establish default sqlcipher log level and target upon first activation
[sqlcipher.git] / src / vdbeaux.c
blobfe0dbd6b0ea9824c8067e698c4038eb1e4239e8f
1 /*
2 ** 2003 September 6
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
15 #include "sqliteInt.h"
16 #include "vdbeInt.h"
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef);
20 static void vdbeFreeOpArray(sqlite3 *, Op *, int);
23 ** Create a new virtual database engine.
25 Vdbe *sqlite3VdbeCreate(Parse *pParse){
26 sqlite3 *db = pParse->db;
27 Vdbe *p;
28 p = sqlite3DbMallocRawNN(db, sizeof(Vdbe) );
29 if( p==0 ) return 0;
30 memset(&p->aOp, 0, sizeof(Vdbe)-offsetof(Vdbe,aOp));
31 p->db = db;
32 if( db->pVdbe ){
33 db->pVdbe->ppVPrev = &p->pVNext;
35 p->pVNext = db->pVdbe;
36 p->ppVPrev = &db->pVdbe;
37 db->pVdbe = p;
38 assert( p->eVdbeState==VDBE_INIT_STATE );
39 p->pParse = pParse;
40 pParse->pVdbe = p;
41 assert( pParse->aLabel==0 );
42 assert( pParse->nLabel==0 );
43 assert( p->nOpAlloc==0 );
44 assert( pParse->szOpAlloc==0 );
45 sqlite3VdbeAddOp2(p, OP_Init, 0, 1);
46 return p;
50 ** Return the Parse object that owns a Vdbe object.
52 Parse *sqlite3VdbeParser(Vdbe *p){
53 return p->pParse;
57 ** Change the error string stored in Vdbe.zErrMsg
59 void sqlite3VdbeError(Vdbe *p, const char *zFormat, ...){
60 va_list ap;
61 sqlite3DbFree(p->db, p->zErrMsg);
62 va_start(ap, zFormat);
63 p->zErrMsg = sqlite3VMPrintf(p->db, zFormat, ap);
64 va_end(ap);
68 ** Remember the SQL string for a prepared statement.
70 void sqlite3VdbeSetSql(Vdbe *p, const char *z, int n, u8 prepFlags){
71 if( p==0 ) return;
72 p->prepFlags = prepFlags;
73 if( (prepFlags & SQLITE_PREPARE_SAVESQL)==0 ){
74 p->expmask = 0;
76 assert( p->zSql==0 );
77 p->zSql = sqlite3DbStrNDup(p->db, z, n);
80 #ifdef SQLITE_ENABLE_NORMALIZE
82 ** Add a new element to the Vdbe->pDblStr list.
84 void sqlite3VdbeAddDblquoteStr(sqlite3 *db, Vdbe *p, const char *z){
85 if( p ){
86 int n = sqlite3Strlen30(z);
87 DblquoteStr *pStr = sqlite3DbMallocRawNN(db,
88 sizeof(*pStr)+n+1-sizeof(pStr->z));
89 if( pStr ){
90 pStr->pNextStr = p->pDblStr;
91 p->pDblStr = pStr;
92 memcpy(pStr->z, z, n+1);
96 #endif
98 #ifdef SQLITE_ENABLE_NORMALIZE
100 ** zId of length nId is a double-quoted identifier. Check to see if
101 ** that identifier is really used as a string literal.
103 int sqlite3VdbeUsesDoubleQuotedString(
104 Vdbe *pVdbe, /* The prepared statement */
105 const char *zId /* The double-quoted identifier, already dequoted */
107 DblquoteStr *pStr;
108 assert( zId!=0 );
109 if( pVdbe->pDblStr==0 ) return 0;
110 for(pStr=pVdbe->pDblStr; pStr; pStr=pStr->pNextStr){
111 if( strcmp(zId, pStr->z)==0 ) return 1;
113 return 0;
115 #endif
118 ** Swap byte-code between two VDBE structures.
120 ** This happens after pB was previously run and returned
121 ** SQLITE_SCHEMA. The statement was then reprepared in pA.
122 ** This routine transfers the new bytecode in pA over to pB
123 ** so that pB can be run again. The old pB byte code is
124 ** moved back to pA so that it will be cleaned up when pA is
125 ** finalized.
127 void sqlite3VdbeSwap(Vdbe *pA, Vdbe *pB){
128 Vdbe tmp, *pTmp, **ppTmp;
129 char *zTmp;
130 assert( pA->db==pB->db );
131 tmp = *pA;
132 *pA = *pB;
133 *pB = tmp;
134 pTmp = pA->pVNext;
135 pA->pVNext = pB->pVNext;
136 pB->pVNext = pTmp;
137 ppTmp = pA->ppVPrev;
138 pA->ppVPrev = pB->ppVPrev;
139 pB->ppVPrev = ppTmp;
140 zTmp = pA->zSql;
141 pA->zSql = pB->zSql;
142 pB->zSql = zTmp;
143 #ifdef SQLITE_ENABLE_NORMALIZE
144 zTmp = pA->zNormSql;
145 pA->zNormSql = pB->zNormSql;
146 pB->zNormSql = zTmp;
147 #endif
148 pB->expmask = pA->expmask;
149 pB->prepFlags = pA->prepFlags;
150 memcpy(pB->aCounter, pA->aCounter, sizeof(pB->aCounter));
151 pB->aCounter[SQLITE_STMTSTATUS_REPREPARE]++;
155 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
156 ** than its current size. nOp is guaranteed to be less than or equal
157 ** to 1024/sizeof(Op).
159 ** If an out-of-memory error occurs while resizing the array, return
160 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
161 ** unchanged (this is so that any opcodes already allocated can be
162 ** correctly deallocated along with the rest of the Vdbe).
164 static int growOpArray(Vdbe *v, int nOp){
165 VdbeOp *pNew;
166 Parse *p = v->pParse;
168 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
169 ** more frequent reallocs and hence provide more opportunities for
170 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
171 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
172 ** by the minimum* amount required until the size reaches 512. Normal
173 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
174 ** size of the op array or add 1KB of space, whichever is smaller. */
175 #ifdef SQLITE_TEST_REALLOC_STRESS
176 sqlite3_int64 nNew = (v->nOpAlloc>=512 ? 2*(sqlite3_int64)v->nOpAlloc
177 : (sqlite3_int64)v->nOpAlloc+nOp);
178 #else
179 sqlite3_int64 nNew = (v->nOpAlloc ? 2*(sqlite3_int64)v->nOpAlloc
180 : (sqlite3_int64)(1024/sizeof(Op)));
181 UNUSED_PARAMETER(nOp);
182 #endif
184 /* Ensure that the size of a VDBE does not grow too large */
185 if( nNew > p->db->aLimit[SQLITE_LIMIT_VDBE_OP] ){
186 sqlite3OomFault(p->db);
187 return SQLITE_NOMEM;
190 assert( nOp<=(int)(1024/sizeof(Op)) );
191 assert( nNew>=(v->nOpAlloc+nOp) );
192 pNew = sqlite3DbRealloc(p->db, v->aOp, nNew*sizeof(Op));
193 if( pNew ){
194 p->szOpAlloc = sqlite3DbMallocSize(p->db, pNew);
195 v->nOpAlloc = p->szOpAlloc/sizeof(Op);
196 v->aOp = pNew;
198 return (pNew ? SQLITE_OK : SQLITE_NOMEM_BKPT);
201 #ifdef SQLITE_DEBUG
202 /* This routine is just a convenient place to set a breakpoint that will
203 ** fire after each opcode is inserted and displayed using
204 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and
205 ** pOp are available to make the breakpoint conditional.
207 ** Other useful labels for breakpoints include:
208 ** test_trace_breakpoint(pc,pOp)
209 ** sqlite3CorruptError(lineno)
210 ** sqlite3MisuseError(lineno)
211 ** sqlite3CantopenError(lineno)
213 static void test_addop_breakpoint(int pc, Op *pOp){
214 static u64 n = 0;
215 (void)pc;
216 (void)pOp;
217 n++;
218 if( n==LARGEST_UINT64 ) abort(); /* so that n is used, preventing a warning */
220 #endif
223 ** Slow paths for sqlite3VdbeAddOp3() and sqlite3VdbeAddOp4Int() for the
224 ** unusual case when we need to increase the size of the Vdbe.aOp[] array
225 ** before adding the new opcode.
227 static SQLITE_NOINLINE int growOp3(Vdbe *p, int op, int p1, int p2, int p3){
228 assert( p->nOpAlloc<=p->nOp );
229 if( growOpArray(p, 1) ) return 1;
230 assert( p->nOpAlloc>p->nOp );
231 return sqlite3VdbeAddOp3(p, op, p1, p2, p3);
233 static SQLITE_NOINLINE int addOp4IntSlow(
234 Vdbe *p, /* Add the opcode to this VM */
235 int op, /* The new opcode */
236 int p1, /* The P1 operand */
237 int p2, /* The P2 operand */
238 int p3, /* The P3 operand */
239 int p4 /* The P4 operand as an integer */
241 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
242 if( p->db->mallocFailed==0 ){
243 VdbeOp *pOp = &p->aOp[addr];
244 pOp->p4type = P4_INT32;
245 pOp->p4.i = p4;
247 return addr;
252 ** Add a new instruction to the list of instructions current in the
253 ** VDBE. Return the address of the new instruction.
255 ** Parameters:
257 ** p Pointer to the VDBE
259 ** op The opcode for this instruction
261 ** p1, p2, p3, p4 Operands
263 int sqlite3VdbeAddOp0(Vdbe *p, int op){
264 return sqlite3VdbeAddOp3(p, op, 0, 0, 0);
266 int sqlite3VdbeAddOp1(Vdbe *p, int op, int p1){
267 return sqlite3VdbeAddOp3(p, op, p1, 0, 0);
269 int sqlite3VdbeAddOp2(Vdbe *p, int op, int p1, int p2){
270 return sqlite3VdbeAddOp3(p, op, p1, p2, 0);
272 int sqlite3VdbeAddOp3(Vdbe *p, int op, int p1, int p2, int p3){
273 int i;
274 VdbeOp *pOp;
276 i = p->nOp;
277 assert( p->eVdbeState==VDBE_INIT_STATE );
278 assert( op>=0 && op<0xff );
279 if( p->nOpAlloc<=i ){
280 return growOp3(p, op, p1, p2, p3);
282 assert( p->aOp!=0 );
283 p->nOp++;
284 pOp = &p->aOp[i];
285 assert( pOp!=0 );
286 pOp->opcode = (u8)op;
287 pOp->p5 = 0;
288 pOp->p1 = p1;
289 pOp->p2 = p2;
290 pOp->p3 = p3;
291 pOp->p4.p = 0;
292 pOp->p4type = P4_NOTUSED;
294 /* Replicate this logic in sqlite3VdbeAddOp4Int()
295 ** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv */
296 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
297 pOp->zComment = 0;
298 #endif
299 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
300 pOp->nExec = 0;
301 pOp->nCycle = 0;
302 #endif
303 #ifdef SQLITE_DEBUG
304 if( p->db->flags & SQLITE_VdbeAddopTrace ){
305 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
306 test_addop_breakpoint(i, &p->aOp[i]);
308 #endif
309 #ifdef SQLITE_VDBE_COVERAGE
310 pOp->iSrcLine = 0;
311 #endif
312 /* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
313 ** Replicate in sqlite3VdbeAddOp4Int() */
315 return i;
317 int sqlite3VdbeAddOp4Int(
318 Vdbe *p, /* Add the opcode to this VM */
319 int op, /* The new opcode */
320 int p1, /* The P1 operand */
321 int p2, /* The P2 operand */
322 int p3, /* The P3 operand */
323 int p4 /* The P4 operand as an integer */
325 int i;
326 VdbeOp *pOp;
328 i = p->nOp;
329 if( p->nOpAlloc<=i ){
330 return addOp4IntSlow(p, op, p1, p2, p3, p4);
332 p->nOp++;
333 pOp = &p->aOp[i];
334 assert( pOp!=0 );
335 pOp->opcode = (u8)op;
336 pOp->p5 = 0;
337 pOp->p1 = p1;
338 pOp->p2 = p2;
339 pOp->p3 = p3;
340 pOp->p4.i = p4;
341 pOp->p4type = P4_INT32;
343 /* Replicate this logic in sqlite3VdbeAddOp3()
344 ** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv */
345 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
346 pOp->zComment = 0;
347 #endif
348 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
349 pOp->nExec = 0;
350 pOp->nCycle = 0;
351 #endif
352 #ifdef SQLITE_DEBUG
353 if( p->db->flags & SQLITE_VdbeAddopTrace ){
354 sqlite3VdbePrintOp(0, i, &p->aOp[i]);
355 test_addop_breakpoint(i, &p->aOp[i]);
357 #endif
358 #ifdef SQLITE_VDBE_COVERAGE
359 pOp->iSrcLine = 0;
360 #endif
361 /* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
362 ** Replicate in sqlite3VdbeAddOp3() */
364 return i;
367 /* Generate code for an unconditional jump to instruction iDest
369 int sqlite3VdbeGoto(Vdbe *p, int iDest){
370 return sqlite3VdbeAddOp3(p, OP_Goto, 0, iDest, 0);
373 /* Generate code to cause the string zStr to be loaded into
374 ** register iDest
376 int sqlite3VdbeLoadString(Vdbe *p, int iDest, const char *zStr){
377 return sqlite3VdbeAddOp4(p, OP_String8, 0, iDest, 0, zStr, 0);
381 ** Generate code that initializes multiple registers to string or integer
382 ** constants. The registers begin with iDest and increase consecutively.
383 ** One register is initialized for each characgter in zTypes[]. For each
384 ** "s" character in zTypes[], the register is a string if the argument is
385 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character
386 ** in zTypes[], the register is initialized to an integer.
388 ** If the input string does not end with "X" then an OP_ResultRow instruction
389 ** is generated for the values inserted.
391 void sqlite3VdbeMultiLoad(Vdbe *p, int iDest, const char *zTypes, ...){
392 va_list ap;
393 int i;
394 char c;
395 va_start(ap, zTypes);
396 for(i=0; (c = zTypes[i])!=0; i++){
397 if( c=='s' ){
398 const char *z = va_arg(ap, const char*);
399 sqlite3VdbeAddOp4(p, z==0 ? OP_Null : OP_String8, 0, iDest+i, 0, z, 0);
400 }else if( c=='i' ){
401 sqlite3VdbeAddOp2(p, OP_Integer, va_arg(ap, int), iDest+i);
402 }else{
403 goto skip_op_resultrow;
406 sqlite3VdbeAddOp2(p, OP_ResultRow, iDest, i);
407 skip_op_resultrow:
408 va_end(ap);
412 ** Add an opcode that includes the p4 value as a pointer.
414 int sqlite3VdbeAddOp4(
415 Vdbe *p, /* Add the opcode to this VM */
416 int op, /* The new opcode */
417 int p1, /* The P1 operand */
418 int p2, /* The P2 operand */
419 int p3, /* The P3 operand */
420 const char *zP4, /* The P4 operand */
421 int p4type /* P4 operand type */
423 int addr = sqlite3VdbeAddOp3(p, op, p1, p2, p3);
424 sqlite3VdbeChangeP4(p, addr, zP4, p4type);
425 return addr;
429 ** Add an OP_Function or OP_PureFunc opcode.
431 ** The eCallCtx argument is information (typically taken from Expr.op2)
432 ** that describes the calling context of the function. 0 means a general
433 ** function call. NC_IsCheck means called by a check constraint,
434 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx
435 ** means in the WHERE clause of a partial index. NC_GenCol means called
436 ** while computing a generated column value. 0 is the usual case.
438 int sqlite3VdbeAddFunctionCall(
439 Parse *pParse, /* Parsing context */
440 int p1, /* Constant argument mask */
441 int p2, /* First argument register */
442 int p3, /* Register into which results are written */
443 int nArg, /* Number of argument */
444 const FuncDef *pFunc, /* The function to be invoked */
445 int eCallCtx /* Calling context */
447 Vdbe *v = pParse->pVdbe;
448 int nByte;
449 int addr;
450 sqlite3_context *pCtx;
451 assert( v );
452 nByte = sizeof(*pCtx) + (nArg-1)*sizeof(sqlite3_value*);
453 pCtx = sqlite3DbMallocRawNN(pParse->db, nByte);
454 if( pCtx==0 ){
455 assert( pParse->db->mallocFailed );
456 freeEphemeralFunction(pParse->db, (FuncDef*)pFunc);
457 return 0;
459 pCtx->pOut = 0;
460 pCtx->pFunc = (FuncDef*)pFunc;
461 pCtx->pVdbe = 0;
462 pCtx->isError = 0;
463 pCtx->argc = nArg;
464 pCtx->iOp = sqlite3VdbeCurrentAddr(v);
465 addr = sqlite3VdbeAddOp4(v, eCallCtx ? OP_PureFunc : OP_Function,
466 p1, p2, p3, (char*)pCtx, P4_FUNCCTX);
467 sqlite3VdbeChangeP5(v, eCallCtx & NC_SelfRef);
468 sqlite3MayAbort(pParse);
469 return addr;
473 ** Add an opcode that includes the p4 value with a P4_INT64 or
474 ** P4_REAL type.
476 int sqlite3VdbeAddOp4Dup8(
477 Vdbe *p, /* Add the opcode to this VM */
478 int op, /* The new opcode */
479 int p1, /* The P1 operand */
480 int p2, /* The P2 operand */
481 int p3, /* The P3 operand */
482 const u8 *zP4, /* The P4 operand */
483 int p4type /* P4 operand type */
485 char *p4copy = sqlite3DbMallocRawNN(sqlite3VdbeDb(p), 8);
486 if( p4copy ) memcpy(p4copy, zP4, 8);
487 return sqlite3VdbeAddOp4(p, op, p1, p2, p3, p4copy, p4type);
490 #ifndef SQLITE_OMIT_EXPLAIN
492 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
493 ** 0 means "none".
495 int sqlite3VdbeExplainParent(Parse *pParse){
496 VdbeOp *pOp;
497 if( pParse->addrExplain==0 ) return 0;
498 pOp = sqlite3VdbeGetOp(pParse->pVdbe, pParse->addrExplain);
499 return pOp->p2;
503 ** Set a debugger breakpoint on the following routine in order to
504 ** monitor the EXPLAIN QUERY PLAN code generation.
506 #if defined(SQLITE_DEBUG)
507 void sqlite3ExplainBreakpoint(const char *z1, const char *z2){
508 (void)z1;
509 (void)z2;
511 #endif
514 ** Add a new OP_Explain opcode.
516 ** If the bPush flag is true, then make this opcode the parent for
517 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
519 int sqlite3VdbeExplain(Parse *pParse, u8 bPush, const char *zFmt, ...){
520 int addr = 0;
521 #if !defined(SQLITE_DEBUG)
522 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
523 ** But omit them (for performance) during production builds */
524 if( pParse->explain==2 || IS_STMT_SCANSTATUS(pParse->db) )
525 #endif
527 char *zMsg;
528 Vdbe *v;
529 va_list ap;
530 int iThis;
531 va_start(ap, zFmt);
532 zMsg = sqlite3VMPrintf(pParse->db, zFmt, ap);
533 va_end(ap);
534 v = pParse->pVdbe;
535 iThis = v->nOp;
536 addr = sqlite3VdbeAddOp4(v, OP_Explain, iThis, pParse->addrExplain, 0,
537 zMsg, P4_DYNAMIC);
538 sqlite3ExplainBreakpoint(bPush?"PUSH":"", sqlite3VdbeGetLastOp(v)->p4.z);
539 if( bPush){
540 pParse->addrExplain = iThis;
542 sqlite3VdbeScanStatus(v, iThis, -1, -1, 0, 0);
544 return addr;
548 ** Pop the EXPLAIN QUERY PLAN stack one level.
550 void sqlite3VdbeExplainPop(Parse *pParse){
551 sqlite3ExplainBreakpoint("POP", 0);
552 pParse->addrExplain = sqlite3VdbeExplainParent(pParse);
554 #endif /* SQLITE_OMIT_EXPLAIN */
557 ** Add an OP_ParseSchema opcode. This routine is broken out from
558 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
559 ** as having been used.
561 ** The zWhere string must have been obtained from sqlite3_malloc().
562 ** This routine will take ownership of the allocated memory.
564 void sqlite3VdbeAddParseSchemaOp(Vdbe *p, int iDb, char *zWhere, u16 p5){
565 int j;
566 sqlite3VdbeAddOp4(p, OP_ParseSchema, iDb, 0, 0, zWhere, P4_DYNAMIC);
567 sqlite3VdbeChangeP5(p, p5);
568 for(j=0; j<p->db->nDb; j++) sqlite3VdbeUsesBtree(p, j);
569 sqlite3MayAbort(p->pParse);
572 /* Insert the end of a co-routine
574 void sqlite3VdbeEndCoroutine(Vdbe *v, int regYield){
575 sqlite3VdbeAddOp1(v, OP_EndCoroutine, regYield);
577 /* Clear the temporary register cache, thereby ensuring that each
578 ** co-routine has its own independent set of registers, because co-routines
579 ** might expect their registers to be preserved across an OP_Yield, and
580 ** that could cause problems if two or more co-routines are using the same
581 ** temporary register.
583 v->pParse->nTempReg = 0;
584 v->pParse->nRangeReg = 0;
588 ** Create a new symbolic label for an instruction that has yet to be
589 ** coded. The symbolic label is really just a negative number. The
590 ** label can be used as the P2 value of an operation. Later, when
591 ** the label is resolved to a specific address, the VDBE will scan
592 ** through its operation list and change all values of P2 which match
593 ** the label into the resolved address.
595 ** The VDBE knows that a P2 value is a label because labels are
596 ** always negative and P2 values are suppose to be non-negative.
597 ** Hence, a negative P2 value is a label that has yet to be resolved.
598 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
599 ** property.
601 ** Variable usage notes:
603 ** Parse.aLabel[x] Stores the address that the x-th label resolves
604 ** into. For testing (SQLITE_DEBUG), unresolved
605 ** labels stores -1, but that is not required.
606 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[]
607 ** Parse.nLabel The *negative* of the number of labels that have
608 ** been issued. The negative is stored because
609 ** that gives a performance improvement over storing
610 ** the equivalent positive value.
612 int sqlite3VdbeMakeLabel(Parse *pParse){
613 return --pParse->nLabel;
617 ** Resolve label "x" to be the address of the next instruction to
618 ** be inserted. The parameter "x" must have been obtained from
619 ** a prior call to sqlite3VdbeMakeLabel().
621 static SQLITE_NOINLINE void resizeResolveLabel(Parse *p, Vdbe *v, int j){
622 int nNewSize = 10 - p->nLabel;
623 p->aLabel = sqlite3DbReallocOrFree(p->db, p->aLabel,
624 nNewSize*sizeof(p->aLabel[0]));
625 if( p->aLabel==0 ){
626 p->nLabelAlloc = 0;
627 }else{
628 #ifdef SQLITE_DEBUG
629 int i;
630 for(i=p->nLabelAlloc; i<nNewSize; i++) p->aLabel[i] = -1;
631 #endif
632 if( nNewSize>=100 && (nNewSize/100)>(p->nLabelAlloc/100) ){
633 sqlite3ProgressCheck(p);
635 p->nLabelAlloc = nNewSize;
636 p->aLabel[j] = v->nOp;
639 void sqlite3VdbeResolveLabel(Vdbe *v, int x){
640 Parse *p = v->pParse;
641 int j = ADDR(x);
642 assert( v->eVdbeState==VDBE_INIT_STATE );
643 assert( j<-p->nLabel );
644 assert( j>=0 );
645 #ifdef SQLITE_DEBUG
646 if( p->db->flags & SQLITE_VdbeAddopTrace ){
647 printf("RESOLVE LABEL %d to %d\n", x, v->nOp);
649 #endif
650 if( p->nLabelAlloc + p->nLabel < 0 ){
651 resizeResolveLabel(p,v,j);
652 }else{
653 assert( p->aLabel[j]==(-1) ); /* Labels may only be resolved once */
654 p->aLabel[j] = v->nOp;
659 ** Mark the VDBE as one that can only be run one time.
661 void sqlite3VdbeRunOnlyOnce(Vdbe *p){
662 sqlite3VdbeAddOp2(p, OP_Expire, 1, 1);
666 ** Mark the VDBE as one that can be run multiple times.
668 void sqlite3VdbeReusable(Vdbe *p){
669 int i;
670 for(i=1; ALWAYS(i<p->nOp); i++){
671 if( ALWAYS(p->aOp[i].opcode==OP_Expire) ){
672 p->aOp[1].opcode = OP_Noop;
673 break;
678 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
681 ** The following type and function are used to iterate through all opcodes
682 ** in a Vdbe main program and each of the sub-programs (triggers) it may
683 ** invoke directly or indirectly. It should be used as follows:
685 ** Op *pOp;
686 ** VdbeOpIter sIter;
688 ** memset(&sIter, 0, sizeof(sIter));
689 ** sIter.v = v; // v is of type Vdbe*
690 ** while( (pOp = opIterNext(&sIter)) ){
691 ** // Do something with pOp
692 ** }
693 ** sqlite3DbFree(v->db, sIter.apSub);
696 typedef struct VdbeOpIter VdbeOpIter;
697 struct VdbeOpIter {
698 Vdbe *v; /* Vdbe to iterate through the opcodes of */
699 SubProgram **apSub; /* Array of subprograms */
700 int nSub; /* Number of entries in apSub */
701 int iAddr; /* Address of next instruction to return */
702 int iSub; /* 0 = main program, 1 = first sub-program etc. */
704 static Op *opIterNext(VdbeOpIter *p){
705 Vdbe *v = p->v;
706 Op *pRet = 0;
707 Op *aOp;
708 int nOp;
710 if( p->iSub<=p->nSub ){
712 if( p->iSub==0 ){
713 aOp = v->aOp;
714 nOp = v->nOp;
715 }else{
716 aOp = p->apSub[p->iSub-1]->aOp;
717 nOp = p->apSub[p->iSub-1]->nOp;
719 assert( p->iAddr<nOp );
721 pRet = &aOp[p->iAddr];
722 p->iAddr++;
723 if( p->iAddr==nOp ){
724 p->iSub++;
725 p->iAddr = 0;
728 if( pRet->p4type==P4_SUBPROGRAM ){
729 int nByte = (p->nSub+1)*sizeof(SubProgram*);
730 int j;
731 for(j=0; j<p->nSub; j++){
732 if( p->apSub[j]==pRet->p4.pProgram ) break;
734 if( j==p->nSub ){
735 p->apSub = sqlite3DbReallocOrFree(v->db, p->apSub, nByte);
736 if( !p->apSub ){
737 pRet = 0;
738 }else{
739 p->apSub[p->nSub++] = pRet->p4.pProgram;
745 return pRet;
749 ** Check if the program stored in the VM associated with pParse may
750 ** throw an ABORT exception (causing the statement, but not entire transaction
751 ** to be rolled back). This condition is true if the main program or any
752 ** sub-programs contains any of the following:
754 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
755 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
756 ** * OP_Destroy
757 ** * OP_VUpdate
758 ** * OP_VCreate
759 ** * OP_VRename
760 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
761 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
762 ** (for CREATE TABLE AS SELECT ...)
764 ** Then check that the value of Parse.mayAbort is true if an
765 ** ABORT may be thrown, or false otherwise. Return true if it does
766 ** match, or false otherwise. This function is intended to be used as
767 ** part of an assert statement in the compiler. Similar to:
769 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
771 int sqlite3VdbeAssertMayAbort(Vdbe *v, int mayAbort){
772 int hasAbort = 0;
773 int hasFkCounter = 0;
774 int hasCreateTable = 0;
775 int hasCreateIndex = 0;
776 int hasInitCoroutine = 0;
777 Op *pOp;
778 VdbeOpIter sIter;
780 if( v==0 ) return 0;
781 memset(&sIter, 0, sizeof(sIter));
782 sIter.v = v;
784 while( (pOp = opIterNext(&sIter))!=0 ){
785 int opcode = pOp->opcode;
786 if( opcode==OP_Destroy || opcode==OP_VUpdate || opcode==OP_VRename
787 || opcode==OP_VDestroy
788 || opcode==OP_VCreate
789 || opcode==OP_ParseSchema
790 || opcode==OP_Function || opcode==OP_PureFunc
791 || ((opcode==OP_Halt || opcode==OP_HaltIfNull)
792 && ((pOp->p1)!=SQLITE_OK && pOp->p2==OE_Abort))
794 hasAbort = 1;
795 break;
797 if( opcode==OP_CreateBtree && pOp->p3==BTREE_INTKEY ) hasCreateTable = 1;
798 if( mayAbort ){
799 /* hasCreateIndex may also be set for some DELETE statements that use
800 ** OP_Clear. So this routine may end up returning true in the case
801 ** where a "DELETE FROM tbl" has a statement-journal but does not
802 ** require one. This is not so bad - it is an inefficiency, not a bug. */
803 if( opcode==OP_CreateBtree && pOp->p3==BTREE_BLOBKEY ) hasCreateIndex = 1;
804 if( opcode==OP_Clear ) hasCreateIndex = 1;
806 if( opcode==OP_InitCoroutine ) hasInitCoroutine = 1;
807 #ifndef SQLITE_OMIT_FOREIGN_KEY
808 if( opcode==OP_FkCounter && pOp->p1==0 && pOp->p2==1 ){
809 hasFkCounter = 1;
811 #endif
813 sqlite3DbFree(v->db, sIter.apSub);
815 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
816 ** If malloc failed, then the while() loop above may not have iterated
817 ** through all opcodes and hasAbort may be set incorrectly. Return
818 ** true for this case to prevent the assert() in the callers frame
819 ** from failing. */
820 return ( v->db->mallocFailed || hasAbort==mayAbort || hasFkCounter
821 || (hasCreateTable && hasInitCoroutine) || hasCreateIndex
824 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
826 #ifdef SQLITE_DEBUG
828 ** Increment the nWrite counter in the VDBE if the cursor is not an
829 ** ephemeral cursor, or if the cursor argument is NULL.
831 void sqlite3VdbeIncrWriteCounter(Vdbe *p, VdbeCursor *pC){
832 if( pC==0
833 || (pC->eCurType!=CURTYPE_SORTER
834 && pC->eCurType!=CURTYPE_PSEUDO
835 && !pC->isEphemeral)
837 p->nWrite++;
840 #endif
842 #ifdef SQLITE_DEBUG
844 ** Assert if an Abort at this point in time might result in a corrupt
845 ** database.
847 void sqlite3VdbeAssertAbortable(Vdbe *p){
848 assert( p->nWrite==0 || p->usesStmtJournal );
850 #endif
853 ** This routine is called after all opcodes have been inserted. It loops
854 ** through all the opcodes and fixes up some details.
856 ** (1) For each jump instruction with a negative P2 value (a label)
857 ** resolve the P2 value to an actual address.
859 ** (2) Compute the maximum number of arguments used by any SQL function
860 ** and store that value in *pMaxFuncArgs.
862 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
863 ** indicate what the prepared statement actually does.
865 ** (4) (discontinued)
867 ** (5) Reclaim the memory allocated for storing labels.
869 ** This routine will only function correctly if the mkopcodeh.tcl generator
870 ** script numbers the opcodes correctly. Changes to this routine must be
871 ** coordinated with changes to mkopcodeh.tcl.
873 static void resolveP2Values(Vdbe *p, int *pMaxFuncArgs){
874 int nMaxArgs = *pMaxFuncArgs;
875 Op *pOp;
876 Parse *pParse = p->pParse;
877 int *aLabel = pParse->aLabel;
879 assert( pParse->db->mallocFailed==0 ); /* tag-20230419-1 */
880 p->readOnly = 1;
881 p->bIsReader = 0;
882 pOp = &p->aOp[p->nOp-1];
883 assert( p->aOp[0].opcode==OP_Init );
884 while( 1 /* Loop terminates when it reaches the OP_Init opcode */ ){
885 /* Only JUMP opcodes and the short list of special opcodes in the switch
886 ** below need to be considered. The mkopcodeh.tcl generator script groups
887 ** all these opcodes together near the front of the opcode list. Skip
888 ** any opcode that does not need processing by virtual of the fact that
889 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
891 if( pOp->opcode<=SQLITE_MX_JUMP_OPCODE ){
892 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
893 ** cases from this switch! */
894 switch( pOp->opcode ){
895 case OP_Transaction: {
896 if( pOp->p2!=0 ) p->readOnly = 0;
897 /* no break */ deliberate_fall_through
899 case OP_AutoCommit:
900 case OP_Savepoint: {
901 p->bIsReader = 1;
902 break;
904 #ifndef SQLITE_OMIT_WAL
905 case OP_Checkpoint:
906 #endif
907 case OP_Vacuum:
908 case OP_JournalMode: {
909 p->readOnly = 0;
910 p->bIsReader = 1;
911 break;
913 case OP_Init: {
914 assert( pOp->p2>=0 );
915 goto resolve_p2_values_loop_exit;
917 #ifndef SQLITE_OMIT_VIRTUALTABLE
918 case OP_VUpdate: {
919 if( pOp->p2>nMaxArgs ) nMaxArgs = pOp->p2;
920 break;
922 case OP_VFilter: {
923 int n;
924 assert( (pOp - p->aOp) >= 3 );
925 assert( pOp[-1].opcode==OP_Integer );
926 n = pOp[-1].p1;
927 if( n>nMaxArgs ) nMaxArgs = n;
928 /* Fall through into the default case */
929 /* no break */ deliberate_fall_through
931 #endif
932 default: {
933 if( pOp->p2<0 ){
934 /* The mkopcodeh.tcl script has so arranged things that the only
935 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
936 ** have non-negative values for P2. */
937 assert( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 );
938 assert( ADDR(pOp->p2)<-pParse->nLabel );
939 assert( aLabel!=0 ); /* True because of tag-20230419-1 */
940 pOp->p2 = aLabel[ADDR(pOp->p2)];
942 break;
945 /* The mkopcodeh.tcl script has so arranged things that the only
946 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
947 ** have non-negative values for P2. */
948 assert( (sqlite3OpcodeProperty[pOp->opcode]&OPFLG_JUMP)==0 || pOp->p2>=0);
950 assert( pOp>p->aOp );
951 pOp--;
953 resolve_p2_values_loop_exit:
954 if( aLabel ){
955 sqlite3DbNNFreeNN(p->db, pParse->aLabel);
956 pParse->aLabel = 0;
958 pParse->nLabel = 0;
959 *pMaxFuncArgs = nMaxArgs;
960 assert( p->bIsReader!=0 || DbMaskAllZero(p->btreeMask) );
963 #ifdef SQLITE_DEBUG
965 ** Check to see if a subroutine contains a jump to a location outside of
966 ** the subroutine. If a jump outside the subroutine is detected, add code
967 ** that will cause the program to halt with an error message.
969 ** The subroutine consists of opcodes between iFirst and iLast. Jumps to
970 ** locations within the subroutine are acceptable. iRetReg is a register
971 ** that contains the return address. Jumps to outside the range of iFirst
972 ** through iLast are also acceptable as long as the jump destination is
973 ** an OP_Return to iReturnAddr.
975 ** A jump to an unresolved label means that the jump destination will be
976 ** beyond the current address. That is normally a jump to an early
977 ** termination and is consider acceptable.
979 ** This routine only runs during debug builds. The purpose is (of course)
980 ** to detect invalid escapes out of a subroutine. The OP_Halt opcode
981 ** is generated rather than an assert() or other error, so that ".eqp full"
982 ** will still work to show the original bytecode, to aid in debugging.
984 void sqlite3VdbeNoJumpsOutsideSubrtn(
985 Vdbe *v, /* The byte-code program under construction */
986 int iFirst, /* First opcode of the subroutine */
987 int iLast, /* Last opcode of the subroutine */
988 int iRetReg /* Subroutine return address register */
990 VdbeOp *pOp;
991 Parse *pParse;
992 int i;
993 sqlite3_str *pErr = 0;
994 assert( v!=0 );
995 pParse = v->pParse;
996 assert( pParse!=0 );
997 if( pParse->nErr ) return;
998 assert( iLast>=iFirst );
999 assert( iLast<v->nOp );
1000 pOp = &v->aOp[iFirst];
1001 for(i=iFirst; i<=iLast; i++, pOp++){
1002 if( (sqlite3OpcodeProperty[pOp->opcode] & OPFLG_JUMP)!=0 ){
1003 int iDest = pOp->p2; /* Jump destination */
1004 if( iDest==0 ) continue;
1005 if( pOp->opcode==OP_Gosub ) continue;
1006 if( pOp->p3==20230325 && pOp->opcode==OP_NotNull ){
1007 /* This is a deliberately taken illegal branch. tag-20230325-2 */
1008 continue;
1010 if( iDest<0 ){
1011 int j = ADDR(iDest);
1012 assert( j>=0 );
1013 if( j>=-pParse->nLabel || pParse->aLabel[j]<0 ){
1014 continue;
1016 iDest = pParse->aLabel[j];
1018 if( iDest<iFirst || iDest>iLast ){
1019 int j = iDest;
1020 for(; j<v->nOp; j++){
1021 VdbeOp *pX = &v->aOp[j];
1022 if( pX->opcode==OP_Return ){
1023 if( pX->p1==iRetReg ) break;
1024 continue;
1026 if( pX->opcode==OP_Noop ) continue;
1027 if( pX->opcode==OP_Explain ) continue;
1028 if( pErr==0 ){
1029 pErr = sqlite3_str_new(0);
1030 }else{
1031 sqlite3_str_appendchar(pErr, 1, '\n');
1033 sqlite3_str_appendf(pErr,
1034 "Opcode at %d jumps to %d which is outside the "
1035 "subroutine at %d..%d",
1036 i, iDest, iFirst, iLast);
1037 break;
1042 if( pErr ){
1043 char *zErr = sqlite3_str_finish(pErr);
1044 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_INTERNAL, OE_Abort, 0, zErr, 0);
1045 sqlite3_free(zErr);
1046 sqlite3MayAbort(pParse);
1049 #endif /* SQLITE_DEBUG */
1052 ** Return the address of the next instruction to be inserted.
1054 int sqlite3VdbeCurrentAddr(Vdbe *p){
1055 assert( p->eVdbeState==VDBE_INIT_STATE );
1056 return p->nOp;
1060 ** Verify that at least N opcode slots are available in p without
1061 ** having to malloc for more space (except when compiled using
1062 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
1063 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
1064 ** fail due to a OOM fault and hence that the return value from
1065 ** sqlite3VdbeAddOpList() will always be non-NULL.
1067 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
1068 void sqlite3VdbeVerifyNoMallocRequired(Vdbe *p, int N){
1069 assert( p->nOp + N <= p->nOpAlloc );
1071 #endif
1074 ** Verify that the VM passed as the only argument does not contain
1075 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
1076 ** by code in pragma.c to ensure that the implementation of certain
1077 ** pragmas comports with the flags specified in the mkpragmatab.tcl
1078 ** script.
1080 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
1081 void sqlite3VdbeVerifyNoResultRow(Vdbe *p){
1082 int i;
1083 for(i=0; i<p->nOp; i++){
1084 assert( p->aOp[i].opcode!=OP_ResultRow );
1087 #endif
1090 ** Generate code (a single OP_Abortable opcode) that will
1091 ** verify that the VDBE program can safely call Abort in the current
1092 ** context.
1094 #if defined(SQLITE_DEBUG)
1095 void sqlite3VdbeVerifyAbortable(Vdbe *p, int onError){
1096 if( onError==OE_Abort ) sqlite3VdbeAddOp0(p, OP_Abortable);
1098 #endif
1101 ** This function returns a pointer to the array of opcodes associated with
1102 ** the Vdbe passed as the first argument. It is the callers responsibility
1103 ** to arrange for the returned array to be eventually freed using the
1104 ** vdbeFreeOpArray() function.
1106 ** Before returning, *pnOp is set to the number of entries in the returned
1107 ** array. Also, *pnMaxArg is set to the larger of its current value and
1108 ** the number of entries in the Vdbe.apArg[] array required to execute the
1109 ** returned program.
1111 VdbeOp *sqlite3VdbeTakeOpArray(Vdbe *p, int *pnOp, int *pnMaxArg){
1112 VdbeOp *aOp = p->aOp;
1113 assert( aOp && !p->db->mallocFailed );
1115 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
1116 assert( DbMaskAllZero(p->btreeMask) );
1118 resolveP2Values(p, pnMaxArg);
1119 *pnOp = p->nOp;
1120 p->aOp = 0;
1121 return aOp;
1125 ** Add a whole list of operations to the operation stack. Return a
1126 ** pointer to the first operation inserted.
1128 ** Non-zero P2 arguments to jump instructions are automatically adjusted
1129 ** so that the jump target is relative to the first operation inserted.
1131 VdbeOp *sqlite3VdbeAddOpList(
1132 Vdbe *p, /* Add opcodes to the prepared statement */
1133 int nOp, /* Number of opcodes to add */
1134 VdbeOpList const *aOp, /* The opcodes to be added */
1135 int iLineno /* Source-file line number of first opcode */
1137 int i;
1138 VdbeOp *pOut, *pFirst;
1139 assert( nOp>0 );
1140 assert( p->eVdbeState==VDBE_INIT_STATE );
1141 if( p->nOp + nOp > p->nOpAlloc && growOpArray(p, nOp) ){
1142 return 0;
1144 pFirst = pOut = &p->aOp[p->nOp];
1145 for(i=0; i<nOp; i++, aOp++, pOut++){
1146 pOut->opcode = aOp->opcode;
1147 pOut->p1 = aOp->p1;
1148 pOut->p2 = aOp->p2;
1149 assert( aOp->p2>=0 );
1150 if( (sqlite3OpcodeProperty[aOp->opcode] & OPFLG_JUMP)!=0 && aOp->p2>0 ){
1151 pOut->p2 += p->nOp;
1153 pOut->p3 = aOp->p3;
1154 pOut->p4type = P4_NOTUSED;
1155 pOut->p4.p = 0;
1156 pOut->p5 = 0;
1157 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1158 pOut->zComment = 0;
1159 #endif
1160 #ifdef SQLITE_VDBE_COVERAGE
1161 pOut->iSrcLine = iLineno+i;
1162 #else
1163 (void)iLineno;
1164 #endif
1165 #ifdef SQLITE_DEBUG
1166 if( p->db->flags & SQLITE_VdbeAddopTrace ){
1167 sqlite3VdbePrintOp(0, i+p->nOp, &p->aOp[i+p->nOp]);
1169 #endif
1171 p->nOp += nOp;
1172 return pFirst;
1175 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1177 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1179 void sqlite3VdbeScanStatus(
1180 Vdbe *p, /* VM to add scanstatus() to */
1181 int addrExplain, /* Address of OP_Explain (or 0) */
1182 int addrLoop, /* Address of loop counter */
1183 int addrVisit, /* Address of rows visited counter */
1184 LogEst nEst, /* Estimated number of output rows */
1185 const char *zName /* Name of table or index being scanned */
1187 if( IS_STMT_SCANSTATUS(p->db) ){
1188 sqlite3_int64 nByte = (p->nScan+1) * sizeof(ScanStatus);
1189 ScanStatus *aNew;
1190 aNew = (ScanStatus*)sqlite3DbRealloc(p->db, p->aScan, nByte);
1191 if( aNew ){
1192 ScanStatus *pNew = &aNew[p->nScan++];
1193 memset(pNew, 0, sizeof(ScanStatus));
1194 pNew->addrExplain = addrExplain;
1195 pNew->addrLoop = addrLoop;
1196 pNew->addrVisit = addrVisit;
1197 pNew->nEst = nEst;
1198 pNew->zName = sqlite3DbStrDup(p->db, zName);
1199 p->aScan = aNew;
1205 ** Add the range of instructions from addrStart to addrEnd (inclusive) to
1206 ** the set of those corresponding to the sqlite3_stmt_scanstatus() counters
1207 ** associated with the OP_Explain instruction at addrExplain. The
1208 ** sum of the sqlite3Hwtime() values for each of these instructions
1209 ** will be returned for SQLITE_SCANSTAT_NCYCLE requests.
1211 void sqlite3VdbeScanStatusRange(
1212 Vdbe *p,
1213 int addrExplain,
1214 int addrStart,
1215 int addrEnd
1217 if( IS_STMT_SCANSTATUS(p->db) ){
1218 ScanStatus *pScan = 0;
1219 int ii;
1220 for(ii=p->nScan-1; ii>=0; ii--){
1221 pScan = &p->aScan[ii];
1222 if( pScan->addrExplain==addrExplain ) break;
1223 pScan = 0;
1225 if( pScan ){
1226 if( addrEnd<0 ) addrEnd = sqlite3VdbeCurrentAddr(p)-1;
1227 for(ii=0; ii<ArraySize(pScan->aAddrRange); ii+=2){
1228 if( pScan->aAddrRange[ii]==0 ){
1229 pScan->aAddrRange[ii] = addrStart;
1230 pScan->aAddrRange[ii+1] = addrEnd;
1231 break;
1239 ** Set the addresses for the SQLITE_SCANSTAT_NLOOP and SQLITE_SCANSTAT_NROW
1240 ** counters for the query element associated with the OP_Explain at
1241 ** addrExplain.
1243 void sqlite3VdbeScanStatusCounters(
1244 Vdbe *p,
1245 int addrExplain,
1246 int addrLoop,
1247 int addrVisit
1249 if( IS_STMT_SCANSTATUS(p->db) ){
1250 ScanStatus *pScan = 0;
1251 int ii;
1252 for(ii=p->nScan-1; ii>=0; ii--){
1253 pScan = &p->aScan[ii];
1254 if( pScan->addrExplain==addrExplain ) break;
1255 pScan = 0;
1257 if( pScan ){
1258 if( addrLoop>0 ) pScan->addrLoop = addrLoop;
1259 if( addrVisit>0 ) pScan->addrVisit = addrVisit;
1263 #endif /* defined(SQLITE_ENABLE_STMT_SCANSTATUS) */
1267 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1268 ** for a specific instruction.
1270 void sqlite3VdbeChangeOpcode(Vdbe *p, int addr, u8 iNewOpcode){
1271 assert( addr>=0 );
1272 sqlite3VdbeGetOp(p,addr)->opcode = iNewOpcode;
1274 void sqlite3VdbeChangeP1(Vdbe *p, int addr, int val){
1275 assert( addr>=0 );
1276 sqlite3VdbeGetOp(p,addr)->p1 = val;
1278 void sqlite3VdbeChangeP2(Vdbe *p, int addr, int val){
1279 assert( addr>=0 || p->db->mallocFailed );
1280 sqlite3VdbeGetOp(p,addr)->p2 = val;
1282 void sqlite3VdbeChangeP3(Vdbe *p, int addr, int val){
1283 assert( addr>=0 );
1284 sqlite3VdbeGetOp(p,addr)->p3 = val;
1286 void sqlite3VdbeChangeP5(Vdbe *p, u16 p5){
1287 assert( p->nOp>0 || p->db->mallocFailed );
1288 if( p->nOp>0 ) p->aOp[p->nOp-1].p5 = p5;
1292 ** If the previous opcode is an OP_Column that delivers results
1293 ** into register iDest, then add the OPFLAG_TYPEOFARG flag to that
1294 ** opcode.
1296 void sqlite3VdbeTypeofColumn(Vdbe *p, int iDest){
1297 VdbeOp *pOp = sqlite3VdbeGetLastOp(p);
1298 if( pOp->p3==iDest && pOp->opcode==OP_Column ){
1299 pOp->p5 |= OPFLAG_TYPEOFARG;
1304 ** Change the P2 operand of instruction addr so that it points to
1305 ** the address of the next instruction to be coded.
1307 void sqlite3VdbeJumpHere(Vdbe *p, int addr){
1308 sqlite3VdbeChangeP2(p, addr, p->nOp);
1312 ** Change the P2 operand of the jump instruction at addr so that
1313 ** the jump lands on the next opcode. Or if the jump instruction was
1314 ** the previous opcode (and is thus a no-op) then simply back up
1315 ** the next instruction counter by one slot so that the jump is
1316 ** overwritten by the next inserted opcode.
1318 ** This routine is an optimization of sqlite3VdbeJumpHere() that
1319 ** strives to omit useless byte-code like this:
1321 ** 7 Once 0 8 0
1322 ** 8 ...
1324 void sqlite3VdbeJumpHereOrPopInst(Vdbe *p, int addr){
1325 if( addr==p->nOp-1 ){
1326 assert( p->aOp[addr].opcode==OP_Once
1327 || p->aOp[addr].opcode==OP_If
1328 || p->aOp[addr].opcode==OP_FkIfZero );
1329 assert( p->aOp[addr].p4type==0 );
1330 #ifdef SQLITE_VDBE_COVERAGE
1331 sqlite3VdbeGetLastOp(p)->iSrcLine = 0; /* Erase VdbeCoverage() macros */
1332 #endif
1333 p->nOp--;
1334 }else{
1335 sqlite3VdbeChangeP2(p, addr, p->nOp);
1341 ** If the input FuncDef structure is ephemeral, then free it. If
1342 ** the FuncDef is not ephemeral, then do nothing.
1344 static void freeEphemeralFunction(sqlite3 *db, FuncDef *pDef){
1345 assert( db!=0 );
1346 if( (pDef->funcFlags & SQLITE_FUNC_EPHEM)!=0 ){
1347 sqlite3DbNNFreeNN(db, pDef);
1352 ** Delete a P4 value if necessary.
1354 static SQLITE_NOINLINE void freeP4Mem(sqlite3 *db, Mem *p){
1355 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
1356 sqlite3DbNNFreeNN(db, p);
1358 static SQLITE_NOINLINE void freeP4FuncCtx(sqlite3 *db, sqlite3_context *p){
1359 assert( db!=0 );
1360 freeEphemeralFunction(db, p->pFunc);
1361 sqlite3DbNNFreeNN(db, p);
1363 static void freeP4(sqlite3 *db, int p4type, void *p4){
1364 assert( db );
1365 switch( p4type ){
1366 case P4_FUNCCTX: {
1367 freeP4FuncCtx(db, (sqlite3_context*)p4);
1368 break;
1370 case P4_REAL:
1371 case P4_INT64:
1372 case P4_DYNAMIC:
1373 case P4_INTARRAY: {
1374 if( p4 ) sqlite3DbNNFreeNN(db, p4);
1375 break;
1377 case P4_KEYINFO: {
1378 if( db->pnBytesFreed==0 ) sqlite3KeyInfoUnref((KeyInfo*)p4);
1379 break;
1381 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1382 case P4_EXPR: {
1383 sqlite3ExprDelete(db, (Expr*)p4);
1384 break;
1386 #endif
1387 case P4_FUNCDEF: {
1388 freeEphemeralFunction(db, (FuncDef*)p4);
1389 break;
1391 case P4_MEM: {
1392 if( db->pnBytesFreed==0 ){
1393 sqlite3ValueFree((sqlite3_value*)p4);
1394 }else{
1395 freeP4Mem(db, (Mem*)p4);
1397 break;
1399 case P4_VTAB : {
1400 if( db->pnBytesFreed==0 ) sqlite3VtabUnlock((VTable *)p4);
1401 break;
1403 case P4_TABLEREF: {
1404 if( db->pnBytesFreed==0 ) sqlite3DeleteTable(db, (Table*)p4);
1405 break;
1411 ** Free the space allocated for aOp and any p4 values allocated for the
1412 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1413 ** nOp entries.
1415 static void vdbeFreeOpArray(sqlite3 *db, Op *aOp, int nOp){
1416 assert( nOp>=0 );
1417 assert( db!=0 );
1418 if( aOp ){
1419 Op *pOp = &aOp[nOp-1];
1420 while(1){ /* Exit via break */
1421 if( pOp->p4type <= P4_FREE_IF_LE ) freeP4(db, pOp->p4type, pOp->p4.p);
1422 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1423 sqlite3DbFree(db, pOp->zComment);
1424 #endif
1425 if( pOp==aOp ) break;
1426 pOp--;
1428 sqlite3DbNNFreeNN(db, aOp);
1433 ** Link the SubProgram object passed as the second argument into the linked
1434 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1435 ** objects when the VM is no longer required.
1437 void sqlite3VdbeLinkSubProgram(Vdbe *pVdbe, SubProgram *p){
1438 p->pNext = pVdbe->pProgram;
1439 pVdbe->pProgram = p;
1443 ** Return true if the given Vdbe has any SubPrograms.
1445 int sqlite3VdbeHasSubProgram(Vdbe *pVdbe){
1446 return pVdbe->pProgram!=0;
1450 ** Change the opcode at addr into OP_Noop
1452 int sqlite3VdbeChangeToNoop(Vdbe *p, int addr){
1453 VdbeOp *pOp;
1454 if( p->db->mallocFailed ) return 0;
1455 assert( addr>=0 && addr<p->nOp );
1456 pOp = &p->aOp[addr];
1457 freeP4(p->db, pOp->p4type, pOp->p4.p);
1458 pOp->p4type = P4_NOTUSED;
1459 pOp->p4.z = 0;
1460 pOp->opcode = OP_Noop;
1461 return 1;
1465 ** If the last opcode is "op" and it is not a jump destination,
1466 ** then remove it. Return true if and only if an opcode was removed.
1468 int sqlite3VdbeDeletePriorOpcode(Vdbe *p, u8 op){
1469 if( p->nOp>0 && p->aOp[p->nOp-1].opcode==op ){
1470 return sqlite3VdbeChangeToNoop(p, p->nOp-1);
1471 }else{
1472 return 0;
1476 #ifdef SQLITE_DEBUG
1478 ** Generate an OP_ReleaseReg opcode to indicate that a range of
1479 ** registers, except any identified by mask, are no longer in use.
1481 void sqlite3VdbeReleaseRegisters(
1482 Parse *pParse, /* Parsing context */
1483 int iFirst, /* Index of first register to be released */
1484 int N, /* Number of registers to release */
1485 u32 mask, /* Mask of registers to NOT release */
1486 int bUndefine /* If true, mark registers as undefined */
1488 if( N==0 || OptimizationDisabled(pParse->db, SQLITE_ReleaseReg) ) return;
1489 assert( pParse->pVdbe );
1490 assert( iFirst>=1 );
1491 assert( iFirst+N-1<=pParse->nMem );
1492 if( N<=31 && mask!=0 ){
1493 while( N>0 && (mask&1)!=0 ){
1494 mask >>= 1;
1495 iFirst++;
1496 N--;
1498 while( N>0 && N<=32 && (mask & MASKBIT32(N-1))!=0 ){
1499 mask &= ~MASKBIT32(N-1);
1500 N--;
1503 if( N>0 ){
1504 sqlite3VdbeAddOp3(pParse->pVdbe, OP_ReleaseReg, iFirst, N, *(int*)&mask);
1505 if( bUndefine ) sqlite3VdbeChangeP5(pParse->pVdbe, 1);
1508 #endif /* SQLITE_DEBUG */
1511 ** Change the value of the P4 operand for a specific instruction.
1512 ** This routine is useful when a large program is loaded from a
1513 ** static array using sqlite3VdbeAddOpList but we want to make a
1514 ** few minor changes to the program.
1516 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1517 ** the string is made into memory obtained from sqlite3_malloc().
1518 ** A value of n==0 means copy bytes of zP4 up to and including the
1519 ** first null byte. If n>0 then copy n+1 bytes of zP4.
1521 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1522 ** to a string or structure that is guaranteed to exist for the lifetime of
1523 ** the Vdbe. In these cases we can just copy the pointer.
1525 ** If addr<0 then change P4 on the most recently inserted instruction.
1527 static void SQLITE_NOINLINE vdbeChangeP4Full(
1528 Vdbe *p,
1529 Op *pOp,
1530 const char *zP4,
1531 int n
1533 if( pOp->p4type ){
1534 assert( pOp->p4type > P4_FREE_IF_LE );
1535 pOp->p4type = 0;
1536 pOp->p4.p = 0;
1538 if( n<0 ){
1539 sqlite3VdbeChangeP4(p, (int)(pOp - p->aOp), zP4, n);
1540 }else{
1541 if( n==0 ) n = sqlite3Strlen30(zP4);
1542 pOp->p4.z = sqlite3DbStrNDup(p->db, zP4, n);
1543 pOp->p4type = P4_DYNAMIC;
1546 void sqlite3VdbeChangeP4(Vdbe *p, int addr, const char *zP4, int n){
1547 Op *pOp;
1548 sqlite3 *db;
1549 assert( p!=0 );
1550 db = p->db;
1551 assert( p->eVdbeState==VDBE_INIT_STATE );
1552 assert( p->aOp!=0 || db->mallocFailed );
1553 if( db->mallocFailed ){
1554 if( n!=P4_VTAB ) freeP4(db, n, (void*)*(char**)&zP4);
1555 return;
1557 assert( p->nOp>0 );
1558 assert( addr<p->nOp );
1559 if( addr<0 ){
1560 addr = p->nOp - 1;
1562 pOp = &p->aOp[addr];
1563 if( n>=0 || pOp->p4type ){
1564 vdbeChangeP4Full(p, pOp, zP4, n);
1565 return;
1567 if( n==P4_INT32 ){
1568 /* Note: this cast is safe, because the origin data point was an int
1569 ** that was cast to a (const char *). */
1570 pOp->p4.i = SQLITE_PTR_TO_INT(zP4);
1571 pOp->p4type = P4_INT32;
1572 }else if( zP4!=0 ){
1573 assert( n<0 );
1574 pOp->p4.p = (void*)zP4;
1575 pOp->p4type = (signed char)n;
1576 if( n==P4_VTAB ) sqlite3VtabLock((VTable*)zP4);
1581 ** Change the P4 operand of the most recently coded instruction
1582 ** to the value defined by the arguments. This is a high-speed
1583 ** version of sqlite3VdbeChangeP4().
1585 ** The P4 operand must not have been previously defined. And the new
1586 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
1587 ** those cases.
1589 void sqlite3VdbeAppendP4(Vdbe *p, void *pP4, int n){
1590 VdbeOp *pOp;
1591 assert( n!=P4_INT32 && n!=P4_VTAB );
1592 assert( n<=0 );
1593 if( p->db->mallocFailed ){
1594 freeP4(p->db, n, pP4);
1595 }else{
1596 assert( pP4!=0 || n==P4_DYNAMIC );
1597 assert( p->nOp>0 );
1598 pOp = &p->aOp[p->nOp-1];
1599 assert( pOp->p4type==P4_NOTUSED );
1600 pOp->p4type = n;
1601 pOp->p4.p = pP4;
1606 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1607 ** index given.
1609 void sqlite3VdbeSetP4KeyInfo(Parse *pParse, Index *pIdx){
1610 Vdbe *v = pParse->pVdbe;
1611 KeyInfo *pKeyInfo;
1612 assert( v!=0 );
1613 assert( pIdx!=0 );
1614 pKeyInfo = sqlite3KeyInfoOfIndex(pParse, pIdx);
1615 if( pKeyInfo ) sqlite3VdbeAppendP4(v, pKeyInfo, P4_KEYINFO);
1618 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1620 ** Change the comment on the most recently coded instruction. Or
1621 ** insert a No-op and add the comment to that new instruction. This
1622 ** makes the code easier to read during debugging. None of this happens
1623 ** in a production build.
1625 static void vdbeVComment(Vdbe *p, const char *zFormat, va_list ap){
1626 assert( p->nOp>0 || p->aOp==0 );
1627 assert( p->aOp==0 || p->aOp[p->nOp-1].zComment==0 || p->pParse->nErr>0 );
1628 if( p->nOp ){
1629 assert( p->aOp );
1630 sqlite3DbFree(p->db, p->aOp[p->nOp-1].zComment);
1631 p->aOp[p->nOp-1].zComment = sqlite3VMPrintf(p->db, zFormat, ap);
1634 void sqlite3VdbeComment(Vdbe *p, const char *zFormat, ...){
1635 va_list ap;
1636 if( p ){
1637 va_start(ap, zFormat);
1638 vdbeVComment(p, zFormat, ap);
1639 va_end(ap);
1642 void sqlite3VdbeNoopComment(Vdbe *p, const char *zFormat, ...){
1643 va_list ap;
1644 if( p ){
1645 sqlite3VdbeAddOp0(p, OP_Noop);
1646 va_start(ap, zFormat);
1647 vdbeVComment(p, zFormat, ap);
1648 va_end(ap);
1651 #endif /* NDEBUG */
1653 #ifdef SQLITE_VDBE_COVERAGE
1655 ** Set the value if the iSrcLine field for the previously coded instruction.
1657 void sqlite3VdbeSetLineNumber(Vdbe *v, int iLine){
1658 sqlite3VdbeGetLastOp(v)->iSrcLine = iLine;
1660 #endif /* SQLITE_VDBE_COVERAGE */
1663 ** Return the opcode for a given address. The address must be non-negative.
1664 ** See sqlite3VdbeGetLastOp() to get the most recently added opcode.
1666 ** If a memory allocation error has occurred prior to the calling of this
1667 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
1668 ** is readable but not writable, though it is cast to a writable value.
1669 ** The return of a dummy opcode allows the call to continue functioning
1670 ** after an OOM fault without having to check to see if the return from
1671 ** this routine is a valid pointer. But because the dummy.opcode is 0,
1672 ** dummy will never be written to. This is verified by code inspection and
1673 ** by running with Valgrind.
1675 VdbeOp *sqlite3VdbeGetOp(Vdbe *p, int addr){
1676 /* C89 specifies that the constant "dummy" will be initialized to all
1677 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
1678 static VdbeOp dummy; /* Ignore the MSVC warning about no initializer */
1679 assert( p->eVdbeState==VDBE_INIT_STATE );
1680 assert( (addr>=0 && addr<p->nOp) || p->db->mallocFailed );
1681 if( p->db->mallocFailed ){
1682 return (VdbeOp*)&dummy;
1683 }else{
1684 return &p->aOp[addr];
1688 /* Return the most recently added opcode
1690 VdbeOp *sqlite3VdbeGetLastOp(Vdbe *p){
1691 return sqlite3VdbeGetOp(p, p->nOp - 1);
1694 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1696 ** Return an integer value for one of the parameters to the opcode pOp
1697 ** determined by character c.
1699 static int translateP(char c, const Op *pOp){
1700 if( c=='1' ) return pOp->p1;
1701 if( c=='2' ) return pOp->p2;
1702 if( c=='3' ) return pOp->p3;
1703 if( c=='4' ) return pOp->p4.i;
1704 return pOp->p5;
1708 ** Compute a string for the "comment" field of a VDBE opcode listing.
1710 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1711 ** to an extra string that is appended to the sqlite3OpcodeName(). In the
1712 ** absence of other comments, this synopsis becomes the comment on the opcode.
1713 ** Some translation occurs:
1715 ** "PX" -> "r[X]"
1716 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1717 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1718 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
1720 char *sqlite3VdbeDisplayComment(
1721 sqlite3 *db, /* Optional - Oom error reporting only */
1722 const Op *pOp, /* The opcode to be commented */
1723 const char *zP4 /* Previously obtained value for P4 */
1725 const char *zOpName;
1726 const char *zSynopsis;
1727 int nOpName;
1728 int ii;
1729 char zAlt[50];
1730 StrAccum x;
1732 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1733 zOpName = sqlite3OpcodeName(pOp->opcode);
1734 nOpName = sqlite3Strlen30(zOpName);
1735 if( zOpName[nOpName+1] ){
1736 int seenCom = 0;
1737 char c;
1738 zSynopsis = zOpName + nOpName + 1;
1739 if( strncmp(zSynopsis,"IF ",3)==0 ){
1740 sqlite3_snprintf(sizeof(zAlt), zAlt, "if %s goto P2", zSynopsis+3);
1741 zSynopsis = zAlt;
1743 for(ii=0; (c = zSynopsis[ii])!=0; ii++){
1744 if( c=='P' ){
1745 c = zSynopsis[++ii];
1746 if( c=='4' ){
1747 sqlite3_str_appendall(&x, zP4);
1748 }else if( c=='X' ){
1749 if( pOp->zComment && pOp->zComment[0] ){
1750 sqlite3_str_appendall(&x, pOp->zComment);
1751 seenCom = 1;
1752 break;
1754 }else{
1755 int v1 = translateP(c, pOp);
1756 int v2;
1757 if( strncmp(zSynopsis+ii+1, "@P", 2)==0 ){
1758 ii += 3;
1759 v2 = translateP(zSynopsis[ii], pOp);
1760 if( strncmp(zSynopsis+ii+1,"+1",2)==0 ){
1761 ii += 2;
1762 v2++;
1764 if( v2<2 ){
1765 sqlite3_str_appendf(&x, "%d", v1);
1766 }else{
1767 sqlite3_str_appendf(&x, "%d..%d", v1, v1+v2-1);
1769 }else if( strncmp(zSynopsis+ii+1, "@NP", 3)==0 ){
1770 sqlite3_context *pCtx = pOp->p4.pCtx;
1771 if( pOp->p4type!=P4_FUNCCTX || pCtx->argc==1 ){
1772 sqlite3_str_appendf(&x, "%d", v1);
1773 }else if( pCtx->argc>1 ){
1774 sqlite3_str_appendf(&x, "%d..%d", v1, v1+pCtx->argc-1);
1775 }else if( x.accError==0 ){
1776 assert( x.nChar>2 );
1777 x.nChar -= 2;
1778 ii++;
1780 ii += 3;
1781 }else{
1782 sqlite3_str_appendf(&x, "%d", v1);
1783 if( strncmp(zSynopsis+ii+1, "..P3", 4)==0 && pOp->p3==0 ){
1784 ii += 4;
1788 }else{
1789 sqlite3_str_appendchar(&x, 1, c);
1792 if( !seenCom && pOp->zComment ){
1793 sqlite3_str_appendf(&x, "; %s", pOp->zComment);
1795 }else if( pOp->zComment ){
1796 sqlite3_str_appendall(&x, pOp->zComment);
1798 if( (x.accError & SQLITE_NOMEM)!=0 && db!=0 ){
1799 sqlite3OomFault(db);
1801 return sqlite3StrAccumFinish(&x);
1803 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
1805 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1807 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1808 ** that can be displayed in the P4 column of EXPLAIN output.
1810 static void displayP4Expr(StrAccum *p, Expr *pExpr){
1811 const char *zOp = 0;
1812 switch( pExpr->op ){
1813 case TK_STRING:
1814 assert( !ExprHasProperty(pExpr, EP_IntValue) );
1815 sqlite3_str_appendf(p, "%Q", pExpr->u.zToken);
1816 break;
1817 case TK_INTEGER:
1818 sqlite3_str_appendf(p, "%d", pExpr->u.iValue);
1819 break;
1820 case TK_NULL:
1821 sqlite3_str_appendf(p, "NULL");
1822 break;
1823 case TK_REGISTER: {
1824 sqlite3_str_appendf(p, "r[%d]", pExpr->iTable);
1825 break;
1827 case TK_COLUMN: {
1828 if( pExpr->iColumn<0 ){
1829 sqlite3_str_appendf(p, "rowid");
1830 }else{
1831 sqlite3_str_appendf(p, "c%d", (int)pExpr->iColumn);
1833 break;
1835 case TK_LT: zOp = "LT"; break;
1836 case TK_LE: zOp = "LE"; break;
1837 case TK_GT: zOp = "GT"; break;
1838 case TK_GE: zOp = "GE"; break;
1839 case TK_NE: zOp = "NE"; break;
1840 case TK_EQ: zOp = "EQ"; break;
1841 case TK_IS: zOp = "IS"; break;
1842 case TK_ISNOT: zOp = "ISNOT"; break;
1843 case TK_AND: zOp = "AND"; break;
1844 case TK_OR: zOp = "OR"; break;
1845 case TK_PLUS: zOp = "ADD"; break;
1846 case TK_STAR: zOp = "MUL"; break;
1847 case TK_MINUS: zOp = "SUB"; break;
1848 case TK_REM: zOp = "REM"; break;
1849 case TK_BITAND: zOp = "BITAND"; break;
1850 case TK_BITOR: zOp = "BITOR"; break;
1851 case TK_SLASH: zOp = "DIV"; break;
1852 case TK_LSHIFT: zOp = "LSHIFT"; break;
1853 case TK_RSHIFT: zOp = "RSHIFT"; break;
1854 case TK_CONCAT: zOp = "CONCAT"; break;
1855 case TK_UMINUS: zOp = "MINUS"; break;
1856 case TK_UPLUS: zOp = "PLUS"; break;
1857 case TK_BITNOT: zOp = "BITNOT"; break;
1858 case TK_NOT: zOp = "NOT"; break;
1859 case TK_ISNULL: zOp = "ISNULL"; break;
1860 case TK_NOTNULL: zOp = "NOTNULL"; break;
1862 default:
1863 sqlite3_str_appendf(p, "%s", "expr");
1864 break;
1867 if( zOp ){
1868 sqlite3_str_appendf(p, "%s(", zOp);
1869 displayP4Expr(p, pExpr->pLeft);
1870 if( pExpr->pRight ){
1871 sqlite3_str_append(p, ",", 1);
1872 displayP4Expr(p, pExpr->pRight);
1874 sqlite3_str_append(p, ")", 1);
1877 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1880 #if VDBE_DISPLAY_P4
1882 ** Compute a string that describes the P4 parameter for an opcode.
1883 ** Use zTemp for any required temporary buffer space.
1885 char *sqlite3VdbeDisplayP4(sqlite3 *db, Op *pOp){
1886 char *zP4 = 0;
1887 StrAccum x;
1889 sqlite3StrAccumInit(&x, 0, 0, 0, SQLITE_MAX_LENGTH);
1890 switch( pOp->p4type ){
1891 case P4_KEYINFO: {
1892 int j;
1893 KeyInfo *pKeyInfo = pOp->p4.pKeyInfo;
1894 assert( pKeyInfo->aSortFlags!=0 );
1895 sqlite3_str_appendf(&x, "k(%d", pKeyInfo->nKeyField);
1896 for(j=0; j<pKeyInfo->nKeyField; j++){
1897 CollSeq *pColl = pKeyInfo->aColl[j];
1898 const char *zColl = pColl ? pColl->zName : "";
1899 if( strcmp(zColl, "BINARY")==0 ) zColl = "B";
1900 sqlite3_str_appendf(&x, ",%s%s%s",
1901 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_DESC) ? "-" : "",
1902 (pKeyInfo->aSortFlags[j] & KEYINFO_ORDER_BIGNULL)? "N." : "",
1903 zColl);
1905 sqlite3_str_append(&x, ")", 1);
1906 break;
1908 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1909 case P4_EXPR: {
1910 displayP4Expr(&x, pOp->p4.pExpr);
1911 break;
1913 #endif
1914 case P4_COLLSEQ: {
1915 static const char *const encnames[] = {"?", "8", "16LE", "16BE"};
1916 CollSeq *pColl = pOp->p4.pColl;
1917 assert( pColl->enc<4 );
1918 sqlite3_str_appendf(&x, "%.18s-%s", pColl->zName,
1919 encnames[pColl->enc]);
1920 break;
1922 case P4_FUNCDEF: {
1923 FuncDef *pDef = pOp->p4.pFunc;
1924 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1925 break;
1927 case P4_FUNCCTX: {
1928 FuncDef *pDef = pOp->p4.pCtx->pFunc;
1929 sqlite3_str_appendf(&x, "%s(%d)", pDef->zName, pDef->nArg);
1930 break;
1932 case P4_INT64: {
1933 sqlite3_str_appendf(&x, "%lld", *pOp->p4.pI64);
1934 break;
1936 case P4_INT32: {
1937 sqlite3_str_appendf(&x, "%d", pOp->p4.i);
1938 break;
1940 case P4_REAL: {
1941 sqlite3_str_appendf(&x, "%.16g", *pOp->p4.pReal);
1942 break;
1944 case P4_MEM: {
1945 Mem *pMem = pOp->p4.pMem;
1946 if( pMem->flags & MEM_Str ){
1947 zP4 = pMem->z;
1948 }else if( pMem->flags & (MEM_Int|MEM_IntReal) ){
1949 sqlite3_str_appendf(&x, "%lld", pMem->u.i);
1950 }else if( pMem->flags & MEM_Real ){
1951 sqlite3_str_appendf(&x, "%.16g", pMem->u.r);
1952 }else if( pMem->flags & MEM_Null ){
1953 zP4 = "NULL";
1954 }else{
1955 assert( pMem->flags & MEM_Blob );
1956 zP4 = "(blob)";
1958 break;
1960 #ifndef SQLITE_OMIT_VIRTUALTABLE
1961 case P4_VTAB: {
1962 sqlite3_vtab *pVtab = pOp->p4.pVtab->pVtab;
1963 sqlite3_str_appendf(&x, "vtab:%p", pVtab);
1964 break;
1966 #endif
1967 case P4_INTARRAY: {
1968 u32 i;
1969 u32 *ai = pOp->p4.ai;
1970 u32 n = ai[0]; /* The first element of an INTARRAY is always the
1971 ** count of the number of elements to follow */
1972 for(i=1; i<=n; i++){
1973 sqlite3_str_appendf(&x, "%c%u", (i==1 ? '[' : ','), ai[i]);
1975 sqlite3_str_append(&x, "]", 1);
1976 break;
1978 case P4_SUBPROGRAM: {
1979 zP4 = "program";
1980 break;
1982 case P4_TABLE: {
1983 zP4 = pOp->p4.pTab->zName;
1984 break;
1986 default: {
1987 zP4 = pOp->p4.z;
1990 if( zP4 ) sqlite3_str_appendall(&x, zP4);
1991 if( (x.accError & SQLITE_NOMEM)!=0 ){
1992 sqlite3OomFault(db);
1994 return sqlite3StrAccumFinish(&x);
1996 #endif /* VDBE_DISPLAY_P4 */
1999 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
2001 ** The prepared statements need to know in advance the complete set of
2002 ** attached databases that will be use. A mask of these databases
2003 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
2004 ** p->btreeMask of databases that will require a lock.
2006 void sqlite3VdbeUsesBtree(Vdbe *p, int i){
2007 assert( i>=0 && i<p->db->nDb && i<(int)sizeof(yDbMask)*8 );
2008 assert( i<(int)sizeof(p->btreeMask)*8 );
2009 DbMaskSet(p->btreeMask, i);
2010 if( i!=1 && sqlite3BtreeSharable(p->db->aDb[i].pBt) ){
2011 DbMaskSet(p->lockMask, i);
2015 #if !defined(SQLITE_OMIT_SHARED_CACHE)
2017 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
2018 ** this routine obtains the mutex associated with each BtShared structure
2019 ** that may be accessed by the VM passed as an argument. In doing so it also
2020 ** sets the BtShared.db member of each of the BtShared structures, ensuring
2021 ** that the correct busy-handler callback is invoked if required.
2023 ** If SQLite is not threadsafe but does support shared-cache mode, then
2024 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
2025 ** of all of BtShared structures accessible via the database handle
2026 ** associated with the VM.
2028 ** If SQLite is not threadsafe and does not support shared-cache mode, this
2029 ** function is a no-op.
2031 ** The p->btreeMask field is a bitmask of all btrees that the prepared
2032 ** statement p will ever use. Let N be the number of bits in p->btreeMask
2033 ** corresponding to btrees that use shared cache. Then the runtime of
2034 ** this routine is N*N. But as N is rarely more than 1, this should not
2035 ** be a problem.
2037 void sqlite3VdbeEnter(Vdbe *p){
2038 int i;
2039 sqlite3 *db;
2040 Db *aDb;
2041 int nDb;
2042 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
2043 db = p->db;
2044 aDb = db->aDb;
2045 nDb = db->nDb;
2046 for(i=0; i<nDb; i++){
2047 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
2048 sqlite3BtreeEnter(aDb[i].pBt);
2052 #endif
2054 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
2056 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
2058 static SQLITE_NOINLINE void vdbeLeave(Vdbe *p){
2059 int i;
2060 sqlite3 *db;
2061 Db *aDb;
2062 int nDb;
2063 db = p->db;
2064 aDb = db->aDb;
2065 nDb = db->nDb;
2066 for(i=0; i<nDb; i++){
2067 if( i!=1 && DbMaskTest(p->lockMask,i) && ALWAYS(aDb[i].pBt!=0) ){
2068 sqlite3BtreeLeave(aDb[i].pBt);
2072 void sqlite3VdbeLeave(Vdbe *p){
2073 if( DbMaskAllZero(p->lockMask) ) return; /* The common case */
2074 vdbeLeave(p);
2076 #endif
2078 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
2080 ** Print a single opcode. This routine is used for debugging only.
2082 void sqlite3VdbePrintOp(FILE *pOut, int pc, VdbeOp *pOp){
2083 char *zP4;
2084 char *zCom;
2085 sqlite3 dummyDb;
2086 static const char *zFormat1 = "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
2087 if( pOut==0 ) pOut = stdout;
2088 sqlite3BeginBenignMalloc();
2089 dummyDb.mallocFailed = 1;
2090 zP4 = sqlite3VdbeDisplayP4(&dummyDb, pOp);
2091 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2092 zCom = sqlite3VdbeDisplayComment(0, pOp, zP4);
2093 #else
2094 zCom = 0;
2095 #endif
2096 /* NB: The sqlite3OpcodeName() function is implemented by code created
2097 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
2098 ** information from the vdbe.c source text */
2099 fprintf(pOut, zFormat1, pc,
2100 sqlite3OpcodeName(pOp->opcode), pOp->p1, pOp->p2, pOp->p3,
2101 zP4 ? zP4 : "", pOp->p5,
2102 zCom ? zCom : ""
2104 fflush(pOut);
2105 sqlite3_free(zP4);
2106 sqlite3_free(zCom);
2107 sqlite3EndBenignMalloc();
2109 #endif
2112 ** Initialize an array of N Mem element.
2114 ** This is a high-runner, so only those fields that really do need to
2115 ** be initialized are set. The Mem structure is organized so that
2116 ** the fields that get initialized are nearby and hopefully on the same
2117 ** cache line.
2119 ** Mem.flags = flags
2120 ** Mem.db = db
2121 ** Mem.szMalloc = 0
2123 ** All other fields of Mem can safely remain uninitialized for now. They
2124 ** will be initialized before use.
2126 static void initMemArray(Mem *p, int N, sqlite3 *db, u16 flags){
2127 if( N>0 ){
2129 p->flags = flags;
2130 p->db = db;
2131 p->szMalloc = 0;
2132 #ifdef SQLITE_DEBUG
2133 p->pScopyFrom = 0;
2134 #endif
2135 p++;
2136 }while( (--N)>0 );
2141 ** Release auxiliary memory held in an array of N Mem elements.
2143 ** After this routine returns, all Mem elements in the array will still
2144 ** be valid. Those Mem elements that were not holding auxiliary resources
2145 ** will be unchanged. Mem elements which had something freed will be
2146 ** set to MEM_Undefined.
2148 static void releaseMemArray(Mem *p, int N){
2149 if( p && N ){
2150 Mem *pEnd = &p[N];
2151 sqlite3 *db = p->db;
2152 if( db->pnBytesFreed ){
2154 if( p->szMalloc ) sqlite3DbFree(db, p->zMalloc);
2155 }while( (++p)<pEnd );
2156 return;
2159 assert( (&p[1])==pEnd || p[0].db==p[1].db );
2160 assert( sqlite3VdbeCheckMemInvariants(p) );
2162 /* This block is really an inlined version of sqlite3VdbeMemRelease()
2163 ** that takes advantage of the fact that the memory cell value is
2164 ** being set to NULL after releasing any dynamic resources.
2166 ** The justification for duplicating code is that according to
2167 ** callgrind, this causes a certain test case to hit the CPU 4.7
2168 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
2169 ** sqlite3MemRelease() were called from here. With -O2, this jumps
2170 ** to 6.6 percent. The test case is inserting 1000 rows into a table
2171 ** with no indexes using a single prepared INSERT statement, bind()
2172 ** and reset(). Inserts are grouped into a transaction.
2174 testcase( p->flags & MEM_Agg );
2175 testcase( p->flags & MEM_Dyn );
2176 if( p->flags&(MEM_Agg|MEM_Dyn) ){
2177 testcase( (p->flags & MEM_Dyn)!=0 && p->xDel==sqlite3VdbeFrameMemDel );
2178 sqlite3VdbeMemRelease(p);
2179 p->flags = MEM_Undefined;
2180 }else if( p->szMalloc ){
2181 sqlite3DbNNFreeNN(db, p->zMalloc);
2182 p->szMalloc = 0;
2183 p->flags = MEM_Undefined;
2185 #ifdef SQLITE_DEBUG
2186 else{
2187 p->flags = MEM_Undefined;
2189 #endif
2190 }while( (++p)<pEnd );
2194 #ifdef SQLITE_DEBUG
2196 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is
2197 ** and false if something is wrong.
2199 ** This routine is intended for use inside of assert() statements only.
2201 int sqlite3VdbeFrameIsValid(VdbeFrame *pFrame){
2202 if( pFrame->iFrameMagic!=SQLITE_FRAME_MAGIC ) return 0;
2203 return 1;
2205 #endif
2209 ** This is a destructor on a Mem object (which is really an sqlite3_value)
2210 ** that deletes the Frame object that is attached to it as a blob.
2212 ** This routine does not delete the Frame right away. It merely adds the
2213 ** frame to a list of frames to be deleted when the Vdbe halts.
2215 void sqlite3VdbeFrameMemDel(void *pArg){
2216 VdbeFrame *pFrame = (VdbeFrame*)pArg;
2217 assert( sqlite3VdbeFrameIsValid(pFrame) );
2218 pFrame->pParent = pFrame->v->pDelFrame;
2219 pFrame->v->pDelFrame = pFrame;
2222 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
2224 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
2225 ** QUERY PLAN output.
2227 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no
2228 ** more opcodes to be displayed.
2230 int sqlite3VdbeNextOpcode(
2231 Vdbe *p, /* The statement being explained */
2232 Mem *pSub, /* Storage for keeping track of subprogram nesting */
2233 int eMode, /* 0: normal. 1: EQP. 2: TablesUsed */
2234 int *piPc, /* IN/OUT: Current rowid. Overwritten with next rowid */
2235 int *piAddr, /* OUT: Write index into (*paOp)[] here */
2236 Op **paOp /* OUT: Write the opcode array here */
2238 int nRow; /* Stop when row count reaches this */
2239 int nSub = 0; /* Number of sub-vdbes seen so far */
2240 SubProgram **apSub = 0; /* Array of sub-vdbes */
2241 int i; /* Next instruction address */
2242 int rc = SQLITE_OK; /* Result code */
2243 Op *aOp = 0; /* Opcode array */
2244 int iPc; /* Rowid. Copy of value in *piPc */
2246 /* When the number of output rows reaches nRow, that means the
2247 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
2248 ** nRow is the sum of the number of rows in the main program, plus
2249 ** the sum of the number of rows in all trigger subprograms encountered
2250 ** so far. The nRow value will increase as new trigger subprograms are
2251 ** encountered, but p->pc will eventually catch up to nRow.
2253 nRow = p->nOp;
2254 if( pSub!=0 ){
2255 if( pSub->flags&MEM_Blob ){
2256 /* pSub is initiallly NULL. It is initialized to a BLOB by
2257 ** the P4_SUBPROGRAM processing logic below */
2258 nSub = pSub->n/sizeof(Vdbe*);
2259 apSub = (SubProgram **)pSub->z;
2261 for(i=0; i<nSub; i++){
2262 nRow += apSub[i]->nOp;
2265 iPc = *piPc;
2266 while(1){ /* Loop exits via break */
2267 i = iPc++;
2268 if( i>=nRow ){
2269 p->rc = SQLITE_OK;
2270 rc = SQLITE_DONE;
2271 break;
2273 if( i<p->nOp ){
2274 /* The rowid is small enough that we are still in the
2275 ** main program. */
2276 aOp = p->aOp;
2277 }else{
2278 /* We are currently listing subprograms. Figure out which one and
2279 ** pick up the appropriate opcode. */
2280 int j;
2281 i -= p->nOp;
2282 assert( apSub!=0 );
2283 assert( nSub>0 );
2284 for(j=0; i>=apSub[j]->nOp; j++){
2285 i -= apSub[j]->nOp;
2286 assert( i<apSub[j]->nOp || j+1<nSub );
2288 aOp = apSub[j]->aOp;
2291 /* When an OP_Program opcode is encounter (the only opcode that has
2292 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
2293 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
2294 ** has not already been seen.
2296 if( pSub!=0 && aOp[i].p4type==P4_SUBPROGRAM ){
2297 int nByte = (nSub+1)*sizeof(SubProgram*);
2298 int j;
2299 for(j=0; j<nSub; j++){
2300 if( apSub[j]==aOp[i].p4.pProgram ) break;
2302 if( j==nSub ){
2303 p->rc = sqlite3VdbeMemGrow(pSub, nByte, nSub!=0);
2304 if( p->rc!=SQLITE_OK ){
2305 rc = SQLITE_ERROR;
2306 break;
2308 apSub = (SubProgram **)pSub->z;
2309 apSub[nSub++] = aOp[i].p4.pProgram;
2310 MemSetTypeFlag(pSub, MEM_Blob);
2311 pSub->n = nSub*sizeof(SubProgram*);
2312 nRow += aOp[i].p4.pProgram->nOp;
2315 if( eMode==0 ) break;
2316 #ifdef SQLITE_ENABLE_BYTECODE_VTAB
2317 if( eMode==2 ){
2318 Op *pOp = aOp + i;
2319 if( pOp->opcode==OP_OpenRead ) break;
2320 if( pOp->opcode==OP_OpenWrite && (pOp->p5 & OPFLAG_P2ISREG)==0 ) break;
2321 if( pOp->opcode==OP_ReopenIdx ) break;
2322 }else
2323 #endif
2325 assert( eMode==1 );
2326 if( aOp[i].opcode==OP_Explain ) break;
2327 if( aOp[i].opcode==OP_Init && iPc>1 ) break;
2330 *piPc = iPc;
2331 *piAddr = i;
2332 *paOp = aOp;
2333 return rc;
2335 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
2339 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
2340 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
2342 void sqlite3VdbeFrameDelete(VdbeFrame *p){
2343 int i;
2344 Mem *aMem = VdbeFrameMem(p);
2345 VdbeCursor **apCsr = (VdbeCursor **)&aMem[p->nChildMem];
2346 assert( sqlite3VdbeFrameIsValid(p) );
2347 for(i=0; i<p->nChildCsr; i++){
2348 if( apCsr[i] ) sqlite3VdbeFreeCursorNN(p->v, apCsr[i]);
2350 releaseMemArray(aMem, p->nChildMem);
2351 sqlite3VdbeDeleteAuxData(p->v->db, &p->pAuxData, -1, 0);
2352 sqlite3DbFree(p->v->db, p);
2355 #ifndef SQLITE_OMIT_EXPLAIN
2357 ** Give a listing of the program in the virtual machine.
2359 ** The interface is the same as sqlite3VdbeExec(). But instead of
2360 ** running the code, it invokes the callback once for each instruction.
2361 ** This feature is used to implement "EXPLAIN".
2363 ** When p->explain==1, each instruction is listed. When
2364 ** p->explain==2, only OP_Explain instructions are listed and these
2365 ** are shown in a different format. p->explain==2 is used to implement
2366 ** EXPLAIN QUERY PLAN.
2367 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers
2368 ** are also shown, so that the boundaries between the main program and
2369 ** each trigger are clear.
2371 ** When p->explain==1, first the main program is listed, then each of
2372 ** the trigger subprograms are listed one by one.
2374 int sqlite3VdbeList(
2375 Vdbe *p /* The VDBE */
2377 Mem *pSub = 0; /* Memory cell hold array of subprogs */
2378 sqlite3 *db = p->db; /* The database connection */
2379 int i; /* Loop counter */
2380 int rc = SQLITE_OK; /* Return code */
2381 Mem *pMem = &p->aMem[1]; /* First Mem of result set */
2382 int bListSubprogs = (p->explain==1 || (db->flags & SQLITE_TriggerEQP)!=0);
2383 Op *aOp; /* Array of opcodes */
2384 Op *pOp; /* Current opcode */
2386 assert( p->explain );
2387 assert( p->eVdbeState==VDBE_RUN_STATE );
2388 assert( p->rc==SQLITE_OK || p->rc==SQLITE_BUSY || p->rc==SQLITE_NOMEM );
2390 /* Even though this opcode does not use dynamic strings for
2391 ** the result, result columns may become dynamic if the user calls
2392 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
2394 releaseMemArray(pMem, 8);
2396 if( p->rc==SQLITE_NOMEM ){
2397 /* This happens if a malloc() inside a call to sqlite3_column_text() or
2398 ** sqlite3_column_text16() failed. */
2399 sqlite3OomFault(db);
2400 return SQLITE_ERROR;
2403 if( bListSubprogs ){
2404 /* The first 8 memory cells are used for the result set. So we will
2405 ** commandeer the 9th cell to use as storage for an array of pointers
2406 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
2407 ** cells. */
2408 assert( p->nMem>9 );
2409 pSub = &p->aMem[9];
2410 }else{
2411 pSub = 0;
2414 /* Figure out which opcode is next to display */
2415 rc = sqlite3VdbeNextOpcode(p, pSub, p->explain==2, &p->pc, &i, &aOp);
2417 if( rc==SQLITE_OK ){
2418 pOp = aOp + i;
2419 if( AtomicLoad(&db->u1.isInterrupted) ){
2420 p->rc = SQLITE_INTERRUPT;
2421 rc = SQLITE_ERROR;
2422 sqlite3VdbeError(p, sqlite3ErrStr(p->rc));
2423 }else{
2424 char *zP4 = sqlite3VdbeDisplayP4(db, pOp);
2425 if( p->explain==2 ){
2426 sqlite3VdbeMemSetInt64(pMem, pOp->p1);
2427 sqlite3VdbeMemSetInt64(pMem+1, pOp->p2);
2428 sqlite3VdbeMemSetInt64(pMem+2, pOp->p3);
2429 sqlite3VdbeMemSetStr(pMem+3, zP4, -1, SQLITE_UTF8, sqlite3_free);
2430 assert( p->nResColumn==4 );
2431 }else{
2432 sqlite3VdbeMemSetInt64(pMem+0, i);
2433 sqlite3VdbeMemSetStr(pMem+1, (char*)sqlite3OpcodeName(pOp->opcode),
2434 -1, SQLITE_UTF8, SQLITE_STATIC);
2435 sqlite3VdbeMemSetInt64(pMem+2, pOp->p1);
2436 sqlite3VdbeMemSetInt64(pMem+3, pOp->p2);
2437 sqlite3VdbeMemSetInt64(pMem+4, pOp->p3);
2438 /* pMem+5 for p4 is done last */
2439 sqlite3VdbeMemSetInt64(pMem+6, pOp->p5);
2440 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2442 char *zCom = sqlite3VdbeDisplayComment(db, pOp, zP4);
2443 sqlite3VdbeMemSetStr(pMem+7, zCom, -1, SQLITE_UTF8, sqlite3_free);
2445 #else
2446 sqlite3VdbeMemSetNull(pMem+7);
2447 #endif
2448 sqlite3VdbeMemSetStr(pMem+5, zP4, -1, SQLITE_UTF8, sqlite3_free);
2449 assert( p->nResColumn==8 );
2451 p->pResultRow = pMem;
2452 if( db->mallocFailed ){
2453 p->rc = SQLITE_NOMEM;
2454 rc = SQLITE_ERROR;
2455 }else{
2456 p->rc = SQLITE_OK;
2457 rc = SQLITE_ROW;
2461 return rc;
2463 #endif /* SQLITE_OMIT_EXPLAIN */
2465 #ifdef SQLITE_DEBUG
2467 ** Print the SQL that was used to generate a VDBE program.
2469 void sqlite3VdbePrintSql(Vdbe *p){
2470 const char *z = 0;
2471 if( p->zSql ){
2472 z = p->zSql;
2473 }else if( p->nOp>=1 ){
2474 const VdbeOp *pOp = &p->aOp[0];
2475 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2476 z = pOp->p4.z;
2477 while( sqlite3Isspace(*z) ) z++;
2480 if( z ) printf("SQL: [%s]\n", z);
2482 #endif
2484 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2486 ** Print an IOTRACE message showing SQL content.
2488 void sqlite3VdbeIOTraceSql(Vdbe *p){
2489 int nOp = p->nOp;
2490 VdbeOp *pOp;
2491 if( sqlite3IoTrace==0 ) return;
2492 if( nOp<1 ) return;
2493 pOp = &p->aOp[0];
2494 if( pOp->opcode==OP_Init && pOp->p4.z!=0 ){
2495 int i, j;
2496 char z[1000];
2497 sqlite3_snprintf(sizeof(z), z, "%s", pOp->p4.z);
2498 for(i=0; sqlite3Isspace(z[i]); i++){}
2499 for(j=0; z[i]; i++){
2500 if( sqlite3Isspace(z[i]) ){
2501 if( z[i-1]!=' ' ){
2502 z[j++] = ' ';
2504 }else{
2505 z[j++] = z[i];
2508 z[j] = 0;
2509 sqlite3IoTrace("SQL %s\n", z);
2512 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2514 /* An instance of this object describes bulk memory available for use
2515 ** by subcomponents of a prepared statement. Space is allocated out
2516 ** of a ReusableSpace object by the allocSpace() routine below.
2518 struct ReusableSpace {
2519 u8 *pSpace; /* Available memory */
2520 sqlite3_int64 nFree; /* Bytes of available memory */
2521 sqlite3_int64 nNeeded; /* Total bytes that could not be allocated */
2524 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2525 ** from the ReusableSpace object. Return a pointer to the allocated
2526 ** memory on success. If insufficient memory is available in the
2527 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2528 ** value by the amount needed and return NULL.
2530 ** If pBuf is not initially NULL, that means that the memory has already
2531 ** been allocated by a prior call to this routine, so just return a copy
2532 ** of pBuf and leave ReusableSpace unchanged.
2534 ** This allocator is employed to repurpose unused slots at the end of the
2535 ** opcode array of prepared state for other memory needs of the prepared
2536 ** statement.
2538 static void *allocSpace(
2539 struct ReusableSpace *p, /* Bulk memory available for allocation */
2540 void *pBuf, /* Pointer to a prior allocation */
2541 sqlite3_int64 nByte /* Bytes of memory needed. */
2543 assert( EIGHT_BYTE_ALIGNMENT(p->pSpace) );
2544 if( pBuf==0 ){
2545 nByte = ROUND8P(nByte);
2546 if( nByte <= p->nFree ){
2547 p->nFree -= nByte;
2548 pBuf = &p->pSpace[p->nFree];
2549 }else{
2550 p->nNeeded += nByte;
2553 assert( EIGHT_BYTE_ALIGNMENT(pBuf) );
2554 return pBuf;
2558 ** Rewind the VDBE back to the beginning in preparation for
2559 ** running it.
2561 void sqlite3VdbeRewind(Vdbe *p){
2562 #if defined(SQLITE_DEBUG)
2563 int i;
2564 #endif
2565 assert( p!=0 );
2566 assert( p->eVdbeState==VDBE_INIT_STATE
2567 || p->eVdbeState==VDBE_READY_STATE
2568 || p->eVdbeState==VDBE_HALT_STATE );
2570 /* There should be at least one opcode.
2572 assert( p->nOp>0 );
2574 p->eVdbeState = VDBE_READY_STATE;
2576 #ifdef SQLITE_DEBUG
2577 for(i=0; i<p->nMem; i++){
2578 assert( p->aMem[i].db==p->db );
2580 #endif
2581 p->pc = -1;
2582 p->rc = SQLITE_OK;
2583 p->errorAction = OE_Abort;
2584 p->nChange = 0;
2585 p->cacheCtr = 1;
2586 p->minWriteFileFormat = 255;
2587 p->iStatement = 0;
2588 p->nFkConstraint = 0;
2589 #ifdef VDBE_PROFILE
2590 for(i=0; i<p->nOp; i++){
2591 p->aOp[i].nExec = 0;
2592 p->aOp[i].nCycle = 0;
2594 #endif
2598 ** Prepare a virtual machine for execution for the first time after
2599 ** creating the virtual machine. This involves things such
2600 ** as allocating registers and initializing the program counter.
2601 ** After the VDBE has be prepped, it can be executed by one or more
2602 ** calls to sqlite3VdbeExec().
2604 ** This function may be called exactly once on each virtual machine.
2605 ** After this routine is called the VM has been "packaged" and is ready
2606 ** to run. After this routine is called, further calls to
2607 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
2608 ** the Vdbe from the Parse object that helped generate it so that the
2609 ** the Vdbe becomes an independent entity and the Parse object can be
2610 ** destroyed.
2612 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2613 ** to its initial state after it has been run.
2615 void sqlite3VdbeMakeReady(
2616 Vdbe *p, /* The VDBE */
2617 Parse *pParse /* Parsing context */
2619 sqlite3 *db; /* The database connection */
2620 int nVar; /* Number of parameters */
2621 int nMem; /* Number of VM memory registers */
2622 int nCursor; /* Number of cursors required */
2623 int nArg; /* Number of arguments in subprograms */
2624 int n; /* Loop counter */
2625 struct ReusableSpace x; /* Reusable bulk memory */
2627 assert( p!=0 );
2628 assert( p->nOp>0 );
2629 assert( pParse!=0 );
2630 assert( p->eVdbeState==VDBE_INIT_STATE );
2631 assert( pParse==p->pParse );
2632 p->pVList = pParse->pVList;
2633 pParse->pVList = 0;
2634 db = p->db;
2635 assert( db->mallocFailed==0 );
2636 nVar = pParse->nVar;
2637 nMem = pParse->nMem;
2638 nCursor = pParse->nTab;
2639 nArg = pParse->nMaxArg;
2641 /* Each cursor uses a memory cell. The first cursor (cursor 0) can
2642 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
2643 ** space at the end of aMem[] for cursors 1 and greater.
2644 ** See also: allocateCursor().
2646 nMem += nCursor;
2647 if( nCursor==0 && nMem>0 ) nMem++; /* Space for aMem[0] even if not used */
2649 /* Figure out how much reusable memory is available at the end of the
2650 ** opcode array. This extra memory will be reallocated for other elements
2651 ** of the prepared statement.
2653 n = ROUND8P(sizeof(Op)*p->nOp); /* Bytes of opcode memory used */
2654 x.pSpace = &((u8*)p->aOp)[n]; /* Unused opcode memory */
2655 assert( EIGHT_BYTE_ALIGNMENT(x.pSpace) );
2656 x.nFree = ROUNDDOWN8(pParse->szOpAlloc - n); /* Bytes of unused memory */
2657 assert( x.nFree>=0 );
2658 assert( EIGHT_BYTE_ALIGNMENT(&x.pSpace[x.nFree]) );
2660 resolveP2Values(p, &nArg);
2661 p->usesStmtJournal = (u8)(pParse->isMultiWrite && pParse->mayAbort);
2662 if( pParse->explain ){
2663 if( nMem<10 ) nMem = 10;
2664 p->explain = pParse->explain;
2665 p->nResColumn = 12 - 4*p->explain;
2667 p->expired = 0;
2669 /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2670 ** passes. On the first pass, we try to reuse unused memory at the
2671 ** end of the opcode array. If we are unable to satisfy all memory
2672 ** requirements by reusing the opcode array tail, then the second
2673 ** pass will fill in the remainder using a fresh memory allocation.
2675 ** This two-pass approach that reuses as much memory as possible from
2676 ** the leftover memory at the end of the opcode array. This can significantly
2677 ** reduce the amount of memory held by a prepared statement.
2679 x.nNeeded = 0;
2680 p->aMem = allocSpace(&x, 0, nMem*sizeof(Mem));
2681 p->aVar = allocSpace(&x, 0, nVar*sizeof(Mem));
2682 p->apArg = allocSpace(&x, 0, nArg*sizeof(Mem*));
2683 p->apCsr = allocSpace(&x, 0, nCursor*sizeof(VdbeCursor*));
2684 if( x.nNeeded ){
2685 x.pSpace = p->pFree = sqlite3DbMallocRawNN(db, x.nNeeded);
2686 x.nFree = x.nNeeded;
2687 if( !db->mallocFailed ){
2688 p->aMem = allocSpace(&x, p->aMem, nMem*sizeof(Mem));
2689 p->aVar = allocSpace(&x, p->aVar, nVar*sizeof(Mem));
2690 p->apArg = allocSpace(&x, p->apArg, nArg*sizeof(Mem*));
2691 p->apCsr = allocSpace(&x, p->apCsr, nCursor*sizeof(VdbeCursor*));
2695 if( db->mallocFailed ){
2696 p->nVar = 0;
2697 p->nCursor = 0;
2698 p->nMem = 0;
2699 }else{
2700 p->nCursor = nCursor;
2701 p->nVar = (ynVar)nVar;
2702 initMemArray(p->aVar, nVar, db, MEM_Null);
2703 p->nMem = nMem;
2704 initMemArray(p->aMem, nMem, db, MEM_Undefined);
2705 memset(p->apCsr, 0, nCursor*sizeof(VdbeCursor*));
2707 sqlite3VdbeRewind(p);
2711 ** Close a VDBE cursor and release all the resources that cursor
2712 ** happens to hold.
2714 void sqlite3VdbeFreeCursor(Vdbe *p, VdbeCursor *pCx){
2715 if( pCx ) sqlite3VdbeFreeCursorNN(p,pCx);
2717 static SQLITE_NOINLINE void freeCursorWithCache(Vdbe *p, VdbeCursor *pCx){
2718 VdbeTxtBlbCache *pCache = pCx->pCache;
2719 assert( pCx->colCache );
2720 pCx->colCache = 0;
2721 pCx->pCache = 0;
2722 if( pCache->pCValue ){
2723 sqlite3RCStrUnref(pCache->pCValue);
2724 pCache->pCValue = 0;
2726 sqlite3DbFree(p->db, pCache);
2727 sqlite3VdbeFreeCursorNN(p, pCx);
2729 void sqlite3VdbeFreeCursorNN(Vdbe *p, VdbeCursor *pCx){
2730 if( pCx->colCache ){
2731 freeCursorWithCache(p, pCx);
2732 return;
2734 switch( pCx->eCurType ){
2735 case CURTYPE_SORTER: {
2736 sqlite3VdbeSorterClose(p->db, pCx);
2737 break;
2739 case CURTYPE_BTREE: {
2740 assert( pCx->uc.pCursor!=0 );
2741 sqlite3BtreeCloseCursor(pCx->uc.pCursor);
2742 break;
2744 #ifndef SQLITE_OMIT_VIRTUALTABLE
2745 case CURTYPE_VTAB: {
2746 sqlite3_vtab_cursor *pVCur = pCx->uc.pVCur;
2747 const sqlite3_module *pModule = pVCur->pVtab->pModule;
2748 assert( pVCur->pVtab->nRef>0 );
2749 pVCur->pVtab->nRef--;
2750 pModule->xClose(pVCur);
2751 break;
2753 #endif
2758 ** Close all cursors in the current frame.
2760 static void closeCursorsInFrame(Vdbe *p){
2761 int i;
2762 for(i=0; i<p->nCursor; i++){
2763 VdbeCursor *pC = p->apCsr[i];
2764 if( pC ){
2765 sqlite3VdbeFreeCursorNN(p, pC);
2766 p->apCsr[i] = 0;
2772 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2773 ** is used, for example, when a trigger sub-program is halted to restore
2774 ** control to the main program.
2776 int sqlite3VdbeFrameRestore(VdbeFrame *pFrame){
2777 Vdbe *v = pFrame->v;
2778 closeCursorsInFrame(v);
2779 v->aOp = pFrame->aOp;
2780 v->nOp = pFrame->nOp;
2781 v->aMem = pFrame->aMem;
2782 v->nMem = pFrame->nMem;
2783 v->apCsr = pFrame->apCsr;
2784 v->nCursor = pFrame->nCursor;
2785 v->db->lastRowid = pFrame->lastRowid;
2786 v->nChange = pFrame->nChange;
2787 v->db->nChange = pFrame->nDbChange;
2788 sqlite3VdbeDeleteAuxData(v->db, &v->pAuxData, -1, 0);
2789 v->pAuxData = pFrame->pAuxData;
2790 pFrame->pAuxData = 0;
2791 return pFrame->pc;
2795 ** Close all cursors.
2797 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2798 ** cell array. This is necessary as the memory cell array may contain
2799 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2800 ** open cursors.
2802 static void closeAllCursors(Vdbe *p){
2803 if( p->pFrame ){
2804 VdbeFrame *pFrame;
2805 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
2806 sqlite3VdbeFrameRestore(pFrame);
2807 p->pFrame = 0;
2808 p->nFrame = 0;
2810 assert( p->nFrame==0 );
2811 closeCursorsInFrame(p);
2812 releaseMemArray(p->aMem, p->nMem);
2813 while( p->pDelFrame ){
2814 VdbeFrame *pDel = p->pDelFrame;
2815 p->pDelFrame = pDel->pParent;
2816 sqlite3VdbeFrameDelete(pDel);
2819 /* Delete any auxdata allocations made by the VM */
2820 if( p->pAuxData ) sqlite3VdbeDeleteAuxData(p->db, &p->pAuxData, -1, 0);
2821 assert( p->pAuxData==0 );
2825 ** Set the number of result columns that will be returned by this SQL
2826 ** statement. This is now set at compile time, rather than during
2827 ** execution of the vdbe program so that sqlite3_column_count() can
2828 ** be called on an SQL statement before sqlite3_step().
2830 void sqlite3VdbeSetNumCols(Vdbe *p, int nResColumn){
2831 int n;
2832 sqlite3 *db = p->db;
2834 if( p->nResAlloc ){
2835 releaseMemArray(p->aColName, p->nResAlloc*COLNAME_N);
2836 sqlite3DbFree(db, p->aColName);
2838 n = nResColumn*COLNAME_N;
2839 p->nResColumn = p->nResAlloc = (u16)nResColumn;
2840 p->aColName = (Mem*)sqlite3DbMallocRawNN(db, sizeof(Mem)*n );
2841 if( p->aColName==0 ) return;
2842 initMemArray(p->aColName, n, db, MEM_Null);
2846 ** Set the name of the idx'th column to be returned by the SQL statement.
2847 ** zName must be a pointer to a nul terminated string.
2849 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2851 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2852 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2853 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2855 int sqlite3VdbeSetColName(
2856 Vdbe *p, /* Vdbe being configured */
2857 int idx, /* Index of column zName applies to */
2858 int var, /* One of the COLNAME_* constants */
2859 const char *zName, /* Pointer to buffer containing name */
2860 void (*xDel)(void*) /* Memory management strategy for zName */
2862 int rc;
2863 Mem *pColName;
2864 assert( idx<p->nResAlloc );
2865 assert( var<COLNAME_N );
2866 if( p->db->mallocFailed ){
2867 assert( !zName || xDel!=SQLITE_DYNAMIC );
2868 return SQLITE_NOMEM_BKPT;
2870 assert( p->aColName!=0 );
2871 pColName = &(p->aColName[idx+var*p->nResAlloc]);
2872 rc = sqlite3VdbeMemSetStr(pColName, zName, -1, SQLITE_UTF8, xDel);
2873 assert( rc!=0 || !zName || (pColName->flags&MEM_Term)!=0 );
2874 return rc;
2878 ** A read or write transaction may or may not be active on database handle
2879 ** db. If a transaction is active, commit it. If there is a
2880 ** write-transaction spanning more than one database file, this routine
2881 ** takes care of the super-journal trickery.
2883 static int vdbeCommit(sqlite3 *db, Vdbe *p){
2884 int i;
2885 int nTrans = 0; /* Number of databases with an active write-transaction
2886 ** that are candidates for a two-phase commit using a
2887 ** super-journal */
2888 int rc = SQLITE_OK;
2889 int needXcommit = 0;
2891 #ifdef SQLITE_OMIT_VIRTUALTABLE
2892 /* With this option, sqlite3VtabSync() is defined to be simply
2893 ** SQLITE_OK so p is not used.
2895 UNUSED_PARAMETER(p);
2896 #endif
2898 /* Before doing anything else, call the xSync() callback for any
2899 ** virtual module tables written in this transaction. This has to
2900 ** be done before determining whether a super-journal file is
2901 ** required, as an xSync() callback may add an attached database
2902 ** to the transaction.
2904 rc = sqlite3VtabSync(db, p);
2906 /* This loop determines (a) if the commit hook should be invoked and
2907 ** (b) how many database files have open write transactions, not
2908 ** including the temp database. (b) is important because if more than
2909 ** one database file has an open write transaction, a super-journal
2910 ** file is required for an atomic commit.
2912 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2913 Btree *pBt = db->aDb[i].pBt;
2914 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
2915 /* Whether or not a database might need a super-journal depends upon
2916 ** its journal mode (among other things). This matrix determines which
2917 ** journal modes use a super-journal and which do not */
2918 static const u8 aMJNeeded[] = {
2919 /* DELETE */ 1,
2920 /* PERSIST */ 1,
2921 /* OFF */ 0,
2922 /* TRUNCATE */ 1,
2923 /* MEMORY */ 0,
2924 /* WAL */ 0
2926 Pager *pPager; /* Pager associated with pBt */
2927 needXcommit = 1;
2928 sqlite3BtreeEnter(pBt);
2929 pPager = sqlite3BtreePager(pBt);
2930 if( db->aDb[i].safety_level!=PAGER_SYNCHRONOUS_OFF
2931 && aMJNeeded[sqlite3PagerGetJournalMode(pPager)]
2932 && sqlite3PagerIsMemdb(pPager)==0
2934 assert( i!=1 );
2935 nTrans++;
2937 rc = sqlite3PagerExclusiveLock(pPager);
2938 sqlite3BtreeLeave(pBt);
2941 if( rc!=SQLITE_OK ){
2942 return rc;
2945 /* If there are any write-transactions at all, invoke the commit hook */
2946 if( needXcommit && db->xCommitCallback ){
2947 rc = db->xCommitCallback(db->pCommitArg);
2948 if( rc ){
2949 return SQLITE_CONSTRAINT_COMMITHOOK;
2953 /* The simple case - no more than one database file (not counting the
2954 ** TEMP database) has a transaction active. There is no need for the
2955 ** super-journal.
2957 ** If the return value of sqlite3BtreeGetFilename() is a zero length
2958 ** string, it means the main database is :memory: or a temp file. In
2959 ** that case we do not support atomic multi-file commits, so use the
2960 ** simple case then too.
2962 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db->aDb[0].pBt))
2963 || nTrans<=1
2965 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2966 Btree *pBt = db->aDb[i].pBt;
2967 if( pBt ){
2968 rc = sqlite3BtreeCommitPhaseOne(pBt, 0);
2972 /* Do the commit only if all databases successfully complete phase 1.
2973 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2974 ** IO error while deleting or truncating a journal file. It is unlikely,
2975 ** but could happen. In this case abandon processing and return the error.
2977 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
2978 Btree *pBt = db->aDb[i].pBt;
2979 if( pBt ){
2980 rc = sqlite3BtreeCommitPhaseTwo(pBt, 0);
2983 if( rc==SQLITE_OK ){
2984 sqlite3VtabCommit(db);
2988 /* The complex case - There is a multi-file write-transaction active.
2989 ** This requires a super-journal file to ensure the transaction is
2990 ** committed atomically.
2992 #ifndef SQLITE_OMIT_DISKIO
2993 else{
2994 sqlite3_vfs *pVfs = db->pVfs;
2995 char *zSuper = 0; /* File-name for the super-journal */
2996 char const *zMainFile = sqlite3BtreeGetFilename(db->aDb[0].pBt);
2997 sqlite3_file *pSuperJrnl = 0;
2998 i64 offset = 0;
2999 int res;
3000 int retryCount = 0;
3001 int nMainFile;
3003 /* Select a super-journal file name */
3004 nMainFile = sqlite3Strlen30(zMainFile);
3005 zSuper = sqlite3MPrintf(db, "%.4c%s%.16c", 0,zMainFile,0);
3006 if( zSuper==0 ) return SQLITE_NOMEM_BKPT;
3007 zSuper += 4;
3008 do {
3009 u32 iRandom;
3010 if( retryCount ){
3011 if( retryCount>100 ){
3012 sqlite3_log(SQLITE_FULL, "MJ delete: %s", zSuper);
3013 sqlite3OsDelete(pVfs, zSuper, 0);
3014 break;
3015 }else if( retryCount==1 ){
3016 sqlite3_log(SQLITE_FULL, "MJ collide: %s", zSuper);
3019 retryCount++;
3020 sqlite3_randomness(sizeof(iRandom), &iRandom);
3021 sqlite3_snprintf(13, &zSuper[nMainFile], "-mj%06X9%02X",
3022 (iRandom>>8)&0xffffff, iRandom&0xff);
3023 /* The antipenultimate character of the super-journal name must
3024 ** be "9" to avoid name collisions when using 8+3 filenames. */
3025 assert( zSuper[sqlite3Strlen30(zSuper)-3]=='9' );
3026 sqlite3FileSuffix3(zMainFile, zSuper);
3027 rc = sqlite3OsAccess(pVfs, zSuper, SQLITE_ACCESS_EXISTS, &res);
3028 }while( rc==SQLITE_OK && res );
3029 if( rc==SQLITE_OK ){
3030 /* Open the super-journal. */
3031 rc = sqlite3OsOpenMalloc(pVfs, zSuper, &pSuperJrnl,
3032 SQLITE_OPEN_READWRITE|SQLITE_OPEN_CREATE|
3033 SQLITE_OPEN_EXCLUSIVE|SQLITE_OPEN_SUPER_JOURNAL, 0
3036 if( rc!=SQLITE_OK ){
3037 sqlite3DbFree(db, zSuper-4);
3038 return rc;
3041 /* Write the name of each database file in the transaction into the new
3042 ** super-journal file. If an error occurs at this point close
3043 ** and delete the super-journal file. All the individual journal files
3044 ** still have 'null' as the super-journal pointer, so they will roll
3045 ** back independently if a failure occurs.
3047 for(i=0; i<db->nDb; i++){
3048 Btree *pBt = db->aDb[i].pBt;
3049 if( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE ){
3050 char const *zFile = sqlite3BtreeGetJournalname(pBt);
3051 if( zFile==0 ){
3052 continue; /* Ignore TEMP and :memory: databases */
3054 assert( zFile[0]!=0 );
3055 rc = sqlite3OsWrite(pSuperJrnl, zFile, sqlite3Strlen30(zFile)+1,offset);
3056 offset += sqlite3Strlen30(zFile)+1;
3057 if( rc!=SQLITE_OK ){
3058 sqlite3OsCloseFree(pSuperJrnl);
3059 sqlite3OsDelete(pVfs, zSuper, 0);
3060 sqlite3DbFree(db, zSuper-4);
3061 return rc;
3066 /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device
3067 ** flag is set this is not required.
3069 if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl)&SQLITE_IOCAP_SEQUENTIAL)
3070 && SQLITE_OK!=(rc = sqlite3OsSync(pSuperJrnl, SQLITE_SYNC_NORMAL))
3072 sqlite3OsCloseFree(pSuperJrnl);
3073 sqlite3OsDelete(pVfs, zSuper, 0);
3074 sqlite3DbFree(db, zSuper-4);
3075 return rc;
3078 /* Sync all the db files involved in the transaction. The same call
3079 ** sets the super-journal pointer in each individual journal. If
3080 ** an error occurs here, do not delete the super-journal file.
3082 ** If the error occurs during the first call to
3083 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
3084 ** super-journal file will be orphaned. But we cannot delete it,
3085 ** in case the super-journal file name was written into the journal
3086 ** file before the failure occurred.
3088 for(i=0; rc==SQLITE_OK && i<db->nDb; i++){
3089 Btree *pBt = db->aDb[i].pBt;
3090 if( pBt ){
3091 rc = sqlite3BtreeCommitPhaseOne(pBt, zSuper);
3094 sqlite3OsCloseFree(pSuperJrnl);
3095 assert( rc!=SQLITE_BUSY );
3096 if( rc!=SQLITE_OK ){
3097 sqlite3DbFree(db, zSuper-4);
3098 return rc;
3101 /* Delete the super-journal file. This commits the transaction. After
3102 ** doing this the directory is synced again before any individual
3103 ** transaction files are deleted.
3105 rc = sqlite3OsDelete(pVfs, zSuper, 1);
3106 sqlite3DbFree(db, zSuper-4);
3107 zSuper = 0;
3108 if( rc ){
3109 return rc;
3112 /* All files and directories have already been synced, so the following
3113 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
3114 ** deleting or truncating journals. If something goes wrong while
3115 ** this is happening we don't really care. The integrity of the
3116 ** transaction is already guaranteed, but some stray 'cold' journals
3117 ** may be lying around. Returning an error code won't help matters.
3119 disable_simulated_io_errors();
3120 sqlite3BeginBenignMalloc();
3121 for(i=0; i<db->nDb; i++){
3122 Btree *pBt = db->aDb[i].pBt;
3123 if( pBt ){
3124 sqlite3BtreeCommitPhaseTwo(pBt, 1);
3127 sqlite3EndBenignMalloc();
3128 enable_simulated_io_errors();
3130 sqlite3VtabCommit(db);
3132 #endif
3134 return rc;
3138 ** This routine checks that the sqlite3.nVdbeActive count variable
3139 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
3140 ** currently active. An assertion fails if the two counts do not match.
3141 ** This is an internal self-check only - it is not an essential processing
3142 ** step.
3144 ** This is a no-op if NDEBUG is defined.
3146 #ifndef NDEBUG
3147 static void checkActiveVdbeCnt(sqlite3 *db){
3148 Vdbe *p;
3149 int cnt = 0;
3150 int nWrite = 0;
3151 int nRead = 0;
3152 p = db->pVdbe;
3153 while( p ){
3154 if( sqlite3_stmt_busy((sqlite3_stmt*)p) ){
3155 cnt++;
3156 if( p->readOnly==0 ) nWrite++;
3157 if( p->bIsReader ) nRead++;
3159 p = p->pVNext;
3161 assert( cnt==db->nVdbeActive );
3162 assert( nWrite==db->nVdbeWrite );
3163 assert( nRead==db->nVdbeRead );
3165 #else
3166 #define checkActiveVdbeCnt(x)
3167 #endif
3170 ** If the Vdbe passed as the first argument opened a statement-transaction,
3171 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
3172 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
3173 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
3174 ** statement transaction is committed.
3176 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
3177 ** Otherwise SQLITE_OK.
3179 static SQLITE_NOINLINE int vdbeCloseStatement(Vdbe *p, int eOp){
3180 sqlite3 *const db = p->db;
3181 int rc = SQLITE_OK;
3182 int i;
3183 const int iSavepoint = p->iStatement-1;
3185 assert( eOp==SAVEPOINT_ROLLBACK || eOp==SAVEPOINT_RELEASE);
3186 assert( db->nStatement>0 );
3187 assert( p->iStatement==(db->nStatement+db->nSavepoint) );
3189 for(i=0; i<db->nDb; i++){
3190 int rc2 = SQLITE_OK;
3191 Btree *pBt = db->aDb[i].pBt;
3192 if( pBt ){
3193 if( eOp==SAVEPOINT_ROLLBACK ){
3194 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_ROLLBACK, iSavepoint);
3196 if( rc2==SQLITE_OK ){
3197 rc2 = sqlite3BtreeSavepoint(pBt, SAVEPOINT_RELEASE, iSavepoint);
3199 if( rc==SQLITE_OK ){
3200 rc = rc2;
3204 db->nStatement--;
3205 p->iStatement = 0;
3207 if( rc==SQLITE_OK ){
3208 if( eOp==SAVEPOINT_ROLLBACK ){
3209 rc = sqlite3VtabSavepoint(db, SAVEPOINT_ROLLBACK, iSavepoint);
3211 if( rc==SQLITE_OK ){
3212 rc = sqlite3VtabSavepoint(db, SAVEPOINT_RELEASE, iSavepoint);
3216 /* If the statement transaction is being rolled back, also restore the
3217 ** database handles deferred constraint counter to the value it had when
3218 ** the statement transaction was opened. */
3219 if( eOp==SAVEPOINT_ROLLBACK ){
3220 db->nDeferredCons = p->nStmtDefCons;
3221 db->nDeferredImmCons = p->nStmtDefImmCons;
3223 return rc;
3225 int sqlite3VdbeCloseStatement(Vdbe *p, int eOp){
3226 if( p->db->nStatement && p->iStatement ){
3227 return vdbeCloseStatement(p, eOp);
3229 return SQLITE_OK;
3234 ** This function is called when a transaction opened by the database
3235 ** handle associated with the VM passed as an argument is about to be
3236 ** committed. If there are outstanding deferred foreign key constraint
3237 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
3239 ** If there are outstanding FK violations and this function returns
3240 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
3241 ** and write an error message to it. Then return SQLITE_ERROR.
3243 #ifndef SQLITE_OMIT_FOREIGN_KEY
3244 int sqlite3VdbeCheckFk(Vdbe *p, int deferred){
3245 sqlite3 *db = p->db;
3246 if( (deferred && (db->nDeferredCons+db->nDeferredImmCons)>0)
3247 || (!deferred && p->nFkConstraint>0)
3249 p->rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3250 p->errorAction = OE_Abort;
3251 sqlite3VdbeError(p, "FOREIGN KEY constraint failed");
3252 if( (p->prepFlags & SQLITE_PREPARE_SAVESQL)==0 ) return SQLITE_ERROR;
3253 return SQLITE_CONSTRAINT_FOREIGNKEY;
3255 return SQLITE_OK;
3257 #endif
3260 ** This routine is called the when a VDBE tries to halt. If the VDBE
3261 ** has made changes and is in autocommit mode, then commit those
3262 ** changes. If a rollback is needed, then do the rollback.
3264 ** This routine is the only way to move the sqlite3eOpenState of a VM from
3265 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to
3266 ** call this on a VM that is in the SQLITE_STATE_HALT state.
3268 ** Return an error code. If the commit could not complete because of
3269 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
3270 ** means the close did not happen and needs to be repeated.
3272 int sqlite3VdbeHalt(Vdbe *p){
3273 int rc; /* Used to store transient return codes */
3274 sqlite3 *db = p->db;
3276 /* This function contains the logic that determines if a statement or
3277 ** transaction will be committed or rolled back as a result of the
3278 ** execution of this virtual machine.
3280 ** If any of the following errors occur:
3282 ** SQLITE_NOMEM
3283 ** SQLITE_IOERR
3284 ** SQLITE_FULL
3285 ** SQLITE_INTERRUPT
3287 ** Then the internal cache might have been left in an inconsistent
3288 ** state. We need to rollback the statement transaction, if there is
3289 ** one, or the complete transaction if there is no statement transaction.
3292 assert( p->eVdbeState==VDBE_RUN_STATE );
3293 if( db->mallocFailed ){
3294 p->rc = SQLITE_NOMEM_BKPT;
3296 closeAllCursors(p);
3297 checkActiveVdbeCnt(db);
3299 /* No commit or rollback needed if the program never started or if the
3300 ** SQL statement does not read or write a database file. */
3301 if( p->bIsReader ){
3302 int mrc; /* Primary error code from p->rc */
3303 int eStatementOp = 0;
3304 int isSpecialError; /* Set to true if a 'special' error */
3306 /* Lock all btrees used by the statement */
3307 sqlite3VdbeEnter(p);
3309 /* Check for one of the special errors */
3310 if( p->rc ){
3311 mrc = p->rc & 0xff;
3312 isSpecialError = mrc==SQLITE_NOMEM
3313 || mrc==SQLITE_IOERR
3314 || mrc==SQLITE_INTERRUPT
3315 || mrc==SQLITE_FULL;
3316 }else{
3317 mrc = isSpecialError = 0;
3319 if( isSpecialError ){
3320 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
3321 ** no rollback is necessary. Otherwise, at least a savepoint
3322 ** transaction must be rolled back to restore the database to a
3323 ** consistent state.
3325 ** Even if the statement is read-only, it is important to perform
3326 ** a statement or transaction rollback operation. If the error
3327 ** occurred while writing to the journal, sub-journal or database
3328 ** file as part of an effort to free up cache space (see function
3329 ** pagerStress() in pager.c), the rollback is required to restore
3330 ** the pager to a consistent state.
3332 if( !p->readOnly || mrc!=SQLITE_INTERRUPT ){
3333 if( (mrc==SQLITE_NOMEM || mrc==SQLITE_FULL) && p->usesStmtJournal ){
3334 eStatementOp = SAVEPOINT_ROLLBACK;
3335 }else{
3336 /* We are forced to roll back the active transaction. Before doing
3337 ** so, abort any other statements this handle currently has active.
3339 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3340 sqlite3CloseSavepoints(db);
3341 db->autoCommit = 1;
3342 p->nChange = 0;
3347 /* Check for immediate foreign key violations. */
3348 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3349 sqlite3VdbeCheckFk(p, 0);
3352 /* If the auto-commit flag is set and this is the only active writer
3353 ** VM, then we do either a commit or rollback of the current transaction.
3355 ** Note: This block also runs if one of the special errors handled
3356 ** above has occurred.
3358 if( !sqlite3VtabInSync(db)
3359 && db->autoCommit
3360 && db->nVdbeWrite==(p->readOnly==0)
3362 if( p->rc==SQLITE_OK || (p->errorAction==OE_Fail && !isSpecialError) ){
3363 rc = sqlite3VdbeCheckFk(p, 1);
3364 if( rc!=SQLITE_OK ){
3365 if( NEVER(p->readOnly) ){
3366 sqlite3VdbeLeave(p);
3367 return SQLITE_ERROR;
3369 rc = SQLITE_CONSTRAINT_FOREIGNKEY;
3370 }else if( db->flags & SQLITE_CorruptRdOnly ){
3371 rc = SQLITE_CORRUPT;
3372 db->flags &= ~SQLITE_CorruptRdOnly;
3373 }else{
3374 /* The auto-commit flag is true, the vdbe program was successful
3375 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3376 ** key constraints to hold up the transaction. This means a commit
3377 ** is required. */
3378 rc = vdbeCommit(db, p);
3380 if( rc==SQLITE_BUSY && p->readOnly ){
3381 sqlite3VdbeLeave(p);
3382 return SQLITE_BUSY;
3383 }else if( rc!=SQLITE_OK ){
3384 sqlite3SystemError(db, rc);
3385 p->rc = rc;
3386 sqlite3RollbackAll(db, SQLITE_OK);
3387 p->nChange = 0;
3388 }else{
3389 db->nDeferredCons = 0;
3390 db->nDeferredImmCons = 0;
3391 db->flags &= ~(u64)SQLITE_DeferFKs;
3392 sqlite3CommitInternalChanges(db);
3394 }else if( p->rc==SQLITE_SCHEMA && db->nVdbeActive>1 ){
3395 p->nChange = 0;
3396 }else{
3397 sqlite3RollbackAll(db, SQLITE_OK);
3398 p->nChange = 0;
3400 db->nStatement = 0;
3401 }else if( eStatementOp==0 ){
3402 if( p->rc==SQLITE_OK || p->errorAction==OE_Fail ){
3403 eStatementOp = SAVEPOINT_RELEASE;
3404 }else if( p->errorAction==OE_Abort ){
3405 eStatementOp = SAVEPOINT_ROLLBACK;
3406 }else{
3407 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3408 sqlite3CloseSavepoints(db);
3409 db->autoCommit = 1;
3410 p->nChange = 0;
3414 /* If eStatementOp is non-zero, then a statement transaction needs to
3415 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3416 ** do so. If this operation returns an error, and the current statement
3417 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3418 ** current statement error code.
3420 if( eStatementOp ){
3421 rc = sqlite3VdbeCloseStatement(p, eStatementOp);
3422 if( rc ){
3423 if( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT ){
3424 p->rc = rc;
3425 sqlite3DbFree(db, p->zErrMsg);
3426 p->zErrMsg = 0;
3428 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3429 sqlite3CloseSavepoints(db);
3430 db->autoCommit = 1;
3431 p->nChange = 0;
3435 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3436 ** has been rolled back, update the database connection change-counter.
3438 if( p->changeCntOn ){
3439 if( eStatementOp!=SAVEPOINT_ROLLBACK ){
3440 sqlite3VdbeSetChanges(db, p->nChange);
3441 }else{
3442 sqlite3VdbeSetChanges(db, 0);
3444 p->nChange = 0;
3447 /* Release the locks */
3448 sqlite3VdbeLeave(p);
3451 /* We have successfully halted and closed the VM. Record this fact. */
3452 db->nVdbeActive--;
3453 if( !p->readOnly ) db->nVdbeWrite--;
3454 if( p->bIsReader ) db->nVdbeRead--;
3455 assert( db->nVdbeActive>=db->nVdbeRead );
3456 assert( db->nVdbeRead>=db->nVdbeWrite );
3457 assert( db->nVdbeWrite>=0 );
3458 p->eVdbeState = VDBE_HALT_STATE;
3459 checkActiveVdbeCnt(db);
3460 if( db->mallocFailed ){
3461 p->rc = SQLITE_NOMEM_BKPT;
3464 /* If the auto-commit flag is set to true, then any locks that were held
3465 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3466 ** to invoke any required unlock-notify callbacks.
3468 if( db->autoCommit ){
3469 sqlite3ConnectionUnlocked(db);
3472 assert( db->nVdbeActive>0 || db->autoCommit==0 || db->nStatement==0 );
3473 return (p->rc==SQLITE_BUSY ? SQLITE_BUSY : SQLITE_OK);
3478 ** Each VDBE holds the result of the most recent sqlite3_step() call
3479 ** in p->rc. This routine sets that result back to SQLITE_OK.
3481 void sqlite3VdbeResetStepResult(Vdbe *p){
3482 p->rc = SQLITE_OK;
3486 ** Copy the error code and error message belonging to the VDBE passed
3487 ** as the first argument to its database handle (so that they will be
3488 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3490 ** This function does not clear the VDBE error code or message, just
3491 ** copies them to the database handle.
3493 int sqlite3VdbeTransferError(Vdbe *p){
3494 sqlite3 *db = p->db;
3495 int rc = p->rc;
3496 if( p->zErrMsg ){
3497 db->bBenignMalloc++;
3498 sqlite3BeginBenignMalloc();
3499 if( db->pErr==0 ) db->pErr = sqlite3ValueNew(db);
3500 sqlite3ValueSetStr(db->pErr, -1, p->zErrMsg, SQLITE_UTF8, SQLITE_TRANSIENT);
3501 sqlite3EndBenignMalloc();
3502 db->bBenignMalloc--;
3503 }else if( db->pErr ){
3504 sqlite3ValueSetNull(db->pErr);
3506 db->errCode = rc;
3507 db->errByteOffset = -1;
3508 return rc;
3511 #ifdef SQLITE_ENABLE_SQLLOG
3513 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3514 ** invoke it.
3516 static void vdbeInvokeSqllog(Vdbe *v){
3517 if( sqlite3GlobalConfig.xSqllog && v->rc==SQLITE_OK && v->zSql && v->pc>=0 ){
3518 char *zExpanded = sqlite3VdbeExpandSql(v, v->zSql);
3519 assert( v->db->init.busy==0 );
3520 if( zExpanded ){
3521 sqlite3GlobalConfig.xSqllog(
3522 sqlite3GlobalConfig.pSqllogArg, v->db, zExpanded, 1
3524 sqlite3DbFree(v->db, zExpanded);
3528 #else
3529 # define vdbeInvokeSqllog(x)
3530 #endif
3533 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3534 ** Write any error messages into *pzErrMsg. Return the result code.
3536 ** After this routine is run, the VDBE should be ready to be executed
3537 ** again.
3539 ** To look at it another way, this routine resets the state of the
3540 ** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to
3541 ** VDBE_READY_STATE.
3543 int sqlite3VdbeReset(Vdbe *p){
3544 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3545 int i;
3546 #endif
3548 sqlite3 *db;
3549 db = p->db;
3551 /* If the VM did not run to completion or if it encountered an
3552 ** error, then it might not have been halted properly. So halt
3553 ** it now.
3555 if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
3557 /* If the VDBE has been run even partially, then transfer the error code
3558 ** and error message from the VDBE into the main database structure. But
3559 ** if the VDBE has just been set to run but has not actually executed any
3560 ** instructions yet, leave the main database error information unchanged.
3562 if( p->pc>=0 ){
3563 vdbeInvokeSqllog(p);
3564 if( db->pErr || p->zErrMsg ){
3565 sqlite3VdbeTransferError(p);
3566 }else{
3567 db->errCode = p->rc;
3571 /* Reset register contents and reclaim error message memory.
3573 #ifdef SQLITE_DEBUG
3574 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3575 ** Vdbe.aMem[] arrays have already been cleaned up. */
3576 if( p->apCsr ) for(i=0; i<p->nCursor; i++) assert( p->apCsr[i]==0 );
3577 if( p->aMem ){
3578 for(i=0; i<p->nMem; i++) assert( p->aMem[i].flags==MEM_Undefined );
3580 #endif
3581 if( p->zErrMsg ){
3582 sqlite3DbFree(db, p->zErrMsg);
3583 p->zErrMsg = 0;
3585 p->pResultRow = 0;
3586 #ifdef SQLITE_DEBUG
3587 p->nWrite = 0;
3588 #endif
3590 /* Save profiling information from this VDBE run.
3592 #ifdef VDBE_PROFILE
3594 FILE *out = fopen("vdbe_profile.out", "a");
3595 if( out ){
3596 fprintf(out, "---- ");
3597 for(i=0; i<p->nOp; i++){
3598 fprintf(out, "%02x", p->aOp[i].opcode);
3600 fprintf(out, "\n");
3601 if( p->zSql ){
3602 char c, pc = 0;
3603 fprintf(out, "-- ");
3604 for(i=0; (c = p->zSql[i])!=0; i++){
3605 if( pc=='\n' ) fprintf(out, "-- ");
3606 putc(c, out);
3607 pc = c;
3609 if( pc!='\n' ) fprintf(out, "\n");
3611 for(i=0; i<p->nOp; i++){
3612 char zHdr[100];
3613 i64 cnt = p->aOp[i].nExec;
3614 i64 cycles = p->aOp[i].nCycle;
3615 sqlite3_snprintf(sizeof(zHdr), zHdr, "%6u %12llu %8llu ",
3616 cnt,
3617 cycles,
3618 cnt>0 ? cycles/cnt : 0
3620 fprintf(out, "%s", zHdr);
3621 sqlite3VdbePrintOp(out, i, &p->aOp[i]);
3623 fclose(out);
3626 #endif
3627 return p->rc & db->errMask;
3631 ** Clean up and delete a VDBE after execution. Return an integer which is
3632 ** the result code. Write any error message text into *pzErrMsg.
3634 int sqlite3VdbeFinalize(Vdbe *p){
3635 int rc = SQLITE_OK;
3636 assert( VDBE_RUN_STATE>VDBE_READY_STATE );
3637 assert( VDBE_HALT_STATE>VDBE_READY_STATE );
3638 assert( VDBE_INIT_STATE<VDBE_READY_STATE );
3639 if( p->eVdbeState>=VDBE_READY_STATE ){
3640 rc = sqlite3VdbeReset(p);
3641 assert( (rc & p->db->errMask)==rc );
3643 sqlite3VdbeDelete(p);
3644 return rc;
3648 ** If parameter iOp is less than zero, then invoke the destructor for
3649 ** all auxiliary data pointers currently cached by the VM passed as
3650 ** the first argument.
3652 ** Or, if iOp is greater than or equal to zero, then the destructor is
3653 ** only invoked for those auxiliary data pointers created by the user
3654 ** function invoked by the OP_Function opcode at instruction iOp of
3655 ** VM pVdbe, and only then if:
3657 ** * the associated function parameter is the 32nd or later (counting
3658 ** from left to right), or
3660 ** * the corresponding bit in argument mask is clear (where the first
3661 ** function parameter corresponds to bit 0 etc.).
3663 void sqlite3VdbeDeleteAuxData(sqlite3 *db, AuxData **pp, int iOp, int mask){
3664 while( *pp ){
3665 AuxData *pAux = *pp;
3666 if( (iOp<0)
3667 || (pAux->iAuxOp==iOp
3668 && pAux->iAuxArg>=0
3669 && (pAux->iAuxArg>31 || !(mask & MASKBIT32(pAux->iAuxArg))))
3671 testcase( pAux->iAuxArg==31 );
3672 if( pAux->xDeleteAux ){
3673 pAux->xDeleteAux(pAux->pAux);
3675 *pp = pAux->pNextAux;
3676 sqlite3DbFree(db, pAux);
3677 }else{
3678 pp= &pAux->pNextAux;
3684 ** Free all memory associated with the Vdbe passed as the second argument,
3685 ** except for object itself, which is preserved.
3687 ** The difference between this function and sqlite3VdbeDelete() is that
3688 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3689 ** the database connection and frees the object itself.
3691 static void sqlite3VdbeClearObject(sqlite3 *db, Vdbe *p){
3692 SubProgram *pSub, *pNext;
3693 assert( db!=0 );
3694 assert( p->db==0 || p->db==db );
3695 if( p->aColName ){
3696 releaseMemArray(p->aColName, p->nResAlloc*COLNAME_N);
3697 sqlite3DbNNFreeNN(db, p->aColName);
3699 for(pSub=p->pProgram; pSub; pSub=pNext){
3700 pNext = pSub->pNext;
3701 vdbeFreeOpArray(db, pSub->aOp, pSub->nOp);
3702 sqlite3DbFree(db, pSub);
3704 if( p->eVdbeState!=VDBE_INIT_STATE ){
3705 releaseMemArray(p->aVar, p->nVar);
3706 if( p->pVList ) sqlite3DbNNFreeNN(db, p->pVList);
3707 if( p->pFree ) sqlite3DbNNFreeNN(db, p->pFree);
3709 vdbeFreeOpArray(db, p->aOp, p->nOp);
3710 if( p->zSql ) sqlite3DbNNFreeNN(db, p->zSql);
3711 #ifdef SQLITE_ENABLE_NORMALIZE
3712 sqlite3DbFree(db, p->zNormSql);
3714 DblquoteStr *pThis, *pNxt;
3715 for(pThis=p->pDblStr; pThis; pThis=pNxt){
3716 pNxt = pThis->pNextStr;
3717 sqlite3DbFree(db, pThis);
3720 #endif
3721 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3723 int i;
3724 for(i=0; i<p->nScan; i++){
3725 sqlite3DbFree(db, p->aScan[i].zName);
3727 sqlite3DbFree(db, p->aScan);
3729 #endif
3733 ** Delete an entire VDBE.
3735 void sqlite3VdbeDelete(Vdbe *p){
3736 sqlite3 *db;
3738 assert( p!=0 );
3739 db = p->db;
3740 assert( db!=0 );
3741 assert( sqlite3_mutex_held(db->mutex) );
3742 sqlite3VdbeClearObject(db, p);
3743 if( db->pnBytesFreed==0 ){
3744 assert( p->ppVPrev!=0 );
3745 *p->ppVPrev = p->pVNext;
3746 if( p->pVNext ){
3747 p->pVNext->ppVPrev = p->ppVPrev;
3750 sqlite3DbNNFreeNN(db, p);
3754 ** The cursor "p" has a pending seek operation that has not yet been
3755 ** carried out. Seek the cursor now. If an error occurs, return
3756 ** the appropriate error code.
3758 int SQLITE_NOINLINE sqlite3VdbeFinishMoveto(VdbeCursor *p){
3759 int res, rc;
3760 #ifdef SQLITE_TEST
3761 extern int sqlite3_search_count;
3762 #endif
3763 assert( p->deferredMoveto );
3764 assert( p->isTable );
3765 assert( p->eCurType==CURTYPE_BTREE );
3766 rc = sqlite3BtreeTableMoveto(p->uc.pCursor, p->movetoTarget, 0, &res);
3767 if( rc ) return rc;
3768 if( res!=0 ) return SQLITE_CORRUPT_BKPT;
3769 #ifdef SQLITE_TEST
3770 sqlite3_search_count++;
3771 #endif
3772 p->deferredMoveto = 0;
3773 p->cacheStatus = CACHE_STALE;
3774 return SQLITE_OK;
3778 ** Something has moved cursor "p" out of place. Maybe the row it was
3779 ** pointed to was deleted out from under it. Or maybe the btree was
3780 ** rebalanced. Whatever the cause, try to restore "p" to the place it
3781 ** is supposed to be pointing. If the row was deleted out from under the
3782 ** cursor, set the cursor to point to a NULL row.
3784 int SQLITE_NOINLINE sqlite3VdbeHandleMovedCursor(VdbeCursor *p){
3785 int isDifferentRow, rc;
3786 assert( p->eCurType==CURTYPE_BTREE );
3787 assert( p->uc.pCursor!=0 );
3788 assert( sqlite3BtreeCursorHasMoved(p->uc.pCursor) );
3789 rc = sqlite3BtreeCursorRestore(p->uc.pCursor, &isDifferentRow);
3790 p->cacheStatus = CACHE_STALE;
3791 if( isDifferentRow ) p->nullRow = 1;
3792 return rc;
3796 ** Check to ensure that the cursor is valid. Restore the cursor
3797 ** if need be. Return any I/O error from the restore operation.
3799 int sqlite3VdbeCursorRestore(VdbeCursor *p){
3800 assert( p->eCurType==CURTYPE_BTREE || IsNullCursor(p) );
3801 if( sqlite3BtreeCursorHasMoved(p->uc.pCursor) ){
3802 return sqlite3VdbeHandleMovedCursor(p);
3804 return SQLITE_OK;
3808 ** The following functions:
3810 ** sqlite3VdbeSerialType()
3811 ** sqlite3VdbeSerialTypeLen()
3812 ** sqlite3VdbeSerialLen()
3813 ** sqlite3VdbeSerialPut() <--- in-lined into OP_MakeRecord as of 2022-04-02
3814 ** sqlite3VdbeSerialGet()
3816 ** encapsulate the code that serializes values for storage in SQLite
3817 ** data and index records. Each serialized value consists of a
3818 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3819 ** integer, stored as a varint.
3821 ** In an SQLite index record, the serial type is stored directly before
3822 ** the blob of data that it corresponds to. In a table record, all serial
3823 ** types are stored at the start of the record, and the blobs of data at
3824 ** the end. Hence these functions allow the caller to handle the
3825 ** serial-type and data blob separately.
3827 ** The following table describes the various storage classes for data:
3829 ** serial type bytes of data type
3830 ** -------------- --------------- ---------------
3831 ** 0 0 NULL
3832 ** 1 1 signed integer
3833 ** 2 2 signed integer
3834 ** 3 3 signed integer
3835 ** 4 4 signed integer
3836 ** 5 6 signed integer
3837 ** 6 8 signed integer
3838 ** 7 8 IEEE float
3839 ** 8 0 Integer constant 0
3840 ** 9 0 Integer constant 1
3841 ** 10,11 reserved for expansion
3842 ** N>=12 and even (N-12)/2 BLOB
3843 ** N>=13 and odd (N-13)/2 text
3845 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3846 ** of SQLite will not understand those serial types.
3849 #if 0 /* Inlined into the OP_MakeRecord opcode */
3851 ** Return the serial-type for the value stored in pMem.
3853 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3855 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord
3856 ** opcode in the byte-code engine. But by moving this routine in-line, we
3857 ** can omit some redundant tests and make that opcode a lot faster. So
3858 ** this routine is now only used by the STAT3 logic and STAT3 support has
3859 ** ended. The code is kept here for historical reference only.
3861 u32 sqlite3VdbeSerialType(Mem *pMem, int file_format, u32 *pLen){
3862 int flags = pMem->flags;
3863 u32 n;
3865 assert( pLen!=0 );
3866 if( flags&MEM_Null ){
3867 *pLen = 0;
3868 return 0;
3870 if( flags&(MEM_Int|MEM_IntReal) ){
3871 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3872 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3873 i64 i = pMem->u.i;
3874 u64 u;
3875 testcase( flags & MEM_Int );
3876 testcase( flags & MEM_IntReal );
3877 if( i<0 ){
3878 u = ~i;
3879 }else{
3880 u = i;
3882 if( u<=127 ){
3883 if( (i&1)==i && file_format>=4 ){
3884 *pLen = 0;
3885 return 8+(u32)u;
3886 }else{
3887 *pLen = 1;
3888 return 1;
3891 if( u<=32767 ){ *pLen = 2; return 2; }
3892 if( u<=8388607 ){ *pLen = 3; return 3; }
3893 if( u<=2147483647 ){ *pLen = 4; return 4; }
3894 if( u<=MAX_6BYTE ){ *pLen = 6; return 5; }
3895 *pLen = 8;
3896 if( flags&MEM_IntReal ){
3897 /* If the value is IntReal and is going to take up 8 bytes to store
3898 ** as an integer, then we might as well make it an 8-byte floating
3899 ** point value */
3900 pMem->u.r = (double)pMem->u.i;
3901 pMem->flags &= ~MEM_IntReal;
3902 pMem->flags |= MEM_Real;
3903 return 7;
3905 return 6;
3907 if( flags&MEM_Real ){
3908 *pLen = 8;
3909 return 7;
3911 assert( pMem->db->mallocFailed || flags&(MEM_Str|MEM_Blob) );
3912 assert( pMem->n>=0 );
3913 n = (u32)pMem->n;
3914 if( flags & MEM_Zero ){
3915 n += pMem->u.nZero;
3917 *pLen = n;
3918 return ((n*2) + 12 + ((flags&MEM_Str)!=0));
3920 #endif /* inlined into OP_MakeRecord */
3923 ** The sizes for serial types less than 128
3925 const u8 sqlite3SmallTypeSizes[128] = {
3926 /* 0 1 2 3 4 5 6 7 8 9 */
3927 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3928 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3929 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3930 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3931 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3932 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3933 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3934 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3935 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3936 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3937 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3938 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3939 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
3943 ** Return the length of the data corresponding to the supplied serial-type.
3945 u32 sqlite3VdbeSerialTypeLen(u32 serial_type){
3946 if( serial_type>=128 ){
3947 return (serial_type-12)/2;
3948 }else{
3949 assert( serial_type<12
3950 || sqlite3SmallTypeSizes[serial_type]==(serial_type - 12)/2 );
3951 return sqlite3SmallTypeSizes[serial_type];
3954 u8 sqlite3VdbeOneByteSerialTypeLen(u8 serial_type){
3955 assert( serial_type<128 );
3956 return sqlite3SmallTypeSizes[serial_type];
3960 ** If we are on an architecture with mixed-endian floating
3961 ** points (ex: ARM7) then swap the lower 4 bytes with the
3962 ** upper 4 bytes. Return the result.
3964 ** For most architectures, this is a no-op.
3966 ** (later): It is reported to me that the mixed-endian problem
3967 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3968 ** that early versions of GCC stored the two words of a 64-bit
3969 ** float in the wrong order. And that error has been propagated
3970 ** ever since. The blame is not necessarily with GCC, though.
3971 ** GCC might have just copying the problem from a prior compiler.
3972 ** I am also told that newer versions of GCC that follow a different
3973 ** ABI get the byte order right.
3975 ** Developers using SQLite on an ARM7 should compile and run their
3976 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3977 ** enabled, some asserts below will ensure that the byte order of
3978 ** floating point values is correct.
3980 ** (2007-08-30) Frank van Vugt has studied this problem closely
3981 ** and has send his findings to the SQLite developers. Frank
3982 ** writes that some Linux kernels offer floating point hardware
3983 ** emulation that uses only 32-bit mantissas instead of a full
3984 ** 48-bits as required by the IEEE standard. (This is the
3985 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3986 ** byte swapping becomes very complicated. To avoid problems,
3987 ** the necessary byte swapping is carried out using a 64-bit integer
3988 ** rather than a 64-bit float. Frank assures us that the code here
3989 ** works for him. We, the developers, have no way to independently
3990 ** verify this, but Frank seems to know what he is talking about
3991 ** so we trust him.
3993 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3994 u64 sqlite3FloatSwap(u64 in){
3995 union {
3996 u64 r;
3997 u32 i[2];
3998 } u;
3999 u32 t;
4001 u.r = in;
4002 t = u.i[0];
4003 u.i[0] = u.i[1];
4004 u.i[1] = t;
4005 return u.r;
4007 #endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */
4010 /* Input "x" is a sequence of unsigned characters that represent a
4011 ** big-endian integer. Return the equivalent native integer
4013 #define ONE_BYTE_INT(x) ((i8)(x)[0])
4014 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
4015 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
4016 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
4017 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
4020 ** Deserialize the data blob pointed to by buf as serial type serial_type
4021 ** and store the result in pMem.
4023 ** This function is implemented as two separate routines for performance.
4024 ** The few cases that require local variables are broken out into a separate
4025 ** routine so that in most cases the overhead of moving the stack pointer
4026 ** is avoided.
4028 static void serialGet(
4029 const unsigned char *buf, /* Buffer to deserialize from */
4030 u32 serial_type, /* Serial type to deserialize */
4031 Mem *pMem /* Memory cell to write value into */
4033 u64 x = FOUR_BYTE_UINT(buf);
4034 u32 y = FOUR_BYTE_UINT(buf+4);
4035 x = (x<<32) + y;
4036 if( serial_type==6 ){
4037 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
4038 ** twos-complement integer. */
4039 pMem->u.i = *(i64*)&x;
4040 pMem->flags = MEM_Int;
4041 testcase( pMem->u.i<0 );
4042 }else{
4043 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
4044 ** floating point number. */
4045 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
4046 /* Verify that integers and floating point values use the same
4047 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
4048 ** defined that 64-bit floating point values really are mixed
4049 ** endian.
4051 static const u64 t1 = ((u64)0x3ff00000)<<32;
4052 static const double r1 = 1.0;
4053 u64 t2 = t1;
4054 swapMixedEndianFloat(t2);
4055 assert( sizeof(r1)==sizeof(t2) && memcmp(&r1, &t2, sizeof(r1))==0 );
4056 #endif
4057 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
4058 swapMixedEndianFloat(x);
4059 memcpy(&pMem->u.r, &x, sizeof(x));
4060 pMem->flags = IsNaN(x) ? MEM_Null : MEM_Real;
4063 static int serialGet7(
4064 const unsigned char *buf, /* Buffer to deserialize from */
4065 Mem *pMem /* Memory cell to write value into */
4067 u64 x = FOUR_BYTE_UINT(buf);
4068 u32 y = FOUR_BYTE_UINT(buf+4);
4069 x = (x<<32) + y;
4070 assert( sizeof(x)==8 && sizeof(pMem->u.r)==8 );
4071 swapMixedEndianFloat(x);
4072 memcpy(&pMem->u.r, &x, sizeof(x));
4073 if( IsNaN(x) ){
4074 pMem->flags = MEM_Null;
4075 return 1;
4077 pMem->flags = MEM_Real;
4078 return 0;
4080 void sqlite3VdbeSerialGet(
4081 const unsigned char *buf, /* Buffer to deserialize from */
4082 u32 serial_type, /* Serial type to deserialize */
4083 Mem *pMem /* Memory cell to write value into */
4085 switch( serial_type ){
4086 case 10: { /* Internal use only: NULL with virtual table
4087 ** UPDATE no-change flag set */
4088 pMem->flags = MEM_Null|MEM_Zero;
4089 pMem->n = 0;
4090 pMem->u.nZero = 0;
4091 return;
4093 case 11: /* Reserved for future use */
4094 case 0: { /* Null */
4095 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
4096 pMem->flags = MEM_Null;
4097 return;
4099 case 1: {
4100 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
4101 ** integer. */
4102 pMem->u.i = ONE_BYTE_INT(buf);
4103 pMem->flags = MEM_Int;
4104 testcase( pMem->u.i<0 );
4105 return;
4107 case 2: { /* 2-byte signed integer */
4108 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
4109 ** twos-complement integer. */
4110 pMem->u.i = TWO_BYTE_INT(buf);
4111 pMem->flags = MEM_Int;
4112 testcase( pMem->u.i<0 );
4113 return;
4115 case 3: { /* 3-byte signed integer */
4116 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
4117 ** twos-complement integer. */
4118 pMem->u.i = THREE_BYTE_INT(buf);
4119 pMem->flags = MEM_Int;
4120 testcase( pMem->u.i<0 );
4121 return;
4123 case 4: { /* 4-byte signed integer */
4124 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
4125 ** twos-complement integer. */
4126 pMem->u.i = FOUR_BYTE_INT(buf);
4127 #ifdef __HP_cc
4128 /* Work around a sign-extension bug in the HP compiler for HP/UX */
4129 if( buf[0]&0x80 ) pMem->u.i |= 0xffffffff80000000LL;
4130 #endif
4131 pMem->flags = MEM_Int;
4132 testcase( pMem->u.i<0 );
4133 return;
4135 case 5: { /* 6-byte signed integer */
4136 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
4137 ** twos-complement integer. */
4138 pMem->u.i = FOUR_BYTE_UINT(buf+2) + (((i64)1)<<32)*TWO_BYTE_INT(buf);
4139 pMem->flags = MEM_Int;
4140 testcase( pMem->u.i<0 );
4141 return;
4143 case 6: /* 8-byte signed integer */
4144 case 7: { /* IEEE floating point */
4145 /* These use local variables, so do them in a separate routine
4146 ** to avoid having to move the frame pointer in the common case */
4147 serialGet(buf,serial_type,pMem);
4148 return;
4150 case 8: /* Integer 0 */
4151 case 9: { /* Integer 1 */
4152 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
4153 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
4154 pMem->u.i = serial_type-8;
4155 pMem->flags = MEM_Int;
4156 return;
4158 default: {
4159 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
4160 ** length.
4161 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
4162 ** (N-13)/2 bytes in length. */
4163 static const u16 aFlag[] = { MEM_Blob|MEM_Ephem, MEM_Str|MEM_Ephem };
4164 pMem->z = (char *)buf;
4165 pMem->n = (serial_type-12)/2;
4166 pMem->flags = aFlag[serial_type&1];
4167 return;
4170 return;
4173 ** This routine is used to allocate sufficient space for an UnpackedRecord
4174 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
4175 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
4177 ** The space is either allocated using sqlite3DbMallocRaw() or from within
4178 ** the unaligned buffer passed via the second and third arguments (presumably
4179 ** stack space). If the former, then *ppFree is set to a pointer that should
4180 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
4181 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
4182 ** before returning.
4184 ** If an OOM error occurs, NULL is returned.
4186 UnpackedRecord *sqlite3VdbeAllocUnpackedRecord(
4187 KeyInfo *pKeyInfo /* Description of the record */
4189 UnpackedRecord *p; /* Unpacked record to return */
4190 int nByte; /* Number of bytes required for *p */
4191 nByte = ROUND8P(sizeof(UnpackedRecord)) + sizeof(Mem)*(pKeyInfo->nKeyField+1);
4192 p = (UnpackedRecord *)sqlite3DbMallocRaw(pKeyInfo->db, nByte);
4193 if( !p ) return 0;
4194 p->aMem = (Mem*)&((char*)p)[ROUND8P(sizeof(UnpackedRecord))];
4195 assert( pKeyInfo->aSortFlags!=0 );
4196 p->pKeyInfo = pKeyInfo;
4197 p->nField = pKeyInfo->nKeyField + 1;
4198 return p;
4202 ** Given the nKey-byte encoding of a record in pKey[], populate the
4203 ** UnpackedRecord structure indicated by the fourth argument with the
4204 ** contents of the decoded record.
4206 void sqlite3VdbeRecordUnpack(
4207 KeyInfo *pKeyInfo, /* Information about the record format */
4208 int nKey, /* Size of the binary record */
4209 const void *pKey, /* The binary record */
4210 UnpackedRecord *p /* Populate this structure before returning. */
4212 const unsigned char *aKey = (const unsigned char *)pKey;
4213 u32 d;
4214 u32 idx; /* Offset in aKey[] to read from */
4215 u16 u; /* Unsigned loop counter */
4216 u32 szHdr;
4217 Mem *pMem = p->aMem;
4219 p->default_rc = 0;
4220 assert( EIGHT_BYTE_ALIGNMENT(pMem) );
4221 idx = getVarint32(aKey, szHdr);
4222 d = szHdr;
4223 u = 0;
4224 while( idx<szHdr && d<=(u32)nKey ){
4225 u32 serial_type;
4227 idx += getVarint32(&aKey[idx], serial_type);
4228 pMem->enc = pKeyInfo->enc;
4229 pMem->db = pKeyInfo->db;
4230 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
4231 pMem->szMalloc = 0;
4232 pMem->z = 0;
4233 sqlite3VdbeSerialGet(&aKey[d], serial_type, pMem);
4234 d += sqlite3VdbeSerialTypeLen(serial_type);
4235 pMem++;
4236 if( (++u)>=p->nField ) break;
4238 if( d>(u32)nKey && u ){
4239 assert( CORRUPT_DB );
4240 /* In a corrupt record entry, the last pMem might have been set up using
4241 ** uninitialized memory. Overwrite its value with NULL, to prevent
4242 ** warnings from MSAN. */
4243 sqlite3VdbeMemSetNull(pMem-1);
4245 assert( u<=pKeyInfo->nKeyField + 1 );
4246 p->nField = u;
4249 #ifdef SQLITE_DEBUG
4251 ** This function compares two index or table record keys in the same way
4252 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
4253 ** this function deserializes and compares values using the
4254 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
4255 ** in assert() statements to ensure that the optimized code in
4256 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
4258 ** Return true if the result of comparison is equivalent to desiredResult.
4259 ** Return false if there is a disagreement.
4261 static int vdbeRecordCompareDebug(
4262 int nKey1, const void *pKey1, /* Left key */
4263 const UnpackedRecord *pPKey2, /* Right key */
4264 int desiredResult /* Correct answer */
4266 u32 d1; /* Offset into aKey[] of next data element */
4267 u32 idx1; /* Offset into aKey[] of next header element */
4268 u32 szHdr1; /* Number of bytes in header */
4269 int i = 0;
4270 int rc = 0;
4271 const unsigned char *aKey1 = (const unsigned char *)pKey1;
4272 KeyInfo *pKeyInfo;
4273 Mem mem1;
4275 pKeyInfo = pPKey2->pKeyInfo;
4276 if( pKeyInfo->db==0 ) return 1;
4277 mem1.enc = pKeyInfo->enc;
4278 mem1.db = pKeyInfo->db;
4279 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
4280 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4282 /* Compilers may complain that mem1.u.i is potentially uninitialized.
4283 ** We could initialize it, as shown here, to silence those complaints.
4284 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
4285 ** the unnecessary initialization has a measurable negative performance
4286 ** impact, since this routine is a very high runner. And so, we choose
4287 ** to ignore the compiler warnings and leave this variable uninitialized.
4289 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
4291 idx1 = getVarint32(aKey1, szHdr1);
4292 if( szHdr1>98307 ) return SQLITE_CORRUPT;
4293 d1 = szHdr1;
4294 assert( pKeyInfo->nAllField>=pPKey2->nField || CORRUPT_DB );
4295 assert( pKeyInfo->aSortFlags!=0 );
4296 assert( pKeyInfo->nKeyField>0 );
4297 assert( idx1<=szHdr1 || CORRUPT_DB );
4299 u32 serial_type1;
4301 /* Read the serial types for the next element in each key. */
4302 idx1 += getVarint32( aKey1+idx1, serial_type1 );
4304 /* Verify that there is enough key space remaining to avoid
4305 ** a buffer overread. The "d1+serial_type1+2" subexpression will
4306 ** always be greater than or equal to the amount of required key space.
4307 ** Use that approximation to avoid the more expensive call to
4308 ** sqlite3VdbeSerialTypeLen() in the common case.
4310 if( d1+(u64)serial_type1+2>(u64)nKey1
4311 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)>(u64)nKey1
4313 if( serial_type1>=1
4314 && serial_type1<=7
4315 && d1+(u64)sqlite3VdbeSerialTypeLen(serial_type1)<=(u64)nKey1+8
4316 && CORRUPT_DB
4318 return 1; /* corrupt record not detected by
4319 ** sqlite3VdbeRecordCompareWithSkip(). Return true
4320 ** to avoid firing the assert() */
4322 break;
4325 /* Extract the values to be compared.
4327 sqlite3VdbeSerialGet(&aKey1[d1], serial_type1, &mem1);
4328 d1 += sqlite3VdbeSerialTypeLen(serial_type1);
4330 /* Do the comparison
4332 rc = sqlite3MemCompare(&mem1, &pPKey2->aMem[i],
4333 pKeyInfo->nAllField>i ? pKeyInfo->aColl[i] : 0);
4334 if( rc!=0 ){
4335 assert( mem1.szMalloc==0 ); /* See comment below */
4336 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
4337 && ((mem1.flags & MEM_Null) || (pPKey2->aMem[i].flags & MEM_Null))
4339 rc = -rc;
4341 if( pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC ){
4342 rc = -rc; /* Invert the result for DESC sort order. */
4344 goto debugCompareEnd;
4346 i++;
4347 }while( idx1<szHdr1 && i<pPKey2->nField );
4349 /* No memory allocation is ever used on mem1. Prove this using
4350 ** the following assert(). If the assert() fails, it indicates a
4351 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4353 assert( mem1.szMalloc==0 );
4355 /* rc==0 here means that one of the keys ran out of fields and
4356 ** all the fields up to that point were equal. Return the default_rc
4357 ** value. */
4358 rc = pPKey2->default_rc;
4360 debugCompareEnd:
4361 if( desiredResult==0 && rc==0 ) return 1;
4362 if( desiredResult<0 && rc<0 ) return 1;
4363 if( desiredResult>0 && rc>0 ) return 1;
4364 if( CORRUPT_DB ) return 1;
4365 if( pKeyInfo->db->mallocFailed ) return 1;
4366 return 0;
4368 #endif
4370 #ifdef SQLITE_DEBUG
4372 ** Count the number of fields (a.k.a. columns) in the record given by
4373 ** pKey,nKey. The verify that this count is less than or equal to the
4374 ** limit given by pKeyInfo->nAllField.
4376 ** If this constraint is not satisfied, it means that the high-speed
4377 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4378 ** not work correctly. If this assert() ever fires, it probably means
4379 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4380 ** incorrectly.
4382 static void vdbeAssertFieldCountWithinLimits(
4383 int nKey, const void *pKey, /* The record to verify */
4384 const KeyInfo *pKeyInfo /* Compare size with this KeyInfo */
4386 int nField = 0;
4387 u32 szHdr;
4388 u32 idx;
4389 u32 notUsed;
4390 const unsigned char *aKey = (const unsigned char*)pKey;
4392 if( CORRUPT_DB ) return;
4393 idx = getVarint32(aKey, szHdr);
4394 assert( nKey>=0 );
4395 assert( szHdr<=(u32)nKey );
4396 while( idx<szHdr ){
4397 idx += getVarint32(aKey+idx, notUsed);
4398 nField++;
4400 assert( nField <= pKeyInfo->nAllField );
4402 #else
4403 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4404 #endif
4407 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4408 ** using the collation sequence pColl. As usual, return a negative , zero
4409 ** or positive value if *pMem1 is less than, equal to or greater than
4410 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4412 static int vdbeCompareMemString(
4413 const Mem *pMem1,
4414 const Mem *pMem2,
4415 const CollSeq *pColl,
4416 u8 *prcErr /* If an OOM occurs, set to SQLITE_NOMEM */
4418 if( pMem1->enc==pColl->enc ){
4419 /* The strings are already in the correct encoding. Call the
4420 ** comparison function directly */
4421 return pColl->xCmp(pColl->pUser,pMem1->n,pMem1->z,pMem2->n,pMem2->z);
4422 }else{
4423 int rc;
4424 const void *v1, *v2;
4425 Mem c1;
4426 Mem c2;
4427 sqlite3VdbeMemInit(&c1, pMem1->db, MEM_Null);
4428 sqlite3VdbeMemInit(&c2, pMem1->db, MEM_Null);
4429 sqlite3VdbeMemShallowCopy(&c1, pMem1, MEM_Ephem);
4430 sqlite3VdbeMemShallowCopy(&c2, pMem2, MEM_Ephem);
4431 v1 = sqlite3ValueText((sqlite3_value*)&c1, pColl->enc);
4432 v2 = sqlite3ValueText((sqlite3_value*)&c2, pColl->enc);
4433 if( (v1==0 || v2==0) ){
4434 if( prcErr ) *prcErr = SQLITE_NOMEM_BKPT;
4435 rc = 0;
4436 }else{
4437 rc = pColl->xCmp(pColl->pUser, c1.n, v1, c2.n, v2);
4439 sqlite3VdbeMemReleaseMalloc(&c1);
4440 sqlite3VdbeMemReleaseMalloc(&c2);
4441 return rc;
4446 ** The input pBlob is guaranteed to be a Blob that is not marked
4447 ** with MEM_Zero. Return true if it could be a zero-blob.
4449 static int isAllZero(const char *z, int n){
4450 int i;
4451 for(i=0; i<n; i++){
4452 if( z[i] ) return 0;
4454 return 1;
4458 ** Compare two blobs. Return negative, zero, or positive if the first
4459 ** is less than, equal to, or greater than the second, respectively.
4460 ** If one blob is a prefix of the other, then the shorter is the lessor.
4462 SQLITE_NOINLINE int sqlite3BlobCompare(const Mem *pB1, const Mem *pB2){
4463 int c;
4464 int n1 = pB1->n;
4465 int n2 = pB2->n;
4467 /* It is possible to have a Blob value that has some non-zero content
4468 ** followed by zero content. But that only comes up for Blobs formed
4469 ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4470 ** sqlite3MemCompare(). */
4471 assert( (pB1->flags & MEM_Zero)==0 || n1==0 );
4472 assert( (pB2->flags & MEM_Zero)==0 || n2==0 );
4474 if( (pB1->flags|pB2->flags) & MEM_Zero ){
4475 if( pB1->flags & pB2->flags & MEM_Zero ){
4476 return pB1->u.nZero - pB2->u.nZero;
4477 }else if( pB1->flags & MEM_Zero ){
4478 if( !isAllZero(pB2->z, pB2->n) ) return -1;
4479 return pB1->u.nZero - n2;
4480 }else{
4481 if( !isAllZero(pB1->z, pB1->n) ) return +1;
4482 return n1 - pB2->u.nZero;
4485 c = memcmp(pB1->z, pB2->z, n1>n2 ? n2 : n1);
4486 if( c ) return c;
4487 return n1 - n2;
4490 /* The following two functions are used only within testcase() to prove
4491 ** test coverage. These functions do no exist for production builds.
4492 ** We must use separate SQLITE_NOINLINE functions here, since otherwise
4493 ** optimizer code movement causes gcov to become very confused.
4495 #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG)
4496 static int SQLITE_NOINLINE doubleLt(double a, double b){ return a<b; }
4497 static int SQLITE_NOINLINE doubleEq(double a, double b){ return a==b; }
4498 #endif
4501 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4502 ** number. Return negative, zero, or positive if the first (i64) is less than,
4503 ** equal to, or greater than the second (double).
4505 int sqlite3IntFloatCompare(i64 i, double r){
4506 if( sqlite3IsNaN(r) ){
4507 /* SQLite considers NaN to be a NULL. And all integer values are greater
4508 ** than NULL */
4509 return 1;
4511 if( sqlite3Config.bUseLongDouble ){
4512 LONGDOUBLE_TYPE x = (LONGDOUBLE_TYPE)i;
4513 testcase( x<r );
4514 testcase( x>r );
4515 testcase( x==r );
4516 return (x<r) ? -1 : (x>r);
4517 }else{
4518 i64 y;
4519 double s;
4520 if( r<-9223372036854775808.0 ) return +1;
4521 if( r>=9223372036854775808.0 ) return -1;
4522 y = (i64)r;
4523 if( i<y ) return -1;
4524 if( i>y ) return +1;
4525 s = (double)i;
4526 testcase( doubleLt(s,r) );
4527 testcase( doubleLt(r,s) );
4528 testcase( doubleEq(r,s) );
4529 return (s<r) ? -1 : (s>r);
4534 ** Compare the values contained by the two memory cells, returning
4535 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4536 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4537 ** and reals) sorted numerically, followed by text ordered by the collating
4538 ** sequence pColl and finally blob's ordered by memcmp().
4540 ** Two NULL values are considered equal by this function.
4542 int sqlite3MemCompare(const Mem *pMem1, const Mem *pMem2, const CollSeq *pColl){
4543 int f1, f2;
4544 int combined_flags;
4546 f1 = pMem1->flags;
4547 f2 = pMem2->flags;
4548 combined_flags = f1|f2;
4549 assert( !sqlite3VdbeMemIsRowSet(pMem1) && !sqlite3VdbeMemIsRowSet(pMem2) );
4551 /* If one value is NULL, it is less than the other. If both values
4552 ** are NULL, return 0.
4554 if( combined_flags&MEM_Null ){
4555 return (f2&MEM_Null) - (f1&MEM_Null);
4558 /* At least one of the two values is a number
4560 if( combined_flags&(MEM_Int|MEM_Real|MEM_IntReal) ){
4561 testcase( combined_flags & MEM_Int );
4562 testcase( combined_flags & MEM_Real );
4563 testcase( combined_flags & MEM_IntReal );
4564 if( (f1 & f2 & (MEM_Int|MEM_IntReal))!=0 ){
4565 testcase( f1 & f2 & MEM_Int );
4566 testcase( f1 & f2 & MEM_IntReal );
4567 if( pMem1->u.i < pMem2->u.i ) return -1;
4568 if( pMem1->u.i > pMem2->u.i ) return +1;
4569 return 0;
4571 if( (f1 & f2 & MEM_Real)!=0 ){
4572 if( pMem1->u.r < pMem2->u.r ) return -1;
4573 if( pMem1->u.r > pMem2->u.r ) return +1;
4574 return 0;
4576 if( (f1&(MEM_Int|MEM_IntReal))!=0 ){
4577 testcase( f1 & MEM_Int );
4578 testcase( f1 & MEM_IntReal );
4579 if( (f2&MEM_Real)!=0 ){
4580 return sqlite3IntFloatCompare(pMem1->u.i, pMem2->u.r);
4581 }else if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4582 if( pMem1->u.i < pMem2->u.i ) return -1;
4583 if( pMem1->u.i > pMem2->u.i ) return +1;
4584 return 0;
4585 }else{
4586 return -1;
4589 if( (f1&MEM_Real)!=0 ){
4590 if( (f2&(MEM_Int|MEM_IntReal))!=0 ){
4591 testcase( f2 & MEM_Int );
4592 testcase( f2 & MEM_IntReal );
4593 return -sqlite3IntFloatCompare(pMem2->u.i, pMem1->u.r);
4594 }else{
4595 return -1;
4598 return +1;
4601 /* If one value is a string and the other is a blob, the string is less.
4602 ** If both are strings, compare using the collating functions.
4604 if( combined_flags&MEM_Str ){
4605 if( (f1 & MEM_Str)==0 ){
4606 return 1;
4608 if( (f2 & MEM_Str)==0 ){
4609 return -1;
4612 assert( pMem1->enc==pMem2->enc || pMem1->db->mallocFailed );
4613 assert( pMem1->enc==SQLITE_UTF8 ||
4614 pMem1->enc==SQLITE_UTF16LE || pMem1->enc==SQLITE_UTF16BE );
4616 /* The collation sequence must be defined at this point, even if
4617 ** the user deletes the collation sequence after the vdbe program is
4618 ** compiled (this was not always the case).
4620 assert( !pColl || pColl->xCmp );
4622 if( pColl ){
4623 return vdbeCompareMemString(pMem1, pMem2, pColl, 0);
4625 /* If a NULL pointer was passed as the collate function, fall through
4626 ** to the blob case and use memcmp(). */
4629 /* Both values must be blobs. Compare using memcmp(). */
4630 return sqlite3BlobCompare(pMem1, pMem2);
4635 ** The first argument passed to this function is a serial-type that
4636 ** corresponds to an integer - all values between 1 and 9 inclusive
4637 ** except 7. The second points to a buffer containing an integer value
4638 ** serialized according to serial_type. This function deserializes
4639 ** and returns the value.
4641 static i64 vdbeRecordDecodeInt(u32 serial_type, const u8 *aKey){
4642 u32 y;
4643 assert( CORRUPT_DB || (serial_type>=1 && serial_type<=9 && serial_type!=7) );
4644 switch( serial_type ){
4645 case 0:
4646 case 1:
4647 testcase( aKey[0]&0x80 );
4648 return ONE_BYTE_INT(aKey);
4649 case 2:
4650 testcase( aKey[0]&0x80 );
4651 return TWO_BYTE_INT(aKey);
4652 case 3:
4653 testcase( aKey[0]&0x80 );
4654 return THREE_BYTE_INT(aKey);
4655 case 4: {
4656 testcase( aKey[0]&0x80 );
4657 y = FOUR_BYTE_UINT(aKey);
4658 return (i64)*(int*)&y;
4660 case 5: {
4661 testcase( aKey[0]&0x80 );
4662 return FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4664 case 6: {
4665 u64 x = FOUR_BYTE_UINT(aKey);
4666 testcase( aKey[0]&0x80 );
4667 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4668 return (i64)*(i64*)&x;
4672 return (serial_type - 8);
4676 ** This function compares the two table rows or index records
4677 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
4678 ** or positive integer if key1 is less than, equal to or
4679 ** greater than key2. The {nKey1, pKey1} key must be a blob
4680 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
4681 ** key must be a parsed key such as obtained from
4682 ** sqlite3VdbeParseRecord.
4684 ** If argument bSkip is non-zero, it is assumed that the caller has already
4685 ** determined that the first fields of the keys are equal.
4687 ** Key1 and Key2 do not have to contain the same number of fields. If all
4688 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4689 ** returned.
4691 ** If database corruption is discovered, set pPKey2->errCode to
4692 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4693 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4694 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4696 int sqlite3VdbeRecordCompareWithSkip(
4697 int nKey1, const void *pKey1, /* Left key */
4698 UnpackedRecord *pPKey2, /* Right key */
4699 int bSkip /* If true, skip the first field */
4701 u32 d1; /* Offset into aKey[] of next data element */
4702 int i; /* Index of next field to compare */
4703 u32 szHdr1; /* Size of record header in bytes */
4704 u32 idx1; /* Offset of first type in header */
4705 int rc = 0; /* Return value */
4706 Mem *pRhs = pPKey2->aMem; /* Next field of pPKey2 to compare */
4707 KeyInfo *pKeyInfo;
4708 const unsigned char *aKey1 = (const unsigned char *)pKey1;
4709 Mem mem1;
4711 /* If bSkip is true, then the caller has already determined that the first
4712 ** two elements in the keys are equal. Fix the various stack variables so
4713 ** that this routine begins comparing at the second field. */
4714 if( bSkip ){
4715 u32 s1 = aKey1[1];
4716 if( s1<0x80 ){
4717 idx1 = 2;
4718 }else{
4719 idx1 = 1 + sqlite3GetVarint32(&aKey1[1], &s1);
4721 szHdr1 = aKey1[0];
4722 d1 = szHdr1 + sqlite3VdbeSerialTypeLen(s1);
4723 i = 1;
4724 pRhs++;
4725 }else{
4726 if( (szHdr1 = aKey1[0])<0x80 ){
4727 idx1 = 1;
4728 }else{
4729 idx1 = sqlite3GetVarint32(aKey1, &szHdr1);
4731 d1 = szHdr1;
4732 i = 0;
4734 if( d1>(unsigned)nKey1 ){
4735 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4736 return 0; /* Corruption */
4739 VVA_ONLY( mem1.szMalloc = 0; ) /* Only needed by assert() statements */
4740 assert( pPKey2->pKeyInfo->nAllField>=pPKey2->nField
4741 || CORRUPT_DB );
4742 assert( pPKey2->pKeyInfo->aSortFlags!=0 );
4743 assert( pPKey2->pKeyInfo->nKeyField>0 );
4744 assert( idx1<=szHdr1 || CORRUPT_DB );
4745 while( 1 /*exit-by-break*/ ){
4746 u32 serial_type;
4748 /* RHS is an integer */
4749 if( pRhs->flags & (MEM_Int|MEM_IntReal) ){
4750 testcase( pRhs->flags & MEM_Int );
4751 testcase( pRhs->flags & MEM_IntReal );
4752 serial_type = aKey1[idx1];
4753 testcase( serial_type==12 );
4754 if( serial_type>=10 ){
4755 rc = serial_type==10 ? -1 : +1;
4756 }else if( serial_type==0 ){
4757 rc = -1;
4758 }else if( serial_type==7 ){
4759 serialGet7(&aKey1[d1], &mem1);
4760 rc = -sqlite3IntFloatCompare(pRhs->u.i, mem1.u.r);
4761 }else{
4762 i64 lhs = vdbeRecordDecodeInt(serial_type, &aKey1[d1]);
4763 i64 rhs = pRhs->u.i;
4764 if( lhs<rhs ){
4765 rc = -1;
4766 }else if( lhs>rhs ){
4767 rc = +1;
4772 /* RHS is real */
4773 else if( pRhs->flags & MEM_Real ){
4774 serial_type = aKey1[idx1];
4775 if( serial_type>=10 ){
4776 /* Serial types 12 or greater are strings and blobs (greater than
4777 ** numbers). Types 10 and 11 are currently "reserved for future
4778 ** use", so it doesn't really matter what the results of comparing
4779 ** them to numeric values are. */
4780 rc = serial_type==10 ? -1 : +1;
4781 }else if( serial_type==0 ){
4782 rc = -1;
4783 }else{
4784 if( serial_type==7 ){
4785 if( serialGet7(&aKey1[d1], &mem1) ){
4786 rc = -1; /* mem1 is a NaN */
4787 }else if( mem1.u.r<pRhs->u.r ){
4788 rc = -1;
4789 }else if( mem1.u.r>pRhs->u.r ){
4790 rc = +1;
4791 }else{
4792 assert( rc==0 );
4794 }else{
4795 sqlite3VdbeSerialGet(&aKey1[d1], serial_type, &mem1);
4796 rc = sqlite3IntFloatCompare(mem1.u.i, pRhs->u.r);
4801 /* RHS is a string */
4802 else if( pRhs->flags & MEM_Str ){
4803 getVarint32NR(&aKey1[idx1], serial_type);
4804 testcase( serial_type==12 );
4805 if( serial_type<12 ){
4806 rc = -1;
4807 }else if( !(serial_type & 0x01) ){
4808 rc = +1;
4809 }else{
4810 mem1.n = (serial_type - 12) / 2;
4811 testcase( (d1+mem1.n)==(unsigned)nKey1 );
4812 testcase( (d1+mem1.n+1)==(unsigned)nKey1 );
4813 if( (d1+mem1.n) > (unsigned)nKey1
4814 || (pKeyInfo = pPKey2->pKeyInfo)->nAllField<=i
4816 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4817 return 0; /* Corruption */
4818 }else if( pKeyInfo->aColl[i] ){
4819 mem1.enc = pKeyInfo->enc;
4820 mem1.db = pKeyInfo->db;
4821 mem1.flags = MEM_Str;
4822 mem1.z = (char*)&aKey1[d1];
4823 rc = vdbeCompareMemString(
4824 &mem1, pRhs, pKeyInfo->aColl[i], &pPKey2->errCode
4826 }else{
4827 int nCmp = MIN(mem1.n, pRhs->n);
4828 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4829 if( rc==0 ) rc = mem1.n - pRhs->n;
4834 /* RHS is a blob */
4835 else if( pRhs->flags & MEM_Blob ){
4836 assert( (pRhs->flags & MEM_Zero)==0 || pRhs->n==0 );
4837 getVarint32NR(&aKey1[idx1], serial_type);
4838 testcase( serial_type==12 );
4839 if( serial_type<12 || (serial_type & 0x01) ){
4840 rc = -1;
4841 }else{
4842 int nStr = (serial_type - 12) / 2;
4843 testcase( (d1+nStr)==(unsigned)nKey1 );
4844 testcase( (d1+nStr+1)==(unsigned)nKey1 );
4845 if( (d1+nStr) > (unsigned)nKey1 ){
4846 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4847 return 0; /* Corruption */
4848 }else if( pRhs->flags & MEM_Zero ){
4849 if( !isAllZero((const char*)&aKey1[d1],nStr) ){
4850 rc = 1;
4851 }else{
4852 rc = nStr - pRhs->u.nZero;
4854 }else{
4855 int nCmp = MIN(nStr, pRhs->n);
4856 rc = memcmp(&aKey1[d1], pRhs->z, nCmp);
4857 if( rc==0 ) rc = nStr - pRhs->n;
4862 /* RHS is null */
4863 else{
4864 serial_type = aKey1[idx1];
4865 if( serial_type==0
4866 || serial_type==10
4867 || (serial_type==7 && serialGet7(&aKey1[d1], &mem1)!=0)
4869 assert( rc==0 );
4870 }else{
4871 rc = 1;
4875 if( rc!=0 ){
4876 int sortFlags = pPKey2->pKeyInfo->aSortFlags[i];
4877 if( sortFlags ){
4878 if( (sortFlags & KEYINFO_ORDER_BIGNULL)==0
4879 || ((sortFlags & KEYINFO_ORDER_DESC)
4880 !=(serial_type==0 || (pRhs->flags&MEM_Null)))
4882 rc = -rc;
4885 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, rc) );
4886 assert( mem1.szMalloc==0 ); /* See comment below */
4887 return rc;
4890 i++;
4891 if( i==pPKey2->nField ) break;
4892 pRhs++;
4893 d1 += sqlite3VdbeSerialTypeLen(serial_type);
4894 if( d1>(unsigned)nKey1 ) break;
4895 idx1 += sqlite3VarintLen(serial_type);
4896 if( idx1>=(unsigned)szHdr1 ){
4897 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
4898 return 0; /* Corrupt index */
4902 /* No memory allocation is ever used on mem1. Prove this using
4903 ** the following assert(). If the assert() fails, it indicates a
4904 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
4905 assert( mem1.szMalloc==0 );
4907 /* rc==0 here means that one or both of the keys ran out of fields and
4908 ** all the fields up to that point were equal. Return the default_rc
4909 ** value. */
4910 assert( CORRUPT_DB
4911 || vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, pPKey2->default_rc)
4912 || pPKey2->pKeyInfo->db->mallocFailed
4914 pPKey2->eqSeen = 1;
4915 return pPKey2->default_rc;
4917 int sqlite3VdbeRecordCompare(
4918 int nKey1, const void *pKey1, /* Left key */
4919 UnpackedRecord *pPKey2 /* Right key */
4921 return sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 0);
4926 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4927 ** that (a) the first field of pPKey2 is an integer, and (b) the
4928 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4929 ** byte (i.e. is less than 128).
4931 ** To avoid concerns about buffer overreads, this routine is only used
4932 ** on schemas where the maximum valid header size is 63 bytes or less.
4934 static int vdbeRecordCompareInt(
4935 int nKey1, const void *pKey1, /* Left key */
4936 UnpackedRecord *pPKey2 /* Right key */
4938 const u8 *aKey = &((const u8*)pKey1)[*(const u8*)pKey1 & 0x3F];
4939 int serial_type = ((const u8*)pKey1)[1];
4940 int res;
4941 u32 y;
4942 u64 x;
4943 i64 v;
4944 i64 lhs;
4946 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
4947 assert( (*(u8*)pKey1)<=0x3F || CORRUPT_DB );
4948 switch( serial_type ){
4949 case 1: { /* 1-byte signed integer */
4950 lhs = ONE_BYTE_INT(aKey);
4951 testcase( lhs<0 );
4952 break;
4954 case 2: { /* 2-byte signed integer */
4955 lhs = TWO_BYTE_INT(aKey);
4956 testcase( lhs<0 );
4957 break;
4959 case 3: { /* 3-byte signed integer */
4960 lhs = THREE_BYTE_INT(aKey);
4961 testcase( lhs<0 );
4962 break;
4964 case 4: { /* 4-byte signed integer */
4965 y = FOUR_BYTE_UINT(aKey);
4966 lhs = (i64)*(int*)&y;
4967 testcase( lhs<0 );
4968 break;
4970 case 5: { /* 6-byte signed integer */
4971 lhs = FOUR_BYTE_UINT(aKey+2) + (((i64)1)<<32)*TWO_BYTE_INT(aKey);
4972 testcase( lhs<0 );
4973 break;
4975 case 6: { /* 8-byte signed integer */
4976 x = FOUR_BYTE_UINT(aKey);
4977 x = (x<<32) | FOUR_BYTE_UINT(aKey+4);
4978 lhs = *(i64*)&x;
4979 testcase( lhs<0 );
4980 break;
4982 case 8:
4983 lhs = 0;
4984 break;
4985 case 9:
4986 lhs = 1;
4987 break;
4989 /* This case could be removed without changing the results of running
4990 ** this code. Including it causes gcc to generate a faster switch
4991 ** statement (since the range of switch targets now starts at zero and
4992 ** is contiguous) but does not cause any duplicate code to be generated
4993 ** (as gcc is clever enough to combine the two like cases). Other
4994 ** compilers might be similar. */
4995 case 0: case 7:
4996 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
4998 default:
4999 return sqlite3VdbeRecordCompare(nKey1, pKey1, pPKey2);
5002 assert( pPKey2->u.i == pPKey2->aMem[0].u.i );
5003 v = pPKey2->u.i;
5004 if( v>lhs ){
5005 res = pPKey2->r1;
5006 }else if( v<lhs ){
5007 res = pPKey2->r2;
5008 }else if( pPKey2->nField>1 ){
5009 /* The first fields of the two keys are equal. Compare the trailing
5010 ** fields. */
5011 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
5012 }else{
5013 /* The first fields of the two keys are equal and there are no trailing
5014 ** fields. Return pPKey2->default_rc in this case. */
5015 res = pPKey2->default_rc;
5016 pPKey2->eqSeen = 1;
5019 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res) );
5020 return res;
5024 ** This function is an optimized version of sqlite3VdbeRecordCompare()
5025 ** that (a) the first field of pPKey2 is a string, that (b) the first field
5026 ** uses the collation sequence BINARY and (c) that the size-of-header varint
5027 ** at the start of (pKey1/nKey1) fits in a single byte.
5029 static int vdbeRecordCompareString(
5030 int nKey1, const void *pKey1, /* Left key */
5031 UnpackedRecord *pPKey2 /* Right key */
5033 const u8 *aKey1 = (const u8*)pKey1;
5034 int serial_type;
5035 int res;
5037 assert( pPKey2->aMem[0].flags & MEM_Str );
5038 assert( pPKey2->aMem[0].n == pPKey2->n );
5039 assert( pPKey2->aMem[0].z == pPKey2->u.z );
5040 vdbeAssertFieldCountWithinLimits(nKey1, pKey1, pPKey2->pKeyInfo);
5041 serial_type = (signed char)(aKey1[1]);
5043 vrcs_restart:
5044 if( serial_type<12 ){
5045 if( serial_type<0 ){
5046 sqlite3GetVarint32(&aKey1[1], (u32*)&serial_type);
5047 if( serial_type>=12 ) goto vrcs_restart;
5048 assert( CORRUPT_DB );
5050 res = pPKey2->r1; /* (pKey1/nKey1) is a number or a null */
5051 }else if( !(serial_type & 0x01) ){
5052 res = pPKey2->r2; /* (pKey1/nKey1) is a blob */
5053 }else{
5054 int nCmp;
5055 int nStr;
5056 int szHdr = aKey1[0];
5058 nStr = (serial_type-12) / 2;
5059 if( (szHdr + nStr) > nKey1 ){
5060 pPKey2->errCode = (u8)SQLITE_CORRUPT_BKPT;
5061 return 0; /* Corruption */
5063 nCmp = MIN( pPKey2->n, nStr );
5064 res = memcmp(&aKey1[szHdr], pPKey2->u.z, nCmp);
5066 if( res>0 ){
5067 res = pPKey2->r2;
5068 }else if( res<0 ){
5069 res = pPKey2->r1;
5070 }else{
5071 res = nStr - pPKey2->n;
5072 if( res==0 ){
5073 if( pPKey2->nField>1 ){
5074 res = sqlite3VdbeRecordCompareWithSkip(nKey1, pKey1, pPKey2, 1);
5075 }else{
5076 res = pPKey2->default_rc;
5077 pPKey2->eqSeen = 1;
5079 }else if( res>0 ){
5080 res = pPKey2->r2;
5081 }else{
5082 res = pPKey2->r1;
5087 assert( vdbeRecordCompareDebug(nKey1, pKey1, pPKey2, res)
5088 || CORRUPT_DB
5089 || pPKey2->pKeyInfo->db->mallocFailed
5091 return res;
5095 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
5096 ** suitable for comparing serialized records to the unpacked record passed
5097 ** as the only argument.
5099 RecordCompare sqlite3VdbeFindCompare(UnpackedRecord *p){
5100 /* varintRecordCompareInt() and varintRecordCompareString() both assume
5101 ** that the size-of-header varint that occurs at the start of each record
5102 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
5103 ** also assumes that it is safe to overread a buffer by at least the
5104 ** maximum possible legal header size plus 8 bytes. Because there is
5105 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
5106 ** buffer passed to varintRecordCompareInt() this makes it convenient to
5107 ** limit the size of the header to 64 bytes in cases where the first field
5108 ** is an integer.
5110 ** The easiest way to enforce this limit is to consider only records with
5111 ** 13 fields or less. If the first field is an integer, the maximum legal
5112 ** header size is (12*5 + 1 + 1) bytes. */
5113 if( p->pKeyInfo->nAllField<=13 ){
5114 int flags = p->aMem[0].flags;
5115 if( p->pKeyInfo->aSortFlags[0] ){
5116 if( p->pKeyInfo->aSortFlags[0] & KEYINFO_ORDER_BIGNULL ){
5117 return sqlite3VdbeRecordCompare;
5119 p->r1 = 1;
5120 p->r2 = -1;
5121 }else{
5122 p->r1 = -1;
5123 p->r2 = 1;
5125 if( (flags & MEM_Int) ){
5126 p->u.i = p->aMem[0].u.i;
5127 return vdbeRecordCompareInt;
5129 testcase( flags & MEM_Real );
5130 testcase( flags & MEM_Null );
5131 testcase( flags & MEM_Blob );
5132 if( (flags & (MEM_Real|MEM_IntReal|MEM_Null|MEM_Blob))==0
5133 && p->pKeyInfo->aColl[0]==0
5135 assert( flags & MEM_Str );
5136 p->u.z = p->aMem[0].z;
5137 p->n = p->aMem[0].n;
5138 return vdbeRecordCompareString;
5142 return sqlite3VdbeRecordCompare;
5146 ** pCur points at an index entry created using the OP_MakeRecord opcode.
5147 ** Read the rowid (the last field in the record) and store it in *rowid.
5148 ** Return SQLITE_OK if everything works, or an error code otherwise.
5150 ** pCur might be pointing to text obtained from a corrupt database file.
5151 ** So the content cannot be trusted. Do appropriate checks on the content.
5153 int sqlite3VdbeIdxRowid(sqlite3 *db, BtCursor *pCur, i64 *rowid){
5154 i64 nCellKey = 0;
5155 int rc;
5156 u32 szHdr; /* Size of the header */
5157 u32 typeRowid; /* Serial type of the rowid */
5158 u32 lenRowid; /* Size of the rowid */
5159 Mem m, v;
5161 /* Get the size of the index entry. Only indices entries of less
5162 ** than 2GiB are support - anything large must be database corruption.
5163 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
5164 ** this code can safely assume that nCellKey is 32-bits
5166 assert( sqlite3BtreeCursorIsValid(pCur) );
5167 nCellKey = sqlite3BtreePayloadSize(pCur);
5168 assert( (nCellKey & SQLITE_MAX_U32)==(u64)nCellKey );
5170 /* Read in the complete content of the index entry */
5171 sqlite3VdbeMemInit(&m, db, 0);
5172 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
5173 if( rc ){
5174 return rc;
5177 /* The index entry must begin with a header size */
5178 getVarint32NR((u8*)m.z, szHdr);
5179 testcase( szHdr==3 );
5180 testcase( szHdr==(u32)m.n );
5181 testcase( szHdr>0x7fffffff );
5182 assert( m.n>=0 );
5183 if( unlikely(szHdr<3 || szHdr>(unsigned)m.n) ){
5184 goto idx_rowid_corruption;
5187 /* The last field of the index should be an integer - the ROWID.
5188 ** Verify that the last entry really is an integer. */
5189 getVarint32NR((u8*)&m.z[szHdr-1], typeRowid);
5190 testcase( typeRowid==1 );
5191 testcase( typeRowid==2 );
5192 testcase( typeRowid==3 );
5193 testcase( typeRowid==4 );
5194 testcase( typeRowid==5 );
5195 testcase( typeRowid==6 );
5196 testcase( typeRowid==8 );
5197 testcase( typeRowid==9 );
5198 if( unlikely(typeRowid<1 || typeRowid>9 || typeRowid==7) ){
5199 goto idx_rowid_corruption;
5201 lenRowid = sqlite3SmallTypeSizes[typeRowid];
5202 testcase( (u32)m.n==szHdr+lenRowid );
5203 if( unlikely((u32)m.n<szHdr+lenRowid) ){
5204 goto idx_rowid_corruption;
5207 /* Fetch the integer off the end of the index record */
5208 sqlite3VdbeSerialGet((u8*)&m.z[m.n-lenRowid], typeRowid, &v);
5209 *rowid = v.u.i;
5210 sqlite3VdbeMemReleaseMalloc(&m);
5211 return SQLITE_OK;
5213 /* Jump here if database corruption is detected after m has been
5214 ** allocated. Free the m object and return SQLITE_CORRUPT. */
5215 idx_rowid_corruption:
5216 testcase( m.szMalloc!=0 );
5217 sqlite3VdbeMemReleaseMalloc(&m);
5218 return SQLITE_CORRUPT_BKPT;
5222 ** Compare the key of the index entry that cursor pC is pointing to against
5223 ** the key string in pUnpacked. Write into *pRes a number
5224 ** that is negative, zero, or positive if pC is less than, equal to,
5225 ** or greater than pUnpacked. Return SQLITE_OK on success.
5227 ** pUnpacked is either created without a rowid or is truncated so that it
5228 ** omits the rowid at the end. The rowid at the end of the index entry
5229 ** is ignored as well. Hence, this routine only compares the prefixes
5230 ** of the keys prior to the final rowid, not the entire key.
5232 int sqlite3VdbeIdxKeyCompare(
5233 sqlite3 *db, /* Database connection */
5234 VdbeCursor *pC, /* The cursor to compare against */
5235 UnpackedRecord *pUnpacked, /* Unpacked version of key */
5236 int *res /* Write the comparison result here */
5238 i64 nCellKey = 0;
5239 int rc;
5240 BtCursor *pCur;
5241 Mem m;
5243 assert( pC->eCurType==CURTYPE_BTREE );
5244 pCur = pC->uc.pCursor;
5245 assert( sqlite3BtreeCursorIsValid(pCur) );
5246 nCellKey = sqlite3BtreePayloadSize(pCur);
5247 /* nCellKey will always be between 0 and 0xffffffff because of the way
5248 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
5249 if( nCellKey<=0 || nCellKey>0x7fffffff ){
5250 *res = 0;
5251 return SQLITE_CORRUPT_BKPT;
5253 sqlite3VdbeMemInit(&m, db, 0);
5254 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
5255 if( rc ){
5256 return rc;
5258 *res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, pUnpacked, 0);
5259 sqlite3VdbeMemReleaseMalloc(&m);
5260 return SQLITE_OK;
5264 ** This routine sets the value to be returned by subsequent calls to
5265 ** sqlite3_changes() on the database handle 'db'.
5267 void sqlite3VdbeSetChanges(sqlite3 *db, i64 nChange){
5268 assert( sqlite3_mutex_held(db->mutex) );
5269 db->nChange = nChange;
5270 db->nTotalChange += nChange;
5274 ** Set a flag in the vdbe to update the change counter when it is finalised
5275 ** or reset.
5277 void sqlite3VdbeCountChanges(Vdbe *v){
5278 v->changeCntOn = 1;
5282 ** Mark every prepared statement associated with a database connection
5283 ** as expired.
5285 ** An expired statement means that recompilation of the statement is
5286 ** recommend. Statements expire when things happen that make their
5287 ** programs obsolete. Removing user-defined functions or collating
5288 ** sequences, or changing an authorization function are the types of
5289 ** things that make prepared statements obsolete.
5291 ** If iCode is 1, then expiration is advisory. The statement should
5292 ** be reprepared before being restarted, but if it is already running
5293 ** it is allowed to run to completion.
5295 ** Internally, this function just sets the Vdbe.expired flag on all
5296 ** prepared statements. The flag is set to 1 for an immediate expiration
5297 ** and set to 2 for an advisory expiration.
5299 void sqlite3ExpirePreparedStatements(sqlite3 *db, int iCode){
5300 Vdbe *p;
5301 for(p = db->pVdbe; p; p=p->pVNext){
5302 p->expired = iCode+1;
5307 ** Return the database associated with the Vdbe.
5309 sqlite3 *sqlite3VdbeDb(Vdbe *v){
5310 return v->db;
5314 ** Return the SQLITE_PREPARE flags for a Vdbe.
5316 u8 sqlite3VdbePrepareFlags(Vdbe *v){
5317 return v->prepFlags;
5321 ** Return a pointer to an sqlite3_value structure containing the value bound
5322 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
5323 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
5324 ** constants) to the value before returning it.
5326 ** The returned value must be freed by the caller using sqlite3ValueFree().
5328 sqlite3_value *sqlite3VdbeGetBoundValue(Vdbe *v, int iVar, u8 aff){
5329 assert( iVar>0 );
5330 if( v ){
5331 Mem *pMem = &v->aVar[iVar-1];
5332 assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5333 if( 0==(pMem->flags & MEM_Null) ){
5334 sqlite3_value *pRet = sqlite3ValueNew(v->db);
5335 if( pRet ){
5336 sqlite3VdbeMemCopy((Mem *)pRet, pMem);
5337 sqlite3ValueApplyAffinity(pRet, aff, SQLITE_UTF8);
5339 return pRet;
5342 return 0;
5346 ** Configure SQL variable iVar so that binding a new value to it signals
5347 ** to sqlite3_reoptimize() that re-preparing the statement may result
5348 ** in a better query plan.
5350 void sqlite3VdbeSetVarmask(Vdbe *v, int iVar){
5351 assert( iVar>0 );
5352 assert( (v->db->flags & SQLITE_EnableQPSG)==0 );
5353 if( iVar>=32 ){
5354 v->expmask |= 0x80000000;
5355 }else{
5356 v->expmask |= ((u32)1 << (iVar-1));
5361 ** Cause a function to throw an error if it was call from OP_PureFunc
5362 ** rather than OP_Function.
5364 ** OP_PureFunc means that the function must be deterministic, and should
5365 ** throw an error if it is given inputs that would make it non-deterministic.
5366 ** This routine is invoked by date/time functions that use non-deterministic
5367 ** features such as 'now'.
5369 int sqlite3NotPureFunc(sqlite3_context *pCtx){
5370 const VdbeOp *pOp;
5371 #ifdef SQLITE_ENABLE_STAT4
5372 if( pCtx->pVdbe==0 ) return 1;
5373 #endif
5374 pOp = pCtx->pVdbe->aOp + pCtx->iOp;
5375 if( pOp->opcode==OP_PureFunc ){
5376 const char *zContext;
5377 char *zMsg;
5378 if( pOp->p5 & NC_IsCheck ){
5379 zContext = "a CHECK constraint";
5380 }else if( pOp->p5 & NC_GenCol ){
5381 zContext = "a generated column";
5382 }else{
5383 zContext = "an index";
5385 zMsg = sqlite3_mprintf("non-deterministic use of %s() in %s",
5386 pCtx->pFunc->zName, zContext);
5387 sqlite3_result_error(pCtx, zMsg, -1);
5388 sqlite3_free(zMsg);
5389 return 0;
5391 return 1;
5394 #if defined(SQLITE_ENABLE_CURSOR_HINTS) && defined(SQLITE_DEBUG)
5396 ** This Walker callback is used to help verify that calls to
5397 ** sqlite3BtreeCursorHint() with opcode BTREE_HINT_RANGE have
5398 ** byte-code register values correctly initialized.
5400 int sqlite3CursorRangeHintExprCheck(Walker *pWalker, Expr *pExpr){
5401 if( pExpr->op==TK_REGISTER ){
5402 assert( (pWalker->u.aMem[pExpr->iTable].flags & MEM_Undefined)==0 );
5404 return WRC_Continue;
5406 #endif /* SQLITE_ENABLE_CURSOR_HINTS && SQLITE_DEBUG */
5408 #ifndef SQLITE_OMIT_VIRTUALTABLE
5410 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5411 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5412 ** in memory obtained from sqlite3DbMalloc).
5414 void sqlite3VtabImportErrmsg(Vdbe *p, sqlite3_vtab *pVtab){
5415 if( pVtab->zErrMsg ){
5416 sqlite3 *db = p->db;
5417 sqlite3DbFree(db, p->zErrMsg);
5418 p->zErrMsg = sqlite3DbStrDup(db, pVtab->zErrMsg);
5419 sqlite3_free(pVtab->zErrMsg);
5420 pVtab->zErrMsg = 0;
5423 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5425 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5428 ** If the second argument is not NULL, release any allocations associated
5429 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5430 ** structure itself, using sqlite3DbFree().
5432 ** This function is used to free UnpackedRecord structures allocated by
5433 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5435 static void vdbeFreeUnpacked(sqlite3 *db, int nField, UnpackedRecord *p){
5436 assert( db!=0 );
5437 if( p ){
5438 int i;
5439 for(i=0; i<nField; i++){
5440 Mem *pMem = &p->aMem[i];
5441 if( pMem->zMalloc ) sqlite3VdbeMemReleaseMalloc(pMem);
5443 sqlite3DbNNFreeNN(db, p);
5446 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5448 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5450 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5451 ** then cursor passed as the second argument should point to the row about
5452 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5453 ** the required value will be read from the row the cursor points to.
5455 void sqlite3VdbePreUpdateHook(
5456 Vdbe *v, /* Vdbe pre-update hook is invoked by */
5457 VdbeCursor *pCsr, /* Cursor to grab old.* values from */
5458 int op, /* SQLITE_INSERT, UPDATE or DELETE */
5459 const char *zDb, /* Database name */
5460 Table *pTab, /* Modified table */
5461 i64 iKey1, /* Initial key value */
5462 int iReg, /* Register for new.* record */
5463 int iBlobWrite
5465 sqlite3 *db = v->db;
5466 i64 iKey2;
5467 PreUpdate preupdate;
5468 const char *zTbl = pTab->zName;
5469 static const u8 fakeSortOrder = 0;
5470 #ifdef SQLITE_DEBUG
5471 int nRealCol;
5472 if( pTab->tabFlags & TF_WithoutRowid ){
5473 nRealCol = sqlite3PrimaryKeyIndex(pTab)->nColumn;
5474 }else if( pTab->tabFlags & TF_HasVirtual ){
5475 nRealCol = pTab->nNVCol;
5476 }else{
5477 nRealCol = pTab->nCol;
5479 #endif
5481 assert( db->pPreUpdate==0 );
5482 memset(&preupdate, 0, sizeof(PreUpdate));
5483 if( HasRowid(pTab)==0 ){
5484 iKey1 = iKey2 = 0;
5485 preupdate.pPk = sqlite3PrimaryKeyIndex(pTab);
5486 }else{
5487 if( op==SQLITE_UPDATE ){
5488 iKey2 = v->aMem[iReg].u.i;
5489 }else{
5490 iKey2 = iKey1;
5494 assert( pCsr!=0 );
5495 assert( pCsr->eCurType==CURTYPE_BTREE );
5496 assert( pCsr->nField==nRealCol
5497 || (pCsr->nField==nRealCol+1 && op==SQLITE_DELETE && iReg==-1)
5500 preupdate.v = v;
5501 preupdate.pCsr = pCsr;
5502 preupdate.op = op;
5503 preupdate.iNewReg = iReg;
5504 preupdate.keyinfo.db = db;
5505 preupdate.keyinfo.enc = ENC(db);
5506 preupdate.keyinfo.nKeyField = pTab->nCol;
5507 preupdate.keyinfo.aSortFlags = (u8*)&fakeSortOrder;
5508 preupdate.iKey1 = iKey1;
5509 preupdate.iKey2 = iKey2;
5510 preupdate.pTab = pTab;
5511 preupdate.iBlobWrite = iBlobWrite;
5513 db->pPreUpdate = &preupdate;
5514 db->xPreUpdateCallback(db->pPreUpdateArg, db, op, zDb, zTbl, iKey1, iKey2);
5515 db->pPreUpdate = 0;
5516 sqlite3DbFree(db, preupdate.aRecord);
5517 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pUnpacked);
5518 vdbeFreeUnpacked(db, preupdate.keyinfo.nKeyField+1, preupdate.pNewUnpacked);
5519 if( preupdate.aNew ){
5520 int i;
5521 for(i=0; i<pCsr->nField; i++){
5522 sqlite3VdbeMemRelease(&preupdate.aNew[i]);
5524 sqlite3DbNNFreeNN(db, preupdate.aNew);
5527 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */