
54 pMod = (Module *)sqlite3Malloc(sizeof(Module) + nName + 1);
55 if( pMod==0 ){
56 sqlite3OomFault(db);
57 return 0;
59 zCopy = (char *)(&pMod[1]);
60 memcpy(zCopy, zName, nName+1);
61 pMod->zName = zCopy;
62 pMod->pModule = pModule;
63 pMod->pAux = pAux;
64 pMod->xDestroy = xDestroy;
65 pMod->pEpoTab = 0;
66 pMod->nRefModule = 1;
68 pDel = (Module *)sqlite3HashInsert(&db->aModule,zCopy,(void*)pMod);
69 if( pDel ){
70 if( pDel==pMod ){
71 sqlite3OomFault(db);
72 sqlite3DbFree(db, pDel);
73 pMod = 0;
74 }else{
75 sqlite3VtabEponymousTableClear(db, pDel);
76 sqlite3VtabModuleUnref(db, pDel);
79 return pMod;
83 ** The actual function that does the work of creating a new module.
84 ** This function implements the sqlite3_create_module() and
85 ** sqlite3_create_module_v2() interfaces.
87 static int createModule(
88 sqlite3 *db, /* Database in which module is registered */
89 const char *zName, /* Name assigned to this module */
90 const sqlite3_module *pModule, /* The definition of the module */
91 void *pAux, /* Context pointer for xCreate/xConnect */
92 void (*xDestroy)(void *) /* Module destructor function */
94 int rc = SQLITE_OK;
96 sqlite3_mutex_enter(db->mutex);
97 (void)sqlite3VtabCreateModule(db, zName, pModule, pAux, xDestroy);
98 rc = sqlite3ApiExit(db, rc);
99 if( rc!=SQLITE_OK && xDestroy ) xDestroy(pAux);
100 sqlite3_mutex_leave(db->mutex);
101 return rc;
106 ** External API function used to create a new virtual-table module.
108 int sqlite3_create_module(
109 sqlite3 *db, /* Database in which module is registered */
110 const char *zName, /* Name assigned to this module */
111 const sqlite3_module *pModule, /* The definition of the module */
112 void *pAux /* Context pointer for xCreate/xConnect */
114 #ifdef SQLITE_ENABLE_API_ARMOR
115 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
116 #endif
117 return createModule(db, zName, pModule, pAux, 0);
121 ** External API function used to create a new virtual-table module.
123 int sqlite3_create_module_v2(
124 sqlite3 *db, /* Database in which module is registered */
125 const char *zName, /* Name assigned to this module */
126 const sqlite3_module *pModule, /* The definition of the module */
127 void *pAux, /* Context pointer for xCreate/xConnect */
128 void (*xDestroy)(void *) /* Module destructor function */
130 #ifdef SQLITE_ENABLE_API_ARMOR
131 if( !sqlite3SafetyCheckOk(db) || zName==0 ) return SQLITE_MISUSE_BKPT;
132 #endif
133 return createModule(db, zName, pModule, pAux, xDestroy);
137 ** External API to drop all virtual-table modules, except those named
138 ** on the azNames list.
140 int sqlite3_drop_modules(sqlite3 *db, const char** azNames){
141 HashElem *pThis, *pNext;
142 #ifdef SQLITE_ENABLE_API_ARMOR
143 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
144 #endif
145 for(pThis=sqliteHashFirst(&db->aModule); pThis; pThis=pNext){
146 Module *pMod = (Module*)sqliteHashData(pThis);
147 pNext = sqliteHashNext(pThis);
148 if( azNames ){
149 int ii;
150 for(ii=0; azNames[ii]!=0 && strcmp(azNames[ii],pMod->zName)!=0; ii++){}
151 if( azNames[ii]!=0 ) continue;
153 createModule(db, pMod->zName, 0, 0, 0);
155 return SQLITE_OK;
159 ** Decrement the reference count on a Module object. Destroy the
160 ** module when the reference count reaches zero.
162 void sqlite3VtabModuleUnref(sqlite3 *db, Module *pMod){
163 assert( pMod->nRefModule>0 );
164 pMod->nRefModule--;
165 if( pMod->nRefModule==0 ){
166 if( pMod->xDestroy ){
167 pMod->xDestroy(pMod->pAux);
169 assert( pMod->pEpoTab==0 );
170 sqlite3DbFree(db, pMod);
175 ** Lock the virtual table so that it cannot be disconnected.
176 ** Locks nest. Every lock should have a corresponding unlock.
177 ** If an unlock is omitted, resources leaks will occur.
179 ** If a disconnect is attempted while a virtual table is locked,
180 ** the disconnect is deferred until all locks have been removed.
182 void sqlite3VtabLock(VTable *pVTab){
183 pVTab->nRef++;
188 ** pTab is a pointer to a Table structure representing a virtual-table.
189 ** Return a pointer to the VTable object used by connection db to access
190 ** this virtual-table, if one has been created, or NULL otherwise.
192 VTable *sqlite3GetVTable(sqlite3 *db, Table *pTab){
193 VTable *pVtab;
194 assert( IsVirtual(pTab) );
195 for(pVtab=pTab->u.vtab.p; pVtab && pVtab->db!=db; pVtab=pVtab->pNext);
196 return pVtab;
200 ** Decrement the ref-count on a virtual table object. When the ref-count
201 ** reaches zero, call the xDisconnect() method to delete the object.
203 void sqlite3VtabUnlock(VTable *pVTab){
204 sqlite3 *db = pVTab->db;
206 assert( db );
207 assert( pVTab->nRef>0 );
208 assert( db->eOpenState==SQLITE_STATE_OPEN
209 || db->eOpenState==SQLITE_STATE_ZOMBIE );
211 pVTab->nRef--;
212 if( pVTab->nRef==0 ){
213 sqlite3_vtab *p = pVTab->pVtab;
214 sqlite3VtabModuleUnref(pVTab->db, pVTab->pMod);
215 if( p ){
216 p->pModule->xDisconnect(p);
218 sqlite3DbFree(db, pVTab);
223 ** Table p is a virtual table. This function moves all elements in the
224 ** p->u.vtab.p list to the sqlite3.pDisconnect lists of their associated
225 ** database connections to be disconnected at the next opportunity.
226 ** Except, if argument db is not NULL, then the entry associated with
227 ** connection db is left in the p->u.vtab.p list.
229 static VTable *vtabDisconnectAll(sqlite3 *db, Table *p){
230 VTable *pRet = 0;
231 VTable *pVTable;
233 assert( IsVirtual(p) );
234 pVTable = p->u.vtab.p;
235 p->u.vtab.p = 0;
237 /* Assert that the mutex (if any) associated with the BtShared database
238 ** that contains table p is held by the caller. See header comments
239 ** above function sqlite3VtabUnlockList() for an explanation of why
240 ** this makes it safe to access the sqlite3.pDisconnect list of any
241 ** database connection that may have an entry in the p->u.vtab.p list.
243 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
245 while( pVTable ){
246 sqlite3 *db2 = pVTable->db;
247 VTable *pNext = pVTable->pNext;
248 assert( db2 );
249 if( db2==db ){
250 pRet = pVTable;
251 p->u.vtab.p = pRet;
252 pRet->pNext = 0;
253 }else{
254 pVTable->pNext = db2->pDisconnect;
255 db2->pDisconnect = pVTable;
257 pVTable = pNext;
260 assert( !db || pRet );
261 return pRet;
265 ** Table *p is a virtual table. This function removes the VTable object
266 ** for table *p associated with database connection db from the linked
267 ** list in p->pVTab. It also decrements the VTable ref count. This is
268 ** used when closing database connection db to free all of its VTable
269 ** objects without disturbing the rest of the Schema object (which may
270 ** be being used by other shared-cache connections).
272 void sqlite3VtabDisconnect(sqlite3 *db, Table *p){
273 VTable **ppVTab;
275 assert( IsVirtual(p) );
276 assert( sqlite3BtreeHoldsAllMutexes(db) );
277 assert( sqlite3_mutex_held(db->mutex) );
279 for(ppVTab=&p->u.vtab.p; *ppVTab; ppVTab=&(*ppVTab)->pNext){
280 if( (*ppVTab)->db==db ){
281 VTable *pVTab = *ppVTab;
282 *ppVTab = pVTab->pNext;
283 sqlite3VtabUnlock(pVTab);
284 break;
291 ** Disconnect all the virtual table objects in the sqlite3.pDisconnect list.
293 ** This function may only be called when the mutexes associated with all
294 ** shared b-tree databases opened using connection db are held by the
295 ** caller. This is done to protect the sqlite3.pDisconnect list. The
296 ** sqlite3.pDisconnect list is accessed only as follows:
298 ** 1) By this function. In this case, all BtShared mutexes and the mutex
299 ** associated with the database handle itself must be held.
301 ** 2) By function vtabDisconnectAll(), when it adds a VTable entry to
302 ** the sqlite3.pDisconnect list. In this case either the BtShared mutex
303 ** associated with the database the virtual table is stored in is held
304 ** or, if the virtual table is stored in a non-sharable database, then
305 ** the database handle mutex is held.
307 ** As a result, a sqlite3.pDisconnect cannot be accessed simultaneously
308 ** by multiple threads. It is thread-safe.
310 void sqlite3VtabUnlockList(sqlite3 *db){
311 VTable *p = db->pDisconnect;
313 assert( sqlite3BtreeHoldsAllMutexes(db) );
314 assert( sqlite3_mutex_held(db->mutex) );
316 if( p ){
317 db->pDisconnect = 0;
318 sqlite3ExpirePreparedStatements(db, 0);
319 do {
320 VTable *pNext = p->pNext;
321 sqlite3VtabUnlock(p);
322 p = pNext;
323 }while( p );
328 ** Clear any and all virtual-table information from the Table record.
329 ** This routine is called, for example, just before deleting the Table
330 ** record.
332 ** Since it is a virtual-table, the Table structure contains a pointer
333 ** to the head of a linked list of VTable structures. Each VTable
334 ** structure is associated with a single sqlite3* user of the schema.
335 ** The reference count of the VTable structure associated with database
336 ** connection db is decremented immediately (which may lead to the
337 ** structure being xDisconnected and free). Any other VTable structures
338 ** in the list are moved to the sqlite3.pDisconnect list of the associated
339 ** database connection.
341 void sqlite3VtabClear(sqlite3 *db, Table *p){
342 assert( IsVirtual(p) );
343 if( !db || db->pnBytesFreed==0 ) vtabDisconnectAll(0, p);
344 if( p->u.vtab.azArg ){
345 int i;
346 for(i=0; i<p->u.vtab.nArg; i++){
347 if( i!=1 ) sqlite3DbFree(db, p->u.vtab.azArg[i]);
349 sqlite3DbFree(db, p->u.vtab.azArg);
354 ** Add a new module argument to pTable->u.vtab.azArg[].
355 ** The string is not copied - the pointer is stored. The
356 ** string will be freed automatically when the table is
357 ** deleted.
359 static void addModuleArgument(Parse *pParse, Table *pTable, char *zArg){
360 sqlite3_int64 nBytes;
361 char **azModuleArg;
362 sqlite3 *db = pParse->db;
364 assert( IsVirtual(pTable) );
365 nBytes = sizeof(char *)*(2+pTable->u.vtab.nArg);
366 if( pTable->u.vtab.nArg+3>=db->aLimit[SQLITE_LIMIT_COLUMN] ){
367 sqlite3ErrorMsg(pParse, "too many columns on %s", pTable->zName);
369 azModuleArg = sqlite3DbRealloc(db, pTable->u.vtab.azArg, nBytes);
370 if( azModuleArg==0 ){
371 sqlite3DbFree(db, zArg);
372 }else{
373 int i = pTable->u.vtab.nArg++;
374 azModuleArg[i] = zArg;
375 azModuleArg[i+1] = 0;
376 pTable->u.vtab.azArg = azModuleArg;
381 ** The parser calls this routine when it first sees a CREATE VIRTUAL TABLE
382 ** statement. The module name has been parsed, but the optional list
383 ** of parameters that follow the module name are still pending.
385 void sqlite3VtabBeginParse(
386 Parse *pParse, /* Parsing context */
387 Token *pName1, /* Name of new table, or database name */
388 Token *pName2, /* Name of new table or NULL */
389 Token *pModuleName, /* Name of the module for the virtual table */
390 int ifNotExists /* No error if the table already exists */
392 Table *pTable; /* The new virtual table */
393 sqlite3 *db; /* Database connection */
395 sqlite3StartTable(pParse, pName1, pName2, 0, 0, 1, ifNotExists);
396 pTable = pParse->pNewTable;
397 if( pTable==0 ) return;
398 assert( 0==pTable->pIndex );
399 pTable->eTabType = TABTYP_VTAB;
401 db = pParse->db;
403 assert( pTable->u.vtab.nArg==0 );
404 addModuleArgument(pParse, pTable, sqlite3NameFromToken(db, pModuleName));
405 addModuleArgument(pParse, pTable, 0);
406 addModuleArgument(pParse, pTable, sqlite3DbStrDup(db, pTable->zName));
407 assert( (pParse->sNameToken.z==pName2->z && pName2->z!=0)
408 || (pParse->sNameToken.z==pName1->z && pName2->z==0)
410 pParse->sNameToken.n = (int)(
411 &pModuleName->z[pModuleName->n] - pParse->sNameToken.z
414 #ifndef SQLITE_OMIT_AUTHORIZATION
415 /* Creating a virtual table invokes the authorization callback twice.
416 ** The first invocation, to obtain permission to INSERT a row into the
417 ** sqlite_schema table, has already been made by sqlite3StartTable().
418 ** The second call, to obtain permission to create the table, is made now.
420 if( pTable->u.vtab.azArg ){
421 int iDb = sqlite3SchemaToIndex(db, pTable->pSchema);
422 assert( iDb>=0 ); /* The database the table is being created in */
423 sqlite3AuthCheck(pParse, SQLITE_CREATE_VTABLE, pTable->zName,
424 pTable->u.vtab.azArg[0], pParse->db->aDb[iDb].zDbSName);
426 #endif
430 ** This routine takes the module argument that has been accumulating
431 ** in pParse->zArg[] and appends it to the list of arguments on the
432 ** virtual table currently under construction in pParse->pTable.
434 static void addArgumentToVtab(Parse *pParse){
435 if( pParse->sArg.z && pParse->pNewTable ){
436 const char *z = (const char*)pParse->sArg.z;
437 int n = pParse->sArg.n;
438 sqlite3 *db = pParse->db;
439 addModuleArgument(pParse, pParse->pNewTable, sqlite3DbStrNDup(db, z, n));
444 ** The parser calls this routine after the CREATE VIRTUAL TABLE statement
445 ** has been completely parsed.
447 void sqlite3VtabFinishParse(Parse *pParse, Token *pEnd){
448 Table *pTab = pParse->pNewTable; /* The table being constructed */
449 sqlite3 *db = pParse->db; /* The database connection */
451 if( pTab==0 ) return;
452 assert( IsVirtual(pTab) );
453 addArgumentToVtab(pParse);
454 pParse->sArg.z = 0;
455 if( pTab->u.vtab.nArg<1 ) return;
457 /* If the CREATE VIRTUAL TABLE statement is being entered for the
458 ** first time (in other words if the virtual table is actually being
459 ** created now instead of just being read out of sqlite_schema) then
460 ** do additional initialization work and store the statement text
461 ** in the sqlite_schema table.
463 if( !db->init.busy ){
464 char *zStmt;
465 char *zWhere;
466 int iDb;
467 int iReg;
468 Vdbe *v;
470 sqlite3MayAbort(pParse);
472 /* Compute the complete text of the CREATE VIRTUAL TABLE statement */
473 if( pEnd ){
474 pParse->sNameToken.n = (int)(pEnd->z - pParse->sNameToken.z) + pEnd->n;
476 zStmt = sqlite3MPrintf(db, "CREATE VIRTUAL TABLE %T", &pParse->sNameToken);
478 /* A slot for the record has already been allocated in the
479 ** schema table. We just need to update that slot with all
480 ** the information we've collected.
482 ** The VM register number pParse->regRowid holds the rowid of an
483 ** entry in the sqlite_schema table tht was created for this vtab
484 ** by sqlite3StartTable().
486 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
487 sqlite3NestedParse(pParse,
488 "UPDATE %Q." LEGACY_SCHEMA_TABLE " "
489 "SET type='table', name=%Q, tbl_name=%Q, rootpage=0, sql=%Q "
490 "WHERE rowid=#%d",
491 db->aDb[iDb].zDbSName,
492 pTab->zName,
493 pTab->zName,
494 zStmt,
495 pParse->regRowid
497 v = sqlite3GetVdbe(pParse);
498 sqlite3ChangeCookie(pParse, iDb);
500 sqlite3VdbeAddOp0(v, OP_Expire);
501 zWhere = sqlite3MPrintf(db, "name=%Q AND sql=%Q", pTab->zName, zStmt);
502 sqlite3VdbeAddParseSchemaOp(v, iDb, zWhere, 0);
503 sqlite3DbFree(db, zStmt);
505 iReg = ++pParse->nMem;
506 sqlite3VdbeLoadString(v, iReg, pTab->zName);
507 sqlite3VdbeAddOp2(v, OP_VCreate, iDb, iReg);
508 }else{
509 /* If we are rereading the sqlite_schema table create the in-memory
510 ** record of the table. */
511 Table *pOld;
512 Schema *pSchema = pTab->pSchema;
513 const char *zName = pTab->zName;
514 assert( zName!=0 );
515 sqlite3MarkAllShadowTablesOf(db, pTab);
516 pOld = sqlite3HashInsert(&pSchema->tblHash, zName, pTab);
517 if( pOld ){
518 sqlite3OomFault(db);
519 assert( pTab==pOld ); /* Malloc must have failed inside HashInsert() */
520 return;
522 pParse->pNewTable = 0;
527 ** The parser calls this routine when it sees the first token
528 ** of an argument to the module name in a CREATE VIRTUAL TABLE statement.
530 void sqlite3VtabArgInit(Parse *pParse){
531 addArgumentToVtab(pParse);
532 pParse->sArg.z = 0;
533 pParse->sArg.n = 0;
537 ** The parser calls this routine for each token after the first token
538 ** in an argument to the module name in a CREATE VIRTUAL TABLE statement.
540 void sqlite3VtabArgExtend(Parse *pParse, Token *p){
541 Token *pArg = &pParse->sArg;
542 if( pArg->z==0 ){
543 pArg->z = p->z;
544 pArg->n = p->n;
545 }else{
546 assert(pArg->z <= p->z);
547 pArg->n = (int)(&p->z[p->n] - pArg->z);
552 ** Invoke a virtual table constructor (either xCreate or xConnect). The
553 ** pointer to the function to invoke is passed as the fourth parameter
554 ** to this procedure.
