4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file contains code used for creating, destroying, and populating
13 ** a VDBE (or an "sqlite3_stmt" as it is known to the outside world.)
15 #include "sqliteInt.h"
18 /* Forward references */
19 static void freeEphemeralFunction(sqlite3
*db
, FuncDef
*pDef
);
20 static void vdbeFreeOpArray(sqlite3
*, Op
*, int);
23 ** Create a new virtual database engine.
25 Vdbe
*sqlite3VdbeCreate(Parse
*pParse
){
26 sqlite3
*db
= pParse
->db
;
28 p
= sqlite3DbMallocRawNN(db
, sizeof(Vdbe
) );
30 memset(&p
->aOp
, 0, sizeof(Vdbe
)-offsetof(Vdbe
,aOp
));
33 db
->pVdbe
->ppVPrev
= &p
->pVNext
;
35 p
->pVNext
= db
->pVdbe
;
36 p
->ppVPrev
= &db
->pVdbe
;
38 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
41 assert( pParse
->aLabel
==0 );
42 assert( pParse
->nLabel
==0 );
43 assert( p
->nOpAlloc
==0 );
44 assert( pParse
->szOpAlloc
==0 );
45 sqlite3VdbeAddOp2(p
, OP_Init
, 0, 1);
50 ** Return the Parse object that owns a Vdbe object.
52 Parse
*sqlite3VdbeParser(Vdbe
*p
){
57 ** Change the error string stored in Vdbe.zErrMsg
59 void sqlite3VdbeError(Vdbe
*p
, const char *zFormat
, ...){
61 sqlite3DbFree(p
->db
, p
->zErrMsg
);
62 va_start(ap
, zFormat
);
63 p
->zErrMsg
= sqlite3VMPrintf(p
->db
, zFormat
, ap
);
68 ** Remember the SQL string for a prepared statement.
70 void sqlite3VdbeSetSql(Vdbe
*p
, const char *z
, int n
, u8 prepFlags
){
72 p
->prepFlags
= prepFlags
;
73 if( (prepFlags
& SQLITE_PREPARE_SAVESQL
)==0 ){
77 p
->zSql
= sqlite3DbStrNDup(p
->db
, z
, n
);
80 #ifdef SQLITE_ENABLE_NORMALIZE
82 ** Add a new element to the Vdbe->pDblStr list.
84 void sqlite3VdbeAddDblquoteStr(sqlite3
*db
, Vdbe
*p
, const char *z
){
86 int n
= sqlite3Strlen30(z
);
87 DblquoteStr
*pStr
= sqlite3DbMallocRawNN(db
,
88 sizeof(*pStr
)+n
+1-sizeof(pStr
->z
));
90 pStr
->pNextStr
= p
->pDblStr
;
92 memcpy(pStr
->z
, z
, n
+1);
98 #ifdef SQLITE_ENABLE_NORMALIZE
100 ** zId of length nId is a double-quoted identifier. Check to see if
101 ** that identifier is really used as a string literal.
103 int sqlite3VdbeUsesDoubleQuotedString(
104 Vdbe
*pVdbe
, /* The prepared statement */
105 const char *zId
/* The double-quoted identifier, already dequoted */
109 if( pVdbe
->pDblStr
==0 ) return 0;
110 for(pStr
=pVdbe
->pDblStr
; pStr
; pStr
=pStr
->pNextStr
){
111 if( strcmp(zId
, pStr
->z
)==0 ) return 1;
118 ** Swap byte-code between two VDBE structures.
120 ** This happens after pB was previously run and returned
121 ** SQLITE_SCHEMA. The statement was then reprepared in pA.
122 ** This routine transfers the new bytecode in pA over to pB
123 ** so that pB can be run again. The old pB byte code is
124 ** moved back to pA so that it will be cleaned up when pA is
127 void sqlite3VdbeSwap(Vdbe
*pA
, Vdbe
*pB
){
128 Vdbe tmp
, *pTmp
, **ppTmp
;
130 assert( pA
->db
==pB
->db
);
135 pA
->pVNext
= pB
->pVNext
;
138 pA
->ppVPrev
= pB
->ppVPrev
;
143 #ifdef SQLITE_ENABLE_NORMALIZE
145 pA
->zNormSql
= pB
->zNormSql
;
148 pB
->expmask
= pA
->expmask
;
149 pB
->prepFlags
= pA
->prepFlags
;
150 memcpy(pB
->aCounter
, pA
->aCounter
, sizeof(pB
->aCounter
));
151 pB
->aCounter
[SQLITE_STMTSTATUS_REPREPARE
]++;
155 ** Resize the Vdbe.aOp array so that it is at least nOp elements larger
156 ** than its current size. nOp is guaranteed to be less than or equal
157 ** to 1024/sizeof(Op).
159 ** If an out-of-memory error occurs while resizing the array, return
160 ** SQLITE_NOMEM. In this case Vdbe.aOp and Vdbe.nOpAlloc remain
161 ** unchanged (this is so that any opcodes already allocated can be
162 ** correctly deallocated along with the rest of the Vdbe).
164 static int growOpArray(Vdbe
*v
, int nOp
){
166 Parse
*p
= v
->pParse
;
168 /* The SQLITE_TEST_REALLOC_STRESS compile-time option is designed to force
169 ** more frequent reallocs and hence provide more opportunities for
170 ** simulated OOM faults. SQLITE_TEST_REALLOC_STRESS is generally used
171 ** during testing only. With SQLITE_TEST_REALLOC_STRESS grow the op array
172 ** by the minimum* amount required until the size reaches 512. Normal
173 ** operation (without SQLITE_TEST_REALLOC_STRESS) is to double the current
174 ** size of the op array or add 1KB of space, whichever is smaller. */
175 #ifdef SQLITE_TEST_REALLOC_STRESS
176 sqlite3_int64 nNew
= (v
->nOpAlloc
>=512 ? 2*(sqlite3_int64
)v
->nOpAlloc
177 : (sqlite3_int64
)v
->nOpAlloc
+nOp
);
179 sqlite3_int64 nNew
= (v
->nOpAlloc
? 2*(sqlite3_int64
)v
->nOpAlloc
180 : (sqlite3_int64
)(1024/sizeof(Op
)));
181 UNUSED_PARAMETER(nOp
);
184 /* Ensure that the size of a VDBE does not grow too large */
185 if( nNew
> p
->db
->aLimit
[SQLITE_LIMIT_VDBE_OP
] ){
186 sqlite3OomFault(p
->db
);
190 assert( nOp
<=(int)(1024/sizeof(Op
)) );
191 assert( nNew
>=(v
->nOpAlloc
+nOp
) );
192 pNew
= sqlite3DbRealloc(p
->db
, v
->aOp
, nNew
*sizeof(Op
));
194 p
->szOpAlloc
= sqlite3DbMallocSize(p
->db
, pNew
);
195 v
->nOpAlloc
= p
->szOpAlloc
/sizeof(Op
);
198 return (pNew
? SQLITE_OK
: SQLITE_NOMEM_BKPT
);
202 /* This routine is just a convenient place to set a breakpoint that will
203 ** fire after each opcode is inserted and displayed using
204 ** "PRAGMA vdbe_addoptrace=on". Parameters "pc" (program counter) and
205 ** pOp are available to make the breakpoint conditional.
207 ** Other useful labels for breakpoints include:
208 ** test_trace_breakpoint(pc,pOp)
209 ** sqlite3CorruptError(lineno)
210 ** sqlite3MisuseError(lineno)
211 ** sqlite3CantopenError(lineno)
213 static void test_addop_breakpoint(int pc
, Op
*pOp
){
218 if( n
==LARGEST_UINT64
) abort(); /* so that n is used, preventing a warning */
223 ** Slow paths for sqlite3VdbeAddOp3() and sqlite3VdbeAddOp4Int() for the
224 ** unusual case when we need to increase the size of the Vdbe.aOp[] array
225 ** before adding the new opcode.
227 static SQLITE_NOINLINE
int growOp3(Vdbe
*p
, int op
, int p1
, int p2
, int p3
){
228 assert( p
->nOpAlloc
<=p
->nOp
);
229 if( growOpArray(p
, 1) ) return 1;
230 assert( p
->nOpAlloc
>p
->nOp
);
231 return sqlite3VdbeAddOp3(p
, op
, p1
, p2
, p3
);
233 static SQLITE_NOINLINE
int addOp4IntSlow(
234 Vdbe
*p
, /* Add the opcode to this VM */
235 int op
, /* The new opcode */
236 int p1
, /* The P1 operand */
237 int p2
, /* The P2 operand */
238 int p3
, /* The P3 operand */
239 int p4
/* The P4 operand as an integer */
241 int addr
= sqlite3VdbeAddOp3(p
, op
, p1
, p2
, p3
);
242 if( p
->db
->mallocFailed
==0 ){
243 VdbeOp
*pOp
= &p
->aOp
[addr
];
244 pOp
->p4type
= P4_INT32
;
252 ** Add a new instruction to the list of instructions current in the
253 ** VDBE. Return the address of the new instruction.
257 ** p Pointer to the VDBE
259 ** op The opcode for this instruction
261 ** p1, p2, p3, p4 Operands
263 int sqlite3VdbeAddOp0(Vdbe
*p
, int op
){
264 return sqlite3VdbeAddOp3(p
, op
, 0, 0, 0);
266 int sqlite3VdbeAddOp1(Vdbe
*p
, int op
, int p1
){
267 return sqlite3VdbeAddOp3(p
, op
, p1
, 0, 0);
269 int sqlite3VdbeAddOp2(Vdbe
*p
, int op
, int p1
, int p2
){
270 return sqlite3VdbeAddOp3(p
, op
, p1
, p2
, 0);
272 int sqlite3VdbeAddOp3(Vdbe
*p
, int op
, int p1
, int p2
, int p3
){
277 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
278 assert( op
>=0 && op
<0xff );
279 if( p
->nOpAlloc
<=i
){
280 return growOp3(p
, op
, p1
, p2
, p3
);
286 pOp
->opcode
= (u8
)op
;
292 pOp
->p4type
= P4_NOTUSED
;
294 /* Replicate this logic in sqlite3VdbeAddOp4Int()
295 ** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv */
296 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
299 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
304 if( p
->db
->flags
& SQLITE_VdbeAddopTrace
){
305 sqlite3VdbePrintOp(0, i
, &p
->aOp
[i
]);
306 test_addop_breakpoint(i
, &p
->aOp
[i
]);
309 #ifdef SQLITE_VDBE_COVERAGE
312 /* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
313 ** Replicate in sqlite3VdbeAddOp4Int() */
317 int sqlite3VdbeAddOp4Int(
318 Vdbe
*p
, /* Add the opcode to this VM */
319 int op
, /* The new opcode */
320 int p1
, /* The P1 operand */
321 int p2
, /* The P2 operand */
322 int p3
, /* The P3 operand */
323 int p4
/* The P4 operand as an integer */
329 if( p
->nOpAlloc
<=i
){
330 return addOp4IntSlow(p
, op
, p1
, p2
, p3
, p4
);
335 pOp
->opcode
= (u8
)op
;
341 pOp
->p4type
= P4_INT32
;
343 /* Replicate this logic in sqlite3VdbeAddOp3()
344 ** vvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvvv */
345 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
348 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
353 if( p
->db
->flags
& SQLITE_VdbeAddopTrace
){
354 sqlite3VdbePrintOp(0, i
, &p
->aOp
[i
]);
355 test_addop_breakpoint(i
, &p
->aOp
[i
]);
358 #ifdef SQLITE_VDBE_COVERAGE
361 /* ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
362 ** Replicate in sqlite3VdbeAddOp3() */
367 /* Generate code for an unconditional jump to instruction iDest
369 int sqlite3VdbeGoto(Vdbe
*p
, int iDest
){
370 return sqlite3VdbeAddOp3(p
, OP_Goto
, 0, iDest
, 0);
373 /* Generate code to cause the string zStr to be loaded into
376 int sqlite3VdbeLoadString(Vdbe
*p
, int iDest
, const char *zStr
){
377 return sqlite3VdbeAddOp4(p
, OP_String8
, 0, iDest
, 0, zStr
, 0);
381 ** Generate code that initializes multiple registers to string or integer
382 ** constants. The registers begin with iDest and increase consecutively.
383 ** One register is initialized for each characgter in zTypes[]. For each
384 ** "s" character in zTypes[], the register is a string if the argument is
385 ** not NULL, or OP_Null if the value is a null pointer. For each "i" character
386 ** in zTypes[], the register is initialized to an integer.
388 ** If the input string does not end with "X" then an OP_ResultRow instruction
389 ** is generated for the values inserted.
391 void sqlite3VdbeMultiLoad(Vdbe
*p
, int iDest
, const char *zTypes
, ...){
395 va_start(ap
, zTypes
);
396 for(i
=0; (c
= zTypes
[i
])!=0; i
++){
398 const char *z
= va_arg(ap
, const char*);
399 sqlite3VdbeAddOp4(p
, z
==0 ? OP_Null
: OP_String8
, 0, iDest
+i
, 0, z
, 0);
401 sqlite3VdbeAddOp2(p
, OP_Integer
, va_arg(ap
, int), iDest
+i
);
403 goto skip_op_resultrow
;
406 sqlite3VdbeAddOp2(p
, OP_ResultRow
, iDest
, i
);
412 ** Add an opcode that includes the p4 value as a pointer.
414 int sqlite3VdbeAddOp4(
415 Vdbe
*p
, /* Add the opcode to this VM */
416 int op
, /* The new opcode */
417 int p1
, /* The P1 operand */
418 int p2
, /* The P2 operand */
419 int p3
, /* The P3 operand */
420 const char *zP4
, /* The P4 operand */
421 int p4type
/* P4 operand type */
423 int addr
= sqlite3VdbeAddOp3(p
, op
, p1
, p2
, p3
);
424 sqlite3VdbeChangeP4(p
, addr
, zP4
, p4type
);
429 ** Add an OP_Function or OP_PureFunc opcode.
431 ** The eCallCtx argument is information (typically taken from Expr.op2)
432 ** that describes the calling context of the function. 0 means a general
433 ** function call. NC_IsCheck means called by a check constraint,
434 ** NC_IdxExpr means called as part of an index expression. NC_PartIdx
435 ** means in the WHERE clause of a partial index. NC_GenCol means called
436 ** while computing a generated column value. 0 is the usual case.
438 int sqlite3VdbeAddFunctionCall(
439 Parse
*pParse
, /* Parsing context */
440 int p1
, /* Constant argument mask */
441 int p2
, /* First argument register */
442 int p3
, /* Register into which results are written */
443 int nArg
, /* Number of argument */
444 const FuncDef
*pFunc
, /* The function to be invoked */
445 int eCallCtx
/* Calling context */
447 Vdbe
*v
= pParse
->pVdbe
;
450 sqlite3_context
*pCtx
;
452 nByte
= sizeof(*pCtx
) + (nArg
-1)*sizeof(sqlite3_value
*);
453 pCtx
= sqlite3DbMallocRawNN(pParse
->db
, nByte
);
455 assert( pParse
->db
->mallocFailed
);
456 freeEphemeralFunction(pParse
->db
, (FuncDef
*)pFunc
);
460 pCtx
->pFunc
= (FuncDef
*)pFunc
;
464 pCtx
->iOp
= sqlite3VdbeCurrentAddr(v
);
465 addr
= sqlite3VdbeAddOp4(v
, eCallCtx
? OP_PureFunc
: OP_Function
,
466 p1
, p2
, p3
, (char*)pCtx
, P4_FUNCCTX
);
467 sqlite3VdbeChangeP5(v
, eCallCtx
& NC_SelfRef
);
468 sqlite3MayAbort(pParse
);
473 ** Add an opcode that includes the p4 value with a P4_INT64 or
476 int sqlite3VdbeAddOp4Dup8(
477 Vdbe
*p
, /* Add the opcode to this VM */
478 int op
, /* The new opcode */
479 int p1
, /* The P1 operand */
480 int p2
, /* The P2 operand */
481 int p3
, /* The P3 operand */
482 const u8
*zP4
, /* The P4 operand */
483 int p4type
/* P4 operand type */
485 char *p4copy
= sqlite3DbMallocRawNN(sqlite3VdbeDb(p
), 8);
486 if( p4copy
) memcpy(p4copy
, zP4
, 8);
487 return sqlite3VdbeAddOp4(p
, op
, p1
, p2
, p3
, p4copy
, p4type
);
490 #ifndef SQLITE_OMIT_EXPLAIN
492 ** Return the address of the current EXPLAIN QUERY PLAN baseline.
495 int sqlite3VdbeExplainParent(Parse
*pParse
){
497 if( pParse
->addrExplain
==0 ) return 0;
498 pOp
= sqlite3VdbeGetOp(pParse
->pVdbe
, pParse
->addrExplain
);
503 ** Set a debugger breakpoint on the following routine in order to
504 ** monitor the EXPLAIN QUERY PLAN code generation.
506 #if defined(SQLITE_DEBUG)
507 void sqlite3ExplainBreakpoint(const char *z1
, const char *z2
){
514 ** Add a new OP_Explain opcode.
516 ** If the bPush flag is true, then make this opcode the parent for
517 ** subsequent Explains until sqlite3VdbeExplainPop() is called.
519 int sqlite3VdbeExplain(Parse
*pParse
, u8 bPush
, const char *zFmt
, ...){
521 #if !defined(SQLITE_DEBUG)
522 /* Always include the OP_Explain opcodes if SQLITE_DEBUG is defined.
523 ** But omit them (for performance) during production builds */
524 if( pParse
->explain
==2 || IS_STMT_SCANSTATUS(pParse
->db
) )
532 zMsg
= sqlite3VMPrintf(pParse
->db
, zFmt
, ap
);
536 addr
= sqlite3VdbeAddOp4(v
, OP_Explain
, iThis
, pParse
->addrExplain
, 0,
538 sqlite3ExplainBreakpoint(bPush
?"PUSH":"", sqlite3VdbeGetLastOp(v
)->p4
.z
);
540 pParse
->addrExplain
= iThis
;
542 sqlite3VdbeScanStatus(v
, iThis
, -1, -1, 0, 0);
548 ** Pop the EXPLAIN QUERY PLAN stack one level.
550 void sqlite3VdbeExplainPop(Parse
*pParse
){
551 sqlite3ExplainBreakpoint("POP", 0);
552 pParse
->addrExplain
= sqlite3VdbeExplainParent(pParse
);
554 #endif /* SQLITE_OMIT_EXPLAIN */
557 ** Add an OP_ParseSchema opcode. This routine is broken out from
558 ** sqlite3VdbeAddOp4() since it needs to also needs to mark all btrees
559 ** as having been used.
561 ** The zWhere string must have been obtained from sqlite3_malloc().
562 ** This routine will take ownership of the allocated memory.
564 void sqlite3VdbeAddParseSchemaOp(Vdbe
*p
, int iDb
, char *zWhere
, u16 p5
){
566 sqlite3VdbeAddOp4(p
, OP_ParseSchema
, iDb
, 0, 0, zWhere
, P4_DYNAMIC
);
567 sqlite3VdbeChangeP5(p
, p5
);
568 for(j
=0; j
<p
->db
->nDb
; j
++) sqlite3VdbeUsesBtree(p
, j
);
569 sqlite3MayAbort(p
->pParse
);
572 /* Insert the end of a co-routine
574 void sqlite3VdbeEndCoroutine(Vdbe
*v
, int regYield
){
575 sqlite3VdbeAddOp1(v
, OP_EndCoroutine
, regYield
);
577 /* Clear the temporary register cache, thereby ensuring that each
578 ** co-routine has its own independent set of registers, because co-routines
579 ** might expect their registers to be preserved across an OP_Yield, and
580 ** that could cause problems if two or more co-routines are using the same
581 ** temporary register.
583 v
->pParse
->nTempReg
= 0;
584 v
->pParse
->nRangeReg
= 0;
588 ** Create a new symbolic label for an instruction that has yet to be
589 ** coded. The symbolic label is really just a negative number. The
590 ** label can be used as the P2 value of an operation. Later, when
591 ** the label is resolved to a specific address, the VDBE will scan
592 ** through its operation list and change all values of P2 which match
593 ** the label into the resolved address.
595 ** The VDBE knows that a P2 value is a label because labels are
596 ** always negative and P2 values are suppose to be non-negative.
597 ** Hence, a negative P2 value is a label that has yet to be resolved.
598 ** (Later:) This is only true for opcodes that have the OPFLG_JUMP
601 ** Variable usage notes:
603 ** Parse.aLabel[x] Stores the address that the x-th label resolves
604 ** into. For testing (SQLITE_DEBUG), unresolved
605 ** labels stores -1, but that is not required.
606 ** Parse.nLabelAlloc Number of slots allocated to Parse.aLabel[]
607 ** Parse.nLabel The *negative* of the number of labels that have
608 ** been issued. The negative is stored because
609 ** that gives a performance improvement over storing
610 ** the equivalent positive value.
612 int sqlite3VdbeMakeLabel(Parse
*pParse
){
613 return --pParse
->nLabel
;
617 ** Resolve label "x" to be the address of the next instruction to
618 ** be inserted. The parameter "x" must have been obtained from
619 ** a prior call to sqlite3VdbeMakeLabel().
621 static SQLITE_NOINLINE
void resizeResolveLabel(Parse
*p
, Vdbe
*v
, int j
){
622 int nNewSize
= 10 - p
->nLabel
;
623 p
->aLabel
= sqlite3DbReallocOrFree(p
->db
, p
->aLabel
,
624 nNewSize
*sizeof(p
->aLabel
[0]));
630 for(i
=p
->nLabelAlloc
; i
<nNewSize
; i
++) p
->aLabel
[i
] = -1;
632 if( nNewSize
>=100 && (nNewSize
/100)>(p
->nLabelAlloc
/100) ){
633 sqlite3ProgressCheck(p
);
635 p
->nLabelAlloc
= nNewSize
;
636 p
->aLabel
[j
] = v
->nOp
;
639 void sqlite3VdbeResolveLabel(Vdbe
*v
, int x
){
640 Parse
*p
= v
->pParse
;
642 assert( v
->eVdbeState
==VDBE_INIT_STATE
);
643 assert( j
<-p
->nLabel
);
646 if( p
->db
->flags
& SQLITE_VdbeAddopTrace
){
647 printf("RESOLVE LABEL %d to %d\n", x
, v
->nOp
);
650 if( p
->nLabelAlloc
+ p
->nLabel
< 0 ){
651 resizeResolveLabel(p
,v
,j
);
653 assert( p
->aLabel
[j
]==(-1) ); /* Labels may only be resolved once */
654 p
->aLabel
[j
] = v
->nOp
;
659 ** Mark the VDBE as one that can only be run one time.
661 void sqlite3VdbeRunOnlyOnce(Vdbe
*p
){
662 sqlite3VdbeAddOp2(p
, OP_Expire
, 1, 1);
666 ** Mark the VDBE as one that can be run multiple times.
668 void sqlite3VdbeReusable(Vdbe
*p
){
670 for(i
=1; ALWAYS(i
<p
->nOp
); i
++){
671 if( ALWAYS(p
->aOp
[i
].opcode
==OP_Expire
) ){
672 p
->aOp
[1].opcode
= OP_Noop
;
678 #ifdef SQLITE_DEBUG /* sqlite3AssertMayAbort() logic */
681 ** The following type and function are used to iterate through all opcodes
682 ** in a Vdbe main program and each of the sub-programs (triggers) it may
683 ** invoke directly or indirectly. It should be used as follows:
688 ** memset(&sIter, 0, sizeof(sIter));
689 ** sIter.v = v; // v is of type Vdbe*
690 ** while( (pOp = opIterNext(&sIter)) ){
691 ** // Do something with pOp
693 ** sqlite3DbFree(v->db, sIter.apSub);
696 typedef struct VdbeOpIter VdbeOpIter
;
698 Vdbe
*v
; /* Vdbe to iterate through the opcodes of */
699 SubProgram
**apSub
; /* Array of subprograms */
700 int nSub
; /* Number of entries in apSub */
701 int iAddr
; /* Address of next instruction to return */
702 int iSub
; /* 0 = main program, 1 = first sub-program etc. */
704 static Op
*opIterNext(VdbeOpIter
*p
){
710 if( p
->iSub
<=p
->nSub
){
716 aOp
= p
->apSub
[p
->iSub
-1]->aOp
;
717 nOp
= p
->apSub
[p
->iSub
-1]->nOp
;
719 assert( p
->iAddr
<nOp
);
721 pRet
= &aOp
[p
->iAddr
];
728 if( pRet
->p4type
==P4_SUBPROGRAM
){
729 int nByte
= (p
->nSub
+1)*sizeof(SubProgram
*);
731 for(j
=0; j
<p
->nSub
; j
++){
732 if( p
->apSub
[j
]==pRet
->p4
.pProgram
) break;
735 p
->apSub
= sqlite3DbReallocOrFree(v
->db
, p
->apSub
, nByte
);
739 p
->apSub
[p
->nSub
++] = pRet
->p4
.pProgram
;
749 ** Check if the program stored in the VM associated with pParse may
750 ** throw an ABORT exception (causing the statement, but not entire transaction
751 ** to be rolled back). This condition is true if the main program or any
752 ** sub-programs contains any of the following:
754 ** * OP_Halt with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
755 ** * OP_HaltIfNull with P1=SQLITE_CONSTRAINT and P2=OE_Abort.
760 ** * OP_FkCounter with P2==0 (immediate foreign key constraint)
761 ** * OP_CreateBtree/BTREE_INTKEY and OP_InitCoroutine
762 ** (for CREATE TABLE AS SELECT ...)
