4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
15 #include "sqliteInt.h"
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3
*db
, FuncDef
*pDef
);
20 static void vdbeFreeOpArray(sqlite3
*, Op
*, int);
23 ** Create a new virtual database engine.
25 Vdbe
*sqlite3VdbeCreate(Parse
*pParse
){
26 sqlite3
*db
= pParse
->db
;
28 p
= sqlite3DbMallocRawNN(db
, sizeof(Vdbe
) );
30 memset(&p
->aOp
, 0, sizeof(Vdbe
)-offsetof(Vdbe
,aOp
));
38 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
41 assert( pParse
->aLabel
==0 );
42 assert( pParse
->nLabel
==0 );
43 assert( p
->nOpAlloc
==0 );
44 assert( pParse
->szOpAlloc
==0 );
45 sqlite3VdbeAddOp2(p
, OP_Init
, 0, 1);
50 ** Return the Parse object that owns a Vdbe object.
52 Parse
*sqlite3VdbeParser(Vdbe
*p
){
57 ** Change the error string stored in Vdbe.zErrMsg
59 void sqlite3VdbeError(Vdbe
*p
, const char *zFormat
, ...){
61 sqlite3DbFree(p
->db
, p
->zErrMsg
);
62 va_start(ap
, zFormat
);
63 p
->zErrMsg
= sqlite3VMPrintf(p
->db
, zFormat
, ap
);
68 ** Remember the SQL string for a prepared statement.
70 void sqlite3VdbeSetSql(Vdbe
*p
, const char *z
, int n
, u8 prepFlags
){
72 p
->prepFlags
= prepFlags
;
73 if( (prepFlags
& SQLITE_PREPARE_SAVESQL
)==0 ){
77 p
->zSql
= sqlite3DbStrNDup(p
->db
, z
, n
);
80 #ifdef SQLITE_ENABLE_NORMALIZE
82 ** Add a new element to the Vdbe->pDblStr list.
84 void sqlite3VdbeAddDblquoteStr(sqlite3
*db
, Vdbe
*p
, const char *z
){
86 int n
= sqlite3Strlen30(z
);
87 DblquoteStr
*pStr
= sqlite3DbMallocRawNN(db
,
88 sizeof(*pStr
)+n
+1-sizeof(pStr
->z
));
90 pStr
->pNextStr
= p
->pDblStr
;
92 memcpy(pStr
->z
, z
, n
+1);
98 #ifdef SQLITE_ENABLE_NORMALIZE
100 ** zId of length nId is a double-quoted identifier. Check to see if
101 ** that identifier is really used as a string literal.
103 int sqlite3VdbeUsesDoubleQuotedString(
104 Vdbe
*pVdbe
, /* The prepared statement */
105 const char *zId
/* The double-quoted identifier, already dequoted */
109 if( pVdbe
->pDblStr
==0 ) return 0;
110 for(pStr
=pVdbe
->pDblStr
; pStr
; pStr
=pStr
->pNextStr
){
111 if( strcmp(zId
, pStr
->z
)==0 ) return 1;
118 ** Swap all content between two VDBE structures.
120 void sqlite3VdbeSwap(Vdbe
*pA
, Vdbe
*pB
){
123 assert( pA
->db
==pB
->db
);
128 pA
->pNext
= pB
->pNext
;
131 pA
->pPrev
= pB
->pPrev
;
136 #ifdef SQLITE_ENABLE_NORMALIZE
138 pA
->zNormSql
= pB
->zNormSql
;
141 pB
->expmask
= pA
->expmask
;
142 pB
->prepFlags
= pA
->prepFlags
;
143 memcpy(pB
->aCounter
, pA
->aCounter
, sizeof(pB
->aCounter
));
144 pB
->aCounter
[SQLITE_STMTSTATUS_REPREPARE
]++;
148 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
149 ** than its current size. nOp is guaranteed to be less than or equal
150 ** to 1024/sizeof(Op).
152 ** If an out-of-memory error occurs while resizing the array, return
153 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
154 ** unchanged (this is so that any opcodes already allocated can be
155 ** correctly deallocated along with the rest of the Vdbe).
157 static int growOpArray(Vdbe
*v
, int nOp
){
159 Parse
*p
= v
->pParse
;
161 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
162 ** more frequent reallocs and hence provide more opportunities for
163 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
164 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
165 ** by the minimum* amount required until the size reaches 512. Normal
166 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
167 ** size of the op array or add 1KB of space, whichever is smaller. */
168 #ifdef SQLITE_TEST_REALLOC_STRESS
169 sqlite3_int64 nNew
= (v
->nOpAlloc
>=512 ? 2*(sqlite3_int64
)v
->nOpAlloc
170 : (sqlite3_int64
)v
->nOpAlloc
+nOp
);
172 sqlite3_int64 nNew
= (v
->nOpAlloc
? 2*(sqlite3_int64
)v
->nOpAlloc
173 : (sqlite3_int64
)(1024/sizeof(Op
)));
174 UNUSED_PARAMETER(nOp
);
177 /* Ensure that the size of a VDBE does not grow too large */
178 if( nNew
> p
->db
->aLimit
[SQLITE_LIMIT_VDBE_OP
] ){
179 sqlite3OomFault(p
->db
);
183 assert( nOp
<=(int)(1024/sizeof(Op
)) );
184 assert( nNew
>=(v
->nOpAlloc
+nOp
) );
185 pNew
= sqlite3DbRealloc(p
->db
, v
->aOp
, nNew
*sizeof(Op
));
187 p
->szOpAlloc
= sqlite3DbMallocSize(p
->db
, pNew
);
188 v
->nOpAlloc
= p
->szOpAlloc
/sizeof(Op
);
191 return (pNew
? SQLITE_OK
: SQLITE_NOMEM_BKPT
);
195 /* This routine is just a convenient place to set a breakpoint that will
196 ** fire after each opcode is inserted and displayed using
197 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and
198 ** pOp are available to make the breakpoint conditional.
200 ** Other useful labels for breakpoints include:
201 ** test_trace_breakpoint(pc,pOp)
202 ** sqlite3CorruptError(lineno)
203 ** sqlite3MisuseError(lineno)
204 ** sqlite3CantopenError(lineno)
206 static void test_addop_breakpoint(int pc
, Op
*pOp
){
213 ** Add a new instruction to the list of instructions current in the
214 ** VDBE. Return the address of the new instruction.
218 ** p Pointer to the VDBE
220 ** op The opcode for this instruction
222 ** p1, p2, p3 Operands
224 ** Use the sqlite3VdbeResolveLabel() function to fix an address and
225 ** the sqlite3VdbeChangeP4() function to change the value of the P4
228 static SQLITE_NOINLINE
int growOp3(Vdbe
*p
, int op
, int p1
, int p2
, int p3
){
229 assert( p
->nOpAlloc
<=p
->nOp
);
230 if( growOpArray(p
, 1) ) return 1;
231 assert( p
->nOpAlloc
>p
->nOp
);
232 return sqlite3VdbeAddOp3(p
, op
, p1
, p2
, p3
);
234 int sqlite3VdbeAddOp3(Vdbe
*p
, int op
, int p1
, int p2
, int p3
){
239 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
240 assert( op
>=0 && op
<0xff );
241 if( p
->nOpAlloc
<=i
){
242 return growOp3(p
, op
, p1
, p2
, p3
);
248 pOp
->opcode
= (u8
)op
;
254 pOp
->p4type
= P4_NOTUSED
;
255 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
259 if( p
->db
->flags
& SQLITE_VdbeAddopTrace
){
260 sqlite3VdbePrintOp(0, i
, &p
->aOp
[i
]);
261 test_addop_breakpoint(i
, &p
->aOp
[i
]);
268 #ifdef SQLITE_VDBE_COVERAGE
273 int sqlite3VdbeAddOp0(Vdbe
*p
, int op
){
274 return sqlite3VdbeAddOp3(p
, op
, 0, 0, 0);
276 int sqlite3VdbeAddOp1(Vdbe
*p
, int op
, int p1
){
277 return sqlite3VdbeAddOp3(p
, op
, p1
, 0, 0);
279 int sqlite3VdbeAddOp2(Vdbe
*p
, int op
, int p1
, int p2
){
280 return sqlite3VdbeAddOp3(p
, op
, p1
, p2
, 0);
283 /* Generate code for an unconditional jump to instruction iDest
285 int sqlite3VdbeGoto(Vdbe
*p
, int iDest
){
286 return sqlite3VdbeAddOp3(p
, OP_Goto
, 0, iDest
, 0);
289 /* Generate code to cause the string zStr to be loaded into
292 int sqlite3VdbeLoadString(Vdbe
*p
, int iDest
, const char *zStr
){
293 return sqlite3VdbeAddOp4(p
, OP_String8
, 0, iDest
, 0, zStr
, 0);
297 ** Generate code that initializes multiple registers to string or integer
298 ** constants. The registers begin with iDest and increase consecutively.
299 ** One register is initialized for each characgter in zTypes[]. For each
300 ** "s" character in zTypes[], the register is a string if the argument is
301 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character
302 ** in zTypes[], the register is initialized to an integer.
304 ** If the input string does not end with "X" then an OP_ResultRow instruction
305 ** is generated for the values inserted.
307 void sqlite3VdbeMultiLoad(Vdbe
*p
, int iDest
, const char *zTypes
, ...){
311 va_start(ap
, zTypes
);
312 for(i
=0; (c
= zTypes
[i
])!=0; i
++){
314 const char *z
= va_arg(ap
, const char*);
315 sqlite3VdbeAddOp4(p
, z
==0 ? OP_Null
: OP_String8
, 0, iDest
+i
, 0, z
, 0);
317 sqlite3VdbeAddOp2(p
, OP_Integer
, va_arg(ap
, int), iDest
+i
);
319 goto skip_op_resultrow
;
322 sqlite3VdbeAddOp2(p
, OP_ResultRow
, iDest
, i
);
328 ** Add an opcode that includes the p4 value as a pointer.
330 int sqlite3VdbeAddOp4(
331 Vdbe
*p
, /* Add the opcode to this VM */
332 int op
, /* The new opcode */
333 int p1
, /* The P1 operand */
334 int p2
, /* The P2 operand */
335 int p3
, /* The P3 operand */
336 const char *zP4
, /* The P4 operand */
337 int p4type
/* P4 operand type */
339 int addr
= sqlite3VdbeAddOp3(p
, op
, p1
, p2
, p3
);
340 sqlite3VdbeChangeP4(p
, addr
, zP4
, p4type
);
345 ** Add an OP_Function or OP_PureFunc opcode.
347 ** The eCallCtx argument is information (typically taken from Expr.op2)
348 ** that describes the calling context of the function. 0 means a general
349 ** function call. NC_IsCheck means called by a check constraint,
350 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx
351 ** means in the WHERE clause of a partial index. NC_GenCol means called
352 ** while computing a generated column value. 0 is the usual case.
354 int sqlite3VdbeAddFunctionCall(
355 Parse
*pParse
, /* Parsing context */
356 int p1
, /* Constant argument mask */
357 int p2
, /* First argument register */
358 int p3
, /* Register into which results are written */
359 int nArg
, /* Number of argument */
360 const FuncDef
*pFunc
, /* The function to be invoked */
361 int eCallCtx
/* Calling context */
363 Vdbe
*v
= pParse
->pVdbe
;
366 sqlite3_context
*pCtx
;
368 nByte
= sizeof(*pCtx
) + (nArg
-1)*sizeof(sqlite3_value
*);
369 pCtx
= sqlite3DbMallocRawNN(pParse
->db
, nByte
);
371 assert( pParse
->db
->mallocFailed
);
372 freeEphemeralFunction(pParse
->db
, (FuncDef
*)pFunc
);
376 pCtx
->pFunc
= (FuncDef
*)pFunc
;
380 pCtx
->iOp
= sqlite3VdbeCurrentAddr(v
);
381 addr
= sqlite3VdbeAddOp4(v
, eCallCtx
? OP_PureFunc
: OP_Function
,
382 p1
, p2
, p3
, (char*)pCtx
, P4_FUNCCTX
);
383 sqlite3VdbeChangeP5(v
, eCallCtx
& NC_SelfRef
);
388 ** Add an opcode that includes the p4 value with a P4_INT64 or
391 int sqlite3VdbeAddOp4Dup8(
392 Vdbe
*p
, /* Add the opcode to this VM */
393 int op
, /* The new opcode */
394 int p1
, /* The P1 operand */
395 int p2
, /* The P2 operand */
396 int p3
, /* The P3 operand */
397 const u8
*zP4
, /* The P4 operand */
398 int p4type
/* P4 operand type */
400 char *p4copy
= sqlite3DbMallocRawNN(sqlite3VdbeDb(p
), 8);
401 if( p4copy
) memcpy(p4copy
, zP4
, 8);
402 return sqlite3VdbeAddOp4(p
, op
, p1
, p2
, p3
, p4copy
, p4type
);
405 #ifndef SQLITE_OMIT_EXPLAIN
407 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
410 int sqlite3VdbeExplainParent(Parse
*pParse
){
412 if( pParse
->addrExplain
==0 ) return 0;
413 pOp
= sqlite3VdbeGetOp(pParse
->pVdbe
, pParse
->addrExplain
);
418 ** Set a debugger breakpoint on the following routine in order to
419 ** monitor the EXPLAIN QUERY PLAN code generation.
421 #if defined(SQLITE_DEBUG)
422 void sqlite3ExplainBreakpoint(const char *z1
, const char *z2
){
429 ** Add a new OP_Explain opcode.
431 ** If the bPush flag is true, then make this opcode the parent for
432 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
434 void sqlite3VdbeExplain(Parse
*pParse
, u8 bPush
, const char *zFmt
, ...){
436 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
437 ** But omit them (for performance) during production builds */
438 if( pParse
->explain
==2 )
446 zMsg
= sqlite3VMPrintf(pParse
->db
, zFmt
, ap
);
450 sqlite3VdbeAddOp4(v
, OP_Explain
, iThis
, pParse
->addrExplain
, 0,
452 sqlite3ExplainBreakpoint(bPush
?"PUSH":"", sqlite3VdbeGetOp(v
,-1)->p4
.z
);
454 pParse
->addrExplain
= iThis
;
460 ** Pop the EXPLAIN QUERY PLAN stack one level.
462 void sqlite3VdbeExplainPop(Parse
*pParse
){
463 sqlite3ExplainBreakpoint("POP", 0);
464 pParse
->addrExplain
= sqlite3VdbeExplainParent(pParse
);
466 #endif /* SQLITE_OMIT_EXPLAIN */
469 ** Add an OP_ParseSchema opcode. This routine is broken out from
470 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
471 ** as having been used.
473 ** The zWhere string must have been obtained from sqlite3_malloc().
474 ** This routine will take ownership of the allocated memory.
476 void sqlite3VdbeAddParseSchemaOp(Vdbe
*p
, int iDb
, char *zWhere
, u16 p5
){
478 sqlite3VdbeAddOp4(p
, OP_ParseSchema
, iDb
, 0, 0, zWhere
, P4_DYNAMIC
);
479 sqlite3VdbeChangeP5(p
, p5
);
480 for(j
=0; j
<p
->db
->nDb
; j
++) sqlite3VdbeUsesBtree(p
, j
);
481 sqlite3MayAbort(p
->pParse
);
485 ** Add an opcode that includes the p4 value as an integer.
487 int sqlite3VdbeAddOp4Int(
488 Vdbe
*p
, /* Add the opcode to this VM */
489 int op
, /* The new opcode */
490 int p1
, /* The P1 operand */
491 int p2
, /* The P2 operand */
492 int p3
, /* The P3 operand */
493 int p4
/* The P4 operand as an integer */
495 int addr
= sqlite3VdbeAddOp3(p
, op
, p1
, p2
, p3
);
496 if( p
->db
->mallocFailed
==0 ){
497 VdbeOp
*pOp
= &p
->aOp
[addr
];
498 pOp
->p4type
= P4_INT32
;
504 /* Insert the end of a co-routine
506 void sqlite3VdbeEndCoroutine(Vdbe
*v
, int regYield
){
507 sqlite3VdbeAddOp1(v
, OP_EndCoroutine
, regYield
);
509 /* Clear the temporary register cache, thereby ensuring that each
510 ** co-routine has its own independent set of registers, because co-routines
511 ** might expect their registers to be preserved across an OP_Yield, and
512 ** that could cause problems if two or more co-routines are using the same
513 ** temporary register.
515 v
->pParse
->nTempReg
= 0;
516 v
->pParse
->nRangeReg
= 0;
520 ** Create a new symbolic label for an instruction that has yet to be
521 ** coded. The symbolic label is really just a negative number. The
522 ** label can be used as the P2 value of an operation. Later, when
523 ** the label is resolved to a specific address, the VDBE will scan
524 ** through its operation list and change all values of P2 which match
525 ** the label into the resolved address.
527 ** The VDBE knows that a P2 value is a label because labels are
528 ** always negative and P2 values are suppose to be non-negative.
529 ** Hence, a negative P2 value is a label that has yet to be resolved.
530 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
533 ** Variable usage notes:
535 ** Parse.aLabel[x] Stores the address that the x-th label resolves
536 ** into. For testing (SQLITE_DEBUG), unresolved
537 ** labels stores -1, but that is not required.
538 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[]
539 ** Parse.nLabel The *negative* of the number of labels that have
540 ** been issued. The negative is stored because
541 ** that gives a performance improvement over storing
542 ** the equivalent positive value.
544 int sqlite3VdbeMakeLabel(Parse
*pParse
){
545 return --pParse
->nLabel
;
549 ** Resolve label "x" to be the address of the next instruction to
550 ** be inserted. The parameter "x" must have been obtained from
551 ** a prior call to sqlite3VdbeMakeLabel().
553 static SQLITE_NOINLINE
void resizeResolveLabel(Parse
*p
, Vdbe
*v
, int j
){
554 int nNewSize
= 10 - p
->nLabel
;
555 p
->aLabel
= sqlite3DbReallocOrFree(p
->db
, p
->aLabel
,
556 nNewSize
*sizeof(p
->aLabel
[0]));
562 for(i
=p
->nLabelAlloc
; i
<nNewSize
; i
++) p
->aLabel
[i
] = -1;
564 p
->nLabelAlloc
= nNewSize
;
565 p
->aLabel
[j
] = v
->nOp
;
568 void sqlite3VdbeResolveLabel(Vdbe
*v
, int x
){
569 Parse
*p
= v
->pParse
;
571 assert( v
->eVdbeState
==VDBE_INIT_STATE
);
572 assert( j
<-p
->nLabel
);
575 if( p
->db
->flags
& SQLITE_VdbeAddopTrace
){
576 printf("RESOLVE LABEL %d to %d\n", x
, v
->nOp
);
579 if( p
->nLabelAlloc
+ p
->nLabel
< 0 ){
580 resizeResolveLabel(p
,v
,j
);
582 assert( p
->aLabel
[j
]==(-1) ); /* Labels may only be resolved once */
583 p
->aLabel
[j
] = v
->nOp
;
588 ** Mark the VDBE as one that can only be run one time.
590 void sqlite3VdbeRunOnlyOnce(Vdbe
*p
){
591 sqlite3VdbeAddOp2(p
, OP_Expire
, 1, 1);
595 ** Mark the VDBE as one that can be run multiple times.
597 void sqlite3VdbeReusable(Vdbe
*p
){
599 for(i
=1; ALWAYS(i
<p
->nOp
); i
++){
600 if( ALWAYS(p
->aOp
[i
].opcode
==OP_Expire
) ){
601 p
->aOp
[1].opcode
= OP_Noop
;
607 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
610 ** The following type and function are used to iterate through all opcodes
611 ** in a Vdbe main program and each of the sub-programs (triggers) it may
612 ** invoke directly or indirectly. It should be used as follows:
617 ** memset(&sIter, 0, sizeof(sIter));
618 ** sIter.v = v; // v is of type Vdbe*
619 ** while( (pOp = opIterNext(&sIter)) ){
620 ** // Do something with pOp
622 ** sqlite3DbFree(v->db, sIter.apSub);
625 typedef struct VdbeOpIter VdbeOpIter
;
627 Vdbe
*v
; /* Vdbe to iterate through the opcodes of */
628 SubProgram
**apSub
; /* Array of subprograms */
629 int nSub
; /* Number of entries in apSub */
630 int iAddr
; /* Address of next instruction to return */
631 int iSub
; /* 0 = main program, 1 = first sub-program etc. */
633 static Op
*opIterNext(VdbeOpIter
*p
){
639 if( p
->iSub
<=p
->nSub
){
645 aOp
= p
->apSub
[p
->iSub
-1]->aOp
;
646 nOp
= p
->apSub
[p
->iSub
-1]->nOp
;
648 assert( p
->iAddr
<nOp
);
650 pRet
= &aOp
[p
->iAddr
];
657 if( pRet
->p4type
==P4_SUBPROGRAM
){
658 int nByte
= (p
->nSub
+1)*sizeof(SubProgram
*);
660 for(j
=0; j
<p
->nSub
; j
++){
661 if( p
->apSub
[j
]==pRet
->p4
.pProgram
) break;
664 p
->apSub
= sqlite3DbReallocOrFree(v
->db
, p
->apSub
, nByte
);
668 p
->apSub
[p
->nSub
++] = pRet
->p4
.pProgram
;
678 ** Check if the program stored in the VM associated with pParse may
679 ** throw an ABORT exception (causing the statement, but not entire transaction
680 ** to be rolled back). This condition is true if the main program or any
681 ** sub-programs contains any of the following:
683 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
684 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
689 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
690 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
691 ** (for CREATE TABLE AS SELECT ...)
693 ** Then check that the value of Parse.mayAbort is true if an
694 ** ABORT may be thrown, or false otherwise. Return true if it does
695 ** match, or false otherwise. This function is intended to be used as
696 ** part of an assert statement in the compiler. Similar to:
698 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
700 int sqlite3VdbeAssertMayAbort(Vdbe
*v
, int mayAbort
){
702 int hasFkCounter
= 0;
703 int hasCreateTable
= 0;
704 int hasCreateIndex
= 0;
705 int hasInitCoroutine
= 0;
710 memset(&sIter
, 0, sizeof(sIter
));
713 while( (pOp
= opIterNext(&sIter
))!=0 ){
714 int opcode
= pOp
->opcode
;
715 if( opcode
==OP_Destroy
|| opcode
==OP_VUpdate
|| opcode
==OP_VRename
716 || opcode
==OP_VDestroy
717 || opcode
==OP_VCreate
718 || opcode
==OP_ParseSchema
719 || ((opcode
==OP_Halt
|| opcode
==OP_HaltIfNull
)
720 && ((pOp
->p1
)!=SQLITE_OK
&& pOp
->p2
==OE_Abort
))
725 if( opcode
==OP_CreateBtree
&& pOp
->p3
==BTREE_INTKEY
) hasCreateTable
= 1;
727 /* hasCreateIndex may also be set for some DELETE statements that use
728 ** OP_Clear. So this routine may end up returning true in the case
729 ** where a "DELETE FROM tbl" has a statement-journal but does not
730 ** require one. This is not so bad - it is an inefficiency, not a bug. */
731 if( opcode
==OP_CreateBtree
&& pOp
->p3
==BTREE_BLOBKEY
) hasCreateIndex
= 1;
732 if( opcode
==OP_Clear
) hasCreateIndex
= 1;
734 if( opcode
==OP_InitCoroutine
) hasInitCoroutine
= 1;
735 #ifndef SQLITE_OMIT_FOREIGN_KEY
736 if( opcode
==OP_FkCounter
&& pOp
->p1
==0 && pOp
->p2
==1 ){
741 sqlite3DbFree(v
->db
, sIter
.apSub
);
743 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
744 ** If malloc failed, then the while() loop above may not have iterated
745 ** through all opcodes and hasAbort may be set incorrectly. Return
746 ** true for this case to prevent the assert() in the callers frame
748 return ( v
->db
->mallocFailed
|| hasAbort
==mayAbort
|| hasFkCounter
749 || (hasCreateTable
&& hasInitCoroutine
) || hasCreateIndex
752 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
756 ** Increment the nWrite counter in the VDBE if the cursor is not an
757 ** ephemeral cursor, or if the cursor argument is NULL.
759 void sqlite3VdbeIncrWriteCounter(Vdbe
*p
, VdbeCursor
*pC
){
761 || (pC
->eCurType
!=CURTYPE_SORTER
762 && pC
->eCurType
!=CURTYPE_PSEUDO
772 ** Assert if an Abort at this point in time might result in a corrupt
775 void sqlite3VdbeAssertAbortable(Vdbe
*p
){
776 assert( p
->nWrite
==0 || p
->usesStmtJournal
);
781 ** This routine is called after all opcodes have been inserted. It loops
782 ** through all the opcodes and fixes up some details.
784 ** (1) For each jump instruction with a negative P2 value (a label)
785 ** resolve the P2 value to an actual address.
787 ** (2) Compute the maximum number of arguments used by any SQL function
788 ** and store that value in *pMaxFuncArgs.
790 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
791 ** indicate what the prepared statement actually does.
793 ** (4) (discontinued)
795 ** (5) Reclaim the memory allocated for storing labels.
797 ** This routine will only function correctly if the mkopcodeh.tcl generator
798 ** script numbers the opcodes correctly. Changes to this routine must be
799 ** coordinated with changes to mkopcodeh.tcl.
801 static void resolveP2Values(Vdbe
*p
, int *pMaxFuncArgs
){
802 int nMaxArgs
= *pMaxFuncArgs
;
804 Parse
*pParse
= p
->pParse
;
805 int *aLabel
= pParse
->aLabel
;
808 pOp
= &p
->aOp
[p
->nOp
-1];
811 /* Only JUMP opcodes and the short list of special opcodes in the switch
812 ** below need to be considered. The mkopcodeh.tcl generator script groups
813 ** all these opcodes together near the front of the opcode list. Skip
814 ** any opcode that does not need processing by virtual of the fact that
815 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
817 if( pOp
->opcode
<=SQLITE_MX_JUMP_OPCODE
){
818 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
819 ** cases from this switch! */
820 switch( pOp
->opcode
){
821 case OP_Transaction
: {
822 if( pOp
->p2
!=0 ) p
->readOnly
= 0;
823 /* no break */ deliberate_fall_through
830 #ifndef SQLITE_OMIT_WAL
834 case OP_JournalMode
: {
839 #ifndef SQLITE_OMIT_VIRTUALTABLE
841 if( pOp
->p2
>nMaxArgs
) nMaxArgs
= pOp
->p2
;
846 assert( (pOp
- p
->aOp
) >= 3 );
847 assert( pOp
[-1].opcode
==OP_Integer
);
849 if( n
>nMaxArgs
) nMaxArgs
= n
;
850 /* Fall through into the default case */
851 /* no break */ deliberate_fall_through
856 /* The mkopcodeh.tcl script has so arranged things that the only
857 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
858 ** have non-negative values for P2. */
859 assert( (sqlite3OpcodeProperty
[pOp
->opcode
] & OPFLG_JUMP
)!=0 );
860 assert( ADDR(pOp
->p2
)<-pParse
->nLabel
);
861 pOp
->p2
= aLabel
[ADDR(pOp
->p2
)];
866 /* The mkopcodeh.tcl script has so arranged things that the only
867 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
868 ** have non-negative values for P2. */
869 assert( (sqlite3OpcodeProperty
[pOp
->opcode
]&OPFLG_JUMP
)==0 || pOp
->p2
>=0);
871 if( pOp
==p
->aOp
) break;
875 sqlite3DbFreeNN(p
->db
, pParse
->aLabel
);
879 *pMaxFuncArgs
= nMaxArgs
;
880 assert( p
->bIsReader
!=0 || DbMaskAllZero(p
->btreeMask
) );
885 ** Check to see if a subroutine contains a jump to a location outside of
886 ** the subroutine. If a jump outside the subroutine is detected, add code
887 ** that will cause the program to halt with an error message.
889 ** The subroutine consists of opcodes between iFirst and iLast. Jumps to
890 ** locations within the subroutine are acceptable. iRetReg is a register
891 ** that contains the return address. Jumps to outside the range of iFirst
892 ** through iLast are also acceptable as long as the jump destination is
893 ** an OP_Return to iReturnAddr.
895 ** A jump to an unresolved label means that the jump destination will be
896 ** beyond the current address. That is normally a jump to an early
897 ** termination and is consider acceptable.
899 ** This routine only runs during debug builds. The purpose is (of course)
900 ** to detect invalid escapes out of a subroutine. The OP_Halt opcode
901 ** is generated rather than an assert() or other error, so that ".eqp full"
902 ** will still work to show the original bytecode, to aid in debugging.
904 void sqlite3VdbeNoJumpsOutsideSubrtn(
905 Vdbe
*v
, /* The byte-code program under construction */
906 int iFirst
, /* First opcode of the subroutine */
907 int iLast
, /* Last opcode of the subroutine */
908 int iRetReg
/* Subroutine return address register */
913 sqlite3_str
*pErr
= 0;
917 if( pParse
->nErr
) return;
918 assert( iLast
>=iFirst
);
919 assert( iLast
<v
->nOp
);
920 pOp
= &v
->aOp
[iFirst
];
921 for(i
=iFirst
; i
<=iLast
; i
++, pOp
++){
922 if( (sqlite3OpcodeProperty
[pOp
->opcode
] & OPFLG_JUMP
)!=0 ){
923 int iDest
= pOp
->p2
; /* Jump destination */
924 if( iDest
==0 ) continue;
925 if( pOp
->opcode
==OP_Gosub
) continue;
929 if( j
>=-pParse
->nLabel
|| pParse
->aLabel
[j
]<0 ){
932 iDest
= pParse
->aLabel
[j
];
934 if( iDest
<iFirst
|| iDest
>iLast
){
936 for(; j
<v
->nOp
; j
++){
937 VdbeOp
*pX
= &v
->aOp
[j
];
938 if( pX
->opcode
==OP_Return
){
939 if( pX
->p1
==iRetReg
) break;
942 if( pX
->opcode
==OP_Noop
) continue;
943 if( pX
->opcode
==OP_Explain
) continue;
945 pErr
= sqlite3_str_new(0);
947 sqlite3_str_appendchar(pErr
, 1, '\n');
949 sqlite3_str_appendf(pErr
,
950 "Opcode at %d jumps to %d which is outside the "
951 "subroutine at %d..%d",
952 i
, iDest
, iFirst
, iLast
);
959 char *zErr
= sqlite3_str_finish(pErr
);
960 sqlite3VdbeAddOp4(v
, OP_Halt
, SQLITE_INTERNAL
, OE_Abort
, 0, zErr
, 0);
962 sqlite3MayAbort(pParse
);
965 #endif /* SQLITE_DEBUG */
968 ** Return the address of the next instruction to be inserted.
970 int sqlite3VdbeCurrentAddr(Vdbe
*p
){
971 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
976 ** Verify that at least N opcode slots are available in p without
977 ** having to malloc for more space (except when compiled using
978 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
979 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
980 ** fail due to a OOM fault and hence that the return value from
981 ** sqlite3VdbeAddOpList() will always be non-NULL.
983 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
984 void sqlite3VdbeVerifyNoMallocRequired(Vdbe
*p
, int N
){
985 assert( p
->nOp
+ N
<= p
->nOpAlloc
);
990 ** Verify that the VM passed as the only argument does not contain
991 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
992 ** by code in pragma.c to ensure that the implementation of certain
993 ** pragmas comports with the flags specified in the mkpragmatab.tcl
996 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
997 void sqlite3VdbeVerifyNoResultRow(Vdbe
*p
){
999 for(i
=0; i
<p
->nOp
; i
++){
1000 assert( p
->aOp
[i
].opcode
!=OP_ResultRow
);
1006 ** Generate code (a single OP_Abortable opcode) that will
1007 ** verify that the VDBE program can safely call Abort in the current
1010 #if defined(SQLITE_DEBUG)
1011 void sqlite3VdbeVerifyAbortable(Vdbe
*p
, int onError
){
1012 if( onError
==OE_Abort
) sqlite3VdbeAddOp0(p
, OP_Abortable
);
1017 ** This function returns a pointer to the array of opcodes associated with
1018 ** the Vdbe passed as the first argument. It is the callers responsibility
1019 ** to arrange for the returned array to be eventually freed using the
1020 ** vdbeFreeOpArray() function.
1022 ** Before returning, *pnOp is set to the number of entries in the returned
1023 ** array. Also, *pnMaxArg is set to the larger of its current value and
1024 ** the number of entries in the Vdbe.apArg[] array required to execute the
1025 ** returned program.
1027 VdbeOp
*sqlite3VdbeTakeOpArray(Vdbe
*p
, int *pnOp
, int *pnMaxArg
){
1028 VdbeOp
*aOp
= p
->aOp
;
1029 assert( aOp
&& !p
->db
->mallocFailed
);
1031 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
1032 assert( DbMaskAllZero(p
->btreeMask
) );
1034 resolveP2Values(p
, pnMaxArg
);
1041 ** Add a whole list of operations to the operation stack. Return a
1042 ** pointer to the first operation inserted.
1044 ** Non-zero P2 arguments to jump instructions are automatically adjusted
1045 ** so that the jump target is relative to the first operation inserted.
1047 VdbeOp
*sqlite3VdbeAddOpList(
1048 Vdbe
*p
, /* Add opcodes to the prepared statement */
1049 int nOp
, /* Number of opcodes to add */
1050 VdbeOpList
const *aOp
, /* The opcodes to be added */
1051 int iLineno
/* Source-file line number of first opcode */
1054 VdbeOp
*pOut
, *pFirst
;
1056 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
1057 if( p
->nOp
+ nOp
> p
->nOpAlloc
&& growOpArray(p
, nOp
) ){
1060 pFirst
= pOut
= &p
->aOp
[p
->nOp
];
1061 for(i
=0; i
<nOp
; i
++, aOp
++, pOut
++){
1062 pOut
->opcode
= aOp
->opcode
;
1065 assert( aOp
->p2
>=0 );
1066 if( (sqlite3OpcodeProperty
[aOp
->opcode
] & OPFLG_JUMP
)!=0 && aOp
->p2
>0 ){
1070 pOut
->p4type
= P4_NOTUSED
;
1073 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1076 #ifdef SQLITE_VDBE_COVERAGE
1077 pOut
->iSrcLine
= iLineno
+i
;
1082 if( p
->db
->flags
& SQLITE_VdbeAddopTrace
){
1083 sqlite3VdbePrintOp(0, i
+p
->nOp
, &p
->aOp
[i
+p
->nOp
]);
1091 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1093 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1095 void sqlite3VdbeScanStatus(
1096 Vdbe
*p
, /* VM to add scanstatus() to */
1097 int addrExplain
, /* Address of OP_Explain (or 0) */
1098 int addrLoop
, /* Address of loop counter */
1099 int addrVisit
, /* Address of rows visited counter */
1100 LogEst nEst
, /* Estimated number of output rows */
1101 const char *zName
/* Name of table or index being scanned */
1103 sqlite3_int64 nByte
= (p
->nScan
+1) * sizeof(ScanStatus
);
1105 aNew
= (ScanStatus
*)sqlite3DbRealloc(p
->db
, p
->aScan
, nByte
);
1107 ScanStatus
*pNew
= &aNew
[p
->nScan
++];
1108 pNew
->addrExplain
= addrExplain
;
1109 pNew
->addrLoop
= addrLoop
;
1110 pNew
->addrVisit
= addrVisit
;
1112 pNew
->zName
= sqlite3DbStrDup(p
->db
, zName
);
1120 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1121 ** for a specific instruction.
1123 void sqlite3VdbeChangeOpcode(Vdbe
*p
, int addr
, u8 iNewOpcode
){
1124 sqlite3VdbeGetOp(p
,addr
)->opcode
= iNewOpcode
;
1126 void sqlite3VdbeChangeP1(Vdbe
*p
, int addr
, int val
){
1127 sqlite3VdbeGetOp(p
,addr
)->p1
= val
;
1129 void sqlite3VdbeChangeP2(Vdbe
*p
, int addr
, int val
){
1130 sqlite3VdbeGetOp(p
,addr
)->p2
= val
;
1132 void sqlite3VdbeChangeP3(Vdbe
*p
, int addr
, int val
){
1133 sqlite3VdbeGetOp(p
,addr
)->p3
= val
;
1135 void sqlite3VdbeChangeP5(Vdbe
*p
, u16 p5
){
1136 assert( p
->nOp
>0 || p
->db
->mallocFailed
);
1137 if( p
->nOp
>0 ) p
->aOp
[p
->nOp
-1].p5
= p5
;
1141 ** Change the P2 operand of instruction addr so that it points to
1142 ** the address of the next instruction to be coded.
1144 void sqlite3VdbeJumpHere(Vdbe
*p
, int addr
){
1145 sqlite3VdbeChangeP2(p
, addr
, p
->nOp
);
1149 ** Change the P2 operand of the jump instruction at addr so that
1150 ** the jump lands on the next opcode. Or if the jump instruction was
1151 ** the previous opcode (and is thus a no-op) then simply back up
1152 ** the next instruction counter by one slot so that the jump is
1153 ** overwritten by the next inserted opcode.
1155 ** This routine is an optimization of sqlite3VdbeJumpHere() that
1156 ** strives to omit useless byte-code like this:
1161 void sqlite3VdbeJumpHereOrPopInst(Vdbe
*p
, int addr
){
1162 if( addr
==p
->nOp
-1 ){
1163 assert( p
->aOp
[addr
].opcode
==OP_Once
1164 || p
->aOp
[addr
].opcode
==OP_If
1165 || p
->aOp
[addr
].opcode
==OP_FkIfZero
);
1166 assert( p
->aOp
[addr
].p4type
==0 );
1167 #ifdef SQLITE_VDBE_COVERAGE
1168 sqlite3VdbeGetOp(p
,-1)->iSrcLine
= 0; /* Erase VdbeCoverage() macros */
1172 sqlite3VdbeChangeP2(p
, addr
, p
->nOp
);
1178 ** If the input FuncDef structure is ephemeral, then free it. If
1179 ** the FuncDef is not ephermal, then do nothing.
1181 static void freeEphemeralFunction(sqlite3
*db
, FuncDef
*pDef
){
1182 if( (pDef
->funcFlags
& SQLITE_FUNC_EPHEM
)!=0 ){
1183 sqlite3DbFreeNN(db
, pDef
);
1188 ** Delete a P4 value if necessary.
1190 static SQLITE_NOINLINE
void freeP4Mem(sqlite3
*db
, Mem
*p
){
1191 if( p
->szMalloc
) sqlite3DbFree(db
, p
->zMalloc
);
1192 sqlite3DbFreeNN(db
, p
);
1194 static SQLITE_NOINLINE
void freeP4FuncCtx(sqlite3
*db
, sqlite3_context
*p
){
1195 freeEphemeralFunction(db
, p
->pFunc
);
1196 sqlite3DbFreeNN(db
, p
);
1198 static void freeP4(sqlite3
*db
, int p4type
, void *p4
){
1202 freeP4FuncCtx(db
, (sqlite3_context
*)p4
);
1209 sqlite3DbFree(db
, p4
);
1213 if( db
->pnBytesFreed
==0 ) sqlite3KeyInfoUnref((KeyInfo
*)p4
);
1216 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1218 sqlite3ExprDelete(db
, (Expr
*)p4
);
1223 freeEphemeralFunction(db
, (FuncDef
*)p4
);
1227 if( db
->pnBytesFreed
==0 ){
1228 sqlite3ValueFree((sqlite3_value
*)p4
);
1230 freeP4Mem(db
, (Mem
*)p4
);
1235 if( db
->pnBytesFreed
==0 ) sqlite3VtabUnlock((VTable
*)p4
);
1242 ** Free the space allocated for aOp and any p4 values allocated for the
1243 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1246 static void vdbeFreeOpArray(sqlite3
*db
, Op
*aOp
, int nOp
){
1249 Op
*pOp
= &aOp
[nOp
-1];
1250 while(1){ /* Exit via break */
1251 if( pOp
->p4type
<= P4_FREE_IF_LE
) freeP4(db
, pOp
->p4type
, pOp
->p4
.p
);
1252 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1253 sqlite3DbFree(db
, pOp
->zComment
);
1255 if( pOp
==aOp
) break;
1258 sqlite3DbFreeNN(db
, aOp
);
1263 ** Link the SubProgram object passed as the second argument into the linked
1264 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1265 ** objects when the VM is no longer required.
1267 void sqlite3VdbeLinkSubProgram(Vdbe
*pVdbe
, SubProgram
*p
){
1268 p
->pNext
= pVdbe
->pProgram
;
1269 pVdbe
->pProgram
= p
;
1273 ** Return true if the given Vdbe has any SubPrograms.
1275 int sqlite3VdbeHasSubProgram(Vdbe
*pVdbe
){
1276 return pVdbe
->pProgram
!=0;
1280 ** Change the opcode at addr into OP_Noop
1282 int sqlite3VdbeChangeToNoop(Vdbe
*p
, int addr
){
1284 if( p
->db
->mallocFailed
) return 0;
1285 assert( addr
>=0 && addr
<p
->nOp
);
1286 pOp
= &p
->aOp
[addr
];
1287 freeP4(p
->db
, pOp
->p4type
, pOp
->p4
.p
);
1288 pOp
->p4type
= P4_NOTUSED
;
1290 pOp
->opcode
= OP_Noop
;
1295 ** If the last opcode is "op" and it is not a jump destination,
1296 ** then remove it. Return true if and only if an opcode was removed.
1298 int sqlite3VdbeDeletePriorOpcode(Vdbe
*p
, u8 op
){
1299 if( p
->nOp
>0 && p
->aOp
[p
->nOp
-1].opcode
==op
){
1300 return sqlite3VdbeChangeToNoop(p
, p
->nOp
-1);
1308 ** Generate an OP_ReleaseReg opcode to indicate that a range of
1309 ** registers, except any identified by mask, are no longer in use.
1311 void sqlite3VdbeReleaseRegisters(
1312 Parse
*pParse
, /* Parsing context */
1313 int iFirst
, /* Index of first register to be released */
1314 int N
, /* Number of registers to release */
1315 u32 mask
, /* Mask of registers to NOT release */
1316 int bUndefine
/* If true, mark registers as undefined */
1318 if( N
==0 || OptimizationDisabled(pParse
->db
, SQLITE_ReleaseReg
) ) return;
1319 assert( pParse
->pVdbe
);
1320 assert( iFirst
>=1 );
1321 assert( iFirst
+N
-1<=pParse
->nMem
);
1322 if( N
<=31 && mask
!=0 ){
1323 while( N
>0 && (mask
&1)!=0 ){
1328 while( N
>0 && N
<=32 && (mask
& MASKBIT32(N
-1))!=0 ){
1329 mask
&= ~MASKBIT32(N
-1);
1334 sqlite3VdbeAddOp3(pParse
->pVdbe
, OP_ReleaseReg
, iFirst
, N
, *(int*)&mask
);
1335 if( bUndefine
) sqlite3VdbeChangeP5(pParse
->pVdbe
, 1);
1338 #endif /* SQLITE_DEBUG */
1342 ** Change the value of the P4 operand for a specific instruction.
1343 ** This routine is useful when a large program is loaded from a
1344 ** static array using sqlite3VdbeAddOpList but we want to make a
1345 ** few minor changes to the program.
1347 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1348 ** the string is made into memory obtained from sqlite3_malloc().
1349 ** A value of n==0 means copy bytes of zP4 up to and including the
1350 ** first null byte. If n>0 then copy n+1 bytes of zP4.
1352 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1353 ** to a string or structure that is guaranteed to exist for the lifetime of
1354 ** the Vdbe. In these cases we can just copy the pointer.
1356 ** If addr<0 then change P4 on the most recently inserted instruction.
1358 static void SQLITE_NOINLINE
vdbeChangeP4Full(
1365 freeP4(p
->db
, pOp
->p4type
, pOp
->p4
.p
);
1370 sqlite3VdbeChangeP4(p
, (int)(pOp
- p
->aOp
), zP4
, n
);
1372 if( n
==0 ) n
= sqlite3Strlen30(zP4
);
1373 pOp
->p4
.z
= sqlite3DbStrNDup(p
->db
, zP4
, n
);
1374 pOp
->p4type
= P4_DYNAMIC
;
1377 void sqlite3VdbeChangeP4(Vdbe
*p
, int addr
, const char *zP4
, int n
){
1382 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
1383 assert( p
->aOp
!=0 || db
->mallocFailed
);
1384 if( db
->mallocFailed
){
1385 if( n
!=P4_VTAB
) freeP4(db
, n
, (void*)*(char**)&zP4
);
1389 assert( addr
<p
->nOp
);
1393 pOp
= &p
->aOp
[addr
];
1394 if( n
>=0 || pOp
->p4type
){
1395 vdbeChangeP4Full(p
, pOp
, zP4
, n
);
1399 /* Note: this cast is safe, because the origin data point was an int
1400 ** that was cast to a (const char *). */
1401 pOp
->p4
.i
= SQLITE_PTR_TO_INT(zP4
);
1402 pOp
->p4type
= P4_INT32
;
1405 pOp
->p4
.p
= (void*)zP4
;
1406 pOp
->p4type
= (signed char)n
;
1407 if( n
==P4_VTAB
) sqlite3VtabLock((VTable
*)zP4
);
1412 ** Change the P4 operand of the most recently coded instruction
1413 ** to the value defined by the arguments. This is a high-speed
1414 ** version of sqlite3VdbeChangeP4().