556 static int vtabCallConstructor(
557 sqlite3 *db,
558 Table *pTab,
559 Module *pMod,
560 int (*xConstruct)(sqlite3*,void*,int,const char*const*,sqlite3_vtab**,char**),
561 char **pzErr
563 VtabCtx sCtx;
564 VTable *pVTable;
565 int rc;
566 const char *const*azArg;
567 int nArg = pTab->u.vtab.nArg;
568 char *zErr = 0;
569 char *zModuleName;
570 int iDb;
571 VtabCtx *pCtx;
573 assert( IsVirtual(pTab) );
574 azArg = (const char *const*)pTab->u.vtab.azArg;
576 /* Check that the virtual-table is not already being initialized */
577 for(pCtx=db->pVtabCtx; pCtx; pCtx=pCtx->pPrior){
578 if( pCtx->pTab==pTab ){
579 *pzErr = sqlite3MPrintf(db,
580 "vtable constructor called recursively: %s", pTab->zName
582 return SQLITE_LOCKED;
586 zModuleName = sqlite3DbStrDup(db, pTab->zName);
587 if( !zModuleName ){
588 return SQLITE_NOMEM_BKPT;
591 pVTable = sqlite3MallocZero(sizeof(VTable));
592 if( !pVTable ){
593 sqlite3OomFault(db);
594 sqlite3DbFree(db, zModuleName);
595 return SQLITE_NOMEM_BKPT;
597 pVTable->db = db;
598 pVTable->pMod = pMod;
599 pVTable->eVtabRisk = SQLITE_VTABRISK_Normal;
601 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
602 pTab->u.vtab.azArg[1] = db->aDb[iDb].zDbSName;
604 /* Invoke the virtual table constructor */
605 assert( &db->pVtabCtx );
606 assert( xConstruct );
607 sCtx.pTab = pTab;
608 sCtx.pVTable = pVTable;
609 sCtx.pPrior = db->pVtabCtx;
610 sCtx.bDeclared = 0;
611 db->pVtabCtx = &sCtx;
612 rc = xConstruct(db, pMod->pAux, nArg, azArg, &pVTable->pVtab, &zErr);
613 db->pVtabCtx = sCtx.pPrior;
614 if( rc==SQLITE_NOMEM ) sqlite3OomFault(db);
615 assert( sCtx.pTab==pTab );
617 if( SQLITE_OK!=rc ){
618 if( zErr==0 ){
619 *pzErr = sqlite3MPrintf(db, "vtable constructor failed: %s", zModuleName);
620 }else {
621 *pzErr = sqlite3MPrintf(db, "%s", zErr);
622 sqlite3_free(zErr);
624 sqlite3DbFree(db, pVTable);
625 }else if( ALWAYS(pVTable->pVtab) ){
626 /* Justification of ALWAYS(): A correct vtab constructor must allocate
627 ** the sqlite3_vtab object if successful. */
628 memset(pVTable->pVtab, 0, sizeof(pVTable->pVtab[0]));
629 pVTable->pVtab->pModule = pMod->pModule;
630 pMod->nRefModule++;
631 pVTable->nRef = 1;
632 if( sCtx.bDeclared==0 ){
633 const char *zFormat = "vtable constructor did not declare schema: %s";
634 *pzErr = sqlite3MPrintf(db, zFormat, pTab->zName);
635 sqlite3VtabUnlock(pVTable);
636 rc = SQLITE_ERROR;
637 }else{
638 int iCol;
639 u16 oooHidden = 0;
640 /* If everything went according to plan, link the new VTable structure
641 ** into the linked list headed by pTab->u.vtab.p. Then loop through the
642 ** columns of the table to see if any of them contain the token "hidden".
643 ** If so, set the Column COLFLAG_HIDDEN flag and remove the token from
644 ** the type string. */
645 pVTable->pNext = pTab->u.vtab.p;
646 pTab->u.vtab.p = pVTable;
648 for(iCol=0; iCol<pTab->nCol; iCol++){
649 char *zType = sqlite3ColumnType(&pTab->aCol[iCol], "");
650 int nType;
651 int i = 0;
652 nType = sqlite3Strlen30(zType);
653 for(i=0; i<nType; i++){
654 if( 0==sqlite3StrNICmp("hidden", &zType[i], 6)
655 && (i==0 || zType[i-1]==' ')
656 && (zType[i+6]=='\0' || zType[i+6]==' ')
658 break;
661 if( i<nType ){
662 int j;
663 int nDel = 6 + (zType[i+6] ? 1 : 0);
664 for(j=i; (j+nDel)<=nType; j++){
665 zType[j] = zType[j+nDel];
667 if( zType[i]=='\0' && i>0 ){
668 assert(zType[i-1]==' ');
669 zType[i-1] = '\0';
671 pTab->aCol[iCol].colFlags |= COLFLAG_HIDDEN;
672 pTab->tabFlags |= TF_HasHidden;
673 oooHidden = TF_OOOHidden;
674 }else{
675 pTab->tabFlags |= oooHidden;
681 sqlite3DbFree(db, zModuleName);
682 return rc;
686 ** This function is invoked by the parser to call the xConnect() method
687 ** of the virtual table pTab. If an error occurs, an error code is returned
688 ** and an error left in pParse.
690 ** This call is a no-op if table pTab is not a virtual table.
692 int sqlite3VtabCallConnect(Parse *pParse, Table *pTab){
693 sqlite3 *db = pParse->db;
694 const char *zMod;
695 Module *pMod;
696 int rc;
698 assert( pTab );
699 assert( IsVirtual(pTab) );
700 if( sqlite3GetVTable(db, pTab) ){
701 return SQLITE_OK;
704 /* Locate the required virtual table module */
705 zMod = pTab->u.vtab.azArg[0];
706 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod);
708 if( !pMod ){
709 const char *zModule = pTab->u.vtab.azArg[0];
710 sqlite3ErrorMsg(pParse, "no such module: %s", zModule);
711 rc = SQLITE_ERROR;
712 }else{
713 char *zErr = 0;
714 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xConnect, &zErr);
715 if( rc!=SQLITE_OK ){
716 sqlite3ErrorMsg(pParse, "%s", zErr);
717 pParse->rc = rc;
719 sqlite3DbFree(db, zErr);
722 return rc;
725 ** Grow the db->aVTrans[] array so that there is room for at least one
726 ** more v-table. Return SQLITE_NOMEM if a malloc fails, or SQLITE_OK otherwise.