764 ** Then check that the value of Parse.mayAbort is true if an
765 ** ABORT may be thrown, or false otherwise. Return true if it does
766 ** match, or false otherwise. This function is intended to be used as
767 ** part of an assert statement in the compiler. Similar to:
769 ** assert( sqlite3VdbeAssertMayAbort(pParse->pVdbe, pParse->mayAbort) );
771 int sqlite3VdbeAssertMayAbort(Vdbe
*v
, int mayAbort
){
773 int hasFkCounter
= 0;
774 int hasCreateTable
= 0;
775 int hasCreateIndex
= 0;
776 int hasInitCoroutine
= 0;
781 memset(&sIter
, 0, sizeof(sIter
));
784 while( (pOp
= opIterNext(&sIter
))!=0 ){
785 int opcode
= pOp
->opcode
;
786 if( opcode
==OP_Destroy
|| opcode
==OP_VUpdate
|| opcode
==OP_VRename
787 || opcode
==OP_VDestroy
788 || opcode
==OP_VCreate
789 || opcode
==OP_ParseSchema
790 || opcode
==OP_Function
|| opcode
==OP_PureFunc
791 || ((opcode
==OP_Halt
|| opcode
==OP_HaltIfNull
)
792 && ((pOp
->p1
)!=SQLITE_OK
&& pOp
->p2
==OE_Abort
))
797 if( opcode
==OP_CreateBtree
&& pOp
->p3
==BTREE_INTKEY
) hasCreateTable
= 1;
799 /* hasCreateIndex may also be set for some DELETE statements that use
800 ** OP_Clear. So this routine may end up returning true in the case
801 ** where a "DELETE FROM tbl" has a statement-journal but does not
802 ** require one. This is not so bad - it is an inefficiency, not a bug. */
803 if( opcode
==OP_CreateBtree
&& pOp
->p3
==BTREE_BLOBKEY
) hasCreateIndex
= 1;
804 if( opcode
==OP_Clear
) hasCreateIndex
= 1;
806 if( opcode
==OP_InitCoroutine
) hasInitCoroutine
= 1;
807 #ifndef SQLITE_OMIT_FOREIGN_KEY
808 if( opcode
==OP_FkCounter
&& pOp
->p1
==0 && pOp
->p2
==1 ){
813 sqlite3DbFree(v
->db
, sIter
.apSub
);
815 /* Return true if hasAbort==mayAbort. Or if a malloc failure occurred.
816 ** If malloc failed, then the while() loop above may not have iterated
817 ** through all opcodes and hasAbort may be set incorrectly. Return
818 ** true for this case to prevent the assert() in the callers frame
820 return ( v
->db
->mallocFailed
|| hasAbort
==mayAbort
|| hasFkCounter
821 || (hasCreateTable
&& hasInitCoroutine
) || hasCreateIndex
824 #endif /* SQLITE_DEBUG - the sqlite3AssertMayAbort() function */
828 ** Increment the nWrite counter in the VDBE if the cursor is not an
829 ** ephemeral cursor, or if the cursor argument is NULL.
831 void sqlite3VdbeIncrWriteCounter(Vdbe
*p
, VdbeCursor
*pC
){
833 || (pC
->eCurType
!=CURTYPE_SORTER
834 && pC
->eCurType
!=CURTYPE_PSEUDO
844 ** Assert if an Abort at this point in time might result in a corrupt
847 void sqlite3VdbeAssertAbortable(Vdbe
*p
){
848 assert( p
->nWrite
==0 || p
->usesStmtJournal
);
853 ** This routine is called after all opcodes have been inserted. It loops
854 ** through all the opcodes and fixes up some details.
856 ** (1) For each jump instruction with a negative P2 value (a label)
857 ** resolve the P2 value to an actual address.
859 ** (2) Compute the maximum number of arguments used by any SQL function
860 ** and store that value in *pMaxFuncArgs.
862 ** (3) Update the Vdbe.readOnly and Vdbe.bIsReader flags to accurately
863 ** indicate what the prepared statement actually does.
865 ** (4) (discontinued)
867 ** (5) Reclaim the memory allocated for storing labels.
869 ** This routine will only function correctly if the mkopcodeh.tcl generator
870 ** script numbers the opcodes correctly. Changes to this routine must be
871 ** coordinated with changes to mkopcodeh.tcl.
873 static void resolveP2Values(Vdbe
*p
, int *pMaxFuncArgs
){
874 int nMaxArgs
= *pMaxFuncArgs
;
876 Parse
*pParse
= p
->pParse
;
877 int *aLabel
= pParse
->aLabel
;
879 assert( pParse
->db
->mallocFailed
==0 ); /* tag-20230419-1 */
882 pOp
= &p
->aOp
[p
->nOp
-1];
883 assert( p
->aOp
[0].opcode
==OP_Init
);
884 while( 1 /* Loop terminates when it reaches the OP_Init opcode */ ){
885 /* Only JUMP opcodes and the short list of special opcodes in the switch
886 ** below need to be considered. The mkopcodeh.tcl generator script groups
887 ** all these opcodes together near the front of the opcode list. Skip
888 ** any opcode that does not need processing by virtual of the fact that
889 ** it is larger than SQLITE_MX_JUMP_OPCODE, as a performance optimization.
891 if( pOp
->opcode
<=SQLITE_MX_JUMP_OPCODE
){
892 /* NOTE: Be sure to update mkopcodeh.tcl when adding or removing
893 ** cases from this switch! */
894 switch( pOp
->opcode
){
895 case OP_Transaction
: {
896 if( pOp
->p2
!=0 ) p
->readOnly
= 0;
897 /* no break */ deliberate_fall_through
904 #ifndef SQLITE_OMIT_WAL
908 case OP_JournalMode
: {
914 assert( pOp
->p2
>=0 );
915 goto resolve_p2_values_loop_exit
;
917 #ifndef SQLITE_OMIT_VIRTUALTABLE
919 if( pOp
->p2
>nMaxArgs
) nMaxArgs
= pOp
->p2
;
924 assert( (pOp
- p
->aOp
) >= 3 );
925 assert( pOp
[-1].opcode
==OP_Integer
);
927 if( n
>nMaxArgs
) nMaxArgs
= n
;
928 /* Fall through into the default case */
929 /* no break */ deliberate_fall_through
934 /* The mkopcodeh.tcl script has so arranged things that the only
935 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
936 ** have non-negative values for P2. */
937 assert( (sqlite3OpcodeProperty
[pOp
->opcode
] & OPFLG_JUMP
)!=0 );
938 assert( ADDR(pOp
->p2
)<-pParse
->nLabel
);
939 assert( aLabel
!=0 ); /* True because of tag-20230419-1 */
940 pOp
->p2
= aLabel
[ADDR(pOp
->p2
)];
945 /* The mkopcodeh.tcl script has so arranged things that the only
946 ** non-jump opcodes less than SQLITE_MX_JUMP_CODE are guaranteed to
947 ** have non-negative values for P2. */
948 assert( (sqlite3OpcodeProperty
[pOp
->opcode
]&OPFLG_JUMP
)==0 || pOp
->p2
>=0);
950 assert( pOp
>p
->aOp
);
953 resolve_p2_values_loop_exit
:
955 sqlite3DbNNFreeNN(p
->db
, pParse
->aLabel
);
959 *pMaxFuncArgs
= nMaxArgs
;
960 assert( p
->bIsReader
!=0 || DbMaskAllZero(p
->btreeMask
) );
965 ** Check to see if a subroutine contains a jump to a location outside of
966 ** the subroutine. If a jump outside the subroutine is detected, add code
967 ** that will cause the program to halt with an error message.
969 ** The subroutine consists of opcodes between iFirst and iLast. Jumps to
970 ** locations within the subroutine are acceptable. iRetReg is a register
971 ** that contains the return address. Jumps to outside the range of iFirst
972 ** through iLast are also acceptable as long as the jump destination is
973 ** an OP_Return to iReturnAddr.
975 ** A jump to an unresolved label means that the jump destination will be
976 ** beyond the current address. That is normally a jump to an early
977 ** termination and is consider acceptable.
979 ** This routine only runs during debug builds. The purpose is (of course)
980 ** to detect invalid escapes out of a subroutine. The OP_Halt opcode
981 ** is generated rather than an assert() or other error, so that ".eqp full"
982 ** will still work to show the original bytecode, to aid in debugging.
984 void sqlite3VdbeNoJumpsOutsideSubrtn(
985 Vdbe
*v
, /* The byte-code program under construction */
986 int iFirst
, /* First opcode of the subroutine */
987 int iLast
, /* Last opcode of the subroutine */
988 int iRetReg
/* Subroutine return address register */
993 sqlite3_str
*pErr
= 0;
997 if( pParse
->nErr
) return;
998 assert( iLast
>=iFirst
);
999 assert( iLast
<v
->nOp
);
1000 pOp
= &v
->aOp
[iFirst
];
1001 for(i
=iFirst
; i
<=iLast
; i
++, pOp
++){
1002 if( (sqlite3OpcodeProperty
[pOp
->opcode
] & OPFLG_JUMP
)!=0 ){
1003 int iDest
= pOp
->p2
; /* Jump destination */
1004 if( iDest
==0 ) continue;
1005 if( pOp
->opcode
==OP_Gosub
) continue;
1006 if( pOp
->p3
==20230325 && pOp
->opcode
==OP_NotNull
){
1007 /* This is a deliberately taken illegal branch. tag-20230325-2 */
1011 int j
= ADDR(iDest
);
1013 if( j
>=-pParse
->nLabel
|| pParse
->aLabel
[j
]<0 ){
1016 iDest
= pParse
->aLabel
[j
];
1018 if( iDest
<iFirst
|| iDest
>iLast
){
1020 for(; j
<v
->nOp
; j
++){
1021 VdbeOp
*pX
= &v
->aOp
[j
];
1022 if( pX
->opcode
==OP_Return
){
1023 if( pX
->p1
==iRetReg
) break;
1026 if( pX
->opcode
==OP_Noop
) continue;
1027 if( pX
->opcode
==OP_Explain
) continue;
1029 pErr
= sqlite3_str_new(0);
1031 sqlite3_str_appendchar(pErr
, 1, '\n');
1033 sqlite3_str_appendf(pErr
,
1034 "Opcode at %d jumps to %d which is outside the "
1035 "subroutine at %d..%d",
1036 i
, iDest
, iFirst
, iLast
);
1043 char *zErr
= sqlite3_str_finish(pErr
);
1044 sqlite3VdbeAddOp4(v
, OP_Halt
, SQLITE_INTERNAL
, OE_Abort
, 0, zErr
, 0);
1046 sqlite3MayAbort(pParse
);
1049 #endif /* SQLITE_DEBUG */
1052 ** Return the address of the next instruction to be inserted.
1054 int sqlite3VdbeCurrentAddr(Vdbe
*p
){
1055 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
1060 ** Verify that at least N opcode slots are available in p without
1061 ** having to malloc for more space (except when compiled using
1062 ** SQLITE_TEST_REALLOC_STRESS). This interface is used during testing
1063 ** to verify that certain calls to sqlite3VdbeAddOpList() can never
1064 ** fail due to a OOM fault and hence that the return value from
1065 ** sqlite3VdbeAddOpList() will always be non-NULL.
1067 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
1068 void sqlite3VdbeVerifyNoMallocRequired(Vdbe
*p
, int N
){
1069 assert( p
->nOp
+ N
<= p
->nOpAlloc
);
1074 ** Verify that the VM passed as the only argument does not contain
1075 ** an OP_ResultRow opcode. Fail an assert() if it does. This is used
1076 ** by code in pragma.c to ensure that the implementation of certain
1077 ** pragmas comports with the flags specified in the mkpragmatab.tcl
1080 #if defined(SQLITE_DEBUG) && !defined(SQLITE_TEST_REALLOC_STRESS)
1081 void sqlite3VdbeVerifyNoResultRow(Vdbe
*p
){
1083 for(i
=0; i
<p
->nOp
; i
++){
1084 assert( p
->aOp
[i
].opcode
!=OP_ResultRow
);
1090 ** Generate code (a single OP_Abortable opcode) that will
1091 ** verify that the VDBE program can safely call Abort in the current
1094 #if defined(SQLITE_DEBUG)
1095 void sqlite3VdbeVerifyAbortable(Vdbe
*p
, int onError
){
1096 if( onError
==OE_Abort
) sqlite3VdbeAddOp0(p
, OP_Abortable
);
1101 ** This function returns a pointer to the array of opcodes associated with
1102 ** the Vdbe passed as the first argument. It is the callers responsibility
1103 ** to arrange for the returned array to be eventually freed using the
1104 ** vdbeFreeOpArray() function.
1106 ** Before returning, *pnOp is set to the number of entries in the returned
1107 ** array. Also, *pnMaxArg is set to the larger of its current value and
1108 ** the number of entries in the Vdbe.apArg[] array required to execute the
1109 ** returned program.
1111 VdbeOp
*sqlite3VdbeTakeOpArray(Vdbe
*p
, int *pnOp
, int *pnMaxArg
){
1112 VdbeOp
*aOp
= p
->aOp
;
1113 assert( aOp
&& !p
->db
->mallocFailed
);
1115 /* Check that sqlite3VdbeUsesBtree() was not called on this VM */
1116 assert( DbMaskAllZero(p
->btreeMask
) );
1118 resolveP2Values(p
, pnMaxArg
);
1125 ** Add a whole list of operations to the operation stack. Return a
1126 ** pointer to the first operation inserted.
1128 ** Non-zero P2 arguments to jump instructions are automatically adjusted
1129 ** so that the jump target is relative to the first operation inserted.
1131 VdbeOp
*sqlite3VdbeAddOpList(
1132 Vdbe
*p
, /* Add opcodes to the prepared statement */
1133 int nOp
, /* Number of opcodes to add */
1134 VdbeOpList
const *aOp
, /* The opcodes to be added */
1135 int iLineno
/* Source-file line number of first opcode */
1138 VdbeOp
*pOut
, *pFirst
;
1140 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
1141 if( p
->nOp
+ nOp
> p
->nOpAlloc
&& growOpArray(p
, nOp
) ){
1144 pFirst
= pOut
= &p
->aOp
[p
->nOp
];
1145 for(i
=0; i
<nOp
; i
++, aOp
++, pOut
++){
1146 pOut
->opcode
= aOp
->opcode
;
1149 assert( aOp
->p2
>=0 );
1150 if( (sqlite3OpcodeProperty
[aOp
->opcode
] & OPFLG_JUMP
)!=0 && aOp
->p2
>0 ){
1154 pOut
->p4type
= P4_NOTUSED
;
1157 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1160 #ifdef SQLITE_VDBE_COVERAGE
1161 pOut
->iSrcLine
= iLineno
+i
;
1166 if( p
->db
->flags
& SQLITE_VdbeAddopTrace
){
1167 sqlite3VdbePrintOp(0, i
+p
->nOp
, &p
->aOp
[i
+p
->nOp
]);
1175 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS)
1177 ** Add an entry to the array of counters managed by sqlite3_stmt_scanstatus().
1179 void sqlite3VdbeScanStatus(
1180 Vdbe
*p
, /* VM to add scanstatus() to */
1181 int addrExplain
, /* Address of OP_Explain (or 0) */
1182 int addrLoop
, /* Address of loop counter */
1183 int addrVisit
, /* Address of rows visited counter */
1184 LogEst nEst
, /* Estimated number of output rows */
1185 const char *zName
/* Name of table or index being scanned */
1187 if( IS_STMT_SCANSTATUS(p
->db
) ){
1188 sqlite3_int64 nByte
= (p
->nScan
+1) * sizeof(ScanStatus
);
1190 aNew
= (ScanStatus
*)sqlite3DbRealloc(p
->db
, p
->aScan
, nByte
);
1192 ScanStatus
*pNew
= &aNew
[p
->nScan
++];
1193 memset(pNew
, 0, sizeof(ScanStatus
));
1194 pNew
->addrExplain
= addrExplain
;
1195 pNew
->addrLoop
= addrLoop
;
1196 pNew
->addrVisit
= addrVisit
;
1198 pNew
->zName
= sqlite3DbStrDup(p
->db
, zName
);
1205 ** Add the range of instructions from addrStart to addrEnd (inclusive) to
1206 ** the set of those corresponding to the sqlite3_stmt_scanstatus() counters
1207 ** associated with the OP_Explain instruction at addrExplain. The
1208 ** sum of the sqlite3Hwtime() values for each of these instructions
1209 ** will be returned for SQLITE_SCANSTAT_NCYCLE requests.
1211 void sqlite3VdbeScanStatusRange(
1217 if( IS_STMT_SCANSTATUS(p
->db
) ){
1218 ScanStatus
*pScan
= 0;
1220 for(ii
=p
->nScan
-1; ii
>=0; ii
--){
1221 pScan
= &p
->aScan
[ii
];
1222 if( pScan
->addrExplain
==addrExplain
) break;
1226 if( addrEnd
<0 ) addrEnd
= sqlite3VdbeCurrentAddr(p
)-1;
1227 for(ii
=0; ii
<ArraySize(pScan
->aAddrRange
); ii
+=2){
1228 if( pScan
->aAddrRange
[ii
]==0 ){
1229 pScan
->aAddrRange
[ii
] = addrStart
;
1230 pScan
->aAddrRange
[ii
+1] = addrEnd
;
1239 ** Set the addresses for the SQLITE_SCANSTAT_NLOOP and SQLITE_SCANSTAT_NROW
1240 ** counters for the query element associated with the OP_Explain at
1243 void sqlite3VdbeScanStatusCounters(
1249 if( IS_STMT_SCANSTATUS(p
->db
) ){
1250 ScanStatus
*pScan
= 0;
1252 for(ii
=p
->nScan
-1; ii
>=0; ii
--){
1253 pScan
= &p
->aScan
[ii
];
1254 if( pScan
->addrExplain
==addrExplain
) break;
1258 if( addrLoop
>0 ) pScan
->addrLoop
= addrLoop
;
1259 if( addrVisit
>0 ) pScan
->addrVisit
= addrVisit
;
1263 #endif /* defined(SQLITE_ENABLE_STMT_SCANSTATUS) */
1267 ** Change the value of the opcode, or P1, P2, P3, or P5 operands
1268 ** for a specific instruction.
1270 void sqlite3VdbeChangeOpcode(Vdbe
*p
, int addr
, u8 iNewOpcode
){
1272 sqlite3VdbeGetOp(p
,addr
)->opcode
= iNewOpcode
;
1274 void sqlite3VdbeChangeP1(Vdbe
*p
, int addr
, int val
){
1276 sqlite3VdbeGetOp(p
,addr
)->p1
= val
;
1278 void sqlite3VdbeChangeP2(Vdbe
*p
, int addr
, int val
){
1279 assert( addr
>=0 || p
->db
->mallocFailed
);
1280 sqlite3VdbeGetOp(p
,addr
)->p2
= val
;
1282 void sqlite3VdbeChangeP3(Vdbe
*p
, int addr
, int val
){
1284 sqlite3VdbeGetOp(p
,addr
)->p3
= val
;
1286 void sqlite3VdbeChangeP5(Vdbe
*p
, u16 p5
){
1287 assert( p
->nOp
>0 || p
->db
->mallocFailed
);
1288 if( p
->nOp
>0 ) p
->aOp
[p
->nOp
-1].p5
= p5
;
1292 ** If the previous opcode is an OP_Column that delivers results
1293 ** into register iDest, then add the OPFLAG_TYPEOFARG flag to that
1296 void sqlite3VdbeTypeofColumn(Vdbe
*p
, int iDest
){
1297 VdbeOp
*pOp
= sqlite3VdbeGetLastOp(p
);
1298 if( pOp
->p3
==iDest
&& pOp
->opcode
==OP_Column
){
1299 pOp
->p5
|= OPFLAG_TYPEOFARG
;
1304 ** Change the P2 operand of instruction addr so that it points to
1305 ** the address of the next instruction to be coded.
1307 void sqlite3VdbeJumpHere(Vdbe
*p
, int addr
){
1308 sqlite3VdbeChangeP2(p
, addr
, p
->nOp
);
1312 ** Change the P2 operand of the jump instruction at addr so that
1313 ** the jump lands on the next opcode. Or if the jump instruction was
1314 ** the previous opcode (and is thus a no-op) then simply back up
1315 ** the next instruction counter by one slot so that the jump is
1316 ** overwritten by the next inserted opcode.
1318 ** This routine is an optimization of sqlite3VdbeJumpHere() that
1319 ** strives to omit useless byte-code like this:
1324 void sqlite3VdbeJumpHereOrPopInst(Vdbe
*p
, int addr
){
1325 if( addr
==p
->nOp
-1 ){
1326 assert( p
->aOp
[addr
].opcode
==OP_Once
1327 || p
->aOp
[addr
].opcode
==OP_If
1328 || p
->aOp
[addr
].opcode
==OP_FkIfZero
);
1329 assert( p
->aOp
[addr
].p4type
==0 );
1330 #ifdef SQLITE_VDBE_COVERAGE
1331 sqlite3VdbeGetLastOp(p
)->iSrcLine
= 0; /* Erase VdbeCoverage() macros */
1335 sqlite3VdbeChangeP2(p
, addr
, p
->nOp
);
1341 ** If the input FuncDef structure is ephemeral, then free it. If
1342 ** the FuncDef is not ephemeral, then do nothing.
1344 static void freeEphemeralFunction(sqlite3
*db
, FuncDef
*pDef
){
1346 if( (pDef
->funcFlags
& SQLITE_FUNC_EPHEM
)!=0 ){
1347 sqlite3DbNNFreeNN(db
, pDef
);
1352 ** Delete a P4 value if necessary.
1354 static SQLITE_NOINLINE
void freeP4Mem(sqlite3
*db
, Mem
*p
){
1355 if( p
->szMalloc
) sqlite3DbFree(db
, p
->zMalloc
);
1356 sqlite3DbNNFreeNN(db
, p
);
1358 static SQLITE_NOINLINE
void freeP4FuncCtx(sqlite3
*db
, sqlite3_context
*p
){
1360 freeEphemeralFunction(db
, p
->pFunc
);
1361 sqlite3DbNNFreeNN(db
, p
);
1363 static void freeP4(sqlite3
*db
, int p4type
, void *p4
){
1367 freeP4FuncCtx(db
, (sqlite3_context
*)p4
);
1374 if( p4
) sqlite3DbNNFreeNN(db
, p4
);
1378 if( db
->pnBytesFreed
==0 ) sqlite3KeyInfoUnref((KeyInfo
*)p4
);
1381 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1383 sqlite3ExprDelete(db
, (Expr
*)p4
);
1388 freeEphemeralFunction(db
, (FuncDef
*)p4
);
1392 if( db
->pnBytesFreed
==0 ){
1393 sqlite3ValueFree((sqlite3_value
*)p4
);
1395 freeP4Mem(db
, (Mem
*)p4
);
1400 if( db
->pnBytesFreed
==0 ) sqlite3VtabUnlock((VTable
*)p4
);
1404 if( db
->pnBytesFreed
==0 ) sqlite3DeleteTable(db
, (Table
*)p4
);
1411 ** Free the space allocated for aOp and any p4 values allocated for the
1412 ** opcodes contained within. If aOp is not NULL it is assumed to contain
1415 static void vdbeFreeOpArray(sqlite3
*db
, Op
*aOp
, int nOp
){
1419 Op
*pOp
= &aOp
[nOp
-1];
1420 while(1){ /* Exit via break */
1421 if( pOp
->p4type
<= P4_FREE_IF_LE
) freeP4(db
, pOp
->p4type
, pOp
->p4
.p
);
1422 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1423 sqlite3DbFree(db
, pOp
->zComment
);
1425 if( pOp
==aOp
) break;
1428 sqlite3DbNNFreeNN(db
, aOp
);
1433 ** Link the SubProgram object passed as the second argument into the linked
1434 ** list at Vdbe.pSubProgram. This list is used to delete all sub-program
1435 ** objects when the VM is no longer required.
1437 void sqlite3VdbeLinkSubProgram(Vdbe
*pVdbe
, SubProgram
*p
){
1438 p
->pNext
= pVdbe
->pProgram
;
1439 pVdbe
->pProgram
= p
;
1443 ** Return true if the given Vdbe has any SubPrograms.
1445 int sqlite3VdbeHasSubProgram(Vdbe
*pVdbe
){
1446 return pVdbe
->pProgram
!=0;
1450 ** Change the opcode at addr into OP_Noop
1452 int sqlite3VdbeChangeToNoop(Vdbe
*p
, int addr
){
1454 if( p
->db
->mallocFailed
) return 0;
1455 assert( addr
>=0 && addr
<p
->nOp
);
1456 pOp
= &p
->aOp
[addr
];
1457 freeP4(p
->db
, pOp
->p4type
, pOp
->p4
.p
);
1458 pOp
->p4type
= P4_NOTUSED
;
1460 pOp
->opcode
= OP_Noop
;
1465 ** If the last opcode is "op" and it is not a jump destination,
1466 ** then remove it. Return true if and only if an opcode was removed.
1468 int sqlite3VdbeDeletePriorOpcode(Vdbe
*p
, u8 op
){
1469 if( p
->nOp
>0 && p
->aOp
[p
->nOp
-1].opcode
==op
){
1470 return sqlite3VdbeChangeToNoop(p
, p
->nOp
-1);
1478 ** Generate an OP_ReleaseReg opcode to indicate that a range of
1479 ** registers, except any identified by mask, are no longer in use.
1481 void sqlite3VdbeReleaseRegisters(
1482 Parse
*pParse
, /* Parsing context */
1483 int iFirst
, /* Index of first register to be released */
1484 int N
, /* Number of registers to release */
1485 u32 mask
, /* Mask of registers to NOT release */
1486 int bUndefine
/* If true, mark registers as undefined */
1488 if( N
==0 || OptimizationDisabled(pParse
->db
, SQLITE_ReleaseReg
) ) return;
1489 assert( pParse
->pVdbe
);
1490 assert( iFirst
>=1 );
1491 assert( iFirst
+N
-1<=pParse
->nMem
);
1492 if( N
<=31 && mask
!=0 ){
1493 while( N
>0 && (mask
&1)!=0 ){
1498 while( N
>0 && N
<=32 && (mask
& MASKBIT32(N
-1))!=0 ){
1499 mask
&= ~MASKBIT32(N
-1);
1504 sqlite3VdbeAddOp3(pParse
->pVdbe
, OP_ReleaseReg
, iFirst
, N
, *(int*)&mask
);
1505 if( bUndefine
) sqlite3VdbeChangeP5(pParse
->pVdbe
, 1);
1508 #endif /* SQLITE_DEBUG */
1511 ** Change the value of the P4 operand for a specific instruction.
