remove redefines for PAGER_MJ_PGNO to PAGER_SJ_PGNO
[sqlcipher.git] / src / vdbeaux.c
blob7c3be404ef903fe86fda52aecd4721e695d371ab
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef);
20 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
23 ** Create a new virtual database engine.
25 Vdbe *sqlite3VdbeCreate(Parse *pParse){
26 sqlite3 *db = pParse->db;
27 Vdbe *p;
28 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
29 if( p==0 ) return 0;
30 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
31 p->db = db;
32 if( db->pVdbe ){
33 db->pVdbe->pPrev = p;
35 p->pNext = db->pVdbe;
36 p->pPrev = 0;
37 db->pVdbe = p;
38 assert( p->eVdbeState==VDBE_INIT_STATE );
39 p->pParse = pParse;
40 pParse->pVdbe = p;
41 assert( pParse->aLabel==0 );
42 assert( pParse->nLabel==0 );
43 assert( p->nOpAlloc==0 );
44 assert( pParse->szOpAlloc==0 );
45 sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
46 return p;
50 ** Return the Parse object that owns a Vdbe object.
52 Parse *sqlite3VdbeParser(Vdbe *p){
53 return p->pParse;
57 ** Change the error string stored in Vdbe.zErrMsg
59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
60 va_list ap;
61 sqlite3DbFree(p->db, p->zErrMsg);
62 va_start(ap, zFormat);
63 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
64 va_end(ap);
68 ** Remember the SQL string for a prepared statement.
70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
71 if( p==0 ) return;
72 p->prepFlags = prepFlags;
73 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
74 p->expmask = 0;
76 assert( p->zSql==0 );
77 p->zSql = sqlite3DbStrNDup(p->db, z, n);
80 #ifdef SQLITE_ENABLE_NORMALIZE
82 ** Add a new element to the Vdbe->pDblStr list.
84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){
85 if( p ){
86 int n = sqlite3Strlen30(z);
87 DblquoteStr *pStr = sqlite3DbMallocRawNN(db,
88 sizeof(*pStr)+n+1-sizeof(pStr->z));
89 if( pStr ){
90 pStr->pNextStr = p->pDblStr;
91 p->pDblStr = pStr;
92 memcpy(pStr->z, z, n+1);
96 #endif
98 #ifdef SQLITE_ENABLE_NORMALIZE
100 ** zId of length nId is a double-quoted identifier. Check to see if
101 ** that identifier is really used as a string literal.
103 int sqlite3VdbeUsesDoubleQuotedString(
104 Vdbe *pVdbe, /* The prepared statement */
105 const char *zId /* The double-quoted identifier, already dequoted */
107 DblquoteStr *pStr;
108 assert( zId!=0 );
109 if( pVdbe->pDblStr==0 ) return 0;
110 for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){
111 if( strcmp(zId, pStr->z)==0 ) return 1;
113 return 0;
115 #endif
118 ** Swap all content between two VDBE structures.
120 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
121 Vdbe tmp, *pTmp;
122 char *zTmp;
123 assert( pA->db==pB->db );
124 tmp = *pA;
125 *pA = *pB;
126 *pB = tmp;
127 pTmp = pA->pNext;
128 pA->pNext = pB->pNext;
129 pB->pNext = pTmp;
130 pTmp = pA->pPrev;
131 pA->pPrev = pB->pPrev;
132 pB->pPrev = pTmp;
133 zTmp = pA->zSql;
134 pA->zSql = pB->zSql;
135 pB->zSql = zTmp;
136 #ifdef SQLITE_ENABLE_NORMALIZE
137 zTmp = pA->zNormSql;
138 pA->zNormSql = pB->zNormSql;
139 pB->zNormSql = zTmp;
140 #endif
141 pB->expmask = pA->expmask;
142 pB->prepFlags = pA->prepFlags;
143 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
144 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
148 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
149 ** than its current size. nOp is guaranteed to be less than or equal
150 ** to 1024/sizeof(Op).
152 ** If an out-of-memory error occurs while resizing the array, return
153 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
154 ** unchanged (this is so that any opcodes already allocated can be
155 ** correctly deallocated along with the rest of the Vdbe).
157 static int growOpArray(Vdbe *v, int nOp){
158 VdbeOp *pNew;
159 Parse *p = v->pParse;
161 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
162 ** more frequent reallocs and hence provide more opportunities for
163 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
164 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
165 ** by the minimum* amount required until the size reaches 512. Normal
166 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
167 ** size of the op array or add 1KB of space, whichever is smaller. */
168 #ifdef SQLITE_TEST_REALLOC_STRESS
169 sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
170 : (sqlite3_int64)v->nOpAlloc+nOp);
171 #else
172 sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
173 : (sqlite3_int64)(1024/sizeof(Op)));
174 UNUSED_PARAMETER(nOp);
175 #endif
177 /* Ensure that the size of a VDBE does not grow too large */
178 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
179 sqlite3OomFault(p->db);
180 return SQLITE_NOMEM;
183 assert( nOp<=(int)(1024/sizeof(Op)) );
184 assert( nNew>=(v->nOpAlloc+nOp) );
185 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
186 if( pNew ){
187 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
188 v->nOpAlloc = p->szOpAlloc/sizeof(Op);
189 v->aOp = pNew;
191 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
194 #ifdef SQLITE_DEBUG
195 /* This routine is just a convenient place to set a breakpoint that will
196 ** fire after each opcode is inserted and displayed using
197 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and
198 ** pOp are available to make the breakpoint conditional.
200 ** Other useful labels for breakpoints include:
201 ** test_trace_breakpoint(pc,pOp)
202 ** sqlite3CorruptError(lineno)
203 ** sqlite3MisuseError(lineno)
204 ** sqlite3CantopenError(lineno)
206 static void test_addop_breakpoint(int pc, Op *pOp){
207 static int n = 0;
208 n++;
210 #endif
213 ** Add a new instruction to the list of instructions current in the
214 ** VDBE. Return the address of the new instruction.
216 ** Parameters:
218 ** p Pointer to the VDBE
220 ** op The opcode for this instruction
222 ** p1, p2, p3 Operands
224 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
225 ** the sqlite3VdbeChangeP4() function to change the value of the P4
226 ** operand.
228 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
229 assert( p->nOpAlloc<=p->nOp );
230 if( growOpArray(p, 1) ) return 1;
231 assert( p->nOpAlloc>p->nOp );
232 return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
234 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
235 int i;
236 VdbeOp *pOp;
238 i = p->nOp;
239 assert( p->eVdbeState==VDBE_INIT_STATE );
240 assert( op>=0 && op<0xff );
241 if( p->nOpAlloc<=i ){
242 return growOp3(p, op, p1, p2, p3);
244 assert( p->aOp!=0 );
245 p->nOp++;
246 pOp = &p->aOp[i];
247 assert( pOp!=0 );
248 pOp->opcode = (u8)op;
249 pOp->p5 = 0;
250 pOp->p1 = p1;
251 pOp->p2 = p2;
252 pOp->p3 = p3;
253 pOp->p4.p = 0;
254 pOp->p4type = P4_NOTUSED;
255 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
256 pOp->zComment = 0;
257 #endif
258 #ifdef SQLITE_DEBUG
259 if( p->db->flags & SQLITE_VdbeAddopTrace ){
260 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
261 test_addop_breakpoint(i, &p->aOp[i]);
263 #endif
264 #ifdef VDBE_PROFILE
265 pOp->cycles = 0;
266 pOp->cnt = 0;
267 #endif
268 #ifdef SQLITE_VDBE_COVERAGE
269 pOp->iSrcLine = 0;
270 #endif
271 return i;
273 int sqlite3VdbeAddOp0(Vdbe *p, int op){
274 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
276 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
277 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
279 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
280 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
283 /* Generate code for an unconditional jump to instruction iDest
285 int sqlite3VdbeGoto(Vdbe *p, int iDest){
286 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
289 /* Generate code to cause the string zStr to be loaded into
290 ** register iDest
292 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
293 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
297 ** Generate code that initializes multiple registers to string or integer
298 ** constants. The registers begin with iDest and increase consecutively.
299 ** One register is initialized for each characgter in zTypes[]. For each
300 ** "s" character in zTypes[], the register is a string if the argument is
301 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character
302 ** in zTypes[], the register is initialized to an integer.
304 ** If the input string does not end with "X" then an OP_ResultRow instruction
305 ** is generated for the values inserted.
307 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
308 va_list ap;
309 int i;
310 char c;
311 va_start(ap, zTypes);
312 for(i=0; (c = zTypes[i])!=0; i++){
313 if( c=='s' ){
314 const char *z = va_arg(ap, const char*);
315 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
316 }else if( c=='i' ){
317 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
318 }else{
319 goto skip_op_resultrow;
322 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
323 skip_op_resultrow:
324 va_end(ap);
328 ** Add an opcode that includes the p4 value as a pointer.
330 int sqlite3VdbeAddOp4(
331 Vdbe *p, /* Add the opcode to this VM */
332 int op, /* The new opcode */
333 int p1, /* The P1 operand */
334 int p2, /* The P2 operand */
335 int p3, /* The P3 operand */
336 const char *zP4, /* The P4 operand */
337 int p4type /* P4 operand type */
339 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
340 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
341 return addr;
345 ** Add an OP_Function or OP_PureFunc opcode.
347 ** The eCallCtx argument is information (typically taken from Expr.op2)
348 ** that describes the calling context of the function. 0 means a general
349 ** function call. NC_IsCheck means called by a check constraint,
350 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx
351 ** means in the WHERE clause of a partial index. NC_GenCol means called
352 ** while computing a generated column value. 0 is the usual case.
354 int sqlite3VdbeAddFunctionCall(
355 Parse *pParse, /* Parsing context */
356 int p1, /* Constant argument mask */
357 int p2, /* First argument register */
358 int p3, /* Register into which results are written */
359 int nArg, /* Number of argument */
360 const FuncDef *pFunc, /* The function to be invoked */
361 int eCallCtx /* Calling context */
363 Vdbe *v = pParse->pVdbe;
364 int nByte;
365 int addr;
366 sqlite3_context *pCtx;
367 assert( v );
368 nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*);
369 pCtx = sqlite3DbMallocRawNN(pParse->db, nByte);
370 if( pCtx==0 ){
371 assert( pParse->db->mallocFailed );
372 freeEphemeralFunction(pParse->db, (FuncDef*)pFunc);
373 return 0;
375 pCtx->pOut = 0;
376 pCtx->pFunc = (FuncDef*)pFunc;
377 pCtx->pVdbe = 0;
378 pCtx->isError = 0;
379 pCtx->argc = nArg;
380 pCtx->iOp = sqlite3VdbeCurrentAddr(v);
381 addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
382 p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
383 sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);
384 return addr;
388 ** Add an opcode that includes the p4 value with a P4_INT64 or
389 ** P4_REAL type.
391 int sqlite3VdbeAddOp4Dup8(
392 Vdbe *p, /* Add the opcode to this VM */
393 int op, /* The new opcode */
394 int p1, /* The P1 operand */
395 int p2, /* The P2 operand */
396 int p3, /* The P3 operand */
397 const u8 *zP4, /* The P4 operand */
398 int p4type /* P4 operand type */
400 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
401 if( p4copy ) memcpy(p4copy, zP4, 8);
402 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
405 #ifndef SQLITE_OMIT_EXPLAIN
407 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
408 ** 0 means "none".
410 int sqlite3VdbeExplainParent(Parse *pParse){
411 VdbeOp *pOp;
412 if( pParse->addrExplain==0 ) return 0;
413 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
414 return pOp->p2;
418 ** Set a debugger breakpoint on the following routine in order to
419 ** monitor the EXPLAIN QUERY PLAN code generation.
421 #if defined(SQLITE_DEBUG)
422 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){
423 (void)z1;
424 (void)z2;
426 #endif
429 ** Add a new OP_Explain opcode.
431 ** If the bPush flag is true, then make this opcode the parent for
432 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
434 void sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
435 #ifndef SQLITE_DEBUG
436 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
437 ** But omit them (for performance) during production builds */
438 if( pParse->explain==2 )
439 #endif
441 char *zMsg;
442 Vdbe *v;
443 va_list ap;
444 int iThis;
445 va_start(ap, zFmt);
446 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
447 va_end(ap);
448 v = pParse->pVdbe;
449 iThis = v->nOp;
450 sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
451 zMsg, P4_DYNAMIC);
452 sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetOp(v,-1)->p4.z);
453 if( bPush){
454 pParse->addrExplain = iThis;
460 ** Pop the EXPLAIN QUERY PLAN stack one level.
462 void sqlite3VdbeExplainPop(Parse *pParse){
463 sqlite3ExplainBreakpoint("POP", 0);
464 pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
466 #endif /* SQLITE_OMIT_EXPLAIN */
469 ** Add an OP_ParseSchema opcode. This routine is broken out from
470 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
471 ** as having been used.
473 ** The zWhere string must have been obtained from sqlite3_malloc().
474 ** This routine will take ownership of the allocated memory.
476 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){
477 int j;
478 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
479 sqlite3VdbeChangeP5(p, p5);
480 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
481 sqlite3MayAbort(p->pParse);
485 ** Add an opcode that includes the p4 value as an integer.
487 int sqlite3VdbeAddOp4Int(
488 Vdbe *p, /* Add the opcode to this VM */
489 int op, /* The new opcode */
490 int p1, /* The P1 operand */
491 int p2, /* The P2 operand */
492 int p3, /* The P3 operand */
493 int p4 /* The P4 operand as an integer */
495 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
496 if( p->db->mallocFailed==0 ){
497 VdbeOp *pOp = &p->aOp[addr];
498 pOp->p4type = P4_INT32;
499 pOp->p4.i = p4;
501 return addr;
504 /* Insert the end of a co-routine
506 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
507 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
509 /* Clear the temporary register cache, thereby ensuring that each
510 ** co-routine has its own independent set of registers, because co-routines
511 ** might expect their registers to be preserved across an OP_Yield, and
512 ** that could cause problems if two or more co-routines are using the same
513 ** temporary register.
515 v->pParse->nTempReg = 0;
516 v->pParse->nRangeReg = 0;
520 ** Create a new symbolic label for an instruction that has yet to be
521 ** coded. The symbolic label is really just a negative number. The
522 ** label can be used as the P2 value of an operation. Later, when
523 ** the label is resolved to a specific address, the VDBE will scan
524 ** through its operation list and change all values of P2 which match
525 ** the label into the resolved address.
527 ** The VDBE knows that a P2 value is a label because labels are
528 ** always negative and P2 values are suppose to be non-negative.
529 ** Hence, a negative P2 value is a label that has yet to be resolved.
530 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
531 ** property.
533 ** Variable usage notes:
535 ** Parse.aLabel[x] Stores the address that the x-th label resolves
536 ** into. For testing (SQLITE_DEBUG), unresolved
537 ** labels stores -1, but that is not required.
538 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[]
539 ** Parse.nLabel The *negative* of the number of labels that have
540 ** been issued. The negative is stored because
541 ** that gives a performance improvement over storing
542 ** the equivalent positive value.
544 int sqlite3VdbeMakeLabel(Parse *pParse){
545 return --pParse->nLabel;
549 ** Resolve label "x" to be the address of the next instruction to
550 ** be inserted. The parameter "x" must have been obtained from
551 ** a prior call to sqlite3VdbeMakeLabel().
553 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){
554 int nNewSize = 10 - p->nLabel;
555 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
556 nNewSize*sizeof(p->aLabel[0]));
557 if( p->aLabel==0 ){
558 p->nLabelAlloc = 0;
559 }else{
560 #ifdef SQLITE_DEBUG
561 int i;
562 for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1;
563 #endif
564 p->nLabelAlloc = nNewSize;
565 p->aLabel[j] = v->nOp;
568 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
569 Parse *p = v->pParse;
570 int j = ADDR(x);
571 assert( v->eVdbeState==VDBE_INIT_STATE );
572 assert( j<-p->nLabel );
573 assert( j>=0 );
574 #ifdef SQLITE_DEBUG
575 if( p->db->flags & SQLITE_VdbeAddopTrace ){
576 printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
578 #endif
579 if( p->nLabelAlloc + p->nLabel < 0 ){
580 resizeResolveLabel(p,v,j);
581 }else{
582 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
583 p->aLabel[j] = v->nOp;
588 ** Mark the VDBE as one that can only be run one time.
590 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
591 sqlite3VdbeAddOp2(p, OP_Expire, 1, 1);
595 ** Mark the VDBE as one that can be run multiple times.
597 void sqlite3VdbeReusable(Vdbe *p){
598 int i;
599 for(i=1; ALWAYS(i<p->nOp); i++){
600 if( ALWAYS(p->aOp[i].opcode==OP_Expire) ){
601 p->aOp[1].opcode = OP_Noop;
602 break;
607 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
610 ** The following type and function are used to iterate through all opcodes
611 ** in a Vdbe main program and each of the sub-programs (triggers) it may
612 ** invoke directly or indirectly. It should be used as follows:
614 ** Op *pOp;
615 ** VdbeOpIter sIter;
617 ** memset(&sIter, 0, sizeof(sIter));
618 ** sIter.v = v; // v is of type Vdbe*
619 ** while( (pOp = opIterNext(&sIter)) ){
620 ** // Do something with pOp
621 ** }
622 ** sqlite3DbFree(v->db, sIter.apSub);
625 typedef struct VdbeOpIter VdbeOpIter;
626 struct VdbeOpIter {
627 Vdbe *v; /* Vdbe to iterate through the opcodes of */
628 SubProgram **apSub; /* Array of subprograms */
629 int nSub; /* Number of entries in apSub */
630 int iAddr; /* Address of next instruction to return */
631 int iSub; /* 0 = main program, 1 = first sub-program etc. */
633 static Op *opIterNext(VdbeOpIter *p){
634 Vdbe *v = p->v;
635 Op *pRet = 0;
636 Op *aOp;
637 int nOp;
639 if( p->iSub<=p->nSub ){
641 if( p->iSub==0 ){
642 aOp = v->aOp;
643 nOp = v->nOp;
644 }else{
645 aOp = p->apSub[p->iSub-1]->aOp;
646 nOp = p->apSub[p->iSub-1]->nOp;
648 assert( p->iAddr<nOp );
650 pRet = &aOp[p->iAddr];
651 p->iAddr++;
652 if( p->iAddr==nOp ){
653 p->iSub++;
654 p->iAddr = 0;
657 if( pRet->p4type==P4_SUBPROGRAM ){
658 int nByte = (p->nSub+1)*sizeof(SubProgram*);
659 int j;
660 for(j=0; j<p->nSub; j++){
661 if( p->apSub[j]==pRet->p4.pProgram ) break;
663 if( j==p->nSub ){
664 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
665 if( !p->apSub ){
666 pRet = 0;
667 }else{
668 p->apSub[p->nSub++] = pRet->p4.pProgram;
674 return pRet;
678 ** Check if the program stored in the VM associated with pParse may
679 ** throw an ABORT exception (causing the statement, but not entire transaction
680 ** to be rolled back). This condition is true if the main program or any
681 ** sub-programs contains any of the following:
683 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
684 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
685 ** * OP_Destroy
686 ** * OP_VUpdate
687 ** * OP_VCreate
688 ** * OP_VRename
689 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
690 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
691 ** (for CREATE TABLE AS SELECT ...)
693 ** Then check that the value of Parse.mayAbort is true if an
694 ** ABORT may be thrown, or false otherwise. Return true if it does
695 ** match, or false otherwise. This function is intended to be used as
696 ** part of an assert statement in the compiler. Similar to:
698 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
700 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
701 int hasAbort = 0;
702 int hasFkCounter = 0;
703 int hasCreateTable = 0;
704 int hasCreateIndex = 0;
705 int hasInitCoroutine = 0;
706 Op *pOp;
707 VdbeOpIter sIter;
709 if( v==0 ) return 0;
710 memset(&sIter, 0, sizeof(sIter));
711 sIter.v = v;
713 while( (pOp = opIterNext(&sIter))!=0 ){
714 int opcode = pOp->opcode;
715 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
716 || opcode==OP_VDestroy
717 || opcode==OP_VCreate
718 || opcode==OP_ParseSchema
719 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
720 && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
722 hasAbort = 1;
723 break;
725 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
726 if( mayAbort ){
727 /* hasCreateIndex may also be set for some DELETE statements that use
728 ** OP_Clear. So this routine may end up returning true in the case
729 ** where a "DELETE FROM tbl" has a statement-journal but does not
730 ** require one. This is not so bad - it is an inefficiency, not a bug. */
731 if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1;
732 if( opcode==OP_Clear ) hasCreateIndex = 1;
734 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
735 #ifndef SQLITE_OMIT_FOREIGN_KEY
736 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
737 hasFkCounter = 1;
739 #endif
741 sqlite3DbFree(v->db, sIter.apSub);
743 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
744 ** If malloc failed, then the while() loop above may not have iterated
745 ** through all opcodes and hasAbort may be set incorrectly. Return
746 ** true for this case to prevent the assert() in the callers frame
747 ** from failing. */
748 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
749 || (hasCreateTable && hasInitCoroutine) || hasCreateIndex
752 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
754 #ifdef SQLITE_DEBUG
756 ** Increment the nWrite counter in the VDBE if the cursor is not an
757 ** ephemeral cursor, or if the cursor argument is NULL.
