downgrade memory unlock failures to info level and fix function name in log output
[sqlcipher.git] / src / bitvec.c
blob13f87d567634a538ebc2b0e5ccf4cd2160ad0369
1 /*
2 ** 2008 February 16
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This file implements an object that represents a fixed-length
13 ** bitmap. Bits are numbered starting with 1.
15 ** A bitmap is used to record which pages of a database file have been
16 ** journalled during a transaction, or which pages have the "dont-write"
17 ** property. Usually only a few pages are meet either condition.
18 ** So the bitmap is usually sparse and has low cardinality.
19 ** But sometimes (for example when during a DROP of a large table) most
20 ** or all of the pages in a database can get journalled. In those cases,
21 ** the bitmap becomes dense with high cardinality. The algorithm needs
22 ** to handle both cases well.
24 ** The size of the bitmap is fixed when the object is created.
26 ** All bits are clear when the bitmap is created. Individual bits
27 ** may be set or cleared one at a time.
29 ** Test operations are about 100 times more common that set operations.
30 ** Clear operations are exceedingly rare. There are usually between
31 ** 5 and 500 set operations per Bitvec object, though the number of sets can
32 ** sometimes grow into tens of thousands or larger. The size of the
33 ** Bitvec object is the number of pages in the database file at the
34 ** start of a transaction, and is thus usually less than a few thousand,
35 ** but can be as large as 2 billion for a really big database.
37 #include "sqliteInt.h"
39 /* Size of the Bitvec structure in bytes. */
40 #define BITVEC_SZ 512
42 /* Round the union size down to the nearest pointer boundary, since that's how
43 ** it will be aligned within the Bitvec struct. */
44 #define BITVEC_USIZE \
45 (((BITVEC_SZ-(3*sizeof(u32)))/sizeof(Bitvec*))*sizeof(Bitvec*))
47 /* Type of the array "element" for the bitmap representation.
48 ** Should be a power of 2, and ideally, evenly divide into BITVEC_USIZE.
49 ** Setting this to the "natural word" size of your CPU may improve
50 ** performance. */
51 #define BITVEC_TELEM u8
52 /* Size, in bits, of the bitmap element. */
53 #define BITVEC_SZELEM 8
54 /* Number of elements in a bitmap array. */
55 #define BITVEC_NELEM (BITVEC_USIZE/sizeof(BITVEC_TELEM))
56 /* Number of bits in the bitmap array. */
57 #define BITVEC_NBIT (BITVEC_NELEM*BITVEC_SZELEM)
59 /* Number of u32 values in hash table. */
60 #define BITVEC_NINT (BITVEC_USIZE/sizeof(u32))
61 /* Maximum number of entries in hash table before
62 ** sub-dividing and re-hashing. */
63 #define BITVEC_MXHASH (BITVEC_NINT/2)
64 /* Hashing function for the aHash representation.
65 ** Empirical testing showed that the *37 multiplier
66 ** (an arbitrary prime)in the hash function provided
67 ** no fewer collisions than the no-op *1. */
68 #define BITVEC_HASH(X) (((X)*1)%BITVEC_NINT)
70 #define BITVEC_NPTR (BITVEC_USIZE/sizeof(Bitvec *))
74 ** A bitmap is an instance of the following structure.
76 ** This bitmap records the existence of zero or more bits
77 ** with values between 1 and iSize, inclusive.
79 ** There are three possible representations of the bitmap.
80 ** If iSize<=BITVEC_NBIT, then Bitvec.u.aBitmap[] is a straight
81 ** bitmap. The least significant bit is bit 1.
83 ** If iSize>BITVEC_NBIT and iDivisor==0 then Bitvec.u.aHash[] is
84 ** a hash table that will hold up to BITVEC_MXHASH distinct values.
86 ** Otherwise, the value i is redirected into one of BITVEC_NPTR
87 ** sub-bitmaps pointed to by Bitvec.u.apSub[]. Each subbitmap
88 ** handles up to iDivisor separate values of i. apSub[0] holds
89 ** values between 1 and iDivisor. apSub[1] holds values between
90 ** iDivisor+1 and 2*iDivisor. apSub[N] holds values between
91 ** N*iDivisor+1 and (N+1)*iDivisor. Each subbitmap is normalized
92 ** to hold deal with values between 1 and iDivisor.
94 struct Bitvec {
95 u32 iSize; /* Maximum bit index. Max iSize is 4,294,967,296. */
96 u32 nSet; /* Number of bits that are set - only valid for aHash
97 ** element. Max is BITVEC_NINT. For BITVEC_SZ of 512,
98 ** this would be 125. */
99 u32 iDivisor; /* Number of bits handled by each apSub[] entry. */
100 /* Should >=0 for apSub element. */
101 /* Max iDivisor is max(u32) / BITVEC_NPTR + 1. */
102 /* For a BITVEC_SZ of 512, this would be 34,359,739. */
103 union {
104 BITVEC_TELEM aBitmap[BITVEC_NELEM]; /* Bitmap representation */
105 u32 aHash[BITVEC_NINT]; /* Hash table representation */
106 Bitvec *apSub[BITVEC_NPTR]; /* Recursive representation */
107 } u;
111 ** Create a new bitmap object able to handle bits between 0 and iSize,
112 ** inclusive. Return a pointer to the new object. Return NULL if
113 ** malloc fails.
115 Bitvec *sqlite3BitvecCreate(u32 iSize){
116 Bitvec *p;
117 assert( sizeof(*p)==BITVEC_SZ );
118 p = sqlite3MallocZero( sizeof(*p) );
119 if( p ){
120 p->iSize = iSize;
122 return p;
126 ** Check to see if the i-th bit is set. Return true or false.
127 ** If p is NULL (if the bitmap has not been created) or if
128 ** i is out of range, then return false.
130 int sqlite3BitvecTestNotNull(Bitvec *p, u32 i){
131 assert( p!=0 );
132 i--;
133 if( i>=p->iSize ) return 0;
134 while( p->iDivisor ){
135 u32 bin = i/p->iDivisor;
136 i = i%p->iDivisor;
137 p = p->u.apSub[bin];
138 if (!p) {
139 return 0;
142 if( p->iSize<=BITVEC_NBIT ){
143 return (p->u.aBitmap[i/BITVEC_SZELEM] & (1<<(i&(BITVEC_SZELEM-1))))!=0;
144 } else{
145 u32 h = BITVEC_HASH(i++);
146 while( p->u.aHash[h] ){
147 if( p->u.aHash[h]==i ) return 1;
148 h = (h+1) % BITVEC_NINT;
150 return 0;
153 int sqlite3BitvecTest(Bitvec *p, u32 i){
154 return p!=0 && sqlite3BitvecTestNotNull(p,i);
158 ** Set the i-th bit. Return 0 on success and an error code if
159 ** anything goes wrong.
161 ** This routine might cause sub-bitmaps to be allocated. Failing
162 ** to get the memory needed to hold the sub-bitmap is the only
163 ** that can go wrong with an insert, assuming p and i are valid.
165 ** The calling function must ensure that p is a valid Bitvec object
166 ** and that the value for "i" is within range of the Bitvec object.
167 ** Otherwise the behavior is undefined.
169 int sqlite3BitvecSet(Bitvec *p, u32 i){
170 u32 h;
171 if( p==0 ) return SQLITE_OK;
172 assert( i>0 );
173 assert( i<=p->iSize );
174 i--;
175 while((p->iSize > BITVEC_NBIT) && p->iDivisor) {
176 u32 bin = i/p->iDivisor;
177 i = i%p->iDivisor;
178 if( p->u.apSub[bin]==0 ){
179 p->u.apSub[bin] = sqlite3BitvecCreate( p->iDivisor );
180 if( p->u.apSub[bin]==0 ) return SQLITE_NOMEM_BKPT;
182 p = p->u.apSub[bin];
184 if( p->iSize<=BITVEC_NBIT ){
185 p->u.aBitmap[i/BITVEC_SZELEM] |= 1 << (i&(BITVEC_SZELEM-1));
186 return SQLITE_OK;
188 h = BITVEC_HASH(i++);
189 /* if there wasn't a hash collision, and this doesn't */
190 /* completely fill the hash, then just add it without */
191 /* worrying about sub-dividing and re-hashing. */
192 if( !p->u.aHash[h] ){
193 if (p->nSet<(BITVEC_NINT-1)) {
194 goto bitvec_set_end;
195 } else {
196 goto bitvec_set_rehash;
199 /* there was a collision, check to see if it's already */
200 /* in hash, if not, try to find a spot for it */
201 do {
202 if( p->u.aHash[h]==i ) return SQLITE_OK;
203 h++;
204 if( h>=BITVEC_NINT ) h = 0;
205 } while( p->u.aHash[h] );
206 /* we didn't find it in the hash. h points to the first */
207 /* available free spot. check to see if this is going to */
208 /* make our hash too "full". */
209 bitvec_set_rehash:
210 if( p->nSet>=BITVEC_MXHASH ){
211 unsigned int j;
212 int rc;
213 u32 *aiValues = sqlite3StackAllocRaw(0, sizeof(p->u.aHash));
214 if( aiValues==0 ){
215 return SQLITE_NOMEM_BKPT;
216 }else{
217 memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash));
218 memset(p->u.apSub, 0, sizeof(p->u.apSub));
219 p->iDivisor = (p->iSize + BITVEC_NPTR - 1)/BITVEC_NPTR;
220 rc = sqlite3BitvecSet(p, i);
221 for(j=0; j<BITVEC_NINT; j++){
222 if( aiValues[j] ) rc |= sqlite3BitvecSet(p, aiValues[j]);
224 sqlite3StackFree(0, aiValues);
225 return rc;
228 bitvec_set_end:
229 p->nSet++;
230 p->u.aHash[h] = i;
231 return SQLITE_OK;
235 ** Clear the i-th bit.
237 ** pBuf must be a pointer to at least BITVEC_SZ bytes of temporary storage
238 ** that BitvecClear can use to rebuilt its hash table.
240 void sqlite3BitvecClear(Bitvec *p, u32 i, void *pBuf){
241 if( p==0 ) return;
242 assert( i>0 );
243 i--;
244 while( p->iDivisor ){
245 u32 bin = i/p->iDivisor;
246 i = i%p->iDivisor;
247 p = p->u.apSub[bin];
248 if (!p) {
249 return;
252 if( p->iSize<=BITVEC_NBIT ){
253 p->u.aBitmap[i/BITVEC_SZELEM] &= ~(1 << (i&(BITVEC_SZELEM-1)));
254 }else{
255 unsigned int j;
256 u32 *aiValues = pBuf;
257 memcpy(aiValues, p->u.aHash, sizeof(p->u.aHash));
258 memset(p->u.aHash, 0, sizeof(p->u.aHash));
259 p->nSet = 0;
260 for(j=0; j<BITVEC_NINT; j++){
261 if( aiValues[j] && aiValues[j]!=(i+1) ){
262 u32 h = BITVEC_HASH(aiValues[j]-1);
263 p->nSet++;
264 while( p->u.aHash[h] ){
265 h++;
266 if( h>=BITVEC_NINT ) h = 0;
268 p->u.aHash[h] = aiValues[j];
275 ** Destroy a bitmap object. Reclaim all memory used.
277 void sqlite3BitvecDestroy(Bitvec *p){
278 if( p==0 ) return;
279 if( p->iDivisor ){
280 unsigned int i;
281 for(i=0; i<BITVEC_NPTR; i++){
282 sqlite3BitvecDestroy(p->u.apSub[i]);
285 sqlite3_free(p);
289 ** Return the value of the iSize parameter specified when Bitvec *p
290 ** was created.
292 u32 sqlite3BitvecSize(Bitvec *p){
293 return p->iSize;
296 #ifndef SQLITE_UNTESTABLE
298 ** Let V[] be an array of unsigned characters sufficient to hold
299 ** up to N bits. Let I be an integer between 0 and N. 0<=I<N.
300 ** Then the following macros can be used to set, clear, or test
301 ** individual bits within V.
303 #define SETBIT(V,I) V[I>>3] |= (1<<(I&7))
304 #define CLEARBIT(V,I) V[I>>3] &= ~(1<<(I&7))
305 #define TESTBIT(V,I) (V[I>>3]&(1<<(I&7)))!=0
308 ** This routine runs an extensive test of the Bitvec code.
310 ** The input is an array of integers that acts as a program
311 ** to test the Bitvec. The integers are opcodes followed
312 ** by 0, 1, or 3 operands, depending on the opcode. Another
313 ** opcode follows immediately after the last operand.
315 ** There are 6 opcodes numbered from 0 through 5. 0 is the
316 ** "halt" opcode and causes the test to end.
318 ** 0 Halt and return the number of errors
319 ** 1 N S X Set N bits beginning with S and incrementing by X
320 ** 2 N S X Clear N bits beginning with S and incrementing by X
321 ** 3 N Set N randomly chosen bits
322 ** 4 N Clear N randomly chosen bits
323 ** 5 N S X Set N bits from S increment X in array only, not in bitvec
325 ** The opcodes 1 through 4 perform set and clear operations are performed
326 ** on both a Bitvec object and on a linear array of bits obtained from malloc.
327 ** Opcode 5 works on the linear array only, not on the Bitvec.
328 ** Opcode 5 is used to deliberately induce a fault in order to
329 ** confirm that error detection works.
331 ** At the conclusion of the test the linear array is compared
332 ** against the Bitvec object. If there are any differences,
333 ** an error is returned. If they are the same, zero is returned.
335 ** If a memory allocation error occurs, return -1.
337 int sqlite3BitvecBuiltinTest(int sz, int *aOp){
338 Bitvec *pBitvec = 0;
339 unsigned char *pV = 0;
340 int rc = -1;
341 int i, nx, pc, op;
342 void *pTmpSpace;
344 /* Allocate the Bitvec to be tested and a linear array of
345 ** bits to act as the reference */
346 pBitvec = sqlite3BitvecCreate( sz );
347 pV = sqlite3MallocZero( (sz+7)/8 + 1 );
348 pTmpSpace = sqlite3_malloc64(BITVEC_SZ);
349 if( pBitvec==0 || pV==0 || pTmpSpace==0 ) goto bitvec_end;
351 /* NULL pBitvec tests */
352 sqlite3BitvecSet(0, 1);
353 sqlite3BitvecClear(0, 1, pTmpSpace);
355 /* Run the program */
356 pc = i = 0;
357 while( (op = aOp[pc])!=0 ){
358 switch( op ){
359 case 1:
360 case 2:
361 case 5: {
362 nx = 4;
363 i = aOp[pc+2] - 1;
364 aOp[pc+2] += aOp[pc+3];
365 break;
367 case 3:
368 case 4:
369 default: {
370 nx = 2;
371 sqlite3_randomness(sizeof(i), &i);
372 break;
375 if( (--aOp[pc+1]) > 0 ) nx = 0;
376 pc += nx;
377 i = (i & 0x7fffffff)%sz;
378 if( (op & 1)!=0 ){
379 SETBIT(pV, (i+1));
380 if( op!=5 ){
381 if( sqlite3BitvecSet(pBitvec, i+1) ) goto bitvec_end;
383 }else{
384 CLEARBIT(pV, (i+1));
385 sqlite3BitvecClear(pBitvec, i+1, pTmpSpace);
389 /* Test to make sure the linear array exactly matches the
390 ** Bitvec object. Start with the assumption that they do
391 ** match (rc==0). Change rc to non-zero if a discrepancy
392 ** is found.
394 rc = sqlite3BitvecTest(0,0) + sqlite3BitvecTest(pBitvec, sz+1)
395 + sqlite3BitvecTest(pBitvec, 0)
396 + (sqlite3BitvecSize(pBitvec) - sz);
397 for(i=1; i<=sz; i++){
398 if( (TESTBIT(pV,i))!=sqlite3BitvecTest(pBitvec,i) ){
399 rc = i;
400 break;
404 /* Free allocated structure */
405 bitvec_end:
406 sqlite3_free(pTmpSpace);
407 sqlite3_free(pV);
408 sqlite3BitvecDestroy(pBitvec);
409 return rc;
411 #endif /* SQLITE_UNTESTABLE */