1416 ** The P4 operand must not have been previously defined. And the new
1417 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
1420 void sqlite3VdbeAppendP4(Vdbe
*p
, void *pP4
, int n
){
1422 assert( n
!=P4_INT32
&& n
!=P4_VTAB
);
1424 if( p
->db
->mallocFailed
){
1425 freeP4(p
->db
, n
, pP4
);
1429 pOp
= &p
->aOp
[p
->nOp
-1];
1430 assert( pOp
->p4type
==P4_NOTUSED
);
1437 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1440 void sqlite3VdbeSetP4KeyInfo(Parse
*pParse
, Index
*pIdx
){
1441 Vdbe
*v
= pParse
->pVdbe
;
1445 pKeyInfo
= sqlite3KeyInfoOfIndex(pParse
, pIdx
);
1446 if( pKeyInfo
) sqlite3VdbeAppendP4(v
, pKeyInfo
, P4_KEYINFO
);
1449 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1451 ** Change the comment on the most recently coded instruction. Or
1452 ** insert a No-op and add the comment to that new instruction. This
1453 ** makes the code easier to read during debugging. None of this happens
1454 ** in a production build.
1456 static void vdbeVComment(Vdbe
*p
, const char *zFormat
, va_list ap
){
1457 assert( p
->nOp
>0 || p
->aOp
==0 );
1458 assert( p
->aOp
==0 || p
->aOp
[p
->nOp
-1].zComment
==0 || p
->pParse
->nErr
>0 );
1461 sqlite3DbFree(p
->db
, p
->aOp
[p
->nOp
-1].zComment
);
1462 p
->aOp
[p
->nOp
-1].zComment
= sqlite3VMPrintf(p
->db
, zFormat
, ap
);
1465 void sqlite3VdbeComment(Vdbe
*p
, const char *zFormat
, ...){
1468 va_start(ap
, zFormat
);
1469 vdbeVComment(p
, zFormat
, ap
);
1473 void sqlite3VdbeNoopComment(Vdbe
*p
, const char *zFormat
, ...){
1476 sqlite3VdbeAddOp0(p
, OP_Noop
);
1477 va_start(ap
, zFormat
);
1478 vdbeVComment(p
, zFormat
, ap
);
1484 #ifdef SQLITE_VDBE_COVERAGE
1486 ** Set the value if the iSrcLine field for the previously coded instruction.
1488 void sqlite3VdbeSetLineNumber(Vdbe
*v
, int iLine
){
1489 sqlite3VdbeGetOp(v
,-1)->iSrcLine
= iLine
;
1491 #endif /* SQLITE_VDBE_COVERAGE */
1494 ** Return the opcode for a given address. If the address is -1, then
1495 ** return the most recently inserted opcode.
1497 ** If a memory allocation error has occurred prior to the calling of this
1498 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
1499 ** is readable but not writable, though it is cast to a writable value.
1500 ** The return of a dummy opcode allows the call to continue functioning
1501 ** after an OOM fault without having to check to see if the return from
1502 ** this routine is a valid pointer. But because the dummy.opcode is 0,
1503 ** dummy will never be written to. This is verified by code inspection and
1504 ** by running with Valgrind.
1506 VdbeOp
*sqlite3VdbeGetOp(Vdbe
*p
, int addr
){
1507 /* C89 specifies that the constant "dummy" will be initialized to all
1508 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
1509 static VdbeOp dummy
; /* Ignore the MSVC warning about no initializer */
1510 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
1514 assert( (addr
>=0 && addr
<p
->nOp
) || p
->db
->mallocFailed
);
1515 if( p
->db
->mallocFailed
){
1516 return (VdbeOp
*)&dummy
;
1518 return &p
->aOp
[addr
];
1522 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1524 ** Return an integer value for one of the parameters to the opcode pOp
1525 ** determined by character c.
1527 static int translateP(char c
, const Op
*pOp
){
1528 if( c
=='1' ) return pOp
->p1
;
1529 if( c
=='2' ) return pOp
->p2
;
1530 if( c
=='3' ) return pOp
->p3
;
1531 if( c
=='4' ) return pOp
->p4
.i
;
1536 ** Compute a string for the "comment" field of a VDBE opcode listing.
1538 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1539 ** to an extra string that is appended to the sqlite3OpcodeName(). In the
1540 ** absence of other comments, this synopsis becomes the comment on the opcode.
1541 ** Some translation occurs:
1544 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1545 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1546 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
1548 char *sqlite3VdbeDisplayComment(
1549 sqlite3
*db
, /* Optional - Oom error reporting only */
1550 const Op
*pOp
, /* The opcode to be commented */
1551 const char *zP4
/* Previously obtained value for P4 */
1553 const char *zOpName
;
1554 const char *zSynopsis
;
1560 sqlite3StrAccumInit(&x
, 0, 0, 0, SQLITE_MAX_LENGTH
);
1561 zOpName
= sqlite3OpcodeName(pOp
->opcode
);
1562 nOpName
= sqlite3Strlen30(zOpName
);
1563 if( zOpName
[nOpName
+1] ){
1566 zSynopsis
= zOpName
+ nOpName
+ 1;
1567 if( strncmp(zSynopsis
,"IF ",3)==0 ){
1568 sqlite3_snprintf(sizeof(zAlt
), zAlt
, "if %s goto P2", zSynopsis
+3);
1571 for(ii
=0; (c
= zSynopsis
[ii
])!=0; ii
++){
1573 c
= zSynopsis
[++ii
];
1575 sqlite3_str_appendall(&x
, zP4
);
1577 if( pOp
->zComment
&& pOp
->zComment
[0] ){
1578 sqlite3_str_appendall(&x
, pOp
->zComment
);
1583 int v1
= translateP(c
, pOp
);
1585 if( strncmp(zSynopsis
+ii
+1, "@P", 2)==0 ){
1587 v2
= translateP(zSynopsis
[ii
], pOp
);
1588 if( strncmp(zSynopsis
+ii
+1,"+1",2)==0 ){
1593 sqlite3_str_appendf(&x
, "%d", v1
);
1595 sqlite3_str_appendf(&x
, "%d..%d", v1
, v1
+v2
-1);
1597 }else if( strncmp(zSynopsis
+ii
+1, "@NP", 3)==0 ){
1598 sqlite3_context
*pCtx
= pOp
->p4
.pCtx
;
1599 if( pOp
->p4type
!=P4_FUNCCTX
|| pCtx
->argc
==1 ){
1600 sqlite3_str_appendf(&x
, "%d", v1
);
1601 }else if( pCtx
->argc
>1 ){
1602 sqlite3_str_appendf(&x
, "%d..%d", v1
, v1
+pCtx
->argc
-1);
1603 }else if( x
.accError
==0 ){
1604 assert( x
.nChar
>2 );
1610 sqlite3_str_appendf(&x
, "%d", v1
);
1611 if( strncmp(zSynopsis
+ii
+1, "..P3", 4)==0 && pOp
->p3
==0 ){
1617 sqlite3_str_appendchar(&x
, 1, c
);
1620 if( !seenCom
&& pOp
->zComment
){
1621 sqlite3_str_appendf(&x
, "; %s", pOp
->zComment
);
1623 }else if( pOp
->zComment
){
1624 sqlite3_str_appendall(&x
, pOp
->zComment
);
1626 if( (x
.accError
& SQLITE_NOMEM
)!=0 && db
!=0 ){
1627 sqlite3OomFault(db
);
1629 return sqlite3StrAccumFinish(&x
);
1631 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
1633 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1635 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1636 ** that can be displayed in the P4 column of EXPLAIN output.
1638 static void displayP4Expr(StrAccum
*p
, Expr
*pExpr
){
1639 const char *zOp
= 0;
1640 switch( pExpr
->op
){
1642 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
1643 sqlite3_str_appendf(p
, "%Q", pExpr
->u
.zToken
);
1646 sqlite3_str_appendf(p
, "%d", pExpr
->u
.iValue
);
1649 sqlite3_str_appendf(p
, "NULL");
1652 sqlite3_str_appendf(p
, "r[%d]", pExpr
->iTable
);
1656 if( pExpr
->iColumn
<0 ){
1657 sqlite3_str_appendf(p
, "rowid");
1659 sqlite3_str_appendf(p
, "c%d", (int)pExpr
->iColumn
);
1663 case TK_LT
: zOp
= "LT"; break;
1664 case TK_LE
: zOp
= "LE"; break;
1665 case TK_GT
: zOp
= "GT"; break;
1666 case TK_GE
: zOp
= "GE"; break;
1667 case TK_NE
: zOp
= "NE"; break;
1668 case TK_EQ
: zOp
= "EQ"; break;
1669 case TK_IS
: zOp
= "IS"; break;
1670 case TK_ISNOT
: zOp
= "ISNOT"; break;
1671 case TK_AND
: zOp
= "AND"; break;
1672 case TK_OR
: zOp
= "OR"; break;
1673 case TK_PLUS
: zOp
= "ADD"; break;
1674 case TK_STAR
: zOp
= "MUL"; break;
1675 case TK_MINUS
: zOp
= "SUB"; break;
1676 case TK_REM
: zOp
= "REM"; break;
1677 case TK_BITAND
: zOp
= "BITAND"; break;
1678 case TK_BITOR
: zOp
= "BITOR"; break;
1679 case TK_SLASH
: zOp
= "DIV"; break;
1680 case TK_LSHIFT
: zOp
= "LSHIFT"; break;
1681 case TK_RSHIFT
: zOp
= "RSHIFT"; break;
1682 case TK_CONCAT
: zOp
= "CONCAT"; break;
1683 case TK_UMINUS
: zOp
= "MINUS"; break;
1684 case TK_UPLUS
: zOp
= "PLUS"; break;
1685 case TK_BITNOT
: zOp
= "BITNOT"; break;
1686 case TK_NOT
: zOp
= "NOT"; break;
1687 case TK_ISNULL
: zOp
= "ISNULL"; break;
1688 case TK_NOTNULL
: zOp
= "NOTNULL"; break;
1691 sqlite3_str_appendf(p
, "%s", "expr");
1696 sqlite3_str_appendf(p
, "%s(", zOp
);
1697 displayP4Expr(p
, pExpr
->pLeft
);
1698 if( pExpr
->pRight
){
1699 sqlite3_str_append(p
, ",", 1);
1700 displayP4Expr(p
, pExpr
->pRight
);
1702 sqlite3_str_append(p
, ")", 1);
1705 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1710 ** Compute a string that describes the P4 parameter for an opcode.
1711 ** Use zTemp for any required temporary buffer space.
1713 char *sqlite3VdbeDisplayP4(sqlite3
*db
, Op
*pOp
){
1717 sqlite3StrAccumInit(&x
, 0, 0, 0, SQLITE_MAX_LENGTH
);
1718 switch( pOp
->p4type
){
1721 KeyInfo
*pKeyInfo
= pOp
->p4
.pKeyInfo
;
1722 assert( pKeyInfo
->aSortFlags
!=0 );
1723 sqlite3_str_appendf(&x
, "k(%d", pKeyInfo
->nKeyField
);
1724 for(j
=0; j
<pKeyInfo
->nKeyField
; j
++){
1725 CollSeq
*pColl
= pKeyInfo
->aColl
[j
];
1726 const char *zColl
= pColl
? pColl
->zName
: "";
1727 if( strcmp(zColl
, "BINARY")==0 ) zColl
= "B";
1728 sqlite3_str_appendf(&x
, ",%s%s%s",
1729 (pKeyInfo
->aSortFlags
[j
] & KEYINFO_ORDER_DESC
) ? "-" : "",
1730 (pKeyInfo
->aSortFlags
[j
] & KEYINFO_ORDER_BIGNULL
)? "N." : "",
1733 sqlite3_str_append(&x
, ")", 1);
1736 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1738 displayP4Expr(&x
, pOp
->p4
.pExpr
);
1743 static const char *const encnames
[] = {"?", "8", "16LE", "16BE"};
1744 CollSeq
*pColl
= pOp
->p4
.pColl
;
1745 assert( pColl
->enc
<4 );
1746 sqlite3_str_appendf(&x
, "%.18s-%s", pColl
->zName
,
1747 encnames
[pColl
->enc
]);
1751 FuncDef
*pDef
= pOp
->p4
.pFunc
;
1752 sqlite3_str_appendf(&x
, "%s(%d)", pDef
->zName
, pDef
->nArg
);
1756 FuncDef
*pDef
= pOp
->p4
.pCtx
->pFunc
;
1757 sqlite3_str_appendf(&x
, "%s(%d)", pDef
->zName
, pDef
->nArg
);
1761 sqlite3_str_appendf(&x
, "%lld", *pOp
->p4
.pI64
);
1765 sqlite3_str_appendf(&x
, "%d", pOp
->p4
.i
);
1769 sqlite3_str_appendf(&x
, "%.16g", *pOp
->p4
.pReal
);
1773 Mem
*pMem
= pOp
->p4
.pMem
;
1774 if( pMem
->flags
& MEM_Str
){
1776 }else if( pMem
->flags
& (MEM_Int
|MEM_IntReal
) ){
1777 sqlite3_str_appendf(&x
, "%lld", pMem
->u
.i
);
1778 }else if( pMem
->flags
& MEM_Real
){
1779 sqlite3_str_appendf(&x
, "%.16g", pMem
->u
.r
);
1780 }else if( pMem
->flags
& MEM_Null
){
1783 assert( pMem
->flags
& MEM_Blob
);
1788 #ifndef SQLITE_OMIT_VIRTUALTABLE
1790 sqlite3_vtab
*pVtab
= pOp
->p4
.pVtab
->pVtab
;
1791 sqlite3_str_appendf(&x
, "vtab:%p", pVtab
);
1797 u32
*ai
= pOp
->p4
.ai
;
1798 u32 n
= ai
[0]; /* The first element of an INTARRAY is always the
1799 ** count of the number of elements to follow */
1800 for(i
=1; i
<=n
; i
++){
1801 sqlite3_str_appendf(&x
, "%c%u", (i
==1 ? '[' : ','), ai
[i
]);
1803 sqlite3_str_append(&x
, "]", 1);
1806 case P4_SUBPROGRAM
: {
1811 zP4
= pOp
->p4
.pTab
->zName
;
1818 if( zP4
) sqlite3_str_appendall(&x
, zP4
);
1819 if( (x
.accError
& SQLITE_NOMEM
)!=0 ){
1820 sqlite3OomFault(db
);
1822 return sqlite3StrAccumFinish(&x
);
1824 #endif /* VDBE_DISPLAY_P4 */
1827 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
1829 ** The prepared statements need to know in advance the complete set of
1830 ** attached databases that will be use. A mask of these databases
1831 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
1832 ** p->btreeMask of databases that will require a lock.
1834 void sqlite3VdbeUsesBtree(Vdbe
*p
, int i
){
1835 assert( i
>=0 && i
<p
->db
->nDb
&& i
<(int)sizeof(yDbMask
)*8 );
1836 assert( i
<(int)sizeof(p
->btreeMask
)*8 );
1837 DbMaskSet(p
->btreeMask
, i
);
1838 if( i
!=1 && sqlite3BtreeSharable(p
->db
->aDb
[i
].pBt
) ){
1839 DbMaskSet(p
->lockMask
, i
);
1843 #if !defined(SQLITE_OMIT_SHARED_CACHE)
1845 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
1846 ** this routine obtains the mutex associated with each BtShared structure
1847 ** that may be accessed by the VM passed as an argument. In doing so it also
1848 ** sets the BtShared.db member of each of the BtShared structures, ensuring
1849 ** that the correct busy-handler callback is invoked if required.
1851 ** If SQLite is not threadsafe but does support shared-cache mode, then
1852 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
1853 ** of all of BtShared structures accessible via the database handle
1854 ** associated with the VM.
1856 ** If SQLite is not threadsafe and does not support shared-cache mode, this
1857 ** function is a no-op.
1859 ** The p->btreeMask field is a bitmask of all btrees that the prepared
1860 ** statement p will ever use. Let N be the number of bits in p->btreeMask
1861 ** corresponding to btrees that use shared cache. Then the runtime of
1862 ** this routine is N*N. But as N is rarely more than 1, this should not
1865 void sqlite3VdbeEnter(Vdbe
*p
){
1870 if( DbMaskAllZero(p
->lockMask
) ) return; /* The common case */
1874 for(i
=0; i
<nDb
; i
++){
1875 if( i
!=1 && DbMaskTest(p
->lockMask
,i
) && ALWAYS(aDb
[i
].pBt
!=0) ){
1876 sqlite3BtreeEnter(aDb
[i
].pBt
);
1882 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
1884 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
1886 static SQLITE_NOINLINE
void vdbeLeave(Vdbe
*p
){
1894 for(i
=0; i
<nDb
; i
++){
1895 if( i
!=1 && DbMaskTest(p
->lockMask
,i
) && ALWAYS(aDb
[i
].pBt
!=0) ){
1896 sqlite3BtreeLeave(aDb
[i
].pBt
);
1900 void sqlite3VdbeLeave(Vdbe
*p
){
1901 if( DbMaskAllZero(p
->lockMask
) ) return; /* The common case */
1906 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
1908 ** Print a single opcode. This routine is used for debugging only.
1910 void sqlite3VdbePrintOp(FILE *pOut
, int pc
, VdbeOp
*pOp
){
1914 static const char *zFormat1
= "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
1915 if( pOut
==0 ) pOut
= stdout
;
1916 sqlite3BeginBenignMalloc();
1917 dummyDb
.mallocFailed
= 1;
1918 zP4
= sqlite3VdbeDisplayP4(&dummyDb
, pOp
);
1919 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1920 zCom
= sqlite3VdbeDisplayComment(0, pOp
, zP4
);
1924 /* NB: The sqlite3OpcodeName() function is implemented by code created
1925 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
1926 ** information from the vdbe.c source text */
1927 fprintf(pOut
, zFormat1
, pc
,
1928 sqlite3OpcodeName(pOp
->opcode
), pOp
->p1
, pOp
->p2
, pOp
->p3
,
1929 zP4
? zP4
: "", pOp
->p5
,
1935 sqlite3EndBenignMalloc();
1940 ** Initialize an array of N Mem element.
1942 ** This is a high-runner, so only those fields that really do need to
1943 ** be initialized are set. The Mem structure is organized so that
1944 ** the fields that get initialized are nearby and hopefully on the same
1947 ** Mem.flags = flags
1951 ** All other fields of Mem can safely remain uninitialized for now. They
1952 ** will be initialized before use.
1954 static void initMemArray(Mem
*p
, int N
, sqlite3
*db
, u16 flags
){
1969 ** Release auxiliary memory held in an array of N Mem elements.
1971 ** After this routine returns, all Mem elements in the array will still
1972 ** be valid. Those Mem elements that were not holding auxiliary resources
1973 ** will be unchanged. Mem elements which had something freed will be
1974 ** set to MEM_Undefined.
1976 static void releaseMemArray(Mem
*p
, int N
){
1979 sqlite3
*db
= p
->db
;
1980 if( db
->pnBytesFreed
){
1982 if( p
->szMalloc
) sqlite3DbFree(db
, p
->zMalloc
);
1983 }while( (++p
)<pEnd
);
1987 assert( (&p
[1])==pEnd
|| p
[0].db
==p
[1].db
);
1988 assert( sqlite3VdbeCheckMemInvariants(p
) );
1990 /* This block is really an inlined version of sqlite3VdbeMemRelease()
1991 ** that takes advantage of the fact that the memory cell value is
1992 ** being set to NULL after releasing any dynamic resources.
1994 ** The justification for duplicating code is that according to
1995 ** callgrind, this causes a certain test case to hit the CPU 4.7
1996 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
1997 ** sqlite3MemRelease() were called from here. With -O2, this jumps
1998 ** to 6.6 percent. The test case is inserting 1000 rows into a table
1999 ** with no indexes using a single prepared INSERT statement, bind()
2000 ** and reset(). Inserts are grouped into a transaction.
2002 testcase( p
->flags
& MEM_Agg
);
2003 testcase( p
->flags
& MEM_Dyn
);
2004 if( p
->flags
&(MEM_Agg
|MEM_Dyn
) ){
2005 testcase( (p
->flags
& MEM_Dyn
)!=0 && p
->xDel
==sqlite3VdbeFrameMemDel
);
2006 sqlite3VdbeMemRelease(p
);
2007 p
->flags
= MEM_Undefined
;
2008 }else if( p
->szMalloc
){
2009 sqlite3DbFreeNN(db
, p
->zMalloc
);
2011 p
->flags
= MEM_Undefined
;
2015 p
->flags
= MEM_Undefined
;
2018 }while( (++p
)<pEnd
);
2024 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is
2025 ** and false if something is wrong.
2027 ** This routine is intended for use inside of assert() statements only.
2029 int sqlite3VdbeFrameIsValid(VdbeFrame
*pFrame
){
2030 if( pFrame
->iFrameMagic
!=SQLITE_FRAME_MAGIC
) return 0;
2037 ** This is a destructor on a Mem object (which is really an sqlite3_value)
2038 ** that deletes the Frame object that is attached to it as a blob.
2040 ** This routine does not delete the Frame right away. It merely adds the
2041 ** frame to a list of frames to be deleted when the Vdbe halts.
2043 void sqlite3VdbeFrameMemDel(void *pArg
){
2044 VdbeFrame
*pFrame
= (VdbeFrame
*)pArg
;
2045 assert( sqlite3VdbeFrameIsValid(pFrame
) );
2046 pFrame
->pParent
= pFrame
->v
->pDelFrame
;
2047 pFrame
->v
->pDelFrame
= pFrame
;
2050 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
2052 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
2053 ** QUERY PLAN output.
2055 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no
2056 ** more opcodes to be displayed.
2058 int sqlite3VdbeNextOpcode(
2059 Vdbe
*p
, /* The statement being explained */
2060 Mem
*pSub
, /* Storage for keeping track of subprogram nesting */
2061 int eMode
, /* 0: normal. 1: EQP. 2: TablesUsed */
2062 int *piPc
, /* IN/OUT: Current rowid. Overwritten with next rowid */
2063 int *piAddr
, /* OUT: Write index into (*paOp)[] here */
2064 Op
**paOp
/* OUT: Write the opcode array here */
2066 int nRow
; /* Stop when row count reaches this */
2067 int nSub
= 0; /* Number of sub-vdbes seen so far */
2068 SubProgram
**apSub
= 0; /* Array of sub-vdbes */
2069 int i
; /* Next instruction address */
2070 int rc
= SQLITE_OK
; /* Result code */
2071 Op
*aOp
= 0; /* Opcode array */
2072 int iPc
; /* Rowid. Copy of value in *piPc */
2074 /* When the number of output rows reaches nRow, that means the
2075 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
2076 ** nRow is the sum of the number of rows in the main program, plus
2077 ** the sum of the number of rows in all trigger subprograms encountered
2078 ** so far. The nRow value will increase as new trigger subprograms are
2079 ** encountered, but p->pc will eventually catch up to nRow.
2083 if( pSub
->flags
&MEM_Blob
){
2084 /* pSub is initiallly NULL. It is initialized to a BLOB by
2085 ** the P4_SUBPROGRAM processing logic below */
2086 nSub
= pSub
->n
/sizeof(Vdbe
*);
2087 apSub
= (SubProgram
**)pSub
->z
;
2089 for(i
=0; i
<nSub
; i
++){
2090 nRow
+= apSub
[i
]->nOp
;
2094 while(1){ /* Loop exits via break */
2102 /* The rowid is small enough that we are still in the
2106 /* We are currently listing subprograms. Figure out which one and
2107 ** pick up the appropriate opcode. */
2112 for(j
=0; i
>=apSub
[j
]->nOp
; j
++){
2114 assert( i
<apSub
[j
]->nOp
|| j
+1<nSub
);
2116 aOp
= apSub
[j
]->aOp
;
2119 /* When an OP_Program opcode is encounter (the only opcode that has
2120 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
2121 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
2122 ** has not already been seen.
2124 if( pSub
!=0 && aOp
[i
].p4type
==P4_SUBPROGRAM
){
2125 int nByte
= (nSub
+1)*sizeof(SubProgram
*);
2127 for(j
=0; j
<nSub
; j
++){
2128 if( apSub
[j
]==aOp
[i
].p4
.pProgram
) break;
2131 p
->rc
= sqlite3VdbeMemGrow(pSub
, nByte
, nSub
!=0);
2132 if( p
->rc
!=SQLITE_OK
){
2136 apSub
= (SubProgram
**)pSub
->z
;
2137 apSub
[nSub
++] = aOp
[i
].p4
.pProgram
;
2138 MemSetTypeFlag(pSub
, MEM_Blob
);
2139 pSub
->n
= nSub
*sizeof(SubProgram
*);
2140 nRow
+= aOp
[i
].p4
.pProgram
->nOp
;
2143 if( eMode
==0 ) break;
2144 #ifdef SQLITE_ENABLE_BYTECODE_VTAB
2147 if( pOp
->opcode
==OP_OpenRead
) break;
2148 if( pOp
->opcode
==OP_OpenWrite
&& (pOp
->p5
& OPFLAG_P2ISREG
)==0 ) break;
2149 if( pOp
->opcode
==OP_ReopenIdx
) break;
2154 if( aOp
[i
].opcode
==OP_Explain
) break;
2155 if( aOp
[i
].opcode
==OP_Init
&& iPc
>1 ) break;
2163 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
2167 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
2168 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
2170 void sqlite3VdbeFrameDelete(VdbeFrame
*p
){
2172 Mem
*aMem
= VdbeFrameMem(p
);
2173 VdbeCursor
**apCsr
= (VdbeCursor
**)&aMem
[p
->nChildMem
];
2174 assert( sqlite3VdbeFrameIsValid(p
) );
2175 for(i
=0; i
<p
->nChildCsr
; i
++){
2176 if( apCsr
[i
] ) sqlite3VdbeFreeCursorNN(p
->v
, apCsr
[i
]);
2178 releaseMemArray(aMem
, p
->nChildMem
);
2179 sqlite3VdbeDeleteAuxData(p
->v
->db
, &p
->pAuxData
, -1, 0);
2180 sqlite3DbFree(p
->v
->db
, p
);
2183 #ifndef SQLITE_OMIT_EXPLAIN
2185 ** Give a listing of the program in the virtual machine.
2187 ** The interface is the same as sqlite3VdbeExec(). But instead of
2188 ** running the code, it invokes the callback once for each instruction.
2189 ** This feature is used to implement "EXPLAIN".
2191 ** When p->explain==1, each instruction is listed. When
2192 ** p->explain==2, only OP_Explain instructions are listed and these
2193 ** are shown in a different format. p->explain==2 is used to implement
2194 ** EXPLAIN QUERY PLAN.
2195 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers
2196 ** are also shown, so that the boundaries between the main program and
2197 ** each trigger are clear.
2199 ** When p->explain==1, first the main program is listed, then each of
2200 ** the trigger subprograms are listed one by one.
2202 int sqlite3VdbeList(
2203 Vdbe
*p
/* The VDBE */
2205 Mem
*pSub
= 0; /* Memory cell hold array of subprogs */
2206 sqlite3
*db
= p
->db
; /* The database connection */
2207 int i
; /* Loop counter */
2208 int rc
= SQLITE_OK
; /* Return code */
2209 Mem
*pMem
= &p
->aMem
[1]; /* First Mem of result set */
2210 int bListSubprogs
= (p
->explain
==1 || (db
->flags
& SQLITE_TriggerEQP
)!=0);
2211 Op
*aOp
; /* Array of opcodes */
2212 Op
*pOp
; /* Current opcode */
2214 assert( p
->explain
);
2215 assert( p
->eVdbeState
==VDBE_RUN_STATE
);
2216 assert( p
->rc
==SQLITE_OK
|| p
->rc
==SQLITE_BUSY
|| p
->rc
==SQLITE_NOMEM
);
2218 /* Even though this opcode does not use dynamic strings for
2219 ** the result, result columns may become dynamic if the user calls
2220 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
2222 releaseMemArray(pMem
, 8);
2225 if( p
->rc
==SQLITE_NOMEM
){
2226 /* This happens if a malloc() inside a call to sqlite3_column_text() or
2227 ** sqlite3_column_text16() failed. */
2228 sqlite3OomFault(db
);
2229 return SQLITE_ERROR
;
2232 if( bListSubprogs
){
2233 /* The first 8 memory cells are used for the result set. So we will
2234 ** commandeer the 9th cell to use as storage for an array of pointers
2235 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
2237 assert( p
->nMem
>9 );
2243 /* Figure out which opcode is next to display */
2244 rc
= sqlite3VdbeNextOpcode(p
, pSub
, p
->explain
==2, &p
->pc
, &i
, &aOp
);
2246 if( rc
==SQLITE_OK
){
2248 if( AtomicLoad(&db
->u1
.isInterrupted
) ){
2249 p
->rc
= SQLITE_INTERRUPT
;
2251 sqlite3VdbeError(p
, sqlite3ErrStr(p
->rc
));
2253 char *zP4
= sqlite3VdbeDisplayP4(db
, pOp
);
2254 if( p
->explain
==2 ){
2255 sqlite3VdbeMemSetInt64(pMem
, pOp
->p1
);
2256 sqlite3VdbeMemSetInt64(pMem
+1, pOp
->p2
);
2257 sqlite3VdbeMemSetInt64(pMem
+2, pOp
->p3
);
2258 sqlite3VdbeMemSetStr(pMem
+3, zP4
, -1, SQLITE_UTF8
, sqlite3_free
);
2261 sqlite3VdbeMemSetInt64(pMem
+0, i
);
2262 sqlite3VdbeMemSetStr(pMem
+1, (char*)sqlite3OpcodeName(pOp
->opcode
),
2263 -1, SQLITE_UTF8
, SQLITE_STATIC
);
2264 sqlite3VdbeMemSetInt64(pMem
+2, pOp
->p1
);
2265 sqlite3VdbeMemSetInt64(pMem
+3, pOp
->p2
);
2266 sqlite3VdbeMemSetInt64(pMem
+4, pOp
->p3
);
2267 /* pMem+5 for p4 is done last */
2268 sqlite3VdbeMemSetInt64(pMem
+6, pOp
->p5
);
2269 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2271 char *zCom
= sqlite3VdbeDisplayComment(db
, pOp
, zP4
);
2272 sqlite3VdbeMemSetStr(pMem
+7, zCom
, -1, SQLITE_UTF8
, sqlite3_free
);
2275 sqlite3VdbeMemSetNull(pMem
+7);
2277 sqlite3VdbeMemSetStr(pMem
+5, zP4
, -1, SQLITE_UTF8
, sqlite3_free
);
2280 p
->pResultSet
= pMem
;
2281 if( db
->mallocFailed
){
2282 p
->rc
= SQLITE_NOMEM
;
2292 #endif /* SQLITE_OMIT_EXPLAIN */
2296 ** Print the SQL that was used to generate a VDBE program.
2298 void sqlite3VdbePrintSql(Vdbe
*p
){
2302 }else if( p
->nOp
>=1 ){
2303 const VdbeOp
*pOp
= &p
->aOp
[0];
2304 if( pOp
->opcode
==OP_Init
&& pOp
->p4
.z
!=0 ){
2306 while( sqlite3Isspace(*z
) ) z
++;
2309 if( z
) printf("SQL: [%s]\n", z
);
2313 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2315 ** Print an IOTRACE message showing SQL content.
2317 void sqlite3VdbeIOTraceSql(Vdbe
*p
){
2320 if( sqlite3IoTrace
==0 ) return;
2323 if( pOp
->opcode
==OP_Init
&& pOp
->p4
.z
!=0 ){
2326 sqlite3_snprintf(sizeof(z
), z
, "%s", pOp
->p4
.z
);
2327 for(i
=0; sqlite3Isspace(z
[i
]); i
++){}
2328 for(j
=0; z
[i
]; i
++){
2329 if( sqlite3Isspace(z
[i
]) ){
2338 sqlite3IoTrace("SQL %s\n", z
);
2341 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2343 /* An instance of this object describes bulk memory available for use
2344 ** by subcomponents of a prepared statement. Space is allocated out
2345 ** of a ReusableSpace object by the allocSpace() routine below.
2347 struct ReusableSpace
{
2348 u8
*pSpace
; /* Available memory */
2349 sqlite3_int64 nFree
; /* Bytes of available memory */
2350 sqlite3_int64 nNeeded
; /* Total bytes that could not be allocated */
2353 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2354 ** from the ReusableSpace object. Return a pointer to the allocated
2355 ** memory on success. If insufficient memory is available in the
2356 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2357 ** value by the amount needed and return NULL.
2359 ** If pBuf is not initially NULL, that means that the memory has already
2360 ** been allocated by a prior call to this routine, so just return a copy
2361 ** of pBuf and leave ReusableSpace unchanged.
2363 ** This allocator is employed to repurpose unused slots at the end of the
2364 ** opcode array of prepared state for other memory needs of the prepared
2367 static void *allocSpace(
2368 struct ReusableSpace
*p
, /* Bulk memory available for allocation */
2369 void *pBuf
, /* Pointer to a prior allocation */
2370 sqlite3_int64 nByte
/* Bytes of memory needed. */
2372 assert( EIGHT_BYTE_ALIGNMENT(p
->pSpace
) );
2374 nByte
= ROUND8P(nByte
);
2375 if( nByte
<= p
->nFree
){
2377 pBuf
= &p
->pSpace
[p
->nFree
];
2379 p
->nNeeded
+= nByte
;
2382 assert( EIGHT_BYTE_ALIGNMENT(pBuf
) );
2387 ** Rewind the VDBE back to the beginning in preparation for
2390 void sqlite3VdbeRewind(Vdbe
*p
){
2391 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
2395 assert( p
->eVdbeState
==VDBE_INIT_STATE
2396 || p
->eVdbeState
==VDBE_READY_STATE
2397 || p
->eVdbeState
==VDBE_HALT_STATE
);
2399 /* There should be at least one opcode.
2403 p
->eVdbeState
= VDBE_READY_STATE
;
2406 for(i
=0; i
<p
->nMem
; i
++){
2407 assert( p
->aMem
[i
].db
==p
->db
);
2412 p
->errorAction
= OE_Abort
;
2415 p
->minWriteFileFormat
= 255;
2417 p
->nFkConstraint
= 0;
2419 for(i
=0; i
<p
->nOp
; i
++){
2421 p
->aOp
[i
].cycles
= 0;
2427 ** Prepare a virtual machine for execution for the first time after
2428 ** creating the virtual machine. This involves things such
2429 ** as allocating registers and initializing the program counter.
2430 ** After the VDBE has be prepped, it can be executed by one or more
2431 ** calls to sqlite3VdbeExec().
2433 ** This function may be called exactly once on each virtual machine.
2434 ** After this routine is called the VM has been "packaged" and is ready
2435 ** to run. After this routine is called, further calls to
2436 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
2437 ** the Vdbe from the Parse object that helped generate it so that the
2438 ** the Vdbe becomes an independent entity and the Parse object can be
2441 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2442 ** to its initial state after it has been run.
2444 void sqlite3VdbeMakeReady(
2445 Vdbe
*p
, /* The VDBE */
2446 Parse
*pParse
/* Parsing context */
2448 sqlite3
*db
; /* The database connection */
2449 int nVar
; /* Number of parameters */
2450 int nMem
; /* Number of VM memory registers */
2451 int nCursor
; /* Number of cursors required */
2452 int nArg
; /* Number of arguments in subprograms */
2453 int n
; /* Loop counter */
2454 struct ReusableSpace x
; /* Reusable bulk memory */
2458 assert( pParse
!=0 );
2459 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
2460 assert( pParse
==p
->pParse
);
2461 p
->pVList
= pParse
->pVList
;
2464 assert( db
->mallocFailed
==0 );
2465 nVar
= pParse
->nVar
;
2466 nMem
= pParse
->nMem
;
2467 nCursor
= pParse
->nTab
;
2468 nArg
= pParse
->nMaxArg
;
2470 /* Each cursor uses a memory cell. The first cursor (cursor 0) can
2471 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
2472 ** space at the end of aMem[] for cursors 1 and greater.
2473 ** See also: allocateCursor().
2476 if( nCursor
==0 && nMem
>0 ) nMem
++; /* Space for aMem[0] even if not used */
2478 /* Figure out how much reusable memory is available at the end of the
2479 ** opcode array. This extra memory will be reallocated for other elements
2480 ** of the prepared statement.
2482 n
= ROUND8P(sizeof(Op
)*p
->nOp
); /* Bytes of opcode memory used */
2483 x
.pSpace
= &((u8
*)p
->aOp
)[n
]; /* Unused opcode memory */
2484 assert( EIGHT_BYTE_ALIGNMENT(x
.pSpace
) );
2485 x
.nFree
= ROUNDDOWN8(pParse
->szOpAlloc
- n
); /* Bytes of unused memory */
2486 assert( x
.nFree
>=0 );
2487 assert( EIGHT_BYTE_ALIGNMENT(&x
.pSpace
[x
.nFree
]) );
2489 resolveP2Values(p
, &nArg
);
2490 p
->usesStmtJournal
= (u8
)(pParse
->isMultiWrite
&& pParse
->mayAbort
);
2491 if( pParse
->explain
){
2492 static const char * const azColName
[] = {
2493 "addr", "opcode", "p1", "p2", "p3", "p4", "p5", "comment",
2494 "id", "parent", "notused", "detail"
2497 if( nMem
<10 ) nMem
= 10;
2498 p
->explain
= pParse
->explain
;
2499 if( pParse
->explain
==2 ){
2500 sqlite3VdbeSetNumCols(p
, 4);
2504 sqlite3VdbeSetNumCols(p
, 8);
2508 for(i
=iFirst
; i
<mx
; i
++){
2509 sqlite3VdbeSetColName(p
, i
-iFirst
, COLNAME_NAME
,
2510 azColName
[i
], SQLITE_STATIC
);
2515 /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2516 ** passes. On the first pass, we try to reuse unused memory at the
2517 ** end of the opcode array. If we are unable to satisfy all memory
2518 ** requirements by reusing the opcode array tail, then the second
2519 ** pass will fill in the remainder using a fresh memory allocation.
2521 ** This two-pass approach that reuses as much memory as possible from
2522 ** the leftover memory at the end of the opcode array. This can significantly
2523 ** reduce the amount of memory held by a prepared statement.
2526 p
->aMem
= allocSpace(&x
, 0, nMem
*sizeof(Mem
));
2527 p
->aVar
= allocSpace(&x
, 0, nVar
*sizeof(Mem
));
2528 p
->apArg
= allocSpace(&x
, 0, nArg
*sizeof(Mem
*));
2529 p
->apCsr
= allocSpace(&x
, 0, nCursor
*sizeof(VdbeCursor
*));
2530 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2531 p
->anExec
= allocSpace(&x
, 0, p
->nOp
*sizeof(i64
));
2534 x
.pSpace
= p
->pFree
= sqlite3DbMallocRawNN(db
, x
.nNeeded
);
2535 x
.nFree
= x
.nNeeded
;
2536 if( !db
->mallocFailed
){
2537 p
->aMem
= allocSpace(&x
, p
->aMem
, nMem
*sizeof(Mem
));
2538 p
->aVar
= allocSpace(&x
, p
->aVar
, nVar
*sizeof(Mem
));
2539 p
->apArg
= allocSpace(&x
, p
->apArg
, nArg
*sizeof(Mem
*));
2540 p
->apCsr
= allocSpace(&x
, p
->apCsr
, nCursor
*sizeof(VdbeCursor
*));
2541 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2542 p
->anExec
= allocSpace(&x
, p
->anExec
, p
->nOp
*sizeof(i64
));
2547 if( db
->mallocFailed
){
2552 p
->nCursor
= nCursor
;
2553 p
->nVar
= (ynVar
)nVar
;
2554 initMemArray(p
->aVar
, nVar
, db
, MEM_Null
);
2556 initMemArray(p
->aMem
, nMem
, db
, MEM_Undefined
);
2557 memset(p
->apCsr
, 0, nCursor
*sizeof(VdbeCursor
*));
2558 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2559 memset(p
->anExec
, 0, p
->nOp
*sizeof(i64
));
2562 sqlite3VdbeRewind(p
);
2566 ** Close a VDBE cursor and release all the resources that cursor
2569 void sqlite3VdbeFreeCursor(Vdbe
*p
, VdbeCursor
*pCx
){
2570 if( pCx
) sqlite3VdbeFreeCursorNN(p
,pCx
);
2572 void sqlite3VdbeFreeCursorNN(Vdbe
*p
, VdbeCursor
*pCx
){
2573 switch( pCx
->eCurType
){
2574 case CURTYPE_SORTER
: {
2575 sqlite3VdbeSorterClose(p
->db
, pCx
);
2578 case CURTYPE_BTREE
: {
2579 assert( pCx
->uc
.pCursor
!=0 );
2580 sqlite3BtreeCloseCursor(pCx
->uc
.pCursor
);
2583 #ifndef SQLITE_OMIT_VIRTUALTABLE
2584 case CURTYPE_VTAB
: {
2585 sqlite3_vtab_cursor
*pVCur
= pCx
->uc
.pVCur
;
2586 const sqlite3_module
*pModule
= pVCur
->pVtab
->pModule
;
2587 assert( pVCur
->pVtab
->nRef
>0 );
2588 pVCur
->pVtab
->nRef
--;
2589 pModule
->xClose(pVCur
);
2597 ** Close all cursors in the current frame.
2599 static void closeCursorsInFrame(Vdbe
*p
){
2601 for(i
=0; i
<p
->nCursor
; i
++){
2602 VdbeCursor
*pC
= p
->apCsr
[i
];
2604 sqlite3VdbeFreeCursorNN(p
, pC
);
2611 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2612 ** is used, for example, when a trigger sub-program is halted to restore
2613 ** control to the main program.
2615 int sqlite3VdbeFrameRestore(VdbeFrame
*pFrame
){
2616 Vdbe
*v
= pFrame
->v
;
2617 closeCursorsInFrame(v
);
2618 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
2619 v
->anExec
= pFrame
->anExec
;
2621 v
->aOp
= pFrame
->aOp
;
2622 v
->nOp
= pFrame
->nOp
;
2623 v
->aMem
= pFrame
->aMem
;
2624 v
->nMem
= pFrame
->nMem
;
2625 v
->apCsr
= pFrame
->apCsr
;
2626 v
->nCursor
= pFrame
->nCursor
;
2627 v
->db
->lastRowid
= pFrame
->lastRowid
;
2628 v
->nChange
= pFrame
->nChange
;
2629 v
->db
->nChange
= pFrame
->nDbChange
;
2630 sqlite3VdbeDeleteAuxData(v
->db
, &v
->pAuxData
, -1, 0);
2631 v
->pAuxData
= pFrame
->pAuxData
;
2632 pFrame
->pAuxData
= 0;
2637 ** Close all cursors.
2639 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2640 ** cell array. This is necessary as the memory cell array may contain
2641 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2644 static void closeAllCursors(Vdbe
*p
){
2647 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
2648 sqlite3VdbeFrameRestore(pFrame
);
2652 assert( p
->nFrame
==0 );
2653 closeCursorsInFrame(p
);
2654 releaseMemArray(p
->aMem
, p
->nMem
);
2655 while( p
->pDelFrame
){
2656 VdbeFrame
*pDel
= p
->pDelFrame
;
2657 p
->pDelFrame
= pDel
->pParent
;
2658 sqlite3VdbeFrameDelete(pDel
);
2661 /* Delete any auxdata allocations made by the VM */
2662 if( p
->pAuxData
) sqlite3VdbeDeleteAuxData(p
->db
, &p
->pAuxData
, -1, 0);
2663 assert( p
->pAuxData
==0 );
2667 ** Set the number of result columns that will be returned by this SQL
2668 ** statement. This is now set at compile time, rather than during
2669 ** execution of the vdbe program so that sqlite3_column_count() can
2670 ** be called on an SQL statement before sqlite3_step().
2672 void sqlite3VdbeSetNumCols(Vdbe
*p
, int nResColumn
){
2674 sqlite3
*db
= p
->db
;
2676 if( p
->nResColumn
){
2677 releaseMemArray(p
->aColName
, p
->nResColumn
*COLNAME_N
);
2678 sqlite3DbFree(db
, p
->aColName
);
2680 n
= nResColumn
*COLNAME_N
;
2681 p
->nResColumn
= (u16
)nResColumn
;
2682 p
->aColName
= (Mem
*)sqlite3DbMallocRawNN(db
, sizeof(Mem
)*n
);
2683 if( p
->aColName
==0 ) return;
2684 initMemArray(p
->aColName
, n
, db
, MEM_Null
);
2688 ** Set the name of the idx'th column to be returned by the SQL statement.
2689 ** zName must be a pointer to a nul terminated string.