728 static int growVTrans(sqlite3 *db){
729 const int ARRAY_INCR = 5;
731 /* Grow the sqlite3.aVTrans array if required */
732 if( (db->nVTrans%ARRAY_INCR)==0 ){
733 VTable **aVTrans;
734 sqlite3_int64 nBytes = sizeof(sqlite3_vtab*)*
735 ((sqlite3_int64)db->nVTrans + ARRAY_INCR);
736 aVTrans = sqlite3DbRealloc(db, (void *)db->aVTrans, nBytes);
737 if( !aVTrans ){
738 return SQLITE_NOMEM_BKPT;
740 memset(&aVTrans[db->nVTrans], 0, sizeof(sqlite3_vtab *)*ARRAY_INCR);
741 db->aVTrans = aVTrans;
744 return SQLITE_OK;
748 ** Add the virtual table pVTab to the array sqlite3.aVTrans[]. Space should
749 ** have already been reserved using growVTrans().
751 static void addToVTrans(sqlite3 *db, VTable *pVTab){
752 /* Add pVtab to the end of sqlite3.aVTrans */
753 db->aVTrans[db->nVTrans++] = pVTab;
754 sqlite3VtabLock(pVTab);
758 ** This function is invoked by the vdbe to call the xCreate method
759 ** of the virtual table named zTab in database iDb.
761 ** If an error occurs, *pzErr is set to point to an English language
762 ** description of the error and an SQLITE_XXX error code is returned.
763 ** In this case the caller must call sqlite3DbFree(db, ) on *pzErr.
765 int sqlite3VtabCallCreate(sqlite3 *db, int iDb, const char *zTab, char **pzErr){
766 int rc = SQLITE_OK;
767 Table *pTab;
768 Module *pMod;
769 const char *zMod;
771 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName);
772 assert( pTab && IsVirtual(pTab) && !pTab->u.vtab.p );
774 /* Locate the required virtual table module */
775 zMod = pTab->u.vtab.azArg[0];
776 pMod = (Module*)sqlite3HashFind(&db->aModule, zMod);
778 /* If the module has been registered and includes a Create method,
779 ** invoke it now. If the module has not been registered, return an
780 ** error. Otherwise, do nothing.
782 if( pMod==0 || pMod->pModule->xCreate==0 || pMod->pModule->xDestroy==0 ){
783 *pzErr = sqlite3MPrintf(db, "no such module: %s", zMod);
784 rc = SQLITE_ERROR;
785 }else{
786 rc = vtabCallConstructor(db, pTab, pMod, pMod->pModule->xCreate, pzErr);
789 /* Justification of ALWAYS(): The xConstructor method is required to
790 ** create a valid sqlite3_vtab if it returns SQLITE_OK. */
791 if( rc==SQLITE_OK && ALWAYS(sqlite3GetVTable(db, pTab)) ){
792 rc = growVTrans(db);
793 if( rc==SQLITE_OK ){
794 addToVTrans(db, sqlite3GetVTable(db, pTab));
798 return rc;
802 ** This function is used to set the schema of a virtual table. It is only
803 ** valid to call this function from within the xCreate() or xConnect() of a
804 ** virtual table module.
806 int sqlite3_declare_vtab(sqlite3 *db, const char *zCreateTable){
807 VtabCtx *pCtx;
808 int rc = SQLITE_OK;
809 Table *pTab;
810 Parse sParse;
811 int initBusy;
813 #ifdef SQLITE_ENABLE_API_ARMOR
814 if( !sqlite3SafetyCheckOk(db) || zCreateTable==0 ){
815 return SQLITE_MISUSE_BKPT;
817 #endif
818 sqlite3_mutex_enter(db->mutex);
819 pCtx = db->pVtabCtx;
820 if( !pCtx || pCtx->bDeclared ){
821 sqlite3Error(db, SQLITE_MISUSE);
822 sqlite3_mutex_leave(db->mutex);
823 return SQLITE_MISUSE_BKPT;
825 pTab = pCtx->pTab;
826 assert( IsVirtual(pTab) );
828 sqlite3ParseObjectInit(&sParse, db);
829 sParse.eParseMode = PARSE_MODE_DECLARE_VTAB;
830 sParse.disableTriggers = 1;
831 /* We should never be able to reach this point while loading the
832 ** schema. Nevertheless, defend against that (turn off db->init.busy)
833 ** in case a bug arises. */
834 assert( db->init.busy==0 );
835 initBusy = db->init.busy;
836 db->init.busy = 0;
837 sParse.nQueryLoop = 1;
838 if( SQLITE_OK==sqlite3RunParser(&sParse, zCreateTable)
839 && ALWAYS(sParse.pNewTable!=0)
840 && ALWAYS(!db->mallocFailed)
841 && IsOrdinaryTable(sParse.pNewTable)
843 assert( sParse.zErrMsg==0 );
844 if( !pTab->aCol ){
845 Table *pNew = sParse.pNewTable;
846 Index *pIdx;
847 pTab->aCol = pNew->aCol;
848 sqlite3ExprListDelete(db, pNew->u.tab.pDfltList);
849 pTab->nNVCol = pTab->nCol = pNew->nCol;
850 pTab->tabFlags |= pNew->tabFlags & (TF_WithoutRowid|TF_NoVisibleRowid);
851 pNew->nCol = 0;
852 pNew->aCol = 0;
853 assert( pTab->pIndex==0 );
854 assert( HasRowid(pNew) || sqlite3PrimaryKeyIndex(pNew)!=0 );
855 if( !HasRowid(pNew)
856 && pCtx->pVTable->pMod->pModule->xUpdate!=0
857 && sqlite3PrimaryKeyIndex(pNew)->nKeyCol!=1
859 /* WITHOUT ROWID virtual tables must either be read-only (xUpdate==0)
860 ** or else must have a single-column PRIMARY KEY */
861 rc = SQLITE_ERROR;
863 pIdx = pNew->pIndex;
864 if( pIdx ){
865 assert( pIdx->pNext==0 );
866 pTab->pIndex = pIdx;
867 pNew->pIndex = 0;
868 pIdx->pTable = pTab;
871 pCtx->bDeclared = 1;
872 }else{
873 sqlite3ErrorWithMsg(db, SQLITE_ERROR,
874 (sParse.zErrMsg ? "%s" : 0), sParse.zErrMsg);
875 sqlite3DbFree(db, sParse.zErrMsg);
876 rc = SQLITE_ERROR;
878 sParse.eParseMode = PARSE_MODE_NORMAL;
880 if( sParse.pVdbe ){
881 sqlite3VdbeFinalize(sParse.pVdbe);
883 sqlite3DeleteTable(db, sParse.pNewTable);
884 sqlite3ParseObjectReset(&sParse);
885 db->init.busy = initBusy;
887 assert( (rc&0xff)==rc );
888 rc = sqlite3ApiExit(db, rc);
889 sqlite3_mutex_leave(db->mutex);
890 return rc;
894 ** This function is invoked by the vdbe to call the xDestroy method
895 ** of the virtual table named zTab in database iDb. This occurs
896 ** when a DROP TABLE is mentioned.
898 ** This call is a no-op if zTab is not a virtual table.
900 int sqlite3VtabCallDestroy(sqlite3 *db, int iDb, const char *zTab){
901 int rc = SQLITE_OK;
902 Table *pTab;
904 pTab = sqlite3FindTable(db, zTab, db->aDb[iDb].zDbSName);
905 if( ALWAYS(pTab!=0)
906 && ALWAYS(IsVirtual(pTab))
907 && ALWAYS(pTab->u.vtab.p!=0)
909 VTable *p;
910 int (*xDestroy)(sqlite3_vtab *);
911 for(p=pTab->u.vtab.p; p; p=p->pNext){
912 assert( p->pVtab );
913 if( p->pVtab->nRef>0 ){
914 return SQLITE_LOCKED;
917 p = vtabDisconnectAll(db, pTab);
918 xDestroy = p->pMod->pModule->xDestroy;
919 if( xDestroy==0 ) xDestroy = p->pMod->pModule->xDisconnect;
920 assert( xDestroy!=0 );
921 pTab->nTabRef++;
922 rc = xDestroy(p->pVtab);
923 /* Remove the sqlite3_vtab* from the aVTrans[] array, if applicable */
924 if( rc==SQLITE_OK ){
925 assert( pTab->u.vtab.p==p && p->pNext==0 );
926 p->pVtab = 0;
927 pTab->u.vtab.p = 0;
928 sqlite3VtabUnlock(p);
930 sqlite3DeleteTable(db, pTab);
933 return rc;
937 ** This function invokes either the xRollback or xCommit method
938 ** of each of the virtual tables in the sqlite3.aVTrans array. The method
939 ** called is identified by the second argument, "offset", which is
940 ** the offset of the method to call in the sqlite3_module structure.
942 ** The array is cleared after invoking the callbacks.
944 static void callFinaliser(sqlite3 *db, int offset){
945 int i;
946 if( db->aVTrans ){
947 VTable **aVTrans = db->aVTrans;
948 db->aVTrans = 0;
949 for(i=0; i<db->nVTrans; i++){
950 VTable *pVTab = aVTrans[i];
951 sqlite3_vtab *p = pVTab->pVtab;
952 if( p ){
953 int (*x)(sqlite3_vtab *);
954 x = *(int (**)(sqlite3_vtab *))((char *)p->pModule + offset);
955 if( x ) x(p);
957 pVTab->iSavepoint = 0;
958 sqlite3VtabUnlock(pVTab);
960 sqlite3DbFree(db, aVTrans);
961 db->nVTrans = 0;
966 ** Invoke the xSync method of all virtual tables in the sqlite3.aVTrans
967 ** array. Return the error code for the first error that occurs, or
968 ** SQLITE_OK if all xSync operations are successful.
970 ** If an error message is available, leave it in p->zErrMsg.
972 int sqlite3VtabSync(sqlite3 *db, Vdbe *p){
973 int i;
974 int rc = SQLITE_OK;
975 VTable **aVTrans = db->aVTrans;
977 db->aVTrans = 0;
978 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
979 int (*x)(sqlite3_vtab *);
980 sqlite3_vtab *pVtab = aVTrans[i]->pVtab;
981 if( pVtab && (x = pVtab->pModule->xSync)!=0 ){
982 rc = x(pVtab);
983 sqlite3VtabImportErrmsg(p, pVtab);
986 db->aVTrans = aVTrans;
987 return rc;
991 ** Invoke the xRollback method of all virtual tables in the
992 ** sqlite3.aVTrans array. Then clear the array itself.
994 int sqlite3VtabRollback(sqlite3 *db){
995 callFinaliser(db, offsetof(sqlite3_module,xRollback));
996 return SQLITE_OK;
1000 ** Invoke the xCommit method of all virtual tables in the
1001 ** sqlite3.aVTrans array. Then clear the array itself.
1003 int sqlite3VtabCommit(sqlite3 *db){
1004 callFinaliser(db, offsetof(sqlite3_module,xCommit));
1005 return SQLITE_OK;
1009 ** If the virtual table pVtab supports the transaction interface
1010 ** (xBegin/xRollback/xCommit and optionally xSync) and a transaction is
1011 ** not currently open, invoke the xBegin method now.
1013 ** If the xBegin call is successful, place the sqlite3_vtab pointer
1014 ** in the sqlite3.aVTrans array.
1016 int sqlite3VtabBegin(sqlite3 *db, VTable *pVTab){
1017 int rc = SQLITE_OK;
1018 const sqlite3_module *pModule;
1020 /* Special case: If db->aVTrans is NULL and db->nVTrans is greater
1021 ** than zero, then this function is being called from within a
1022 ** virtual module xSync() callback. It is illegal to write to
1023 ** virtual module tables in this case, so return SQLITE_LOCKED.
1025 if( sqlite3VtabInSync(db) ){
1026 return SQLITE_LOCKED;
1028 if( !pVTab ){
1029 return SQLITE_OK;
1031 pModule = pVTab->pVtab->pModule;
1033 if( pModule->xBegin ){
1034 int i;
1036 /* If pVtab is already in the aVTrans array, return early */
1037 for(i=0; i<db->nVTrans; i++){
1038 if( db->aVTrans[i]==pVTab ){
1039 return SQLITE_OK;
1043 /* Invoke the xBegin method. If successful, add the vtab to the
1044 ** sqlite3.aVTrans[] array. */
1045 rc = growVTrans(db);
1046 if( rc==SQLITE_OK ){
1047 rc = pModule->xBegin(pVTab->pVtab);
1048 if( rc==SQLITE_OK ){
1049 int iSvpt = db->nStatement + db->nSavepoint;
1050 addToVTrans(db, pVTab);
1051 if( iSvpt && pModule->xSavepoint ){
1052 pVTab->iSavepoint = iSvpt;
1053 rc = pModule->xSavepoint(pVTab->pVtab, iSvpt-1);
1058 return rc;
1062 ** Invoke either the xSavepoint, xRollbackTo or xRelease method of all
1063 ** virtual tables that currently have an open transaction. Pass iSavepoint
1064 ** as the second argument to the virtual table method invoked.
1066 ** If op is SAVEPOINT_BEGIN, the xSavepoint method is invoked. If it is
1067 ** SAVEPOINT_ROLLBACK, the xRollbackTo method. Otherwise, if op is
1068 ** SAVEPOINT_RELEASE, then the xRelease method of each virtual table with
1069 ** an open transaction is invoked.
1071 ** If any virtual table method returns an error code other than SQLITE_OK,
1072 ** processing is abandoned and the error returned to the caller of this
1073 ** function immediately. If all calls to virtual table methods are successful,
1074 ** SQLITE_OK is returned.
1076 int sqlite3VtabSavepoint(sqlite3 *db, int op, int iSavepoint){
1077 int rc = SQLITE_OK;
1079 assert( op==SAVEPOINT_RELEASE||op==SAVEPOINT_ROLLBACK||op==SAVEPOINT_BEGIN );
1080 assert( iSavepoint>=-1 );
1081 if( db->aVTrans ){
1082 int i;
1083 for(i=0; rc==SQLITE_OK && i<db->nVTrans; i++){
1084 VTable *pVTab = db->aVTrans[i];
1085 const sqlite3_module *pMod = pVTab->pMod->pModule;
1086 if( pVTab->pVtab && pMod->iVersion>=2 ){
1087 int (*xMethod)(sqlite3_vtab *, int);
1088 sqlite3VtabLock(pVTab);
1089 switch( op ){
1090 case SAVEPOINT_BEGIN:
1091 xMethod = pMod->xSavepoint;
1092 pVTab->iSavepoint = iSavepoint+1;
1093 break;
1094 case SAVEPOINT_ROLLBACK:
1095 xMethod = pMod->xRollbackTo;
1096 break;
1097 default:
1098 xMethod = pMod->xRelease;
1099 break;
1101 if( xMethod && pVTab->iSavepoint>iSavepoint ){
1102 rc = xMethod(pVTab->pVtab, iSavepoint);
1104 sqlite3VtabUnlock(pVTab);
1108 return rc;
1112 ** The first parameter (pDef) is a function implementation. The
1113 ** second parameter (pExpr) is the first argument to this function.
1114 ** If pExpr is a column in a virtual table, then let the virtual
1115 ** table implementation have an opportunity to overload the function.
1117 ** This routine is used to allow virtual table implementations to
1118 ** overload MATCH, LIKE, GLOB, and REGEXP operators.
1120 ** Return either the pDef argument (indicating no change) or a
1121 ** new FuncDef structure that is marked as ephemeral using the
1122 ** SQLITE_FUNC_EPHEM flag.
1124 FuncDef *sqlite3VtabOverloadFunction(
1125 sqlite3 *db, /* Database connection for reporting malloc problems */
1126 FuncDef *pDef, /* Function to possibly overload */
1127 int nArg, /* Number of arguments to the function */
1128 Expr *pExpr /* First argument to the function */
1130 Table *pTab;
1131 sqlite3_vtab *pVtab;
1132 sqlite3_module *pMod;
1133 void (*xSFunc)(sqlite3_context*,int,sqlite3_value**) = 0;
1134 void *pArg = 0;
1135 FuncDef *pNew;
1136 int rc = 0;
1138 /* Check to see the left operand is a column in a virtual table */
1139 if( NEVER(pExpr==0) ) return pDef;
1140 if( pExpr->op!=TK_COLUMN ) return pDef;
1141 assert( ExprUseYTab(pExpr) );
1142 pTab = pExpr->y.pTab;
1143 if( pTab==0 ) return pDef;
1144 if( !IsVirtual(pTab) ) return pDef;
1145 pVtab = sqlite3GetVTable(db, pTab)->pVtab;
1146 assert( pVtab!=0 );
1147 assert( pVtab->pModule!=0 );
1148 pMod = (sqlite3_module *)pVtab->pModule;
1149 if( pMod->xFindFunction==0 ) return pDef;
1151 /* Call the xFindFunction method on the virtual table implementation
1152 ** to see if the implementation wants to overload this function.
1154 ** Though undocumented, we have historically always invoked xFindFunction
1155 ** with an all lower-case function name. Continue in this tradition to
1156 ** avoid any chance of an incompatibility.
1158 #ifdef SQLITE_DEBUG
1160 int i;
1161 for(i=0; pDef->zName[i]; i++){
1162 unsigned char x = (unsigned char)pDef->zName[i];
1163 assert( x==sqlite3UpperToLower[x] );
1166 #endif
1167 rc = pMod->xFindFunction(pVtab, nArg, pDef->zName, &xSFunc, &pArg);
1168 if( rc==0 ){
1169 return pDef;
1172 /* Create a new ephemeral function definition for the overloaded
1173 ** function */
1174 pNew = sqlite3DbMallocZero(db, sizeof(*pNew)
1175 + sqlite3Strlen30(pDef->zName) + 1);
1176 if( pNew==0 ){
1177 return pDef;
1179 *pNew = *pDef;
1180 pNew->zName = (const char*)&pNew[1];
1181 memcpy((char*)&pNew[1], pDef->zName, sqlite3Strlen30(pDef->zName)+1);
1182 pNew->xSFunc = xSFunc;
1183 pNew->pUserData = pArg;
1184 pNew->funcFlags |= SQLITE_FUNC_EPHEM;
1185 return pNew;
1189 ** Make sure virtual table pTab is contained in the pParse->apVirtualLock[]
1190 ** array so that an OP_VBegin will get generated for it. Add pTab to the
1191 ** array if it is missing. If pTab is already in the array, this routine
1192 ** is a no-op.
1194 void sqlite3VtabMakeWritable(Parse *pParse, Table *pTab){
1195 Parse *pToplevel = sqlite3ParseToplevel(pParse);
1196 int i, n;
1197 Table **apVtabLock;
1199 assert( IsVirtual(pTab) );
1200 for(i=0; i<pToplevel->nVtabLock; i++){
1201 if( pTab==pToplevel->apVtabLock[i] ) return;
1203 n = (pToplevel->nVtabLock+1)*sizeof(pToplevel->apVtabLock[0]);
1204 apVtabLock = sqlite3Realloc(pToplevel->apVtabLock, n);
1205 if( apVtabLock ){
1206 pToplevel->apVtabLock = apVtabLock;
1207 pToplevel->apVtabLock[pToplevel->nVtabLock++] = pTab;
1208 }else{
1209 sqlite3OomFault(pToplevel->db);
1214 ** Check to see if virtual table module pMod can be have an eponymous
1215 ** virtual table instance. If it can, create one if one does not already
1216 ** exist. Return non-zero if either the eponymous virtual table instance
1217 ** exists when this routine returns or if an attempt to create it failed
1218 ** and an error message was left in pParse.
1220 ** An eponymous virtual table instance is one that is named after its
1221 ** module, and more importantly, does not require a CREATE VIRTUAL TABLE
1222 ** statement in order to come into existance. Eponymous virtual table
1223 ** instances always exist. They cannot be DROP-ed.
1225 ** Any virtual table module for which xConnect and xCreate are the same
1226 ** method can have an eponymous virtual table instance.
1228 int sqlite3VtabEponymousTableInit(Parse *pParse, Module *pMod){
1229 const sqlite3_module *pModule = pMod->pModule;
1230 Table *pTab;
1231 char *zErr = 0;
1232 int rc;
1233 sqlite3 *db = pParse->db;
1234 if( pMod->pEpoTab ) return 1;
1235 if( pModule->xCreate!=0 && pModule->xCreate!=pModule->xConnect ) return 0;
1236 pTab = sqlite3DbMallocZero(db, sizeof(Table));
1237 if( pTab==0 ) return 0;
1238 pTab->zName = sqlite3DbStrDup(db, pMod->zName);
1239 if( pTab->zName==0 ){
1240 sqlite3DbFree(db, pTab);
1241 return 0;
1243 pMod->pEpoTab = pTab;
1244 pTab->nTabRef = 1;
1245 pTab->eTabType = TABTYP_VTAB;
1246 pTab->pSchema = db->aDb[0].pSchema;
1247 assert( pTab->u.vtab.nArg==0 );
1248 pTab->iPKey = -1;
1249 pTab->tabFlags |= TF_Eponymous;
1250 addModuleArgument(pParse, pTab, sqlite3DbStrDup(db, pTab->zName));
1251 addModuleArgument(pParse, pTab, 0);
1252 addModuleArgument(pParse, pTab, sqlite3DbStrDup(db, pTab->zName));
1253 rc = vtabCallConstructor(db, pTab, pMod, pModule->xConnect, &zErr);
1254 if( rc ){
1255 sqlite3ErrorMsg(pParse, "%s", zErr);
1256 sqlite3DbFree(db, zErr);
1257 sqlite3VtabEponymousTableClear(db, pMod);
1259 return 1;
1263 ** Erase the eponymous virtual table instance associated with
1264 ** virtual table module pMod, if it exists.
1266 void sqlite3VtabEponymousTableClear(sqlite3 *db, Module *pMod){
1267 Table *pTab = pMod->pEpoTab;
1268 if( pTab!=0 ){
1269 /* Mark the table as Ephemeral prior to deleting it, so that the
1270 ** sqlite3DeleteTable() routine will know that it is not stored in
1271 ** the schema. */
1272 pTab->tabFlags |= TF_Ephemeral;
1273 sqlite3DeleteTable(db, pTab);
1274 pMod->pEpoTab = 0;
1279 ** Return the ON CONFLICT resolution mode in effect for the virtual
1280 ** table update operation currently in progress.
1282 ** The results of this routine are undefined unless it is called from
1283 ** within an xUpdate method.
1285 int sqlite3_vtab_on_conflict(sqlite3 *db){
1286 static const unsigned char aMap[] = {
1287 SQLITE_ROLLBACK, SQLITE_ABORT, SQLITE_FAIL, SQLITE_IGNORE, SQLITE_REPLACE
1289 #ifdef SQLITE_ENABLE_API_ARMOR
1290 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
1291 #endif
1292 assert( OE_Rollback==1 && OE_Abort==2 && OE_Fail==3 );
1293 assert( OE_Ignore==4 && OE_Replace==5 );
1294 assert( db->vtabOnConflict>=1 && db->vtabOnConflict<=5 );
1295 return (int)aMap[db->vtabOnConflict-1];
1299 ** Call from within the xCreate() or xConnect() methods to provide
1300 ** the SQLite core with additional information about the behavior
1301 ** of the virtual table being implemented.
1303 int sqlite3_vtab_config(sqlite3 *db, int op, ...){
1304 va_list ap;
1305 int rc = SQLITE_OK;
1306 VtabCtx *p;
1308 #ifdef SQLITE_ENABLE_API_ARMOR
1309 if( !sqlite3SafetyCheckOk(db) ) return SQLITE_MISUSE_BKPT;
1310 #endif
1311 sqlite3_mutex_enter(db->mutex);
1312 p = db->pVtabCtx;
1313 if( !p ){
1314 rc = SQLITE_MISUSE_BKPT;
1315 }else{
1316 assert( p->pTab==0 || IsVirtual(p->pTab) );
1317 va_start(ap, op);
1318 switch( op ){
1319 case SQLITE_VTAB_CONSTRAINT_SUPPORT: {
1320 p->pVTable->bConstraint = (u8)va_arg(ap, int);
1321 break;
1323 case SQLITE_VTAB_INNOCUOUS: {
1324 p->pVTable->eVtabRisk = SQLITE_VTABRISK_Low;
1325 break;
1327 case SQLITE_VTAB_DIRECTONLY: {
1328 p->pVTable->eVtabRisk = SQLITE_VTABRISK_High;
1329 break;
1331 default: {
1332 rc = SQLITE_MISUSE_BKPT;
1333 break;
1336 va_end(ap);
1339 if( rc!=SQLITE_OK ) sqlite3Error(db, rc);
1340 sqlite3_mutex_leave(db->mutex);
1341 return rc;
1344 #endif /* SQLITE_OMIT_VIRTUALTABLE */