759 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
760 if( pC==0
761 || (pC->eCurType!=CURTYPE_SORTER
762 && pC->eCurType!=CURTYPE_PSEUDO
763 && !pC->isEphemeral)
765 p->nWrite++;
768 #endif
770 #ifdef SQLITE_DEBUG
772 ** Assert if an Abort at this point in time might result in a corrupt
773 ** database.
775 void sqlite3VdbeAssertAbortable(Vdbe *p){
776 assert( p->nWrite==0 || p->usesStmtJournal );
778 #endif
781 ** This routine is called after all opcodes have been inserted. It loops
782 ** through all the opcodes and fixes up some details.
784 ** (1) For each jump instruction with a negative P2 value (a label)
785 ** resolve the P2 value to an actual address.
787 ** (2) Compute the maximum number of arguments used by any SQL function
788 ** and store that value in *pMaxFuncArgs.
790 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
791 ** indicate what the prepared statement actually does.
793 ** (4) (discontinued)
795 ** (5) Reclaim the memory allocated for storing labels.
797 ** This routine will only function correctly if the mkopcodeh.tcl generator
798 ** script numbers the opcodes correctly. Changes to this routine must be
799 ** coordinated with changes to mkopcodeh.tcl.
801 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
802 int nMaxArgs = *pMaxFuncArgs;
803 Op *pOp;
804 Parse *pParse = p->pParse;
805 int *aLabel = pParse->aLabel;
806 p->readOnly = 1;
807 p->bIsReader = 0;
808 pOp = &p->aOp[p->nOp-1];
809 while(1){
811 /* Only JUMP opcodes and the short list of special opcodes in the switch
812 ** below need to be considered. The mkopcodeh.tcl generator script groups
813 ** all these opcodes together near the front of the opcode list. Skip
814 ** any opcode that does not need processing by virtual of the fact that
815 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
817 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
818 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
819 ** cases from this switch! */
820 switch( pOp->opcode ){
821 case OP_Transaction: {
822 if( pOp->p2!=0 ) p->readOnly = 0;
823 /* no break */ deliberate_fall_through
825 case OP_AutoCommit:
826 case OP_Savepoint: {
827 p->bIsReader = 1;
828 break;
830 #ifndef SQLITE_OMIT_WAL
831 case OP_Checkpoint:
832 #endif
833 case OP_Vacuum:
834 case OP_JournalMode: {
835 p->readOnly = 0;
836 p->bIsReader = 1;
837 break;
839 #ifndef SQLITE_OMIT_VIRTUALTABLE
840 case OP_VUpdate: {
841 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
842 break;
844 case OP_VFilter: {
845 int n;
846 assert( (pOp - p->aOp) >= 3 );
847 assert( pOp[-1].opcode==OP_Integer );
848 n = pOp[-1].p1;
849 if( n>nMaxArgs ) nMaxArgs = n;
850 /* Fall through into the default case */
851 /* no break */ deliberate_fall_through
853 #endif
854 default: {
855 if( pOp->p2<0 ){
856 /* The mkopcodeh.tcl script has so arranged things that the only
857 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
858 ** have non-negative values for P2. */
859 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
860 assert( ADDR(pOp->p2)<-pParse->nLabel );
861 pOp->p2 = aLabel[ADDR(pOp->p2)];
863 break;
866 /* The mkopcodeh.tcl script has so arranged things that the only
867 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
868 ** have non-negative values for P2. */
869 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
871 if( pOp==p->aOp ) break;
872 pOp--;
874 if( aLabel ){
875 sqlite3DbFreeNN(p->db, pParse->aLabel);
876 pParse->aLabel = 0;
878 pParse->nLabel = 0;
879 *pMaxFuncArgs = nMaxArgs;
880 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
883 #ifdef SQLITE_DEBUG
885 ** Check to see if a subroutine contains a jump to a location outside of
886 ** the subroutine. If a jump outside the subroutine is detected, add code
887 ** that will cause the program to halt with an error message.
889 ** The subroutine consists of opcodes between iFirst and iLast. Jumps to
890 ** locations within the subroutine are acceptable. iRetReg is a register
891 ** that contains the return address. Jumps to outside the range of iFirst
892 ** through iLast are also acceptable as long as the jump destination is
893 ** an OP_Return to iReturnAddr.
895 ** A jump to an unresolved label means that the jump destination will be
896 ** beyond the current address. That is normally a jump to an early
897 ** termination and is consider acceptable.
899 ** This routine only runs during debug builds. The purpose is (of course)
900 ** to detect invalid escapes out of a subroutine. The OP_Halt opcode
901 ** is generated rather than an assert() or other error, so that ".eqp full"
902 ** will still work to show the original bytecode, to aid in debugging.
904 void sqlite3VdbeNoJumpsOutsideSubrtn(
905 Vdbe *v, /* The byte-code program under construction */
906 int iFirst, /* First opcode of the subroutine */
907 int iLast, /* Last opcode of the subroutine */
908 int iRetReg /* Subroutine return address register */
910 VdbeOp *pOp;
911 Parse *pParse;
912 int i;
913 sqlite3_str *pErr = 0;
914 assert( v!=0 );
915 pParse = v->pParse;
916 assert( pParse!=0 );
917 if( pParse->nErr ) return;
918 assert( iLast>=iFirst );
919 assert( iLast<v->nOp );
920 pOp = &v->aOp[iFirst];
921 for(i=iFirst; i<=iLast; i++, pOp++){
922 if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ){
923 int iDest = pOp->p2; /* Jump destination */
924 if( iDest==0 ) continue;
925 if( pOp->opcode==OP_Gosub ) continue;
926 if( iDest<0 ){
927 int j = ADDR(iDest);
928 assert( j>=0 );
929 if( j>=-pParse->nLabel || pParse->aLabel[j]<0 ){
930 continue;
932 iDest = pParse->aLabel[j];
934 if( iDest<iFirst || iDest>iLast ){
935 int j = iDest;
936 for(; j<v->nOp; j++){
937 VdbeOp *pX = &v->aOp[j];
938 if( pX->opcode==OP_Return ){
939 if( pX->p1==iRetReg ) break;
940 continue;
942 if( pX->opcode==OP_Noop ) continue;
943 if( pX->opcode==OP_Explain ) continue;
944 if( pErr==0 ){
945 pErr = sqlite3_str_new(0);
946 }else{
947 sqlite3_str_appendchar(pErr, 1, '\n');
949 sqlite3_str_appendf(pErr,
950 "Opcode at %d jumps to %d which is outside the "
951 "subroutine at %d..%d",
952 i, iDest, iFirst, iLast);
953 break;
958 if( pErr ){
959 char *zErr = sqlite3_str_finish(pErr);
960 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_INTERNAL, OE_Abort, 0, zErr, 0);
961 sqlite3_free(zErr);
962 sqlite3MayAbort(pParse);
965 #endif /* SQLITE_DEBUG */
968 ** Return the address of the next instruction to be inserted.
970 int sqlite3VdbeCurrentAddr(Vdbe *p){
971 assert( p->eVdbeState==VDBE_INIT_STATE );
972 return p->nOp;
976 ** Verify that at least N opcode slots are available in p without
977 ** having to malloc for more space (except when compiled using
978 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
979 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
980 ** fail due to a OOM fault and hence that the return value from
981 ** sqlite3VdbeAddOpList() will always be non-NULL.
983 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
984 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
985 assert( p->nOp + N <= p->nOpAlloc );
987 #endif
990 ** Verify that the VM passed as the only argument does not contain
991 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
992 ** by code in pragma.c to ensure that the implementation of certain
993 ** pragmas comports with the flags specified in the mkpragmatab.tcl
994 ** script.
996 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
997 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
998 int i;
999 for(i=0; i<p->nOp; i++){
1000 assert( p->aOp[i].opcode!=OP_ResultRow );
1003 #endif
1006 ** Generate code (a single OP_Abortable opcode) that will
1007 ** verify that the VDBE program can safely call Abort in the current
1008 ** context.
1010 #if defined(SQLITE_DEBUG)
1011 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
1012 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
1014 #endif
1017 ** This function returns a pointer to the array of opcodes associated with
1018 ** the Vdbe passed as the first argument. It is the callers responsibility
1019 ** to arrange for the returned array to be eventually freed using the
1020 ** vdbeFreeOpArray() function.
1022 ** Before returning, *pnOp is set to the number of entries in the returned
1023 ** array. Also, *pnMaxArg is set to the larger of its current value and
1024 ** the number of entries in the Vdbe.apArg[] array required to execute the
1025 ** returned program.
1027 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
1028 VdbeOp *aOp = p->aOp;
1029 assert( aOp && !p->db->mallocFailed );
1031 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
1032 assert( DbMaskAllZero(p->btreeMask) );
1034 resolveP2Values(p, pnMaxArg);
1035 *pnOp = p->nOp;
1036 p->aOp = 0;
1037 return aOp;
1041 ** Add a whole list of operations to the operation stack. Return a
1042 ** pointer to the first operation inserted.
1044 ** Non-zero P2 arguments to jump instructions are automatically adjusted
1045 ** so that the jump target is relative to the first operation inserted.
1047 VdbeOp *sqlite3VdbeAddOpList(
1048 Vdbe *p, /* Add opcodes to the prepared statement */
1049 int nOp, /* Number of opcodes to add */
1050 VdbeOpList const *aOp, /* The opcodes to be added */
1051 int iLineno /* Source-file line number of first opcode */
1053 int i;
1054 VdbeOp *pOut, *pFirst;
1055 assert( nOp>0 );
1056 assert( p->eVdbeState==VDBE_INIT_STATE );
1057 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){
1058 return 0;
1060 pFirst = pOut = &p->aOp[p->nOp];
1061 for(i=0; i<nOp; i++, aOp++, pOut++){
1062 pOut->opcode = aOp->opcode;
1063 pOut->p1 = aOp->p1;
1064 pOut->p2 = aOp->p2;
1065 assert( aOp->p2>=0 );
1066 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
1067 pOut->p2 += p->nOp;
1069 pOut->p3 = aOp->p3;
1070 pOut->p4type = P4_NOTUSED;
1071 pOut->p4.p = 0;
1072 pOut->p5 = 0;
1073 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1074 pOut->zComment = 0;
1075 #endif
1076 #ifdef SQLITE_VDBE_COVERAGE
1077 pOut->iSrcLine = iLineno+i;
1078 #else
1079 (void)iLineno;
1080 #endif
1081 #ifdef SQLITE_DEBUG
1082 if( p->db->flags & SQLITE_VdbeAddopTrace ){
1083 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
1085 #endif
1087 p->nOp += nOp;
1088 return pFirst;
1091 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1093 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1095 void sqlite3VdbeScanStatus(
1096 Vdbe *p, /* VM to add scanstatus() to */
1097 int addrExplain, /* Address of OP_Explain (or 0) */
1098 int addrLoop, /* Address of loop counter */
1099 int addrVisit, /* Address of rows visited counter */
1100 LogEst nEst, /* Estimated number of output rows */
1101 const char *zName /* Name of table or index being scanned */
1103 sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus);
1104 ScanStatus *aNew;
1105 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
1106 if( aNew ){
1107 ScanStatus *pNew = &aNew[p->nScan++];
1108 pNew->addrExplain = addrExplain;
1109 pNew->addrLoop = addrLoop;
1110 pNew->addrVisit = addrVisit;
1111 pNew->nEst = nEst;
1112 pNew->zName = sqlite3DbStrDup(p->db, zName);
1113 p->aScan = aNew;
1116 #endif
1120 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1121 ** for a specific instruction.
1123 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){
1124 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
1126 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
1127 sqlite3VdbeGetOp(p,addr)->p1 = val;
1129 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
1130 sqlite3VdbeGetOp(p,addr)->p2 = val;
1132 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
1133 sqlite3VdbeGetOp(p,addr)->p3 = val;
1135 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
1136 assert( p->nOp>0 || p->db->mallocFailed );
1137 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
1141 ** Change the P2 operand of instruction addr so that it points to
1142 ** the address of the next instruction to be coded.
1144 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
1145 sqlite3VdbeChangeP2(p, addr, p->nOp);
1149 ** Change the P2 operand of the jump instruction at addr so that
1150 ** the jump lands on the next opcode. Or if the jump instruction was
1151 ** the previous opcode (and is thus a no-op) then simply back up
1152 ** the next instruction counter by one slot so that the jump is
1153 ** overwritten by the next inserted opcode.
1155 ** This routine is an optimization of sqlite3VdbeJumpHere() that
1156 ** strives to omit useless byte-code like this:
1158 ** 7 Once 0 8 0
1159 ** 8 ...
1161 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){
1162 if( addr==p->nOp-1 ){
1163 assert( p->aOp[addr].opcode==OP_Once
1164 || p->aOp[addr].opcode==OP_If
1165 || p->aOp[addr].opcode==OP_FkIfZero );
1166 assert( p->aOp[addr].p4type==0 );
1167 #ifdef SQLITE_VDBE_COVERAGE
1168 sqlite3VdbeGetOp(p,-1)->iSrcLine = 0; /* Erase VdbeCoverage() macros */
1169 #endif
1170 p->nOp--;
1171 }else{
1172 sqlite3VdbeChangeP2(p, addr, p->nOp);
1178 ** If the input FuncDef structure is ephemeral, then free it. If
1179 ** the FuncDef is not ephermal, then do nothing.
1181 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
1182 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
1183 sqlite3DbFreeNN(db, pDef);
1188 ** Delete a P4 value if necessary.
1190 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
1191 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1192 sqlite3DbFreeNN(db, p);
1194 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
1195 freeEphemeralFunction(db, p->pFunc);
1196 sqlite3DbFreeNN(db, p);
1198 static void freeP4(sqlite3 *db, int p4type, void *p4){
1199 assert( db );
1200 switch( p4type ){
1201 case P4_FUNCCTX: {
1202 freeP4FuncCtx(db, (sqlite3_context*)p4);
1203 break;
1205 case P4_REAL:
1206 case P4_INT64:
1207 case P4_DYNAMIC:
1208 case P4_INTARRAY: {
1209 sqlite3DbFree(db, p4);
1210 break;
1212 case P4_KEYINFO: {
1213 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
1214 break;
1216 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1217 case P4_EXPR: {
1218 sqlite3ExprDelete(db, (Expr*)p4);
1219 break;
1221 #endif
1222 case P4_FUNCDEF: {
1223 freeEphemeralFunction(db, (FuncDef*)p4);
1224 break;
1226 case P4_MEM: {
1227 if( db->pnBytesFreed==0 ){
1228 sqlite3ValueFree((sqlite3_value*)p4);
1229 }else{
1230 freeP4Mem(db, (Mem*)p4);
1232 break;
1234 case P4_VTAB : {
1235 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
1236 break;
1242 ** Free the space allocated for aOp and any p4 values allocated for the
1243 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1244 ** nOp entries.
1246 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
1247 assert( nOp>=0 );
1248 if( aOp ){
1249 Op *pOp = &aOp[nOp-1];
1250 while(1){ /* Exit via break */
1251 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
1252 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1253 sqlite3DbFree(db, pOp->zComment);
1254 #endif
1255 if( pOp==aOp ) break;
1256 pOp--;
1258 sqlite3DbFreeNN(db, aOp);
1263 ** Link the SubProgram object passed as the second argument into the linked
1264 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1265 ** objects when the VM is no longer required.
1267 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
1268 p->pNext = pVdbe->pProgram;
1269 pVdbe->pProgram = p;
1273 ** Return true if the given Vdbe has any SubPrograms.
1275 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){
1276 return pVdbe->pProgram!=0;
1280 ** Change the opcode at addr into OP_Noop
1282 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
1283 VdbeOp *pOp;
1284 if( p->db->mallocFailed ) return 0;
1285 assert( addr>=0 && addr<p->nOp );
1286 pOp = &p->aOp[addr];
1287 freeP4(p->db, pOp->p4type, pOp->p4.p);
1288 pOp->p4type = P4_NOTUSED;
1289 pOp->p4.z = 0;
1290 pOp->opcode = OP_Noop;
1291 return 1;
1295 ** If the last opcode is "op" and it is not a jump destination,
1296 ** then remove it. Return true if and only if an opcode was removed.
1298 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
1299 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
1300 return sqlite3VdbeChangeToNoop(p, p->nOp-1);
1301 }else{
1302 return 0;
1306 #ifdef SQLITE_DEBUG
1308 ** Generate an OP_ReleaseReg opcode to indicate that a range of
1309 ** registers, except any identified by mask, are no longer in use.
1311 void sqlite3VdbeReleaseRegisters(
1312 Parse *pParse, /* Parsing context */
1313 int iFirst, /* Index of first register to be released */
1314 int N, /* Number of registers to release */
1315 u32 mask, /* Mask of registers to NOT release */
1316 int bUndefine /* If true, mark registers as undefined */
1318 if( N==0 || OptimizationDisabled(pParse->db, SQLITE_ReleaseReg) ) return;
1319 assert( pParse->pVdbe );
1320 assert( iFirst>=1 );
1321 assert( iFirst+N-1<=pParse->nMem );
1322 if( N<=31 && mask!=0 ){
1323 while( N>0 && (mask&1)!=0 ){
1324 mask >>= 1;
1325 iFirst++;
1326 N--;
1328 while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){
1329 mask &= ~MASKBIT32(N-1);
1330 N--;
1333 if( N>0 ){
1334 sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask);
1335 if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1);
1338 #endif /* SQLITE_DEBUG */
1342 ** Change the value of the P4 operand for a specific instruction.
1343 ** This routine is useful when a large program is loaded from a
1344 ** static array using sqlite3VdbeAddOpList but we want to make a
1345 ** few minor changes to the program.
1347 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1348 ** the string is made into memory obtained from sqlite3_malloc().
1349 ** A value of n==0 means copy bytes of zP4 up to and including the
1350 ** first null byte. If n>0 then copy n+1 bytes of zP4.
1352 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1353 ** to a string or structure that is guaranteed to exist for the lifetime of
1354 ** the Vdbe. In these cases we can just copy the pointer.
1356 ** If addr<0 then change P4 on the most recently inserted instruction.
1358 static void SQLITE_NOINLINE vdbeChangeP4Full(
1359 Vdbe *p,
1360 Op *pOp,
1361 const char *zP4,
1362 int n
1364 if( pOp->p4type ){
1365 freeP4(p->db, pOp->p4type, pOp->p4.p);
1366 pOp->p4type = 0;
1367 pOp->p4.p = 0;
1369 if( n<0 ){
1370 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
1371 }else{
1372 if( n==0 ) n = sqlite3Strlen30(zP4);
1373 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
1374 pOp->p4type = P4_DYNAMIC;
1377 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
1378 Op *pOp;
1379 sqlite3 *db;
1380 assert( p!=0 );
1381 db = p->db;
1382 assert( p->eVdbeState==VDBE_INIT_STATE );
1383 assert( p->aOp!=0 || db->mallocFailed );
1384 if( db->mallocFailed ){
1385 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
1386 return;
1388 assert( p->nOp>0 );
1389 assert( addr<p->nOp );
1390 if( addr<0 ){
1391 addr = p->nOp - 1;
1393 pOp = &p->aOp[addr];
1394 if( n>=0 || pOp->p4type ){
1395 vdbeChangeP4Full(p, pOp, zP4, n);
1396 return;
1398 if( n==P4_INT32 ){
1399 /* Note: this cast is safe, because the origin data point was an int
1400 ** that was cast to a (const char *). */
1401 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1402 pOp->p4type = P4_INT32;
1403 }else if( zP4!=0 ){
1404 assert( n<0 );
1405 pOp->p4.p = (void*)zP4;
1406 pOp->p4type = (signed char)n;
1407 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1412 ** Change the P4 operand of the most recently coded instruction
1413 ** to the value defined by the arguments. This is a high-speed
1414 ** version of sqlite3VdbeChangeP4().
1416 ** The P4 operand must not have been previously defined. And the new
1417 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
1418 ** those cases.
1420 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1421 VdbeOp *pOp;
1422 assert( n!=P4_INT32 && n!=P4_VTAB );
1423 assert( n<=0 );
1424 if( p->db->mallocFailed ){
1425 freeP4(p->db, n, pP4);
1426 }else{
1427 assert( pP4!=0 );
1428 assert( p->nOp>0 );
1429 pOp = &p->aOp[p->nOp-1];
1430 assert( pOp->p4type==P4_NOTUSED );
1431 pOp->p4type = n;
1432 pOp->p4.p = pP4;
1437 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1438 ** index given.
1440 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1441 Vdbe *v = pParse->pVdbe;
1442 KeyInfo *pKeyInfo;
1443 assert( v!=0 );
1444 assert( pIdx!=0 );
1445 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1446 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1449 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1451 ** Change the comment on the most recently coded instruction. Or
1452 ** insert a No-op and add the comment to that new instruction. This
1453 ** makes the code easier to read during debugging. None of this happens
1454 ** in a production build.
1456 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1457 assert( p->nOp>0 || p->aOp==0 );
1458 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->pParse->nErr>0 );
1459 if( p->nOp ){
1460 assert( p->aOp );
1461 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1462 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1465 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1466 va_list ap;
1467 if( p ){
1468 va_start(ap, zFormat);
1469 vdbeVComment(p, zFormat, ap);
1470 va_end(ap);
1473 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1474 va_list ap;
1475 if( p ){
1476 sqlite3VdbeAddOp0(p, OP_Noop);
1477 va_start(ap, zFormat);
1478 vdbeVComment(p, zFormat, ap);
1479 va_end(ap);
1482 #endif /* NDEBUG */
1484 #ifdef SQLITE_VDBE_COVERAGE
1486 ** Set the value if the iSrcLine field for the previously coded instruction.
1488 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1489 sqlite3VdbeGetOp(v,-1)->iSrcLine = iLine;
1491 #endif /* SQLITE_VDBE_COVERAGE */
1494 ** Return the opcode for a given address. If the address is -1, then
1495 ** return the most recently inserted opcode.
1497 ** If a memory allocation error has occurred prior to the calling of this
1498 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
1499 ** is readable but not writable, though it is cast to a writable value.
1500 ** The return of a dummy opcode allows the call to continue functioning
1501 ** after an OOM fault without having to check to see if the return from
1502 ** this routine is a valid pointer. But because the dummy.opcode is 0,
1503 ** dummy will never be written to. This is verified by code inspection and
1504 ** by running with Valgrind.
1506 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1507 /* C89 specifies that the constant "dummy" will be initialized to all
1508 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
1509 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
1510 assert( p->eVdbeState==VDBE_INIT_STATE );
1511 if( addr<0 ){
1512 addr = p->nOp - 1;
1514 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1515 if( p->db->mallocFailed ){
1516 return (VdbeOp*)&dummy;
1517 }else{
1518 return &p->aOp[addr];
1522 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1524 ** Return an integer value for one of the parameters to the opcode pOp
1525 ** determined by character c.
1527 static int translateP(char c, const Op *pOp){
1528 if( c=='1' ) return pOp->p1;
1529 if( c=='2' ) return pOp->p2;
1530 if( c=='3' ) return pOp->p3;
1531 if( c=='4' ) return pOp->p4.i;
1532 return pOp->p5;
1536 ** Compute a string for the "comment" field of a VDBE opcode listing.
1538 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1539 ** to an extra string that is appended to the sqlite3OpcodeName(). In the
1540 ** absence of other comments, this synopsis becomes the comment on the opcode.
1541 ** Some translation occurs:
1543 ** "PX" -> "r[X]"
1544 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1545 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1546 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
1548 char *sqlite3VdbeDisplayComment(
1549 sqlite3 *db, /* Optional - Oom error reporting only */
1550 const Op *pOp, /* The opcode to be commented */
1551 const char *zP4 /* Previously obtained value for P4 */
1553 const char *zOpName;
1554 const char *zSynopsis;
1555 int nOpName;
1556 int ii;
1557 char zAlt[50];
1558 StrAccum x;
1560 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1561 zOpName = sqlite3OpcodeName(pOp->opcode);
1562 nOpName = sqlite3Strlen30(zOpName);
1563 if( zOpName[nOpName+1] ){
1564 int seenCom = 0;
1565 char c;
1566 zSynopsis = zOpName + nOpName + 1;
1567 if( strncmp(zSynopsis,"IF ",3)==0 ){
1568 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1569 zSynopsis = zAlt;
1571 for(ii=0; (c = zSynopsis[ii])!=0; ii++){
1572 if( c=='P' ){
1573 c = zSynopsis[++ii];
1574 if( c=='4' ){
1575 sqlite3_str_appendall(&x, zP4);
1576 }else if( c=='X' ){
1577 if( pOp->zComment && pOp->zComment[0] ){
1578 sqlite3_str_appendall(&x, pOp->zComment);
1579 seenCom = 1;
1580 break;
1582 }else{
1583 int v1 = translateP(c, pOp);
1584 int v2;
1585 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1586 ii += 3;
1587 v2 = translateP(zSynopsis[ii], pOp);
1588 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1589 ii += 2;
1590 v2++;
1592 if( v2<2 ){
1593 sqlite3_str_appendf(&x, "%d", v1);
1594 }else{
1595 sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1);
1597 }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){
1598 sqlite3_context *pCtx = pOp->p4.pCtx;
1599 if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){
1600 sqlite3_str_appendf(&x, "%d", v1);
1601 }else if( pCtx->argc>1 ){
1602 sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1);
1603 }else if( x.accError==0 ){
1604 assert( x.nChar>2 );
1605 x.nChar -= 2;
1606 ii++;
1608 ii += 3;
1609 }else{
1610 sqlite3_str_appendf(&x, "%d", v1);
1611 if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1612 ii += 4;
1616 }else{
1617 sqlite3_str_appendchar(&x, 1, c);
1620 if( !seenCom && pOp->zComment ){
1621 sqlite3_str_appendf(&x, "; %s", pOp->zComment);
1623 }else if( pOp->zComment ){
1624 sqlite3_str_appendall(&x, pOp->zComment);
1626 if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){
1627 sqlite3OomFault(db);
1629 return sqlite3StrAccumFinish(&x);
1631 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
1633 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1635 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1636 ** that can be displayed in the P4 column of EXPLAIN output.
1638 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1639 const char *zOp = 0;
1640 switch( pExpr->op ){
1641 case TK_STRING:
1642 assert( !ExprHasProperty(pExpr, EP_IntValue) );
1643 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
1644 break;
1645 case TK_INTEGER:
1646 sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
1647 break;
1648 case TK_NULL:
1649 sqlite3_str_appendf(p, "NULL");
1650 break;
1651 case TK_REGISTER: {
1652 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
1653 break;
1655 case TK_COLUMN: {
1656 if( pExpr->iColumn<0 ){
1657 sqlite3_str_appendf(p, "rowid");
1658 }else{
1659 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
1661 break;
1663 case TK_LT: zOp = "LT"; break;
1664 case TK_LE: zOp = "LE"; break;
1665 case TK_GT: zOp = "GT"; break;
1666 case TK_GE: zOp = "GE"; break;
1667 case TK_NE: zOp = "NE"; break;
1668 case TK_EQ: zOp = "EQ"; break;
1669 case TK_IS: zOp = "IS"; break;
1670 case TK_ISNOT: zOp = "ISNOT"; break;
1671 case TK_AND: zOp = "AND"; break;
1672 case TK_OR: zOp = "OR"; break;
1673 case TK_PLUS: zOp = "ADD"; break;
1674 case TK_STAR: zOp = "MUL"; break;
1675 case TK_MINUS: zOp = "SUB"; break;
1676 case TK_REM: zOp = "REM"; break;
1677 case TK_BITAND: zOp = "BITAND"; break;
1678 case TK_BITOR: zOp = "BITOR"; break;
1679 case TK_SLASH: zOp = "DIV"; break;
1680 case TK_LSHIFT: zOp = "LSHIFT"; break;
1681 case TK_RSHIFT: zOp = "RSHIFT"; break;
1682 case TK_CONCAT: zOp = "CONCAT"; break;
1683 case TK_UMINUS: zOp = "MINUS"; break;
1684 case TK_UPLUS: zOp = "PLUS"; break;
1685 case TK_BITNOT: zOp = "BITNOT"; break;
1686 case TK_NOT: zOp = "NOT"; break;
1687 case TK_ISNULL: zOp = "ISNULL"; break;
1688 case TK_NOTNULL: zOp = "NOTNULL"; break;
1690 default:
1691 sqlite3_str_appendf(p, "%s", "expr");
1692 break;
1695 if( zOp ){
1696 sqlite3_str_appendf(p, "%s(", zOp);
1697 displayP4Expr(p, pExpr->pLeft);
1698 if( pExpr->pRight ){
1699 sqlite3_str_append(p, ",", 1);
1700 displayP4Expr(p, pExpr->pRight);
1702 sqlite3_str_append(p, ")", 1);
1705 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1708 #if VDBE_DISPLAY_P4
1710 ** Compute a string that describes the P4 parameter for an opcode.
1711 ** Use zTemp for any required temporary buffer space.
1713 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){
1714 char *zP4 = 0;
1715 StrAccum x;
1717 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1718 switch( pOp->p4type ){
1719 case P4_KEYINFO: {
1720 int j;
1721 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1722 assert( pKeyInfo->aSortFlags!=0 );
1723 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
1724 for(j=0; j<pKeyInfo->nKeyField; j++){
1725 CollSeq *pColl = pKeyInfo->aColl[j];
1726 const char *zColl = pColl ? pColl->zName : "";
1727 if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1728 sqlite3_str_appendf(&x, ",%s%s%s",
1729 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "",
1730 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "",
1731 zColl);
1733 sqlite3_str_append(&x, ")", 1);
1734 break;
1736 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1737 case P4_EXPR: {
1738 displayP4Expr(&x, pOp->p4.pExpr);
1739 break;
1741 #endif
1742 case P4_COLLSEQ: {
1743 static const char *const encnames[] = {"?", "8", "16LE", "16BE"};
1744 CollSeq *pColl = pOp->p4.pColl;
1745 assert( pColl->enc<4 );
1746 sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName,
1747 encnames[pColl->enc]);
1748 break;
1750 case P4_FUNCDEF: {
1751 FuncDef *pDef = pOp->p4.pFunc;
1752 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1753 break;
1755 case P4_FUNCCTX: {
1756 FuncDef *pDef = pOp->p4.pCtx->pFunc;
1757 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1758 break;
1760 case P4_INT64: {
1761 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
1762 break;
1764 case P4_INT32: {
1765 sqlite3_str_appendf(&x, "%d", pOp->p4.i);
1766 break;
1768 case P4_REAL: {
1769 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
1770 break;
1772 case P4_MEM: {
1773 Mem *pMem = pOp->p4.pMem;
1774 if( pMem->flags & MEM_Str ){
1775 zP4 = pMem->z;
1776 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1777 sqlite3_str_appendf(&x, "%lld", pMem->u.i);
1778 }else if( pMem->flags & MEM_Real ){
1779 sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
1780 }else if( pMem->flags & MEM_Null ){
1781 zP4 = "NULL";
1782 }else{
1783 assert( pMem->flags & MEM_Blob );
1784 zP4 = "(blob)";
1786 break;
1788 #ifndef SQLITE_OMIT_VIRTUALTABLE
1789 case P4_VTAB: {
1790 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1791 sqlite3_str_appendf(&x, "vtab:%p", pVtab);
1792 break;
1794 #endif
1795 case P4_INTARRAY: {
1796 u32 i;
1797 u32 *ai = pOp->p4.ai;
1798 u32 n = ai[0]; /* The first element of an INTARRAY is always the
1799 ** count of the number of elements to follow */
1800 for(i=1; i<=n; i++){
1801 sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]);
1803 sqlite3_str_append(&x, "]", 1);
1804 break;
1806 case P4_SUBPROGRAM: {
1807 zP4 = "program";
1808 break;
1810 case P4_TABLE: {
1811 zP4 = pOp->p4.pTab->zName;
1812 break;
1814 default: {
1815 zP4 = pOp->p4.z;
1818 if( zP4 ) sqlite3_str_appendall(&x, zP4);
1819 if( (x.accError & SQLITE_NOMEM)!=0 ){
1820 sqlite3OomFault(db);
1822 return sqlite3StrAccumFinish(&x);
1824 #endif /* VDBE_DISPLAY_P4 */
1827 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1829 ** The prepared statements need to know in advance the complete set of
1830 ** attached databases that will be use. A mask of these databases
1831 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
1832 ** p->btreeMask of databases that will require a lock.
1834 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
1835 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
1836 assert( i<(int)sizeof(p->btreeMask)*8 );
1837 DbMaskSet(p->btreeMask, i);
1838 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
1839 DbMaskSet(p->lockMask, i);
1843 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1845 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1846 ** this routine obtains the mutex associated with each BtShared structure
1847 ** that may be accessed by the VM passed as an argument. In doing so it also
1848 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1849 ** that the correct busy-handler callback is invoked if required.
1851 ** If SQLite is not threadsafe but does support shared-cache mode, then
1852 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1853 ** of all of BtShared structures accessible via the database handle
1854 ** associated with the VM.
1856 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1857 ** function is a no-op.
1859 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1860 ** statement p will ever use. Let N be the number of bits in p->btreeMask
1861 ** corresponding to btrees that use shared cache. Then the runtime of
1862 ** this routine is N*N. But as N is rarely more than 1, this should not
1863 ** be a problem.
1865 void sqlite3VdbeEnter(Vdbe *p){
1866 int i;
1867 sqlite3 *db;
1868 Db *aDb;
1869 int nDb;
1870 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1871 db = p->db;
1872 aDb = db->aDb;
1873 nDb = db->nDb;
1874 for(i=0; i<nDb; i++){
1875 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1876 sqlite3BtreeEnter(aDb[i].pBt);
1880 #endif
1882 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1884 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1886 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
1887 int i;
1888 sqlite3 *db;
1889 Db *aDb;
1890 int nDb;
1891 db = p->db;
1892 aDb = db->aDb;
1893 nDb = db->nDb;
1894 for(i=0; i<nDb; i++){
1895 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
1896 sqlite3BtreeLeave(aDb[i].pBt);
1900 void sqlite3VdbeLeave(Vdbe *p){
1901 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
1902 vdbeLeave(p);
1904 #endif
1906 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1908 ** Print a single opcode. This routine is used for debugging only.
1910 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
1911 char *zP4;
1912 char *zCom;
1913 sqlite3 dummyDb;
1914 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1915 if( pOut==0 ) pOut = stdout;
1916 sqlite3BeginBenignMalloc();
1917 dummyDb.mallocFailed = 1;
1918 zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp);
1919 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1920 zCom = sqlite3VdbeDisplayComment(0, pOp, zP4);
1921 #else
1922 zCom = 0;
1923 #endif
1924 /* NB: The sqlite3OpcodeName() function is implemented by code created
1925 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1926 ** information from the vdbe.c source text */
1927 fprintf(pOut, zFormat1, pc,
1928 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3,
1929 zP4 ? zP4 : "", pOp->p5,
1930 zCom ? zCom : ""
1932 fflush(pOut);
1933 sqlite3_free(zP4);
1934 sqlite3_free(zCom);
1935 sqlite3EndBenignMalloc();
1937 #endif
1940 ** Initialize an array of N Mem element.
1942 ** This is a high-runner, so only those fields that really do need to
1943 ** be initialized are set. The Mem structure is organized so that
1944 ** the fields that get initialized are nearby and hopefully on the same
1945 ** cache line.
1947 ** Mem.flags = flags
1948 ** Mem.db = db
1949 ** Mem.szMalloc = 0
1951 ** All other fields of Mem can safely remain uninitialized for now. They
1952 ** will be initialized before use.
1954 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
1955 if( N>0 ){
1957 p->flags = flags;
1958 p->db = db;
1959 p->szMalloc = 0;
1960 #ifdef SQLITE_DEBUG
1961 p->pScopyFrom = 0;
1962 #endif
1963 p++;
1964 }while( (--N)>0 );
1969 ** Release auxiliary memory held in an array of N Mem elements.
1971 ** After this routine returns, all Mem elements in the array will still
1972 ** be valid. Those Mem elements that were not holding auxiliary resources
1973 ** will be unchanged. Mem elements which had something freed will be
1974 ** set to MEM_Undefined.
1976 static void releaseMemArray(Mem *p, int N){
1977 if( p && N ){
1978 Mem *pEnd = &p[N];
1979 sqlite3 *db = p->db;
1980 if( db->pnBytesFreed ){
1982 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1983 }while( (++p)<pEnd );
1984 return;
1987 assert( (&p[1])==pEnd || p[0].db==p[1].db );
1988 assert( sqlite3VdbeCheckMemInvariants(p) );
1990 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1991 ** that takes advantage of the fact that the memory cell value is
1992 ** being set to NULL after releasing any dynamic resources.
1994 ** The justification for duplicating code is that according to
1995 ** callgrind, this causes a certain test case to hit the CPU 4.7
1996 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1997 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1998 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1999 ** with no indexes using a single prepared INSERT statement, bind()
2000 ** and reset(). Inserts are grouped into a transaction.
2002 testcase( p->flags & MEM_Agg );
2003 testcase( p->flags & MEM_Dyn );
2004 if( p->flags&(MEM_Agg|MEM_Dyn) ){
2005 testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel );
2006 sqlite3VdbeMemRelease(p);
2007 p->flags = MEM_Undefined;
2008 }else if( p->szMalloc ){
2009 sqlite3DbFreeNN(db, p->zMalloc);
2010 p->szMalloc = 0;
2011 p->flags = MEM_Undefined;
2013 #ifdef SQLITE_DEBUG
2014 else{
2015 p->flags = MEM_Undefined;
2017 #endif
2018 }while( (++p)<pEnd );
2022 #ifdef SQLITE_DEBUG
2024 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is
2025 ** and false if something is wrong.
2027 ** This routine is intended for use inside of assert() statements only.
2029 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){
2030 if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0;
2031 return 1;
2033 #endif
2037 ** This is a destructor on a Mem object (which is really an sqlite3_value)
2038 ** that deletes the Frame object that is attached to it as a blob.
2040 ** This routine does not delete the Frame right away. It merely adds the
2041 ** frame to a list of frames to be deleted when the Vdbe halts.
2043 void sqlite3VdbeFrameMemDel(void *pArg){
2044 VdbeFrame *pFrame = (VdbeFrame*)pArg;
2045 assert( sqlite3VdbeFrameIsValid(pFrame) );
2046 pFrame->pParent = pFrame->v->pDelFrame;
2047 pFrame->v->pDelFrame = pFrame;
2050 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
2052 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
2053 ** QUERY PLAN output.
2055 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no
2056 ** more opcodes to be displayed.
2058 int sqlite3VdbeNextOpcode(
2059 Vdbe *p, /* The statement being explained */
2060 Mem *pSub, /* Storage for keeping track of subprogram nesting */
2061 int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */
2062 int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */
2063 int *piAddr, /* OUT: Write index into (*paOp)[] here */
2064 Op **paOp /* OUT: Write the opcode array here */
2066 int nRow; /* Stop when row count reaches this */
2067 int nSub = 0; /* Number of sub-vdbes seen so far */
2068 SubProgram **apSub = 0; /* Array of sub-vdbes */
2069 int i; /* Next instruction address */
2070 int rc = SQLITE_OK; /* Result code */
2071 Op *aOp = 0; /* Opcode array */
2072 int iPc; /* Rowid. Copy of value in *piPc */
2074 /* When the number of output rows reaches nRow, that means the
2075 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
2076 ** nRow is the sum of the number of rows in the main program, plus
2077 ** the sum of the number of rows in all trigger subprograms encountered
2078 ** so far. The nRow value will increase as new trigger subprograms are
2079 ** encountered, but p->pc will eventually catch up to nRow.
2081 nRow = p->nOp;
2082 if( pSub!=0 ){
2083 if( pSub->flags&MEM_Blob ){
2084 /* pSub is initiallly NULL. It is initialized to a BLOB by
2085 ** the P4_SUBPROGRAM processing logic below */
2086 nSub = pSub->n/sizeof(Vdbe*);
2087 apSub = (SubProgram **)pSub->z;
2089 for(i=0; i<nSub; i++){
2090 nRow += apSub[i]->nOp;
2093 iPc = *piPc;
2094 while(1){ /* Loop exits via break */
2095 i = iPc++;
2096 if( i>=nRow ){
2097 p->rc = SQLITE_OK;
2098 rc = SQLITE_DONE;
2099 break;
2101 if( i<p->nOp ){
2102 /* The rowid is small enough that we are still in the
2103 ** main program. */
2104 aOp = p->aOp;
2105 }else{
2106 /* We are currently listing subprograms. Figure out which one and
2107 ** pick up the appropriate opcode. */
2108 int j;
2109 i -= p->nOp;
2110 assert( apSub!=0 );
2111 assert( nSub>0 );
2112 for(j=0; i>=apSub[j]->nOp; j++){
2113 i -= apSub[j]->nOp;
2114 assert( i<apSub[j]->nOp || j+1<nSub );
2116 aOp = apSub[j]->aOp;
2119 /* When an OP_Program opcode is encounter (the only opcode that has
2120 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
2121 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
2122 ** has not already been seen.
2124 if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){
2125 int nByte = (nSub+1)*sizeof(SubProgram*);
2126 int j;
2127 for(j=0; j<nSub; j++){
2128 if( apSub[j]==aOp[i].p4.pProgram ) break;
2130 if( j==nSub ){
2131 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
2132 if( p->rc!=SQLITE_OK ){
2133 rc = SQLITE_ERROR;
2134 break;
2136 apSub = (SubProgram **)pSub->z;
2137 apSub[nSub++] = aOp[i].p4.pProgram;
2138 MemSetTypeFlag(pSub, MEM_Blob);
2139 pSub->n = nSub*sizeof(SubProgram*);
2140 nRow += aOp[i].p4.pProgram->nOp;
2143 if( eMode==0 ) break;
2144 #ifdef SQLITE_ENABLE_BYTECODE_VTAB
2145 if( eMode==2 ){
2146 Op *pOp = aOp + i;
2147 if( pOp->opcode==OP_OpenRead ) break;
2148 if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break;
2149 if( pOp->opcode==OP_ReopenIdx ) break;
2150 }else
2151 #endif
2153 assert( eMode==1 );
2154 if( aOp[i].opcode==OP_Explain ) break;
2155 if( aOp[i].opcode==OP_Init && iPc>1 ) break;
2158 *piPc = iPc;
2159 *piAddr = i;
2160 *paOp = aOp;
2161 return rc;
2163 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
2167 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
2168 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
2170 void sqlite3VdbeFrameDelete(VdbeFrame *p){
2171 int i;
2172 Mem *aMem = VdbeFrameMem(p);
2173 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
2174 assert( sqlite3VdbeFrameIsValid(p) );
2175 for(i=0; i<p->nChildCsr; i++){
2176 if( apCsr[i] ) sqlite3VdbeFreeCursorNN(p->v, apCsr[i]);
2178 releaseMemArray(aMem, p->nChildMem);
2179 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
2180 sqlite3DbFree(p->v->db, p);
2183 #ifndef SQLITE_OMIT_EXPLAIN
2185 ** Give a listing of the program in the virtual machine.
2187 ** The interface is the same as sqlite3VdbeExec(). But instead of
2188 ** running the code, it invokes the callback once for each instruction.
2189 ** This feature is used to implement "EXPLAIN".
2191 ** When p->explain==1, each instruction is listed. When
2192 ** p->explain==2, only OP_Explain instructions are listed and these
2193 ** are shown in a different format. p->explain==2 is used to implement
2194 ** EXPLAIN QUERY PLAN.
2195 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers
2196 ** are also shown, so that the boundaries between the main program and
2197 ** each trigger are clear.
2199 ** When p->explain==1, first the main program is listed, then each of
2200 ** the trigger subprograms are listed one by one.
2202 int sqlite3VdbeList(
2203 Vdbe *p /* The VDBE */
2205 Mem *pSub = 0; /* Memory cell hold array of subprogs */
2206 sqlite3 *db = p->db; /* The database connection */
2207 int i; /* Loop counter */
2208 int rc = SQLITE_OK; /* Return code */
2209 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
2210 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
2211 Op *aOp; /* Array of opcodes */
2212 Op *pOp; /* Current opcode */
2214 assert( p->explain );
2215 assert( p->eVdbeState==VDBE_RUN_STATE );
2216 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
2218 /* Even though this opcode does not use dynamic strings for
2219 ** the result, result columns may become dynamic if the user calls
2220 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
2222 releaseMemArray(pMem, 8);
2223 p->pResultSet = 0;
2225 if( p->rc==SQLITE_NOMEM ){
2226 /* This happens if a malloc() inside a call to sqlite3_column_text() or
2227 ** sqlite3_column_text16() failed. */
2228 sqlite3OomFault(db);
2229 return SQLITE_ERROR;
2232 if( bListSubprogs ){
2233 /* The first 8 memory cells are used for the result set. So we will
2234 ** commandeer the 9th cell to use as storage for an array of pointers
2235 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
2236 ** cells. */
2237 assert( p->nMem>9 );
2238 pSub = &p->aMem[9];
2239 }else{
2240 pSub = 0;
2243 /* Figure out which opcode is next to display */
2244 rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp);
2246 if( rc==SQLITE_OK ){
2247 pOp = aOp + i;
2248 if( AtomicLoad(&db->u1.isInterrupted) ){
2249 p->rc = SQLITE_INTERRUPT;
2250 rc = SQLITE_ERROR;
2251 sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
2252 }else{
2253 char *zP4 = sqlite3VdbeDisplayP4(db, pOp);
2254 if( p->explain==2 ){
2255 sqlite3VdbeMemSetInt64(pMem, pOp->p1);
2256 sqlite3VdbeMemSetInt64(pMem+1, pOp->p2);
2257 sqlite3VdbeMemSetInt64(pMem+2, pOp->p3);
2258 sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free);
2259 p->nResColumn = 4;
2260 }else{
2261 sqlite3VdbeMemSetInt64(pMem+0, i);
2262 sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode),
2263 -1, SQLITE_UTF8, SQLITE_STATIC);
2264 sqlite3VdbeMemSetInt64(pMem+2, pOp->p1);
2265 sqlite3VdbeMemSetInt64(pMem+3, pOp->p2);
2266 sqlite3VdbeMemSetInt64(pMem+4, pOp->p3);
2267 /* pMem+5 for p4 is done last */
2268 sqlite3VdbeMemSetInt64(pMem+6, pOp->p5);
2269 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2271 char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4);
2272 sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free);
2274 #else
2275 sqlite3VdbeMemSetNull(pMem+7);
2276 #endif
2277 sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free);
2278 p->nResColumn = 8;
2280 p->pResultSet = pMem;
2281 if( db->mallocFailed ){
2282 p->rc = SQLITE_NOMEM;
2283 rc = SQLITE_ERROR;
2284 }else{
2285 p->rc = SQLITE_OK;
2286 rc = SQLITE_ROW;
2290 return rc;
2292 #endif /* SQLITE_OMIT_EXPLAIN */
2294 #ifdef SQLITE_DEBUG
2296 ** Print the SQL that was used to generate a VDBE program.
2298 void sqlite3VdbePrintSql(Vdbe *p){
2299 const char *z = 0;
2300 if( p->zSql ){
2301 z = p->zSql;
2302 }else if( p->nOp>=1 ){
2303 const VdbeOp *pOp = &p->aOp[0];
2304 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2305 z = pOp->p4.z;
2306 while( sqlite3Isspace(*z) ) z++;
2309 if( z ) printf("SQL: [%s]\n", z);
2311 #endif
2313 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2315 ** Print an IOTRACE message showing SQL content.
2317 void sqlite3VdbeIOTraceSql(Vdbe *p){
2318 int nOp = p->nOp;
2319 VdbeOp *pOp;
2320 if( sqlite3IoTrace==0 ) return;
2321 if( nOp<1 ) return;
2322 pOp = &p->aOp[0];
2323 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2324 int i, j;
2325 char z[1000];
2326 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
2327 for(i=0; sqlite3Isspace(z[i]); i++){}
2328 for(j=0; z[i]; i++){
2329 if( sqlite3Isspace(z[i]) ){
2330 if( z[i-1]!=' ' ){
2331 z[j++] = ' ';
2333 }else{
2334 z[j++] = z[i];
2337 z[j] = 0;
2338 sqlite3IoTrace("SQL %s\n", z);
2341 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2343 /* An instance of this object describes bulk memory available for use
2344 ** by subcomponents of a prepared statement. Space is allocated out
2345 ** of a ReusableSpace object by the allocSpace() routine below.
2347 struct ReusableSpace {
2348 u8 *pSpace; /* Available memory */
2349 sqlite3_int64 nFree; /* Bytes of available memory */
2350 sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
2353 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2354 ** from the ReusableSpace object. Return a pointer to the allocated
2355 ** memory on success. If insufficient memory is available in the
2356 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2357 ** value by the amount needed and return NULL.
2359 ** If pBuf is not initially NULL, that means that the memory has already
2360 ** been allocated by a prior call to this routine, so just return a copy
2361 ** of pBuf and leave ReusableSpace unchanged.
2363 ** This allocator is employed to repurpose unused slots at the end of the
2364 ** opcode array of prepared state for other memory needs of the prepared
2365 ** statement.
2367 static void *allocSpace(
2368 struct ReusableSpace *p, /* Bulk memory available for allocation */
2369 void *pBuf, /* Pointer to a prior allocation */
2370 sqlite3_int64 nByte /* Bytes of memory needed. */
2372 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
2373 if( pBuf==0 ){
2374 nByte = ROUND8P(nByte);
2375 if( nByte <= p->nFree ){
2376 p->nFree -= nByte;
2377 pBuf = &p->pSpace[p->nFree];
2378 }else{
2379 p->nNeeded += nByte;
2382 assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
2383 return pBuf;
2387 ** Rewind the VDBE back to the beginning in preparation for
2388 ** running it.
2390 void sqlite3VdbeRewind(Vdbe *p){
2391 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
2392 int i;
2393 #endif
2394 assert( p!=0 );
2395 assert( p->eVdbeState==VDBE_INIT_STATE
2396 || p->eVdbeState==VDBE_READY_STATE
2397 || p->eVdbeState==VDBE_HALT_STATE );
2399 /* There should be at least one opcode.
2401 assert( p->nOp>0 );
2403 p->eVdbeState = VDBE_READY_STATE;
2405 #ifdef SQLITE_DEBUG
2406 for(i=0; i<p->nMem; i++){
2407 assert( p->aMem[i].db==p->db );
2409 #endif
2410 p->pc = -1;
2411 p->rc = SQLITE_OK;
2412 p->errorAction = OE_Abort;
2413 p->nChange = 0;
2414 p->cacheCtr = 1;
2415 p->minWriteFileFormat = 255;
2416 p->iStatement = 0;
2417 p->nFkConstraint = 0;
2418 #ifdef VDBE_PROFILE
2419 for(i=0; i<p->nOp; i++){
2420 p->aOp[i].cnt = 0;
2421 p->aOp[i].cycles = 0;
2423 #endif
2427 ** Prepare a virtual machine for execution for the first time after
2428 ** creating the virtual machine. This involves things such
2429 ** as allocating registers and initializing the program counter.
2430 ** After the VDBE has be prepped, it can be executed by one or more
2431 ** calls to sqlite3VdbeExec().
2433 ** This function may be called exactly once on each virtual machine.
2434 ** After this routine is called the VM has been "packaged" and is ready
2435 ** to run. After this routine is called, further calls to
2436 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
2437 ** the Vdbe from the Parse object that helped generate it so that the
2438 ** the Vdbe becomes an independent entity and the Parse object can be
2439 ** destroyed.
2441 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2442 ** to its initial state after it has been run.
2444 void sqlite3VdbeMakeReady(
2445 Vdbe *p, /* The VDBE */
2446 Parse *pParse /* Parsing context */
2448 sqlite3 *db; /* The database connection */
2449 int nVar; /* Number of parameters */
2450 int nMem; /* Number of VM memory registers */
2451 int nCursor; /* Number of cursors required */
2452 int nArg; /* Number of arguments in subprograms */
2453 int n; /* Loop counter */
2454 struct ReusableSpace x; /* Reusable bulk memory */
2456 assert( p!=0 );
2457 assert( p->nOp>0 );
2458 assert( pParse!=0 );
2459 assert( p->eVdbeState==VDBE_INIT_STATE );
2460 assert( pParse==p->pParse );
2461 p->pVList = pParse->pVList;
2462 pParse->pVList = 0;
2463 db = p->db;
2464 assert( db->mallocFailed==0 );
2465 nVar = pParse->nVar;
2466 nMem = pParse->nMem;
2467 nCursor = pParse->nTab;
2468 nArg = pParse->nMaxArg;
2470 /* Each cursor uses a memory cell. The first cursor (cursor 0) can
2471 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
2472 ** space at the end of aMem[] for cursors 1 and greater.
2473 ** See also: allocateCursor().
2475 nMem += nCursor;
2476 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */
2478 /* Figure out how much reusable memory is available at the end of the
2479 ** opcode array. This extra memory will be reallocated for other elements
2480 ** of the prepared statement.
2482 n = ROUND8P(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */
2483 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */
2484 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
2485 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */
2486 assert( x.nFree>=0 );
2487 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
2489 resolveP2Values(p, &nArg);
2490 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
2491 if( pParse->explain ){
2492 static const char * const azColName[] = {
2493 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
2494 "id", "parent", "notused", "detail"
2496 int iFirst, mx, i;
2497 if( nMem<10 ) nMem = 10;
2498 p->explain = pParse->explain;
2499 if( pParse->explain==2 ){
2500 sqlite3VdbeSetNumCols(p, 4);
2501 iFirst = 8;
2502 mx = 12;
2503 }else{
2504 sqlite3VdbeSetNumCols(p, 8);
2505 iFirst = 0;
2506 mx = 8;
2508 for(i=iFirst; i<mx; i++){
2509 sqlite3VdbeSetColName(p, i-iFirst, COLNAME_NAME,
2510 azColName[i], SQLITE_STATIC);
2513 p->expired = 0;
2515 /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2516 ** passes. On the first pass, we try to reuse unused memory at the
2517 ** end of the opcode array. If we are unable to satisfy all memory
2518 ** requirements by reusing the opcode array tail, then the second
2519 ** pass will fill in the remainder using a fresh memory allocation.
2521 ** This two-pass approach that reuses as much memory as possible from
2522 ** the leftover memory at the end of the opcode array. This can significantly
2523 ** reduce the amount of memory held by a prepared statement.
2525 x.nNeeded = 0;
2526 p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem));
2527 p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem));
2528 p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*));
2529 p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*));
2530 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2531 p->anExec = allocSpace(&x, 0, p->nOp*sizeof(i64));
2532 #endif
2533 if( x.nNeeded ){
2534 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2535 x.nFree = x.nNeeded;
2536 if( !db->mallocFailed ){
2537 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2538 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2539 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2540 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2541 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2542 p->anExec = allocSpace(&x, p->anExec, p->nOp*sizeof(i64));
2543 #endif
2547 if( db->mallocFailed ){
2548 p->nVar = 0;
2549 p->nCursor = 0;
2550 p->nMem = 0;
2551 }else{
2552 p->nCursor = nCursor;
2553 p->nVar = (ynVar)nVar;
2554 initMemArray(p->aVar, nVar, db, MEM_Null);
2555 p->nMem = nMem;
2556 initMemArray(p->aMem, nMem, db, MEM_Undefined);
2557 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2558 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2559 memset(p->anExec, 0, p->nOp*sizeof(i64));
2560 #endif
2562 sqlite3VdbeRewind(p);
2566 ** Close a VDBE cursor and release all the resources that cursor
2567 ** happens to hold.
2569 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2570 if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx);
2572 void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){
2573 switch( pCx->eCurType ){
2574 case CURTYPE_SORTER: {
2575 sqlite3VdbeSorterClose(p->db, pCx);
2576 break;
2578 case CURTYPE_BTREE: {
2579 assert( pCx->uc.pCursor!=0 );
2580 sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2581 break;
2583 #ifndef SQLITE_OMIT_VIRTUALTABLE
2584 case CURTYPE_VTAB: {
2585 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2586 const sqlite3_module *pModule = pVCur->pVtab->pModule;
2587 assert( pVCur->pVtab->nRef>0 );
2588 pVCur->pVtab->nRef--;
2589 pModule->xClose(pVCur);
2590 break;
2592 #endif
2597 ** Close all cursors in the current frame.
2599 static void closeCursorsInFrame(Vdbe *p){
2600 int i;
2601 for(i=0; i<p->nCursor; i++){
2602 VdbeCursor *pC = p->apCsr[i];
2603 if( pC ){
2604 sqlite3VdbeFreeCursorNN(p, pC);
2605 p->apCsr[i] = 0;
2611 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2612 ** is used, for example, when a trigger sub-program is halted to restore
2613 ** control to the main program.
2615 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2616 Vdbe *v = pFrame->v;
2617 closeCursorsInFrame(v);
2618 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2619 v->anExec = pFrame->anExec;
2620 #endif
2621 v->aOp = pFrame->aOp;
2622 v->nOp = pFrame->nOp;
2623 v->aMem = pFrame->aMem;
2624 v->nMem = pFrame->nMem;
2625 v->apCsr = pFrame->apCsr;
2626 v->nCursor = pFrame->nCursor;
2627 v->db->lastRowid = pFrame->lastRowid;
2628 v->nChange = pFrame->nChange;
2629 v->db->nChange = pFrame->nDbChange;
2630 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2631 v->pAuxData = pFrame->pAuxData;
2632 pFrame->pAuxData = 0;
2633 return pFrame->pc;
2637 ** Close all cursors.
2639 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2640 ** cell array. This is necessary as the memory cell array may contain
2641 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2642 ** open cursors.
2644 static void closeAllCursors(Vdbe *p){
2645 if( p->pFrame ){
2646 VdbeFrame *pFrame;
2647 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2648 sqlite3VdbeFrameRestore(pFrame);
2649 p->pFrame = 0;
2650 p->nFrame = 0;
2652 assert( p->nFrame==0 );
2653 closeCursorsInFrame(p);
2654 releaseMemArray(p->aMem, p->nMem);
2655 while( p->pDelFrame ){
2656 VdbeFrame *pDel = p->pDelFrame;
2657 p->pDelFrame = pDel->pParent;
2658 sqlite3VdbeFrameDelete(pDel);
2661 /* Delete any auxdata allocations made by the VM */
2662 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2663 assert( p->pAuxData==0 );
2667 ** Set the number of result columns that will be returned by this SQL
2668 ** statement. This is now set at compile time, rather than during
2669 ** execution of the vdbe program so that sqlite3_column_count() can
2670 ** be called on an SQL statement before sqlite3_step().
2672 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2673 int n;
2674 sqlite3 *db = p->db;
2676 if( p->nResColumn ){
2677 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
2678 sqlite3DbFree(db, p->aColName);
2680 n = nResColumn*COLNAME_N;
2681 p->nResColumn = (u16)nResColumn;
2682 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2683 if( p->aColName==0 ) return;
2684 initMemArray(p->aColName, n, db, MEM_Null);
2688 ** Set the name of the idx'th column to be returned by the SQL statement.
2689 ** zName must be a pointer to a nul terminated string.
2691 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2693 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2694 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2695 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2697 int sqlite3VdbeSetColName(
2698 Vdbe *p, /* Vdbe being configured */
2699 int idx, /* Index of column zName applies to */
2700 int var, /* One of the COLNAME_* constants */
2701 const char *zName, /* Pointer to buffer containing name */
2702 void (*xDel)(void*) /* Memory management strategy for zName */
2704 int rc;
2705 Mem *pColName;
2706 assert( idx<p->nResColumn );
2707 assert( var<COLNAME_N );
2708 if( p->db->mallocFailed ){
2709 assert( !zName || xDel!=SQLITE_DYNAMIC );
2710 return SQLITE_NOMEM_BKPT;
2712 assert( p->aColName!=0 );
2713 pColName = &(p->aColName[idx+var*p->nResColumn]);
2714 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2715 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2716 return rc;
2720 ** A read or write transaction may or may not be active on database handle
2721 ** db. If a transaction is active, commit it. If there is a
2722 ** write-transaction spanning more than one database file, this routine
2723 ** takes care of the super-journal trickery.
2725 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2726 int i;
2727 int nTrans = 0; /* Number of databases with an active write-transaction
2728 ** that are candidates for a two-phase commit using a
2729 ** super-journal */
2730 int rc = SQLITE_OK;
2731 int needXcommit = 0;
2733 #ifdef SQLITE_OMIT_VIRTUALTABLE
2734 /* With this option, sqlite3VtabSync() is defined to be simply
2735 ** SQLITE_OK so p is not used.
2737 UNUSED_PARAMETER(p);
2738 #endif
2740 /* Before doing anything else, call the xSync() callback for any
2741 ** virtual module tables written in this transaction. This has to
2742 ** be done before determining whether a super-journal file is
2743 ** required, as an xSync() callback may add an attached database
2744 ** to the transaction.
2746 rc = sqlite3VtabSync(db, p);
2748 /* This loop determines (a) if the commit hook should be invoked and
2749 ** (b) how many database files have open write transactions, not
2750 ** including the temp database. (b) is important because if more than
2751 ** one database file has an open write transaction, a super-journal
2752 ** file is required for an atomic commit.
2754 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2755 Btree *pBt = db->aDb[i].pBt;
2756 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2757 /* Whether or not a database might need a super-journal depends upon
2758 ** its journal mode (among other things). This matrix determines which
2759 ** journal modes use a super-journal and which do not */
2760 static const u8 aMJNeeded[] = {
2761 /* DELETE */ 1,
2762 /* PERSIST */ 1,
2763 /* OFF */ 0,
2764 /* TRUNCATE */ 1,
2765 /* MEMORY */ 0,
2766 /* WAL */ 0
2768 Pager *pPager; /* Pager associated with pBt */
2769 needXcommit = 1;
2770 sqlite3BtreeEnter(pBt);
2771 pPager = sqlite3BtreePager(pBt);
2772 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2773 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2774 && sqlite3PagerIsMemdb(pPager)==0
2776 assert( i!=1 );
2777 nTrans++;
2779 rc = sqlite3PagerExclusiveLock(pPager);
2780 sqlite3BtreeLeave(pBt);
2783 if( rc!=SQLITE_OK ){
2784 return rc;
2787 /* If there are any write-transactions at all, invoke the commit hook */
2788 if( needXcommit && db->xCommitCallback ){
2789 rc = db->xCommitCallback(db->pCommitArg);
2790 if( rc ){
2791 return SQLITE_CONSTRAINT_COMMITHOOK;
2795 /* The simple case - no more than one database file (not counting the
2796 ** TEMP database) has a transaction active. There is no need for the
2797 ** super-journal.
2799 ** If the return value of sqlite3BtreeGetFilename() is a zero length
2800 ** string, it means the main database is :memory: or a temp file. In
2801 ** that case we do not support atomic multi-file commits, so use the
2802 ** simple case then too.
2804 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2805 || nTrans<=1
2807 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2808 Btree *pBt = db->aDb[i].pBt;
2809 if( pBt ){
2810 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2814 /* Do the commit only if all databases successfully complete phase 1.
2815 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2816 ** IO error while deleting or truncating a journal file. It is unlikely,
2817 ** but could happen. In this case abandon processing and return the error.
2819 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2820 Btree *pBt = db->aDb[i].pBt;
2821 if( pBt ){
2822 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2825 if( rc==SQLITE_OK ){
2826 sqlite3VtabCommit(db);
2830 /* The complex case - There is a multi-file write-transaction active.
2831 ** This requires a super-journal file to ensure the transaction is
2832 ** committed atomically.
2834 #ifndef SQLITE_OMIT_DISKIO
2835 else{
2836 sqlite3_vfs *pVfs = db->pVfs;
2837 char *zSuper = 0; /* File-name for the super-journal */
2838 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2839 sqlite3_file *pSuperJrnl = 0;
2840 i64 offset = 0;
2841 int res;
2842 int retryCount = 0;
2843 int nMainFile;
2845 /* Select a super-journal file name */
2846 nMainFile = sqlite3Strlen30(zMainFile);
2847 zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0);
2848 if( zSuper==0 ) return SQLITE_NOMEM_BKPT;
2849 zSuper += 4;
2850 do {
2851 u32 iRandom;
2852 if( retryCount ){
2853 if( retryCount>100 ){
2854 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper);
2855 sqlite3OsDelete(pVfs, zSuper, 0);
2856 break;
2857 }else if( retryCount==1 ){
2858 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper);
2861 retryCount++;
2862 sqlite3_randomness(sizeof(iRandom), &iRandom);
2863 sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X",
2864 (iRandom>>8)&0xffffff, iRandom&0xff);
2865 /* The antipenultimate character of the super-journal name must
2866 ** be "9" to avoid name collisions when using 8+3 filenames. */
2867 assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' );
2868 sqlite3FileSuffix3(zMainFile, zSuper);
2869 rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res);
2870 }while( rc==SQLITE_OK && res );
2871 if( rc==SQLITE_OK ){
2872 /* Open the super-journal. */
2873 rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl,
2874 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
2875 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0
2878 if( rc!=SQLITE_OK ){
2879 sqlite3DbFree(db, zSuper-4);
2880 return rc;
2883 /* Write the name of each database file in the transaction into the new
2884 ** super-journal file. If an error occurs at this point close
2885 ** and delete the super-journal file. All the individual journal files
2886 ** still have 'null' as the super-journal pointer, so they will roll
2887 ** back independently if a failure occurs.
2889 for(i=0; i<db->nDb; i++){
2890 Btree *pBt = db->aDb[i].pBt;
2891 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2892 char const *zFile = sqlite3BtreeGetJournalname(pBt);
2893 if( zFile==0 ){
2894 continue; /* Ignore TEMP and :memory: databases */
2896 assert( zFile[0]!=0 );
2897 rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset);
2898 offset += sqlite3Strlen30(zFile)+1;
2899 if( rc!=SQLITE_OK ){
2900 sqlite3OsCloseFree(pSuperJrnl);
2901 sqlite3OsDelete(pVfs, zSuper, 0);
2902 sqlite3DbFree(db, zSuper-4);
2903 return rc;
2908 /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device
2909 ** flag is set this is not required.
2911 if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL)
2912 && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL))
2914 sqlite3OsCloseFree(pSuperJrnl);
2915 sqlite3OsDelete(pVfs, zSuper, 0);
2916 sqlite3DbFree(db, zSuper-4);
2917 return rc;
2920 /* Sync all the db files involved in the transaction. The same call
2921 ** sets the super-journal pointer in each individual journal. If
2922 ** an error occurs here, do not delete the super-journal file.
2924 ** If the error occurs during the first call to
2925 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2926 ** super-journal file will be orphaned. But we cannot delete it,
2927 ** in case the super-journal file name was written into the journal
2928 ** file before the failure occurred.
2930 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2931 Btree *pBt = db->aDb[i].pBt;
2932 if( pBt ){
2933 rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper);
2936 sqlite3OsCloseFree(pSuperJrnl);
2937 assert( rc!=SQLITE_BUSY );
2938 if( rc!=SQLITE_OK ){
2939 sqlite3DbFree(db, zSuper-4);
2940 return rc;
2943 /* Delete the super-journal file. This commits the transaction. After
2944 ** doing this the directory is synced again before any individual
2945 ** transaction files are deleted.
2947 rc = sqlite3OsDelete(pVfs, zSuper, 1);
2948 sqlite3DbFree(db, zSuper-4);
2949 zSuper = 0;
2950 if( rc ){
2951 return rc;
2954 /* All files and directories have already been synced, so the following
2955 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2956 ** deleting or truncating journals. If something goes wrong while
2957 ** this is happening we don't really care. The integrity of the
2958 ** transaction is already guaranteed, but some stray 'cold' journals
2959 ** may be lying around. Returning an error code won't help matters.
2961 disable_simulated_io_errors();
2962 sqlite3BeginBenignMalloc();
2963 for(i=0; i<db->nDb; i++){
2964 Btree *pBt = db->aDb[i].pBt;
2965 if( pBt ){
2966 sqlite3BtreeCommitPhaseTwo(pBt, 1);
2969 sqlite3EndBenignMalloc();
2970 enable_simulated_io_errors();
2972 sqlite3VtabCommit(db);
2974 #endif
2976 return rc;
2980 ** This routine checks that the sqlite3.nVdbeActive count variable
2981 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2982 ** currently active. An assertion fails if the two counts do not match.
2983 ** This is an internal self-check only - it is not an essential processing
2984 ** step.
2986 ** This is a no-op if NDEBUG is defined.
2988 #ifndef NDEBUG
2989 static void checkActiveVdbeCnt(sqlite3 *db){
2990 Vdbe *p;
2991 int cnt = 0;
2992 int nWrite = 0;
2993 int nRead = 0;
2994 p = db->pVdbe;
2995 while( p ){
2996 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
2997 cnt++;
2998 if( p->readOnly==0 ) nWrite++;
2999 if( p->bIsReader ) nRead++;
3001 p = p->pNext;
3003 assert( cnt==db->nVdbeActive );
3004 assert( nWrite==db->nVdbeWrite );
3005 assert( nRead==db->nVdbeRead );
3007 #else
3008 #define checkActiveVdbeCnt(x)
3009 #endif
3012 ** If the Vdbe passed as the first argument opened a statement-transaction,
3013 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
3014 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
3015 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
3016 ** statement transaction is committed.
3018 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
3019 ** Otherwise SQLITE_OK.
3021 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
3022 sqlite3 *const db = p->db;
3023 int rc = SQLITE_OK;
3024 int i;
3025 const int iSavepoint = p->iStatement-1;
3027 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
3028 assert( db->nStatement>0 );
3029 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
3031 for(i=0; i<db->nDb; i++){
3032 int rc2 = SQLITE_OK;
3033 Btree *pBt = db->aDb[i].pBt;
3034 if( pBt ){
3035 if( eOp==SAVEPOINT_ROLLBACK ){
3036 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
3038 if( rc2==SQLITE_OK ){
3039 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
3041 if( rc==SQLITE_OK ){
3042 rc = rc2;
3046 db->nStatement--;
3047 p->iStatement = 0;
3049 if( rc==SQLITE_OK ){
3050 if( eOp==SAVEPOINT_ROLLBACK ){
3051 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
3053 if( rc==SQLITE_OK ){
3054 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
3058 /* If the statement transaction is being rolled back, also restore the
3059 ** database handles deferred constraint counter to the value it had when
3060 ** the statement transaction was opened. */
3061 if( eOp==SAVEPOINT_ROLLBACK ){
3062 db->nDeferredCons = p->nStmtDefCons;
3063 db->nDeferredImmCons = p->nStmtDefImmCons;
3065 return rc;
3067 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
3068 if( p->db->nStatement && p->iStatement ){
3069 return vdbeCloseStatement(p, eOp);
3071 return SQLITE_OK;
3076 ** This function is called when a transaction opened by the database
3077 ** handle associated with the VM passed as an argument is about to be
3078 ** committed. If there are outstanding deferred foreign key constraint
3079 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
3081 ** If there are outstanding FK violations and this function returns
3082 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
3083 ** and write an error message to it. Then return SQLITE_ERROR.
3085 #ifndef SQLITE_OMIT_FOREIGN_KEY
3086 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
3087 sqlite3 *db = p->db;
3088 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
3089 || (!deferred && p->nFkConstraint>0)
3091 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3092 p->errorAction = OE_Abort;
3093 sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
3094 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ) return SQLITE_ERROR;
3095 return SQLITE_CONSTRAINT_FOREIGNKEY;
3097 return SQLITE_OK;
3099 #endif
3102 ** This routine is called the when a VDBE tries to halt. If the VDBE
3103 ** has made changes and is in autocommit mode, then commit those
3104 ** changes. If a rollback is needed, then do the rollback.
3106 ** This routine is the only way to move the sqlite3eOpenState of a VM from
3107 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to
3108 ** call this on a VM that is in the SQLITE_STATE_HALT state.
3110 ** Return an error code. If the commit could not complete because of
3111 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
3112 ** means the close did not happen and needs to be repeated.
3114 int sqlite3VdbeHalt(Vdbe *p){
3115 int rc; /* Used to store transient return codes */
3116 sqlite3 *db = p->db;
3118 /* This function contains the logic that determines if a statement or
3119 ** transaction will be committed or rolled back as a result of the
3120 ** execution of this virtual machine.
3122 ** If any of the following errors occur:
3124 ** SQLITE_NOMEM
3125 ** SQLITE_IOERR
3126 ** SQLITE_FULL
3127 ** SQLITE_INTERRUPT
3129 ** Then the internal cache might have been left in an inconsistent
3130 ** state. We need to rollback the statement transaction, if there is
3131 ** one, or the complete transaction if there is no statement transaction.
3134 assert( p->eVdbeState==VDBE_RUN_STATE );
3135 if( db->mallocFailed ){
3136 p->rc = SQLITE_NOMEM_BKPT;
3138 closeAllCursors(p);
3139 checkActiveVdbeCnt(db);
3141 /* No commit or rollback needed if the program never started or if the
3142 ** SQL statement does not read or write a database file. */
3143 if( p->bIsReader ){
3144 int mrc; /* Primary error code from p->rc */
3145 int eStatementOp = 0;
3146 int isSpecialError; /* Set to true if a 'special' error */
3148 /* Lock all btrees used by the statement */
3149 sqlite3VdbeEnter(p);
3151 /* Check for one of the special errors */
3152 if( p->rc ){
3153 mrc = p->rc & 0xff;
3154 isSpecialError = mrc==SQLITE_NOMEM
3155 || mrc==SQLITE_IOERR
3156 || mrc==SQLITE_INTERRUPT
3157 || mrc==SQLITE_FULL;
3158 }else{
3159 mrc = isSpecialError = 0;
3161 if( isSpecialError ){
3162 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
3163 ** no rollback is necessary. Otherwise, at least a savepoint
3164 ** transaction must be rolled back to restore the database to a
3165 ** consistent state.
3167 ** Even if the statement is read-only, it is important to perform
3168 ** a statement or transaction rollback operation. If the error
3169 ** occurred while writing to the journal, sub-journal or database
3170 ** file as part of an effort to free up cache space (see function
3171 ** pagerStress() in pager.c), the rollback is required to restore
3172 ** the pager to a consistent state.
3174 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
3175 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
3176 eStatementOp = SAVEPOINT_ROLLBACK;
3177 }else{
3178 /* We are forced to roll back the active transaction. Before doing
3179 ** so, abort any other statements this handle currently has active.
3181 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3182 sqlite3CloseSavepoints(db);
3183 db->autoCommit = 1;
3184 p->nChange = 0;
3189 /* Check for immediate foreign key violations. */
3190 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3191 sqlite3VdbeCheckFk(p, 0);
3194 /* If the auto-commit flag is set and this is the only active writer
3195 ** VM, then we do either a commit or rollback of the current transaction.
3197 ** Note: This block also runs if one of the special errors handled
3198 ** above has occurred.
3200 if( !sqlite3VtabInSync(db)
3201 && db->autoCommit
3202 && db->nVdbeWrite==(p->readOnly==0)
3204 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3205 rc = sqlite3VdbeCheckFk(p, 1);
3206 if( rc!=SQLITE_OK ){
3207 if( NEVER(p->readOnly) ){
3208 sqlite3VdbeLeave(p);
3209 return SQLITE_ERROR;
3211 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3212 }else if( db->flags & SQLITE_CorruptRdOnly ){
3213 rc = SQLITE_CORRUPT;
3214 db->flags &= ~SQLITE_CorruptRdOnly;
3215 }else{
3216 /* The auto-commit flag is true, the vdbe program was successful
3217 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3218 ** key constraints to hold up the transaction. This means a commit
3219 ** is required. */
3220 rc = vdbeCommit(db, p);
3222 if( rc==SQLITE_BUSY && p->readOnly ){
3223 sqlite3VdbeLeave(p);
3224 return SQLITE_BUSY;
3225 }else if( rc!=SQLITE_OK ){
3226 p->rc = rc;
3227 sqlite3RollbackAll(db, SQLITE_OK);
3228 p->nChange = 0;
3229 }else{
3230 db->nDeferredCons = 0;
3231 db->nDeferredImmCons = 0;
3232 db->flags &= ~(u64)SQLITE_DeferFKs;
3233 sqlite3CommitInternalChanges(db);
3235 }else{
3236 sqlite3RollbackAll(db, SQLITE_OK);
3237 p->nChange = 0;
3239 db->nStatement = 0;
3240 }else if( eStatementOp==0 ){
3241 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
3242 eStatementOp = SAVEPOINT_RELEASE;
3243 }else if( p->errorAction==OE_Abort ){
3244 eStatementOp = SAVEPOINT_ROLLBACK;
3245 }else{
3246 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3247 sqlite3CloseSavepoints(db);
3248 db->autoCommit = 1;
3249 p->nChange = 0;
3253 /* If eStatementOp is non-zero, then a statement transaction needs to
3254 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3255 ** do so. If this operation returns an error, and the current statement
3256 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3257 ** current statement error code.
3259 if( eStatementOp ){
3260 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
3261 if( rc ){
3262 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
3263 p->rc = rc;
3264 sqlite3DbFree(db, p->zErrMsg);
3265 p->zErrMsg = 0;
3267 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3268 sqlite3CloseSavepoints(db);
3269 db->autoCommit = 1;
3270 p->nChange = 0;
3274 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3275 ** has been rolled back, update the database connection change-counter.
3277 if( p->changeCntOn ){
3278 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
3279 sqlite3VdbeSetChanges(db, p->nChange);
3280 }else{
3281 sqlite3VdbeSetChanges(db, 0);
3283 p->nChange = 0;
3286 /* Release the locks */
3287 sqlite3VdbeLeave(p);
3290 /* We have successfully halted and closed the VM. Record this fact. */
3291 db->nVdbeActive--;
3292 if( !p->readOnly ) db->nVdbeWrite--;
3293 if( p->bIsReader ) db->nVdbeRead--;
3294 assert( db->nVdbeActive>=db->nVdbeRead );
3295 assert( db->nVdbeRead>=db->nVdbeWrite );
3296 assert( db->nVdbeWrite>=0 );
3297 p->eVdbeState = VDBE_HALT_STATE;
3298 checkActiveVdbeCnt(db);
3299 if( db->mallocFailed ){
3300 p->rc = SQLITE_NOMEM_BKPT;
3303 /* If the auto-commit flag is set to true, then any locks that were held
3304 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3305 ** to invoke any required unlock-notify callbacks.
3307 if( db->autoCommit ){
3308 sqlite3ConnectionUnlocked(db);
3311 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
3312 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
3317 ** Each VDBE holds the result of the most recent sqlite3_step() call
3318 ** in p->rc. This routine sets that result back to SQLITE_OK.
3320 void sqlite3VdbeResetStepResult(Vdbe *p){
3321 p->rc = SQLITE_OK;
3325 ** Copy the error code and error message belonging to the VDBE passed
3326 ** as the first argument to its database handle (so that they will be
3327 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3329 ** This function does not clear the VDBE error code or message, just
3330 ** copies them to the database handle.
3332 int sqlite3VdbeTransferError(Vdbe *p){
3333 sqlite3 *db = p->db;
3334 int rc = p->rc;
3335 if( p->zErrMsg ){
3336 db->bBenignMalloc++;
3337 sqlite3BeginBenignMalloc();
3338 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
3339 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
3340 sqlite3EndBenignMalloc();
3341 db->bBenignMalloc--;
3342 }else if( db->pErr ){
3343 sqlite3ValueSetNull(db->pErr);
3345 db->errCode = rc;
3346 db->errByteOffset = -1;
3347 return rc;
3350 #ifdef SQLITE_ENABLE_SQLLOG
3352 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3353 ** invoke it.
3355 static void vdbeInvokeSqllog(Vdbe *v){
3356 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
3357 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
3358 assert( v->db->init.busy==0 );
3359 if( zExpanded ){
3360 sqlite3GlobalConfig.xSqllog(
3361 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
3363 sqlite3DbFree(v->db, zExpanded);
3367 #else
3368 # define vdbeInvokeSqllog(x)
3369 #endif
3372 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3373 ** Write any error messages into *pzErrMsg. Return the result code.
3375 ** After this routine is run, the VDBE should be ready to be executed
3376 ** again.
3378 ** To look at it another way, this routine resets the state of the
3379 ** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to
3380 ** VDBE_READY_STATE.
3382 int sqlite3VdbeReset(Vdbe *p){
3383 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3384 int i;
3385 #endif
3387 sqlite3 *db;
3388 db = p->db;
3390 /* If the VM did not run to completion or if it encountered an
3391 ** error, then it might not have been halted properly. So halt
3392 ** it now.
3394 if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
3396 /* If the VDBE has been run even partially, then transfer the error code
3397 ** and error message from the VDBE into the main database structure. But
3398 ** if the VDBE has just been set to run but has not actually executed any
3399 ** instructions yet, leave the main database error information unchanged.
3401 if( p->pc>=0 ){
3402 vdbeInvokeSqllog(p);
3403 if( db->pErr || p->zErrMsg ){
3404 sqlite3VdbeTransferError(p);
3405 }else{
3406 db->errCode = p->rc;
3410 /* Reset register contents and reclaim error message memory.
3412 #ifdef SQLITE_DEBUG
3413 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3414 ** Vdbe.aMem[] arrays have already been cleaned up. */
3415 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
3416 if( p->aMem ){
3417 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
3419 #endif
3420 if( p->zErrMsg ){
3421 sqlite3DbFree(db, p->zErrMsg);
3422 p->zErrMsg = 0;
3424 p->pResultSet = 0;
3425 #ifdef SQLITE_DEBUG
3426 p->nWrite = 0;
3427 #endif
3429 /* Save profiling information from this VDBE run.
3431 #ifdef VDBE_PROFILE
3433 FILE *out = fopen("vdbe_profile.out", "a");
3434 if( out ){
3435 fprintf(out, "---- ");
3436 for(i=0; i<p->nOp; i++){
3437 fprintf(out, "%02x", p->aOp[i].opcode);
3439 fprintf(out, "\n");
3440 if( p->zSql ){
3441 char c, pc = 0;
3442 fprintf(out, "-- ");
3443 for(i=0; (c = p->zSql[i])!=0; i++){
3444 if( pc=='\n' ) fprintf(out, "-- ");
3445 putc(c, out);
3446 pc = c;
3448 if( pc!='\n' ) fprintf(out, "\n");
3450 for(i=0; i<p->nOp; i++){
3451 char zHdr[100];
3452 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
3453 p->aOp[i].cnt,
3454 p->aOp[i].cycles,
3455 p->aOp[i].cnt>0 ? p->aOp[i].cycles/p->aOp[i].cnt : 0
3457 fprintf(out, "%s", zHdr);
3458 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
3460 fclose(out);
3463 #endif
3464 return p->rc & db->errMask;
3468 ** Clean up and delete a VDBE after execution. Return an integer which is
3469 ** the result code. Write any error message text into *pzErrMsg.
3471 int sqlite3VdbeFinalize(Vdbe *p){
3472 int rc = SQLITE_OK;
3473 assert( VDBE_RUN_STATE>VDBE_READY_STATE );
3474 assert( VDBE_HALT_STATE>VDBE_READY_STATE );
3475 assert( VDBE_INIT_STATE<VDBE_READY_STATE );
3476 if( p->eVdbeState>=VDBE_READY_STATE ){
3477 rc = sqlite3VdbeReset(p);
3478 assert( (rc & p->db->errMask)==rc );
3480 sqlite3VdbeDelete(p);
3481 return rc;
3485 ** If parameter iOp is less than zero, then invoke the destructor for
3486 ** all auxiliary data pointers currently cached by the VM passed as
3487 ** the first argument.
3489 ** Or, if iOp is greater than or equal to zero, then the destructor is
3490 ** only invoked for those auxiliary data pointers created by the user
3491 ** function invoked by the OP_Function opcode at instruction iOp of
3492 ** VM pVdbe, and only then if:
3494 ** * the associated function parameter is the 32nd or later (counting
3495 ** from left to right), or
3497 ** * the corresponding bit in argument mask is clear (where the first
3498 ** function parameter corresponds to bit 0 etc.).
3500 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
3501 while( *pp ){
3502 AuxData *pAux = *pp;
3503 if( (iOp<0)
3504 || (pAux->iAuxOp==iOp
3505 && pAux->iAuxArg>=0
3506 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
3508 testcase( pAux->iAuxArg==31 );
3509 if( pAux->xDeleteAux ){
3510 pAux->xDeleteAux(pAux->pAux);
3512 *pp = pAux->pNextAux;
3513 sqlite3DbFree(db, pAux);
3514 }else{
3515 pp= &pAux->pNextAux;
3521 ** Free all memory associated with the Vdbe passed as the second argument,
3522 ** except for object itself, which is preserved.
3524 ** The difference between this function and sqlite3VdbeDelete() is that
3525 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3526 ** the database connection and frees the object itself.
3528 static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3529 SubProgram *pSub, *pNext;
3530 assert( p->db==0 || p->db==db );
3531 if( p->aColName ){
3532 releaseMemArray(p->aColName, p->nResColumn*COLNAME_N);
3533 sqlite3DbFreeNN(db, p->aColName);
3535 for(pSub=p->pProgram; pSub; pSub=pNext){
3536 pNext = pSub->pNext;
3537 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3538 sqlite3DbFree(db, pSub);
3540 if( p->eVdbeState!=VDBE_INIT_STATE ){
3541 releaseMemArray(p->aVar, p->nVar);
3542 if( p->pVList ) sqlite3DbFreeNN(db, p->pVList);
3543 if( p->pFree ) sqlite3DbFreeNN(db, p->pFree);
3545 vdbeFreeOpArray(db, p->aOp, p->nOp);
3546 sqlite3DbFree(db, p->zSql);
3547 #ifdef SQLITE_ENABLE_NORMALIZE
3548 sqlite3DbFree(db, p->zNormSql);
3550 DblquoteStr *pThis, *pNext;
3551 for(pThis=p->pDblStr; pThis; pThis=pNext){
3552 pNext = pThis->pNextStr;
3553 sqlite3DbFree(db, pThis);
3556 #endif
3557 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3559 int i;
3560 for(i=0; i<p->nScan; i++){
3561 sqlite3DbFree(db, p->aScan[i].zName);
3563 sqlite3DbFree(db, p->aScan);
3565 #endif
3569 ** Delete an entire VDBE.
3571 void sqlite3VdbeDelete(Vdbe *p){
3572 sqlite3 *db;
3574 assert( p!=0 );
3575 db = p->db;
3576 assert( sqlite3_mutex_held(db->mutex) );
3577 sqlite3VdbeClearObject(db, p);
3578 if( db->pnBytesFreed==0 ){
3579 if( p->pPrev ){
3580 p->pPrev->pNext = p->pNext;
3581 }else{
3582 assert( db->pVdbe==p );
3583 db->pVdbe = p->pNext;
3585 if( p->pNext ){
3586 p->pNext->pPrev = p->pPrev;
3589 sqlite3DbFreeNN(db, p);
3593 ** The cursor "p" has a pending seek operation that has not yet been
3594 ** carried out. Seek the cursor now. If an error occurs, return
3595 ** the appropriate error code.
3597 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){
3598 int res, rc;
3599 #ifdef SQLITE_TEST
3600 extern int sqlite3_search_count;
3601 #endif
3602 assert( p->deferredMoveto );
3603 assert( p->isTable );
3604 assert( p->eCurType==CURTYPE_BTREE );
3605 rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res);
3606 if( rc ) return rc;
3607 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3608 #ifdef SQLITE_TEST
3609 sqlite3_search_count++;
3610 #endif
3611 p->deferredMoveto = 0;
3612 p->cacheStatus = CACHE_STALE;
3613 return SQLITE_OK;
3617 ** Something has moved cursor "p" out of place. Maybe the row it was
3618 ** pointed to was deleted out from under it. Or maybe the btree was
3619 ** rebalanced. Whatever the cause, try to restore "p" to the place it
3620 ** is supposed to be pointing. If the row was deleted out from under the
3621 ** cursor, set the cursor to point to a NULL row.
3623 int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p){
3624 int isDifferentRow, rc;
3625 assert( p->eCurType==CURTYPE_BTREE );
3626 assert( p->uc.pCursor!=0 );
3627 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3628 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3629 p->cacheStatus = CACHE_STALE;
3630 if( isDifferentRow ) p->nullRow = 1;
3631 return rc;
3635 ** Check to ensure that the cursor is valid. Restore the cursor
3636 ** if need be. Return any I/O error from the restore operation.
3638 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3639 assert( p->eCurType==CURTYPE_BTREE || IsNullCursor(p) );
3640 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3641 return sqlite3VdbeHandleMovedCursor(p);
3643 return SQLITE_OK;
3647 ** The following functions:
3649 ** sqlite3VdbeSerialType()
3650 ** sqlite3VdbeSerialTypeLen()
3651 ** sqlite3VdbeSerialLen()
3652 ** sqlite3VdbeSerialPut() <--- in-lined into OP_MakeRecord as of 2022-04-02
3653 ** sqlite3VdbeSerialGet()
3655 ** encapsulate the code that serializes values for storage in SQLite
3656 ** data and index records. Each serialized value consists of a
3657 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3658 ** integer, stored as a varint.
3660 ** In an SQLite index record, the serial type is stored directly before
3661 ** the blob of data that it corresponds to. In a table record, all serial
3662 ** types are stored at the start of the record, and the blobs of data at
3663 ** the end. Hence these functions allow the caller to handle the
3664 ** serial-type and data blob separately.
3666 ** The following table describes the various storage classes for data:
3668 ** serial type bytes of data type
3669 ** -------------- --------------- ---------------
3670 ** 0 0 NULL
3671 ** 1 1 signed integer
3672 ** 2 2 signed integer
3673 ** 3 3 signed integer
3674 ** 4 4 signed integer
3675 ** 5 6 signed integer
3676 ** 6 8 signed integer
3677 ** 7 8 IEEE float
3678 ** 8 0 Integer constant 0
3679 ** 9 0 Integer constant 1
3680 ** 10,11 reserved for expansion
3681 ** N>=12 and even (N-12)/2 BLOB
3682 ** N>=13 and odd (N-13)/2 text
3684 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3685 ** of SQLite will not understand those serial types.
3688 #if 0 /* Inlined into the OP_MakeRecord opcode */
3690 ** Return the serial-type for the value stored in pMem.
3692 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3694 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord
3695 ** opcode in the byte-code engine. But by moving this routine in-line, we
3696 ** can omit some redundant tests and make that opcode a lot faster. So
3697 ** this routine is now only used by the STAT3 logic and STAT3 support has
3698 ** ended. The code is kept here for historical reference only.
3700 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3701 int flags = pMem->flags;
3702 u32 n;
3704 assert( pLen!=0 );
3705 if( flags&MEM_Null ){
3706 *pLen = 0;
3707 return 0;
3709 if( flags&(MEM_Int|MEM_IntReal) ){
3710 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3711 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3712 i64 i = pMem->u.i;
3713 u64 u;
3714 testcase( flags & MEM_Int );
3715 testcase( flags & MEM_IntReal );
3716 if( i<0 ){
3717 u = ~i;
3718 }else{
3719 u = i;
3721 if( u<=127 ){
3722 if( (i&1)==i && file_format>=4 ){
3723 *pLen = 0;
3724 return 8+(u32)u;
3725 }else{
3726 *pLen = 1;
3727 return 1;
3730 if( u<=32767 ){ *pLen = 2; return 2; }
3731 if( u<=8388607 ){ *pLen = 3; return 3; }
3732 if( u<=2147483647 ){ *pLen = 4; return 4; }
3733 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3734 *pLen = 8;
3735 if( flags&MEM_IntReal ){
3736 /* If the value is IntReal and is going to take up 8 bytes to store
3737 ** as an integer, then we might as well make it an 8-byte floating
3738 ** point value */
3739 pMem->u.r = (double)pMem->u.i;
3740 pMem->flags &= ~MEM_IntReal;
3741 pMem->flags |= MEM_Real;
3742 return 7;
3744 return 6;
3746 if( flags&MEM_Real ){
3747 *pLen = 8;
3748 return 7;
3750 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3751 assert( pMem->n>=0 );
3752 n = (u32)pMem->n;
3753 if( flags & MEM_Zero ){
3754 n += pMem->u.nZero;
3756 *pLen = n;
3757 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3759 #endif /* inlined into OP_MakeRecord */
3762 ** The sizes for serial types less than 128
3764 const u8 sqlite3SmallTypeSizes[128] = {
3765 /* 0 1 2 3 4 5 6 7 8 9 */
3766 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3767 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3768 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3769 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3770 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3771 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3772 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3773 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3774 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3775 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3776 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3777 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3778 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
3782 ** Return the length of the data corresponding to the supplied serial-type.
3784 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3785 if( serial_type>=128 ){
3786 return (serial_type-12)/2;
3787 }else{
3788 assert( serial_type<12
3789 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3790 return sqlite3SmallTypeSizes[serial_type];
3793 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3794 assert( serial_type<128 );
3795 return sqlite3SmallTypeSizes[serial_type];
3799 ** If we are on an architecture with mixed-endian floating
3800 ** points (ex: ARM7) then swap the lower 4 bytes with the
3801 ** upper 4 bytes. Return the result.
3803 ** For most architectures, this is a no-op.
3805 ** (later): It is reported to me that the mixed-endian problem
3806 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3807 ** that early versions of GCC stored the two words of a 64-bit
3808 ** float in the wrong order. And that error has been propagated
3809 ** ever since. The blame is not necessarily with GCC, though.
3810 ** GCC might have just copying the problem from a prior compiler.
3811 ** I am also told that newer versions of GCC that follow a different
3812 ** ABI get the byte order right.
3814 ** Developers using SQLite on an ARM7 should compile and run their
3815 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3816 ** enabled, some asserts below will ensure that the byte order of
3817 ** floating point values is correct.
3819 ** (2007-08-30) Frank van Vugt has studied this problem closely
3820 ** and has send his findings to the SQLite developers. Frank
3821 ** writes that some Linux kernels offer floating point hardware
3822 ** emulation that uses only 32-bit mantissas instead of a full
3823 ** 48-bits as required by the IEEE standard. (This is the
3824 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3825 ** byte swapping becomes very complicated. To avoid problems,
3826 ** the necessary byte swapping is carried out using a 64-bit integer
3827 ** rather than a 64-bit float. Frank assures us that the code here
3828 ** works for him. We, the developers, have no way to independently
3829 ** verify this, but Frank seems to know what he is talking about
3830 ** so we trust him.
3832 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3833 u64 sqlite3FloatSwap(u64 in){
3834 union {
3835 u64 r;
3836 u32 i[2];
3837 } u;
3838 u32 t;
3840 u.r = in;
3841 t = u.i[0];
3842 u.i[0] = u.i[1];
3843 u.i[1] = t;
3844 return u.r;
3846 #endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */
3849 /* Input "x" is a sequence of unsigned characters that represent a
3850 ** big-endian integer. Return the equivalent native integer
3852 #define ONE_BYTE_INT(x) ((i8)(x)[0])
3853 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3854 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3855 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3856 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3859 ** Deserialize the data blob pointed to by buf as serial type serial_type
3860 ** and store the result in pMem.
3862 ** This function is implemented as two separate routines for performance.
3863 ** The few cases that require local variables are broken out into a separate
3864 ** routine so that in most cases the overhead of moving the stack pointer
3865 ** is avoided.
3867 static void serialGet(
3868 const unsigned char *buf, /* Buffer to deserialize from */
3869 u32 serial_type, /* Serial type to deserialize */
3870 Mem *pMem /* Memory cell to write value into */
3872 u64 x = FOUR_BYTE_UINT(buf);
3873 u32 y = FOUR_BYTE_UINT(buf+4);
3874 x = (x<<32) + y;
3875 if( serial_type==6 ){
3876 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3877 ** twos-complement integer. */
3878 pMem->u.i = *(i64*)&x;
3879 pMem->flags = MEM_Int;
3880 testcase( pMem->u.i<0 );
3881 }else{
3882 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3883 ** floating point number. */
3884 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3885 /* Verify that integers and floating point values use the same
3886 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3887 ** defined that 64-bit floating point values really are mixed
3888 ** endian.
3890 static const u64 t1 = ((u64)0x3ff00000)<<32;
3891 static const double r1 = 1.0;
3892 u64 t2 = t1;
3893 swapMixedEndianFloat(t2);
3894 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
3895 #endif
3896 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
3897 swapMixedEndianFloat(x);
3898 memcpy(&pMem->u.r, &x, sizeof(x));
3899 pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
3902 void sqlite3VdbeSerialGet(
3903 const unsigned char *buf, /* Buffer to deserialize from */
3904 u32 serial_type, /* Serial type to deserialize */
3905 Mem *pMem /* Memory cell to write value into */
3907 switch( serial_type ){
3908 case 10: { /* Internal use only: NULL with virtual table
3909 ** UPDATE no-change flag set */
3910 pMem->flags = MEM_Null|MEM_Zero;
3911 pMem->n = 0;
3912 pMem->u.nZero = 0;
3913 return;
3915 case 11: /* Reserved for future use */
3916 case 0: { /* Null */
3917 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3918 pMem->flags = MEM_Null;
3919 return;
3921 case 1: {
3922 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3923 ** integer. */
3924 pMem->u.i = ONE_BYTE_INT(buf);
3925 pMem->flags = MEM_Int;
3926 testcase( pMem->u.i<0 );
3927 return;
3929 case 2: { /* 2-byte signed integer */
3930 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3931 ** twos-complement integer. */
3932 pMem->u.i = TWO_BYTE_INT(buf);
3933 pMem->flags = MEM_Int;
3934 testcase( pMem->u.i<0 );
3935 return;
3937 case 3: { /* 3-byte signed integer */
3938 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3939 ** twos-complement integer. */
3940 pMem->u.i = THREE_BYTE_INT(buf);
3941 pMem->flags = MEM_Int;
3942 testcase( pMem->u.i<0 );
3943 return;
3945 case 4: { /* 4-byte signed integer */
3946 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3947 ** twos-complement integer. */
3948 pMem->u.i = FOUR_BYTE_INT(buf);
3949 #ifdef __HP_cc
3950 /* Work around a sign-extension bug in the HP compiler for HP/UX */
3951 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
3952 #endif
3953 pMem->flags = MEM_Int;
3954 testcase( pMem->u.i<0 );
3955 return;
3957 case 5: { /* 6-byte signed integer */
3958 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3959 ** twos-complement integer. */
3960 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
3961 pMem->flags = MEM_Int;
3962 testcase( pMem->u.i<0 );
3963 return;
3965 case 6: /* 8-byte signed integer */
3966 case 7: { /* IEEE floating point */
3967 /* These use local variables, so do them in a separate routine
3968 ** to avoid having to move the frame pointer in the common case */
3969 serialGet(buf,serial_type,pMem);
3970 return;
3972 case 8: /* Integer 0 */
3973 case 9: { /* Integer 1 */
3974 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3975 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3976 pMem->u.i = serial_type-8;
3977 pMem->flags = MEM_Int;
3978 return;
3980 default: {
3981 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3982 ** length.
3983 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3984 ** (N-13)/2 bytes in length. */
3985 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
3986 pMem->z = (char *)buf;
3987 pMem->n = (serial_type-12)/2;
3988 pMem->flags = aFlag[serial_type&1];
3989 return;
3992 return;
3995 ** This routine is used to allocate sufficient space for an UnpackedRecord
3996 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3997 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3999 ** The space is either allocated using sqlite3DbMallocRaw() or from within
4000 ** the unaligned buffer passed via the second and third arguments (presumably
4001 ** stack space). If the former, then *ppFree is set to a pointer that should
4002 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
4003 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
4004 ** before returning.
4006 ** If an OOM error occurs, NULL is returned.
4008 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
4009 KeyInfo *pKeyInfo /* Description of the record */
4011 UnpackedRecord *p; /* Unpacked record to return */
4012 int nByte; /* Number of bytes required for *p */
4013 nByte = ROUND8P(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
4014 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
4015 if( !p ) return 0;
4016 p->aMem = (Mem*)&((char*)p)[ROUND8P(sizeof(UnpackedRecord))];
4017 assert( pKeyInfo->aSortFlags!=0 );
4018 p->pKeyInfo = pKeyInfo;
4019 p->nField = pKeyInfo->nKeyField + 1;
4020 return p;
4024 ** Given the nKey-byte encoding of a record in pKey[], populate the
4025 ** UnpackedRecord structure indicated by the fourth argument with the
4026 ** contents of the decoded record.
4028 void sqlite3VdbeRecordUnpack(
4029 KeyInfo *pKeyInfo, /* Information about the record format */
4030 int nKey, /* Size of the binary record */
4031 const void *pKey, /* The binary record */
4032 UnpackedRecord *p /* Populate this structure before returning. */
4034 const unsigned char *aKey = (const unsigned char *)pKey;
4035 u32 d;
4036 u32 idx; /* Offset in aKey[] to read from */
4037 u16 u; /* Unsigned loop counter */
4038 u32 szHdr;
4039 Mem *pMem = p->aMem;
4041 p->default_rc = 0;
4042 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
4043 idx = getVarint32(aKey, szHdr);
4044 d = szHdr;
4045 u = 0;
4046 while( idx<szHdr && d<=(u32)nKey ){
4047 u32 serial_type;
4049 idx += getVarint32(&aKey[idx], serial_type);
4050 pMem->enc = pKeyInfo->enc;
4051 pMem->db = pKeyInfo->db;
4052 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
4053 pMem->szMalloc = 0;
4054 pMem->z = 0;
4055 sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
4056 d += sqlite3VdbeSerialTypeLen(serial_type);
4057 pMem++;
4058 if( (++u)>=p->nField ) break;
4060 if( d>(u32)nKey && u ){
4061 assert( CORRUPT_DB );
4062 /* In a corrupt record entry, the last pMem might have been set up using
4063 ** uninitialized memory. Overwrite its value with NULL, to prevent
4064 ** warnings from MSAN. */
4065 sqlite3VdbeMemSetNull(pMem-1);
4067 assert( u<=pKeyInfo->nKeyField + 1 );
4068 p->nField = u;
4071 #ifdef SQLITE_DEBUG
4073 ** This function compares two index or table record keys in the same way
4074 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
4075 ** this function deserializes and compares values using the
4076 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
4077 ** in assert() statements to ensure that the optimized code in
4078 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
4080 ** Return true if the result of comparison is equivalent to desiredResult.
4081 ** Return false if there is a disagreement.
4083 static int vdbeRecordCompareDebug(
4084 int nKey1, const void *pKey1, /* Left key */
4085 const UnpackedRecord *pPKey2, /* Right key */
4086 int desiredResult /* Correct answer */
4088 u32 d1; /* Offset into aKey[] of next data element */
4089 u32 idx1; /* Offset into aKey[] of next header element */
4090 u32 szHdr1; /* Number of bytes in header */
4091 int i = 0;
4092 int rc = 0;
4093 const unsigned char *aKey1 = (const unsigned char *)pKey1;
4094 KeyInfo *pKeyInfo;
4095 Mem mem1;
4097 pKeyInfo = pPKey2->pKeyInfo;
4098 if( pKeyInfo->db==0 ) return 1;
4099 mem1.enc = pKeyInfo->enc;
4100 mem1.db = pKeyInfo->db;
4101 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
4102 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4104 /* Compilers may complain that mem1.u.i is potentially uninitialized.
4105 ** We could initialize it, as shown here, to silence those complaints.
4106 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
4107 ** the unnecessary initialization has a measurable negative performance
4108 ** impact, since this routine is a very high runner. And so, we choose
4109 ** to ignore the compiler warnings and leave this variable uninitialized.
4111 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
4113 idx1 = getVarint32(aKey1, szHdr1);
4114 if( szHdr1>98307 ) return SQLITE_CORRUPT;
4115 d1 = szHdr1;
4116 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
4117 assert( pKeyInfo->aSortFlags!=0 );
4118 assert( pKeyInfo->nKeyField>0 );
4119 assert( idx1<=szHdr1 || CORRUPT_DB );
4121 u32 serial_type1;
4123 /* Read the serial types for the next element in each key. */
4124 idx1 += getVarint32( aKey1+idx1, serial_type1 );
4126 /* Verify that there is enough key space remaining to avoid
4127 ** a buffer overread. The "d1+serial_type1+2" subexpression will
4128 ** always be greater than or equal to the amount of required key space.
4129 ** Use that approximation to avoid the more expensive call to
4130 ** sqlite3VdbeSerialTypeLen() in the common case.
4132 if( d1+(u64)serial_type1+2>(u64)nKey1
4133 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1
4135 break;
4138 /* Extract the values to be compared.
4140 sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
4141 d1 += sqlite3VdbeSerialTypeLen(serial_type1);
4143 /* Do the comparison
4145 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
4146 pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0);
4147 if( rc!=0 ){
4148 assert( mem1.szMalloc==0 ); /* See comment below */
4149 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
4150 && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null))
4152 rc = -rc;
4154 if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){
4155 rc = -rc; /* Invert the result for DESC sort order. */
4157 goto debugCompareEnd;
4159 i++;
4160 }while( idx1<szHdr1 && i<pPKey2->nField );
4162 /* No memory allocation is ever used on mem1. Prove this using
4163 ** the following assert(). If the assert() fails, it indicates a
4164 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4166 assert( mem1.szMalloc==0 );
4168 /* rc==0 here means that one of the keys ran out of fields and
4169 ** all the fields up to that point were equal. Return the default_rc
4170 ** value. */
4171 rc = pPKey2->default_rc;
4173 debugCompareEnd:
4174 if( desiredResult==0 && rc==0 ) return 1;
4175 if( desiredResult<0 && rc<0 ) return 1;
4176 if( desiredResult>0 && rc>0 ) return 1;
4177 if( CORRUPT_DB ) return 1;
4178 if( pKeyInfo->db->mallocFailed ) return 1;
4179 return 0;
4181 #endif
4183 #ifdef SQLITE_DEBUG
4185 ** Count the number of fields (a.k.a. columns) in the record given by
4186 ** pKey,nKey. The verify that this count is less than or equal to the
4187 ** limit given by pKeyInfo->nAllField.
4189 ** If this constraint is not satisfied, it means that the high-speed
4190 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4191 ** not work correctly. If this assert() ever fires, it probably means
4192 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4193 ** incorrectly.
4195 static void vdbeAssertFieldCountWithinLimits(
4196 int nKey, const void *pKey, /* The record to verify */
4197 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
4199 int nField = 0;
4200 u32 szHdr;
4201 u32 idx;
4202 u32 notUsed;
4203 const unsigned char *aKey = (const unsigned char*)pKey;
4205 if( CORRUPT_DB ) return;
4206 idx = getVarint32(aKey, szHdr);
4207 assert( nKey>=0 );
4208 assert( szHdr<=(u32)nKey );
4209 while( idx<szHdr ){
4210 idx += getVarint32(aKey+idx, notUsed);
4211 nField++;
4213 assert( nField <= pKeyInfo->nAllField );
4215 #else
4216 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4217 #endif
4220 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4221 ** using the collation sequence pColl. As usual, return a negative , zero
4222 ** or positive value if *pMem1 is less than, equal to or greater than
4223 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4225 static int vdbeCompareMemString(
4226 const Mem *pMem1,
4227 const Mem *pMem2,
4228 const CollSeq *pColl,
4229 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
4231 if( pMem1->enc==pColl->enc ){
4232 /* The strings are already in the correct encoding. Call the
4233 ** comparison function directly */
4234 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
4235 }else{
4236 int rc;
4237 const void *v1, *v2;
4238 Mem c1;
4239 Mem c2;
4240 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
4241 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
4242 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
4243 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
4244 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
4245 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
4246 if( (v1==0 || v2==0) ){
4247 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
4248 rc = 0;
4249 }else{
4250 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
4252 sqlite3VdbeMemReleaseMalloc(&c1);
4253 sqlite3VdbeMemReleaseMalloc(&c2);
4254 return rc;
4259 ** The input pBlob is guaranteed to be a Blob that is not marked
4260 ** with MEM_Zero. Return true if it could be a zero-blob.
4262 static int isAllZero(const char *z, int n){
4263 int i;
4264 for(i=0; i<n; i++){
4265 if( z[i] ) return 0;
4267 return 1;
4271 ** Compare two blobs. Return negative, zero, or positive if the first
4272 ** is less than, equal to, or greater than the second, respectively.
4273 ** If one blob is a prefix of the other, then the shorter is the lessor.
4275 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
4276 int c;
4277 int n1 = pB1->n;
4278 int n2 = pB2->n;
4280 /* It is possible to have a Blob value that has some non-zero content
4281 ** followed by zero content. But that only comes up for Blobs formed
4282 ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4283 ** sqlite3MemCompare(). */
4284 assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
4285 assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
4287 if( (pB1->flags|pB2->flags) & MEM_Zero ){
4288 if( pB1->flags & pB2->flags & MEM_Zero ){
4289 return pB1->u.nZero - pB2->u.nZero;
4290 }else if( pB1->flags & MEM_Zero ){
4291 if( !isAllZero(pB2->z, pB2->n) ) return -1;
4292 return pB1->u.nZero - n2;
4293 }else{
4294 if( !isAllZero(pB1->z, pB1->n) ) return +1;
4295 return n1 - pB2->u.nZero;
4298 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
4299 if( c ) return c;
4300 return n1 - n2;
4304 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4305 ** number. Return negative, zero, or positive if the first (i64) is less than,
4306 ** equal to, or greater than the second (double).
4308 int sqlite3IntFloatCompare(i64 i, double r){
4309 if( sizeof(LONGDOUBLE_TYPE)>8 ){
4310 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
4311 testcase( x<r );
4312 testcase( x>r );
4313 testcase( x==r );
4314 if( x<r ) return -1;
4315 if( x>r ) return +1; /*NO_TEST*/ /* work around bugs in gcov */
4316 return 0; /*NO_TEST*/ /* work around bugs in gcov */
4317 }else{
4318 i64 y;
4319 double s;
4320 if( r<-9223372036854775808.0 ) return +1;
4321 if( r>=9223372036854775808.0 ) return -1;
4322 y = (i64)r;
4323 if( i<y ) return -1;
4324 if( i>y ) return +1;
4325 s = (double)i;
4326 if( s<r ) return -1;
4327 if( s>r ) return +1;
4328 return 0;
4333 ** Compare the values contained by the two memory cells, returning
4334 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4335 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4336 ** and reals) sorted numerically, followed by text ordered by the collating
4337 ** sequence pColl and finally blob's ordered by memcmp().
4339 ** Two NULL values are considered equal by this function.
4341 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
4342 int f1, f2;
4343 int combined_flags;
4345 f1 = pMem1->flags;
4346 f2 = pMem2->flags;
4347 combined_flags = f1|f2;
4348 assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) );
4350 /* If one value is NULL, it is less than the other. If both values
4351 ** are NULL, return 0.
4353 if( combined_flags&MEM_Null ){
4354 return (f2&MEM_Null) - (f1&MEM_Null);
4357 /* At least one of the two values is a number
4359 if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){
4360 testcase( combined_flags & MEM_Int );
4361 testcase( combined_flags & MEM_Real );
4362 testcase( combined_flags & MEM_IntReal );
4363 if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){
4364 testcase( f1 & f2 & MEM_Int );
4365 testcase( f1 & f2 & MEM_IntReal );
4366 if( pMem1->u.i < pMem2->u.i ) return -1;
4367 if( pMem1->u.i > pMem2->u.i ) return +1;
4368 return 0;
4370 if( (f1 & f2 & MEM_Real)!=0 ){
4371 if( pMem1->u.r < pMem2->u.r ) return -1;
4372 if( pMem1->u.r > pMem2->u.r ) return +1;
4373 return 0;
4375 if( (f1&(MEM_Int|MEM_IntReal))!=0 ){
4376 testcase( f1 & MEM_Int );
4377 testcase( f1 & MEM_IntReal );
4378 if( (f2&MEM_Real)!=0 ){
4379 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
4380 }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4381 if( pMem1->u.i < pMem2->u.i ) return -1;
4382 if( pMem1->u.i > pMem2->u.i ) return +1;
4383 return 0;
4384 }else{
4385 return -1;
4388 if( (f1&MEM_Real)!=0 ){
4389 if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4390 testcase( f2 & MEM_Int );
4391 testcase( f2 & MEM_IntReal );
4392 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
4393 }else{
4394 return -1;
4397 return +1;
4400 /* If one value is a string and the other is a blob, the string is less.
4401 ** If both are strings, compare using the collating functions.
4403 if( combined_flags&MEM_Str ){
4404 if( (f1 & MEM_Str)==0 ){
4405 return 1;
4407 if( (f2 & MEM_Str)==0 ){
4408 return -1;
4411 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
4412 assert( pMem1->enc==SQLITE_UTF8 ||
4413 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
4415 /* The collation sequence must be defined at this point, even if
4416 ** the user deletes the collation sequence after the vdbe program is
4417 ** compiled (this was not always the case).
4419 assert( !pColl || pColl->xCmp );
4421 if( pColl ){
4422 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
4424 /* If a NULL pointer was passed as the collate function, fall through
4425 ** to the blob case and use memcmp(). */
4428 /* Both values must be blobs. Compare using memcmp(). */
4429 return sqlite3BlobCompare(pMem1, pMem2);
4434 ** The first argument passed to this function is a serial-type that
4435 ** corresponds to an integer - all values between 1 and 9 inclusive
4436 ** except 7. The second points to a buffer containing an integer value
4437 ** serialized according to serial_type. This function deserializes
4438 ** and returns the value.
4440 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
4441 u32 y;
4442 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
4443 switch( serial_type ){
4444 case 0:
4445 case 1:
4446 testcase( aKey[0]&0x80 );
4447 return ONE_BYTE_INT(aKey);
4448 case 2:
4449 testcase( aKey[0]&0x80 );
4450 return TWO_BYTE_INT(aKey);
4451 case 3:
4452 testcase( aKey[0]&0x80 );
4453 return THREE_BYTE_INT(aKey);
4454 case 4: {
4455 testcase( aKey[0]&0x80 );
4456 y = FOUR_BYTE_UINT(aKey);
4457 return (i64)*(int*)&y;
4459 case 5: {
4460 testcase( aKey[0]&0x80 );
4461 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4463 case 6: {
4464 u64 x = FOUR_BYTE_UINT(aKey);
4465 testcase( aKey[0]&0x80 );
4466 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4467 return (i64)*(i64*)&x;
4471 return (serial_type - 8);
4475 ** This function compares the two table rows or index records
4476 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
4477 ** or positive integer if key1 is less than, equal to or
4478 ** greater than key2. The {nKey1, pKey1} key must be a blob
4479 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
4480 ** key must be a parsed key such as obtained from
4481 ** sqlite3VdbeParseRecord.
4483 ** If argument bSkip is non-zero, it is assumed that the caller has already
4484 ** determined that the first fields of the keys are equal.
4486 ** Key1 and Key2 do not have to contain the same number of fields. If all
4487 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4488 ** returned.
4490 ** If database corruption is discovered, set pPKey2->errCode to
4491 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4492 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4493 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4495 int sqlite3VdbeRecordCompareWithSkip(
4496 int nKey1, const void *pKey1, /* Left key */
4497 UnpackedRecord *pPKey2, /* Right key */
4498 int bSkip /* If true, skip the first field */
4500 u32 d1; /* Offset into aKey[] of next data element */
4501 int i; /* Index of next field to compare */
4502 u32 szHdr1; /* Size of record header in bytes */
4503 u32 idx1; /* Offset of first type in header */
4504 int rc = 0; /* Return value */
4505 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
4506 KeyInfo *pKeyInfo;
4507 const unsigned char *aKey1 = (const unsigned char *)pKey1;
4508 Mem mem1;
4510 /* If bSkip is true, then the caller has already determined that the first
4511 ** two elements in the keys are equal. Fix the various stack variables so
4512 ** that this routine begins comparing at the second field. */
4513 if( bSkip ){
4514 u32 s1 = aKey1[1];
4515 if( s1<0x80 ){
4516 idx1 = 2;
4517 }else{
4518 idx1 = 1 + sqlite3GetVarint32(&aKey1[1], &s1);
4520 szHdr1 = aKey1[0];
4521 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4522 i = 1;
4523 pRhs++;
4524 }else{
4525 if( (szHdr1 = aKey1[0])<0x80 ){
4526 idx1 = 1;
4527 }else{
4528 idx1 = sqlite3GetVarint32(aKey1, &szHdr1);
4530 d1 = szHdr1;
4531 i = 0;
4533 if( d1>(unsigned)nKey1 ){
4534 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4535 return 0; /* Corruption */
4538 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4539 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4540 || CORRUPT_DB );
4541 assert( pPKey2->pKeyInfo->aSortFlags!=0 );
4542 assert( pPKey2->pKeyInfo->nKeyField>0 );
4543 assert( idx1<=szHdr1 || CORRUPT_DB );
4545 u32 serial_type;
4547 /* RHS is an integer */
4548 if( pRhs->flags & (MEM_Int|MEM_IntReal) ){
4549 testcase( pRhs->flags & MEM_Int );
4550 testcase( pRhs->flags & MEM_IntReal );
4551 serial_type = aKey1[idx1];
4552 testcase( serial_type==12 );
4553 if( serial_type>=10 ){
4554 rc = +1;
4555 }else if( serial_type==0 ){
4556 rc = -1;
4557 }else if( serial_type==7 ){
4558 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4559 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4560 }else{
4561 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4562 i64 rhs = pRhs->u.i;
4563 if( lhs<rhs ){
4564 rc = -1;
4565 }else if( lhs>rhs ){
4566 rc = +1;
4571 /* RHS is real */
4572 else if( pRhs->flags & MEM_Real ){
4573 serial_type = aKey1[idx1];
4574 if( serial_type>=10 ){
4575 /* Serial types 12 or greater are strings and blobs (greater than
4576 ** numbers). Types 10 and 11 are currently "reserved for future
4577 ** use", so it doesn't really matter what the results of comparing
4578 ** them to numberic values are. */
4579 rc = +1;
4580 }else if( serial_type==0 ){
4581 rc = -1;
4582 }else{
4583 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4584 if( serial_type==7 ){
4585 if( mem1.u.r<pRhs->u.r ){
4586 rc = -1;
4587 }else if( mem1.u.r>pRhs->u.r ){
4588 rc = +1;
4590 }else{
4591 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4596 /* RHS is a string */
4597 else if( pRhs->flags & MEM_Str ){
4598 getVarint32NR(&aKey1[idx1], serial_type);
4599 testcase( serial_type==12 );
4600 if( serial_type<12 ){
4601 rc = -1;
4602 }else if( !(serial_type & 0x01) ){
4603 rc = +1;
4604 }else{
4605 mem1.n = (serial_type - 12) / 2;
4606 testcase( (d1+mem1.n)==(unsigned)nKey1 );
4607 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4608 if( (d1+mem1.n) > (unsigned)nKey1
4609 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i
4611 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4612 return 0; /* Corruption */
4613 }else if( pKeyInfo->aColl[i] ){
4614 mem1.enc = pKeyInfo->enc;
4615 mem1.db = pKeyInfo->db;
4616 mem1.flags = MEM_Str;
4617 mem1.z = (char*)&aKey1[d1];
4618 rc = vdbeCompareMemString(
4619 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4621 }else{
4622 int nCmp = MIN(mem1.n, pRhs->n);
4623 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4624 if( rc==0 ) rc = mem1.n - pRhs->n;
4629 /* RHS is a blob */
4630 else if( pRhs->flags & MEM_Blob ){
4631 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4632 getVarint32NR(&aKey1[idx1], serial_type);
4633 testcase( serial_type==12 );
4634 if( serial_type<12 || (serial_type & 0x01) ){
4635 rc = -1;
4636 }else{
4637 int nStr = (serial_type - 12) / 2;
4638 testcase( (d1+nStr)==(unsigned)nKey1 );
4639 testcase( (d1+nStr+1)==(unsigned)nKey1 );
4640 if( (d1+nStr) > (unsigned)nKey1 ){
4641 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4642 return 0; /* Corruption */
4643 }else if( pRhs->flags & MEM_Zero ){
4644 if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4645 rc = 1;
4646 }else{
4647 rc = nStr - pRhs->u.nZero;
4649 }else{
4650 int nCmp = MIN(nStr, pRhs->n);
4651 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4652 if( rc==0 ) rc = nStr - pRhs->n;
4657 /* RHS is null */
4658 else{
4659 serial_type = aKey1[idx1];
4660 rc = (serial_type!=0);
4663 if( rc!=0 ){
4664 int sortFlags = pPKey2->pKeyInfo->aSortFlags[i];
4665 if( sortFlags ){
4666 if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0
4667 || ((sortFlags & KEYINFO_ORDER_DESC)
4668 !=(serial_type==0 || (pRhs->flags&MEM_Null)))
4670 rc = -rc;
4673 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4674 assert( mem1.szMalloc==0 ); /* See comment below */
4675 return rc;
4678 i++;
4679 if( i==pPKey2->nField ) break;
4680 pRhs++;
4681 d1 += sqlite3VdbeSerialTypeLen(serial_type);
4682 idx1 += sqlite3VarintLen(serial_type);
4683 }while( idx1<(unsigned)szHdr1 && d1<=(unsigned)nKey1 );
4685 /* No memory allocation is ever used on mem1. Prove this using
4686 ** the following assert(). If the assert() fails, it indicates a
4687 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
4688 assert( mem1.szMalloc==0 );
4690 /* rc==0 here means that one or both of the keys ran out of fields and
4691 ** all the fields up to that point were equal. Return the default_rc
4692 ** value. */
4693 assert( CORRUPT_DB
4694 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4695 || pPKey2->pKeyInfo->db->mallocFailed
4697 pPKey2->eqSeen = 1;
4698 return pPKey2->default_rc;
4700 int sqlite3VdbeRecordCompare(
4701 int nKey1, const void *pKey1, /* Left key */
4702 UnpackedRecord *pPKey2 /* Right key */
4704 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4709 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4710 ** that (a) the first field of pPKey2 is an integer, and (b) the
4711 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4712 ** byte (i.e. is less than 128).
4714 ** To avoid concerns about buffer overreads, this routine is only used
4715 ** on schemas where the maximum valid header size is 63 bytes or less.
4717 static int vdbeRecordCompareInt(
4718 int nKey1, const void *pKey1, /* Left key */
4719 UnpackedRecord *pPKey2 /* Right key */
4721 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4722 int serial_type = ((const u8*)pKey1)[1];
4723 int res;
4724 u32 y;
4725 u64 x;
4726 i64 v;
4727 i64 lhs;
4729 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4730 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4731 switch( serial_type ){
4732 case 1: { /* 1-byte signed integer */
4733 lhs = ONE_BYTE_INT(aKey);
4734 testcase( lhs<0 );
4735 break;
4737 case 2: { /* 2-byte signed integer */
4738 lhs = TWO_BYTE_INT(aKey);
4739 testcase( lhs<0 );
4740 break;
4742 case 3: { /* 3-byte signed integer */
4743 lhs = THREE_BYTE_INT(aKey);
4744 testcase( lhs<0 );
4745 break;
4747 case 4: { /* 4-byte signed integer */
4748 y = FOUR_BYTE_UINT(aKey);
4749 lhs = (i64)*(int*)&y;
4750 testcase( lhs<0 );
4751 break;
4753 case 5: { /* 6-byte signed integer */
4754 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4755 testcase( lhs<0 );
4756 break;
4758 case 6: { /* 8-byte signed integer */
4759 x = FOUR_BYTE_UINT(aKey);
4760 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4761 lhs = *(i64*)&x;
4762 testcase( lhs<0 );
4763 break;
4765 case 8:
4766 lhs = 0;
4767 break;
4768 case 9:
4769 lhs = 1;
4770 break;
4772 /* This case could be removed without changing the results of running
4773 ** this code. Including it causes gcc to generate a faster switch
4774 ** statement (since the range of switch targets now starts at zero and
4775 ** is contiguous) but does not cause any duplicate code to be generated
4776 ** (as gcc is clever enough to combine the two like cases). Other
4777 ** compilers might be similar. */
4778 case 0: case 7:
4779 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4781 default:
4782 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4785 assert( pPKey2->u.i == pPKey2->aMem[0].u.i );
4786 v = pPKey2->u.i;
4787 if( v>lhs ){
4788 res = pPKey2->r1;
4789 }else if( v<lhs ){
4790 res = pPKey2->r2;
4791 }else if( pPKey2->nField>1 ){
4792 /* The first fields of the two keys are equal. Compare the trailing
4793 ** fields. */
4794 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4795 }else{
4796 /* The first fields of the two keys are equal and there are no trailing
4797 ** fields. Return pPKey2->default_rc in this case. */
4798 res = pPKey2->default_rc;
4799 pPKey2->eqSeen = 1;
4802 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
4803 return res;
4807 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4808 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4809 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4810 ** at the start of (pKey1/nKey1) fits in a single byte.
4812 static int vdbeRecordCompareString(
4813 int nKey1, const void *pKey1, /* Left key */
4814 UnpackedRecord *pPKey2 /* Right key */
4816 const u8 *aKey1 = (const u8*)pKey1;
4817 int serial_type;
4818 int res;
4820 assert( pPKey2->aMem[0].flags & MEM_Str );
4821 assert( pPKey2->aMem[0].n == pPKey2->n );
4822 assert( pPKey2->aMem[0].z == pPKey2->u.z );
4823 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4824 serial_type = (signed char)(aKey1[1]);
4826 vrcs_restart:
4827 if( serial_type<12 ){
4828 if( serial_type<0 ){
4829 sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type);
4830 if( serial_type>=12 ) goto vrcs_restart;
4831 assert( CORRUPT_DB );
4833 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
4834 }else if( !(serial_type & 0x01) ){
4835 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
4836 }else{
4837 int nCmp;
4838 int nStr;
4839 int szHdr = aKey1[0];
4841 nStr = (serial_type-12) / 2;
4842 if( (szHdr + nStr) > nKey1 ){
4843 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4844 return 0; /* Corruption */
4846 nCmp = MIN( pPKey2->n, nStr );
4847 res = memcmp(&aKey1[szHdr], pPKey2->u.z, nCmp);
4849 if( res>0 ){
4850 res = pPKey2->r2;
4851 }else if( res<0 ){
4852 res = pPKey2->r1;
4853 }else{
4854 res = nStr - pPKey2->n;
4855 if( res==0 ){
4856 if( pPKey2->nField>1 ){
4857 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
4858 }else{
4859 res = pPKey2->default_rc;
4860 pPKey2->eqSeen = 1;
4862 }else if( res>0 ){
4863 res = pPKey2->r2;
4864 }else{
4865 res = pPKey2->r1;
4870 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
4871 || CORRUPT_DB
4872 || pPKey2->pKeyInfo->db->mallocFailed
4874 return res;
4878 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4879 ** suitable for comparing serialized records to the unpacked record passed
4880 ** as the only argument.
4882 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
4883 /* varintRecordCompareInt() and varintRecordCompareString() both assume
4884 ** that the size-of-header varint that occurs at the start of each record
4885 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4886 ** also assumes that it is safe to overread a buffer by at least the
4887 ** maximum possible legal header size plus 8 bytes. Because there is
4888 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4889 ** buffer passed to varintRecordCompareInt() this makes it convenient to
4890 ** limit the size of the header to 64 bytes in cases where the first field
4891 ** is an integer.
4893 ** The easiest way to enforce this limit is to consider only records with
4894 ** 13 fields or less. If the first field is an integer, the maximum legal
4895 ** header size is (12*5 + 1 + 1) bytes. */
4896 if( p->pKeyInfo->nAllField<=13 ){
4897 int flags = p->aMem[0].flags;
4898 if( p->pKeyInfo->aSortFlags[0] ){
4899 if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){
4900 return sqlite3VdbeRecordCompare;
4902 p->r1 = 1;
4903 p->r2 = -1;
4904 }else{
4905 p->r1 = -1;
4906 p->r2 = 1;
4908 if( (flags & MEM_Int) ){
4909 p->u.i = p->aMem[0].u.i;
4910 return vdbeRecordCompareInt;
4912 testcase( flags & MEM_Real );
4913 testcase( flags & MEM_Null );
4914 testcase( flags & MEM_Blob );
4915 if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0
4916 && p->pKeyInfo->aColl[0]==0
4918 assert( flags & MEM_Str );
4919 p->u.z = p->aMem[0].z;
4920 p->n = p->aMem[0].n;
4921 return vdbeRecordCompareString;
4925 return sqlite3VdbeRecordCompare;
4929 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4930 ** Read the rowid (the last field in the record) and store it in *rowid.
4931 ** Return SQLITE_OK if everything works, or an error code otherwise.
4933 ** pCur might be pointing to text obtained from a corrupt database file.
4934 ** So the content cannot be trusted. Do appropriate checks on the content.
4936 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
4937 i64 nCellKey = 0;
4938 int rc;
4939 u32 szHdr; /* Size of the header */
4940 u32 typeRowid; /* Serial type of the rowid */
4941 u32 lenRowid; /* Size of the rowid */
4942 Mem m, v;
4944 /* Get the size of the index entry. Only indices entries of less
4945 ** than 2GiB are support - anything large must be database corruption.
4946 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4947 ** this code can safely assume that nCellKey is 32-bits
4949 assert( sqlite3BtreeCursorIsValid(pCur) );
4950 nCellKey = sqlite3BtreePayloadSize(pCur);
4951 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
4953 /* Read in the complete content of the index entry */
4954 sqlite3VdbeMemInit(&m, db, 0);
4955 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
4956 if( rc ){
4957 return rc;
4960 /* The index entry must begin with a header size */
4961 getVarint32NR((u8*)m.z, szHdr);
4962 testcase( szHdr==3 );
4963 testcase( szHdr==(u32)m.n );
4964 testcase( szHdr>0x7fffffff );
4965 assert( m.n>=0 );
4966 if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
4967 goto idx_rowid_corruption;
4970 /* The last field of the index should be an integer - the ROWID.
4971 ** Verify that the last entry really is an integer. */
4972 getVarint32NR((u8*)&m.z[szHdr-1], typeRowid);
4973 testcase( typeRowid==1 );
4974 testcase( typeRowid==2 );
4975 testcase( typeRowid==3 );
4976 testcase( typeRowid==4 );
4977 testcase( typeRowid==5 );
4978 testcase( typeRowid==6 );
4979 testcase( typeRowid==8 );
4980 testcase( typeRowid==9 );
4981 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
4982 goto idx_rowid_corruption;
4984 lenRowid = sqlite3SmallTypeSizes[typeRowid];
4985 testcase( (u32)m.n==szHdr+lenRowid );
4986 if( unlikely((u32)m.n<szHdr+lenRowid) ){
4987 goto idx_rowid_corruption;
4990 /* Fetch the integer off the end of the index record */
4991 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
4992 *rowid = v.u.i;
4993 sqlite3VdbeMemReleaseMalloc(&m);
4994 return SQLITE_OK;
4996 /* Jump here if database corruption is detected after m has been
4997 ** allocated. Free the m object and return SQLITE_CORRUPT. */
4998 idx_rowid_corruption:
4999 testcase( m.szMalloc!=0 );
5000 sqlite3VdbeMemReleaseMalloc(&m);
5001 return SQLITE_CORRUPT_BKPT;
5005 ** Compare the key of the index entry that cursor pC is pointing to against
5006 ** the key string in pUnpacked. Write into *pRes a number
5007 ** that is negative, zero, or positive if pC is less than, equal to,
5008 ** or greater than pUnpacked. Return SQLITE_OK on success.
5010 ** pUnpacked is either created without a rowid or is truncated so that it
5011 ** omits the rowid at the end. The rowid at the end of the index entry
5012 ** is ignored as well. Hence, this routine only compares the prefixes
5013 ** of the keys prior to the final rowid, not the entire key.
5015 int sqlite3VdbeIdxKeyCompare(
5016 sqlite3 *db, /* Database connection */
5017 VdbeCursor *pC, /* The cursor to compare against */
5018 UnpackedRecord *pUnpacked, /* Unpacked version of key */
5019 int *res /* Write the comparison result here */
5021 i64 nCellKey = 0;
5022 int rc;
5023 BtCursor *pCur;
5024 Mem m;
5026 assert( pC->eCurType==CURTYPE_BTREE );
5027 pCur = pC->uc.pCursor;
5028 assert( sqlite3BtreeCursorIsValid(pCur) );
5029 nCellKey = sqlite3BtreePayloadSize(pCur);
5030 /* nCellKey will always be between 0 and 0xffffffff because of the way
5031 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
5032 if( nCellKey<=0 || nCellKey>0x7fffffff ){
5033 *res = 0;
5034 return SQLITE_CORRUPT_BKPT;
5036 sqlite3VdbeMemInit(&m, db, 0);
5037 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
5038 if( rc ){
5039 return rc;
5041 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
5042 sqlite3VdbeMemReleaseMalloc(&m);
5043 return SQLITE_OK;
5047 ** This routine sets the value to be returned by subsequent calls to
5048 ** sqlite3_changes() on the database handle 'db'.
5050 void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){
5051 assert( sqlite3_mutex_held(db->mutex) );
5052 db->nChange = nChange;
5053 db->nTotalChange += nChange;
5057 ** Set a flag in the vdbe to update the change counter when it is finalised
5058 ** or reset.
5060 void sqlite3VdbeCountChanges(Vdbe *v){
5061 v->changeCntOn = 1;
5065 ** Mark every prepared statement associated with a database connection
5066 ** as expired.
5068 ** An expired statement means that recompilation of the statement is
5069 ** recommend. Statements expire when things happen that make their
5070 ** programs obsolete. Removing user-defined functions or collating
5071 ** sequences, or changing an authorization function are the types of
5072 ** things that make prepared statements obsolete.
5074 ** If iCode is 1, then expiration is advisory. The statement should
5075 ** be reprepared before being restarted, but if it is already running
5076 ** it is allowed to run to completion.
5078 ** Internally, this function just sets the Vdbe.expired flag on all
5079 ** prepared statements. The flag is set to 1 for an immediate expiration
5080 ** and set to 2 for an advisory expiration.
5082 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
5083 Vdbe *p;
5084 for(p = db->pVdbe; p; p=p->pNext){
5085 p->expired = iCode+1;
5090 ** Return the database associated with the Vdbe.
5092 sqlite3 *sqlite3VdbeDb(Vdbe *v){
5093 return v->db;
5097 ** Return the SQLITE_PREPARE flags for a Vdbe.
5099 u8 sqlite3VdbePrepareFlags(Vdbe *v){
5100 return v->prepFlags;
5104 ** Return a pointer to an sqlite3_value structure containing the value bound
5105 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
5106 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
5107 ** constants) to the value before returning it.
5109 ** The returned value must be freed by the caller using sqlite3ValueFree().
5111 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
5112 assert( iVar>0 );
5113 if( v ){
5114 Mem *pMem = &v->aVar[iVar-1];
5115 assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5116 if( 0==(pMem->flags & MEM_Null) ){
5117 sqlite3_value *pRet = sqlite3ValueNew(v->db);
5118 if( pRet ){
5119 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
5120 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
5122 return pRet;
5125 return 0;
5129 ** Configure SQL variable iVar so that binding a new value to it signals
5130 ** to sqlite3_reoptimize() that re-preparing the statement may result
5131 ** in a better query plan.
5133 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
5134 assert( iVar>0 );
5135 assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5136 if( iVar>=32 ){
5137 v->expmask |= 0x80000000;
5138 }else{
5139 v->expmask |= ((u32)1 << (iVar-1));
5144 ** Cause a function to throw an error if it was call from OP_PureFunc
5145 ** rather than OP_Function.
5147 ** OP_PureFunc means that the function must be deterministic, and should
5148 ** throw an error if it is given inputs that would make it non-deterministic.
5149 ** This routine is invoked by date/time functions that use non-deterministic
5150 ** features such as 'now'.
5152 int sqlite3NotPureFunc(sqlite3_context *pCtx){
5153 const VdbeOp *pOp;
5154 #ifdef SQLITE_ENABLE_STAT4
5155 if( pCtx->pVdbe==0 ) return 1;
5156 #endif
5157 pOp = pCtx->pVdbe->aOp + pCtx->iOp;
5158 if( pOp->opcode==OP_PureFunc ){
5159 const char *zContext;
5160 char *zMsg;
5161 if( pOp->p5 & NC_IsCheck ){
5162 zContext = "a CHECK constraint";
5163 }else if( pOp->p5 & NC_GenCol ){
5164 zContext = "a generated column";
5165 }else{
5166 zContext = "an index";
5168 zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s",
5169 pCtx->pFunc->zName, zContext);
5170 sqlite3_result_error(pCtx, zMsg, -1);
5171 sqlite3_free(zMsg);
5172 return 0;
5174 return 1;
5177 #ifndef SQLITE_OMIT_VIRTUALTABLE
5179 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5180 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5181 ** in memory obtained from sqlite3DbMalloc).
5183 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
5184 if( pVtab->zErrMsg ){
5185 sqlite3 *db = p->db;
5186 sqlite3DbFree(db, p->zErrMsg);
5187 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
5188 sqlite3_free(pVtab->zErrMsg);
5189 pVtab->zErrMsg = 0;
5192 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5194 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5197 ** If the second argument is not NULL, release any allocations associated
5198 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5199 ** structure itself, using sqlite3DbFree().
5201 ** This function is used to free UnpackedRecord structures allocated by
5202 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5204 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
5205 if( p ){
5206 int i;
5207 for(i=0; i<nField; i++){
5208 Mem *pMem = &p->aMem[i];
5209 if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem);
5211 sqlite3DbFreeNN(db, p);
5214 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5216 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5218 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5219 ** then cursor passed as the second argument should point to the row about
5220 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5221 ** the required value will be read from the row the cursor points to.
5223 void sqlite3VdbePreUpdateHook(
5224 Vdbe *v, /* Vdbe pre-update hook is invoked by */
5225 VdbeCursor *pCsr, /* Cursor to grab old.* values from */
5226 int op, /* SQLITE_INSERT, UPDATE or DELETE */
5227 const char *zDb, /* Database name */
5228 Table *pTab, /* Modified table */
5229 i64 iKey1, /* Initial key value */
5230 int iReg, /* Register for new.* record */
5231 int iBlobWrite
5233 sqlite3 *db = v->db;
5234 i64 iKey2;
5235 PreUpdate preupdate;
5236 const char *zTbl = pTab->zName;
5237 static const u8 fakeSortOrder = 0;
5239 assert( db->pPreUpdate==0 );
5240 memset(&preupdate, 0, sizeof(PreUpdate));
5241 if( HasRowid(pTab)==0 ){
5242 iKey1 = iKey2 = 0;
5243 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
5244 }else{
5245 if( op==SQLITE_UPDATE ){
5246 iKey2 = v->aMem[iReg].u.i;
5247 }else{
5248 iKey2 = iKey1;
5252 assert( pCsr!=0 );
5253 assert( pCsr->eCurType==CURTYPE_BTREE );
5254 assert( pCsr->nField==pTab->nCol
5255 || (pCsr->nField==pTab->nCol+1 && op==SQLITE_DELETE && iReg==-1)
5258 preupdate.v = v;
5259 preupdate.pCsr = pCsr;
5260 preupdate.op = op;
5261 preupdate.iNewReg = iReg;
5262 preupdate.keyinfo.db = db;
5263 preupdate.keyinfo.enc = ENC(db);
5264 preupdate.keyinfo.nKeyField = pTab->nCol;
5265 preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder;
5266 preupdate.iKey1 = iKey1;
5267 preupdate.iKey2 = iKey2;
5268 preupdate.pTab = pTab;
5269 preupdate.iBlobWrite = iBlobWrite;
5271 db->pPreUpdate = &preupdate;
5272 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
5273 db->pPreUpdate = 0;
5274 sqlite3DbFree(db, preupdate.aRecord);
5275 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
5276 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
5277 if( preupdate.aNew ){
5278 int i;
5279 for(i=0; i<pCsr->nField; i++){
5280 sqlite3VdbeMemRelease(&preupdate.aNew[i]);
5282 sqlite3DbFreeNN(db, preupdate.aNew);
5285 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */