downgrade memory unlock failures to info level and fix function name in log output
[sqlcipher.git] / src / vdbe.c
blob23f84894491bdb69209bf2b74bd920102046e710
1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files. The formatting
17 ** of the code in this file is, therefore, important. See other comments
18 ** in this file for details. If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
21 #include "sqliteInt.h"
22 #include "vdbeInt.h"
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell. This macro verifies that shallow copies are
27 ** not misused. A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content. If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy. This macro verifies that nothing
31 ** like that ever happens.
33 #ifdef SQLITE_DEBUG
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
35 #else
36 # define memAboutToChange(P,M)
37 #endif
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly. This variable has no function other than to
44 ** help verify the correct operation of the library.
46 #ifdef SQLITE_TEST
47 int sqlite3_search_count = 0;
48 #endif
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
55 ** This facility is used for testing purposes only. It does not function
56 ** in an ordinary build.
58 #ifdef SQLITE_TEST
59 int sqlite3_interrupt_count = 0;
60 #endif
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed. The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times. This variable
66 ** has no function other than to help verify the correct operation of the
67 ** library.
69 #ifdef SQLITE_TEST
70 int sqlite3_sort_count = 0;
71 #endif
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly. This variable has no function other than to
78 ** help verify the correct operation of the library.
80 #ifdef SQLITE_TEST
81 int sqlite3_max_blobsize = 0;
82 static void updateMaxBlobsize(Mem *p){
83 if( (p->flags & (MEM_Str|MEM_Blob))!=0 && p->n>sqlite3_max_blobsize ){
84 sqlite3_max_blobsize = p->n;
87 #endif
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
95 #else
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
97 #endif
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
104 ** library.
106 #ifdef SQLITE_TEST
107 int sqlite3_found_count = 0;
108 #endif
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
116 #else
117 # define UPDATE_MAX_BLOBSIZE(P)
118 #endif
120 #ifdef SQLITE_DEBUG
121 /* This routine provides a convenient place to set a breakpoint during
122 ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after
123 ** each opcode is printed. Variables "pc" (program counter) and pOp are
124 ** available to add conditionals to the breakpoint. GDB example:
126 ** break test_trace_breakpoint if pc=22
128 ** Other useful labels for breakpoints include:
129 ** test_addop_breakpoint(pc,pOp)
130 ** sqlite3CorruptError(lineno)
131 ** sqlite3MisuseError(lineno)
132 ** sqlite3CantopenError(lineno)
134 static void test_trace_breakpoint(int pc, Op *pOp, Vdbe *v){
135 static u64 n = 0;
136 (void)pc;
137 (void)pOp;
138 (void)v;
139 n++;
140 if( n==LARGEST_UINT64 ) abort(); /* So that n is used, preventing a warning */
142 #endif
145 ** Invoke the VDBE coverage callback, if that callback is defined. This
146 ** feature is used for test suite validation only and does not appear an
147 ** production builds.
149 ** M is the type of branch. I is the direction taken for this instance of
150 ** the branch.
152 ** M: 2 - two-way branch (I=0: fall-thru 1: jump )
153 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL )
154 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3)
156 ** In other words, if M is 2, then I is either 0 (for fall-through) or
157 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an
158 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2
159 ** if the result of comparison is NULL. For M=3, I=2 the jump may or
160 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
161 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2
162 ** depending on if the operands are less than, equal, or greater than.
164 ** iSrcLine is the source code line (from the __LINE__ macro) that
165 ** generated the VDBE instruction combined with flag bits. The source
166 ** code line number is in the lower 24 bits of iSrcLine and the upper
167 ** 8 bytes are flags. The lower three bits of the flags indicate
168 ** values for I that should never occur. For example, if the branch is
169 ** always taken, the flags should be 0x05 since the fall-through and
170 ** alternate branch are never taken. If a branch is never taken then
171 ** flags should be 0x06 since only the fall-through approach is allowed.
173 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
174 ** interested in equal or not-equal. In other words, I==0 and I==2
175 ** should be treated as equivalent
177 ** Since only a line number is retained, not the filename, this macro
178 ** only works for amalgamation builds. But that is ok, since these macros
179 ** should be no-ops except for special builds used to measure test coverage.
181 #if !defined(SQLITE_VDBE_COVERAGE)
182 # define VdbeBranchTaken(I,M)
183 #else
184 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
185 static void vdbeTakeBranch(u32 iSrcLine, u8 I, u8 M){
186 u8 mNever;
187 assert( I<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */
188 assert( M<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
189 assert( I<M ); /* I can only be 2 if M is 3 or 4 */
190 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
191 I = 1<<I;
192 /* The upper 8 bits of iSrcLine are flags. The lower three bits of
193 ** the flags indicate directions that the branch can never go. If
194 ** a branch really does go in one of those directions, assert right
195 ** away. */
196 mNever = iSrcLine >> 24;
197 assert( (I & mNever)==0 );
198 if( sqlite3GlobalConfig.xVdbeBranch==0 ) return; /*NO_TEST*/
199 /* Invoke the branch coverage callback with three arguments:
200 ** iSrcLine - the line number of the VdbeCoverage() macro, with
201 ** flags removed.
202 ** I - Mask of bits 0x07 indicating which cases are are
203 ** fulfilled by this instance of the jump. 0x01 means
204 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any
205 ** impossible cases (ex: if the comparison is never NULL)
206 ** are filled in automatically so that the coverage
207 ** measurement logic does not flag those impossible cases
208 ** as missed coverage.
209 ** M - Type of jump. Same as M argument above
211 I |= mNever;
212 if( M==2 ) I |= 0x04;
213 if( M==4 ){
214 I |= 0x08;
215 if( (mNever&0x08)!=0 && (I&0x05)!=0) I |= 0x05; /*NO_TEST*/
217 sqlite3GlobalConfig.xVdbeBranch(sqlite3GlobalConfig.pVdbeBranchArg,
218 iSrcLine&0xffffff, I, M);
220 #endif
223 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
224 ** a pointer to a dynamically allocated string where some other entity
225 ** is responsible for deallocating that string. Because the register
226 ** does not control the string, it might be deleted without the register
227 ** knowing it.
229 ** This routine converts an ephemeral string into a dynamically allocated
230 ** string that the register itself controls. In other words, it
231 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
233 #define Deephemeralize(P) \
234 if( ((P)->flags&MEM_Ephem)!=0 \
235 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
237 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
238 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
241 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
242 ** if we run out of memory.
244 static VdbeCursor *allocateCursor(
245 Vdbe *p, /* The virtual machine */
246 int iCur, /* Index of the new VdbeCursor */
247 int nField, /* Number of fields in the table or index */
248 u8 eCurType /* Type of the new cursor */
250 /* Find the memory cell that will be used to store the blob of memory
251 ** required for this VdbeCursor structure. It is convenient to use a
252 ** vdbe memory cell to manage the memory allocation required for a
253 ** VdbeCursor structure for the following reasons:
255 ** * Sometimes cursor numbers are used for a couple of different
256 ** purposes in a vdbe program. The different uses might require
257 ** different sized allocations. Memory cells provide growable
258 ** allocations.
260 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
261 ** be freed lazily via the sqlite3_release_memory() API. This
262 ** minimizes the number of malloc calls made by the system.
264 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
265 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1].
266 ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
268 Mem *pMem = iCur>0 ? &p->aMem[p->nMem-iCur] : p->aMem;
270 int nByte;
271 VdbeCursor *pCx = 0;
272 nByte =
273 ROUND8P(sizeof(VdbeCursor)) + 2*sizeof(u32)*nField +
274 (eCurType==CURTYPE_BTREE?sqlite3BtreeCursorSize():0);
276 assert( iCur>=0 && iCur<p->nCursor );
277 if( p->apCsr[iCur] ){ /*OPTIMIZATION-IF-FALSE*/
278 sqlite3VdbeFreeCursorNN(p, p->apCsr[iCur]);
279 p->apCsr[iCur] = 0;
282 /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure
283 ** the pMem used to hold space for the cursor has enough storage available
284 ** in pMem->zMalloc. But for the special case of the aMem[] entries used
285 ** to hold cursors, it is faster to in-line the logic. */
286 assert( pMem->flags==MEM_Undefined );
287 assert( (pMem->flags & MEM_Dyn)==0 );
288 assert( pMem->szMalloc==0 || pMem->z==pMem->zMalloc );
289 if( pMem->szMalloc<nByte ){
290 if( pMem->szMalloc>0 ){
291 sqlite3DbFreeNN(pMem->db, pMem->zMalloc);
293 pMem->z = pMem->zMalloc = sqlite3DbMallocRaw(pMem->db, nByte);
294 if( pMem->zMalloc==0 ){
295 pMem->szMalloc = 0;
296 return 0;
298 pMem->szMalloc = nByte;
301 p->apCsr[iCur] = pCx = (VdbeCursor*)pMem->zMalloc;
302 memset(pCx, 0, offsetof(VdbeCursor,pAltCursor));
303 pCx->eCurType = eCurType;
304 pCx->nField = nField;
305 pCx->aOffset = &pCx->aType[nField];
306 if( eCurType==CURTYPE_BTREE ){
307 pCx->uc.pCursor = (BtCursor*)
308 &pMem->z[ROUND8P(sizeof(VdbeCursor))+2*sizeof(u32)*nField];
309 sqlite3BtreeCursorZero(pCx->uc.pCursor);
311 return pCx;
315 ** The string in pRec is known to look like an integer and to have a
316 ** floating point value of rValue. Return true and set *piValue to the
317 ** integer value if the string is in range to be an integer. Otherwise,
318 ** return false.
320 static int alsoAnInt(Mem *pRec, double rValue, i64 *piValue){
321 i64 iValue;
322 iValue = sqlite3RealToI64(rValue);
323 if( sqlite3RealSameAsInt(rValue,iValue) ){
324 *piValue = iValue;
325 return 1;
327 return 0==sqlite3Atoi64(pRec->z, piValue, pRec->n, pRec->enc);
331 ** Try to convert a value into a numeric representation if we can
332 ** do so without loss of information. In other words, if the string
333 ** looks like a number, convert it into a number. If it does not
334 ** look like a number, leave it alone.
336 ** If the bTryForInt flag is true, then extra effort is made to give
337 ** an integer representation. Strings that look like floating point
338 ** values but which have no fractional component (example: '48.00')
339 ** will have a MEM_Int representation when bTryForInt is true.
341 ** If bTryForInt is false, then if the input string contains a decimal
342 ** point or exponential notation, the result is only MEM_Real, even
343 ** if there is an exact integer representation of the quantity.
345 static void applyNumericAffinity(Mem *pRec, int bTryForInt){
346 double rValue;
347 u8 enc = pRec->enc;
348 int rc;
349 assert( (pRec->flags & (MEM_Str|MEM_Int|MEM_Real|MEM_IntReal))==MEM_Str );
350 rc = sqlite3AtoF(pRec->z, &rValue, pRec->n, enc);
351 if( rc<=0 ) return;
352 if( rc==1 && alsoAnInt(pRec, rValue, &pRec->u.i) ){
353 pRec->flags |= MEM_Int;
354 }else{
355 pRec->u.r = rValue;
356 pRec->flags |= MEM_Real;
357 if( bTryForInt ) sqlite3VdbeIntegerAffinity(pRec);
359 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the
360 ** string representation after computing a numeric equivalent, because the
361 ** string representation might not be the canonical representation for the
362 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */
363 pRec->flags &= ~MEM_Str;
367 ** Processing is determine by the affinity parameter:
369 ** SQLITE_AFF_INTEGER:
370 ** SQLITE_AFF_REAL:
371 ** SQLITE_AFF_NUMERIC:
372 ** Try to convert pRec to an integer representation or a
373 ** floating-point representation if an integer representation
374 ** is not possible. Note that the integer representation is
375 ** always preferred, even if the affinity is REAL, because
376 ** an integer representation is more space efficient on disk.
378 ** SQLITE_AFF_FLEXNUM:
379 ** If the value is text, then try to convert it into a number of
380 ** some kind (integer or real) but do not make any other changes.
382 ** SQLITE_AFF_TEXT:
383 ** Convert pRec to a text representation.
385 ** SQLITE_AFF_BLOB:
386 ** SQLITE_AFF_NONE:
387 ** No-op. pRec is unchanged.
389 static void applyAffinity(
390 Mem *pRec, /* The value to apply affinity to */
391 char affinity, /* The affinity to be applied */
392 u8 enc /* Use this text encoding */
394 if( affinity>=SQLITE_AFF_NUMERIC ){
395 assert( affinity==SQLITE_AFF_INTEGER || affinity==SQLITE_AFF_REAL
396 || affinity==SQLITE_AFF_NUMERIC || affinity==SQLITE_AFF_FLEXNUM );
397 if( (pRec->flags & MEM_Int)==0 ){ /*OPTIMIZATION-IF-FALSE*/
398 if( (pRec->flags & (MEM_Real|MEM_IntReal))==0 ){
399 if( pRec->flags & MEM_Str ) applyNumericAffinity(pRec,1);
400 }else if( affinity<=SQLITE_AFF_REAL ){
401 sqlite3VdbeIntegerAffinity(pRec);
404 }else if( affinity==SQLITE_AFF_TEXT ){
405 /* Only attempt the conversion to TEXT if there is an integer or real
406 ** representation (blob and NULL do not get converted) but no string
407 ** representation. It would be harmless to repeat the conversion if
408 ** there is already a string rep, but it is pointless to waste those
409 ** CPU cycles. */
410 if( 0==(pRec->flags&MEM_Str) ){ /*OPTIMIZATION-IF-FALSE*/
411 if( (pRec->flags&(MEM_Real|MEM_Int|MEM_IntReal)) ){
412 testcase( pRec->flags & MEM_Int );
413 testcase( pRec->flags & MEM_Real );
414 testcase( pRec->flags & MEM_IntReal );
415 sqlite3VdbeMemStringify(pRec, enc, 1);
418 pRec->flags &= ~(MEM_Real|MEM_Int|MEM_IntReal);
423 ** Try to convert the type of a function argument or a result column
424 ** into a numeric representation. Use either INTEGER or REAL whichever
425 ** is appropriate. But only do the conversion if it is possible without
426 ** loss of information and return the revised type of the argument.
428 int sqlite3_value_numeric_type(sqlite3_value *pVal){
429 int eType = sqlite3_value_type(pVal);
430 if( eType==SQLITE_TEXT ){
431 Mem *pMem = (Mem*)pVal;
432 applyNumericAffinity(pMem, 0);
433 eType = sqlite3_value_type(pVal);
435 return eType;
439 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
440 ** not the internal Mem* type.
442 void sqlite3ValueApplyAffinity(
443 sqlite3_value *pVal,
444 u8 affinity,
445 u8 enc
447 applyAffinity((Mem *)pVal, affinity, enc);
451 ** pMem currently only holds a string type (or maybe a BLOB that we can
452 ** interpret as a string if we want to). Compute its corresponding
453 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
454 ** accordingly.
456 static u16 SQLITE_NOINLINE computeNumericType(Mem *pMem){
457 int rc;
458 sqlite3_int64 ix;
459 assert( (pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal))==0 );
460 assert( (pMem->flags & (MEM_Str|MEM_Blob))!=0 );
461 if( ExpandBlob(pMem) ){
462 pMem->u.i = 0;
463 return MEM_Int;
465 rc = sqlite3AtoF(pMem->z, &pMem->u.r, pMem->n, pMem->enc);
466 if( rc<=0 ){
467 if( rc==0 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)<=1 ){
468 pMem->u.i = ix;
469 return MEM_Int;
470 }else{
471 return MEM_Real;
473 }else if( rc==1 && sqlite3Atoi64(pMem->z, &ix, pMem->n, pMem->enc)==0 ){
474 pMem->u.i = ix;
475 return MEM_Int;
477 return MEM_Real;
481 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
482 ** none.
484 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
485 ** But it does set pMem->u.r and pMem->u.i appropriately.
487 static u16 numericType(Mem *pMem){
488 assert( (pMem->flags & MEM_Null)==0
489 || pMem->db==0 || pMem->db->mallocFailed );
490 if( pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null) ){
491 testcase( pMem->flags & MEM_Int );
492 testcase( pMem->flags & MEM_Real );
493 testcase( pMem->flags & MEM_IntReal );
494 return pMem->flags & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Null);
496 assert( pMem->flags & (MEM_Str|MEM_Blob) );
497 testcase( pMem->flags & MEM_Str );
498 testcase( pMem->flags & MEM_Blob );
499 return computeNumericType(pMem);
500 return 0;
503 #ifdef SQLITE_DEBUG
505 ** Write a nice string representation of the contents of cell pMem
506 ** into buffer zBuf, length nBuf.
508 void sqlite3VdbeMemPrettyPrint(Mem *pMem, StrAccum *pStr){
509 int f = pMem->flags;
510 static const char *const encnames[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
511 if( f&MEM_Blob ){
512 int i;
513 char c;
514 if( f & MEM_Dyn ){
515 c = 'z';
516 assert( (f & (MEM_Static|MEM_Ephem))==0 );
517 }else if( f & MEM_Static ){
518 c = 't';
519 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
520 }else if( f & MEM_Ephem ){
521 c = 'e';
522 assert( (f & (MEM_Static|MEM_Dyn))==0 );
523 }else{
524 c = 's';
526 sqlite3_str_appendf(pStr, "%cx[", c);
527 for(i=0; i<25 && i<pMem->n; i++){
528 sqlite3_str_appendf(pStr, "%02X", ((int)pMem->z[i] & 0xFF));
530 sqlite3_str_appendf(pStr, "|");
531 for(i=0; i<25 && i<pMem->n; i++){
532 char z = pMem->z[i];
533 sqlite3_str_appendchar(pStr, 1, (z<32||z>126)?'.':z);
535 sqlite3_str_appendf(pStr,"]");
536 if( f & MEM_Zero ){
537 sqlite3_str_appendf(pStr, "+%dz",pMem->u.nZero);
539 }else if( f & MEM_Str ){
540 int j;
541 u8 c;
542 if( f & MEM_Dyn ){
543 c = 'z';
544 assert( (f & (MEM_Static|MEM_Ephem))==0 );
545 }else if( f & MEM_Static ){
546 c = 't';
547 assert( (f & (MEM_Dyn|MEM_Ephem))==0 );
548 }else if( f & MEM_Ephem ){
549 c = 'e';
550 assert( (f & (MEM_Static|MEM_Dyn))==0 );
551 }else{
552 c = 's';
554 sqlite3_str_appendf(pStr, " %c%d[", c, pMem->n);
555 for(j=0; j<25 && j<pMem->n; j++){
556 c = pMem->z[j];
557 sqlite3_str_appendchar(pStr, 1, (c>=0x20&&c<=0x7f) ? c : '.');
559 sqlite3_str_appendf(pStr, "]%s", encnames[pMem->enc]);
560 if( f & MEM_Term ){
561 sqlite3_str_appendf(pStr, "(0-term)");
565 #endif
567 #ifdef SQLITE_DEBUG
569 ** Print the value of a register for tracing purposes:
571 static void memTracePrint(Mem *p){
572 if( p->flags & MEM_Undefined ){
573 printf(" undefined");
574 }else if( p->flags & MEM_Null ){
575 printf(p->flags & MEM_Zero ? " NULL-nochng" : " NULL");
576 }else if( (p->flags & (MEM_Int|MEM_Str))==(MEM_Int|MEM_Str) ){
577 printf(" si:%lld", p->u.i);
578 }else if( (p->flags & (MEM_IntReal))!=0 ){
579 printf(" ir:%lld", p->u.i);
580 }else if( p->flags & MEM_Int ){
581 printf(" i:%lld", p->u.i);
582 #ifndef SQLITE_OMIT_FLOATING_POINT
583 }else if( p->flags & MEM_Real ){
584 printf(" r:%.17g", p->u.r);
585 #endif
586 }else if( sqlite3VdbeMemIsRowSet(p) ){
587 printf(" (rowset)");
588 }else{
589 StrAccum acc;
590 char zBuf[1000];
591 sqlite3StrAccumInit(&acc, 0, zBuf, sizeof(zBuf), 0);
592 sqlite3VdbeMemPrettyPrint(p, &acc);
593 printf(" %s", sqlite3StrAccumFinish(&acc));
595 if( p->flags & MEM_Subtype ) printf(" subtype=0x%02x", p->eSubtype);
597 static void registerTrace(int iReg, Mem *p){
598 printf("R[%d] = ", iReg);
599 memTracePrint(p);
600 if( p->pScopyFrom ){
601 printf(" <== R[%d]", (int)(p->pScopyFrom - &p[-iReg]));
603 printf("\n");
604 sqlite3VdbeCheckMemInvariants(p);
606 /**/ void sqlite3PrintMem(Mem *pMem){
607 memTracePrint(pMem);
608 printf("\n");
609 fflush(stdout);
611 #endif
613 #ifdef SQLITE_DEBUG
615 ** Show the values of all registers in the virtual machine. Used for
616 ** interactive debugging.
618 void sqlite3VdbeRegisterDump(Vdbe *v){
619 int i;
620 for(i=1; i<v->nMem; i++) registerTrace(i, v->aMem+i);
622 #endif /* SQLITE_DEBUG */
625 #ifdef SQLITE_DEBUG
626 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
627 #else
628 # define REGISTER_TRACE(R,M)
629 #endif
631 #ifndef NDEBUG
633 ** This function is only called from within an assert() expression. It
634 ** checks that the sqlite3.nTransaction variable is correctly set to
635 ** the number of non-transaction savepoints currently in the
636 ** linked list starting at sqlite3.pSavepoint.
638 ** Usage:
640 ** assert( checkSavepointCount(db) );
642 static int checkSavepointCount(sqlite3 *db){
643 int n = 0;
644 Savepoint *p;
645 for(p=db->pSavepoint; p; p=p->pNext) n++;
646 assert( n==(db->nSavepoint + db->isTransactionSavepoint) );
647 return 1;
649 #endif
652 ** Return the register of pOp->p2 after first preparing it to be
653 ** overwritten with an integer value.
655 static SQLITE_NOINLINE Mem *out2PrereleaseWithClear(Mem *pOut){
656 sqlite3VdbeMemSetNull(pOut);
657 pOut->flags = MEM_Int;
658 return pOut;
660 static Mem *out2Prerelease(Vdbe *p, VdbeOp *pOp){
661 Mem *pOut;
662 assert( pOp->p2>0 );
663 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
664 pOut = &p->aMem[pOp->p2];
665 memAboutToChange(p, pOut);
666 if( VdbeMemDynamic(pOut) ){ /*OPTIMIZATION-IF-FALSE*/
667 return out2PrereleaseWithClear(pOut);
668 }else{
669 pOut->flags = MEM_Int;
670 return pOut;
675 ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning
676 ** with pOp->p3. Return the hash.
678 static u64 filterHash(const Mem *aMem, const Op *pOp){
679 int i, mx;
680 u64 h = 0;
682 assert( pOp->p4type==P4_INT32 );
683 for(i=pOp->p3, mx=i+pOp->p4.i; i<mx; i++){
684 const Mem *p = &aMem[i];
685 if( p->flags & (MEM_Int|MEM_IntReal) ){
686 h += p->u.i;
687 }else if( p->flags & MEM_Real ){
688 h += sqlite3VdbeIntValue(p);
689 }else if( p->flags & (MEM_Str|MEM_Blob) ){
690 /* All strings have the same hash and all blobs have the same hash,
691 ** though, at least, those hashes are different from each other and
692 ** from NULL. */
693 h += 4093 + (p->flags & (MEM_Str|MEM_Blob));
696 return h;
701 ** For OP_Column, factor out the case where content is loaded from
702 ** overflow pages, so that the code to implement this case is separate
703 ** the common case where all content fits on the page. Factoring out
704 ** the code reduces register pressure and helps the common case
705 ** to run faster.
707 static SQLITE_NOINLINE int vdbeColumnFromOverflow(
708 VdbeCursor *pC, /* The BTree cursor from which we are reading */
709 int iCol, /* The column to read */
710 int t, /* The serial-type code for the column value */
711 i64 iOffset, /* Offset to the start of the content value */
712 u32 cacheStatus, /* Current Vdbe.cacheCtr value */
713 u32 colCacheCtr, /* Current value of the column cache counter */
714 Mem *pDest /* Store the value into this register. */
716 int rc;
717 sqlite3 *db = pDest->db;
718 int encoding = pDest->enc;
719 int len = sqlite3VdbeSerialTypeLen(t);
720 assert( pC->eCurType==CURTYPE_BTREE );
721 if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) return SQLITE_TOOBIG;
722 if( len > 4000 && pC->pKeyInfo==0 ){
723 /* Cache large column values that are on overflow pages using
724 ** an RCStr (reference counted string) so that if they are reloaded,
725 ** that do not have to be copied a second time. The overhead of
726 ** creating and managing the cache is such that this is only
727 ** profitable for larger TEXT and BLOB values.
729 ** Only do this on table-btrees so that writes to index-btrees do not
730 ** need to clear the cache. This buys performance in the common case
731 ** in exchange for generality.
733 VdbeTxtBlbCache *pCache;
734 char *pBuf;
735 if( pC->colCache==0 ){
736 pC->pCache = sqlite3DbMallocZero(db, sizeof(VdbeTxtBlbCache) );
737 if( pC->pCache==0 ) return SQLITE_NOMEM;
738 pC->colCache = 1;
740 pCache = pC->pCache;
741 if( pCache->pCValue==0
742 || pCache->iCol!=iCol
743 || pCache->cacheStatus!=cacheStatus
744 || pCache->colCacheCtr!=colCacheCtr
745 || pCache->iOffset!=sqlite3BtreeOffset(pC->uc.pCursor)
747 if( pCache->pCValue ) sqlite3RCStrUnref(pCache->pCValue);
748 pBuf = pCache->pCValue = sqlite3RCStrNew( len+3 );
749 if( pBuf==0 ) return SQLITE_NOMEM;
750 rc = sqlite3BtreePayload(pC->uc.pCursor, iOffset, len, pBuf);
751 if( rc ) return rc;
752 pBuf[len] = 0;
753 pBuf[len+1] = 0;
754 pBuf[len+2] = 0;
755 pCache->iCol = iCol;
756 pCache->cacheStatus = cacheStatus;
757 pCache->colCacheCtr = colCacheCtr;
758 pCache->iOffset = sqlite3BtreeOffset(pC->uc.pCursor);
759 }else{
760 pBuf = pCache->pCValue;
762 assert( t>=12 );
763 sqlite3RCStrRef(pBuf);
764 if( t&1 ){
765 rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, encoding,
766 sqlite3RCStrUnref);
767 pDest->flags |= MEM_Term;
768 }else{
769 rc = sqlite3VdbeMemSetStr(pDest, pBuf, len, 0,
770 sqlite3RCStrUnref);
772 }else{
773 rc = sqlite3VdbeMemFromBtree(pC->uc.pCursor, iOffset, len, pDest);
774 if( rc ) return rc;
775 sqlite3VdbeSerialGet((const u8*)pDest->z, t, pDest);
776 if( (t&1)!=0 && encoding==SQLITE_UTF8 ){
777 pDest->z[len] = 0;
778 pDest->flags |= MEM_Term;
781 pDest->flags &= ~MEM_Ephem;
782 return rc;
787 ** Return the symbolic name for the data type of a pMem
789 static const char *vdbeMemTypeName(Mem *pMem){
790 static const char *azTypes[] = {
791 /* SQLITE_INTEGER */ "INT",
792 /* SQLITE_FLOAT */ "REAL",
793 /* SQLITE_TEXT */ "TEXT",
794 /* SQLITE_BLOB */ "BLOB",
795 /* SQLITE_NULL */ "NULL"
797 return azTypes[sqlite3_value_type(pMem)-1];
801 ** Execute as much of a VDBE program as we can.
802 ** This is the core of sqlite3_step().
804 int sqlite3VdbeExec(
805 Vdbe *p /* The VDBE */
807 Op *aOp = p->aOp; /* Copy of p->aOp */
808 Op *pOp = aOp; /* Current operation */
809 #ifdef SQLITE_DEBUG
810 Op *pOrigOp; /* Value of pOp at the top of the loop */
811 int nExtraDelete = 0; /* Verifies FORDELETE and AUXDELETE flags */
812 u8 iCompareIsInit = 0; /* iCompare is initialized */
813 #endif
814 int rc = SQLITE_OK; /* Value to return */
815 sqlite3 *db = p->db; /* The database */
816 u8 resetSchemaOnFault = 0; /* Reset schema after an error if positive */
817 u8 encoding = ENC(db); /* The database encoding */
818 int iCompare = 0; /* Result of last comparison */
819 u64 nVmStep = 0; /* Number of virtual machine steps */
820 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
821 u64 nProgressLimit; /* Invoke xProgress() when nVmStep reaches this */
822 #endif
823 Mem *aMem = p->aMem; /* Copy of p->aMem */
824 Mem *pIn1 = 0; /* 1st input operand */
825 Mem *pIn2 = 0; /* 2nd input operand */
826 Mem *pIn3 = 0; /* 3rd input operand */
827 Mem *pOut = 0; /* Output operand */
828 u32 colCacheCtr = 0; /* Column cache counter */
829 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
830 u64 *pnCycle = 0;
831 int bStmtScanStatus = IS_STMT_SCANSTATUS(db)!=0;
832 #endif
833 /*** INSERT STACK UNION HERE ***/
835 assert( p->eVdbeState==VDBE_RUN_STATE ); /* sqlite3_step() verifies this */
836 if( DbMaskNonZero(p->lockMask) ){
837 sqlite3VdbeEnter(p);
839 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
840 if( db->xProgress ){
841 u32 iPrior = p->aCounter[SQLITE_STMTSTATUS_VM_STEP];
842 assert( 0 < db->nProgressOps );
843 nProgressLimit = db->nProgressOps - (iPrior % db->nProgressOps);
844 }else{
845 nProgressLimit = LARGEST_UINT64;
847 #endif
848 if( p->rc==SQLITE_NOMEM ){
849 /* This happens if a malloc() inside a call to sqlite3_column_text() or
850 ** sqlite3_column_text16() failed. */
851 goto no_mem;
853 assert( p->rc==SQLITE_OK || (p->rc&0xff)==SQLITE_BUSY );
854 testcase( p->rc!=SQLITE_OK );
855 p->rc = SQLITE_OK;
856 assert( p->bIsReader || p->readOnly!=0 );
857 p->iCurrentTime = 0;
858 assert( p->explain==0 );
859 db->busyHandler.nBusy = 0;
860 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
861 sqlite3VdbeIOTraceSql(p);
862 #ifdef SQLITE_DEBUG
863 sqlite3BeginBenignMalloc();
864 if( p->pc==0
865 && (p->db->flags & (SQLITE_VdbeListing|SQLITE_VdbeEQP|SQLITE_VdbeTrace))!=0
867 int i;
868 int once = 1;
869 sqlite3VdbePrintSql(p);
870 if( p->db->flags & SQLITE_VdbeListing ){
871 printf("VDBE Program Listing:\n");
872 for(i=0; i<p->nOp; i++){
873 sqlite3VdbePrintOp(stdout, i, &aOp[i]);
876 if( p->db->flags & SQLITE_VdbeEQP ){
877 for(i=0; i<p->nOp; i++){
878 if( aOp[i].opcode==OP_Explain ){
879 if( once ) printf("VDBE Query Plan:\n");
880 printf("%s\n", aOp[i].p4.z);
881 once = 0;
885 if( p->db->flags & SQLITE_VdbeTrace ) printf("VDBE Trace:\n");
887 sqlite3EndBenignMalloc();
888 #endif
889 for(pOp=&aOp[p->pc]; 1; pOp++){
890 /* Errors are detected by individual opcodes, with an immediate
891 ** jumps to abort_due_to_error. */
892 assert( rc==SQLITE_OK );
894 assert( pOp>=aOp && pOp<&aOp[p->nOp]);
895 nVmStep++;
897 #if defined(VDBE_PROFILE)
898 pOp->nExec++;
899 pnCycle = &pOp->nCycle;
900 if( sqlite3NProfileCnt==0 ) *pnCycle -= sqlite3Hwtime();
901 #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
902 if( bStmtScanStatus ){
903 pOp->nExec++;
904 pnCycle = &pOp->nCycle;
905 *pnCycle -= sqlite3Hwtime();
907 #endif
909 /* Only allow tracing if SQLITE_DEBUG is defined.
911 #ifdef SQLITE_DEBUG
912 if( db->flags & SQLITE_VdbeTrace ){
913 sqlite3VdbePrintOp(stdout, (int)(pOp - aOp), pOp);
914 test_trace_breakpoint((int)(pOp - aOp),pOp,p);
916 #endif
919 /* Check to see if we need to simulate an interrupt. This only happens
920 ** if we have a special test build.
922 #ifdef SQLITE_TEST
923 if( sqlite3_interrupt_count>0 ){
924 sqlite3_interrupt_count--;
925 if( sqlite3_interrupt_count==0 ){
926 sqlite3_interrupt(db);
929 #endif
931 /* Sanity checking on other operands */
932 #ifdef SQLITE_DEBUG
934 u8 opProperty = sqlite3OpcodeProperty[pOp->opcode];
935 if( (opProperty & OPFLG_IN1)!=0 ){
936 assert( pOp->p1>0 );
937 assert( pOp->p1<=(p->nMem+1 - p->nCursor) );
938 assert( memIsValid(&aMem[pOp->p1]) );
939 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p1]) );
940 REGISTER_TRACE(pOp->p1, &aMem[pOp->p1]);
942 if( (opProperty & OPFLG_IN2)!=0 ){
943 assert( pOp->p2>0 );
944 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
945 assert( memIsValid(&aMem[pOp->p2]) );
946 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p2]) );
947 REGISTER_TRACE(pOp->p2, &aMem[pOp->p2]);
949 if( (opProperty & OPFLG_IN3)!=0 ){
950 assert( pOp->p3>0 );
951 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
952 assert( memIsValid(&aMem[pOp->p3]) );
953 assert( sqlite3VdbeCheckMemInvariants(&aMem[pOp->p3]) );
954 REGISTER_TRACE(pOp->p3, &aMem[pOp->p3]);
956 if( (opProperty & OPFLG_OUT2)!=0 ){
957 assert( pOp->p2>0 );
958 assert( pOp->p2<=(p->nMem+1 - p->nCursor) );
959 memAboutToChange(p, &aMem[pOp->p2]);
961 if( (opProperty & OPFLG_OUT3)!=0 ){
962 assert( pOp->p3>0 );
963 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
964 memAboutToChange(p, &aMem[pOp->p3]);
967 #endif
968 #ifdef SQLITE_DEBUG
969 pOrigOp = pOp;
970 #endif
972 switch( pOp->opcode ){
974 /*****************************************************************************
975 ** What follows is a massive switch statement where each case implements a
976 ** separate instruction in the virtual machine. If we follow the usual
977 ** indentation conventions, each case should be indented by 6 spaces. But
978 ** that is a lot of wasted space on the left margin. So the code within
979 ** the switch statement will break with convention and be flush-left. Another
980 ** big comment (similar to this one) will mark the point in the code where
981 ** we transition back to normal indentation.
983 ** The formatting of each case is important. The makefile for SQLite
984 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
985 ** file looking for lines that begin with "case OP_". The opcodes.h files
986 ** will be filled with #defines that give unique integer values to each
987 ** opcode and the opcodes.c file is filled with an array of strings where
988 ** each string is the symbolic name for the corresponding opcode. If the
989 ** case statement is followed by a comment of the form "/# same as ... #/"
990 ** that comment is used to determine the particular value of the opcode.
992 ** Other keywords in the comment that follows each case are used to
993 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
994 ** Keywords include: in1, in2, in3, out2, out3. See
995 ** the mkopcodeh.awk script for additional information.
997 ** Documentation about VDBE opcodes is generated by scanning this file
998 ** for lines of that contain "Opcode:". That line and all subsequent
999 ** comment lines are used in the generation of the opcode.html documentation
1000 ** file.
1002 ** SUMMARY:
1004 ** Formatting is important to scripts that scan this file.
1005 ** Do not deviate from the formatting style currently in use.
1007 *****************************************************************************/
1009 /* Opcode: Goto * P2 * * *
1011 ** An unconditional jump to address P2.
1012 ** The next instruction executed will be
1013 ** the one at index P2 from the beginning of
1014 ** the program.
1016 ** The P1 parameter is not actually used by this opcode. However, it
1017 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
1018 ** that this Goto is the bottom of a loop and that the lines from P2 down
1019 ** to the current line should be indented for EXPLAIN output.
1021 case OP_Goto: { /* jump */
1023 #ifdef SQLITE_DEBUG
1024 /* In debugging mode, when the p5 flags is set on an OP_Goto, that
1025 ** means we should really jump back to the preceding OP_ReleaseReg
1026 ** instruction. */
1027 if( pOp->p5 ){
1028 assert( pOp->p2 < (int)(pOp - aOp) );
1029 assert( pOp->p2 > 1 );
1030 pOp = &aOp[pOp->p2 - 2];
1031 assert( pOp[1].opcode==OP_ReleaseReg );
1032 goto check_for_interrupt;
1034 #endif
1036 jump_to_p2_and_check_for_interrupt:
1037 pOp = &aOp[pOp->p2 - 1];
1039 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
1040 ** OP_VNext, or OP_SorterNext) all jump here upon
1041 ** completion. Check to see if sqlite3_interrupt() has been called
1042 ** or if the progress callback needs to be invoked.
1044 ** This code uses unstructured "goto" statements and does not look clean.
1045 ** But that is not due to sloppy coding habits. The code is written this
1046 ** way for performance, to avoid having to run the interrupt and progress
1047 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
1048 ** faster according to "valgrind --tool=cachegrind" */
1049 check_for_interrupt:
1050 if( AtomicLoad(&db->u1.isInterrupted) ) goto abort_due_to_interrupt;
1051 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1052 /* Call the progress callback if it is configured and the required number
1053 ** of VDBE ops have been executed (either since this invocation of
1054 ** sqlite3VdbeExec() or since last time the progress callback was called).
1055 ** If the progress callback returns non-zero, exit the virtual machine with
1056 ** a return code SQLITE_ABORT.
1058 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
1059 assert( db->nProgressOps!=0 );
1060 nProgressLimit += db->nProgressOps;
1061 if( db->xProgress(db->pProgressArg) ){
1062 nProgressLimit = LARGEST_UINT64;
1063 rc = SQLITE_INTERRUPT;
1064 goto abort_due_to_error;
1067 #endif
1069 break;
1072 /* Opcode: Gosub P1 P2 * * *
1074 ** Write the current address onto register P1
1075 ** and then jump to address P2.
1077 case OP_Gosub: { /* jump */
1078 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1079 pIn1 = &aMem[pOp->p1];
1080 assert( VdbeMemDynamic(pIn1)==0 );
1081 memAboutToChange(p, pIn1);
1082 pIn1->flags = MEM_Int;
1083 pIn1->u.i = (int)(pOp-aOp);
1084 REGISTER_TRACE(pOp->p1, pIn1);
1085 goto jump_to_p2_and_check_for_interrupt;
1088 /* Opcode: Return P1 P2 P3 * *
1090 ** Jump to the address stored in register P1. If P1 is a return address
1091 ** register, then this accomplishes a return from a subroutine.
1093 ** If P3 is 1, then the jump is only taken if register P1 holds an integer
1094 ** values, otherwise execution falls through to the next opcode, and the
1095 ** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an
1096 ** integer or else an assert() is raised. P3 should be set to 1 when
1097 ** this opcode is used in combination with OP_BeginSubrtn, and set to 0
1098 ** otherwise.
1100 ** The value in register P1 is unchanged by this opcode.
1102 ** P2 is not used by the byte-code engine. However, if P2 is positive
1103 ** and also less than the current address, then the "EXPLAIN" output
1104 ** formatter in the CLI will indent all opcodes from the P2 opcode up
1105 ** to be not including the current Return. P2 should be the first opcode
1106 ** in the subroutine from which this opcode is returning. Thus the P2
1107 ** value is a byte-code indentation hint. See tag-20220407a in
1108 ** wherecode.c and shell.c.
1110 case OP_Return: { /* in1 */
1111 pIn1 = &aMem[pOp->p1];
1112 if( pIn1->flags & MEM_Int ){
1113 if( pOp->p3 ){ VdbeBranchTaken(1, 2); }
1114 pOp = &aOp[pIn1->u.i];
1115 }else if( ALWAYS(pOp->p3) ){
1116 VdbeBranchTaken(0, 2);
1118 break;
1121 /* Opcode: InitCoroutine P1 P2 P3 * *
1123 ** Set up register P1 so that it will Yield to the coroutine
1124 ** located at address P3.
1126 ** If P2!=0 then the coroutine implementation immediately follows
1127 ** this opcode. So jump over the coroutine implementation to
1128 ** address P2.
1130 ** See also: EndCoroutine
1132 case OP_InitCoroutine: { /* jump */
1133 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1134 assert( pOp->p2>=0 && pOp->p2<p->nOp );
1135 assert( pOp->p3>=0 && pOp->p3<p->nOp );
1136 pOut = &aMem[pOp->p1];
1137 assert( !VdbeMemDynamic(pOut) );
1138 pOut->u.i = pOp->p3 - 1;
1139 pOut->flags = MEM_Int;
1140 if( pOp->p2==0 ) break;
1142 /* Most jump operations do a goto to this spot in order to update
1143 ** the pOp pointer. */
1144 jump_to_p2:
1145 assert( pOp->p2>0 ); /* There are never any jumps to instruction 0 */
1146 assert( pOp->p2<p->nOp ); /* Jumps must be in range */
1147 pOp = &aOp[pOp->p2 - 1];
1148 break;
1151 /* Opcode: EndCoroutine P1 * * * *
1153 ** The instruction at the address in register P1 is a Yield.
1154 ** Jump to the P2 parameter of that Yield.
1155 ** After the jump, register P1 becomes undefined.
1157 ** See also: InitCoroutine
1159 case OP_EndCoroutine: { /* in1 */
1160 VdbeOp *pCaller;
1161 pIn1 = &aMem[pOp->p1];
1162 assert( pIn1->flags==MEM_Int );
1163 assert( pIn1->u.i>=0 && pIn1->u.i<p->nOp );
1164 pCaller = &aOp[pIn1->u.i];
1165 assert( pCaller->opcode==OP_Yield );
1166 assert( pCaller->p2>=0 && pCaller->p2<p->nOp );
1167 pOp = &aOp[pCaller->p2 - 1];
1168 pIn1->flags = MEM_Undefined;
1169 break;
1172 /* Opcode: Yield P1 P2 * * *
1174 ** Swap the program counter with the value in register P1. This
1175 ** has the effect of yielding to a coroutine.
1177 ** If the coroutine that is launched by this instruction ends with
1178 ** Yield or Return then continue to the next instruction. But if
1179 ** the coroutine launched by this instruction ends with
1180 ** EndCoroutine, then jump to P2 rather than continuing with the
1181 ** next instruction.
1183 ** See also: InitCoroutine
1185 case OP_Yield: { /* in1, jump */
1186 int pcDest;
1187 pIn1 = &aMem[pOp->p1];
1188 assert( VdbeMemDynamic(pIn1)==0 );
1189 pIn1->flags = MEM_Int;
1190 pcDest = (int)pIn1->u.i;
1191 pIn1->u.i = (int)(pOp - aOp);
1192 REGISTER_TRACE(pOp->p1, pIn1);
1193 pOp = &aOp[pcDest];
1194 break;
1197 /* Opcode: HaltIfNull P1 P2 P3 P4 P5
1198 ** Synopsis: if r[P3]=null halt
1200 ** Check the value in register P3. If it is NULL then Halt using
1201 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the
1202 ** value in register P3 is not NULL, then this routine is a no-op.
1203 ** The P5 parameter should be 1.
1205 case OP_HaltIfNull: { /* in3 */
1206 pIn3 = &aMem[pOp->p3];
1207 #ifdef SQLITE_DEBUG
1208 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1209 #endif
1210 if( (pIn3->flags & MEM_Null)==0 ) break;
1211 /* Fall through into OP_Halt */
1212 /* no break */ deliberate_fall_through
1215 /* Opcode: Halt P1 P2 * P4 P5
1217 ** Exit immediately. All open cursors, etc are closed
1218 ** automatically.
1220 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
1221 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
1222 ** For errors, it can be some other value. If P1!=0 then P2 will determine
1223 ** whether or not to rollback the current transaction. Do not rollback
1224 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
1225 ** then back out all changes that have occurred during this execution of the
1226 ** VDBE, but do not rollback the transaction.
1228 ** If P4 is not null then it is an error message string.
1230 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
1232 ** 0: (no change)
1233 ** 1: NOT NULL constraint failed: P4
1234 ** 2: UNIQUE constraint failed: P4
1235 ** 3: CHECK constraint failed: P4
1236 ** 4: FOREIGN KEY constraint failed: P4
1238 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
1239 ** omitted.
1241 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
1242 ** every program. So a jump past the last instruction of the program
1243 ** is the same as executing Halt.
1245 case OP_Halt: {
1246 VdbeFrame *pFrame;
1247 int pcx;
1249 #ifdef SQLITE_DEBUG
1250 if( pOp->p2==OE_Abort ){ sqlite3VdbeAssertAbortable(p); }
1251 #endif
1253 /* A deliberately coded "OP_Halt SQLITE_INTERNAL * * * *" opcode indicates
1254 ** something is wrong with the code generator. Raise an assertion in order
1255 ** to bring this to the attention of fuzzers and other testing tools. */
1256 assert( pOp->p1!=SQLITE_INTERNAL );
1258 if( p->pFrame && pOp->p1==SQLITE_OK ){
1259 /* Halt the sub-program. Return control to the parent frame. */
1260 pFrame = p->pFrame;
1261 p->pFrame = pFrame->pParent;
1262 p->nFrame--;
1263 sqlite3VdbeSetChanges(db, p->nChange);
1264 pcx = sqlite3VdbeFrameRestore(pFrame);
1265 if( pOp->p2==OE_Ignore ){
1266 /* Instruction pcx is the OP_Program that invoked the sub-program
1267 ** currently being halted. If the p2 instruction of this OP_Halt
1268 ** instruction is set to OE_Ignore, then the sub-program is throwing
1269 ** an IGNORE exception. In this case jump to the address specified
1270 ** as the p2 of the calling OP_Program. */
1271 pcx = p->aOp[pcx].p2-1;
1273 aOp = p->aOp;
1274 aMem = p->aMem;
1275 pOp = &aOp[pcx];
1276 break;
1278 p->rc = pOp->p1;
1279 p->errorAction = (u8)pOp->p2;
1280 assert( pOp->p5<=4 );
1281 if( p->rc ){
1282 if( pOp->p5 ){
1283 static const char * const azType[] = { "NOT NULL", "UNIQUE", "CHECK",
1284 "FOREIGN KEY" };
1285 testcase( pOp->p5==1 );
1286 testcase( pOp->p5==2 );
1287 testcase( pOp->p5==3 );
1288 testcase( pOp->p5==4 );
1289 sqlite3VdbeError(p, "%s constraint failed", azType[pOp->p5-1]);
1290 if( pOp->p4.z ){
1291 p->zErrMsg = sqlite3MPrintf(db, "%z: %s", p->zErrMsg, pOp->p4.z);
1293 }else{
1294 sqlite3VdbeError(p, "%s", pOp->p4.z);
1296 pcx = (int)(pOp - aOp);
1297 sqlite3_log(pOp->p1, "abort at %d in [%s]: %s", pcx, p->zSql, p->zErrMsg);
1299 rc = sqlite3VdbeHalt(p);
1300 assert( rc==SQLITE_BUSY || rc==SQLITE_OK || rc==SQLITE_ERROR );
1301 if( rc==SQLITE_BUSY ){
1302 p->rc = SQLITE_BUSY;
1303 }else{
1304 assert( rc==SQLITE_OK || (p->rc&0xff)==SQLITE_CONSTRAINT );
1305 assert( rc==SQLITE_OK || db->nDeferredCons>0 || db->nDeferredImmCons>0 );
1306 rc = p->rc ? SQLITE_ERROR : SQLITE_DONE;
1308 goto vdbe_return;
1311 /* Opcode: Integer P1 P2 * * *
1312 ** Synopsis: r[P2]=P1
1314 ** The 32-bit integer value P1 is written into register P2.
1316 case OP_Integer: { /* out2 */
1317 pOut = out2Prerelease(p, pOp);
1318 pOut->u.i = pOp->p1;
1319 break;
1322 /* Opcode: Int64 * P2 * P4 *
1323 ** Synopsis: r[P2]=P4
1325 ** P4 is a pointer to a 64-bit integer value.
1326 ** Write that value into register P2.
1328 case OP_Int64: { /* out2 */
1329 pOut = out2Prerelease(p, pOp);
1330 assert( pOp->p4.pI64!=0 );
1331 pOut->u.i = *pOp->p4.pI64;
1332 break;
1335 #ifndef SQLITE_OMIT_FLOATING_POINT
1336 /* Opcode: Real * P2 * P4 *
1337 ** Synopsis: r[P2]=P4
1339 ** P4 is a pointer to a 64-bit floating point value.
1340 ** Write that value into register P2.
1342 case OP_Real: { /* same as TK_FLOAT, out2 */
1343 pOut = out2Prerelease(p, pOp);
1344 pOut->flags = MEM_Real;
1345 assert( !sqlite3IsNaN(*pOp->p4.pReal) );
1346 pOut->u.r = *pOp->p4.pReal;
1347 break;
1349 #endif
1351 /* Opcode: String8 * P2 * P4 *
1352 ** Synopsis: r[P2]='P4'
1354 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1355 ** into a String opcode before it is executed for the first time. During
1356 ** this transformation, the length of string P4 is computed and stored
1357 ** as the P1 parameter.
1359 case OP_String8: { /* same as TK_STRING, out2 */
1360 assert( pOp->p4.z!=0 );
1361 pOut = out2Prerelease(p, pOp);
1362 pOp->p1 = sqlite3Strlen30(pOp->p4.z);
1364 #ifndef SQLITE_OMIT_UTF16
1365 if( encoding!=SQLITE_UTF8 ){
1366 rc = sqlite3VdbeMemSetStr(pOut, pOp->p4.z, -1, SQLITE_UTF8, SQLITE_STATIC);
1367 assert( rc==SQLITE_OK || rc==SQLITE_TOOBIG );
1368 if( rc ) goto too_big;
1369 if( SQLITE_OK!=sqlite3VdbeChangeEncoding(pOut, encoding) ) goto no_mem;
1370 assert( pOut->szMalloc>0 && pOut->zMalloc==pOut->z );
1371 assert( VdbeMemDynamic(pOut)==0 );
1372 pOut->szMalloc = 0;
1373 pOut->flags |= MEM_Static;
1374 if( pOp->p4type==P4_DYNAMIC ){
1375 sqlite3DbFree(db, pOp->p4.z);
1377 pOp->p4type = P4_DYNAMIC;
1378 pOp->p4.z = pOut->z;
1379 pOp->p1 = pOut->n;
1381 #endif
1382 if( pOp->p1>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1383 goto too_big;
1385 pOp->opcode = OP_String;
1386 assert( rc==SQLITE_OK );
1387 /* Fall through to the next case, OP_String */
1388 /* no break */ deliberate_fall_through
1391 /* Opcode: String P1 P2 P3 P4 P5
1392 ** Synopsis: r[P2]='P4' (len=P1)
1394 ** The string value P4 of length P1 (bytes) is stored in register P2.
1396 ** If P3 is not zero and the content of register P3 is equal to P5, then
1397 ** the datatype of the register P2 is converted to BLOB. The content is
1398 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1399 ** of a string, as if it had been CAST. In other words:
1401 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1403 case OP_String: { /* out2 */
1404 assert( pOp->p4.z!=0 );
1405 pOut = out2Prerelease(p, pOp);
1406 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
1407 pOut->z = pOp->p4.z;
1408 pOut->n = pOp->p1;
1409 pOut->enc = encoding;
1410 UPDATE_MAX_BLOBSIZE(pOut);
1411 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1412 if( pOp->p3>0 ){
1413 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1414 pIn3 = &aMem[pOp->p3];
1415 assert( pIn3->flags & MEM_Int );
1416 if( pIn3->u.i==pOp->p5 ) pOut->flags = MEM_Blob|MEM_Static|MEM_Term;
1418 #endif
1419 break;
1422 /* Opcode: BeginSubrtn * P2 * * *
1423 ** Synopsis: r[P2]=NULL
1425 ** Mark the beginning of a subroutine that can be entered in-line
1426 ** or that can be called using OP_Gosub. The subroutine should
1427 ** be terminated by an OP_Return instruction that has a P1 operand that
1428 ** is the same as the P2 operand to this opcode and that has P3 set to 1.
1429 ** If the subroutine is entered in-line, then the OP_Return will simply
1430 ** fall through. But if the subroutine is entered using OP_Gosub, then
1431 ** the OP_Return will jump back to the first instruction after the OP_Gosub.
1433 ** This routine works by loading a NULL into the P2 register. When the
1434 ** return address register contains a NULL, the OP_Return instruction is
1435 ** a no-op that simply falls through to the next instruction (assuming that
1436 ** the OP_Return opcode has a P3 value of 1). Thus if the subroutine is
1437 ** entered in-line, then the OP_Return will cause in-line execution to
1438 ** continue. But if the subroutine is entered via OP_Gosub, then the
1439 ** OP_Return will cause a return to the address following the OP_Gosub.
1441 ** This opcode is identical to OP_Null. It has a different name
1442 ** only to make the byte code easier to read and verify.
1444 /* Opcode: Null P1 P2 P3 * *
1445 ** Synopsis: r[P2..P3]=NULL
1447 ** Write a NULL into registers P2. If P3 greater than P2, then also write
1448 ** NULL into register P3 and every register in between P2 and P3. If P3
1449 ** is less than P2 (typically P3 is zero) then only register P2 is
1450 ** set to NULL.
1452 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1453 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1454 ** OP_Ne or OP_Eq.
1456 case OP_BeginSubrtn:
1457 case OP_Null: { /* out2 */
1458 int cnt;
1459 u16 nullFlag;
1460 pOut = out2Prerelease(p, pOp);
1461 cnt = pOp->p3-pOp->p2;
1462 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
1463 pOut->flags = nullFlag = pOp->p1 ? (MEM_Null|MEM_Cleared) : MEM_Null;
1464 pOut->n = 0;
1465 #ifdef SQLITE_DEBUG
1466 pOut->uTemp = 0;
1467 #endif
1468 while( cnt>0 ){
1469 pOut++;
1470 memAboutToChange(p, pOut);
1471 sqlite3VdbeMemSetNull(pOut);
1472 pOut->flags = nullFlag;
1473 pOut->n = 0;
1474 cnt--;
1476 break;
1479 /* Opcode: SoftNull P1 * * * *
1480 ** Synopsis: r[P1]=NULL
1482 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1483 ** instruction, but do not free any string or blob memory associated with
1484 ** the register, so that if the value was a string or blob that was
1485 ** previously copied using OP_SCopy, the copies will continue to be valid.
1487 case OP_SoftNull: {
1488 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
1489 pOut = &aMem[pOp->p1];
1490 pOut->flags = (pOut->flags&~(MEM_Undefined|MEM_AffMask))|MEM_Null;
1491 break;
1494 /* Opcode: Blob P1 P2 * P4 *
1495 ** Synopsis: r[P2]=P4 (len=P1)
1497 ** P4 points to a blob of data P1 bytes long. Store this
1498 ** blob in register P2. If P4 is a NULL pointer, then construct
1499 ** a zero-filled blob that is P1 bytes long in P2.
1501 case OP_Blob: { /* out2 */
1502 assert( pOp->p1 <= SQLITE_MAX_LENGTH );
1503 pOut = out2Prerelease(p, pOp);
1504 if( pOp->p4.z==0 ){
1505 sqlite3VdbeMemSetZeroBlob(pOut, pOp->p1);
1506 if( sqlite3VdbeMemExpandBlob(pOut) ) goto no_mem;
1507 }else{
1508 sqlite3VdbeMemSetStr(pOut, pOp->p4.z, pOp->p1, 0, 0);
1510 pOut->enc = encoding;
1511 UPDATE_MAX_BLOBSIZE(pOut);
1512 break;
1515 /* Opcode: Variable P1 P2 * P4 *
1516 ** Synopsis: r[P2]=parameter(P1,P4)
1518 ** Transfer the values of bound parameter P1 into register P2
1520 ** If the parameter is named, then its name appears in P4.
1521 ** The P4 value is used by sqlite3_bind_parameter_name().
1523 case OP_Variable: { /* out2 */
1524 Mem *pVar; /* Value being transferred */
1526 assert( pOp->p1>0 && pOp->p1<=p->nVar );
1527 assert( pOp->p4.z==0 || pOp->p4.z==sqlite3VListNumToName(p->pVList,pOp->p1) );
1528 pVar = &p->aVar[pOp->p1 - 1];
1529 if( sqlite3VdbeMemTooBig(pVar) ){
1530 goto too_big;
1532 pOut = &aMem[pOp->p2];
1533 if( VdbeMemDynamic(pOut) ) sqlite3VdbeMemSetNull(pOut);
1534 memcpy(pOut, pVar, MEMCELLSIZE);
1535 pOut->flags &= ~(MEM_Dyn|MEM_Ephem);
1536 pOut->flags |= MEM_Static|MEM_FromBind;
1537 UPDATE_MAX_BLOBSIZE(pOut);
1538 break;
1541 /* Opcode: Move P1 P2 P3 * *
1542 ** Synopsis: r[P2@P3]=r[P1@P3]
1544 ** Move the P3 values in register P1..P1+P3-1 over into
1545 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
1546 ** left holding a NULL. It is an error for register ranges
1547 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1548 ** for P3 to be less than 1.
1550 case OP_Move: {
1551 int n; /* Number of registers left to copy */
1552 int p1; /* Register to copy from */
1553 int p2; /* Register to copy to */
1555 n = pOp->p3;
1556 p1 = pOp->p1;
1557 p2 = pOp->p2;
1558 assert( n>0 && p1>0 && p2>0 );
1559 assert( p1+n<=p2 || p2+n<=p1 );
1561 pIn1 = &aMem[p1];
1562 pOut = &aMem[p2];
1564 assert( pOut<=&aMem[(p->nMem+1 - p->nCursor)] );
1565 assert( pIn1<=&aMem[(p->nMem+1 - p->nCursor)] );
1566 assert( memIsValid(pIn1) );
1567 memAboutToChange(p, pOut);
1568 sqlite3VdbeMemMove(pOut, pIn1);
1569 #ifdef SQLITE_DEBUG
1570 pIn1->pScopyFrom = 0;
1571 { int i;
1572 for(i=1; i<p->nMem; i++){
1573 if( aMem[i].pScopyFrom==pIn1 ){
1574 aMem[i].pScopyFrom = pOut;
1578 #endif
1579 Deephemeralize(pOut);
1580 REGISTER_TRACE(p2++, pOut);
1581 pIn1++;
1582 pOut++;
1583 }while( --n );
1584 break;
1587 /* Opcode: Copy P1 P2 P3 * P5
1588 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1590 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1592 ** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the
1593 ** destination. The 0x0001 bit of P5 indicates that this Copy opcode cannot
1594 ** be merged. The 0x0001 bit is used by the query planner and does not
1595 ** come into play during query execution.
1597 ** This instruction makes a deep copy of the value. A duplicate
1598 ** is made of any string or blob constant. See also OP_SCopy.
1600 case OP_Copy: {
1601 int n;
1603 n = pOp->p3;
1604 pIn1 = &aMem[pOp->p1];
1605 pOut = &aMem[pOp->p2];
1606 assert( pOut!=pIn1 );
1607 while( 1 ){
1608 memAboutToChange(p, pOut);
1609 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1610 Deephemeralize(pOut);
1611 if( (pOut->flags & MEM_Subtype)!=0 && (pOp->p5 & 0x0002)!=0 ){
1612 pOut->flags &= ~MEM_Subtype;
1614 #ifdef SQLITE_DEBUG
1615 pOut->pScopyFrom = 0;
1616 #endif
1617 REGISTER_TRACE(pOp->p2+pOp->p3-n, pOut);
1618 if( (n--)==0 ) break;
1619 pOut++;
1620 pIn1++;
1622 break;
1625 /* Opcode: SCopy P1 P2 * * *
1626 ** Synopsis: r[P2]=r[P1]
1628 ** Make a shallow copy of register P1 into register P2.
1630 ** This instruction makes a shallow copy of the value. If the value
1631 ** is a string or blob, then the copy is only a pointer to the
1632 ** original and hence if the original changes so will the copy.
1633 ** Worse, if the original is deallocated, the copy becomes invalid.
1634 ** Thus the program must guarantee that the original will not change
1635 ** during the lifetime of the copy. Use OP_Copy to make a complete
1636 ** copy.
1638 case OP_SCopy: { /* out2 */
1639 pIn1 = &aMem[pOp->p1];
1640 pOut = &aMem[pOp->p2];
1641 assert( pOut!=pIn1 );
1642 sqlite3VdbeMemShallowCopy(pOut, pIn1, MEM_Ephem);
1643 #ifdef SQLITE_DEBUG
1644 pOut->pScopyFrom = pIn1;
1645 pOut->mScopyFlags = pIn1->flags;
1646 #endif
1647 break;
1650 /* Opcode: IntCopy P1 P2 * * *
1651 ** Synopsis: r[P2]=r[P1]
1653 ** Transfer the integer value held in register P1 into register P2.
1655 ** This is an optimized version of SCopy that works only for integer
1656 ** values.
1658 case OP_IntCopy: { /* out2 */
1659 pIn1 = &aMem[pOp->p1];
1660 assert( (pIn1->flags & MEM_Int)!=0 );
1661 pOut = &aMem[pOp->p2];
1662 sqlite3VdbeMemSetInt64(pOut, pIn1->u.i);
1663 break;
1666 /* Opcode: FkCheck * * * * *
1668 ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved
1669 ** foreign key constraint violations. If there are no foreign key
1670 ** constraint violations, this is a no-op.
1672 ** FK constraint violations are also checked when the prepared statement
1673 ** exits. This opcode is used to raise foreign key constraint errors prior
1674 ** to returning results such as a row change count or the result of a
1675 ** RETURNING clause.
1677 case OP_FkCheck: {
1678 if( (rc = sqlite3VdbeCheckFk(p,0))!=SQLITE_OK ){
1679 goto abort_due_to_error;
1681 break;
1684 /* Opcode: ResultRow P1 P2 * * *
1685 ** Synopsis: output=r[P1@P2]
1687 ** The registers P1 through P1+P2-1 contain a single row of
1688 ** results. This opcode causes the sqlite3_step() call to terminate
1689 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1690 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1691 ** the result row.
1693 case OP_ResultRow: {
1694 assert( p->nResColumn==pOp->p2 );
1695 assert( pOp->p1>0 || CORRUPT_DB );
1696 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
1698 p->cacheCtr = (p->cacheCtr + 2)|1;
1699 p->pResultRow = &aMem[pOp->p1];
1700 #ifdef SQLITE_DEBUG
1702 Mem *pMem = p->pResultRow;
1703 int i;
1704 for(i=0; i<pOp->p2; i++){
1705 assert( memIsValid(&pMem[i]) );
1706 REGISTER_TRACE(pOp->p1+i, &pMem[i]);
1707 /* The registers in the result will not be used again when the
1708 ** prepared statement restarts. This is because sqlite3_column()
1709 ** APIs might have caused type conversions of made other changes to
1710 ** the register values. Therefore, we can go ahead and break any
1711 ** OP_SCopy dependencies. */
1712 pMem[i].pScopyFrom = 0;
1715 #endif
1716 if( db->mallocFailed ) goto no_mem;
1717 if( db->mTrace & SQLITE_TRACE_ROW ){
1718 db->trace.xV2(SQLITE_TRACE_ROW, db->pTraceArg, p, 0);
1720 p->pc = (int)(pOp - aOp) + 1;
1721 rc = SQLITE_ROW;
1722 goto vdbe_return;
1725 /* Opcode: Concat P1 P2 P3 * *
1726 ** Synopsis: r[P3]=r[P2]+r[P1]
1728 ** Add the text in register P1 onto the end of the text in
1729 ** register P2 and store the result in register P3.
1730 ** If either the P1 or P2 text are NULL then store NULL in P3.
1732 ** P3 = P2 || P1
1734 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1735 ** if P3 is the same register as P2, the implementation is able
1736 ** to avoid a memcpy().
1738 case OP_Concat: { /* same as TK_CONCAT, in1, in2, out3 */
1739 i64 nByte; /* Total size of the output string or blob */
1740 u16 flags1; /* Initial flags for P1 */
1741 u16 flags2; /* Initial flags for P2 */
1743 pIn1 = &aMem[pOp->p1];
1744 pIn2 = &aMem[pOp->p2];
1745 pOut = &aMem[pOp->p3];
1746 testcase( pOut==pIn2 );
1747 assert( pIn1!=pOut );
1748 flags1 = pIn1->flags;
1749 testcase( flags1 & MEM_Null );
1750 testcase( pIn2->flags & MEM_Null );
1751 if( (flags1 | pIn2->flags) & MEM_Null ){
1752 sqlite3VdbeMemSetNull(pOut);
1753 break;
1755 if( (flags1 & (MEM_Str|MEM_Blob))==0 ){
1756 if( sqlite3VdbeMemStringify(pIn1,encoding,0) ) goto no_mem;
1757 flags1 = pIn1->flags & ~MEM_Str;
1758 }else if( (flags1 & MEM_Zero)!=0 ){
1759 if( sqlite3VdbeMemExpandBlob(pIn1) ) goto no_mem;
1760 flags1 = pIn1->flags & ~MEM_Str;
1762 flags2 = pIn2->flags;
1763 if( (flags2 & (MEM_Str|MEM_Blob))==0 ){
1764 if( sqlite3VdbeMemStringify(pIn2,encoding,0) ) goto no_mem;
1765 flags2 = pIn2->flags & ~MEM_Str;
1766 }else if( (flags2 & MEM_Zero)!=0 ){
1767 if( sqlite3VdbeMemExpandBlob(pIn2) ) goto no_mem;
1768 flags2 = pIn2->flags & ~MEM_Str;
1770 nByte = pIn1->n + pIn2->n;
1771 if( nByte>db->aLimit[SQLITE_LIMIT_LENGTH] ){
1772 goto too_big;
1774 if( sqlite3VdbeMemGrow(pOut, (int)nByte+2, pOut==pIn2) ){
1775 goto no_mem;
1777 MemSetTypeFlag(pOut, MEM_Str);
1778 if( pOut!=pIn2 ){
1779 memcpy(pOut->z, pIn2->z, pIn2->n);
1780 assert( (pIn2->flags & MEM_Dyn) == (flags2 & MEM_Dyn) );
1781 pIn2->flags = flags2;
1783 memcpy(&pOut->z[pIn2->n], pIn1->z, pIn1->n);
1784 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
1785 pIn1->flags = flags1;
1786 if( encoding>SQLITE_UTF8 ) nByte &= ~1;
1787 pOut->z[nByte]=0;
1788 pOut->z[nByte+1] = 0;
1789 pOut->flags |= MEM_Term;
1790 pOut->n = (int)nByte;
1791 pOut->enc = encoding;
1792 UPDATE_MAX_BLOBSIZE(pOut);
1793 break;
1796 /* Opcode: Add P1 P2 P3 * *
1797 ** Synopsis: r[P3]=r[P1]+r[P2]
1799 ** Add the value in register P1 to the value in register P2
1800 ** and store the result in register P3.
1801 ** If either input is NULL, the result is NULL.
1803 /* Opcode: Multiply P1 P2 P3 * *
1804 ** Synopsis: r[P3]=r[P1]*r[P2]
1807 ** Multiply the value in register P1 by the value in register P2
1808 ** and store the result in register P3.
1809 ** If either input is NULL, the result is NULL.
1811 /* Opcode: Subtract P1 P2 P3 * *
1812 ** Synopsis: r[P3]=r[P2]-r[P1]
1814 ** Subtract the value in register P1 from the value in register P2
1815 ** and store the result in register P3.
1816 ** If either input is NULL, the result is NULL.
1818 /* Opcode: Divide P1 P2 P3 * *
1819 ** Synopsis: r[P3]=r[P2]/r[P1]
1821 ** Divide the value in register P1 by the value in register P2
1822 ** and store the result in register P3 (P3=P2/P1). If the value in
1823 ** register P1 is zero, then the result is NULL. If either input is
1824 ** NULL, the result is NULL.
1826 /* Opcode: Remainder P1 P2 P3 * *
1827 ** Synopsis: r[P3]=r[P2]%r[P1]
1829 ** Compute the remainder after integer register P2 is divided by
1830 ** register P1 and store the result in register P3.
1831 ** If the value in register P1 is zero the result is NULL.
1832 ** If either operand is NULL, the result is NULL.
1834 case OP_Add: /* same as TK_PLUS, in1, in2, out3 */
1835 case OP_Subtract: /* same as TK_MINUS, in1, in2, out3 */
1836 case OP_Multiply: /* same as TK_STAR, in1, in2, out3 */
1837 case OP_Divide: /* same as TK_SLASH, in1, in2, out3 */
1838 case OP_Remainder: { /* same as TK_REM, in1, in2, out3 */
1839 u16 type1; /* Numeric type of left operand */
1840 u16 type2; /* Numeric type of right operand */
1841 i64 iA; /* Integer value of left operand */
1842 i64 iB; /* Integer value of right operand */
1843 double rA; /* Real value of left operand */
1844 double rB; /* Real value of right operand */
1846 pIn1 = &aMem[pOp->p1];
1847 type1 = pIn1->flags;
1848 pIn2 = &aMem[pOp->p2];
1849 type2 = pIn2->flags;
1850 pOut = &aMem[pOp->p3];
1851 if( (type1 & type2 & MEM_Int)!=0 ){
1852 int_math:
1853 iA = pIn1->u.i;
1854 iB = pIn2->u.i;
1855 switch( pOp->opcode ){
1856 case OP_Add: if( sqlite3AddInt64(&iB,iA) ) goto fp_math; break;
1857 case OP_Subtract: if( sqlite3SubInt64(&iB,iA) ) goto fp_math; break;
1858 case OP_Multiply: if( sqlite3MulInt64(&iB,iA) ) goto fp_math; break;
1859 case OP_Divide: {
1860 if( iA==0 ) goto arithmetic_result_is_null;
1861 if( iA==-1 && iB==SMALLEST_INT64 ) goto fp_math;
1862 iB /= iA;
1863 break;
1865 default: {
1866 if( iA==0 ) goto arithmetic_result_is_null;
1867 if( iA==-1 ) iA = 1;
1868 iB %= iA;
1869 break;
1872 pOut->u.i = iB;
1873 MemSetTypeFlag(pOut, MEM_Int);
1874 }else if( ((type1 | type2) & MEM_Null)!=0 ){
1875 goto arithmetic_result_is_null;
1876 }else{
1877 type1 = numericType(pIn1);
1878 type2 = numericType(pIn2);
1879 if( (type1 & type2 & MEM_Int)!=0 ) goto int_math;
1880 fp_math:
1881 rA = sqlite3VdbeRealValue(pIn1);
1882 rB = sqlite3VdbeRealValue(pIn2);
1883 switch( pOp->opcode ){
1884 case OP_Add: rB += rA; break;
1885 case OP_Subtract: rB -= rA; break;
1886 case OP_Multiply: rB *= rA; break;
1887 case OP_Divide: {
1888 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1889 if( rA==(double)0 ) goto arithmetic_result_is_null;
1890 rB /= rA;
1891 break;
1893 default: {
1894 iA = sqlite3VdbeIntValue(pIn1);
1895 iB = sqlite3VdbeIntValue(pIn2);
1896 if( iA==0 ) goto arithmetic_result_is_null;
1897 if( iA==-1 ) iA = 1;
1898 rB = (double)(iB % iA);
1899 break;
1902 #ifdef SQLITE_OMIT_FLOATING_POINT
1903 pOut->u.i = rB;
1904 MemSetTypeFlag(pOut, MEM_Int);
1905 #else
1906 if( sqlite3IsNaN(rB) ){
1907 goto arithmetic_result_is_null;
1909 pOut->u.r = rB;
1910 MemSetTypeFlag(pOut, MEM_Real);
1911 #endif
1913 break;
1915 arithmetic_result_is_null:
1916 sqlite3VdbeMemSetNull(pOut);
1917 break;
1920 /* Opcode: CollSeq P1 * * P4
1922 ** P4 is a pointer to a CollSeq object. If the next call to a user function
1923 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1924 ** be returned. This is used by the built-in min(), max() and nullif()
1925 ** functions.
1927 ** If P1 is not zero, then it is a register that a subsequent min() or
1928 ** max() aggregate will set to 1 if the current row is not the minimum or
1929 ** maximum. The P1 register is initialized to 0 by this instruction.
1931 ** The interface used by the implementation of the aforementioned functions
1932 ** to retrieve the collation sequence set by this opcode is not available
1933 ** publicly. Only built-in functions have access to this feature.
1935 case OP_CollSeq: {
1936 assert( pOp->p4type==P4_COLLSEQ );
1937 if( pOp->p1 ){
1938 sqlite3VdbeMemSetInt64(&aMem[pOp->p1], 0);
1940 break;
1943 /* Opcode: BitAnd P1 P2 P3 * *
1944 ** Synopsis: r[P3]=r[P1]&r[P2]
1946 ** Take the bit-wise AND of the values in register P1 and P2 and
1947 ** store the result in register P3.
1948 ** If either input is NULL, the result is NULL.
1950 /* Opcode: BitOr P1 P2 P3 * *
1951 ** Synopsis: r[P3]=r[P1]|r[P2]
1953 ** Take the bit-wise OR of the values in register P1 and P2 and
1954 ** store the result in register P3.
1955 ** If either input is NULL, the result is NULL.
1957 /* Opcode: ShiftLeft P1 P2 P3 * *
1958 ** Synopsis: r[P3]=r[P2]<<r[P1]
1960 ** Shift the integer value in register P2 to the left by the
1961 ** number of bits specified by the integer in register P1.
1962 ** Store the result in register P3.
1963 ** If either input is NULL, the result is NULL.
1965 /* Opcode: ShiftRight P1 P2 P3 * *
1966 ** Synopsis: r[P3]=r[P2]>>r[P1]
1968 ** Shift the integer value in register P2 to the right by the
1969 ** number of bits specified by the integer in register P1.
1970 ** Store the result in register P3.
1971 ** If either input is NULL, the result is NULL.
1973 case OP_BitAnd: /* same as TK_BITAND, in1, in2, out3 */
1974 case OP_BitOr: /* same as TK_BITOR, in1, in2, out3 */
1975 case OP_ShiftLeft: /* same as TK_LSHIFT, in1, in2, out3 */
1976 case OP_ShiftRight: { /* same as TK_RSHIFT, in1, in2, out3 */
1977 i64 iA;
1978 u64 uA;
1979 i64 iB;
1980 u8 op;
1982 pIn1 = &aMem[pOp->p1];
1983 pIn2 = &aMem[pOp->p2];
1984 pOut = &aMem[pOp->p3];
1985 if( (pIn1->flags | pIn2->flags) & MEM_Null ){
1986 sqlite3VdbeMemSetNull(pOut);
1987 break;
1989 iA = sqlite3VdbeIntValue(pIn2);
1990 iB = sqlite3VdbeIntValue(pIn1);
1991 op = pOp->opcode;
1992 if( op==OP_BitAnd ){
1993 iA &= iB;
1994 }else if( op==OP_BitOr ){
1995 iA |= iB;
1996 }else if( iB!=0 ){
1997 assert( op==OP_ShiftRight || op==OP_ShiftLeft );
1999 /* If shifting by a negative amount, shift in the other direction */
2000 if( iB<0 ){
2001 assert( OP_ShiftRight==OP_ShiftLeft+1 );
2002 op = 2*OP_ShiftLeft + 1 - op;
2003 iB = iB>(-64) ? -iB : 64;
2006 if( iB>=64 ){
2007 iA = (iA>=0 || op==OP_ShiftLeft) ? 0 : -1;
2008 }else{
2009 memcpy(&uA, &iA, sizeof(uA));
2010 if( op==OP_ShiftLeft ){
2011 uA <<= iB;
2012 }else{
2013 uA >>= iB;
2014 /* Sign-extend on a right shift of a negative number */
2015 if( iA<0 ) uA |= ((((u64)0xffffffff)<<32)|0xffffffff) << (64-iB);
2017 memcpy(&iA, &uA, sizeof(iA));
2020 pOut->u.i = iA;
2021 MemSetTypeFlag(pOut, MEM_Int);
2022 break;
2025 /* Opcode: AddImm P1 P2 * * *
2026 ** Synopsis: r[P1]=r[P1]+P2
2028 ** Add the constant P2 to the value in register P1.
2029 ** The result is always an integer.
2031 ** To force any register to be an integer, just add 0.
2033 case OP_AddImm: { /* in1 */
2034 pIn1 = &aMem[pOp->p1];
2035 memAboutToChange(p, pIn1);
2036 sqlite3VdbeMemIntegerify(pIn1);
2037 *(u64*)&pIn1->u.i += (u64)pOp->p2;
2038 break;
2041 /* Opcode: MustBeInt P1 P2 * * *
2043 ** Force the value in register P1 to be an integer. If the value
2044 ** in P1 is not an integer and cannot be converted into an integer
2045 ** without data loss, then jump immediately to P2, or if P2==0
2046 ** raise an SQLITE_MISMATCH exception.
2048 case OP_MustBeInt: { /* jump, in1 */
2049 pIn1 = &aMem[pOp->p1];
2050 if( (pIn1->flags & MEM_Int)==0 ){
2051 applyAffinity(pIn1, SQLITE_AFF_NUMERIC, encoding);
2052 if( (pIn1->flags & MEM_Int)==0 ){
2053 VdbeBranchTaken(1, 2);
2054 if( pOp->p2==0 ){
2055 rc = SQLITE_MISMATCH;
2056 goto abort_due_to_error;
2057 }else{
2058 goto jump_to_p2;
2062 VdbeBranchTaken(0, 2);
2063 MemSetTypeFlag(pIn1, MEM_Int);
2064 break;
2067 #ifndef SQLITE_OMIT_FLOATING_POINT
2068 /* Opcode: RealAffinity P1 * * * *
2070 ** If register P1 holds an integer convert it to a real value.
2072 ** This opcode is used when extracting information from a column that
2073 ** has REAL affinity. Such column values may still be stored as
2074 ** integers, for space efficiency, but after extraction we want them
2075 ** to have only a real value.
2077 case OP_RealAffinity: { /* in1 */
2078 pIn1 = &aMem[pOp->p1];
2079 if( pIn1->flags & (MEM_Int|MEM_IntReal) ){
2080 testcase( pIn1->flags & MEM_Int );
2081 testcase( pIn1->flags & MEM_IntReal );
2082 sqlite3VdbeMemRealify(pIn1);
2083 REGISTER_TRACE(pOp->p1, pIn1);
2085 break;
2087 #endif
2089 #ifndef SQLITE_OMIT_CAST
2090 /* Opcode: Cast P1 P2 * * *
2091 ** Synopsis: affinity(r[P1])
2093 ** Force the value in register P1 to be the type defined by P2.
2095 ** <ul>
2096 ** <li> P2=='A' &rarr; BLOB
2097 ** <li> P2=='B' &rarr; TEXT
2098 ** <li> P2=='C' &rarr; NUMERIC
2099 ** <li> P2=='D' &rarr; INTEGER
2100 ** <li> P2=='E' &rarr; REAL
2101 ** </ul>
2103 ** A NULL value is not changed by this routine. It remains NULL.
2105 case OP_Cast: { /* in1 */
2106 assert( pOp->p2>=SQLITE_AFF_BLOB && pOp->p2<=SQLITE_AFF_REAL );
2107 testcase( pOp->p2==SQLITE_AFF_TEXT );
2108 testcase( pOp->p2==SQLITE_AFF_BLOB );
2109 testcase( pOp->p2==SQLITE_AFF_NUMERIC );
2110 testcase( pOp->p2==SQLITE_AFF_INTEGER );
2111 testcase( pOp->p2==SQLITE_AFF_REAL );
2112 pIn1 = &aMem[pOp->p1];
2113 memAboutToChange(p, pIn1);
2114 rc = ExpandBlob(pIn1);
2115 if( rc ) goto abort_due_to_error;
2116 rc = sqlite3VdbeMemCast(pIn1, pOp->p2, encoding);
2117 if( rc ) goto abort_due_to_error;
2118 UPDATE_MAX_BLOBSIZE(pIn1);
2119 REGISTER_TRACE(pOp->p1, pIn1);
2120 break;
2122 #endif /* SQLITE_OMIT_CAST */
2124 /* Opcode: Eq P1 P2 P3 P4 P5
2125 ** Synopsis: IF r[P3]==r[P1]
2127 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then
2128 ** jump to address P2.
2130 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2131 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2132 ** to coerce both inputs according to this affinity before the
2133 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2134 ** affinity is used. Note that the affinity conversions are stored
2135 ** back into the input registers P1 and P3. So this opcode can cause
2136 ** persistent changes to registers P1 and P3.
2138 ** Once any conversions have taken place, and neither value is NULL,
2139 ** the values are compared. If both values are blobs then memcmp() is
2140 ** used to determine the results of the comparison. If both values
2141 ** are text, then the appropriate collating function specified in
2142 ** P4 is used to do the comparison. If P4 is not specified then
2143 ** memcmp() is used to compare text string. If both values are
2144 ** numeric, then a numeric comparison is used. If the two values
2145 ** are of different types, then numbers are considered less than
2146 ** strings and strings are considered less than blobs.
2148 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
2149 ** true or false and is never NULL. If both operands are NULL then the result
2150 ** of comparison is true. If either operand is NULL then the result is false.
2151 ** If neither operand is NULL the result is the same as it would be if
2152 ** the SQLITE_NULLEQ flag were omitted from P5.
2154 ** This opcode saves the result of comparison for use by the new
2155 ** OP_Jump opcode.
2157 /* Opcode: Ne P1 P2 P3 P4 P5
2158 ** Synopsis: IF r[P3]!=r[P1]
2160 ** This works just like the Eq opcode except that the jump is taken if
2161 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for
2162 ** additional information.
2164 /* Opcode: Lt P1 P2 P3 P4 P5
2165 ** Synopsis: IF r[P3]<r[P1]
2167 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
2168 ** jump to address P2.
2170 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
2171 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL
2172 ** bit is clear then fall through if either operand is NULL.
2174 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2175 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2176 ** to coerce both inputs according to this affinity before the
2177 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2178 ** affinity is used. Note that the affinity conversions are stored
2179 ** back into the input registers P1 and P3. So this opcode can cause
2180 ** persistent changes to registers P1 and P3.
2182 ** Once any conversions have taken place, and neither value is NULL,
2183 ** the values are compared. If both values are blobs then memcmp() is
2184 ** used to determine the results of the comparison. If both values
2185 ** are text, then the appropriate collating function specified in
2186 ** P4 is used to do the comparison. If P4 is not specified then
2187 ** memcmp() is used to compare text string. If both values are
2188 ** numeric, then a numeric comparison is used. If the two values
2189 ** are of different types, then numbers are considered less than
2190 ** strings and strings are considered less than blobs.
2192 ** This opcode saves the result of comparison for use by the new
2193 ** OP_Jump opcode.
2195 /* Opcode: Le P1 P2 P3 P4 P5
2196 ** Synopsis: IF r[P3]<=r[P1]
2198 ** This works just like the Lt opcode except that the jump is taken if
2199 ** the content of register P3 is less than or equal to the content of
2200 ** register P1. See the Lt opcode for additional information.
2202 /* Opcode: Gt P1 P2 P3 P4 P5
2203 ** Synopsis: IF r[P3]>r[P1]
2205 ** This works just like the Lt opcode except that the jump is taken if
2206 ** the content of register P3 is greater than the content of
2207 ** register P1. See the Lt opcode for additional information.
2209 /* Opcode: Ge P1 P2 P3 P4 P5
2210 ** Synopsis: IF r[P3]>=r[P1]
2212 ** This works just like the Lt opcode except that the jump is taken if
2213 ** the content of register P3 is greater than or equal to the content of
2214 ** register P1. See the Lt opcode for additional information.
2216 case OP_Eq: /* same as TK_EQ, jump, in1, in3 */
2217 case OP_Ne: /* same as TK_NE, jump, in1, in3 */
2218 case OP_Lt: /* same as TK_LT, jump, in1, in3 */
2219 case OP_Le: /* same as TK_LE, jump, in1, in3 */
2220 case OP_Gt: /* same as TK_GT, jump, in1, in3 */
2221 case OP_Ge: { /* same as TK_GE, jump, in1, in3 */
2222 int res, res2; /* Result of the comparison of pIn1 against pIn3 */
2223 char affinity; /* Affinity to use for comparison */
2224 u16 flags1; /* Copy of initial value of pIn1->flags */
2225 u16 flags3; /* Copy of initial value of pIn3->flags */
2227 pIn1 = &aMem[pOp->p1];
2228 pIn3 = &aMem[pOp->p3];
2229 flags1 = pIn1->flags;
2230 flags3 = pIn3->flags;
2231 if( (flags1 & flags3 & MEM_Int)!=0 ){
2232 /* Common case of comparison of two integers */
2233 if( pIn3->u.i > pIn1->u.i ){
2234 if( sqlite3aGTb[pOp->opcode] ){
2235 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2236 goto jump_to_p2;
2238 iCompare = +1;
2239 VVA_ONLY( iCompareIsInit = 1; )
2240 }else if( pIn3->u.i < pIn1->u.i ){
2241 if( sqlite3aLTb[pOp->opcode] ){
2242 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2243 goto jump_to_p2;
2245 iCompare = -1;
2246 VVA_ONLY( iCompareIsInit = 1; )
2247 }else{
2248 if( sqlite3aEQb[pOp->opcode] ){
2249 VdbeBranchTaken(1, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2250 goto jump_to_p2;
2252 iCompare = 0;
2253 VVA_ONLY( iCompareIsInit = 1; )
2255 VdbeBranchTaken(0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2256 break;
2258 if( (flags1 | flags3)&MEM_Null ){
2259 /* One or both operands are NULL */
2260 if( pOp->p5 & SQLITE_NULLEQ ){
2261 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
2262 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
2263 ** or not both operands are null.
2265 assert( (flags1 & MEM_Cleared)==0 );
2266 assert( (pOp->p5 & SQLITE_JUMPIFNULL)==0 || CORRUPT_DB );
2267 testcase( (pOp->p5 & SQLITE_JUMPIFNULL)!=0 );
2268 if( (flags1&flags3&MEM_Null)!=0
2269 && (flags3&MEM_Cleared)==0
2271 res = 0; /* Operands are equal */
2272 }else{
2273 res = ((flags3 & MEM_Null) ? -1 : +1); /* Operands are not equal */
2275 }else{
2276 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2277 ** then the result is always NULL.
2278 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2280 VdbeBranchTaken(2,3);
2281 if( pOp->p5 & SQLITE_JUMPIFNULL ){
2282 goto jump_to_p2;
2284 iCompare = 1; /* Operands are not equal */
2285 VVA_ONLY( iCompareIsInit = 1; )
2286 break;
2288 }else{
2289 /* Neither operand is NULL and we couldn't do the special high-speed
2290 ** integer comparison case. So do a general-case comparison. */
2291 affinity = pOp->p5 & SQLITE_AFF_MASK;
2292 if( affinity>=SQLITE_AFF_NUMERIC ){
2293 if( (flags1 | flags3)&MEM_Str ){
2294 if( (flags1 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2295 applyNumericAffinity(pIn1,0);
2296 assert( flags3==pIn3->flags || CORRUPT_DB );
2297 flags3 = pIn3->flags;
2299 if( (flags3 & (MEM_Int|MEM_IntReal|MEM_Real|MEM_Str))==MEM_Str ){
2300 applyNumericAffinity(pIn3,0);
2303 }else if( affinity==SQLITE_AFF_TEXT && ((flags1 | flags3) & MEM_Str)!=0 ){
2304 if( (flags1 & MEM_Str)!=0 ){
2305 pIn1->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal);
2306 }else if( (flags1&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2307 testcase( pIn1->flags & MEM_Int );
2308 testcase( pIn1->flags & MEM_Real );
2309 testcase( pIn1->flags & MEM_IntReal );
2310 sqlite3VdbeMemStringify(pIn1, encoding, 1);
2311 testcase( (flags1&MEM_Dyn) != (pIn1->flags&MEM_Dyn) );
2312 flags1 = (pIn1->flags & ~MEM_TypeMask) | (flags1 & MEM_TypeMask);
2313 if( NEVER(pIn1==pIn3) ) flags3 = flags1 | MEM_Str;
2315 if( (flags3 & MEM_Str)!=0 ){
2316 pIn3->flags &= ~(MEM_Int|MEM_Real|MEM_IntReal);
2317 }else if( (flags3&(MEM_Int|MEM_Real|MEM_IntReal))!=0 ){
2318 testcase( pIn3->flags & MEM_Int );
2319 testcase( pIn3->flags & MEM_Real );
2320 testcase( pIn3->flags & MEM_IntReal );
2321 sqlite3VdbeMemStringify(pIn3, encoding, 1);
2322 testcase( (flags3&MEM_Dyn) != (pIn3->flags&MEM_Dyn) );
2323 flags3 = (pIn3->flags & ~MEM_TypeMask) | (flags3 & MEM_TypeMask);
2326 assert( pOp->p4type==P4_COLLSEQ || pOp->p4.pColl==0 );
2327 res = sqlite3MemCompare(pIn3, pIn1, pOp->p4.pColl);
2330 /* At this point, res is negative, zero, or positive if reg[P1] is
2331 ** less than, equal to, or greater than reg[P3], respectively. Compute
2332 ** the answer to this operator in res2, depending on what the comparison
2333 ** operator actually is. The next block of code depends on the fact
2334 ** that the 6 comparison operators are consecutive integers in this
2335 ** order: NE, EQ, GT, LE, LT, GE */
2336 assert( OP_Eq==OP_Ne+1 ); assert( OP_Gt==OP_Ne+2 ); assert( OP_Le==OP_Ne+3 );
2337 assert( OP_Lt==OP_Ne+4 ); assert( OP_Ge==OP_Ne+5 );
2338 if( res<0 ){
2339 res2 = sqlite3aLTb[pOp->opcode];
2340 }else if( res==0 ){
2341 res2 = sqlite3aEQb[pOp->opcode];
2342 }else{
2343 res2 = sqlite3aGTb[pOp->opcode];
2345 iCompare = res;
2346 VVA_ONLY( iCompareIsInit = 1; )
2348 /* Undo any changes made by applyAffinity() to the input registers. */
2349 assert( (pIn3->flags & MEM_Dyn) == (flags3 & MEM_Dyn) );
2350 pIn3->flags = flags3;
2351 assert( (pIn1->flags & MEM_Dyn) == (flags1 & MEM_Dyn) );
2352 pIn1->flags = flags1;
2354 VdbeBranchTaken(res2!=0, (pOp->p5 & SQLITE_NULLEQ)?2:3);
2355 if( res2 ){
2356 goto jump_to_p2;
2358 break;
2361 /* Opcode: ElseEq * P2 * * *
2363 ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There
2364 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other
2365 ** opcodes are allowed to occur between this instruction and the previous
2366 ** OP_Lt or OP_Gt.
2368 ** If the result of an OP_Eq comparison on the same two operands as
2369 ** the prior OP_Lt or OP_Gt would have been true, then jump to P2. If
2370 ** the result of an OP_Eq comparison on the two previous operands
2371 ** would have been false or NULL, then fall through.
2373 case OP_ElseEq: { /* same as TK_ESCAPE, jump */
2375 #ifdef SQLITE_DEBUG
2376 /* Verify the preconditions of this opcode - that it follows an OP_Lt or
2377 ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */
2378 int iAddr;
2379 for(iAddr = (int)(pOp - aOp) - 1; ALWAYS(iAddr>=0); iAddr--){
2380 if( aOp[iAddr].opcode==OP_ReleaseReg ) continue;
2381 assert( aOp[iAddr].opcode==OP_Lt || aOp[iAddr].opcode==OP_Gt );
2382 break;
2384 #endif /* SQLITE_DEBUG */
2385 assert( iCompareIsInit );
2386 VdbeBranchTaken(iCompare==0, 2);
2387 if( iCompare==0 ) goto jump_to_p2;
2388 break;
2392 /* Opcode: Permutation * * * P4 *
2394 ** Set the permutation used by the OP_Compare operator in the next
2395 ** instruction. The permutation is stored in the P4 operand.
2397 ** The permutation is only valid for the next opcode which must be
2398 ** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5.
2400 ** The first integer in the P4 integer array is the length of the array
2401 ** and does not become part of the permutation.
2403 case OP_Permutation: {
2404 assert( pOp->p4type==P4_INTARRAY );
2405 assert( pOp->p4.ai );
2406 assert( pOp[1].opcode==OP_Compare );
2407 assert( pOp[1].p5 & OPFLAG_PERMUTE );
2408 break;
2411 /* Opcode: Compare P1 P2 P3 P4 P5
2412 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2414 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2415 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
2416 ** the comparison for use by the next OP_Jump instruct.
2418 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2419 ** determined by the most recent OP_Permutation operator. If the
2420 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2421 ** order.
2423 ** P4 is a KeyInfo structure that defines collating sequences and sort
2424 ** orders for the comparison. The permutation applies to registers
2425 ** only. The KeyInfo elements are used sequentially.
2427 ** The comparison is a sort comparison, so NULLs compare equal,
2428 ** NULLs are less than numbers, numbers are less than strings,
2429 ** and strings are less than blobs.
2431 ** This opcode must be immediately followed by an OP_Jump opcode.
2433 case OP_Compare: {
2434 int n;
2435 int i;
2436 int p1;
2437 int p2;
2438 const KeyInfo *pKeyInfo;
2439 u32 idx;
2440 CollSeq *pColl; /* Collating sequence to use on this term */
2441 int bRev; /* True for DESCENDING sort order */
2442 u32 *aPermute; /* The permutation */
2444 if( (pOp->p5 & OPFLAG_PERMUTE)==0 ){
2445 aPermute = 0;
2446 }else{
2447 assert( pOp>aOp );
2448 assert( pOp[-1].opcode==OP_Permutation );
2449 assert( pOp[-1].p4type==P4_INTARRAY );
2450 aPermute = pOp[-1].p4.ai + 1;
2451 assert( aPermute!=0 );
2453 n = pOp->p3;
2454 pKeyInfo = pOp->p4.pKeyInfo;
2455 assert( n>0 );
2456 assert( pKeyInfo!=0 );
2457 p1 = pOp->p1;
2458 p2 = pOp->p2;
2459 #ifdef SQLITE_DEBUG
2460 if( aPermute ){
2461 int k, mx = 0;
2462 for(k=0; k<n; k++) if( aPermute[k]>(u32)mx ) mx = aPermute[k];
2463 assert( p1>0 && p1+mx<=(p->nMem+1 - p->nCursor)+1 );
2464 assert( p2>0 && p2+mx<=(p->nMem+1 - p->nCursor)+1 );
2465 }else{
2466 assert( p1>0 && p1+n<=(p->nMem+1 - p->nCursor)+1 );
2467 assert( p2>0 && p2+n<=(p->nMem+1 - p->nCursor)+1 );
2469 #endif /* SQLITE_DEBUG */
2470 for(i=0; i<n; i++){
2471 idx = aPermute ? aPermute[i] : (u32)i;
2472 assert( memIsValid(&aMem[p1+idx]) );
2473 assert( memIsValid(&aMem[p2+idx]) );
2474 REGISTER_TRACE(p1+idx, &aMem[p1+idx]);
2475 REGISTER_TRACE(p2+idx, &aMem[p2+idx]);
2476 assert( i<pKeyInfo->nKeyField );
2477 pColl = pKeyInfo->aColl[i];
2478 bRev = (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_DESC);
2479 iCompare = sqlite3MemCompare(&aMem[p1+idx], &aMem[p2+idx], pColl);
2480 VVA_ONLY( iCompareIsInit = 1; )
2481 if( iCompare ){
2482 if( (pKeyInfo->aSortFlags[i] & KEYINFO_ORDER_BIGNULL)
2483 && ((aMem[p1+idx].flags & MEM_Null) || (aMem[p2+idx].flags & MEM_Null))
2485 iCompare = -iCompare;
2487 if( bRev ) iCompare = -iCompare;
2488 break;
2491 assert( pOp[1].opcode==OP_Jump );
2492 break;
2495 /* Opcode: Jump P1 P2 P3 * *
2497 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2498 ** in the most recent OP_Compare instruction the P1 vector was less than,
2499 ** equal to, or greater than the P2 vector, respectively.
2501 ** This opcode must immediately follow an OP_Compare opcode.
2503 case OP_Jump: { /* jump */
2504 assert( pOp>aOp && pOp[-1].opcode==OP_Compare );
2505 assert( iCompareIsInit );
2506 if( iCompare<0 ){
2507 VdbeBranchTaken(0,4); pOp = &aOp[pOp->p1 - 1];
2508 }else if( iCompare==0 ){
2509 VdbeBranchTaken(1,4); pOp = &aOp[pOp->p2 - 1];
2510 }else{
2511 VdbeBranchTaken(2,4); pOp = &aOp[pOp->p3 - 1];
2513 break;
2516 /* Opcode: And P1 P2 P3 * *
2517 ** Synopsis: r[P3]=(r[P1] && r[P2])
2519 ** Take the logical AND of the values in registers P1 and P2 and
2520 ** write the result into register P3.
2522 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2523 ** the other input is NULL. A NULL and true or two NULLs give
2524 ** a NULL output.
2526 /* Opcode: Or P1 P2 P3 * *
2527 ** Synopsis: r[P3]=(r[P1] || r[P2])
2529 ** Take the logical OR of the values in register P1 and P2 and
2530 ** store the answer in register P3.
2532 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2533 ** even if the other input is NULL. A NULL and false or two NULLs
2534 ** give a NULL output.
2536 case OP_And: /* same as TK_AND, in1, in2, out3 */
2537 case OP_Or: { /* same as TK_OR, in1, in2, out3 */
2538 int v1; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2539 int v2; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2541 v1 = sqlite3VdbeBooleanValue(&aMem[pOp->p1], 2);
2542 v2 = sqlite3VdbeBooleanValue(&aMem[pOp->p2], 2);
2543 if( pOp->opcode==OP_And ){
2544 static const unsigned char and_logic[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2545 v1 = and_logic[v1*3+v2];
2546 }else{
2547 static const unsigned char or_logic[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2548 v1 = or_logic[v1*3+v2];
2550 pOut = &aMem[pOp->p3];
2551 if( v1==2 ){
2552 MemSetTypeFlag(pOut, MEM_Null);
2553 }else{
2554 pOut->u.i = v1;
2555 MemSetTypeFlag(pOut, MEM_Int);
2557 break;
2560 /* Opcode: IsTrue P1 P2 P3 P4 *
2561 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2563 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2564 ** IS NOT FALSE operators.
2566 ** Interpret the value in register P1 as a boolean value. Store that
2567 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is
2568 ** NULL, then the P3 is stored in register P2. Invert the answer if P4
2569 ** is 1.
2571 ** The logic is summarized like this:
2573 ** <ul>
2574 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE
2575 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE
2576 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE
2577 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE
2578 ** </ul>
2580 case OP_IsTrue: { /* in1, out2 */
2581 assert( pOp->p4type==P4_INT32 );
2582 assert( pOp->p4.i==0 || pOp->p4.i==1 );
2583 assert( pOp->p3==0 || pOp->p3==1 );
2584 sqlite3VdbeMemSetInt64(&aMem[pOp->p2],
2585 sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3) ^ pOp->p4.i);
2586 break;
2589 /* Opcode: Not P1 P2 * * *
2590 ** Synopsis: r[P2]= !r[P1]
2592 ** Interpret the value in register P1 as a boolean value. Store the
2593 ** boolean complement in register P2. If the value in register P1 is
2594 ** NULL, then a NULL is stored in P2.
2596 case OP_Not: { /* same as TK_NOT, in1, out2 */
2597 pIn1 = &aMem[pOp->p1];
2598 pOut = &aMem[pOp->p2];
2599 if( (pIn1->flags & MEM_Null)==0 ){
2600 sqlite3VdbeMemSetInt64(pOut, !sqlite3VdbeBooleanValue(pIn1,0));
2601 }else{
2602 sqlite3VdbeMemSetNull(pOut);
2604 break;
2607 /* Opcode: BitNot P1 P2 * * *
2608 ** Synopsis: r[P2]= ~r[P1]
2610 ** Interpret the content of register P1 as an integer. Store the
2611 ** ones-complement of the P1 value into register P2. If P1 holds
2612 ** a NULL then store a NULL in P2.
2614 case OP_BitNot: { /* same as TK_BITNOT, in1, out2 */
2615 pIn1 = &aMem[pOp->p1];
2616 pOut = &aMem[pOp->p2];
2617 sqlite3VdbeMemSetNull(pOut);
2618 if( (pIn1->flags & MEM_Null)==0 ){
2619 pOut->flags = MEM_Int;
2620 pOut->u.i = ~sqlite3VdbeIntValue(pIn1);
2622 break;
2625 /* Opcode: Once P1 P2 * * *
2627 ** Fall through to the next instruction the first time this opcode is
2628 ** encountered on each invocation of the byte-code program. Jump to P2
2629 ** on the second and all subsequent encounters during the same invocation.
2631 ** Top-level programs determine first invocation by comparing the P1
2632 ** operand against the P1 operand on the OP_Init opcode at the beginning
2633 ** of the program. If the P1 values differ, then fall through and make
2634 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are
2635 ** the same then take the jump.
2637 ** For subprograms, there is a bitmask in the VdbeFrame that determines
2638 ** whether or not the jump should be taken. The bitmask is necessary
2639 ** because the self-altering code trick does not work for recursive
2640 ** triggers.
2642 case OP_Once: { /* jump */
2643 u32 iAddr; /* Address of this instruction */
2644 assert( p->aOp[0].opcode==OP_Init );
2645 if( p->pFrame ){
2646 iAddr = (int)(pOp - p->aOp);
2647 if( (p->pFrame->aOnce[iAddr/8] & (1<<(iAddr & 7)))!=0 ){
2648 VdbeBranchTaken(1, 2);
2649 goto jump_to_p2;
2651 p->pFrame->aOnce[iAddr/8] |= 1<<(iAddr & 7);
2652 }else{
2653 if( p->aOp[0].p1==pOp->p1 ){
2654 VdbeBranchTaken(1, 2);
2655 goto jump_to_p2;
2658 VdbeBranchTaken(0, 2);
2659 pOp->p1 = p->aOp[0].p1;
2660 break;
2663 /* Opcode: If P1 P2 P3 * *
2665 ** Jump to P2 if the value in register P1 is true. The value
2666 ** is considered true if it is numeric and non-zero. If the value
2667 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2669 case OP_If: { /* jump, in1 */
2670 int c;
2671 c = sqlite3VdbeBooleanValue(&aMem[pOp->p1], pOp->p3);
2672 VdbeBranchTaken(c!=0, 2);
2673 if( c ) goto jump_to_p2;
2674 break;
2677 /* Opcode: IfNot P1 P2 P3 * *
2679 ** Jump to P2 if the value in register P1 is False. The value
2680 ** is considered false if it has a numeric value of zero. If the value
2681 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2683 case OP_IfNot: { /* jump, in1 */
2684 int c;
2685 c = !sqlite3VdbeBooleanValue(&aMem[pOp->p1], !pOp->p3);
2686 VdbeBranchTaken(c!=0, 2);
2687 if( c ) goto jump_to_p2;
2688 break;
2691 /* Opcode: IsNull P1 P2 * * *
2692 ** Synopsis: if r[P1]==NULL goto P2
2694 ** Jump to P2 if the value in register P1 is NULL.
2696 case OP_IsNull: { /* same as TK_ISNULL, jump, in1 */
2697 pIn1 = &aMem[pOp->p1];
2698 VdbeBranchTaken( (pIn1->flags & MEM_Null)!=0, 2);
2699 if( (pIn1->flags & MEM_Null)!=0 ){
2700 goto jump_to_p2;
2702 break;
2705 /* Opcode: IsType P1 P2 P3 P4 P5
2706 ** Synopsis: if typeof(P1.P3) in P5 goto P2
2708 ** Jump to P2 if the type of a column in a btree is one of the types specified
2709 ** by the P5 bitmask.
2711 ** P1 is normally a cursor on a btree for which the row decode cache is
2712 ** valid through at least column P3. In other words, there should have been
2713 ** a prior OP_Column for column P3 or greater. If the cursor is not valid,
2714 ** then this opcode might give spurious results.
2715 ** The the btree row has fewer than P3 columns, then use P4 as the
2716 ** datatype.
2718 ** If P1 is -1, then P3 is a register number and the datatype is taken
2719 ** from the value in that register.
2721 ** P5 is a bitmask of data types. SQLITE_INTEGER is the least significant
2722 ** (0x01) bit. SQLITE_FLOAT is the 0x02 bit. SQLITE_TEXT is 0x04.
2723 ** SQLITE_BLOB is 0x08. SQLITE_NULL is 0x10.
2725 ** WARNING: This opcode does not reliably distinguish between NULL and REAL
2726 ** when P1>=0. If the database contains a NaN value, this opcode will think
2727 ** that the datatype is REAL when it should be NULL. When P1<0 and the value
2728 ** is already stored in register P3, then this opcode does reliably
2729 ** distinguish between NULL and REAL. The problem only arises then P1>=0.
2731 ** Take the jump to address P2 if and only if the datatype of the
2732 ** value determined by P1 and P3 corresponds to one of the bits in the
2733 ** P5 bitmask.
2736 case OP_IsType: { /* jump */
2737 VdbeCursor *pC;
2738 u16 typeMask;
2739 u32 serialType;
2741 assert( pOp->p1>=(-1) && pOp->p1<p->nCursor );
2742 assert( pOp->p1>=0 || (pOp->p3>=0 && pOp->p3<=(p->nMem+1 - p->nCursor)) );
2743 if( pOp->p1>=0 ){
2744 pC = p->apCsr[pOp->p1];
2745 assert( pC!=0 );
2746 assert( pOp->p3>=0 );
2747 if( pOp->p3<pC->nHdrParsed ){
2748 serialType = pC->aType[pOp->p3];
2749 if( serialType>=12 ){
2750 if( serialType&1 ){
2751 typeMask = 0x04; /* SQLITE_TEXT */
2752 }else{
2753 typeMask = 0x08; /* SQLITE_BLOB */
2755 }else{
2756 static const unsigned char aMask[] = {
2757 0x10, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x2,
2758 0x01, 0x01, 0x10, 0x10
2760 testcase( serialType==0 );
2761 testcase( serialType==1 );
2762 testcase( serialType==2 );
2763 testcase( serialType==3 );
2764 testcase( serialType==4 );
2765 testcase( serialType==5 );
2766 testcase( serialType==6 );
2767 testcase( serialType==7 );
2768 testcase( serialType==8 );
2769 testcase( serialType==9 );
2770 testcase( serialType==10 );
2771 testcase( serialType==11 );
2772 typeMask = aMask[serialType];
2774 }else{
2775 typeMask = 1 << (pOp->p4.i - 1);
2776 testcase( typeMask==0x01 );
2777 testcase( typeMask==0x02 );
2778 testcase( typeMask==0x04 );
2779 testcase( typeMask==0x08 );
2780 testcase( typeMask==0x10 );
2782 }else{
2783 assert( memIsValid(&aMem[pOp->p3]) );
2784 typeMask = 1 << (sqlite3_value_type((sqlite3_value*)&aMem[pOp->p3])-1);
2785 testcase( typeMask==0x01 );
2786 testcase( typeMask==0x02 );
2787 testcase( typeMask==0x04 );
2788 testcase( typeMask==0x08 );
2789 testcase( typeMask==0x10 );
2791 VdbeBranchTaken( (typeMask & pOp->p5)!=0, 2);
2792 if( typeMask & pOp->p5 ){
2793 goto jump_to_p2;
2795 break;
2798 /* Opcode: ZeroOrNull P1 P2 P3 * *
2799 ** Synopsis: r[P2] = 0 OR NULL
2801 ** If both registers P1 and P3 are NOT NULL, then store a zero in
2802 ** register P2. If either registers P1 or P3 are NULL then put
2803 ** a NULL in register P2.
2805 case OP_ZeroOrNull: { /* in1, in2, out2, in3 */
2806 if( (aMem[pOp->p1].flags & MEM_Null)!=0
2807 || (aMem[pOp->p3].flags & MEM_Null)!=0
2809 sqlite3VdbeMemSetNull(aMem + pOp->p2);
2810 }else{
2811 sqlite3VdbeMemSetInt64(aMem + pOp->p2, 0);
2813 break;
2816 /* Opcode: NotNull P1 P2 * * *
2817 ** Synopsis: if r[P1]!=NULL goto P2
2819 ** Jump to P2 if the value in register P1 is not NULL.
2821 case OP_NotNull: { /* same as TK_NOTNULL, jump, in1 */
2822 pIn1 = &aMem[pOp->p1];
2823 VdbeBranchTaken( (pIn1->flags & MEM_Null)==0, 2);
2824 if( (pIn1->flags & MEM_Null)==0 ){
2825 goto jump_to_p2;
2827 break;
2830 /* Opcode: IfNullRow P1 P2 P3 * *
2831 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2833 ** Check the cursor P1 to see if it is currently pointing at a NULL row.
2834 ** If it is, then set register P3 to NULL and jump immediately to P2.
2835 ** If P1 is not on a NULL row, then fall through without making any
2836 ** changes.
2838 ** If P1 is not an open cursor, then this opcode is a no-op.
2840 case OP_IfNullRow: { /* jump */
2841 VdbeCursor *pC;
2842 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2843 pC = p->apCsr[pOp->p1];
2844 if( pC && pC->nullRow ){
2845 sqlite3VdbeMemSetNull(aMem + pOp->p3);
2846 goto jump_to_p2;
2848 break;
2851 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2852 /* Opcode: Offset P1 P2 P3 * *
2853 ** Synopsis: r[P3] = sqlite_offset(P1)
2855 ** Store in register r[P3] the byte offset into the database file that is the
2856 ** start of the payload for the record at which that cursor P1 is currently
2857 ** pointing.
2859 ** P2 is the column number for the argument to the sqlite_offset() function.
2860 ** This opcode does not use P2 itself, but the P2 value is used by the
2861 ** code generator. The P1, P2, and P3 operands to this opcode are the
2862 ** same as for OP_Column.
2864 ** This opcode is only available if SQLite is compiled with the
2865 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
2867 case OP_Offset: { /* out3 */
2868 VdbeCursor *pC; /* The VDBE cursor */
2869 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2870 pC = p->apCsr[pOp->p1];
2871 pOut = &p->aMem[pOp->p3];
2872 if( pC==0 || pC->eCurType!=CURTYPE_BTREE ){
2873 sqlite3VdbeMemSetNull(pOut);
2874 }else{
2875 if( pC->deferredMoveto ){
2876 rc = sqlite3VdbeFinishMoveto(pC);
2877 if( rc ) goto abort_due_to_error;
2879 if( sqlite3BtreeEof(pC->uc.pCursor) ){
2880 sqlite3VdbeMemSetNull(pOut);
2881 }else{
2882 sqlite3VdbeMemSetInt64(pOut, sqlite3BtreeOffset(pC->uc.pCursor));
2885 break;
2887 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
2889 /* Opcode: Column P1 P2 P3 P4 P5
2890 ** Synopsis: r[P3]=PX cursor P1 column P2
2892 ** Interpret the data that cursor P1 points to as a structure built using
2893 ** the MakeRecord instruction. (See the MakeRecord opcode for additional
2894 ** information about the format of the data.) Extract the P2-th column
2895 ** from this record. If there are less than (P2+1)
2896 ** values in the record, extract a NULL.
2898 ** The value extracted is stored in register P3.
2900 ** If the record contains fewer than P2 fields, then extract a NULL. Or,
2901 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2902 ** the result.
2904 ** If the OPFLAG_LENGTHARG bit is set in P5 then the result is guaranteed
2905 ** to only be used by the length() function or the equivalent. The content
2906 ** of large blobs is not loaded, thus saving CPU cycles. If the
2907 ** OPFLAG_TYPEOFARG bit is set then the result will only be used by the
2908 ** typeof() function or the IS NULL or IS NOT NULL operators or the
2909 ** equivalent. In this case, all content loading can be omitted.
2911 case OP_Column: { /* ncycle */
2912 u32 p2; /* column number to retrieve */
2913 VdbeCursor *pC; /* The VDBE cursor */
2914 BtCursor *pCrsr; /* The B-Tree cursor corresponding to pC */
2915 u32 *aOffset; /* aOffset[i] is offset to start of data for i-th column */
2916 int len; /* The length of the serialized data for the column */
2917 int i; /* Loop counter */
2918 Mem *pDest; /* Where to write the extracted value */
2919 Mem sMem; /* For storing the record being decoded */
2920 const u8 *zData; /* Part of the record being decoded */
2921 const u8 *zHdr; /* Next unparsed byte of the header */
2922 const u8 *zEndHdr; /* Pointer to first byte after the header */
2923 u64 offset64; /* 64-bit offset */
2924 u32 t; /* A type code from the record header */
2925 Mem *pReg; /* PseudoTable input register */
2927 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
2928 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
2929 pC = p->apCsr[pOp->p1];
2930 p2 = (u32)pOp->p2;
2932 op_column_restart:
2933 assert( pC!=0 );
2934 assert( p2<(u32)pC->nField
2935 || (pC->eCurType==CURTYPE_PSEUDO && pC->seekResult==0) );
2936 aOffset = pC->aOffset;
2937 assert( aOffset==pC->aType+pC->nField );
2938 assert( pC->eCurType!=CURTYPE_VTAB );
2939 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
2940 assert( pC->eCurType!=CURTYPE_SORTER );
2942 if( pC->cacheStatus!=p->cacheCtr ){ /*OPTIMIZATION-IF-FALSE*/
2943 if( pC->nullRow ){
2944 if( pC->eCurType==CURTYPE_PSEUDO && pC->seekResult>0 ){
2945 /* For the special case of as pseudo-cursor, the seekResult field
2946 ** identifies the register that holds the record */
2947 pReg = &aMem[pC->seekResult];
2948 assert( pReg->flags & MEM_Blob );
2949 assert( memIsValid(pReg) );
2950 pC->payloadSize = pC->szRow = pReg->n;
2951 pC->aRow = (u8*)pReg->z;
2952 }else{
2953 pDest = &aMem[pOp->p3];
2954 memAboutToChange(p, pDest);
2955 sqlite3VdbeMemSetNull(pDest);
2956 goto op_column_out;
2958 }else{
2959 pCrsr = pC->uc.pCursor;
2960 if( pC->deferredMoveto ){
2961 u32 iMap;
2962 assert( !pC->isEphemeral );
2963 if( pC->ub.aAltMap && (iMap = pC->ub.aAltMap[1+p2])>0 ){
2964 pC = pC->pAltCursor;
2965 p2 = iMap - 1;
2966 goto op_column_restart;
2968 rc = sqlite3VdbeFinishMoveto(pC);
2969 if( rc ) goto abort_due_to_error;
2970 }else if( sqlite3BtreeCursorHasMoved(pCrsr) ){
2971 rc = sqlite3VdbeHandleMovedCursor(pC);
2972 if( rc ) goto abort_due_to_error;
2973 goto op_column_restart;
2975 assert( pC->eCurType==CURTYPE_BTREE );
2976 assert( pCrsr );
2977 assert( sqlite3BtreeCursorIsValid(pCrsr) );
2978 pC->payloadSize = sqlite3BtreePayloadSize(pCrsr);
2979 pC->aRow = sqlite3BtreePayloadFetch(pCrsr, &pC->szRow);
2980 assert( pC->szRow<=pC->payloadSize );
2981 assert( pC->szRow<=65536 ); /* Maximum page size is 64KiB */
2983 pC->cacheStatus = p->cacheCtr;
2984 if( (aOffset[0] = pC->aRow[0])<0x80 ){
2985 pC->iHdrOffset = 1;
2986 }else{
2987 pC->iHdrOffset = sqlite3GetVarint32(pC->aRow, aOffset);
2989 pC->nHdrParsed = 0;
2991 if( pC->szRow<aOffset[0] ){ /*OPTIMIZATION-IF-FALSE*/
2992 /* pC->aRow does not have to hold the entire row, but it does at least
2993 ** need to cover the header of the record. If pC->aRow does not contain
2994 ** the complete header, then set it to zero, forcing the header to be
2995 ** dynamically allocated. */
2996 pC->aRow = 0;
2997 pC->szRow = 0;
2999 /* Make sure a corrupt database has not given us an oversize header.
3000 ** Do this now to avoid an oversize memory allocation.
3002 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
3003 ** types use so much data space that there can only be 4096 and 32 of
3004 ** them, respectively. So the maximum header length results from a
3005 ** 3-byte type for each of the maximum of 32768 columns plus three
3006 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
3008 if( aOffset[0] > 98307 || aOffset[0] > pC->payloadSize ){
3009 goto op_column_corrupt;
3011 }else{
3012 /* This is an optimization. By skipping over the first few tests
3013 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
3014 ** measurable performance gain.
3016 ** This branch is taken even if aOffset[0]==0. Such a record is never
3017 ** generated by SQLite, and could be considered corruption, but we
3018 ** accept it for historical reasons. When aOffset[0]==0, the code this
3019 ** branch jumps to reads past the end of the record, but never more
3020 ** than a few bytes. Even if the record occurs at the end of the page
3021 ** content area, the "page header" comes after the page content and so
3022 ** this overread is harmless. Similar overreads can occur for a corrupt
3023 ** database file.
3025 zData = pC->aRow;
3026 assert( pC->nHdrParsed<=p2 ); /* Conditional skipped */
3027 testcase( aOffset[0]==0 );
3028 goto op_column_read_header;
3030 }else if( sqlite3BtreeCursorHasMoved(pC->uc.pCursor) ){
3031 rc = sqlite3VdbeHandleMovedCursor(pC);
3032 if( rc ) goto abort_due_to_error;
3033 goto op_column_restart;
3036 /* Make sure at least the first p2+1 entries of the header have been
3037 ** parsed and valid information is in aOffset[] and pC->aType[].
3039 if( pC->nHdrParsed<=p2 ){
3040 /* If there is more header available for parsing in the record, try
3041 ** to extract additional fields up through the p2+1-th field
3043 if( pC->iHdrOffset<aOffset[0] ){
3044 /* Make sure zData points to enough of the record to cover the header. */
3045 if( pC->aRow==0 ){
3046 memset(&sMem, 0, sizeof(sMem));
3047 rc = sqlite3VdbeMemFromBtreeZeroOffset(pC->uc.pCursor,aOffset[0],&sMem);
3048 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3049 zData = (u8*)sMem.z;
3050 }else{
3051 zData = pC->aRow;
3054 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
3055 op_column_read_header:
3056 i = pC->nHdrParsed;
3057 offset64 = aOffset[i];
3058 zHdr = zData + pC->iHdrOffset;
3059 zEndHdr = zData + aOffset[0];
3060 testcase( zHdr>=zEndHdr );
3062 if( (pC->aType[i] = t = zHdr[0])<0x80 ){
3063 zHdr++;
3064 offset64 += sqlite3VdbeOneByteSerialTypeLen(t);
3065 }else{
3066 zHdr += sqlite3GetVarint32(zHdr, &t);
3067 pC->aType[i] = t;
3068 offset64 += sqlite3VdbeSerialTypeLen(t);
3070 aOffset[++i] = (u32)(offset64 & 0xffffffff);
3071 }while( (u32)i<=p2 && zHdr<zEndHdr );
3073 /* The record is corrupt if any of the following are true:
3074 ** (1) the bytes of the header extend past the declared header size
3075 ** (2) the entire header was used but not all data was used
3076 ** (3) the end of the data extends beyond the end of the record.
3078 if( (zHdr>=zEndHdr && (zHdr>zEndHdr || offset64!=pC->payloadSize))
3079 || (offset64 > pC->payloadSize)
3081 if( aOffset[0]==0 ){
3082 i = 0;
3083 zHdr = zEndHdr;
3084 }else{
3085 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
3086 goto op_column_corrupt;
3090 pC->nHdrParsed = i;
3091 pC->iHdrOffset = (u32)(zHdr - zData);
3092 if( pC->aRow==0 ) sqlite3VdbeMemRelease(&sMem);
3093 }else{
3094 t = 0;
3097 /* If after trying to extract new entries from the header, nHdrParsed is
3098 ** still not up to p2, that means that the record has fewer than p2
3099 ** columns. So the result will be either the default value or a NULL.
3101 if( pC->nHdrParsed<=p2 ){
3102 pDest = &aMem[pOp->p3];
3103 memAboutToChange(p, pDest);
3104 if( pOp->p4type==P4_MEM ){
3105 sqlite3VdbeMemShallowCopy(pDest, pOp->p4.pMem, MEM_Static);
3106 }else{
3107 sqlite3VdbeMemSetNull(pDest);
3109 goto op_column_out;
3111 }else{
3112 t = pC->aType[p2];
3115 /* Extract the content for the p2+1-th column. Control can only
3116 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
3117 ** all valid.
3119 assert( p2<pC->nHdrParsed );
3120 assert( rc==SQLITE_OK );
3121 pDest = &aMem[pOp->p3];
3122 memAboutToChange(p, pDest);
3123 assert( sqlite3VdbeCheckMemInvariants(pDest) );
3124 if( VdbeMemDynamic(pDest) ){
3125 sqlite3VdbeMemSetNull(pDest);
3127 assert( t==pC->aType[p2] );
3128 if( pC->szRow>=aOffset[p2+1] ){
3129 /* This is the common case where the desired content fits on the original
3130 ** page - where the content is not on an overflow page */
3131 zData = pC->aRow + aOffset[p2];
3132 if( t<12 ){
3133 sqlite3VdbeSerialGet(zData, t, pDest);
3134 }else{
3135 /* If the column value is a string, we need a persistent value, not
3136 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent
3137 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
3139 static const u16 aFlag[] = { MEM_Blob, MEM_Str|MEM_Term };
3140 pDest->n = len = (t-12)/2;
3141 pDest->enc = encoding;
3142 if( pDest->szMalloc < len+2 ){
3143 if( len>db->aLimit[SQLITE_LIMIT_LENGTH] ) goto too_big;
3144 pDest->flags = MEM_Null;
3145 if( sqlite3VdbeMemGrow(pDest, len+2, 0) ) goto no_mem;
3146 }else{
3147 pDest->z = pDest->zMalloc;
3149 memcpy(pDest->z, zData, len);
3150 pDest->z[len] = 0;
3151 pDest->z[len+1] = 0;
3152 pDest->flags = aFlag[t&1];
3154 }else{
3155 u8 p5;
3156 pDest->enc = encoding;
3157 assert( pDest->db==db );
3158 /* This branch happens only when content is on overflow pages */
3159 if( ((p5 = (pOp->p5 & OPFLAG_BYTELENARG))!=0
3160 && (p5==OPFLAG_TYPEOFARG
3161 || (t>=12 && ((t&1)==0 || p5==OPFLAG_BYTELENARG))
3164 || sqlite3VdbeSerialTypeLen(t)==0
3166 /* Content is irrelevant for
3167 ** 1. the typeof() function,
3168 ** 2. the length(X) function if X is a blob, and
3169 ** 3. if the content length is zero.
3170 ** So we might as well use bogus content rather than reading
3171 ** content from disk.
3173 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
3174 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
3175 ** read more. Use the global constant sqlite3CtypeMap[] as the array,
3176 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
3177 ** and it begins with a bunch of zeros.
3179 sqlite3VdbeSerialGet((u8*)sqlite3CtypeMap, t, pDest);
3180 }else{
3181 rc = vdbeColumnFromOverflow(pC, p2, t, aOffset[p2],
3182 p->cacheCtr, colCacheCtr, pDest);
3183 if( rc ){
3184 if( rc==SQLITE_NOMEM ) goto no_mem;
3185 if( rc==SQLITE_TOOBIG ) goto too_big;
3186 goto abort_due_to_error;
3191 op_column_out:
3192 UPDATE_MAX_BLOBSIZE(pDest);
3193 REGISTER_TRACE(pOp->p3, pDest);
3194 break;
3196 op_column_corrupt:
3197 if( aOp[0].p3>0 ){
3198 pOp = &aOp[aOp[0].p3-1];
3199 break;
3200 }else{
3201 rc = SQLITE_CORRUPT_BKPT;
3202 goto abort_due_to_error;
3206 /* Opcode: TypeCheck P1 P2 P3 P4 *
3207 ** Synopsis: typecheck(r[P1@P2])
3209 ** Apply affinities to the range of P2 registers beginning with P1.
3210 ** Take the affinities from the Table object in P4. If any value
3211 ** cannot be coerced into the correct type, then raise an error.
3213 ** This opcode is similar to OP_Affinity except that this opcode
3214 ** forces the register type to the Table column type. This is used
3215 ** to implement "strict affinity".
3217 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3
3218 ** is zero. When P3 is non-zero, no type checking occurs for
3219 ** static generated columns. Virtual columns are computed at query time
3220 ** and so they are never checked.
3222 ** Preconditions:
3224 ** <ul>
3225 ** <li> P2 should be the number of non-virtual columns in the
3226 ** table of P4.
3227 ** <li> Table P4 should be a STRICT table.
3228 ** </ul>
3230 ** If any precondition is false, an assertion fault occurs.
3232 case OP_TypeCheck: {
3233 Table *pTab;
3234 Column *aCol;
3235 int i;
3237 assert( pOp->p4type==P4_TABLE );
3238 pTab = pOp->p4.pTab;
3239 assert( pTab->tabFlags & TF_Strict );
3240 assert( pTab->nNVCol==pOp->p2 );
3241 aCol = pTab->aCol;
3242 pIn1 = &aMem[pOp->p1];
3243 for(i=0; i<pTab->nCol; i++){
3244 if( aCol[i].colFlags & COLFLAG_GENERATED ){
3245 if( aCol[i].colFlags & COLFLAG_VIRTUAL ) continue;
3246 if( pOp->p3 ){ pIn1++; continue; }
3248 assert( pIn1 < &aMem[pOp->p1+pOp->p2] );
3249 applyAffinity(pIn1, aCol[i].affinity, encoding);
3250 if( (pIn1->flags & MEM_Null)==0 ){
3251 switch( aCol[i].eCType ){
3252 case COLTYPE_BLOB: {
3253 if( (pIn1->flags & MEM_Blob)==0 ) goto vdbe_type_error;
3254 break;
3256 case COLTYPE_INTEGER:
3257 case COLTYPE_INT: {
3258 if( (pIn1->flags & MEM_Int)==0 ) goto vdbe_type_error;
3259 break;
3261 case COLTYPE_TEXT: {
3262 if( (pIn1->flags & MEM_Str)==0 ) goto vdbe_type_error;
3263 break;
3265 case COLTYPE_REAL: {
3266 testcase( (pIn1->flags & (MEM_Real|MEM_IntReal))==MEM_Real );
3267 assert( (pIn1->flags & MEM_IntReal)==0 );
3268 if( pIn1->flags & MEM_Int ){
3269 /* When applying REAL affinity, if the result is still an MEM_Int
3270 ** that will fit in 6 bytes, then change the type to MEM_IntReal
3271 ** so that we keep the high-resolution integer value but know that
3272 ** the type really wants to be REAL. */
3273 testcase( pIn1->u.i==140737488355328LL );
3274 testcase( pIn1->u.i==140737488355327LL );
3275 testcase( pIn1->u.i==-140737488355328LL );
3276 testcase( pIn1->u.i==-140737488355329LL );
3277 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL){
3278 pIn1->flags |= MEM_IntReal;
3279 pIn1->flags &= ~MEM_Int;
3280 }else{
3281 pIn1->u.r = (double)pIn1->u.i;
3282 pIn1->flags |= MEM_Real;
3283 pIn1->flags &= ~MEM_Int;
3285 }else if( (pIn1->flags & (MEM_Real|MEM_IntReal))==0 ){
3286 goto vdbe_type_error;
3288 break;
3290 default: {
3291 /* COLTYPE_ANY. Accept anything. */
3292 break;
3296 REGISTER_TRACE((int)(pIn1-aMem), pIn1);
3297 pIn1++;
3299 assert( pIn1 == &aMem[pOp->p1+pOp->p2] );
3300 break;
3302 vdbe_type_error:
3303 sqlite3VdbeError(p, "cannot store %s value in %s column %s.%s",
3304 vdbeMemTypeName(pIn1), sqlite3StdType[aCol[i].eCType-1],
3305 pTab->zName, aCol[i].zCnName);
3306 rc = SQLITE_CONSTRAINT_DATATYPE;
3307 goto abort_due_to_error;
3310 /* Opcode: Affinity P1 P2 * P4 *
3311 ** Synopsis: affinity(r[P1@P2])
3313 ** Apply affinities to a range of P2 registers starting with P1.
3315 ** P4 is a string that is P2 characters long. The N-th character of the
3316 ** string indicates the column affinity that should be used for the N-th
3317 ** memory cell in the range.
3319 case OP_Affinity: {
3320 const char *zAffinity; /* The affinity to be applied */
3322 zAffinity = pOp->p4.z;
3323 assert( zAffinity!=0 );
3324 assert( pOp->p2>0 );
3325 assert( zAffinity[pOp->p2]==0 );
3326 pIn1 = &aMem[pOp->p1];
3327 while( 1 /*exit-by-break*/ ){
3328 assert( pIn1 <= &p->aMem[(p->nMem+1 - p->nCursor)] );
3329 assert( zAffinity[0]==SQLITE_AFF_NONE || memIsValid(pIn1) );
3330 applyAffinity(pIn1, zAffinity[0], encoding);
3331 if( zAffinity[0]==SQLITE_AFF_REAL && (pIn1->flags & MEM_Int)!=0 ){
3332 /* When applying REAL affinity, if the result is still an MEM_Int
3333 ** that will fit in 6 bytes, then change the type to MEM_IntReal
3334 ** so that we keep the high-resolution integer value but know that
3335 ** the type really wants to be REAL. */
3336 testcase( pIn1->u.i==140737488355328LL );
3337 testcase( pIn1->u.i==140737488355327LL );
3338 testcase( pIn1->u.i==-140737488355328LL );
3339 testcase( pIn1->u.i==-140737488355329LL );
3340 if( pIn1->u.i<=140737488355327LL && pIn1->u.i>=-140737488355328LL ){
3341 pIn1->flags |= MEM_IntReal;
3342 pIn1->flags &= ~MEM_Int;
3343 }else{
3344 pIn1->u.r = (double)pIn1->u.i;
3345 pIn1->flags |= MEM_Real;
3346 pIn1->flags &= ~(MEM_Int|MEM_Str);
3349 REGISTER_TRACE((int)(pIn1-aMem), pIn1);
3350 zAffinity++;
3351 if( zAffinity[0]==0 ) break;
3352 pIn1++;
3354 break;
3357 /* Opcode: MakeRecord P1 P2 P3 P4 *
3358 ** Synopsis: r[P3]=mkrec(r[P1@P2])
3360 ** Convert P2 registers beginning with P1 into the [record format]
3361 ** use as a data record in a database table or as a key
3362 ** in an index. The OP_Column opcode can decode the record later.
3364 ** P4 may be a string that is P2 characters long. The N-th character of the
3365 ** string indicates the column affinity that should be used for the N-th
3366 ** field of the index key.
3368 ** The mapping from character to affinity is given by the SQLITE_AFF_
3369 ** macros defined in sqliteInt.h.
3371 ** If P4 is NULL then all index fields have the affinity BLOB.
3373 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM
3374 ** compile-time option is enabled:
3376 ** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index
3377 ** of the right-most table that can be null-trimmed.
3379 ** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value
3380 ** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to
3381 ** accept no-change records with serial_type 10. This value is
3382 ** only used inside an assert() and does not affect the end result.
3384 case OP_MakeRecord: {
3385 Mem *pRec; /* The new record */
3386 u64 nData; /* Number of bytes of data space */
3387 int nHdr; /* Number of bytes of header space */
3388 i64 nByte; /* Data space required for this record */
3389 i64 nZero; /* Number of zero bytes at the end of the record */
3390 int nVarint; /* Number of bytes in a varint */
3391 u32 serial_type; /* Type field */
3392 Mem *pData0; /* First field to be combined into the record */
3393 Mem *pLast; /* Last field of the record */
3394 int nField; /* Number of fields in the record */
3395 char *zAffinity; /* The affinity string for the record */
3396 u32 len; /* Length of a field */
3397 u8 *zHdr; /* Where to write next byte of the header */
3398 u8 *zPayload; /* Where to write next byte of the payload */
3400 /* Assuming the record contains N fields, the record format looks
3401 ** like this:
3403 ** ------------------------------------------------------------------------
3404 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
3405 ** ------------------------------------------------------------------------
3407 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
3408 ** and so forth.
3410 ** Each type field is a varint representing the serial type of the
3411 ** corresponding data element (see sqlite3VdbeSerialType()). The
3412 ** hdr-size field is also a varint which is the offset from the beginning
3413 ** of the record to data0.
3415 nData = 0; /* Number of bytes of data space */
3416 nHdr = 0; /* Number of bytes of header space */
3417 nZero = 0; /* Number of zero bytes at the end of the record */
3418 nField = pOp->p1;
3419 zAffinity = pOp->p4.z;
3420 assert( nField>0 && pOp->p2>0 && pOp->p2+nField<=(p->nMem+1 - p->nCursor)+1 );
3421 pData0 = &aMem[nField];
3422 nField = pOp->p2;
3423 pLast = &pData0[nField-1];
3425 /* Identify the output register */
3426 assert( pOp->p3<pOp->p1 || pOp->p3>=pOp->p1+pOp->p2 );
3427 pOut = &aMem[pOp->p3];
3428 memAboutToChange(p, pOut);
3430 /* Apply the requested affinity to all inputs
3432 assert( pData0<=pLast );
3433 if( zAffinity ){
3434 pRec = pData0;
3436 applyAffinity(pRec, zAffinity[0], encoding);
3437 if( zAffinity[0]==SQLITE_AFF_REAL && (pRec->flags & MEM_Int) ){
3438 pRec->flags |= MEM_IntReal;
3439 pRec->flags &= ~(MEM_Int);
3441 REGISTER_TRACE((int)(pRec-aMem), pRec);
3442 zAffinity++;
3443 pRec++;
3444 assert( zAffinity[0]==0 || pRec<=pLast );
3445 }while( zAffinity[0] );
3448 #ifdef SQLITE_ENABLE_NULL_TRIM
3449 /* NULLs can be safely trimmed from the end of the record, as long as
3450 ** as the schema format is 2 or more and none of the omitted columns
3451 ** have a non-NULL default value. Also, the record must be left with
3452 ** at least one field. If P5>0 then it will be one more than the
3453 ** index of the right-most column with a non-NULL default value */
3454 if( pOp->p5 ){
3455 while( (pLast->flags & MEM_Null)!=0 && nField>pOp->p5 ){
3456 pLast--;
3457 nField--;
3460 #endif
3462 /* Loop through the elements that will make up the record to figure
3463 ** out how much space is required for the new record. After this loop,
3464 ** the Mem.uTemp field of each term should hold the serial-type that will
3465 ** be used for that term in the generated record:
3467 ** Mem.uTemp value type
3468 ** --------------- ---------------
3469 ** 0 NULL
3470 ** 1 1-byte signed integer
3471 ** 2 2-byte signed integer
3472 ** 3 3-byte signed integer
3473 ** 4 4-byte signed integer
3474 ** 5 6-byte signed integer
3475 ** 6 8-byte signed integer
3476 ** 7 IEEE float
3477 ** 8 Integer constant 0
3478 ** 9 Integer constant 1
3479 ** 10,11 reserved for expansion
3480 ** N>=12 and even BLOB
3481 ** N>=13 and odd text
3483 ** The following additional values are computed:
3484 ** nHdr Number of bytes needed for the record header
3485 ** nData Number of bytes of data space needed for the record
3486 ** nZero Zero bytes at the end of the record
3488 pRec = pLast;
3490 assert( memIsValid(pRec) );
3491 if( pRec->flags & MEM_Null ){
3492 if( pRec->flags & MEM_Zero ){
3493 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
3494 ** table methods that never invoke sqlite3_result_xxxxx() while
3495 ** computing an unchanging column value in an UPDATE statement.
3496 ** Give such values a special internal-use-only serial-type of 10
3497 ** so that they can be passed through to xUpdate and have
3498 ** a true sqlite3_value_nochange(). */
3499 #ifndef SQLITE_ENABLE_NULL_TRIM
3500 assert( pOp->p5==OPFLAG_NOCHNG_MAGIC || CORRUPT_DB );
3501 #endif
3502 pRec->uTemp = 10;
3503 }else{
3504 pRec->uTemp = 0;
3506 nHdr++;
3507 }else if( pRec->flags & (MEM_Int|MEM_IntReal) ){
3508 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3509 i64 i = pRec->u.i;
3510 u64 uu;
3511 testcase( pRec->flags & MEM_Int );
3512 testcase( pRec->flags & MEM_IntReal );
3513 if( i<0 ){
3514 uu = ~i;
3515 }else{
3516 uu = i;
3518 nHdr++;
3519 testcase( uu==127 ); testcase( uu==128 );
3520 testcase( uu==32767 ); testcase( uu==32768 );
3521 testcase( uu==8388607 ); testcase( uu==8388608 );
3522 testcase( uu==2147483647 ); testcase( uu==2147483648LL );
3523 testcase( uu==140737488355327LL ); testcase( uu==140737488355328LL );
3524 if( uu<=127 ){
3525 if( (i&1)==i && p->minWriteFileFormat>=4 ){
3526 pRec->uTemp = 8+(u32)uu;
3527 }else{
3528 nData++;
3529 pRec->uTemp = 1;
3531 }else if( uu<=32767 ){
3532 nData += 2;
3533 pRec->uTemp = 2;
3534 }else if( uu<=8388607 ){
3535 nData += 3;
3536 pRec->uTemp = 3;
3537 }else if( uu<=2147483647 ){
3538 nData += 4;
3539 pRec->uTemp = 4;
3540 }else if( uu<=140737488355327LL ){
3541 nData += 6;
3542 pRec->uTemp = 5;
3543 }else{
3544 nData += 8;
3545 if( pRec->flags & MEM_IntReal ){
3546 /* If the value is IntReal and is going to take up 8 bytes to store
3547 ** as an integer, then we might as well make it an 8-byte floating
3548 ** point value */
3549 pRec->u.r = (double)pRec->u.i;
3550 pRec->flags &= ~MEM_IntReal;
3551 pRec->flags |= MEM_Real;
3552 pRec->uTemp = 7;
3553 }else{
3554 pRec->uTemp = 6;
3557 }else if( pRec->flags & MEM_Real ){
3558 nHdr++;
3559 nData += 8;
3560 pRec->uTemp = 7;
3561 }else{
3562 assert( db->mallocFailed || pRec->flags&(MEM_Str|MEM_Blob) );
3563 assert( pRec->n>=0 );
3564 len = (u32)pRec->n;
3565 serial_type = (len*2) + 12 + ((pRec->flags & MEM_Str)!=0);
3566 if( pRec->flags & MEM_Zero ){
3567 serial_type += pRec->u.nZero*2;
3568 if( nData ){
3569 if( sqlite3VdbeMemExpandBlob(pRec) ) goto no_mem;
3570 len += pRec->u.nZero;
3571 }else{
3572 nZero += pRec->u.nZero;
3575 nData += len;
3576 nHdr += sqlite3VarintLen(serial_type);
3577 pRec->uTemp = serial_type;
3579 if( pRec==pData0 ) break;
3580 pRec--;
3581 }while(1);
3583 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
3584 ** which determines the total number of bytes in the header. The varint
3585 ** value is the size of the header in bytes including the size varint
3586 ** itself. */
3587 testcase( nHdr==126 );
3588 testcase( nHdr==127 );
3589 if( nHdr<=126 ){
3590 /* The common case */
3591 nHdr += 1;
3592 }else{
3593 /* Rare case of a really large header */
3594 nVarint = sqlite3VarintLen(nHdr);
3595 nHdr += nVarint;
3596 if( nVarint<sqlite3VarintLen(nHdr) ) nHdr++;
3598 nByte = nHdr+nData;
3600 /* Make sure the output register has a buffer large enough to store
3601 ** the new record. The output register (pOp->p3) is not allowed to
3602 ** be one of the input registers (because the following call to
3603 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
3605 if( nByte+nZero<=pOut->szMalloc ){
3606 /* The output register is already large enough to hold the record.
3607 ** No error checks or buffer enlargement is required */
3608 pOut->z = pOut->zMalloc;
3609 }else{
3610 /* Need to make sure that the output is not too big and then enlarge
3611 ** the output register to hold the full result */
3612 if( nByte+nZero>db->aLimit[SQLITE_LIMIT_LENGTH] ){
3613 goto too_big;
3615 if( sqlite3VdbeMemClearAndResize(pOut, (int)nByte) ){
3616 goto no_mem;
3619 pOut->n = (int)nByte;
3620 pOut->flags = MEM_Blob;
3621 if( nZero ){
3622 pOut->u.nZero = nZero;
3623 pOut->flags |= MEM_Zero;
3625 UPDATE_MAX_BLOBSIZE(pOut);
3626 zHdr = (u8 *)pOut->z;
3627 zPayload = zHdr + nHdr;
3629 /* Write the record */
3630 if( nHdr<0x80 ){
3631 *(zHdr++) = nHdr;
3632 }else{
3633 zHdr += sqlite3PutVarint(zHdr,nHdr);
3635 assert( pData0<=pLast );
3636 pRec = pData0;
3637 while( 1 /*exit-by-break*/ ){
3638 serial_type = pRec->uTemp;
3639 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
3640 ** additional varints, one per column.
3641 ** EVIDENCE-OF: R-64536-51728 The values for each column in the record
3642 ** immediately follow the header. */
3643 if( serial_type<=7 ){
3644 *(zHdr++) = serial_type;
3645 if( serial_type==0 ){
3646 /* NULL value. No change in zPayload */
3647 }else{
3648 u64 v;
3649 if( serial_type==7 ){
3650 assert( sizeof(v)==sizeof(pRec->u.r) );
3651 memcpy(&v, &pRec->u.r, sizeof(v));
3652 swapMixedEndianFloat(v);
3653 }else{
3654 v = pRec->u.i;
3656 len = sqlite3SmallTypeSizes[serial_type];
3657 assert( len>=1 && len<=8 && len!=5 && len!=7 );
3658 switch( len ){
3659 default: zPayload[7] = (u8)(v&0xff); v >>= 8;
3660 zPayload[6] = (u8)(v&0xff); v >>= 8;
3661 case 6: zPayload[5] = (u8)(v&0xff); v >>= 8;
3662 zPayload[4] = (u8)(v&0xff); v >>= 8;
3663 case 4: zPayload[3] = (u8)(v&0xff); v >>= 8;
3664 case 3: zPayload[2] = (u8)(v&0xff); v >>= 8;
3665 case 2: zPayload[1] = (u8)(v&0xff); v >>= 8;
3666 case 1: zPayload[0] = (u8)(v&0xff);
3668 zPayload += len;
3670 }else if( serial_type<0x80 ){
3671 *(zHdr++) = serial_type;
3672 if( serial_type>=14 && pRec->n>0 ){
3673 assert( pRec->z!=0 );
3674 memcpy(zPayload, pRec->z, pRec->n);
3675 zPayload += pRec->n;
3677 }else{
3678 zHdr += sqlite3PutVarint(zHdr, serial_type);
3679 if( pRec->n ){
3680 assert( pRec->z!=0 );
3681 memcpy(zPayload, pRec->z, pRec->n);
3682 zPayload += pRec->n;
3685 if( pRec==pLast ) break;
3686 pRec++;
3688 assert( nHdr==(int)(zHdr - (u8*)pOut->z) );
3689 assert( nByte==(int)(zPayload - (u8*)pOut->z) );
3691 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
3692 REGISTER_TRACE(pOp->p3, pOut);
3693 break;
3696 /* Opcode: Count P1 P2 P3 * *
3697 ** Synopsis: r[P2]=count()
3699 ** Store the number of entries (an integer value) in the table or index
3700 ** opened by cursor P1 in register P2.
3702 ** If P3==0, then an exact count is obtained, which involves visiting
3703 ** every btree page of the table. But if P3 is non-zero, an estimate
3704 ** is returned based on the current cursor position.
3706 case OP_Count: { /* out2 */
3707 i64 nEntry;
3708 BtCursor *pCrsr;
3710 assert( p->apCsr[pOp->p1]->eCurType==CURTYPE_BTREE );
3711 pCrsr = p->apCsr[pOp->p1]->uc.pCursor;
3712 assert( pCrsr );
3713 if( pOp->p3 ){
3714 nEntry = sqlite3BtreeRowCountEst(pCrsr);
3715 }else{
3716 nEntry = 0; /* Not needed. Only used to silence a warning. */
3717 rc = sqlite3BtreeCount(db, pCrsr, &nEntry);
3718 if( rc ) goto abort_due_to_error;
3720 pOut = out2Prerelease(p, pOp);
3721 pOut->u.i = nEntry;
3722 goto check_for_interrupt;
3725 /* Opcode: Savepoint P1 * * P4 *
3727 ** Open, release or rollback the savepoint named by parameter P4, depending
3728 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
3729 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
3730 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
3732 case OP_Savepoint: {
3733 int p1; /* Value of P1 operand */
3734 char *zName; /* Name of savepoint */
3735 int nName;
3736 Savepoint *pNew;
3737 Savepoint *pSavepoint;
3738 Savepoint *pTmp;
3739 int iSavepoint;
3740 int ii;
3742 p1 = pOp->p1;
3743 zName = pOp->p4.z;
3745 /* Assert that the p1 parameter is valid. Also that if there is no open
3746 ** transaction, then there cannot be any savepoints.
3748 assert( db->pSavepoint==0 || db->autoCommit==0 );
3749 assert( p1==SAVEPOINT_BEGIN||p1==SAVEPOINT_RELEASE||p1==SAVEPOINT_ROLLBACK );
3750 assert( db->pSavepoint || db->isTransactionSavepoint==0 );
3751 assert( checkSavepointCount(db) );
3752 assert( p->bIsReader );
3754 if( p1==SAVEPOINT_BEGIN ){
3755 if( db->nVdbeWrite>0 ){
3756 /* A new savepoint cannot be created if there are active write
3757 ** statements (i.e. open read/write incremental blob handles).
3759 sqlite3VdbeError(p, "cannot open savepoint - SQL statements in progress");
3760 rc = SQLITE_BUSY;
3761 }else{
3762 nName = sqlite3Strlen30(zName);
3764 #ifndef SQLITE_OMIT_VIRTUALTABLE
3765 /* This call is Ok even if this savepoint is actually a transaction
3766 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
3767 ** If this is a transaction savepoint being opened, it is guaranteed
3768 ** that the db->aVTrans[] array is empty. */
3769 assert( db->autoCommit==0 || db->nVTrans==0 );
3770 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN,
3771 db->nStatement+db->nSavepoint);
3772 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3773 #endif
3775 /* Create a new savepoint structure. */
3776 pNew = sqlite3DbMallocRawNN(db, sizeof(Savepoint)+nName+1);
3777 if( pNew ){
3778 pNew->zName = (char *)&pNew[1];
3779 memcpy(pNew->zName, zName, nName+1);
3781 /* If there is no open transaction, then mark this as a special
3782 ** "transaction savepoint". */
3783 if( db->autoCommit ){
3784 db->autoCommit = 0;
3785 db->isTransactionSavepoint = 1;
3786 }else{
3787 db->nSavepoint++;
3790 /* Link the new savepoint into the database handle's list. */
3791 pNew->pNext = db->pSavepoint;
3792 db->pSavepoint = pNew;
3793 pNew->nDeferredCons = db->nDeferredCons;
3794 pNew->nDeferredImmCons = db->nDeferredImmCons;
3797 }else{
3798 assert( p1==SAVEPOINT_RELEASE || p1==SAVEPOINT_ROLLBACK );
3799 iSavepoint = 0;
3801 /* Find the named savepoint. If there is no such savepoint, then an
3802 ** an error is returned to the user. */
3803 for(
3804 pSavepoint = db->pSavepoint;
3805 pSavepoint && sqlite3StrICmp(pSavepoint->zName, zName);
3806 pSavepoint = pSavepoint->pNext
3808 iSavepoint++;
3810 if( !pSavepoint ){
3811 sqlite3VdbeError(p, "no such savepoint: %s", zName);
3812 rc = SQLITE_ERROR;
3813 }else if( db->nVdbeWrite>0 && p1==SAVEPOINT_RELEASE ){
3814 /* It is not possible to release (commit) a savepoint if there are
3815 ** active write statements.
3817 sqlite3VdbeError(p, "cannot release savepoint - "
3818 "SQL statements in progress");
3819 rc = SQLITE_BUSY;
3820 }else{
3822 /* Determine whether or not this is a transaction savepoint. If so,
3823 ** and this is a RELEASE command, then the current transaction
3824 ** is committed.
3826 int isTransaction = pSavepoint->pNext==0 && db->isTransactionSavepoint;
3827 if( isTransaction && p1==SAVEPOINT_RELEASE ){
3828 if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3829 goto vdbe_return;
3831 db->autoCommit = 1;
3832 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3833 p->pc = (int)(pOp - aOp);
3834 db->autoCommit = 0;
3835 p->rc = rc = SQLITE_BUSY;
3836 goto vdbe_return;
3838 rc = p->rc;
3839 if( rc ){
3840 db->autoCommit = 0;
3841 }else{
3842 db->isTransactionSavepoint = 0;
3844 }else{
3845 int isSchemaChange;
3846 iSavepoint = db->nSavepoint - iSavepoint - 1;
3847 if( p1==SAVEPOINT_ROLLBACK ){
3848 isSchemaChange = (db->mDbFlags & DBFLAG_SchemaChange)!=0;
3849 for(ii=0; ii<db->nDb; ii++){
3850 rc = sqlite3BtreeTripAllCursors(db->aDb[ii].pBt,
3851 SQLITE_ABORT_ROLLBACK,
3852 isSchemaChange==0);
3853 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3855 }else{
3856 assert( p1==SAVEPOINT_RELEASE );
3857 isSchemaChange = 0;
3859 for(ii=0; ii<db->nDb; ii++){
3860 rc = sqlite3BtreeSavepoint(db->aDb[ii].pBt, p1, iSavepoint);
3861 if( rc!=SQLITE_OK ){
3862 goto abort_due_to_error;
3865 if( isSchemaChange ){
3866 sqlite3ExpirePreparedStatements(db, 0);
3867 sqlite3ResetAllSchemasOfConnection(db);
3868 db->mDbFlags |= DBFLAG_SchemaChange;
3871 if( rc ) goto abort_due_to_error;
3873 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3874 ** savepoints nested inside of the savepoint being operated on. */
3875 while( db->pSavepoint!=pSavepoint ){
3876 pTmp = db->pSavepoint;
3877 db->pSavepoint = pTmp->pNext;
3878 sqlite3DbFree(db, pTmp);
3879 db->nSavepoint--;
3882 /* If it is a RELEASE, then destroy the savepoint being operated on
3883 ** too. If it is a ROLLBACK TO, then set the number of deferred
3884 ** constraint violations present in the database to the value stored
3885 ** when the savepoint was created. */
3886 if( p1==SAVEPOINT_RELEASE ){
3887 assert( pSavepoint==db->pSavepoint );
3888 db->pSavepoint = pSavepoint->pNext;
3889 sqlite3DbFree(db, pSavepoint);
3890 if( !isTransaction ){
3891 db->nSavepoint--;
3893 }else{
3894 assert( p1==SAVEPOINT_ROLLBACK );
3895 db->nDeferredCons = pSavepoint->nDeferredCons;
3896 db->nDeferredImmCons = pSavepoint->nDeferredImmCons;
3899 if( !isTransaction || p1==SAVEPOINT_ROLLBACK ){
3900 rc = sqlite3VtabSavepoint(db, p1, iSavepoint);
3901 if( rc!=SQLITE_OK ) goto abort_due_to_error;
3905 if( rc ) goto abort_due_to_error;
3906 if( p->eVdbeState==VDBE_HALT_STATE ){
3907 rc = SQLITE_DONE;
3908 goto vdbe_return;
3910 break;
3913 /* Opcode: AutoCommit P1 P2 * * *
3915 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3916 ** back any currently active btree transactions. If there are any active
3917 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
3918 ** there are active writing VMs or active VMs that use shared cache.
3920 ** This instruction causes the VM to halt.
3922 case OP_AutoCommit: {
3923 int desiredAutoCommit;
3924 int iRollback;
3926 desiredAutoCommit = pOp->p1;
3927 iRollback = pOp->p2;
3928 assert( desiredAutoCommit==1 || desiredAutoCommit==0 );
3929 assert( desiredAutoCommit==1 || iRollback==0 );
3930 assert( db->nVdbeActive>0 ); /* At least this one VM is active */
3931 assert( p->bIsReader );
3933 if( desiredAutoCommit!=db->autoCommit ){
3934 if( iRollback ){
3935 assert( desiredAutoCommit==1 );
3936 sqlite3RollbackAll(db, SQLITE_ABORT_ROLLBACK);
3937 db->autoCommit = 1;
3938 }else if( desiredAutoCommit && db->nVdbeWrite>0 ){
3939 /* If this instruction implements a COMMIT and other VMs are writing
3940 ** return an error indicating that the other VMs must complete first.
3942 sqlite3VdbeError(p, "cannot commit transaction - "
3943 "SQL statements in progress");
3944 rc = SQLITE_BUSY;
3945 goto abort_due_to_error;
3946 }else if( (rc = sqlite3VdbeCheckFk(p, 1))!=SQLITE_OK ){
3947 goto vdbe_return;
3948 }else{
3949 db->autoCommit = (u8)desiredAutoCommit;
3951 if( sqlite3VdbeHalt(p)==SQLITE_BUSY ){
3952 p->pc = (int)(pOp - aOp);
3953 db->autoCommit = (u8)(1-desiredAutoCommit);
3954 p->rc = rc = SQLITE_BUSY;
3955 goto vdbe_return;
3957 sqlite3CloseSavepoints(db);
3958 if( p->rc==SQLITE_OK ){
3959 rc = SQLITE_DONE;
3960 }else{
3961 rc = SQLITE_ERROR;
3963 goto vdbe_return;
3964 }else{
3965 sqlite3VdbeError(p,
3966 (!desiredAutoCommit)?"cannot start a transaction within a transaction":(
3967 (iRollback)?"cannot rollback - no transaction is active":
3968 "cannot commit - no transaction is active"));
3970 rc = SQLITE_ERROR;
3971 goto abort_due_to_error;
3973 /*NOTREACHED*/ assert(0);
3976 /* Opcode: Transaction P1 P2 P3 P4 P5
3978 ** Begin a transaction on database P1 if a transaction is not already
3979 ** active.
3980 ** If P2 is non-zero, then a write-transaction is started, or if a
3981 ** read-transaction is already active, it is upgraded to a write-transaction.
3982 ** If P2 is zero, then a read-transaction is started. If P2 is 2 or more
3983 ** then an exclusive transaction is started.
3985 ** P1 is the index of the database file on which the transaction is
3986 ** started. Index 0 is the main database file and index 1 is the
3987 ** file used for temporary tables. Indices of 2 or more are used for
3988 ** attached databases.
3990 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3991 ** true (this flag is set if the Vdbe may modify more than one row and may
3992 ** throw an ABORT exception), a statement transaction may also be opened.
3993 ** More specifically, a statement transaction is opened iff the database
3994 ** connection is currently not in autocommit mode, or if there are other
3995 ** active statements. A statement transaction allows the changes made by this
3996 ** VDBE to be rolled back after an error without having to roll back the
3997 ** entire transaction. If no error is encountered, the statement transaction
3998 ** will automatically commit when the VDBE halts.
4000 ** If P5!=0 then this opcode also checks the schema cookie against P3
4001 ** and the schema generation counter against P4.
4002 ** The cookie changes its value whenever the database schema changes.
4003 ** This operation is used to detect when that the cookie has changed
4004 ** and that the current process needs to reread the schema. If the schema
4005 ** cookie in P3 differs from the schema cookie in the database header or
4006 ** if the schema generation counter in P4 differs from the current
4007 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
4008 ** halts. The sqlite3_step() wrapper function might then reprepare the
4009 ** statement and rerun it from the beginning.
4011 case OP_Transaction: {
4012 Btree *pBt;
4013 Db *pDb;
4014 int iMeta = 0;
4016 assert( p->bIsReader );
4017 assert( p->readOnly==0 || pOp->p2==0 );
4018 assert( pOp->p2>=0 && pOp->p2<=2 );
4019 assert( pOp->p1>=0 && pOp->p1<db->nDb );
4020 assert( DbMaskTest(p->btreeMask, pOp->p1) );
4021 assert( rc==SQLITE_OK );
4022 if( pOp->p2 && (db->flags & (SQLITE_QueryOnly|SQLITE_CorruptRdOnly))!=0 ){
4023 if( db->flags & SQLITE_QueryOnly ){
4024 /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */
4025 rc = SQLITE_READONLY;
4026 }else{
4027 /* Writes prohibited due to a prior SQLITE_CORRUPT in the current
4028 ** transaction */
4029 rc = SQLITE_CORRUPT;
4031 goto abort_due_to_error;
4033 pDb = &db->aDb[pOp->p1];
4034 pBt = pDb->pBt;
4036 if( pBt ){
4037 rc = sqlite3BtreeBeginTrans(pBt, pOp->p2, &iMeta);
4038 testcase( rc==SQLITE_BUSY_SNAPSHOT );
4039 testcase( rc==SQLITE_BUSY_RECOVERY );
4040 if( rc!=SQLITE_OK ){
4041 if( (rc&0xff)==SQLITE_BUSY ){
4042 p->pc = (int)(pOp - aOp);
4043 p->rc = rc;
4044 goto vdbe_return;
4046 goto abort_due_to_error;
4049 if( p->usesStmtJournal
4050 && pOp->p2
4051 && (db->autoCommit==0 || db->nVdbeRead>1)
4053 assert( sqlite3BtreeTxnState(pBt)==SQLITE_TXN_WRITE );
4054 if( p->iStatement==0 ){
4055 assert( db->nStatement>=0 && db->nSavepoint>=0 );
4056 db->nStatement++;
4057 p->iStatement = db->nSavepoint + db->nStatement;
4060 rc = sqlite3VtabSavepoint(db, SAVEPOINT_BEGIN, p->iStatement-1);
4061 if( rc==SQLITE_OK ){
4062 rc = sqlite3BtreeBeginStmt(pBt, p->iStatement);
4065 /* Store the current value of the database handles deferred constraint
4066 ** counter. If the statement transaction needs to be rolled back,
4067 ** the value of this counter needs to be restored too. */
4068 p->nStmtDefCons = db->nDeferredCons;
4069 p->nStmtDefImmCons = db->nDeferredImmCons;
4072 assert( pOp->p5==0 || pOp->p4type==P4_INT32 );
4073 if( rc==SQLITE_OK
4074 && pOp->p5
4075 && (iMeta!=pOp->p3 || pDb->pSchema->iGeneration!=pOp->p4.i)
4078 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
4079 ** version is checked to ensure that the schema has not changed since the
4080 ** SQL statement was prepared.
4082 sqlite3DbFree(db, p->zErrMsg);
4083 p->zErrMsg = sqlite3DbStrDup(db, "database schema has changed");
4084 /* If the schema-cookie from the database file matches the cookie
4085 ** stored with the in-memory representation of the schema, do
4086 ** not reload the schema from the database file.
4088 ** If virtual-tables are in use, this is not just an optimization.
4089 ** Often, v-tables store their data in other SQLite tables, which
4090 ** are queried from within xNext() and other v-table methods using
4091 ** prepared queries. If such a query is out-of-date, we do not want to
4092 ** discard the database schema, as the user code implementing the
4093 ** v-table would have to be ready for the sqlite3_vtab structure itself
4094 ** to be invalidated whenever sqlite3_step() is called from within
4095 ** a v-table method.
4097 if( db->aDb[pOp->p1].pSchema->schema_cookie!=iMeta ){
4098 sqlite3ResetOneSchema(db, pOp->p1);
4100 p->expired = 1;
4101 rc = SQLITE_SCHEMA;
4103 /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes()
4104 ** from being modified in sqlite3VdbeHalt(). If this statement is
4105 ** reprepared, changeCntOn will be set again. */
4106 p->changeCntOn = 0;
4108 if( rc ) goto abort_due_to_error;
4109 break;
4112 /* Opcode: ReadCookie P1 P2 P3 * *
4114 ** Read cookie number P3 from database P1 and write it into register P2.
4115 ** P3==1 is the schema version. P3==2 is the database format.
4116 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is
4117 ** the main database file and P1==1 is the database file used to store
4118 ** temporary tables.
4120 ** There must be a read-lock on the database (either a transaction
4121 ** must be started or there must be an open cursor) before
4122 ** executing this instruction.
4124 case OP_ReadCookie: { /* out2 */
4125 int iMeta;
4126 int iDb;
4127 int iCookie;
4129 assert( p->bIsReader );
4130 iDb = pOp->p1;
4131 iCookie = pOp->p3;
4132 assert( pOp->p3<SQLITE_N_BTREE_META );
4133 assert( iDb>=0 && iDb<db->nDb );
4134 assert( db->aDb[iDb].pBt!=0 );
4135 assert( DbMaskTest(p->btreeMask, iDb) );
4137 sqlite3BtreeGetMeta(db->aDb[iDb].pBt, iCookie, (u32 *)&iMeta);
4138 pOut = out2Prerelease(p, pOp);
4139 pOut->u.i = iMeta;
4140 break;
4143 /* Opcode: SetCookie P1 P2 P3 * P5
4145 ** Write the integer value P3 into cookie number P2 of database P1.
4146 ** P2==1 is the schema version. P2==2 is the database format.
4147 ** P2==3 is the recommended pager cache
4148 ** size, and so forth. P1==0 is the main database file and P1==1 is the
4149 ** database file used to store temporary tables.
4151 ** A transaction must be started before executing this opcode.
4153 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal
4154 ** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement
4155 ** has P5 set to 1, so that the internal schema version will be different
4156 ** from the database schema version, resulting in a schema reset.
4158 case OP_SetCookie: {
4159 Db *pDb;
4161 sqlite3VdbeIncrWriteCounter(p, 0);
4162 assert( pOp->p2<SQLITE_N_BTREE_META );
4163 assert( pOp->p1>=0 && pOp->p1<db->nDb );
4164 assert( DbMaskTest(p->btreeMask, pOp->p1) );
4165 assert( p->readOnly==0 );
4166 pDb = &db->aDb[pOp->p1];
4167 assert( pDb->pBt!=0 );
4168 assert( sqlite3SchemaMutexHeld(db, pOp->p1, 0) );
4169 /* See note about index shifting on OP_ReadCookie */
4170 rc = sqlite3BtreeUpdateMeta(pDb->pBt, pOp->p2, pOp->p3);
4171 if( pOp->p2==BTREE_SCHEMA_VERSION ){
4172 /* When the schema cookie changes, record the new cookie internally */
4173 *(u32*)&pDb->pSchema->schema_cookie = *(u32*)&pOp->p3 - pOp->p5;
4174 db->mDbFlags |= DBFLAG_SchemaChange;
4175 sqlite3FkClearTriggerCache(db, pOp->p1);
4176 }else if( pOp->p2==BTREE_FILE_FORMAT ){
4177 /* Record changes in the file format */
4178 pDb->pSchema->file_format = pOp->p3;
4180 if( pOp->p1==1 ){
4181 /* Invalidate all prepared statements whenever the TEMP database
4182 ** schema is changed. Ticket #1644 */
4183 sqlite3ExpirePreparedStatements(db, 0);
4184 p->expired = 0;
4186 if( rc ) goto abort_due_to_error;
4187 break;
4190 /* Opcode: OpenRead P1 P2 P3 P4 P5
4191 ** Synopsis: root=P2 iDb=P3
4193 ** Open a read-only cursor for the database table whose root page is
4194 ** P2 in a database file. The database file is determined by P3.
4195 ** P3==0 means the main database, P3==1 means the database used for
4196 ** temporary tables, and P3>1 means used the corresponding attached
4197 ** database. Give the new cursor an identifier of P1. The P1
4198 ** values need not be contiguous but all P1 values should be small integers.
4199 ** It is an error for P1 to be negative.
4201 ** Allowed P5 bits:
4202 ** <ul>
4203 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4204 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4205 ** of OP_SeekLE/OP_IdxLT)
4206 ** </ul>
4208 ** The P4 value may be either an integer (P4_INT32) or a pointer to
4209 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
4210 ** object, then table being opened must be an [index b-tree] where the
4211 ** KeyInfo object defines the content and collating
4212 ** sequence of that index b-tree. Otherwise, if P4 is an integer
4213 ** value, then the table being opened must be a [table b-tree] with a
4214 ** number of columns no less than the value of P4.
4216 ** See also: OpenWrite, ReopenIdx
4218 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
4219 ** Synopsis: root=P2 iDb=P3
4221 ** The ReopenIdx opcode works like OP_OpenRead except that it first
4222 ** checks to see if the cursor on P1 is already open on the same
4223 ** b-tree and if it is this opcode becomes a no-op. In other words,
4224 ** if the cursor is already open, do not reopen it.
4226 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
4227 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must
4228 ** be the same as every other ReopenIdx or OpenRead for the same cursor
4229 ** number.
4231 ** Allowed P5 bits:
4232 ** <ul>
4233 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4234 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4235 ** of OP_SeekLE/OP_IdxLT)
4236 ** </ul>
4238 ** See also: OP_OpenRead, OP_OpenWrite
4240 /* Opcode: OpenWrite P1 P2 P3 P4 P5
4241 ** Synopsis: root=P2 iDb=P3
4243 ** Open a read/write cursor named P1 on the table or index whose root
4244 ** page is P2 (or whose root page is held in register P2 if the
4245 ** OPFLAG_P2ISREG bit is set in P5 - see below).
4247 ** The P4 value may be either an integer (P4_INT32) or a pointer to
4248 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
4249 ** object, then table being opened must be an [index b-tree] where the
4250 ** KeyInfo object defines the content and collating
4251 ** sequence of that index b-tree. Otherwise, if P4 is an integer
4252 ** value, then the table being opened must be a [table b-tree] with a
4253 ** number of columns no less than the value of P4.
4255 ** Allowed P5 bits:
4256 ** <ul>
4257 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4258 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4259 ** of OP_SeekLE/OP_IdxLT)
4260 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
4261 ** and subsequently delete entries in an index btree. This is a
4262 ** hint to the storage engine that the storage engine is allowed to
4263 ** ignore. The hint is not used by the official SQLite b*tree storage
4264 ** engine, but is used by COMDB2.
4265 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
4266 ** as the root page, not the value of P2 itself.
4267 ** </ul>
4269 ** This instruction works like OpenRead except that it opens the cursor
4270 ** in read/write mode.
4272 ** See also: OP_OpenRead, OP_ReopenIdx
4274 case OP_ReopenIdx: { /* ncycle */
4275 int nField;
4276 KeyInfo *pKeyInfo;
4277 u32 p2;
4278 int iDb;
4279 int wrFlag;
4280 Btree *pX;
4281 VdbeCursor *pCur;
4282 Db *pDb;
4284 assert( pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
4285 assert( pOp->p4type==P4_KEYINFO );
4286 pCur = p->apCsr[pOp->p1];
4287 if( pCur && pCur->pgnoRoot==(u32)pOp->p2 ){
4288 assert( pCur->iDb==pOp->p3 ); /* Guaranteed by the code generator */
4289 assert( pCur->eCurType==CURTYPE_BTREE );
4290 sqlite3BtreeClearCursor(pCur->uc.pCursor);
4291 goto open_cursor_set_hints;
4293 /* If the cursor is not currently open or is open on a different
4294 ** index, then fall through into OP_OpenRead to force a reopen */
4295 case OP_OpenRead: /* ncycle */
4296 case OP_OpenWrite:
4298 assert( pOp->opcode==OP_OpenWrite || pOp->p5==0 || pOp->p5==OPFLAG_SEEKEQ );
4299 assert( p->bIsReader );
4300 assert( pOp->opcode==OP_OpenRead || pOp->opcode==OP_ReopenIdx
4301 || p->readOnly==0 );
4303 if( p->expired==1 ){
4304 rc = SQLITE_ABORT_ROLLBACK;
4305 goto abort_due_to_error;
4308 nField = 0;
4309 pKeyInfo = 0;
4310 p2 = (u32)pOp->p2;
4311 iDb = pOp->p3;
4312 assert( iDb>=0 && iDb<db->nDb );
4313 assert( DbMaskTest(p->btreeMask, iDb) );
4314 pDb = &db->aDb[iDb];
4315 pX = pDb->pBt;
4316 assert( pX!=0 );
4317 if( pOp->opcode==OP_OpenWrite ){
4318 assert( OPFLAG_FORDELETE==BTREE_FORDELETE );
4319 wrFlag = BTREE_WRCSR | (pOp->p5 & OPFLAG_FORDELETE);
4320 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
4321 if( pDb->pSchema->file_format < p->minWriteFileFormat ){
4322 p->minWriteFileFormat = pDb->pSchema->file_format;
4324 }else{
4325 wrFlag = 0;
4327 if( pOp->p5 & OPFLAG_P2ISREG ){
4328 assert( p2>0 );
4329 assert( p2<=(u32)(p->nMem+1 - p->nCursor) );
4330 assert( pOp->opcode==OP_OpenWrite );
4331 pIn2 = &aMem[p2];
4332 assert( memIsValid(pIn2) );
4333 assert( (pIn2->flags & MEM_Int)!=0 );
4334 sqlite3VdbeMemIntegerify(pIn2);
4335 p2 = (int)pIn2->u.i;
4336 /* The p2 value always comes from a prior OP_CreateBtree opcode and
4337 ** that opcode will always set the p2 value to 2 or more or else fail.
4338 ** If there were a failure, the prepared statement would have halted
4339 ** before reaching this instruction. */
4340 assert( p2>=2 );
4342 if( pOp->p4type==P4_KEYINFO ){
4343 pKeyInfo = pOp->p4.pKeyInfo;
4344 assert( pKeyInfo->enc==ENC(db) );
4345 assert( pKeyInfo->db==db );
4346 nField = pKeyInfo->nAllField;
4347 }else if( pOp->p4type==P4_INT32 ){
4348 nField = pOp->p4.i;
4350 assert( pOp->p1>=0 );
4351 assert( nField>=0 );
4352 testcase( nField==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
4353 pCur = allocateCursor(p, pOp->p1, nField, CURTYPE_BTREE);
4354 if( pCur==0 ) goto no_mem;
4355 pCur->iDb = iDb;
4356 pCur->nullRow = 1;
4357 pCur->isOrdered = 1;
4358 pCur->pgnoRoot = p2;
4359 #ifdef SQLITE_DEBUG
4360 pCur->wrFlag = wrFlag;
4361 #endif
4362 rc = sqlite3BtreeCursor(pX, p2, wrFlag, pKeyInfo, pCur->uc.pCursor);
4363 pCur->pKeyInfo = pKeyInfo;
4364 /* Set the VdbeCursor.isTable variable. Previous versions of
4365 ** SQLite used to check if the root-page flags were sane at this point
4366 ** and report database corruption if they were not, but this check has
4367 ** since moved into the btree layer. */
4368 pCur->isTable = pOp->p4type!=P4_KEYINFO;
4370 open_cursor_set_hints:
4371 assert( OPFLAG_BULKCSR==BTREE_BULKLOAD );
4372 assert( OPFLAG_SEEKEQ==BTREE_SEEK_EQ );
4373 testcase( pOp->p5 & OPFLAG_BULKCSR );
4374 testcase( pOp->p2 & OPFLAG_SEEKEQ );
4375 sqlite3BtreeCursorHintFlags(pCur->uc.pCursor,
4376 (pOp->p5 & (OPFLAG_BULKCSR|OPFLAG_SEEKEQ)));
4377 if( rc ) goto abort_due_to_error;
4378 break;
4381 /* Opcode: OpenDup P1 P2 * * *
4383 ** Open a new cursor P1 that points to the same ephemeral table as
4384 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral
4385 ** opcode. Only ephemeral cursors may be duplicated.
4387 ** Duplicate ephemeral cursors are used for self-joins of materialized views.
4389 case OP_OpenDup: { /* ncycle */
4390 VdbeCursor *pOrig; /* The original cursor to be duplicated */
4391 VdbeCursor *pCx; /* The new cursor */
4393 pOrig = p->apCsr[pOp->p2];
4394 assert( pOrig );
4395 assert( pOrig->isEphemeral ); /* Only ephemeral cursors can be duplicated */
4397 pCx = allocateCursor(p, pOp->p1, pOrig->nField, CURTYPE_BTREE);
4398 if( pCx==0 ) goto no_mem;
4399 pCx->nullRow = 1;
4400 pCx->isEphemeral = 1;
4401 pCx->pKeyInfo = pOrig->pKeyInfo;
4402 pCx->isTable = pOrig->isTable;
4403 pCx->pgnoRoot = pOrig->pgnoRoot;
4404 pCx->isOrdered = pOrig->isOrdered;
4405 pCx->ub.pBtx = pOrig->ub.pBtx;
4406 pCx->noReuse = 1;
4407 pOrig->noReuse = 1;
4408 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
4409 pCx->pKeyInfo, pCx->uc.pCursor);
4410 /* The sqlite3BtreeCursor() routine can only fail for the first cursor
4411 ** opened for a database. Since there is already an open cursor when this
4412 ** opcode is run, the sqlite3BtreeCursor() cannot fail */
4413 assert( rc==SQLITE_OK );
4414 break;
4418 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5
4419 ** Synopsis: nColumn=P2
4421 ** Open a new cursor P1 to a transient table.
4422 ** The cursor is always opened read/write even if
4423 ** the main database is read-only. The ephemeral
4424 ** table is deleted automatically when the cursor is closed.
4426 ** If the cursor P1 is already opened on an ephemeral table, the table
4427 ** is cleared (all content is erased).
4429 ** P2 is the number of columns in the ephemeral table.
4430 ** The cursor points to a BTree table if P4==0 and to a BTree index
4431 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
4432 ** that defines the format of keys in the index.
4434 ** The P5 parameter can be a mask of the BTREE_* flags defined
4435 ** in btree.h. These flags control aspects of the operation of
4436 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
4437 ** added automatically.
4439 ** If P3 is positive, then reg[P3] is modified slightly so that it
4440 ** can be used as zero-length data for OP_Insert. This is an optimization
4441 ** that avoids an extra OP_Blob opcode to initialize that register.
4443 /* Opcode: OpenAutoindex P1 P2 * P4 *
4444 ** Synopsis: nColumn=P2
4446 ** This opcode works the same as OP_OpenEphemeral. It has a
4447 ** different name to distinguish its use. Tables created using
4448 ** by this opcode will be used for automatically created transient
4449 ** indices in joins.
4451 case OP_OpenAutoindex: /* ncycle */
4452 case OP_OpenEphemeral: { /* ncycle */
4453 VdbeCursor *pCx;
4454 KeyInfo *pKeyInfo;
4456 static const int vfsFlags =
4457 SQLITE_OPEN_READWRITE |
4458 SQLITE_OPEN_CREATE |
4459 SQLITE_OPEN_EXCLUSIVE |
4460 SQLITE_OPEN_DELETEONCLOSE |
4461 SQLITE_OPEN_TRANSIENT_DB;
4462 assert( pOp->p1>=0 );
4463 assert( pOp->p2>=0 );
4464 if( pOp->p3>0 ){
4465 /* Make register reg[P3] into a value that can be used as the data
4466 ** form sqlite3BtreeInsert() where the length of the data is zero. */
4467 assert( pOp->p2==0 ); /* Only used when number of columns is zero */
4468 assert( pOp->opcode==OP_OpenEphemeral );
4469 assert( aMem[pOp->p3].flags & MEM_Null );
4470 aMem[pOp->p3].n = 0;
4471 aMem[pOp->p3].z = "";
4473 pCx = p->apCsr[pOp->p1];
4474 if( pCx && !pCx->noReuse && ALWAYS(pOp->p2<=pCx->nField) ){
4475 /* If the ephemeral table is already open and has no duplicates from
4476 ** OP_OpenDup, then erase all existing content so that the table is
4477 ** empty again, rather than creating a new table. */
4478 assert( pCx->isEphemeral );
4479 pCx->seqCount = 0;
4480 pCx->cacheStatus = CACHE_STALE;
4481 rc = sqlite3BtreeClearTable(pCx->ub.pBtx, pCx->pgnoRoot, 0);
4482 }else{
4483 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_BTREE);
4484 if( pCx==0 ) goto no_mem;
4485 pCx->isEphemeral = 1;
4486 rc = sqlite3BtreeOpen(db->pVfs, 0, db, &pCx->ub.pBtx,
4487 BTREE_OMIT_JOURNAL | BTREE_SINGLE | pOp->p5,
4488 vfsFlags);
4489 if( rc==SQLITE_OK ){
4490 rc = sqlite3BtreeBeginTrans(pCx->ub.pBtx, 1, 0);
4491 if( rc==SQLITE_OK ){
4492 /* If a transient index is required, create it by calling
4493 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
4494 ** opening it. If a transient table is required, just use the
4495 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
4497 if( (pCx->pKeyInfo = pKeyInfo = pOp->p4.pKeyInfo)!=0 ){
4498 assert( pOp->p4type==P4_KEYINFO );
4499 rc = sqlite3BtreeCreateTable(pCx->ub.pBtx, &pCx->pgnoRoot,
4500 BTREE_BLOBKEY | pOp->p5);
4501 if( rc==SQLITE_OK ){
4502 assert( pCx->pgnoRoot==SCHEMA_ROOT+1 );
4503 assert( pKeyInfo->db==db );
4504 assert( pKeyInfo->enc==ENC(db) );
4505 rc = sqlite3BtreeCursor(pCx->ub.pBtx, pCx->pgnoRoot, BTREE_WRCSR,
4506 pKeyInfo, pCx->uc.pCursor);
4508 pCx->isTable = 0;
4509 }else{
4510 pCx->pgnoRoot = SCHEMA_ROOT;
4511 rc = sqlite3BtreeCursor(pCx->ub.pBtx, SCHEMA_ROOT, BTREE_WRCSR,
4512 0, pCx->uc.pCursor);
4513 pCx->isTable = 1;
4516 pCx->isOrdered = (pOp->p5!=BTREE_UNORDERED);
4517 if( rc ){
4518 sqlite3BtreeClose(pCx->ub.pBtx);
4522 if( rc ) goto abort_due_to_error;
4523 pCx->nullRow = 1;
4524 break;
4527 /* Opcode: SorterOpen P1 P2 P3 P4 *
4529 ** This opcode works like OP_OpenEphemeral except that it opens
4530 ** a transient index that is specifically designed to sort large
4531 ** tables using an external merge-sort algorithm.
4533 ** If argument P3 is non-zero, then it indicates that the sorter may
4534 ** assume that a stable sort considering the first P3 fields of each
4535 ** key is sufficient to produce the required results.
4537 case OP_SorterOpen: {
4538 VdbeCursor *pCx;
4540 assert( pOp->p1>=0 );
4541 assert( pOp->p2>=0 );
4542 pCx = allocateCursor(p, pOp->p1, pOp->p2, CURTYPE_SORTER);
4543 if( pCx==0 ) goto no_mem;
4544 pCx->pKeyInfo = pOp->p4.pKeyInfo;
4545 assert( pCx->pKeyInfo->db==db );
4546 assert( pCx->pKeyInfo->enc==ENC(db) );
4547 rc = sqlite3VdbeSorterInit(db, pOp->p3, pCx);
4548 if( rc ) goto abort_due_to_error;
4549 break;
4552 /* Opcode: SequenceTest P1 P2 * * *
4553 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
4555 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
4556 ** to P2. Regardless of whether or not the jump is taken, increment the
4557 ** the sequence value.
4559 case OP_SequenceTest: {
4560 VdbeCursor *pC;
4561 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4562 pC = p->apCsr[pOp->p1];
4563 assert( isSorter(pC) );
4564 if( (pC->seqCount++)==0 ){
4565 goto jump_to_p2;
4567 break;
4570 /* Opcode: OpenPseudo P1 P2 P3 * *
4571 ** Synopsis: P3 columns in r[P2]
4573 ** Open a new cursor that points to a fake table that contains a single
4574 ** row of data. The content of that one row is the content of memory
4575 ** register P2. In other words, cursor P1 becomes an alias for the
4576 ** MEM_Blob content contained in register P2.
4578 ** A pseudo-table created by this opcode is used to hold a single
4579 ** row output from the sorter so that the row can be decomposed into
4580 ** individual columns using the OP_Column opcode. The OP_Column opcode
4581 ** is the only cursor opcode that works with a pseudo-table.
4583 ** P3 is the number of fields in the records that will be stored by
4584 ** the pseudo-table.
4586 case OP_OpenPseudo: {
4587 VdbeCursor *pCx;
4589 assert( pOp->p1>=0 );
4590 assert( pOp->p3>=0 );
4591 pCx = allocateCursor(p, pOp->p1, pOp->p3, CURTYPE_PSEUDO);
4592 if( pCx==0 ) goto no_mem;
4593 pCx->nullRow = 1;
4594 pCx->seekResult = pOp->p2;
4595 pCx->isTable = 1;
4596 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
4597 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test
4598 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
4599 ** which is a performance optimization */
4600 pCx->uc.pCursor = sqlite3BtreeFakeValidCursor();
4601 assert( pOp->p5==0 );
4602 break;
4605 /* Opcode: Close P1 * * * *
4607 ** Close a cursor previously opened as P1. If P1 is not
4608 ** currently open, this instruction is a no-op.
4610 case OP_Close: { /* ncycle */
4611 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4612 sqlite3VdbeFreeCursor(p, p->apCsr[pOp->p1]);
4613 p->apCsr[pOp->p1] = 0;
4614 break;
4617 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4618 /* Opcode: ColumnsUsed P1 * * P4 *
4620 ** This opcode (which only exists if SQLite was compiled with
4621 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
4622 ** table or index for cursor P1 are used. P4 is a 64-bit integer
4623 ** (P4_INT64) in which the first 63 bits are one for each of the
4624 ** first 63 columns of the table or index that are actually used
4625 ** by the cursor. The high-order bit is set if any column after
4626 ** the 64th is used.
4628 case OP_ColumnsUsed: {
4629 VdbeCursor *pC;
4630 pC = p->apCsr[pOp->p1];
4631 assert( pC->eCurType==CURTYPE_BTREE );
4632 pC->maskUsed = *(u64*)pOp->p4.pI64;
4633 break;
4635 #endif
4637 /* Opcode: SeekGE P1 P2 P3 P4 *
4638 ** Synopsis: key=r[P3@P4]
4640 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4641 ** use the value in register P3 as the key. If cursor P1 refers
4642 ** to an SQL index, then P3 is the first in an array of P4 registers
4643 ** that are used as an unpacked index key.
4645 ** Reposition cursor P1 so that it points to the smallest entry that
4646 ** is greater than or equal to the key value. If there are no records
4647 ** greater than or equal to the key and P2 is not zero, then jump to P2.
4649 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4650 ** opcode will either land on a record that exactly matches the key, or
4651 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
4652 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4653 ** The IdxGT opcode will be skipped if this opcode succeeds, but the
4654 ** IdxGT opcode will be used on subsequent loop iterations. The
4655 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4656 ** is an equality search.
4658 ** This opcode leaves the cursor configured to move in forward order,
4659 ** from the beginning toward the end. In other words, the cursor is
4660 ** configured to use Next, not Prev.
4662 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
4664 /* Opcode: SeekGT P1 P2 P3 P4 *
4665 ** Synopsis: key=r[P3@P4]
4667 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4668 ** use the value in register P3 as a key. If cursor P1 refers
4669 ** to an SQL index, then P3 is the first in an array of P4 registers
4670 ** that are used as an unpacked index key.
4672 ** Reposition cursor P1 so that it points to the smallest entry that
4673 ** is greater than the key value. If there are no records greater than
4674 ** the key and P2 is not zero, then jump to P2.
4676 ** This opcode leaves the cursor configured to move in forward order,
4677 ** from the beginning toward the end. In other words, the cursor is
4678 ** configured to use Next, not Prev.
4680 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
4682 /* Opcode: SeekLT P1 P2 P3 P4 *
4683 ** Synopsis: key=r[P3@P4]
4685 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4686 ** use the value in register P3 as a key. If cursor P1 refers
4687 ** to an SQL index, then P3 is the first in an array of P4 registers
4688 ** that are used as an unpacked index key.
4690 ** Reposition cursor P1 so that it points to the largest entry that
4691 ** is less than the key value. If there are no records less than
4692 ** the key and P2 is not zero, then jump to P2.
4694 ** This opcode leaves the cursor configured to move in reverse order,
4695 ** from the end toward the beginning. In other words, the cursor is
4696 ** configured to use Prev, not Next.
4698 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
4700 /* Opcode: SeekLE P1 P2 P3 P4 *
4701 ** Synopsis: key=r[P3@P4]
4703 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4704 ** use the value in register P3 as a key. If cursor P1 refers
4705 ** to an SQL index, then P3 is the first in an array of P4 registers
4706 ** that are used as an unpacked index key.
4708 ** Reposition cursor P1 so that it points to the largest entry that
4709 ** is less than or equal to the key value. If there are no records
4710 ** less than or equal to the key and P2 is not zero, then jump to P2.
4712 ** This opcode leaves the cursor configured to move in reverse order,
4713 ** from the end toward the beginning. In other words, the cursor is
4714 ** configured to use Prev, not Next.
4716 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4717 ** opcode will either land on a record that exactly matches the key, or
4718 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
4719 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4720 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
4721 ** IdxGE opcode will be used on subsequent loop iterations. The
4722 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4723 ** is an equality search.
4725 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
4727 case OP_SeekLT: /* jump, in3, group, ncycle */
4728 case OP_SeekLE: /* jump, in3, group, ncycle */
4729 case OP_SeekGE: /* jump, in3, group, ncycle */
4730 case OP_SeekGT: { /* jump, in3, group, ncycle */
4731 int res; /* Comparison result */
4732 int oc; /* Opcode */
4733 VdbeCursor *pC; /* The cursor to seek */
4734 UnpackedRecord r; /* The key to seek for */
4735 int nField; /* Number of columns or fields in the key */
4736 i64 iKey; /* The rowid we are to seek to */
4737 int eqOnly; /* Only interested in == results */
4739 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
4740 assert( pOp->p2!=0 );
4741 pC = p->apCsr[pOp->p1];
4742 assert( pC!=0 );
4743 assert( pC->eCurType==CURTYPE_BTREE );
4744 assert( OP_SeekLE == OP_SeekLT+1 );
4745 assert( OP_SeekGE == OP_SeekLT+2 );
4746 assert( OP_SeekGT == OP_SeekLT+3 );
4747 assert( pC->isOrdered );
4748 assert( pC->uc.pCursor!=0 );
4749 oc = pOp->opcode;
4750 eqOnly = 0;
4751 pC->nullRow = 0;
4752 #ifdef SQLITE_DEBUG
4753 pC->seekOp = pOp->opcode;
4754 #endif
4756 pC->deferredMoveto = 0;
4757 pC->cacheStatus = CACHE_STALE;
4758 if( pC->isTable ){
4759 u16 flags3, newType;
4760 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */
4761 assert( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ)==0
4762 || CORRUPT_DB );
4764 /* The input value in P3 might be of any type: integer, real, string,
4765 ** blob, or NULL. But it needs to be an integer before we can do
4766 ** the seek, so convert it. */
4767 pIn3 = &aMem[pOp->p3];
4768 flags3 = pIn3->flags;
4769 if( (flags3 & (MEM_Int|MEM_Real|MEM_IntReal|MEM_Str))==MEM_Str ){
4770 applyNumericAffinity(pIn3, 0);
4772 iKey = sqlite3VdbeIntValue(pIn3); /* Get the integer key value */
4773 newType = pIn3->flags; /* Record the type after applying numeric affinity */
4774 pIn3->flags = flags3; /* But convert the type back to its original */
4776 /* If the P3 value could not be converted into an integer without
4777 ** loss of information, then special processing is required... */
4778 if( (newType & (MEM_Int|MEM_IntReal))==0 ){
4779 int c;
4780 if( (newType & MEM_Real)==0 ){
4781 if( (newType & MEM_Null) || oc>=OP_SeekGE ){
4782 VdbeBranchTaken(1,2);
4783 goto jump_to_p2;
4784 }else{
4785 rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
4786 if( rc!=SQLITE_OK ) goto abort_due_to_error;
4787 goto seek_not_found;
4790 c = sqlite3IntFloatCompare(iKey, pIn3->u.r);
4792 /* If the approximation iKey is larger than the actual real search
4793 ** term, substitute >= for > and < for <=. e.g. if the search term
4794 ** is 4.9 and the integer approximation 5:
4796 ** (x > 4.9) -> (x >= 5)
4797 ** (x <= 4.9) -> (x < 5)
4799 if( c>0 ){
4800 assert( OP_SeekGE==(OP_SeekGT-1) );
4801 assert( OP_SeekLT==(OP_SeekLE-1) );
4802 assert( (OP_SeekLE & 0x0001)==(OP_SeekGT & 0x0001) );
4803 if( (oc & 0x0001)==(OP_SeekGT & 0x0001) ) oc--;
4806 /* If the approximation iKey is smaller than the actual real search
4807 ** term, substitute <= for < and > for >=. */
4808 else if( c<0 ){
4809 assert( OP_SeekLE==(OP_SeekLT+1) );
4810 assert( OP_SeekGT==(OP_SeekGE+1) );
4811 assert( (OP_SeekLT & 0x0001)==(OP_SeekGE & 0x0001) );
4812 if( (oc & 0x0001)==(OP_SeekLT & 0x0001) ) oc++;
4815 rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)iKey, 0, &res);
4816 pC->movetoTarget = iKey; /* Used by OP_Delete */
4817 if( rc!=SQLITE_OK ){
4818 goto abort_due_to_error;
4820 }else{
4821 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the
4822 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be
4823 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively,
4824 ** with the same key.
4826 if( sqlite3BtreeCursorHasHint(pC->uc.pCursor, BTREE_SEEK_EQ) ){
4827 eqOnly = 1;
4828 assert( pOp->opcode==OP_SeekGE || pOp->opcode==OP_SeekLE );
4829 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4830 assert( pOp->opcode==OP_SeekGE || pOp[1].opcode==OP_IdxLT );
4831 assert( pOp->opcode==OP_SeekLE || pOp[1].opcode==OP_IdxGT );
4832 assert( pOp[1].p1==pOp[0].p1 );
4833 assert( pOp[1].p2==pOp[0].p2 );
4834 assert( pOp[1].p3==pOp[0].p3 );
4835 assert( pOp[1].p4.i==pOp[0].p4.i );
4838 nField = pOp->p4.i;
4839 assert( pOp->p4type==P4_INT32 );
4840 assert( nField>0 );
4841 r.pKeyInfo = pC->pKeyInfo;
4842 r.nField = (u16)nField;
4844 /* The next line of code computes as follows, only faster:
4845 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
4846 ** r.default_rc = -1;
4847 ** }else{
4848 ** r.default_rc = +1;
4849 ** }
4851 r.default_rc = ((1 & (oc - OP_SeekLT)) ? -1 : +1);
4852 assert( oc!=OP_SeekGT || r.default_rc==-1 );
4853 assert( oc!=OP_SeekLE || r.default_rc==-1 );
4854 assert( oc!=OP_SeekGE || r.default_rc==+1 );
4855 assert( oc!=OP_SeekLT || r.default_rc==+1 );
4857 r.aMem = &aMem[pOp->p3];
4858 #ifdef SQLITE_DEBUG
4860 int i;
4861 for(i=0; i<r.nField; i++){
4862 assert( memIsValid(&r.aMem[i]) );
4863 if( i>0 ) REGISTER_TRACE(pOp->p3+i, &r.aMem[i]);
4866 #endif
4867 r.eqSeen = 0;
4868 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &res);
4869 if( rc!=SQLITE_OK ){
4870 goto abort_due_to_error;
4872 if( eqOnly && r.eqSeen==0 ){
4873 assert( res!=0 );
4874 goto seek_not_found;
4877 #ifdef SQLITE_TEST
4878 sqlite3_search_count++;
4879 #endif
4880 if( oc>=OP_SeekGE ){ assert( oc==OP_SeekGE || oc==OP_SeekGT );
4881 if( res<0 || (res==0 && oc==OP_SeekGT) ){
4882 res = 0;
4883 rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
4884 if( rc!=SQLITE_OK ){
4885 if( rc==SQLITE_DONE ){
4886 rc = SQLITE_OK;
4887 res = 1;
4888 }else{
4889 goto abort_due_to_error;
4892 }else{
4893 res = 0;
4895 }else{
4896 assert( oc==OP_SeekLT || oc==OP_SeekLE );
4897 if( res>0 || (res==0 && oc==OP_SeekLT) ){
4898 res = 0;
4899 rc = sqlite3BtreePrevious(pC->uc.pCursor, 0);
4900 if( rc!=SQLITE_OK ){
4901 if( rc==SQLITE_DONE ){
4902 rc = SQLITE_OK;
4903 res = 1;
4904 }else{
4905 goto abort_due_to_error;
4908 }else{
4909 /* res might be negative because the table is empty. Check to
4910 ** see if this is the case.
4912 res = sqlite3BtreeEof(pC->uc.pCursor);
4915 seek_not_found:
4916 assert( pOp->p2>0 );
4917 VdbeBranchTaken(res!=0,2);
4918 if( res ){
4919 goto jump_to_p2;
4920 }else if( eqOnly ){
4921 assert( pOp[1].opcode==OP_IdxLT || pOp[1].opcode==OP_IdxGT );
4922 pOp++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
4924 break;
4928 /* Opcode: SeekScan P1 P2 * * P5
4929 ** Synopsis: Scan-ahead up to P1 rows
4931 ** This opcode is a prefix opcode to OP_SeekGE. In other words, this
4932 ** opcode must be immediately followed by OP_SeekGE. This constraint is
4933 ** checked by assert() statements.
4935 ** This opcode uses the P1 through P4 operands of the subsequent
4936 ** OP_SeekGE. In the text that follows, the operands of the subsequent
4937 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only
4938 ** the P1, P2 and P5 operands of this opcode are also used, and are called
4939 ** This.P1, This.P2 and This.P5.
4941 ** This opcode helps to optimize IN operators on a multi-column index
4942 ** where the IN operator is on the later terms of the index by avoiding
4943 ** unnecessary seeks on the btree, substituting steps to the next row
4944 ** of the b-tree instead. A correct answer is obtained if this opcode
4945 ** is omitted or is a no-op.
4947 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which
4948 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing
4949 ** to. Call this SeekGE.P3/P4 row the "target".
4951 ** If the SeekGE.P1 cursor is not currently pointing to a valid row,
4952 ** then this opcode is a no-op and control passes through into the OP_SeekGE.
4954 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row
4955 ** might be the target row, or it might be near and slightly before the
4956 ** target row, or it might be after the target row. If the cursor is
4957 ** currently before the target row, then this opcode attempts to position
4958 ** the cursor on or after the target row by invoking sqlite3BtreeStep()
4959 ** on the cursor between 1 and This.P1 times.
4961 ** The This.P5 parameter is a flag that indicates what to do if the
4962 ** cursor ends up pointing at a valid row that is past the target
4963 ** row. If This.P5 is false (0) then a jump is made to SeekGE.P2. If
4964 ** This.P5 is true (non-zero) then a jump is made to This.P2. The P5==0
4965 ** case occurs when there are no inequality constraints to the right of
4966 ** the IN constraint. The jump to SeekGE.P2 ends the loop. The P5!=0 case
4967 ** occurs when there are inequality constraints to the right of the IN
4968 ** operator. In that case, the This.P2 will point either directly to or
4969 ** to setup code prior to the OP_IdxGT or OP_IdxGE opcode that checks for
4970 ** loop terminate.
4972 ** Possible outcomes from this opcode:<ol>
4974 ** <li> If the cursor is initially not pointed to any valid row, then
4975 ** fall through into the subsequent OP_SeekGE opcode.
4977 ** <li> If the cursor is left pointing to a row that is before the target
4978 ** row, even after making as many as This.P1 calls to
4979 ** sqlite3BtreeNext(), then also fall through into OP_SeekGE.
4981 ** <li> If the cursor is left pointing at the target row, either because it
4982 ** was at the target row to begin with or because one or more
4983 ** sqlite3BtreeNext() calls moved the cursor to the target row,
4984 ** then jump to This.P2..,
4986 ** <li> If the cursor started out before the target row and a call to
4987 ** to sqlite3BtreeNext() moved the cursor off the end of the index
4988 ** (indicating that the target row definitely does not exist in the
4989 ** btree) then jump to SeekGE.P2, ending the loop.
4991 ** <li> If the cursor ends up on a valid row that is past the target row
4992 ** (indicating that the target row does not exist in the btree) then
4993 ** jump to SeekOP.P2 if This.P5==0 or to This.P2 if This.P5>0.
4994 ** </ol>
4996 case OP_SeekScan: { /* ncycle */
4997 VdbeCursor *pC;
4998 int res;
4999 int nStep;
5000 UnpackedRecord r;
5002 assert( pOp[1].opcode==OP_SeekGE );
5004 /* If pOp->p5 is clear, then pOp->p2 points to the first instruction past the
5005 ** OP_IdxGT that follows the OP_SeekGE. Otherwise, it points to the first
5006 ** opcode past the OP_SeekGE itself. */
5007 assert( pOp->p2>=(int)(pOp-aOp)+2 );
5008 #ifdef SQLITE_DEBUG
5009 if( pOp->p5==0 ){
5010 /* There are no inequality constraints following the IN constraint. */
5011 assert( pOp[1].p1==aOp[pOp->p2-1].p1 );
5012 assert( pOp[1].p2==aOp[pOp->p2-1].p2 );
5013 assert( pOp[1].p3==aOp[pOp->p2-1].p3 );
5014 assert( aOp[pOp->p2-1].opcode==OP_IdxGT
5015 || aOp[pOp->p2-1].opcode==OP_IdxGE );
5016 testcase( aOp[pOp->p2-1].opcode==OP_IdxGE );
5017 }else{
5018 /* There are inequality constraints. */
5019 assert( pOp->p2==(int)(pOp-aOp)+2 );
5020 assert( aOp[pOp->p2-1].opcode==OP_SeekGE );
5022 #endif
5024 assert( pOp->p1>0 );
5025 pC = p->apCsr[pOp[1].p1];
5026 assert( pC!=0 );
5027 assert( pC->eCurType==CURTYPE_BTREE );
5028 assert( !pC->isTable );
5029 if( !sqlite3BtreeCursorIsValidNN(pC->uc.pCursor) ){
5030 #ifdef SQLITE_DEBUG
5031 if( db->flags&SQLITE_VdbeTrace ){
5032 printf("... cursor not valid - fall through\n");
5034 #endif
5035 break;
5037 nStep = pOp->p1;
5038 assert( nStep>=1 );
5039 r.pKeyInfo = pC->pKeyInfo;
5040 r.nField = (u16)pOp[1].p4.i;
5041 r.default_rc = 0;
5042 r.aMem = &aMem[pOp[1].p3];
5043 #ifdef SQLITE_DEBUG
5045 int i;
5046 for(i=0; i<r.nField; i++){
5047 assert( memIsValid(&r.aMem[i]) );
5048 REGISTER_TRACE(pOp[1].p3+i, &aMem[pOp[1].p3+i]);
5051 #endif
5052 res = 0; /* Not needed. Only used to silence a warning. */
5053 while(1){
5054 rc = sqlite3VdbeIdxKeyCompare(db, pC, &r, &res);
5055 if( rc ) goto abort_due_to_error;
5056 if( res>0 && pOp->p5==0 ){
5057 seekscan_search_fail:
5058 /* Jump to SeekGE.P2, ending the loop */
5059 #ifdef SQLITE_DEBUG
5060 if( db->flags&SQLITE_VdbeTrace ){
5061 printf("... %d steps and then skip\n", pOp->p1 - nStep);
5063 #endif
5064 VdbeBranchTaken(1,3);
5065 pOp++;
5066 goto jump_to_p2;
5068 if( res>=0 ){
5069 /* Jump to This.P2, bypassing the OP_SeekGE opcode */
5070 #ifdef SQLITE_DEBUG
5071 if( db->flags&SQLITE_VdbeTrace ){
5072 printf("... %d steps and then success\n", pOp->p1 - nStep);
5074 #endif
5075 VdbeBranchTaken(2,3);
5076 goto jump_to_p2;
5077 break;
5079 if( nStep<=0 ){
5080 #ifdef SQLITE_DEBUG
5081 if( db->flags&SQLITE_VdbeTrace ){
5082 printf("... fall through after %d steps\n", pOp->p1);
5084 #endif
5085 VdbeBranchTaken(0,3);
5086 break;
5088 nStep--;
5089 pC->cacheStatus = CACHE_STALE;
5090 rc = sqlite3BtreeNext(pC->uc.pCursor, 0);
5091 if( rc ){
5092 if( rc==SQLITE_DONE ){
5093 rc = SQLITE_OK;
5094 goto seekscan_search_fail;
5095 }else{
5096 goto abort_due_to_error;
5101 break;
5105 /* Opcode: SeekHit P1 P2 P3 * *
5106 ** Synopsis: set P2<=seekHit<=P3
5108 ** Increase or decrease the seekHit value for cursor P1, if necessary,
5109 ** so that it is no less than P2 and no greater than P3.
5111 ** The seekHit integer represents the maximum of terms in an index for which
5112 ** there is known to be at least one match. If the seekHit value is smaller
5113 ** than the total number of equality terms in an index lookup, then the
5114 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned
5115 ** early, thus saving work. This is part of the IN-early-out optimization.
5117 ** P1 must be a valid b-tree cursor.
5119 case OP_SeekHit: { /* ncycle */
5120 VdbeCursor *pC;
5121 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5122 pC = p->apCsr[pOp->p1];
5123 assert( pC!=0 );
5124 assert( pOp->p3>=pOp->p2 );
5125 if( pC->seekHit<pOp->p2 ){
5126 #ifdef SQLITE_DEBUG
5127 if( db->flags&SQLITE_VdbeTrace ){
5128 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p2);
5130 #endif
5131 pC->seekHit = pOp->p2;
5132 }else if( pC->seekHit>pOp->p3 ){
5133 #ifdef SQLITE_DEBUG
5134 if( db->flags&SQLITE_VdbeTrace ){
5135 printf("seekHit changes from %d to %d\n", pC->seekHit, pOp->p3);
5137 #endif
5138 pC->seekHit = pOp->p3;
5140 break;
5143 /* Opcode: IfNotOpen P1 P2 * * *
5144 ** Synopsis: if( !csr[P1] ) goto P2
5146 ** If cursor P1 is not open or if P1 is set to a NULL row using the
5147 ** OP_NullRow opcode, then jump to instruction P2. Otherwise, fall through.
5149 case OP_IfNotOpen: { /* jump */
5150 VdbeCursor *pCur;
5152 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5153 pCur = p->apCsr[pOp->p1];
5154 VdbeBranchTaken(pCur==0 || pCur->nullRow, 2);
5155 if( pCur==0 || pCur->nullRow ){
5156 goto jump_to_p2_and_check_for_interrupt;
5158 break;
5161 /* Opcode: Found P1 P2 P3 P4 *
5162 ** Synopsis: key=r[P3@P4]
5164 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
5165 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5166 ** record.
5168 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
5169 ** is a prefix of any entry in P1 then a jump is made to P2 and
5170 ** P1 is left pointing at the matching entry.
5172 ** This operation leaves the cursor in a state where it can be
5173 ** advanced in the forward direction. The Next instruction will work,
5174 ** but not the Prev instruction.
5176 ** See also: NotFound, NoConflict, NotExists. SeekGe
5178 /* Opcode: NotFound P1 P2 P3 P4 *
5179 ** Synopsis: key=r[P3@P4]
5181 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
5182 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5183 ** record.
5185 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
5186 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1
5187 ** does contain an entry whose prefix matches the P3/P4 record then control
5188 ** falls through to the next instruction and P1 is left pointing at the
5189 ** matching entry.
5191 ** This operation leaves the cursor in a state where it cannot be
5192 ** advanced in either direction. In other words, the Next and Prev
5193 ** opcodes do not work after this operation.
5195 ** See also: Found, NotExists, NoConflict, IfNoHope
5197 /* Opcode: IfNoHope P1 P2 P3 P4 *
5198 ** Synopsis: key=r[P3@P4]
5200 ** Register P3 is the first of P4 registers that form an unpacked
5201 ** record. Cursor P1 is an index btree. P2 is a jump destination.
5202 ** In other words, the operands to this opcode are the same as the
5203 ** operands to OP_NotFound and OP_IdxGT.
5205 ** This opcode is an optimization attempt only. If this opcode always
5206 ** falls through, the correct answer is still obtained, but extra work
5207 ** is performed.
5209 ** A value of N in the seekHit flag of cursor P1 means that there exists
5210 ** a key P3:N that will match some record in the index. We want to know
5211 ** if it is possible for a record P3:P4 to match some record in the
5212 ** index. If it is not possible, we can skip some work. So if seekHit
5213 ** is less than P4, attempt to find out if a match is possible by running
5214 ** OP_NotFound.
5216 ** This opcode is used in IN clause processing for a multi-column key.
5217 ** If an IN clause is attached to an element of the key other than the
5218 ** left-most element, and if there are no matches on the most recent
5219 ** seek over the whole key, then it might be that one of the key element
5220 ** to the left is prohibiting a match, and hence there is "no hope" of
5221 ** any match regardless of how many IN clause elements are checked.
5222 ** In such a case, we abandon the IN clause search early, using this
5223 ** opcode. The opcode name comes from the fact that the
5224 ** jump is taken if there is "no hope" of achieving a match.
5226 ** See also: NotFound, SeekHit
5228 /* Opcode: NoConflict P1 P2 P3 P4 *
5229 ** Synopsis: key=r[P3@P4]
5231 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
5232 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5233 ** record.
5235 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
5236 ** contains any NULL value, jump immediately to P2. If all terms of the
5237 ** record are not-NULL then a check is done to determine if any row in the
5238 ** P1 index btree has a matching key prefix. If there are no matches, jump
5239 ** immediately to P2. If there is a match, fall through and leave the P1
5240 ** cursor pointing to the matching row.
5242 ** This opcode is similar to OP_NotFound with the exceptions that the
5243 ** branch is always taken if any part of the search key input is NULL.
5245 ** This operation leaves the cursor in a state where it cannot be
5246 ** advanced in either direction. In other words, the Next and Prev
5247 ** opcodes do not work after this operation.
5249 ** See also: NotFound, Found, NotExists
5251 case OP_IfNoHope: { /* jump, in3, ncycle */
5252 VdbeCursor *pC;
5253 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5254 pC = p->apCsr[pOp->p1];
5255 assert( pC!=0 );
5256 #ifdef SQLITE_DEBUG
5257 if( db->flags&SQLITE_VdbeTrace ){
5258 printf("seekHit is %d\n", pC->seekHit);
5260 #endif
5261 if( pC->seekHit>=pOp->p4.i ) break;
5262 /* Fall through into OP_NotFound */
5263 /* no break */ deliberate_fall_through
5265 case OP_NoConflict: /* jump, in3, ncycle */
5266 case OP_NotFound: /* jump, in3, ncycle */
5267 case OP_Found: { /* jump, in3, ncycle */
5268 int alreadyExists;
5269 int ii;
5270 VdbeCursor *pC;
5271 UnpackedRecord *pIdxKey;
5272 UnpackedRecord r;
5274 #ifdef SQLITE_TEST
5275 if( pOp->opcode!=OP_NoConflict ) sqlite3_found_count++;
5276 #endif
5278 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5279 assert( pOp->p4type==P4_INT32 );
5280 pC = p->apCsr[pOp->p1];
5281 assert( pC!=0 );
5282 #ifdef SQLITE_DEBUG
5283 pC->seekOp = pOp->opcode;
5284 #endif
5285 r.aMem = &aMem[pOp->p3];
5286 assert( pC->eCurType==CURTYPE_BTREE );
5287 assert( pC->uc.pCursor!=0 );
5288 assert( pC->isTable==0 );
5289 r.nField = (u16)pOp->p4.i;
5290 if( r.nField>0 ){
5291 /* Key values in an array of registers */
5292 r.pKeyInfo = pC->pKeyInfo;
5293 r.default_rc = 0;
5294 #ifdef SQLITE_DEBUG
5295 for(ii=0; ii<r.nField; ii++){
5296 assert( memIsValid(&r.aMem[ii]) );
5297 assert( (r.aMem[ii].flags & MEM_Zero)==0 || r.aMem[ii].n==0 );
5298 if( ii ) REGISTER_TRACE(pOp->p3+ii, &r.aMem[ii]);
5300 #endif
5301 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, &r, &pC->seekResult);
5302 }else{
5303 /* Composite key generated by OP_MakeRecord */
5304 assert( r.aMem->flags & MEM_Blob );
5305 assert( pOp->opcode!=OP_NoConflict );
5306 rc = ExpandBlob(r.aMem);
5307 assert( rc==SQLITE_OK || rc==SQLITE_NOMEM );
5308 if( rc ) goto no_mem;
5309 pIdxKey = sqlite3VdbeAllocUnpackedRecord(pC->pKeyInfo);
5310 if( pIdxKey==0 ) goto no_mem;
5311 sqlite3VdbeRecordUnpack(pC->pKeyInfo, r.aMem->n, r.aMem->z, pIdxKey);
5312 pIdxKey->default_rc = 0;
5313 rc = sqlite3BtreeIndexMoveto(pC->uc.pCursor, pIdxKey, &pC->seekResult);
5314 sqlite3DbFreeNN(db, pIdxKey);
5316 if( rc!=SQLITE_OK ){
5317 goto abort_due_to_error;
5319 alreadyExists = (pC->seekResult==0);
5320 pC->nullRow = 1-alreadyExists;
5321 pC->deferredMoveto = 0;
5322 pC->cacheStatus = CACHE_STALE;
5323 if( pOp->opcode==OP_Found ){
5324 VdbeBranchTaken(alreadyExists!=0,2);
5325 if( alreadyExists ) goto jump_to_p2;
5326 }else{
5327 if( !alreadyExists ){
5328 VdbeBranchTaken(1,2);
5329 goto jump_to_p2;
5331 if( pOp->opcode==OP_NoConflict ){
5332 /* For the OP_NoConflict opcode, take the jump if any of the
5333 ** input fields are NULL, since any key with a NULL will not
5334 ** conflict */
5335 for(ii=0; ii<r.nField; ii++){
5336 if( r.aMem[ii].flags & MEM_Null ){
5337 VdbeBranchTaken(1,2);
5338 goto jump_to_p2;
5342 VdbeBranchTaken(0,2);
5343 if( pOp->opcode==OP_IfNoHope ){
5344 pC->seekHit = pOp->p4.i;
5347 break;
5350 /* Opcode: SeekRowid P1 P2 P3 * *
5351 ** Synopsis: intkey=r[P3]
5353 ** P1 is the index of a cursor open on an SQL table btree (with integer
5354 ** keys). If register P3 does not contain an integer or if P1 does not
5355 ** contain a record with rowid P3 then jump immediately to P2.
5356 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
5357 ** a record with rowid P3 then
5358 ** leave the cursor pointing at that record and fall through to the next
5359 ** instruction.
5361 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
5362 ** the P3 register must be guaranteed to contain an integer value. With this
5363 ** opcode, register P3 might not contain an integer.
5365 ** The OP_NotFound opcode performs the same operation on index btrees
5366 ** (with arbitrary multi-value keys).
5368 ** This opcode leaves the cursor in a state where it cannot be advanced
5369 ** in either direction. In other words, the Next and Prev opcodes will
5370 ** not work following this opcode.
5372 ** See also: Found, NotFound, NoConflict, SeekRowid
5374 /* Opcode: NotExists P1 P2 P3 * *
5375 ** Synopsis: intkey=r[P3]
5377 ** P1 is the index of a cursor open on an SQL table btree (with integer
5378 ** keys). P3 is an integer rowid. If P1 does not contain a record with
5379 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
5380 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
5381 ** leave the cursor pointing at that record and fall through to the next
5382 ** instruction.
5384 ** The OP_SeekRowid opcode performs the same operation but also allows the
5385 ** P3 register to contain a non-integer value, in which case the jump is
5386 ** always taken. This opcode requires that P3 always contain an integer.
5388 ** The OP_NotFound opcode performs the same operation on index btrees
5389 ** (with arbitrary multi-value keys).
5391 ** This opcode leaves the cursor in a state where it cannot be advanced
5392 ** in either direction. In other words, the Next and Prev opcodes will
5393 ** not work following this opcode.
5395 ** See also: Found, NotFound, NoConflict, SeekRowid
5397 case OP_SeekRowid: { /* jump, in3, ncycle */
5398 VdbeCursor *pC;
5399 BtCursor *pCrsr;
5400 int res;
5401 u64 iKey;
5403 pIn3 = &aMem[pOp->p3];
5404 testcase( pIn3->flags & MEM_Int );
5405 testcase( pIn3->flags & MEM_IntReal );
5406 testcase( pIn3->flags & MEM_Real );
5407 testcase( (pIn3->flags & (MEM_Str|MEM_Int))==MEM_Str );
5408 if( (pIn3->flags & (MEM_Int|MEM_IntReal))==0 ){
5409 /* If pIn3->u.i does not contain an integer, compute iKey as the
5410 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted
5411 ** into an integer without loss of information. Take care to avoid
5412 ** changing the datatype of pIn3, however, as it is used by other
5413 ** parts of the prepared statement. */
5414 Mem x = pIn3[0];
5415 applyAffinity(&x, SQLITE_AFF_NUMERIC, encoding);
5416 if( (x.flags & MEM_Int)==0 ) goto jump_to_p2;
5417 iKey = x.u.i;
5418 goto notExistsWithKey;
5420 /* Fall through into OP_NotExists */
5421 /* no break */ deliberate_fall_through
5422 case OP_NotExists: /* jump, in3, ncycle */
5423 pIn3 = &aMem[pOp->p3];
5424 assert( (pIn3->flags & MEM_Int)!=0 || pOp->opcode==OP_SeekRowid );
5425 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5426 iKey = pIn3->u.i;
5427 notExistsWithKey:
5428 pC = p->apCsr[pOp->p1];
5429 assert( pC!=0 );
5430 #ifdef SQLITE_DEBUG
5431 if( pOp->opcode==OP_SeekRowid ) pC->seekOp = OP_SeekRowid;
5432 #endif
5433 assert( pC->isTable );
5434 assert( pC->eCurType==CURTYPE_BTREE );
5435 pCrsr = pC->uc.pCursor;
5436 assert( pCrsr!=0 );
5437 res = 0;
5438 rc = sqlite3BtreeTableMoveto(pCrsr, iKey, 0, &res);
5439 assert( rc==SQLITE_OK || res==0 );
5440 pC->movetoTarget = iKey; /* Used by OP_Delete */
5441 pC->nullRow = 0;
5442 pC->cacheStatus = CACHE_STALE;
5443 pC->deferredMoveto = 0;
5444 VdbeBranchTaken(res!=0,2);
5445 pC->seekResult = res;
5446 if( res!=0 ){
5447 assert( rc==SQLITE_OK );
5448 if( pOp->p2==0 ){
5449 rc = SQLITE_CORRUPT_BKPT;
5450 }else{
5451 goto jump_to_p2;
5454 if( rc ) goto abort_due_to_error;
5455 break;
5458 /* Opcode: Sequence P1 P2 * * *
5459 ** Synopsis: r[P2]=cursor[P1].ctr++
5461 ** Find the next available sequence number for cursor P1.
5462 ** Write the sequence number into register P2.
5463 ** The sequence number on the cursor is incremented after this
5464 ** instruction.
5466 case OP_Sequence: { /* out2 */
5467 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5468 assert( p->apCsr[pOp->p1]!=0 );
5469 assert( p->apCsr[pOp->p1]->eCurType!=CURTYPE_VTAB );
5470 pOut = out2Prerelease(p, pOp);
5471 pOut->u.i = p->apCsr[pOp->p1]->seqCount++;
5472 break;
5476 /* Opcode: NewRowid P1 P2 P3 * *
5477 ** Synopsis: r[P2]=rowid
5479 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
5480 ** The record number is not previously used as a key in the database
5481 ** table that cursor P1 points to. The new record number is written
5482 ** written to register P2.
5484 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
5485 ** the largest previously generated record number. No new record numbers are
5486 ** allowed to be less than this value. When this value reaches its maximum,
5487 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
5488 ** generated record number. This P3 mechanism is used to help implement the
5489 ** AUTOINCREMENT feature.
5491 case OP_NewRowid: { /* out2 */
5492 i64 v; /* The new rowid */
5493 VdbeCursor *pC; /* Cursor of table to get the new rowid */
5494 int res; /* Result of an sqlite3BtreeLast() */
5495 int cnt; /* Counter to limit the number of searches */
5496 #ifndef SQLITE_OMIT_AUTOINCREMENT
5497 Mem *pMem; /* Register holding largest rowid for AUTOINCREMENT */
5498 VdbeFrame *pFrame; /* Root frame of VDBE */
5499 #endif
5501 v = 0;
5502 res = 0;
5503 pOut = out2Prerelease(p, pOp);
5504 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5505 pC = p->apCsr[pOp->p1];
5506 assert( pC!=0 );
5507 assert( pC->isTable );
5508 assert( pC->eCurType==CURTYPE_BTREE );
5509 assert( pC->uc.pCursor!=0 );
5511 /* The next rowid or record number (different terms for the same
5512 ** thing) is obtained in a two-step algorithm.
5514 ** First we attempt to find the largest existing rowid and add one
5515 ** to that. But if the largest existing rowid is already the maximum
5516 ** positive integer, we have to fall through to the second
5517 ** probabilistic algorithm
5519 ** The second algorithm is to select a rowid at random and see if
5520 ** it already exists in the table. If it does not exist, we have
5521 ** succeeded. If the random rowid does exist, we select a new one
5522 ** and try again, up to 100 times.
5524 assert( pC->isTable );
5526 #ifdef SQLITE_32BIT_ROWID
5527 # define MAX_ROWID 0x7fffffff
5528 #else
5529 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
5530 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
5531 ** to provide the constant while making all compilers happy.
5533 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
5534 #endif
5536 if( !pC->useRandomRowid ){
5537 rc = sqlite3BtreeLast(pC->uc.pCursor, &res);
5538 if( rc!=SQLITE_OK ){
5539 goto abort_due_to_error;
5541 if( res ){
5542 v = 1; /* IMP: R-61914-48074 */
5543 }else{
5544 assert( sqlite3BtreeCursorIsValid(pC->uc.pCursor) );
5545 v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5546 if( v>=MAX_ROWID ){
5547 pC->useRandomRowid = 1;
5548 }else{
5549 v++; /* IMP: R-29538-34987 */
5554 #ifndef SQLITE_OMIT_AUTOINCREMENT
5555 if( pOp->p3 ){
5556 /* Assert that P3 is a valid memory cell. */
5557 assert( pOp->p3>0 );
5558 if( p->pFrame ){
5559 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
5560 /* Assert that P3 is a valid memory cell. */
5561 assert( pOp->p3<=pFrame->nMem );
5562 pMem = &pFrame->aMem[pOp->p3];
5563 }else{
5564 /* Assert that P3 is a valid memory cell. */
5565 assert( pOp->p3<=(p->nMem+1 - p->nCursor) );
5566 pMem = &aMem[pOp->p3];
5567 memAboutToChange(p, pMem);
5569 assert( memIsValid(pMem) );
5571 REGISTER_TRACE(pOp->p3, pMem);
5572 sqlite3VdbeMemIntegerify(pMem);
5573 assert( (pMem->flags & MEM_Int)!=0 ); /* mem(P3) holds an integer */
5574 if( pMem->u.i==MAX_ROWID || pC->useRandomRowid ){
5575 rc = SQLITE_FULL; /* IMP: R-17817-00630 */
5576 goto abort_due_to_error;
5578 if( v<pMem->u.i+1 ){
5579 v = pMem->u.i + 1;
5581 pMem->u.i = v;
5583 #endif
5584 if( pC->useRandomRowid ){
5585 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
5586 ** largest possible integer (9223372036854775807) then the database
5587 ** engine starts picking positive candidate ROWIDs at random until
5588 ** it finds one that is not previously used. */
5589 assert( pOp->p3==0 ); /* We cannot be in random rowid mode if this is
5590 ** an AUTOINCREMENT table. */
5591 cnt = 0;
5593 sqlite3_randomness(sizeof(v), &v);
5594 v &= (MAX_ROWID>>1); v++; /* Ensure that v is greater than zero */
5595 }while( ((rc = sqlite3BtreeTableMoveto(pC->uc.pCursor, (u64)v,
5596 0, &res))==SQLITE_OK)
5597 && (res==0)
5598 && (++cnt<100));
5599 if( rc ) goto abort_due_to_error;
5600 if( res==0 ){
5601 rc = SQLITE_FULL; /* IMP: R-38219-53002 */
5602 goto abort_due_to_error;
5604 assert( v>0 ); /* EV: R-40812-03570 */
5606 pC->deferredMoveto = 0;
5607 pC->cacheStatus = CACHE_STALE;
5609 pOut->u.i = v;
5610 break;
5613 /* Opcode: Insert P1 P2 P3 P4 P5
5614 ** Synopsis: intkey=r[P3] data=r[P2]
5616 ** Write an entry into the table of cursor P1. A new entry is
5617 ** created if it doesn't already exist or the data for an existing
5618 ** entry is overwritten. The data is the value MEM_Blob stored in register
5619 ** number P2. The key is stored in register P3. The key must
5620 ** be a MEM_Int.
5622 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
5623 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
5624 ** then rowid is stored for subsequent return by the
5625 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
5627 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5628 ** run faster by avoiding an unnecessary seek on cursor P1. However,
5629 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5630 ** seeks on the cursor or if the most recent seek used a key equal to P3.
5632 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
5633 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode
5634 ** is part of an INSERT operation. The difference is only important to
5635 ** the update hook.
5637 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
5638 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
5639 ** following a successful insert.
5641 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
5642 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
5643 ** and register P2 becomes ephemeral. If the cursor is changed, the
5644 ** value of register P2 will then change. Make sure this does not
5645 ** cause any problems.)
5647 ** This instruction only works on tables. The equivalent instruction
5648 ** for indices is OP_IdxInsert.
5650 case OP_Insert: {
5651 Mem *pData; /* MEM cell holding data for the record to be inserted */
5652 Mem *pKey; /* MEM cell holding key for the record */
5653 VdbeCursor *pC; /* Cursor to table into which insert is written */
5654 int seekResult; /* Result of prior seek or 0 if no USESEEKRESULT flag */
5655 const char *zDb; /* database name - used by the update hook */
5656 Table *pTab; /* Table structure - used by update and pre-update hooks */
5657 BtreePayload x; /* Payload to be inserted */
5659 pData = &aMem[pOp->p2];
5660 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5661 assert( memIsValid(pData) );
5662 pC = p->apCsr[pOp->p1];
5663 assert( pC!=0 );
5664 assert( pC->eCurType==CURTYPE_BTREE );
5665 assert( pC->deferredMoveto==0 );
5666 assert( pC->uc.pCursor!=0 );
5667 assert( (pOp->p5 & OPFLAG_ISNOOP) || pC->isTable );
5668 assert( pOp->p4type==P4_TABLE || pOp->p4type>=P4_STATIC );
5669 REGISTER_TRACE(pOp->p2, pData);
5670 sqlite3VdbeIncrWriteCounter(p, pC);
5672 pKey = &aMem[pOp->p3];
5673 assert( pKey->flags & MEM_Int );
5674 assert( memIsValid(pKey) );
5675 REGISTER_TRACE(pOp->p3, pKey);
5676 x.nKey = pKey->u.i;
5678 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
5679 assert( pC->iDb>=0 );
5680 zDb = db->aDb[pC->iDb].zDbSName;
5681 pTab = pOp->p4.pTab;
5682 assert( (pOp->p5 & OPFLAG_ISNOOP) || HasRowid(pTab) );
5683 }else{
5684 pTab = 0;
5685 zDb = 0;
5688 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5689 /* Invoke the pre-update hook, if any */
5690 if( pTab ){
5691 if( db->xPreUpdateCallback && !(pOp->p5 & OPFLAG_ISUPDATE) ){
5692 sqlite3VdbePreUpdateHook(p,pC,SQLITE_INSERT,zDb,pTab,x.nKey,pOp->p2,-1);
5694 if( db->xUpdateCallback==0 || pTab->aCol==0 ){
5695 /* Prevent post-update hook from running in cases when it should not */
5696 pTab = 0;
5699 if( pOp->p5 & OPFLAG_ISNOOP ) break;
5700 #endif
5702 assert( (pOp->p5 & OPFLAG_LASTROWID)==0 || (pOp->p5 & OPFLAG_NCHANGE)!=0 );
5703 if( pOp->p5 & OPFLAG_NCHANGE ){
5704 p->nChange++;
5705 if( pOp->p5 & OPFLAG_LASTROWID ) db->lastRowid = x.nKey;
5707 assert( (pData->flags & (MEM_Blob|MEM_Str))!=0 || pData->n==0 );
5708 x.pData = pData->z;
5709 x.nData = pData->n;
5710 seekResult = ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0);
5711 if( pData->flags & MEM_Zero ){
5712 x.nZero = pData->u.nZero;
5713 }else{
5714 x.nZero = 0;
5716 x.pKey = 0;
5717 assert( BTREE_PREFORMAT==OPFLAG_PREFORMAT );
5718 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
5719 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
5720 seekResult
5722 pC->deferredMoveto = 0;
5723 pC->cacheStatus = CACHE_STALE;
5724 colCacheCtr++;
5726 /* Invoke the update-hook if required. */
5727 if( rc ) goto abort_due_to_error;
5728 if( pTab ){
5729 assert( db->xUpdateCallback!=0 );
5730 assert( pTab->aCol!=0 );
5731 db->xUpdateCallback(db->pUpdateArg,
5732 (pOp->p5 & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_INSERT,
5733 zDb, pTab->zName, x.nKey);
5735 break;
5738 /* Opcode: RowCell P1 P2 P3 * *
5740 ** P1 and P2 are both open cursors. Both must be opened on the same type
5741 ** of table - intkey or index. This opcode is used as part of copying
5742 ** the current row from P2 into P1. If the cursors are opened on intkey
5743 ** tables, register P3 contains the rowid to use with the new record in
5744 ** P1. If they are opened on index tables, P3 is not used.
5746 ** This opcode must be followed by either an Insert or InsertIdx opcode
5747 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation.
5749 case OP_RowCell: {
5750 VdbeCursor *pDest; /* Cursor to write to */
5751 VdbeCursor *pSrc; /* Cursor to read from */
5752 i64 iKey; /* Rowid value to insert with */
5753 assert( pOp[1].opcode==OP_Insert || pOp[1].opcode==OP_IdxInsert );
5754 assert( pOp[1].opcode==OP_Insert || pOp->p3==0 );
5755 assert( pOp[1].opcode==OP_IdxInsert || pOp->p3>0 );
5756 assert( pOp[1].p5 & OPFLAG_PREFORMAT );
5757 pDest = p->apCsr[pOp->p1];
5758 pSrc = p->apCsr[pOp->p2];
5759 iKey = pOp->p3 ? aMem[pOp->p3].u.i : 0;
5760 rc = sqlite3BtreeTransferRow(pDest->uc.pCursor, pSrc->uc.pCursor, iKey);
5761 if( rc!=SQLITE_OK ) goto abort_due_to_error;
5762 break;
5765 /* Opcode: Delete P1 P2 P3 P4 P5
5767 ** Delete the record at which the P1 cursor is currently pointing.
5769 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
5770 ** the cursor will be left pointing at either the next or the previous
5771 ** record in the table. If it is left pointing at the next record, then
5772 ** the next Next instruction will be a no-op. As a result, in this case
5773 ** it is ok to delete a record from within a Next loop. If
5774 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
5775 ** left in an undefined state.
5777 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
5778 ** delete is one of several associated with deleting a table row and
5779 ** all its associated index entries. Exactly one of those deletes is
5780 ** the "primary" delete. The others are all on OPFLAG_FORDELETE
5781 ** cursors or else are marked with the AUXDELETE flag.
5783 ** If the OPFLAG_NCHANGE (0x01) flag of P2 (NB: P2 not P5) is set, then
5784 ** the row change count is incremented (otherwise not).
5786 ** If the OPFLAG_ISNOOP (0x40) flag of P2 (not P5!) is set, then the
5787 ** pre-update-hook for deletes is run, but the btree is otherwise unchanged.
5788 ** This happens when the OP_Delete is to be shortly followed by an OP_Insert
5789 ** with the same key, causing the btree entry to be overwritten.
5791 ** P1 must not be pseudo-table. It has to be a real table with
5792 ** multiple rows.
5794 ** If P4 is not NULL then it points to a Table object. In this case either
5795 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
5796 ** have been positioned using OP_NotFound prior to invoking this opcode in
5797 ** this case. Specifically, if one is configured, the pre-update hook is
5798 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
5799 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
5801 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
5802 ** of the memory cell that contains the value that the rowid of the row will
5803 ** be set to by the update.
5805 case OP_Delete: {
5806 VdbeCursor *pC;
5807 const char *zDb;
5808 Table *pTab;
5809 int opflags;
5811 opflags = pOp->p2;
5812 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5813 pC = p->apCsr[pOp->p1];
5814 assert( pC!=0 );
5815 assert( pC->eCurType==CURTYPE_BTREE );
5816 assert( pC->uc.pCursor!=0 );
5817 assert( pC->deferredMoveto==0 );
5818 sqlite3VdbeIncrWriteCounter(p, pC);
5820 #ifdef SQLITE_DEBUG
5821 if( pOp->p4type==P4_TABLE
5822 && HasRowid(pOp->p4.pTab)
5823 && pOp->p5==0
5824 && sqlite3BtreeCursorIsValidNN(pC->uc.pCursor)
5826 /* If p5 is zero, the seek operation that positioned the cursor prior to
5827 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
5828 ** the row that is being deleted */
5829 i64 iKey = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5830 assert( CORRUPT_DB || pC->movetoTarget==iKey );
5832 #endif
5834 /* If the update-hook or pre-update-hook will be invoked, set zDb to
5835 ** the name of the db to pass as to it. Also set local pTab to a copy
5836 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
5837 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
5838 ** VdbeCursor.movetoTarget to the current rowid. */
5839 if( pOp->p4type==P4_TABLE && HAS_UPDATE_HOOK(db) ){
5840 assert( pC->iDb>=0 );
5841 assert( pOp->p4.pTab!=0 );
5842 zDb = db->aDb[pC->iDb].zDbSName;
5843 pTab = pOp->p4.pTab;
5844 if( (pOp->p5 & OPFLAG_SAVEPOSITION)!=0 && pC->isTable ){
5845 pC->movetoTarget = sqlite3BtreeIntegerKey(pC->uc.pCursor);
5847 }else{
5848 zDb = 0;
5849 pTab = 0;
5852 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5853 /* Invoke the pre-update-hook if required. */
5854 assert( db->xPreUpdateCallback==0 || pTab==pOp->p4.pTab );
5855 if( db->xPreUpdateCallback && pTab ){
5856 assert( !(opflags & OPFLAG_ISUPDATE)
5857 || HasRowid(pTab)==0
5858 || (aMem[pOp->p3].flags & MEM_Int)
5860 sqlite3VdbePreUpdateHook(p, pC,
5861 (opflags & OPFLAG_ISUPDATE) ? SQLITE_UPDATE : SQLITE_DELETE,
5862 zDb, pTab, pC->movetoTarget,
5863 pOp->p3, -1
5866 if( opflags & OPFLAG_ISNOOP ) break;
5867 #endif
5869 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
5870 assert( (pOp->p5 & ~(OPFLAG_SAVEPOSITION|OPFLAG_AUXDELETE))==0 );
5871 assert( OPFLAG_SAVEPOSITION==BTREE_SAVEPOSITION );
5872 assert( OPFLAG_AUXDELETE==BTREE_AUXDELETE );
5874 #ifdef SQLITE_DEBUG
5875 if( p->pFrame==0 ){
5876 if( pC->isEphemeral==0
5877 && (pOp->p5 & OPFLAG_AUXDELETE)==0
5878 && (pC->wrFlag & OPFLAG_FORDELETE)==0
5880 nExtraDelete++;
5882 if( pOp->p2 & OPFLAG_NCHANGE ){
5883 nExtraDelete--;
5886 #endif
5888 rc = sqlite3BtreeDelete(pC->uc.pCursor, pOp->p5);
5889 pC->cacheStatus = CACHE_STALE;
5890 colCacheCtr++;
5891 pC->seekResult = 0;
5892 if( rc ) goto abort_due_to_error;
5894 /* Invoke the update-hook if required. */
5895 if( opflags & OPFLAG_NCHANGE ){
5896 p->nChange++;
5897 if( db->xUpdateCallback && ALWAYS(pTab!=0) && HasRowid(pTab) ){
5898 db->xUpdateCallback(db->pUpdateArg, SQLITE_DELETE, zDb, pTab->zName,
5899 pC->movetoTarget);
5900 assert( pC->iDb>=0 );
5904 break;
5906 /* Opcode: ResetCount * * * * *
5908 ** The value of the change counter is copied to the database handle
5909 ** change counter (returned by subsequent calls to sqlite3_changes()).
5910 ** Then the VMs internal change counter resets to 0.
5911 ** This is used by trigger programs.
5913 case OP_ResetCount: {
5914 sqlite3VdbeSetChanges(db, p->nChange);
5915 p->nChange = 0;
5916 break;
5919 /* Opcode: SorterCompare P1 P2 P3 P4
5920 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
5922 ** P1 is a sorter cursor. This instruction compares a prefix of the
5923 ** record blob in register P3 against a prefix of the entry that
5924 ** the sorter cursor currently points to. Only the first P4 fields
5925 ** of r[P3] and the sorter record are compared.
5927 ** If either P3 or the sorter contains a NULL in one of their significant
5928 ** fields (not counting the P4 fields at the end which are ignored) then
5929 ** the comparison is assumed to be equal.
5931 ** Fall through to next instruction if the two records compare equal to
5932 ** each other. Jump to P2 if they are different.
5934 case OP_SorterCompare: {
5935 VdbeCursor *pC;
5936 int res;
5937 int nKeyCol;
5939 pC = p->apCsr[pOp->p1];
5940 assert( isSorter(pC) );
5941 assert( pOp->p4type==P4_INT32 );
5942 pIn3 = &aMem[pOp->p3];
5943 nKeyCol = pOp->p4.i;
5944 res = 0;
5945 rc = sqlite3VdbeSorterCompare(pC, pIn3, nKeyCol, &res);
5946 VdbeBranchTaken(res!=0,2);
5947 if( rc ) goto abort_due_to_error;
5948 if( res ) goto jump_to_p2;
5949 break;
5952 /* Opcode: SorterData P1 P2 P3 * *
5953 ** Synopsis: r[P2]=data
5955 ** Write into register P2 the current sorter data for sorter cursor P1.
5956 ** Then clear the column header cache on cursor P3.
5958 ** This opcode is normally used to move a record out of the sorter and into
5959 ** a register that is the source for a pseudo-table cursor created using
5960 ** OpenPseudo. That pseudo-table cursor is the one that is identified by
5961 ** parameter P3. Clearing the P3 column cache as part of this opcode saves
5962 ** us from having to issue a separate NullRow instruction to clear that cache.
5964 case OP_SorterData: { /* ncycle */
5965 VdbeCursor *pC;
5967 pOut = &aMem[pOp->p2];
5968 pC = p->apCsr[pOp->p1];
5969 assert( isSorter(pC) );
5970 rc = sqlite3VdbeSorterRowkey(pC, pOut);
5971 assert( rc!=SQLITE_OK || (pOut->flags & MEM_Blob) );
5972 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
5973 if( rc ) goto abort_due_to_error;
5974 p->apCsr[pOp->p3]->cacheStatus = CACHE_STALE;
5975 break;
5978 /* Opcode: RowData P1 P2 P3 * *
5979 ** Synopsis: r[P2]=data
5981 ** Write into register P2 the complete row content for the row at
5982 ** which cursor P1 is currently pointing.
5983 ** There is no interpretation of the data.
5984 ** It is just copied onto the P2 register exactly as
5985 ** it is found in the database file.
5987 ** If cursor P1 is an index, then the content is the key of the row.
5988 ** If cursor P2 is a table, then the content extracted is the data.
5990 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
5991 ** of a real table, not a pseudo-table.
5993 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer
5994 ** into the database page. That means that the content of the output
5995 ** register will be invalidated as soon as the cursor moves - including
5996 ** moves caused by other cursors that "save" the current cursors
5997 ** position in order that they can write to the same table. If P3==0
5998 ** then a copy of the data is made into memory. P3!=0 is faster, but
5999 ** P3==0 is safer.
6001 ** If P3!=0 then the content of the P2 register is unsuitable for use
6002 ** in OP_Result and any OP_Result will invalidate the P2 register content.
6003 ** The P2 register content is invalidated by opcodes like OP_Function or
6004 ** by any use of another cursor pointing to the same table.
6006 case OP_RowData: {
6007 VdbeCursor *pC;
6008 BtCursor *pCrsr;
6009 u32 n;
6011 pOut = out2Prerelease(p, pOp);
6013 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6014 pC = p->apCsr[pOp->p1];
6015 assert( pC!=0 );
6016 assert( pC->eCurType==CURTYPE_BTREE );
6017 assert( isSorter(pC)==0 );
6018 assert( pC->nullRow==0 );
6019 assert( pC->uc.pCursor!=0 );
6020 pCrsr = pC->uc.pCursor;
6022 /* The OP_RowData opcodes always follow OP_NotExists or
6023 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
6024 ** that might invalidate the cursor.
6025 ** If this where not the case, on of the following assert()s
6026 ** would fail. Should this ever change (because of changes in the code
6027 ** generator) then the fix would be to insert a call to
6028 ** sqlite3VdbeCursorMoveto().
6030 assert( pC->deferredMoveto==0 );
6031 assert( sqlite3BtreeCursorIsValid(pCrsr) );
6033 n = sqlite3BtreePayloadSize(pCrsr);
6034 if( n>(u32)db->aLimit[SQLITE_LIMIT_LENGTH] ){
6035 goto too_big;
6037 testcase( n==0 );
6038 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCrsr, n, pOut);
6039 if( rc ) goto abort_due_to_error;
6040 if( !pOp->p3 ) Deephemeralize(pOut);
6041 UPDATE_MAX_BLOBSIZE(pOut);
6042 REGISTER_TRACE(pOp->p2, pOut);
6043 break;
6046 /* Opcode: Rowid P1 P2 * * *
6047 ** Synopsis: r[P2]=PX rowid of P1
6049 ** Store in register P2 an integer which is the key of the table entry that
6050 ** P1 is currently point to.
6052 ** P1 can be either an ordinary table or a virtual table. There used to
6053 ** be a separate OP_VRowid opcode for use with virtual tables, but this
6054 ** one opcode now works for both table types.
6056 case OP_Rowid: { /* out2, ncycle */
6057 VdbeCursor *pC;
6058 i64 v;
6059 sqlite3_vtab *pVtab;
6060 const sqlite3_module *pModule;
6062 pOut = out2Prerelease(p, pOp);
6063 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6064 pC = p->apCsr[pOp->p1];
6065 assert( pC!=0 );
6066 assert( pC->eCurType!=CURTYPE_PSEUDO || pC->nullRow );
6067 if( pC->nullRow ){
6068 pOut->flags = MEM_Null;
6069 break;
6070 }else if( pC->deferredMoveto ){
6071 v = pC->movetoTarget;
6072 #ifndef SQLITE_OMIT_VIRTUALTABLE
6073 }else if( pC->eCurType==CURTYPE_VTAB ){
6074 assert( pC->uc.pVCur!=0 );
6075 pVtab = pC->uc.pVCur->pVtab;
6076 pModule = pVtab->pModule;
6077 assert( pModule->xRowid );
6078 rc = pModule->xRowid(pC->uc.pVCur, &v);
6079 sqlite3VtabImportErrmsg(p, pVtab);
6080 if( rc ) goto abort_due_to_error;
6081 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6082 }else{
6083 assert( pC->eCurType==CURTYPE_BTREE );
6084 assert( pC->uc.pCursor!=0 );
6085 rc = sqlite3VdbeCursorRestore(pC);
6086 if( rc ) goto abort_due_to_error;
6087 if( pC->nullRow ){
6088 pOut->flags = MEM_Null;
6089 break;
6091 v = sqlite3BtreeIntegerKey(pC->uc.pCursor);
6093 pOut->u.i = v;
6094 break;
6097 /* Opcode: NullRow P1 * * * *
6099 ** Move the cursor P1 to a null row. Any OP_Column operations
6100 ** that occur while the cursor is on the null row will always
6101 ** write a NULL.
6103 ** If cursor P1 is not previously opened, open it now to a special
6104 ** pseudo-cursor that always returns NULL for every column.
6106 case OP_NullRow: {
6107 VdbeCursor *pC;
6109 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6110 pC = p->apCsr[pOp->p1];
6111 if( pC==0 ){
6112 /* If the cursor is not already open, create a special kind of
6113 ** pseudo-cursor that always gives null rows. */
6114 pC = allocateCursor(p, pOp->p1, 1, CURTYPE_PSEUDO);
6115 if( pC==0 ) goto no_mem;
6116 pC->seekResult = 0;
6117 pC->isTable = 1;
6118 pC->noReuse = 1;
6119 pC->uc.pCursor = sqlite3BtreeFakeValidCursor();
6121 pC->nullRow = 1;
6122 pC->cacheStatus = CACHE_STALE;
6123 if( pC->eCurType==CURTYPE_BTREE ){
6124 assert( pC->uc.pCursor!=0 );
6125 sqlite3BtreeClearCursor(pC->uc.pCursor);
6127 #ifdef SQLITE_DEBUG
6128 if( pC->seekOp==0 ) pC->seekOp = OP_NullRow;
6129 #endif
6130 break;
6133 /* Opcode: SeekEnd P1 * * * *
6135 ** Position cursor P1 at the end of the btree for the purpose of
6136 ** appending a new entry onto the btree.
6138 ** It is assumed that the cursor is used only for appending and so
6139 ** if the cursor is valid, then the cursor must already be pointing
6140 ** at the end of the btree and so no changes are made to
6141 ** the cursor.
6143 /* Opcode: Last P1 P2 * * *
6145 ** The next use of the Rowid or Column or Prev instruction for P1
6146 ** will refer to the last entry in the database table or index.
6147 ** If the table or index is empty and P2>0, then jump immediately to P2.
6148 ** If P2 is 0 or if the table or index is not empty, fall through
6149 ** to the following instruction.
6151 ** This opcode leaves the cursor configured to move in reverse order,
6152 ** from the end toward the beginning. In other words, the cursor is
6153 ** configured to use Prev, not Next.
6155 case OP_SeekEnd: /* ncycle */
6156 case OP_Last: { /* jump, ncycle */
6157 VdbeCursor *pC;
6158 BtCursor *pCrsr;
6159 int res;
6161 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6162 pC = p->apCsr[pOp->p1];
6163 assert( pC!=0 );
6164 assert( pC->eCurType==CURTYPE_BTREE );
6165 pCrsr = pC->uc.pCursor;
6166 res = 0;
6167 assert( pCrsr!=0 );
6168 #ifdef SQLITE_DEBUG
6169 pC->seekOp = pOp->opcode;
6170 #endif
6171 if( pOp->opcode==OP_SeekEnd ){
6172 assert( pOp->p2==0 );
6173 pC->seekResult = -1;
6174 if( sqlite3BtreeCursorIsValidNN(pCrsr) ){
6175 break;
6178 rc = sqlite3BtreeLast(pCrsr, &res);
6179 pC->nullRow = (u8)res;
6180 pC->deferredMoveto = 0;
6181 pC->cacheStatus = CACHE_STALE;
6182 if( rc ) goto abort_due_to_error;
6183 if( pOp->p2>0 ){
6184 VdbeBranchTaken(res!=0,2);
6185 if( res ) goto jump_to_p2;
6187 break;
6190 /* Opcode: IfSmaller P1 P2 P3 * *
6192 ** Estimate the number of rows in the table P1. Jump to P2 if that
6193 ** estimate is less than approximately 2**(0.1*P3).
6195 case OP_IfSmaller: { /* jump */
6196 VdbeCursor *pC;
6197 BtCursor *pCrsr;
6198 int res;
6199 i64 sz;
6201 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6202 pC = p->apCsr[pOp->p1];
6203 assert( pC!=0 );
6204 pCrsr = pC->uc.pCursor;
6205 assert( pCrsr );
6206 rc = sqlite3BtreeFirst(pCrsr, &res);
6207 if( rc ) goto abort_due_to_error;
6208 if( res==0 ){
6209 sz = sqlite3BtreeRowCountEst(pCrsr);
6210 if( ALWAYS(sz>=0) && sqlite3LogEst((u64)sz)<pOp->p3 ) res = 1;
6212 VdbeBranchTaken(res!=0,2);
6213 if( res ) goto jump_to_p2;
6214 break;
6218 /* Opcode: SorterSort P1 P2 * * *
6220 ** After all records have been inserted into the Sorter object
6221 ** identified by P1, invoke this opcode to actually do the sorting.
6222 ** Jump to P2 if there are no records to be sorted.
6224 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
6225 ** for Sorter objects.
6227 /* Opcode: Sort P1 P2 * * *
6229 ** This opcode does exactly the same thing as OP_Rewind except that
6230 ** it increments an undocumented global variable used for testing.
6232 ** Sorting is accomplished by writing records into a sorting index,
6233 ** then rewinding that index and playing it back from beginning to
6234 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the
6235 ** rewinding so that the global variable will be incremented and
6236 ** regression tests can determine whether or not the optimizer is
6237 ** correctly optimizing out sorts.
6239 case OP_SorterSort: /* jump ncycle */
6240 case OP_Sort: { /* jump ncycle */
6241 #ifdef SQLITE_TEST
6242 sqlite3_sort_count++;
6243 sqlite3_search_count--;
6244 #endif
6245 p->aCounter[SQLITE_STMTSTATUS_SORT]++;
6246 /* Fall through into OP_Rewind */
6247 /* no break */ deliberate_fall_through
6249 /* Opcode: Rewind P1 P2 * * *
6251 ** The next use of the Rowid or Column or Next instruction for P1
6252 ** will refer to the first entry in the database table or index.
6253 ** If the table or index is empty, jump immediately to P2.
6254 ** If the table or index is not empty, fall through to the following
6255 ** instruction.
6257 ** If P2 is zero, that is an assertion that the P1 table is never
6258 ** empty and hence the jump will never be taken.
6260 ** This opcode leaves the cursor configured to move in forward order,
6261 ** from the beginning toward the end. In other words, the cursor is
6262 ** configured to use Next, not Prev.
6264 case OP_Rewind: { /* jump, ncycle */
6265 VdbeCursor *pC;
6266 BtCursor *pCrsr;
6267 int res;
6269 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6270 assert( pOp->p5==0 );
6271 assert( pOp->p2>=0 && pOp->p2<p->nOp );
6273 pC = p->apCsr[pOp->p1];
6274 assert( pC!=0 );
6275 assert( isSorter(pC)==(pOp->opcode==OP_SorterSort) );
6276 res = 1;
6277 #ifdef SQLITE_DEBUG
6278 pC->seekOp = OP_Rewind;
6279 #endif
6280 if( isSorter(pC) ){
6281 rc = sqlite3VdbeSorterRewind(pC, &res);
6282 }else{
6283 assert( pC->eCurType==CURTYPE_BTREE );
6284 pCrsr = pC->uc.pCursor;
6285 assert( pCrsr );
6286 rc = sqlite3BtreeFirst(pCrsr, &res);
6287 pC->deferredMoveto = 0;
6288 pC->cacheStatus = CACHE_STALE;
6290 if( rc ) goto abort_due_to_error;
6291 pC->nullRow = (u8)res;
6292 if( pOp->p2>0 ){
6293 VdbeBranchTaken(res!=0,2);
6294 if( res ) goto jump_to_p2;
6296 break;
6299 /* Opcode: Next P1 P2 P3 * P5
6301 ** Advance cursor P1 so that it points to the next key/data pair in its
6302 ** table or index. If there are no more key/value pairs then fall through
6303 ** to the following instruction. But if the cursor advance was successful,
6304 ** jump immediately to P2.
6306 ** The Next opcode is only valid following an SeekGT, SeekGE, or
6307 ** OP_Rewind opcode used to position the cursor. Next is not allowed
6308 ** to follow SeekLT, SeekLE, or OP_Last.
6310 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
6311 ** been opened prior to this opcode or the program will segfault.
6313 ** The P3 value is a hint to the btree implementation. If P3==1, that
6314 ** means P1 is an SQL index and that this instruction could have been
6315 ** omitted if that index had been unique. P3 is usually 0. P3 is
6316 ** always either 0 or 1.
6318 ** If P5 is positive and the jump is taken, then event counter
6319 ** number P5-1 in the prepared statement is incremented.
6321 ** See also: Prev
6323 /* Opcode: Prev P1 P2 P3 * P5
6325 ** Back up cursor P1 so that it points to the previous key/data pair in its
6326 ** table or index. If there is no previous key/value pairs then fall through
6327 ** to the following instruction. But if the cursor backup was successful,
6328 ** jump immediately to P2.
6331 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
6332 ** OP_Last opcode used to position the cursor. Prev is not allowed
6333 ** to follow SeekGT, SeekGE, or OP_Rewind.
6335 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
6336 ** not open then the behavior is undefined.
6338 ** The P3 value is a hint to the btree implementation. If P3==1, that
6339 ** means P1 is an SQL index and that this instruction could have been
6340 ** omitted if that index had been unique. P3 is usually 0. P3 is
6341 ** always either 0 or 1.
6343 ** If P5 is positive and the jump is taken, then event counter
6344 ** number P5-1 in the prepared statement is incremented.
6346 /* Opcode: SorterNext P1 P2 * * P5
6348 ** This opcode works just like OP_Next except that P1 must be a
6349 ** sorter object for which the OP_SorterSort opcode has been
6350 ** invoked. This opcode advances the cursor to the next sorted
6351 ** record, or jumps to P2 if there are no more sorted records.
6353 case OP_SorterNext: { /* jump */
6354 VdbeCursor *pC;
6356 pC = p->apCsr[pOp->p1];
6357 assert( isSorter(pC) );
6358 rc = sqlite3VdbeSorterNext(db, pC);
6359 goto next_tail;
6361 case OP_Prev: /* jump, ncycle */
6362 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6363 assert( pOp->p5==0
6364 || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
6365 || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
6366 pC = p->apCsr[pOp->p1];
6367 assert( pC!=0 );
6368 assert( pC->deferredMoveto==0 );
6369 assert( pC->eCurType==CURTYPE_BTREE );
6370 assert( pC->seekOp==OP_SeekLT || pC->seekOp==OP_SeekLE
6371 || pC->seekOp==OP_Last || pC->seekOp==OP_IfNoHope
6372 || pC->seekOp==OP_NullRow);
6373 rc = sqlite3BtreePrevious(pC->uc.pCursor, pOp->p3);
6374 goto next_tail;
6376 case OP_Next: /* jump, ncycle */
6377 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6378 assert( pOp->p5==0
6379 || pOp->p5==SQLITE_STMTSTATUS_FULLSCAN_STEP
6380 || pOp->p5==SQLITE_STMTSTATUS_AUTOINDEX);
6381 pC = p->apCsr[pOp->p1];
6382 assert( pC!=0 );
6383 assert( pC->deferredMoveto==0 );
6384 assert( pC->eCurType==CURTYPE_BTREE );
6385 assert( pC->seekOp==OP_SeekGT || pC->seekOp==OP_SeekGE
6386 || pC->seekOp==OP_Rewind || pC->seekOp==OP_Found
6387 || pC->seekOp==OP_NullRow|| pC->seekOp==OP_SeekRowid
6388 || pC->seekOp==OP_IfNoHope);
6389 rc = sqlite3BtreeNext(pC->uc.pCursor, pOp->p3);
6391 next_tail:
6392 pC->cacheStatus = CACHE_STALE;
6393 VdbeBranchTaken(rc==SQLITE_OK,2);
6394 if( rc==SQLITE_OK ){
6395 pC->nullRow = 0;
6396 p->aCounter[pOp->p5]++;
6397 #ifdef SQLITE_TEST
6398 sqlite3_search_count++;
6399 #endif
6400 goto jump_to_p2_and_check_for_interrupt;
6402 if( rc!=SQLITE_DONE ) goto abort_due_to_error;
6403 rc = SQLITE_OK;
6404 pC->nullRow = 1;
6405 goto check_for_interrupt;
6408 /* Opcode: IdxInsert P1 P2 P3 P4 P5
6409 ** Synopsis: key=r[P2]
6411 ** Register P2 holds an SQL index key made using the
6412 ** MakeRecord instructions. This opcode writes that key
6413 ** into the index P1. Data for the entry is nil.
6415 ** If P4 is not zero, then it is the number of values in the unpacked
6416 ** key of reg(P2). In that case, P3 is the index of the first register
6417 ** for the unpacked key. The availability of the unpacked key can sometimes
6418 ** be an optimization.
6420 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
6421 ** that this insert is likely to be an append.
6423 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
6424 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
6425 ** then the change counter is unchanged.
6427 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
6428 ** run faster by avoiding an unnecessary seek on cursor P1. However,
6429 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
6430 ** seeks on the cursor or if the most recent seek used a key equivalent
6431 ** to P2.
6433 ** This instruction only works for indices. The equivalent instruction
6434 ** for tables is OP_Insert.
6436 case OP_IdxInsert: { /* in2 */
6437 VdbeCursor *pC;
6438 BtreePayload x;
6440 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6441 pC = p->apCsr[pOp->p1];
6442 sqlite3VdbeIncrWriteCounter(p, pC);
6443 assert( pC!=0 );
6444 assert( !isSorter(pC) );
6445 pIn2 = &aMem[pOp->p2];
6446 assert( (pIn2->flags & MEM_Blob) || (pOp->p5 & OPFLAG_PREFORMAT) );
6447 if( pOp->p5 & OPFLAG_NCHANGE ) p->nChange++;
6448 assert( pC->eCurType==CURTYPE_BTREE );
6449 assert( pC->isTable==0 );
6450 rc = ExpandBlob(pIn2);
6451 if( rc ) goto abort_due_to_error;
6452 x.nKey = pIn2->n;
6453 x.pKey = pIn2->z;
6454 x.aMem = aMem + pOp->p3;
6455 x.nMem = (u16)pOp->p4.i;
6456 rc = sqlite3BtreeInsert(pC->uc.pCursor, &x,
6457 (pOp->p5 & (OPFLAG_APPEND|OPFLAG_SAVEPOSITION|OPFLAG_PREFORMAT)),
6458 ((pOp->p5 & OPFLAG_USESEEKRESULT) ? pC->seekResult : 0)
6460 assert( pC->deferredMoveto==0 );
6461 pC->cacheStatus = CACHE_STALE;
6462 if( rc) goto abort_due_to_error;
6463 break;
6466 /* Opcode: SorterInsert P1 P2 * * *
6467 ** Synopsis: key=r[P2]
6469 ** Register P2 holds an SQL index key made using the
6470 ** MakeRecord instructions. This opcode writes that key
6471 ** into the sorter P1. Data for the entry is nil.
6473 case OP_SorterInsert: { /* in2 */
6474 VdbeCursor *pC;
6476 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6477 pC = p->apCsr[pOp->p1];
6478 sqlite3VdbeIncrWriteCounter(p, pC);
6479 assert( pC!=0 );
6480 assert( isSorter(pC) );
6481 pIn2 = &aMem[pOp->p2];
6482 assert( pIn2->flags & MEM_Blob );
6483 assert( pC->isTable==0 );
6484 rc = ExpandBlob(pIn2);
6485 if( rc ) goto abort_due_to_error;
6486 rc = sqlite3VdbeSorterWrite(pC, pIn2);
6487 if( rc) goto abort_due_to_error;
6488 break;
6491 /* Opcode: IdxDelete P1 P2 P3 * P5
6492 ** Synopsis: key=r[P2@P3]
6494 ** The content of P3 registers starting at register P2 form
6495 ** an unpacked index key. This opcode removes that entry from the
6496 ** index opened by cursor P1.
6498 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error
6499 ** if no matching index entry is found. This happens when running
6500 ** an UPDATE or DELETE statement and the index entry to be updated
6501 ** or deleted is not found. For some uses of IdxDelete
6502 ** (example: the EXCEPT operator) it does not matter that no matching
6503 ** entry is found. For those cases, P5 is zero. Also, do not raise
6504 ** this (self-correcting and non-critical) error if in writable_schema mode.
6506 case OP_IdxDelete: {
6507 VdbeCursor *pC;
6508 BtCursor *pCrsr;
6509 int res;
6510 UnpackedRecord r;
6512 assert( pOp->p3>0 );
6513 assert( pOp->p2>0 && pOp->p2+pOp->p3<=(p->nMem+1 - p->nCursor)+1 );
6514 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6515 pC = p->apCsr[pOp->p1];
6516 assert( pC!=0 );
6517 assert( pC->eCurType==CURTYPE_BTREE );
6518 sqlite3VdbeIncrWriteCounter(p, pC);
6519 pCrsr = pC->uc.pCursor;
6520 assert( pCrsr!=0 );
6521 r.pKeyInfo = pC->pKeyInfo;
6522 r.nField = (u16)pOp->p3;
6523 r.default_rc = 0;
6524 r.aMem = &aMem[pOp->p2];
6525 rc = sqlite3BtreeIndexMoveto(pCrsr, &r, &res);
6526 if( rc ) goto abort_due_to_error;
6527 if( res==0 ){
6528 rc = sqlite3BtreeDelete(pCrsr, BTREE_AUXDELETE);
6529 if( rc ) goto abort_due_to_error;
6530 }else if( pOp->p5 && !sqlite3WritableSchema(db) ){
6531 rc = sqlite3ReportError(SQLITE_CORRUPT_INDEX, __LINE__, "index corruption");
6532 goto abort_due_to_error;
6534 assert( pC->deferredMoveto==0 );
6535 pC->cacheStatus = CACHE_STALE;
6536 pC->seekResult = 0;
6537 break;
6540 /* Opcode: DeferredSeek P1 * P3 P4 *
6541 ** Synopsis: Move P3 to P1.rowid if needed
6543 ** P1 is an open index cursor and P3 is a cursor on the corresponding
6544 ** table. This opcode does a deferred seek of the P3 table cursor
6545 ** to the row that corresponds to the current row of P1.
6547 ** This is a deferred seek. Nothing actually happens until
6548 ** the cursor is used to read a record. That way, if no reads
6549 ** occur, no unnecessary I/O happens.
6551 ** P4 may be an array of integers (type P4_INTARRAY) containing
6552 ** one entry for each column in the P3 table. If array entry a(i)
6553 ** is non-zero, then reading column a(i)-1 from cursor P3 is
6554 ** equivalent to performing the deferred seek and then reading column i
6555 ** from P1. This information is stored in P3 and used to redirect
6556 ** reads against P3 over to P1, thus possibly avoiding the need to
6557 ** seek and read cursor P3.
6559 /* Opcode: IdxRowid P1 P2 * * *
6560 ** Synopsis: r[P2]=rowid
6562 ** Write into register P2 an integer which is the last entry in the record at
6563 ** the end of the index key pointed to by cursor P1. This integer should be
6564 ** the rowid of the table entry to which this index entry points.
6566 ** See also: Rowid, MakeRecord.
6568 case OP_DeferredSeek: /* ncycle */
6569 case OP_IdxRowid: { /* out2, ncycle */
6570 VdbeCursor *pC; /* The P1 index cursor */
6571 VdbeCursor *pTabCur; /* The P2 table cursor (OP_DeferredSeek only) */
6572 i64 rowid; /* Rowid that P1 current points to */
6574 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6575 pC = p->apCsr[pOp->p1];
6576 assert( pC!=0 );
6577 assert( pC->eCurType==CURTYPE_BTREE || IsNullCursor(pC) );
6578 assert( pC->uc.pCursor!=0 );
6579 assert( pC->isTable==0 || IsNullCursor(pC) );
6580 assert( pC->deferredMoveto==0 );
6581 assert( !pC->nullRow || pOp->opcode==OP_IdxRowid );
6583 /* The IdxRowid and Seek opcodes are combined because of the commonality
6584 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
6585 rc = sqlite3VdbeCursorRestore(pC);
6587 /* sqlite3VdbeCursorRestore() may fail if the cursor has been disturbed
6588 ** since it was last positioned and an error (e.g. OOM or an IO error)
6589 ** occurs while trying to reposition it. */
6590 if( rc!=SQLITE_OK ) goto abort_due_to_error;
6592 if( !pC->nullRow ){
6593 rowid = 0; /* Not needed. Only used to silence a warning. */
6594 rc = sqlite3VdbeIdxRowid(db, pC->uc.pCursor, &rowid);
6595 if( rc!=SQLITE_OK ){
6596 goto abort_due_to_error;
6598 if( pOp->opcode==OP_DeferredSeek ){
6599 assert( pOp->p3>=0 && pOp->p3<p->nCursor );
6600 pTabCur = p->apCsr[pOp->p3];
6601 assert( pTabCur!=0 );
6602 assert( pTabCur->eCurType==CURTYPE_BTREE );
6603 assert( pTabCur->uc.pCursor!=0 );
6604 assert( pTabCur->isTable );
6605 pTabCur->nullRow = 0;
6606 pTabCur->movetoTarget = rowid;
6607 pTabCur->deferredMoveto = 1;
6608 pTabCur->cacheStatus = CACHE_STALE;
6609 assert( pOp->p4type==P4_INTARRAY || pOp->p4.ai==0 );
6610 assert( !pTabCur->isEphemeral );
6611 pTabCur->ub.aAltMap = pOp->p4.ai;
6612 assert( !pC->isEphemeral );
6613 pTabCur->pAltCursor = pC;
6614 }else{
6615 pOut = out2Prerelease(p, pOp);
6616 pOut->u.i = rowid;
6618 }else{
6619 assert( pOp->opcode==OP_IdxRowid );
6620 sqlite3VdbeMemSetNull(&aMem[pOp->p2]);
6622 break;
6625 /* Opcode: FinishSeek P1 * * * *
6627 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that
6628 ** seek operation now, without further delay. If the cursor seek has
6629 ** already occurred, this instruction is a no-op.
6631 case OP_FinishSeek: { /* ncycle */
6632 VdbeCursor *pC; /* The P1 index cursor */
6634 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6635 pC = p->apCsr[pOp->p1];
6636 if( pC->deferredMoveto ){
6637 rc = sqlite3VdbeFinishMoveto(pC);
6638 if( rc ) goto abort_due_to_error;
6640 break;
6643 /* Opcode: IdxGE P1 P2 P3 P4 *
6644 ** Synopsis: key=r[P3@P4]
6646 ** The P4 register values beginning with P3 form an unpacked index
6647 ** key that omits the PRIMARY KEY. Compare this key value against the index
6648 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6649 ** fields at the end.
6651 ** If the P1 index entry is greater than or equal to the key value
6652 ** then jump to P2. Otherwise fall through to the next instruction.
6654 /* Opcode: IdxGT P1 P2 P3 P4 *
6655 ** Synopsis: key=r[P3@P4]
6657 ** The P4 register values beginning with P3 form an unpacked index
6658 ** key that omits the PRIMARY KEY. Compare this key value against the index
6659 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6660 ** fields at the end.
6662 ** If the P1 index entry is greater than the key value
6663 ** then jump to P2. Otherwise fall through to the next instruction.
6665 /* Opcode: IdxLT P1 P2 P3 P4 *
6666 ** Synopsis: key=r[P3@P4]
6668 ** The P4 register values beginning with P3 form an unpacked index
6669 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
6670 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6671 ** ROWID on the P1 index.
6673 ** If the P1 index entry is less than the key value then jump to P2.
6674 ** Otherwise fall through to the next instruction.
6676 /* Opcode: IdxLE P1 P2 P3 P4 *
6677 ** Synopsis: key=r[P3@P4]
6679 ** The P4 register values beginning with P3 form an unpacked index
6680 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
6681 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6682 ** ROWID on the P1 index.
6684 ** If the P1 index entry is less than or equal to the key value then jump
6685 ** to P2. Otherwise fall through to the next instruction.
6687 case OP_IdxLE: /* jump, ncycle */
6688 case OP_IdxGT: /* jump, ncycle */
6689 case OP_IdxLT: /* jump, ncycle */
6690 case OP_IdxGE: { /* jump, ncycle */
6691 VdbeCursor *pC;
6692 int res;
6693 UnpackedRecord r;
6695 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6696 pC = p->apCsr[pOp->p1];
6697 assert( pC!=0 );
6698 assert( pC->isOrdered );
6699 assert( pC->eCurType==CURTYPE_BTREE );
6700 assert( pC->uc.pCursor!=0);
6701 assert( pC->deferredMoveto==0 );
6702 assert( pOp->p4type==P4_INT32 );
6703 r.pKeyInfo = pC->pKeyInfo;
6704 r.nField = (u16)pOp->p4.i;
6705 if( pOp->opcode<OP_IdxLT ){
6706 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxGT );
6707 r.default_rc = -1;
6708 }else{
6709 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxLT );
6710 r.default_rc = 0;
6712 r.aMem = &aMem[pOp->p3];
6713 #ifdef SQLITE_DEBUG
6715 int i;
6716 for(i=0; i<r.nField; i++){
6717 assert( memIsValid(&r.aMem[i]) );
6718 REGISTER_TRACE(pOp->p3+i, &aMem[pOp->p3+i]);
6721 #endif
6723 /* Inlined version of sqlite3VdbeIdxKeyCompare() */
6725 i64 nCellKey = 0;
6726 BtCursor *pCur;
6727 Mem m;
6729 assert( pC->eCurType==CURTYPE_BTREE );
6730 pCur = pC->uc.pCursor;
6731 assert( sqlite3BtreeCursorIsValid(pCur) );
6732 nCellKey = sqlite3BtreePayloadSize(pCur);
6733 /* nCellKey will always be between 0 and 0xffffffff because of the way
6734 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
6735 if( nCellKey<=0 || nCellKey>0x7fffffff ){
6736 rc = SQLITE_CORRUPT_BKPT;
6737 goto abort_due_to_error;
6739 sqlite3VdbeMemInit(&m, db, 0);
6740 rc = sqlite3VdbeMemFromBtreeZeroOffset(pCur, (u32)nCellKey, &m);
6741 if( rc ) goto abort_due_to_error;
6742 res = sqlite3VdbeRecordCompareWithSkip(m.n, m.z, &r, 0);
6743 sqlite3VdbeMemReleaseMalloc(&m);
6745 /* End of inlined sqlite3VdbeIdxKeyCompare() */
6747 assert( (OP_IdxLE&1)==(OP_IdxLT&1) && (OP_IdxGE&1)==(OP_IdxGT&1) );
6748 if( (pOp->opcode&1)==(OP_IdxLT&1) ){
6749 assert( pOp->opcode==OP_IdxLE || pOp->opcode==OP_IdxLT );
6750 res = -res;
6751 }else{
6752 assert( pOp->opcode==OP_IdxGE || pOp->opcode==OP_IdxGT );
6753 res++;
6755 VdbeBranchTaken(res>0,2);
6756 assert( rc==SQLITE_OK );
6757 if( res>0 ) goto jump_to_p2;
6758 break;
6761 /* Opcode: Destroy P1 P2 P3 * *
6763 ** Delete an entire database table or index whose root page in the database
6764 ** file is given by P1.
6766 ** The table being destroyed is in the main database file if P3==0. If
6767 ** P3==1 then the table to be destroyed is in the auxiliary database file
6768 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6770 ** If AUTOVACUUM is enabled then it is possible that another root page
6771 ** might be moved into the newly deleted root page in order to keep all
6772 ** root pages contiguous at the beginning of the database. The former
6773 ** value of the root page that moved - its value before the move occurred -
6774 ** is stored in register P2. If no page movement was required (because the
6775 ** table being dropped was already the last one in the database) then a
6776 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero
6777 ** is stored in register P2.
6779 ** This opcode throws an error if there are any active reader VMs when
6780 ** it is invoked. This is done to avoid the difficulty associated with
6781 ** updating existing cursors when a root page is moved in an AUTOVACUUM
6782 ** database. This error is thrown even if the database is not an AUTOVACUUM
6783 ** db in order to avoid introducing an incompatibility between autovacuum
6784 ** and non-autovacuum modes.
6786 ** See also: Clear
6788 case OP_Destroy: { /* out2 */
6789 int iMoved;
6790 int iDb;
6792 sqlite3VdbeIncrWriteCounter(p, 0);
6793 assert( p->readOnly==0 );
6794 assert( pOp->p1>1 );
6795 pOut = out2Prerelease(p, pOp);
6796 pOut->flags = MEM_Null;
6797 if( db->nVdbeRead > db->nVDestroy+1 ){
6798 rc = SQLITE_LOCKED;
6799 p->errorAction = OE_Abort;
6800 goto abort_due_to_error;
6801 }else{
6802 iDb = pOp->p3;
6803 assert( DbMaskTest(p->btreeMask, iDb) );
6804 iMoved = 0; /* Not needed. Only to silence a warning. */
6805 rc = sqlite3BtreeDropTable(db->aDb[iDb].pBt, pOp->p1, &iMoved);
6806 pOut->flags = MEM_Int;
6807 pOut->u.i = iMoved;
6808 if( rc ) goto abort_due_to_error;
6809 #ifndef SQLITE_OMIT_AUTOVACUUM
6810 if( iMoved!=0 ){
6811 sqlite3RootPageMoved(db, iDb, iMoved, pOp->p1);
6812 /* All OP_Destroy operations occur on the same btree */
6813 assert( resetSchemaOnFault==0 || resetSchemaOnFault==iDb+1 );
6814 resetSchemaOnFault = iDb+1;
6816 #endif
6818 break;
6821 /* Opcode: Clear P1 P2 P3
6823 ** Delete all contents of the database table or index whose root page
6824 ** in the database file is given by P1. But, unlike Destroy, do not
6825 ** remove the table or index from the database file.
6827 ** The table being cleared is in the main database file if P2==0. If
6828 ** P2==1 then the table to be cleared is in the auxiliary database file
6829 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6831 ** If the P3 value is non-zero, then the row change count is incremented
6832 ** by the number of rows in the table being cleared. If P3 is greater
6833 ** than zero, then the value stored in register P3 is also incremented
6834 ** by the number of rows in the table being cleared.
6836 ** See also: Destroy
6838 case OP_Clear: {
6839 i64 nChange;
6841 sqlite3VdbeIncrWriteCounter(p, 0);
6842 nChange = 0;
6843 assert( p->readOnly==0 );
6844 assert( DbMaskTest(p->btreeMask, pOp->p2) );
6845 rc = sqlite3BtreeClearTable(db->aDb[pOp->p2].pBt, (u32)pOp->p1, &nChange);
6846 if( pOp->p3 ){
6847 p->nChange += nChange;
6848 if( pOp->p3>0 ){
6849 assert( memIsValid(&aMem[pOp->p3]) );
6850 memAboutToChange(p, &aMem[pOp->p3]);
6851 aMem[pOp->p3].u.i += nChange;
6854 if( rc ) goto abort_due_to_error;
6855 break;
6858 /* Opcode: ResetSorter P1 * * * *
6860 ** Delete all contents from the ephemeral table or sorter
6861 ** that is open on cursor P1.
6863 ** This opcode only works for cursors used for sorting and
6864 ** opened with OP_OpenEphemeral or OP_SorterOpen.
6866 case OP_ResetSorter: {
6867 VdbeCursor *pC;
6869 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
6870 pC = p->apCsr[pOp->p1];
6871 assert( pC!=0 );
6872 if( isSorter(pC) ){
6873 sqlite3VdbeSorterReset(db, pC->uc.pSorter);
6874 }else{
6875 assert( pC->eCurType==CURTYPE_BTREE );
6876 assert( pC->isEphemeral );
6877 rc = sqlite3BtreeClearTableOfCursor(pC->uc.pCursor);
6878 if( rc ) goto abort_due_to_error;
6880 break;
6883 /* Opcode: CreateBtree P1 P2 P3 * *
6884 ** Synopsis: r[P2]=root iDb=P1 flags=P3
6886 ** Allocate a new b-tree in the main database file if P1==0 or in the
6887 ** TEMP database file if P1==1 or in an attached database if
6888 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
6889 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
6890 ** The root page number of the new b-tree is stored in register P2.
6892 case OP_CreateBtree: { /* out2 */
6893 Pgno pgno;
6894 Db *pDb;
6896 sqlite3VdbeIncrWriteCounter(p, 0);
6897 pOut = out2Prerelease(p, pOp);
6898 pgno = 0;
6899 assert( pOp->p3==BTREE_INTKEY || pOp->p3==BTREE_BLOBKEY );
6900 assert( pOp->p1>=0 && pOp->p1<db->nDb );
6901 assert( DbMaskTest(p->btreeMask, pOp->p1) );
6902 assert( p->readOnly==0 );
6903 pDb = &db->aDb[pOp->p1];
6904 assert( pDb->pBt!=0 );
6905 rc = sqlite3BtreeCreateTable(pDb->pBt, &pgno, pOp->p3);
6906 if( rc ) goto abort_due_to_error;
6907 pOut->u.i = pgno;
6908 break;
6911 /* Opcode: SqlExec * * * P4 *
6913 ** Run the SQL statement or statements specified in the P4 string.
6914 ** Disable Auth and Trace callbacks while those statements are running if
6915 ** P1 is true.
6917 case OP_SqlExec: {
6918 char *zErr;
6919 #ifndef SQLITE_OMIT_AUTHORIZATION
6920 sqlite3_xauth xAuth;
6921 #endif
6922 u8 mTrace;
6924 sqlite3VdbeIncrWriteCounter(p, 0);
6925 db->nSqlExec++;
6926 zErr = 0;
6927 #ifndef SQLITE_OMIT_AUTHORIZATION
6928 xAuth = db->xAuth;
6929 #endif
6930 mTrace = db->mTrace;
6931 if( pOp->p1 ){
6932 #ifndef SQLITE_OMIT_AUTHORIZATION
6933 db->xAuth = 0;
6934 #endif
6935 db->mTrace = 0;
6937 rc = sqlite3_exec(db, pOp->p4.z, 0, 0, &zErr);
6938 db->nSqlExec--;
6939 #ifndef SQLITE_OMIT_AUTHORIZATION
6940 db->xAuth = xAuth;
6941 #endif
6942 db->mTrace = mTrace;
6943 if( zErr || rc ){
6944 sqlite3VdbeError(p, "%s", zErr);
6945 sqlite3_free(zErr);
6946 if( rc==SQLITE_NOMEM ) goto no_mem;
6947 goto abort_due_to_error;
6949 break;
6952 /* Opcode: ParseSchema P1 * * P4 *
6954 ** Read and parse all entries from the schema table of database P1
6955 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the
6956 ** entire schema for P1 is reparsed.
6958 ** This opcode invokes the parser to create a new virtual machine,
6959 ** then runs the new virtual machine. It is thus a re-entrant opcode.
6961 case OP_ParseSchema: {
6962 int iDb;
6963 const char *zSchema;
6964 char *zSql;
6965 InitData initData;
6967 /* Any prepared statement that invokes this opcode will hold mutexes
6968 ** on every btree. This is a prerequisite for invoking
6969 ** sqlite3InitCallback().
6971 #ifdef SQLITE_DEBUG
6972 for(iDb=0; iDb<db->nDb; iDb++){
6973 assert( iDb==1 || sqlite3BtreeHoldsMutex(db->aDb[iDb].pBt) );
6975 #endif
6977 iDb = pOp->p1;
6978 assert( iDb>=0 && iDb<db->nDb );
6979 assert( DbHasProperty(db, iDb, DB_SchemaLoaded)
6980 || db->mallocFailed
6981 || (CORRUPT_DB && (db->flags & SQLITE_NoSchemaError)!=0) );
6983 #ifndef SQLITE_OMIT_ALTERTABLE
6984 if( pOp->p4.z==0 ){
6985 sqlite3SchemaClear(db->aDb[iDb].pSchema);
6986 db->mDbFlags &= ~DBFLAG_SchemaKnownOk;
6987 rc = sqlite3InitOne(db, iDb, &p->zErrMsg, pOp->p5);
6988 db->mDbFlags |= DBFLAG_SchemaChange;
6989 p->expired = 0;
6990 }else
6991 #endif
6993 zSchema = LEGACY_SCHEMA_TABLE;
6994 initData.db = db;
6995 initData.iDb = iDb;
6996 initData.pzErrMsg = &p->zErrMsg;
6997 initData.mInitFlags = 0;
6998 initData.mxPage = sqlite3BtreeLastPage(db->aDb[iDb].pBt);
6999 zSql = sqlite3MPrintf(db,
7000 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
7001 db->aDb[iDb].zDbSName, zSchema, pOp->p4.z);
7002 if( zSql==0 ){
7003 rc = SQLITE_NOMEM_BKPT;
7004 }else{
7005 assert( db->init.busy==0 );
7006 db->init.busy = 1;
7007 initData.rc = SQLITE_OK;
7008 initData.nInitRow = 0;
7009 assert( !db->mallocFailed );
7010 rc = sqlite3_exec(db, zSql, sqlite3InitCallback, &initData, 0);
7011 if( rc==SQLITE_OK ) rc = initData.rc;
7012 if( rc==SQLITE_OK && initData.nInitRow==0 ){
7013 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
7014 ** at least one SQL statement. Any less than that indicates that
7015 ** the sqlite_schema table is corrupt. */
7016 rc = SQLITE_CORRUPT_BKPT;
7018 sqlite3DbFreeNN(db, zSql);
7019 db->init.busy = 0;
7022 if( rc ){
7023 sqlite3ResetAllSchemasOfConnection(db);
7024 if( rc==SQLITE_NOMEM ){
7025 goto no_mem;
7027 goto abort_due_to_error;
7029 break;
7032 #if !defined(SQLITE_OMIT_ANALYZE)
7033 /* Opcode: LoadAnalysis P1 * * * *
7035 ** Read the sqlite_stat1 table for database P1 and load the content
7036 ** of that table into the internal index hash table. This will cause
7037 ** the analysis to be used when preparing all subsequent queries.
7039 case OP_LoadAnalysis: {
7040 assert( pOp->p1>=0 && pOp->p1<db->nDb );
7041 rc = sqlite3AnalysisLoad(db, pOp->p1);
7042 if( rc ) goto abort_due_to_error;
7043 break;
7045 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
7047 /* Opcode: DropTable P1 * * P4 *
7049 ** Remove the internal (in-memory) data structures that describe
7050 ** the table named P4 in database P1. This is called after a table
7051 ** is dropped from disk (using the Destroy opcode) in order to keep
7052 ** the internal representation of the
7053 ** schema consistent with what is on disk.
7055 case OP_DropTable: {
7056 sqlite3VdbeIncrWriteCounter(p, 0);
7057 sqlite3UnlinkAndDeleteTable(db, pOp->p1, pOp->p4.z);
7058 break;
7061 /* Opcode: DropIndex P1 * * P4 *
7063 ** Remove the internal (in-memory) data structures that describe
7064 ** the index named P4 in database P1. This is called after an index
7065 ** is dropped from disk (using the Destroy opcode)
7066 ** in order to keep the internal representation of the
7067 ** schema consistent with what is on disk.
7069 case OP_DropIndex: {
7070 sqlite3VdbeIncrWriteCounter(p, 0);
7071 sqlite3UnlinkAndDeleteIndex(db, pOp->p1, pOp->p4.z);
7072 break;
7075 /* Opcode: DropTrigger P1 * * P4 *
7077 ** Remove the internal (in-memory) data structures that describe
7078 ** the trigger named P4 in database P1. This is called after a trigger
7079 ** is dropped from disk (using the Destroy opcode) in order to keep
7080 ** the internal representation of the
7081 ** schema consistent with what is on disk.
7083 case OP_DropTrigger: {
7084 sqlite3VdbeIncrWriteCounter(p, 0);
7085 sqlite3UnlinkAndDeleteTrigger(db, pOp->p1, pOp->p4.z);
7086 break;
7090 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
7091 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
7093 ** Do an analysis of the currently open database. Store in
7094 ** register P1 the text of an error message describing any problems.
7095 ** If no problems are found, store a NULL in register P1.
7097 ** The register P3 contains one less than the maximum number of allowed errors.
7098 ** At most reg(P3) errors will be reported.
7099 ** In other words, the analysis stops as soon as reg(P1) errors are
7100 ** seen. Reg(P1) is updated with the number of errors remaining.
7102 ** The root page numbers of all tables in the database are integers
7103 ** stored in P4_INTARRAY argument.
7105 ** If P5 is not zero, the check is done on the auxiliary database
7106 ** file, not the main database file.
7108 ** This opcode is used to implement the integrity_check pragma.
7110 case OP_IntegrityCk: {
7111 int nRoot; /* Number of tables to check. (Number of root pages.) */
7112 Pgno *aRoot; /* Array of rootpage numbers for tables to be checked */
7113 int nErr; /* Number of errors reported */
7114 char *z; /* Text of the error report */
7115 Mem *pnErr; /* Register keeping track of errors remaining */
7117 assert( p->bIsReader );
7118 nRoot = pOp->p2;
7119 aRoot = pOp->p4.ai;
7120 assert( nRoot>0 );
7121 assert( aRoot[0]==(Pgno)nRoot );
7122 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7123 pnErr = &aMem[pOp->p3];
7124 assert( (pnErr->flags & MEM_Int)!=0 );
7125 assert( (pnErr->flags & (MEM_Str|MEM_Blob))==0 );
7126 pIn1 = &aMem[pOp->p1];
7127 assert( pOp->p5<db->nDb );
7128 assert( DbMaskTest(p->btreeMask, pOp->p5) );
7129 rc = sqlite3BtreeIntegrityCheck(db, db->aDb[pOp->p5].pBt, &aRoot[1], nRoot,
7130 (int)pnErr->u.i+1, &nErr, &z);
7131 sqlite3VdbeMemSetNull(pIn1);
7132 if( nErr==0 ){
7133 assert( z==0 );
7134 }else if( rc ){
7135 sqlite3_free(z);
7136 goto abort_due_to_error;
7137 }else{
7138 pnErr->u.i -= nErr-1;
7139 sqlite3VdbeMemSetStr(pIn1, z, -1, SQLITE_UTF8, sqlite3_free);
7141 UPDATE_MAX_BLOBSIZE(pIn1);
7142 sqlite3VdbeChangeEncoding(pIn1, encoding);
7143 goto check_for_interrupt;
7145 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
7147 /* Opcode: RowSetAdd P1 P2 * * *
7148 ** Synopsis: rowset(P1)=r[P2]
7150 ** Insert the integer value held by register P2 into a RowSet object
7151 ** held in register P1.
7153 ** An assertion fails if P2 is not an integer.
7155 case OP_RowSetAdd: { /* in1, in2 */
7156 pIn1 = &aMem[pOp->p1];
7157 pIn2 = &aMem[pOp->p2];
7158 assert( (pIn2->flags & MEM_Int)!=0 );
7159 if( (pIn1->flags & MEM_Blob)==0 ){
7160 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
7162 assert( sqlite3VdbeMemIsRowSet(pIn1) );
7163 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn2->u.i);
7164 break;
7167 /* Opcode: RowSetRead P1 P2 P3 * *
7168 ** Synopsis: r[P3]=rowset(P1)
7170 ** Extract the smallest value from the RowSet object in P1
7171 ** and put that value into register P3.
7172 ** Or, if RowSet object P1 is initially empty, leave P3
7173 ** unchanged and jump to instruction P2.
7175 case OP_RowSetRead: { /* jump, in1, out3 */
7176 i64 val;
7178 pIn1 = &aMem[pOp->p1];
7179 assert( (pIn1->flags & MEM_Blob)==0 || sqlite3VdbeMemIsRowSet(pIn1) );
7180 if( (pIn1->flags & MEM_Blob)==0
7181 || sqlite3RowSetNext((RowSet*)pIn1->z, &val)==0
7183 /* The boolean index is empty */
7184 sqlite3VdbeMemSetNull(pIn1);
7185 VdbeBranchTaken(1,2);
7186 goto jump_to_p2_and_check_for_interrupt;
7187 }else{
7188 /* A value was pulled from the index */
7189 VdbeBranchTaken(0,2);
7190 sqlite3VdbeMemSetInt64(&aMem[pOp->p3], val);
7192 goto check_for_interrupt;
7195 /* Opcode: RowSetTest P1 P2 P3 P4
7196 ** Synopsis: if r[P3] in rowset(P1) goto P2
7198 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
7199 ** contains a RowSet object and that RowSet object contains
7200 ** the value held in P3, jump to register P2. Otherwise, insert the
7201 ** integer in P3 into the RowSet and continue on to the
7202 ** next opcode.
7204 ** The RowSet object is optimized for the case where sets of integers
7205 ** are inserted in distinct phases, which each set contains no duplicates.
7206 ** Each set is identified by a unique P4 value. The first set
7207 ** must have P4==0, the final set must have P4==-1, and for all other sets
7208 ** must have P4>0.
7210 ** This allows optimizations: (a) when P4==0 there is no need to test
7211 ** the RowSet object for P3, as it is guaranteed not to contain it,
7212 ** (b) when P4==-1 there is no need to insert the value, as it will
7213 ** never be tested for, and (c) when a value that is part of set X is
7214 ** inserted, there is no need to search to see if the same value was
7215 ** previously inserted as part of set X (only if it was previously
7216 ** inserted as part of some other set).
7218 case OP_RowSetTest: { /* jump, in1, in3 */
7219 int iSet;
7220 int exists;
7222 pIn1 = &aMem[pOp->p1];
7223 pIn3 = &aMem[pOp->p3];
7224 iSet = pOp->p4.i;
7225 assert( pIn3->flags&MEM_Int );
7227 /* If there is anything other than a rowset object in memory cell P1,
7228 ** delete it now and initialize P1 with an empty rowset
7230 if( (pIn1->flags & MEM_Blob)==0 ){
7231 if( sqlite3VdbeMemSetRowSet(pIn1) ) goto no_mem;
7233 assert( sqlite3VdbeMemIsRowSet(pIn1) );
7234 assert( pOp->p4type==P4_INT32 );
7235 assert( iSet==-1 || iSet>=0 );
7236 if( iSet ){
7237 exists = sqlite3RowSetTest((RowSet*)pIn1->z, iSet, pIn3->u.i);
7238 VdbeBranchTaken(exists!=0,2);
7239 if( exists ) goto jump_to_p2;
7241 if( iSet>=0 ){
7242 sqlite3RowSetInsert((RowSet*)pIn1->z, pIn3->u.i);
7244 break;
7248 #ifndef SQLITE_OMIT_TRIGGER
7250 /* Opcode: Program P1 P2 P3 P4 P5
7252 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
7254 ** P1 contains the address of the memory cell that contains the first memory
7255 ** cell in an array of values used as arguments to the sub-program. P2
7256 ** contains the address to jump to if the sub-program throws an IGNORE
7257 ** exception using the RAISE() function. Register P3 contains the address
7258 ** of a memory cell in this (the parent) VM that is used to allocate the
7259 ** memory required by the sub-vdbe at runtime.
7261 ** P4 is a pointer to the VM containing the trigger program.
7263 ** If P5 is non-zero, then recursive program invocation is enabled.
7265 case OP_Program: { /* jump */
7266 int nMem; /* Number of memory registers for sub-program */
7267 int nByte; /* Bytes of runtime space required for sub-program */
7268 Mem *pRt; /* Register to allocate runtime space */
7269 Mem *pMem; /* Used to iterate through memory cells */
7270 Mem *pEnd; /* Last memory cell in new array */
7271 VdbeFrame *pFrame; /* New vdbe frame to execute in */
7272 SubProgram *pProgram; /* Sub-program to execute */
7273 void *t; /* Token identifying trigger */
7275 pProgram = pOp->p4.pProgram;
7276 pRt = &aMem[pOp->p3];
7277 assert( pProgram->nOp>0 );
7279 /* If the p5 flag is clear, then recursive invocation of triggers is
7280 ** disabled for backwards compatibility (p5 is set if this sub-program
7281 ** is really a trigger, not a foreign key action, and the flag set
7282 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
7284 ** It is recursive invocation of triggers, at the SQL level, that is
7285 ** disabled. In some cases a single trigger may generate more than one
7286 ** SubProgram (if the trigger may be executed with more than one different
7287 ** ON CONFLICT algorithm). SubProgram structures associated with a
7288 ** single trigger all have the same value for the SubProgram.token
7289 ** variable. */
7290 if( pOp->p5 ){
7291 t = pProgram->token;
7292 for(pFrame=p->pFrame; pFrame && pFrame->token!=t; pFrame=pFrame->pParent);
7293 if( pFrame ) break;
7296 if( p->nFrame>=db->aLimit[SQLITE_LIMIT_TRIGGER_DEPTH] ){
7297 rc = SQLITE_ERROR;
7298 sqlite3VdbeError(p, "too many levels of trigger recursion");
7299 goto abort_due_to_error;
7302 /* Register pRt is used to store the memory required to save the state
7303 ** of the current program, and the memory required at runtime to execute
7304 ** the trigger program. If this trigger has been fired before, then pRt
7305 ** is already allocated. Otherwise, it must be initialized. */
7306 if( (pRt->flags&MEM_Blob)==0 ){
7307 /* SubProgram.nMem is set to the number of memory cells used by the
7308 ** program stored in SubProgram.aOp. As well as these, one memory
7309 ** cell is required for each cursor used by the program. Set local
7310 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
7312 nMem = pProgram->nMem + pProgram->nCsr;
7313 assert( nMem>0 );
7314 if( pProgram->nCsr==0 ) nMem++;
7315 nByte = ROUND8(sizeof(VdbeFrame))
7316 + nMem * sizeof(Mem)
7317 + pProgram->nCsr * sizeof(VdbeCursor*)
7318 + (pProgram->nOp + 7)/8;
7319 pFrame = sqlite3DbMallocZero(db, nByte);
7320 if( !pFrame ){
7321 goto no_mem;
7323 sqlite3VdbeMemRelease(pRt);
7324 pRt->flags = MEM_Blob|MEM_Dyn;
7325 pRt->z = (char*)pFrame;
7326 pRt->n = nByte;
7327 pRt->xDel = sqlite3VdbeFrameMemDel;
7329 pFrame->v = p;
7330 pFrame->nChildMem = nMem;
7331 pFrame->nChildCsr = pProgram->nCsr;
7332 pFrame->pc = (int)(pOp - aOp);
7333 pFrame->aMem = p->aMem;
7334 pFrame->nMem = p->nMem;
7335 pFrame->apCsr = p->apCsr;
7336 pFrame->nCursor = p->nCursor;
7337 pFrame->aOp = p->aOp;
7338 pFrame->nOp = p->nOp;
7339 pFrame->token = pProgram->token;
7340 #ifdef SQLITE_DEBUG
7341 pFrame->iFrameMagic = SQLITE_FRAME_MAGIC;
7342 #endif
7344 pEnd = &VdbeFrameMem(pFrame)[pFrame->nChildMem];
7345 for(pMem=VdbeFrameMem(pFrame); pMem!=pEnd; pMem++){
7346 pMem->flags = MEM_Undefined;
7347 pMem->db = db;
7349 }else{
7350 pFrame = (VdbeFrame*)pRt->z;
7351 assert( pRt->xDel==sqlite3VdbeFrameMemDel );
7352 assert( pProgram->nMem+pProgram->nCsr==pFrame->nChildMem
7353 || (pProgram->nCsr==0 && pProgram->nMem+1==pFrame->nChildMem) );
7354 assert( pProgram->nCsr==pFrame->nChildCsr );
7355 assert( (int)(pOp - aOp)==pFrame->pc );
7358 p->nFrame++;
7359 pFrame->pParent = p->pFrame;
7360 pFrame->lastRowid = db->lastRowid;
7361 pFrame->nChange = p->nChange;
7362 pFrame->nDbChange = p->db->nChange;
7363 assert( pFrame->pAuxData==0 );
7364 pFrame->pAuxData = p->pAuxData;
7365 p->pAuxData = 0;
7366 p->nChange = 0;
7367 p->pFrame = pFrame;
7368 p->aMem = aMem = VdbeFrameMem(pFrame);
7369 p->nMem = pFrame->nChildMem;
7370 p->nCursor = (u16)pFrame->nChildCsr;
7371 p->apCsr = (VdbeCursor **)&aMem[p->nMem];
7372 pFrame->aOnce = (u8*)&p->apCsr[pProgram->nCsr];
7373 memset(pFrame->aOnce, 0, (pProgram->nOp + 7)/8);
7374 p->aOp = aOp = pProgram->aOp;
7375 p->nOp = pProgram->nOp;
7376 #ifdef SQLITE_DEBUG
7377 /* Verify that second and subsequent executions of the same trigger do not
7378 ** try to reuse register values from the first use. */
7380 int i;
7381 for(i=0; i<p->nMem; i++){
7382 aMem[i].pScopyFrom = 0; /* Prevent false-positive AboutToChange() errs */
7383 MemSetTypeFlag(&aMem[i], MEM_Undefined); /* Fault if this reg is reused */
7386 #endif
7387 pOp = &aOp[-1];
7388 goto check_for_interrupt;
7391 /* Opcode: Param P1 P2 * * *
7393 ** This opcode is only ever present in sub-programs called via the
7394 ** OP_Program instruction. Copy a value currently stored in a memory
7395 ** cell of the calling (parent) frame to cell P2 in the current frames
7396 ** address space. This is used by trigger programs to access the new.*
7397 ** and old.* values.
7399 ** The address of the cell in the parent frame is determined by adding
7400 ** the value of the P1 argument to the value of the P1 argument to the
7401 ** calling OP_Program instruction.
7403 case OP_Param: { /* out2 */
7404 VdbeFrame *pFrame;
7405 Mem *pIn;
7406 pOut = out2Prerelease(p, pOp);
7407 pFrame = p->pFrame;
7408 pIn = &pFrame->aMem[pOp->p1 + pFrame->aOp[pFrame->pc].p1];
7409 sqlite3VdbeMemShallowCopy(pOut, pIn, MEM_Ephem);
7410 break;
7413 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
7415 #ifndef SQLITE_OMIT_FOREIGN_KEY
7416 /* Opcode: FkCounter P1 P2 * * *
7417 ** Synopsis: fkctr[P1]+=P2
7419 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
7420 ** If P1 is non-zero, the database constraint counter is incremented
7421 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
7422 ** statement counter is incremented (immediate foreign key constraints).
7424 case OP_FkCounter: {
7425 if( db->flags & SQLITE_DeferFKs ){
7426 db->nDeferredImmCons += pOp->p2;
7427 }else if( pOp->p1 ){
7428 db->nDeferredCons += pOp->p2;
7429 }else{
7430 p->nFkConstraint += pOp->p2;
7432 break;
7435 /* Opcode: FkIfZero P1 P2 * * *
7436 ** Synopsis: if fkctr[P1]==0 goto P2
7438 ** This opcode tests if a foreign key constraint-counter is currently zero.
7439 ** If so, jump to instruction P2. Otherwise, fall through to the next
7440 ** instruction.
7442 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
7443 ** is zero (the one that counts deferred constraint violations). If P1 is
7444 ** zero, the jump is taken if the statement constraint-counter is zero
7445 ** (immediate foreign key constraint violations).
7447 case OP_FkIfZero: { /* jump */
7448 if( pOp->p1 ){
7449 VdbeBranchTaken(db->nDeferredCons==0 && db->nDeferredImmCons==0, 2);
7450 if( db->nDeferredCons==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
7451 }else{
7452 VdbeBranchTaken(p->nFkConstraint==0 && db->nDeferredImmCons==0, 2);
7453 if( p->nFkConstraint==0 && db->nDeferredImmCons==0 ) goto jump_to_p2;
7455 break;
7457 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
7459 #ifndef SQLITE_OMIT_AUTOINCREMENT
7460 /* Opcode: MemMax P1 P2 * * *
7461 ** Synopsis: r[P1]=max(r[P1],r[P2])
7463 ** P1 is a register in the root frame of this VM (the root frame is
7464 ** different from the current frame if this instruction is being executed
7465 ** within a sub-program). Set the value of register P1 to the maximum of
7466 ** its current value and the value in register P2.
7468 ** This instruction throws an error if the memory cell is not initially
7469 ** an integer.
7471 case OP_MemMax: { /* in2 */
7472 VdbeFrame *pFrame;
7473 if( p->pFrame ){
7474 for(pFrame=p->pFrame; pFrame->pParent; pFrame=pFrame->pParent);
7475 pIn1 = &pFrame->aMem[pOp->p1];
7476 }else{
7477 pIn1 = &aMem[pOp->p1];
7479 assert( memIsValid(pIn1) );
7480 sqlite3VdbeMemIntegerify(pIn1);
7481 pIn2 = &aMem[pOp->p2];
7482 sqlite3VdbeMemIntegerify(pIn2);
7483 if( pIn1->u.i<pIn2->u.i){
7484 pIn1->u.i = pIn2->u.i;
7486 break;
7488 #endif /* SQLITE_OMIT_AUTOINCREMENT */
7490 /* Opcode: IfPos P1 P2 P3 * *
7491 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
7493 ** Register P1 must contain an integer.
7494 ** If the value of register P1 is 1 or greater, subtract P3 from the
7495 ** value in P1 and jump to P2.
7497 ** If the initial value of register P1 is less than 1, then the
7498 ** value is unchanged and control passes through to the next instruction.
7500 case OP_IfPos: { /* jump, in1 */
7501 pIn1 = &aMem[pOp->p1];
7502 assert( pIn1->flags&MEM_Int );
7503 VdbeBranchTaken( pIn1->u.i>0, 2);
7504 if( pIn1->u.i>0 ){
7505 pIn1->u.i -= pOp->p3;
7506 goto jump_to_p2;
7508 break;
7511 /* Opcode: OffsetLimit P1 P2 P3 * *
7512 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
7514 ** This opcode performs a commonly used computation associated with
7515 ** LIMIT and OFFSET processing. r[P1] holds the limit counter. r[P3]
7516 ** holds the offset counter. The opcode computes the combined value
7517 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2]
7518 ** value computed is the total number of rows that will need to be
7519 ** visited in order to complete the query.
7521 ** If r[P3] is zero or negative, that means there is no OFFSET
7522 ** and r[P2] is set to be the value of the LIMIT, r[P1].
7524 ** if r[P1] is zero or negative, that means there is no LIMIT
7525 ** and r[P2] is set to -1.
7527 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
7529 case OP_OffsetLimit: { /* in1, out2, in3 */
7530 i64 x;
7531 pIn1 = &aMem[pOp->p1];
7532 pIn3 = &aMem[pOp->p3];
7533 pOut = out2Prerelease(p, pOp);
7534 assert( pIn1->flags & MEM_Int );
7535 assert( pIn3->flags & MEM_Int );
7536 x = pIn1->u.i;
7537 if( x<=0 || sqlite3AddInt64(&x, pIn3->u.i>0?pIn3->u.i:0) ){
7538 /* If the LIMIT is less than or equal to zero, loop forever. This
7539 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then
7540 ** also loop forever. This is undocumented. In fact, one could argue
7541 ** that the loop should terminate. But assuming 1 billion iterations
7542 ** per second (far exceeding the capabilities of any current hardware)
7543 ** it would take nearly 300 years to actually reach the limit. So
7544 ** looping forever is a reasonable approximation. */
7545 pOut->u.i = -1;
7546 }else{
7547 pOut->u.i = x;
7549 break;
7552 /* Opcode: IfNotZero P1 P2 * * *
7553 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
7555 ** Register P1 must contain an integer. If the content of register P1 is
7556 ** initially greater than zero, then decrement the value in register P1.
7557 ** If it is non-zero (negative or positive) and then also jump to P2.
7558 ** If register P1 is initially zero, leave it unchanged and fall through.
7560 case OP_IfNotZero: { /* jump, in1 */
7561 pIn1 = &aMem[pOp->p1];
7562 assert( pIn1->flags&MEM_Int );
7563 VdbeBranchTaken(pIn1->u.i<0, 2);
7564 if( pIn1->u.i ){
7565 if( pIn1->u.i>0 ) pIn1->u.i--;
7566 goto jump_to_p2;
7568 break;
7571 /* Opcode: DecrJumpZero P1 P2 * * *
7572 ** Synopsis: if (--r[P1])==0 goto P2
7574 ** Register P1 must hold an integer. Decrement the value in P1
7575 ** and jump to P2 if the new value is exactly zero.
7577 case OP_DecrJumpZero: { /* jump, in1 */
7578 pIn1 = &aMem[pOp->p1];
7579 assert( pIn1->flags&MEM_Int );
7580 if( pIn1->u.i>SMALLEST_INT64 ) pIn1->u.i--;
7581 VdbeBranchTaken(pIn1->u.i==0, 2);
7582 if( pIn1->u.i==0 ) goto jump_to_p2;
7583 break;
7587 /* Opcode: AggStep * P2 P3 P4 P5
7588 ** Synopsis: accum=r[P3] step(r[P2@P5])
7590 ** Execute the xStep function for an aggregate.
7591 ** The function has P5 arguments. P4 is a pointer to the
7592 ** FuncDef structure that specifies the function. Register P3 is the
7593 ** accumulator.
7595 ** The P5 arguments are taken from register P2 and its
7596 ** successors.
7598 /* Opcode: AggInverse * P2 P3 P4 P5
7599 ** Synopsis: accum=r[P3] inverse(r[P2@P5])
7601 ** Execute the xInverse function for an aggregate.
7602 ** The function has P5 arguments. P4 is a pointer to the
7603 ** FuncDef structure that specifies the function. Register P3 is the
7604 ** accumulator.
7606 ** The P5 arguments are taken from register P2 and its
7607 ** successors.
7609 /* Opcode: AggStep1 P1 P2 P3 P4 P5
7610 ** Synopsis: accum=r[P3] step(r[P2@P5])
7612 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
7613 ** aggregate. The function has P5 arguments. P4 is a pointer to the
7614 ** FuncDef structure that specifies the function. Register P3 is the
7615 ** accumulator.
7617 ** The P5 arguments are taken from register P2 and its
7618 ** successors.
7620 ** This opcode is initially coded as OP_AggStep0. On first evaluation,
7621 ** the FuncDef stored in P4 is converted into an sqlite3_context and
7622 ** the opcode is changed. In this way, the initialization of the
7623 ** sqlite3_context only happens once, instead of on each call to the
7624 ** step function.
7626 case OP_AggInverse:
7627 case OP_AggStep: {
7628 int n;
7629 sqlite3_context *pCtx;
7631 assert( pOp->p4type==P4_FUNCDEF );
7632 n = pOp->p5;
7633 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
7634 assert( n==0 || (pOp->p2>0 && pOp->p2+n<=(p->nMem+1 - p->nCursor)+1) );
7635 assert( pOp->p3<pOp->p2 || pOp->p3>=pOp->p2+n );
7636 pCtx = sqlite3DbMallocRawNN(db, n*sizeof(sqlite3_value*) +
7637 (sizeof(pCtx[0]) + sizeof(Mem) - sizeof(sqlite3_value*)));
7638 if( pCtx==0 ) goto no_mem;
7639 pCtx->pMem = 0;
7640 pCtx->pOut = (Mem*)&(pCtx->argv[n]);
7641 sqlite3VdbeMemInit(pCtx->pOut, db, MEM_Null);
7642 pCtx->pFunc = pOp->p4.pFunc;
7643 pCtx->iOp = (int)(pOp - aOp);
7644 pCtx->pVdbe = p;
7645 pCtx->skipFlag = 0;
7646 pCtx->isError = 0;
7647 pCtx->enc = encoding;
7648 pCtx->argc = n;
7649 pOp->p4type = P4_FUNCCTX;
7650 pOp->p4.pCtx = pCtx;
7652 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
7653 assert( pOp->p1==(pOp->opcode==OP_AggInverse) );
7655 pOp->opcode = OP_AggStep1;
7656 /* Fall through into OP_AggStep */
7657 /* no break */ deliberate_fall_through
7659 case OP_AggStep1: {
7660 int i;
7661 sqlite3_context *pCtx;
7662 Mem *pMem;
7664 assert( pOp->p4type==P4_FUNCCTX );
7665 pCtx = pOp->p4.pCtx;
7666 pMem = &aMem[pOp->p3];
7668 #ifdef SQLITE_DEBUG
7669 if( pOp->p1 ){
7670 /* This is an OP_AggInverse call. Verify that xStep has always
7671 ** been called at least once prior to any xInverse call. */
7672 assert( pMem->uTemp==0x1122e0e3 );
7673 }else{
7674 /* This is an OP_AggStep call. Mark it as such. */
7675 pMem->uTemp = 0x1122e0e3;
7677 #endif
7679 /* If this function is inside of a trigger, the register array in aMem[]
7680 ** might change from one evaluation to the next. The next block of code
7681 ** checks to see if the register array has changed, and if so it
7682 ** reinitializes the relevant parts of the sqlite3_context object */
7683 if( pCtx->pMem != pMem ){
7684 pCtx->pMem = pMem;
7685 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
7688 #ifdef SQLITE_DEBUG
7689 for(i=0; i<pCtx->argc; i++){
7690 assert( memIsValid(pCtx->argv[i]) );
7691 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
7693 #endif
7695 pMem->n++;
7696 assert( pCtx->pOut->flags==MEM_Null );
7697 assert( pCtx->isError==0 );
7698 assert( pCtx->skipFlag==0 );
7699 #ifndef SQLITE_OMIT_WINDOWFUNC
7700 if( pOp->p1 ){
7701 (pCtx->pFunc->xInverse)(pCtx,pCtx->argc,pCtx->argv);
7702 }else
7703 #endif
7704 (pCtx->pFunc->xSFunc)(pCtx,pCtx->argc,pCtx->argv); /* IMP: R-24505-23230 */
7706 if( pCtx->isError ){
7707 if( pCtx->isError>0 ){
7708 sqlite3VdbeError(p, "%s", sqlite3_value_text(pCtx->pOut));
7709 rc = pCtx->isError;
7711 if( pCtx->skipFlag ){
7712 assert( pOp[-1].opcode==OP_CollSeq );
7713 i = pOp[-1].p1;
7714 if( i ) sqlite3VdbeMemSetInt64(&aMem[i], 1);
7715 pCtx->skipFlag = 0;
7717 sqlite3VdbeMemRelease(pCtx->pOut);
7718 pCtx->pOut->flags = MEM_Null;
7719 pCtx->isError = 0;
7720 if( rc ) goto abort_due_to_error;
7722 assert( pCtx->pOut->flags==MEM_Null );
7723 assert( pCtx->skipFlag==0 );
7724 break;
7727 /* Opcode: AggFinal P1 P2 * P4 *
7728 ** Synopsis: accum=r[P1] N=P2
7730 ** P1 is the memory location that is the accumulator for an aggregate
7731 ** or window function. Execute the finalizer function
7732 ** for an aggregate and store the result in P1.
7734 ** P2 is the number of arguments that the step function takes and
7735 ** P4 is a pointer to the FuncDef for this function. The P2
7736 ** argument is not used by this opcode. It is only there to disambiguate
7737 ** functions that can take varying numbers of arguments. The
7738 ** P4 argument is only needed for the case where
7739 ** the step function was not previously called.
7741 /* Opcode: AggValue * P2 P3 P4 *
7742 ** Synopsis: r[P3]=value N=P2
7744 ** Invoke the xValue() function and store the result in register P3.
7746 ** P2 is the number of arguments that the step function takes and
7747 ** P4 is a pointer to the FuncDef for this function. The P2
7748 ** argument is not used by this opcode. It is only there to disambiguate
7749 ** functions that can take varying numbers of arguments. The
7750 ** P4 argument is only needed for the case where
7751 ** the step function was not previously called.
7753 case OP_AggValue:
7754 case OP_AggFinal: {
7755 Mem *pMem;
7756 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
7757 assert( pOp->p3==0 || pOp->opcode==OP_AggValue );
7758 pMem = &aMem[pOp->p1];
7759 assert( (pMem->flags & ~(MEM_Null|MEM_Agg))==0 );
7760 #ifndef SQLITE_OMIT_WINDOWFUNC
7761 if( pOp->p3 ){
7762 memAboutToChange(p, &aMem[pOp->p3]);
7763 rc = sqlite3VdbeMemAggValue(pMem, &aMem[pOp->p3], pOp->p4.pFunc);
7764 pMem = &aMem[pOp->p3];
7765 }else
7766 #endif
7768 rc = sqlite3VdbeMemFinalize(pMem, pOp->p4.pFunc);
7771 if( rc ){
7772 sqlite3VdbeError(p, "%s", sqlite3_value_text(pMem));
7773 goto abort_due_to_error;
7775 sqlite3VdbeChangeEncoding(pMem, encoding);
7776 UPDATE_MAX_BLOBSIZE(pMem);
7777 REGISTER_TRACE((int)(pMem-aMem), pMem);
7778 break;
7781 #ifndef SQLITE_OMIT_WAL
7782 /* Opcode: Checkpoint P1 P2 P3 * *
7784 ** Checkpoint database P1. This is a no-op if P1 is not currently in
7785 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
7786 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
7787 ** SQLITE_BUSY or not, respectively. Write the number of pages in the
7788 ** WAL after the checkpoint into mem[P3+1] and the number of pages
7789 ** in the WAL that have been checkpointed after the checkpoint
7790 ** completes into mem[P3+2]. However on an error, mem[P3+1] and
7791 ** mem[P3+2] are initialized to -1.
7793 case OP_Checkpoint: {
7794 int i; /* Loop counter */
7795 int aRes[3]; /* Results */
7796 Mem *pMem; /* Write results here */
7798 assert( p->readOnly==0 );
7799 aRes[0] = 0;
7800 aRes[1] = aRes[2] = -1;
7801 assert( pOp->p2==SQLITE_CHECKPOINT_PASSIVE
7802 || pOp->p2==SQLITE_CHECKPOINT_FULL
7803 || pOp->p2==SQLITE_CHECKPOINT_RESTART
7804 || pOp->p2==SQLITE_CHECKPOINT_TRUNCATE
7806 rc = sqlite3Checkpoint(db, pOp->p1, pOp->p2, &aRes[1], &aRes[2]);
7807 if( rc ){
7808 if( rc!=SQLITE_BUSY ) goto abort_due_to_error;
7809 rc = SQLITE_OK;
7810 aRes[0] = 1;
7812 for(i=0, pMem = &aMem[pOp->p3]; i<3; i++, pMem++){
7813 sqlite3VdbeMemSetInt64(pMem, (i64)aRes[i]);
7815 break;
7817 #endif
7819 #ifndef SQLITE_OMIT_PRAGMA
7820 /* Opcode: JournalMode P1 P2 P3 * *
7822 ** Change the journal mode of database P1 to P3. P3 must be one of the
7823 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
7824 ** modes (delete, truncate, persist, off and memory), this is a simple
7825 ** operation. No IO is required.
7827 ** If changing into or out of WAL mode the procedure is more complicated.
7829 ** Write a string containing the final journal-mode to register P2.
7831 case OP_JournalMode: { /* out2 */
7832 Btree *pBt; /* Btree to change journal mode of */
7833 Pager *pPager; /* Pager associated with pBt */
7834 int eNew; /* New journal mode */
7835 int eOld; /* The old journal mode */
7836 #ifndef SQLITE_OMIT_WAL
7837 const char *zFilename; /* Name of database file for pPager */
7838 #endif
7840 pOut = out2Prerelease(p, pOp);
7841 eNew = pOp->p3;
7842 assert( eNew==PAGER_JOURNALMODE_DELETE
7843 || eNew==PAGER_JOURNALMODE_TRUNCATE
7844 || eNew==PAGER_JOURNALMODE_PERSIST
7845 || eNew==PAGER_JOURNALMODE_OFF
7846 || eNew==PAGER_JOURNALMODE_MEMORY
7847 || eNew==PAGER_JOURNALMODE_WAL
7848 || eNew==PAGER_JOURNALMODE_QUERY
7850 assert( pOp->p1>=0 && pOp->p1<db->nDb );
7851 assert( p->readOnly==0 );
7853 pBt = db->aDb[pOp->p1].pBt;
7854 pPager = sqlite3BtreePager(pBt);
7855 eOld = sqlite3PagerGetJournalMode(pPager);
7856 if( eNew==PAGER_JOURNALMODE_QUERY ) eNew = eOld;
7857 assert( sqlite3BtreeHoldsMutex(pBt) );
7858 if( !sqlite3PagerOkToChangeJournalMode(pPager) ) eNew = eOld;
7860 #ifndef SQLITE_OMIT_WAL
7861 zFilename = sqlite3PagerFilename(pPager, 1);
7863 /* Do not allow a transition to journal_mode=WAL for a database
7864 ** in temporary storage or if the VFS does not support shared memory
7866 if( eNew==PAGER_JOURNALMODE_WAL
7867 && (sqlite3Strlen30(zFilename)==0 /* Temp file */
7868 || !sqlite3PagerWalSupported(pPager)) /* No shared-memory support */
7870 eNew = eOld;
7873 if( (eNew!=eOld)
7874 && (eOld==PAGER_JOURNALMODE_WAL || eNew==PAGER_JOURNALMODE_WAL)
7876 if( !db->autoCommit || db->nVdbeRead>1 ){
7877 rc = SQLITE_ERROR;
7878 sqlite3VdbeError(p,
7879 "cannot change %s wal mode from within a transaction",
7880 (eNew==PAGER_JOURNALMODE_WAL ? "into" : "out of")
7882 goto abort_due_to_error;
7883 }else{
7885 if( eOld==PAGER_JOURNALMODE_WAL ){
7886 /* If leaving WAL mode, close the log file. If successful, the call
7887 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
7888 ** file. An EXCLUSIVE lock may still be held on the database file
7889 ** after a successful return.
7891 rc = sqlite3PagerCloseWal(pPager, db);
7892 if( rc==SQLITE_OK ){
7893 sqlite3PagerSetJournalMode(pPager, eNew);
7895 }else if( eOld==PAGER_JOURNALMODE_MEMORY ){
7896 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
7897 ** as an intermediate */
7898 sqlite3PagerSetJournalMode(pPager, PAGER_JOURNALMODE_OFF);
7901 /* Open a transaction on the database file. Regardless of the journal
7902 ** mode, this transaction always uses a rollback journal.
7904 assert( sqlite3BtreeTxnState(pBt)!=SQLITE_TXN_WRITE );
7905 if( rc==SQLITE_OK ){
7906 rc = sqlite3BtreeSetVersion(pBt, (eNew==PAGER_JOURNALMODE_WAL ? 2 : 1));
7910 #endif /* ifndef SQLITE_OMIT_WAL */
7912 if( rc ) eNew = eOld;
7913 eNew = sqlite3PagerSetJournalMode(pPager, eNew);
7915 pOut->flags = MEM_Str|MEM_Static|MEM_Term;
7916 pOut->z = (char *)sqlite3JournalModename(eNew);
7917 pOut->n = sqlite3Strlen30(pOut->z);
7918 pOut->enc = SQLITE_UTF8;
7919 sqlite3VdbeChangeEncoding(pOut, encoding);
7920 if( rc ) goto abort_due_to_error;
7921 break;
7923 #endif /* SQLITE_OMIT_PRAGMA */
7925 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
7926 /* Opcode: Vacuum P1 P2 * * *
7928 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more
7929 ** for an attached database. The "temp" database may not be vacuumed.
7931 ** If P2 is not zero, then it is a register holding a string which is
7932 ** the file into which the result of vacuum should be written. When
7933 ** P2 is zero, the vacuum overwrites the original database.
7935 case OP_Vacuum: {
7936 assert( p->readOnly==0 );
7937 rc = sqlite3RunVacuum(&p->zErrMsg, db, pOp->p1,
7938 pOp->p2 ? &aMem[pOp->p2] : 0);
7939 if( rc ) goto abort_due_to_error;
7940 break;
7942 #endif
7944 #if !defined(SQLITE_OMIT_AUTOVACUUM)
7945 /* Opcode: IncrVacuum P1 P2 * * *
7947 ** Perform a single step of the incremental vacuum procedure on
7948 ** the P1 database. If the vacuum has finished, jump to instruction
7949 ** P2. Otherwise, fall through to the next instruction.
7951 case OP_IncrVacuum: { /* jump */
7952 Btree *pBt;
7954 assert( pOp->p1>=0 && pOp->p1<db->nDb );
7955 assert( DbMaskTest(p->btreeMask, pOp->p1) );
7956 assert( p->readOnly==0 );
7957 pBt = db->aDb[pOp->p1].pBt;
7958 rc = sqlite3BtreeIncrVacuum(pBt);
7959 VdbeBranchTaken(rc==SQLITE_DONE,2);
7960 if( rc ){
7961 if( rc!=SQLITE_DONE ) goto abort_due_to_error;
7962 rc = SQLITE_OK;
7963 goto jump_to_p2;
7965 break;
7967 #endif
7969 /* Opcode: Expire P1 P2 * * *
7971 ** Cause precompiled statements to expire. When an expired statement
7972 ** is executed using sqlite3_step() it will either automatically
7973 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
7974 ** or it will fail with SQLITE_SCHEMA.
7976 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
7977 ** then only the currently executing statement is expired.
7979 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1,
7980 ** then running SQL statements are allowed to continue to run to completion.
7981 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
7982 ** that might help the statement run faster but which does not affect the
7983 ** correctness of operation.
7985 case OP_Expire: {
7986 assert( pOp->p2==0 || pOp->p2==1 );
7987 if( !pOp->p1 ){
7988 sqlite3ExpirePreparedStatements(db, pOp->p2);
7989 }else{
7990 p->expired = pOp->p2+1;
7992 break;
7995 /* Opcode: CursorLock P1 * * * *
7997 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be
7998 ** written by an other cursor.
8000 case OP_CursorLock: {
8001 VdbeCursor *pC;
8002 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
8003 pC = p->apCsr[pOp->p1];
8004 assert( pC!=0 );
8005 assert( pC->eCurType==CURTYPE_BTREE );
8006 sqlite3BtreeCursorPin(pC->uc.pCursor);
8007 break;
8010 /* Opcode: CursorUnlock P1 * * * *
8012 ** Unlock the btree to which cursor P1 is pointing so that it can be
8013 ** written by other cursors.
8015 case OP_CursorUnlock: {
8016 VdbeCursor *pC;
8017 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
8018 pC = p->apCsr[pOp->p1];
8019 assert( pC!=0 );
8020 assert( pC->eCurType==CURTYPE_BTREE );
8021 sqlite3BtreeCursorUnpin(pC->uc.pCursor);
8022 break;
8025 #ifndef SQLITE_OMIT_SHARED_CACHE
8026 /* Opcode: TableLock P1 P2 P3 P4 *
8027 ** Synopsis: iDb=P1 root=P2 write=P3
8029 ** Obtain a lock on a particular table. This instruction is only used when
8030 ** the shared-cache feature is enabled.
8032 ** P1 is the index of the database in sqlite3.aDb[] of the database
8033 ** on which the lock is acquired. A readlock is obtained if P3==0 or
8034 ** a write lock if P3==1.
8036 ** P2 contains the root-page of the table to lock.
8038 ** P4 contains a pointer to the name of the table being locked. This is only
8039 ** used to generate an error message if the lock cannot be obtained.
8041 case OP_TableLock: {
8042 u8 isWriteLock = (u8)pOp->p3;
8043 if( isWriteLock || 0==(db->flags&SQLITE_ReadUncommit) ){
8044 int p1 = pOp->p1;
8045 assert( p1>=0 && p1<db->nDb );
8046 assert( DbMaskTest(p->btreeMask, p1) );
8047 assert( isWriteLock==0 || isWriteLock==1 );
8048 rc = sqlite3BtreeLockTable(db->aDb[p1].pBt, pOp->p2, isWriteLock);
8049 if( rc ){
8050 if( (rc&0xFF)==SQLITE_LOCKED ){
8051 const char *z = pOp->p4.z;
8052 sqlite3VdbeError(p, "database table is locked: %s", z);
8054 goto abort_due_to_error;
8057 break;
8059 #endif /* SQLITE_OMIT_SHARED_CACHE */
8061 #ifndef SQLITE_OMIT_VIRTUALTABLE
8062 /* Opcode: VBegin * * * P4 *
8064 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
8065 ** xBegin method for that table.
8067 ** Also, whether or not P4 is set, check that this is not being called from
8068 ** within a callback to a virtual table xSync() method. If it is, the error
8069 ** code will be set to SQLITE_LOCKED.
8071 case OP_VBegin: {
8072 VTable *pVTab;
8073 pVTab = pOp->p4.pVtab;
8074 rc = sqlite3VtabBegin(db, pVTab);
8075 if( pVTab ) sqlite3VtabImportErrmsg(p, pVTab->pVtab);
8076 if( rc ) goto abort_due_to_error;
8077 break;
8079 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8081 #ifndef SQLITE_OMIT_VIRTUALTABLE
8082 /* Opcode: VCreate P1 P2 * * *
8084 ** P2 is a register that holds the name of a virtual table in database
8085 ** P1. Call the xCreate method for that table.
8087 case OP_VCreate: {
8088 Mem sMem; /* For storing the record being decoded */
8089 const char *zTab; /* Name of the virtual table */
8091 memset(&sMem, 0, sizeof(sMem));
8092 sMem.db = db;
8093 /* Because P2 is always a static string, it is impossible for the
8094 ** sqlite3VdbeMemCopy() to fail */
8095 assert( (aMem[pOp->p2].flags & MEM_Str)!=0 );
8096 assert( (aMem[pOp->p2].flags & MEM_Static)!=0 );
8097 rc = sqlite3VdbeMemCopy(&sMem, &aMem[pOp->p2]);
8098 assert( rc==SQLITE_OK );
8099 zTab = (const char*)sqlite3_value_text(&sMem);
8100 assert( zTab || db->mallocFailed );
8101 if( zTab ){
8102 rc = sqlite3VtabCallCreate(db, pOp->p1, zTab, &p->zErrMsg);
8104 sqlite3VdbeMemRelease(&sMem);
8105 if( rc ) goto abort_due_to_error;
8106 break;
8108 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8110 #ifndef SQLITE_OMIT_VIRTUALTABLE
8111 /* Opcode: VDestroy P1 * * P4 *
8113 ** P4 is the name of a virtual table in database P1. Call the xDestroy method
8114 ** of that table.
8116 case OP_VDestroy: {
8117 db->nVDestroy++;
8118 rc = sqlite3VtabCallDestroy(db, pOp->p1, pOp->p4.z);
8119 db->nVDestroy--;
8120 assert( p->errorAction==OE_Abort && p->usesStmtJournal );
8121 if( rc ) goto abort_due_to_error;
8122 break;
8124 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8126 #ifndef SQLITE_OMIT_VIRTUALTABLE
8127 /* Opcode: VOpen P1 * * P4 *
8129 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8130 ** P1 is a cursor number. This opcode opens a cursor to the virtual
8131 ** table and stores that cursor in P1.
8133 case OP_VOpen: { /* ncycle */
8134 VdbeCursor *pCur;
8135 sqlite3_vtab_cursor *pVCur;
8136 sqlite3_vtab *pVtab;
8137 const sqlite3_module *pModule;
8139 assert( p->bIsReader );
8140 pCur = 0;
8141 pVCur = 0;
8142 pVtab = pOp->p4.pVtab->pVtab;
8143 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
8144 rc = SQLITE_LOCKED;
8145 goto abort_due_to_error;
8147 pModule = pVtab->pModule;
8148 rc = pModule->xOpen(pVtab, &pVCur);
8149 sqlite3VtabImportErrmsg(p, pVtab);
8150 if( rc ) goto abort_due_to_error;
8152 /* Initialize sqlite3_vtab_cursor base class */
8153 pVCur->pVtab = pVtab;
8155 /* Initialize vdbe cursor object */
8156 pCur = allocateCursor(p, pOp->p1, 0, CURTYPE_VTAB);
8157 if( pCur ){
8158 pCur->uc.pVCur = pVCur;
8159 pVtab->nRef++;
8160 }else{
8161 assert( db->mallocFailed );
8162 pModule->xClose(pVCur);
8163 goto no_mem;
8165 break;
8167 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8169 #ifndef SQLITE_OMIT_VIRTUALTABLE
8170 /* Opcode: VCheck P1 P2 P3 P4 *
8172 ** P4 is a pointer to a Table object that is a virtual table in schema P1
8173 ** that supports the xIntegrity() method. This opcode runs the xIntegrity()
8174 ** method for that virtual table, using P3 as the integer argument. If
8175 ** an error is reported back, the table name is prepended to the error
8176 ** message and that message is stored in P2. If no errors are seen,
8177 ** register P2 is set to NULL.
8179 case OP_VCheck: { /* out2 */
8180 Table *pTab;
8181 sqlite3_vtab *pVtab;
8182 const sqlite3_module *pModule;
8183 char *zErr = 0;
8185 pOut = &aMem[pOp->p2];
8186 sqlite3VdbeMemSetNull(pOut); /* Innocent until proven guilty */
8187 assert( pOp->p4type==P4_TABLEREF );
8188 pTab = pOp->p4.pTab;
8189 assert( pTab!=0 );
8190 assert( pTab->nTabRef>0 );
8191 assert( IsVirtual(pTab) );
8192 if( pTab->u.vtab.p==0 ) break;
8193 pVtab = pTab->u.vtab.p->pVtab;
8194 assert( pVtab!=0 );
8195 pModule = pVtab->pModule;
8196 assert( pModule!=0 );
8197 assert( pModule->iVersion>=4 );
8198 assert( pModule->xIntegrity!=0 );
8199 sqlite3VtabLock(pTab->u.vtab.p);
8200 assert( pOp->p1>=0 && pOp->p1<db->nDb );
8201 rc = pModule->xIntegrity(pVtab, db->aDb[pOp->p1].zDbSName, pTab->zName,
8202 pOp->p3, &zErr);
8203 sqlite3VtabUnlock(pTab->u.vtab.p);
8204 if( rc ){
8205 sqlite3_free(zErr);
8206 goto abort_due_to_error;
8208 if( zErr ){
8209 sqlite3VdbeMemSetStr(pOut, zErr, -1, SQLITE_UTF8, sqlite3_free);
8211 break;
8213 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8215 #ifndef SQLITE_OMIT_VIRTUALTABLE
8216 /* Opcode: VInitIn P1 P2 P3 * *
8217 ** Synopsis: r[P2]=ValueList(P1,P3)
8219 ** Set register P2 to be a pointer to a ValueList object for cursor P1
8220 ** with cache register P3 and output register P3+1. This ValueList object
8221 ** can be used as the first argument to sqlite3_vtab_in_first() and
8222 ** sqlite3_vtab_in_next() to extract all of the values stored in the P1
8223 ** cursor. Register P3 is used to hold the values returned by
8224 ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next().
8226 case OP_VInitIn: { /* out2, ncycle */
8227 VdbeCursor *pC; /* The cursor containing the RHS values */
8228 ValueList *pRhs; /* New ValueList object to put in reg[P2] */
8230 pC = p->apCsr[pOp->p1];
8231 pRhs = sqlite3_malloc64( sizeof(*pRhs) );
8232 if( pRhs==0 ) goto no_mem;
8233 pRhs->pCsr = pC->uc.pCursor;
8234 pRhs->pOut = &aMem[pOp->p3];
8235 pOut = out2Prerelease(p, pOp);
8236 pOut->flags = MEM_Null;
8237 sqlite3VdbeMemSetPointer(pOut, pRhs, "ValueList", sqlite3VdbeValueListFree);
8238 break;
8240 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8243 #ifndef SQLITE_OMIT_VIRTUALTABLE
8244 /* Opcode: VFilter P1 P2 P3 P4 *
8245 ** Synopsis: iplan=r[P3] zplan='P4'
8247 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if
8248 ** the filtered result set is empty.
8250 ** P4 is either NULL or a string that was generated by the xBestIndex
8251 ** method of the module. The interpretation of the P4 string is left
8252 ** to the module implementation.
8254 ** This opcode invokes the xFilter method on the virtual table specified
8255 ** by P1. The integer query plan parameter to xFilter is stored in register
8256 ** P3. Register P3+1 stores the argc parameter to be passed to the
8257 ** xFilter method. Registers P3+2..P3+1+argc are the argc
8258 ** additional parameters which are passed to
8259 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
8261 ** A jump is made to P2 if the result set after filtering would be empty.
8263 case OP_VFilter: { /* jump, ncycle */
8264 int nArg;
8265 int iQuery;
8266 const sqlite3_module *pModule;
8267 Mem *pQuery;
8268 Mem *pArgc;
8269 sqlite3_vtab_cursor *pVCur;
8270 sqlite3_vtab *pVtab;
8271 VdbeCursor *pCur;
8272 int res;
8273 int i;
8274 Mem **apArg;
8276 pQuery = &aMem[pOp->p3];
8277 pArgc = &pQuery[1];
8278 pCur = p->apCsr[pOp->p1];
8279 assert( memIsValid(pQuery) );
8280 REGISTER_TRACE(pOp->p3, pQuery);
8281 assert( pCur!=0 );
8282 assert( pCur->eCurType==CURTYPE_VTAB );
8283 pVCur = pCur->uc.pVCur;
8284 pVtab = pVCur->pVtab;
8285 pModule = pVtab->pModule;
8287 /* Grab the index number and argc parameters */
8288 assert( (pQuery->flags&MEM_Int)!=0 && pArgc->flags==MEM_Int );
8289 nArg = (int)pArgc->u.i;
8290 iQuery = (int)pQuery->u.i;
8292 /* Invoke the xFilter method */
8293 apArg = p->apArg;
8294 for(i = 0; i<nArg; i++){
8295 apArg[i] = &pArgc[i+1];
8297 rc = pModule->xFilter(pVCur, iQuery, pOp->p4.z, nArg, apArg);
8298 sqlite3VtabImportErrmsg(p, pVtab);
8299 if( rc ) goto abort_due_to_error;
8300 res = pModule->xEof(pVCur);
8301 pCur->nullRow = 0;
8302 VdbeBranchTaken(res!=0,2);
8303 if( res ) goto jump_to_p2;
8304 break;
8306 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8308 #ifndef SQLITE_OMIT_VIRTUALTABLE
8309 /* Opcode: VColumn P1 P2 P3 * P5
8310 ** Synopsis: r[P3]=vcolumn(P2)
8312 ** Store in register P3 the value of the P2-th column of
8313 ** the current row of the virtual-table of cursor P1.
8315 ** If the VColumn opcode is being used to fetch the value of
8316 ** an unchanging column during an UPDATE operation, then the P5
8317 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange()
8318 ** function to return true inside the xColumn method of the virtual
8319 ** table implementation. The P5 column might also contain other
8320 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
8321 ** unused by OP_VColumn.
8323 case OP_VColumn: { /* ncycle */
8324 sqlite3_vtab *pVtab;
8325 const sqlite3_module *pModule;
8326 Mem *pDest;
8327 sqlite3_context sContext;
8328 FuncDef nullFunc;
8330 VdbeCursor *pCur = p->apCsr[pOp->p1];
8331 assert( pCur!=0 );
8332 assert( pOp->p3>0 && pOp->p3<=(p->nMem+1 - p->nCursor) );
8333 pDest = &aMem[pOp->p3];
8334 memAboutToChange(p, pDest);
8335 if( pCur->nullRow ){
8336 sqlite3VdbeMemSetNull(pDest);
8337 break;
8339 assert( pCur->eCurType==CURTYPE_VTAB );
8340 pVtab = pCur->uc.pVCur->pVtab;
8341 pModule = pVtab->pModule;
8342 assert( pModule->xColumn );
8343 memset(&sContext, 0, sizeof(sContext));
8344 sContext.pOut = pDest;
8345 sContext.enc = encoding;
8346 nullFunc.pUserData = 0;
8347 nullFunc.funcFlags = SQLITE_RESULT_SUBTYPE;
8348 sContext.pFunc = &nullFunc;
8349 assert( pOp->p5==OPFLAG_NOCHNG || pOp->p5==0 );
8350 if( pOp->p5 & OPFLAG_NOCHNG ){
8351 sqlite3VdbeMemSetNull(pDest);
8352 pDest->flags = MEM_Null|MEM_Zero;
8353 pDest->u.nZero = 0;
8354 }else{
8355 MemSetTypeFlag(pDest, MEM_Null);
8357 rc = pModule->xColumn(pCur->uc.pVCur, &sContext, pOp->p2);
8358 sqlite3VtabImportErrmsg(p, pVtab);
8359 if( sContext.isError>0 ){
8360 sqlite3VdbeError(p, "%s", sqlite3_value_text(pDest));
8361 rc = sContext.isError;
8363 sqlite3VdbeChangeEncoding(pDest, encoding);
8364 REGISTER_TRACE(pOp->p3, pDest);
8365 UPDATE_MAX_BLOBSIZE(pDest);
8367 if( rc ) goto abort_due_to_error;
8368 break;
8370 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8372 #ifndef SQLITE_OMIT_VIRTUALTABLE
8373 /* Opcode: VNext P1 P2 * * *
8375 ** Advance virtual table P1 to the next row in its result set and
8376 ** jump to instruction P2. Or, if the virtual table has reached
8377 ** the end of its result set, then fall through to the next instruction.
8379 case OP_VNext: { /* jump, ncycle */
8380 sqlite3_vtab *pVtab;
8381 const sqlite3_module *pModule;
8382 int res;
8383 VdbeCursor *pCur;
8385 pCur = p->apCsr[pOp->p1];
8386 assert( pCur!=0 );
8387 assert( pCur->eCurType==CURTYPE_VTAB );
8388 if( pCur->nullRow ){
8389 break;
8391 pVtab = pCur->uc.pVCur->pVtab;
8392 pModule = pVtab->pModule;
8393 assert( pModule->xNext );
8395 /* Invoke the xNext() method of the module. There is no way for the
8396 ** underlying implementation to return an error if one occurs during
8397 ** xNext(). Instead, if an error occurs, true is returned (indicating that
8398 ** data is available) and the error code returned when xColumn or
8399 ** some other method is next invoked on the save virtual table cursor.
8401 rc = pModule->xNext(pCur->uc.pVCur);
8402 sqlite3VtabImportErrmsg(p, pVtab);
8403 if( rc ) goto abort_due_to_error;
8404 res = pModule->xEof(pCur->uc.pVCur);
8405 VdbeBranchTaken(!res,2);
8406 if( !res ){
8407 /* If there is data, jump to P2 */
8408 goto jump_to_p2_and_check_for_interrupt;
8410 goto check_for_interrupt;
8412 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8414 #ifndef SQLITE_OMIT_VIRTUALTABLE
8415 /* Opcode: VRename P1 * * P4 *
8417 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8418 ** This opcode invokes the corresponding xRename method. The value
8419 ** in register P1 is passed as the zName argument to the xRename method.
8421 case OP_VRename: {
8422 sqlite3_vtab *pVtab;
8423 Mem *pName;
8424 int isLegacy;
8426 isLegacy = (db->flags & SQLITE_LegacyAlter);
8427 db->flags |= SQLITE_LegacyAlter;
8428 pVtab = pOp->p4.pVtab->pVtab;
8429 pName = &aMem[pOp->p1];
8430 assert( pVtab->pModule->xRename );
8431 assert( memIsValid(pName) );
8432 assert( p->readOnly==0 );
8433 REGISTER_TRACE(pOp->p1, pName);
8434 assert( pName->flags & MEM_Str );
8435 testcase( pName->enc==SQLITE_UTF8 );
8436 testcase( pName->enc==SQLITE_UTF16BE );
8437 testcase( pName->enc==SQLITE_UTF16LE );
8438 rc = sqlite3VdbeChangeEncoding(pName, SQLITE_UTF8);
8439 if( rc ) goto abort_due_to_error;
8440 rc = pVtab->pModule->xRename(pVtab, pName->z);
8441 if( isLegacy==0 ) db->flags &= ~(u64)SQLITE_LegacyAlter;
8442 sqlite3VtabImportErrmsg(p, pVtab);
8443 p->expired = 0;
8444 if( rc ) goto abort_due_to_error;
8445 break;
8447 #endif
8449 #ifndef SQLITE_OMIT_VIRTUALTABLE
8450 /* Opcode: VUpdate P1 P2 P3 P4 P5
8451 ** Synopsis: data=r[P3@P2]
8453 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8454 ** This opcode invokes the corresponding xUpdate method. P2 values
8455 ** are contiguous memory cells starting at P3 to pass to the xUpdate
8456 ** invocation. The value in register (P3+P2-1) corresponds to the
8457 ** p2th element of the argv array passed to xUpdate.
8459 ** The xUpdate method will do a DELETE or an INSERT or both.
8460 ** The argv[0] element (which corresponds to memory cell P3)
8461 ** is the rowid of a row to delete. If argv[0] is NULL then no
8462 ** deletion occurs. The argv[1] element is the rowid of the new
8463 ** row. This can be NULL to have the virtual table select the new
8464 ** rowid for itself. The subsequent elements in the array are
8465 ** the values of columns in the new row.
8467 ** If P2==1 then no insert is performed. argv[0] is the rowid of
8468 ** a row to delete.
8470 ** P1 is a boolean flag. If it is set to true and the xUpdate call
8471 ** is successful, then the value returned by sqlite3_last_insert_rowid()
8472 ** is set to the value of the rowid for the row just inserted.
8474 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
8475 ** apply in the case of a constraint failure on an insert or update.
8477 case OP_VUpdate: {
8478 sqlite3_vtab *pVtab;
8479 const sqlite3_module *pModule;
8480 int nArg;
8481 int i;
8482 sqlite_int64 rowid = 0;
8483 Mem **apArg;
8484 Mem *pX;
8486 assert( pOp->p2==1 || pOp->p5==OE_Fail || pOp->p5==OE_Rollback
8487 || pOp->p5==OE_Abort || pOp->p5==OE_Ignore || pOp->p5==OE_Replace
8489 assert( p->readOnly==0 );
8490 if( db->mallocFailed ) goto no_mem;
8491 sqlite3VdbeIncrWriteCounter(p, 0);
8492 pVtab = pOp->p4.pVtab->pVtab;
8493 if( pVtab==0 || NEVER(pVtab->pModule==0) ){
8494 rc = SQLITE_LOCKED;
8495 goto abort_due_to_error;
8497 pModule = pVtab->pModule;
8498 nArg = pOp->p2;
8499 assert( pOp->p4type==P4_VTAB );
8500 if( ALWAYS(pModule->xUpdate) ){
8501 u8 vtabOnConflict = db->vtabOnConflict;
8502 apArg = p->apArg;
8503 pX = &aMem[pOp->p3];
8504 for(i=0; i<nArg; i++){
8505 assert( memIsValid(pX) );
8506 memAboutToChange(p, pX);
8507 apArg[i] = pX;
8508 pX++;
8510 db->vtabOnConflict = pOp->p5;
8511 rc = pModule->xUpdate(pVtab, nArg, apArg, &rowid);
8512 db->vtabOnConflict = vtabOnConflict;
8513 sqlite3VtabImportErrmsg(p, pVtab);
8514 if( rc==SQLITE_OK && pOp->p1 ){
8515 assert( nArg>1 && apArg[0] && (apArg[0]->flags&MEM_Null) );
8516 db->lastRowid = rowid;
8518 if( (rc&0xff)==SQLITE_CONSTRAINT && pOp->p4.pVtab->bConstraint ){
8519 if( pOp->p5==OE_Ignore ){
8520 rc = SQLITE_OK;
8521 }else{
8522 p->errorAction = ((pOp->p5==OE_Replace) ? OE_Abort : pOp->p5);
8524 }else{
8525 p->nChange++;
8527 if( rc ) goto abort_due_to_error;
8529 break;
8531 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8533 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
8534 /* Opcode: Pagecount P1 P2 * * *
8536 ** Write the current number of pages in database P1 to memory cell P2.
8538 case OP_Pagecount: { /* out2 */
8539 pOut = out2Prerelease(p, pOp);
8540 pOut->u.i = sqlite3BtreeLastPage(db->aDb[pOp->p1].pBt);
8541 break;
8543 #endif
8546 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
8547 /* Opcode: MaxPgcnt P1 P2 P3 * *
8549 ** Try to set the maximum page count for database P1 to the value in P3.
8550 ** Do not let the maximum page count fall below the current page count and
8551 ** do not change the maximum page count value if P3==0.
8553 ** Store the maximum page count after the change in register P2.
8555 case OP_MaxPgcnt: { /* out2 */
8556 unsigned int newMax;
8557 Btree *pBt;
8559 pOut = out2Prerelease(p, pOp);
8560 pBt = db->aDb[pOp->p1].pBt;
8561 newMax = 0;
8562 if( pOp->p3 ){
8563 newMax = sqlite3BtreeLastPage(pBt);
8564 if( newMax < (unsigned)pOp->p3 ) newMax = (unsigned)pOp->p3;
8566 pOut->u.i = sqlite3BtreeMaxPageCount(pBt, newMax);
8567 break;
8569 #endif
8571 /* Opcode: Function P1 P2 P3 P4 *
8572 ** Synopsis: r[P3]=func(r[P2@NP])
8574 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8575 ** contains a pointer to the function to be run) with arguments taken
8576 ** from register P2 and successors. The number of arguments is in
8577 ** the sqlite3_context object that P4 points to.
8578 ** The result of the function is stored
8579 ** in register P3. Register P3 must not be one of the function inputs.
8581 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8582 ** function was determined to be constant at compile time. If the first
8583 ** argument was constant then bit 0 of P1 is set. This is used to determine
8584 ** whether meta data associated with a user function argument using the
8585 ** sqlite3_set_auxdata() API may be safely retained until the next
8586 ** invocation of this opcode.
8588 ** See also: AggStep, AggFinal, PureFunc
8590 /* Opcode: PureFunc P1 P2 P3 P4 *
8591 ** Synopsis: r[P3]=func(r[P2@NP])
8593 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8594 ** contains a pointer to the function to be run) with arguments taken
8595 ** from register P2 and successors. The number of arguments is in
8596 ** the sqlite3_context object that P4 points to.
8597 ** The result of the function is stored
8598 ** in register P3. Register P3 must not be one of the function inputs.
8600 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8601 ** function was determined to be constant at compile time. If the first
8602 ** argument was constant then bit 0 of P1 is set. This is used to determine
8603 ** whether meta data associated with a user function argument using the
8604 ** sqlite3_set_auxdata() API may be safely retained until the next
8605 ** invocation of this opcode.
8607 ** This opcode works exactly like OP_Function. The only difference is in
8608 ** its name. This opcode is used in places where the function must be
8609 ** purely non-deterministic. Some built-in date/time functions can be
8610 ** either deterministic of non-deterministic, depending on their arguments.
8611 ** When those function are used in a non-deterministic way, they will check
8612 ** to see if they were called using OP_PureFunc instead of OP_Function, and
8613 ** if they were, they throw an error.
8615 ** See also: AggStep, AggFinal, Function
8617 case OP_PureFunc: /* group */
8618 case OP_Function: { /* group */
8619 int i;
8620 sqlite3_context *pCtx;
8622 assert( pOp->p4type==P4_FUNCCTX );
8623 pCtx = pOp->p4.pCtx;
8625 /* If this function is inside of a trigger, the register array in aMem[]
8626 ** might change from one evaluation to the next. The next block of code
8627 ** checks to see if the register array has changed, and if so it
8628 ** reinitializes the relevant parts of the sqlite3_context object */
8629 pOut = &aMem[pOp->p3];
8630 if( pCtx->pOut != pOut ){
8631 pCtx->pVdbe = p;
8632 pCtx->pOut = pOut;
8633 pCtx->enc = encoding;
8634 for(i=pCtx->argc-1; i>=0; i--) pCtx->argv[i] = &aMem[pOp->p2+i];
8636 assert( pCtx->pVdbe==p );
8638 memAboutToChange(p, pOut);
8639 #ifdef SQLITE_DEBUG
8640 for(i=0; i<pCtx->argc; i++){
8641 assert( memIsValid(pCtx->argv[i]) );
8642 REGISTER_TRACE(pOp->p2+i, pCtx->argv[i]);
8644 #endif
8645 MemSetTypeFlag(pOut, MEM_Null);
8646 assert( pCtx->isError==0 );
8647 (*pCtx->pFunc->xSFunc)(pCtx, pCtx->argc, pCtx->argv);/* IMP: R-24505-23230 */
8649 /* If the function returned an error, throw an exception */
8650 if( pCtx->isError ){
8651 if( pCtx->isError>0 ){
8652 sqlite3VdbeError(p, "%s", sqlite3_value_text(pOut));
8653 rc = pCtx->isError;
8655 sqlite3VdbeDeleteAuxData(db, &p->pAuxData, pCtx->iOp, pOp->p1);
8656 pCtx->isError = 0;
8657 if( rc ) goto abort_due_to_error;
8660 assert( (pOut->flags&MEM_Str)==0
8661 || pOut->enc==encoding
8662 || db->mallocFailed );
8663 assert( !sqlite3VdbeMemTooBig(pOut) );
8665 REGISTER_TRACE(pOp->p3, pOut);
8666 UPDATE_MAX_BLOBSIZE(pOut);
8667 break;
8670 /* Opcode: ClrSubtype P1 * * * *
8671 ** Synopsis: r[P1].subtype = 0
8673 ** Clear the subtype from register P1.
8675 case OP_ClrSubtype: { /* in1 */
8676 pIn1 = &aMem[pOp->p1];
8677 pIn1->flags &= ~MEM_Subtype;
8678 break;
8681 /* Opcode: GetSubtype P1 P2 * * *
8682 ** Synopsis: r[P2] = r[P1].subtype
8684 ** Extract the subtype value from register P1 and write that subtype
8685 ** into register P2. If P1 has no subtype, then P1 gets a NULL.
8687 case OP_GetSubtype: { /* in1 out2 */
8688 pIn1 = &aMem[pOp->p1];
8689 pOut = &aMem[pOp->p2];
8690 if( pIn1->flags & MEM_Subtype ){
8691 sqlite3VdbeMemSetInt64(pOut, pIn1->eSubtype);
8692 }else{
8693 sqlite3VdbeMemSetNull(pOut);
8695 break;
8698 /* Opcode: SetSubtype P1 P2 * * *
8699 ** Synopsis: r[P2].subtype = r[P1]
8701 ** Set the subtype value of register P2 to the integer from register P1.
8702 ** If P1 is NULL, clear the subtype from p2.
8704 case OP_SetSubtype: { /* in1 out2 */
8705 pIn1 = &aMem[pOp->p1];
8706 pOut = &aMem[pOp->p2];
8707 if( pIn1->flags & MEM_Null ){
8708 pOut->flags &= ~MEM_Subtype;
8709 }else{
8710 assert( pIn1->flags & MEM_Int );
8711 pOut->flags |= MEM_Subtype;
8712 pOut->eSubtype = (u8)(pIn1->u.i & 0xff);
8714 break;
8717 /* Opcode: FilterAdd P1 * P3 P4 *
8718 ** Synopsis: filter(P1) += key(P3@P4)
8720 ** Compute a hash on the P4 registers starting with r[P3] and
8721 ** add that hash to the bloom filter contained in r[P1].
8723 case OP_FilterAdd: {
8724 u64 h;
8726 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
8727 pIn1 = &aMem[pOp->p1];
8728 assert( pIn1->flags & MEM_Blob );
8729 assert( pIn1->n>0 );
8730 h = filterHash(aMem, pOp);
8731 #ifdef SQLITE_DEBUG
8732 if( db->flags&SQLITE_VdbeTrace ){
8733 int ii;
8734 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
8735 registerTrace(ii, &aMem[ii]);
8737 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
8739 #endif
8740 h %= (pIn1->n*8);
8741 pIn1->z[h/8] |= 1<<(h&7);
8742 break;
8745 /* Opcode: Filter P1 P2 P3 P4 *
8746 ** Synopsis: if key(P3@P4) not in filter(P1) goto P2
8748 ** Compute a hash on the key contained in the P4 registers starting
8749 ** with r[P3]. Check to see if that hash is found in the
8750 ** bloom filter hosted by register P1. If it is not present then
8751 ** maybe jump to P2. Otherwise fall through.
8753 ** False negatives are harmless. It is always safe to fall through,
8754 ** even if the value is in the bloom filter. A false negative causes
8755 ** more CPU cycles to be used, but it should still yield the correct
8756 ** answer. However, an incorrect answer may well arise from a
8757 ** false positive - if the jump is taken when it should fall through.
8759 case OP_Filter: { /* jump */
8760 u64 h;
8762 assert( pOp->p1>0 && pOp->p1<=(p->nMem+1 - p->nCursor) );
8763 pIn1 = &aMem[pOp->p1];
8764 assert( (pIn1->flags & MEM_Blob)!=0 );
8765 assert( pIn1->n >= 1 );
8766 h = filterHash(aMem, pOp);
8767 #ifdef SQLITE_DEBUG
8768 if( db->flags&SQLITE_VdbeTrace ){
8769 int ii;
8770 for(ii=pOp->p3; ii<pOp->p3+pOp->p4.i; ii++){
8771 registerTrace(ii, &aMem[ii]);
8773 printf("hash: %llu modulo %d -> %u\n", h, pIn1->n, (int)(h%pIn1->n));
8775 #endif
8776 h %= (pIn1->n*8);
8777 if( (pIn1->z[h/8] & (1<<(h&7)))==0 ){
8778 VdbeBranchTaken(1, 2);
8779 p->aCounter[SQLITE_STMTSTATUS_FILTER_HIT]++;
8780 goto jump_to_p2;
8781 }else{
8782 p->aCounter[SQLITE_STMTSTATUS_FILTER_MISS]++;
8783 VdbeBranchTaken(0, 2);
8785 break;
8788 /* Opcode: Trace P1 P2 * P4 *
8790 ** Write P4 on the statement trace output if statement tracing is
8791 ** enabled.
8793 ** Operand P1 must be 0x7fffffff and P2 must positive.
8795 /* Opcode: Init P1 P2 P3 P4 *
8796 ** Synopsis: Start at P2
8798 ** Programs contain a single instance of this opcode as the very first
8799 ** opcode.
8801 ** If tracing is enabled (by the sqlite3_trace()) interface, then
8802 ** the UTF-8 string contained in P4 is emitted on the trace callback.
8803 ** Or if P4 is blank, use the string returned by sqlite3_sql().
8805 ** If P2 is not zero, jump to instruction P2.
8807 ** Increment the value of P1 so that OP_Once opcodes will jump the
8808 ** first time they are evaluated for this run.
8810 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
8811 ** error is encountered.
8813 case OP_Trace:
8814 case OP_Init: { /* jump */
8815 int i;
8816 #ifndef SQLITE_OMIT_TRACE
8817 char *zTrace;
8818 #endif
8820 /* If the P4 argument is not NULL, then it must be an SQL comment string.
8821 ** The "--" string is broken up to prevent false-positives with srcck1.c.
8823 ** This assert() provides evidence for:
8824 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
8825 ** would have been returned by the legacy sqlite3_trace() interface by
8826 ** using the X argument when X begins with "--" and invoking
8827 ** sqlite3_expanded_sql(P) otherwise.
8829 assert( pOp->p4.z==0 || strncmp(pOp->p4.z, "-" "- ", 3)==0 );
8831 /* OP_Init is always instruction 0 */
8832 assert( pOp==p->aOp || pOp->opcode==OP_Trace );
8834 #ifndef SQLITE_OMIT_TRACE
8835 if( (db->mTrace & (SQLITE_TRACE_STMT|SQLITE_TRACE_LEGACY))!=0
8836 && p->minWriteFileFormat!=254 /* tag-20220401a */
8837 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
8839 #ifndef SQLITE_OMIT_DEPRECATED
8840 if( db->mTrace & SQLITE_TRACE_LEGACY ){
8841 char *z = sqlite3VdbeExpandSql(p, zTrace);
8842 db->trace.xLegacy(db->pTraceArg, z);
8843 sqlite3_free(z);
8844 }else
8845 #endif
8846 if( db->nVdbeExec>1 ){
8847 char *z = sqlite3MPrintf(db, "-- %s", zTrace);
8848 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, z);
8849 sqlite3DbFree(db, z);
8850 }else{
8851 (void)db->trace.xV2(SQLITE_TRACE_STMT, db->pTraceArg, p, zTrace);
8854 #ifdef SQLITE_USE_FCNTL_TRACE
8855 zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql);
8856 if( zTrace ){
8857 int j;
8858 for(j=0; j<db->nDb; j++){
8859 if( DbMaskTest(p->btreeMask, j)==0 ) continue;
8860 sqlite3_file_control(db, db->aDb[j].zDbSName, SQLITE_FCNTL_TRACE, zTrace);
8863 #endif /* SQLITE_USE_FCNTL_TRACE */
8864 #ifdef SQLITE_DEBUG
8865 if( (db->flags & SQLITE_SqlTrace)!=0
8866 && (zTrace = (pOp->p4.z ? pOp->p4.z : p->zSql))!=0
8868 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace);
8870 #endif /* SQLITE_DEBUG */
8871 #endif /* SQLITE_OMIT_TRACE */
8872 assert( pOp->p2>0 );
8873 if( pOp->p1>=sqlite3GlobalConfig.iOnceResetThreshold ){
8874 if( pOp->opcode==OP_Trace ) break;
8875 for(i=1; i<p->nOp; i++){
8876 if( p->aOp[i].opcode==OP_Once ) p->aOp[i].p1 = 0;
8878 pOp->p1 = 0;
8880 pOp->p1++;
8881 p->aCounter[SQLITE_STMTSTATUS_RUN]++;
8882 goto jump_to_p2;
8885 #ifdef SQLITE_ENABLE_CURSOR_HINTS
8886 /* Opcode: CursorHint P1 * * P4 *
8888 ** Provide a hint to cursor P1 that it only needs to return rows that
8889 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
8890 ** to values currently held in registers. TK_COLUMN terms in the P4
8891 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
8893 case OP_CursorHint: {
8894 VdbeCursor *pC;
8896 assert( pOp->p1>=0 && pOp->p1<p->nCursor );
8897 assert( pOp->p4type==P4_EXPR );
8898 pC = p->apCsr[pOp->p1];
8899 if( pC ){
8900 assert( pC->eCurType==CURTYPE_BTREE );
8901 sqlite3BtreeCursorHint(pC->uc.pCursor, BTREE_HINT_RANGE,
8902 pOp->p4.pExpr, aMem);
8904 break;
8906 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
8908 #ifdef SQLITE_DEBUG
8909 /* Opcode: Abortable * * * * *
8911 ** Verify that an Abort can happen. Assert if an Abort at this point
8912 ** might cause database corruption. This opcode only appears in debugging
8913 ** builds.
8915 ** An Abort is safe if either there have been no writes, or if there is
8916 ** an active statement journal.
8918 case OP_Abortable: {
8919 sqlite3VdbeAssertAbortable(p);
8920 break;
8922 #endif
8924 #ifdef SQLITE_DEBUG
8925 /* Opcode: ReleaseReg P1 P2 P3 * P5
8926 ** Synopsis: release r[P1@P2] mask P3
8928 ** Release registers from service. Any content that was in the
8929 ** the registers is unreliable after this opcode completes.
8931 ** The registers released will be the P2 registers starting at P1,
8932 ** except if bit ii of P3 set, then do not release register P1+ii.
8933 ** In other words, P3 is a mask of registers to preserve.
8935 ** Releasing a register clears the Mem.pScopyFrom pointer. That means
8936 ** that if the content of the released register was set using OP_SCopy,
8937 ** a change to the value of the source register for the OP_SCopy will no longer
8938 ** generate an assertion fault in sqlite3VdbeMemAboutToChange().
8940 ** If P5 is set, then all released registers have their type set
8941 ** to MEM_Undefined so that any subsequent attempt to read the released
8942 ** register (before it is reinitialized) will generate an assertion fault.
8944 ** P5 ought to be set on every call to this opcode.
8945 ** However, there are places in the code generator will release registers
8946 ** before their are used, under the (valid) assumption that the registers
8947 ** will not be reallocated for some other purpose before they are used and
8948 ** hence are safe to release.
8950 ** This opcode is only available in testing and debugging builds. It is
8951 ** not generated for release builds. The purpose of this opcode is to help
8952 ** validate the generated bytecode. This opcode does not actually contribute
8953 ** to computing an answer.
8955 case OP_ReleaseReg: {
8956 Mem *pMem;
8957 int i;
8958 u32 constMask;
8959 assert( pOp->p1>0 );
8960 assert( pOp->p1+pOp->p2<=(p->nMem+1 - p->nCursor)+1 );
8961 pMem = &aMem[pOp->p1];
8962 constMask = pOp->p3;
8963 for(i=0; i<pOp->p2; i++, pMem++){
8964 if( i>=32 || (constMask & MASKBIT32(i))==0 ){
8965 pMem->pScopyFrom = 0;
8966 if( i<32 && pOp->p5 ) MemSetTypeFlag(pMem, MEM_Undefined);
8969 break;
8971 #endif
8973 /* Opcode: Noop * * * * *
8975 ** Do nothing. This instruction is often useful as a jump
8976 ** destination.
8979 ** The magic Explain opcode are only inserted when explain==2 (which
8980 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
8981 ** This opcode records information from the optimizer. It is the
8982 ** the same as a no-op. This opcodesnever appears in a real VM program.
8984 default: { /* This is really OP_Noop, OP_Explain */
8985 assert( pOp->opcode==OP_Noop || pOp->opcode==OP_Explain );
8987 break;
8990 /*****************************************************************************
8991 ** The cases of the switch statement above this line should all be indented
8992 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
8993 ** readability. From this point on down, the normal indentation rules are
8994 ** restored.
8995 *****************************************************************************/
8998 #if defined(VDBE_PROFILE)
8999 *pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
9000 pnCycle = 0;
9001 #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
9002 if( pnCycle ){
9003 *pnCycle += sqlite3Hwtime();
9004 pnCycle = 0;
9006 #endif
9008 /* The following code adds nothing to the actual functionality
9009 ** of the program. It is only here for testing and debugging.
9010 ** On the other hand, it does burn CPU cycles every time through
9011 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
9013 #ifndef NDEBUG
9014 assert( pOp>=&aOp[-1] && pOp<&aOp[p->nOp-1] );
9016 #ifdef SQLITE_DEBUG
9017 if( db->flags & SQLITE_VdbeTrace ){
9018 u8 opProperty = sqlite3OpcodeProperty[pOrigOp->opcode];
9019 if( rc!=0 ) printf("rc=%d\n",rc);
9020 if( opProperty & (OPFLG_OUT2) ){
9021 registerTrace(pOrigOp->p2, &aMem[pOrigOp->p2]);
9023 if( opProperty & OPFLG_OUT3 ){
9024 registerTrace(pOrigOp->p3, &aMem[pOrigOp->p3]);
9026 if( opProperty==0xff ){
9027 /* Never happens. This code exists to avoid a harmless linkage
9028 ** warning about sqlite3VdbeRegisterDump() being defined but not
9029 ** used. */
9030 sqlite3VdbeRegisterDump(p);
9033 #endif /* SQLITE_DEBUG */
9034 #endif /* NDEBUG */
9035 } /* The end of the for(;;) loop the loops through opcodes */
9037 /* If we reach this point, it means that execution is finished with
9038 ** an error of some kind.
9040 abort_due_to_error:
9041 if( db->mallocFailed ){
9042 rc = SQLITE_NOMEM_BKPT;
9043 }else if( rc==SQLITE_IOERR_CORRUPTFS ){
9044 rc = SQLITE_CORRUPT_BKPT;
9046 assert( rc );
9047 #ifdef SQLITE_DEBUG
9048 if( db->flags & SQLITE_VdbeTrace ){
9049 const char *zTrace = p->zSql;
9050 if( zTrace==0 ){
9051 if( aOp[0].opcode==OP_Trace ){
9052 zTrace = aOp[0].p4.z;
9054 if( zTrace==0 ) zTrace = "???";
9056 printf("ABORT-due-to-error (rc=%d): %s\n", rc, zTrace);
9058 #endif
9059 if( p->zErrMsg==0 && rc!=SQLITE_IOERR_NOMEM ){
9060 sqlite3VdbeError(p, "%s", sqlite3ErrStr(rc));
9062 p->rc = rc;
9063 sqlite3SystemError(db, rc);
9064 testcase( sqlite3GlobalConfig.xLog!=0 );
9065 sqlite3_log(rc, "statement aborts at %d: [%s] %s",
9066 (int)(pOp - aOp), p->zSql, p->zErrMsg);
9067 if( p->eVdbeState==VDBE_RUN_STATE ) sqlite3VdbeHalt(p);
9068 if( rc==SQLITE_IOERR_NOMEM ) sqlite3OomFault(db);
9069 if( rc==SQLITE_CORRUPT && db->autoCommit==0 ){
9070 db->flags |= SQLITE_CorruptRdOnly;
9072 rc = SQLITE_ERROR;
9073 if( resetSchemaOnFault>0 ){
9074 sqlite3ResetOneSchema(db, resetSchemaOnFault-1);
9077 /* This is the only way out of this procedure. We have to
9078 ** release the mutexes on btrees that were acquired at the
9079 ** top. */
9080 vdbe_return:
9081 #if defined(VDBE_PROFILE)
9082 if( pnCycle ){
9083 *pnCycle += sqlite3NProfileCnt ? sqlite3NProfileCnt : sqlite3Hwtime();
9084 pnCycle = 0;
9086 #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
9087 if( pnCycle ){
9088 *pnCycle += sqlite3Hwtime();
9089 pnCycle = 0;
9091 #endif
9093 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
9094 while( nVmStep>=nProgressLimit && db->xProgress!=0 ){
9095 nProgressLimit += db->nProgressOps;
9096 if( db->xProgress(db->pProgressArg) ){
9097 nProgressLimit = LARGEST_UINT64;
9098 rc = SQLITE_INTERRUPT;
9099 goto abort_due_to_error;
9102 #endif
9103 p->aCounter[SQLITE_STMTSTATUS_VM_STEP] += (int)nVmStep;
9104 if( DbMaskNonZero(p->lockMask) ){
9105 sqlite3VdbeLeave(p);
9107 assert( rc!=SQLITE_OK || nExtraDelete==0
9108 || sqlite3_strlike("DELETE%",p->zSql,0)!=0
9110 return rc;
9112 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
9113 ** is encountered.
9115 too_big:
9116 sqlite3VdbeError(p, "string or blob too big");
9117 rc = SQLITE_TOOBIG;
9118 goto abort_due_to_error;
9120 /* Jump to here if a malloc() fails.
9122 no_mem:
9123 sqlite3OomFault(db);
9124 sqlite3VdbeError(p, "out of memory");
9125 rc = SQLITE_NOMEM_BKPT;
9126 goto abort_due_to_error;
9128 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
9129 ** flag.
9131 abort_due_to_interrupt:
9132 assert( AtomicLoad(&db->u1.isInterrupted) );
9133 rc = SQLITE_INTERRUPT;
9134 goto abort_due_to_error;