1512 ** This routine is useful when a large program is loaded from a
1513 ** static array using sqlite3VdbeAddOpList but we want to make a
1514 ** few minor changes to the program.
1516 ** If n>=0 then the P4 operand is dynamic, meaning that a copy of
1517 ** the string is made into memory obtained from sqlite3_malloc().
1518 ** A value of n==0 means copy bytes of zP4 up to and including the
1519 ** first null byte. If n>0 then copy n+1 bytes of zP4.
1521 ** Other values of n (P4_STATIC, P4_COLLSEQ etc.) indicate that zP4 points
1522 ** to a string or structure that is guaranteed to exist for the lifetime of
1523 ** the Vdbe. In these cases we can just copy the pointer.
1525 ** If addr<0 then change P4 on the most recently inserted instruction.
1527 static void SQLITE_NOINLINE
vdbeChangeP4Full(
1534 assert( pOp
->p4type
> P4_FREE_IF_LE
);
1539 sqlite3VdbeChangeP4(p
, (int)(pOp
- p
->aOp
), zP4
, n
);
1541 if( n
==0 ) n
= sqlite3Strlen30(zP4
);
1542 pOp
->p4
.z
= sqlite3DbStrNDup(p
->db
, zP4
, n
);
1543 pOp
->p4type
= P4_DYNAMIC
;
1546 void sqlite3VdbeChangeP4(Vdbe
*p
, int addr
, const char *zP4
, int n
){
1551 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
1552 assert( p
->aOp
!=0 || db
->mallocFailed
);
1553 if( db
->mallocFailed
){
1554 if( n
!=P4_VTAB
) freeP4(db
, n
, (void*)*(char**)&zP4
);
1558 assert( addr
<p
->nOp
);
1562 pOp
= &p
->aOp
[addr
];
1563 if( n
>=0 || pOp
->p4type
){
1564 vdbeChangeP4Full(p
, pOp
, zP4
, n
);
1568 /* Note: this cast is safe, because the origin data point was an int
1569 ** that was cast to a (const char *). */
1570 pOp
->p4
.i
= SQLITE_PTR_TO_INT(zP4
);
1571 pOp
->p4type
= P4_INT32
;
1574 pOp
->p4
.p
= (void*)zP4
;
1575 pOp
->p4type
= (signed char)n
;
1576 if( n
==P4_VTAB
) sqlite3VtabLock((VTable
*)zP4
);
1581 ** Change the P4 operand of the most recently coded instruction
1582 ** to the value defined by the arguments. This is a high-speed
1583 ** version of sqlite3VdbeChangeP4().
1585 ** The P4 operand must not have been previously defined. And the new
1586 ** P4 must not be P4_INT32. Use sqlite3VdbeChangeP4() in either of
1589 void sqlite3VdbeAppendP4(Vdbe
*p
, void *pP4
, int n
){
1591 assert( n
!=P4_INT32
&& n
!=P4_VTAB
);
1593 if( p
->db
->mallocFailed
){
1594 freeP4(p
->db
, n
, pP4
);
1596 assert( pP4
!=0 || n
==P4_DYNAMIC
);
1598 pOp
= &p
->aOp
[p
->nOp
-1];
1599 assert( pOp
->p4type
==P4_NOTUSED
);
1606 ** Set the P4 on the most recently added opcode to the KeyInfo for the
1609 void sqlite3VdbeSetP4KeyInfo(Parse
*pParse
, Index
*pIdx
){
1610 Vdbe
*v
= pParse
->pVdbe
;
1614 pKeyInfo
= sqlite3KeyInfoOfIndex(pParse
, pIdx
);
1615 if( pKeyInfo
) sqlite3VdbeAppendP4(v
, pKeyInfo
, P4_KEYINFO
);
1618 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
1620 ** Change the comment on the most recently coded instruction. Or
1621 ** insert a No-op and add the comment to that new instruction. This
1622 ** makes the code easier to read during debugging. None of this happens
1623 ** in a production build.
1625 static void vdbeVComment(Vdbe
*p
, const char *zFormat
, va_list ap
){
1626 assert( p
->nOp
>0 || p
->aOp
==0 );
1627 assert( p
->aOp
==0 || p
->aOp
[p
->nOp
-1].zComment
==0 || p
->pParse
->nErr
>0 );
1630 sqlite3DbFree(p
->db
, p
->aOp
[p
->nOp
-1].zComment
);
1631 p
->aOp
[p
->nOp
-1].zComment
= sqlite3VMPrintf(p
->db
, zFormat
, ap
);
1634 void sqlite3VdbeComment(Vdbe
*p
, const char *zFormat
, ...){
1637 va_start(ap
, zFormat
);
1638 vdbeVComment(p
, zFormat
, ap
);
1642 void sqlite3VdbeNoopComment(Vdbe
*p
, const char *zFormat
, ...){
1645 sqlite3VdbeAddOp0(p
, OP_Noop
);
1646 va_start(ap
, zFormat
);
1647 vdbeVComment(p
, zFormat
, ap
);
1653 #ifdef SQLITE_VDBE_COVERAGE
1655 ** Set the value if the iSrcLine field for the previously coded instruction.
1657 void sqlite3VdbeSetLineNumber(Vdbe
*v
, int iLine
){
1658 sqlite3VdbeGetLastOp(v
)->iSrcLine
= iLine
;
1660 #endif /* SQLITE_VDBE_COVERAGE */
1663 ** Return the opcode for a given address. The address must be non-negative.
1664 ** See sqlite3VdbeGetLastOp() to get the most recently added opcode.
1666 ** If a memory allocation error has occurred prior to the calling of this
1667 ** routine, then a pointer to a dummy VdbeOp will be returned. That opcode
1668 ** is readable but not writable, though it is cast to a writable value.
1669 ** The return of a dummy opcode allows the call to continue functioning
1670 ** after an OOM fault without having to check to see if the return from
1671 ** this routine is a valid pointer. But because the dummy.opcode is 0,
1672 ** dummy will never be written to. This is verified by code inspection and
1673 ** by running with Valgrind.
1675 VdbeOp
*sqlite3VdbeGetOp(Vdbe
*p
, int addr
){
1676 /* C89 specifies that the constant "dummy" will be initialized to all
1677 ** zeros, which is correct. MSVC generates a warning, nevertheless. */
1678 static VdbeOp dummy
; /* Ignore the MSVC warning about no initializer */
1679 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
1680 assert( (addr
>=0 && addr
<p
->nOp
) || p
->db
->mallocFailed
);
1681 if( p
->db
->mallocFailed
){
1682 return (VdbeOp
*)&dummy
;
1684 return &p
->aOp
[addr
];
1688 /* Return the most recently added opcode
1690 VdbeOp
*sqlite3VdbeGetLastOp(Vdbe
*p
){
1691 return sqlite3VdbeGetOp(p
, p
->nOp
- 1);
1694 #if defined(SQLITE_ENABLE_EXPLAIN_COMMENTS)
1696 ** Return an integer value for one of the parameters to the opcode pOp
1697 ** determined by character c.
1699 static int translateP(char c
, const Op
*pOp
){
1700 if( c
=='1' ) return pOp
->p1
;
1701 if( c
=='2' ) return pOp
->p2
;
1702 if( c
=='3' ) return pOp
->p3
;
1703 if( c
=='4' ) return pOp
->p4
.i
;
1708 ** Compute a string for the "comment" field of a VDBE opcode listing.
1710 ** The Synopsis: field in comments in the vdbe.c source file gets converted
1711 ** to an extra string that is appended to the sqlite3OpcodeName(). In the
1712 ** absence of other comments, this synopsis becomes the comment on the opcode.
1713 ** Some translation occurs:
1716 ** "PX@PY" -> "r[X..X+Y-1]" or "r[x]" if y is 0 or 1
1717 ** "PX@PY+1" -> "r[X..X+Y]" or "r[x]" if y is 0
1718 ** "PY..PY" -> "r[X..Y]" or "r[x]" if y<=x
1720 char *sqlite3VdbeDisplayComment(
1721 sqlite3
*db
, /* Optional - Oom error reporting only */
1722 const Op
*pOp
, /* The opcode to be commented */
1723 const char *zP4
/* Previously obtained value for P4 */
1725 const char *zOpName
;
1726 const char *zSynopsis
;
1732 sqlite3StrAccumInit(&x
, 0, 0, 0, SQLITE_MAX_LENGTH
);
1733 zOpName
= sqlite3OpcodeName(pOp
->opcode
);
1734 nOpName
= sqlite3Strlen30(zOpName
);
1735 if( zOpName
[nOpName
+1] ){
1738 zSynopsis
= zOpName
+ nOpName
+ 1;
1739 if( strncmp(zSynopsis
,"IF ",3)==0 ){
1740 sqlite3_snprintf(sizeof(zAlt
), zAlt
, "if %s goto P2", zSynopsis
+3);
1743 for(ii
=0; (c
= zSynopsis
[ii
])!=0; ii
++){
1745 c
= zSynopsis
[++ii
];
1747 sqlite3_str_appendall(&x
, zP4
);
1749 if( pOp
->zComment
&& pOp
->zComment
[0] ){
1750 sqlite3_str_appendall(&x
, pOp
->zComment
);
1755 int v1
= translateP(c
, pOp
);
1757 if( strncmp(zSynopsis
+ii
+1, "@P", 2)==0 ){
1759 v2
= translateP(zSynopsis
[ii
], pOp
);
1760 if( strncmp(zSynopsis
+ii
+1,"+1",2)==0 ){
1765 sqlite3_str_appendf(&x
, "%d", v1
);
1767 sqlite3_str_appendf(&x
, "%d..%d", v1
, v1
+v2
-1);
1769 }else if( strncmp(zSynopsis
+ii
+1, "@NP", 3)==0 ){
1770 sqlite3_context
*pCtx
= pOp
->p4
.pCtx
;
1771 if( pOp
->p4type
!=P4_FUNCCTX
|| pCtx
->argc
==1 ){
1772 sqlite3_str_appendf(&x
, "%d", v1
);
1773 }else if( pCtx
->argc
>1 ){
1774 sqlite3_str_appendf(&x
, "%d..%d", v1
, v1
+pCtx
->argc
-1);
1775 }else if( x
.accError
==0 ){
1776 assert( x
.nChar
>2 );
1782 sqlite3_str_appendf(&x
, "%d", v1
);
1783 if( strncmp(zSynopsis
+ii
+1, "..P3", 4)==0 && pOp
->p3
==0 ){
1789 sqlite3_str_appendchar(&x
, 1, c
);
1792 if( !seenCom
&& pOp
->zComment
){
1793 sqlite3_str_appendf(&x
, "; %s", pOp
->zComment
);
1795 }else if( pOp
->zComment
){
1796 sqlite3_str_appendall(&x
, pOp
->zComment
);
1798 if( (x
.accError
& SQLITE_NOMEM
)!=0 && db
!=0 ){
1799 sqlite3OomFault(db
);
1801 return sqlite3StrAccumFinish(&x
);
1803 #endif /* SQLITE_ENABLE_EXPLAIN_COMMENTS */
1805 #if VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS)
1807 ** Translate the P4.pExpr value for an OP_CursorHint opcode into text
1808 ** that can be displayed in the P4 column of EXPLAIN output.
1810 static void displayP4Expr(StrAccum
*p
, Expr
*pExpr
){
1811 const char *zOp
= 0;
1812 switch( pExpr
->op
){
1814 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
1815 sqlite3_str_appendf(p
, "%Q", pExpr
->u
.zToken
);
1818 sqlite3_str_appendf(p
, "%d", pExpr
->u
.iValue
);
1821 sqlite3_str_appendf(p
, "NULL");
1824 sqlite3_str_appendf(p
, "r[%d]", pExpr
->iTable
);
1828 if( pExpr
->iColumn
<0 ){
1829 sqlite3_str_appendf(p
, "rowid");
1831 sqlite3_str_appendf(p
, "c%d", (int)pExpr
->iColumn
);
1835 case TK_LT
: zOp
= "LT"; break;
1836 case TK_LE
: zOp
= "LE"; break;
1837 case TK_GT
: zOp
= "GT"; break;
1838 case TK_GE
: zOp
= "GE"; break;
1839 case TK_NE
: zOp
= "NE"; break;
1840 case TK_EQ
: zOp
= "EQ"; break;
1841 case TK_IS
: zOp
= "IS"; break;
1842 case TK_ISNOT
: zOp
= "ISNOT"; break;
1843 case TK_AND
: zOp
= "AND"; break;
1844 case TK_OR
: zOp
= "OR"; break;
1845 case TK_PLUS
: zOp
= "ADD"; break;
1846 case TK_STAR
: zOp
= "MUL"; break;
1847 case TK_MINUS
: zOp
= "SUB"; break;
1848 case TK_REM
: zOp
= "REM"; break;
1849 case TK_BITAND
: zOp
= "BITAND"; break;
1850 case TK_BITOR
: zOp
= "BITOR"; break;
1851 case TK_SLASH
: zOp
= "DIV"; break;
1852 case TK_LSHIFT
: zOp
= "LSHIFT"; break;
1853 case TK_RSHIFT
: zOp
= "RSHIFT"; break;
1854 case TK_CONCAT
: zOp
= "CONCAT"; break;
1855 case TK_UMINUS
: zOp
= "MINUS"; break;
1856 case TK_UPLUS
: zOp
= "PLUS"; break;
1857 case TK_BITNOT
: zOp
= "BITNOT"; break;
1858 case TK_NOT
: zOp
= "NOT"; break;
1859 case TK_ISNULL
: zOp
= "ISNULL"; break;
1860 case TK_NOTNULL
: zOp
= "NOTNULL"; break;
1863 sqlite3_str_appendf(p
, "%s", "expr");
1868 sqlite3_str_appendf(p
, "%s(", zOp
);
1869 displayP4Expr(p
, pExpr
->pLeft
);
1870 if( pExpr
->pRight
){
1871 sqlite3_str_append(p
, ",", 1);
1872 displayP4Expr(p
, pExpr
->pRight
);
1874 sqlite3_str_append(p
, ")", 1);
1877 #endif /* VDBE_DISPLAY_P4 && defined(SQLITE_ENABLE_CURSOR_HINTS) */
1882 ** Compute a string that describes the P4 parameter for an opcode.
1883 ** Use zTemp for any required temporary buffer space.
1885 char *sqlite3VdbeDisplayP4(sqlite3
*db
, Op
*pOp
){
1889 sqlite3StrAccumInit(&x
, 0, 0, 0, SQLITE_MAX_LENGTH
);
1890 switch( pOp
->p4type
){
1893 KeyInfo
*pKeyInfo
= pOp
->p4
.pKeyInfo
;
1894 assert( pKeyInfo
->aSortFlags
!=0 );
1895 sqlite3_str_appendf(&x
, "k(%d", pKeyInfo
->nKeyField
);
1896 for(j
=0; j
<pKeyInfo
->nKeyField
; j
++){
1897 CollSeq
*pColl
= pKeyInfo
->aColl
[j
];
1898 const char *zColl
= pColl
? pColl
->zName
: "";
1899 if( strcmp(zColl
, "BINARY")==0 ) zColl
= "B";
1900 sqlite3_str_appendf(&x
, ",%s%s%s",
1901 (pKeyInfo
->aSortFlags
[j
] & KEYINFO_ORDER_DESC
) ? "-" : "",
1902 (pKeyInfo
->aSortFlags
[j
] & KEYINFO_ORDER_BIGNULL
)? "N." : "",
1905 sqlite3_str_append(&x
, ")", 1);
1908 #ifdef SQLITE_ENABLE_CURSOR_HINTS
1910 displayP4Expr(&x
, pOp
->p4
.pExpr
);
1915 static const char *const encnames
[] = {"?", "8", "16LE", "16BE"};
1916 CollSeq
*pColl
= pOp
->p4
.pColl
;
1917 assert( pColl
->enc
<4 );
1918 sqlite3_str_appendf(&x
, "%.18s-%s", pColl
->zName
,
1919 encnames
[pColl
->enc
]);
1923 FuncDef
*pDef
= pOp
->p4
.pFunc
;
1924 sqlite3_str_appendf(&x
, "%s(%d)", pDef
->zName
, pDef
->nArg
);
1928 FuncDef
*pDef
= pOp
->p4
.pCtx
->pFunc
;
1929 sqlite3_str_appendf(&x
, "%s(%d)", pDef
->zName
, pDef
->nArg
);
1933 sqlite3_str_appendf(&x
, "%lld", *pOp
->p4
.pI64
);
1937 sqlite3_str_appendf(&x
, "%d", pOp
->p4
.i
);
1941 sqlite3_str_appendf(&x
, "%.16g", *pOp
->p4
.pReal
);
1945 Mem
*pMem
= pOp
->p4
.pMem
;
1946 if( pMem
->flags
& MEM_Str
){
1948 }else if( pMem
->flags
& (MEM_Int
|MEM_IntReal
) ){
1949 sqlite3_str_appendf(&x
, "%lld", pMem
->u
.i
);
1950 }else if( pMem
->flags
& MEM_Real
){
1951 sqlite3_str_appendf(&x
, "%.16g", pMem
->u
.r
);
1952 }else if( pMem
->flags
& MEM_Null
){
1955 assert( pMem
->flags
& MEM_Blob
);
1960 #ifndef SQLITE_OMIT_VIRTUALTABLE
1962 sqlite3_vtab
*pVtab
= pOp
->p4
.pVtab
->pVtab
;
1963 sqlite3_str_appendf(&x
, "vtab:%p", pVtab
);
1969 u32
*ai
= pOp
->p4
.ai
;
1970 u32 n
= ai
[0]; /* The first element of an INTARRAY is always the
1971 ** count of the number of elements to follow */
1972 for(i
=1; i
<=n
; i
++){
1973 sqlite3_str_appendf(&x
, "%c%u", (i
==1 ? '[' : ','), ai
[i
]);
1975 sqlite3_str_append(&x
, "]", 1);
1978 case P4_SUBPROGRAM
: {
1983 zP4
= pOp
->p4
.pTab
->zName
;
1990 if( zP4
) sqlite3_str_appendall(&x
, zP4
);
1991 if( (x
.accError
& SQLITE_NOMEM
)!=0 ){
1992 sqlite3OomFault(db
);
1994 return sqlite3StrAccumFinish(&x
);
1996 #endif /* VDBE_DISPLAY_P4 */
1999 ** Declare to the Vdbe that the BTree object at db->aDb[i] is used.
2001 ** The prepared statements need to know in advance the complete set of
2002 ** attached databases that will be use. A mask of these databases
2003 ** is maintained in p->btreeMask. The p->lockMask value is the subset of
2004 ** p->btreeMask of databases that will require a lock.
2006 void sqlite3VdbeUsesBtree(Vdbe
*p
, int i
){
2007 assert( i
>=0 && i
<p
->db
->nDb
&& i
<(int)sizeof(yDbMask
)*8 );
2008 assert( i
<(int)sizeof(p
->btreeMask
)*8 );
2009 DbMaskSet(p
->btreeMask
, i
);
2010 if( i
!=1 && sqlite3BtreeSharable(p
->db
->aDb
[i
].pBt
) ){
2011 DbMaskSet(p
->lockMask
, i
);
2015 #if !defined(SQLITE_OMIT_SHARED_CACHE)
2017 ** If SQLite is compiled to support shared-cache mode and to be threadsafe,
2018 ** this routine obtains the mutex associated with each BtShared structure
2019 ** that may be accessed by the VM passed as an argument. In doing so it also
2020 ** sets the BtShared.db member of each of the BtShared structures, ensuring
2021 ** that the correct busy-handler callback is invoked if required.
2023 ** If SQLite is not threadsafe but does support shared-cache mode, then
2024 ** sqlite3BtreeEnter() is invoked to set the BtShared.db variables
2025 ** of all of BtShared structures accessible via the database handle
2026 ** associated with the VM.
2028 ** If SQLite is not threadsafe and does not support shared-cache mode, this
2029 ** function is a no-op.
2031 ** The p->btreeMask field is a bitmask of all btrees that the prepared
2032 ** statement p will ever use. Let N be the number of bits in p->btreeMask
2033 ** corresponding to btrees that use shared cache. Then the runtime of
2034 ** this routine is N*N. But as N is rarely more than 1, this should not
2037 void sqlite3VdbeEnter(Vdbe
*p
){
2042 if( DbMaskAllZero(p
->lockMask
) ) return; /* The common case */
2046 for(i
=0; i
<nDb
; i
++){
2047 if( i
!=1 && DbMaskTest(p
->lockMask
,i
) && ALWAYS(aDb
[i
].pBt
!=0) ){
2048 sqlite3BtreeEnter(aDb
[i
].pBt
);
2054 #if !defined(SQLITE_OMIT_SHARED_CACHE) && SQLITE_THREADSAFE>0
2056 ** Unlock all of the btrees previously locked by a call to sqlite3VdbeEnter().
2058 static SQLITE_NOINLINE
void vdbeLeave(Vdbe
*p
){
2066 for(i
=0; i
<nDb
; i
++){
2067 if( i
!=1 && DbMaskTest(p
->lockMask
,i
) && ALWAYS(aDb
[i
].pBt
!=0) ){
2068 sqlite3BtreeLeave(aDb
[i
].pBt
);
2072 void sqlite3VdbeLeave(Vdbe
*p
){
2073 if( DbMaskAllZero(p
->lockMask
) ) return; /* The common case */
2078 #if defined(VDBE_PROFILE) || defined(SQLITE_DEBUG)
2080 ** Print a single opcode. This routine is used for debugging only.
2082 void sqlite3VdbePrintOp(FILE *pOut
, int pc
, VdbeOp
*pOp
){
2086 static const char *zFormat1
= "%4d %-13s %4d %4d %4d %-13s %.2X %s\n";
2087 if( pOut
==0 ) pOut
= stdout
;
2088 sqlite3BeginBenignMalloc();
2089 dummyDb
.mallocFailed
= 1;
2090 zP4
= sqlite3VdbeDisplayP4(&dummyDb
, pOp
);
2091 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2092 zCom
= sqlite3VdbeDisplayComment(0, pOp
, zP4
);
2096 /* NB: The sqlite3OpcodeName() function is implemented by code created
2097 ** by the mkopcodeh.awk and mkopcodec.awk scripts which extract the
2098 ** information from the vdbe.c source text */
2099 fprintf(pOut
, zFormat1
, pc
,
2100 sqlite3OpcodeName(pOp
->opcode
), pOp
->p1
, pOp
->p2
, pOp
->p3
,
2101 zP4
? zP4
: "", pOp
->p5
,
2107 sqlite3EndBenignMalloc();
2112 ** Initialize an array of N Mem element.
2114 ** This is a high-runner, so only those fields that really do need to
2115 ** be initialized are set. The Mem structure is organized so that
2116 ** the fields that get initialized are nearby and hopefully on the same
2119 ** Mem.flags = flags
2123 ** All other fields of Mem can safely remain uninitialized for now. They
2124 ** will be initialized before use.
2126 static void initMemArray(Mem
*p
, int N
, sqlite3
*db
, u16 flags
){
2141 ** Release auxiliary memory held in an array of N Mem elements.
2143 ** After this routine returns, all Mem elements in the array will still
2144 ** be valid. Those Mem elements that were not holding auxiliary resources
2145 ** will be unchanged. Mem elements which had something freed will be
2146 ** set to MEM_Undefined.
2148 static void releaseMemArray(Mem
*p
, int N
){
2151 sqlite3
*db
= p
->db
;
2152 if( db
->pnBytesFreed
){
2154 if( p
->szMalloc
) sqlite3DbFree(db
, p
->zMalloc
);
2155 }while( (++p
)<pEnd
);
2159 assert( (&p
[1])==pEnd
|| p
[0].db
==p
[1].db
);
2160 assert( sqlite3VdbeCheckMemInvariants(p
) );
2162 /* This block is really an inlined version of sqlite3VdbeMemRelease()
2163 ** that takes advantage of the fact that the memory cell value is
2164 ** being set to NULL after releasing any dynamic resources.
2166 ** The justification for duplicating code is that according to
2167 ** callgrind, this causes a certain test case to hit the CPU 4.7
2168 ** percent less (x86 linux, gcc version 4.1.2, -O6) than if
2169 ** sqlite3MemRelease() were called from here. With -O2, this jumps
2170 ** to 6.6 percent. The test case is inserting 1000 rows into a table
2171 ** with no indexes using a single prepared INSERT statement, bind()
2172 ** and reset(). Inserts are grouped into a transaction.
2174 testcase( p
->flags
& MEM_Agg
);
2175 testcase( p
->flags
& MEM_Dyn
);
2176 if( p
->flags
&(MEM_Agg
|MEM_Dyn
) ){
2177 testcase( (p
->flags
& MEM_Dyn
)!=0 && p
->xDel
==sqlite3VdbeFrameMemDel
);
2178 sqlite3VdbeMemRelease(p
);
2179 p
->flags
= MEM_Undefined
;
2180 }else if( p
->szMalloc
){
2181 sqlite3DbNNFreeNN(db
, p
->zMalloc
);
2183 p
->flags
= MEM_Undefined
;
2187 p
->flags
= MEM_Undefined
;
2190 }while( (++p
)<pEnd
);
2196 ** Verify that pFrame is a valid VdbeFrame pointer. Return true if it is
2197 ** and false if something is wrong.
2199 ** This routine is intended for use inside of assert() statements only.
2201 int sqlite3VdbeFrameIsValid(VdbeFrame
*pFrame
){
2202 if( pFrame
->iFrameMagic
!=SQLITE_FRAME_MAGIC
) return 0;
2209 ** This is a destructor on a Mem object (which is really an sqlite3_value)
2210 ** that deletes the Frame object that is attached to it as a blob.
2212 ** This routine does not delete the Frame right away. It merely adds the
2213 ** frame to a list of frames to be deleted when the Vdbe halts.
2215 void sqlite3VdbeFrameMemDel(void *pArg
){
2216 VdbeFrame
*pFrame
= (VdbeFrame
*)pArg
;
2217 assert( sqlite3VdbeFrameIsValid(pFrame
) );
2218 pFrame
->pParent
= pFrame
->v
->pDelFrame
;
2219 pFrame
->v
->pDelFrame
= pFrame
;
2222 #if defined(SQLITE_ENABLE_BYTECODE_VTAB) || !defined(SQLITE_OMIT_EXPLAIN)
2224 ** Locate the next opcode to be displayed in EXPLAIN or EXPLAIN
2225 ** QUERY PLAN output.
2227 ** Return SQLITE_ROW on success. Return SQLITE_DONE if there are no
2228 ** more opcodes to be displayed.
2230 int sqlite3VdbeNextOpcode(
2231 Vdbe
*p
, /* The statement being explained */
2232 Mem
*pSub
, /* Storage for keeping track of subprogram nesting */
2233 int eMode
, /* 0: normal. 1: EQP. 2: TablesUsed */
2234 int *piPc
, /* IN/OUT: Current rowid. Overwritten with next rowid */
2235 int *piAddr
, /* OUT: Write index into (*paOp)[] here */
2236 Op
**paOp
/* OUT: Write the opcode array here */
2238 int nRow
; /* Stop when row count reaches this */
2239 int nSub
= 0; /* Number of sub-vdbes seen so far */
2240 SubProgram
**apSub
= 0; /* Array of sub-vdbes */
2241 int i
; /* Next instruction address */
2242 int rc
= SQLITE_OK
; /* Result code */
2243 Op
*aOp
= 0; /* Opcode array */
2244 int iPc
; /* Rowid. Copy of value in *piPc */
2246 /* When the number of output rows reaches nRow, that means the
2247 ** listing has finished and sqlite3_step() should return SQLITE_DONE.
2248 ** nRow is the sum of the number of rows in the main program, plus
2249 ** the sum of the number of rows in all trigger subprograms encountered
2250 ** so far. The nRow value will increase as new trigger subprograms are
2251 ** encountered, but p->pc will eventually catch up to nRow.
2255 if( pSub
->flags
&MEM_Blob
){
2256 /* pSub is initiallly NULL. It is initialized to a BLOB by
2257 ** the P4_SUBPROGRAM processing logic below */
2258 nSub
= pSub
->n
/sizeof(Vdbe
*);
2259 apSub
= (SubProgram
**)pSub
->z
;
2261 for(i
=0; i
<nSub
; i
++){
2262 nRow
+= apSub
[i
]->nOp
;
2266 while(1){ /* Loop exits via break */
2274 /* The rowid is small enough that we are still in the
2278 /* We are currently listing subprograms. Figure out which one and
2279 ** pick up the appropriate opcode. */
2284 for(j
=0; i
>=apSub
[j
]->nOp
; j
++){
2286 assert( i
<apSub
[j
]->nOp
|| j
+1<nSub
);
2288 aOp
= apSub
[j
]->aOp
;
2291 /* When an OP_Program opcode is encounter (the only opcode that has
2292 ** a P4_SUBPROGRAM argument), expand the size of the array of subprograms
2293 ** kept in p->aMem[9].z to hold the new program - assuming this subprogram
2294 ** has not already been seen.
2296 if( pSub
!=0 && aOp
[i
].p4type
==P4_SUBPROGRAM
){
2297 int nByte
= (nSub
+1)*sizeof(SubProgram
*);
2299 for(j
=0; j
<nSub
; j
++){
2300 if( apSub
[j
]==aOp
[i
].p4
.pProgram
) break;
2303 p
->rc
= sqlite3VdbeMemGrow(pSub
, nByte
, nSub
!=0);
2304 if( p
->rc
!=SQLITE_OK
){
2308 apSub
= (SubProgram
**)pSub
->z
;
2309 apSub
[nSub
++] = aOp
[i
].p4
.pProgram
;
2310 MemSetTypeFlag(pSub
, MEM_Blob
);
2311 pSub
->n
= nSub
*sizeof(SubProgram
*);
2312 nRow
+= aOp
[i
].p4
.pProgram
->nOp
;
2315 if( eMode
==0 ) break;
2316 #ifdef SQLITE_ENABLE_BYTECODE_VTAB
2319 if( pOp
->opcode
==OP_OpenRead
) break;
2320 if( pOp
->opcode
==OP_OpenWrite
&& (pOp
->p5
& OPFLAG_P2ISREG
)==0 ) break;
2321 if( pOp
->opcode
==OP_ReopenIdx
) break;
2326 if( aOp
[i
].opcode
==OP_Explain
) break;
2327 if( aOp
[i
].opcode
==OP_Init
&& iPc
>1 ) break;
2335 #endif /* SQLITE_ENABLE_BYTECODE_VTAB || !SQLITE_OMIT_EXPLAIN */
2339 ** Delete a VdbeFrame object and its contents. VdbeFrame objects are
2340 ** allocated by the OP_Program opcode in sqlite3VdbeExec().
2342 void sqlite3VdbeFrameDelete(VdbeFrame
*p
){
2344 Mem
*aMem
= VdbeFrameMem(p
);
2345 VdbeCursor
**apCsr
= (VdbeCursor
**)&aMem
[p
->nChildMem
];
2346 assert( sqlite3VdbeFrameIsValid(p
) );
2347 for(i
=0; i
<p
->nChildCsr
; i
++){
2348 if( apCsr
[i
] ) sqlite3VdbeFreeCursorNN(p
->v
, apCsr
[i
]);
2350 releaseMemArray(aMem
, p
->nChildMem
);
2351 sqlite3VdbeDeleteAuxData(p
->v
->db
, &p
->pAuxData
, -1, 0);
2352 sqlite3DbFree(p
->v
->db
, p
);
2355 #ifndef SQLITE_OMIT_EXPLAIN
2357 ** Give a listing of the program in the virtual machine.
2359 ** The interface is the same as sqlite3VdbeExec(). But instead of
2360 ** running the code, it invokes the callback once for each instruction.
2361 ** This feature is used to implement "EXPLAIN".
2363 ** When p->explain==1, each instruction is listed. When
2364 ** p->explain==2, only OP_Explain instructions are listed and these
2365 ** are shown in a different format. p->explain==2 is used to implement
2366 ** EXPLAIN QUERY PLAN.
2367 ** 2018-04-24: In p->explain==2 mode, the OP_Init opcodes of triggers
2368 ** are also shown, so that the boundaries between the main program and
2369 ** each trigger are clear.
2371 ** When p->explain==1, first the main program is listed, then each of
2372 ** the trigger subprograms are listed one by one.
2374 int sqlite3VdbeList(
2375 Vdbe
*p
/* The VDBE */
2377 Mem
*pSub
= 0; /* Memory cell hold array of subprogs */
2378 sqlite3
*db
= p
->db
; /* The database connection */
2379 int i
; /* Loop counter */
2380 int rc
= SQLITE_OK
; /* Return code */
2381 Mem
*pMem
= &p
->aMem
[1]; /* First Mem of result set */
2382 int bListSubprogs
= (p
->explain
==1 || (db
->flags
& SQLITE_TriggerEQP
)!=0);
2383 Op
*aOp
; /* Array of opcodes */
2384 Op
*pOp
; /* Current opcode */
2386 assert( p
->explain
);
2387 assert( p
->eVdbeState
==VDBE_RUN_STATE
);
2388 assert( p
->rc
==SQLITE_OK
|| p
->rc
==SQLITE_BUSY
|| p
->rc
==SQLITE_NOMEM
);
2390 /* Even though this opcode does not use dynamic strings for
2391 ** the result, result columns may become dynamic if the user calls
2392 ** sqlite3_column_text16(), causing a translation to UTF-16 encoding.
2394 releaseMemArray(pMem
, 8);
2396 if( p
->rc
==SQLITE_NOMEM
){
2397 /* This happens if a malloc() inside a call to sqlite3_column_text() or
2398 ** sqlite3_column_text16() failed. */
2399 sqlite3OomFault(db
);
2400 return SQLITE_ERROR
;
2403 if( bListSubprogs
){
2404 /* The first 8 memory cells are used for the result set. So we will
2405 ** commandeer the 9th cell to use as storage for an array of pointers
2406 ** to trigger subprograms. The VDBE is guaranteed to have at least 9
2408 assert( p
->nMem
>9 );
2414 /* Figure out which opcode is next to display */
2415 rc
= sqlite3VdbeNextOpcode(p
, pSub
, p
->explain
==2, &p
->pc
, &i
, &aOp
);
2417 if( rc
==SQLITE_OK
){
2419 if( AtomicLoad(&db
->u1
.isInterrupted
) ){
2420 p
->rc
= SQLITE_INTERRUPT
;
2422 sqlite3VdbeError(p
, sqlite3ErrStr(p
->rc
));
2424 char *zP4
= sqlite3VdbeDisplayP4(db
, pOp
);
2425 if( p
->explain
==2 ){
2426 sqlite3VdbeMemSetInt64(pMem
, pOp
->p1
);
2427 sqlite3VdbeMemSetInt64(pMem
+1, pOp
->p2
);
2428 sqlite3VdbeMemSetInt64(pMem
+2, pOp
->p3
);
2429 sqlite3VdbeMemSetStr(pMem
+3, zP4
, -1, SQLITE_UTF8
, sqlite3_free
);
2430 assert( p
->nResColumn
==4 );
2432 sqlite3VdbeMemSetInt64(pMem
+0, i
);
2433 sqlite3VdbeMemSetStr(pMem
+1, (char*)sqlite3OpcodeName(pOp
->opcode
),
2434 -1, SQLITE_UTF8
, SQLITE_STATIC
);
2435 sqlite3VdbeMemSetInt64(pMem
+2, pOp
->p1
);
2436 sqlite3VdbeMemSetInt64(pMem
+3, pOp
->p2
);
2437 sqlite3VdbeMemSetInt64(pMem
+4, pOp
->p3
);
2438 /* pMem+5 for p4 is done last */
2439 sqlite3VdbeMemSetInt64(pMem
+6, pOp
->p5
);
2440 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
2442 char *zCom
= sqlite3VdbeDisplayComment(db
, pOp
, zP4
);
2443 sqlite3VdbeMemSetStr(pMem
+7, zCom
, -1, SQLITE_UTF8
, sqlite3_free
);
2446 sqlite3VdbeMemSetNull(pMem
+7);
2448 sqlite3VdbeMemSetStr(pMem
+5, zP4
, -1, SQLITE_UTF8
, sqlite3_free
);
2449 assert( p
->nResColumn
==8 );
2451 p
->pResultRow
= pMem
;
2452 if( db
->mallocFailed
){
2453 p
->rc
= SQLITE_NOMEM
;
2463 #endif /* SQLITE_OMIT_EXPLAIN */
2467 ** Print the SQL that was used to generate a VDBE program.
2469 void sqlite3VdbePrintSql(Vdbe
*p
){
2473 }else if( p
->nOp
>=1 ){
2474 const VdbeOp
*pOp
= &p
->aOp
[0];
2475 if( pOp
->opcode
==OP_Init
&& pOp
->p4
.z
!=0 ){
2477 while( sqlite3Isspace(*z
) ) z
++;
2480 if( z
) printf("SQL: [%s]\n", z
);
2484 #if !defined(SQLITE_OMIT_TRACE) && defined(SQLITE_ENABLE_IOTRACE)
2486 ** Print an IOTRACE message showing SQL content.
2488 void sqlite3VdbeIOTraceSql(Vdbe
*p
){
2491 if( sqlite3IoTrace
==0 ) return;
2494 if( pOp
->opcode
==OP_Init
&& pOp
->p4
.z
!=0 ){
2497 sqlite3_snprintf(sizeof(z
), z
, "%s", pOp
->p4
.z
);
2498 for(i
=0; sqlite3Isspace(z
[i
]); i
++){}
2499 for(j
=0; z
[i
]; i
++){
2500 if( sqlite3Isspace(z
[i
]) ){
2509 sqlite3IoTrace("SQL %s\n", z
);
2512 #endif /* !SQLITE_OMIT_TRACE && SQLITE_ENABLE_IOTRACE */
2514 /* An instance of this object describes bulk memory available for use
2515 ** by subcomponents of a prepared statement. Space is allocated out
2516 ** of a ReusableSpace object by the allocSpace() routine below.
2518 struct ReusableSpace
{
2519 u8
*pSpace
; /* Available memory */
2520 sqlite3_int64 nFree
; /* Bytes of available memory */
2521 sqlite3_int64 nNeeded
; /* Total bytes that could not be allocated */
2524 /* Try to allocate nByte bytes of 8-byte aligned bulk memory for pBuf
2525 ** from the ReusableSpace object. Return a pointer to the allocated
2526 ** memory on success. If insufficient memory is available in the
2527 ** ReusableSpace object, increase the ReusableSpace.nNeeded
2528 ** value by the amount needed and return NULL.
2530 ** If pBuf is not initially NULL, that means that the memory has already
2531 ** been allocated by a prior call to this routine, so just return a copy
2532 ** of pBuf and leave ReusableSpace unchanged.
2534 ** This allocator is employed to repurpose unused slots at the end of the
2535 ** opcode array of prepared state for other memory needs of the prepared
2538 static void *allocSpace(
2539 struct ReusableSpace
*p
, /* Bulk memory available for allocation */
2540 void *pBuf
, /* Pointer to a prior allocation */
2541 sqlite3_int64 nByte
/* Bytes of memory needed. */
2543 assert( EIGHT_BYTE_ALIGNMENT(p
->pSpace
) );
2545 nByte
= ROUND8P(nByte
);
2546 if( nByte
<= p
->nFree
){
2548 pBuf
= &p
->pSpace
[p
->nFree
];
2550 p
->nNeeded
+= nByte
;
2553 assert( EIGHT_BYTE_ALIGNMENT(pBuf
) );
2558 ** Rewind the VDBE back to the beginning in preparation for
2561 void sqlite3VdbeRewind(Vdbe
*p
){
2562 #if defined(SQLITE_DEBUG)
2566 assert( p
->eVdbeState
==VDBE_INIT_STATE
2567 || p
->eVdbeState
==VDBE_READY_STATE
2568 || p
->eVdbeState
==VDBE_HALT_STATE
);
2570 /* There should be at least one opcode.
2574 p
->eVdbeState
= VDBE_READY_STATE
;
2577 for(i
=0; i
<p
->nMem
; i
++){
2578 assert( p
->aMem
[i
].db
==p
->db
);
2583 p
->errorAction
= OE_Abort
;
2586 p
->minWriteFileFormat
= 255;
2588 p
->nFkConstraint
= 0;
2590 for(i
=0; i
<p
->nOp
; i
++){
2591 p
->aOp
[i
].nExec
= 0;
2592 p
->aOp
[i
].nCycle
= 0;
2598 ** Prepare a virtual machine for execution for the first time after
2599 ** creating the virtual machine. This involves things such
2600 ** as allocating registers and initializing the program counter.
2601 ** After the VDBE has be prepped, it can be executed by one or more
2602 ** calls to sqlite3VdbeExec().
2604 ** This function may be called exactly once on each virtual machine.
2605 ** After this routine is called the VM has been "packaged" and is ready
2606 ** to run. After this routine is called, further calls to
2607 ** sqlite3VdbeAddOp() functions are prohibited. This routine disconnects
2608 ** the Vdbe from the Parse object that helped generate it so that the
2609 ** the Vdbe becomes an independent entity and the Parse object can be
2612 ** Use the sqlite3VdbeRewind() procedure to restore a virtual machine back
2613 ** to its initial state after it has been run.
2615 void sqlite3VdbeMakeReady(
2616 Vdbe
*p
, /* The VDBE */
2617 Parse
*pParse
/* Parsing context */
2619 sqlite3
*db
; /* The database connection */
2620 int nVar
; /* Number of parameters */
2621 int nMem
; /* Number of VM memory registers */
2622 int nCursor
; /* Number of cursors required */
2623 int nArg
; /* Number of arguments in subprograms */
2624 int n
; /* Loop counter */
2625 struct ReusableSpace x
; /* Reusable bulk memory */
2629 assert( pParse
!=0 );
2630 assert( p
->eVdbeState
==VDBE_INIT_STATE
);
2631 assert( pParse
==p
->pParse
);
2632 p
->pVList
= pParse
->pVList
;
2635 assert( db
->mallocFailed
==0 );
2636 nVar
= pParse
->nVar
;
2637 nMem
= pParse
->nMem
;
2638 nCursor
= pParse
->nTab
;
2639 nArg
= pParse
->nMaxArg
;
2641 /* Each cursor uses a memory cell. The first cursor (cursor 0) can
2642 ** use aMem[0] which is not otherwise used by the VDBE program. Allocate
2643 ** space at the end of aMem[] for cursors 1 and greater.
2644 ** See also: allocateCursor().
2647 if( nCursor
==0 && nMem
>0 ) nMem
++; /* Space for aMem[0] even if not used */
2649 /* Figure out how much reusable memory is available at the end of the
2650 ** opcode array. This extra memory will be reallocated for other elements
2651 ** of the prepared statement.
2653 n
= ROUND8P(sizeof(Op
)*p
->nOp
); /* Bytes of opcode memory used */
2654 x
.pSpace
= &((u8
*)p
->aOp
)[n
]; /* Unused opcode memory */
2655 assert( EIGHT_BYTE_ALIGNMENT(x
.pSpace
) );
2656 x
.nFree
= ROUNDDOWN8(pParse
->szOpAlloc
- n
); /* Bytes of unused memory */
2657 assert( x
.nFree
>=0 );
2658 assert( EIGHT_BYTE_ALIGNMENT(&x
.pSpace
[x
.nFree
]) );
2660 resolveP2Values(p
, &nArg
);
2661 p
->usesStmtJournal
= (u8
)(pParse
->isMultiWrite
&& pParse
->mayAbort
);
2662 if( pParse
->explain
){
2663 if( nMem
<10 ) nMem
= 10;
2664 p
->explain
= pParse
->explain
;
2665 p
->nResColumn
= 12 - 4*p
->explain
;
2669 /* Memory for registers, parameters, cursor, etc, is allocated in one or two
2670 ** passes. On the first pass, we try to reuse unused memory at the
2671 ** end of the opcode array. If we are unable to satisfy all memory
2672 ** requirements by reusing the opcode array tail, then the second
2673 ** pass will fill in the remainder using a fresh memory allocation.
2675 ** This two-pass approach that reuses as much memory as possible from
2676 ** the leftover memory at the end of the opcode array. This can significantly
2677 ** reduce the amount of memory held by a prepared statement.
2680 p
->aMem
= allocSpace(&x
, 0, nMem
*sizeof(Mem
));
2681 p
->aVar
= allocSpace(&x
, 0, nVar
*sizeof(Mem
));
2682 p
->apArg
= allocSpace(&x
, 0, nArg
*sizeof(Mem
*));
2683 p
->apCsr
= allocSpace(&x
, 0, nCursor
*sizeof(VdbeCursor
*));
2685 x
.pSpace
= p
->pFree
= sqlite3DbMallocRawNN(db
, x
.nNeeded
);
2686 x
.nFree
= x
.nNeeded
;
2687 if( !db
->mallocFailed
){
2688 p
->aMem
= allocSpace(&x
, p
->aMem
, nMem
*sizeof(Mem
));
2689 p
->aVar
= allocSpace(&x
, p
->aVar
, nVar
*sizeof(Mem
));
2690 p
->apArg
= allocSpace(&x
, p
->apArg
, nArg
*sizeof(Mem
*));
2691 p
->apCsr
= allocSpace(&x
, p
->apCsr
, nCursor
*sizeof(VdbeCursor
*));
2695 if( db
->mallocFailed
){
2700 p
->nCursor
= nCursor
;
2701 p
->nVar
= (ynVar
)nVar
;
2702 initMemArray(p
->aVar
, nVar
, db
, MEM_Null
);
2704 initMemArray(p
->aMem
, nMem
, db
, MEM_Undefined
);
2705 memset(p
->apCsr
, 0, nCursor
*sizeof(VdbeCursor
*));
2707 sqlite3VdbeRewind(p
);
2711 ** Close a VDBE cursor and release all the resources that cursor
2714 void sqlite3VdbeFreeCursor(Vdbe
*p
, VdbeCursor
*pCx
){
2715 if( pCx
) sqlite3VdbeFreeCursorNN(p
,pCx
);
2717 static SQLITE_NOINLINE
void freeCursorWithCache(Vdbe
*p
, VdbeCursor
*pCx
){
2718 VdbeTxtBlbCache
*pCache
= pCx
->pCache
;
2719 assert( pCx
->colCache
);
2722 if( pCache
->pCValue
){
2723 sqlite3RCStrUnref(pCache
->pCValue
);
2724 pCache
->pCValue
= 0;
2726 sqlite3DbFree(p
->db
, pCache
);
2727 sqlite3VdbeFreeCursorNN(p
, pCx
);
2729 void sqlite3VdbeFreeCursorNN(Vdbe
*p
, VdbeCursor
*pCx
){
2730 if( pCx
->colCache
){
2731 freeCursorWithCache(p
, pCx
);
2734 switch( pCx
->eCurType
){
2735 case CURTYPE_SORTER
: {
2736 sqlite3VdbeSorterClose(p
->db
, pCx
);
2739 case CURTYPE_BTREE
: {
2740 assert( pCx
->uc
.pCursor
!=0 );
2741 sqlite3BtreeCloseCursor(pCx
->uc
.pCursor
);
2744 #ifndef SQLITE_OMIT_VIRTUALTABLE
2745 case CURTYPE_VTAB
: {
2746 sqlite3_vtab_cursor
*pVCur
= pCx
->uc
.pVCur
;
2747 const sqlite3_module
*pModule
= pVCur
->pVtab
->pModule
;
2748 assert( pVCur
->pVtab
->nRef
>0 );
2749 pVCur
->pVtab
->nRef
--;
2750 pModule
->xClose(pVCur
);
2758 ** Close all cursors in the current frame.
2760 static void closeCursorsInFrame(Vdbe
*p
){
2762 for(i
=0; i
<p
->nCursor
; i
++){
2763 VdbeCursor
*pC
= p
->apCsr
[i
];
2765 sqlite3VdbeFreeCursorNN(p
, pC
);
2772 ** Copy the values stored in the VdbeFrame structure to its Vdbe. This
2773 ** is used, for example, when a trigger sub-program is halted to restore
2774 ** control to the main program.
2776 int sqlite3VdbeFrameRestore(VdbeFrame
*pFrame
){
2777 Vdbe
*v
= pFrame
->v
;
2778 closeCursorsInFrame(v
);
2779 v
->aOp
= pFrame
->aOp
;
2780 v
->nOp
= pFrame
->nOp
;
2781 v
->aMem
= pFrame
->aMem
;
2782 v
->nMem
= pFrame
->nMem
;
2783 v
->apCsr
= pFrame
->apCsr
;
2784 v
->nCursor
= pFrame
->nCursor
;
2785 v
->db
->lastRowid
= pFrame
->lastRowid
;
2786 v
->nChange
= pFrame
->nChange
;
2787 v
->db
->nChange
= pFrame
->nDbChange
;
2788 sqlite3VdbeDeleteAuxData(v
->db
, &v
->pAuxData
, -1, 0);
2789 v
->pAuxData
= pFrame
->pAuxData
;
2790 pFrame
->pAuxData
= 0;
2795 ** Close all cursors.
2797 ** Also release any dynamic memory held by the VM in the Vdbe.aMem memory
2798 ** cell array. This is necessary as the memory cell array may contain
2799 ** pointers to VdbeFrame objects, which may in turn contain pointers to
2802 static void closeAllCursors(Vdbe
*p
){
2805 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
2806 sqlite3VdbeFrameRestore(pFrame
);
2810 assert( p
->nFrame
==0 );
2811 closeCursorsInFrame(p
);
2812 releaseMemArray(p
->aMem
, p
->nMem
);
2813 while( p
->pDelFrame
){
2814 VdbeFrame
*pDel
= p
->pDelFrame
;
2815 p
->pDelFrame
= pDel
->pParent
;
2816 sqlite3VdbeFrameDelete(pDel
);
2819 /* Delete any auxdata allocations made by the VM */
2820 if( p
->pAuxData
) sqlite3VdbeDeleteAuxData(p
->db
, &p
->pAuxData
, -1, 0);
2821 assert( p
->pAuxData
==0 );
2825 ** Set the number of result columns that will be returned by this SQL
2826 ** statement. This is now set at compile time, rather than during
2827 ** execution of the vdbe program so that sqlite3_column_count() can
2828 ** be called on an SQL statement before sqlite3_step().
2830 void sqlite3VdbeSetNumCols(Vdbe
*p
, int nResColumn
){
2832 sqlite3
*db
= p
->db
;
2835 releaseMemArray(p
->aColName
, p
->nResAlloc
*COLNAME_N
);
2836 sqlite3DbFree(db
, p
->aColName
);
2838 n
= nResColumn
*COLNAME_N
;
2839 p
->nResColumn
= p
->nResAlloc
= (u16
)nResColumn
;
2840 p
->aColName
= (Mem
*)sqlite3DbMallocRawNN(db
, sizeof(Mem
)*n
);
2841 if( p
->aColName
==0 ) return;
2842 initMemArray(p
->aColName
, n
, db
, MEM_Null
);
2846 ** Set the name of the idx'th column to be returned by the SQL statement.
2847 ** zName must be a pointer to a nul terminated string.
2849 ** This call must be made after a call to sqlite3VdbeSetNumCols().
2851 ** The final parameter, xDel, must be one of SQLITE_DYNAMIC, SQLITE_STATIC
2852 ** or SQLITE_TRANSIENT. If it is SQLITE_DYNAMIC, then the buffer pointed
2853 ** to by zName will be freed by sqlite3DbFree() when the vdbe is destroyed.
2855 int sqlite3VdbeSetColName(
2856 Vdbe
*p
, /* Vdbe being configured */
2857 int idx
, /* Index of column zName applies to */
2858 int var
, /* One of the COLNAME_* constants */
2859 const char *zName
, /* Pointer to buffer containing name */
2860 void (*xDel
)(void*) /* Memory management strategy for zName */
2864 assert( idx
<p
->nResAlloc
);
2865 assert( var
<COLNAME_N
);
2866 if( p
->db
->mallocFailed
){
2867 assert( !zName
|| xDel
!=SQLITE_DYNAMIC
);
2868 return SQLITE_NOMEM_BKPT
;
2870 assert( p
->aColName
!=0 );
2871 pColName
= &(p
->aColName
[idx
+var
*p
->nResAlloc
]);
2872 rc
= sqlite3VdbeMemSetStr(pColName
, zName
, -1, SQLITE_UTF8
, xDel
);
2873 assert( rc
!=0 || !zName
|| (pColName
->flags
&MEM_Term
)!=0 );
2878 ** A read or write transaction may or may not be active on database handle
2879 ** db. If a transaction is active, commit it. If there is a
2880 ** write-transaction spanning more than one database file, this routine
2881 ** takes care of the super-journal trickery.
2883 static int vdbeCommit(sqlite3
*db
, Vdbe
*p
){
2885 int nTrans
= 0; /* Number of databases with an active write-transaction
2886 ** that are candidates for a two-phase commit using a
2889 int needXcommit
= 0;
2891 #ifdef SQLITE_OMIT_VIRTUALTABLE
2892 /* With this option, sqlite3VtabSync() is defined to be simply
2893 ** SQLITE_OK so p is not used.
2895 UNUSED_PARAMETER(p
);
2898 /* Before doing anything else, call the xSync() callback for any
2899 ** virtual module tables written in this transaction. This has to
2900 ** be done before determining whether a super-journal file is
2901 ** required, as an xSync() callback may add an attached database
2902 ** to the transaction.
2904 rc
= sqlite3VtabSync(db
, p
);
2906 /* This loop determines (a) if the commit hook should be invoked and
2907 ** (b) how many database files have open write transactions, not
2908 ** including the temp database. (b) is important because if more than
2909 ** one database file has an open write transaction, a super-journal
2910 ** file is required for an atomic commit.
2912 for(i
=0; rc
==SQLITE_OK
&& i
<db
->nDb
; i
++){
2913 Btree
*pBt
= db
->aDb
[i
].pBt
;
2914 if( sqlite3BtreeTxnState(pBt
)==SQLITE_TXN_WRITE
){
2915 /* Whether or not a database might need a super-journal depends upon
2916 ** its journal mode (among other things). This matrix determines which
2917 ** journal modes use a super-journal and which do not */
2918 static const u8 aMJNeeded
[] = {
2926 Pager
*pPager
; /* Pager associated with pBt */
2928 sqlite3BtreeEnter(pBt
);
2929 pPager
= sqlite3BtreePager(pBt
);
2930 if( db
->aDb
[i
].safety_level
!=PAGER_SYNCHRONOUS_OFF
2931 && aMJNeeded
[sqlite3PagerGetJournalMode(pPager
)]
2932 && sqlite3PagerIsMemdb(pPager
)==0
2937 rc
= sqlite3PagerExclusiveLock(pPager
);
2938 sqlite3BtreeLeave(pBt
);
2941 if( rc
!=SQLITE_OK
){
2945 /* If there are any write-transactions at all, invoke the commit hook */
2946 if( needXcommit
&& db
->xCommitCallback
){
2947 rc
= db
->xCommitCallback(db
->pCommitArg
);
2949 return SQLITE_CONSTRAINT_COMMITHOOK
;
2953 /* The simple case - no more than one database file (not counting the
2954 ** TEMP database) has a transaction active. There is no need for the
2957 ** If the return value of sqlite3BtreeGetFilename() is a zero length
2958 ** string, it means the main database is :memory: or a temp file. In
2959 ** that case we do not support atomic multi-file commits, so use the
2960 ** simple case then too.
2962 if( 0==sqlite3Strlen30(sqlite3BtreeGetFilename(db
->aDb
[0].pBt
))
2965 for(i
=0; rc
==SQLITE_OK
&& i
<db
->nDb
; i
++){
2966 Btree
*pBt
= db
->aDb
[i
].pBt
;
2968 rc
= sqlite3BtreeCommitPhaseOne(pBt
, 0);
2972 /* Do the commit only if all databases successfully complete phase 1.
2973 ** If one of the BtreeCommitPhaseOne() calls fails, this indicates an
2974 ** IO error while deleting or truncating a journal file. It is unlikely,
2975 ** but could happen. In this case abandon processing and return the error.
2977 for(i
=0; rc
==SQLITE_OK
&& i
<db
->nDb
; i
++){
2978 Btree
*pBt
= db
->aDb
[i
].pBt
;
2980 rc
= sqlite3BtreeCommitPhaseTwo(pBt
, 0);
2983 if( rc
==SQLITE_OK
){
2984 sqlite3VtabCommit(db
);
2988 /* The complex case - There is a multi-file write-transaction active.
2989 ** This requires a super-journal file to ensure the transaction is
2990 ** committed atomically.
2992 #ifndef SQLITE_OMIT_DISKIO
2994 sqlite3_vfs
*pVfs
= db
->pVfs
;
2995 char *zSuper
= 0; /* File-name for the super-journal */
2996 char const *zMainFile
= sqlite3BtreeGetFilename(db
->aDb
[0].pBt
);
2997 sqlite3_file
*pSuperJrnl
= 0;
3003 /* Select a super-journal file name */
3004 nMainFile
= sqlite3Strlen30(zMainFile
);
3005 zSuper
= sqlite3MPrintf(db
, "%.4c%s%.16c", 0,zMainFile
,0);
3006 if( zSuper
==0 ) return SQLITE_NOMEM_BKPT
;
3011 if( retryCount
>100 ){
3012 sqlite3_log(SQLITE_FULL
, "MJ delete: %s", zSuper
);
3013 sqlite3OsDelete(pVfs
, zSuper
, 0);
3015 }else if( retryCount
==1 ){
3016 sqlite3_log(SQLITE_FULL
, "MJ collide: %s", zSuper
);
3020 sqlite3_randomness(sizeof(iRandom
), &iRandom
);
3021 sqlite3_snprintf(13, &zSuper
[nMainFile
], "-mj%06X9%02X",
3022 (iRandom
>>8)&0xffffff, iRandom
&0xff);
3023 /* The antipenultimate character of the super-journal name must
3024 ** be "9" to avoid name collisions when using 8+3 filenames. */
3025 assert( zSuper
[sqlite3Strlen30(zSuper
)-3]=='9' );
3026 sqlite3FileSuffix3(zMainFile
, zSuper
);
3027 rc
= sqlite3OsAccess(pVfs
, zSuper
, SQLITE_ACCESS_EXISTS
, &res
);
3028 }while( rc
==SQLITE_OK
&& res
);
3029 if( rc
==SQLITE_OK
){
3030 /* Open the super-journal. */
3031 rc
= sqlite3OsOpenMalloc(pVfs
, zSuper
, &pSuperJrnl
,
3032 SQLITE_OPEN_READWRITE
|SQLITE_OPEN_CREATE
|
3033 SQLITE_OPEN_EXCLUSIVE
|SQLITE_OPEN_SUPER_JOURNAL
, 0
3036 if( rc
!=SQLITE_OK
){
3037 sqlite3DbFree(db
, zSuper
-4);
3041 /* Write the name of each database file in the transaction into the new
3042 ** super-journal file. If an error occurs at this point close
3043 ** and delete the super-journal file. All the individual journal files
3044 ** still have 'null' as the super-journal pointer, so they will roll
3045 ** back independently if a failure occurs.
3047 for(i
=0; i
<db
->nDb
; i
++){
3048 Btree
*pBt
= db
->aDb
[i
].pBt
;
3049 if( sqlite3BtreeTxnState(pBt
)==SQLITE_TXN_WRITE
){
3050 char const *zFile
= sqlite3BtreeGetJournalname(pBt
);
3052 continue; /* Ignore TEMP and :memory: databases */
3054 assert( zFile
[0]!=0 );
3055 rc
= sqlite3OsWrite(pSuperJrnl
, zFile
, sqlite3Strlen30(zFile
)+1,offset
);
3056 offset
+= sqlite3Strlen30(zFile
)+1;
3057 if( rc
!=SQLITE_OK
){
3058 sqlite3OsCloseFree(pSuperJrnl
);
3059 sqlite3OsDelete(pVfs
, zSuper
, 0);
3060 sqlite3DbFree(db
, zSuper
-4);
3066 /* Sync the super-journal file. If the IOCAP_SEQUENTIAL device
3067 ** flag is set this is not required.
3069 if( 0==(sqlite3OsDeviceCharacteristics(pSuperJrnl
)&SQLITE_IOCAP_SEQUENTIAL
)
3070 && SQLITE_OK
!=(rc
= sqlite3OsSync(pSuperJrnl
, SQLITE_SYNC_NORMAL
))
3072 sqlite3OsCloseFree(pSuperJrnl
);
3073 sqlite3OsDelete(pVfs
, zSuper
, 0);
3074 sqlite3DbFree(db
, zSuper
-4);
3078 /* Sync all the db files involved in the transaction. The same call
3079 ** sets the super-journal pointer in each individual journal. If
3080 ** an error occurs here, do not delete the super-journal file.
3082 ** If the error occurs during the first call to
3083 ** sqlite3BtreeCommitPhaseOne(), then there is a chance that the
3084 ** super-journal file will be orphaned. But we cannot delete it,
3085 ** in case the super-journal file name was written into the journal
3086 ** file before the failure occurred.
3088 for(i
=0; rc
==SQLITE_OK
&& i
<db
->nDb
; i
++){
3089 Btree
*pBt
= db
->aDb
[i
].pBt
;
3091 rc
= sqlite3BtreeCommitPhaseOne(pBt
, zSuper
);
3094 sqlite3OsCloseFree(pSuperJrnl
);
3095 assert( rc
!=SQLITE_BUSY
);
3096 if( rc
!=SQLITE_OK
){
3097 sqlite3DbFree(db
, zSuper
-4);
3101 /* Delete the super-journal file. This commits the transaction. After
3102 ** doing this the directory is synced again before any individual
3103 ** transaction files are deleted.
3105 rc
= sqlite3OsDelete(pVfs
, zSuper
, 1);
3106 sqlite3DbFree(db
, zSuper
-4);
3112 /* All files and directories have already been synced, so the following
3113 ** calls to sqlite3BtreeCommitPhaseTwo() are only closing files and
3114 ** deleting or truncating journals. If something goes wrong while
3115 ** this is happening we don't really care. The integrity of the
3116 ** transaction is already guaranteed, but some stray 'cold' journals
3117 ** may be lying around. Returning an error code won't help matters.
3119 disable_simulated_io_errors();
3120 sqlite3BeginBenignMalloc();
3121 for(i
=0; i
<db
->nDb
; i
++){
3122 Btree
*pBt
= db
->aDb
[i
].pBt
;
3124 sqlite3BtreeCommitPhaseTwo(pBt
, 1);
3127 sqlite3EndBenignMalloc();
3128 enable_simulated_io_errors();
3130 sqlite3VtabCommit(db
);
3138 ** This routine checks that the sqlite3.nVdbeActive count variable
3139 ** matches the number of vdbe's in the list sqlite3.pVdbe that are
3140 ** currently active. An assertion fails if the two counts do not match.
3141 ** This is an internal self-check only - it is not an essential processing
3144 ** This is a no-op if NDEBUG is defined.
3147 static void checkActiveVdbeCnt(sqlite3
*db
){
3154 if( sqlite3_stmt_busy((sqlite3_stmt
*)p
) ){
3156 if( p
->readOnly
==0 ) nWrite
++;
3157 if( p
->bIsReader
) nRead
++;
3161 assert( cnt
==db
->nVdbeActive
);
3162 assert( nWrite
==db
->nVdbeWrite
);
3163 assert( nRead
==db
->nVdbeRead
);
3166 #define checkActiveVdbeCnt(x)
3170 ** If the Vdbe passed as the first argument opened a statement-transaction,
3171 ** close it now. Argument eOp must be either SAVEPOINT_ROLLBACK or
3172 ** SAVEPOINT_RELEASE. If it is SAVEPOINT_ROLLBACK, then the statement
3173 ** transaction is rolled back. If eOp is SAVEPOINT_RELEASE, then the
3174 ** statement transaction is committed.
3176 ** If an IO error occurs, an SQLITE_IOERR_XXX error code is returned.
3177 ** Otherwise SQLITE_OK.
3179 static SQLITE_NOINLINE
int vdbeCloseStatement(Vdbe
*p
, int eOp
){
3180 sqlite3
*const db
= p
->db
;
3183 const int iSavepoint
= p
->iStatement
-1;
3185 assert( eOp
==SAVEPOINT_ROLLBACK
|| eOp
==SAVEPOINT_RELEASE
);
3186 assert( db
->nStatement
>0 );
3187 assert( p
->iStatement
==(db
->nStatement
+db
->nSavepoint
) );
3189 for(i
=0; i
<db
->nDb
; i
++){
3190 int rc2
= SQLITE_OK
;
3191 Btree
*pBt
= db
->aDb
[i
].pBt
;
3193 if( eOp
==SAVEPOINT_ROLLBACK
){
3194 rc2
= sqlite3BtreeSavepoint(pBt
, SAVEPOINT_ROLLBACK
, iSavepoint
);
3196 if( rc2
==SQLITE_OK
){
3197 rc2
= sqlite3BtreeSavepoint(pBt
, SAVEPOINT_RELEASE
, iSavepoint
);
3199 if( rc
==SQLITE_OK
){
3207 if( rc
==SQLITE_OK
){
3208 if( eOp
==SAVEPOINT_ROLLBACK
){
3209 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_ROLLBACK
, iSavepoint
);
3211 if( rc
==SQLITE_OK
){
3212 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_RELEASE
, iSavepoint
);
3216 /* If the statement transaction is being rolled back, also restore the
3217 ** database handles deferred constraint counter to the value it had when
3218 ** the statement transaction was opened. */
3219 if( eOp
==SAVEPOINT_ROLLBACK
){
3220 db
->nDeferredCons
= p
->nStmtDefCons
;
3221 db
->nDeferredImmCons
= p
->nStmtDefImmCons
;
3225 int sqlite3VdbeCloseStatement(Vdbe
*p
, int eOp
){
3226 if( p
->db
->nStatement
&& p
->iStatement
){
3227 return vdbeCloseStatement(p
, eOp
);
3234 ** This function is called when a transaction opened by the database
3235 ** handle associated with the VM passed as an argument is about to be
3236 ** committed. If there are outstanding deferred foreign key constraint
3237 ** violations, return SQLITE_ERROR. Otherwise, SQLITE_OK.
3239 ** If there are outstanding FK violations and this function returns
3240 ** SQLITE_ERROR, set the result of the VM to SQLITE_CONSTRAINT_FOREIGNKEY
3241 ** and write an error message to it. Then return SQLITE_ERROR.
3243 #ifndef SQLITE_OMIT_FOREIGN_KEY
3244 int sqlite3VdbeCheckFk(Vdbe
*p
, int deferred
){
3245 sqlite3
*db
= p
->db
;
3246 if( (deferred
&& (db
->nDeferredCons
+db
->nDeferredImmCons
)>0)
3247 || (!deferred
&& p
->nFkConstraint
>0)
3249 p
->rc
= SQLITE_CONSTRAINT_FOREIGNKEY
;
3250 p
->errorAction
= OE_Abort
;
3251 sqlite3VdbeError(p
, "FOREIGN KEY constraint failed");
3252 if( (p
->prepFlags
& SQLITE_PREPARE_SAVESQL
)==0 ) return SQLITE_ERROR
;
3253 return SQLITE_CONSTRAINT_FOREIGNKEY
;
3260 ** This routine is called the when a VDBE tries to halt. If the VDBE
3261 ** has made changes and is in autocommit mode, then commit those
3262 ** changes. If a rollback is needed, then do the rollback.
3264 ** This routine is the only way to move the sqlite3eOpenState of a VM from
3265 ** SQLITE_STATE_RUN to SQLITE_STATE_HALT. It is harmless to
3266 ** call this on a VM that is in the SQLITE_STATE_HALT state.
3268 ** Return an error code. If the commit could not complete because of
3269 ** lock contention, return SQLITE_BUSY. If SQLITE_BUSY is returned, it
3270 ** means the close did not happen and needs to be repeated.
3272 int sqlite3VdbeHalt(Vdbe
*p
){
3273 int rc
; /* Used to store transient return codes */
3274 sqlite3
*db
= p
->db
;
3276 /* This function contains the logic that determines if a statement or
3277 ** transaction will be committed or rolled back as a result of the
3278 ** execution of this virtual machine.
3280 ** If any of the following errors occur:
3287 ** Then the internal cache might have been left in an inconsistent
3288 ** state. We need to rollback the statement transaction, if there is
3289 ** one, or the complete transaction if there is no statement transaction.
3292 assert( p
->eVdbeState
==VDBE_RUN_STATE
);
3293 if( db
->mallocFailed
){
3294 p
->rc
= SQLITE_NOMEM_BKPT
;
3297 checkActiveVdbeCnt(db
);
3299 /* No commit or rollback needed if the program never started or if the
3300 ** SQL statement does not read or write a database file. */
3302 int mrc
; /* Primary error code from p->rc */
3303 int eStatementOp
= 0;
3304 int isSpecialError
; /* Set to true if a 'special' error */
3306 /* Lock all btrees used by the statement */
3307 sqlite3VdbeEnter(p
);
3309 /* Check for one of the special errors */
3312 isSpecialError
= mrc
==SQLITE_NOMEM
3313 || mrc
==SQLITE_IOERR
3314 || mrc
==SQLITE_INTERRUPT
3315 || mrc
==SQLITE_FULL
;
3317 mrc
= isSpecialError
= 0;
3319 if( isSpecialError
){
3320 /* If the query was read-only and the error code is SQLITE_INTERRUPT,
3321 ** no rollback is necessary. Otherwise, at least a savepoint
3322 ** transaction must be rolled back to restore the database to a
3323 ** consistent state.
3325 ** Even if the statement is read-only, it is important to perform
3326 ** a statement or transaction rollback operation. If the error
3327 ** occurred while writing to the journal, sub-journal or database
3328 ** file as part of an effort to free up cache space (see function
3329 ** pagerStress() in pager.c), the rollback is required to restore
3330 ** the pager to a consistent state.
3332 if( !p
->readOnly
|| mrc
!=SQLITE_INTERRUPT
){
3333 if( (mrc
==SQLITE_NOMEM
|| mrc
==SQLITE_FULL
) && p
->usesStmtJournal
){
3334 eStatementOp
= SAVEPOINT_ROLLBACK
;
3336 /* We are forced to roll back the active transaction. Before doing
3337 ** so, abort any other statements this handle currently has active.
3339 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
3340 sqlite3CloseSavepoints(db
);
3347 /* Check for immediate foreign key violations. */
3348 if( p
->rc
==SQLITE_OK
|| (p
->errorAction
==OE_Fail
&& !isSpecialError
) ){
3349 sqlite3VdbeCheckFk(p
, 0);
3352 /* If the auto-commit flag is set and this is the only active writer
3353 ** VM, then we do either a commit or rollback of the current transaction.
3355 ** Note: This block also runs if one of the special errors handled
3356 ** above has occurred.
3358 if( !sqlite3VtabInSync(db
)
3360 && db
->nVdbeWrite
==(p
->readOnly
==0)
3362 if( p
->rc
==SQLITE_OK
|| (p
->errorAction
==OE_Fail
&& !isSpecialError
) ){
3363 rc
= sqlite3VdbeCheckFk(p
, 1);
3364 if( rc
!=SQLITE_OK
){
3365 if( NEVER(p
->readOnly
) ){
3366 sqlite3VdbeLeave(p
);
3367 return SQLITE_ERROR
;
3369 rc
= SQLITE_CONSTRAINT_FOREIGNKEY
;
3370 }else if( db
->flags
& SQLITE_CorruptRdOnly
){
3371 rc
= SQLITE_CORRUPT
;
3372 db
->flags
&= ~SQLITE_CorruptRdOnly
;
3374 /* The auto-commit flag is true, the vdbe program was successful
3375 ** or hit an 'OR FAIL' constraint and there are no deferred foreign
3376 ** key constraints to hold up the transaction. This means a commit
3378 rc
= vdbeCommit(db
, p
);
3380 if( rc
==SQLITE_BUSY
&& p
->readOnly
){
3381 sqlite3VdbeLeave(p
);
3383 }else if( rc
!=SQLITE_OK
){
3384 sqlite3SystemError(db
, rc
);
3386 sqlite3RollbackAll(db
, SQLITE_OK
);
3389 db
->nDeferredCons
= 0;
3390 db
->nDeferredImmCons
= 0;
3391 db
->flags
&= ~(u64
)SQLITE_DeferFKs
;
3392 sqlite3CommitInternalChanges(db
);
3394 }else if( p
->rc
==SQLITE_SCHEMA
&& db
->nVdbeActive
>1 ){
3397 sqlite3RollbackAll(db
, SQLITE_OK
);
3401 }else if( eStatementOp
==0 ){
3402 if( p
->rc
==SQLITE_OK
|| p
->errorAction
==OE_Fail
){
3403 eStatementOp
= SAVEPOINT_RELEASE
;
3404 }else if( p
->errorAction
==OE_Abort
){
3405 eStatementOp
= SAVEPOINT_ROLLBACK
;
3407 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
3408 sqlite3CloseSavepoints(db
);
3414 /* If eStatementOp is non-zero, then a statement transaction needs to
3415 ** be committed or rolled back. Call sqlite3VdbeCloseStatement() to
3416 ** do so. If this operation returns an error, and the current statement
3417 ** error code is SQLITE_OK or SQLITE_CONSTRAINT, then promote the
3418 ** current statement error code.
3421 rc
= sqlite3VdbeCloseStatement(p
, eStatementOp
);
3423 if( p
->rc
==SQLITE_OK
|| (p
->rc
&0xff)==SQLITE_CONSTRAINT
){
3425 sqlite3DbFree(db
, p
->zErrMsg
);
3428 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
3429 sqlite3CloseSavepoints(db
);
3435 /* If this was an INSERT, UPDATE or DELETE and no statement transaction
3436 ** has been rolled back, update the database connection change-counter.
3438 if( p
->changeCntOn
){
3439 if( eStatementOp
!=SAVEPOINT_ROLLBACK
){
3440 sqlite3VdbeSetChanges(db
, p
->nChange
);
3442 sqlite3VdbeSetChanges(db
, 0);
3447 /* Release the locks */
3448 sqlite3VdbeLeave(p
);
3451 /* We have successfully halted and closed the VM. Record this fact. */
3453 if( !p
->readOnly
) db
->nVdbeWrite
--;
3454 if( p
->bIsReader
) db
->nVdbeRead
--;
3455 assert( db
->nVdbeActive
>=db
->nVdbeRead
);
3456 assert( db
->nVdbeRead
>=db
->nVdbeWrite
);
3457 assert( db
->nVdbeWrite
>=0 );
3458 p
->eVdbeState
= VDBE_HALT_STATE
;
3459 checkActiveVdbeCnt(db
);
3460 if( db
->mallocFailed
){
3461 p
->rc
= SQLITE_NOMEM_BKPT
;
3464 /* If the auto-commit flag is set to true, then any locks that were held
3465 ** by connection db have now been released. Call sqlite3ConnectionUnlocked()
3466 ** to invoke any required unlock-notify callbacks.
3468 if( db
->autoCommit
){
3469 sqlite3ConnectionUnlocked(db
);
3472 assert( db
->nVdbeActive
>0 || db
->autoCommit
==0 || db
->nStatement
==0 );
3473 return (p
->rc
==SQLITE_BUSY
? SQLITE_BUSY
: SQLITE_OK
);
3478 ** Each VDBE holds the result of the most recent sqlite3_step() call
3479 ** in p->rc. This routine sets that result back to SQLITE_OK.
3481 void sqlite3VdbeResetStepResult(Vdbe
*p
){
3486 ** Copy the error code and error message belonging to the VDBE passed
3487 ** as the first argument to its database handle (so that they will be
3488 ** returned by calls to sqlite3_errcode() and sqlite3_errmsg()).
3490 ** This function does not clear the VDBE error code or message, just
3491 ** copies them to the database handle.
3493 int sqlite3VdbeTransferError(Vdbe
*p
){
3494 sqlite3
*db
= p
->db
;
3497 db
->bBenignMalloc
++;
3498 sqlite3BeginBenignMalloc();
3499 if( db
->pErr
==0 ) db
->pErr
= sqlite3ValueNew(db
);
3500 sqlite3ValueSetStr(db
->pErr
, -1, p
->zErrMsg
, SQLITE_UTF8
, SQLITE_TRANSIENT
);
3501 sqlite3EndBenignMalloc();
3502 db
->bBenignMalloc
--;
3503 }else if( db
->pErr
){
3504 sqlite3ValueSetNull(db
->pErr
);
3507 db
->errByteOffset
= -1;
3511 #ifdef SQLITE_ENABLE_SQLLOG
3513 ** If an SQLITE_CONFIG_SQLLOG hook is registered and the VM has been run,
3516 static void vdbeInvokeSqllog(Vdbe
*v
){
3517 if( sqlite3GlobalConfig
.xSqllog
&& v
->rc
==SQLITE_OK
&& v
->zSql
&& v
->pc
>=0 ){
3518 char *zExpanded
= sqlite3VdbeExpandSql(v
, v
->zSql
);
3519 assert( v
->db
->init
.busy
==0 );
3521 sqlite3GlobalConfig
.xSqllog(
3522 sqlite3GlobalConfig
.pSqllogArg
, v
->db
, zExpanded
, 1
3524 sqlite3DbFree(v
->db
, zExpanded
);
3529 # define vdbeInvokeSqllog(x)
3533 ** Clean up a VDBE after execution but do not delete the VDBE just yet.
3534 ** Write any error messages into *pzErrMsg. Return the result code.
3536 ** After this routine is run, the VDBE should be ready to be executed
3539 ** To look at it another way, this routine resets the state of the
3540 ** virtual machine from VDBE_RUN_STATE or VDBE_HALT_STATE back to
3541 ** VDBE_READY_STATE.
3543 int sqlite3VdbeReset(Vdbe
*p
){
3544 #if defined(SQLITE_DEBUG) || defined(VDBE_PROFILE)
3551 /* If the VM did not run to completion or if it encountered an
3552 ** error, then it might not have been halted properly. So halt
3555 if( p
->eVdbeState
==VDBE_RUN_STATE
) sqlite3VdbeHalt(p
);
3557 /* If the VDBE has been run even partially, then transfer the error code
3558 ** and error message from the VDBE into the main database structure. But
3559 ** if the VDBE has just been set to run but has not actually executed any
3560 ** instructions yet, leave the main database error information unchanged.
3563 vdbeInvokeSqllog(p
);
3564 if( db
->pErr
|| p
->zErrMsg
){
3565 sqlite3VdbeTransferError(p
);
3567 db
->errCode
= p
->rc
;
3571 /* Reset register contents and reclaim error message memory.
3574 /* Execute assert() statements to ensure that the Vdbe.apCsr[] and
3575 ** Vdbe.aMem[] arrays have already been cleaned up. */
3576 if( p
->apCsr
) for(i
=0; i
<p
->nCursor
; i
++) assert( p
->apCsr
[i
]==0 );
3578 for(i
=0; i
<p
->nMem
; i
++) assert( p
->aMem
[i
].flags
==MEM_Undefined
);
3582 sqlite3DbFree(db
, p
->zErrMsg
);
3590 /* Save profiling information from this VDBE run.
3594 FILE *out
= fopen("vdbe_profile.out", "a");
3596 fprintf(out
, "---- ");
3597 for(i
=0; i
<p
->nOp
; i
++){
3598 fprintf(out
, "%02x", p
->aOp
[i
].opcode
);
3603 fprintf(out
, "-- ");
3604 for(i
=0; (c
= p
->zSql
[i
])!=0; i
++){
3605 if( pc
=='\n' ) fprintf(out
, "-- ");
3609 if( pc
!='\n' ) fprintf(out
, "\n");
3611 for(i
=0; i
<p
->nOp
; i
++){
3613 i64 cnt
= p
->aOp
[i
].nExec
;
3614 i64 cycles
= p
->aOp
[i
].nCycle
;
3615 sqlite3_snprintf(sizeof(zHdr
), zHdr
, "%6u %12llu %8llu ",
3618 cnt
>0 ? cycles
/cnt
: 0
3620 fprintf(out
, "%s", zHdr
);
3621 sqlite3VdbePrintOp(out
, i
, &p
->aOp
[i
]);
3627 return p
->rc
& db
->errMask
;
3631 ** Clean up and delete a VDBE after execution. Return an integer which is
3632 ** the result code. Write any error message text into *pzErrMsg.
3634 int sqlite3VdbeFinalize(Vdbe
*p
){
3636 assert( VDBE_RUN_STATE
>VDBE_READY_STATE
);
3637 assert( VDBE_HALT_STATE
>VDBE_READY_STATE
);
3638 assert( VDBE_INIT_STATE
<VDBE_READY_STATE
);
3639 if( p
->eVdbeState
>=VDBE_READY_STATE
){
3640 rc
= sqlite3VdbeReset(p
);
3641 assert( (rc
& p
->db
->errMask
)==rc
);
3643 sqlite3VdbeDelete(p
);
3648 ** If parameter iOp is less than zero, then invoke the destructor for
3649 ** all auxiliary data pointers currently cached by the VM passed as
3650 ** the first argument.
3652 ** Or, if iOp is greater than or equal to zero, then the destructor is
3653 ** only invoked for those auxiliary data pointers created by the user
3654 ** function invoked by the OP_Function opcode at instruction iOp of
3655 ** VM pVdbe, and only then if:
3657 ** * the associated function parameter is the 32nd or later (counting
3658 ** from left to right), or
3660 ** * the corresponding bit in argument mask is clear (where the first
3661 ** function parameter corresponds to bit 0 etc.).
3663 void sqlite3VdbeDeleteAuxData(sqlite3
*db
, AuxData
**pp
, int iOp
, int mask
){
3665 AuxData
*pAux
= *pp
;
3667 || (pAux
->iAuxOp
==iOp
3669 && (pAux
->iAuxArg
>31 || !(mask
& MASKBIT32(pAux
->iAuxArg
))))
3671 testcase( pAux
->iAuxArg
==31 );
3672 if( pAux
->xDeleteAux
){
3673 pAux
->xDeleteAux(pAux
->pAux
);
3675 *pp
= pAux
->pNextAux
;
3676 sqlite3DbFree(db
, pAux
);
3678 pp
= &pAux
->pNextAux
;
3684 ** Free all memory associated with the Vdbe passed as the second argument,
3685 ** except for object itself, which is preserved.
3687 ** The difference between this function and sqlite3VdbeDelete() is that
3688 ** VdbeDelete() also unlinks the Vdbe from the list of VMs associated with
3689 ** the database connection and frees the object itself.
3691 static void sqlite3VdbeClearObject(sqlite3
*db
, Vdbe
*p
){
3692 SubProgram
*pSub
, *pNext
;
3694 assert( p
->db
==0 || p
->db
==db
);
3696 releaseMemArray(p
->aColName
, p
->nResAlloc
*COLNAME_N
);
3697 sqlite3DbNNFreeNN(db
, p
->aColName
);
3699 for(pSub
=p
->pProgram
; pSub
; pSub
=pNext
){
3700 pNext
= pSub
->pNext
;
3701 vdbeFreeOpArray(db
, pSub
->aOp
, pSub
->nOp
);
3702 sqlite3DbFree(db
, pSub
);
3704 if( p
->eVdbeState
!=VDBE_INIT_STATE
){
3705 releaseMemArray(p
->aVar
, p
->nVar
);
3706 if( p
->pVList
) sqlite3DbNNFreeNN(db
, p
->pVList
);
3707 if( p
->pFree
) sqlite3DbNNFreeNN(db
, p
->pFree
);
3709 vdbeFreeOpArray(db
, p
->aOp
, p
->nOp
);
3710 if( p
->zSql
) sqlite3DbNNFreeNN(db
, p
->zSql
);
3711 #ifdef SQLITE_ENABLE_NORMALIZE
3712 sqlite3DbFree(db
, p
->zNormSql
);
3714 DblquoteStr
*pThis
, *pNxt
;
3715 for(pThis
=p
->pDblStr
; pThis
; pThis
=pNxt
){
3716 pNxt
= pThis
->pNextStr
;
3717 sqlite3DbFree(db
, pThis
);
3721 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
3724 for(i
=0; i
<p
->nScan
; i
++){
3725 sqlite3DbFree(db
, p
->aScan
[i
].zName
);
3727 sqlite3DbFree(db
, p
->aScan
);
3733 ** Delete an entire VDBE.
3735 void sqlite3VdbeDelete(Vdbe
*p
){
3741 assert( sqlite3_mutex_held(db
->mutex
) );
3742 sqlite3VdbeClearObject(db
, p
);
3743 if( db
->pnBytesFreed
==0 ){
3744 assert( p
->ppVPrev
!=0 );
3745 *p
->ppVPrev
= p
->pVNext
;
3747 p
->pVNext
->ppVPrev
= p
->ppVPrev
;
3750 sqlite3DbNNFreeNN(db
, p
);
3754 ** The cursor "p" has a pending seek operation that has not yet been
3755 ** carried out. Seek the cursor now. If an error occurs, return
3756 ** the appropriate error code.
3758 int SQLITE_NOINLINE
sqlite3VdbeFinishMoveto(VdbeCursor
*p
){
3761 extern int sqlite3_search_count
;
3763 assert( p
->deferredMoveto
);
3764 assert( p
->isTable
);
3765 assert( p
->eCurType
==CURTYPE_BTREE
);
3766 rc
= sqlite3BtreeTableMoveto(p
->uc
.pCursor
, p
->movetoTarget
, 0, &res
);
3768 if( res
!=0 ) return SQLITE_CORRUPT_BKPT
;
3770 sqlite3_search_count
++;
3772 p
->deferredMoveto
= 0;
3773 p
->cacheStatus
= CACHE_STALE
;
3778 ** Something has moved cursor "p" out of place. Maybe the row it was
3779 ** pointed to was deleted out from under it. Or maybe the btree was
3780 ** rebalanced. Whatever the cause, try to restore "p" to the place it
3781 ** is supposed to be pointing. If the row was deleted out from under the
3782 ** cursor, set the cursor to point to a NULL row.
3784 int SQLITE_NOINLINE
sqlite3VdbeHandleMovedCursor(VdbeCursor
*p
){
3785 int isDifferentRow
, rc
;
3786 assert( p
->eCurType
==CURTYPE_BTREE
);
3787 assert( p
->uc
.pCursor
!=0 );
3788 assert( sqlite3BtreeCursorHasMoved(p
->uc
.pCursor
) );
3789 rc
= sqlite3BtreeCursorRestore(p
->uc
.pCursor
, &isDifferentRow
);
3790 p
->cacheStatus
= CACHE_STALE
;
3791 if( isDifferentRow
) p
->nullRow
= 1;
3796 ** Check to ensure that the cursor is valid. Restore the cursor
3797 ** if need be. Return any I/O error from the restore operation.
3799 int sqlite3VdbeCursorRestore(VdbeCursor
*p
){
3800 assert( p
->eCurType
==CURTYPE_BTREE
|| IsNullCursor(p
) );
3801 if( sqlite3BtreeCursorHasMoved(p
->uc
.pCursor
) ){
3802 return sqlite3VdbeHandleMovedCursor(p
);
3808 ** The following functions:
3810 ** sqlite3VdbeSerialType()
3811 ** sqlite3VdbeSerialTypeLen()
3812 ** sqlite3VdbeSerialLen()
3813 ** sqlite3VdbeSerialPut() <--- in-lined into OP_MakeRecord as of 2022-04-02
3814 ** sqlite3VdbeSerialGet()
3816 ** encapsulate the code that serializes values for storage in SQLite
3817 ** data and index records. Each serialized value consists of a
3818 ** 'serial-type' and a blob of data. The serial type is an 8-byte unsigned
3819 ** integer, stored as a varint.
3821 ** In an SQLite index record, the serial type is stored directly before
3822 ** the blob of data that it corresponds to. In a table record, all serial
3823 ** types are stored at the start of the record, and the blobs of data at
3824 ** the end. Hence these functions allow the caller to handle the
3825 ** serial-type and data blob separately.
3827 ** The following table describes the various storage classes for data:
3829 ** serial type bytes of data type
3830 ** -------------- --------------- ---------------
3832 ** 1 1 signed integer
3833 ** 2 2 signed integer
3834 ** 3 3 signed integer
3835 ** 4 4 signed integer
3836 ** 5 6 signed integer
3837 ** 6 8 signed integer
3839 ** 8 0 Integer constant 0
3840 ** 9 0 Integer constant 1
3841 ** 10,11 reserved for expansion
3842 ** N>=12 and even (N-12)/2 BLOB
3843 ** N>=13 and odd (N-13)/2 text
3845 ** The 8 and 9 types were added in 3.3.0, file format 4. Prior versions
3846 ** of SQLite will not understand those serial types.
3849 #if 0 /* Inlined into the OP_MakeRecord opcode */
3851 ** Return the serial-type for the value stored in pMem.
3853 ** This routine might convert a large MEM_IntReal value into MEM_Real.
3855 ** 2019-07-11: The primary user of this subroutine was the OP_MakeRecord
3856 ** opcode in the byte-code engine. But by moving this routine in-line, we
3857 ** can omit some redundant tests and make that opcode a lot faster. So
3858 ** this routine is now only used by the STAT3 logic and STAT3 support has
3859 ** ended. The code is kept here for historical reference only.
3861 u32
sqlite3VdbeSerialType(Mem
*pMem
, int file_format
, u32
*pLen
){
3862 int flags
= pMem
->flags
;
3866 if( flags
&MEM_Null
){
3870 if( flags
&(MEM_Int
|MEM_IntReal
) ){
3871 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3872 # define MAX_6BYTE ((((i64)0x00008000)<<32)-1)
3875 testcase( flags
& MEM_Int
);
3876 testcase( flags
& MEM_IntReal
);
3883 if( (i
&1)==i
&& file_format
>=4 ){
3891 if( u
<=32767 ){ *pLen
= 2; return 2; }
3892 if( u
<=8388607 ){ *pLen
= 3; return 3; }
3893 if( u
<=2147483647 ){ *pLen
= 4; return 4; }
3894 if( u
<=MAX_6BYTE
){ *pLen
= 6; return 5; }
3896 if( flags
&MEM_IntReal
){
3897 /* If the value is IntReal and is going to take up 8 bytes to store
3898 ** as an integer, then we might as well make it an 8-byte floating
3900 pMem
->u
.r
= (double)pMem
->u
.i
;
3901 pMem
->flags
&= ~MEM_IntReal
;
3902 pMem
->flags
|= MEM_Real
;
3907 if( flags
&MEM_Real
){
3911 assert( pMem
->db
->mallocFailed
|| flags
&(MEM_Str
|MEM_Blob
) );
3912 assert( pMem
->n
>=0 );
3914 if( flags
& MEM_Zero
){
3918 return ((n
*2) + 12 + ((flags
&MEM_Str
)!=0));
3920 #endif /* inlined into OP_MakeRecord */
3923 ** The sizes for serial types less than 128
3925 const u8 sqlite3SmallTypeSizes
[128] = {
3926 /* 0 1 2 3 4 5 6 7 8 9 */
3927 /* 0 */ 0, 1, 2, 3, 4, 6, 8, 8, 0, 0,
3928 /* 10 */ 0, 0, 0, 0, 1, 1, 2, 2, 3, 3,
3929 /* 20 */ 4, 4, 5, 5, 6, 6, 7, 7, 8, 8,
3930 /* 30 */ 9, 9, 10, 10, 11, 11, 12, 12, 13, 13,
3931 /* 40 */ 14, 14, 15, 15, 16, 16, 17, 17, 18, 18,
3932 /* 50 */ 19, 19, 20, 20, 21, 21, 22, 22, 23, 23,
3933 /* 60 */ 24, 24, 25, 25, 26, 26, 27, 27, 28, 28,
3934 /* 70 */ 29, 29, 30, 30, 31, 31, 32, 32, 33, 33,
3935 /* 80 */ 34, 34, 35, 35, 36, 36, 37, 37, 38, 38,
3936 /* 90 */ 39, 39, 40, 40, 41, 41, 42, 42, 43, 43,
3937 /* 100 */ 44, 44, 45, 45, 46, 46, 47, 47, 48, 48,
3938 /* 110 */ 49, 49, 50, 50, 51, 51, 52, 52, 53, 53,
3939 /* 120 */ 54, 54, 55, 55, 56, 56, 57, 57
3943 ** Return the length of the data corresponding to the supplied serial-type.
3945 u32
sqlite3VdbeSerialTypeLen(u32 serial_type
){
3946 if( serial_type
>=128 ){
3947 return (serial_type
-12)/2;
3949 assert( serial_type
<12
3950 || sqlite3SmallTypeSizes
[serial_type
]==(serial_type
- 12)/2 );
3951 return sqlite3SmallTypeSizes
[serial_type
];
3954 u8
sqlite3VdbeOneByteSerialTypeLen(u8 serial_type
){
3955 assert( serial_type
<128 );
3956 return sqlite3SmallTypeSizes
[serial_type
];
3960 ** If we are on an architecture with mixed-endian floating
3961 ** points (ex: ARM7) then swap the lower 4 bytes with the
3962 ** upper 4 bytes. Return the result.
3964 ** For most architectures, this is a no-op.
3966 ** (later): It is reported to me that the mixed-endian problem
3967 ** on ARM7 is an issue with GCC, not with the ARM7 chip. It seems
3968 ** that early versions of GCC stored the two words of a 64-bit
3969 ** float in the wrong order. And that error has been propagated
3970 ** ever since. The blame is not necessarily with GCC, though.
3971 ** GCC might have just copying the problem from a prior compiler.
3972 ** I am also told that newer versions of GCC that follow a different
3973 ** ABI get the byte order right.
3975 ** Developers using SQLite on an ARM7 should compile and run their
3976 ** application using -DSQLITE_DEBUG=1 at least once. With DEBUG
3977 ** enabled, some asserts below will ensure that the byte order of
3978 ** floating point values is correct.
3980 ** (2007-08-30) Frank van Vugt has studied this problem closely
3981 ** and has send his findings to the SQLite developers. Frank
3982 ** writes that some Linux kernels offer floating point hardware
3983 ** emulation that uses only 32-bit mantissas instead of a full
3984 ** 48-bits as required by the IEEE standard. (This is the
3985 ** CONFIG_FPE_FASTFPE option.) On such systems, floating point
3986 ** byte swapping becomes very complicated. To avoid problems,
3987 ** the necessary byte swapping is carried out using a 64-bit integer
3988 ** rather than a 64-bit float. Frank assures us that the code here
3989 ** works for him. We, the developers, have no way to independently
3990 ** verify this, but Frank seems to know what he is talking about
3993 #ifdef SQLITE_MIXED_ENDIAN_64BIT_FLOAT
3994 u64
sqlite3FloatSwap(u64 in
){
4007 #endif /* SQLITE_MIXED_ENDIAN_64BIT_FLOAT */
4010 /* Input "x" is a sequence of unsigned characters that represent a
4011 ** big-endian integer. Return the equivalent native integer
4013 #define ONE_BYTE_INT(x) ((i8)(x)[0])
4014 #define TWO_BYTE_INT(x) (256*(i8)((x)[0])|(x)[1])
4015 #define THREE_BYTE_INT(x) (65536*(i8)((x)[0])|((x)[1]<<8)|(x)[2])
4016 #define FOUR_BYTE_UINT(x) (((u32)(x)[0]<<24)|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
4017 #define FOUR_BYTE_INT(x) (16777216*(i8)((x)[0])|((x)[1]<<16)|((x)[2]<<8)|(x)[3])
4020 ** Deserialize the data blob pointed to by buf as serial type serial_type
4021 ** and store the result in pMem.
4023 ** This function is implemented as two separate routines for performance.
4024 ** The few cases that require local variables are broken out into a separate
4025 ** routine so that in most cases the overhead of moving the stack pointer
4028 static void serialGet(
4029 const unsigned char *buf
, /* Buffer to deserialize from */
4030 u32 serial_type
, /* Serial type to deserialize */
4031 Mem
*pMem
/* Memory cell to write value into */
4033 u64 x
= FOUR_BYTE_UINT(buf
);
4034 u32 y
= FOUR_BYTE_UINT(buf
+4);
4036 if( serial_type
==6 ){
4037 /* EVIDENCE-OF: R-29851-52272 Value is a big-endian 64-bit
4038 ** twos-complement integer. */
4039 pMem
->u
.i
= *(i64
*)&x
;
4040 pMem
->flags
= MEM_Int
;
4041 testcase( pMem
->u
.i
<0 );
4043 /* EVIDENCE-OF: R-57343-49114 Value is a big-endian IEEE 754-2008 64-bit
4044 ** floating point number. */
4045 #if !defined(NDEBUG) && !defined(SQLITE_OMIT_FLOATING_POINT)
4046 /* Verify that integers and floating point values use the same
4047 ** byte order. Or, that if SQLITE_MIXED_ENDIAN_64BIT_FLOAT is
4048 ** defined that 64-bit floating point values really are mixed
4051 static const u64 t1
= ((u64
)0x3ff00000)<<32;
4052 static const double r1
= 1.0;
4054 swapMixedEndianFloat(t2
);
4055 assert( sizeof(r1
)==sizeof(t2
) && memcmp(&r1
, &t2
, sizeof(r1
))==0 );
4057 assert( sizeof(x
)==8 && sizeof(pMem
->u
.r
)==8 );
4058 swapMixedEndianFloat(x
);
4059 memcpy(&pMem
->u
.r
, &x
, sizeof(x
));
4060 pMem
->flags
= IsNaN(x
) ? MEM_Null
: MEM_Real
;
4063 static int serialGet7(
4064 const unsigned char *buf
, /* Buffer to deserialize from */
4065 Mem
*pMem
/* Memory cell to write value into */
4067 u64 x
= FOUR_BYTE_UINT(buf
);
4068 u32 y
= FOUR_BYTE_UINT(buf
+4);
4070 assert( sizeof(x
)==8 && sizeof(pMem
->u
.r
)==8 );
4071 swapMixedEndianFloat(x
);
4072 memcpy(&pMem
->u
.r
, &x
, sizeof(x
));
4074 pMem
->flags
= MEM_Null
;
4077 pMem
->flags
= MEM_Real
;
4080 void sqlite3VdbeSerialGet(
4081 const unsigned char *buf
, /* Buffer to deserialize from */
4082 u32 serial_type
, /* Serial type to deserialize */
4083 Mem
*pMem
/* Memory cell to write value into */
4085 switch( serial_type
){
4086 case 10: { /* Internal use only: NULL with virtual table
4087 ** UPDATE no-change flag set */
4088 pMem
->flags
= MEM_Null
|MEM_Zero
;
4093 case 11: /* Reserved for future use */
4094 case 0: { /* Null */
4095 /* EVIDENCE-OF: R-24078-09375 Value is a NULL. */
4096 pMem
->flags
= MEM_Null
;
4100 /* EVIDENCE-OF: R-44885-25196 Value is an 8-bit twos-complement
4102 pMem
->u
.i
= ONE_BYTE_INT(buf
);
4103 pMem
->flags
= MEM_Int
;
4104 testcase( pMem
->u
.i
<0 );
4107 case 2: { /* 2-byte signed integer */
4108 /* EVIDENCE-OF: R-49794-35026 Value is a big-endian 16-bit
4109 ** twos-complement integer. */
4110 pMem
->u
.i
= TWO_BYTE_INT(buf
);
4111 pMem
->flags
= MEM_Int
;
4112 testcase( pMem
->u
.i
<0 );
4115 case 3: { /* 3-byte signed integer */
4116 /* EVIDENCE-OF: R-37839-54301 Value is a big-endian 24-bit
4117 ** twos-complement integer. */
4118 pMem
->u
.i
= THREE_BYTE_INT(buf
);
4119 pMem
->flags
= MEM_Int
;
4120 testcase( pMem
->u
.i
<0 );
4123 case 4: { /* 4-byte signed integer */
4124 /* EVIDENCE-OF: R-01849-26079 Value is a big-endian 32-bit
4125 ** twos-complement integer. */
4126 pMem
->u
.i
= FOUR_BYTE_INT(buf
);
4128 /* Work around a sign-extension bug in the HP compiler for HP/UX */
4129 if( buf
[0]&0x80 ) pMem
->u
.i
|= 0xffffffff80000000LL
;
4131 pMem
->flags
= MEM_Int
;
4132 testcase( pMem
->u
.i
<0 );
4135 case 5: { /* 6-byte signed integer */
4136 /* EVIDENCE-OF: R-50385-09674 Value is a big-endian 48-bit
4137 ** twos-complement integer. */
4138 pMem
->u
.i
= FOUR_BYTE_UINT(buf
+2) + (((i64
)1)<<32)*TWO_BYTE_INT(buf
);
4139 pMem
->flags
= MEM_Int
;
4140 testcase( pMem
->u
.i
<0 );
4143 case 6: /* 8-byte signed integer */
4144 case 7: { /* IEEE floating point */
4145 /* These use local variables, so do them in a separate routine
4146 ** to avoid having to move the frame pointer in the common case */
4147 serialGet(buf
,serial_type
,pMem
);
4150 case 8: /* Integer 0 */
4151 case 9: { /* Integer 1 */
4152 /* EVIDENCE-OF: R-12976-22893 Value is the integer 0. */
4153 /* EVIDENCE-OF: R-18143-12121 Value is the integer 1. */
4154 pMem
->u
.i
= serial_type
-8;
4155 pMem
->flags
= MEM_Int
;
4159 /* EVIDENCE-OF: R-14606-31564 Value is a BLOB that is (N-12)/2 bytes in
4161 ** EVIDENCE-OF: R-28401-00140 Value is a string in the text encoding and
4162 ** (N-13)/2 bytes in length. */
4163 static const u16 aFlag
[] = { MEM_Blob
|MEM_Ephem
, MEM_Str
|MEM_Ephem
};
4164 pMem
->z
= (char *)buf
;
4165 pMem
->n
= (serial_type
-12)/2;
4166 pMem
->flags
= aFlag
[serial_type
&1];
4173 ** This routine is used to allocate sufficient space for an UnpackedRecord
4174 ** structure large enough to be used with sqlite3VdbeRecordUnpack() if
4175 ** the first argument is a pointer to KeyInfo structure pKeyInfo.
4177 ** The space is either allocated using sqlite3DbMallocRaw() or from within
4178 ** the unaligned buffer passed via the second and third arguments (presumably
4179 ** stack space). If the former, then *ppFree is set to a pointer that should
4180 ** be eventually freed by the caller using sqlite3DbFree(). Or, if the
4181 ** allocation comes from the pSpace/szSpace buffer, *ppFree is set to NULL
4182 ** before returning.
4184 ** If an OOM error occurs, NULL is returned.
4186 UnpackedRecord
*sqlite3VdbeAllocUnpackedRecord(
4187 KeyInfo
*pKeyInfo
/* Description of the record */
4189 UnpackedRecord
*p
; /* Unpacked record to return */
4190 int nByte
; /* Number of bytes required for *p */
4191 nByte
= ROUND8P(sizeof(UnpackedRecord
)) + sizeof(Mem
)*(pKeyInfo
->nKeyField
+1);
4192 p
= (UnpackedRecord
*)sqlite3DbMallocRaw(pKeyInfo
->db
, nByte
);
4194 p
->aMem
= (Mem
*)&((char*)p
)[ROUND8P(sizeof(UnpackedRecord
))];
4195 assert( pKeyInfo
->aSortFlags
!=0 );
4196 p
->pKeyInfo
= pKeyInfo
;
4197 p
->nField
= pKeyInfo
->nKeyField
+ 1;
4202 ** Given the nKey-byte encoding of a record in pKey[], populate the
4203 ** UnpackedRecord structure indicated by the fourth argument with the
4204 ** contents of the decoded record.
4206 void sqlite3VdbeRecordUnpack(
4207 KeyInfo
*pKeyInfo
, /* Information about the record format */
4208 int nKey
, /* Size of the binary record */
4209 const void *pKey
, /* The binary record */
4210 UnpackedRecord
*p
/* Populate this structure before returning. */
4212 const unsigned char *aKey
= (const unsigned char *)pKey
;
4214 u32 idx
; /* Offset in aKey[] to read from */
4215 u16 u
; /* Unsigned loop counter */
4217 Mem
*pMem
= p
->aMem
;
4220 assert( EIGHT_BYTE_ALIGNMENT(pMem
) );
4221 idx
= getVarint32(aKey
, szHdr
);
4224 while( idx
<szHdr
&& d
<=(u32
)nKey
){
4227 idx
+= getVarint32(&aKey
[idx
], serial_type
);
4228 pMem
->enc
= pKeyInfo
->enc
;
4229 pMem
->db
= pKeyInfo
->db
;
4230 /* pMem->flags = 0; // sqlite3VdbeSerialGet() will set this for us */
4233 sqlite3VdbeSerialGet(&aKey
[d
], serial_type
, pMem
);
4234 d
+= sqlite3VdbeSerialTypeLen(serial_type
);
4236 if( (++u
)>=p
->nField
) break;
4238 if( d
>(u32
)nKey
&& u
){
4239 assert( CORRUPT_DB
);
4240 /* In a corrupt record entry, the last pMem might have been set up using
4241 ** uninitialized memory. Overwrite its value with NULL, to prevent
4242 ** warnings from MSAN. */
4243 sqlite3VdbeMemSetNull(pMem
-1);
4245 assert( u
<=pKeyInfo
->nKeyField
+ 1 );
4251 ** This function compares two index or table record keys in the same way
4252 ** as the sqlite3VdbeRecordCompare() routine. Unlike VdbeRecordCompare(),
4253 ** this function deserializes and compares values using the
4254 ** sqlite3VdbeSerialGet() and sqlite3MemCompare() functions. It is used
4255 ** in assert() statements to ensure that the optimized code in
4256 ** sqlite3VdbeRecordCompare() returns results with these two primitives.
4258 ** Return true if the result of comparison is equivalent to desiredResult.
4259 ** Return false if there is a disagreement.
4261 static int vdbeRecordCompareDebug(
4262 int nKey1
, const void *pKey1
, /* Left key */
4263 const UnpackedRecord
*pPKey2
, /* Right key */
4264 int desiredResult
/* Correct answer */
4266 u32 d1
; /* Offset into aKey[] of next data element */
4267 u32 idx1
; /* Offset into aKey[] of next header element */
4268 u32 szHdr1
; /* Number of bytes in header */
4271 const unsigned char *aKey1
= (const unsigned char *)pKey1
;
4275 pKeyInfo
= pPKey2
->pKeyInfo
;
4276 if( pKeyInfo
->db
==0 ) return 1;
4277 mem1
.enc
= pKeyInfo
->enc
;
4278 mem1
.db
= pKeyInfo
->db
;
4279 /* mem1.flags = 0; // Will be initialized by sqlite3VdbeSerialGet() */
4280 VVA_ONLY( mem1
.szMalloc
= 0; ) /* Only needed by assert() statements */
4282 /* Compilers may complain that mem1.u.i is potentially uninitialized.
4283 ** We could initialize it, as shown here, to silence those complaints.
4284 ** But in fact, mem1.u.i will never actually be used uninitialized, and doing
4285 ** the unnecessary initialization has a measurable negative performance
4286 ** impact, since this routine is a very high runner. And so, we choose
4287 ** to ignore the compiler warnings and leave this variable uninitialized.
4289 /* mem1.u.i = 0; // not needed, here to silence compiler warning */
4291 idx1
= getVarint32(aKey1
, szHdr1
);
4292 if( szHdr1
>98307 ) return SQLITE_CORRUPT
;
4294 assert( pKeyInfo
->nAllField
>=pPKey2
->nField
|| CORRUPT_DB
);
4295 assert( pKeyInfo
->aSortFlags
!=0 );
4296 assert( pKeyInfo
->nKeyField
>0 );
4297 assert( idx1
<=szHdr1
|| CORRUPT_DB
);
4301 /* Read the serial types for the next element in each key. */
4302 idx1
+= getVarint32( aKey1
+idx1
, serial_type1
);
4304 /* Verify that there is enough key space remaining to avoid
4305 ** a buffer overread. The "d1+serial_type1+2" subexpression will
4306 ** always be greater than or equal to the amount of required key space.
4307 ** Use that approximation to avoid the more expensive call to
4308 ** sqlite3VdbeSerialTypeLen() in the common case.
4310 if( d1
+(u64
)serial_type1
+2>(u64
)nKey1
4311 && d1
+(u64
)sqlite3VdbeSerialTypeLen(serial_type1
)>(u64
)nKey1
4315 && d1
+(u64
)sqlite3VdbeSerialTypeLen(serial_type1
)<=(u64
)nKey1
+8
4318 return 1; /* corrupt record not detected by
4319 ** sqlite3VdbeRecordCompareWithSkip(). Return true
4320 ** to avoid firing the assert() */
4325 /* Extract the values to be compared.
4327 sqlite3VdbeSerialGet(&aKey1
[d1
], serial_type1
, &mem1
);
4328 d1
+= sqlite3VdbeSerialTypeLen(serial_type1
);
4330 /* Do the comparison
4332 rc
= sqlite3MemCompare(&mem1
, &pPKey2
->aMem
[i
],
4333 pKeyInfo
->nAllField
>i
? pKeyInfo
->aColl
[i
] : 0);
4335 assert( mem1
.szMalloc
==0 ); /* See comment below */
4336 if( (pKeyInfo
->aSortFlags
[i
] & KEYINFO_ORDER_BIGNULL
)
4337 && ((mem1
.flags
& MEM_Null
) || (pPKey2
->aMem
[i
].flags
& MEM_Null
))
4341 if( pKeyInfo
->aSortFlags
[i
] & KEYINFO_ORDER_DESC
){
4342 rc
= -rc
; /* Invert the result for DESC sort order. */
4344 goto debugCompareEnd
;
4347 }while( idx1
<szHdr1
&& i
<pPKey2
->nField
);
4349 /* No memory allocation is ever used on mem1. Prove this using
4350 ** the following assert(). If the assert() fails, it indicates a
4351 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1).
4353 assert( mem1
.szMalloc
==0 );
4355 /* rc==0 here means that one of the keys ran out of fields and
4356 ** all the fields up to that point were equal. Return the default_rc
4358 rc
= pPKey2
->default_rc
;
4361 if( desiredResult
==0 && rc
==0 ) return 1;
4362 if( desiredResult
<0 && rc
<0 ) return 1;
4363 if( desiredResult
>0 && rc
>0 ) return 1;
4364 if( CORRUPT_DB
) return 1;
4365 if( pKeyInfo
->db
->mallocFailed
) return 1;
4372 ** Count the number of fields (a.k.a. columns) in the record given by
4373 ** pKey,nKey. The verify that this count is less than or equal to the
4374 ** limit given by pKeyInfo->nAllField.
4376 ** If this constraint is not satisfied, it means that the high-speed
4377 ** vdbeRecordCompareInt() and vdbeRecordCompareString() routines will
4378 ** not work correctly. If this assert() ever fires, it probably means
4379 ** that the KeyInfo.nKeyField or KeyInfo.nAllField values were computed
4382 static void vdbeAssertFieldCountWithinLimits(
4383 int nKey
, const void *pKey
, /* The record to verify */
4384 const KeyInfo
*pKeyInfo
/* Compare size with this KeyInfo */
4390 const unsigned char *aKey
= (const unsigned char*)pKey
;
4392 if( CORRUPT_DB
) return;
4393 idx
= getVarint32(aKey
, szHdr
);
4395 assert( szHdr
<=(u32
)nKey
);
4397 idx
+= getVarint32(aKey
+idx
, notUsed
);
4400 assert( nField
<= pKeyInfo
->nAllField
);
4403 # define vdbeAssertFieldCountWithinLimits(A,B,C)
4407 ** Both *pMem1 and *pMem2 contain string values. Compare the two values
4408 ** using the collation sequence pColl. As usual, return a negative , zero
4409 ** or positive value if *pMem1 is less than, equal to or greater than
4410 ** *pMem2, respectively. Similar in spirit to "rc = (*pMem1) - (*pMem2);".
4412 static int vdbeCompareMemString(
4415 const CollSeq
*pColl
,
4416 u8
*prcErr
/* If an OOM occurs, set to SQLITE_NOMEM */
4418 if( pMem1
->enc
==pColl
->enc
){
4419 /* The strings are already in the correct encoding. Call the
4420 ** comparison function directly */
4421 return pColl
->xCmp(pColl
->pUser
,pMem1
->n
,pMem1
->z
,pMem2
->n
,pMem2
->z
);
4424 const void *v1
, *v2
;
4427 sqlite3VdbeMemInit(&c1
, pMem1
->db
, MEM_Null
);
4428 sqlite3VdbeMemInit(&c2
, pMem1
->db
, MEM_Null
);
4429 sqlite3VdbeMemShallowCopy(&c1
, pMem1
, MEM_Ephem
);
4430 sqlite3VdbeMemShallowCopy(&c2
, pMem2
, MEM_Ephem
);
4431 v1
= sqlite3ValueText((sqlite3_value
*)&c1
, pColl
->enc
);
4432 v2
= sqlite3ValueText((sqlite3_value
*)&c2
, pColl
->enc
);
4433 if( (v1
==0 || v2
==0) ){
4434 if( prcErr
) *prcErr
= SQLITE_NOMEM_BKPT
;
4437 rc
= pColl
->xCmp(pColl
->pUser
, c1
.n
, v1
, c2
.n
, v2
);
4439 sqlite3VdbeMemReleaseMalloc(&c1
);
4440 sqlite3VdbeMemReleaseMalloc(&c2
);
4446 ** The input pBlob is guaranteed to be a Blob that is not marked
4447 ** with MEM_Zero. Return true if it could be a zero-blob.
4449 static int isAllZero(const char *z
, int n
){
4452 if( z
[i
] ) return 0;
4458 ** Compare two blobs. Return negative, zero, or positive if the first
4459 ** is less than, equal to, or greater than the second, respectively.
4460 ** If one blob is a prefix of the other, then the shorter is the lessor.
4462 SQLITE_NOINLINE
int sqlite3BlobCompare(const Mem
*pB1
, const Mem
*pB2
){
4467 /* It is possible to have a Blob value that has some non-zero content
4468 ** followed by zero content. But that only comes up for Blobs formed
4469 ** by the OP_MakeRecord opcode, and such Blobs never get passed into
4470 ** sqlite3MemCompare(). */
4471 assert( (pB1
->flags
& MEM_Zero
)==0 || n1
==0 );
4472 assert( (pB2
->flags
& MEM_Zero
)==0 || n2
==0 );
4474 if( (pB1
->flags
|pB2
->flags
) & MEM_Zero
){
4475 if( pB1
->flags
& pB2
->flags
& MEM_Zero
){
4476 return pB1
->u
.nZero
- pB2
->u
.nZero
;
4477 }else if( pB1
->flags
& MEM_Zero
){
4478 if( !isAllZero(pB2
->z
, pB2
->n
) ) return -1;
4479 return pB1
->u
.nZero
- n2
;
4481 if( !isAllZero(pB1
->z
, pB1
->n
) ) return +1;
4482 return n1
- pB2
->u
.nZero
;
4485 c
= memcmp(pB1
->z
, pB2
->z
, n1
>n2
? n2
: n1
);
4490 /* The following two functions are used only within testcase() to prove
4491 ** test coverage. These functions do no exist for production builds.
4492 ** We must use separate SQLITE_NOINLINE functions here, since otherwise
4493 ** optimizer code movement causes gcov to become very confused.
4495 #if defined(SQLITE_COVERAGE_TEST) || defined(SQLITE_DEBUG)
4496 static int SQLITE_NOINLINE
doubleLt(double a
, double b
){ return a
<b
; }
4497 static int SQLITE_NOINLINE
doubleEq(double a
, double b
){ return a
==b
; }
4501 ** Do a comparison between a 64-bit signed integer and a 64-bit floating-point
4502 ** number. Return negative, zero, or positive if the first (i64) is less than,
4503 ** equal to, or greater than the second (double).
4505 int sqlite3IntFloatCompare(i64 i
, double r
){
4506 if( sqlite3IsNaN(r
) ){
4507 /* SQLite considers NaN to be a NULL. And all integer values are greater
4511 if( sqlite3Config
.bUseLongDouble
){
4512 LONGDOUBLE_TYPE x
= (LONGDOUBLE_TYPE
)i
;
4516 return (x
<r
) ? -1 : (x
>r
);
4520 if( r
<-9223372036854775808.0 ) return +1;
4521 if( r
>=9223372036854775808.0 ) return -1;
4523 if( i
<y
) return -1;
4524 if( i
>y
) return +1;
4526 testcase( doubleLt(s
,r
) );
4527 testcase( doubleLt(r
,s
) );
4528 testcase( doubleEq(r
,s
) );
4529 return (s
<r
) ? -1 : (s
>r
);
4534 ** Compare the values contained by the two memory cells, returning
4535 ** negative, zero or positive if pMem1 is less than, equal to, or greater
4536 ** than pMem2. Sorting order is NULL's first, followed by numbers (integers
4537 ** and reals) sorted numerically, followed by text ordered by the collating
4538 ** sequence pColl and finally blob's ordered by memcmp().
4540 ** Two NULL values are considered equal by this function.
4542 int sqlite3MemCompare(const Mem
*pMem1
, const Mem
*pMem2
, const CollSeq
*pColl
){
4548 combined_flags
= f1
|f2
;
4549 assert( !sqlite3VdbeMemIsRowSet(pMem1
) && !sqlite3VdbeMemIsRowSet(pMem2
) );
4551 /* If one value is NULL, it is less than the other. If both values
4552 ** are NULL, return 0.
4554 if( combined_flags
&MEM_Null
){
4555 return (f2
&MEM_Null
) - (f1
&MEM_Null
);
4558 /* At least one of the two values is a number
4560 if( combined_flags
&(MEM_Int
|MEM_Real
|MEM_IntReal
) ){
4561 testcase( combined_flags
& MEM_Int
);
4562 testcase( combined_flags
& MEM_Real
);
4563 testcase( combined_flags
& MEM_IntReal
);
4564 if( (f1
& f2
& (MEM_Int
|MEM_IntReal
))!=0 ){
4565 testcase( f1
& f2
& MEM_Int
);
4566 testcase( f1
& f2
& MEM_IntReal
);
4567 if( pMem1
->u
.i
< pMem2
->u
.i
) return -1;
4568 if( pMem1
->u
.i
> pMem2
->u
.i
) return +1;
4571 if( (f1
& f2
& MEM_Real
)!=0 ){
4572 if( pMem1
->u
.r
< pMem2
->u
.r
) return -1;
4573 if( pMem1
->u
.r
> pMem2
->u
.r
) return +1;
4576 if( (f1
&(MEM_Int
|MEM_IntReal
))!=0 ){
4577 testcase( f1
& MEM_Int
);
4578 testcase( f1
& MEM_IntReal
);
4579 if( (f2
&MEM_Real
)!=0 ){
4580 return sqlite3IntFloatCompare(pMem1
->u
.i
, pMem2
->u
.r
);
4581 }else if( (f2
&(MEM_Int
|MEM_IntReal
))!=0 ){
4582 if( pMem1
->u
.i
< pMem2
->u
.i
) return -1;
4583 if( pMem1
->u
.i
> pMem2
->u
.i
) return +1;
4589 if( (f1
&MEM_Real
)!=0 ){
4590 if( (f2
&(MEM_Int
|MEM_IntReal
))!=0 ){
4591 testcase( f2
& MEM_Int
);
4592 testcase( f2
& MEM_IntReal
);
4593 return -sqlite3IntFloatCompare(pMem2
->u
.i
, pMem1
->u
.r
);
4601 /* If one value is a string and the other is a blob, the string is less.
4602 ** If both are strings, compare using the collating functions.
4604 if( combined_flags
&MEM_Str
){
4605 if( (f1
& MEM_Str
)==0 ){
4608 if( (f2
& MEM_Str
)==0 ){
4612 assert( pMem1
->enc
==pMem2
->enc
|| pMem1
->db
->mallocFailed
);
4613 assert( pMem1
->enc
==SQLITE_UTF8
||
4614 pMem1
->enc
==SQLITE_UTF16LE
|| pMem1
->enc
==SQLITE_UTF16BE
);
4616 /* The collation sequence must be defined at this point, even if
4617 ** the user deletes the collation sequence after the vdbe program is
4618 ** compiled (this was not always the case).
4620 assert( !pColl
|| pColl
->xCmp
);
4623 return vdbeCompareMemString(pMem1
, pMem2
, pColl
, 0);
4625 /* If a NULL pointer was passed as the collate function, fall through
4626 ** to the blob case and use memcmp(). */
4629 /* Both values must be blobs. Compare using memcmp(). */
4630 return sqlite3BlobCompare(pMem1
, pMem2
);
4635 ** The first argument passed to this function is a serial-type that
4636 ** corresponds to an integer - all values between 1 and 9 inclusive
4637 ** except 7. The second points to a buffer containing an integer value
4638 ** serialized according to serial_type. This function deserializes
4639 ** and returns the value.
4641 static i64
vdbeRecordDecodeInt(u32 serial_type
, const u8
*aKey
){
4643 assert( CORRUPT_DB
|| (serial_type
>=1 && serial_type
<=9 && serial_type
!=7) );
4644 switch( serial_type
){
4647 testcase( aKey
[0]&0x80 );
4648 return ONE_BYTE_INT(aKey
);
4650 testcase( aKey
[0]&0x80 );
4651 return TWO_BYTE_INT(aKey
);
4653 testcase( aKey
[0]&0x80 );
4654 return THREE_BYTE_INT(aKey
);
4656 testcase( aKey
[0]&0x80 );
4657 y
= FOUR_BYTE_UINT(aKey
);
4658 return (i64
)*(int*)&y
;
4661 testcase( aKey
[0]&0x80 );
4662 return FOUR_BYTE_UINT(aKey
+2) + (((i64
)1)<<32)*TWO_BYTE_INT(aKey
);
4665 u64 x
= FOUR_BYTE_UINT(aKey
);
4666 testcase( aKey
[0]&0x80 );
4667 x
= (x
<<32) | FOUR_BYTE_UINT(aKey
+4);
4668 return (i64
)*(i64
*)&x
;
4672 return (serial_type
- 8);
4676 ** This function compares the two table rows or index records
4677 ** specified by {nKey1, pKey1} and pPKey2. It returns a negative, zero
4678 ** or positive integer if key1 is less than, equal to or
4679 ** greater than key2. The {nKey1, pKey1} key must be a blob
4680 ** created by the OP_MakeRecord opcode of the VDBE. The pPKey2
4681 ** key must be a parsed key such as obtained from
4682 ** sqlite3VdbeParseRecord.
4684 ** If argument bSkip is non-zero, it is assumed that the caller has already
4685 ** determined that the first fields of the keys are equal.
4687 ** Key1 and Key2 do not have to contain the same number of fields. If all
4688 ** fields that appear in both keys are equal, then pPKey2->default_rc is
4691 ** If database corruption is discovered, set pPKey2->errCode to
4692 ** SQLITE_CORRUPT and return 0. If an OOM error is encountered,
4693 ** pPKey2->errCode is set to SQLITE_NOMEM and, if it is not NULL, the
4694 ** malloc-failed flag set on database handle (pPKey2->pKeyInfo->db).
4696 int sqlite3VdbeRecordCompareWithSkip(
4697 int nKey1
, const void *pKey1
, /* Left key */
4698 UnpackedRecord
*pPKey2
, /* Right key */
4699 int bSkip
/* If true, skip the first field */
4701 u32 d1
; /* Offset into aKey[] of next data element */
4702 int i
; /* Index of next field to compare */
4703 u32 szHdr1
; /* Size of record header in bytes */
4704 u32 idx1
; /* Offset of first type in header */
4705 int rc
= 0; /* Return value */
4706 Mem
*pRhs
= pPKey2
->aMem
; /* Next field of pPKey2 to compare */
4708 const unsigned char *aKey1
= (const unsigned char *)pKey1
;
4711 /* If bSkip is true, then the caller has already determined that the first
4712 ** two elements in the keys are equal. Fix the various stack variables so
4713 ** that this routine begins comparing at the second field. */
4719 idx1
= 1 + sqlite3GetVarint32(&aKey1
[1], &s1
);
4722 d1
= szHdr1
+ sqlite3VdbeSerialTypeLen(s1
);
4726 if( (szHdr1
= aKey1
[0])<0x80 ){
4729 idx1
= sqlite3GetVarint32(aKey1
, &szHdr1
);
4734 if( d1
>(unsigned)nKey1
){
4735 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
4736 return 0; /* Corruption */
4739 VVA_ONLY( mem1
.szMalloc
= 0; ) /* Only needed by assert() statements */
4740 assert( pPKey2
->pKeyInfo
->nAllField
>=pPKey2
->nField
4742 assert( pPKey2
->pKeyInfo
->aSortFlags
!=0 );
4743 assert( pPKey2
->pKeyInfo
->nKeyField
>0 );
4744 assert( idx1
<=szHdr1
|| CORRUPT_DB
);
4745 while( 1 /*exit-by-break*/ ){
4748 /* RHS is an integer */
4749 if( pRhs
->flags
& (MEM_Int
|MEM_IntReal
) ){
4750 testcase( pRhs
->flags
& MEM_Int
);
4751 testcase( pRhs
->flags
& MEM_IntReal
);
4752 serial_type
= aKey1
[idx1
];
4753 testcase( serial_type
==12 );
4754 if( serial_type
>=10 ){
4755 rc
= serial_type
==10 ? -1 : +1;
4756 }else if( serial_type
==0 ){
4758 }else if( serial_type
==7 ){
4759 serialGet7(&aKey1
[d1
], &mem1
);
4760 rc
= -sqlite3IntFloatCompare(pRhs
->u
.i
, mem1
.u
.r
);
4762 i64 lhs
= vdbeRecordDecodeInt(serial_type
, &aKey1
[d1
]);
4763 i64 rhs
= pRhs
->u
.i
;
4766 }else if( lhs
>rhs
){
4773 else if( pRhs
->flags
& MEM_Real
){
4774 serial_type
= aKey1
[idx1
];
4775 if( serial_type
>=10 ){
4776 /* Serial types 12 or greater are strings and blobs (greater than
4777 ** numbers). Types 10 and 11 are currently "reserved for future
4778 ** use", so it doesn't really matter what the results of comparing
4779 ** them to numeric values are. */
4780 rc
= serial_type
==10 ? -1 : +1;
4781 }else if( serial_type
==0 ){
4784 if( serial_type
==7 ){
4785 if( serialGet7(&aKey1
[d1
], &mem1
) ){
4786 rc
= -1; /* mem1 is a NaN */
4787 }else if( mem1
.u
.r
<pRhs
->u
.r
){
4789 }else if( mem1
.u
.r
>pRhs
->u
.r
){
4795 sqlite3VdbeSerialGet(&aKey1
[d1
], serial_type
, &mem1
);
4796 rc
= sqlite3IntFloatCompare(mem1
.u
.i
, pRhs
->u
.r
);
4801 /* RHS is a string */
4802 else if( pRhs
->flags
& MEM_Str
){
4803 getVarint32NR(&aKey1
[idx1
], serial_type
);
4804 testcase( serial_type
==12 );
4805 if( serial_type
<12 ){
4807 }else if( !(serial_type
& 0x01) ){
4810 mem1
.n
= (serial_type
- 12) / 2;
4811 testcase( (d1
+mem1
.n
)==(unsigned)nKey1
);
4812 testcase( (d1
+mem1
.n
+1)==(unsigned)nKey1
);
4813 if( (d1
+mem1
.n
) > (unsigned)nKey1
4814 || (pKeyInfo
= pPKey2
->pKeyInfo
)->nAllField
<=i
4816 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
4817 return 0; /* Corruption */
4818 }else if( pKeyInfo
->aColl
[i
] ){
4819 mem1
.enc
= pKeyInfo
->enc
;
4820 mem1
.db
= pKeyInfo
->db
;
4821 mem1
.flags
= MEM_Str
;
4822 mem1
.z
= (char*)&aKey1
[d1
];
4823 rc
= vdbeCompareMemString(
4824 &mem1
, pRhs
, pKeyInfo
->aColl
[i
], &pPKey2
->errCode
4827 int nCmp
= MIN(mem1
.n
, pRhs
->n
);
4828 rc
= memcmp(&aKey1
[d1
], pRhs
->z
, nCmp
);
4829 if( rc
==0 ) rc
= mem1
.n
- pRhs
->n
;
4835 else if( pRhs
->flags
& MEM_Blob
){
4836 assert( (pRhs
->flags
& MEM_Zero
)==0 || pRhs
->n
==0 );
4837 getVarint32NR(&aKey1
[idx1
], serial_type
);
4838 testcase( serial_type
==12 );
4839 if( serial_type
<12 || (serial_type
& 0x01) ){
4842 int nStr
= (serial_type
- 12) / 2;
4843 testcase( (d1
+nStr
)==(unsigned)nKey1
);
4844 testcase( (d1
+nStr
+1)==(unsigned)nKey1
);
4845 if( (d1
+nStr
) > (unsigned)nKey1
){
4846 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
4847 return 0; /* Corruption */
4848 }else if( pRhs
->flags
& MEM_Zero
){
4849 if( !isAllZero((const char*)&aKey1
[d1
],nStr
) ){
4852 rc
= nStr
- pRhs
->u
.nZero
;
4855 int nCmp
= MIN(nStr
, pRhs
->n
);
4856 rc
= memcmp(&aKey1
[d1
], pRhs
->z
, nCmp
);
4857 if( rc
==0 ) rc
= nStr
- pRhs
->n
;
4864 serial_type
= aKey1
[idx1
];
4867 || (serial_type
==7 && serialGet7(&aKey1
[d1
], &mem1
)!=0)
4876 int sortFlags
= pPKey2
->pKeyInfo
->aSortFlags
[i
];
4878 if( (sortFlags
& KEYINFO_ORDER_BIGNULL
)==0
4879 || ((sortFlags
& KEYINFO_ORDER_DESC
)
4880 !=(serial_type
==0 || (pRhs
->flags
&MEM_Null
)))
4885 assert( vdbeRecordCompareDebug(nKey1
, pKey1
, pPKey2
, rc
) );
4886 assert( mem1
.szMalloc
==0 ); /* See comment below */
4891 if( i
==pPKey2
->nField
) break;
4893 d1
+= sqlite3VdbeSerialTypeLen(serial_type
);
4894 if( d1
>(unsigned)nKey1
) break;
4895 idx1
+= sqlite3VarintLen(serial_type
);
4896 if( idx1
>=(unsigned)szHdr1
){
4897 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
4898 return 0; /* Corrupt index */
4902 /* No memory allocation is ever used on mem1. Prove this using
4903 ** the following assert(). If the assert() fails, it indicates a
4904 ** memory leak and a need to call sqlite3VdbeMemRelease(&mem1). */
4905 assert( mem1
.szMalloc
==0 );
4907 /* rc==0 here means that one or both of the keys ran out of fields and
4908 ** all the fields up to that point were equal. Return the default_rc
4911 || vdbeRecordCompareDebug(nKey1
, pKey1
, pPKey2
, pPKey2
->default_rc
)
4912 || pPKey2
->pKeyInfo
->db
->mallocFailed
4915 return pPKey2
->default_rc
;
4917 int sqlite3VdbeRecordCompare(
4918 int nKey1
, const void *pKey1
, /* Left key */
4919 UnpackedRecord
*pPKey2
/* Right key */
4921 return sqlite3VdbeRecordCompareWithSkip(nKey1
, pKey1
, pPKey2
, 0);
4926 ** This function is an optimized version of sqlite3VdbeRecordCompare()
4927 ** that (a) the first field of pPKey2 is an integer, and (b) the
4928 ** size-of-header varint at the start of (pKey1/nKey1) fits in a single
4929 ** byte (i.e. is less than 128).
4931 ** To avoid concerns about buffer overreads, this routine is only used
4932 ** on schemas where the maximum valid header size is 63 bytes or less.
4934 static int vdbeRecordCompareInt(
4935 int nKey1
, const void *pKey1
, /* Left key */
4936 UnpackedRecord
*pPKey2
/* Right key */
4938 const u8
*aKey
= &((const u8
*)pKey1
)[*(const u8
*)pKey1
& 0x3F];
4939 int serial_type
= ((const u8
*)pKey1
)[1];
4946 vdbeAssertFieldCountWithinLimits(nKey1
, pKey1
, pPKey2
->pKeyInfo
);
4947 assert( (*(u8
*)pKey1
)<=0x3F || CORRUPT_DB
);
4948 switch( serial_type
){
4949 case 1: { /* 1-byte signed integer */
4950 lhs
= ONE_BYTE_INT(aKey
);
4954 case 2: { /* 2-byte signed integer */
4955 lhs
= TWO_BYTE_INT(aKey
);
4959 case 3: { /* 3-byte signed integer */
4960 lhs
= THREE_BYTE_INT(aKey
);
4964 case 4: { /* 4-byte signed integer */
4965 y
= FOUR_BYTE_UINT(aKey
);
4966 lhs
= (i64
)*(int*)&y
;
4970 case 5: { /* 6-byte signed integer */
4971 lhs
= FOUR_BYTE_UINT(aKey
+2) + (((i64
)1)<<32)*TWO_BYTE_INT(aKey
);
4975 case 6: { /* 8-byte signed integer */
4976 x
= FOUR_BYTE_UINT(aKey
);
4977 x
= (x
<<32) | FOUR_BYTE_UINT(aKey
+4);
4989 /* This case could be removed without changing the results of running
4990 ** this code. Including it causes gcc to generate a faster switch
4991 ** statement (since the range of switch targets now starts at zero and
4992 ** is contiguous) but does not cause any duplicate code to be generated
4993 ** (as gcc is clever enough to combine the two like cases). Other
4994 ** compilers might be similar. */
4996 return sqlite3VdbeRecordCompare(nKey1
, pKey1
, pPKey2
);
4999 return sqlite3VdbeRecordCompare(nKey1
, pKey1
, pPKey2
);
5002 assert( pPKey2
->u
.i
== pPKey2
->aMem
[0].u
.i
);
5008 }else if( pPKey2
->nField
>1 ){
5009 /* The first fields of the two keys are equal. Compare the trailing
5011 res
= sqlite3VdbeRecordCompareWithSkip(nKey1
, pKey1
, pPKey2
, 1);
5013 /* The first fields of the two keys are equal and there are no trailing
5014 ** fields. Return pPKey2->default_rc in this case. */
5015 res
= pPKey2
->default_rc
;
5019 assert( vdbeRecordCompareDebug(nKey1
, pKey1
, pPKey2
, res
) );
5024 ** This function is an optimized version of sqlite3VdbeRecordCompare()
5025 ** that (a) the first field of pPKey2 is a string, that (b) the first field
5026 ** uses the collation sequence BINARY and (c) that the size-of-header varint
5027 ** at the start of (pKey1/nKey1) fits in a single byte.
5029 static int vdbeRecordCompareString(
5030 int nKey1
, const void *pKey1
, /* Left key */
5031 UnpackedRecord
*pPKey2
/* Right key */
5033 const u8
*aKey1
= (const u8
*)pKey1
;
5037 assert( pPKey2
->aMem
[0].flags
& MEM_Str
);
5038 assert( pPKey2
->aMem
[0].n
== pPKey2
->n
);
5039 assert( pPKey2
->aMem
[0].z
== pPKey2
->u
.z
);
5040 vdbeAssertFieldCountWithinLimits(nKey1
, pKey1
, pPKey2
->pKeyInfo
);
5041 serial_type
= (signed char)(aKey1
[1]);
5044 if( serial_type
<12 ){
5045 if( serial_type
<0 ){
5046 sqlite3GetVarint32(&aKey1
[1], (u32
*)&serial_type
);
5047 if( serial_type
>=12 ) goto vrcs_restart
;
5048 assert( CORRUPT_DB
);
5050 res
= pPKey2
->r1
; /* (pKey1/nKey1) is a number or a null */
5051 }else if( !(serial_type
& 0x01) ){
5052 res
= pPKey2
->r2
; /* (pKey1/nKey1) is a blob */
5056 int szHdr
= aKey1
[0];
5058 nStr
= (serial_type
-12) / 2;
5059 if( (szHdr
+ nStr
) > nKey1
){
5060 pPKey2
->errCode
= (u8
)SQLITE_CORRUPT_BKPT
;
5061 return 0; /* Corruption */
5063 nCmp
= MIN( pPKey2
->n
, nStr
);
5064 res
= memcmp(&aKey1
[szHdr
], pPKey2
->u
.z
, nCmp
);
5071 res
= nStr
- pPKey2
->n
;
5073 if( pPKey2
->nField
>1 ){
5074 res
= sqlite3VdbeRecordCompareWithSkip(nKey1
, pKey1
, pPKey2
, 1);
5076 res
= pPKey2
->default_rc
;
5087 assert( vdbeRecordCompareDebug(nKey1
, pKey1
, pPKey2
, res
)
5089 || pPKey2
->pKeyInfo
->db
->mallocFailed
5095 ** Return a pointer to an sqlite3VdbeRecordCompare() compatible function
5096 ** suitable for comparing serialized records to the unpacked record passed
5097 ** as the only argument.
5099 RecordCompare
sqlite3VdbeFindCompare(UnpackedRecord
*p
){
5100 /* varintRecordCompareInt() and varintRecordCompareString() both assume
5101 ** that the size-of-header varint that occurs at the start of each record
5102 ** fits in a single byte (i.e. is 127 or less). varintRecordCompareInt()
5103 ** also assumes that it is safe to overread a buffer by at least the
5104 ** maximum possible legal header size plus 8 bytes. Because there is
5105 ** guaranteed to be at least 74 (but not 136) bytes of padding following each
5106 ** buffer passed to varintRecordCompareInt() this makes it convenient to
5107 ** limit the size of the header to 64 bytes in cases where the first field
5110 ** The easiest way to enforce this limit is to consider only records with
5111 ** 13 fields or less. If the first field is an integer, the maximum legal
5112 ** header size is (12*5 + 1 + 1) bytes. */
5113 if( p
->pKeyInfo
->nAllField
<=13 ){
5114 int flags
= p
->aMem
[0].flags
;
5115 if( p
->pKeyInfo
->aSortFlags
[0] ){
5116 if( p
->pKeyInfo
->aSortFlags
[0] & KEYINFO_ORDER_BIGNULL
){
5117 return sqlite3VdbeRecordCompare
;
5125 if( (flags
& MEM_Int
) ){
5126 p
->u
.i
= p
->aMem
[0].u
.i
;
5127 return vdbeRecordCompareInt
;
5129 testcase( flags
& MEM_Real
);
5130 testcase( flags
& MEM_Null
);
5131 testcase( flags
& MEM_Blob
);
5132 if( (flags
& (MEM_Real
|MEM_IntReal
|MEM_Null
|MEM_Blob
))==0
5133 && p
->pKeyInfo
->aColl
[0]==0
5135 assert( flags
& MEM_Str
);
5136 p
->u
.z
= p
->aMem
[0].z
;
5137 p
->n
= p
->aMem
[0].n
;
5138 return vdbeRecordCompareString
;
5142 return sqlite3VdbeRecordCompare
;
5146 ** pCur points at an index entry created using the OP_MakeRecord opcode.
5147 ** Read the rowid (the last field in the record) and store it in *rowid.
5148 ** Return SQLITE_OK if everything works, or an error code otherwise.
5150 ** pCur might be pointing to text obtained from a corrupt database file.
5151 ** So the content cannot be trusted. Do appropriate checks on the content.
5153 int sqlite3VdbeIdxRowid(sqlite3
*db
, BtCursor
*pCur
, i64
*rowid
){
5156 u32 szHdr
; /* Size of the header */
5157 u32 typeRowid
; /* Serial type of the rowid */
5158 u32 lenRowid
; /* Size of the rowid */
5161 /* Get the size of the index entry. Only indices entries of less
5162 ** than 2GiB are support - anything large must be database corruption.
5163 ** Any corruption is detected in sqlite3BtreeParseCellPtr(), though, so
5164 ** this code can safely assume that nCellKey is 32-bits
5166 assert( sqlite3BtreeCursorIsValid(pCur
) );
5167 nCellKey
= sqlite3BtreePayloadSize(pCur
);
5168 assert( (nCellKey
& SQLITE_MAX_U32
)==(u64
)nCellKey
);
5170 /* Read in the complete content of the index entry */
5171 sqlite3VdbeMemInit(&m
, db
, 0);
5172 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pCur
, (u32
)nCellKey
, &m
);
5177 /* The index entry must begin with a header size */
5178 getVarint32NR((u8
*)m
.z
, szHdr
);
5179 testcase( szHdr
==3 );
5180 testcase( szHdr
==(u32
)m
.n
);
5181 testcase( szHdr
>0x7fffffff );
5183 if( unlikely(szHdr
<3 || szHdr
>(unsigned)m
.n
) ){
5184 goto idx_rowid_corruption
;
5187 /* The last field of the index should be an integer - the ROWID.
5188 ** Verify that the last entry really is an integer. */
5189 getVarint32NR((u8
*)&m
.z
[szHdr
-1], typeRowid
);
5190 testcase( typeRowid
==1 );
5191 testcase( typeRowid
==2 );
5192 testcase( typeRowid
==3 );
5193 testcase( typeRowid
==4 );
5194 testcase( typeRowid
==5 );
5195 testcase( typeRowid
==6 );
5196 testcase( typeRowid
==8 );
5197 testcase( typeRowid
==9 );
5198 if( unlikely(typeRowid
<1 || typeRowid
>9 || typeRowid
==7) ){
5199 goto idx_rowid_corruption
;
5201 lenRowid
= sqlite3SmallTypeSizes
[typeRowid
];
5202 testcase( (u32
)m
.n
==szHdr
+lenRowid
);
5203 if( unlikely((u32
)m
.n
<szHdr
+lenRowid
) ){
5204 goto idx_rowid_corruption
;
5207 /* Fetch the integer off the end of the index record */
5208 sqlite3VdbeSerialGet((u8
*)&m
.z
[m
.n
-lenRowid
], typeRowid
, &v
);
5210 sqlite3VdbeMemReleaseMalloc(&m
);
5213 /* Jump here if database corruption is detected after m has been
5214 ** allocated. Free the m object and return SQLITE_CORRUPT. */
5215 idx_rowid_corruption
:
5216 testcase( m
.szMalloc
!=0 );
5217 sqlite3VdbeMemReleaseMalloc(&m
);
5218 return SQLITE_CORRUPT_BKPT
;
5222 ** Compare the key of the index entry that cursor pC is pointing to against
5223 ** the key string in pUnpacked. Write into *pRes a number
5224 ** that is negative, zero, or positive if pC is less than, equal to,
5225 ** or greater than pUnpacked. Return SQLITE_OK on success.
5227 ** pUnpacked is either created without a rowid or is truncated so that it
5228 ** omits the rowid at the end. The rowid at the end of the index entry
5229 ** is ignored as well. Hence, this routine only compares the prefixes
5230 ** of the keys prior to the final rowid, not the entire key.
5232 int sqlite3VdbeIdxKeyCompare(
5233 sqlite3
*db
, /* Database connection */
5234 VdbeCursor
*pC
, /* The cursor to compare against */
5235 UnpackedRecord
*pUnpacked
, /* Unpacked version of key */
5236 int *res
/* Write the comparison result here */
5243 assert( pC
->eCurType
==CURTYPE_BTREE
);
5244 pCur
= pC
->uc
.pCursor
;
5245 assert( sqlite3BtreeCursorIsValid(pCur
) );
5246 nCellKey
= sqlite3BtreePayloadSize(pCur
);
5247 /* nCellKey will always be between 0 and 0xffffffff because of the way
5248 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
5249 if( nCellKey
<=0 || nCellKey
>0x7fffffff ){
5251 return SQLITE_CORRUPT_BKPT
;
5253 sqlite3VdbeMemInit(&m
, db
, 0);
5254 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pCur
, (u32
)nCellKey
, &m
);
5258 *res
= sqlite3VdbeRecordCompareWithSkip(m
.n
, m
.z
, pUnpacked
, 0);
5259 sqlite3VdbeMemReleaseMalloc(&m
);
5264 ** This routine sets the value to be returned by subsequent calls to
5265 ** sqlite3_changes() on the database handle 'db'.
5267 void sqlite3VdbeSetChanges(sqlite3
*db
, i64 nChange
){
5268 assert( sqlite3_mutex_held(db
->mutex
) );
5269 db
->nChange
= nChange
;
5270 db
->nTotalChange
+= nChange
;
5274 ** Set a flag in the vdbe to update the change counter when it is finalised
5277 void sqlite3VdbeCountChanges(Vdbe
*v
){
5282 ** Mark every prepared statement associated with a database connection
5285 ** An expired statement means that recompilation of the statement is
5286 ** recommend. Statements expire when things happen that make their
5287 ** programs obsolete. Removing user-defined functions or collating
5288 ** sequences, or changing an authorization function are the types of
5289 ** things that make prepared statements obsolete.
5291 ** If iCode is 1, then expiration is advisory. The statement should
5292 ** be reprepared before being restarted, but if it is already running
5293 ** it is allowed to run to completion.
5295 ** Internally, this function just sets the Vdbe.expired flag on all
5296 ** prepared statements. The flag is set to 1 for an immediate expiration
5297 ** and set to 2 for an advisory expiration.
5299 void sqlite3ExpirePreparedStatements(sqlite3
*db
, int iCode
){
5301 for(p
= db
->pVdbe
; p
; p
=p
->pVNext
){
5302 p
->expired
= iCode
+1;
5307 ** Return the database associated with the Vdbe.
5309 sqlite3
*sqlite3VdbeDb(Vdbe
*v
){
5314 ** Return the SQLITE_PREPARE flags for a Vdbe.
5316 u8
sqlite3VdbePrepareFlags(Vdbe
*v
){
5317 return v
->prepFlags
;
5321 ** Return a pointer to an sqlite3_value structure containing the value bound
5322 ** parameter iVar of VM v. Except, if the value is an SQL NULL, return
5323 ** 0 instead. Unless it is NULL, apply affinity aff (one of the SQLITE_AFF_*
5324 ** constants) to the value before returning it.
5326 ** The returned value must be freed by the caller using sqlite3ValueFree().
5328 sqlite3_value
*sqlite3VdbeGetBoundValue(Vdbe
*v
, int iVar
, u8 aff
){
5331 Mem
*pMem
= &v
->aVar
[iVar
-1];
5332 assert( (v
->db
->flags
& SQLITE_EnableQPSG
)==0 );
5333 if( 0==(pMem
->flags
& MEM_Null
) ){
5334 sqlite3_value
*pRet
= sqlite3ValueNew(v
->db
);
5336 sqlite3VdbeMemCopy((Mem
*)pRet
, pMem
);
5337 sqlite3ValueApplyAffinity(pRet
, aff
, SQLITE_UTF8
);
5346 ** Configure SQL variable iVar so that binding a new value to it signals
5347 ** to sqlite3_reoptimize() that re-preparing the statement may result
5348 ** in a better query plan.
5350 void sqlite3VdbeSetVarmask(Vdbe
*v
, int iVar
){
5352 assert( (v
->db
->flags
& SQLITE_EnableQPSG
)==0 );
5354 v
->expmask
|= 0x80000000;
5356 v
->expmask
|= ((u32
)1 << (iVar
-1));
5361 ** Cause a function to throw an error if it was call from OP_PureFunc
5362 ** rather than OP_Function.
5364 ** OP_PureFunc means that the function must be deterministic, and should
5365 ** throw an error if it is given inputs that would make it non-deterministic.
5366 ** This routine is invoked by date/time functions that use non-deterministic
5367 ** features such as 'now'.
5369 int sqlite3NotPureFunc(sqlite3_context
*pCtx
){
5371 #ifdef SQLITE_ENABLE_STAT4
5372 if( pCtx
->pVdbe
==0 ) return 1;
5374 pOp
= pCtx
->pVdbe
->aOp
+ pCtx
->iOp
;
5375 if( pOp
->opcode
==OP_PureFunc
){
5376 const char *zContext
;
5378 if( pOp
->p5
& NC_IsCheck
){
5379 zContext
= "a CHECK constraint";
5380 }else if( pOp
->p5
& NC_GenCol
){
5381 zContext
= "a generated column";
5383 zContext
= "an index";
5385 zMsg
= sqlite3_mprintf("non-deterministic use of %s() in %s",
5386 pCtx
->pFunc
->zName
, zContext
);
5387 sqlite3_result_error(pCtx
, zMsg
, -1);
5394 #if defined(SQLITE_ENABLE_CURSOR_HINTS) && defined(SQLITE_DEBUG)
5396 ** This Walker callback is used to help verify that calls to
5397 ** sqlite3BtreeCursorHint() with opcode BTREE_HINT_RANGE have
5398 ** byte-code register values correctly initialized.
5400 int sqlite3CursorRangeHintExprCheck(Walker
*pWalker
, Expr
*pExpr
){
5401 if( pExpr
->op
==TK_REGISTER
){
5402 assert( (pWalker
->u
.aMem
[pExpr
->iTable
].flags
& MEM_Undefined
)==0 );
5404 return WRC_Continue
;
5406 #endif /* SQLITE_ENABLE_CURSOR_HINTS && SQLITE_DEBUG */
5408 #ifndef SQLITE_OMIT_VIRTUALTABLE
5410 ** Transfer error message text from an sqlite3_vtab.zErrMsg (text stored
5411 ** in memory obtained from sqlite3_malloc) into a Vdbe.zErrMsg (text stored
5412 ** in memory obtained from sqlite3DbMalloc).
5414 void sqlite3VtabImportErrmsg(Vdbe
*p
, sqlite3_vtab
*pVtab
){
5415 if( pVtab
->zErrMsg
){
5416 sqlite3
*db
= p
->db
;
5417 sqlite3DbFree(db
, p
->zErrMsg
);
5418 p
->zErrMsg
= sqlite3DbStrDup(db
, pVtab
->zErrMsg
);
5419 sqlite3_free(pVtab
->zErrMsg
);
5423 #endif /* SQLITE_OMIT_VIRTUALTABLE */
5425 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5428 ** If the second argument is not NULL, release any allocations associated
5429 ** with the memory cells in the p->aMem[] array. Also free the UnpackedRecord
5430 ** structure itself, using sqlite3DbFree().
5432 ** This function is used to free UnpackedRecord structures allocated by
5433 ** the vdbeUnpackRecord() function found in vdbeapi.c.
5435 static void vdbeFreeUnpacked(sqlite3
*db
, int nField
, UnpackedRecord
*p
){
5439 for(i
=0; i
<nField
; i
++){
5440 Mem
*pMem
= &p
->aMem
[i
];
5441 if( pMem
->zMalloc
) sqlite3VdbeMemReleaseMalloc(pMem
);
5443 sqlite3DbNNFreeNN(db
, p
);
5446 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */
5448 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5450 ** Invoke the pre-update hook. If this is an UPDATE or DELETE pre-update call,
5451 ** then cursor passed as the second argument should point to the row about
5452 ** to be update or deleted. If the application calls sqlite3_preupdate_old(),
5453 ** the required value will be read from the row the cursor points to.
5455 void sqlite3VdbePreUpdateHook(
5456 Vdbe
*v
, /* Vdbe pre-update hook is invoked by */
5457 VdbeCursor
*pCsr
, /* Cursor to grab old.* values from */
5458 int op
, /* SQLITE_INSERT, UPDATE or DELETE */
5459 const char *zDb
, /* Database name */
5460 Table
*pTab
, /* Modified table */
5461 i64 iKey1
, /* Initial key value */
5462 int iReg
, /* Register for new.* record */
5465 sqlite3
*db
= v
->db
;
5467 PreUpdate preupdate
;
5468 const char *zTbl
= pTab
->zName
;
5469 static const u8 fakeSortOrder
= 0;
5472 if( pTab
->tabFlags
& TF_WithoutRowid
){
5473 nRealCol
= sqlite3PrimaryKeyIndex(pTab
)->nColumn
;
5474 }else if( pTab
->tabFlags
& TF_HasVirtual
){
5475 nRealCol
= pTab
->nNVCol
;
5477 nRealCol
= pTab
->nCol
;
5481 assert( db
->pPreUpdate
==0 );
5482 memset(&preupdate
, 0, sizeof(PreUpdate
));
5483 if( HasRowid(pTab
)==0 ){
5485 preupdate
.pPk
= sqlite3PrimaryKeyIndex(pTab
);
5487 if( op
==SQLITE_UPDATE
){
5488 iKey2
= v
->aMem
[iReg
].u
.i
;
5495 assert( pCsr
->eCurType
==CURTYPE_BTREE
);
5496 assert( pCsr
->nField
==nRealCol
5497 || (pCsr
->nField
==nRealCol
+1 && op
==SQLITE_DELETE
&& iReg
==-1)
5501 preupdate
.pCsr
= pCsr
;
5503 preupdate
.iNewReg
= iReg
;
5504 preupdate
.keyinfo
.db
= db
;
5505 preupdate
.keyinfo
.enc
= ENC(db
);
5506 preupdate
.keyinfo
.nKeyField
= pTab
->nCol
;
5507 preupdate
.keyinfo
.aSortFlags
= (u8
*)&fakeSortOrder
;
5508 preupdate
.iKey1
= iKey1
;
5509 preupdate
.iKey2
= iKey2
;
5510 preupdate
.pTab
= pTab
;
5511 preupdate
.iBlobWrite
= iBlobWrite
;
5513 db
->pPreUpdate
= &preupdate
;
5514 db
->xPreUpdateCallback(db
->pPreUpdateArg
, db
, op
, zDb
, zTbl
, iKey1
, iKey2
);
5516 sqlite3DbFree(db
, preupdate
.aRecord
);
5517 vdbeFreeUnpacked(db
, preupdate
.keyinfo
.nKeyField
+1, preupdate
.pUnpacked
);
5518 vdbeFreeUnpacked(db
, preupdate
.keyinfo
.nKeyField
+1, preupdate
.pNewUnpacked
);
5519 if( preupdate
.aNew
){
5521 for(i
=0; i
<pCsr
->nField
; i
++){
5522 sqlite3VdbeMemRelease(&preupdate
.aNew
[i
]);
5524 sqlite3DbNNFreeNN(db
, preupdate
.aNew
);
5527 #endif /* SQLITE_ENABLE_PREUPDATE_HOOK */