2691 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2693 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2694 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2695 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2697 int sqlite3VdbeSetColName(
2698 Vdbe
*p
, /* Vdbe being configured */
2699 int idx
, /* Index of column zName applies to */
2700 int var
, /* One of the COLNAME_* constants */
2701 const char *zName
, /* Pointer to buffer containing name */
2702 void (*xDel
)(void*) /* Memory management strategy for zName */
2706 assert( idx
<p
->nResColumn
);
2707 assert( var
<COLNAME_N
);
2708 if( p
->db
->mallocFailed
){
2709 assert( !zName
|| xDel
!=SQLITE_DYNAMIC
);
2710 return SQLITE_NOMEM_BKPT
;
2712 assert( p
->aColName
!=0 );
2713 pColName
= &(p
->aColName
[idx
+var
*p
->nResColumn
]);
2714 rc
= sqlite3VdbeMemSetStr(pColName
, zName
, -1, SQLITE_UTF8
, xDel
);
2715 assert( rc
!=0 || !zName
|| (pColName
->flags
&MEM_Term
)!=0 );
2720 ** A read or write transaction may or may not be active on database handle
2721 ** db. If a transaction is active, commit it. If there is a
2722 ** write-transaction spanning more than one database file, this routine
2723 ** takes care of the super-journal trickery.
2725 static int vdbeCommit(sqlite3
*db
, Vdbe
*p
){
2727 int nTrans
= 0; /* Number of databases with an active write-transaction
2728 ** that are candidates for a two-phase commit using a
2731 int needXcommit
= 0;
2733 #ifdef SQLITE_OMIT_VIRTUALTABLE
2734 /* With this option, sqlite3VtabSync() is defined to be simply
2735 ** SQLITE_OK so p is not used.
2737 UNUSED_PARAMETER(p
);
2740 /* Before doing anything else, call the xSync() callback for any
2741 ** virtual module tables written in this transaction. This has to
2742 ** be done before determining whether a super-journal file is
2743 ** required, as an xSync() callback may add an attached database
2744 ** to the transaction.
2746 rc
= sqlite3VtabSync(db
, p
);
2748 /* This loop determines (a) if the commit hook should be invoked and
2749 ** (b) how many database files have open write transactions, not
2750 ** including the temp database. (b) is important because if more than
2751 ** one database file has an open write transaction, a super-journal
2752 ** file is required for an atomic commit.
2754 for(i
=0; rc
==SQLITE_OK
&& i
<db
->nDb
; i
++){
2755 Btree
*pBt
= db
->aDb
[i
].pBt
;
2756 if( sqlite3BtreeTxnState(pBt
)==SQLITE_TXN_WRITE
){
2757 /* Whether or not a database might need a super-journal depends upon
2758 ** its journal mode (among other things). This matrix determines which
2759 ** journal modes use a super-journal and which do not */
2760 static const u8 aMJNeeded
[] = {
2768 Pager
*pPager
; /* Pager associated with pBt */
2770 sqlite3BtreeEnter(pBt
);
2771 pPager
= sqlite3BtreePager(pBt
);
2772 if( db
->aDb
[i
].safety_level
!=PAGER_SYNCHRONOUS_OFF
2773 && aMJNeeded
[sqlite3PagerGetJournalMode(pPager
)]
2774 && sqlite3PagerIsMemdb(pPager
)==0
2779 rc
= sqlite3PagerExclusiveLock(pPager
);
2780 sqlite3BtreeLeave(pBt
);
2783 if( rc
!=SQLITE_OK
){
2787 /* If there are any write-transactions at all, invoke the commit hook */
2788 if( needXcommit
&& db
->xCommitCallback
){
2789 rc
= db
->xCommitCallback(db
->pCommitArg
);
2791 return SQLITE_CONSTRAINT_COMMITHOOK
;
2795 /* The simple case - no more than one database file (not counting the
2796 ** TEMP database) has a transaction active. There is no need for the
2799 ** If the return value of sqlite3BtreeGetFilename() is a zero length
2800 ** string, it means the main database is :memory: or a temp file. In
2801 ** that case we do not support atomic multi-file commits, so use the
2802 ** simple case then too.
2804 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db
->aDb
[0].pBt
))
2807 for(i
=0; rc
==SQLITE_OK
&& i
<db
->nDb
; i
++){
2808 Btree
*pBt
= db
->aDb
[i
].pBt
;
2810 rc
= sqlite3BtreeCommitPhaseOne(pBt
, 0);
2814 /* Do the commit only if all databases successfully complete phase 1.
2815 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2816 ** IO error while deleting or truncating a journal file. It is unlikely,
2817 ** but could happen. In this case abandon processing and return the error.
2819 for(i
=0; rc
==SQLITE_OK
&& i
<db
->nDb
; i
++){
2820 Btree
*pBt
= db
->aDb
[i
].pBt
;
2822 rc
= sqlite3BtreeCommitPhaseTwo(pBt
, 0);
2825 if( rc
==SQLITE_OK
){
2826 sqlite3VtabCommit(db
);
2830 /* The complex case - There is a multi-file write-transaction active.
2831 ** This requires a super-journal file to ensure the transaction is
2832 ** committed atomically.
2834 #ifndef SQLITE_OMIT_DISKIO
2836 sqlite3_vfs
*pVfs
= db
->pVfs
;
2837 char *zSuper
= 0; /* File-name for the super-journal */
2838 char const *zMainFile
= sqlite3BtreeGetFilename(db
->aDb
[0].pBt
);
2839 sqlite3_file
*pSuperJrnl
= 0;
2845 /* Select a super-journal file name */
2846 nMainFile
= sqlite3Strlen30(zMainFile
);
2847 zSuper
= sqlite3MPrintf(db
, "%.4c%s%.16c", 0,zMainFile
,0);
2848 if( zSuper
==0 ) return SQLITE_NOMEM_BKPT
;
2853 if( retryCount
>100 ){
2854 sqlite3_log(SQLITE_FULL
, "MJ delete: %s", zSuper
);
2855 sqlite3OsDelete(pVfs
, zSuper
, 0);
2857 }else if( retryCount
==1 ){
2858 sqlite3_log(SQLITE_FULL
, "MJ collide: %s", zSuper
);
2862 sqlite3_randomness(sizeof(iRandom
), &iRandom
);
2863 sqlite3_snprintf(13, &zSuper
[nMainFile
], "-mj%06X9%02X",
2864 (iRandom
>>8)&0xffffff, iRandom
&0xff);
2865 /* The antipenultimate character of the super-journal name must
2866 ** be "9" to avoid name collisions when using 8+3 filenames. */
2867 assert( zSuper
[sqlite3Strlen30(zSuper
)-3]=='9' );
2868 sqlite3FileSuffix3(zMainFile
, zSuper
);
2869 rc
= sqlite3OsAccess(pVfs
, zSuper
, SQLITE_ACCESS_EXISTS
, &res
);
2870 }while( rc
==SQLITE_OK
&& res
);
2871 if( rc
==SQLITE_OK
){
2872 /* Open the super-journal. */
2873 rc
= sqlite3OsOpenMalloc(pVfs
, zSuper
, &pSuperJrnl
,
2874 SQLITE_OPEN_READWRITE
|SQLITE_OPEN_CREATE
|
2875 SQLITE_OPEN_EXCLUSIVE
|SQLITE_OPEN_SUPER_JOURNAL
, 0
2878 if( rc
!=SQLITE_OK
){
2879 sqlite3DbFree(db
, zSuper
-4);
2883 /* Write the name of each database file in the transaction into the new
2884 ** super-journal file. If an error occurs at this point close
2885 ** and delete the super-journal file. All the individual journal files
2886 ** still have 'null' as the super-journal pointer, so they will roll
2887 ** back independently if a failure occurs.
2889 for(i
=0; i
<db
->nDb
; i
++){
2890 Btree
*pBt
= db
->aDb
[i
].pBt
;
2891 if( sqlite3BtreeTxnState(pBt
)==SQLITE_TXN_WRITE
){
2892 char const *zFile
= sqlite3BtreeGetJournalname(pBt
);
2894 continue; /* Ignore TEMP and :memory: databases */
2896 assert( zFile
[0]!=0 );
2897 rc
= sqlite3OsWrite(pSuperJrnl
, zFile
, sqlite3Strlen30(zFile
)+1,offset
);
2898 offset
+= sqlite3Strlen30(zFile
)+1;
2899 if( rc
!=SQLITE_OK
){
2900 sqlite3OsCloseFree(pSuperJrnl
);
2901 sqlite3OsDelete(pVfs
, zSuper
, 0);
2902 sqlite3DbFree(db
, zSuper
-4);
2908 /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device
2909 ** flag is set this is not required.
2911 if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl
)&SQLITE_IOCAP_SEQUENTIAL
)
2912 && SQLITE_OK
!=(rc
= sqlite3OsSync(pSuperJrnl
, SQLITE_SYNC_NORMAL
))
2914 sqlite3OsCloseFree(pSuperJrnl
);
2915 sqlite3OsDelete(pVfs
, zSuper
, 0);
2916 sqlite3DbFree(db
, zSuper
-4);
2920 /* Sync all the db files involved in the transaction. The same call
2921 ** sets the super-journal pointer in each individual journal. If
2922 ** an error occurs here, do not delete the super-journal file.
2924 ** If the error occurs during the first call to
2925 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
2926 ** super-journal file will be orphaned. But we cannot delete it,
2927 ** in case the super-journal file name was written into the journal
2928 ** file before the failure occurred.
2930 for(i
=0; rc
==SQLITE_OK
&& i
<db
->nDb
; i
++){
2931 Btree
*pBt
= db
->aDb
[i
].pBt
;
2933 rc
= sqlite3BtreeCommitPhaseOne(pBt
, zSuper
);
2936 sqlite3OsCloseFree(pSuperJrnl
);
2937 assert( rc
!=SQLITE_BUSY
);
2938 if( rc
!=SQLITE_OK
){
2939 sqlite3DbFree(db
, zSuper
-4);
2943 /* Delete the super-journal file. This commits the transaction. After
2944 ** doing this the directory is synced again before any individual
2945 ** transaction files are deleted.
2947 rc
= sqlite3OsDelete(pVfs
, zSuper
, 1);
2948 sqlite3DbFree(db
, zSuper
-4);
2954 /* All files and directories have already been synced, so the following
2955 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
2956 ** deleting or truncating journals. If something goes wrong while
2957 ** this is happening we don't really care. The integrity of the
2958 ** transaction is already guaranteed, but some stray 'cold' journals
2959 ** may be lying around. Returning an error code won't help matters.
2961 disable_simulated_io_errors();
2962 sqlite3BeginBenignMalloc();
2963 for(i
=0; i
<db
->nDb
; i
++){
2964 Btree
*pBt
= db
->aDb
[i
].pBt
;
2966 sqlite3BtreeCommitPhaseTwo(pBt
, 1);
2969 sqlite3EndBenignMalloc();
2970 enable_simulated_io_errors();
2972 sqlite3VtabCommit(db
);
2980 ** This routine checks that the sqlite3.nVdbeActive count variable
2981 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
2982 ** currently active. An assertion fails if the two counts do not match.
2983 ** This is an internal self-check only - it is not an essential processing
2986 ** This is a no-op if NDEBUG is defined.
2989 static void checkActiveVdbeCnt(sqlite3
*db
){
2996 if( sqlite3_stmt_busy((sqlite3_stmt
*)p
) ){
2998 if( p
->readOnly
==0 ) nWrite
++;
2999 if( p
->bIsReader
) nRead
++;
3003 assert( cnt
==db
->nVdbeActive
);
3004 assert( nWrite
==db
->nVdbeWrite
);
3005 assert( nRead
==db
->nVdbeRead
);
3008 #define checkActiveVdbeCnt(x)
3012 ** If the Vdbe passed as the first argument opened a statement-transaction,
3013 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
3014 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
3015 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
3016 ** statement transaction is committed.
3018 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
3019 ** Otherwise SQLITE_OK.
3021 static SQLITE_NOINLINE
int vdbeCloseStatement(Vdbe
*p
, int eOp
){
3022 sqlite3
*const db
= p
->db
;
3025 const int iSavepoint
= p
->iStatement
-1;
3027 assert( eOp
==SAVEPOINT_ROLLBACK
|| eOp
==SAVEPOINT_RELEASE
);
3028 assert( db
->nStatement
>0 );
3029 assert( p
->iStatement
==(db
->nStatement
+db
->nSavepoint
) );
3031 for(i
=0; i
<db
->nDb
; i
++){
3032 int rc2
= SQLITE_OK
;
3033 Btree
*pBt
= db
->aDb
[i
].pBt
;
3035 if( eOp
==SAVEPOINT_ROLLBACK
){
3036 rc2
= sqlite3BtreeSavepoint(pBt
, SAVEPOINT_ROLLBACK
, iSavepoint
);
3038 if( rc2
==SQLITE_OK
){
3039 rc2
= sqlite3BtreeSavepoint(pBt
, SAVEPOINT_RELEASE
, iSavepoint
);
3041 if( rc
==SQLITE_OK
){
3049 if( rc
==SQLITE_OK
){
3050 if( eOp
==SAVEPOINT_ROLLBACK
){
3051 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_ROLLBACK
, iSavepoint
);
3053 if( rc
==SQLITE_OK
){
3054 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_RELEASE
, iSavepoint
);
3058 /* If the statement transaction is being rolled back, also restore the
3059 ** database handles deferred constraint counter to the value it had when
3060 ** the statement transaction was opened. */
3061 if( eOp
==SAVEPOINT_ROLLBACK
){
3062 db
->nDeferredCons
= p
->nStmtDefCons
;
3063 db
->nDeferredImmCons
= p
->nStmtDefImmCons
;
3067 int sqlite3VdbeCloseStatement(Vdbe
*p
, int eOp
){
3068 if( p
->db
->nStatement
&& p
->iStatement
){
3069 return vdbeCloseStatement(p
, eOp
);
3076 ** This function is called when a transaction opened by the database
3077 ** handle associated with the VM passed as an argument is about to be
3078 ** committed. If there are outstanding deferred foreign key constraint
3079 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
3081 ** If there are outstanding FK violations and this function returns
3082 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
3083 ** and write an error message to it. Then return SQLITE_ERROR.
3085 #ifndef SQLITE_OMIT_FOREIGN_KEY
3086 int sqlite3VdbeCheckFk(Vdbe
*p
, int deferred
){
3087 sqlite3
*db
= p
->db
;
3088 if( (deferred
&& (db
->nDeferredCons
+db
->nDeferredImmCons
)>0)
3089 || (!deferred
&& p
->nFkConstraint
>0)
3091 p
->rc
= SQLITE_CONSTRAINT_FOREIGNKEY
;
3092 p
->errorAction
= OE_Abort
;
3093 sqlite3VdbeError(p
, "FOREIGN KEY constraint failed");
3094 if( (p
->prepFlags
& SQLITE_PREPARE_SAVESQL
)==0 ) return SQLITE_ERROR
;
3095 return SQLITE_CONSTRAINT_FOREIGNKEY
;
3102 ** This routine is called the when a VDBE tries to halt. If the VDBE
3103 ** has made changes and is in autocommit mode, then commit those
3104 ** changes. If a rollback is needed, then do the rollback.
3106 ** This routine is the only way to move the sqlite3eOpenState of a VM from
3107 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to
3108 ** call this on a VM that is in the SQLITE_STATE_HALT state.
3110 ** Return an error code. If the commit could not complete because of
3111 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
3112 ** means the close did not happen and needs to be repeated.
3114 int sqlite3VdbeHalt(Vdbe
*p
){
3115 int rc
; /* Used to store transient return codes */
3116 sqlite3
*db
= p
->db
;
3118 /* This function contains the logic that determines if a statement or
3119 ** transaction will be committed or rolled back as a result of the
3120 ** execution of this virtual machine.
3122 ** If any of the following errors occur:
3129 ** Then the internal cache might have been left in an inconsistent
3130 ** state. We need to rollback the statement transaction, if there is
3131 ** one, or the complete transaction if there is no statement transaction.
3134 assert( p
->eVdbeState
==VDBE_RUN_STATE
);
3135 if( db
->mallocFailed
){
3136 p
->rc
= SQLITE_NOMEM_BKPT
;
3139 checkActiveVdbeCnt(db
);
3141 /* No commit or rollback needed if the program never started or if the
3142 ** SQL statement does not read or write a database file. */
3144 int mrc
; /* Primary error code from p->rc */
3145 int eStatementOp
= 0;
3146 int isSpecialError
; /* Set to true if a 'special' error */
3148 /* Lock all btrees used by the statement */
3149 sqlite3VdbeEnter(p
);
3151 /* Check for one of the special errors */
3154 isSpecialError
= mrc
==SQLITE_NOMEM
3155 || mrc
==SQLITE_IOERR
3156 || mrc
==SQLITE_INTERRUPT
3157 || mrc
==SQLITE_FULL
;
3159 mrc
= isSpecialError
= 0;
3161 if( isSpecialError
){
3162 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
3163 ** no rollback is necessary. Otherwise, at least a savepoint
3164 ** transaction must be rolled back to restore the database to a
3165 ** consistent state.
3167 ** Even if the statement is read-only, it is important to perform
3168 ** a statement or transaction rollback operation. If the error
3169 ** occurred while writing to the journal, sub-journal or database
3170 ** file as part of an effort to free up cache space (see function
3171 ** pagerStress() in pager.c), the rollback is required to restore
3172 ** the pager to a consistent state.
3174 if( !p
->readOnly
|| mrc
!=SQLITE_INTERRUPT
){
3175 if( (mrc
==SQLITE_NOMEM
|| mrc
==SQLITE_FULL
) && p
->usesStmtJournal
){
3176 eStatementOp
= SAVEPOINT_ROLLBACK
;
3178 /* We are forced to roll back the active transaction. Before doing
3179 ** so, abort any other statements this handle currently has active.
3181 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
3182 sqlite3CloseSavepoints(db
);
3189 /* Check for immediate foreign key violations. */
3190 if( p
->rc
==SQLITE_OK
|| (p
->errorAction
==OE_Fail
&& !isSpecialError
) ){
3191 sqlite3VdbeCheckFk(p
, 0);
3194 /* If the auto-commit flag is set and this is the only active writer
3195 ** VM, then we do either a commit or rollback of the current transaction.
3197 ** Note: This block also runs if one of the special errors handled
3198 ** above has occurred.
3200 if( !sqlite3VtabInSync(db
)
3202 && db
->nVdbeWrite
==(p
->readOnly
==0)
3204 if( p
->rc
==SQLITE_OK
|| (p
->errorAction
==OE_Fail
&& !isSpecialError
) ){
3205 rc
= sqlite3VdbeCheckFk(p
, 1);
3206 if( rc
!=SQLITE_OK
){
3207 if( NEVER(p
->readOnly
) ){
3208 sqlite3VdbeLeave(p
);
3209 return SQLITE_ERROR
;
3211 rc
= SQLITE_CONSTRAINT_FOREIGNKEY
;
3212 }else if( db
->flags
& SQLITE_CorruptRdOnly
){
3213 rc
= SQLITE_CORRUPT
;
3214 db
->flags
&= ~SQLITE_CorruptRdOnly
;
3216 /* The auto-commit flag is true, the vdbe program was successful
3217 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3218 ** key constraints to hold up the transaction. This means a commit
3220 rc
= vdbeCommit(db
, p
);
3222 if( rc
==SQLITE_BUSY
&& p
->readOnly
){
3223 sqlite3VdbeLeave(p
);
3225 }else if( rc
!=SQLITE_OK
){
3227 sqlite3RollbackAll(db
, SQLITE_OK
);
3230 db
->nDeferredCons
= 0;
3231 db
->nDeferredImmCons
= 0;
3232 db
->flags
&= ~(u64
)SQLITE_DeferFKs
;
3233 sqlite3CommitInternalChanges(db
);
3236 sqlite3RollbackAll(db
, SQLITE_OK
);
3240 }else if( eStatementOp
==0 ){
3241 if( p
->rc
==SQLITE_OK
|| p
->errorAction
==OE_Fail
){
3242 eStatementOp
= SAVEPOINT_RELEASE
;
3243 }else if( p
->errorAction
==OE_Abort
){
3244 eStatementOp
= SAVEPOINT_ROLLBACK
;
3246 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
3247 sqlite3CloseSavepoints(db
);
3253 /* If eStatementOp is non-zero, then a statement transaction needs to
3254 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3255 ** do so. If this operation returns an error, and the current statement
3256 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3257 ** current statement error code.
3260 rc
= sqlite3VdbeCloseStatement(p
, eStatementOp
);
3262 if( p
->rc
==SQLITE_OK
|| (p
->rc
&0xff)==SQLITE_CONSTRAINT
){
3264 sqlite3DbFree(db
, p
->zErrMsg
);
3267 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
3268 sqlite3CloseSavepoints(db
);
3274 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3275 ** has been rolled back, update the database connection change-counter.
3277 if( p
->changeCntOn
){
3278 if( eStatementOp
!=SAVEPOINT_ROLLBACK
){
3279 sqlite3VdbeSetChanges(db
, p
->nChange
);
3281 sqlite3VdbeSetChanges(db
, 0);
3286 /* Release the locks */
3287 sqlite3VdbeLeave(p
);
3290 /* We have successfully halted and closed the VM. Record this fact. */
3292 if( !p
->readOnly
) db
->nVdbeWrite
--;
3293 if( p
->bIsReader
) db
->nVdbeRead
--;
3294 assert( db
->nVdbeActive
>=db
->nVdbeRead
);
3295 assert( db
->nVdbeRead
>=db
->nVdbeWrite
);
3296 assert( db
->nVdbeWrite
>=0 );
3297 p
->eVdbeState
= VDBE_HALT_STATE
;
3298 checkActiveVdbeCnt(db
);
3299 if( db
->mallocFailed
){
3300 p
->rc
= SQLITE_NOMEM_BKPT
;
3303 /* If the auto-commit flag is set to true, then any locks that were held
3304 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3305 ** to invoke any required unlock-notify callbacks.
3307 if( db
->autoCommit
){
3308 sqlite3ConnectionUnlocked(db
);
3311 assert( db
->nVdbeActive
>0 || db
->autoCommit
==0 || db
->nStatement
==0 );
3312 return (p
->rc
==SQLITE_BUSY
? SQLITE_BUSY
: SQLITE_OK
);
3317 ** Each VDBE holds the result of the most recent sqlite3_step() call
3318 ** in p->rc. This routine sets that result back to SQLITE_OK.
3320 void sqlite3VdbeResetStepResult(Vdbe
*p
){
3325 ** Copy the error code and error message belonging to the VDBE passed
3326 ** as the first argument to its database handle (so that they will be
3327 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3329 ** This function does not clear the VDBE error code or message, just
3330 ** copies them to the database handle.
3332 int sqlite3VdbeTransferError(Vdbe
*p
){
3333 sqlite3
*db
= p
->db
;
3336 db
->bBenignMalloc
++;
3337 sqlite3BeginBenignMalloc();
3338 if( db
->pErr
==0 ) db
->pErr
= sqlite3ValueNew(db
);
3339 sqlite3ValueSetStr(db
->pErr
, -1, p
->zErrMsg
, SQLITE_UTF8
, SQLITE_TRANSIENT
);
3340 sqlite3EndBenignMalloc();
3341 db
->bBenignMalloc
--;
3342 }else if( db
->pErr
){
3343 sqlite3ValueSetNull(db
->pErr
);
3346 db
->errByteOffset
= -1;
3350 #ifdef SQLITE_ENABLE_SQLLOG
3352 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3355 static void vdbeInvokeSqllog(Vdbe
*v
){
3356 if( sqlite3GlobalConfig
.xSqllog
&& v
->rc
==SQLITE_OK
&& v
->zSql
&& v
->pc
>=0 ){
3357 char *zExpanded
= sqlite3VdbeExpandSql(v
, v
->zSql
);
3358 assert( v
->db
->init
.busy
==0 );
3360 sqlite3GlobalConfig
.xSqllog(
3361 sqlite3GlobalConfig
.pSqllogArg
, v
->db
, zExpanded
, 1
3363 sqlite3DbFree(v
->db
, zExpanded
);
3368 # define vdbeInvokeSqllog(x)
3372 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3373 ** Write any error messages into *pzErrMsg. Return the result code.
3375 ** After this routine is run, the VDBE should be ready to be executed
3378 ** To look at it another way, this routine resets the state of the
3379 ** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to
3380 ** VDBE_READY_STATE.
3382 int sqlite3VdbeReset(Vdbe
*p
){
3383 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3390 /* If the VM did not run to completion or if it encountered an
3391 ** error, then it might not have been halted properly. So halt
3394 if( p
->eVdbeState
==VDBE_RUN_STATE
) sqlite3VdbeHalt(p
);
3396 /* If the VDBE has been run even partially, then transfer the error code
3397 ** and error message from the VDBE into the main database structure. But
3398 ** if the VDBE has just been set to run but has not actually executed any
3399 ** instructions yet, leave the main database error information unchanged.
3402 vdbeInvokeSqllog(p
);
3403 if( db
->pErr
|| p
->zErrMsg
){
3404 sqlite3VdbeTransferError(p
);
3406 db
->errCode
= p
->rc
;
3410 /* Reset register contents and reclaim error message memory.
3413 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3414 ** Vdbe.aMem[] arrays have already been cleaned up. */
3415 if( p
->apCsr
) for(i
=0; i
<p
->nCursor
; i
++) assert( p
->apCsr
[i
]==0 );
3417 for(i
=0; i
<p
->nMem
; i
++) assert( p
->aMem
[i
].flags
==MEM_Undefined
);
3421 sqlite3DbFree(db
, p
->zErrMsg
);
3429 /* Save profiling information from this VDBE run.
3433 FILE *out
= fopen("vdbe_profile.out", "a");
3435 fprintf(out
, "---- ");
3436 for(i
=0; i
<p
->nOp
; i
++){
3437 fprintf(out
, "%02x", p
->aOp
[i
].opcode
);
3442 fprintf(out
, "-- ");
3443 for(i
=0; (c
= p
->zSql
[i
])!=0; i
++){
3444 if( pc
=='\n' ) fprintf(out
, "-- ");
3448 if( pc
!='\n' ) fprintf(out
, "\n");
3450 for(i
=0; i
<p
->nOp
; i
++){
3452 sqlite3_snprintf(sizeof(zHdr
), zHdr
, "%6u %12llu %8llu ",
3455 p
->aOp
[i
].cnt
>0 ? p
->aOp
[i
].cycles
/p
->aOp
[i
].cnt
: 0
3457 fprintf(out
, "%s", zHdr
);
3458 sqlite3VdbePrintOp(out
, i
, &p
->aOp
[i
]);
3464 return p
->rc
& db
->errMask
;
3468 ** Clean up and delete a VDBE after execution. Return an integer which is
3469 ** the result code. Write any error message text into *pzErrMsg.
3471 int sqlite3VdbeFinalize(Vdbe
*p
){
3473 assert( VDBE_RUN_STATE
>VDBE_READY_STATE
);
3474 assert( VDBE_HALT_STATE
>VDBE_READY_STATE
);
3475 assert( VDBE_INIT_STATE
<VDBE_READY_STATE
);
3476 if( p
->eVdbeState
>=VDBE_READY_STATE
){
3477 rc
= sqlite3VdbeReset(p
);
3478 assert( (rc
& p
->db
->errMask
)==rc
);
3480 sqlite3VdbeDelete(p
);
3485 ** If parameter iOp is less than zero, then invoke the destructor for
3486 ** all auxiliary data pointers currently cached by the VM passed as
3487 ** the first argument.
3489 ** Or, if iOp is greater than or equal to zero, then the destructor is
3490 ** only invoked for those auxiliary data pointers created by the user
3491 ** function invoked by the OP_Function opcode at instruction iOp of
3492 ** VM pVdbe, and only then if:
3494 ** * the associated function parameter is the 32nd or later (counting
3495 ** from left to right), or
3497 ** * the corresponding bit in argument mask is clear (where the first
3498 ** function parameter corresponds to bit 0 etc.).
3500 void sqlite3VdbeDeleteAuxData(sqlite3
*db
, AuxData
**pp
, int iOp
, int mask
){
3502 AuxData
*pAux
= *pp
;
3504 || (pAux
->iAuxOp
==iOp
3506 && (pAux
->iAuxArg
>31 || !(mask
& MASKBIT32(pAux
->iAuxArg
))))
3508 testcase( pAux
->iAuxArg
==31 );
3509 if( pAux
->xDeleteAux
){
3510 pAux
->xDeleteAux(pAux
->pAux
);
3512 *pp
= pAux
->pNextAux
;
3513 sqlite3DbFree(db
, pAux
);
3515 pp
= &pAux
->pNextAux
;
3521 ** Free all memory associated with the Vdbe passed as the second argument,
3522 ** except for object itself, which is preserved.
3524 ** The difference between this function and sqlite3VdbeDelete() is that
3525 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3526 ** the database connection and frees the object itself.
3528 static void sqlite3VdbeClearObject(sqlite3
*db
, Vdbe
*p
){
3529 SubProgram
*pSub
, *pNext
;
3530 assert( p
->db
==0 || p
->db
==db
);
3532 releaseMemArray(p
->aColName
, p
->nResColumn
*COLNAME_N
);
3533 sqlite3DbFreeNN(db
, p
->aColName
);
3535 for(pSub
=p
->pProgram
; pSub
; pSub
=pNext
){
3536 pNext
= pSub
->pNext
;
3537 vdbeFreeOpArray(db
, pSub
->aOp
, pSub
->nOp
);
3538 sqlite3DbFree(db
, pSub
);
3540 if( p
->eVdbeState
!=VDBE_INIT_STATE
){
3541 releaseMemArray(p
->aVar
, p
->nVar
);
3542 if( p
->pVList
) sqlite3DbFreeNN(db
, p
->pVList
);
3543 if( p
->pFree
) sqlite3DbFreeNN(db
, p
->pFree
);
3545 vdbeFreeOpArray(db
, p
->aOp
, p
->nOp
);
3546 sqlite3DbFree(db
, p
->zSql
);
3547 #ifdef SQLITE_ENABLE_NORMALIZE
3548 sqlite3DbFree(db
, p
->zNormSql
);
3550 DblquoteStr
*pThis
, *pNext
;
3551 for(pThis
=p
->pDblStr
; pThis
; pThis
=pNext
){
3552 pNext
= pThis
->pNextStr
;
3553 sqlite3DbFree(db
, pThis
);
3557 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3560 for(i
=0; i
<p
->nScan
; i
++){
3561 sqlite3DbFree(db
, p
->aScan
[i
].zName
);
3563 sqlite3DbFree(db
, p
->aScan
);
3569 ** Delete an entire VDBE.
3571 void sqlite3VdbeDelete(Vdbe
*p
){
3576 assert( sqlite3_mutex_held(db
->mutex
) );
3577 sqlite3VdbeClearObject(db
, p
);
3578 if( db
->pnBytesFreed
==0 ){
3580 p
->pPrev
->pNext
= p
->pNext
;
3582 assert( db
->pVdbe
==p
);
3583 db
->pVdbe
= p
->pNext
;
3586 p
->pNext
->pPrev
= p
->pPrev
;
3589 sqlite3DbFreeNN(db
, p
);
3593 ** The cursor "p" has a pending seek operation that has not yet been
3594 ** carried out. Seek the cursor now. If an error occurs, return
3595 ** the appropriate error code.
3597 int SQLITE_NOINLINE
sqlite3VdbeFinishMoveto(VdbeCursor
*p
){
3600 extern int sqlite3_search_count
;
3602 assert( p
->deferredMoveto
);
3603 assert( p
->isTable
);
3604 assert( p
->eCurType
==CURTYPE_BTREE
);
3605 rc
= sqlite3BtreeTableMoveto(p
->uc
.pCursor
, p
->movetoTarget
, 0, &res
);
3607 if( res
!=0 ) return SQLITE_CORRUPT_BKPT
;
3609 sqlite3_search_count
++;
3611 p
->deferredMoveto
= 0;
3612 p
->cacheStatus
= CACHE_STALE
;
3617 ** Something has moved cursor "p" out of place. Maybe the row it was
3618 ** pointed to was deleted out from under it. Or maybe the btree was
3619 ** rebalanced. Whatever the cause, try to restore "p" to the place it
3620 ** is supposed to be pointing. If the row was deleted out from under the
3621 ** cursor, set the cursor to point to a NULL row.
3623 int SQLITE_NOINLINE
sqlite3VdbeHandleMovedCursor(VdbeCursor
*p
){
3624 int isDifferentRow
, rc
;
3625 assert( p
->eCurType
==CURTYPE_BTREE
);
3626 assert( p
->uc
.pCursor
!=0 );
3627 assert( sqlite3BtreeCursorHasMoved(p
->uc
.pCursor
) );
3628 rc
= sqlite3BtreeCursorRestore(p
->uc
.pCursor
, &isDifferentRow
);
3629 p
->cacheStatus
= CACHE_STALE
;
3630 if( isDifferentRow
) p
->nullRow
= 1;
3635 ** Check to ensure that the cursor is valid. Restore the cursor
3636 ** if need be. Return any I/O error from the restore operation.
3638 int sqlite3VdbeCursorRestore(VdbeCursor
*p
){
3639 assert( p
->eCurType
==CURTYPE_BTREE
|| IsNullCursor(p
) );
3640 if( sqlite3BtreeCursorHasMoved(p
->uc
.pCursor
) ){
3641 return sqlite3VdbeHandleMovedCursor(p
);
3647 ** The following functions:
3649 ** sqlite3VdbeSerialType()
3650 ** sqlite3VdbeSerialTypeLen()
3651 ** sqlite3VdbeSerialLen()
3652 ** sqlite3VdbeSerialPut() <--- in-lined into OP_MakeRecord as of 2022-04-02
3653 ** sqlite3VdbeSerialGet()
3655 ** encapsulate the code that serializes values for storage in SQLite
3656 ** data and index records. Each serialized value consists of a
3657 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3658 ** integer, stored as a varint.
3660 ** In an SQLite index record, the serial type is stored directly before
3661 ** the blob of data that it corresponds to. In a table record, all serial
3662 ** types are stored at the start of the record, and the blobs of data at
3663 ** the end. Hence these functions allow the caller to handle the
3664 ** serial-type and data blob separately.
3666 ** The following table describes the various storage classes for data:
3668 ** serial type bytes of data type
3669 ** -------------- --------------- ---------------
3671 ** 1 1 signed integer
3672 ** 2 2 signed integer
3673 ** 3 3 signed integer
3674 ** 4 4 signed integer
3675 ** 5 6 signed integer
3676 ** 6 8 signed integer
3678 ** 8 0 Integer constant 0
3679 ** 9 0 Integer constant 1
3680 ** 10,11 reserved for expansion
3681 ** N>=12 and even (N-12)/2 BLOB
3682 ** N>=13 and odd (N-13)/2 text
3684 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3685 ** of SQLite will not understand those serial types.
3688 #if 0 /* Inlined into the OP_MakeRecord opcode */
3690 ** Return the serial-type for the value stored in pMem.
3692 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3694 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord
3695 ** opcode in the byte-code engine. But by moving this routine in-line, we
3696 ** can omit some redundant tests and make that opcode a lot faster. So
3697 ** this routine is now only used by the STAT3 logic and STAT3 support has
3698 ** ended. The code is kept here for historical reference only.
3700 u32
sqlite3VdbeSerialType(Mem
*pMem
, int file_format
, u32
*pLen
){
3701 int flags
= pMem
->flags
;
3705 if( flags
&MEM_Null
){
3709 if( flags
&(MEM_Int
|MEM_IntReal
) ){
3710 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3711 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3714 testcase( flags
& MEM_Int
);
3715 testcase( flags
& MEM_IntReal
);
3722 if( (i
&1)==i
&& file_format
>=4 ){
3730 if( u
<=32767 ){ *pLen
= 2; return 2; }
3731 if( u
<=8388607 ){ *pLen
= 3; return 3; }
3732 if( u
<=2147483647 ){ *pLen
= 4; return 4; }
3733 if( u
<=MAX_6BYTE
){ *pLen
= 6; return 5; }
3735 if( flags
&MEM_IntReal
){
3736 /* If the value is IntReal and is going to take up 8 bytes to store
3737 ** as an integer, then we might as well make it an 8-byte floating
3739 pMem
->u
.r
= (double)pMem
->u
.i
;
3740 pMem
->flags
&= ~MEM_IntReal
;
3741 pMem
->flags
|= MEM_Real
;
3746 if( flags
&MEM_Real
){
3750 assert( pMem
->db
->mallocFailed
|| flags
&(MEM_Str
|MEM_Blob
) );
3751 assert( pMem
->n
>=0 );
3753 if( flags
& MEM_Zero
){
3757 return ((n
*2) + 12 + ((flags
&MEM_Str
)!=0));
3759 #endif /* inlined into OP_MakeRecord */
3762 ** The sizes for serial types less than 128
3764 const u8 sqlite3SmallTypeSizes
[128] = {
3765 /* 0 1 2 3 4 5 6 7 8 9 */
3766 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3767 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3768 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3769 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3770 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3771 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3772 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3773 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3774 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3775 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3776 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3777 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3778 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
3782 ** Return the length of the data corresponding to the supplied serial-type.
3784 u32
sqlite3VdbeSerialTypeLen(u32 serial_type
){
3785 if( serial_type
>=128 ){
3786 return (serial_type
-12)/2;
3788 assert( serial_type
<12
3789 || sqlite3SmallTypeSizes
[serial_type
]==(serial_type
- 12)/2 );
3790 return sqlite3SmallTypeSizes
[serial_type
];
3793 u8
sqlite3VdbeOneByteSerialTypeLen(u8 serial_type
){
3794 assert( serial_type
<128 );
3795 return sqlite3SmallTypeSizes
[serial_type
];
3799 ** If we are on an architecture with mixed-endian floating
3800 ** points (ex: ARM7) then swap the lower 4 bytes with the
3801 ** upper 4 bytes. Return the result.
3803 ** For most architectures, this is a no-op.
3805 ** (later): It is reported to me that the mixed-endian problem
3806 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3807 ** that early versions of GCC stored the two words of a 64-bit
3808 ** float in the wrong order. And that error has been propagated
3809 ** ever since. The blame is not necessarily with GCC, though.
3810 ** GCC might have just copying the problem from a prior compiler.
3811 ** I am also told that newer versions of GCC that follow a different
3812 ** ABI get the byte order right.
3814 ** Developers using SQLite on an ARM7 should compile and run their
3815 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3816 ** enabled, some asserts below will ensure that the byte order of
3817 ** floating point values is correct.
3819 ** (2007-08-30) Frank van Vugt has studied this problem closely
3820 ** and has send his findings to the SQLite developers. Frank
3821 ** writes that some Linux kernels offer floating point hardware
3822 ** emulation that uses only 32-bit mantissas instead of a full
3823 ** 48-bits as required by the IEEE standard. (This is the
3824 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3825 ** byte swapping becomes very complicated. To avoid problems,
3826 ** the necessary byte swapping is carried out using a 64-bit integer
3827 ** rather than a 64-bit float. Frank assures us that the code here
3828 ** works for him. We, the developers, have no way to independently
3829 ** verify this, but Frank seems to know what he is talking about
3832 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3833 u64
sqlite3FloatSwap(u64 in
){
3846 #endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */
3849 /* Input "x" is a sequence of unsigned characters that represent a
3850 ** big-endian integer. Return the equivalent native integer
3852 #define ONE_BYTE_INT(x) ((i8)(x)[0])
3853 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
3854 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
3855 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3856 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
3859 ** Deserialize the data blob pointed to by buf as serial type serial_type
3860 ** and store the result in pMem.
3862 ** This function is implemented as two separate routines for performance.
3863 ** The few cases that require local variables are broken out into a separate
3864 ** routine so that in most cases the overhead of moving the stack pointer
3867 static void serialGet(
3868 const unsigned char *buf
, /* Buffer to deserialize from */
3869 u32 serial_type
, /* Serial type to deserialize */
3870 Mem
*pMem
/* Memory cell to write value into */
3872 u64 x
= FOUR_BYTE_UINT(buf
);
3873 u32 y
= FOUR_BYTE_UINT(buf
+4);
3875 if( serial_type
==6 ){
3876 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
3877 ** twos-complement integer. */
3878 pMem
->u
.i
= *(i64
*)&x
;
3879 pMem
->flags
= MEM_Int
;
3880 testcase( pMem
->u
.i
<0 );
3882 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
3883 ** floating point number. */
3884 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
3885 /* Verify that integers and floating point values use the same
3886 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
3887 ** defined that 64-bit floating point values really are mixed
3890 static const u64 t1
= ((u64
)0x3ff00000)<<32;
3891 static const double r1
= 1.0;
3893 swapMixedEndianFloat(t2
);
3894 assert( sizeof(r1
)==sizeof(t2
) && memcmp(&r1
, &t2
, sizeof(r1
))==0 );
3896 assert( sizeof(x
)==8 && sizeof(pMem
->u
.r
)==8 );
3897 swapMixedEndianFloat(x
);
3898 memcpy(&pMem
->u
.r
, &x
, sizeof(x
));
3899 pMem
->flags
= IsNaN(x
) ? MEM_Null
: MEM_Real
;
3902 void sqlite3VdbeSerialGet(
3903 const unsigned char *buf
, /* Buffer to deserialize from */
3904 u32 serial_type
, /* Serial type to deserialize */
3905 Mem
*pMem
/* Memory cell to write value into */
3907 switch( serial_type
){
3908 case 10: { /* Internal use only: NULL with virtual table
3909 ** UPDATE no-change flag set */
3910 pMem
->flags
= MEM_Null
|MEM_Zero
;
3915 case 11: /* Reserved for future use */
3916 case 0: { /* Null */
3917 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
3918 pMem
->flags
= MEM_Null
;
3922 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
3924 pMem
->u
.i
= ONE_BYTE_INT(buf
);
3925 pMem
->flags
= MEM_Int
;
3926 testcase( pMem
->u
.i
<0 );
3929 case 2: { /* 2-byte signed integer */
3930 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
3931 ** twos-complement integer. */
3932 pMem
->u
.i
= TWO_BYTE_INT(buf
);
3933 pMem
->flags
= MEM_Int
;
3934 testcase( pMem
->u
.i
<0 );
3937 case 3: { /* 3-byte signed integer */
3938 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
3939 ** twos-complement integer. */
3940 pMem
->u
.i
= THREE_BYTE_INT(buf
);
3941 pMem
->flags
= MEM_Int
;
3942 testcase( pMem
->u
.i
<0 );
3945 case 4: { /* 4-byte signed integer */
3946 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
3947 ** twos-complement integer. */
3948 pMem
->u
.i
= FOUR_BYTE_INT(buf
);
3950 /* Work around a sign-extension bug in the HP compiler for HP/UX */
3951 if( buf
[0]&0x80 ) pMem
->u
.i
|= 0xffffffff80000000LL
;
3953 pMem
->flags
= MEM_Int
;
3954 testcase( pMem
->u
.i
<0 );
3957 case 5: { /* 6-byte signed integer */
3958 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
3959 ** twos-complement integer. */
3960 pMem
->u
.i
= FOUR_BYTE_UINT(buf
+2) + (((i64
)1)<<32)*TWO_BYTE_INT(buf
);
3961 pMem
->flags
= MEM_Int
;
3962 testcase( pMem
->u
.i
<0 );
3965 case 6: /* 8-byte signed integer */
3966 case 7: { /* IEEE floating point */
3967 /* These use local variables, so do them in a separate routine
3968 ** to avoid having to move the frame pointer in the common case */
3969 serialGet(buf
,serial_type
,pMem
);
3972 case 8: /* Integer 0 */
3973 case 9: { /* Integer 1 */
3974 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
3975 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
3976 pMem
->u
.i
= serial_type
-8;
3977 pMem
->flags
= MEM_Int
;
3981 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
3983 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
3984 ** (N-13)/2 bytes in length. */
3985 static const u16 aFlag
[] = { MEM_Blob
|MEM_Ephem
, MEM_Str
|MEM_Ephem
};
3986 pMem
->z
= (char *)buf
;
3987 pMem
->n
= (serial_type
-12)/2;
3988 pMem
->flags
= aFlag
[serial_type
&1];
3995 ** This routine is used to allocate sufficient space for an UnpackedRecord
3996 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
3997 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
3999 ** The space is either allocated using sqlite3DbMallocRaw() or from within
4000 ** the unaligned buffer passed via the second and third arguments (presumably
4001 ** stack space). If the former, then *ppFree is set to a pointer that should
4002 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
4003 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
4004 ** before returning.
4006 ** If an OOM error occurs, NULL is returned.
4008 UnpackedRecord
*sqlite3VdbeAllocUnpackedRecord(
4009 KeyInfo
*pKeyInfo
/* Description of the record */
4011 UnpackedRecord
*p
; /* Unpacked record to return */
4012 int nByte
; /* Number of bytes required for *p */
4013 nByte
= ROUND8P(sizeof(UnpackedRecord
)) + sizeof(Mem
)*(pKeyInfo
->nKeyField
+1);
4014 p
= (UnpackedRecord
*)sqlite3DbMallocRaw(pKeyInfo
->db
, nByte
);
4016 p
->aMem
= (Mem
*)&((char*)p
)[ROUND8P(sizeof(UnpackedRecord
))];
4017 assert( pKeyInfo
->aSortFlags
!=0 );
4018 p
->pKeyInfo
= pKeyInfo
;
4019 p
->nField
= pKeyInfo
->nKeyField
+ 1;
4024 ** Given the nKey-byte encoding of a record in pKey[], populate the
4025 ** UnpackedRecord structure indicated by the fourth argument with the
4026 ** contents of the decoded record.
4028 void sqlite3VdbeRecordUnpack(
4029 KeyInfo
*pKeyInfo
, /* Information about the record format */
4030 int nKey
, /* Size of the binary record */
4031 const void *pKey
, /* The binary record */
4032 UnpackedRecord
*p
/* Populate this structure before returning. */
4034 const unsigned char *aKey
= (const unsigned char *)pKey
;
4036 u32 idx
; /* Offset in aKey[] to read from */
4037 u16 u
; /* Unsigned loop counter */
4039 Mem
*pMem
= p
->aMem
;
4042 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
4043 idx
= getVarint32(aKey
, szHdr
);
4046 while( idx
<szHdr
&& d
<=(u32
)nKey
){
4049 idx
+= getVarint32(&aKey
[idx
], serial_type
);
4050 pMem
->enc
= pKeyInfo
->enc
;
4051 pMem
->db
= pKeyInfo
->db
;
4052 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
4055 sqlite3VdbeSerialGet(&aKey
[d
], serial_type
, pMem
);
4056 d
+= sqlite3VdbeSerialTypeLen(serial_type
);
4058 if( (++u
)>=p
->nField
) break;
4060 if( d
>(u32
)nKey
&& u
){
4061 assert( CORRUPT_DB
);
4062 /* In a corrupt record entry, the last pMem might have been set up using
4063 ** uninitialized memory. Overwrite its value with NULL, to prevent
4064 ** warnings from MSAN. */
4065 sqlite3VdbeMemSetNull(pMem
-1);
4067 assert( u
<=pKeyInfo
->nKeyField
+ 1 );
4073 ** This function compares two index or table record keys in the same way
4074 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
4075 ** this function deserializes and compares values using the
4076 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
4077 ** in assert() statements to ensure that the optimized code in
4078 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
4080 ** Return true if the result of comparison is equivalent to desiredResult.
4081 ** Return false if there is a disagreement.
4083 static int vdbeRecordCompareDebug(
4084 int nKey1
, const void *pKey1
, /* Left key */
4085 const UnpackedRecord
*pPKey2
, /* Right key */
4086 int desiredResult
/* Correct answer */
4088 u32 d1
; /* Offset into aKey[] of next data element */
4089 u32 idx1
; /* Offset into aKey[] of next header element */
4090 u32 szHdr1
; /* Number of bytes in header */
4093 const unsigned char *aKey1
= (const unsigned char *)pKey1
;
4097 pKeyInfo
= pPKey2
->pKeyInfo
;
4098 if( pKeyInfo
->db
==0 ) return 1;
4099 mem1
.enc
= pKeyInfo
->enc
;
4100 mem1
.db
= pKeyInfo
->db
;
4101 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
4102 VVA_ONLY( mem1
.szMalloc
= 0; ) /* Only needed by assert() statements */
4104 /* Compilers may complain that mem1.u.i is potentially uninitialized.
4105 ** We could initialize it, as shown here, to silence those complaints.
4106 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
4107 ** the unnecessary initialization has a measurable negative performance
4108 ** impact, since this routine is a very high runner. And so, we choose
4109 ** to ignore the compiler warnings and leave this variable uninitialized.
4111 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
4113 idx1
= getVarint32(aKey1
, szHdr1
);
4114 if( szHdr1
>98307 ) return SQLITE_CORRUPT
;
4116 assert( pKeyInfo
->nAllField
>=pPKey2
->nField
|| CORRUPT_DB
);
4117 assert( pKeyInfo
->aSortFlags
!=0 );
4118 assert( pKeyInfo
->nKeyField
>0 );
4119 assert( idx1
<=szHdr1
|| CORRUPT_DB
);
4123 /* Read the serial types for the next element in each key. */
4124 idx1
+= getVarint32( aKey1
+idx1
, serial_type1
);
4126 /* Verify that there is enough key space remaining to avoid
4127 ** a buffer overread. The "d1+serial_type1+2" subexpression will
4128 ** always be greater than or equal to the amount of required key space.
4129 ** Use that approximation to avoid the more expensive call to
4130 ** sqlite3VdbeSerialTypeLen() in the common case.
4132 if( d1
+(u64
)serial_type1
+2>(u64
)nKey1
4133 && d1
+(u64
)sqlite3VdbeSerialTypeLen(serial_type1
)>(u64
)nKey1
4138 /* Extract the values to be compared.
4140 sqlite3VdbeSerialGet(&aKey1
[d1
], serial_type1
, &mem1
);
4141 d1
+= sqlite3VdbeSerialTypeLen(serial_type1
);
4143 /* Do the comparison
4145 rc
= sqlite3MemCompare(&mem1
, &pPKey2
->aMem
[i
],
4146 pKeyInfo
->nAllField
>i
? pKeyInfo
->aColl
[i
] : 0);
4148 assert( mem1
.szMalloc
==0 ); /* See comment below */
4149 if( (pKeyInfo
->aSortFlags
[i
] & KEYINFO_ORDER_BIGNULL
)
4150 && ((mem1
.flags
& MEM_Null
) || (pPKey2
->aMem
[i
].flags
& MEM_Null
))
4154 if( pKeyInfo
->aSortFlags
[i
] & KEYINFO_ORDER_DESC
){
4155 rc
= -rc
; /* Invert the result for DESC sort order. */
4157 goto debugCompareEnd
;
4160 }while( idx1
<szHdr1
&& i
<pPKey2
->nField
);
4162 /* No memory allocation is ever used on mem1. Prove this using
4163 ** the following assert(). If the assert() fails, it indicates a
4164 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4166 assert( mem1
.szMalloc
==0 );
4168 /* rc==0 here means that one of the keys ran out of fields and
4169 ** all the fields up to that point were equal. Return the default_rc
4171 rc
= pPKey2
->default_rc
;
4174 if( desiredResult
==0 && rc
==0 ) return 1;
4175 if( desiredResult
<0 && rc
<0 ) return 1;
4176 if( desiredResult
>0 && rc
>0 ) return 1;
4177 if( CORRUPT_DB
) return 1;
4178 if( pKeyInfo
->db
->mallocFailed
) return 1;
4185 ** Count the number of fields (a.k.a. columns) in the record given by
4186 ** pKey,nKey. The verify that this count is less than or equal to the
4187 ** limit given by pKeyInfo->nAllField.
4189 ** If this constraint is not satisfied, it means that the high-speed
4190 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4191 ** not work correctly. If this assert() ever fires, it probably means
4192 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4195 static void vdbeAssertFieldCountWithinLimits(
4196 int nKey
, const void *pKey
, /* The record to verify */
4197 const KeyInfo
*pKeyInfo
/* Compare size with this KeyInfo */
4203 const unsigned char *aKey
= (const unsigned char*)pKey
;
4205 if( CORRUPT_DB
) return;
4206 idx
= getVarint32(aKey
, szHdr
);
4208 assert( szHdr
<=(u32
)nKey
);
4210 idx
+= getVarint32(aKey
+idx
, notUsed
);
4213 assert( nField
<= pKeyInfo
->nAllField
);
4216 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4220 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4221 ** using the collation sequence pColl. As usual, return a negative , zero
4222 ** or positive value if *pMem1 is less than, equal to or greater than
4223 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4225 static int vdbeCompareMemString(
4228 const CollSeq
*pColl
,
4229 u8
*prcErr
/* If an OOM occurs, set to SQLITE_NOMEM */
4231 if( pMem1
->enc
==pColl
->enc
){
4232 /* The strings are already in the correct encoding. Call the
4233 ** comparison function directly */
4234 return pColl
->xCmp(pColl
->pUser
,pMem1
->n
,pMem1
->z
,pMem2
->n
,pMem2
->z
);
4237 const void *v1
, *v2
;
4240 sqlite3VdbeMemInit(&c1
, pMem1
->db
, MEM_Null
);
4241 sqlite3VdbeMemInit(&c2
, pMem1
->db
, MEM_Null
);
4242 sqlite3VdbeMemShallowCopy(&c1
, pMem1
, MEM_Ephem
);
4243 sqlite3VdbeMemShallowCopy(&c2
, pMem2
, MEM_Ephem
);
4244 v1
= sqlite3ValueText((sqlite3_value
*)&c1
, pColl
->enc
);
4245 v2
= sqlite3ValueText((sqlite3_value
*)&c2
, pColl
->enc
);
4246 if( (v1
==0 || v2
==0) ){
4247 if( prcErr
) *prcErr
= SQLITE_NOMEM_BKPT
;
4250 rc
= pColl
->xCmp(pColl
->pUser
, c1
.n
, v1
, c2
.n
, v2
);
4252 sqlite3VdbeMemReleaseMalloc(&c1
);
4253 sqlite3VdbeMemReleaseMalloc(&c2
);
4259 ** The input pBlob is guaranteed to be a Blob that is not marked
4260 ** with MEM_Zero. Return true if it could be a zero-blob.
4262 static int isAllZero(const char *z
, int n
){
4265 if( z
[i
] ) return 0;
4271 ** Compare two blobs. Return negative, zero, or positive if the first
4272 ** is less than, equal to, or greater than the second, respectively.
4273 ** If one blob is a prefix of the other, then the shorter is the lessor.
4275 SQLITE_NOINLINE
int sqlite3BlobCompare(const Mem
*pB1
, const Mem
*pB2
){
4280 /* It is possible to have a Blob value that has some non-zero content
4281 ** followed by zero content. But that only comes up for Blobs formed
4282 ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4283 ** sqlite3MemCompare(). */
4284 assert( (pB1
->flags
& MEM_Zero
)==0 || n1
==0 );
4285 assert( (pB2
->flags
& MEM_Zero
)==0 || n2
==0 );
4287 if( (pB1
->flags
|pB2
->flags
) & MEM_Zero
){
4288 if( pB1
->flags
& pB2
->flags
& MEM_Zero
){
4289 return pB1
->u
.nZero
- pB2
->u
.nZero
;
4290 }else if( pB1
->flags
& MEM_Zero
){
4291 if( !isAllZero(pB2
->z
, pB2
->n
) ) return -1;
4292 return pB1
->u
.nZero
- n2
;
4294 if( !isAllZero(pB1
->z
, pB1
->n
) ) return +1;
4295 return n1
- pB2
->u
.nZero
;
4298 c
= memcmp(pB1
->z
, pB2
->z
, n1
>n2
? n2
: n1
);
4304 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4305 ** number. Return negative, zero, or positive if the first (i64) is less than,
4306 ** equal to, or greater than the second (double).
4308 int sqlite3IntFloatCompare(i64 i
, double r
){
4309 if( sizeof(LONGDOUBLE_TYPE
)>8 ){
4310 LONGDOUBLE_TYPE x
= (LONGDOUBLE_TYPE
)i
;
4314 if( x
<r
) return -1;
4315 if( x
>r
) return +1; /*NO_TEST*/ /* work around bugs in gcov */
4316 return 0; /*NO_TEST*/ /* work around bugs in gcov */
4320 if( r
<-9223372036854775808.0 ) return +1;
4321 if( r
>=9223372036854775808.0 ) return -1;
4323 if( i
<y
) return -1;
4324 if( i
>y
) return +1;
4326 if( s
<r
) return -1;
4327 if( s
>r
) return +1;
4333 ** Compare the values contained by the two memory cells, returning
4334 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4335 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4336 ** and reals) sorted numerically, followed by text ordered by the collating
4337 ** sequence pColl and finally blob's ordered by memcmp().
4339 ** Two NULL values are considered equal by this function.
4341 int sqlite3MemCompare(const Mem
*pMem1
, const Mem
*pMem2
, const CollSeq
*pColl
){
4347 combined_flags
= f1
|f2
;
4348 assert( !sqlite3VdbeMemIsRowSet(pMem1
) && !sqlite3VdbeMemIsRowSet(pMem2
) );
4350 /* If one value is NULL, it is less than the other. If both values
4351 ** are NULL, return 0.
4353 if( combined_flags
&MEM_Null
){
4354 return (f2
&MEM_Null
) - (f1
&MEM_Null
);
4357 /* At least one of the two values is a number
4359 if( combined_flags
&(MEM_Int
|MEM_Real
|MEM_IntReal
) ){
4360 testcase( combined_flags
& MEM_Int
);
4361 testcase( combined_flags
& MEM_Real
);
4362 testcase( combined_flags
& MEM_IntReal
);
4363 if( (f1
& f2
& (MEM_Int
|MEM_IntReal
))!=0 ){
4364 testcase( f1
& f2
& MEM_Int
);
4365 testcase( f1
& f2
& MEM_IntReal
);
4366 if( pMem1
->u
.i
< pMem2
->u
.i
) return -1;
4367 if( pMem1
->u
.i
> pMem2
->u
.i
) return +1;
4370 if( (f1
& f2
& MEM_Real
)!=0 ){
4371 if( pMem1
->u
.r
< pMem2
->u
.r
) return -1;
4372 if( pMem1
->u
.r
> pMem2
->u
.r
) return +1;
4375 if( (f1
&(MEM_Int
|MEM_IntReal
))!=0 ){
4376 testcase( f1
& MEM_Int
);
4377 testcase( f1
& MEM_IntReal
);
4378 if( (f2
&MEM_Real
)!=0 ){
4379 return sqlite3IntFloatCompare(pMem1
->u
.i
, pMem2
->u
.r
);
4380 }else if( (f2
&(MEM_Int
|MEM_IntReal
))!=0 ){
4381 if( pMem1
->u
.i
< pMem2
->u
.i
) return -1;
4382 if( pMem1
->u
.i
> pMem2
->u
.i
) return +1;
4388 if( (f1
&MEM_Real
)!=0 ){
4389 if( (f2
&(MEM_Int
|MEM_IntReal
))!=0 ){
4390 testcase( f2
& MEM_Int
);
4391 testcase( f2
& MEM_IntReal
);
4392 return -sqlite3IntFloatCompare(pMem2
->u
.i
, pMem1
->u
.r
);
4400 /* If one value is a string and the other is a blob, the string is less.
4401 ** If both are strings, compare using the collating functions.
4403 if( combined_flags
&MEM_Str
){
4404 if( (f1
& MEM_Str
)==0 ){
4407 if( (f2
& MEM_Str
)==0 ){
4411 assert( pMem1
->enc
==pMem2
->enc
|| pMem1
->db
->mallocFailed
);
4412 assert( pMem1
->enc
==SQLITE_UTF8
||
4413 pMem1
->enc
==SQLITE_UTF16LE
|| pMem1
->enc
==SQLITE_UTF16BE
);
4415 /* The collation sequence must be defined at this point, even if
4416 ** the user deletes the collation sequence after the vdbe program is
4417 ** compiled (this was not always the case).
4419 assert( !pColl
|| pColl
->xCmp
);
4422 return vdbeCompareMemString(pMem1
, pMem2
, pColl
, 0);
4424 /* If a NULL pointer was passed as the collate function, fall through
4425 ** to the blob case and use memcmp(). */
4428 /* Both values must be blobs. Compare using memcmp(). */
4429 return sqlite3BlobCompare(pMem1
, pMem2
);
4434 ** The first argument passed to this function is a serial-type that
4435 ** corresponds to an integer - all values between 1 and 9 inclusive
4436 ** except 7. The second points to a buffer containing an integer value
4437 ** serialized according to serial_type. This function deserializes
4438 ** and returns the value.
4440 static i64
vdbeRecordDecodeInt(u32 serial_type
, const u8
*aKey
){
4442 assert( CORRUPT_DB
|| (serial_type
>=1 && serial_type
<=9 && serial_type
!=7) );
4443 switch( serial_type
){
4446 testcase( aKey
[0]&0x80 );
4447 return ONE_BYTE_INT(aKey
);
4449 testcase( aKey
[0]&0x80 );
4450 return TWO_BYTE_INT(aKey
);
4452 testcase( aKey
[0]&0x80 );
4453 return THREE_BYTE_INT(aKey
);
4455 testcase( aKey
[0]&0x80 );
4456 y
= FOUR_BYTE_UINT(aKey
);
4457 return (i64
)*(int*)&y
;
4460 testcase( aKey
[0]&0x80 );
4461 return FOUR_BYTE_UINT(aKey
+2) + (((i64
)1)<<32)*TWO_BYTE_INT(aKey
);
4464 u64 x
= FOUR_BYTE_UINT(aKey
);
4465 testcase( aKey
[0]&0x80 );
4466 x
= (x
<<32) | FOUR_BYTE_UINT(aKey
+4);
4467 return (i64
)*(i64
*)&x
;
4471 return (serial_type
- 8);
4475 ** This function compares the two table rows or index records
4476 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
4477 ** or positive integer if key1 is less than, equal to or
4478 ** greater than key2. The {nKey1, pKey1} key must be a blob
4479 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
4480 ** key must be a parsed key such as obtained from
4481 ** sqlite3VdbeParseRecord.
4483 ** If argument bSkip is non-zero, it is assumed that the caller has already
4484 ** determined that the first fields of the keys are equal.
4486 ** Key1 and Key2 do not have to contain the same number of fields. If all
4487 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4490 ** If database corruption is discovered, set pPKey2->errCode to
4491 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4492 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4493 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4495 int sqlite3VdbeRecordCompareWithSkip(
4496 int nKey1
, const void *pKey1
, /* Left key */
4497 UnpackedRecord
*pPKey2
, /* Right key */
4498 int bSkip
/* If true, skip the first field */
4500 u32 d1
; /* Offset into aKey[] of next data element */
4501 int i
; /* Index of next field to compare */
4502 u32 szHdr1
; /* Size of record header in bytes */
4503 u32 idx1
; /* Offset of first type in header */
4504 int rc
= 0; /* Return value */
4505 Mem
*pRhs
= pPKey2
->aMem
; /* Next field of pPKey2 to compare */
4507 const unsigned char *aKey1
= (const unsigned char *)pKey1
;
4510 /* If bSkip is true, then the caller has already determined that the first
4511 ** two elements in the keys are equal. Fix the various stack variables so
4512 ** that this routine begins comparing at the second field. */
4518 idx1
= 1 + sqlite3GetVarint32(&aKey1
[1], &s1
);
4521 d1
= szHdr1
+ sqlite3VdbeSerialTypeLen(s1
);
4525 if( (szHdr1
= aKey1
[0])<0x80 ){
4528 idx1
= sqlite3GetVarint32(aKey1
, &szHdr1
);
4533 if( d1
>(unsigned)nKey1
){
4534 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
4535 return 0; /* Corruption */
4538 VVA_ONLY( mem1
.szMalloc
= 0; ) /* Only needed by assert() statements */
4539 assert( pPKey2
->pKeyInfo
->nAllField
>=pPKey2
->nField
4541 assert( pPKey2
->pKeyInfo
->aSortFlags
!=0 );
4542 assert( pPKey2
->pKeyInfo
->nKeyField
>0 );
4543 assert( idx1
<=szHdr1
|| CORRUPT_DB
);
4547 /* RHS is an integer */
4548 if( pRhs
->flags
& (MEM_Int
|MEM_IntReal
) ){
4549 testcase( pRhs
->flags
& MEM_Int
);
4550 testcase( pRhs
->flags
& MEM_IntReal
);
4551 serial_type
= aKey1
[idx1
];
4552 testcase( serial_type
==12 );
4553 if( serial_type
>=10 ){
4555 }else if( serial_type
==0 ){
4557 }else if( serial_type
==7 ){
4558 sqlite3VdbeSerialGet(&aKey1
[d1
], serial_type
, &mem1
);
4559 rc
= -sqlite3IntFloatCompare(pRhs
->u
.i
, mem1
.u
.r
);
4561 i64 lhs
= vdbeRecordDecodeInt(serial_type
, &aKey1
[d1
]);
4562 i64 rhs
= pRhs
->u
.i
;
4565 }else if( lhs
>rhs
){
4572 else if( pRhs
->flags
& MEM_Real
){
4573 serial_type
= aKey1
[idx1
];
4574 if( serial_type
>=10 ){
4575 /* Serial types 12 or greater are strings and blobs (greater than
4576 ** numbers). Types 10 and 11 are currently "reserved for future
4577 ** use", so it doesn't really matter what the results of comparing
4578 ** them to numberic values are. */
4580 }else if( serial_type
==0 ){
4583 sqlite3VdbeSerialGet(&aKey1
[d1
], serial_type
, &mem1
);
4584 if( serial_type
==7 ){
4585 if( mem1
.u
.r
<pRhs
->u
.r
){
4587 }else if( mem1
.u
.r
>pRhs
->u
.r
){
4591 rc
= sqlite3IntFloatCompare(mem1
.u
.i
, pRhs
->u
.r
);
4596 /* RHS is a string */
4597 else if( pRhs
->flags
& MEM_Str
){
4598 getVarint32NR(&aKey1
[idx1
], serial_type
);
4599 testcase( serial_type
==12 );
4600 if( serial_type
<12 ){
4602 }else if( !(serial_type
& 0x01) ){
4605 mem1
.n
= (serial_type
- 12) / 2;
4606 testcase( (d1
+mem1
.n
)==(unsigned)nKey1
);
4607 testcase( (d1
+mem1
.n
+1)==(unsigned)nKey1
);
4608 if( (d1
+mem1
.n
) > (unsigned)nKey1
4609 || (pKeyInfo
= pPKey2
->pKeyInfo
)->nAllField
<=i
4611 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
4612 return 0; /* Corruption */
4613 }else if( pKeyInfo
->aColl
[i
] ){
4614 mem1
.enc
= pKeyInfo
->enc
;
4615 mem1
.db
= pKeyInfo
->db
;
4616 mem1
.flags
= MEM_Str
;
4617 mem1
.z
= (char*)&aKey1
[d1
];
4618 rc
= vdbeCompareMemString(
4619 &mem1
, pRhs
, pKeyInfo
->aColl
[i
], &pPKey2
->errCode
4622 int nCmp
= MIN(mem1
.n
, pRhs
->n
);
4623 rc
= memcmp(&aKey1
[d1
], pRhs
->z
, nCmp
);
4624 if( rc
==0 ) rc
= mem1
.n
- pRhs
->n
;
4630 else if( pRhs
->flags
& MEM_Blob
){
4631 assert( (pRhs
->flags
& MEM_Zero
)==0 || pRhs
->n
==0 );
4632 getVarint32NR(&aKey1
[idx1
], serial_type
);
4633 testcase( serial_type
==12 );
4634 if( serial_type
<12 || (serial_type
& 0x01) ){
4637 int nStr
= (serial_type
- 12) / 2;
4638 testcase( (d1
+nStr
)==(unsigned)nKey1
);
4639 testcase( (d1
+nStr
+1)==(unsigned)nKey1
);
4640 if( (d1
+nStr
) > (unsigned)nKey1
){
4641 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
4642 return 0; /* Corruption */
4643 }else if( pRhs
->flags
& MEM_Zero
){
4644 if( !isAllZero((const char*)&aKey1
[d1
],nStr
) ){
4647 rc
= nStr
- pRhs
->u
.nZero
;
4650 int nCmp
= MIN(nStr
, pRhs
->n
);
4651 rc
= memcmp(&aKey1
[d1
], pRhs
->z
, nCmp
);
4652 if( rc
==0 ) rc
= nStr
- pRhs
->n
;
4659 serial_type
= aKey1
[idx1
];
4660 rc
= (serial_type
!=0);
4664 int sortFlags
= pPKey2
->pKeyInfo
->aSortFlags
[i
];
4666 if( (sortFlags
& KEYINFO_ORDER_BIGNULL
)==0
4667 || ((sortFlags
& KEYINFO_ORDER_DESC
)
4668 !=(serial_type
==0 || (pRhs
->flags
&MEM_Null
)))
4673 assert( vdbeRecordCompareDebug(nKey1
, pKey1
, pPKey2
, rc
) );
4674 assert( mem1
.szMalloc
==0 ); /* See comment below */
4679 if( i
==pPKey2
->nField
) break;
4681 d1
+= sqlite3VdbeSerialTypeLen(serial_type
);
4682 idx1
+= sqlite3VarintLen(serial_type
);
4683 }while( idx1
<(unsigned)szHdr1
&& d1
<=(unsigned)nKey1
);
4685 /* No memory allocation is ever used on mem1. Prove this using
4686 ** the following assert(). If the assert() fails, it indicates a
4687 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
4688 assert( mem1
.szMalloc
==0 );
4690 /* rc==0 here means that one or both of the keys ran out of fields and
4691 ** all the fields up to that point were equal. Return the default_rc
4694 || vdbeRecordCompareDebug(nKey1
, pKey1
, pPKey2
, pPKey2
->default_rc
)
4695 || pPKey2
->pKeyInfo
->db
->mallocFailed
4698 return pPKey2
->default_rc
;
4700 int sqlite3VdbeRecordCompare(
4701 int nKey1
, const void *pKey1
, /* Left key */
4702 UnpackedRecord
*pPKey2
/* Right key */
4704 return sqlite3VdbeRecordCompareWithSkip(nKey1
, pKey1
, pPKey2
, 0);
4709 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4710 ** that (a) the first field of pPKey2 is an integer, and (b) the
4711 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4712 ** byte (i.e. is less than 128).
4714 ** To avoid concerns about buffer overreads, this routine is only used
4715 ** on schemas where the maximum valid header size is 63 bytes or less.
4717 static int vdbeRecordCompareInt(
4718 int nKey1
, const void *pKey1
, /* Left key */
4719 UnpackedRecord
*pPKey2
/* Right key */
4721 const u8
*aKey
= &((const u8
*)pKey1
)[*(const u8
*)pKey1
& 0x3F];
4722 int serial_type
= ((const u8
*)pKey1
)[1];
4729 vdbeAssertFieldCountWithinLimits(nKey1
, pKey1
, pPKey2
->pKeyInfo
);
4730 assert( (*(u8
*)pKey1
)<=0x3F || CORRUPT_DB
);
4731 switch( serial_type
){
4732 case 1: { /* 1-byte signed integer */
4733 lhs
= ONE_BYTE_INT(aKey
);
4737 case 2: { /* 2-byte signed integer */
4738 lhs
= TWO_BYTE_INT(aKey
);
4742 case 3: { /* 3-byte signed integer */
4743 lhs
= THREE_BYTE_INT(aKey
);
4747 case 4: { /* 4-byte signed integer */
4748 y
= FOUR_BYTE_UINT(aKey
);
4749 lhs
= (i64
)*(int*)&y
;
4753 case 5: { /* 6-byte signed integer */
4754 lhs
= FOUR_BYTE_UINT(aKey
+2) + (((i64
)1)<<32)*TWO_BYTE_INT(aKey
);
4758 case 6: { /* 8-byte signed integer */
4759 x
= FOUR_BYTE_UINT(aKey
);
4760 x
= (x
<<32) | FOUR_BYTE_UINT(aKey
+4);
4772 /* This case could be removed without changing the results of running
4773 ** this code. Including it causes gcc to generate a faster switch
4774 ** statement (since the range of switch targets now starts at zero and
4775 ** is contiguous) but does not cause any duplicate code to be generated
4776 ** (as gcc is clever enough to combine the two like cases). Other
4777 ** compilers might be similar. */
4779 return sqlite3VdbeRecordCompare(nKey1
, pKey1
, pPKey2
);
4782 return sqlite3VdbeRecordCompare(nKey1
, pKey1
, pPKey2
);
4785 assert( pPKey2
->u
.i
== pPKey2
->aMem
[0].u
.i
);
4791 }else if( pPKey2
->nField
>1 ){
4792 /* The first fields of the two keys are equal. Compare the trailing
4794 res
= sqlite3VdbeRecordCompareWithSkip(nKey1
, pKey1
, pPKey2
, 1);
4796 /* The first fields of the two keys are equal and there are no trailing
4797 ** fields. Return pPKey2->default_rc in this case. */
4798 res
= pPKey2
->default_rc
;
4802 assert( vdbeRecordCompareDebug(nKey1
, pKey1
, pPKey2
, res
) );
4807 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4808 ** that (a) the first field of pPKey2 is a string, that (b) the first field
4809 ** uses the collation sequence BINARY and (c) that the size-of-header varint
4810 ** at the start of (pKey1/nKey1) fits in a single byte.
4812 static int vdbeRecordCompareString(
4813 int nKey1
, const void *pKey1
, /* Left key */
4814 UnpackedRecord
*pPKey2
/* Right key */
4816 const u8
*aKey1
= (const u8
*)pKey1
;
4820 assert( pPKey2
->aMem
[0].flags
& MEM_Str
);
4821 assert( pPKey2
->aMem
[0].n
== pPKey2
->n
);
4822 assert( pPKey2
->aMem
[0].z
== pPKey2
->u
.z
);
4823 vdbeAssertFieldCountWithinLimits(nKey1
, pKey1
, pPKey2
->pKeyInfo
);
4824 serial_type
= (signed char)(aKey1
[1]);
4827 if( serial_type
<12 ){
4828 if( serial_type
<0 ){
4829 sqlite3GetVarint32(&aKey1
[1], (u32
*)&serial_type
);
4830 if( serial_type
>=12 ) goto vrcs_restart
;
4831 assert( CORRUPT_DB
);
4833 res
= pPKey2
->r1
; /* (pKey1/nKey1) is a number or a null */
4834 }else if( !(serial_type
& 0x01) ){
4835 res
= pPKey2
->r2
; /* (pKey1/nKey1) is a blob */
4839 int szHdr
= aKey1
[0];
4841 nStr
= (serial_type
-12) / 2;
4842 if( (szHdr
+ nStr
) > nKey1
){
4843 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
4844 return 0; /* Corruption */
4846 nCmp
= MIN( pPKey2
->n
, nStr
);
4847 res
= memcmp(&aKey1
[szHdr
], pPKey2
->u
.z
, nCmp
);
4854 res
= nStr
- pPKey2
->n
;
4856 if( pPKey2
->nField
>1 ){
4857 res
= sqlite3VdbeRecordCompareWithSkip(nKey1
, pKey1
, pPKey2
, 1);
4859 res
= pPKey2
->default_rc
;
4870 assert( vdbeRecordCompareDebug(nKey1
, pKey1
, pPKey2
, res
)
4872 || pPKey2
->pKeyInfo
->db
->mallocFailed
4878 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
4879 ** suitable for comparing serialized records to the unpacked record passed
4880 ** as the only argument.
4882 RecordCompare
sqlite3VdbeFindCompare(UnpackedRecord
*p
){
4883 /* varintRecordCompareInt() and varintRecordCompareString() both assume
4884 ** that the size-of-header varint that occurs at the start of each record
4885 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
4886 ** also assumes that it is safe to overread a buffer by at least the
4887 ** maximum possible legal header size plus 8 bytes. Because there is
4888 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
4889 ** buffer passed to varintRecordCompareInt() this makes it convenient to
4890 ** limit the size of the header to 64 bytes in cases where the first field
4893 ** The easiest way to enforce this limit is to consider only records with
4894 ** 13 fields or less. If the first field is an integer, the maximum legal
4895 ** header size is (12*5 + 1 + 1) bytes. */
4896 if( p
->pKeyInfo
->nAllField
<=13 ){
4897 int flags
= p
->aMem
[0].flags
;
4898 if( p
->pKeyInfo
->aSortFlags
[0] ){
4899 if( p
->pKeyInfo
->aSortFlags
[0] & KEYINFO_ORDER_BIGNULL
){
4900 return sqlite3VdbeRecordCompare
;
4908 if( (flags
& MEM_Int
) ){
4909 p
->u
.i
= p
->aMem
[0].u
.i
;
4910 return vdbeRecordCompareInt
;
4912 testcase( flags
& MEM_Real
);
4913 testcase( flags
& MEM_Null
);
4914 testcase( flags
& MEM_Blob
);
4915 if( (flags
& (MEM_Real
|MEM_IntReal
|MEM_Null
|MEM_Blob
))==0
4916 && p
->pKeyInfo
->aColl
[0]==0
4918 assert( flags
& MEM_Str
);
4919 p
->u
.z
= p
->aMem
[0].z
;
4920 p
->n
= p
->aMem
[0].n
;
4921 return vdbeRecordCompareString
;
4925 return sqlite3VdbeRecordCompare
;
4929 ** pCur points at an index entry created using the OP_MakeRecord opcode.
4930 ** Read the rowid (the last field in the record) and store it in *rowid.
4931 ** Return SQLITE_OK if everything works, or an error code otherwise.
4933 ** pCur might be pointing to text obtained from a corrupt database file.
4934 ** So the content cannot be trusted. Do appropriate checks on the content.
4936 int sqlite3VdbeIdxRowid(sqlite3
*db
, BtCursor
*pCur
, i64
*rowid
){
4939 u32 szHdr
; /* Size of the header */
4940 u32 typeRowid
; /* Serial type of the rowid */
4941 u32 lenRowid
; /* Size of the rowid */
4944 /* Get the size of the index entry. Only indices entries of less
4945 ** than 2GiB are support - anything large must be database corruption.
4946 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
4947 ** this code can safely assume that nCellKey is 32-bits
4949 assert( sqlite3BtreeCursorIsValid(pCur
) );
4950 nCellKey
= sqlite3BtreePayloadSize(pCur
);
4951 assert( (nCellKey
& SQLITE_MAX_U32
)==(u64
)nCellKey
);
4953 /* Read in the complete content of the index entry */
4954 sqlite3VdbeMemInit(&m
, db
, 0);
4955 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pCur
, (u32
)nCellKey
, &m
);
4960 /* The index entry must begin with a header size */
4961 getVarint32NR((u8
*)m
.z
, szHdr
);
4962 testcase( szHdr
==3 );
4963 testcase( szHdr
==(u32
)m
.n
);
4964 testcase( szHdr
>0x7fffffff );
4966 if( unlikely(szHdr
<3 || szHdr
>(unsigned)m
.n
) ){
4967 goto idx_rowid_corruption
;
4970 /* The last field of the index should be an integer - the ROWID.
4971 ** Verify that the last entry really is an integer. */
4972 getVarint32NR((u8
*)&m
.z
[szHdr
-1], typeRowid
);
4973 testcase( typeRowid
==1 );
4974 testcase( typeRowid
==2 );
4975 testcase( typeRowid
==3 );
4976 testcase( typeRowid
==4 );
4977 testcase( typeRowid
==5 );
4978 testcase( typeRowid
==6 );
4979 testcase( typeRowid
==8 );
4980 testcase( typeRowid
==9 );
4981 if( unlikely(typeRowid
<1 || typeRowid
>9 || typeRowid
==7) ){
4982 goto idx_rowid_corruption
;
4984 lenRowid
= sqlite3SmallTypeSizes
[typeRowid
];
4985 testcase( (u32
)m
.n
==szHdr
+lenRowid
);
4986 if( unlikely((u32
)m
.n
<szHdr
+lenRowid
) ){
4987 goto idx_rowid_corruption
;
4990 /* Fetch the integer off the end of the index record */
4991 sqlite3VdbeSerialGet((u8
*)&m
.z
[m
.n
-lenRowid
], typeRowid
, &v
);
4993 sqlite3VdbeMemReleaseMalloc(&m
);
4996 /* Jump here if database corruption is detected after m has been
4997 ** allocated. Free the m object and return SQLITE_CORRUPT. */
4998 idx_rowid_corruption
:
4999 testcase( m
.szMalloc
!=0 );
5000 sqlite3VdbeMemReleaseMalloc(&m
);
5001 return SQLITE_CORRUPT_BKPT
;
5005 ** Compare the key of the index entry that cursor pC is pointing to against
5006 ** the key string in pUnpacked. Write into *pRes a number
5007 ** that is negative, zero, or positive if pC is less than, equal to,
5008 ** or greater than pUnpacked. Return SQLITE_OK on success.
5010 ** pUnpacked is either created without a rowid or is truncated so that it
5011 ** omits the rowid at the end. The rowid at the end of the index entry
5012 ** is ignored as well. Hence, this routine only compares the prefixes
5013 ** of the keys prior to the final rowid, not the entire key.
5015 int sqlite3VdbeIdxKeyCompare(
5016 sqlite3
*db
, /* Database connection */
5017 VdbeCursor
*pC
, /* The cursor to compare against */
5018 UnpackedRecord
*pUnpacked
, /* Unpacked version of key */
5019 int *res
/* Write the comparison result here */
5026 assert( pC
->eCurType
==CURTYPE_BTREE
);
5027 pCur
= pC
->uc
.pCursor
;
5028 assert( sqlite3BtreeCursorIsValid(pCur
) );
5029 nCellKey
= sqlite3BtreePayloadSize(pCur
);
5030 /* nCellKey will always be between 0 and 0xffffffff because of the way
5031 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
5032 if( nCellKey
<=0 || nCellKey
>0x7fffffff ){
5034 return SQLITE_CORRUPT_BKPT
;
5036 sqlite3VdbeMemInit(&m
, db
, 0);
5037 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pCur
, (u32
)nCellKey
, &m
);
5041 *res
= sqlite3VdbeRecordCompareWithSkip(m
.n
, m
.z
, pUnpacked
, 0);
5042 sqlite3VdbeMemReleaseMalloc(&m
);
5047 ** This routine sets the value to be returned by subsequent calls to
5048 ** sqlite3_changes() on the database handle 'db'.
5050 void sqlite3VdbeSetChanges(sqlite3
*db
, i64 nChange
){
5051 assert( sqlite3_mutex_held(db
->mutex
) );
5052 db
->nChange
= nChange
;
5053 db
->nTotalChange
+= nChange
;
5057 ** Set a flag in the vdbe to update the change counter when it is finalised
5060 void sqlite3VdbeCountChanges(Vdbe
*v
){
5065 ** Mark every prepared statement associated with a database connection
5068 ** An expired statement means that recompilation of the statement is
5069 ** recommend. Statements expire when things happen that make their
5070 ** programs obsolete. Removing user-defined functions or collating
5071 ** sequences, or changing an authorization function are the types of
5072 ** things that make prepared statements obsolete.
5074 ** If iCode is 1, then expiration is advisory. The statement should
5075 ** be reprepared before being restarted, but if it is already running
5076 ** it is allowed to run to completion.
5078 ** Internally, this function just sets the Vdbe.expired flag on all
5079 ** prepared statements. The flag is set to 1 for an immediate expiration
5080 ** and set to 2 for an advisory expiration.
5082 void sqlite3ExpirePreparedStatements(sqlite3
*db
, int iCode
){
5084 for(p
= db
->pVdbe
; p
; p
=p
->pNext
){
5085 p
->expired
= iCode
+1;
5090 ** Return the database associated with the Vdbe.
5092 sqlite3
*sqlite3VdbeDb(Vdbe
*v
){
5097 ** Return the SQLITE_PREPARE flags for a Vdbe.
5099 u8
sqlite3VdbePrepareFlags(Vdbe
*v
){
5100 return v
->prepFlags
;
5104 ** Return a pointer to an sqlite3_value structure containing the value bound
5105 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
5106 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
5107 ** constants) to the value before returning it.
5109 ** The returned value must be freed by the caller using sqlite3ValueFree().
5111 sqlite3_value
*sqlite3VdbeGetBoundValue(Vdbe
*v
, int iVar
, u8 aff
){
5114 Mem
*pMem
= &v
->aVar
[iVar
-1];
5115 assert( (v
->db
->flags
& SQLITE_EnableQPSG
)==0 );
5116 if( 0==(pMem
->flags
& MEM_Null
) ){
5117 sqlite3_value
*pRet
= sqlite3ValueNew(v
->db
);
5119 sqlite3VdbeMemCopy((Mem
*)pRet
, pMem
);
5120 sqlite3ValueApplyAffinity(pRet
, aff
, SQLITE_UTF8
);
5129 ** Configure SQL variable iVar so that binding a new value to it signals
5130 ** to sqlite3_reoptimize() that re-preparing the statement may result
5131 ** in a better query plan.
5133 void sqlite3VdbeSetVarmask(Vdbe
*v
, int iVar
){
5135 assert( (v
->db
->flags
& SQLITE_EnableQPSG
)==0 );
5137 v
->expmask
|= 0x80000000;
5139 v
->expmask
|= ((u32
)1 << (iVar
-1));
5144 ** Cause a function to throw an error if it was call from OP_PureFunc
5145 ** rather than OP_Function.
5147 ** OP_PureFunc means that the function must be deterministic, and should
5148 ** throw an error if it is given inputs that would make it non-deterministic.
5149 ** This routine is invoked by date/time functions that use non-deterministic
5150 ** features such as 'now'.
5152 int sqlite3NotPureFunc(sqlite3_context
*pCtx
){
5154 #ifdef SQLITE_ENABLE_STAT4
5155 if( pCtx
->pVdbe
==0 ) return 1;
5157 pOp
= pCtx
->pVdbe
->aOp
+ pCtx
->iOp
;
5158 if( pOp
->opcode
==OP_PureFunc
){
5159 const char *zContext
;
5161 if( pOp
->p5
& NC_IsCheck
){
5162 zContext
= "a CHECK constraint";
5163 }else if( pOp
->p5
& NC_GenCol
){
5164 zContext
= "a generated column";
5166 zContext
= "an index";
5168 zMsg
= sqlite3_mprintf("non-deterministic use of %s() in %s",
5169 pCtx
->pFunc
->zName
, zContext
);
5170 sqlite3_result_error(pCtx
, zMsg
, -1);
5177 #ifndef SQLITE_OMIT_VIRTUALTABLE
5179 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5180 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5181 ** in memory obtained from sqlite3DbMalloc).
5183 void sqlite3VtabImportErrmsg(Vdbe
*p
, sqlite3_vtab
*pVtab
){
5184 if( pVtab
->zErrMsg
){
5185 sqlite3
*db
= p
->db
;
5186 sqlite3DbFree(db
, p
->zErrMsg
);
5187 p
->zErrMsg
= sqlite3DbStrDup(db
, pVtab
->zErrMsg
);
5188 sqlite3_free(pVtab
->zErrMsg
);
5192 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5194 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5197 ** If the second argument is not NULL, release any allocations associated
5198 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5199 ** structure itself, using sqlite3DbFree().
5201 ** This function is used to free UnpackedRecord structures allocated by
5202 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5204 static void vdbeFreeUnpacked(sqlite3
*db
, int nField
, UnpackedRecord
*p
){
5207 for(i
=0; i
<nField
; i
++){
5208 Mem
*pMem
= &p
->aMem
[i
];
5209 if( pMem
->zMalloc
) sqlite3VdbeMemReleaseMalloc(pMem
);
5211 sqlite3DbFreeNN(db
, p
);
5214 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5216 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5218 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5219 ** then cursor passed as the second argument should point to the row about
5220 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5221 ** the required value will be read from the row the cursor points to.
5223 void sqlite3VdbePreUpdateHook(
5224 Vdbe
*v
, /* Vdbe pre-update hook is invoked by */
5225 VdbeCursor
*pCsr
, /* Cursor to grab old.* values from */
5226 int op
, /* SQLITE_INSERT, UPDATE or DELETE */
5227 const char *zDb
, /* Database name */
5228 Table
*pTab
, /* Modified table */
5229 i64 iKey1
, /* Initial key value */
5230 int iReg
, /* Register for new.* record */
5233 sqlite3
*db
= v
->db
;
5235 PreUpdate preupdate
;
5236 const char *zTbl
= pTab
->zName
;
5237 static const u8 fakeSortOrder
= 0;
5239 assert( db
->pPreUpdate
==0 );
5240 memset(&preupdate
, 0, sizeof(PreUpdate
));
5241 if( HasRowid(pTab
)==0 ){
5243 preupdate
.pPk
= sqlite3PrimaryKeyIndex(pTab
);
5245 if( op
==SQLITE_UPDATE
){
5246 iKey2
= v
->aMem
[iReg
].u
.i
;
5253 assert( pCsr
->eCurType
==CURTYPE_BTREE
);
5254 assert( pCsr
->nField
==pTab
->nCol
5255 || (pCsr
->nField
==pTab
->nCol
+1 && op
==SQLITE_DELETE
&& iReg
==-1)
5259 preupdate
.pCsr
= pCsr
;
5261 preupdate
.iNewReg
= iReg
;
5262 preupdate
.keyinfo
.db
= db
;
5263 preupdate
.keyinfo
.enc
= ENC(db
);
5264 preupdate
.keyinfo
.nKeyField
= pTab
->nCol
;
5265 preupdate
.keyinfo
.aSortFlags
= (u8
*)&fakeSortOrder
;
5266 preupdate
.iKey1
= iKey1
;
5267 preupdate
.iKey2
= iKey2
;
5268 preupdate
.pTab
= pTab
;
5269 preupdate
.iBlobWrite
= iBlobWrite
;
5271 db
->pPreUpdate
= &preupdate
;
5272 db
->xPreUpdateCallback(db
->pPreUpdateArg
, db
, op
, zDb
, zTbl
, iKey1
, iKey2
);
5274 sqlite3DbFree(db
, preupdate
.aRecord
);
5275 vdbeFreeUnpacked(db
, preupdate
.keyinfo
.nKeyField
+1, preupdate
.pUnpacked
);
5276 vdbeFreeUnpacked(db
, preupdate
.keyinfo
.nKeyField
+1, preupdate
.pNewUnpacked
);
5277 if( preupdate
.aNew
){
5279 for(i
=0; i
<pCsr
->nField
; i
++){
5280 sqlite3VdbeMemRelease(&preupdate
.aNew
[i
]);
5282 sqlite3DbFreeNN(db
, preupdate
.aNew
);
5285 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */