4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** The code in this file implements the function that runs the
13 ** bytecode of a prepared statement.
15 ** Various scripts scan this source file in order to generate HTML
16 ** documentation, headers files, or other derived files. The formatting
17 ** of the code in this file is, therefore, important. See other comments
18 ** in this file for details. If in doubt, do not deviate from existing
19 ** commenting and indentation practices when changing or adding code.
21 #include "sqliteInt.h"
25 ** Invoke this macro on memory cells just prior to changing the
26 ** value of the cell. This macro verifies that shallow copies are
27 ** not misused. A shallow copy of a string or blob just copies a
28 ** pointer to the string or blob, not the content. If the original
29 ** is changed while the copy is still in use, the string or blob might
30 ** be changed out from under the copy. This macro verifies that nothing
31 ** like that ever happens.
34 # define memAboutToChange(P,M) sqlite3VdbeMemAboutToChange(P,M)
36 # define memAboutToChange(P,M)
40 ** The following global variable is incremented every time a cursor
41 ** moves, either by the OP_SeekXX, OP_Next, or OP_Prev opcodes. The test
42 ** procedures use this information to make sure that indices are
43 ** working correctly. This variable has no function other than to
44 ** help verify the correct operation of the library.
47 int sqlite3_search_count
= 0;
51 ** When this global variable is positive, it gets decremented once before
52 ** each instruction in the VDBE. When it reaches zero, the u1.isInterrupted
53 ** field of the sqlite3 structure is set in order to simulate an interrupt.
55 ** This facility is used for testing purposes only. It does not function
56 ** in an ordinary build.
59 int sqlite3_interrupt_count
= 0;
63 ** The next global variable is incremented each type the OP_Sort opcode
64 ** is executed. The test procedures use this information to make sure that
65 ** sorting is occurring or not occurring at appropriate times. This variable
66 ** has no function other than to help verify the correct operation of the
70 int sqlite3_sort_count
= 0;
74 ** The next global variable records the size of the largest MEM_Blob
75 ** or MEM_Str that has been used by a VDBE opcode. The test procedures
76 ** use this information to make sure that the zero-blob functionality
77 ** is working correctly. This variable has no function other than to
78 ** help verify the correct operation of the library.
81 int sqlite3_max_blobsize
= 0;
82 static void updateMaxBlobsize(Mem
*p
){
83 if( (p
->flags
& (MEM_Str
|MEM_Blob
))!=0 && p
->n
>sqlite3_max_blobsize
){
84 sqlite3_max_blobsize
= p
->n
;
90 ** This macro evaluates to true if either the update hook or the preupdate
91 ** hook are enabled for database connect DB.
93 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
94 # define HAS_UPDATE_HOOK(DB) ((DB)->xPreUpdateCallback||(DB)->xUpdateCallback)
96 # define HAS_UPDATE_HOOK(DB) ((DB)->xUpdateCallback)
100 ** The next global variable is incremented each time the OP_Found opcode
101 ** is executed. This is used to test whether or not the foreign key
102 ** operation implemented using OP_FkIsZero is working. This variable
103 ** has no function other than to help verify the correct operation of the
107 int sqlite3_found_count
= 0;
111 ** Test a register to see if it exceeds the current maximum blob size.
112 ** If it does, record the new maximum blob size.
114 #if defined(SQLITE_TEST) && !defined(SQLITE_UNTESTABLE)
115 # define UPDATE_MAX_BLOBSIZE(P) updateMaxBlobsize(P)
117 # define UPDATE_MAX_BLOBSIZE(P)
121 /* This routine provides a convenient place to set a breakpoint during
122 ** tracing with PRAGMA vdbe_trace=on. The breakpoint fires right after
123 ** each opcode is printed. Variables "pc" (program counter) and pOp are
124 ** available to add conditionals to the breakpoint. GDB example:
126 ** break test_trace_breakpoint if pc=22
128 ** Other useful labels for breakpoints include:
129 ** test_addop_breakpoint(pc,pOp)
130 ** sqlite3CorruptError(lineno)
131 ** sqlite3MisuseError(lineno)
132 ** sqlite3CantopenError(lineno)
134 static void test_trace_breakpoint(int pc
, Op
*pOp
, Vdbe
*v
){
140 if( n
==LARGEST_UINT64
) abort(); /* So that n is used, preventing a warning */
145 ** Invoke the VDBE coverage callback, if that callback is defined. This
146 ** feature is used for test suite validation only and does not appear an
147 ** production builds.
149 ** M is the type of branch. I is the direction taken for this instance of
152 ** M: 2 - two-way branch (I=0: fall-thru 1: jump )
153 ** 3 - two-way + NULL (I=0: fall-thru 1: jump 2: NULL )
154 ** 4 - OP_Jump (I=0: jump p1 1: jump p2 2: jump p3)
156 ** In other words, if M is 2, then I is either 0 (for fall-through) or
157 ** 1 (for when the branch is taken). If M is 3, the I is 0 for an
158 ** ordinary fall-through, I is 1 if the branch was taken, and I is 2
159 ** if the result of comparison is NULL. For M=3, I=2 the jump may or
160 ** may not be taken, depending on the SQLITE_JUMPIFNULL flags in p5.
161 ** When M is 4, that means that an OP_Jump is being run. I is 0, 1, or 2
162 ** depending on if the operands are less than, equal, or greater than.
164 ** iSrcLine is the source code line (from the __LINE__ macro) that
165 ** generated the VDBE instruction combined with flag bits. The source
166 ** code line number is in the lower 24 bits of iSrcLine and the upper
167 ** 8 bytes are flags. The lower three bits of the flags indicate
168 ** values for I that should never occur. For example, if the branch is
169 ** always taken, the flags should be 0x05 since the fall-through and
170 ** alternate branch are never taken. If a branch is never taken then
171 ** flags should be 0x06 since only the fall-through approach is allowed.
173 ** Bit 0x08 of the flags indicates an OP_Jump opcode that is only
174 ** interested in equal or not-equal. In other words, I==0 and I==2
175 ** should be treated as equivalent
177 ** Since only a line number is retained, not the filename, this macro
178 ** only works for amalgamation builds. But that is ok, since these macros
179 ** should be no-ops except for special builds used to measure test coverage.
181 #if !defined(SQLITE_VDBE_COVERAGE)
182 # define VdbeBranchTaken(I,M)
184 # define VdbeBranchTaken(I,M) vdbeTakeBranch(pOp->iSrcLine,I,M)
185 static void vdbeTakeBranch(u32 iSrcLine
, u8 I
, u8 M
){
187 assert( I
<=2 ); /* 0: fall through, 1: taken, 2: alternate taken */
188 assert( M
<=4 ); /* 2: two-way branch, 3: three-way branch, 4: OP_Jump */
189 assert( I
<M
); /* I can only be 2 if M is 3 or 4 */
190 /* Transform I from a integer [0,1,2] into a bitmask of [1,2,4] */
192 /* The upper 8 bits of iSrcLine are flags. The lower three bits of
193 ** the flags indicate directions that the branch can never go. If
194 ** a branch really does go in one of those directions, assert right
196 mNever
= iSrcLine
>> 24;
197 assert( (I
& mNever
)==0 );
198 if( sqlite3GlobalConfig
.xVdbeBranch
==0 ) return; /*NO_TEST*/
199 /* Invoke the branch coverage callback with three arguments:
200 ** iSrcLine - the line number of the VdbeCoverage() macro, with
202 ** I - Mask of bits 0x07 indicating which cases are are
203 ** fulfilled by this instance of the jump. 0x01 means
204 ** fall-thru, 0x02 means taken, 0x04 means NULL. Any
205 ** impossible cases (ex: if the comparison is never NULL)
206 ** are filled in automatically so that the coverage
207 ** measurement logic does not flag those impossible cases
208 ** as missed coverage.
209 ** M - Type of jump. Same as M argument above
212 if( M
==2 ) I
|= 0x04;
215 if( (mNever
&0x08)!=0 && (I
&0x05)!=0) I
|= 0x05; /*NO_TEST*/
217 sqlite3GlobalConfig
.xVdbeBranch(sqlite3GlobalConfig
.pVdbeBranchArg
,
218 iSrcLine
&0xffffff, I
, M
);
223 ** An ephemeral string value (signified by the MEM_Ephem flag) contains
224 ** a pointer to a dynamically allocated string where some other entity
225 ** is responsible for deallocating that string. Because the register
226 ** does not control the string, it might be deleted without the register
229 ** This routine converts an ephemeral string into a dynamically allocated
230 ** string that the register itself controls. In other words, it
231 ** converts an MEM_Ephem string into a string with P.z==P.zMalloc.
233 #define Deephemeralize(P) \
234 if( ((P)->flags&MEM_Ephem)!=0 \
235 && sqlite3VdbeMemMakeWriteable(P) ){ goto no_mem;}
237 /* Return true if the cursor was opened using the OP_OpenSorter opcode. */
238 #define isSorter(x) ((x)->eCurType==CURTYPE_SORTER)
241 ** Allocate VdbeCursor number iCur. Return a pointer to it. Return NULL
242 ** if we run out of memory.
244 static VdbeCursor
*allocateCursor(
245 Vdbe
*p
, /* The virtual machine */
246 int iCur
, /* Index of the new VdbeCursor */
247 int nField
, /* Number of fields in the table or index */
248 u8 eCurType
/* Type of the new cursor */
250 /* Find the memory cell that will be used to store the blob of memory
251 ** required for this VdbeCursor structure. It is convenient to use a
252 ** vdbe memory cell to manage the memory allocation required for a
253 ** VdbeCursor structure for the following reasons:
255 ** * Sometimes cursor numbers are used for a couple of different
256 ** purposes in a vdbe program. The different uses might require
257 ** different sized allocations. Memory cells provide growable
260 ** * When using ENABLE_MEMORY_MANAGEMENT, memory cell buffers can
261 ** be freed lazily via the sqlite3_release_memory() API. This
262 ** minimizes the number of malloc calls made by the system.
264 ** The memory cell for cursor 0 is aMem[0]. The rest are allocated from
265 ** the top of the register space. Cursor 1 is at Mem[p->nMem-1].
266 ** Cursor 2 is at Mem[p->nMem-2]. And so forth.
268 Mem
*pMem
= iCur
>0 ? &p
->aMem
[p
->nMem
-iCur
] : p
->aMem
;
273 ROUND8P(sizeof(VdbeCursor
)) + 2*sizeof(u32
)*nField
+
274 (eCurType
==CURTYPE_BTREE
?sqlite3BtreeCursorSize():0);
276 assert( iCur
>=0 && iCur
<p
->nCursor
);
277 if( p
->apCsr
[iCur
] ){ /*OPTIMIZATION-IF-FALSE*/
278 sqlite3VdbeFreeCursorNN(p
, p
->apCsr
[iCur
]);
282 /* There used to be a call to sqlite3VdbeMemClearAndResize() to make sure
283 ** the pMem used to hold space for the cursor has enough storage available
284 ** in pMem->zMalloc. But for the special case of the aMem[] entries used
285 ** to hold cursors, it is faster to in-line the logic. */
286 assert( pMem
->flags
==MEM_Undefined
);
287 assert( (pMem
->flags
& MEM_Dyn
)==0 );
288 assert( pMem
->szMalloc
==0 || pMem
->z
==pMem
->zMalloc
);
289 if( pMem
->szMalloc
<nByte
){
290 if( pMem
->szMalloc
>0 ){
291 sqlite3DbFreeNN(pMem
->db
, pMem
->zMalloc
);
293 pMem
->z
= pMem
->zMalloc
= sqlite3DbMallocRaw(pMem
->db
, nByte
);
294 if( pMem
->zMalloc
==0 ){
298 pMem
->szMalloc
= nByte
;
301 p
->apCsr
[iCur
] = pCx
= (VdbeCursor
*)pMem
->zMalloc
;
302 memset(pCx
, 0, offsetof(VdbeCursor
,pAltCursor
));
303 pCx
->eCurType
= eCurType
;
304 pCx
->nField
= nField
;
305 pCx
->aOffset
= &pCx
->aType
[nField
];
306 if( eCurType
==CURTYPE_BTREE
){
307 pCx
->uc
.pCursor
= (BtCursor
*)
308 &pMem
->z
[ROUND8P(sizeof(VdbeCursor
))+2*sizeof(u32
)*nField
];
309 sqlite3BtreeCursorZero(pCx
->uc
.pCursor
);
315 ** The string in pRec is known to look like an integer and to have a
316 ** floating point value of rValue. Return true and set *piValue to the
317 ** integer value if the string is in range to be an integer. Otherwise,
320 static int alsoAnInt(Mem
*pRec
, double rValue
, i64
*piValue
){
322 iValue
= sqlite3RealToI64(rValue
);
323 if( sqlite3RealSameAsInt(rValue
,iValue
) ){
327 return 0==sqlite3Atoi64(pRec
->z
, piValue
, pRec
->n
, pRec
->enc
);
331 ** Try to convert a value into a numeric representation if we can
332 ** do so without loss of information. In other words, if the string
333 ** looks like a number, convert it into a number. If it does not
334 ** look like a number, leave it alone.
336 ** If the bTryForInt flag is true, then extra effort is made to give
337 ** an integer representation. Strings that look like floating point
338 ** values but which have no fractional component (example: '48.00')
339 ** will have a MEM_Int representation when bTryForInt is true.
341 ** If bTryForInt is false, then if the input string contains a decimal
342 ** point or exponential notation, the result is only MEM_Real, even
343 ** if there is an exact integer representation of the quantity.
345 static void applyNumericAffinity(Mem
*pRec
, int bTryForInt
){
349 assert( (pRec
->flags
& (MEM_Str
|MEM_Int
|MEM_Real
|MEM_IntReal
))==MEM_Str
);
350 rc
= sqlite3AtoF(pRec
->z
, &rValue
, pRec
->n
, enc
);
352 if( rc
==1 && alsoAnInt(pRec
, rValue
, &pRec
->u
.i
) ){
353 pRec
->flags
|= MEM_Int
;
356 pRec
->flags
|= MEM_Real
;
357 if( bTryForInt
) sqlite3VdbeIntegerAffinity(pRec
);
359 /* TEXT->NUMERIC is many->one. Hence, it is important to invalidate the
360 ** string representation after computing a numeric equivalent, because the
361 ** string representation might not be the canonical representation for the
362 ** numeric value. Ticket [343634942dd54ab57b7024] 2018-01-31. */
363 pRec
->flags
&= ~MEM_Str
;
367 ** Processing is determine by the affinity parameter:
369 ** SQLITE_AFF_INTEGER:
371 ** SQLITE_AFF_NUMERIC:
372 ** Try to convert pRec to an integer representation or a
373 ** floating-point representation if an integer representation
374 ** is not possible. Note that the integer representation is
375 ** always preferred, even if the affinity is REAL, because
376 ** an integer representation is more space efficient on disk.
378 ** SQLITE_AFF_FLEXNUM:
379 ** If the value is text, then try to convert it into a number of
380 ** some kind (integer or real) but do not make any other changes.
383 ** Convert pRec to a text representation.
387 ** No-op. pRec is unchanged.
389 static void applyAffinity(
390 Mem
*pRec
, /* The value to apply affinity to */
391 char affinity
, /* The affinity to be applied */
392 u8 enc
/* Use this text encoding */
394 if( affinity
>=SQLITE_AFF_NUMERIC
){
395 assert( affinity
==SQLITE_AFF_INTEGER
|| affinity
==SQLITE_AFF_REAL
396 || affinity
==SQLITE_AFF_NUMERIC
|| affinity
==SQLITE_AFF_FLEXNUM
);
397 if( (pRec
->flags
& MEM_Int
)==0 ){ /*OPTIMIZATION-IF-FALSE*/
398 if( (pRec
->flags
& (MEM_Real
|MEM_IntReal
))==0 ){
399 if( pRec
->flags
& MEM_Str
) applyNumericAffinity(pRec
,1);
400 }else if( affinity
<=SQLITE_AFF_REAL
){
401 sqlite3VdbeIntegerAffinity(pRec
);
404 }else if( affinity
==SQLITE_AFF_TEXT
){
405 /* Only attempt the conversion to TEXT if there is an integer or real
406 ** representation (blob and NULL do not get converted) but no string
407 ** representation. It would be harmless to repeat the conversion if
408 ** there is already a string rep, but it is pointless to waste those
410 if( 0==(pRec
->flags
&MEM_Str
) ){ /*OPTIMIZATION-IF-FALSE*/
411 if( (pRec
->flags
&(MEM_Real
|MEM_Int
|MEM_IntReal
)) ){
412 testcase( pRec
->flags
& MEM_Int
);
413 testcase( pRec
->flags
& MEM_Real
);
414 testcase( pRec
->flags
& MEM_IntReal
);
415 sqlite3VdbeMemStringify(pRec
, enc
, 1);
418 pRec
->flags
&= ~(MEM_Real
|MEM_Int
|MEM_IntReal
);
423 ** Try to convert the type of a function argument or a result column
424 ** into a numeric representation. Use either INTEGER or REAL whichever
425 ** is appropriate. But only do the conversion if it is possible without
426 ** loss of information and return the revised type of the argument.
428 int sqlite3_value_numeric_type(sqlite3_value
*pVal
){
429 int eType
= sqlite3_value_type(pVal
);
430 if( eType
==SQLITE_TEXT
){
431 Mem
*pMem
= (Mem
*)pVal
;
432 applyNumericAffinity(pMem
, 0);
433 eType
= sqlite3_value_type(pVal
);
439 ** Exported version of applyAffinity(). This one works on sqlite3_value*,
440 ** not the internal Mem* type.
442 void sqlite3ValueApplyAffinity(
447 applyAffinity((Mem
*)pVal
, affinity
, enc
);
451 ** pMem currently only holds a string type (or maybe a BLOB that we can
452 ** interpret as a string if we want to). Compute its corresponding
453 ** numeric type, if has one. Set the pMem->u.r and pMem->u.i fields
456 static u16 SQLITE_NOINLINE
computeNumericType(Mem
*pMem
){
459 assert( (pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
))==0 );
460 assert( (pMem
->flags
& (MEM_Str
|MEM_Blob
))!=0 );
461 if( ExpandBlob(pMem
) ){
465 rc
= sqlite3AtoF(pMem
->z
, &pMem
->u
.r
, pMem
->n
, pMem
->enc
);
467 if( rc
==0 && sqlite3Atoi64(pMem
->z
, &ix
, pMem
->n
, pMem
->enc
)<=1 ){
473 }else if( rc
==1 && sqlite3Atoi64(pMem
->z
, &ix
, pMem
->n
, pMem
->enc
)==0 ){
481 ** Return the numeric type for pMem, either MEM_Int or MEM_Real or both or
484 ** Unlike applyNumericAffinity(), this routine does not modify pMem->flags.
485 ** But it does set pMem->u.r and pMem->u.i appropriately.
487 static u16
numericType(Mem
*pMem
){
488 assert( (pMem
->flags
& MEM_Null
)==0
489 || pMem
->db
==0 || pMem
->db
->mallocFailed
);
490 if( pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
|MEM_Null
) ){
491 testcase( pMem
->flags
& MEM_Int
);
492 testcase( pMem
->flags
& MEM_Real
);
493 testcase( pMem
->flags
& MEM_IntReal
);
494 return pMem
->flags
& (MEM_Int
|MEM_Real
|MEM_IntReal
|MEM_Null
);
496 assert( pMem
->flags
& (MEM_Str
|MEM_Blob
) );
497 testcase( pMem
->flags
& MEM_Str
);
498 testcase( pMem
->flags
& MEM_Blob
);
499 return computeNumericType(pMem
);
505 ** Write a nice string representation of the contents of cell pMem
506 ** into buffer zBuf, length nBuf.
508 void sqlite3VdbeMemPrettyPrint(Mem
*pMem
, StrAccum
*pStr
){
510 static const char *const encnames
[] = {"(X)", "(8)", "(16LE)", "(16BE)"};
516 assert( (f
& (MEM_Static
|MEM_Ephem
))==0 );
517 }else if( f
& MEM_Static
){
519 assert( (f
& (MEM_Dyn
|MEM_Ephem
))==0 );
520 }else if( f
& MEM_Ephem
){
522 assert( (f
& (MEM_Static
|MEM_Dyn
))==0 );
526 sqlite3_str_appendf(pStr
, "%cx[", c
);
527 for(i
=0; i
<25 && i
<pMem
->n
; i
++){
528 sqlite3_str_appendf(pStr
, "%02X", ((int)pMem
->z
[i
] & 0xFF));
530 sqlite3_str_appendf(pStr
, "|");
531 for(i
=0; i
<25 && i
<pMem
->n
; i
++){
533 sqlite3_str_appendchar(pStr
, 1, (z
<32||z
>126)?'.':z
);
535 sqlite3_str_appendf(pStr
,"]");
537 sqlite3_str_appendf(pStr
, "+%dz",pMem
->u
.nZero
);
539 }else if( f
& MEM_Str
){
544 assert( (f
& (MEM_Static
|MEM_Ephem
))==0 );
545 }else if( f
& MEM_Static
){
547 assert( (f
& (MEM_Dyn
|MEM_Ephem
))==0 );
548 }else if( f
& MEM_Ephem
){
550 assert( (f
& (MEM_Static
|MEM_Dyn
))==0 );
554 sqlite3_str_appendf(pStr
, " %c%d[", c
, pMem
->n
);
555 for(j
=0; j
<25 && j
<pMem
->n
; j
++){
557 sqlite3_str_appendchar(pStr
, 1, (c
>=0x20&&c
<=0x7f) ? c
: '.');
559 sqlite3_str_appendf(pStr
, "]%s", encnames
[pMem
->enc
]);
561 sqlite3_str_appendf(pStr
, "(0-term)");
569 ** Print the value of a register for tracing purposes:
571 static void memTracePrint(Mem
*p
){
572 if( p
->flags
& MEM_Undefined
){
573 printf(" undefined");
574 }else if( p
->flags
& MEM_Null
){
575 printf(p
->flags
& MEM_Zero
? " NULL-nochng" : " NULL");
576 }else if( (p
->flags
& (MEM_Int
|MEM_Str
))==(MEM_Int
|MEM_Str
) ){
577 printf(" si:%lld", p
->u
.i
);
578 }else if( (p
->flags
& (MEM_IntReal
))!=0 ){
579 printf(" ir:%lld", p
->u
.i
);
580 }else if( p
->flags
& MEM_Int
){
581 printf(" i:%lld", p
->u
.i
);
582 #ifndef SQLITE_OMIT_FLOATING_POINT
583 }else if( p
->flags
& MEM_Real
){
584 printf(" r:%.17g", p
->u
.r
);
586 }else if( sqlite3VdbeMemIsRowSet(p
) ){
591 sqlite3StrAccumInit(&acc
, 0, zBuf
, sizeof(zBuf
), 0);
592 sqlite3VdbeMemPrettyPrint(p
, &acc
);
593 printf(" %s", sqlite3StrAccumFinish(&acc
));
595 if( p
->flags
& MEM_Subtype
) printf(" subtype=0x%02x", p
->eSubtype
);
597 static void registerTrace(int iReg
, Mem
*p
){
598 printf("R[%d] = ", iReg
);
601 printf(" <== R[%d]", (int)(p
->pScopyFrom
- &p
[-iReg
]));
604 sqlite3VdbeCheckMemInvariants(p
);
606 /**/ void sqlite3PrintMem(Mem
*pMem
){
615 ** Show the values of all registers in the virtual machine. Used for
616 ** interactive debugging.
618 void sqlite3VdbeRegisterDump(Vdbe
*v
){
620 for(i
=1; i
<v
->nMem
; i
++) registerTrace(i
, v
->aMem
+i
);
622 #endif /* SQLITE_DEBUG */
626 # define REGISTER_TRACE(R,M) if(db->flags&SQLITE_VdbeTrace)registerTrace(R,M)
628 # define REGISTER_TRACE(R,M)
633 ** This function is only called from within an assert() expression. It
634 ** checks that the sqlite3.nTransaction variable is correctly set to
635 ** the number of non-transaction savepoints currently in the
636 ** linked list starting at sqlite3.pSavepoint.
640 ** assert( checkSavepointCount(db) );
642 static int checkSavepointCount(sqlite3
*db
){
645 for(p
=db
->pSavepoint
; p
; p
=p
->pNext
) n
++;
646 assert( n
==(db
->nSavepoint
+ db
->isTransactionSavepoint
) );
652 ** Return the register of pOp->p2 after first preparing it to be
653 ** overwritten with an integer value.
655 static SQLITE_NOINLINE Mem
*out2PrereleaseWithClear(Mem
*pOut
){
656 sqlite3VdbeMemSetNull(pOut
);
657 pOut
->flags
= MEM_Int
;
660 static Mem
*out2Prerelease(Vdbe
*p
, VdbeOp
*pOp
){
663 assert( pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
) );
664 pOut
= &p
->aMem
[pOp
->p2
];
665 memAboutToChange(p
, pOut
);
666 if( VdbeMemDynamic(pOut
) ){ /*OPTIMIZATION-IF-FALSE*/
667 return out2PrereleaseWithClear(pOut
);
669 pOut
->flags
= MEM_Int
;
675 ** Compute a bloom filter hash using pOp->p4.i registers from aMem[] beginning
676 ** with pOp->p3. Return the hash.
678 static u64
filterHash(const Mem
*aMem
, const Op
*pOp
){
682 assert( pOp
->p4type
==P4_INT32
);
683 for(i
=pOp
->p3
, mx
=i
+pOp
->p4
.i
; i
<mx
; i
++){
684 const Mem
*p
= &aMem
[i
];
685 if( p
->flags
& (MEM_Int
|MEM_IntReal
) ){
687 }else if( p
->flags
& MEM_Real
){
688 h
+= sqlite3VdbeIntValue(p
);
689 }else if( p
->flags
& (MEM_Str
|MEM_Blob
) ){
690 /* All strings have the same hash and all blobs have the same hash,
691 ** though, at least, those hashes are different from each other and
693 h
+= 4093 + (p
->flags
& (MEM_Str
|MEM_Blob
));
701 ** For OP_Column, factor out the case where content is loaded from
702 ** overflow pages, so that the code to implement this case is separate
703 ** the common case where all content fits on the page. Factoring out
704 ** the code reduces register pressure and helps the common case
707 static SQLITE_NOINLINE
int vdbeColumnFromOverflow(
708 VdbeCursor
*pC
, /* The BTree cursor from which we are reading */
709 int iCol
, /* The column to read */
710 int t
, /* The serial-type code for the column value */
711 i64 iOffset
, /* Offset to the start of the content value */
712 u32 cacheStatus
, /* Current Vdbe.cacheCtr value */
713 u32 colCacheCtr
, /* Current value of the column cache counter */
714 Mem
*pDest
/* Store the value into this register. */
717 sqlite3
*db
= pDest
->db
;
718 int encoding
= pDest
->enc
;
719 int len
= sqlite3VdbeSerialTypeLen(t
);
720 assert( pC
->eCurType
==CURTYPE_BTREE
);
721 if( len
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ) return SQLITE_TOOBIG
;
722 if( len
> 4000 && pC
->pKeyInfo
==0 ){
723 /* Cache large column values that are on overflow pages using
724 ** an RCStr (reference counted string) so that if they are reloaded,
725 ** that do not have to be copied a second time. The overhead of
726 ** creating and managing the cache is such that this is only
727 ** profitable for larger TEXT and BLOB values.
729 ** Only do this on table-btrees so that writes to index-btrees do not
730 ** need to clear the cache. This buys performance in the common case
731 ** in exchange for generality.
733 VdbeTxtBlbCache
*pCache
;
735 if( pC
->colCache
==0 ){
736 pC
->pCache
= sqlite3DbMallocZero(db
, sizeof(VdbeTxtBlbCache
) );
737 if( pC
->pCache
==0 ) return SQLITE_NOMEM
;
741 if( pCache
->pCValue
==0
742 || pCache
->iCol
!=iCol
743 || pCache
->cacheStatus
!=cacheStatus
744 || pCache
->colCacheCtr
!=colCacheCtr
745 || pCache
->iOffset
!=sqlite3BtreeOffset(pC
->uc
.pCursor
)
747 if( pCache
->pCValue
) sqlite3RCStrUnref(pCache
->pCValue
);
748 pBuf
= pCache
->pCValue
= sqlite3RCStrNew( len
+3 );
749 if( pBuf
==0 ) return SQLITE_NOMEM
;
750 rc
= sqlite3BtreePayload(pC
->uc
.pCursor
, iOffset
, len
, pBuf
);
756 pCache
->cacheStatus
= cacheStatus
;
757 pCache
->colCacheCtr
= colCacheCtr
;
758 pCache
->iOffset
= sqlite3BtreeOffset(pC
->uc
.pCursor
);
760 pBuf
= pCache
->pCValue
;
763 sqlite3RCStrRef(pBuf
);
765 rc
= sqlite3VdbeMemSetStr(pDest
, pBuf
, len
, encoding
,
767 pDest
->flags
|= MEM_Term
;
769 rc
= sqlite3VdbeMemSetStr(pDest
, pBuf
, len
, 0,
773 rc
= sqlite3VdbeMemFromBtree(pC
->uc
.pCursor
, iOffset
, len
, pDest
);
775 sqlite3VdbeSerialGet((const u8
*)pDest
->z
, t
, pDest
);
776 if( (t
&1)!=0 && encoding
==SQLITE_UTF8
){
778 pDest
->flags
|= MEM_Term
;
781 pDest
->flags
&= ~MEM_Ephem
;
787 ** Return the symbolic name for the data type of a pMem
789 static const char *vdbeMemTypeName(Mem
*pMem
){
790 static const char *azTypes
[] = {
791 /* SQLITE_INTEGER */ "INT",
792 /* SQLITE_FLOAT */ "REAL",
793 /* SQLITE_TEXT */ "TEXT",
794 /* SQLITE_BLOB */ "BLOB",
795 /* SQLITE_NULL */ "NULL"
797 return azTypes
[sqlite3_value_type(pMem
)-1];
801 ** Execute as much of a VDBE program as we can.
802 ** This is the core of sqlite3_step().
805 Vdbe
*p
/* The VDBE */
807 Op
*aOp
= p
->aOp
; /* Copy of p->aOp */
808 Op
*pOp
= aOp
; /* Current operation */
810 Op
*pOrigOp
; /* Value of pOp at the top of the loop */
811 int nExtraDelete
= 0; /* Verifies FORDELETE and AUXDELETE flags */
812 u8 iCompareIsInit
= 0; /* iCompare is initialized */
814 int rc
= SQLITE_OK
; /* Value to return */
815 sqlite3
*db
= p
->db
; /* The database */
816 u8 resetSchemaOnFault
= 0; /* Reset schema after an error if positive */
817 u8 encoding
= ENC(db
); /* The database encoding */
818 int iCompare
= 0; /* Result of last comparison */
819 u64 nVmStep
= 0; /* Number of virtual machine steps */
820 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
821 u64 nProgressLimit
; /* Invoke xProgress() when nVmStep reaches this */
823 Mem
*aMem
= p
->aMem
; /* Copy of p->aMem */
824 Mem
*pIn1
= 0; /* 1st input operand */
825 Mem
*pIn2
= 0; /* 2nd input operand */
826 Mem
*pIn3
= 0; /* 3rd input operand */
827 Mem
*pOut
= 0; /* Output operand */
828 u32 colCacheCtr
= 0; /* Column cache counter */
829 #if defined(SQLITE_ENABLE_STMT_SCANSTATUS) || defined(VDBE_PROFILE)
831 int bStmtScanStatus
= IS_STMT_SCANSTATUS(db
)!=0;
833 /*** INSERT STACK UNION HERE ***/
835 assert( p
->eVdbeState
==VDBE_RUN_STATE
); /* sqlite3_step() verifies this */
836 if( DbMaskNonZero(p
->lockMask
) ){
839 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
841 u32 iPrior
= p
->aCounter
[SQLITE_STMTSTATUS_VM_STEP
];
842 assert( 0 < db
->nProgressOps
);
843 nProgressLimit
= db
->nProgressOps
- (iPrior
% db
->nProgressOps
);
845 nProgressLimit
= LARGEST_UINT64
;
848 if( p
->rc
==SQLITE_NOMEM
){
849 /* This happens if a malloc() inside a call to sqlite3_column_text() or
850 ** sqlite3_column_text16() failed. */
853 assert( p
->rc
==SQLITE_OK
|| (p
->rc
&0xff)==SQLITE_BUSY
);
854 testcase( p
->rc
!=SQLITE_OK
);
856 assert( p
->bIsReader
|| p
->readOnly
!=0 );
858 assert( p
->explain
==0 );
859 db
->busyHandler
.nBusy
= 0;
860 if( AtomicLoad(&db
->u1
.isInterrupted
) ) goto abort_due_to_interrupt
;
861 sqlite3VdbeIOTraceSql(p
);
863 sqlite3BeginBenignMalloc();
865 && (p
->db
->flags
& (SQLITE_VdbeListing
|SQLITE_VdbeEQP
|SQLITE_VdbeTrace
))!=0
869 sqlite3VdbePrintSql(p
);
870 if( p
->db
->flags
& SQLITE_VdbeListing
){
871 printf("VDBE Program Listing:\n");
872 for(i
=0; i
<p
->nOp
; i
++){
873 sqlite3VdbePrintOp(stdout
, i
, &aOp
[i
]);
876 if( p
->db
->flags
& SQLITE_VdbeEQP
){
877 for(i
=0; i
<p
->nOp
; i
++){
878 if( aOp
[i
].opcode
==OP_Explain
){
879 if( once
) printf("VDBE Query Plan:\n");
880 printf("%s\n", aOp
[i
].p4
.z
);
885 if( p
->db
->flags
& SQLITE_VdbeTrace
) printf("VDBE Trace:\n");
887 sqlite3EndBenignMalloc();
889 for(pOp
=&aOp
[p
->pc
]; 1; pOp
++){
890 /* Errors are detected by individual opcodes, with an immediate
891 ** jumps to abort_due_to_error. */
892 assert( rc
==SQLITE_OK
);
894 assert( pOp
>=aOp
&& pOp
<&aOp
[p
->nOp
]);
897 #if defined(VDBE_PROFILE)
899 pnCycle
= &pOp
->nCycle
;
900 if( sqlite3NProfileCnt
==0 ) *pnCycle
-= sqlite3Hwtime();
901 #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
902 if( bStmtScanStatus
){
904 pnCycle
= &pOp
->nCycle
;
905 *pnCycle
-= sqlite3Hwtime();
909 /* Only allow tracing if SQLITE_DEBUG is defined.
912 if( db
->flags
& SQLITE_VdbeTrace
){
913 sqlite3VdbePrintOp(stdout
, (int)(pOp
- aOp
), pOp
);
914 test_trace_breakpoint((int)(pOp
- aOp
),pOp
,p
);
919 /* Check to see if we need to simulate an interrupt. This only happens
920 ** if we have a special test build.
923 if( sqlite3_interrupt_count
>0 ){
924 sqlite3_interrupt_count
--;
925 if( sqlite3_interrupt_count
==0 ){
926 sqlite3_interrupt(db
);
931 /* Sanity checking on other operands */
934 u8 opProperty
= sqlite3OpcodeProperty
[pOp
->opcode
];
935 if( (opProperty
& OPFLG_IN1
)!=0 ){
937 assert( pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
938 assert( memIsValid(&aMem
[pOp
->p1
]) );
939 assert( sqlite3VdbeCheckMemInvariants(&aMem
[pOp
->p1
]) );
940 REGISTER_TRACE(pOp
->p1
, &aMem
[pOp
->p1
]);
942 if( (opProperty
& OPFLG_IN2
)!=0 ){
944 assert( pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
) );
945 assert( memIsValid(&aMem
[pOp
->p2
]) );
946 assert( sqlite3VdbeCheckMemInvariants(&aMem
[pOp
->p2
]) );
947 REGISTER_TRACE(pOp
->p2
, &aMem
[pOp
->p2
]);
949 if( (opProperty
& OPFLG_IN3
)!=0 ){
951 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
952 assert( memIsValid(&aMem
[pOp
->p3
]) );
953 assert( sqlite3VdbeCheckMemInvariants(&aMem
[pOp
->p3
]) );
954 REGISTER_TRACE(pOp
->p3
, &aMem
[pOp
->p3
]);
956 if( (opProperty
& OPFLG_OUT2
)!=0 ){
958 assert( pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
) );
959 memAboutToChange(p
, &aMem
[pOp
->p2
]);
961 if( (opProperty
& OPFLG_OUT3
)!=0 ){
963 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
964 memAboutToChange(p
, &aMem
[pOp
->p3
]);
972 switch( pOp
->opcode
){
974 /*****************************************************************************
975 ** What follows is a massive switch statement where each case implements a
976 ** separate instruction in the virtual machine. If we follow the usual
977 ** indentation conventions, each case should be indented by 6 spaces. But
978 ** that is a lot of wasted space on the left margin. So the code within
979 ** the switch statement will break with convention and be flush-left. Another
980 ** big comment (similar to this one) will mark the point in the code where
981 ** we transition back to normal indentation.
983 ** The formatting of each case is important. The makefile for SQLite
984 ** generates two C files "opcodes.h" and "opcodes.c" by scanning this
985 ** file looking for lines that begin with "case OP_". The opcodes.h files
986 ** will be filled with #defines that give unique integer values to each
987 ** opcode and the opcodes.c file is filled with an array of strings where
988 ** each string is the symbolic name for the corresponding opcode. If the
989 ** case statement is followed by a comment of the form "/# same as ... #/"
990 ** that comment is used to determine the particular value of the opcode.
992 ** Other keywords in the comment that follows each case are used to
993 ** construct the OPFLG_INITIALIZER value that initializes opcodeProperty[].
994 ** Keywords include: in1, in2, in3, out2, out3. See
995 ** the mkopcodeh.awk script for additional information.
997 ** Documentation about VDBE opcodes is generated by scanning this file
998 ** for lines of that contain "Opcode:". That line and all subsequent
999 ** comment lines are used in the generation of the opcode.html documentation
1004 ** Formatting is important to scripts that scan this file.
1005 ** Do not deviate from the formatting style currently in use.
1007 *****************************************************************************/
1009 /* Opcode: Goto * P2 * * *
1011 ** An unconditional jump to address P2.
1012 ** The next instruction executed will be
1013 ** the one at index P2 from the beginning of
1016 ** The P1 parameter is not actually used by this opcode. However, it
1017 ** is sometimes set to 1 instead of 0 as a hint to the command-line shell
1018 ** that this Goto is the bottom of a loop and that the lines from P2 down
1019 ** to the current line should be indented for EXPLAIN output.
1021 case OP_Goto
: { /* jump */
1024 /* In debugging mode, when the p5 flags is set on an OP_Goto, that
1025 ** means we should really jump back to the preceding OP_ReleaseReg
1028 assert( pOp
->p2
< (int)(pOp
- aOp
) );
1029 assert( pOp
->p2
> 1 );
1030 pOp
= &aOp
[pOp
->p2
- 2];
1031 assert( pOp
[1].opcode
==OP_ReleaseReg
);
1032 goto check_for_interrupt
;
1036 jump_to_p2_and_check_for_interrupt
:
1037 pOp
= &aOp
[pOp
->p2
- 1];
1039 /* Opcodes that are used as the bottom of a loop (OP_Next, OP_Prev,
1040 ** OP_VNext, or OP_SorterNext) all jump here upon
1041 ** completion. Check to see if sqlite3_interrupt() has been called
1042 ** or if the progress callback needs to be invoked.
1044 ** This code uses unstructured "goto" statements and does not look clean.
1045 ** But that is not due to sloppy coding habits. The code is written this
1046 ** way for performance, to avoid having to run the interrupt and progress
1047 ** checks on every opcode. This helps sqlite3_step() to run about 1.5%
1048 ** faster according to "valgrind --tool=cachegrind" */
1049 check_for_interrupt
:
1050 if( AtomicLoad(&db
->u1
.isInterrupted
) ) goto abort_due_to_interrupt
;
1051 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
1052 /* Call the progress callback if it is configured and the required number
1053 ** of VDBE ops have been executed (either since this invocation of
1054 ** sqlite3VdbeExec() or since last time the progress callback was called).
1055 ** If the progress callback returns non-zero, exit the virtual machine with
1056 ** a return code SQLITE_ABORT.
1058 while( nVmStep
>=nProgressLimit
&& db
->xProgress
!=0 ){
1059 assert( db
->nProgressOps
!=0 );
1060 nProgressLimit
+= db
->nProgressOps
;
1061 if( db
->xProgress(db
->pProgressArg
) ){
1062 nProgressLimit
= LARGEST_UINT64
;
1063 rc
= SQLITE_INTERRUPT
;
1064 goto abort_due_to_error
;
1072 /* Opcode: Gosub P1 P2 * * *
1074 ** Write the current address onto register P1
1075 ** and then jump to address P2.
1077 case OP_Gosub
: { /* jump */
1078 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
1079 pIn1
= &aMem
[pOp
->p1
];
1080 assert( VdbeMemDynamic(pIn1
)==0 );
1081 memAboutToChange(p
, pIn1
);
1082 pIn1
->flags
= MEM_Int
;
1083 pIn1
->u
.i
= (int)(pOp
-aOp
);
1084 REGISTER_TRACE(pOp
->p1
, pIn1
);
1085 goto jump_to_p2_and_check_for_interrupt
;
1088 /* Opcode: Return P1 P2 P3 * *
1090 ** Jump to the address stored in register P1. If P1 is a return address
1091 ** register, then this accomplishes a return from a subroutine.
1093 ** If P3 is 1, then the jump is only taken if register P1 holds an integer
1094 ** values, otherwise execution falls through to the next opcode, and the
1095 ** OP_Return becomes a no-op. If P3 is 0, then register P1 must hold an
1096 ** integer or else an assert() is raised. P3 should be set to 1 when
1097 ** this opcode is used in combination with OP_BeginSubrtn, and set to 0
1100 ** The value in register P1 is unchanged by this opcode.
1102 ** P2 is not used by the byte-code engine. However, if P2 is positive
1103 ** and also less than the current address, then the "EXPLAIN" output
1104 ** formatter in the CLI will indent all opcodes from the P2 opcode up
1105 ** to be not including the current Return. P2 should be the first opcode
1106 ** in the subroutine from which this opcode is returning. Thus the P2
1107 ** value is a byte-code indentation hint. See tag-20220407a in
1108 ** wherecode.c and shell.c.
1110 case OP_Return
: { /* in1 */
1111 pIn1
= &aMem
[pOp
->p1
];
1112 if( pIn1
->flags
& MEM_Int
){
1113 if( pOp
->p3
){ VdbeBranchTaken(1, 2); }
1114 pOp
= &aOp
[pIn1
->u
.i
];
1115 }else if( ALWAYS(pOp
->p3
) ){
1116 VdbeBranchTaken(0, 2);
1121 /* Opcode: InitCoroutine P1 P2 P3 * *
1123 ** Set up register P1 so that it will Yield to the coroutine
1124 ** located at address P3.
1126 ** If P2!=0 then the coroutine implementation immediately follows
1127 ** this opcode. So jump over the coroutine implementation to
1130 ** See also: EndCoroutine
1132 case OP_InitCoroutine
: { /* jump */
1133 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
1134 assert( pOp
->p2
>=0 && pOp
->p2
<p
->nOp
);
1135 assert( pOp
->p3
>=0 && pOp
->p3
<p
->nOp
);
1136 pOut
= &aMem
[pOp
->p1
];
1137 assert( !VdbeMemDynamic(pOut
) );
1138 pOut
->u
.i
= pOp
->p3
- 1;
1139 pOut
->flags
= MEM_Int
;
1140 if( pOp
->p2
==0 ) break;
1142 /* Most jump operations do a goto to this spot in order to update
1143 ** the pOp pointer. */
1145 assert( pOp
->p2
>0 ); /* There are never any jumps to instruction 0 */
1146 assert( pOp
->p2
<p
->nOp
); /* Jumps must be in range */
1147 pOp
= &aOp
[pOp
->p2
- 1];
1151 /* Opcode: EndCoroutine P1 * * * *
1153 ** The instruction at the address in register P1 is a Yield.
1154 ** Jump to the P2 parameter of that Yield.
1155 ** After the jump, register P1 becomes undefined.
1157 ** See also: InitCoroutine
1159 case OP_EndCoroutine
: { /* in1 */
1161 pIn1
= &aMem
[pOp
->p1
];
1162 assert( pIn1
->flags
==MEM_Int
);
1163 assert( pIn1
->u
.i
>=0 && pIn1
->u
.i
<p
->nOp
);
1164 pCaller
= &aOp
[pIn1
->u
.i
];
1165 assert( pCaller
->opcode
==OP_Yield
);
1166 assert( pCaller
->p2
>=0 && pCaller
->p2
<p
->nOp
);
1167 pOp
= &aOp
[pCaller
->p2
- 1];
1168 pIn1
->flags
= MEM_Undefined
;
1172 /* Opcode: Yield P1 P2 * * *
1174 ** Swap the program counter with the value in register P1. This
1175 ** has the effect of yielding to a coroutine.
1177 ** If the coroutine that is launched by this instruction ends with
1178 ** Yield or Return then continue to the next instruction. But if
1179 ** the coroutine launched by this instruction ends with
1180 ** EndCoroutine, then jump to P2 rather than continuing with the
1181 ** next instruction.
1183 ** See also: InitCoroutine
1185 case OP_Yield
: { /* in1, jump */
1187 pIn1
= &aMem
[pOp
->p1
];
1188 assert( VdbeMemDynamic(pIn1
)==0 );
1189 pIn1
->flags
= MEM_Int
;
1190 pcDest
= (int)pIn1
->u
.i
;
1191 pIn1
->u
.i
= (int)(pOp
- aOp
);
1192 REGISTER_TRACE(pOp
->p1
, pIn1
);
1197 /* Opcode: HaltIfNull P1 P2 P3 P4 P5
1198 ** Synopsis: if r[P3]=null halt
1200 ** Check the value in register P3. If it is NULL then Halt using
1201 ** parameter P1, P2, and P4 as if this were a Halt instruction. If the
1202 ** value in register P3 is not NULL, then this routine is a no-op.
1203 ** The P5 parameter should be 1.
1205 case OP_HaltIfNull
: { /* in3 */
1206 pIn3
= &aMem
[pOp
->p3
];
1208 if( pOp
->p2
==OE_Abort
){ sqlite3VdbeAssertAbortable(p
); }
1210 if( (pIn3
->flags
& MEM_Null
)==0 ) break;
1211 /* Fall through into OP_Halt */
1212 /* no break */ deliberate_fall_through
1215 /* Opcode: Halt P1 P2 * P4 P5
1217 ** Exit immediately. All open cursors, etc are closed
1220 ** P1 is the result code returned by sqlite3_exec(), sqlite3_reset(),
1221 ** or sqlite3_finalize(). For a normal halt, this should be SQLITE_OK (0).
1222 ** For errors, it can be some other value. If P1!=0 then P2 will determine
1223 ** whether or not to rollback the current transaction. Do not rollback
1224 ** if P2==OE_Fail. Do the rollback if P2==OE_Rollback. If P2==OE_Abort,
1225 ** then back out all changes that have occurred during this execution of the
1226 ** VDBE, but do not rollback the transaction.
1228 ** If P4 is not null then it is an error message string.
1230 ** P5 is a value between 0 and 4, inclusive, that modifies the P4 string.
1233 ** 1: NOT NULL constraint failed: P4
1234 ** 2: UNIQUE constraint failed: P4
1235 ** 3: CHECK constraint failed: P4
1236 ** 4: FOREIGN KEY constraint failed: P4
1238 ** If P5 is not zero and P4 is NULL, then everything after the ":" is
1241 ** There is an implied "Halt 0 0 0" instruction inserted at the very end of
1242 ** every program. So a jump past the last instruction of the program
1243 ** is the same as executing Halt.
1250 if( pOp
->p2
==OE_Abort
){ sqlite3VdbeAssertAbortable(p
); }
1253 /* A deliberately coded "OP_Halt SQLITE_INTERNAL * * * *" opcode indicates
1254 ** something is wrong with the code generator. Raise an assertion in order
1255 ** to bring this to the attention of fuzzers and other testing tools. */
1256 assert( pOp
->p1
!=SQLITE_INTERNAL
);
1258 if( p
->pFrame
&& pOp
->p1
==SQLITE_OK
){
1259 /* Halt the sub-program. Return control to the parent frame. */
1261 p
->pFrame
= pFrame
->pParent
;
1263 sqlite3VdbeSetChanges(db
, p
->nChange
);
1264 pcx
= sqlite3VdbeFrameRestore(pFrame
);
1265 if( pOp
->p2
==OE_Ignore
){
1266 /* Instruction pcx is the OP_Program that invoked the sub-program
1267 ** currently being halted. If the p2 instruction of this OP_Halt
1268 ** instruction is set to OE_Ignore, then the sub-program is throwing
1269 ** an IGNORE exception. In this case jump to the address specified
1270 ** as the p2 of the calling OP_Program. */
1271 pcx
= p
->aOp
[pcx
].p2
-1;
1279 p
->errorAction
= (u8
)pOp
->p2
;
1280 assert( pOp
->p5
<=4 );
1283 static const char * const azType
[] = { "NOT NULL", "UNIQUE", "CHECK",
1285 testcase( pOp
->p5
==1 );
1286 testcase( pOp
->p5
==2 );
1287 testcase( pOp
->p5
==3 );
1288 testcase( pOp
->p5
==4 );
1289 sqlite3VdbeError(p
, "%s constraint failed", azType
[pOp
->p5
-1]);
1291 p
->zErrMsg
= sqlite3MPrintf(db
, "%z: %s", p
->zErrMsg
, pOp
->p4
.z
);
1294 sqlite3VdbeError(p
, "%s", pOp
->p4
.z
);
1296 pcx
= (int)(pOp
- aOp
);
1297 sqlite3_log(pOp
->p1
, "abort at %d in [%s]: %s", pcx
, p
->zSql
, p
->zErrMsg
);
1299 rc
= sqlite3VdbeHalt(p
);
1300 assert( rc
==SQLITE_BUSY
|| rc
==SQLITE_OK
|| rc
==SQLITE_ERROR
);
1301 if( rc
==SQLITE_BUSY
){
1302 p
->rc
= SQLITE_BUSY
;
1304 assert( rc
==SQLITE_OK
|| (p
->rc
&0xff)==SQLITE_CONSTRAINT
);
1305 assert( rc
==SQLITE_OK
|| db
->nDeferredCons
>0 || db
->nDeferredImmCons
>0 );
1306 rc
= p
->rc
? SQLITE_ERROR
: SQLITE_DONE
;
1311 /* Opcode: Integer P1 P2 * * *
1312 ** Synopsis: r[P2]=P1
1314 ** The 32-bit integer value P1 is written into register P2.
1316 case OP_Integer
: { /* out2 */
1317 pOut
= out2Prerelease(p
, pOp
);
1318 pOut
->u
.i
= pOp
->p1
;
1322 /* Opcode: Int64 * P2 * P4 *
1323 ** Synopsis: r[P2]=P4
1325 ** P4 is a pointer to a 64-bit integer value.
1326 ** Write that value into register P2.
1328 case OP_Int64
: { /* out2 */
1329 pOut
= out2Prerelease(p
, pOp
);
1330 assert( pOp
->p4
.pI64
!=0 );
1331 pOut
->u
.i
= *pOp
->p4
.pI64
;
1335 #ifndef SQLITE_OMIT_FLOATING_POINT
1336 /* Opcode: Real * P2 * P4 *
1337 ** Synopsis: r[P2]=P4
1339 ** P4 is a pointer to a 64-bit floating point value.
1340 ** Write that value into register P2.
1342 case OP_Real
: { /* same as TK_FLOAT, out2 */
1343 pOut
= out2Prerelease(p
, pOp
);
1344 pOut
->flags
= MEM_Real
;
1345 assert( !sqlite3IsNaN(*pOp
->p4
.pReal
) );
1346 pOut
->u
.r
= *pOp
->p4
.pReal
;
1351 /* Opcode: String8 * P2 * P4 *
1352 ** Synopsis: r[P2]='P4'
1354 ** P4 points to a nul terminated UTF-8 string. This opcode is transformed
1355 ** into a String opcode before it is executed for the first time. During
1356 ** this transformation, the length of string P4 is computed and stored
1357 ** as the P1 parameter.
1359 case OP_String8
: { /* same as TK_STRING, out2 */
1360 assert( pOp
->p4
.z
!=0 );
1361 pOut
= out2Prerelease(p
, pOp
);
1362 pOp
->p1
= sqlite3Strlen30(pOp
->p4
.z
);
1364 #ifndef SQLITE_OMIT_UTF16
1365 if( encoding
!=SQLITE_UTF8
){
1366 rc
= sqlite3VdbeMemSetStr(pOut
, pOp
->p4
.z
, -1, SQLITE_UTF8
, SQLITE_STATIC
);
1367 assert( rc
==SQLITE_OK
|| rc
==SQLITE_TOOBIG
);
1368 if( rc
) goto too_big
;
1369 if( SQLITE_OK
!=sqlite3VdbeChangeEncoding(pOut
, encoding
) ) goto no_mem
;
1370 assert( pOut
->szMalloc
>0 && pOut
->zMalloc
==pOut
->z
);
1371 assert( VdbeMemDynamic(pOut
)==0 );
1373 pOut
->flags
|= MEM_Static
;
1374 if( pOp
->p4type
==P4_DYNAMIC
){
1375 sqlite3DbFree(db
, pOp
->p4
.z
);
1377 pOp
->p4type
= P4_DYNAMIC
;
1378 pOp
->p4
.z
= pOut
->z
;
1382 if( pOp
->p1
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
1385 pOp
->opcode
= OP_String
;
1386 assert( rc
==SQLITE_OK
);
1387 /* Fall through to the next case, OP_String */
1388 /* no break */ deliberate_fall_through
1391 /* Opcode: String P1 P2 P3 P4 P5
1392 ** Synopsis: r[P2]='P4' (len=P1)
1394 ** The string value P4 of length P1 (bytes) is stored in register P2.
1396 ** If P3 is not zero and the content of register P3 is equal to P5, then
1397 ** the datatype of the register P2 is converted to BLOB. The content is
1398 ** the same sequence of bytes, it is merely interpreted as a BLOB instead
1399 ** of a string, as if it had been CAST. In other words:
1401 ** if( P3!=0 and reg[P3]==P5 ) reg[P2] := CAST(reg[P2] as BLOB)
1403 case OP_String
: { /* out2 */
1404 assert( pOp
->p4
.z
!=0 );
1405 pOut
= out2Prerelease(p
, pOp
);
1406 pOut
->flags
= MEM_Str
|MEM_Static
|MEM_Term
;
1407 pOut
->z
= pOp
->p4
.z
;
1409 pOut
->enc
= encoding
;
1410 UPDATE_MAX_BLOBSIZE(pOut
);
1411 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
1413 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
1414 pIn3
= &aMem
[pOp
->p3
];
1415 assert( pIn3
->flags
& MEM_Int
);
1416 if( pIn3
->u
.i
==pOp
->p5
) pOut
->flags
= MEM_Blob
|MEM_Static
|MEM_Term
;
1422 /* Opcode: BeginSubrtn * P2 * * *
1423 ** Synopsis: r[P2]=NULL
1425 ** Mark the beginning of a subroutine that can be entered in-line
1426 ** or that can be called using OP_Gosub. The subroutine should
1427 ** be terminated by an OP_Return instruction that has a P1 operand that
1428 ** is the same as the P2 operand to this opcode and that has P3 set to 1.
1429 ** If the subroutine is entered in-line, then the OP_Return will simply
1430 ** fall through. But if the subroutine is entered using OP_Gosub, then
1431 ** the OP_Return will jump back to the first instruction after the OP_Gosub.
1433 ** This routine works by loading a NULL into the P2 register. When the
1434 ** return address register contains a NULL, the OP_Return instruction is
1435 ** a no-op that simply falls through to the next instruction (assuming that
1436 ** the OP_Return opcode has a P3 value of 1). Thus if the subroutine is
1437 ** entered in-line, then the OP_Return will cause in-line execution to
1438 ** continue. But if the subroutine is entered via OP_Gosub, then the
1439 ** OP_Return will cause a return to the address following the OP_Gosub.
1441 ** This opcode is identical to OP_Null. It has a different name
1442 ** only to make the byte code easier to read and verify.
1444 /* Opcode: Null P1 P2 P3 * *
1445 ** Synopsis: r[P2..P3]=NULL
1447 ** Write a NULL into registers P2. If P3 greater than P2, then also write
1448 ** NULL into register P3 and every register in between P2 and P3. If P3
1449 ** is less than P2 (typically P3 is zero) then only register P2 is
1452 ** If the P1 value is non-zero, then also set the MEM_Cleared flag so that
1453 ** NULL values will not compare equal even if SQLITE_NULLEQ is set on
1456 case OP_BeginSubrtn
:
1457 case OP_Null
: { /* out2 */
1460 pOut
= out2Prerelease(p
, pOp
);
1461 cnt
= pOp
->p3
-pOp
->p2
;
1462 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
1463 pOut
->flags
= nullFlag
= pOp
->p1
? (MEM_Null
|MEM_Cleared
) : MEM_Null
;
1470 memAboutToChange(p
, pOut
);
1471 sqlite3VdbeMemSetNull(pOut
);
1472 pOut
->flags
= nullFlag
;
1479 /* Opcode: SoftNull P1 * * * *
1480 ** Synopsis: r[P1]=NULL
1482 ** Set register P1 to have the value NULL as seen by the OP_MakeRecord
1483 ** instruction, but do not free any string or blob memory associated with
1484 ** the register, so that if the value was a string or blob that was
1485 ** previously copied using OP_SCopy, the copies will continue to be valid.
1488 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
1489 pOut
= &aMem
[pOp
->p1
];
1490 pOut
->flags
= (pOut
->flags
&~(MEM_Undefined
|MEM_AffMask
))|MEM_Null
;
1494 /* Opcode: Blob P1 P2 * P4 *
1495 ** Synopsis: r[P2]=P4 (len=P1)
1497 ** P4 points to a blob of data P1 bytes long. Store this
1498 ** blob in register P2. If P4 is a NULL pointer, then construct
1499 ** a zero-filled blob that is P1 bytes long in P2.
1501 case OP_Blob
: { /* out2 */
1502 assert( pOp
->p1
<= SQLITE_MAX_LENGTH
);
1503 pOut
= out2Prerelease(p
, pOp
);
1505 sqlite3VdbeMemSetZeroBlob(pOut
, pOp
->p1
);
1506 if( sqlite3VdbeMemExpandBlob(pOut
) ) goto no_mem
;
1508 sqlite3VdbeMemSetStr(pOut
, pOp
->p4
.z
, pOp
->p1
, 0, 0);
1510 pOut
->enc
= encoding
;
1511 UPDATE_MAX_BLOBSIZE(pOut
);
1515 /* Opcode: Variable P1 P2 * P4 *
1516 ** Synopsis: r[P2]=parameter(P1,P4)
1518 ** Transfer the values of bound parameter P1 into register P2
1520 ** If the parameter is named, then its name appears in P4.
1521 ** The P4 value is used by sqlite3_bind_parameter_name().
1523 case OP_Variable
: { /* out2 */
1524 Mem
*pVar
; /* Value being transferred */
1526 assert( pOp
->p1
>0 && pOp
->p1
<=p
->nVar
);
1527 assert( pOp
->p4
.z
==0 || pOp
->p4
.z
==sqlite3VListNumToName(p
->pVList
,pOp
->p1
) );
1528 pVar
= &p
->aVar
[pOp
->p1
- 1];
1529 if( sqlite3VdbeMemTooBig(pVar
) ){
1532 pOut
= &aMem
[pOp
->p2
];
1533 if( VdbeMemDynamic(pOut
) ) sqlite3VdbeMemSetNull(pOut
);
1534 memcpy(pOut
, pVar
, MEMCELLSIZE
);
1535 pOut
->flags
&= ~(MEM_Dyn
|MEM_Ephem
);
1536 pOut
->flags
|= MEM_Static
|MEM_FromBind
;
1537 UPDATE_MAX_BLOBSIZE(pOut
);
1541 /* Opcode: Move P1 P2 P3 * *
1542 ** Synopsis: r[P2@P3]=r[P1@P3]
1544 ** Move the P3 values in register P1..P1+P3-1 over into
1545 ** registers P2..P2+P3-1. Registers P1..P1+P3-1 are
1546 ** left holding a NULL. It is an error for register ranges
1547 ** P1..P1+P3-1 and P2..P2+P3-1 to overlap. It is an error
1548 ** for P3 to be less than 1.
1551 int n
; /* Number of registers left to copy */
1552 int p1
; /* Register to copy from */
1553 int p2
; /* Register to copy to */
1558 assert( n
>0 && p1
>0 && p2
>0 );
1559 assert( p1
+n
<=p2
|| p2
+n
<=p1
);
1564 assert( pOut
<=&aMem
[(p
->nMem
+1 - p
->nCursor
)] );
1565 assert( pIn1
<=&aMem
[(p
->nMem
+1 - p
->nCursor
)] );
1566 assert( memIsValid(pIn1
) );
1567 memAboutToChange(p
, pOut
);
1568 sqlite3VdbeMemMove(pOut
, pIn1
);
1570 pIn1
->pScopyFrom
= 0;
1572 for(i
=1; i
<p
->nMem
; i
++){
1573 if( aMem
[i
].pScopyFrom
==pIn1
){
1574 aMem
[i
].pScopyFrom
= pOut
;
1579 Deephemeralize(pOut
);
1580 REGISTER_TRACE(p2
++, pOut
);
1587 /* Opcode: Copy P1 P2 P3 * P5
1588 ** Synopsis: r[P2@P3+1]=r[P1@P3+1]
1590 ** Make a copy of registers P1..P1+P3 into registers P2..P2+P3.
1592 ** If the 0x0002 bit of P5 is set then also clear the MEM_Subtype flag in the
1593 ** destination. The 0x0001 bit of P5 indicates that this Copy opcode cannot
1594 ** be merged. The 0x0001 bit is used by the query planner and does not
1595 ** come into play during query execution.
1597 ** This instruction makes a deep copy of the value. A duplicate
1598 ** is made of any string or blob constant. See also OP_SCopy.
1604 pIn1
= &aMem
[pOp
->p1
];
1605 pOut
= &aMem
[pOp
->p2
];
1606 assert( pOut
!=pIn1
);
1608 memAboutToChange(p
, pOut
);
1609 sqlite3VdbeMemShallowCopy(pOut
, pIn1
, MEM_Ephem
);
1610 Deephemeralize(pOut
);
1611 if( (pOut
->flags
& MEM_Subtype
)!=0 && (pOp
->p5
& 0x0002)!=0 ){
1612 pOut
->flags
&= ~MEM_Subtype
;
1615 pOut
->pScopyFrom
= 0;
1617 REGISTER_TRACE(pOp
->p2
+pOp
->p3
-n
, pOut
);
1618 if( (n
--)==0 ) break;
1625 /* Opcode: SCopy P1 P2 * * *
1626 ** Synopsis: r[P2]=r[P1]
1628 ** Make a shallow copy of register P1 into register P2.
1630 ** This instruction makes a shallow copy of the value. If the value
1631 ** is a string or blob, then the copy is only a pointer to the
1632 ** original and hence if the original changes so will the copy.
1633 ** Worse, if the original is deallocated, the copy becomes invalid.
1634 ** Thus the program must guarantee that the original will not change
1635 ** during the lifetime of the copy. Use OP_Copy to make a complete
1638 case OP_SCopy
: { /* out2 */
1639 pIn1
= &aMem
[pOp
->p1
];
1640 pOut
= &aMem
[pOp
->p2
];
1641 assert( pOut
!=pIn1
);
1642 sqlite3VdbeMemShallowCopy(pOut
, pIn1
, MEM_Ephem
);
1644 pOut
->pScopyFrom
= pIn1
;
1645 pOut
->mScopyFlags
= pIn1
->flags
;
1650 /* Opcode: IntCopy P1 P2 * * *
1651 ** Synopsis: r[P2]=r[P1]
1653 ** Transfer the integer value held in register P1 into register P2.
1655 ** This is an optimized version of SCopy that works only for integer
1658 case OP_IntCopy
: { /* out2 */
1659 pIn1
= &aMem
[pOp
->p1
];
1660 assert( (pIn1
->flags
& MEM_Int
)!=0 );
1661 pOut
= &aMem
[pOp
->p2
];
1662 sqlite3VdbeMemSetInt64(pOut
, pIn1
->u
.i
);
1666 /* Opcode: FkCheck * * * * *
1668 ** Halt with an SQLITE_CONSTRAINT error if there are any unresolved
1669 ** foreign key constraint violations. If there are no foreign key
1670 ** constraint violations, this is a no-op.
1672 ** FK constraint violations are also checked when the prepared statement
1673 ** exits. This opcode is used to raise foreign key constraint errors prior
1674 ** to returning results such as a row change count or the result of a
1675 ** RETURNING clause.
1678 if( (rc
= sqlite3VdbeCheckFk(p
,0))!=SQLITE_OK
){
1679 goto abort_due_to_error
;
1684 /* Opcode: ResultRow P1 P2 * * *
1685 ** Synopsis: output=r[P1@P2]
1687 ** The registers P1 through P1+P2-1 contain a single row of
1688 ** results. This opcode causes the sqlite3_step() call to terminate
1689 ** with an SQLITE_ROW return code and it sets up the sqlite3_stmt
1690 ** structure to provide access to the r(P1)..r(P1+P2-1) values as
1693 case OP_ResultRow
: {
1694 assert( p
->nResColumn
==pOp
->p2
);
1695 assert( pOp
->p1
>0 || CORRUPT_DB
);
1696 assert( pOp
->p1
+pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
)+1 );
1698 p
->cacheCtr
= (p
->cacheCtr
+ 2)|1;
1699 p
->pResultRow
= &aMem
[pOp
->p1
];
1702 Mem
*pMem
= p
->pResultRow
;
1704 for(i
=0; i
<pOp
->p2
; i
++){
1705 assert( memIsValid(&pMem
[i
]) );
1706 REGISTER_TRACE(pOp
->p1
+i
, &pMem
[i
]);
1707 /* The registers in the result will not be used again when the
1708 ** prepared statement restarts. This is because sqlite3_column()
1709 ** APIs might have caused type conversions of made other changes to
1710 ** the register values. Therefore, we can go ahead and break any
1711 ** OP_SCopy dependencies. */
1712 pMem
[i
].pScopyFrom
= 0;
1716 if( db
->mallocFailed
) goto no_mem
;
1717 if( db
->mTrace
& SQLITE_TRACE_ROW
){
1718 db
->trace
.xV2(SQLITE_TRACE_ROW
, db
->pTraceArg
, p
, 0);
1720 p
->pc
= (int)(pOp
- aOp
) + 1;
1725 /* Opcode: Concat P1 P2 P3 * *
1726 ** Synopsis: r[P3]=r[P2]+r[P1]
1728 ** Add the text in register P1 onto the end of the text in
1729 ** register P2 and store the result in register P3.
1730 ** If either the P1 or P2 text are NULL then store NULL in P3.
1734 ** It is illegal for P1 and P3 to be the same register. Sometimes,
1735 ** if P3 is the same register as P2, the implementation is able
1736 ** to avoid a memcpy().
1738 case OP_Concat
: { /* same as TK_CONCAT, in1, in2, out3 */
1739 i64 nByte
; /* Total size of the output string or blob */
1740 u16 flags1
; /* Initial flags for P1 */
1741 u16 flags2
; /* Initial flags for P2 */
1743 pIn1
= &aMem
[pOp
->p1
];
1744 pIn2
= &aMem
[pOp
->p2
];
1745 pOut
= &aMem
[pOp
->p3
];
1746 testcase( pOut
==pIn2
);
1747 assert( pIn1
!=pOut
);
1748 flags1
= pIn1
->flags
;
1749 testcase( flags1
& MEM_Null
);
1750 testcase( pIn2
->flags
& MEM_Null
);
1751 if( (flags1
| pIn2
->flags
) & MEM_Null
){
1752 sqlite3VdbeMemSetNull(pOut
);
1755 if( (flags1
& (MEM_Str
|MEM_Blob
))==0 ){
1756 if( sqlite3VdbeMemStringify(pIn1
,encoding
,0) ) goto no_mem
;
1757 flags1
= pIn1
->flags
& ~MEM_Str
;
1758 }else if( (flags1
& MEM_Zero
)!=0 ){
1759 if( sqlite3VdbeMemExpandBlob(pIn1
) ) goto no_mem
;
1760 flags1
= pIn1
->flags
& ~MEM_Str
;
1762 flags2
= pIn2
->flags
;
1763 if( (flags2
& (MEM_Str
|MEM_Blob
))==0 ){
1764 if( sqlite3VdbeMemStringify(pIn2
,encoding
,0) ) goto no_mem
;
1765 flags2
= pIn2
->flags
& ~MEM_Str
;
1766 }else if( (flags2
& MEM_Zero
)!=0 ){
1767 if( sqlite3VdbeMemExpandBlob(pIn2
) ) goto no_mem
;
1768 flags2
= pIn2
->flags
& ~MEM_Str
;
1770 nByte
= pIn1
->n
+ pIn2
->n
;
1771 if( nByte
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
1774 if( sqlite3VdbeMemGrow(pOut
, (int)nByte
+2, pOut
==pIn2
) ){
1777 MemSetTypeFlag(pOut
, MEM_Str
);
1779 memcpy(pOut
->z
, pIn2
->z
, pIn2
->n
);
1780 assert( (pIn2
->flags
& MEM_Dyn
) == (flags2
& MEM_Dyn
) );
1781 pIn2
->flags
= flags2
;
1783 memcpy(&pOut
->z
[pIn2
->n
], pIn1
->z
, pIn1
->n
);
1784 assert( (pIn1
->flags
& MEM_Dyn
) == (flags1
& MEM_Dyn
) );
1785 pIn1
->flags
= flags1
;
1786 if( encoding
>SQLITE_UTF8
) nByte
&= ~1;
1788 pOut
->z
[nByte
+1] = 0;
1789 pOut
->flags
|= MEM_Term
;
1790 pOut
->n
= (int)nByte
;
1791 pOut
->enc
= encoding
;
1792 UPDATE_MAX_BLOBSIZE(pOut
);
1796 /* Opcode: Add P1 P2 P3 * *
1797 ** Synopsis: r[P3]=r[P1]+r[P2]
1799 ** Add the value in register P1 to the value in register P2
1800 ** and store the result in register P3.
1801 ** If either input is NULL, the result is NULL.
1803 /* Opcode: Multiply P1 P2 P3 * *
1804 ** Synopsis: r[P3]=r[P1]*r[P2]
1807 ** Multiply the value in register P1 by the value in register P2
1808 ** and store the result in register P3.
1809 ** If either input is NULL, the result is NULL.
1811 /* Opcode: Subtract P1 P2 P3 * *
1812 ** Synopsis: r[P3]=r[P2]-r[P1]
1814 ** Subtract the value in register P1 from the value in register P2
1815 ** and store the result in register P3.
1816 ** If either input is NULL, the result is NULL.
1818 /* Opcode: Divide P1 P2 P3 * *
1819 ** Synopsis: r[P3]=r[P2]/r[P1]
1821 ** Divide the value in register P1 by the value in register P2
1822 ** and store the result in register P3 (P3=P2/P1). If the value in
1823 ** register P1 is zero, then the result is NULL. If either input is
1824 ** NULL, the result is NULL.
1826 /* Opcode: Remainder P1 P2 P3 * *
1827 ** Synopsis: r[P3]=r[P2]%r[P1]
1829 ** Compute the remainder after integer register P2 is divided by
1830 ** register P1 and store the result in register P3.
1831 ** If the value in register P1 is zero the result is NULL.
1832 ** If either operand is NULL, the result is NULL.
1834 case OP_Add
: /* same as TK_PLUS, in1, in2, out3 */
1835 case OP_Subtract
: /* same as TK_MINUS, in1, in2, out3 */
1836 case OP_Multiply
: /* same as TK_STAR, in1, in2, out3 */
1837 case OP_Divide
: /* same as TK_SLASH, in1, in2, out3 */
1838 case OP_Remainder
: { /* same as TK_REM, in1, in2, out3 */
1839 u16 type1
; /* Numeric type of left operand */
1840 u16 type2
; /* Numeric type of right operand */
1841 i64 iA
; /* Integer value of left operand */
1842 i64 iB
; /* Integer value of right operand */
1843 double rA
; /* Real value of left operand */
1844 double rB
; /* Real value of right operand */
1846 pIn1
= &aMem
[pOp
->p1
];
1847 type1
= pIn1
->flags
;
1848 pIn2
= &aMem
[pOp
->p2
];
1849 type2
= pIn2
->flags
;
1850 pOut
= &aMem
[pOp
->p3
];
1851 if( (type1
& type2
& MEM_Int
)!=0 ){
1855 switch( pOp
->opcode
){
1856 case OP_Add
: if( sqlite3AddInt64(&iB
,iA
) ) goto fp_math
; break;
1857 case OP_Subtract
: if( sqlite3SubInt64(&iB
,iA
) ) goto fp_math
; break;
1858 case OP_Multiply
: if( sqlite3MulInt64(&iB
,iA
) ) goto fp_math
; break;
1860 if( iA
==0 ) goto arithmetic_result_is_null
;
1861 if( iA
==-1 && iB
==SMALLEST_INT64
) goto fp_math
;
1866 if( iA
==0 ) goto arithmetic_result_is_null
;
1867 if( iA
==-1 ) iA
= 1;
1873 MemSetTypeFlag(pOut
, MEM_Int
);
1874 }else if( ((type1
| type2
) & MEM_Null
)!=0 ){
1875 goto arithmetic_result_is_null
;
1877 type1
= numericType(pIn1
);
1878 type2
= numericType(pIn2
);
1879 if( (type1
& type2
& MEM_Int
)!=0 ) goto int_math
;
1881 rA
= sqlite3VdbeRealValue(pIn1
);
1882 rB
= sqlite3VdbeRealValue(pIn2
);
1883 switch( pOp
->opcode
){
1884 case OP_Add
: rB
+= rA
; break;
1885 case OP_Subtract
: rB
-= rA
; break;
1886 case OP_Multiply
: rB
*= rA
; break;
1888 /* (double)0 In case of SQLITE_OMIT_FLOATING_POINT... */
1889 if( rA
==(double)0 ) goto arithmetic_result_is_null
;
1894 iA
= sqlite3VdbeIntValue(pIn1
);
1895 iB
= sqlite3VdbeIntValue(pIn2
);
1896 if( iA
==0 ) goto arithmetic_result_is_null
;
1897 if( iA
==-1 ) iA
= 1;
1898 rB
= (double)(iB
% iA
);
1902 #ifdef SQLITE_OMIT_FLOATING_POINT
1904 MemSetTypeFlag(pOut
, MEM_Int
);
1906 if( sqlite3IsNaN(rB
) ){
1907 goto arithmetic_result_is_null
;
1910 MemSetTypeFlag(pOut
, MEM_Real
);
1915 arithmetic_result_is_null
:
1916 sqlite3VdbeMemSetNull(pOut
);
1920 /* Opcode: CollSeq P1 * * P4
1922 ** P4 is a pointer to a CollSeq object. If the next call to a user function
1923 ** or aggregate calls sqlite3GetFuncCollSeq(), this collation sequence will
1924 ** be returned. This is used by the built-in min(), max() and nullif()
1927 ** If P1 is not zero, then it is a register that a subsequent min() or
1928 ** max() aggregate will set to 1 if the current row is not the minimum or
1929 ** maximum. The P1 register is initialized to 0 by this instruction.
1931 ** The interface used by the implementation of the aforementioned functions
1932 ** to retrieve the collation sequence set by this opcode is not available
1933 ** publicly. Only built-in functions have access to this feature.
1936 assert( pOp
->p4type
==P4_COLLSEQ
);
1938 sqlite3VdbeMemSetInt64(&aMem
[pOp
->p1
], 0);
1943 /* Opcode: BitAnd P1 P2 P3 * *
1944 ** Synopsis: r[P3]=r[P1]&r[P2]
1946 ** Take the bit-wise AND of the values in register P1 and P2 and
1947 ** store the result in register P3.
1948 ** If either input is NULL, the result is NULL.
1950 /* Opcode: BitOr P1 P2 P3 * *
1951 ** Synopsis: r[P3]=r[P1]|r[P2]
1953 ** Take the bit-wise OR of the values in register P1 and P2 and
1954 ** store the result in register P3.
1955 ** If either input is NULL, the result is NULL.
1957 /* Opcode: ShiftLeft P1 P2 P3 * *
1958 ** Synopsis: r[P3]=r[P2]<<r[P1]
1960 ** Shift the integer value in register P2 to the left by the
1961 ** number of bits specified by the integer in register P1.
1962 ** Store the result in register P3.
1963 ** If either input is NULL, the result is NULL.
1965 /* Opcode: ShiftRight P1 P2 P3 * *
1966 ** Synopsis: r[P3]=r[P2]>>r[P1]
1968 ** Shift the integer value in register P2 to the right by the
1969 ** number of bits specified by the integer in register P1.
1970 ** Store the result in register P3.
1971 ** If either input is NULL, the result is NULL.
1973 case OP_BitAnd
: /* same as TK_BITAND, in1, in2, out3 */
1974 case OP_BitOr
: /* same as TK_BITOR, in1, in2, out3 */
1975 case OP_ShiftLeft
: /* same as TK_LSHIFT, in1, in2, out3 */
1976 case OP_ShiftRight
: { /* same as TK_RSHIFT, in1, in2, out3 */
1982 pIn1
= &aMem
[pOp
->p1
];
1983 pIn2
= &aMem
[pOp
->p2
];
1984 pOut
= &aMem
[pOp
->p3
];
1985 if( (pIn1
->flags
| pIn2
->flags
) & MEM_Null
){
1986 sqlite3VdbeMemSetNull(pOut
);
1989 iA
= sqlite3VdbeIntValue(pIn2
);
1990 iB
= sqlite3VdbeIntValue(pIn1
);
1992 if( op
==OP_BitAnd
){
1994 }else if( op
==OP_BitOr
){
1997 assert( op
==OP_ShiftRight
|| op
==OP_ShiftLeft
);
1999 /* If shifting by a negative amount, shift in the other direction */
2001 assert( OP_ShiftRight
==OP_ShiftLeft
+1 );
2002 op
= 2*OP_ShiftLeft
+ 1 - op
;
2003 iB
= iB
>(-64) ? -iB
: 64;
2007 iA
= (iA
>=0 || op
==OP_ShiftLeft
) ? 0 : -1;
2009 memcpy(&uA
, &iA
, sizeof(uA
));
2010 if( op
==OP_ShiftLeft
){
2014 /* Sign-extend on a right shift of a negative number */
2015 if( iA
<0 ) uA
|= ((((u64
)0xffffffff)<<32)|0xffffffff) << (64-iB
);
2017 memcpy(&iA
, &uA
, sizeof(iA
));
2021 MemSetTypeFlag(pOut
, MEM_Int
);
2025 /* Opcode: AddImm P1 P2 * * *
2026 ** Synopsis: r[P1]=r[P1]+P2
2028 ** Add the constant P2 to the value in register P1.
2029 ** The result is always an integer.
2031 ** To force any register to be an integer, just add 0.
2033 case OP_AddImm
: { /* in1 */
2034 pIn1
= &aMem
[pOp
->p1
];
2035 memAboutToChange(p
, pIn1
);
2036 sqlite3VdbeMemIntegerify(pIn1
);
2037 *(u64
*)&pIn1
->u
.i
+= (u64
)pOp
->p2
;
2041 /* Opcode: MustBeInt P1 P2 * * *
2043 ** Force the value in register P1 to be an integer. If the value
2044 ** in P1 is not an integer and cannot be converted into an integer
2045 ** without data loss, then jump immediately to P2, or if P2==0
2046 ** raise an SQLITE_MISMATCH exception.
2048 case OP_MustBeInt
: { /* jump, in1 */
2049 pIn1
= &aMem
[pOp
->p1
];
2050 if( (pIn1
->flags
& MEM_Int
)==0 ){
2051 applyAffinity(pIn1
, SQLITE_AFF_NUMERIC
, encoding
);
2052 if( (pIn1
->flags
& MEM_Int
)==0 ){
2053 VdbeBranchTaken(1, 2);
2055 rc
= SQLITE_MISMATCH
;
2056 goto abort_due_to_error
;
2062 VdbeBranchTaken(0, 2);
2063 MemSetTypeFlag(pIn1
, MEM_Int
);
2067 #ifndef SQLITE_OMIT_FLOATING_POINT
2068 /* Opcode: RealAffinity P1 * * * *
2070 ** If register P1 holds an integer convert it to a real value.
2072 ** This opcode is used when extracting information from a column that
2073 ** has REAL affinity. Such column values may still be stored as
2074 ** integers, for space efficiency, but after extraction we want them
2075 ** to have only a real value.
2077 case OP_RealAffinity
: { /* in1 */
2078 pIn1
= &aMem
[pOp
->p1
];
2079 if( pIn1
->flags
& (MEM_Int
|MEM_IntReal
) ){
2080 testcase( pIn1
->flags
& MEM_Int
);
2081 testcase( pIn1
->flags
& MEM_IntReal
);
2082 sqlite3VdbeMemRealify(pIn1
);
2083 REGISTER_TRACE(pOp
->p1
, pIn1
);
2089 #ifndef SQLITE_OMIT_CAST
2090 /* Opcode: Cast P1 P2 * * *
2091 ** Synopsis: affinity(r[P1])
2093 ** Force the value in register P1 to be the type defined by P2.
2096 ** <li> P2=='A' → BLOB
2097 ** <li> P2=='B' → TEXT
2098 ** <li> P2=='C' → NUMERIC
2099 ** <li> P2=='D' → INTEGER
2100 ** <li> P2=='E' → REAL
2103 ** A NULL value is not changed by this routine. It remains NULL.
2105 case OP_Cast
: { /* in1 */
2106 assert( pOp
->p2
>=SQLITE_AFF_BLOB
&& pOp
->p2
<=SQLITE_AFF_REAL
);
2107 testcase( pOp
->p2
==SQLITE_AFF_TEXT
);
2108 testcase( pOp
->p2
==SQLITE_AFF_BLOB
);
2109 testcase( pOp
->p2
==SQLITE_AFF_NUMERIC
);
2110 testcase( pOp
->p2
==SQLITE_AFF_INTEGER
);
2111 testcase( pOp
->p2
==SQLITE_AFF_REAL
);
2112 pIn1
= &aMem
[pOp
->p1
];
2113 memAboutToChange(p
, pIn1
);
2114 rc
= ExpandBlob(pIn1
);
2115 if( rc
) goto abort_due_to_error
;
2116 rc
= sqlite3VdbeMemCast(pIn1
, pOp
->p2
, encoding
);
2117 if( rc
) goto abort_due_to_error
;
2118 UPDATE_MAX_BLOBSIZE(pIn1
);
2119 REGISTER_TRACE(pOp
->p1
, pIn1
);
2122 #endif /* SQLITE_OMIT_CAST */
2124 /* Opcode: Eq P1 P2 P3 P4 P5
2125 ** Synopsis: IF r[P3]==r[P1]
2127 ** Compare the values in register P1 and P3. If reg(P3)==reg(P1) then
2128 ** jump to address P2.
2130 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2131 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2132 ** to coerce both inputs according to this affinity before the
2133 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2134 ** affinity is used. Note that the affinity conversions are stored
2135 ** back into the input registers P1 and P3. So this opcode can cause
2136 ** persistent changes to registers P1 and P3.
2138 ** Once any conversions have taken place, and neither value is NULL,
2139 ** the values are compared. If both values are blobs then memcmp() is
2140 ** used to determine the results of the comparison. If both values
2141 ** are text, then the appropriate collating function specified in
2142 ** P4 is used to do the comparison. If P4 is not specified then
2143 ** memcmp() is used to compare text string. If both values are
2144 ** numeric, then a numeric comparison is used. If the two values
2145 ** are of different types, then numbers are considered less than
2146 ** strings and strings are considered less than blobs.
2148 ** If SQLITE_NULLEQ is set in P5 then the result of comparison is always either
2149 ** true or false and is never NULL. If both operands are NULL then the result
2150 ** of comparison is true. If either operand is NULL then the result is false.
2151 ** If neither operand is NULL the result is the same as it would be if
2152 ** the SQLITE_NULLEQ flag were omitted from P5.
2154 ** This opcode saves the result of comparison for use by the new
2157 /* Opcode: Ne P1 P2 P3 P4 P5
2158 ** Synopsis: IF r[P3]!=r[P1]
2160 ** This works just like the Eq opcode except that the jump is taken if
2161 ** the operands in registers P1 and P3 are not equal. See the Eq opcode for
2162 ** additional information.
2164 /* Opcode: Lt P1 P2 P3 P4 P5
2165 ** Synopsis: IF r[P3]<r[P1]
2167 ** Compare the values in register P1 and P3. If reg(P3)<reg(P1) then
2168 ** jump to address P2.
2170 ** If the SQLITE_JUMPIFNULL bit of P5 is set and either reg(P1) or
2171 ** reg(P3) is NULL then the take the jump. If the SQLITE_JUMPIFNULL
2172 ** bit is clear then fall through if either operand is NULL.
2174 ** The SQLITE_AFF_MASK portion of P5 must be an affinity character -
2175 ** SQLITE_AFF_TEXT, SQLITE_AFF_INTEGER, and so forth. An attempt is made
2176 ** to coerce both inputs according to this affinity before the
2177 ** comparison is made. If the SQLITE_AFF_MASK is 0x00, then numeric
2178 ** affinity is used. Note that the affinity conversions are stored
2179 ** back into the input registers P1 and P3. So this opcode can cause
2180 ** persistent changes to registers P1 and P3.
2182 ** Once any conversions have taken place, and neither value is NULL,
2183 ** the values are compared. If both values are blobs then memcmp() is
2184 ** used to determine the results of the comparison. If both values
2185 ** are text, then the appropriate collating function specified in
2186 ** P4 is used to do the comparison. If P4 is not specified then
2187 ** memcmp() is used to compare text string. If both values are
2188 ** numeric, then a numeric comparison is used. If the two values
2189 ** are of different types, then numbers are considered less than
2190 ** strings and strings are considered less than blobs.
2192 ** This opcode saves the result of comparison for use by the new
2195 /* Opcode: Le P1 P2 P3 P4 P5
2196 ** Synopsis: IF r[P3]<=r[P1]
2198 ** This works just like the Lt opcode except that the jump is taken if
2199 ** the content of register P3 is less than or equal to the content of
2200 ** register P1. See the Lt opcode for additional information.
2202 /* Opcode: Gt P1 P2 P3 P4 P5
2203 ** Synopsis: IF r[P3]>r[P1]
2205 ** This works just like the Lt opcode except that the jump is taken if
2206 ** the content of register P3 is greater than the content of
2207 ** register P1. See the Lt opcode for additional information.
2209 /* Opcode: Ge P1 P2 P3 P4 P5
2210 ** Synopsis: IF r[P3]>=r[P1]
2212 ** This works just like the Lt opcode except that the jump is taken if
2213 ** the content of register P3 is greater than or equal to the content of
2214 ** register P1. See the Lt opcode for additional information.
2216 case OP_Eq
: /* same as TK_EQ, jump, in1, in3 */
2217 case OP_Ne
: /* same as TK_NE, jump, in1, in3 */
2218 case OP_Lt
: /* same as TK_LT, jump, in1, in3 */
2219 case OP_Le
: /* same as TK_LE, jump, in1, in3 */
2220 case OP_Gt
: /* same as TK_GT, jump, in1, in3 */
2221 case OP_Ge
: { /* same as TK_GE, jump, in1, in3 */
2222 int res
, res2
; /* Result of the comparison of pIn1 against pIn3 */
2223 char affinity
; /* Affinity to use for comparison */
2224 u16 flags1
; /* Copy of initial value of pIn1->flags */
2225 u16 flags3
; /* Copy of initial value of pIn3->flags */
2227 pIn1
= &aMem
[pOp
->p1
];
2228 pIn3
= &aMem
[pOp
->p3
];
2229 flags1
= pIn1
->flags
;
2230 flags3
= pIn3
->flags
;
2231 if( (flags1
& flags3
& MEM_Int
)!=0 ){
2232 /* Common case of comparison of two integers */
2233 if( pIn3
->u
.i
> pIn1
->u
.i
){
2234 if( sqlite3aGTb
[pOp
->opcode
] ){
2235 VdbeBranchTaken(1, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
2239 VVA_ONLY( iCompareIsInit
= 1; )
2240 }else if( pIn3
->u
.i
< pIn1
->u
.i
){
2241 if( sqlite3aLTb
[pOp
->opcode
] ){
2242 VdbeBranchTaken(1, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
2246 VVA_ONLY( iCompareIsInit
= 1; )
2248 if( sqlite3aEQb
[pOp
->opcode
] ){
2249 VdbeBranchTaken(1, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
2253 VVA_ONLY( iCompareIsInit
= 1; )
2255 VdbeBranchTaken(0, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
2258 if( (flags1
| flags3
)&MEM_Null
){
2259 /* One or both operands are NULL */
2260 if( pOp
->p5
& SQLITE_NULLEQ
){
2261 /* If SQLITE_NULLEQ is set (which will only happen if the operator is
2262 ** OP_Eq or OP_Ne) then take the jump or not depending on whether
2263 ** or not both operands are null.
2265 assert( (flags1
& MEM_Cleared
)==0 );
2266 assert( (pOp
->p5
& SQLITE_JUMPIFNULL
)==0 || CORRUPT_DB
);
2267 testcase( (pOp
->p5
& SQLITE_JUMPIFNULL
)!=0 );
2268 if( (flags1
&flags3
&MEM_Null
)!=0
2269 && (flags3
&MEM_Cleared
)==0
2271 res
= 0; /* Operands are equal */
2273 res
= ((flags3
& MEM_Null
) ? -1 : +1); /* Operands are not equal */
2276 /* SQLITE_NULLEQ is clear and at least one operand is NULL,
2277 ** then the result is always NULL.
2278 ** The jump is taken if the SQLITE_JUMPIFNULL bit is set.
2280 VdbeBranchTaken(2,3);
2281 if( pOp
->p5
& SQLITE_JUMPIFNULL
){
2284 iCompare
= 1; /* Operands are not equal */
2285 VVA_ONLY( iCompareIsInit
= 1; )
2289 /* Neither operand is NULL and we couldn't do the special high-speed
2290 ** integer comparison case. So do a general-case comparison. */
2291 affinity
= pOp
->p5
& SQLITE_AFF_MASK
;
2292 if( affinity
>=SQLITE_AFF_NUMERIC
){
2293 if( (flags1
| flags3
)&MEM_Str
){
2294 if( (flags1
& (MEM_Int
|MEM_IntReal
|MEM_Real
|MEM_Str
))==MEM_Str
){
2295 applyNumericAffinity(pIn1
,0);
2296 assert( flags3
==pIn3
->flags
|| CORRUPT_DB
);
2297 flags3
= pIn3
->flags
;
2299 if( (flags3
& (MEM_Int
|MEM_IntReal
|MEM_Real
|MEM_Str
))==MEM_Str
){
2300 applyNumericAffinity(pIn3
,0);
2303 }else if( affinity
==SQLITE_AFF_TEXT
&& ((flags1
| flags3
) & MEM_Str
)!=0 ){
2304 if( (flags1
& MEM_Str
)!=0 ){
2305 pIn1
->flags
&= ~(MEM_Int
|MEM_Real
|MEM_IntReal
);
2306 }else if( (flags1
&(MEM_Int
|MEM_Real
|MEM_IntReal
))!=0 ){
2307 testcase( pIn1
->flags
& MEM_Int
);
2308 testcase( pIn1
->flags
& MEM_Real
);
2309 testcase( pIn1
->flags
& MEM_IntReal
);
2310 sqlite3VdbeMemStringify(pIn1
, encoding
, 1);
2311 testcase( (flags1
&MEM_Dyn
) != (pIn1
->flags
&MEM_Dyn
) );
2312 flags1
= (pIn1
->flags
& ~MEM_TypeMask
) | (flags1
& MEM_TypeMask
);
2313 if( NEVER(pIn1
==pIn3
) ) flags3
= flags1
| MEM_Str
;
2315 if( (flags3
& MEM_Str
)!=0 ){
2316 pIn3
->flags
&= ~(MEM_Int
|MEM_Real
|MEM_IntReal
);
2317 }else if( (flags3
&(MEM_Int
|MEM_Real
|MEM_IntReal
))!=0 ){
2318 testcase( pIn3
->flags
& MEM_Int
);
2319 testcase( pIn3
->flags
& MEM_Real
);
2320 testcase( pIn3
->flags
& MEM_IntReal
);
2321 sqlite3VdbeMemStringify(pIn3
, encoding
, 1);
2322 testcase( (flags3
&MEM_Dyn
) != (pIn3
->flags
&MEM_Dyn
) );
2323 flags3
= (pIn3
->flags
& ~MEM_TypeMask
) | (flags3
& MEM_TypeMask
);
2326 assert( pOp
->p4type
==P4_COLLSEQ
|| pOp
->p4
.pColl
==0 );
2327 res
= sqlite3MemCompare(pIn3
, pIn1
, pOp
->p4
.pColl
);
2330 /* At this point, res is negative, zero, or positive if reg[P1] is
2331 ** less than, equal to, or greater than reg[P3], respectively. Compute
2332 ** the answer to this operator in res2, depending on what the comparison
2333 ** operator actually is. The next block of code depends on the fact
2334 ** that the 6 comparison operators are consecutive integers in this
2335 ** order: NE, EQ, GT, LE, LT, GE */
2336 assert( OP_Eq
==OP_Ne
+1 ); assert( OP_Gt
==OP_Ne
+2 ); assert( OP_Le
==OP_Ne
+3 );
2337 assert( OP_Lt
==OP_Ne
+4 ); assert( OP_Ge
==OP_Ne
+5 );
2339 res2
= sqlite3aLTb
[pOp
->opcode
];
2341 res2
= sqlite3aEQb
[pOp
->opcode
];
2343 res2
= sqlite3aGTb
[pOp
->opcode
];
2346 VVA_ONLY( iCompareIsInit
= 1; )
2348 /* Undo any changes made by applyAffinity() to the input registers. */
2349 assert( (pIn3
->flags
& MEM_Dyn
) == (flags3
& MEM_Dyn
) );
2350 pIn3
->flags
= flags3
;
2351 assert( (pIn1
->flags
& MEM_Dyn
) == (flags1
& MEM_Dyn
) );
2352 pIn1
->flags
= flags1
;
2354 VdbeBranchTaken(res2
!=0, (pOp
->p5
& SQLITE_NULLEQ
)?2:3);
2361 /* Opcode: ElseEq * P2 * * *
2363 ** This opcode must follow an OP_Lt or OP_Gt comparison operator. There
2364 ** can be zero or more OP_ReleaseReg opcodes intervening, but no other
2365 ** opcodes are allowed to occur between this instruction and the previous
2368 ** If the result of an OP_Eq comparison on the same two operands as
2369 ** the prior OP_Lt or OP_Gt would have been true, then jump to P2. If
2370 ** the result of an OP_Eq comparison on the two previous operands
2371 ** would have been false or NULL, then fall through.
2373 case OP_ElseEq
: { /* same as TK_ESCAPE, jump */
2376 /* Verify the preconditions of this opcode - that it follows an OP_Lt or
2377 ** OP_Gt with zero or more intervening OP_ReleaseReg opcodes */
2379 for(iAddr
= (int)(pOp
- aOp
) - 1; ALWAYS(iAddr
>=0); iAddr
--){
2380 if( aOp
[iAddr
].opcode
==OP_ReleaseReg
) continue;
2381 assert( aOp
[iAddr
].opcode
==OP_Lt
|| aOp
[iAddr
].opcode
==OP_Gt
);
2384 #endif /* SQLITE_DEBUG */
2385 assert( iCompareIsInit
);
2386 VdbeBranchTaken(iCompare
==0, 2);
2387 if( iCompare
==0 ) goto jump_to_p2
;
2392 /* Opcode: Permutation * * * P4 *
2394 ** Set the permutation used by the OP_Compare operator in the next
2395 ** instruction. The permutation is stored in the P4 operand.
2397 ** The permutation is only valid for the next opcode which must be
2398 ** an OP_Compare that has the OPFLAG_PERMUTE bit set in P5.
2400 ** The first integer in the P4 integer array is the length of the array
2401 ** and does not become part of the permutation.
2403 case OP_Permutation
: {
2404 assert( pOp
->p4type
==P4_INTARRAY
);
2405 assert( pOp
->p4
.ai
);
2406 assert( pOp
[1].opcode
==OP_Compare
);
2407 assert( pOp
[1].p5
& OPFLAG_PERMUTE
);
2411 /* Opcode: Compare P1 P2 P3 P4 P5
2412 ** Synopsis: r[P1@P3] <-> r[P2@P3]
2414 ** Compare two vectors of registers in reg(P1)..reg(P1+P3-1) (call this
2415 ** vector "A") and in reg(P2)..reg(P2+P3-1) ("B"). Save the result of
2416 ** the comparison for use by the next OP_Jump instruct.
2418 ** If P5 has the OPFLAG_PERMUTE bit set, then the order of comparison is
2419 ** determined by the most recent OP_Permutation operator. If the
2420 ** OPFLAG_PERMUTE bit is clear, then register are compared in sequential
2423 ** P4 is a KeyInfo structure that defines collating sequences and sort
2424 ** orders for the comparison. The permutation applies to registers
2425 ** only. The KeyInfo elements are used sequentially.
2427 ** The comparison is a sort comparison, so NULLs compare equal,
2428 ** NULLs are less than numbers, numbers are less than strings,
2429 ** and strings are less than blobs.
2431 ** This opcode must be immediately followed by an OP_Jump opcode.
2438 const KeyInfo
*pKeyInfo
;
2440 CollSeq
*pColl
; /* Collating sequence to use on this term */
2441 int bRev
; /* True for DESCENDING sort order */
2442 u32
*aPermute
; /* The permutation */
2444 if( (pOp
->p5
& OPFLAG_PERMUTE
)==0 ){
2448 assert( pOp
[-1].opcode
==OP_Permutation
);
2449 assert( pOp
[-1].p4type
==P4_INTARRAY
);
2450 aPermute
= pOp
[-1].p4
.ai
+ 1;
2451 assert( aPermute
!=0 );
2454 pKeyInfo
= pOp
->p4
.pKeyInfo
;
2456 assert( pKeyInfo
!=0 );
2462 for(k
=0; k
<n
; k
++) if( aPermute
[k
]>(u32
)mx
) mx
= aPermute
[k
];
2463 assert( p1
>0 && p1
+mx
<=(p
->nMem
+1 - p
->nCursor
)+1 );
2464 assert( p2
>0 && p2
+mx
<=(p
->nMem
+1 - p
->nCursor
)+1 );
2466 assert( p1
>0 && p1
+n
<=(p
->nMem
+1 - p
->nCursor
)+1 );
2467 assert( p2
>0 && p2
+n
<=(p
->nMem
+1 - p
->nCursor
)+1 );
2469 #endif /* SQLITE_DEBUG */
2471 idx
= aPermute
? aPermute
[i
] : (u32
)i
;
2472 assert( memIsValid(&aMem
[p1
+idx
]) );
2473 assert( memIsValid(&aMem
[p2
+idx
]) );
2474 REGISTER_TRACE(p1
+idx
, &aMem
[p1
+idx
]);
2475 REGISTER_TRACE(p2
+idx
, &aMem
[p2
+idx
]);
2476 assert( i
<pKeyInfo
->nKeyField
);
2477 pColl
= pKeyInfo
->aColl
[i
];
2478 bRev
= (pKeyInfo
->aSortFlags
[i
] & KEYINFO_ORDER_DESC
);
2479 iCompare
= sqlite3MemCompare(&aMem
[p1
+idx
], &aMem
[p2
+idx
], pColl
);
2480 VVA_ONLY( iCompareIsInit
= 1; )
2482 if( (pKeyInfo
->aSortFlags
[i
] & KEYINFO_ORDER_BIGNULL
)
2483 && ((aMem
[p1
+idx
].flags
& MEM_Null
) || (aMem
[p2
+idx
].flags
& MEM_Null
))
2485 iCompare
= -iCompare
;
2487 if( bRev
) iCompare
= -iCompare
;
2491 assert( pOp
[1].opcode
==OP_Jump
);
2495 /* Opcode: Jump P1 P2 P3 * *
2497 ** Jump to the instruction at address P1, P2, or P3 depending on whether
2498 ** in the most recent OP_Compare instruction the P1 vector was less than,
2499 ** equal to, or greater than the P2 vector, respectively.
2501 ** This opcode must immediately follow an OP_Compare opcode.
2503 case OP_Jump
: { /* jump */
2504 assert( pOp
>aOp
&& pOp
[-1].opcode
==OP_Compare
);
2505 assert( iCompareIsInit
);
2507 VdbeBranchTaken(0,4); pOp
= &aOp
[pOp
->p1
- 1];
2508 }else if( iCompare
==0 ){
2509 VdbeBranchTaken(1,4); pOp
= &aOp
[pOp
->p2
- 1];
2511 VdbeBranchTaken(2,4); pOp
= &aOp
[pOp
->p3
- 1];
2516 /* Opcode: And P1 P2 P3 * *
2517 ** Synopsis: r[P3]=(r[P1] && r[P2])
2519 ** Take the logical AND of the values in registers P1 and P2 and
2520 ** write the result into register P3.
2522 ** If either P1 or P2 is 0 (false) then the result is 0 even if
2523 ** the other input is NULL. A NULL and true or two NULLs give
2526 /* Opcode: Or P1 P2 P3 * *
2527 ** Synopsis: r[P3]=(r[P1] || r[P2])
2529 ** Take the logical OR of the values in register P1 and P2 and
2530 ** store the answer in register P3.
2532 ** If either P1 or P2 is nonzero (true) then the result is 1 (true)
2533 ** even if the other input is NULL. A NULL and false or two NULLs
2534 ** give a NULL output.
2536 case OP_And
: /* same as TK_AND, in1, in2, out3 */
2537 case OP_Or
: { /* same as TK_OR, in1, in2, out3 */
2538 int v1
; /* Left operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2539 int v2
; /* Right operand: 0==FALSE, 1==TRUE, 2==UNKNOWN or NULL */
2541 v1
= sqlite3VdbeBooleanValue(&aMem
[pOp
->p1
], 2);
2542 v2
= sqlite3VdbeBooleanValue(&aMem
[pOp
->p2
], 2);
2543 if( pOp
->opcode
==OP_And
){
2544 static const unsigned char and_logic
[] = { 0, 0, 0, 0, 1, 2, 0, 2, 2 };
2545 v1
= and_logic
[v1
*3+v2
];
2547 static const unsigned char or_logic
[] = { 0, 1, 2, 1, 1, 1, 2, 1, 2 };
2548 v1
= or_logic
[v1
*3+v2
];
2550 pOut
= &aMem
[pOp
->p3
];
2552 MemSetTypeFlag(pOut
, MEM_Null
);
2555 MemSetTypeFlag(pOut
, MEM_Int
);
2560 /* Opcode: IsTrue P1 P2 P3 P4 *
2561 ** Synopsis: r[P2] = coalesce(r[P1]==TRUE,P3) ^ P4
2563 ** This opcode implements the IS TRUE, IS FALSE, IS NOT TRUE, and
2564 ** IS NOT FALSE operators.
2566 ** Interpret the value in register P1 as a boolean value. Store that
2567 ** boolean (a 0 or 1) in register P2. Or if the value in register P1 is
2568 ** NULL, then the P3 is stored in register P2. Invert the answer if P4
2571 ** The logic is summarized like this:
2574 ** <li> If P3==0 and P4==0 then r[P2] := r[P1] IS TRUE
2575 ** <li> If P3==1 and P4==1 then r[P2] := r[P1] IS FALSE
2576 ** <li> If P3==0 and P4==1 then r[P2] := r[P1] IS NOT TRUE
2577 ** <li> If P3==1 and P4==0 then r[P2] := r[P1] IS NOT FALSE
2580 case OP_IsTrue
: { /* in1, out2 */
2581 assert( pOp
->p4type
==P4_INT32
);
2582 assert( pOp
->p4
.i
==0 || pOp
->p4
.i
==1 );
2583 assert( pOp
->p3
==0 || pOp
->p3
==1 );
2584 sqlite3VdbeMemSetInt64(&aMem
[pOp
->p2
],
2585 sqlite3VdbeBooleanValue(&aMem
[pOp
->p1
], pOp
->p3
) ^ pOp
->p4
.i
);
2589 /* Opcode: Not P1 P2 * * *
2590 ** Synopsis: r[P2]= !r[P1]
2592 ** Interpret the value in register P1 as a boolean value. Store the
2593 ** boolean complement in register P2. If the value in register P1 is
2594 ** NULL, then a NULL is stored in P2.
2596 case OP_Not
: { /* same as TK_NOT, in1, out2 */
2597 pIn1
= &aMem
[pOp
->p1
];
2598 pOut
= &aMem
[pOp
->p2
];
2599 if( (pIn1
->flags
& MEM_Null
)==0 ){
2600 sqlite3VdbeMemSetInt64(pOut
, !sqlite3VdbeBooleanValue(pIn1
,0));
2602 sqlite3VdbeMemSetNull(pOut
);
2607 /* Opcode: BitNot P1 P2 * * *
2608 ** Synopsis: r[P2]= ~r[P1]
2610 ** Interpret the content of register P1 as an integer. Store the
2611 ** ones-complement of the P1 value into register P2. If P1 holds
2612 ** a NULL then store a NULL in P2.
2614 case OP_BitNot
: { /* same as TK_BITNOT, in1, out2 */
2615 pIn1
= &aMem
[pOp
->p1
];
2616 pOut
= &aMem
[pOp
->p2
];
2617 sqlite3VdbeMemSetNull(pOut
);
2618 if( (pIn1
->flags
& MEM_Null
)==0 ){
2619 pOut
->flags
= MEM_Int
;
2620 pOut
->u
.i
= ~sqlite3VdbeIntValue(pIn1
);
2625 /* Opcode: Once P1 P2 * * *
2627 ** Fall through to the next instruction the first time this opcode is
2628 ** encountered on each invocation of the byte-code program. Jump to P2
2629 ** on the second and all subsequent encounters during the same invocation.
2631 ** Top-level programs determine first invocation by comparing the P1
2632 ** operand against the P1 operand on the OP_Init opcode at the beginning
2633 ** of the program. If the P1 values differ, then fall through and make
2634 ** the P1 of this opcode equal to the P1 of OP_Init. If P1 values are
2635 ** the same then take the jump.
2637 ** For subprograms, there is a bitmask in the VdbeFrame that determines
2638 ** whether or not the jump should be taken. The bitmask is necessary
2639 ** because the self-altering code trick does not work for recursive
2642 case OP_Once
: { /* jump */
2643 u32 iAddr
; /* Address of this instruction */
2644 assert( p
->aOp
[0].opcode
==OP_Init
);
2646 iAddr
= (int)(pOp
- p
->aOp
);
2647 if( (p
->pFrame
->aOnce
[iAddr
/8] & (1<<(iAddr
& 7)))!=0 ){
2648 VdbeBranchTaken(1, 2);
2651 p
->pFrame
->aOnce
[iAddr
/8] |= 1<<(iAddr
& 7);
2653 if( p
->aOp
[0].p1
==pOp
->p1
){
2654 VdbeBranchTaken(1, 2);
2658 VdbeBranchTaken(0, 2);
2659 pOp
->p1
= p
->aOp
[0].p1
;
2663 /* Opcode: If P1 P2 P3 * *
2665 ** Jump to P2 if the value in register P1 is true. The value
2666 ** is considered true if it is numeric and non-zero. If the value
2667 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2669 case OP_If
: { /* jump, in1 */
2671 c
= sqlite3VdbeBooleanValue(&aMem
[pOp
->p1
], pOp
->p3
);
2672 VdbeBranchTaken(c
!=0, 2);
2673 if( c
) goto jump_to_p2
;
2677 /* Opcode: IfNot P1 P2 P3 * *
2679 ** Jump to P2 if the value in register P1 is False. The value
2680 ** is considered false if it has a numeric value of zero. If the value
2681 ** in P1 is NULL then take the jump if and only if P3 is non-zero.
2683 case OP_IfNot
: { /* jump, in1 */
2685 c
= !sqlite3VdbeBooleanValue(&aMem
[pOp
->p1
], !pOp
->p3
);
2686 VdbeBranchTaken(c
!=0, 2);
2687 if( c
) goto jump_to_p2
;
2691 /* Opcode: IsNull P1 P2 * * *
2692 ** Synopsis: if r[P1]==NULL goto P2
2694 ** Jump to P2 if the value in register P1 is NULL.
2696 case OP_IsNull
: { /* same as TK_ISNULL, jump, in1 */
2697 pIn1
= &aMem
[pOp
->p1
];
2698 VdbeBranchTaken( (pIn1
->flags
& MEM_Null
)!=0, 2);
2699 if( (pIn1
->flags
& MEM_Null
)!=0 ){
2705 /* Opcode: IsType P1 P2 P3 P4 P5
2706 ** Synopsis: if typeof(P1.P3) in P5 goto P2
2708 ** Jump to P2 if the type of a column in a btree is one of the types specified
2709 ** by the P5 bitmask.
2711 ** P1 is normally a cursor on a btree for which the row decode cache is
2712 ** valid through at least column P3. In other words, there should have been
2713 ** a prior OP_Column for column P3 or greater. If the cursor is not valid,
2714 ** then this opcode might give spurious results.
2715 ** The the btree row has fewer than P3 columns, then use P4 as the
2718 ** If P1 is -1, then P3 is a register number and the datatype is taken
2719 ** from the value in that register.
2721 ** P5 is a bitmask of data types. SQLITE_INTEGER is the least significant
2722 ** (0x01) bit. SQLITE_FLOAT is the 0x02 bit. SQLITE_TEXT is 0x04.
2723 ** SQLITE_BLOB is 0x08. SQLITE_NULL is 0x10.
2725 ** WARNING: This opcode does not reliably distinguish between NULL and REAL
2726 ** when P1>=0. If the database contains a NaN value, this opcode will think
2727 ** that the datatype is REAL when it should be NULL. When P1<0 and the value
2728 ** is already stored in register P3, then this opcode does reliably
2729 ** distinguish between NULL and REAL. The problem only arises then P1>=0.
2731 ** Take the jump to address P2 if and only if the datatype of the
2732 ** value determined by P1 and P3 corresponds to one of the bits in the
2736 case OP_IsType
: { /* jump */
2741 assert( pOp
->p1
>=(-1) && pOp
->p1
<p
->nCursor
);
2742 assert( pOp
->p1
>=0 || (pOp
->p3
>=0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
)) );
2744 pC
= p
->apCsr
[pOp
->p1
];
2746 assert( pOp
->p3
>=0 );
2747 if( pOp
->p3
<pC
->nHdrParsed
){
2748 serialType
= pC
->aType
[pOp
->p3
];
2749 if( serialType
>=12 ){
2751 typeMask
= 0x04; /* SQLITE_TEXT */
2753 typeMask
= 0x08; /* SQLITE_BLOB */
2756 static const unsigned char aMask
[] = {
2757 0x10, 0x01, 0x01, 0x01, 0x01, 0x01, 0x01, 0x2,
2758 0x01, 0x01, 0x10, 0x10
2760 testcase( serialType
==0 );
2761 testcase( serialType
==1 );
2762 testcase( serialType
==2 );
2763 testcase( serialType
==3 );
2764 testcase( serialType
==4 );
2765 testcase( serialType
==5 );
2766 testcase( serialType
==6 );
2767 testcase( serialType
==7 );
2768 testcase( serialType
==8 );
2769 testcase( serialType
==9 );
2770 testcase( serialType
==10 );
2771 testcase( serialType
==11 );
2772 typeMask
= aMask
[serialType
];
2775 typeMask
= 1 << (pOp
->p4
.i
- 1);
2776 testcase( typeMask
==0x01 );
2777 testcase( typeMask
==0x02 );
2778 testcase( typeMask
==0x04 );
2779 testcase( typeMask
==0x08 );
2780 testcase( typeMask
==0x10 );
2783 assert( memIsValid(&aMem
[pOp
->p3
]) );
2784 typeMask
= 1 << (sqlite3_value_type((sqlite3_value
*)&aMem
[pOp
->p3
])-1);
2785 testcase( typeMask
==0x01 );
2786 testcase( typeMask
==0x02 );
2787 testcase( typeMask
==0x04 );
2788 testcase( typeMask
==0x08 );
2789 testcase( typeMask
==0x10 );
2791 VdbeBranchTaken( (typeMask
& pOp
->p5
)!=0, 2);
2792 if( typeMask
& pOp
->p5
){
2798 /* Opcode: ZeroOrNull P1 P2 P3 * *
2799 ** Synopsis: r[P2] = 0 OR NULL
2801 ** If both registers P1 and P3 are NOT NULL, then store a zero in
2802 ** register P2. If either registers P1 or P3 are NULL then put
2803 ** a NULL in register P2.
2805 case OP_ZeroOrNull
: { /* in1, in2, out2, in3 */
2806 if( (aMem
[pOp
->p1
].flags
& MEM_Null
)!=0
2807 || (aMem
[pOp
->p3
].flags
& MEM_Null
)!=0
2809 sqlite3VdbeMemSetNull(aMem
+ pOp
->p2
);
2811 sqlite3VdbeMemSetInt64(aMem
+ pOp
->p2
, 0);
2816 /* Opcode: NotNull P1 P2 * * *
2817 ** Synopsis: if r[P1]!=NULL goto P2
2819 ** Jump to P2 if the value in register P1 is not NULL.
2821 case OP_NotNull
: { /* same as TK_NOTNULL, jump, in1 */
2822 pIn1
= &aMem
[pOp
->p1
];
2823 VdbeBranchTaken( (pIn1
->flags
& MEM_Null
)==0, 2);
2824 if( (pIn1
->flags
& MEM_Null
)==0 ){
2830 /* Opcode: IfNullRow P1 P2 P3 * *
2831 ** Synopsis: if P1.nullRow then r[P3]=NULL, goto P2
2833 ** Check the cursor P1 to see if it is currently pointing at a NULL row.
2834 ** If it is, then set register P3 to NULL and jump immediately to P2.
2835 ** If P1 is not on a NULL row, then fall through without making any
2838 ** If P1 is not an open cursor, then this opcode is a no-op.
2840 case OP_IfNullRow
: { /* jump */
2842 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
2843 pC
= p
->apCsr
[pOp
->p1
];
2844 if( pC
&& pC
->nullRow
){
2845 sqlite3VdbeMemSetNull(aMem
+ pOp
->p3
);
2851 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
2852 /* Opcode: Offset P1 P2 P3 * *
2853 ** Synopsis: r[P3] = sqlite_offset(P1)
2855 ** Store in register r[P3] the byte offset into the database file that is the
2856 ** start of the payload for the record at which that cursor P1 is currently
2859 ** P2 is the column number for the argument to the sqlite_offset() function.
2860 ** This opcode does not use P2 itself, but the P2 value is used by the
2861 ** code generator. The P1, P2, and P3 operands to this opcode are the
2862 ** same as for OP_Column.
2864 ** This opcode is only available if SQLite is compiled with the
2865 ** -DSQLITE_ENABLE_OFFSET_SQL_FUNC option.
2867 case OP_Offset
: { /* out3 */
2868 VdbeCursor
*pC
; /* The VDBE cursor */
2869 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
2870 pC
= p
->apCsr
[pOp
->p1
];
2871 pOut
= &p
->aMem
[pOp
->p3
];
2872 if( pC
==0 || pC
->eCurType
!=CURTYPE_BTREE
){
2873 sqlite3VdbeMemSetNull(pOut
);
2875 if( pC
->deferredMoveto
){
2876 rc
= sqlite3VdbeFinishMoveto(pC
);
2877 if( rc
) goto abort_due_to_error
;
2879 if( sqlite3BtreeEof(pC
->uc
.pCursor
) ){
2880 sqlite3VdbeMemSetNull(pOut
);
2882 sqlite3VdbeMemSetInt64(pOut
, sqlite3BtreeOffset(pC
->uc
.pCursor
));
2887 #endif /* SQLITE_ENABLE_OFFSET_SQL_FUNC */
2889 /* Opcode: Column P1 P2 P3 P4 P5
2890 ** Synopsis: r[P3]=PX cursor P1 column P2
2892 ** Interpret the data that cursor P1 points to as a structure built using
2893 ** the MakeRecord instruction. (See the MakeRecord opcode for additional
2894 ** information about the format of the data.) Extract the P2-th column
2895 ** from this record. If there are less than (P2+1)
2896 ** values in the record, extract a NULL.
2898 ** The value extracted is stored in register P3.
2900 ** If the record contains fewer than P2 fields, then extract a NULL. Or,
2901 ** if the P4 argument is a P4_MEM use the value of the P4 argument as
2904 ** If the OPFLAG_LENGTHARG bit is set in P5 then the result is guaranteed
2905 ** to only be used by the length() function or the equivalent. The content
2906 ** of large blobs is not loaded, thus saving CPU cycles. If the
2907 ** OPFLAG_TYPEOFARG bit is set then the result will only be used by the
2908 ** typeof() function or the IS NULL or IS NOT NULL operators or the
2909 ** equivalent. In this case, all content loading can be omitted.
2911 case OP_Column
: { /* ncycle */
2912 u32 p2
; /* column number to retrieve */
2913 VdbeCursor
*pC
; /* The VDBE cursor */
2914 BtCursor
*pCrsr
; /* The B-Tree cursor corresponding to pC */
2915 u32
*aOffset
; /* aOffset[i] is offset to start of data for i-th column */
2916 int len
; /* The length of the serialized data for the column */
2917 int i
; /* Loop counter */
2918 Mem
*pDest
; /* Where to write the extracted value */
2919 Mem sMem
; /* For storing the record being decoded */
2920 const u8
*zData
; /* Part of the record being decoded */
2921 const u8
*zHdr
; /* Next unparsed byte of the header */
2922 const u8
*zEndHdr
; /* Pointer to first byte after the header */
2923 u64 offset64
; /* 64-bit offset */
2924 u32 t
; /* A type code from the record header */
2925 Mem
*pReg
; /* PseudoTable input register */
2927 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
2928 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
2929 pC
= p
->apCsr
[pOp
->p1
];
2934 assert( p2
<(u32
)pC
->nField
2935 || (pC
->eCurType
==CURTYPE_PSEUDO
&& pC
->seekResult
==0) );
2936 aOffset
= pC
->aOffset
;
2937 assert( aOffset
==pC
->aType
+pC
->nField
);
2938 assert( pC
->eCurType
!=CURTYPE_VTAB
);
2939 assert( pC
->eCurType
!=CURTYPE_PSEUDO
|| pC
->nullRow
);
2940 assert( pC
->eCurType
!=CURTYPE_SORTER
);
2942 if( pC
->cacheStatus
!=p
->cacheCtr
){ /*OPTIMIZATION-IF-FALSE*/
2944 if( pC
->eCurType
==CURTYPE_PSEUDO
&& pC
->seekResult
>0 ){
2945 /* For the special case of as pseudo-cursor, the seekResult field
2946 ** identifies the register that holds the record */
2947 pReg
= &aMem
[pC
->seekResult
];
2948 assert( pReg
->flags
& MEM_Blob
);
2949 assert( memIsValid(pReg
) );
2950 pC
->payloadSize
= pC
->szRow
= pReg
->n
;
2951 pC
->aRow
= (u8
*)pReg
->z
;
2953 pDest
= &aMem
[pOp
->p3
];
2954 memAboutToChange(p
, pDest
);
2955 sqlite3VdbeMemSetNull(pDest
);
2959 pCrsr
= pC
->uc
.pCursor
;
2960 if( pC
->deferredMoveto
){
2962 assert( !pC
->isEphemeral
);
2963 if( pC
->ub
.aAltMap
&& (iMap
= pC
->ub
.aAltMap
[1+p2
])>0 ){
2964 pC
= pC
->pAltCursor
;
2966 goto op_column_restart
;
2968 rc
= sqlite3VdbeFinishMoveto(pC
);
2969 if( rc
) goto abort_due_to_error
;
2970 }else if( sqlite3BtreeCursorHasMoved(pCrsr
) ){
2971 rc
= sqlite3VdbeHandleMovedCursor(pC
);
2972 if( rc
) goto abort_due_to_error
;
2973 goto op_column_restart
;
2975 assert( pC
->eCurType
==CURTYPE_BTREE
);
2977 assert( sqlite3BtreeCursorIsValid(pCrsr
) );
2978 pC
->payloadSize
= sqlite3BtreePayloadSize(pCrsr
);
2979 pC
->aRow
= sqlite3BtreePayloadFetch(pCrsr
, &pC
->szRow
);
2980 assert( pC
->szRow
<=pC
->payloadSize
);
2981 assert( pC
->szRow
<=65536 ); /* Maximum page size is 64KiB */
2983 pC
->cacheStatus
= p
->cacheCtr
;
2984 if( (aOffset
[0] = pC
->aRow
[0])<0x80 ){
2987 pC
->iHdrOffset
= sqlite3GetVarint32(pC
->aRow
, aOffset
);
2991 if( pC
->szRow
<aOffset
[0] ){ /*OPTIMIZATION-IF-FALSE*/
2992 /* pC->aRow does not have to hold the entire row, but it does at least
2993 ** need to cover the header of the record. If pC->aRow does not contain
2994 ** the complete header, then set it to zero, forcing the header to be
2995 ** dynamically allocated. */
2999 /* Make sure a corrupt database has not given us an oversize header.
3000 ** Do this now to avoid an oversize memory allocation.
3002 ** Type entries can be between 1 and 5 bytes each. But 4 and 5 byte
3003 ** types use so much data space that there can only be 4096 and 32 of
3004 ** them, respectively. So the maximum header length results from a
3005 ** 3-byte type for each of the maximum of 32768 columns plus three
3006 ** extra bytes for the header length itself. 32768*3 + 3 = 98307.
3008 if( aOffset
[0] > 98307 || aOffset
[0] > pC
->payloadSize
){
3009 goto op_column_corrupt
;
3012 /* This is an optimization. By skipping over the first few tests
3013 ** (ex: pC->nHdrParsed<=p2) in the next section, we achieve a
3014 ** measurable performance gain.
3016 ** This branch is taken even if aOffset[0]==0. Such a record is never
3017 ** generated by SQLite, and could be considered corruption, but we
3018 ** accept it for historical reasons. When aOffset[0]==0, the code this
3019 ** branch jumps to reads past the end of the record, but never more
3020 ** than a few bytes. Even if the record occurs at the end of the page
3021 ** content area, the "page header" comes after the page content and so
3022 ** this overread is harmless. Similar overreads can occur for a corrupt
3026 assert( pC
->nHdrParsed
<=p2
); /* Conditional skipped */
3027 testcase( aOffset
[0]==0 );
3028 goto op_column_read_header
;
3030 }else if( sqlite3BtreeCursorHasMoved(pC
->uc
.pCursor
) ){
3031 rc
= sqlite3VdbeHandleMovedCursor(pC
);
3032 if( rc
) goto abort_due_to_error
;
3033 goto op_column_restart
;
3036 /* Make sure at least the first p2+1 entries of the header have been
3037 ** parsed and valid information is in aOffset[] and pC->aType[].
3039 if( pC
->nHdrParsed
<=p2
){
3040 /* If there is more header available for parsing in the record, try
3041 ** to extract additional fields up through the p2+1-th field
3043 if( pC
->iHdrOffset
<aOffset
[0] ){
3044 /* Make sure zData points to enough of the record to cover the header. */
3046 memset(&sMem
, 0, sizeof(sMem
));
3047 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pC
->uc
.pCursor
,aOffset
[0],&sMem
);
3048 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3049 zData
= (u8
*)sMem
.z
;
3054 /* Fill in pC->aType[i] and aOffset[i] values through the p2-th field. */
3055 op_column_read_header
:
3057 offset64
= aOffset
[i
];
3058 zHdr
= zData
+ pC
->iHdrOffset
;
3059 zEndHdr
= zData
+ aOffset
[0];
3060 testcase( zHdr
>=zEndHdr
);
3062 if( (pC
->aType
[i
] = t
= zHdr
[0])<0x80 ){
3064 offset64
+= sqlite3VdbeOneByteSerialTypeLen(t
);
3066 zHdr
+= sqlite3GetVarint32(zHdr
, &t
);
3068 offset64
+= sqlite3VdbeSerialTypeLen(t
);
3070 aOffset
[++i
] = (u32
)(offset64
& 0xffffffff);
3071 }while( (u32
)i
<=p2
&& zHdr
<zEndHdr
);
3073 /* The record is corrupt if any of the following are true:
3074 ** (1) the bytes of the header extend past the declared header size
3075 ** (2) the entire header was used but not all data was used
3076 ** (3) the end of the data extends beyond the end of the record.
3078 if( (zHdr
>=zEndHdr
&& (zHdr
>zEndHdr
|| offset64
!=pC
->payloadSize
))
3079 || (offset64
> pC
->payloadSize
)
3081 if( aOffset
[0]==0 ){
3085 if( pC
->aRow
==0 ) sqlite3VdbeMemRelease(&sMem
);
3086 goto op_column_corrupt
;
3091 pC
->iHdrOffset
= (u32
)(zHdr
- zData
);
3092 if( pC
->aRow
==0 ) sqlite3VdbeMemRelease(&sMem
);
3097 /* If after trying to extract new entries from the header, nHdrParsed is
3098 ** still not up to p2, that means that the record has fewer than p2
3099 ** columns. So the result will be either the default value or a NULL.
3101 if( pC
->nHdrParsed
<=p2
){
3102 pDest
= &aMem
[pOp
->p3
];
3103 memAboutToChange(p
, pDest
);
3104 if( pOp
->p4type
==P4_MEM
){
3105 sqlite3VdbeMemShallowCopy(pDest
, pOp
->p4
.pMem
, MEM_Static
);
3107 sqlite3VdbeMemSetNull(pDest
);
3115 /* Extract the content for the p2+1-th column. Control can only
3116 ** reach this point if aOffset[p2], aOffset[p2+1], and pC->aType[p2] are
3119 assert( p2
<pC
->nHdrParsed
);
3120 assert( rc
==SQLITE_OK
);
3121 pDest
= &aMem
[pOp
->p3
];
3122 memAboutToChange(p
, pDest
);
3123 assert( sqlite3VdbeCheckMemInvariants(pDest
) );
3124 if( VdbeMemDynamic(pDest
) ){
3125 sqlite3VdbeMemSetNull(pDest
);
3127 assert( t
==pC
->aType
[p2
] );
3128 if( pC
->szRow
>=aOffset
[p2
+1] ){
3129 /* This is the common case where the desired content fits on the original
3130 ** page - where the content is not on an overflow page */
3131 zData
= pC
->aRow
+ aOffset
[p2
];
3133 sqlite3VdbeSerialGet(zData
, t
, pDest
);
3135 /* If the column value is a string, we need a persistent value, not
3136 ** a MEM_Ephem value. This branch is a fast short-cut that is equivalent
3137 ** to calling sqlite3VdbeSerialGet() and sqlite3VdbeDeephemeralize().
3139 static const u16 aFlag
[] = { MEM_Blob
, MEM_Str
|MEM_Term
};
3140 pDest
->n
= len
= (t
-12)/2;
3141 pDest
->enc
= encoding
;
3142 if( pDest
->szMalloc
< len
+2 ){
3143 if( len
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ) goto too_big
;
3144 pDest
->flags
= MEM_Null
;
3145 if( sqlite3VdbeMemGrow(pDest
, len
+2, 0) ) goto no_mem
;
3147 pDest
->z
= pDest
->zMalloc
;
3149 memcpy(pDest
->z
, zData
, len
);
3151 pDest
->z
[len
+1] = 0;
3152 pDest
->flags
= aFlag
[t
&1];
3156 pDest
->enc
= encoding
;
3157 assert( pDest
->db
==db
);
3158 /* This branch happens only when content is on overflow pages */
3159 if( ((p5
= (pOp
->p5
& OPFLAG_BYTELENARG
))!=0
3160 && (p5
==OPFLAG_TYPEOFARG
3161 || (t
>=12 && ((t
&1)==0 || p5
==OPFLAG_BYTELENARG
))
3164 || sqlite3VdbeSerialTypeLen(t
)==0
3166 /* Content is irrelevant for
3167 ** 1. the typeof() function,
3168 ** 2. the length(X) function if X is a blob, and
3169 ** 3. if the content length is zero.
3170 ** So we might as well use bogus content rather than reading
3171 ** content from disk.
3173 ** Although sqlite3VdbeSerialGet() may read at most 8 bytes from the
3174 ** buffer passed to it, debugging function VdbeMemPrettyPrint() may
3175 ** read more. Use the global constant sqlite3CtypeMap[] as the array,
3176 ** as that array is 256 bytes long (plenty for VdbeMemPrettyPrint())
3177 ** and it begins with a bunch of zeros.
3179 sqlite3VdbeSerialGet((u8
*)sqlite3CtypeMap
, t
, pDest
);
3181 rc
= vdbeColumnFromOverflow(pC
, p2
, t
, aOffset
[p2
],
3182 p
->cacheCtr
, colCacheCtr
, pDest
);
3184 if( rc
==SQLITE_NOMEM
) goto no_mem
;
3185 if( rc
==SQLITE_TOOBIG
) goto too_big
;
3186 goto abort_due_to_error
;
3192 UPDATE_MAX_BLOBSIZE(pDest
);
3193 REGISTER_TRACE(pOp
->p3
, pDest
);
3198 pOp
= &aOp
[aOp
[0].p3
-1];
3201 rc
= SQLITE_CORRUPT_BKPT
;
3202 goto abort_due_to_error
;
3206 /* Opcode: TypeCheck P1 P2 P3 P4 *
3207 ** Synopsis: typecheck(r[P1@P2])
3209 ** Apply affinities to the range of P2 registers beginning with P1.
3210 ** Take the affinities from the Table object in P4. If any value
3211 ** cannot be coerced into the correct type, then raise an error.
3213 ** This opcode is similar to OP_Affinity except that this opcode
3214 ** forces the register type to the Table column type. This is used
3215 ** to implement "strict affinity".
3217 ** GENERATED ALWAYS AS ... STATIC columns are only checked if P3
3218 ** is zero. When P3 is non-zero, no type checking occurs for
3219 ** static generated columns. Virtual columns are computed at query time
3220 ** and so they are never checked.
3225 ** <li> P2 should be the number of non-virtual columns in the
3227 ** <li> Table P4 should be a STRICT table.
3230 ** If any precondition is false, an assertion fault occurs.
3232 case OP_TypeCheck
: {
3237 assert( pOp
->p4type
==P4_TABLE
);
3238 pTab
= pOp
->p4
.pTab
;
3239 assert( pTab
->tabFlags
& TF_Strict
);
3240 assert( pTab
->nNVCol
==pOp
->p2
);
3242 pIn1
= &aMem
[pOp
->p1
];
3243 for(i
=0; i
<pTab
->nCol
; i
++){
3244 if( aCol
[i
].colFlags
& COLFLAG_GENERATED
){
3245 if( aCol
[i
].colFlags
& COLFLAG_VIRTUAL
) continue;
3246 if( pOp
->p3
){ pIn1
++; continue; }
3248 assert( pIn1
< &aMem
[pOp
->p1
+pOp
->p2
] );
3249 applyAffinity(pIn1
, aCol
[i
].affinity
, encoding
);
3250 if( (pIn1
->flags
& MEM_Null
)==0 ){
3251 switch( aCol
[i
].eCType
){
3252 case COLTYPE_BLOB
: {
3253 if( (pIn1
->flags
& MEM_Blob
)==0 ) goto vdbe_type_error
;
3256 case COLTYPE_INTEGER
:
3258 if( (pIn1
->flags
& MEM_Int
)==0 ) goto vdbe_type_error
;
3261 case COLTYPE_TEXT
: {
3262 if( (pIn1
->flags
& MEM_Str
)==0 ) goto vdbe_type_error
;
3265 case COLTYPE_REAL
: {
3266 testcase( (pIn1
->flags
& (MEM_Real
|MEM_IntReal
))==MEM_Real
);
3267 assert( (pIn1
->flags
& MEM_IntReal
)==0 );
3268 if( pIn1
->flags
& MEM_Int
){
3269 /* When applying REAL affinity, if the result is still an MEM_Int
3270 ** that will fit in 6 bytes, then change the type to MEM_IntReal
3271 ** so that we keep the high-resolution integer value but know that
3272 ** the type really wants to be REAL. */
3273 testcase( pIn1
->u
.i
==140737488355328LL );
3274 testcase( pIn1
->u
.i
==140737488355327LL );
3275 testcase( pIn1
->u
.i
==-140737488355328LL );
3276 testcase( pIn1
->u
.i
==-140737488355329LL );
3277 if( pIn1
->u
.i
<=140737488355327LL && pIn1
->u
.i
>=-140737488355328LL){
3278 pIn1
->flags
|= MEM_IntReal
;
3279 pIn1
->flags
&= ~MEM_Int
;
3281 pIn1
->u
.r
= (double)pIn1
->u
.i
;
3282 pIn1
->flags
|= MEM_Real
;
3283 pIn1
->flags
&= ~MEM_Int
;
3285 }else if( (pIn1
->flags
& (MEM_Real
|MEM_IntReal
))==0 ){
3286 goto vdbe_type_error
;
3291 /* COLTYPE_ANY. Accept anything. */
3296 REGISTER_TRACE((int)(pIn1
-aMem
), pIn1
);
3299 assert( pIn1
== &aMem
[pOp
->p1
+pOp
->p2
] );
3303 sqlite3VdbeError(p
, "cannot store %s value in %s column %s.%s",
3304 vdbeMemTypeName(pIn1
), sqlite3StdType
[aCol
[i
].eCType
-1],
3305 pTab
->zName
, aCol
[i
].zCnName
);
3306 rc
= SQLITE_CONSTRAINT_DATATYPE
;
3307 goto abort_due_to_error
;
3310 /* Opcode: Affinity P1 P2 * P4 *
3311 ** Synopsis: affinity(r[P1@P2])
3313 ** Apply affinities to a range of P2 registers starting with P1.
3315 ** P4 is a string that is P2 characters long. The N-th character of the
3316 ** string indicates the column affinity that should be used for the N-th
3317 ** memory cell in the range.
3320 const char *zAffinity
; /* The affinity to be applied */
3322 zAffinity
= pOp
->p4
.z
;
3323 assert( zAffinity
!=0 );
3324 assert( pOp
->p2
>0 );
3325 assert( zAffinity
[pOp
->p2
]==0 );
3326 pIn1
= &aMem
[pOp
->p1
];
3327 while( 1 /*exit-by-break*/ ){
3328 assert( pIn1
<= &p
->aMem
[(p
->nMem
+1 - p
->nCursor
)] );
3329 assert( zAffinity
[0]==SQLITE_AFF_NONE
|| memIsValid(pIn1
) );
3330 applyAffinity(pIn1
, zAffinity
[0], encoding
);
3331 if( zAffinity
[0]==SQLITE_AFF_REAL
&& (pIn1
->flags
& MEM_Int
)!=0 ){
3332 /* When applying REAL affinity, if the result is still an MEM_Int
3333 ** that will fit in 6 bytes, then change the type to MEM_IntReal
3334 ** so that we keep the high-resolution integer value but know that
3335 ** the type really wants to be REAL. */
3336 testcase( pIn1
->u
.i
==140737488355328LL );
3337 testcase( pIn1
->u
.i
==140737488355327LL );
3338 testcase( pIn1
->u
.i
==-140737488355328LL );
3339 testcase( pIn1
->u
.i
==-140737488355329LL );
3340 if( pIn1
->u
.i
<=140737488355327LL && pIn1
->u
.i
>=-140737488355328LL ){
3341 pIn1
->flags
|= MEM_IntReal
;
3342 pIn1
->flags
&= ~MEM_Int
;
3344 pIn1
->u
.r
= (double)pIn1
->u
.i
;
3345 pIn1
->flags
|= MEM_Real
;
3346 pIn1
->flags
&= ~(MEM_Int
|MEM_Str
);
3349 REGISTER_TRACE((int)(pIn1
-aMem
), pIn1
);
3351 if( zAffinity
[0]==0 ) break;
3357 /* Opcode: MakeRecord P1 P2 P3 P4 *
3358 ** Synopsis: r[P3]=mkrec(r[P1@P2])
3360 ** Convert P2 registers beginning with P1 into the [record format]
3361 ** use as a data record in a database table or as a key
3362 ** in an index. The OP_Column opcode can decode the record later.
3364 ** P4 may be a string that is P2 characters long. The N-th character of the
3365 ** string indicates the column affinity that should be used for the N-th
3366 ** field of the index key.
3368 ** The mapping from character to affinity is given by the SQLITE_AFF_
3369 ** macros defined in sqliteInt.h.
3371 ** If P4 is NULL then all index fields have the affinity BLOB.
3373 ** The meaning of P5 depends on whether or not the SQLITE_ENABLE_NULL_TRIM
3374 ** compile-time option is enabled:
3376 ** * If SQLITE_ENABLE_NULL_TRIM is enabled, then the P5 is the index
3377 ** of the right-most table that can be null-trimmed.
3379 ** * If SQLITE_ENABLE_NULL_TRIM is omitted, then P5 has the value
3380 ** OPFLAG_NOCHNG_MAGIC if the OP_MakeRecord opcode is allowed to
3381 ** accept no-change records with serial_type 10. This value is
3382 ** only used inside an assert() and does not affect the end result.
3384 case OP_MakeRecord
: {
3385 Mem
*pRec
; /* The new record */
3386 u64 nData
; /* Number of bytes of data space */
3387 int nHdr
; /* Number of bytes of header space */
3388 i64 nByte
; /* Data space required for this record */
3389 i64 nZero
; /* Number of zero bytes at the end of the record */
3390 int nVarint
; /* Number of bytes in a varint */
3391 u32 serial_type
; /* Type field */
3392 Mem
*pData0
; /* First field to be combined into the record */
3393 Mem
*pLast
; /* Last field of the record */
3394 int nField
; /* Number of fields in the record */
3395 char *zAffinity
; /* The affinity string for the record */
3396 u32 len
; /* Length of a field */
3397 u8
*zHdr
; /* Where to write next byte of the header */
3398 u8
*zPayload
; /* Where to write next byte of the payload */
3400 /* Assuming the record contains N fields, the record format looks
3403 ** ------------------------------------------------------------------------
3404 ** | hdr-size | type 0 | type 1 | ... | type N-1 | data0 | ... | data N-1 |
3405 ** ------------------------------------------------------------------------
3407 ** Data(0) is taken from register P1. Data(1) comes from register P1+1
3410 ** Each type field is a varint representing the serial type of the
3411 ** corresponding data element (see sqlite3VdbeSerialType()). The
3412 ** hdr-size field is also a varint which is the offset from the beginning
3413 ** of the record to data0.
3415 nData
= 0; /* Number of bytes of data space */
3416 nHdr
= 0; /* Number of bytes of header space */
3417 nZero
= 0; /* Number of zero bytes at the end of the record */
3419 zAffinity
= pOp
->p4
.z
;
3420 assert( nField
>0 && pOp
->p2
>0 && pOp
->p2
+nField
<=(p
->nMem
+1 - p
->nCursor
)+1 );
3421 pData0
= &aMem
[nField
];
3423 pLast
= &pData0
[nField
-1];
3425 /* Identify the output register */
3426 assert( pOp
->p3
<pOp
->p1
|| pOp
->p3
>=pOp
->p1
+pOp
->p2
);
3427 pOut
= &aMem
[pOp
->p3
];
3428 memAboutToChange(p
, pOut
);
3430 /* Apply the requested affinity to all inputs
3432 assert( pData0
<=pLast
);
3436 applyAffinity(pRec
, zAffinity
[0], encoding
);
3437 if( zAffinity
[0]==SQLITE_AFF_REAL
&& (pRec
->flags
& MEM_Int
) ){
3438 pRec
->flags
|= MEM_IntReal
;
3439 pRec
->flags
&= ~(MEM_Int
);
3441 REGISTER_TRACE((int)(pRec
-aMem
), pRec
);
3444 assert( zAffinity
[0]==0 || pRec
<=pLast
);
3445 }while( zAffinity
[0] );
3448 #ifdef SQLITE_ENABLE_NULL_TRIM
3449 /* NULLs can be safely trimmed from the end of the record, as long as
3450 ** as the schema format is 2 or more and none of the omitted columns
3451 ** have a non-NULL default value. Also, the record must be left with
3452 ** at least one field. If P5>0 then it will be one more than the
3453 ** index of the right-most column with a non-NULL default value */
3455 while( (pLast
->flags
& MEM_Null
)!=0 && nField
>pOp
->p5
){
3462 /* Loop through the elements that will make up the record to figure
3463 ** out how much space is required for the new record. After this loop,
3464 ** the Mem.uTemp field of each term should hold the serial-type that will
3465 ** be used for that term in the generated record:
3467 ** Mem.uTemp value type
3468 ** --------------- ---------------
3470 ** 1 1-byte signed integer
3471 ** 2 2-byte signed integer
3472 ** 3 3-byte signed integer
3473 ** 4 4-byte signed integer
3474 ** 5 6-byte signed integer
3475 ** 6 8-byte signed integer
3477 ** 8 Integer constant 0
3478 ** 9 Integer constant 1
3479 ** 10,11 reserved for expansion
3480 ** N>=12 and even BLOB
3481 ** N>=13 and odd text
3483 ** The following additional values are computed:
3484 ** nHdr Number of bytes needed for the record header
3485 ** nData Number of bytes of data space needed for the record
3486 ** nZero Zero bytes at the end of the record
3490 assert( memIsValid(pRec
) );
3491 if( pRec
->flags
& MEM_Null
){
3492 if( pRec
->flags
& MEM_Zero
){
3493 /* Values with MEM_Null and MEM_Zero are created by xColumn virtual
3494 ** table methods that never invoke sqlite3_result_xxxxx() while
3495 ** computing an unchanging column value in an UPDATE statement.
3496 ** Give such values a special internal-use-only serial-type of 10
3497 ** so that they can be passed through to xUpdate and have
3498 ** a true sqlite3_value_nochange(). */
3499 #ifndef SQLITE_ENABLE_NULL_TRIM
3500 assert( pOp
->p5
==OPFLAG_NOCHNG_MAGIC
|| CORRUPT_DB
);
3507 }else if( pRec
->flags
& (MEM_Int
|MEM_IntReal
) ){
3508 /* Figure out whether to use 1, 2, 4, 6 or 8 bytes. */
3511 testcase( pRec
->flags
& MEM_Int
);
3512 testcase( pRec
->flags
& MEM_IntReal
);
3519 testcase( uu
==127 ); testcase( uu
==128 );
3520 testcase( uu
==32767 ); testcase( uu
==32768 );
3521 testcase( uu
==8388607 ); testcase( uu
==8388608 );
3522 testcase( uu
==2147483647 ); testcase( uu
==2147483648LL );
3523 testcase( uu
==140737488355327LL ); testcase( uu
==140737488355328LL );
3525 if( (i
&1)==i
&& p
->minWriteFileFormat
>=4 ){
3526 pRec
->uTemp
= 8+(u32
)uu
;
3531 }else if( uu
<=32767 ){
3534 }else if( uu
<=8388607 ){
3537 }else if( uu
<=2147483647 ){
3540 }else if( uu
<=140737488355327LL ){
3545 if( pRec
->flags
& MEM_IntReal
){
3546 /* If the value is IntReal and is going to take up 8 bytes to store
3547 ** as an integer, then we might as well make it an 8-byte floating
3549 pRec
->u
.r
= (double)pRec
->u
.i
;
3550 pRec
->flags
&= ~MEM_IntReal
;
3551 pRec
->flags
|= MEM_Real
;
3557 }else if( pRec
->flags
& MEM_Real
){
3562 assert( db
->mallocFailed
|| pRec
->flags
&(MEM_Str
|MEM_Blob
) );
3563 assert( pRec
->n
>=0 );
3565 serial_type
= (len
*2) + 12 + ((pRec
->flags
& MEM_Str
)!=0);
3566 if( pRec
->flags
& MEM_Zero
){
3567 serial_type
+= pRec
->u
.nZero
*2;
3569 if( sqlite3VdbeMemExpandBlob(pRec
) ) goto no_mem
;
3570 len
+= pRec
->u
.nZero
;
3572 nZero
+= pRec
->u
.nZero
;
3576 nHdr
+= sqlite3VarintLen(serial_type
);
3577 pRec
->uTemp
= serial_type
;
3579 if( pRec
==pData0
) break;
3583 /* EVIDENCE-OF: R-22564-11647 The header begins with a single varint
3584 ** which determines the total number of bytes in the header. The varint
3585 ** value is the size of the header in bytes including the size varint
3587 testcase( nHdr
==126 );
3588 testcase( nHdr
==127 );
3590 /* The common case */
3593 /* Rare case of a really large header */
3594 nVarint
= sqlite3VarintLen(nHdr
);
3596 if( nVarint
<sqlite3VarintLen(nHdr
) ) nHdr
++;
3600 /* Make sure the output register has a buffer large enough to store
3601 ** the new record. The output register (pOp->p3) is not allowed to
3602 ** be one of the input registers (because the following call to
3603 ** sqlite3VdbeMemClearAndResize() could clobber the value before it is used).
3605 if( nByte
+nZero
<=pOut
->szMalloc
){
3606 /* The output register is already large enough to hold the record.
3607 ** No error checks or buffer enlargement is required */
3608 pOut
->z
= pOut
->zMalloc
;
3610 /* Need to make sure that the output is not too big and then enlarge
3611 ** the output register to hold the full result */
3612 if( nByte
+nZero
>db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
3615 if( sqlite3VdbeMemClearAndResize(pOut
, (int)nByte
) ){
3619 pOut
->n
= (int)nByte
;
3620 pOut
->flags
= MEM_Blob
;
3622 pOut
->u
.nZero
= nZero
;
3623 pOut
->flags
|= MEM_Zero
;
3625 UPDATE_MAX_BLOBSIZE(pOut
);
3626 zHdr
= (u8
*)pOut
->z
;
3627 zPayload
= zHdr
+ nHdr
;
3629 /* Write the record */
3633 zHdr
+= sqlite3PutVarint(zHdr
,nHdr
);
3635 assert( pData0
<=pLast
);
3637 while( 1 /*exit-by-break*/ ){
3638 serial_type
= pRec
->uTemp
;
3639 /* EVIDENCE-OF: R-06529-47362 Following the size varint are one or more
3640 ** additional varints, one per column.
3641 ** EVIDENCE-OF: R-64536-51728 The values for each column in the record
3642 ** immediately follow the header. */
3643 if( serial_type
<=7 ){
3644 *(zHdr
++) = serial_type
;
3645 if( serial_type
==0 ){
3646 /* NULL value. No change in zPayload */
3649 if( serial_type
==7 ){
3650 assert( sizeof(v
)==sizeof(pRec
->u
.r
) );
3651 memcpy(&v
, &pRec
->u
.r
, sizeof(v
));
3652 swapMixedEndianFloat(v
);
3656 len
= sqlite3SmallTypeSizes
[serial_type
];
3657 assert( len
>=1 && len
<=8 && len
!=5 && len
!=7 );
3659 default: zPayload
[7] = (u8
)(v
&0xff); v
>>= 8;
3660 zPayload
[6] = (u8
)(v
&0xff); v
>>= 8;
3661 case 6: zPayload
[5] = (u8
)(v
&0xff); v
>>= 8;
3662 zPayload
[4] = (u8
)(v
&0xff); v
>>= 8;
3663 case 4: zPayload
[3] = (u8
)(v
&0xff); v
>>= 8;
3664 case 3: zPayload
[2] = (u8
)(v
&0xff); v
>>= 8;
3665 case 2: zPayload
[1] = (u8
)(v
&0xff); v
>>= 8;
3666 case 1: zPayload
[0] = (u8
)(v
&0xff);
3670 }else if( serial_type
<0x80 ){
3671 *(zHdr
++) = serial_type
;
3672 if( serial_type
>=14 && pRec
->n
>0 ){
3673 assert( pRec
->z
!=0 );
3674 memcpy(zPayload
, pRec
->z
, pRec
->n
);
3675 zPayload
+= pRec
->n
;
3678 zHdr
+= sqlite3PutVarint(zHdr
, serial_type
);
3680 assert( pRec
->z
!=0 );
3681 memcpy(zPayload
, pRec
->z
, pRec
->n
);
3682 zPayload
+= pRec
->n
;
3685 if( pRec
==pLast
) break;
3688 assert( nHdr
==(int)(zHdr
- (u8
*)pOut
->z
) );
3689 assert( nByte
==(int)(zPayload
- (u8
*)pOut
->z
) );
3691 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
3692 REGISTER_TRACE(pOp
->p3
, pOut
);
3696 /* Opcode: Count P1 P2 P3 * *
3697 ** Synopsis: r[P2]=count()
3699 ** Store the number of entries (an integer value) in the table or index
3700 ** opened by cursor P1 in register P2.
3702 ** If P3==0, then an exact count is obtained, which involves visiting
3703 ** every btree page of the table. But if P3 is non-zero, an estimate
3704 ** is returned based on the current cursor position.
3706 case OP_Count
: { /* out2 */
3710 assert( p
->apCsr
[pOp
->p1
]->eCurType
==CURTYPE_BTREE
);
3711 pCrsr
= p
->apCsr
[pOp
->p1
]->uc
.pCursor
;
3714 nEntry
= sqlite3BtreeRowCountEst(pCrsr
);
3716 nEntry
= 0; /* Not needed. Only used to silence a warning. */
3717 rc
= sqlite3BtreeCount(db
, pCrsr
, &nEntry
);
3718 if( rc
) goto abort_due_to_error
;
3720 pOut
= out2Prerelease(p
, pOp
);
3722 goto check_for_interrupt
;
3725 /* Opcode: Savepoint P1 * * P4 *
3727 ** Open, release or rollback the savepoint named by parameter P4, depending
3728 ** on the value of P1. To open a new savepoint set P1==0 (SAVEPOINT_BEGIN).
3729 ** To release (commit) an existing savepoint set P1==1 (SAVEPOINT_RELEASE).
3730 ** To rollback an existing savepoint set P1==2 (SAVEPOINT_ROLLBACK).
3732 case OP_Savepoint
: {
3733 int p1
; /* Value of P1 operand */
3734 char *zName
; /* Name of savepoint */
3737 Savepoint
*pSavepoint
;
3745 /* Assert that the p1 parameter is valid. Also that if there is no open
3746 ** transaction, then there cannot be any savepoints.
3748 assert( db
->pSavepoint
==0 || db
->autoCommit
==0 );
3749 assert( p1
==SAVEPOINT_BEGIN
||p1
==SAVEPOINT_RELEASE
||p1
==SAVEPOINT_ROLLBACK
);
3750 assert( db
->pSavepoint
|| db
->isTransactionSavepoint
==0 );
3751 assert( checkSavepointCount(db
) );
3752 assert( p
->bIsReader
);
3754 if( p1
==SAVEPOINT_BEGIN
){
3755 if( db
->nVdbeWrite
>0 ){
3756 /* A new savepoint cannot be created if there are active write
3757 ** statements (i.e. open read/write incremental blob handles).
3759 sqlite3VdbeError(p
, "cannot open savepoint - SQL statements in progress");
3762 nName
= sqlite3Strlen30(zName
);
3764 #ifndef SQLITE_OMIT_VIRTUALTABLE
3765 /* This call is Ok even if this savepoint is actually a transaction
3766 ** savepoint (and therefore should not prompt xSavepoint()) callbacks.
3767 ** If this is a transaction savepoint being opened, it is guaranteed
3768 ** that the db->aVTrans[] array is empty. */
3769 assert( db
->autoCommit
==0 || db
->nVTrans
==0 );
3770 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_BEGIN
,
3771 db
->nStatement
+db
->nSavepoint
);
3772 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3775 /* Create a new savepoint structure. */
3776 pNew
= sqlite3DbMallocRawNN(db
, sizeof(Savepoint
)+nName
+1);
3778 pNew
->zName
= (char *)&pNew
[1];
3779 memcpy(pNew
->zName
, zName
, nName
+1);
3781 /* If there is no open transaction, then mark this as a special
3782 ** "transaction savepoint". */
3783 if( db
->autoCommit
){
3785 db
->isTransactionSavepoint
= 1;
3790 /* Link the new savepoint into the database handle's list. */
3791 pNew
->pNext
= db
->pSavepoint
;
3792 db
->pSavepoint
= pNew
;
3793 pNew
->nDeferredCons
= db
->nDeferredCons
;
3794 pNew
->nDeferredImmCons
= db
->nDeferredImmCons
;
3798 assert( p1
==SAVEPOINT_RELEASE
|| p1
==SAVEPOINT_ROLLBACK
);
3801 /* Find the named savepoint. If there is no such savepoint, then an
3802 ** an error is returned to the user. */
3804 pSavepoint
= db
->pSavepoint
;
3805 pSavepoint
&& sqlite3StrICmp(pSavepoint
->zName
, zName
);
3806 pSavepoint
= pSavepoint
->pNext
3811 sqlite3VdbeError(p
, "no such savepoint: %s", zName
);
3813 }else if( db
->nVdbeWrite
>0 && p1
==SAVEPOINT_RELEASE
){
3814 /* It is not possible to release (commit) a savepoint if there are
3815 ** active write statements.
3817 sqlite3VdbeError(p
, "cannot release savepoint - "
3818 "SQL statements in progress");
3822 /* Determine whether or not this is a transaction savepoint. If so,
3823 ** and this is a RELEASE command, then the current transaction
3826 int isTransaction
= pSavepoint
->pNext
==0 && db
->isTransactionSavepoint
;
3827 if( isTransaction
&& p1
==SAVEPOINT_RELEASE
){
3828 if( (rc
= sqlite3VdbeCheckFk(p
, 1))!=SQLITE_OK
){
3832 if( sqlite3VdbeHalt(p
)==SQLITE_BUSY
){
3833 p
->pc
= (int)(pOp
- aOp
);
3835 p
->rc
= rc
= SQLITE_BUSY
;
3842 db
->isTransactionSavepoint
= 0;
3846 iSavepoint
= db
->nSavepoint
- iSavepoint
- 1;
3847 if( p1
==SAVEPOINT_ROLLBACK
){
3848 isSchemaChange
= (db
->mDbFlags
& DBFLAG_SchemaChange
)!=0;
3849 for(ii
=0; ii
<db
->nDb
; ii
++){
3850 rc
= sqlite3BtreeTripAllCursors(db
->aDb
[ii
].pBt
,
3851 SQLITE_ABORT_ROLLBACK
,
3853 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3856 assert( p1
==SAVEPOINT_RELEASE
);
3859 for(ii
=0; ii
<db
->nDb
; ii
++){
3860 rc
= sqlite3BtreeSavepoint(db
->aDb
[ii
].pBt
, p1
, iSavepoint
);
3861 if( rc
!=SQLITE_OK
){
3862 goto abort_due_to_error
;
3865 if( isSchemaChange
){
3866 sqlite3ExpirePreparedStatements(db
, 0);
3867 sqlite3ResetAllSchemasOfConnection(db
);
3868 db
->mDbFlags
|= DBFLAG_SchemaChange
;
3871 if( rc
) goto abort_due_to_error
;
3873 /* Regardless of whether this is a RELEASE or ROLLBACK, destroy all
3874 ** savepoints nested inside of the savepoint being operated on. */
3875 while( db
->pSavepoint
!=pSavepoint
){
3876 pTmp
= db
->pSavepoint
;
3877 db
->pSavepoint
= pTmp
->pNext
;
3878 sqlite3DbFree(db
, pTmp
);
3882 /* If it is a RELEASE, then destroy the savepoint being operated on
3883 ** too. If it is a ROLLBACK TO, then set the number of deferred
3884 ** constraint violations present in the database to the value stored
3885 ** when the savepoint was created. */
3886 if( p1
==SAVEPOINT_RELEASE
){
3887 assert( pSavepoint
==db
->pSavepoint
);
3888 db
->pSavepoint
= pSavepoint
->pNext
;
3889 sqlite3DbFree(db
, pSavepoint
);
3890 if( !isTransaction
){
3894 assert( p1
==SAVEPOINT_ROLLBACK
);
3895 db
->nDeferredCons
= pSavepoint
->nDeferredCons
;
3896 db
->nDeferredImmCons
= pSavepoint
->nDeferredImmCons
;
3899 if( !isTransaction
|| p1
==SAVEPOINT_ROLLBACK
){
3900 rc
= sqlite3VtabSavepoint(db
, p1
, iSavepoint
);
3901 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
3905 if( rc
) goto abort_due_to_error
;
3906 if( p
->eVdbeState
==VDBE_HALT_STATE
){
3913 /* Opcode: AutoCommit P1 P2 * * *
3915 ** Set the database auto-commit flag to P1 (1 or 0). If P2 is true, roll
3916 ** back any currently active btree transactions. If there are any active
3917 ** VMs (apart from this one), then a ROLLBACK fails. A COMMIT fails if
3918 ** there are active writing VMs or active VMs that use shared cache.
3920 ** This instruction causes the VM to halt.
3922 case OP_AutoCommit
: {
3923 int desiredAutoCommit
;
3926 desiredAutoCommit
= pOp
->p1
;
3927 iRollback
= pOp
->p2
;
3928 assert( desiredAutoCommit
==1 || desiredAutoCommit
==0 );
3929 assert( desiredAutoCommit
==1 || iRollback
==0 );
3930 assert( db
->nVdbeActive
>0 ); /* At least this one VM is active */
3931 assert( p
->bIsReader
);
3933 if( desiredAutoCommit
!=db
->autoCommit
){
3935 assert( desiredAutoCommit
==1 );
3936 sqlite3RollbackAll(db
, SQLITE_ABORT_ROLLBACK
);
3938 }else if( desiredAutoCommit
&& db
->nVdbeWrite
>0 ){
3939 /* If this instruction implements a COMMIT and other VMs are writing
3940 ** return an error indicating that the other VMs must complete first.
3942 sqlite3VdbeError(p
, "cannot commit transaction - "
3943 "SQL statements in progress");
3945 goto abort_due_to_error
;
3946 }else if( (rc
= sqlite3VdbeCheckFk(p
, 1))!=SQLITE_OK
){
3949 db
->autoCommit
= (u8
)desiredAutoCommit
;
3951 if( sqlite3VdbeHalt(p
)==SQLITE_BUSY
){
3952 p
->pc
= (int)(pOp
- aOp
);
3953 db
->autoCommit
= (u8
)(1-desiredAutoCommit
);
3954 p
->rc
= rc
= SQLITE_BUSY
;
3957 sqlite3CloseSavepoints(db
);
3958 if( p
->rc
==SQLITE_OK
){
3966 (!desiredAutoCommit
)?"cannot start a transaction within a transaction":(
3967 (iRollback
)?"cannot rollback - no transaction is active":
3968 "cannot commit - no transaction is active"));
3971 goto abort_due_to_error
;
3973 /*NOTREACHED*/ assert(0);
3976 /* Opcode: Transaction P1 P2 P3 P4 P5
3978 ** Begin a transaction on database P1 if a transaction is not already
3980 ** If P2 is non-zero, then a write-transaction is started, or if a
3981 ** read-transaction is already active, it is upgraded to a write-transaction.
3982 ** If P2 is zero, then a read-transaction is started. If P2 is 2 or more
3983 ** then an exclusive transaction is started.
3985 ** P1 is the index of the database file on which the transaction is
3986 ** started. Index 0 is the main database file and index 1 is the
3987 ** file used for temporary tables. Indices of 2 or more are used for
3988 ** attached databases.
3990 ** If a write-transaction is started and the Vdbe.usesStmtJournal flag is
3991 ** true (this flag is set if the Vdbe may modify more than one row and may
3992 ** throw an ABORT exception), a statement transaction may also be opened.
3993 ** More specifically, a statement transaction is opened iff the database
3994 ** connection is currently not in autocommit mode, or if there are other
3995 ** active statements. A statement transaction allows the changes made by this
3996 ** VDBE to be rolled back after an error without having to roll back the
3997 ** entire transaction. If no error is encountered, the statement transaction
3998 ** will automatically commit when the VDBE halts.
4000 ** If P5!=0 then this opcode also checks the schema cookie against P3
4001 ** and the schema generation counter against P4.
4002 ** The cookie changes its value whenever the database schema changes.
4003 ** This operation is used to detect when that the cookie has changed
4004 ** and that the current process needs to reread the schema. If the schema
4005 ** cookie in P3 differs from the schema cookie in the database header or
4006 ** if the schema generation counter in P4 differs from the current
4007 ** generation counter, then an SQLITE_SCHEMA error is raised and execution
4008 ** halts. The sqlite3_step() wrapper function might then reprepare the
4009 ** statement and rerun it from the beginning.
4011 case OP_Transaction
: {
4016 assert( p
->bIsReader
);
4017 assert( p
->readOnly
==0 || pOp
->p2
==0 );
4018 assert( pOp
->p2
>=0 && pOp
->p2
<=2 );
4019 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
4020 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
4021 assert( rc
==SQLITE_OK
);
4022 if( pOp
->p2
&& (db
->flags
& (SQLITE_QueryOnly
|SQLITE_CorruptRdOnly
))!=0 ){
4023 if( db
->flags
& SQLITE_QueryOnly
){
4024 /* Writes prohibited by the "PRAGMA query_only=TRUE" statement */
4025 rc
= SQLITE_READONLY
;
4027 /* Writes prohibited due to a prior SQLITE_CORRUPT in the current
4029 rc
= SQLITE_CORRUPT
;
4031 goto abort_due_to_error
;
4033 pDb
= &db
->aDb
[pOp
->p1
];
4037 rc
= sqlite3BtreeBeginTrans(pBt
, pOp
->p2
, &iMeta
);
4038 testcase( rc
==SQLITE_BUSY_SNAPSHOT
);
4039 testcase( rc
==SQLITE_BUSY_RECOVERY
);
4040 if( rc
!=SQLITE_OK
){
4041 if( (rc
&0xff)==SQLITE_BUSY
){
4042 p
->pc
= (int)(pOp
- aOp
);
4046 goto abort_due_to_error
;
4049 if( p
->usesStmtJournal
4051 && (db
->autoCommit
==0 || db
->nVdbeRead
>1)
4053 assert( sqlite3BtreeTxnState(pBt
)==SQLITE_TXN_WRITE
);
4054 if( p
->iStatement
==0 ){
4055 assert( db
->nStatement
>=0 && db
->nSavepoint
>=0 );
4057 p
->iStatement
= db
->nSavepoint
+ db
->nStatement
;
4060 rc
= sqlite3VtabSavepoint(db
, SAVEPOINT_BEGIN
, p
->iStatement
-1);
4061 if( rc
==SQLITE_OK
){
4062 rc
= sqlite3BtreeBeginStmt(pBt
, p
->iStatement
);
4065 /* Store the current value of the database handles deferred constraint
4066 ** counter. If the statement transaction needs to be rolled back,
4067 ** the value of this counter needs to be restored too. */
4068 p
->nStmtDefCons
= db
->nDeferredCons
;
4069 p
->nStmtDefImmCons
= db
->nDeferredImmCons
;
4072 assert( pOp
->p5
==0 || pOp
->p4type
==P4_INT32
);
4075 && (iMeta
!=pOp
->p3
|| pDb
->pSchema
->iGeneration
!=pOp
->p4
.i
)
4078 ** IMPLEMENTATION-OF: R-03189-51135 As each SQL statement runs, the schema
4079 ** version is checked to ensure that the schema has not changed since the
4080 ** SQL statement was prepared.
4082 sqlite3DbFree(db
, p
->zErrMsg
);
4083 p
->zErrMsg
= sqlite3DbStrDup(db
, "database schema has changed");
4084 /* If the schema-cookie from the database file matches the cookie
4085 ** stored with the in-memory representation of the schema, do
4086 ** not reload the schema from the database file.
4088 ** If virtual-tables are in use, this is not just an optimization.
4089 ** Often, v-tables store their data in other SQLite tables, which
4090 ** are queried from within xNext() and other v-table methods using
4091 ** prepared queries. If such a query is out-of-date, we do not want to
4092 ** discard the database schema, as the user code implementing the
4093 ** v-table would have to be ready for the sqlite3_vtab structure itself
4094 ** to be invalidated whenever sqlite3_step() is called from within
4095 ** a v-table method.
4097 if( db
->aDb
[pOp
->p1
].pSchema
->schema_cookie
!=iMeta
){
4098 sqlite3ResetOneSchema(db
, pOp
->p1
);
4103 /* Set changeCntOn to 0 to prevent the value returned by sqlite3_changes()
4104 ** from being modified in sqlite3VdbeHalt(). If this statement is
4105 ** reprepared, changeCntOn will be set again. */
4108 if( rc
) goto abort_due_to_error
;
4112 /* Opcode: ReadCookie P1 P2 P3 * *
4114 ** Read cookie number P3 from database P1 and write it into register P2.
4115 ** P3==1 is the schema version. P3==2 is the database format.
4116 ** P3==3 is the recommended pager cache size, and so forth. P1==0 is
4117 ** the main database file and P1==1 is the database file used to store
4118 ** temporary tables.
4120 ** There must be a read-lock on the database (either a transaction
4121 ** must be started or there must be an open cursor) before
4122 ** executing this instruction.
4124 case OP_ReadCookie
: { /* out2 */
4129 assert( p
->bIsReader
);
4132 assert( pOp
->p3
<SQLITE_N_BTREE_META
);
4133 assert( iDb
>=0 && iDb
<db
->nDb
);
4134 assert( db
->aDb
[iDb
].pBt
!=0 );
4135 assert( DbMaskTest(p
->btreeMask
, iDb
) );
4137 sqlite3BtreeGetMeta(db
->aDb
[iDb
].pBt
, iCookie
, (u32
*)&iMeta
);
4138 pOut
= out2Prerelease(p
, pOp
);
4143 /* Opcode: SetCookie P1 P2 P3 * P5
4145 ** Write the integer value P3 into cookie number P2 of database P1.
4146 ** P2==1 is the schema version. P2==2 is the database format.
4147 ** P2==3 is the recommended pager cache
4148 ** size, and so forth. P1==0 is the main database file and P1==1 is the
4149 ** database file used to store temporary tables.
4151 ** A transaction must be started before executing this opcode.
4153 ** If P2 is the SCHEMA_VERSION cookie (cookie number 1) then the internal
4154 ** schema version is set to P3-P5. The "PRAGMA schema_version=N" statement
4155 ** has P5 set to 1, so that the internal schema version will be different
4156 ** from the database schema version, resulting in a schema reset.
4158 case OP_SetCookie
: {
4161 sqlite3VdbeIncrWriteCounter(p
, 0);
4162 assert( pOp
->p2
<SQLITE_N_BTREE_META
);
4163 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
4164 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
4165 assert( p
->readOnly
==0 );
4166 pDb
= &db
->aDb
[pOp
->p1
];
4167 assert( pDb
->pBt
!=0 );
4168 assert( sqlite3SchemaMutexHeld(db
, pOp
->p1
, 0) );
4169 /* See note about index shifting on OP_ReadCookie */
4170 rc
= sqlite3BtreeUpdateMeta(pDb
->pBt
, pOp
->p2
, pOp
->p3
);
4171 if( pOp
->p2
==BTREE_SCHEMA_VERSION
){
4172 /* When the schema cookie changes, record the new cookie internally */
4173 *(u32
*)&pDb
->pSchema
->schema_cookie
= *(u32
*)&pOp
->p3
- pOp
->p5
;
4174 db
->mDbFlags
|= DBFLAG_SchemaChange
;
4175 sqlite3FkClearTriggerCache(db
, pOp
->p1
);
4176 }else if( pOp
->p2
==BTREE_FILE_FORMAT
){
4177 /* Record changes in the file format */
4178 pDb
->pSchema
->file_format
= pOp
->p3
;
4181 /* Invalidate all prepared statements whenever the TEMP database
4182 ** schema is changed. Ticket #1644 */
4183 sqlite3ExpirePreparedStatements(db
, 0);
4186 if( rc
) goto abort_due_to_error
;
4190 /* Opcode: OpenRead P1 P2 P3 P4 P5
4191 ** Synopsis: root=P2 iDb=P3
4193 ** Open a read-only cursor for the database table whose root page is
4194 ** P2 in a database file. The database file is determined by P3.
4195 ** P3==0 means the main database, P3==1 means the database used for
4196 ** temporary tables, and P3>1 means used the corresponding attached
4197 ** database. Give the new cursor an identifier of P1. The P1
4198 ** values need not be contiguous but all P1 values should be small integers.
4199 ** It is an error for P1 to be negative.
4203 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4204 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4205 ** of OP_SeekLE/OP_IdxLT)
4208 ** The P4 value may be either an integer (P4_INT32) or a pointer to
4209 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
4210 ** object, then table being opened must be an [index b-tree] where the
4211 ** KeyInfo object defines the content and collating
4212 ** sequence of that index b-tree. Otherwise, if P4 is an integer
4213 ** value, then the table being opened must be a [table b-tree] with a
4214 ** number of columns no less than the value of P4.
4216 ** See also: OpenWrite, ReopenIdx
4218 /* Opcode: ReopenIdx P1 P2 P3 P4 P5
4219 ** Synopsis: root=P2 iDb=P3
4221 ** The ReopenIdx opcode works like OP_OpenRead except that it first
4222 ** checks to see if the cursor on P1 is already open on the same
4223 ** b-tree and if it is this opcode becomes a no-op. In other words,
4224 ** if the cursor is already open, do not reopen it.
4226 ** The ReopenIdx opcode may only be used with P5==0 or P5==OPFLAG_SEEKEQ
4227 ** and with P4 being a P4_KEYINFO object. Furthermore, the P3 value must
4228 ** be the same as every other ReopenIdx or OpenRead for the same cursor
4233 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4234 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4235 ** of OP_SeekLE/OP_IdxLT)
4238 ** See also: OP_OpenRead, OP_OpenWrite
4240 /* Opcode: OpenWrite P1 P2 P3 P4 P5
4241 ** Synopsis: root=P2 iDb=P3
4243 ** Open a read/write cursor named P1 on the table or index whose root
4244 ** page is P2 (or whose root page is held in register P2 if the
4245 ** OPFLAG_P2ISREG bit is set in P5 - see below).
4247 ** The P4 value may be either an integer (P4_INT32) or a pointer to
4248 ** a KeyInfo structure (P4_KEYINFO). If it is a pointer to a KeyInfo
4249 ** object, then table being opened must be an [index b-tree] where the
4250 ** KeyInfo object defines the content and collating
4251 ** sequence of that index b-tree. Otherwise, if P4 is an integer
4252 ** value, then the table being opened must be a [table b-tree] with a
4253 ** number of columns no less than the value of P4.
4257 ** <li> <b>0x02 OPFLAG_SEEKEQ</b>: This cursor will only be used for
4258 ** equality lookups (implemented as a pair of opcodes OP_SeekGE/OP_IdxGT
4259 ** of OP_SeekLE/OP_IdxLT)
4260 ** <li> <b>0x08 OPFLAG_FORDELETE</b>: This cursor is used only to seek
4261 ** and subsequently delete entries in an index btree. This is a
4262 ** hint to the storage engine that the storage engine is allowed to
4263 ** ignore. The hint is not used by the official SQLite b*tree storage
4264 ** engine, but is used by COMDB2.
4265 ** <li> <b>0x10 OPFLAG_P2ISREG</b>: Use the content of register P2
4266 ** as the root page, not the value of P2 itself.
4269 ** This instruction works like OpenRead except that it opens the cursor
4270 ** in read/write mode.
4272 ** See also: OP_OpenRead, OP_ReopenIdx
4274 case OP_ReopenIdx
: { /* ncycle */
4284 assert( pOp
->p5
==0 || pOp
->p5
==OPFLAG_SEEKEQ
);
4285 assert( pOp
->p4type
==P4_KEYINFO
);
4286 pCur
= p
->apCsr
[pOp
->p1
];
4287 if( pCur
&& pCur
->pgnoRoot
==(u32
)pOp
->p2
){
4288 assert( pCur
->iDb
==pOp
->p3
); /* Guaranteed by the code generator */
4289 assert( pCur
->eCurType
==CURTYPE_BTREE
);
4290 sqlite3BtreeClearCursor(pCur
->uc
.pCursor
);
4291 goto open_cursor_set_hints
;
4293 /* If the cursor is not currently open or is open on a different
4294 ** index, then fall through into OP_OpenRead to force a reopen */
4295 case OP_OpenRead
: /* ncycle */
4298 assert( pOp
->opcode
==OP_OpenWrite
|| pOp
->p5
==0 || pOp
->p5
==OPFLAG_SEEKEQ
);
4299 assert( p
->bIsReader
);
4300 assert( pOp
->opcode
==OP_OpenRead
|| pOp
->opcode
==OP_ReopenIdx
4301 || p
->readOnly
==0 );
4303 if( p
->expired
==1 ){
4304 rc
= SQLITE_ABORT_ROLLBACK
;
4305 goto abort_due_to_error
;
4312 assert( iDb
>=0 && iDb
<db
->nDb
);
4313 assert( DbMaskTest(p
->btreeMask
, iDb
) );
4314 pDb
= &db
->aDb
[iDb
];
4317 if( pOp
->opcode
==OP_OpenWrite
){
4318 assert( OPFLAG_FORDELETE
==BTREE_FORDELETE
);
4319 wrFlag
= BTREE_WRCSR
| (pOp
->p5
& OPFLAG_FORDELETE
);
4320 assert( sqlite3SchemaMutexHeld(db
, iDb
, 0) );
4321 if( pDb
->pSchema
->file_format
< p
->minWriteFileFormat
){
4322 p
->minWriteFileFormat
= pDb
->pSchema
->file_format
;
4327 if( pOp
->p5
& OPFLAG_P2ISREG
){
4329 assert( p2
<=(u32
)(p
->nMem
+1 - p
->nCursor
) );
4330 assert( pOp
->opcode
==OP_OpenWrite
);
4332 assert( memIsValid(pIn2
) );
4333 assert( (pIn2
->flags
& MEM_Int
)!=0 );
4334 sqlite3VdbeMemIntegerify(pIn2
);
4335 p2
= (int)pIn2
->u
.i
;
4336 /* The p2 value always comes from a prior OP_CreateBtree opcode and
4337 ** that opcode will always set the p2 value to 2 or more or else fail.
4338 ** If there were a failure, the prepared statement would have halted
4339 ** before reaching this instruction. */
4342 if( pOp
->p4type
==P4_KEYINFO
){
4343 pKeyInfo
= pOp
->p4
.pKeyInfo
;
4344 assert( pKeyInfo
->enc
==ENC(db
) );
4345 assert( pKeyInfo
->db
==db
);
4346 nField
= pKeyInfo
->nAllField
;
4347 }else if( pOp
->p4type
==P4_INT32
){
4350 assert( pOp
->p1
>=0 );
4351 assert( nField
>=0 );
4352 testcase( nField
==0 ); /* Table with INTEGER PRIMARY KEY and nothing else */
4353 pCur
= allocateCursor(p
, pOp
->p1
, nField
, CURTYPE_BTREE
);
4354 if( pCur
==0 ) goto no_mem
;
4357 pCur
->isOrdered
= 1;
4358 pCur
->pgnoRoot
= p2
;
4360 pCur
->wrFlag
= wrFlag
;
4362 rc
= sqlite3BtreeCursor(pX
, p2
, wrFlag
, pKeyInfo
, pCur
->uc
.pCursor
);
4363 pCur
->pKeyInfo
= pKeyInfo
;
4364 /* Set the VdbeCursor.isTable variable. Previous versions of
4365 ** SQLite used to check if the root-page flags were sane at this point
4366 ** and report database corruption if they were not, but this check has
4367 ** since moved into the btree layer. */
4368 pCur
->isTable
= pOp
->p4type
!=P4_KEYINFO
;
4370 open_cursor_set_hints
:
4371 assert( OPFLAG_BULKCSR
==BTREE_BULKLOAD
);
4372 assert( OPFLAG_SEEKEQ
==BTREE_SEEK_EQ
);
4373 testcase( pOp
->p5
& OPFLAG_BULKCSR
);
4374 testcase( pOp
->p2
& OPFLAG_SEEKEQ
);
4375 sqlite3BtreeCursorHintFlags(pCur
->uc
.pCursor
,
4376 (pOp
->p5
& (OPFLAG_BULKCSR
|OPFLAG_SEEKEQ
)));
4377 if( rc
) goto abort_due_to_error
;
4381 /* Opcode: OpenDup P1 P2 * * *
4383 ** Open a new cursor P1 that points to the same ephemeral table as
4384 ** cursor P2. The P2 cursor must have been opened by a prior OP_OpenEphemeral
4385 ** opcode. Only ephemeral cursors may be duplicated.
4387 ** Duplicate ephemeral cursors are used for self-joins of materialized views.
4389 case OP_OpenDup
: { /* ncycle */
4390 VdbeCursor
*pOrig
; /* The original cursor to be duplicated */
4391 VdbeCursor
*pCx
; /* The new cursor */
4393 pOrig
= p
->apCsr
[pOp
->p2
];
4395 assert( pOrig
->isEphemeral
); /* Only ephemeral cursors can be duplicated */
4397 pCx
= allocateCursor(p
, pOp
->p1
, pOrig
->nField
, CURTYPE_BTREE
);
4398 if( pCx
==0 ) goto no_mem
;
4400 pCx
->isEphemeral
= 1;
4401 pCx
->pKeyInfo
= pOrig
->pKeyInfo
;
4402 pCx
->isTable
= pOrig
->isTable
;
4403 pCx
->pgnoRoot
= pOrig
->pgnoRoot
;
4404 pCx
->isOrdered
= pOrig
->isOrdered
;
4405 pCx
->ub
.pBtx
= pOrig
->ub
.pBtx
;
4408 rc
= sqlite3BtreeCursor(pCx
->ub
.pBtx
, pCx
->pgnoRoot
, BTREE_WRCSR
,
4409 pCx
->pKeyInfo
, pCx
->uc
.pCursor
);
4410 /* The sqlite3BtreeCursor() routine can only fail for the first cursor
4411 ** opened for a database. Since there is already an open cursor when this
4412 ** opcode is run, the sqlite3BtreeCursor() cannot fail */
4413 assert( rc
==SQLITE_OK
);
4418 /* Opcode: OpenEphemeral P1 P2 P3 P4 P5
4419 ** Synopsis: nColumn=P2
4421 ** Open a new cursor P1 to a transient table.
4422 ** The cursor is always opened read/write even if
4423 ** the main database is read-only. The ephemeral
4424 ** table is deleted automatically when the cursor is closed.
4426 ** If the cursor P1 is already opened on an ephemeral table, the table
4427 ** is cleared (all content is erased).
4429 ** P2 is the number of columns in the ephemeral table.
4430 ** The cursor points to a BTree table if P4==0 and to a BTree index
4431 ** if P4 is not 0. If P4 is not NULL, it points to a KeyInfo structure
4432 ** that defines the format of keys in the index.
4434 ** The P5 parameter can be a mask of the BTREE_* flags defined
4435 ** in btree.h. These flags control aspects of the operation of
4436 ** the btree. The BTREE_OMIT_JOURNAL and BTREE_SINGLE flags are
4437 ** added automatically.
4439 ** If P3 is positive, then reg[P3] is modified slightly so that it
4440 ** can be used as zero-length data for OP_Insert. This is an optimization
4441 ** that avoids an extra OP_Blob opcode to initialize that register.
4443 /* Opcode: OpenAutoindex P1 P2 * P4 *
4444 ** Synopsis: nColumn=P2
4446 ** This opcode works the same as OP_OpenEphemeral. It has a
4447 ** different name to distinguish its use. Tables created using
4448 ** by this opcode will be used for automatically created transient
4449 ** indices in joins.
4451 case OP_OpenAutoindex
: /* ncycle */
4452 case OP_OpenEphemeral
: { /* ncycle */
4456 static const int vfsFlags
=
4457 SQLITE_OPEN_READWRITE
|
4458 SQLITE_OPEN_CREATE
|
4459 SQLITE_OPEN_EXCLUSIVE
|
4460 SQLITE_OPEN_DELETEONCLOSE
|
4461 SQLITE_OPEN_TRANSIENT_DB
;
4462 assert( pOp
->p1
>=0 );
4463 assert( pOp
->p2
>=0 );
4465 /* Make register reg[P3] into a value that can be used as the data
4466 ** form sqlite3BtreeInsert() where the length of the data is zero. */
4467 assert( pOp
->p2
==0 ); /* Only used when number of columns is zero */
4468 assert( pOp
->opcode
==OP_OpenEphemeral
);
4469 assert( aMem
[pOp
->p3
].flags
& MEM_Null
);
4470 aMem
[pOp
->p3
].n
= 0;
4471 aMem
[pOp
->p3
].z
= "";
4473 pCx
= p
->apCsr
[pOp
->p1
];
4474 if( pCx
&& !pCx
->noReuse
&& ALWAYS(pOp
->p2
<=pCx
->nField
) ){
4475 /* If the ephemeral table is already open and has no duplicates from
4476 ** OP_OpenDup, then erase all existing content so that the table is
4477 ** empty again, rather than creating a new table. */
4478 assert( pCx
->isEphemeral
);
4480 pCx
->cacheStatus
= CACHE_STALE
;
4481 rc
= sqlite3BtreeClearTable(pCx
->ub
.pBtx
, pCx
->pgnoRoot
, 0);
4483 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p2
, CURTYPE_BTREE
);
4484 if( pCx
==0 ) goto no_mem
;
4485 pCx
->isEphemeral
= 1;
4486 rc
= sqlite3BtreeOpen(db
->pVfs
, 0, db
, &pCx
->ub
.pBtx
,
4487 BTREE_OMIT_JOURNAL
| BTREE_SINGLE
| pOp
->p5
,
4489 if( rc
==SQLITE_OK
){
4490 rc
= sqlite3BtreeBeginTrans(pCx
->ub
.pBtx
, 1, 0);
4491 if( rc
==SQLITE_OK
){
4492 /* If a transient index is required, create it by calling
4493 ** sqlite3BtreeCreateTable() with the BTREE_BLOBKEY flag before
4494 ** opening it. If a transient table is required, just use the
4495 ** automatically created table with root-page 1 (an BLOB_INTKEY table).
4497 if( (pCx
->pKeyInfo
= pKeyInfo
= pOp
->p4
.pKeyInfo
)!=0 ){
4498 assert( pOp
->p4type
==P4_KEYINFO
);
4499 rc
= sqlite3BtreeCreateTable(pCx
->ub
.pBtx
, &pCx
->pgnoRoot
,
4500 BTREE_BLOBKEY
| pOp
->p5
);
4501 if( rc
==SQLITE_OK
){
4502 assert( pCx
->pgnoRoot
==SCHEMA_ROOT
+1 );
4503 assert( pKeyInfo
->db
==db
);
4504 assert( pKeyInfo
->enc
==ENC(db
) );
4505 rc
= sqlite3BtreeCursor(pCx
->ub
.pBtx
, pCx
->pgnoRoot
, BTREE_WRCSR
,
4506 pKeyInfo
, pCx
->uc
.pCursor
);
4510 pCx
->pgnoRoot
= SCHEMA_ROOT
;
4511 rc
= sqlite3BtreeCursor(pCx
->ub
.pBtx
, SCHEMA_ROOT
, BTREE_WRCSR
,
4512 0, pCx
->uc
.pCursor
);
4516 pCx
->isOrdered
= (pOp
->p5
!=BTREE_UNORDERED
);
4518 sqlite3BtreeClose(pCx
->ub
.pBtx
);
4522 if( rc
) goto abort_due_to_error
;
4527 /* Opcode: SorterOpen P1 P2 P3 P4 *
4529 ** This opcode works like OP_OpenEphemeral except that it opens
4530 ** a transient index that is specifically designed to sort large
4531 ** tables using an external merge-sort algorithm.
4533 ** If argument P3 is non-zero, then it indicates that the sorter may
4534 ** assume that a stable sort considering the first P3 fields of each
4535 ** key is sufficient to produce the required results.
4537 case OP_SorterOpen
: {
4540 assert( pOp
->p1
>=0 );
4541 assert( pOp
->p2
>=0 );
4542 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p2
, CURTYPE_SORTER
);
4543 if( pCx
==0 ) goto no_mem
;
4544 pCx
->pKeyInfo
= pOp
->p4
.pKeyInfo
;
4545 assert( pCx
->pKeyInfo
->db
==db
);
4546 assert( pCx
->pKeyInfo
->enc
==ENC(db
) );
4547 rc
= sqlite3VdbeSorterInit(db
, pOp
->p3
, pCx
);
4548 if( rc
) goto abort_due_to_error
;
4552 /* Opcode: SequenceTest P1 P2 * * *
4553 ** Synopsis: if( cursor[P1].ctr++ ) pc = P2
4555 ** P1 is a sorter cursor. If the sequence counter is currently zero, jump
4556 ** to P2. Regardless of whether or not the jump is taken, increment the
4557 ** the sequence value.
4559 case OP_SequenceTest
: {
4561 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4562 pC
= p
->apCsr
[pOp
->p1
];
4563 assert( isSorter(pC
) );
4564 if( (pC
->seqCount
++)==0 ){
4570 /* Opcode: OpenPseudo P1 P2 P3 * *
4571 ** Synopsis: P3 columns in r[P2]
4573 ** Open a new cursor that points to a fake table that contains a single
4574 ** row of data. The content of that one row is the content of memory
4575 ** register P2. In other words, cursor P1 becomes an alias for the
4576 ** MEM_Blob content contained in register P2.
4578 ** A pseudo-table created by this opcode is used to hold a single
4579 ** row output from the sorter so that the row can be decomposed into
4580 ** individual columns using the OP_Column opcode. The OP_Column opcode
4581 ** is the only cursor opcode that works with a pseudo-table.
4583 ** P3 is the number of fields in the records that will be stored by
4584 ** the pseudo-table.
4586 case OP_OpenPseudo
: {
4589 assert( pOp
->p1
>=0 );
4590 assert( pOp
->p3
>=0 );
4591 pCx
= allocateCursor(p
, pOp
->p1
, pOp
->p3
, CURTYPE_PSEUDO
);
4592 if( pCx
==0 ) goto no_mem
;
4594 pCx
->seekResult
= pOp
->p2
;
4596 /* Give this pseudo-cursor a fake BtCursor pointer so that pCx
4597 ** can be safely passed to sqlite3VdbeCursorMoveto(). This avoids a test
4598 ** for pCx->eCurType==CURTYPE_BTREE inside of sqlite3VdbeCursorMoveto()
4599 ** which is a performance optimization */
4600 pCx
->uc
.pCursor
= sqlite3BtreeFakeValidCursor();
4601 assert( pOp
->p5
==0 );
4605 /* Opcode: Close P1 * * * *
4607 ** Close a cursor previously opened as P1. If P1 is not
4608 ** currently open, this instruction is a no-op.
4610 case OP_Close
: { /* ncycle */
4611 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4612 sqlite3VdbeFreeCursor(p
, p
->apCsr
[pOp
->p1
]);
4613 p
->apCsr
[pOp
->p1
] = 0;
4617 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
4618 /* Opcode: ColumnsUsed P1 * * P4 *
4620 ** This opcode (which only exists if SQLite was compiled with
4621 ** SQLITE_ENABLE_COLUMN_USED_MASK) identifies which columns of the
4622 ** table or index for cursor P1 are used. P4 is a 64-bit integer
4623 ** (P4_INT64) in which the first 63 bits are one for each of the
4624 ** first 63 columns of the table or index that are actually used
4625 ** by the cursor. The high-order bit is set if any column after
4626 ** the 64th is used.
4628 case OP_ColumnsUsed
: {
4630 pC
= p
->apCsr
[pOp
->p1
];
4631 assert( pC
->eCurType
==CURTYPE_BTREE
);
4632 pC
->maskUsed
= *(u64
*)pOp
->p4
.pI64
;
4637 /* Opcode: SeekGE P1 P2 P3 P4 *
4638 ** Synopsis: key=r[P3@P4]
4640 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4641 ** use the value in register P3 as the key. If cursor P1 refers
4642 ** to an SQL index, then P3 is the first in an array of P4 registers
4643 ** that are used as an unpacked index key.
4645 ** Reposition cursor P1 so that it points to the smallest entry that
4646 ** is greater than or equal to the key value. If there are no records
4647 ** greater than or equal to the key and P2 is not zero, then jump to P2.
4649 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4650 ** opcode will either land on a record that exactly matches the key, or
4651 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
4652 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4653 ** The IdxGT opcode will be skipped if this opcode succeeds, but the
4654 ** IdxGT opcode will be used on subsequent loop iterations. The
4655 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4656 ** is an equality search.
4658 ** This opcode leaves the cursor configured to move in forward order,
4659 ** from the beginning toward the end. In other words, the cursor is
4660 ** configured to use Next, not Prev.
4662 ** See also: Found, NotFound, SeekLt, SeekGt, SeekLe
4664 /* Opcode: SeekGT P1 P2 P3 P4 *
4665 ** Synopsis: key=r[P3@P4]
4667 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4668 ** use the value in register P3 as a key. If cursor P1 refers
4669 ** to an SQL index, then P3 is the first in an array of P4 registers
4670 ** that are used as an unpacked index key.
4672 ** Reposition cursor P1 so that it points to the smallest entry that
4673 ** is greater than the key value. If there are no records greater than
4674 ** the key and P2 is not zero, then jump to P2.
4676 ** This opcode leaves the cursor configured to move in forward order,
4677 ** from the beginning toward the end. In other words, the cursor is
4678 ** configured to use Next, not Prev.
4680 ** See also: Found, NotFound, SeekLt, SeekGe, SeekLe
4682 /* Opcode: SeekLT P1 P2 P3 P4 *
4683 ** Synopsis: key=r[P3@P4]
4685 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4686 ** use the value in register P3 as a key. If cursor P1 refers
4687 ** to an SQL index, then P3 is the first in an array of P4 registers
4688 ** that are used as an unpacked index key.
4690 ** Reposition cursor P1 so that it points to the largest entry that
4691 ** is less than the key value. If there are no records less than
4692 ** the key and P2 is not zero, then jump to P2.
4694 ** This opcode leaves the cursor configured to move in reverse order,
4695 ** from the end toward the beginning. In other words, the cursor is
4696 ** configured to use Prev, not Next.
4698 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLe
4700 /* Opcode: SeekLE P1 P2 P3 P4 *
4701 ** Synopsis: key=r[P3@P4]
4703 ** If cursor P1 refers to an SQL table (B-Tree that uses integer keys),
4704 ** use the value in register P3 as a key. If cursor P1 refers
4705 ** to an SQL index, then P3 is the first in an array of P4 registers
4706 ** that are used as an unpacked index key.
4708 ** Reposition cursor P1 so that it points to the largest entry that
4709 ** is less than or equal to the key value. If there are no records
4710 ** less than or equal to the key and P2 is not zero, then jump to P2.
4712 ** This opcode leaves the cursor configured to move in reverse order,
4713 ** from the end toward the beginning. In other words, the cursor is
4714 ** configured to use Prev, not Next.
4716 ** If the cursor P1 was opened using the OPFLAG_SEEKEQ flag, then this
4717 ** opcode will either land on a record that exactly matches the key, or
4718 ** else it will cause a jump to P2. When the cursor is OPFLAG_SEEKEQ,
4719 ** this opcode must be followed by an IdxLE opcode with the same arguments.
4720 ** The IdxGE opcode will be skipped if this opcode succeeds, but the
4721 ** IdxGE opcode will be used on subsequent loop iterations. The
4722 ** OPFLAG_SEEKEQ flags is a hint to the btree layer to say that this
4723 ** is an equality search.
4725 ** See also: Found, NotFound, SeekGt, SeekGe, SeekLt
4727 case OP_SeekLT
: /* jump, in3, group, ncycle */
4728 case OP_SeekLE
: /* jump, in3, group, ncycle */
4729 case OP_SeekGE
: /* jump, in3, group, ncycle */
4730 case OP_SeekGT
: { /* jump, in3, group, ncycle */
4731 int res
; /* Comparison result */
4732 int oc
; /* Opcode */
4733 VdbeCursor
*pC
; /* The cursor to seek */
4734 UnpackedRecord r
; /* The key to seek for */
4735 int nField
; /* Number of columns or fields in the key */
4736 i64 iKey
; /* The rowid we are to seek to */
4737 int eqOnly
; /* Only interested in == results */
4739 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
4740 assert( pOp
->p2
!=0 );
4741 pC
= p
->apCsr
[pOp
->p1
];
4743 assert( pC
->eCurType
==CURTYPE_BTREE
);
4744 assert( OP_SeekLE
== OP_SeekLT
+1 );
4745 assert( OP_SeekGE
== OP_SeekLT
+2 );
4746 assert( OP_SeekGT
== OP_SeekLT
+3 );
4747 assert( pC
->isOrdered
);
4748 assert( pC
->uc
.pCursor
!=0 );
4753 pC
->seekOp
= pOp
->opcode
;
4756 pC
->deferredMoveto
= 0;
4757 pC
->cacheStatus
= CACHE_STALE
;
4759 u16 flags3
, newType
;
4760 /* The OPFLAG_SEEKEQ/BTREE_SEEK_EQ flag is only set on index cursors */
4761 assert( sqlite3BtreeCursorHasHint(pC
->uc
.pCursor
, BTREE_SEEK_EQ
)==0
4764 /* The input value in P3 might be of any type: integer, real, string,
4765 ** blob, or NULL. But it needs to be an integer before we can do
4766 ** the seek, so convert it. */
4767 pIn3
= &aMem
[pOp
->p3
];
4768 flags3
= pIn3
->flags
;
4769 if( (flags3
& (MEM_Int
|MEM_Real
|MEM_IntReal
|MEM_Str
))==MEM_Str
){
4770 applyNumericAffinity(pIn3
, 0);
4772 iKey
= sqlite3VdbeIntValue(pIn3
); /* Get the integer key value */
4773 newType
= pIn3
->flags
; /* Record the type after applying numeric affinity */
4774 pIn3
->flags
= flags3
; /* But convert the type back to its original */
4776 /* If the P3 value could not be converted into an integer without
4777 ** loss of information, then special processing is required... */
4778 if( (newType
& (MEM_Int
|MEM_IntReal
))==0 ){
4780 if( (newType
& MEM_Real
)==0 ){
4781 if( (newType
& MEM_Null
) || oc
>=OP_SeekGE
){
4782 VdbeBranchTaken(1,2);
4785 rc
= sqlite3BtreeLast(pC
->uc
.pCursor
, &res
);
4786 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
4787 goto seek_not_found
;
4790 c
= sqlite3IntFloatCompare(iKey
, pIn3
->u
.r
);
4792 /* If the approximation iKey is larger than the actual real search
4793 ** term, substitute >= for > and < for <=. e.g. if the search term
4794 ** is 4.9 and the integer approximation 5:
4796 ** (x > 4.9) -> (x >= 5)
4797 ** (x <= 4.9) -> (x < 5)
4800 assert( OP_SeekGE
==(OP_SeekGT
-1) );
4801 assert( OP_SeekLT
==(OP_SeekLE
-1) );
4802 assert( (OP_SeekLE
& 0x0001)==(OP_SeekGT
& 0x0001) );
4803 if( (oc
& 0x0001)==(OP_SeekGT
& 0x0001) ) oc
--;
4806 /* If the approximation iKey is smaller than the actual real search
4807 ** term, substitute <= for < and > for >=. */
4809 assert( OP_SeekLE
==(OP_SeekLT
+1) );
4810 assert( OP_SeekGT
==(OP_SeekGE
+1) );
4811 assert( (OP_SeekLT
& 0x0001)==(OP_SeekGE
& 0x0001) );
4812 if( (oc
& 0x0001)==(OP_SeekLT
& 0x0001) ) oc
++;
4815 rc
= sqlite3BtreeTableMoveto(pC
->uc
.pCursor
, (u64
)iKey
, 0, &res
);
4816 pC
->movetoTarget
= iKey
; /* Used by OP_Delete */
4817 if( rc
!=SQLITE_OK
){
4818 goto abort_due_to_error
;
4821 /* For a cursor with the OPFLAG_SEEKEQ/BTREE_SEEK_EQ hint, only the
4822 ** OP_SeekGE and OP_SeekLE opcodes are allowed, and these must be
4823 ** immediately followed by an OP_IdxGT or OP_IdxLT opcode, respectively,
4824 ** with the same key.
4826 if( sqlite3BtreeCursorHasHint(pC
->uc
.pCursor
, BTREE_SEEK_EQ
) ){
4828 assert( pOp
->opcode
==OP_SeekGE
|| pOp
->opcode
==OP_SeekLE
);
4829 assert( pOp
[1].opcode
==OP_IdxLT
|| pOp
[1].opcode
==OP_IdxGT
);
4830 assert( pOp
->opcode
==OP_SeekGE
|| pOp
[1].opcode
==OP_IdxLT
);
4831 assert( pOp
->opcode
==OP_SeekLE
|| pOp
[1].opcode
==OP_IdxGT
);
4832 assert( pOp
[1].p1
==pOp
[0].p1
);
4833 assert( pOp
[1].p2
==pOp
[0].p2
);
4834 assert( pOp
[1].p3
==pOp
[0].p3
);
4835 assert( pOp
[1].p4
.i
==pOp
[0].p4
.i
);
4839 assert( pOp
->p4type
==P4_INT32
);
4841 r
.pKeyInfo
= pC
->pKeyInfo
;
4842 r
.nField
= (u16
)nField
;
4844 /* The next line of code computes as follows, only faster:
4845 ** if( oc==OP_SeekGT || oc==OP_SeekLE ){
4846 ** r.default_rc = -1;
4848 ** r.default_rc = +1;
4851 r
.default_rc
= ((1 & (oc
- OP_SeekLT
)) ? -1 : +1);
4852 assert( oc
!=OP_SeekGT
|| r
.default_rc
==-1 );
4853 assert( oc
!=OP_SeekLE
|| r
.default_rc
==-1 );
4854 assert( oc
!=OP_SeekGE
|| r
.default_rc
==+1 );
4855 assert( oc
!=OP_SeekLT
|| r
.default_rc
==+1 );
4857 r
.aMem
= &aMem
[pOp
->p3
];
4861 for(i
=0; i
<r
.nField
; i
++){
4862 assert( memIsValid(&r
.aMem
[i
]) );
4863 if( i
>0 ) REGISTER_TRACE(pOp
->p3
+i
, &r
.aMem
[i
]);
4868 rc
= sqlite3BtreeIndexMoveto(pC
->uc
.pCursor
, &r
, &res
);
4869 if( rc
!=SQLITE_OK
){
4870 goto abort_due_to_error
;
4872 if( eqOnly
&& r
.eqSeen
==0 ){
4874 goto seek_not_found
;
4878 sqlite3_search_count
++;
4880 if( oc
>=OP_SeekGE
){ assert( oc
==OP_SeekGE
|| oc
==OP_SeekGT
);
4881 if( res
<0 || (res
==0 && oc
==OP_SeekGT
) ){
4883 rc
= sqlite3BtreeNext(pC
->uc
.pCursor
, 0);
4884 if( rc
!=SQLITE_OK
){
4885 if( rc
==SQLITE_DONE
){
4889 goto abort_due_to_error
;
4896 assert( oc
==OP_SeekLT
|| oc
==OP_SeekLE
);
4897 if( res
>0 || (res
==0 && oc
==OP_SeekLT
) ){
4899 rc
= sqlite3BtreePrevious(pC
->uc
.pCursor
, 0);
4900 if( rc
!=SQLITE_OK
){
4901 if( rc
==SQLITE_DONE
){
4905 goto abort_due_to_error
;
4909 /* res might be negative because the table is empty. Check to
4910 ** see if this is the case.
4912 res
= sqlite3BtreeEof(pC
->uc
.pCursor
);
4916 assert( pOp
->p2
>0 );
4917 VdbeBranchTaken(res
!=0,2);
4921 assert( pOp
[1].opcode
==OP_IdxLT
|| pOp
[1].opcode
==OP_IdxGT
);
4922 pOp
++; /* Skip the OP_IdxLt or OP_IdxGT that follows */
4928 /* Opcode: SeekScan P1 P2 * * P5
4929 ** Synopsis: Scan-ahead up to P1 rows
4931 ** This opcode is a prefix opcode to OP_SeekGE. In other words, this
4932 ** opcode must be immediately followed by OP_SeekGE. This constraint is
4933 ** checked by assert() statements.
4935 ** This opcode uses the P1 through P4 operands of the subsequent
4936 ** OP_SeekGE. In the text that follows, the operands of the subsequent
4937 ** OP_SeekGE opcode are denoted as SeekOP.P1 through SeekOP.P4. Only
4938 ** the P1, P2 and P5 operands of this opcode are also used, and are called
4939 ** This.P1, This.P2 and This.P5.
4941 ** This opcode helps to optimize IN operators on a multi-column index
4942 ** where the IN operator is on the later terms of the index by avoiding
4943 ** unnecessary seeks on the btree, substituting steps to the next row
4944 ** of the b-tree instead. A correct answer is obtained if this opcode
4945 ** is omitted or is a no-op.
4947 ** The SeekGE.P3 and SeekGE.P4 operands identify an unpacked key which
4948 ** is the desired entry that we want the cursor SeekGE.P1 to be pointing
4949 ** to. Call this SeekGE.P3/P4 row the "target".
4951 ** If the SeekGE.P1 cursor is not currently pointing to a valid row,
4952 ** then this opcode is a no-op and control passes through into the OP_SeekGE.
4954 ** If the SeekGE.P1 cursor is pointing to a valid row, then that row
4955 ** might be the target row, or it might be near and slightly before the
4956 ** target row, or it might be after the target row. If the cursor is
4957 ** currently before the target row, then this opcode attempts to position
4958 ** the cursor on or after the target row by invoking sqlite3BtreeStep()
4959 ** on the cursor between 1 and This.P1 times.
4961 ** The This.P5 parameter is a flag that indicates what to do if the
4962 ** cursor ends up pointing at a valid row that is past the target
4963 ** row. If This.P5 is false (0) then a jump is made to SeekGE.P2. If
4964 ** This.P5 is true (non-zero) then a jump is made to This.P2. The P5==0
4965 ** case occurs when there are no inequality constraints to the right of
4966 ** the IN constraint. The jump to SeekGE.P2 ends the loop. The P5!=0 case
4967 ** occurs when there are inequality constraints to the right of the IN
4968 ** operator. In that case, the This.P2 will point either directly to or
4969 ** to setup code prior to the OP_IdxGT or OP_IdxGE opcode that checks for
4972 ** Possible outcomes from this opcode:<ol>
4974 ** <li> If the cursor is initially not pointed to any valid row, then
4975 ** fall through into the subsequent OP_SeekGE opcode.
4977 ** <li> If the cursor is left pointing to a row that is before the target
4978 ** row, even after making as many as This.P1 calls to
4979 ** sqlite3BtreeNext(), then also fall through into OP_SeekGE.
4981 ** <li> If the cursor is left pointing at the target row, either because it
4982 ** was at the target row to begin with or because one or more
4983 ** sqlite3BtreeNext() calls moved the cursor to the target row,
4984 ** then jump to This.P2..,
4986 ** <li> If the cursor started out before the target row and a call to
4987 ** to sqlite3BtreeNext() moved the cursor off the end of the index
4988 ** (indicating that the target row definitely does not exist in the
4989 ** btree) then jump to SeekGE.P2, ending the loop.
4991 ** <li> If the cursor ends up on a valid row that is past the target row
4992 ** (indicating that the target row does not exist in the btree) then
4993 ** jump to SeekOP.P2 if This.P5==0 or to This.P2 if This.P5>0.
4996 case OP_SeekScan
: { /* ncycle */
5002 assert( pOp
[1].opcode
==OP_SeekGE
);
5004 /* If pOp->p5 is clear, then pOp->p2 points to the first instruction past the
5005 ** OP_IdxGT that follows the OP_SeekGE. Otherwise, it points to the first
5006 ** opcode past the OP_SeekGE itself. */
5007 assert( pOp
->p2
>=(int)(pOp
-aOp
)+2 );
5010 /* There are no inequality constraints following the IN constraint. */
5011 assert( pOp
[1].p1
==aOp
[pOp
->p2
-1].p1
);
5012 assert( pOp
[1].p2
==aOp
[pOp
->p2
-1].p2
);
5013 assert( pOp
[1].p3
==aOp
[pOp
->p2
-1].p3
);
5014 assert( aOp
[pOp
->p2
-1].opcode
==OP_IdxGT
5015 || aOp
[pOp
->p2
-1].opcode
==OP_IdxGE
);
5016 testcase( aOp
[pOp
->p2
-1].opcode
==OP_IdxGE
);
5018 /* There are inequality constraints. */
5019 assert( pOp
->p2
==(int)(pOp
-aOp
)+2 );
5020 assert( aOp
[pOp
->p2
-1].opcode
==OP_SeekGE
);
5024 assert( pOp
->p1
>0 );
5025 pC
= p
->apCsr
[pOp
[1].p1
];
5027 assert( pC
->eCurType
==CURTYPE_BTREE
);
5028 assert( !pC
->isTable
);
5029 if( !sqlite3BtreeCursorIsValidNN(pC
->uc
.pCursor
) ){
5031 if( db
->flags
&SQLITE_VdbeTrace
){
5032 printf("... cursor not valid - fall through\n");
5039 r
.pKeyInfo
= pC
->pKeyInfo
;
5040 r
.nField
= (u16
)pOp
[1].p4
.i
;
5042 r
.aMem
= &aMem
[pOp
[1].p3
];
5046 for(i
=0; i
<r
.nField
; i
++){
5047 assert( memIsValid(&r
.aMem
[i
]) );
5048 REGISTER_TRACE(pOp
[1].p3
+i
, &aMem
[pOp
[1].p3
+i
]);
5052 res
= 0; /* Not needed. Only used to silence a warning. */
5054 rc
= sqlite3VdbeIdxKeyCompare(db
, pC
, &r
, &res
);
5055 if( rc
) goto abort_due_to_error
;
5056 if( res
>0 && pOp
->p5
==0 ){
5057 seekscan_search_fail
:
5058 /* Jump to SeekGE.P2, ending the loop */
5060 if( db
->flags
&SQLITE_VdbeTrace
){
5061 printf("... %d steps and then skip\n", pOp
->p1
- nStep
);
5064 VdbeBranchTaken(1,3);
5069 /* Jump to This.P2, bypassing the OP_SeekGE opcode */
5071 if( db
->flags
&SQLITE_VdbeTrace
){
5072 printf("... %d steps and then success\n", pOp
->p1
- nStep
);
5075 VdbeBranchTaken(2,3);
5081 if( db
->flags
&SQLITE_VdbeTrace
){
5082 printf("... fall through after %d steps\n", pOp
->p1
);
5085 VdbeBranchTaken(0,3);
5089 pC
->cacheStatus
= CACHE_STALE
;
5090 rc
= sqlite3BtreeNext(pC
->uc
.pCursor
, 0);
5092 if( rc
==SQLITE_DONE
){
5094 goto seekscan_search_fail
;
5096 goto abort_due_to_error
;
5105 /* Opcode: SeekHit P1 P2 P3 * *
5106 ** Synopsis: set P2<=seekHit<=P3
5108 ** Increase or decrease the seekHit value for cursor P1, if necessary,
5109 ** so that it is no less than P2 and no greater than P3.
5111 ** The seekHit integer represents the maximum of terms in an index for which
5112 ** there is known to be at least one match. If the seekHit value is smaller
5113 ** than the total number of equality terms in an index lookup, then the
5114 ** OP_IfNoHope opcode might run to see if the IN loop can be abandoned
5115 ** early, thus saving work. This is part of the IN-early-out optimization.
5117 ** P1 must be a valid b-tree cursor.
5119 case OP_SeekHit
: { /* ncycle */
5121 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5122 pC
= p
->apCsr
[pOp
->p1
];
5124 assert( pOp
->p3
>=pOp
->p2
);
5125 if( pC
->seekHit
<pOp
->p2
){
5127 if( db
->flags
&SQLITE_VdbeTrace
){
5128 printf("seekHit changes from %d to %d\n", pC
->seekHit
, pOp
->p2
);
5131 pC
->seekHit
= pOp
->p2
;
5132 }else if( pC
->seekHit
>pOp
->p3
){
5134 if( db
->flags
&SQLITE_VdbeTrace
){
5135 printf("seekHit changes from %d to %d\n", pC
->seekHit
, pOp
->p3
);
5138 pC
->seekHit
= pOp
->p3
;
5143 /* Opcode: IfNotOpen P1 P2 * * *
5144 ** Synopsis: if( !csr[P1] ) goto P2
5146 ** If cursor P1 is not open or if P1 is set to a NULL row using the
5147 ** OP_NullRow opcode, then jump to instruction P2. Otherwise, fall through.
5149 case OP_IfNotOpen
: { /* jump */
5152 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5153 pCur
= p
->apCsr
[pOp
->p1
];
5154 VdbeBranchTaken(pCur
==0 || pCur
->nullRow
, 2);
5155 if( pCur
==0 || pCur
->nullRow
){
5156 goto jump_to_p2_and_check_for_interrupt
;
5161 /* Opcode: Found P1 P2 P3 P4 *
5162 ** Synopsis: key=r[P3@P4]
5164 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
5165 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5168 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
5169 ** is a prefix of any entry in P1 then a jump is made to P2 and
5170 ** P1 is left pointing at the matching entry.
5172 ** This operation leaves the cursor in a state where it can be
5173 ** advanced in the forward direction. The Next instruction will work,
5174 ** but not the Prev instruction.
5176 ** See also: NotFound, NoConflict, NotExists. SeekGe
5178 /* Opcode: NotFound P1 P2 P3 P4 *
5179 ** Synopsis: key=r[P3@P4]
5181 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
5182 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5185 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
5186 ** is not the prefix of any entry in P1 then a jump is made to P2. If P1
5187 ** does contain an entry whose prefix matches the P3/P4 record then control
5188 ** falls through to the next instruction and P1 is left pointing at the
5191 ** This operation leaves the cursor in a state where it cannot be
5192 ** advanced in either direction. In other words, the Next and Prev
5193 ** opcodes do not work after this operation.
5195 ** See also: Found, NotExists, NoConflict, IfNoHope
5197 /* Opcode: IfNoHope P1 P2 P3 P4 *
5198 ** Synopsis: key=r[P3@P4]
5200 ** Register P3 is the first of P4 registers that form an unpacked
5201 ** record. Cursor P1 is an index btree. P2 is a jump destination.
5202 ** In other words, the operands to this opcode are the same as the
5203 ** operands to OP_NotFound and OP_IdxGT.
5205 ** This opcode is an optimization attempt only. If this opcode always
5206 ** falls through, the correct answer is still obtained, but extra work
5209 ** A value of N in the seekHit flag of cursor P1 means that there exists
5210 ** a key P3:N that will match some record in the index. We want to know
5211 ** if it is possible for a record P3:P4 to match some record in the
5212 ** index. If it is not possible, we can skip some work. So if seekHit
5213 ** is less than P4, attempt to find out if a match is possible by running
5216 ** This opcode is used in IN clause processing for a multi-column key.
5217 ** If an IN clause is attached to an element of the key other than the
5218 ** left-most element, and if there are no matches on the most recent
5219 ** seek over the whole key, then it might be that one of the key element
5220 ** to the left is prohibiting a match, and hence there is "no hope" of
5221 ** any match regardless of how many IN clause elements are checked.
5222 ** In such a case, we abandon the IN clause search early, using this
5223 ** opcode. The opcode name comes from the fact that the
5224 ** jump is taken if there is "no hope" of achieving a match.
5226 ** See also: NotFound, SeekHit
5228 /* Opcode: NoConflict P1 P2 P3 P4 *
5229 ** Synopsis: key=r[P3@P4]
5231 ** If P4==0 then register P3 holds a blob constructed by MakeRecord. If
5232 ** P4>0 then register P3 is the first of P4 registers that form an unpacked
5235 ** Cursor P1 is on an index btree. If the record identified by P3 and P4
5236 ** contains any NULL value, jump immediately to P2. If all terms of the
5237 ** record are not-NULL then a check is done to determine if any row in the
5238 ** P1 index btree has a matching key prefix. If there are no matches, jump
5239 ** immediately to P2. If there is a match, fall through and leave the P1
5240 ** cursor pointing to the matching row.
5242 ** This opcode is similar to OP_NotFound with the exceptions that the
5243 ** branch is always taken if any part of the search key input is NULL.
5245 ** This operation leaves the cursor in a state where it cannot be
5246 ** advanced in either direction. In other words, the Next and Prev
5247 ** opcodes do not work after this operation.
5249 ** See also: NotFound, Found, NotExists
5251 case OP_IfNoHope
: { /* jump, in3, ncycle */
5253 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5254 pC
= p
->apCsr
[pOp
->p1
];
5257 if( db
->flags
&SQLITE_VdbeTrace
){
5258 printf("seekHit is %d\n", pC
->seekHit
);
5261 if( pC
->seekHit
>=pOp
->p4
.i
) break;
5262 /* Fall through into OP_NotFound */
5263 /* no break */ deliberate_fall_through
5265 case OP_NoConflict
: /* jump, in3, ncycle */
5266 case OP_NotFound
: /* jump, in3, ncycle */
5267 case OP_Found
: { /* jump, in3, ncycle */
5271 UnpackedRecord
*pIdxKey
;
5275 if( pOp
->opcode
!=OP_NoConflict
) sqlite3_found_count
++;
5278 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5279 assert( pOp
->p4type
==P4_INT32
);
5280 pC
= p
->apCsr
[pOp
->p1
];
5283 pC
->seekOp
= pOp
->opcode
;
5285 r
.aMem
= &aMem
[pOp
->p3
];
5286 assert( pC
->eCurType
==CURTYPE_BTREE
);
5287 assert( pC
->uc
.pCursor
!=0 );
5288 assert( pC
->isTable
==0 );
5289 r
.nField
= (u16
)pOp
->p4
.i
;
5291 /* Key values in an array of registers */
5292 r
.pKeyInfo
= pC
->pKeyInfo
;
5295 for(ii
=0; ii
<r
.nField
; ii
++){
5296 assert( memIsValid(&r
.aMem
[ii
]) );
5297 assert( (r
.aMem
[ii
].flags
& MEM_Zero
)==0 || r
.aMem
[ii
].n
==0 );
5298 if( ii
) REGISTER_TRACE(pOp
->p3
+ii
, &r
.aMem
[ii
]);
5301 rc
= sqlite3BtreeIndexMoveto(pC
->uc
.pCursor
, &r
, &pC
->seekResult
);
5303 /* Composite key generated by OP_MakeRecord */
5304 assert( r
.aMem
->flags
& MEM_Blob
);
5305 assert( pOp
->opcode
!=OP_NoConflict
);
5306 rc
= ExpandBlob(r
.aMem
);
5307 assert( rc
==SQLITE_OK
|| rc
==SQLITE_NOMEM
);
5308 if( rc
) goto no_mem
;
5309 pIdxKey
= sqlite3VdbeAllocUnpackedRecord(pC
->pKeyInfo
);
5310 if( pIdxKey
==0 ) goto no_mem
;
5311 sqlite3VdbeRecordUnpack(pC
->pKeyInfo
, r
.aMem
->n
, r
.aMem
->z
, pIdxKey
);
5312 pIdxKey
->default_rc
= 0;
5313 rc
= sqlite3BtreeIndexMoveto(pC
->uc
.pCursor
, pIdxKey
, &pC
->seekResult
);
5314 sqlite3DbFreeNN(db
, pIdxKey
);
5316 if( rc
!=SQLITE_OK
){
5317 goto abort_due_to_error
;
5319 alreadyExists
= (pC
->seekResult
==0);
5320 pC
->nullRow
= 1-alreadyExists
;
5321 pC
->deferredMoveto
= 0;
5322 pC
->cacheStatus
= CACHE_STALE
;
5323 if( pOp
->opcode
==OP_Found
){
5324 VdbeBranchTaken(alreadyExists
!=0,2);
5325 if( alreadyExists
) goto jump_to_p2
;
5327 if( !alreadyExists
){
5328 VdbeBranchTaken(1,2);
5331 if( pOp
->opcode
==OP_NoConflict
){
5332 /* For the OP_NoConflict opcode, take the jump if any of the
5333 ** input fields are NULL, since any key with a NULL will not
5335 for(ii
=0; ii
<r
.nField
; ii
++){
5336 if( r
.aMem
[ii
].flags
& MEM_Null
){
5337 VdbeBranchTaken(1,2);
5342 VdbeBranchTaken(0,2);
5343 if( pOp
->opcode
==OP_IfNoHope
){
5344 pC
->seekHit
= pOp
->p4
.i
;
5350 /* Opcode: SeekRowid P1 P2 P3 * *
5351 ** Synopsis: intkey=r[P3]
5353 ** P1 is the index of a cursor open on an SQL table btree (with integer
5354 ** keys). If register P3 does not contain an integer or if P1 does not
5355 ** contain a record with rowid P3 then jump immediately to P2.
5356 ** Or, if P2 is 0, raise an SQLITE_CORRUPT error. If P1 does contain
5357 ** a record with rowid P3 then
5358 ** leave the cursor pointing at that record and fall through to the next
5361 ** The OP_NotExists opcode performs the same operation, but with OP_NotExists
5362 ** the P3 register must be guaranteed to contain an integer value. With this
5363 ** opcode, register P3 might not contain an integer.
5365 ** The OP_NotFound opcode performs the same operation on index btrees
5366 ** (with arbitrary multi-value keys).
5368 ** This opcode leaves the cursor in a state where it cannot be advanced
5369 ** in either direction. In other words, the Next and Prev opcodes will
5370 ** not work following this opcode.
5372 ** See also: Found, NotFound, NoConflict, SeekRowid
5374 /* Opcode: NotExists P1 P2 P3 * *
5375 ** Synopsis: intkey=r[P3]
5377 ** P1 is the index of a cursor open on an SQL table btree (with integer
5378 ** keys). P3 is an integer rowid. If P1 does not contain a record with
5379 ** rowid P3 then jump immediately to P2. Or, if P2 is 0, raise an
5380 ** SQLITE_CORRUPT error. If P1 does contain a record with rowid P3 then
5381 ** leave the cursor pointing at that record and fall through to the next
5384 ** The OP_SeekRowid opcode performs the same operation but also allows the
5385 ** P3 register to contain a non-integer value, in which case the jump is
5386 ** always taken. This opcode requires that P3 always contain an integer.
5388 ** The OP_NotFound opcode performs the same operation on index btrees
5389 ** (with arbitrary multi-value keys).
5391 ** This opcode leaves the cursor in a state where it cannot be advanced
5392 ** in either direction. In other words, the Next and Prev opcodes will
5393 ** not work following this opcode.
5395 ** See also: Found, NotFound, NoConflict, SeekRowid
5397 case OP_SeekRowid
: { /* jump, in3, ncycle */
5403 pIn3
= &aMem
[pOp
->p3
];
5404 testcase( pIn3
->flags
& MEM_Int
);
5405 testcase( pIn3
->flags
& MEM_IntReal
);
5406 testcase( pIn3
->flags
& MEM_Real
);
5407 testcase( (pIn3
->flags
& (MEM_Str
|MEM_Int
))==MEM_Str
);
5408 if( (pIn3
->flags
& (MEM_Int
|MEM_IntReal
))==0 ){
5409 /* If pIn3->u.i does not contain an integer, compute iKey as the
5410 ** integer value of pIn3. Jump to P2 if pIn3 cannot be converted
5411 ** into an integer without loss of information. Take care to avoid
5412 ** changing the datatype of pIn3, however, as it is used by other
5413 ** parts of the prepared statement. */
5415 applyAffinity(&x
, SQLITE_AFF_NUMERIC
, encoding
);
5416 if( (x
.flags
& MEM_Int
)==0 ) goto jump_to_p2
;
5418 goto notExistsWithKey
;
5420 /* Fall through into OP_NotExists */
5421 /* no break */ deliberate_fall_through
5422 case OP_NotExists
: /* jump, in3, ncycle */
5423 pIn3
= &aMem
[pOp
->p3
];
5424 assert( (pIn3
->flags
& MEM_Int
)!=0 || pOp
->opcode
==OP_SeekRowid
);
5425 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5428 pC
= p
->apCsr
[pOp
->p1
];
5431 if( pOp
->opcode
==OP_SeekRowid
) pC
->seekOp
= OP_SeekRowid
;
5433 assert( pC
->isTable
);
5434 assert( pC
->eCurType
==CURTYPE_BTREE
);
5435 pCrsr
= pC
->uc
.pCursor
;
5438 rc
= sqlite3BtreeTableMoveto(pCrsr
, iKey
, 0, &res
);
5439 assert( rc
==SQLITE_OK
|| res
==0 );
5440 pC
->movetoTarget
= iKey
; /* Used by OP_Delete */
5442 pC
->cacheStatus
= CACHE_STALE
;
5443 pC
->deferredMoveto
= 0;
5444 VdbeBranchTaken(res
!=0,2);
5445 pC
->seekResult
= res
;
5447 assert( rc
==SQLITE_OK
);
5449 rc
= SQLITE_CORRUPT_BKPT
;
5454 if( rc
) goto abort_due_to_error
;
5458 /* Opcode: Sequence P1 P2 * * *
5459 ** Synopsis: r[P2]=cursor[P1].ctr++
5461 ** Find the next available sequence number for cursor P1.
5462 ** Write the sequence number into register P2.
5463 ** The sequence number on the cursor is incremented after this
5466 case OP_Sequence
: { /* out2 */
5467 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5468 assert( p
->apCsr
[pOp
->p1
]!=0 );
5469 assert( p
->apCsr
[pOp
->p1
]->eCurType
!=CURTYPE_VTAB
);
5470 pOut
= out2Prerelease(p
, pOp
);
5471 pOut
->u
.i
= p
->apCsr
[pOp
->p1
]->seqCount
++;
5476 /* Opcode: NewRowid P1 P2 P3 * *
5477 ** Synopsis: r[P2]=rowid
5479 ** Get a new integer record number (a.k.a "rowid") used as the key to a table.
5480 ** The record number is not previously used as a key in the database
5481 ** table that cursor P1 points to. The new record number is written
5482 ** written to register P2.
5484 ** If P3>0 then P3 is a register in the root frame of this VDBE that holds
5485 ** the largest previously generated record number. No new record numbers are
5486 ** allowed to be less than this value. When this value reaches its maximum,
5487 ** an SQLITE_FULL error is generated. The P3 register is updated with the '
5488 ** generated record number. This P3 mechanism is used to help implement the
5489 ** AUTOINCREMENT feature.
5491 case OP_NewRowid
: { /* out2 */
5492 i64 v
; /* The new rowid */
5493 VdbeCursor
*pC
; /* Cursor of table to get the new rowid */
5494 int res
; /* Result of an sqlite3BtreeLast() */
5495 int cnt
; /* Counter to limit the number of searches */
5496 #ifndef SQLITE_OMIT_AUTOINCREMENT
5497 Mem
*pMem
; /* Register holding largest rowid for AUTOINCREMENT */
5498 VdbeFrame
*pFrame
; /* Root frame of VDBE */
5503 pOut
= out2Prerelease(p
, pOp
);
5504 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5505 pC
= p
->apCsr
[pOp
->p1
];
5507 assert( pC
->isTable
);
5508 assert( pC
->eCurType
==CURTYPE_BTREE
);
5509 assert( pC
->uc
.pCursor
!=0 );
5511 /* The next rowid or record number (different terms for the same
5512 ** thing) is obtained in a two-step algorithm.
5514 ** First we attempt to find the largest existing rowid and add one
5515 ** to that. But if the largest existing rowid is already the maximum
5516 ** positive integer, we have to fall through to the second
5517 ** probabilistic algorithm
5519 ** The second algorithm is to select a rowid at random and see if
5520 ** it already exists in the table. If it does not exist, we have
5521 ** succeeded. If the random rowid does exist, we select a new one
5522 ** and try again, up to 100 times.
5524 assert( pC
->isTable
);
5526 #ifdef SQLITE_32BIT_ROWID
5527 # define MAX_ROWID 0x7fffffff
5529 /* Some compilers complain about constants of the form 0x7fffffffffffffff.
5530 ** Others complain about 0x7ffffffffffffffffLL. The following macro seems
5531 ** to provide the constant while making all compilers happy.
5533 # define MAX_ROWID (i64)( (((u64)0x7fffffff)<<32) | (u64)0xffffffff )
5536 if( !pC
->useRandomRowid
){
5537 rc
= sqlite3BtreeLast(pC
->uc
.pCursor
, &res
);
5538 if( rc
!=SQLITE_OK
){
5539 goto abort_due_to_error
;
5542 v
= 1; /* IMP: R-61914-48074 */
5544 assert( sqlite3BtreeCursorIsValid(pC
->uc
.pCursor
) );
5545 v
= sqlite3BtreeIntegerKey(pC
->uc
.pCursor
);
5547 pC
->useRandomRowid
= 1;
5549 v
++; /* IMP: R-29538-34987 */
5554 #ifndef SQLITE_OMIT_AUTOINCREMENT
5556 /* Assert that P3 is a valid memory cell. */
5557 assert( pOp
->p3
>0 );
5559 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
5560 /* Assert that P3 is a valid memory cell. */
5561 assert( pOp
->p3
<=pFrame
->nMem
);
5562 pMem
= &pFrame
->aMem
[pOp
->p3
];
5564 /* Assert that P3 is a valid memory cell. */
5565 assert( pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
5566 pMem
= &aMem
[pOp
->p3
];
5567 memAboutToChange(p
, pMem
);
5569 assert( memIsValid(pMem
) );
5571 REGISTER_TRACE(pOp
->p3
, pMem
);
5572 sqlite3VdbeMemIntegerify(pMem
);
5573 assert( (pMem
->flags
& MEM_Int
)!=0 ); /* mem(P3) holds an integer */
5574 if( pMem
->u
.i
==MAX_ROWID
|| pC
->useRandomRowid
){
5575 rc
= SQLITE_FULL
; /* IMP: R-17817-00630 */
5576 goto abort_due_to_error
;
5578 if( v
<pMem
->u
.i
+1 ){
5584 if( pC
->useRandomRowid
){
5585 /* IMPLEMENTATION-OF: R-07677-41881 If the largest ROWID is equal to the
5586 ** largest possible integer (9223372036854775807) then the database
5587 ** engine starts picking positive candidate ROWIDs at random until
5588 ** it finds one that is not previously used. */
5589 assert( pOp
->p3
==0 ); /* We cannot be in random rowid mode if this is
5590 ** an AUTOINCREMENT table. */
5593 sqlite3_randomness(sizeof(v
), &v
);
5594 v
&= (MAX_ROWID
>>1); v
++; /* Ensure that v is greater than zero */
5595 }while( ((rc
= sqlite3BtreeTableMoveto(pC
->uc
.pCursor
, (u64
)v
,
5596 0, &res
))==SQLITE_OK
)
5599 if( rc
) goto abort_due_to_error
;
5601 rc
= SQLITE_FULL
; /* IMP: R-38219-53002 */
5602 goto abort_due_to_error
;
5604 assert( v
>0 ); /* EV: R-40812-03570 */
5606 pC
->deferredMoveto
= 0;
5607 pC
->cacheStatus
= CACHE_STALE
;
5613 /* Opcode: Insert P1 P2 P3 P4 P5
5614 ** Synopsis: intkey=r[P3] data=r[P2]
5616 ** Write an entry into the table of cursor P1. A new entry is
5617 ** created if it doesn't already exist or the data for an existing
5618 ** entry is overwritten. The data is the value MEM_Blob stored in register
5619 ** number P2. The key is stored in register P3. The key must
5622 ** If the OPFLAG_NCHANGE flag of P5 is set, then the row change count is
5623 ** incremented (otherwise not). If the OPFLAG_LASTROWID flag of P5 is set,
5624 ** then rowid is stored for subsequent return by the
5625 ** sqlite3_last_insert_rowid() function (otherwise it is unmodified).
5627 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
5628 ** run faster by avoiding an unnecessary seek on cursor P1. However,
5629 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
5630 ** seeks on the cursor or if the most recent seek used a key equal to P3.
5632 ** If the OPFLAG_ISUPDATE flag is set, then this opcode is part of an
5633 ** UPDATE operation. Otherwise (if the flag is clear) then this opcode
5634 ** is part of an INSERT operation. The difference is only important to
5637 ** Parameter P4 may point to a Table structure, or may be NULL. If it is
5638 ** not NULL, then the update-hook (sqlite3.xUpdateCallback) is invoked
5639 ** following a successful insert.
5641 ** (WARNING/TODO: If P1 is a pseudo-cursor and P2 is dynamically
5642 ** allocated, then ownership of P2 is transferred to the pseudo-cursor
5643 ** and register P2 becomes ephemeral. If the cursor is changed, the
5644 ** value of register P2 will then change. Make sure this does not
5645 ** cause any problems.)
5647 ** This instruction only works on tables. The equivalent instruction
5648 ** for indices is OP_IdxInsert.
5651 Mem
*pData
; /* MEM cell holding data for the record to be inserted */
5652 Mem
*pKey
; /* MEM cell holding key for the record */
5653 VdbeCursor
*pC
; /* Cursor to table into which insert is written */
5654 int seekResult
; /* Result of prior seek or 0 if no USESEEKRESULT flag */
5655 const char *zDb
; /* database name - used by the update hook */
5656 Table
*pTab
; /* Table structure - used by update and pre-update hooks */
5657 BtreePayload x
; /* Payload to be inserted */
5659 pData
= &aMem
[pOp
->p2
];
5660 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5661 assert( memIsValid(pData
) );
5662 pC
= p
->apCsr
[pOp
->p1
];
5664 assert( pC
->eCurType
==CURTYPE_BTREE
);
5665 assert( pC
->deferredMoveto
==0 );
5666 assert( pC
->uc
.pCursor
!=0 );
5667 assert( (pOp
->p5
& OPFLAG_ISNOOP
) || pC
->isTable
);
5668 assert( pOp
->p4type
==P4_TABLE
|| pOp
->p4type
>=P4_STATIC
);
5669 REGISTER_TRACE(pOp
->p2
, pData
);
5670 sqlite3VdbeIncrWriteCounter(p
, pC
);
5672 pKey
= &aMem
[pOp
->p3
];
5673 assert( pKey
->flags
& MEM_Int
);
5674 assert( memIsValid(pKey
) );
5675 REGISTER_TRACE(pOp
->p3
, pKey
);
5678 if( pOp
->p4type
==P4_TABLE
&& HAS_UPDATE_HOOK(db
) ){
5679 assert( pC
->iDb
>=0 );
5680 zDb
= db
->aDb
[pC
->iDb
].zDbSName
;
5681 pTab
= pOp
->p4
.pTab
;
5682 assert( (pOp
->p5
& OPFLAG_ISNOOP
) || HasRowid(pTab
) );
5688 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5689 /* Invoke the pre-update hook, if any */
5691 if( db
->xPreUpdateCallback
&& !(pOp
->p5
& OPFLAG_ISUPDATE
) ){
5692 sqlite3VdbePreUpdateHook(p
,pC
,SQLITE_INSERT
,zDb
,pTab
,x
.nKey
,pOp
->p2
,-1);
5694 if( db
->xUpdateCallback
==0 || pTab
->aCol
==0 ){
5695 /* Prevent post-update hook from running in cases when it should not */
5699 if( pOp
->p5
& OPFLAG_ISNOOP
) break;
5702 assert( (pOp
->p5
& OPFLAG_LASTROWID
)==0 || (pOp
->p5
& OPFLAG_NCHANGE
)!=0 );
5703 if( pOp
->p5
& OPFLAG_NCHANGE
){
5705 if( pOp
->p5
& OPFLAG_LASTROWID
) db
->lastRowid
= x
.nKey
;
5707 assert( (pData
->flags
& (MEM_Blob
|MEM_Str
))!=0 || pData
->n
==0 );
5710 seekResult
= ((pOp
->p5
& OPFLAG_USESEEKRESULT
) ? pC
->seekResult
: 0);
5711 if( pData
->flags
& MEM_Zero
){
5712 x
.nZero
= pData
->u
.nZero
;
5717 assert( BTREE_PREFORMAT
==OPFLAG_PREFORMAT
);
5718 rc
= sqlite3BtreeInsert(pC
->uc
.pCursor
, &x
,
5719 (pOp
->p5
& (OPFLAG_APPEND
|OPFLAG_SAVEPOSITION
|OPFLAG_PREFORMAT
)),
5722 pC
->deferredMoveto
= 0;
5723 pC
->cacheStatus
= CACHE_STALE
;
5726 /* Invoke the update-hook if required. */
5727 if( rc
) goto abort_due_to_error
;
5729 assert( db
->xUpdateCallback
!=0 );
5730 assert( pTab
->aCol
!=0 );
5731 db
->xUpdateCallback(db
->pUpdateArg
,
5732 (pOp
->p5
& OPFLAG_ISUPDATE
) ? SQLITE_UPDATE
: SQLITE_INSERT
,
5733 zDb
, pTab
->zName
, x
.nKey
);
5738 /* Opcode: RowCell P1 P2 P3 * *
5740 ** P1 and P2 are both open cursors. Both must be opened on the same type
5741 ** of table - intkey or index. This opcode is used as part of copying
5742 ** the current row from P2 into P1. If the cursors are opened on intkey
5743 ** tables, register P3 contains the rowid to use with the new record in
5744 ** P1. If they are opened on index tables, P3 is not used.
5746 ** This opcode must be followed by either an Insert or InsertIdx opcode
5747 ** with the OPFLAG_PREFORMAT flag set to complete the insert operation.
5750 VdbeCursor
*pDest
; /* Cursor to write to */
5751 VdbeCursor
*pSrc
; /* Cursor to read from */
5752 i64 iKey
; /* Rowid value to insert with */
5753 assert( pOp
[1].opcode
==OP_Insert
|| pOp
[1].opcode
==OP_IdxInsert
);
5754 assert( pOp
[1].opcode
==OP_Insert
|| pOp
->p3
==0 );
5755 assert( pOp
[1].opcode
==OP_IdxInsert
|| pOp
->p3
>0 );
5756 assert( pOp
[1].p5
& OPFLAG_PREFORMAT
);
5757 pDest
= p
->apCsr
[pOp
->p1
];
5758 pSrc
= p
->apCsr
[pOp
->p2
];
5759 iKey
= pOp
->p3
? aMem
[pOp
->p3
].u
.i
: 0;
5760 rc
= sqlite3BtreeTransferRow(pDest
->uc
.pCursor
, pSrc
->uc
.pCursor
, iKey
);
5761 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
5765 /* Opcode: Delete P1 P2 P3 P4 P5
5767 ** Delete the record at which the P1 cursor is currently pointing.
5769 ** If the OPFLAG_SAVEPOSITION bit of the P5 parameter is set, then
5770 ** the cursor will be left pointing at either the next or the previous
5771 ** record in the table. If it is left pointing at the next record, then
5772 ** the next Next instruction will be a no-op. As a result, in this case
5773 ** it is ok to delete a record from within a Next loop. If
5774 ** OPFLAG_SAVEPOSITION bit of P5 is clear, then the cursor will be
5775 ** left in an undefined state.
5777 ** If the OPFLAG_AUXDELETE bit is set on P5, that indicates that this
5778 ** delete is one of several associated with deleting a table row and
5779 ** all its associated index entries. Exactly one of those deletes is
5780 ** the "primary" delete. The others are all on OPFLAG_FORDELETE
5781 ** cursors or else are marked with the AUXDELETE flag.
5783 ** If the OPFLAG_NCHANGE (0x01) flag of P2 (NB: P2 not P5) is set, then
5784 ** the row change count is incremented (otherwise not).
5786 ** If the OPFLAG_ISNOOP (0x40) flag of P2 (not P5!) is set, then the
5787 ** pre-update-hook for deletes is run, but the btree is otherwise unchanged.
5788 ** This happens when the OP_Delete is to be shortly followed by an OP_Insert
5789 ** with the same key, causing the btree entry to be overwritten.
5791 ** P1 must not be pseudo-table. It has to be a real table with
5794 ** If P4 is not NULL then it points to a Table object. In this case either
5795 ** the update or pre-update hook, or both, may be invoked. The P1 cursor must
5796 ** have been positioned using OP_NotFound prior to invoking this opcode in
5797 ** this case. Specifically, if one is configured, the pre-update hook is
5798 ** invoked if P4 is not NULL. The update-hook is invoked if one is configured,
5799 ** P4 is not NULL, and the OPFLAG_NCHANGE flag is set in P2.
5801 ** If the OPFLAG_ISUPDATE flag is set in P2, then P3 contains the address
5802 ** of the memory cell that contains the value that the rowid of the row will
5803 ** be set to by the update.
5812 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5813 pC
= p
->apCsr
[pOp
->p1
];
5815 assert( pC
->eCurType
==CURTYPE_BTREE
);
5816 assert( pC
->uc
.pCursor
!=0 );
5817 assert( pC
->deferredMoveto
==0 );
5818 sqlite3VdbeIncrWriteCounter(p
, pC
);
5821 if( pOp
->p4type
==P4_TABLE
5822 && HasRowid(pOp
->p4
.pTab
)
5824 && sqlite3BtreeCursorIsValidNN(pC
->uc
.pCursor
)
5826 /* If p5 is zero, the seek operation that positioned the cursor prior to
5827 ** OP_Delete will have also set the pC->movetoTarget field to the rowid of
5828 ** the row that is being deleted */
5829 i64 iKey
= sqlite3BtreeIntegerKey(pC
->uc
.pCursor
);
5830 assert( CORRUPT_DB
|| pC
->movetoTarget
==iKey
);
5834 /* If the update-hook or pre-update-hook will be invoked, set zDb to
5835 ** the name of the db to pass as to it. Also set local pTab to a copy
5836 ** of p4.pTab. Finally, if p5 is true, indicating that this cursor was
5837 ** last moved with OP_Next or OP_Prev, not Seek or NotFound, set
5838 ** VdbeCursor.movetoTarget to the current rowid. */
5839 if( pOp
->p4type
==P4_TABLE
&& HAS_UPDATE_HOOK(db
) ){
5840 assert( pC
->iDb
>=0 );
5841 assert( pOp
->p4
.pTab
!=0 );
5842 zDb
= db
->aDb
[pC
->iDb
].zDbSName
;
5843 pTab
= pOp
->p4
.pTab
;
5844 if( (pOp
->p5
& OPFLAG_SAVEPOSITION
)!=0 && pC
->isTable
){
5845 pC
->movetoTarget
= sqlite3BtreeIntegerKey(pC
->uc
.pCursor
);
5852 #ifdef SQLITE_ENABLE_PREUPDATE_HOOK
5853 /* Invoke the pre-update-hook if required. */
5854 assert( db
->xPreUpdateCallback
==0 || pTab
==pOp
->p4
.pTab
);
5855 if( db
->xPreUpdateCallback
&& pTab
){
5856 assert( !(opflags
& OPFLAG_ISUPDATE
)
5857 || HasRowid(pTab
)==0
5858 || (aMem
[pOp
->p3
].flags
& MEM_Int
)
5860 sqlite3VdbePreUpdateHook(p
, pC
,
5861 (opflags
& OPFLAG_ISUPDATE
) ? SQLITE_UPDATE
: SQLITE_DELETE
,
5862 zDb
, pTab
, pC
->movetoTarget
,
5866 if( opflags
& OPFLAG_ISNOOP
) break;
5869 /* Only flags that can be set are SAVEPOISTION and AUXDELETE */
5870 assert( (pOp
->p5
& ~(OPFLAG_SAVEPOSITION
|OPFLAG_AUXDELETE
))==0 );
5871 assert( OPFLAG_SAVEPOSITION
==BTREE_SAVEPOSITION
);
5872 assert( OPFLAG_AUXDELETE
==BTREE_AUXDELETE
);
5876 if( pC
->isEphemeral
==0
5877 && (pOp
->p5
& OPFLAG_AUXDELETE
)==0
5878 && (pC
->wrFlag
& OPFLAG_FORDELETE
)==0
5882 if( pOp
->p2
& OPFLAG_NCHANGE
){
5888 rc
= sqlite3BtreeDelete(pC
->uc
.pCursor
, pOp
->p5
);
5889 pC
->cacheStatus
= CACHE_STALE
;
5892 if( rc
) goto abort_due_to_error
;
5894 /* Invoke the update-hook if required. */
5895 if( opflags
& OPFLAG_NCHANGE
){
5897 if( db
->xUpdateCallback
&& ALWAYS(pTab
!=0) && HasRowid(pTab
) ){
5898 db
->xUpdateCallback(db
->pUpdateArg
, SQLITE_DELETE
, zDb
, pTab
->zName
,
5900 assert( pC
->iDb
>=0 );
5906 /* Opcode: ResetCount * * * * *
5908 ** The value of the change counter is copied to the database handle
5909 ** change counter (returned by subsequent calls to sqlite3_changes()).
5910 ** Then the VMs internal change counter resets to 0.
5911 ** This is used by trigger programs.
5913 case OP_ResetCount
: {
5914 sqlite3VdbeSetChanges(db
, p
->nChange
);
5919 /* Opcode: SorterCompare P1 P2 P3 P4
5920 ** Synopsis: if key(P1)!=trim(r[P3],P4) goto P2
5922 ** P1 is a sorter cursor. This instruction compares a prefix of the
5923 ** record blob in register P3 against a prefix of the entry that
5924 ** the sorter cursor currently points to. Only the first P4 fields
5925 ** of r[P3] and the sorter record are compared.
5927 ** If either P3 or the sorter contains a NULL in one of their significant
5928 ** fields (not counting the P4 fields at the end which are ignored) then
5929 ** the comparison is assumed to be equal.
5931 ** Fall through to next instruction if the two records compare equal to
5932 ** each other. Jump to P2 if they are different.
5934 case OP_SorterCompare
: {
5939 pC
= p
->apCsr
[pOp
->p1
];
5940 assert( isSorter(pC
) );
5941 assert( pOp
->p4type
==P4_INT32
);
5942 pIn3
= &aMem
[pOp
->p3
];
5943 nKeyCol
= pOp
->p4
.i
;
5945 rc
= sqlite3VdbeSorterCompare(pC
, pIn3
, nKeyCol
, &res
);
5946 VdbeBranchTaken(res
!=0,2);
5947 if( rc
) goto abort_due_to_error
;
5948 if( res
) goto jump_to_p2
;
5952 /* Opcode: SorterData P1 P2 P3 * *
5953 ** Synopsis: r[P2]=data
5955 ** Write into register P2 the current sorter data for sorter cursor P1.
5956 ** Then clear the column header cache on cursor P3.
5958 ** This opcode is normally used to move a record out of the sorter and into
5959 ** a register that is the source for a pseudo-table cursor created using
5960 ** OpenPseudo. That pseudo-table cursor is the one that is identified by
5961 ** parameter P3. Clearing the P3 column cache as part of this opcode saves
5962 ** us from having to issue a separate NullRow instruction to clear that cache.
5964 case OP_SorterData
: { /* ncycle */
5967 pOut
= &aMem
[pOp
->p2
];
5968 pC
= p
->apCsr
[pOp
->p1
];
5969 assert( isSorter(pC
) );
5970 rc
= sqlite3VdbeSorterRowkey(pC
, pOut
);
5971 assert( rc
!=SQLITE_OK
|| (pOut
->flags
& MEM_Blob
) );
5972 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
5973 if( rc
) goto abort_due_to_error
;
5974 p
->apCsr
[pOp
->p3
]->cacheStatus
= CACHE_STALE
;
5978 /* Opcode: RowData P1 P2 P3 * *
5979 ** Synopsis: r[P2]=data
5981 ** Write into register P2 the complete row content for the row at
5982 ** which cursor P1 is currently pointing.
5983 ** There is no interpretation of the data.
5984 ** It is just copied onto the P2 register exactly as
5985 ** it is found in the database file.
5987 ** If cursor P1 is an index, then the content is the key of the row.
5988 ** If cursor P2 is a table, then the content extracted is the data.
5990 ** If the P1 cursor must be pointing to a valid row (not a NULL row)
5991 ** of a real table, not a pseudo-table.
5993 ** If P3!=0 then this opcode is allowed to make an ephemeral pointer
5994 ** into the database page. That means that the content of the output
5995 ** register will be invalidated as soon as the cursor moves - including
5996 ** moves caused by other cursors that "save" the current cursors
5997 ** position in order that they can write to the same table. If P3==0
5998 ** then a copy of the data is made into memory. P3!=0 is faster, but
6001 ** If P3!=0 then the content of the P2 register is unsuitable for use
6002 ** in OP_Result and any OP_Result will invalidate the P2 register content.
6003 ** The P2 register content is invalidated by opcodes like OP_Function or
6004 ** by any use of another cursor pointing to the same table.
6011 pOut
= out2Prerelease(p
, pOp
);
6013 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6014 pC
= p
->apCsr
[pOp
->p1
];
6016 assert( pC
->eCurType
==CURTYPE_BTREE
);
6017 assert( isSorter(pC
)==0 );
6018 assert( pC
->nullRow
==0 );
6019 assert( pC
->uc
.pCursor
!=0 );
6020 pCrsr
= pC
->uc
.pCursor
;
6022 /* The OP_RowData opcodes always follow OP_NotExists or
6023 ** OP_SeekRowid or OP_Rewind/Op_Next with no intervening instructions
6024 ** that might invalidate the cursor.
6025 ** If this where not the case, on of the following assert()s
6026 ** would fail. Should this ever change (because of changes in the code
6027 ** generator) then the fix would be to insert a call to
6028 ** sqlite3VdbeCursorMoveto().
6030 assert( pC
->deferredMoveto
==0 );
6031 assert( sqlite3BtreeCursorIsValid(pCrsr
) );
6033 n
= sqlite3BtreePayloadSize(pCrsr
);
6034 if( n
>(u32
)db
->aLimit
[SQLITE_LIMIT_LENGTH
] ){
6038 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pCrsr
, n
, pOut
);
6039 if( rc
) goto abort_due_to_error
;
6040 if( !pOp
->p3
) Deephemeralize(pOut
);
6041 UPDATE_MAX_BLOBSIZE(pOut
);
6042 REGISTER_TRACE(pOp
->p2
, pOut
);
6046 /* Opcode: Rowid P1 P2 * * *
6047 ** Synopsis: r[P2]=PX rowid of P1
6049 ** Store in register P2 an integer which is the key of the table entry that
6050 ** P1 is currently point to.
6052 ** P1 can be either an ordinary table or a virtual table. There used to
6053 ** be a separate OP_VRowid opcode for use with virtual tables, but this
6054 ** one opcode now works for both table types.
6056 case OP_Rowid
: { /* out2, ncycle */
6059 sqlite3_vtab
*pVtab
;
6060 const sqlite3_module
*pModule
;
6062 pOut
= out2Prerelease(p
, pOp
);
6063 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6064 pC
= p
->apCsr
[pOp
->p1
];
6066 assert( pC
->eCurType
!=CURTYPE_PSEUDO
|| pC
->nullRow
);
6068 pOut
->flags
= MEM_Null
;
6070 }else if( pC
->deferredMoveto
){
6071 v
= pC
->movetoTarget
;
6072 #ifndef SQLITE_OMIT_VIRTUALTABLE
6073 }else if( pC
->eCurType
==CURTYPE_VTAB
){
6074 assert( pC
->uc
.pVCur
!=0 );
6075 pVtab
= pC
->uc
.pVCur
->pVtab
;
6076 pModule
= pVtab
->pModule
;
6077 assert( pModule
->xRowid
);
6078 rc
= pModule
->xRowid(pC
->uc
.pVCur
, &v
);
6079 sqlite3VtabImportErrmsg(p
, pVtab
);
6080 if( rc
) goto abort_due_to_error
;
6081 #endif /* SQLITE_OMIT_VIRTUALTABLE */
6083 assert( pC
->eCurType
==CURTYPE_BTREE
);
6084 assert( pC
->uc
.pCursor
!=0 );
6085 rc
= sqlite3VdbeCursorRestore(pC
);
6086 if( rc
) goto abort_due_to_error
;
6088 pOut
->flags
= MEM_Null
;
6091 v
= sqlite3BtreeIntegerKey(pC
->uc
.pCursor
);
6097 /* Opcode: NullRow P1 * * * *
6099 ** Move the cursor P1 to a null row. Any OP_Column operations
6100 ** that occur while the cursor is on the null row will always
6103 ** If cursor P1 is not previously opened, open it now to a special
6104 ** pseudo-cursor that always returns NULL for every column.
6109 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6110 pC
= p
->apCsr
[pOp
->p1
];
6112 /* If the cursor is not already open, create a special kind of
6113 ** pseudo-cursor that always gives null rows. */
6114 pC
= allocateCursor(p
, pOp
->p1
, 1, CURTYPE_PSEUDO
);
6115 if( pC
==0 ) goto no_mem
;
6119 pC
->uc
.pCursor
= sqlite3BtreeFakeValidCursor();
6122 pC
->cacheStatus
= CACHE_STALE
;
6123 if( pC
->eCurType
==CURTYPE_BTREE
){
6124 assert( pC
->uc
.pCursor
!=0 );
6125 sqlite3BtreeClearCursor(pC
->uc
.pCursor
);
6128 if( pC
->seekOp
==0 ) pC
->seekOp
= OP_NullRow
;
6133 /* Opcode: SeekEnd P1 * * * *
6135 ** Position cursor P1 at the end of the btree for the purpose of
6136 ** appending a new entry onto the btree.
6138 ** It is assumed that the cursor is used only for appending and so
6139 ** if the cursor is valid, then the cursor must already be pointing
6140 ** at the end of the btree and so no changes are made to
6143 /* Opcode: Last P1 P2 * * *
6145 ** The next use of the Rowid or Column or Prev instruction for P1
6146 ** will refer to the last entry in the database table or index.
6147 ** If the table or index is empty and P2>0, then jump immediately to P2.
6148 ** If P2 is 0 or if the table or index is not empty, fall through
6149 ** to the following instruction.
6151 ** This opcode leaves the cursor configured to move in reverse order,
6152 ** from the end toward the beginning. In other words, the cursor is
6153 ** configured to use Prev, not Next.
6155 case OP_SeekEnd
: /* ncycle */
6156 case OP_Last
: { /* jump, ncycle */
6161 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6162 pC
= p
->apCsr
[pOp
->p1
];
6164 assert( pC
->eCurType
==CURTYPE_BTREE
);
6165 pCrsr
= pC
->uc
.pCursor
;
6169 pC
->seekOp
= pOp
->opcode
;
6171 if( pOp
->opcode
==OP_SeekEnd
){
6172 assert( pOp
->p2
==0 );
6173 pC
->seekResult
= -1;
6174 if( sqlite3BtreeCursorIsValidNN(pCrsr
) ){
6178 rc
= sqlite3BtreeLast(pCrsr
, &res
);
6179 pC
->nullRow
= (u8
)res
;
6180 pC
->deferredMoveto
= 0;
6181 pC
->cacheStatus
= CACHE_STALE
;
6182 if( rc
) goto abort_due_to_error
;
6184 VdbeBranchTaken(res
!=0,2);
6185 if( res
) goto jump_to_p2
;
6190 /* Opcode: IfSmaller P1 P2 P3 * *
6192 ** Estimate the number of rows in the table P1. Jump to P2 if that
6193 ** estimate is less than approximately 2**(0.1*P3).
6195 case OP_IfSmaller
: { /* jump */
6201 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6202 pC
= p
->apCsr
[pOp
->p1
];
6204 pCrsr
= pC
->uc
.pCursor
;
6206 rc
= sqlite3BtreeFirst(pCrsr
, &res
);
6207 if( rc
) goto abort_due_to_error
;
6209 sz
= sqlite3BtreeRowCountEst(pCrsr
);
6210 if( ALWAYS(sz
>=0) && sqlite3LogEst((u64
)sz
)<pOp
->p3
) res
= 1;
6212 VdbeBranchTaken(res
!=0,2);
6213 if( res
) goto jump_to_p2
;
6218 /* Opcode: SorterSort P1 P2 * * *
6220 ** After all records have been inserted into the Sorter object
6221 ** identified by P1, invoke this opcode to actually do the sorting.
6222 ** Jump to P2 if there are no records to be sorted.
6224 ** This opcode is an alias for OP_Sort and OP_Rewind that is used
6225 ** for Sorter objects.
6227 /* Opcode: Sort P1 P2 * * *
6229 ** This opcode does exactly the same thing as OP_Rewind except that
6230 ** it increments an undocumented global variable used for testing.
6232 ** Sorting is accomplished by writing records into a sorting index,
6233 ** then rewinding that index and playing it back from beginning to
6234 ** end. We use the OP_Sort opcode instead of OP_Rewind to do the
6235 ** rewinding so that the global variable will be incremented and
6236 ** regression tests can determine whether or not the optimizer is
6237 ** correctly optimizing out sorts.
6239 case OP_SorterSort
: /* jump ncycle */
6240 case OP_Sort
: { /* jump ncycle */
6242 sqlite3_sort_count
++;
6243 sqlite3_search_count
--;
6245 p
->aCounter
[SQLITE_STMTSTATUS_SORT
]++;
6246 /* Fall through into OP_Rewind */
6247 /* no break */ deliberate_fall_through
6249 /* Opcode: Rewind P1 P2 * * *
6251 ** The next use of the Rowid or Column or Next instruction for P1
6252 ** will refer to the first entry in the database table or index.
6253 ** If the table or index is empty, jump immediately to P2.
6254 ** If the table or index is not empty, fall through to the following
6257 ** If P2 is zero, that is an assertion that the P1 table is never
6258 ** empty and hence the jump will never be taken.
6260 ** This opcode leaves the cursor configured to move in forward order,
6261 ** from the beginning toward the end. In other words, the cursor is
6262 ** configured to use Next, not Prev.
6264 case OP_Rewind
: { /* jump, ncycle */
6269 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6270 assert( pOp
->p5
==0 );
6271 assert( pOp
->p2
>=0 && pOp
->p2
<p
->nOp
);
6273 pC
= p
->apCsr
[pOp
->p1
];
6275 assert( isSorter(pC
)==(pOp
->opcode
==OP_SorterSort
) );
6278 pC
->seekOp
= OP_Rewind
;
6281 rc
= sqlite3VdbeSorterRewind(pC
, &res
);
6283 assert( pC
->eCurType
==CURTYPE_BTREE
);
6284 pCrsr
= pC
->uc
.pCursor
;
6286 rc
= sqlite3BtreeFirst(pCrsr
, &res
);
6287 pC
->deferredMoveto
= 0;
6288 pC
->cacheStatus
= CACHE_STALE
;
6290 if( rc
) goto abort_due_to_error
;
6291 pC
->nullRow
= (u8
)res
;
6293 VdbeBranchTaken(res
!=0,2);
6294 if( res
) goto jump_to_p2
;
6299 /* Opcode: Next P1 P2 P3 * P5
6301 ** Advance cursor P1 so that it points to the next key/data pair in its
6302 ** table or index. If there are no more key/value pairs then fall through
6303 ** to the following instruction. But if the cursor advance was successful,
6304 ** jump immediately to P2.
6306 ** The Next opcode is only valid following an SeekGT, SeekGE, or
6307 ** OP_Rewind opcode used to position the cursor. Next is not allowed
6308 ** to follow SeekLT, SeekLE, or OP_Last.
6310 ** The P1 cursor must be for a real table, not a pseudo-table. P1 must have
6311 ** been opened prior to this opcode or the program will segfault.
6313 ** The P3 value is a hint to the btree implementation. If P3==1, that
6314 ** means P1 is an SQL index and that this instruction could have been
6315 ** omitted if that index had been unique. P3 is usually 0. P3 is
6316 ** always either 0 or 1.
6318 ** If P5 is positive and the jump is taken, then event counter
6319 ** number P5-1 in the prepared statement is incremented.
6323 /* Opcode: Prev P1 P2 P3 * P5
6325 ** Back up cursor P1 so that it points to the previous key/data pair in its
6326 ** table or index. If there is no previous key/value pairs then fall through
6327 ** to the following instruction. But if the cursor backup was successful,
6328 ** jump immediately to P2.
6331 ** The Prev opcode is only valid following an SeekLT, SeekLE, or
6332 ** OP_Last opcode used to position the cursor. Prev is not allowed
6333 ** to follow SeekGT, SeekGE, or OP_Rewind.
6335 ** The P1 cursor must be for a real table, not a pseudo-table. If P1 is
6336 ** not open then the behavior is undefined.
6338 ** The P3 value is a hint to the btree implementation. If P3==1, that
6339 ** means P1 is an SQL index and that this instruction could have been
6340 ** omitted if that index had been unique. P3 is usually 0. P3 is
6341 ** always either 0 or 1.
6343 ** If P5 is positive and the jump is taken, then event counter
6344 ** number P5-1 in the prepared statement is incremented.
6346 /* Opcode: SorterNext P1 P2 * * P5
6348 ** This opcode works just like OP_Next except that P1 must be a
6349 ** sorter object for which the OP_SorterSort opcode has been
6350 ** invoked. This opcode advances the cursor to the next sorted
6351 ** record, or jumps to P2 if there are no more sorted records.
6353 case OP_SorterNext
: { /* jump */
6356 pC
= p
->apCsr
[pOp
->p1
];
6357 assert( isSorter(pC
) );
6358 rc
= sqlite3VdbeSorterNext(db
, pC
);
6361 case OP_Prev
: /* jump, ncycle */
6362 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6364 || pOp
->p5
==SQLITE_STMTSTATUS_FULLSCAN_STEP
6365 || pOp
->p5
==SQLITE_STMTSTATUS_AUTOINDEX
);
6366 pC
= p
->apCsr
[pOp
->p1
];
6368 assert( pC
->deferredMoveto
==0 );
6369 assert( pC
->eCurType
==CURTYPE_BTREE
);
6370 assert( pC
->seekOp
==OP_SeekLT
|| pC
->seekOp
==OP_SeekLE
6371 || pC
->seekOp
==OP_Last
|| pC
->seekOp
==OP_IfNoHope
6372 || pC
->seekOp
==OP_NullRow
);
6373 rc
= sqlite3BtreePrevious(pC
->uc
.pCursor
, pOp
->p3
);
6376 case OP_Next
: /* jump, ncycle */
6377 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6379 || pOp
->p5
==SQLITE_STMTSTATUS_FULLSCAN_STEP
6380 || pOp
->p5
==SQLITE_STMTSTATUS_AUTOINDEX
);
6381 pC
= p
->apCsr
[pOp
->p1
];
6383 assert( pC
->deferredMoveto
==0 );
6384 assert( pC
->eCurType
==CURTYPE_BTREE
);
6385 assert( pC
->seekOp
==OP_SeekGT
|| pC
->seekOp
==OP_SeekGE
6386 || pC
->seekOp
==OP_Rewind
|| pC
->seekOp
==OP_Found
6387 || pC
->seekOp
==OP_NullRow
|| pC
->seekOp
==OP_SeekRowid
6388 || pC
->seekOp
==OP_IfNoHope
);
6389 rc
= sqlite3BtreeNext(pC
->uc
.pCursor
, pOp
->p3
);
6392 pC
->cacheStatus
= CACHE_STALE
;
6393 VdbeBranchTaken(rc
==SQLITE_OK
,2);
6394 if( rc
==SQLITE_OK
){
6396 p
->aCounter
[pOp
->p5
]++;
6398 sqlite3_search_count
++;
6400 goto jump_to_p2_and_check_for_interrupt
;
6402 if( rc
!=SQLITE_DONE
) goto abort_due_to_error
;
6405 goto check_for_interrupt
;
6408 /* Opcode: IdxInsert P1 P2 P3 P4 P5
6409 ** Synopsis: key=r[P2]
6411 ** Register P2 holds an SQL index key made using the
6412 ** MakeRecord instructions. This opcode writes that key
6413 ** into the index P1. Data for the entry is nil.
6415 ** If P4 is not zero, then it is the number of values in the unpacked
6416 ** key of reg(P2). In that case, P3 is the index of the first register
6417 ** for the unpacked key. The availability of the unpacked key can sometimes
6418 ** be an optimization.
6420 ** If P5 has the OPFLAG_APPEND bit set, that is a hint to the b-tree layer
6421 ** that this insert is likely to be an append.
6423 ** If P5 has the OPFLAG_NCHANGE bit set, then the change counter is
6424 ** incremented by this instruction. If the OPFLAG_NCHANGE bit is clear,
6425 ** then the change counter is unchanged.
6427 ** If the OPFLAG_USESEEKRESULT flag of P5 is set, the implementation might
6428 ** run faster by avoiding an unnecessary seek on cursor P1. However,
6429 ** the OPFLAG_USESEEKRESULT flag must only be set if there have been no prior
6430 ** seeks on the cursor or if the most recent seek used a key equivalent
6433 ** This instruction only works for indices. The equivalent instruction
6434 ** for tables is OP_Insert.
6436 case OP_IdxInsert
: { /* in2 */
6440 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6441 pC
= p
->apCsr
[pOp
->p1
];
6442 sqlite3VdbeIncrWriteCounter(p
, pC
);
6444 assert( !isSorter(pC
) );
6445 pIn2
= &aMem
[pOp
->p2
];
6446 assert( (pIn2
->flags
& MEM_Blob
) || (pOp
->p5
& OPFLAG_PREFORMAT
) );
6447 if( pOp
->p5
& OPFLAG_NCHANGE
) p
->nChange
++;
6448 assert( pC
->eCurType
==CURTYPE_BTREE
);
6449 assert( pC
->isTable
==0 );
6450 rc
= ExpandBlob(pIn2
);
6451 if( rc
) goto abort_due_to_error
;
6454 x
.aMem
= aMem
+ pOp
->p3
;
6455 x
.nMem
= (u16
)pOp
->p4
.i
;
6456 rc
= sqlite3BtreeInsert(pC
->uc
.pCursor
, &x
,
6457 (pOp
->p5
& (OPFLAG_APPEND
|OPFLAG_SAVEPOSITION
|OPFLAG_PREFORMAT
)),
6458 ((pOp
->p5
& OPFLAG_USESEEKRESULT
) ? pC
->seekResult
: 0)
6460 assert( pC
->deferredMoveto
==0 );
6461 pC
->cacheStatus
= CACHE_STALE
;
6462 if( rc
) goto abort_due_to_error
;
6466 /* Opcode: SorterInsert P1 P2 * * *
6467 ** Synopsis: key=r[P2]
6469 ** Register P2 holds an SQL index key made using the
6470 ** MakeRecord instructions. This opcode writes that key
6471 ** into the sorter P1. Data for the entry is nil.
6473 case OP_SorterInsert
: { /* in2 */
6476 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6477 pC
= p
->apCsr
[pOp
->p1
];
6478 sqlite3VdbeIncrWriteCounter(p
, pC
);
6480 assert( isSorter(pC
) );
6481 pIn2
= &aMem
[pOp
->p2
];
6482 assert( pIn2
->flags
& MEM_Blob
);
6483 assert( pC
->isTable
==0 );
6484 rc
= ExpandBlob(pIn2
);
6485 if( rc
) goto abort_due_to_error
;
6486 rc
= sqlite3VdbeSorterWrite(pC
, pIn2
);
6487 if( rc
) goto abort_due_to_error
;
6491 /* Opcode: IdxDelete P1 P2 P3 * P5
6492 ** Synopsis: key=r[P2@P3]
6494 ** The content of P3 registers starting at register P2 form
6495 ** an unpacked index key. This opcode removes that entry from the
6496 ** index opened by cursor P1.
6498 ** If P5 is not zero, then raise an SQLITE_CORRUPT_INDEX error
6499 ** if no matching index entry is found. This happens when running
6500 ** an UPDATE or DELETE statement and the index entry to be updated
6501 ** or deleted is not found. For some uses of IdxDelete
6502 ** (example: the EXCEPT operator) it does not matter that no matching
6503 ** entry is found. For those cases, P5 is zero. Also, do not raise
6504 ** this (self-correcting and non-critical) error if in writable_schema mode.
6506 case OP_IdxDelete
: {
6512 assert( pOp
->p3
>0 );
6513 assert( pOp
->p2
>0 && pOp
->p2
+pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
)+1 );
6514 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6515 pC
= p
->apCsr
[pOp
->p1
];
6517 assert( pC
->eCurType
==CURTYPE_BTREE
);
6518 sqlite3VdbeIncrWriteCounter(p
, pC
);
6519 pCrsr
= pC
->uc
.pCursor
;
6521 r
.pKeyInfo
= pC
->pKeyInfo
;
6522 r
.nField
= (u16
)pOp
->p3
;
6524 r
.aMem
= &aMem
[pOp
->p2
];
6525 rc
= sqlite3BtreeIndexMoveto(pCrsr
, &r
, &res
);
6526 if( rc
) goto abort_due_to_error
;
6528 rc
= sqlite3BtreeDelete(pCrsr
, BTREE_AUXDELETE
);
6529 if( rc
) goto abort_due_to_error
;
6530 }else if( pOp
->p5
&& !sqlite3WritableSchema(db
) ){
6531 rc
= sqlite3ReportError(SQLITE_CORRUPT_INDEX
, __LINE__
, "index corruption");
6532 goto abort_due_to_error
;
6534 assert( pC
->deferredMoveto
==0 );
6535 pC
->cacheStatus
= CACHE_STALE
;
6540 /* Opcode: DeferredSeek P1 * P3 P4 *
6541 ** Synopsis: Move P3 to P1.rowid if needed
6543 ** P1 is an open index cursor and P3 is a cursor on the corresponding
6544 ** table. This opcode does a deferred seek of the P3 table cursor
6545 ** to the row that corresponds to the current row of P1.
6547 ** This is a deferred seek. Nothing actually happens until
6548 ** the cursor is used to read a record. That way, if no reads
6549 ** occur, no unnecessary I/O happens.
6551 ** P4 may be an array of integers (type P4_INTARRAY) containing
6552 ** one entry for each column in the P3 table. If array entry a(i)
6553 ** is non-zero, then reading column a(i)-1 from cursor P3 is
6554 ** equivalent to performing the deferred seek and then reading column i
6555 ** from P1. This information is stored in P3 and used to redirect
6556 ** reads against P3 over to P1, thus possibly avoiding the need to
6557 ** seek and read cursor P3.
6559 /* Opcode: IdxRowid P1 P2 * * *
6560 ** Synopsis: r[P2]=rowid
6562 ** Write into register P2 an integer which is the last entry in the record at
6563 ** the end of the index key pointed to by cursor P1. This integer should be
6564 ** the rowid of the table entry to which this index entry points.
6566 ** See also: Rowid, MakeRecord.
6568 case OP_DeferredSeek
: /* ncycle */
6569 case OP_IdxRowid
: { /* out2, ncycle */
6570 VdbeCursor
*pC
; /* The P1 index cursor */
6571 VdbeCursor
*pTabCur
; /* The P2 table cursor (OP_DeferredSeek only) */
6572 i64 rowid
; /* Rowid that P1 current points to */
6574 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6575 pC
= p
->apCsr
[pOp
->p1
];
6577 assert( pC
->eCurType
==CURTYPE_BTREE
|| IsNullCursor(pC
) );
6578 assert( pC
->uc
.pCursor
!=0 );
6579 assert( pC
->isTable
==0 || IsNullCursor(pC
) );
6580 assert( pC
->deferredMoveto
==0 );
6581 assert( !pC
->nullRow
|| pOp
->opcode
==OP_IdxRowid
);
6583 /* The IdxRowid and Seek opcodes are combined because of the commonality
6584 ** of sqlite3VdbeCursorRestore() and sqlite3VdbeIdxRowid(). */
6585 rc
= sqlite3VdbeCursorRestore(pC
);
6587 /* sqlite3VdbeCursorRestore() may fail if the cursor has been disturbed
6588 ** since it was last positioned and an error (e.g. OOM or an IO error)
6589 ** occurs while trying to reposition it. */
6590 if( rc
!=SQLITE_OK
) goto abort_due_to_error
;
6593 rowid
= 0; /* Not needed. Only used to silence a warning. */
6594 rc
= sqlite3VdbeIdxRowid(db
, pC
->uc
.pCursor
, &rowid
);
6595 if( rc
!=SQLITE_OK
){
6596 goto abort_due_to_error
;
6598 if( pOp
->opcode
==OP_DeferredSeek
){
6599 assert( pOp
->p3
>=0 && pOp
->p3
<p
->nCursor
);
6600 pTabCur
= p
->apCsr
[pOp
->p3
];
6601 assert( pTabCur
!=0 );
6602 assert( pTabCur
->eCurType
==CURTYPE_BTREE
);
6603 assert( pTabCur
->uc
.pCursor
!=0 );
6604 assert( pTabCur
->isTable
);
6605 pTabCur
->nullRow
= 0;
6606 pTabCur
->movetoTarget
= rowid
;
6607 pTabCur
->deferredMoveto
= 1;
6608 pTabCur
->cacheStatus
= CACHE_STALE
;
6609 assert( pOp
->p4type
==P4_INTARRAY
|| pOp
->p4
.ai
==0 );
6610 assert( !pTabCur
->isEphemeral
);
6611 pTabCur
->ub
.aAltMap
= pOp
->p4
.ai
;
6612 assert( !pC
->isEphemeral
);
6613 pTabCur
->pAltCursor
= pC
;
6615 pOut
= out2Prerelease(p
, pOp
);
6619 assert( pOp
->opcode
==OP_IdxRowid
);
6620 sqlite3VdbeMemSetNull(&aMem
[pOp
->p2
]);
6625 /* Opcode: FinishSeek P1 * * * *
6627 ** If cursor P1 was previously moved via OP_DeferredSeek, complete that
6628 ** seek operation now, without further delay. If the cursor seek has
6629 ** already occurred, this instruction is a no-op.
6631 case OP_FinishSeek
: { /* ncycle */
6632 VdbeCursor
*pC
; /* The P1 index cursor */
6634 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6635 pC
= p
->apCsr
[pOp
->p1
];
6636 if( pC
->deferredMoveto
){
6637 rc
= sqlite3VdbeFinishMoveto(pC
);
6638 if( rc
) goto abort_due_to_error
;
6643 /* Opcode: IdxGE P1 P2 P3 P4 *
6644 ** Synopsis: key=r[P3@P4]
6646 ** The P4 register values beginning with P3 form an unpacked index
6647 ** key that omits the PRIMARY KEY. Compare this key value against the index
6648 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6649 ** fields at the end.
6651 ** If the P1 index entry is greater than or equal to the key value
6652 ** then jump to P2. Otherwise fall through to the next instruction.
6654 /* Opcode: IdxGT P1 P2 P3 P4 *
6655 ** Synopsis: key=r[P3@P4]
6657 ** The P4 register values beginning with P3 form an unpacked index
6658 ** key that omits the PRIMARY KEY. Compare this key value against the index
6659 ** that P1 is currently pointing to, ignoring the PRIMARY KEY or ROWID
6660 ** fields at the end.
6662 ** If the P1 index entry is greater than the key value
6663 ** then jump to P2. Otherwise fall through to the next instruction.
6665 /* Opcode: IdxLT P1 P2 P3 P4 *
6666 ** Synopsis: key=r[P3@P4]
6668 ** The P4 register values beginning with P3 form an unpacked index
6669 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
6670 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6671 ** ROWID on the P1 index.
6673 ** If the P1 index entry is less than the key value then jump to P2.
6674 ** Otherwise fall through to the next instruction.
6676 /* Opcode: IdxLE P1 P2 P3 P4 *
6677 ** Synopsis: key=r[P3@P4]
6679 ** The P4 register values beginning with P3 form an unpacked index
6680 ** key that omits the PRIMARY KEY or ROWID. Compare this key value against
6681 ** the index that P1 is currently pointing to, ignoring the PRIMARY KEY or
6682 ** ROWID on the P1 index.
6684 ** If the P1 index entry is less than or equal to the key value then jump
6685 ** to P2. Otherwise fall through to the next instruction.
6687 case OP_IdxLE
: /* jump, ncycle */
6688 case OP_IdxGT
: /* jump, ncycle */
6689 case OP_IdxLT
: /* jump, ncycle */
6690 case OP_IdxGE
: { /* jump, ncycle */
6695 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6696 pC
= p
->apCsr
[pOp
->p1
];
6698 assert( pC
->isOrdered
);
6699 assert( pC
->eCurType
==CURTYPE_BTREE
);
6700 assert( pC
->uc
.pCursor
!=0);
6701 assert( pC
->deferredMoveto
==0 );
6702 assert( pOp
->p4type
==P4_INT32
);
6703 r
.pKeyInfo
= pC
->pKeyInfo
;
6704 r
.nField
= (u16
)pOp
->p4
.i
;
6705 if( pOp
->opcode
<OP_IdxLT
){
6706 assert( pOp
->opcode
==OP_IdxLE
|| pOp
->opcode
==OP_IdxGT
);
6709 assert( pOp
->opcode
==OP_IdxGE
|| pOp
->opcode
==OP_IdxLT
);
6712 r
.aMem
= &aMem
[pOp
->p3
];
6716 for(i
=0; i
<r
.nField
; i
++){
6717 assert( memIsValid(&r
.aMem
[i
]) );
6718 REGISTER_TRACE(pOp
->p3
+i
, &aMem
[pOp
->p3
+i
]);
6723 /* Inlined version of sqlite3VdbeIdxKeyCompare() */
6729 assert( pC
->eCurType
==CURTYPE_BTREE
);
6730 pCur
= pC
->uc
.pCursor
;
6731 assert( sqlite3BtreeCursorIsValid(pCur
) );
6732 nCellKey
= sqlite3BtreePayloadSize(pCur
);
6733 /* nCellKey will always be between 0 and 0xffffffff because of the way
6734 ** that btreeParseCellPtr() and sqlite3GetVarint32() are implemented */
6735 if( nCellKey
<=0 || nCellKey
>0x7fffffff ){
6736 rc
= SQLITE_CORRUPT_BKPT
;
6737 goto abort_due_to_error
;
6739 sqlite3VdbeMemInit(&m
, db
, 0);
6740 rc
= sqlite3VdbeMemFromBtreeZeroOffset(pCur
, (u32
)nCellKey
, &m
);
6741 if( rc
) goto abort_due_to_error
;
6742 res
= sqlite3VdbeRecordCompareWithSkip(m
.n
, m
.z
, &r
, 0);
6743 sqlite3VdbeMemReleaseMalloc(&m
);
6745 /* End of inlined sqlite3VdbeIdxKeyCompare() */
6747 assert( (OP_IdxLE
&1)==(OP_IdxLT
&1) && (OP_IdxGE
&1)==(OP_IdxGT
&1) );
6748 if( (pOp
->opcode
&1)==(OP_IdxLT
&1) ){
6749 assert( pOp
->opcode
==OP_IdxLE
|| pOp
->opcode
==OP_IdxLT
);
6752 assert( pOp
->opcode
==OP_IdxGE
|| pOp
->opcode
==OP_IdxGT
);
6755 VdbeBranchTaken(res
>0,2);
6756 assert( rc
==SQLITE_OK
);
6757 if( res
>0 ) goto jump_to_p2
;
6761 /* Opcode: Destroy P1 P2 P3 * *
6763 ** Delete an entire database table or index whose root page in the database
6764 ** file is given by P1.
6766 ** The table being destroyed is in the main database file if P3==0. If
6767 ** P3==1 then the table to be destroyed is in the auxiliary database file
6768 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6770 ** If AUTOVACUUM is enabled then it is possible that another root page
6771 ** might be moved into the newly deleted root page in order to keep all
6772 ** root pages contiguous at the beginning of the database. The former
6773 ** value of the root page that moved - its value before the move occurred -
6774 ** is stored in register P2. If no page movement was required (because the
6775 ** table being dropped was already the last one in the database) then a
6776 ** zero is stored in register P2. If AUTOVACUUM is disabled then a zero
6777 ** is stored in register P2.
6779 ** This opcode throws an error if there are any active reader VMs when
6780 ** it is invoked. This is done to avoid the difficulty associated with
6781 ** updating existing cursors when a root page is moved in an AUTOVACUUM
6782 ** database. This error is thrown even if the database is not an AUTOVACUUM
6783 ** db in order to avoid introducing an incompatibility between autovacuum
6784 ** and non-autovacuum modes.
6788 case OP_Destroy
: { /* out2 */
6792 sqlite3VdbeIncrWriteCounter(p
, 0);
6793 assert( p
->readOnly
==0 );
6794 assert( pOp
->p1
>1 );
6795 pOut
= out2Prerelease(p
, pOp
);
6796 pOut
->flags
= MEM_Null
;
6797 if( db
->nVdbeRead
> db
->nVDestroy
+1 ){
6799 p
->errorAction
= OE_Abort
;
6800 goto abort_due_to_error
;
6803 assert( DbMaskTest(p
->btreeMask
, iDb
) );
6804 iMoved
= 0; /* Not needed. Only to silence a warning. */
6805 rc
= sqlite3BtreeDropTable(db
->aDb
[iDb
].pBt
, pOp
->p1
, &iMoved
);
6806 pOut
->flags
= MEM_Int
;
6808 if( rc
) goto abort_due_to_error
;
6809 #ifndef SQLITE_OMIT_AUTOVACUUM
6811 sqlite3RootPageMoved(db
, iDb
, iMoved
, pOp
->p1
);
6812 /* All OP_Destroy operations occur on the same btree */
6813 assert( resetSchemaOnFault
==0 || resetSchemaOnFault
==iDb
+1 );
6814 resetSchemaOnFault
= iDb
+1;
6821 /* Opcode: Clear P1 P2 P3
6823 ** Delete all contents of the database table or index whose root page
6824 ** in the database file is given by P1. But, unlike Destroy, do not
6825 ** remove the table or index from the database file.
6827 ** The table being cleared is in the main database file if P2==0. If
6828 ** P2==1 then the table to be cleared is in the auxiliary database file
6829 ** that is used to store tables create using CREATE TEMPORARY TABLE.
6831 ** If the P3 value is non-zero, then the row change count is incremented
6832 ** by the number of rows in the table being cleared. If P3 is greater
6833 ** than zero, then the value stored in register P3 is also incremented
6834 ** by the number of rows in the table being cleared.
6836 ** See also: Destroy
6841 sqlite3VdbeIncrWriteCounter(p
, 0);
6843 assert( p
->readOnly
==0 );
6844 assert( DbMaskTest(p
->btreeMask
, pOp
->p2
) );
6845 rc
= sqlite3BtreeClearTable(db
->aDb
[pOp
->p2
].pBt
, (u32
)pOp
->p1
, &nChange
);
6847 p
->nChange
+= nChange
;
6849 assert( memIsValid(&aMem
[pOp
->p3
]) );
6850 memAboutToChange(p
, &aMem
[pOp
->p3
]);
6851 aMem
[pOp
->p3
].u
.i
+= nChange
;
6854 if( rc
) goto abort_due_to_error
;
6858 /* Opcode: ResetSorter P1 * * * *
6860 ** Delete all contents from the ephemeral table or sorter
6861 ** that is open on cursor P1.
6863 ** This opcode only works for cursors used for sorting and
6864 ** opened with OP_OpenEphemeral or OP_SorterOpen.
6866 case OP_ResetSorter
: {
6869 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
6870 pC
= p
->apCsr
[pOp
->p1
];
6873 sqlite3VdbeSorterReset(db
, pC
->uc
.pSorter
);
6875 assert( pC
->eCurType
==CURTYPE_BTREE
);
6876 assert( pC
->isEphemeral
);
6877 rc
= sqlite3BtreeClearTableOfCursor(pC
->uc
.pCursor
);
6878 if( rc
) goto abort_due_to_error
;
6883 /* Opcode: CreateBtree P1 P2 P3 * *
6884 ** Synopsis: r[P2]=root iDb=P1 flags=P3
6886 ** Allocate a new b-tree in the main database file if P1==0 or in the
6887 ** TEMP database file if P1==1 or in an attached database if
6888 ** P1>1. The P3 argument must be 1 (BTREE_INTKEY) for a rowid table
6889 ** it must be 2 (BTREE_BLOBKEY) for an index or WITHOUT ROWID table.
6890 ** The root page number of the new b-tree is stored in register P2.
6892 case OP_CreateBtree
: { /* out2 */
6896 sqlite3VdbeIncrWriteCounter(p
, 0);
6897 pOut
= out2Prerelease(p
, pOp
);
6899 assert( pOp
->p3
==BTREE_INTKEY
|| pOp
->p3
==BTREE_BLOBKEY
);
6900 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
6901 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
6902 assert( p
->readOnly
==0 );
6903 pDb
= &db
->aDb
[pOp
->p1
];
6904 assert( pDb
->pBt
!=0 );
6905 rc
= sqlite3BtreeCreateTable(pDb
->pBt
, &pgno
, pOp
->p3
);
6906 if( rc
) goto abort_due_to_error
;
6911 /* Opcode: SqlExec * * * P4 *
6913 ** Run the SQL statement or statements specified in the P4 string.
6914 ** Disable Auth and Trace callbacks while those statements are running if
6919 #ifndef SQLITE_OMIT_AUTHORIZATION
6920 sqlite3_xauth xAuth
;
6924 sqlite3VdbeIncrWriteCounter(p
, 0);
6927 #ifndef SQLITE_OMIT_AUTHORIZATION
6930 mTrace
= db
->mTrace
;
6932 #ifndef SQLITE_OMIT_AUTHORIZATION
6937 rc
= sqlite3_exec(db
, pOp
->p4
.z
, 0, 0, &zErr
);
6939 #ifndef SQLITE_OMIT_AUTHORIZATION
6942 db
->mTrace
= mTrace
;
6944 sqlite3VdbeError(p
, "%s", zErr
);
6946 if( rc
==SQLITE_NOMEM
) goto no_mem
;
6947 goto abort_due_to_error
;
6952 /* Opcode: ParseSchema P1 * * P4 *
6954 ** Read and parse all entries from the schema table of database P1
6955 ** that match the WHERE clause P4. If P4 is a NULL pointer, then the
6956 ** entire schema for P1 is reparsed.
6958 ** This opcode invokes the parser to create a new virtual machine,
6959 ** then runs the new virtual machine. It is thus a re-entrant opcode.
6961 case OP_ParseSchema
: {
6963 const char *zSchema
;
6967 /* Any prepared statement that invokes this opcode will hold mutexes
6968 ** on every btree. This is a prerequisite for invoking
6969 ** sqlite3InitCallback().
6972 for(iDb
=0; iDb
<db
->nDb
; iDb
++){
6973 assert( iDb
==1 || sqlite3BtreeHoldsMutex(db
->aDb
[iDb
].pBt
) );
6978 assert( iDb
>=0 && iDb
<db
->nDb
);
6979 assert( DbHasProperty(db
, iDb
, DB_SchemaLoaded
)
6981 || (CORRUPT_DB
&& (db
->flags
& SQLITE_NoSchemaError
)!=0) );
6983 #ifndef SQLITE_OMIT_ALTERTABLE
6985 sqlite3SchemaClear(db
->aDb
[iDb
].pSchema
);
6986 db
->mDbFlags
&= ~DBFLAG_SchemaKnownOk
;
6987 rc
= sqlite3InitOne(db
, iDb
, &p
->zErrMsg
, pOp
->p5
);
6988 db
->mDbFlags
|= DBFLAG_SchemaChange
;
6993 zSchema
= LEGACY_SCHEMA_TABLE
;
6996 initData
.pzErrMsg
= &p
->zErrMsg
;
6997 initData
.mInitFlags
= 0;
6998 initData
.mxPage
= sqlite3BtreeLastPage(db
->aDb
[iDb
].pBt
);
6999 zSql
= sqlite3MPrintf(db
,
7000 "SELECT*FROM\"%w\".%s WHERE %s ORDER BY rowid",
7001 db
->aDb
[iDb
].zDbSName
, zSchema
, pOp
->p4
.z
);
7003 rc
= SQLITE_NOMEM_BKPT
;
7005 assert( db
->init
.busy
==0 );
7007 initData
.rc
= SQLITE_OK
;
7008 initData
.nInitRow
= 0;
7009 assert( !db
->mallocFailed
);
7010 rc
= sqlite3_exec(db
, zSql
, sqlite3InitCallback
, &initData
, 0);
7011 if( rc
==SQLITE_OK
) rc
= initData
.rc
;
7012 if( rc
==SQLITE_OK
&& initData
.nInitRow
==0 ){
7013 /* The OP_ParseSchema opcode with a non-NULL P4 argument should parse
7014 ** at least one SQL statement. Any less than that indicates that
7015 ** the sqlite_schema table is corrupt. */
7016 rc
= SQLITE_CORRUPT_BKPT
;
7018 sqlite3DbFreeNN(db
, zSql
);
7023 sqlite3ResetAllSchemasOfConnection(db
);
7024 if( rc
==SQLITE_NOMEM
){
7027 goto abort_due_to_error
;
7032 #if !defined(SQLITE_OMIT_ANALYZE)
7033 /* Opcode: LoadAnalysis P1 * * * *
7035 ** Read the sqlite_stat1 table for database P1 and load the content
7036 ** of that table into the internal index hash table. This will cause
7037 ** the analysis to be used when preparing all subsequent queries.
7039 case OP_LoadAnalysis
: {
7040 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
7041 rc
= sqlite3AnalysisLoad(db
, pOp
->p1
);
7042 if( rc
) goto abort_due_to_error
;
7045 #endif /* !defined(SQLITE_OMIT_ANALYZE) */
7047 /* Opcode: DropTable P1 * * P4 *
7049 ** Remove the internal (in-memory) data structures that describe
7050 ** the table named P4 in database P1. This is called after a table
7051 ** is dropped from disk (using the Destroy opcode) in order to keep
7052 ** the internal representation of the
7053 ** schema consistent with what is on disk.
7055 case OP_DropTable
: {
7056 sqlite3VdbeIncrWriteCounter(p
, 0);
7057 sqlite3UnlinkAndDeleteTable(db
, pOp
->p1
, pOp
->p4
.z
);
7061 /* Opcode: DropIndex P1 * * P4 *
7063 ** Remove the internal (in-memory) data structures that describe
7064 ** the index named P4 in database P1. This is called after an index
7065 ** is dropped from disk (using the Destroy opcode)
7066 ** in order to keep the internal representation of the
7067 ** schema consistent with what is on disk.
7069 case OP_DropIndex
: {
7070 sqlite3VdbeIncrWriteCounter(p
, 0);
7071 sqlite3UnlinkAndDeleteIndex(db
, pOp
->p1
, pOp
->p4
.z
);
7075 /* Opcode: DropTrigger P1 * * P4 *
7077 ** Remove the internal (in-memory) data structures that describe
7078 ** the trigger named P4 in database P1. This is called after a trigger
7079 ** is dropped from disk (using the Destroy opcode) in order to keep
7080 ** the internal representation of the
7081 ** schema consistent with what is on disk.
7083 case OP_DropTrigger
: {
7084 sqlite3VdbeIncrWriteCounter(p
, 0);
7085 sqlite3UnlinkAndDeleteTrigger(db
, pOp
->p1
, pOp
->p4
.z
);
7090 #ifndef SQLITE_OMIT_INTEGRITY_CHECK
7091 /* Opcode: IntegrityCk P1 P2 P3 P4 P5
7093 ** Do an analysis of the currently open database. Store in
7094 ** register P1 the text of an error message describing any problems.
7095 ** If no problems are found, store a NULL in register P1.
7097 ** The register P3 contains one less than the maximum number of allowed errors.
7098 ** At most reg(P3) errors will be reported.
7099 ** In other words, the analysis stops as soon as reg(P1) errors are
7100 ** seen. Reg(P1) is updated with the number of errors remaining.
7102 ** The root page numbers of all tables in the database are integers
7103 ** stored in P4_INTARRAY argument.
7105 ** If P5 is not zero, the check is done on the auxiliary database
7106 ** file, not the main database file.
7108 ** This opcode is used to implement the integrity_check pragma.
7110 case OP_IntegrityCk
: {
7111 int nRoot
; /* Number of tables to check. (Number of root pages.) */
7112 Pgno
*aRoot
; /* Array of rootpage numbers for tables to be checked */
7113 int nErr
; /* Number of errors reported */
7114 char *z
; /* Text of the error report */
7115 Mem
*pnErr
; /* Register keeping track of errors remaining */
7117 assert( p
->bIsReader
);
7121 assert( aRoot
[0]==(Pgno
)nRoot
);
7122 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
7123 pnErr
= &aMem
[pOp
->p3
];
7124 assert( (pnErr
->flags
& MEM_Int
)!=0 );
7125 assert( (pnErr
->flags
& (MEM_Str
|MEM_Blob
))==0 );
7126 pIn1
= &aMem
[pOp
->p1
];
7127 assert( pOp
->p5
<db
->nDb
);
7128 assert( DbMaskTest(p
->btreeMask
, pOp
->p5
) );
7129 rc
= sqlite3BtreeIntegrityCheck(db
, db
->aDb
[pOp
->p5
].pBt
, &aRoot
[1], nRoot
,
7130 (int)pnErr
->u
.i
+1, &nErr
, &z
);
7131 sqlite3VdbeMemSetNull(pIn1
);
7136 goto abort_due_to_error
;
7138 pnErr
->u
.i
-= nErr
-1;
7139 sqlite3VdbeMemSetStr(pIn1
, z
, -1, SQLITE_UTF8
, sqlite3_free
);
7141 UPDATE_MAX_BLOBSIZE(pIn1
);
7142 sqlite3VdbeChangeEncoding(pIn1
, encoding
);
7143 goto check_for_interrupt
;
7145 #endif /* SQLITE_OMIT_INTEGRITY_CHECK */
7147 /* Opcode: RowSetAdd P1 P2 * * *
7148 ** Synopsis: rowset(P1)=r[P2]
7150 ** Insert the integer value held by register P2 into a RowSet object
7151 ** held in register P1.
7153 ** An assertion fails if P2 is not an integer.
7155 case OP_RowSetAdd
: { /* in1, in2 */
7156 pIn1
= &aMem
[pOp
->p1
];
7157 pIn2
= &aMem
[pOp
->p2
];
7158 assert( (pIn2
->flags
& MEM_Int
)!=0 );
7159 if( (pIn1
->flags
& MEM_Blob
)==0 ){
7160 if( sqlite3VdbeMemSetRowSet(pIn1
) ) goto no_mem
;
7162 assert( sqlite3VdbeMemIsRowSet(pIn1
) );
7163 sqlite3RowSetInsert((RowSet
*)pIn1
->z
, pIn2
->u
.i
);
7167 /* Opcode: RowSetRead P1 P2 P3 * *
7168 ** Synopsis: r[P3]=rowset(P1)
7170 ** Extract the smallest value from the RowSet object in P1
7171 ** and put that value into register P3.
7172 ** Or, if RowSet object P1 is initially empty, leave P3
7173 ** unchanged and jump to instruction P2.
7175 case OP_RowSetRead
: { /* jump, in1, out3 */
7178 pIn1
= &aMem
[pOp
->p1
];
7179 assert( (pIn1
->flags
& MEM_Blob
)==0 || sqlite3VdbeMemIsRowSet(pIn1
) );
7180 if( (pIn1
->flags
& MEM_Blob
)==0
7181 || sqlite3RowSetNext((RowSet
*)pIn1
->z
, &val
)==0
7183 /* The boolean index is empty */
7184 sqlite3VdbeMemSetNull(pIn1
);
7185 VdbeBranchTaken(1,2);
7186 goto jump_to_p2_and_check_for_interrupt
;
7188 /* A value was pulled from the index */
7189 VdbeBranchTaken(0,2);
7190 sqlite3VdbeMemSetInt64(&aMem
[pOp
->p3
], val
);
7192 goto check_for_interrupt
;
7195 /* Opcode: RowSetTest P1 P2 P3 P4
7196 ** Synopsis: if r[P3] in rowset(P1) goto P2
7198 ** Register P3 is assumed to hold a 64-bit integer value. If register P1
7199 ** contains a RowSet object and that RowSet object contains
7200 ** the value held in P3, jump to register P2. Otherwise, insert the
7201 ** integer in P3 into the RowSet and continue on to the
7204 ** The RowSet object is optimized for the case where sets of integers
7205 ** are inserted in distinct phases, which each set contains no duplicates.
7206 ** Each set is identified by a unique P4 value. The first set
7207 ** must have P4==0, the final set must have P4==-1, and for all other sets
7210 ** This allows optimizations: (a) when P4==0 there is no need to test
7211 ** the RowSet object for P3, as it is guaranteed not to contain it,
7212 ** (b) when P4==-1 there is no need to insert the value, as it will
7213 ** never be tested for, and (c) when a value that is part of set X is
7214 ** inserted, there is no need to search to see if the same value was
7215 ** previously inserted as part of set X (only if it was previously
7216 ** inserted as part of some other set).
7218 case OP_RowSetTest
: { /* jump, in1, in3 */
7222 pIn1
= &aMem
[pOp
->p1
];
7223 pIn3
= &aMem
[pOp
->p3
];
7225 assert( pIn3
->flags
&MEM_Int
);
7227 /* If there is anything other than a rowset object in memory cell P1,
7228 ** delete it now and initialize P1 with an empty rowset
7230 if( (pIn1
->flags
& MEM_Blob
)==0 ){
7231 if( sqlite3VdbeMemSetRowSet(pIn1
) ) goto no_mem
;
7233 assert( sqlite3VdbeMemIsRowSet(pIn1
) );
7234 assert( pOp
->p4type
==P4_INT32
);
7235 assert( iSet
==-1 || iSet
>=0 );
7237 exists
= sqlite3RowSetTest((RowSet
*)pIn1
->z
, iSet
, pIn3
->u
.i
);
7238 VdbeBranchTaken(exists
!=0,2);
7239 if( exists
) goto jump_to_p2
;
7242 sqlite3RowSetInsert((RowSet
*)pIn1
->z
, pIn3
->u
.i
);
7248 #ifndef SQLITE_OMIT_TRIGGER
7250 /* Opcode: Program P1 P2 P3 P4 P5
7252 ** Execute the trigger program passed as P4 (type P4_SUBPROGRAM).
7254 ** P1 contains the address of the memory cell that contains the first memory
7255 ** cell in an array of values used as arguments to the sub-program. P2
7256 ** contains the address to jump to if the sub-program throws an IGNORE
7257 ** exception using the RAISE() function. Register P3 contains the address
7258 ** of a memory cell in this (the parent) VM that is used to allocate the
7259 ** memory required by the sub-vdbe at runtime.
7261 ** P4 is a pointer to the VM containing the trigger program.
7263 ** If P5 is non-zero, then recursive program invocation is enabled.
7265 case OP_Program
: { /* jump */
7266 int nMem
; /* Number of memory registers for sub-program */
7267 int nByte
; /* Bytes of runtime space required for sub-program */
7268 Mem
*pRt
; /* Register to allocate runtime space */
7269 Mem
*pMem
; /* Used to iterate through memory cells */
7270 Mem
*pEnd
; /* Last memory cell in new array */
7271 VdbeFrame
*pFrame
; /* New vdbe frame to execute in */
7272 SubProgram
*pProgram
; /* Sub-program to execute */
7273 void *t
; /* Token identifying trigger */
7275 pProgram
= pOp
->p4
.pProgram
;
7276 pRt
= &aMem
[pOp
->p3
];
7277 assert( pProgram
->nOp
>0 );
7279 /* If the p5 flag is clear, then recursive invocation of triggers is
7280 ** disabled for backwards compatibility (p5 is set if this sub-program
7281 ** is really a trigger, not a foreign key action, and the flag set
7282 ** and cleared by the "PRAGMA recursive_triggers" command is clear).
7284 ** It is recursive invocation of triggers, at the SQL level, that is
7285 ** disabled. In some cases a single trigger may generate more than one
7286 ** SubProgram (if the trigger may be executed with more than one different
7287 ** ON CONFLICT algorithm). SubProgram structures associated with a
7288 ** single trigger all have the same value for the SubProgram.token
7291 t
= pProgram
->token
;
7292 for(pFrame
=p
->pFrame
; pFrame
&& pFrame
->token
!=t
; pFrame
=pFrame
->pParent
);
7296 if( p
->nFrame
>=db
->aLimit
[SQLITE_LIMIT_TRIGGER_DEPTH
] ){
7298 sqlite3VdbeError(p
, "too many levels of trigger recursion");
7299 goto abort_due_to_error
;
7302 /* Register pRt is used to store the memory required to save the state
7303 ** of the current program, and the memory required at runtime to execute
7304 ** the trigger program. If this trigger has been fired before, then pRt
7305 ** is already allocated. Otherwise, it must be initialized. */
7306 if( (pRt
->flags
&MEM_Blob
)==0 ){
7307 /* SubProgram.nMem is set to the number of memory cells used by the
7308 ** program stored in SubProgram.aOp. As well as these, one memory
7309 ** cell is required for each cursor used by the program. Set local
7310 ** variable nMem (and later, VdbeFrame.nChildMem) to this value.
7312 nMem
= pProgram
->nMem
+ pProgram
->nCsr
;
7314 if( pProgram
->nCsr
==0 ) nMem
++;
7315 nByte
= ROUND8(sizeof(VdbeFrame
))
7316 + nMem
* sizeof(Mem
)
7317 + pProgram
->nCsr
* sizeof(VdbeCursor
*)
7318 + (pProgram
->nOp
+ 7)/8;
7319 pFrame
= sqlite3DbMallocZero(db
, nByte
);
7323 sqlite3VdbeMemRelease(pRt
);
7324 pRt
->flags
= MEM_Blob
|MEM_Dyn
;
7325 pRt
->z
= (char*)pFrame
;
7327 pRt
->xDel
= sqlite3VdbeFrameMemDel
;
7330 pFrame
->nChildMem
= nMem
;
7331 pFrame
->nChildCsr
= pProgram
->nCsr
;
7332 pFrame
->pc
= (int)(pOp
- aOp
);
7333 pFrame
->aMem
= p
->aMem
;
7334 pFrame
->nMem
= p
->nMem
;
7335 pFrame
->apCsr
= p
->apCsr
;
7336 pFrame
->nCursor
= p
->nCursor
;
7337 pFrame
->aOp
= p
->aOp
;
7338 pFrame
->nOp
= p
->nOp
;
7339 pFrame
->token
= pProgram
->token
;
7341 pFrame
->iFrameMagic
= SQLITE_FRAME_MAGIC
;
7344 pEnd
= &VdbeFrameMem(pFrame
)[pFrame
->nChildMem
];
7345 for(pMem
=VdbeFrameMem(pFrame
); pMem
!=pEnd
; pMem
++){
7346 pMem
->flags
= MEM_Undefined
;
7350 pFrame
= (VdbeFrame
*)pRt
->z
;
7351 assert( pRt
->xDel
==sqlite3VdbeFrameMemDel
);
7352 assert( pProgram
->nMem
+pProgram
->nCsr
==pFrame
->nChildMem
7353 || (pProgram
->nCsr
==0 && pProgram
->nMem
+1==pFrame
->nChildMem
) );
7354 assert( pProgram
->nCsr
==pFrame
->nChildCsr
);
7355 assert( (int)(pOp
- aOp
)==pFrame
->pc
);
7359 pFrame
->pParent
= p
->pFrame
;
7360 pFrame
->lastRowid
= db
->lastRowid
;
7361 pFrame
->nChange
= p
->nChange
;
7362 pFrame
->nDbChange
= p
->db
->nChange
;
7363 assert( pFrame
->pAuxData
==0 );
7364 pFrame
->pAuxData
= p
->pAuxData
;
7368 p
->aMem
= aMem
= VdbeFrameMem(pFrame
);
7369 p
->nMem
= pFrame
->nChildMem
;
7370 p
->nCursor
= (u16
)pFrame
->nChildCsr
;
7371 p
->apCsr
= (VdbeCursor
**)&aMem
[p
->nMem
];
7372 pFrame
->aOnce
= (u8
*)&p
->apCsr
[pProgram
->nCsr
];
7373 memset(pFrame
->aOnce
, 0, (pProgram
->nOp
+ 7)/8);
7374 p
->aOp
= aOp
= pProgram
->aOp
;
7375 p
->nOp
= pProgram
->nOp
;
7377 /* Verify that second and subsequent executions of the same trigger do not
7378 ** try to reuse register values from the first use. */
7381 for(i
=0; i
<p
->nMem
; i
++){
7382 aMem
[i
].pScopyFrom
= 0; /* Prevent false-positive AboutToChange() errs */
7383 MemSetTypeFlag(&aMem
[i
], MEM_Undefined
); /* Fault if this reg is reused */
7388 goto check_for_interrupt
;
7391 /* Opcode: Param P1 P2 * * *
7393 ** This opcode is only ever present in sub-programs called via the
7394 ** OP_Program instruction. Copy a value currently stored in a memory
7395 ** cell of the calling (parent) frame to cell P2 in the current frames
7396 ** address space. This is used by trigger programs to access the new.*
7397 ** and old.* values.
7399 ** The address of the cell in the parent frame is determined by adding
7400 ** the value of the P1 argument to the value of the P1 argument to the
7401 ** calling OP_Program instruction.
7403 case OP_Param
: { /* out2 */
7406 pOut
= out2Prerelease(p
, pOp
);
7408 pIn
= &pFrame
->aMem
[pOp
->p1
+ pFrame
->aOp
[pFrame
->pc
].p1
];
7409 sqlite3VdbeMemShallowCopy(pOut
, pIn
, MEM_Ephem
);
7413 #endif /* #ifndef SQLITE_OMIT_TRIGGER */
7415 #ifndef SQLITE_OMIT_FOREIGN_KEY
7416 /* Opcode: FkCounter P1 P2 * * *
7417 ** Synopsis: fkctr[P1]+=P2
7419 ** Increment a "constraint counter" by P2 (P2 may be negative or positive).
7420 ** If P1 is non-zero, the database constraint counter is incremented
7421 ** (deferred foreign key constraints). Otherwise, if P1 is zero, the
7422 ** statement counter is incremented (immediate foreign key constraints).
7424 case OP_FkCounter
: {
7425 if( db
->flags
& SQLITE_DeferFKs
){
7426 db
->nDeferredImmCons
+= pOp
->p2
;
7427 }else if( pOp
->p1
){
7428 db
->nDeferredCons
+= pOp
->p2
;
7430 p
->nFkConstraint
+= pOp
->p2
;
7435 /* Opcode: FkIfZero P1 P2 * * *
7436 ** Synopsis: if fkctr[P1]==0 goto P2
7438 ** This opcode tests if a foreign key constraint-counter is currently zero.
7439 ** If so, jump to instruction P2. Otherwise, fall through to the next
7442 ** If P1 is non-zero, then the jump is taken if the database constraint-counter
7443 ** is zero (the one that counts deferred constraint violations). If P1 is
7444 ** zero, the jump is taken if the statement constraint-counter is zero
7445 ** (immediate foreign key constraint violations).
7447 case OP_FkIfZero
: { /* jump */
7449 VdbeBranchTaken(db
->nDeferredCons
==0 && db
->nDeferredImmCons
==0, 2);
7450 if( db
->nDeferredCons
==0 && db
->nDeferredImmCons
==0 ) goto jump_to_p2
;
7452 VdbeBranchTaken(p
->nFkConstraint
==0 && db
->nDeferredImmCons
==0, 2);
7453 if( p
->nFkConstraint
==0 && db
->nDeferredImmCons
==0 ) goto jump_to_p2
;
7457 #endif /* #ifndef SQLITE_OMIT_FOREIGN_KEY */
7459 #ifndef SQLITE_OMIT_AUTOINCREMENT
7460 /* Opcode: MemMax P1 P2 * * *
7461 ** Synopsis: r[P1]=max(r[P1],r[P2])
7463 ** P1 is a register in the root frame of this VM (the root frame is
7464 ** different from the current frame if this instruction is being executed
7465 ** within a sub-program). Set the value of register P1 to the maximum of
7466 ** its current value and the value in register P2.
7468 ** This instruction throws an error if the memory cell is not initially
7471 case OP_MemMax
: { /* in2 */
7474 for(pFrame
=p
->pFrame
; pFrame
->pParent
; pFrame
=pFrame
->pParent
);
7475 pIn1
= &pFrame
->aMem
[pOp
->p1
];
7477 pIn1
= &aMem
[pOp
->p1
];
7479 assert( memIsValid(pIn1
) );
7480 sqlite3VdbeMemIntegerify(pIn1
);
7481 pIn2
= &aMem
[pOp
->p2
];
7482 sqlite3VdbeMemIntegerify(pIn2
);
7483 if( pIn1
->u
.i
<pIn2
->u
.i
){
7484 pIn1
->u
.i
= pIn2
->u
.i
;
7488 #endif /* SQLITE_OMIT_AUTOINCREMENT */
7490 /* Opcode: IfPos P1 P2 P3 * *
7491 ** Synopsis: if r[P1]>0 then r[P1]-=P3, goto P2
7493 ** Register P1 must contain an integer.
7494 ** If the value of register P1 is 1 or greater, subtract P3 from the
7495 ** value in P1 and jump to P2.
7497 ** If the initial value of register P1 is less than 1, then the
7498 ** value is unchanged and control passes through to the next instruction.
7500 case OP_IfPos
: { /* jump, in1 */
7501 pIn1
= &aMem
[pOp
->p1
];
7502 assert( pIn1
->flags
&MEM_Int
);
7503 VdbeBranchTaken( pIn1
->u
.i
>0, 2);
7505 pIn1
->u
.i
-= pOp
->p3
;
7511 /* Opcode: OffsetLimit P1 P2 P3 * *
7512 ** Synopsis: if r[P1]>0 then r[P2]=r[P1]+max(0,r[P3]) else r[P2]=(-1)
7514 ** This opcode performs a commonly used computation associated with
7515 ** LIMIT and OFFSET processing. r[P1] holds the limit counter. r[P3]
7516 ** holds the offset counter. The opcode computes the combined value
7517 ** of the LIMIT and OFFSET and stores that value in r[P2]. The r[P2]
7518 ** value computed is the total number of rows that will need to be
7519 ** visited in order to complete the query.
7521 ** If r[P3] is zero or negative, that means there is no OFFSET
7522 ** and r[P2] is set to be the value of the LIMIT, r[P1].
7524 ** if r[P1] is zero or negative, that means there is no LIMIT
7525 ** and r[P2] is set to -1.
7527 ** Otherwise, r[P2] is set to the sum of r[P1] and r[P3].
7529 case OP_OffsetLimit
: { /* in1, out2, in3 */
7531 pIn1
= &aMem
[pOp
->p1
];
7532 pIn3
= &aMem
[pOp
->p3
];
7533 pOut
= out2Prerelease(p
, pOp
);
7534 assert( pIn1
->flags
& MEM_Int
);
7535 assert( pIn3
->flags
& MEM_Int
);
7537 if( x
<=0 || sqlite3AddInt64(&x
, pIn3
->u
.i
>0?pIn3
->u
.i
:0) ){
7538 /* If the LIMIT is less than or equal to zero, loop forever. This
7539 ** is documented. But also, if the LIMIT+OFFSET exceeds 2^63 then
7540 ** also loop forever. This is undocumented. In fact, one could argue
7541 ** that the loop should terminate. But assuming 1 billion iterations
7542 ** per second (far exceeding the capabilities of any current hardware)
7543 ** it would take nearly 300 years to actually reach the limit. So
7544 ** looping forever is a reasonable approximation. */
7552 /* Opcode: IfNotZero P1 P2 * * *
7553 ** Synopsis: if r[P1]!=0 then r[P1]--, goto P2
7555 ** Register P1 must contain an integer. If the content of register P1 is
7556 ** initially greater than zero, then decrement the value in register P1.
7557 ** If it is non-zero (negative or positive) and then also jump to P2.
7558 ** If register P1 is initially zero, leave it unchanged and fall through.
7560 case OP_IfNotZero
: { /* jump, in1 */
7561 pIn1
= &aMem
[pOp
->p1
];
7562 assert( pIn1
->flags
&MEM_Int
);
7563 VdbeBranchTaken(pIn1
->u
.i
<0, 2);
7565 if( pIn1
->u
.i
>0 ) pIn1
->u
.i
--;
7571 /* Opcode: DecrJumpZero P1 P2 * * *
7572 ** Synopsis: if (--r[P1])==0 goto P2
7574 ** Register P1 must hold an integer. Decrement the value in P1
7575 ** and jump to P2 if the new value is exactly zero.
7577 case OP_DecrJumpZero
: { /* jump, in1 */
7578 pIn1
= &aMem
[pOp
->p1
];
7579 assert( pIn1
->flags
&MEM_Int
);
7580 if( pIn1
->u
.i
>SMALLEST_INT64
) pIn1
->u
.i
--;
7581 VdbeBranchTaken(pIn1
->u
.i
==0, 2);
7582 if( pIn1
->u
.i
==0 ) goto jump_to_p2
;
7587 /* Opcode: AggStep * P2 P3 P4 P5
7588 ** Synopsis: accum=r[P3] step(r[P2@P5])
7590 ** Execute the xStep function for an aggregate.
7591 ** The function has P5 arguments. P4 is a pointer to the
7592 ** FuncDef structure that specifies the function. Register P3 is the
7595 ** The P5 arguments are taken from register P2 and its
7598 /* Opcode: AggInverse * P2 P3 P4 P5
7599 ** Synopsis: accum=r[P3] inverse(r[P2@P5])
7601 ** Execute the xInverse function for an aggregate.
7602 ** The function has P5 arguments. P4 is a pointer to the
7603 ** FuncDef structure that specifies the function. Register P3 is the
7606 ** The P5 arguments are taken from register P2 and its
7609 /* Opcode: AggStep1 P1 P2 P3 P4 P5
7610 ** Synopsis: accum=r[P3] step(r[P2@P5])
7612 ** Execute the xStep (if P1==0) or xInverse (if P1!=0) function for an
7613 ** aggregate. The function has P5 arguments. P4 is a pointer to the
7614 ** FuncDef structure that specifies the function. Register P3 is the
7617 ** The P5 arguments are taken from register P2 and its
7620 ** This opcode is initially coded as OP_AggStep0. On first evaluation,
7621 ** the FuncDef stored in P4 is converted into an sqlite3_context and
7622 ** the opcode is changed. In this way, the initialization of the
7623 ** sqlite3_context only happens once, instead of on each call to the
7629 sqlite3_context
*pCtx
;
7631 assert( pOp
->p4type
==P4_FUNCDEF
);
7633 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
7634 assert( n
==0 || (pOp
->p2
>0 && pOp
->p2
+n
<=(p
->nMem
+1 - p
->nCursor
)+1) );
7635 assert( pOp
->p3
<pOp
->p2
|| pOp
->p3
>=pOp
->p2
+n
);
7636 pCtx
= sqlite3DbMallocRawNN(db
, n
*sizeof(sqlite3_value
*) +
7637 (sizeof(pCtx
[0]) + sizeof(Mem
) - sizeof(sqlite3_value
*)));
7638 if( pCtx
==0 ) goto no_mem
;
7640 pCtx
->pOut
= (Mem
*)&(pCtx
->argv
[n
]);
7641 sqlite3VdbeMemInit(pCtx
->pOut
, db
, MEM_Null
);
7642 pCtx
->pFunc
= pOp
->p4
.pFunc
;
7643 pCtx
->iOp
= (int)(pOp
- aOp
);
7647 pCtx
->enc
= encoding
;
7649 pOp
->p4type
= P4_FUNCCTX
;
7650 pOp
->p4
.pCtx
= pCtx
;
7652 /* OP_AggInverse must have P1==1 and OP_AggStep must have P1==0 */
7653 assert( pOp
->p1
==(pOp
->opcode
==OP_AggInverse
) );
7655 pOp
->opcode
= OP_AggStep1
;
7656 /* Fall through into OP_AggStep */
7657 /* no break */ deliberate_fall_through
7661 sqlite3_context
*pCtx
;
7664 assert( pOp
->p4type
==P4_FUNCCTX
);
7665 pCtx
= pOp
->p4
.pCtx
;
7666 pMem
= &aMem
[pOp
->p3
];
7670 /* This is an OP_AggInverse call. Verify that xStep has always
7671 ** been called at least once prior to any xInverse call. */
7672 assert( pMem
->uTemp
==0x1122e0e3 );
7674 /* This is an OP_AggStep call. Mark it as such. */
7675 pMem
->uTemp
= 0x1122e0e3;
7679 /* If this function is inside of a trigger, the register array in aMem[]
7680 ** might change from one evaluation to the next. The next block of code
7681 ** checks to see if the register array has changed, and if so it
7682 ** reinitializes the relevant parts of the sqlite3_context object */
7683 if( pCtx
->pMem
!= pMem
){
7685 for(i
=pCtx
->argc
-1; i
>=0; i
--) pCtx
->argv
[i
] = &aMem
[pOp
->p2
+i
];
7689 for(i
=0; i
<pCtx
->argc
; i
++){
7690 assert( memIsValid(pCtx
->argv
[i
]) );
7691 REGISTER_TRACE(pOp
->p2
+i
, pCtx
->argv
[i
]);
7696 assert( pCtx
->pOut
->flags
==MEM_Null
);
7697 assert( pCtx
->isError
==0 );
7698 assert( pCtx
->skipFlag
==0 );
7699 #ifndef SQLITE_OMIT_WINDOWFUNC
7701 (pCtx
->pFunc
->xInverse
)(pCtx
,pCtx
->argc
,pCtx
->argv
);
7704 (pCtx
->pFunc
->xSFunc
)(pCtx
,pCtx
->argc
,pCtx
->argv
); /* IMP: R-24505-23230 */
7706 if( pCtx
->isError
){
7707 if( pCtx
->isError
>0 ){
7708 sqlite3VdbeError(p
, "%s", sqlite3_value_text(pCtx
->pOut
));
7711 if( pCtx
->skipFlag
){
7712 assert( pOp
[-1].opcode
==OP_CollSeq
);
7714 if( i
) sqlite3VdbeMemSetInt64(&aMem
[i
], 1);
7717 sqlite3VdbeMemRelease(pCtx
->pOut
);
7718 pCtx
->pOut
->flags
= MEM_Null
;
7720 if( rc
) goto abort_due_to_error
;
7722 assert( pCtx
->pOut
->flags
==MEM_Null
);
7723 assert( pCtx
->skipFlag
==0 );
7727 /* Opcode: AggFinal P1 P2 * P4 *
7728 ** Synopsis: accum=r[P1] N=P2
7730 ** P1 is the memory location that is the accumulator for an aggregate
7731 ** or window function. Execute the finalizer function
7732 ** for an aggregate and store the result in P1.
7734 ** P2 is the number of arguments that the step function takes and
7735 ** P4 is a pointer to the FuncDef for this function. The P2
7736 ** argument is not used by this opcode. It is only there to disambiguate
7737 ** functions that can take varying numbers of arguments. The
7738 ** P4 argument is only needed for the case where
7739 ** the step function was not previously called.
7741 /* Opcode: AggValue * P2 P3 P4 *
7742 ** Synopsis: r[P3]=value N=P2
7744 ** Invoke the xValue() function and store the result in register P3.
7746 ** P2 is the number of arguments that the step function takes and
7747 ** P4 is a pointer to the FuncDef for this function. The P2
7748 ** argument is not used by this opcode. It is only there to disambiguate
7749 ** functions that can take varying numbers of arguments. The
7750 ** P4 argument is only needed for the case where
7751 ** the step function was not previously called.
7756 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
7757 assert( pOp
->p3
==0 || pOp
->opcode
==OP_AggValue
);
7758 pMem
= &aMem
[pOp
->p1
];
7759 assert( (pMem
->flags
& ~(MEM_Null
|MEM_Agg
))==0 );
7760 #ifndef SQLITE_OMIT_WINDOWFUNC
7762 memAboutToChange(p
, &aMem
[pOp
->p3
]);
7763 rc
= sqlite3VdbeMemAggValue(pMem
, &aMem
[pOp
->p3
], pOp
->p4
.pFunc
);
7764 pMem
= &aMem
[pOp
->p3
];
7768 rc
= sqlite3VdbeMemFinalize(pMem
, pOp
->p4
.pFunc
);
7772 sqlite3VdbeError(p
, "%s", sqlite3_value_text(pMem
));
7773 goto abort_due_to_error
;
7775 sqlite3VdbeChangeEncoding(pMem
, encoding
);
7776 UPDATE_MAX_BLOBSIZE(pMem
);
7777 REGISTER_TRACE((int)(pMem
-aMem
), pMem
);
7781 #ifndef SQLITE_OMIT_WAL
7782 /* Opcode: Checkpoint P1 P2 P3 * *
7784 ** Checkpoint database P1. This is a no-op if P1 is not currently in
7785 ** WAL mode. Parameter P2 is one of SQLITE_CHECKPOINT_PASSIVE, FULL,
7786 ** RESTART, or TRUNCATE. Write 1 or 0 into mem[P3] if the checkpoint returns
7787 ** SQLITE_BUSY or not, respectively. Write the number of pages in the
7788 ** WAL after the checkpoint into mem[P3+1] and the number of pages
7789 ** in the WAL that have been checkpointed after the checkpoint
7790 ** completes into mem[P3+2]. However on an error, mem[P3+1] and
7791 ** mem[P3+2] are initialized to -1.
7793 case OP_Checkpoint
: {
7794 int i
; /* Loop counter */
7795 int aRes
[3]; /* Results */
7796 Mem
*pMem
; /* Write results here */
7798 assert( p
->readOnly
==0 );
7800 aRes
[1] = aRes
[2] = -1;
7801 assert( pOp
->p2
==SQLITE_CHECKPOINT_PASSIVE
7802 || pOp
->p2
==SQLITE_CHECKPOINT_FULL
7803 || pOp
->p2
==SQLITE_CHECKPOINT_RESTART
7804 || pOp
->p2
==SQLITE_CHECKPOINT_TRUNCATE
7806 rc
= sqlite3Checkpoint(db
, pOp
->p1
, pOp
->p2
, &aRes
[1], &aRes
[2]);
7808 if( rc
!=SQLITE_BUSY
) goto abort_due_to_error
;
7812 for(i
=0, pMem
= &aMem
[pOp
->p3
]; i
<3; i
++, pMem
++){
7813 sqlite3VdbeMemSetInt64(pMem
, (i64
)aRes
[i
]);
7819 #ifndef SQLITE_OMIT_PRAGMA
7820 /* Opcode: JournalMode P1 P2 P3 * *
7822 ** Change the journal mode of database P1 to P3. P3 must be one of the
7823 ** PAGER_JOURNALMODE_XXX values. If changing between the various rollback
7824 ** modes (delete, truncate, persist, off and memory), this is a simple
7825 ** operation. No IO is required.
7827 ** If changing into or out of WAL mode the procedure is more complicated.
7829 ** Write a string containing the final journal-mode to register P2.
7831 case OP_JournalMode
: { /* out2 */
7832 Btree
*pBt
; /* Btree to change journal mode of */
7833 Pager
*pPager
; /* Pager associated with pBt */
7834 int eNew
; /* New journal mode */
7835 int eOld
; /* The old journal mode */
7836 #ifndef SQLITE_OMIT_WAL
7837 const char *zFilename
; /* Name of database file for pPager */
7840 pOut
= out2Prerelease(p
, pOp
);
7842 assert( eNew
==PAGER_JOURNALMODE_DELETE
7843 || eNew
==PAGER_JOURNALMODE_TRUNCATE
7844 || eNew
==PAGER_JOURNALMODE_PERSIST
7845 || eNew
==PAGER_JOURNALMODE_OFF
7846 || eNew
==PAGER_JOURNALMODE_MEMORY
7847 || eNew
==PAGER_JOURNALMODE_WAL
7848 || eNew
==PAGER_JOURNALMODE_QUERY
7850 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
7851 assert( p
->readOnly
==0 );
7853 pBt
= db
->aDb
[pOp
->p1
].pBt
;
7854 pPager
= sqlite3BtreePager(pBt
);
7855 eOld
= sqlite3PagerGetJournalMode(pPager
);
7856 if( eNew
==PAGER_JOURNALMODE_QUERY
) eNew
= eOld
;
7857 assert( sqlite3BtreeHoldsMutex(pBt
) );
7858 if( !sqlite3PagerOkToChangeJournalMode(pPager
) ) eNew
= eOld
;
7860 #ifndef SQLITE_OMIT_WAL
7861 zFilename
= sqlite3PagerFilename(pPager
, 1);
7863 /* Do not allow a transition to journal_mode=WAL for a database
7864 ** in temporary storage or if the VFS does not support shared memory
7866 if( eNew
==PAGER_JOURNALMODE_WAL
7867 && (sqlite3Strlen30(zFilename
)==0 /* Temp file */
7868 || !sqlite3PagerWalSupported(pPager
)) /* No shared-memory support */
7874 && (eOld
==PAGER_JOURNALMODE_WAL
|| eNew
==PAGER_JOURNALMODE_WAL
)
7876 if( !db
->autoCommit
|| db
->nVdbeRead
>1 ){
7879 "cannot change %s wal mode from within a transaction",
7880 (eNew
==PAGER_JOURNALMODE_WAL
? "into" : "out of")
7882 goto abort_due_to_error
;
7885 if( eOld
==PAGER_JOURNALMODE_WAL
){
7886 /* If leaving WAL mode, close the log file. If successful, the call
7887 ** to PagerCloseWal() checkpoints and deletes the write-ahead-log
7888 ** file. An EXCLUSIVE lock may still be held on the database file
7889 ** after a successful return.
7891 rc
= sqlite3PagerCloseWal(pPager
, db
);
7892 if( rc
==SQLITE_OK
){
7893 sqlite3PagerSetJournalMode(pPager
, eNew
);
7895 }else if( eOld
==PAGER_JOURNALMODE_MEMORY
){
7896 /* Cannot transition directly from MEMORY to WAL. Use mode OFF
7897 ** as an intermediate */
7898 sqlite3PagerSetJournalMode(pPager
, PAGER_JOURNALMODE_OFF
);
7901 /* Open a transaction on the database file. Regardless of the journal
7902 ** mode, this transaction always uses a rollback journal.
7904 assert( sqlite3BtreeTxnState(pBt
)!=SQLITE_TXN_WRITE
);
7905 if( rc
==SQLITE_OK
){
7906 rc
= sqlite3BtreeSetVersion(pBt
, (eNew
==PAGER_JOURNALMODE_WAL
? 2 : 1));
7910 #endif /* ifndef SQLITE_OMIT_WAL */
7912 if( rc
) eNew
= eOld
;
7913 eNew
= sqlite3PagerSetJournalMode(pPager
, eNew
);
7915 pOut
->flags
= MEM_Str
|MEM_Static
|MEM_Term
;
7916 pOut
->z
= (char *)sqlite3JournalModename(eNew
);
7917 pOut
->n
= sqlite3Strlen30(pOut
->z
);
7918 pOut
->enc
= SQLITE_UTF8
;
7919 sqlite3VdbeChangeEncoding(pOut
, encoding
);
7920 if( rc
) goto abort_due_to_error
;
7923 #endif /* SQLITE_OMIT_PRAGMA */
7925 #if !defined(SQLITE_OMIT_VACUUM) && !defined(SQLITE_OMIT_ATTACH)
7926 /* Opcode: Vacuum P1 P2 * * *
7928 ** Vacuum the entire database P1. P1 is 0 for "main", and 2 or more
7929 ** for an attached database. The "temp" database may not be vacuumed.
7931 ** If P2 is not zero, then it is a register holding a string which is
7932 ** the file into which the result of vacuum should be written. When
7933 ** P2 is zero, the vacuum overwrites the original database.
7936 assert( p
->readOnly
==0 );
7937 rc
= sqlite3RunVacuum(&p
->zErrMsg
, db
, pOp
->p1
,
7938 pOp
->p2
? &aMem
[pOp
->p2
] : 0);
7939 if( rc
) goto abort_due_to_error
;
7944 #if !defined(SQLITE_OMIT_AUTOVACUUM)
7945 /* Opcode: IncrVacuum P1 P2 * * *
7947 ** Perform a single step of the incremental vacuum procedure on
7948 ** the P1 database. If the vacuum has finished, jump to instruction
7949 ** P2. Otherwise, fall through to the next instruction.
7951 case OP_IncrVacuum
: { /* jump */
7954 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
7955 assert( DbMaskTest(p
->btreeMask
, pOp
->p1
) );
7956 assert( p
->readOnly
==0 );
7957 pBt
= db
->aDb
[pOp
->p1
].pBt
;
7958 rc
= sqlite3BtreeIncrVacuum(pBt
);
7959 VdbeBranchTaken(rc
==SQLITE_DONE
,2);
7961 if( rc
!=SQLITE_DONE
) goto abort_due_to_error
;
7969 /* Opcode: Expire P1 P2 * * *
7971 ** Cause precompiled statements to expire. When an expired statement
7972 ** is executed using sqlite3_step() it will either automatically
7973 ** reprepare itself (if it was originally created using sqlite3_prepare_v2())
7974 ** or it will fail with SQLITE_SCHEMA.
7976 ** If P1 is 0, then all SQL statements become expired. If P1 is non-zero,
7977 ** then only the currently executing statement is expired.
7979 ** If P2 is 0, then SQL statements are expired immediately. If P2 is 1,
7980 ** then running SQL statements are allowed to continue to run to completion.
7981 ** The P2==1 case occurs when a CREATE INDEX or similar schema change happens
7982 ** that might help the statement run faster but which does not affect the
7983 ** correctness of operation.
7986 assert( pOp
->p2
==0 || pOp
->p2
==1 );
7988 sqlite3ExpirePreparedStatements(db
, pOp
->p2
);
7990 p
->expired
= pOp
->p2
+1;
7995 /* Opcode: CursorLock P1 * * * *
7997 ** Lock the btree to which cursor P1 is pointing so that the btree cannot be
7998 ** written by an other cursor.
8000 case OP_CursorLock
: {
8002 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
8003 pC
= p
->apCsr
[pOp
->p1
];
8005 assert( pC
->eCurType
==CURTYPE_BTREE
);
8006 sqlite3BtreeCursorPin(pC
->uc
.pCursor
);
8010 /* Opcode: CursorUnlock P1 * * * *
8012 ** Unlock the btree to which cursor P1 is pointing so that it can be
8013 ** written by other cursors.
8015 case OP_CursorUnlock
: {
8017 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
8018 pC
= p
->apCsr
[pOp
->p1
];
8020 assert( pC
->eCurType
==CURTYPE_BTREE
);
8021 sqlite3BtreeCursorUnpin(pC
->uc
.pCursor
);
8025 #ifndef SQLITE_OMIT_SHARED_CACHE
8026 /* Opcode: TableLock P1 P2 P3 P4 *
8027 ** Synopsis: iDb=P1 root=P2 write=P3
8029 ** Obtain a lock on a particular table. This instruction is only used when
8030 ** the shared-cache feature is enabled.
8032 ** P1 is the index of the database in sqlite3.aDb[] of the database
8033 ** on which the lock is acquired. A readlock is obtained if P3==0 or
8034 ** a write lock if P3==1.
8036 ** P2 contains the root-page of the table to lock.
8038 ** P4 contains a pointer to the name of the table being locked. This is only
8039 ** used to generate an error message if the lock cannot be obtained.
8041 case OP_TableLock
: {
8042 u8 isWriteLock
= (u8
)pOp
->p3
;
8043 if( isWriteLock
|| 0==(db
->flags
&SQLITE_ReadUncommit
) ){
8045 assert( p1
>=0 && p1
<db
->nDb
);
8046 assert( DbMaskTest(p
->btreeMask
, p1
) );
8047 assert( isWriteLock
==0 || isWriteLock
==1 );
8048 rc
= sqlite3BtreeLockTable(db
->aDb
[p1
].pBt
, pOp
->p2
, isWriteLock
);
8050 if( (rc
&0xFF)==SQLITE_LOCKED
){
8051 const char *z
= pOp
->p4
.z
;
8052 sqlite3VdbeError(p
, "database table is locked: %s", z
);
8054 goto abort_due_to_error
;
8059 #endif /* SQLITE_OMIT_SHARED_CACHE */
8061 #ifndef SQLITE_OMIT_VIRTUALTABLE
8062 /* Opcode: VBegin * * * P4 *
8064 ** P4 may be a pointer to an sqlite3_vtab structure. If so, call the
8065 ** xBegin method for that table.
8067 ** Also, whether or not P4 is set, check that this is not being called from
8068 ** within a callback to a virtual table xSync() method. If it is, the error
8069 ** code will be set to SQLITE_LOCKED.
8073 pVTab
= pOp
->p4
.pVtab
;
8074 rc
= sqlite3VtabBegin(db
, pVTab
);
8075 if( pVTab
) sqlite3VtabImportErrmsg(p
, pVTab
->pVtab
);
8076 if( rc
) goto abort_due_to_error
;
8079 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8081 #ifndef SQLITE_OMIT_VIRTUALTABLE
8082 /* Opcode: VCreate P1 P2 * * *
8084 ** P2 is a register that holds the name of a virtual table in database
8085 ** P1. Call the xCreate method for that table.
8088 Mem sMem
; /* For storing the record being decoded */
8089 const char *zTab
; /* Name of the virtual table */
8091 memset(&sMem
, 0, sizeof(sMem
));
8093 /* Because P2 is always a static string, it is impossible for the
8094 ** sqlite3VdbeMemCopy() to fail */
8095 assert( (aMem
[pOp
->p2
].flags
& MEM_Str
)!=0 );
8096 assert( (aMem
[pOp
->p2
].flags
& MEM_Static
)!=0 );
8097 rc
= sqlite3VdbeMemCopy(&sMem
, &aMem
[pOp
->p2
]);
8098 assert( rc
==SQLITE_OK
);
8099 zTab
= (const char*)sqlite3_value_text(&sMem
);
8100 assert( zTab
|| db
->mallocFailed
);
8102 rc
= sqlite3VtabCallCreate(db
, pOp
->p1
, zTab
, &p
->zErrMsg
);
8104 sqlite3VdbeMemRelease(&sMem
);
8105 if( rc
) goto abort_due_to_error
;
8108 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8110 #ifndef SQLITE_OMIT_VIRTUALTABLE
8111 /* Opcode: VDestroy P1 * * P4 *
8113 ** P4 is the name of a virtual table in database P1. Call the xDestroy method
8118 rc
= sqlite3VtabCallDestroy(db
, pOp
->p1
, pOp
->p4
.z
);
8120 assert( p
->errorAction
==OE_Abort
&& p
->usesStmtJournal
);
8121 if( rc
) goto abort_due_to_error
;
8124 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8126 #ifndef SQLITE_OMIT_VIRTUALTABLE
8127 /* Opcode: VOpen P1 * * P4 *
8129 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8130 ** P1 is a cursor number. This opcode opens a cursor to the virtual
8131 ** table and stores that cursor in P1.
8133 case OP_VOpen
: { /* ncycle */
8135 sqlite3_vtab_cursor
*pVCur
;
8136 sqlite3_vtab
*pVtab
;
8137 const sqlite3_module
*pModule
;
8139 assert( p
->bIsReader
);
8142 pVtab
= pOp
->p4
.pVtab
->pVtab
;
8143 if( pVtab
==0 || NEVER(pVtab
->pModule
==0) ){
8145 goto abort_due_to_error
;
8147 pModule
= pVtab
->pModule
;
8148 rc
= pModule
->xOpen(pVtab
, &pVCur
);
8149 sqlite3VtabImportErrmsg(p
, pVtab
);
8150 if( rc
) goto abort_due_to_error
;
8152 /* Initialize sqlite3_vtab_cursor base class */
8153 pVCur
->pVtab
= pVtab
;
8155 /* Initialize vdbe cursor object */
8156 pCur
= allocateCursor(p
, pOp
->p1
, 0, CURTYPE_VTAB
);
8158 pCur
->uc
.pVCur
= pVCur
;
8161 assert( db
->mallocFailed
);
8162 pModule
->xClose(pVCur
);
8167 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8169 #ifndef SQLITE_OMIT_VIRTUALTABLE
8170 /* Opcode: VCheck P1 P2 P3 P4 *
8172 ** P4 is a pointer to a Table object that is a virtual table in schema P1
8173 ** that supports the xIntegrity() method. This opcode runs the xIntegrity()
8174 ** method for that virtual table, using P3 as the integer argument. If
8175 ** an error is reported back, the table name is prepended to the error
8176 ** message and that message is stored in P2. If no errors are seen,
8177 ** register P2 is set to NULL.
8179 case OP_VCheck
: { /* out2 */
8181 sqlite3_vtab
*pVtab
;
8182 const sqlite3_module
*pModule
;
8185 pOut
= &aMem
[pOp
->p2
];
8186 sqlite3VdbeMemSetNull(pOut
); /* Innocent until proven guilty */
8187 assert( pOp
->p4type
==P4_TABLEREF
);
8188 pTab
= pOp
->p4
.pTab
;
8190 assert( pTab
->nTabRef
>0 );
8191 assert( IsVirtual(pTab
) );
8192 if( pTab
->u
.vtab
.p
==0 ) break;
8193 pVtab
= pTab
->u
.vtab
.p
->pVtab
;
8195 pModule
= pVtab
->pModule
;
8196 assert( pModule
!=0 );
8197 assert( pModule
->iVersion
>=4 );
8198 assert( pModule
->xIntegrity
!=0 );
8199 sqlite3VtabLock(pTab
->u
.vtab
.p
);
8200 assert( pOp
->p1
>=0 && pOp
->p1
<db
->nDb
);
8201 rc
= pModule
->xIntegrity(pVtab
, db
->aDb
[pOp
->p1
].zDbSName
, pTab
->zName
,
8203 sqlite3VtabUnlock(pTab
->u
.vtab
.p
);
8206 goto abort_due_to_error
;
8209 sqlite3VdbeMemSetStr(pOut
, zErr
, -1, SQLITE_UTF8
, sqlite3_free
);
8213 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8215 #ifndef SQLITE_OMIT_VIRTUALTABLE
8216 /* Opcode: VInitIn P1 P2 P3 * *
8217 ** Synopsis: r[P2]=ValueList(P1,P3)
8219 ** Set register P2 to be a pointer to a ValueList object for cursor P1
8220 ** with cache register P3 and output register P3+1. This ValueList object
8221 ** can be used as the first argument to sqlite3_vtab_in_first() and
8222 ** sqlite3_vtab_in_next() to extract all of the values stored in the P1
8223 ** cursor. Register P3 is used to hold the values returned by
8224 ** sqlite3_vtab_in_first() and sqlite3_vtab_in_next().
8226 case OP_VInitIn
: { /* out2, ncycle */
8227 VdbeCursor
*pC
; /* The cursor containing the RHS values */
8228 ValueList
*pRhs
; /* New ValueList object to put in reg[P2] */
8230 pC
= p
->apCsr
[pOp
->p1
];
8231 pRhs
= sqlite3_malloc64( sizeof(*pRhs
) );
8232 if( pRhs
==0 ) goto no_mem
;
8233 pRhs
->pCsr
= pC
->uc
.pCursor
;
8234 pRhs
->pOut
= &aMem
[pOp
->p3
];
8235 pOut
= out2Prerelease(p
, pOp
);
8236 pOut
->flags
= MEM_Null
;
8237 sqlite3VdbeMemSetPointer(pOut
, pRhs
, "ValueList", sqlite3VdbeValueListFree
);
8240 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8243 #ifndef SQLITE_OMIT_VIRTUALTABLE
8244 /* Opcode: VFilter P1 P2 P3 P4 *
8245 ** Synopsis: iplan=r[P3] zplan='P4'
8247 ** P1 is a cursor opened using VOpen. P2 is an address to jump to if
8248 ** the filtered result set is empty.
8250 ** P4 is either NULL or a string that was generated by the xBestIndex
8251 ** method of the module. The interpretation of the P4 string is left
8252 ** to the module implementation.
8254 ** This opcode invokes the xFilter method on the virtual table specified
8255 ** by P1. The integer query plan parameter to xFilter is stored in register
8256 ** P3. Register P3+1 stores the argc parameter to be passed to the
8257 ** xFilter method. Registers P3+2..P3+1+argc are the argc
8258 ** additional parameters which are passed to
8259 ** xFilter as argv. Register P3+2 becomes argv[0] when passed to xFilter.
8261 ** A jump is made to P2 if the result set after filtering would be empty.
8263 case OP_VFilter
: { /* jump, ncycle */
8266 const sqlite3_module
*pModule
;
8269 sqlite3_vtab_cursor
*pVCur
;
8270 sqlite3_vtab
*pVtab
;
8276 pQuery
= &aMem
[pOp
->p3
];
8278 pCur
= p
->apCsr
[pOp
->p1
];
8279 assert( memIsValid(pQuery
) );
8280 REGISTER_TRACE(pOp
->p3
, pQuery
);
8282 assert( pCur
->eCurType
==CURTYPE_VTAB
);
8283 pVCur
= pCur
->uc
.pVCur
;
8284 pVtab
= pVCur
->pVtab
;
8285 pModule
= pVtab
->pModule
;
8287 /* Grab the index number and argc parameters */
8288 assert( (pQuery
->flags
&MEM_Int
)!=0 && pArgc
->flags
==MEM_Int
);
8289 nArg
= (int)pArgc
->u
.i
;
8290 iQuery
= (int)pQuery
->u
.i
;
8292 /* Invoke the xFilter method */
8294 for(i
= 0; i
<nArg
; i
++){
8295 apArg
[i
] = &pArgc
[i
+1];
8297 rc
= pModule
->xFilter(pVCur
, iQuery
, pOp
->p4
.z
, nArg
, apArg
);
8298 sqlite3VtabImportErrmsg(p
, pVtab
);
8299 if( rc
) goto abort_due_to_error
;
8300 res
= pModule
->xEof(pVCur
);
8302 VdbeBranchTaken(res
!=0,2);
8303 if( res
) goto jump_to_p2
;
8306 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8308 #ifndef SQLITE_OMIT_VIRTUALTABLE
8309 /* Opcode: VColumn P1 P2 P3 * P5
8310 ** Synopsis: r[P3]=vcolumn(P2)
8312 ** Store in register P3 the value of the P2-th column of
8313 ** the current row of the virtual-table of cursor P1.
8315 ** If the VColumn opcode is being used to fetch the value of
8316 ** an unchanging column during an UPDATE operation, then the P5
8317 ** value is OPFLAG_NOCHNG. This will cause the sqlite3_vtab_nochange()
8318 ** function to return true inside the xColumn method of the virtual
8319 ** table implementation. The P5 column might also contain other
8320 ** bits (OPFLAG_LENGTHARG or OPFLAG_TYPEOFARG) but those bits are
8321 ** unused by OP_VColumn.
8323 case OP_VColumn
: { /* ncycle */
8324 sqlite3_vtab
*pVtab
;
8325 const sqlite3_module
*pModule
;
8327 sqlite3_context sContext
;
8330 VdbeCursor
*pCur
= p
->apCsr
[pOp
->p1
];
8332 assert( pOp
->p3
>0 && pOp
->p3
<=(p
->nMem
+1 - p
->nCursor
) );
8333 pDest
= &aMem
[pOp
->p3
];
8334 memAboutToChange(p
, pDest
);
8335 if( pCur
->nullRow
){
8336 sqlite3VdbeMemSetNull(pDest
);
8339 assert( pCur
->eCurType
==CURTYPE_VTAB
);
8340 pVtab
= pCur
->uc
.pVCur
->pVtab
;
8341 pModule
= pVtab
->pModule
;
8342 assert( pModule
->xColumn
);
8343 memset(&sContext
, 0, sizeof(sContext
));
8344 sContext
.pOut
= pDest
;
8345 sContext
.enc
= encoding
;
8346 nullFunc
.pUserData
= 0;
8347 nullFunc
.funcFlags
= SQLITE_RESULT_SUBTYPE
;
8348 sContext
.pFunc
= &nullFunc
;
8349 assert( pOp
->p5
==OPFLAG_NOCHNG
|| pOp
->p5
==0 );
8350 if( pOp
->p5
& OPFLAG_NOCHNG
){
8351 sqlite3VdbeMemSetNull(pDest
);
8352 pDest
->flags
= MEM_Null
|MEM_Zero
;
8355 MemSetTypeFlag(pDest
, MEM_Null
);
8357 rc
= pModule
->xColumn(pCur
->uc
.pVCur
, &sContext
, pOp
->p2
);
8358 sqlite3VtabImportErrmsg(p
, pVtab
);
8359 if( sContext
.isError
>0 ){
8360 sqlite3VdbeError(p
, "%s", sqlite3_value_text(pDest
));
8361 rc
= sContext
.isError
;
8363 sqlite3VdbeChangeEncoding(pDest
, encoding
);
8364 REGISTER_TRACE(pOp
->p3
, pDest
);
8365 UPDATE_MAX_BLOBSIZE(pDest
);
8367 if( rc
) goto abort_due_to_error
;
8370 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8372 #ifndef SQLITE_OMIT_VIRTUALTABLE
8373 /* Opcode: VNext P1 P2 * * *
8375 ** Advance virtual table P1 to the next row in its result set and
8376 ** jump to instruction P2. Or, if the virtual table has reached
8377 ** the end of its result set, then fall through to the next instruction.
8379 case OP_VNext
: { /* jump, ncycle */
8380 sqlite3_vtab
*pVtab
;
8381 const sqlite3_module
*pModule
;
8385 pCur
= p
->apCsr
[pOp
->p1
];
8387 assert( pCur
->eCurType
==CURTYPE_VTAB
);
8388 if( pCur
->nullRow
){
8391 pVtab
= pCur
->uc
.pVCur
->pVtab
;
8392 pModule
= pVtab
->pModule
;
8393 assert( pModule
->xNext
);
8395 /* Invoke the xNext() method of the module. There is no way for the
8396 ** underlying implementation to return an error if one occurs during
8397 ** xNext(). Instead, if an error occurs, true is returned (indicating that
8398 ** data is available) and the error code returned when xColumn or
8399 ** some other method is next invoked on the save virtual table cursor.
8401 rc
= pModule
->xNext(pCur
->uc
.pVCur
);
8402 sqlite3VtabImportErrmsg(p
, pVtab
);
8403 if( rc
) goto abort_due_to_error
;
8404 res
= pModule
->xEof(pCur
->uc
.pVCur
);
8405 VdbeBranchTaken(!res
,2);
8407 /* If there is data, jump to P2 */
8408 goto jump_to_p2_and_check_for_interrupt
;
8410 goto check_for_interrupt
;
8412 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8414 #ifndef SQLITE_OMIT_VIRTUALTABLE
8415 /* Opcode: VRename P1 * * P4 *
8417 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8418 ** This opcode invokes the corresponding xRename method. The value
8419 ** in register P1 is passed as the zName argument to the xRename method.
8422 sqlite3_vtab
*pVtab
;
8426 isLegacy
= (db
->flags
& SQLITE_LegacyAlter
);
8427 db
->flags
|= SQLITE_LegacyAlter
;
8428 pVtab
= pOp
->p4
.pVtab
->pVtab
;
8429 pName
= &aMem
[pOp
->p1
];
8430 assert( pVtab
->pModule
->xRename
);
8431 assert( memIsValid(pName
) );
8432 assert( p
->readOnly
==0 );
8433 REGISTER_TRACE(pOp
->p1
, pName
);
8434 assert( pName
->flags
& MEM_Str
);
8435 testcase( pName
->enc
==SQLITE_UTF8
);
8436 testcase( pName
->enc
==SQLITE_UTF16BE
);
8437 testcase( pName
->enc
==SQLITE_UTF16LE
);
8438 rc
= sqlite3VdbeChangeEncoding(pName
, SQLITE_UTF8
);
8439 if( rc
) goto abort_due_to_error
;
8440 rc
= pVtab
->pModule
->xRename(pVtab
, pName
->z
);
8441 if( isLegacy
==0 ) db
->flags
&= ~(u64
)SQLITE_LegacyAlter
;
8442 sqlite3VtabImportErrmsg(p
, pVtab
);
8444 if( rc
) goto abort_due_to_error
;
8449 #ifndef SQLITE_OMIT_VIRTUALTABLE
8450 /* Opcode: VUpdate P1 P2 P3 P4 P5
8451 ** Synopsis: data=r[P3@P2]
8453 ** P4 is a pointer to a virtual table object, an sqlite3_vtab structure.
8454 ** This opcode invokes the corresponding xUpdate method. P2 values
8455 ** are contiguous memory cells starting at P3 to pass to the xUpdate
8456 ** invocation. The value in register (P3+P2-1) corresponds to the
8457 ** p2th element of the argv array passed to xUpdate.
8459 ** The xUpdate method will do a DELETE or an INSERT or both.
8460 ** The argv[0] element (which corresponds to memory cell P3)
8461 ** is the rowid of a row to delete. If argv[0] is NULL then no
8462 ** deletion occurs. The argv[1] element is the rowid of the new
8463 ** row. This can be NULL to have the virtual table select the new
8464 ** rowid for itself. The subsequent elements in the array are
8465 ** the values of columns in the new row.
8467 ** If P2==1 then no insert is performed. argv[0] is the rowid of
8470 ** P1 is a boolean flag. If it is set to true and the xUpdate call
8471 ** is successful, then the value returned by sqlite3_last_insert_rowid()
8472 ** is set to the value of the rowid for the row just inserted.
8474 ** P5 is the error actions (OE_Replace, OE_Fail, OE_Ignore, etc) to
8475 ** apply in the case of a constraint failure on an insert or update.
8478 sqlite3_vtab
*pVtab
;
8479 const sqlite3_module
*pModule
;
8482 sqlite_int64 rowid
= 0;
8486 assert( pOp
->p2
==1 || pOp
->p5
==OE_Fail
|| pOp
->p5
==OE_Rollback
8487 || pOp
->p5
==OE_Abort
|| pOp
->p5
==OE_Ignore
|| pOp
->p5
==OE_Replace
8489 assert( p
->readOnly
==0 );
8490 if( db
->mallocFailed
) goto no_mem
;
8491 sqlite3VdbeIncrWriteCounter(p
, 0);
8492 pVtab
= pOp
->p4
.pVtab
->pVtab
;
8493 if( pVtab
==0 || NEVER(pVtab
->pModule
==0) ){
8495 goto abort_due_to_error
;
8497 pModule
= pVtab
->pModule
;
8499 assert( pOp
->p4type
==P4_VTAB
);
8500 if( ALWAYS(pModule
->xUpdate
) ){
8501 u8 vtabOnConflict
= db
->vtabOnConflict
;
8503 pX
= &aMem
[pOp
->p3
];
8504 for(i
=0; i
<nArg
; i
++){
8505 assert( memIsValid(pX
) );
8506 memAboutToChange(p
, pX
);
8510 db
->vtabOnConflict
= pOp
->p5
;
8511 rc
= pModule
->xUpdate(pVtab
, nArg
, apArg
, &rowid
);
8512 db
->vtabOnConflict
= vtabOnConflict
;
8513 sqlite3VtabImportErrmsg(p
, pVtab
);
8514 if( rc
==SQLITE_OK
&& pOp
->p1
){
8515 assert( nArg
>1 && apArg
[0] && (apArg
[0]->flags
&MEM_Null
) );
8516 db
->lastRowid
= rowid
;
8518 if( (rc
&0xff)==SQLITE_CONSTRAINT
&& pOp
->p4
.pVtab
->bConstraint
){
8519 if( pOp
->p5
==OE_Ignore
){
8522 p
->errorAction
= ((pOp
->p5
==OE_Replace
) ? OE_Abort
: pOp
->p5
);
8527 if( rc
) goto abort_due_to_error
;
8531 #endif /* SQLITE_OMIT_VIRTUALTABLE */
8533 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
8534 /* Opcode: Pagecount P1 P2 * * *
8536 ** Write the current number of pages in database P1 to memory cell P2.
8538 case OP_Pagecount
: { /* out2 */
8539 pOut
= out2Prerelease(p
, pOp
);
8540 pOut
->u
.i
= sqlite3BtreeLastPage(db
->aDb
[pOp
->p1
].pBt
);
8546 #ifndef SQLITE_OMIT_PAGER_PRAGMAS
8547 /* Opcode: MaxPgcnt P1 P2 P3 * *
8549 ** Try to set the maximum page count for database P1 to the value in P3.
8550 ** Do not let the maximum page count fall below the current page count and
8551 ** do not change the maximum page count value if P3==0.
8553 ** Store the maximum page count after the change in register P2.
8555 case OP_MaxPgcnt
: { /* out2 */
8556 unsigned int newMax
;
8559 pOut
= out2Prerelease(p
, pOp
);
8560 pBt
= db
->aDb
[pOp
->p1
].pBt
;
8563 newMax
= sqlite3BtreeLastPage(pBt
);
8564 if( newMax
< (unsigned)pOp
->p3
) newMax
= (unsigned)pOp
->p3
;
8566 pOut
->u
.i
= sqlite3BtreeMaxPageCount(pBt
, newMax
);
8571 /* Opcode: Function P1 P2 P3 P4 *
8572 ** Synopsis: r[P3]=func(r[P2@NP])
8574 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8575 ** contains a pointer to the function to be run) with arguments taken
8576 ** from register P2 and successors. The number of arguments is in
8577 ** the sqlite3_context object that P4 points to.
8578 ** The result of the function is stored
8579 ** in register P3. Register P3 must not be one of the function inputs.
8581 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8582 ** function was determined to be constant at compile time. If the first
8583 ** argument was constant then bit 0 of P1 is set. This is used to determine
8584 ** whether meta data associated with a user function argument using the
8585 ** sqlite3_set_auxdata() API may be safely retained until the next
8586 ** invocation of this opcode.
8588 ** See also: AggStep, AggFinal, PureFunc
8590 /* Opcode: PureFunc P1 P2 P3 P4 *
8591 ** Synopsis: r[P3]=func(r[P2@NP])
8593 ** Invoke a user function (P4 is a pointer to an sqlite3_context object that
8594 ** contains a pointer to the function to be run) with arguments taken
8595 ** from register P2 and successors. The number of arguments is in
8596 ** the sqlite3_context object that P4 points to.
8597 ** The result of the function is stored
8598 ** in register P3. Register P3 must not be one of the function inputs.
8600 ** P1 is a 32-bit bitmask indicating whether or not each argument to the
8601 ** function was determined to be constant at compile time. If the first
8602 ** argument was constant then bit 0 of P1 is set. This is used to determine
8603 ** whether meta data associated with a user function argument using the
8604 ** sqlite3_set_auxdata() API may be safely retained until the next
8605 ** invocation of this opcode.
8607 ** This opcode works exactly like OP_Function. The only difference is in
8608 ** its name. This opcode is used in places where the function must be
8609 ** purely non-deterministic. Some built-in date/time functions can be
8610 ** either deterministic of non-deterministic, depending on their arguments.
8611 ** When those function are used in a non-deterministic way, they will check
8612 ** to see if they were called using OP_PureFunc instead of OP_Function, and
8613 ** if they were, they throw an error.
8615 ** See also: AggStep, AggFinal, Function
8617 case OP_PureFunc
: /* group */
8618 case OP_Function
: { /* group */
8620 sqlite3_context
*pCtx
;
8622 assert( pOp
->p4type
==P4_FUNCCTX
);
8623 pCtx
= pOp
->p4
.pCtx
;
8625 /* If this function is inside of a trigger, the register array in aMem[]
8626 ** might change from one evaluation to the next. The next block of code
8627 ** checks to see if the register array has changed, and if so it
8628 ** reinitializes the relevant parts of the sqlite3_context object */
8629 pOut
= &aMem
[pOp
->p3
];
8630 if( pCtx
->pOut
!= pOut
){
8633 pCtx
->enc
= encoding
;
8634 for(i
=pCtx
->argc
-1; i
>=0; i
--) pCtx
->argv
[i
] = &aMem
[pOp
->p2
+i
];
8636 assert( pCtx
->pVdbe
==p
);
8638 memAboutToChange(p
, pOut
);
8640 for(i
=0; i
<pCtx
->argc
; i
++){
8641 assert( memIsValid(pCtx
->argv
[i
]) );
8642 REGISTER_TRACE(pOp
->p2
+i
, pCtx
->argv
[i
]);
8645 MemSetTypeFlag(pOut
, MEM_Null
);
8646 assert( pCtx
->isError
==0 );
8647 (*pCtx
->pFunc
->xSFunc
)(pCtx
, pCtx
->argc
, pCtx
->argv
);/* IMP: R-24505-23230 */
8649 /* If the function returned an error, throw an exception */
8650 if( pCtx
->isError
){
8651 if( pCtx
->isError
>0 ){
8652 sqlite3VdbeError(p
, "%s", sqlite3_value_text(pOut
));
8655 sqlite3VdbeDeleteAuxData(db
, &p
->pAuxData
, pCtx
->iOp
, pOp
->p1
);
8657 if( rc
) goto abort_due_to_error
;
8660 assert( (pOut
->flags
&MEM_Str
)==0
8661 || pOut
->enc
==encoding
8662 || db
->mallocFailed
);
8663 assert( !sqlite3VdbeMemTooBig(pOut
) );
8665 REGISTER_TRACE(pOp
->p3
, pOut
);
8666 UPDATE_MAX_BLOBSIZE(pOut
);
8670 /* Opcode: ClrSubtype P1 * * * *
8671 ** Synopsis: r[P1].subtype = 0
8673 ** Clear the subtype from register P1.
8675 case OP_ClrSubtype
: { /* in1 */
8676 pIn1
= &aMem
[pOp
->p1
];
8677 pIn1
->flags
&= ~MEM_Subtype
;
8681 /* Opcode: GetSubtype P1 P2 * * *
8682 ** Synopsis: r[P2] = r[P1].subtype
8684 ** Extract the subtype value from register P1 and write that subtype
8685 ** into register P2. If P1 has no subtype, then P1 gets a NULL.
8687 case OP_GetSubtype
: { /* in1 out2 */
8688 pIn1
= &aMem
[pOp
->p1
];
8689 pOut
= &aMem
[pOp
->p2
];
8690 if( pIn1
->flags
& MEM_Subtype
){
8691 sqlite3VdbeMemSetInt64(pOut
, pIn1
->eSubtype
);
8693 sqlite3VdbeMemSetNull(pOut
);
8698 /* Opcode: SetSubtype P1 P2 * * *
8699 ** Synopsis: r[P2].subtype = r[P1]
8701 ** Set the subtype value of register P2 to the integer from register P1.
8702 ** If P1 is NULL, clear the subtype from p2.
8704 case OP_SetSubtype
: { /* in1 out2 */
8705 pIn1
= &aMem
[pOp
->p1
];
8706 pOut
= &aMem
[pOp
->p2
];
8707 if( pIn1
->flags
& MEM_Null
){
8708 pOut
->flags
&= ~MEM_Subtype
;
8710 assert( pIn1
->flags
& MEM_Int
);
8711 pOut
->flags
|= MEM_Subtype
;
8712 pOut
->eSubtype
= (u8
)(pIn1
->u
.i
& 0xff);
8717 /* Opcode: FilterAdd P1 * P3 P4 *
8718 ** Synopsis: filter(P1) += key(P3@P4)
8720 ** Compute a hash on the P4 registers starting with r[P3] and
8721 ** add that hash to the bloom filter contained in r[P1].
8723 case OP_FilterAdd
: {
8726 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
8727 pIn1
= &aMem
[pOp
->p1
];
8728 assert( pIn1
->flags
& MEM_Blob
);
8729 assert( pIn1
->n
>0 );
8730 h
= filterHash(aMem
, pOp
);
8732 if( db
->flags
&SQLITE_VdbeTrace
){
8734 for(ii
=pOp
->p3
; ii
<pOp
->p3
+pOp
->p4
.i
; ii
++){
8735 registerTrace(ii
, &aMem
[ii
]);
8737 printf("hash: %llu modulo %d -> %u\n", h
, pIn1
->n
, (int)(h
%pIn1
->n
));
8741 pIn1
->z
[h
/8] |= 1<<(h
&7);
8745 /* Opcode: Filter P1 P2 P3 P4 *
8746 ** Synopsis: if key(P3@P4) not in filter(P1) goto P2
8748 ** Compute a hash on the key contained in the P4 registers starting
8749 ** with r[P3]. Check to see if that hash is found in the
8750 ** bloom filter hosted by register P1. If it is not present then
8751 ** maybe jump to P2. Otherwise fall through.
8753 ** False negatives are harmless. It is always safe to fall through,
8754 ** even if the value is in the bloom filter. A false negative causes
8755 ** more CPU cycles to be used, but it should still yield the correct
8756 ** answer. However, an incorrect answer may well arise from a
8757 ** false positive - if the jump is taken when it should fall through.
8759 case OP_Filter
: { /* jump */
8762 assert( pOp
->p1
>0 && pOp
->p1
<=(p
->nMem
+1 - p
->nCursor
) );
8763 pIn1
= &aMem
[pOp
->p1
];
8764 assert( (pIn1
->flags
& MEM_Blob
)!=0 );
8765 assert( pIn1
->n
>= 1 );
8766 h
= filterHash(aMem
, pOp
);
8768 if( db
->flags
&SQLITE_VdbeTrace
){
8770 for(ii
=pOp
->p3
; ii
<pOp
->p3
+pOp
->p4
.i
; ii
++){
8771 registerTrace(ii
, &aMem
[ii
]);
8773 printf("hash: %llu modulo %d -> %u\n", h
, pIn1
->n
, (int)(h
%pIn1
->n
));
8777 if( (pIn1
->z
[h
/8] & (1<<(h
&7)))==0 ){
8778 VdbeBranchTaken(1, 2);
8779 p
->aCounter
[SQLITE_STMTSTATUS_FILTER_HIT
]++;
8782 p
->aCounter
[SQLITE_STMTSTATUS_FILTER_MISS
]++;
8783 VdbeBranchTaken(0, 2);
8788 /* Opcode: Trace P1 P2 * P4 *
8790 ** Write P4 on the statement trace output if statement tracing is
8793 ** Operand P1 must be 0x7fffffff and P2 must positive.
8795 /* Opcode: Init P1 P2 P3 P4 *
8796 ** Synopsis: Start at P2
8798 ** Programs contain a single instance of this opcode as the very first
8801 ** If tracing is enabled (by the sqlite3_trace()) interface, then
8802 ** the UTF-8 string contained in P4 is emitted on the trace callback.
8803 ** Or if P4 is blank, use the string returned by sqlite3_sql().
8805 ** If P2 is not zero, jump to instruction P2.
8807 ** Increment the value of P1 so that OP_Once opcodes will jump the
8808 ** first time they are evaluated for this run.
8810 ** If P3 is not zero, then it is an address to jump to if an SQLITE_CORRUPT
8811 ** error is encountered.
8814 case OP_Init
: { /* jump */
8816 #ifndef SQLITE_OMIT_TRACE
8820 /* If the P4 argument is not NULL, then it must be an SQL comment string.
8821 ** The "--" string is broken up to prevent false-positives with srcck1.c.
8823 ** This assert() provides evidence for:
8824 ** EVIDENCE-OF: R-50676-09860 The callback can compute the same text that
8825 ** would have been returned by the legacy sqlite3_trace() interface by
8826 ** using the X argument when X begins with "--" and invoking
8827 ** sqlite3_expanded_sql(P) otherwise.
8829 assert( pOp
->p4
.z
==0 || strncmp(pOp
->p4
.z
, "-" "- ", 3)==0 );
8831 /* OP_Init is always instruction 0 */
8832 assert( pOp
==p
->aOp
|| pOp
->opcode
==OP_Trace
);
8834 #ifndef SQLITE_OMIT_TRACE
8835 if( (db
->mTrace
& (SQLITE_TRACE_STMT
|SQLITE_TRACE_LEGACY
))!=0
8836 && p
->minWriteFileFormat
!=254 /* tag-20220401a */
8837 && (zTrace
= (pOp
->p4
.z
? pOp
->p4
.z
: p
->zSql
))!=0
8839 #ifndef SQLITE_OMIT_DEPRECATED
8840 if( db
->mTrace
& SQLITE_TRACE_LEGACY
){
8841 char *z
= sqlite3VdbeExpandSql(p
, zTrace
);
8842 db
->trace
.xLegacy(db
->pTraceArg
, z
);
8846 if( db
->nVdbeExec
>1 ){
8847 char *z
= sqlite3MPrintf(db
, "-- %s", zTrace
);
8848 (void)db
->trace
.xV2(SQLITE_TRACE_STMT
, db
->pTraceArg
, p
, z
);
8849 sqlite3DbFree(db
, z
);
8851 (void)db
->trace
.xV2(SQLITE_TRACE_STMT
, db
->pTraceArg
, p
, zTrace
);
8854 #ifdef SQLITE_USE_FCNTL_TRACE
8855 zTrace
= (pOp
->p4
.z
? pOp
->p4
.z
: p
->zSql
);
8858 for(j
=0; j
<db
->nDb
; j
++){
8859 if( DbMaskTest(p
->btreeMask
, j
)==0 ) continue;
8860 sqlite3_file_control(db
, db
->aDb
[j
].zDbSName
, SQLITE_FCNTL_TRACE
, zTrace
);
8863 #endif /* SQLITE_USE_FCNTL_TRACE */
8865 if( (db
->flags
& SQLITE_SqlTrace
)!=0
8866 && (zTrace
= (pOp
->p4
.z
? pOp
->p4
.z
: p
->zSql
))!=0
8868 sqlite3DebugPrintf("SQL-trace: %s\n", zTrace
);
8870 #endif /* SQLITE_DEBUG */
8871 #endif /* SQLITE_OMIT_TRACE */
8872 assert( pOp
->p2
>0 );
8873 if( pOp
->p1
>=sqlite3GlobalConfig
.iOnceResetThreshold
){
8874 if( pOp
->opcode
==OP_Trace
) break;
8875 for(i
=1; i
<p
->nOp
; i
++){
8876 if( p
->aOp
[i
].opcode
==OP_Once
) p
->aOp
[i
].p1
= 0;
8881 p
->aCounter
[SQLITE_STMTSTATUS_RUN
]++;
8885 #ifdef SQLITE_ENABLE_CURSOR_HINTS
8886 /* Opcode: CursorHint P1 * * P4 *
8888 ** Provide a hint to cursor P1 that it only needs to return rows that
8889 ** satisfy the Expr in P4. TK_REGISTER terms in the P4 expression refer
8890 ** to values currently held in registers. TK_COLUMN terms in the P4
8891 ** expression refer to columns in the b-tree to which cursor P1 is pointing.
8893 case OP_CursorHint
: {
8896 assert( pOp
->p1
>=0 && pOp
->p1
<p
->nCursor
);
8897 assert( pOp
->p4type
==P4_EXPR
);
8898 pC
= p
->apCsr
[pOp
->p1
];
8900 assert( pC
->eCurType
==CURTYPE_BTREE
);
8901 sqlite3BtreeCursorHint(pC
->uc
.pCursor
, BTREE_HINT_RANGE
,
8902 pOp
->p4
.pExpr
, aMem
);
8906 #endif /* SQLITE_ENABLE_CURSOR_HINTS */
8909 /* Opcode: Abortable * * * * *
8911 ** Verify that an Abort can happen. Assert if an Abort at this point
8912 ** might cause database corruption. This opcode only appears in debugging
8915 ** An Abort is safe if either there have been no writes, or if there is
8916 ** an active statement journal.
8918 case OP_Abortable
: {
8919 sqlite3VdbeAssertAbortable(p
);
8925 /* Opcode: ReleaseReg P1 P2 P3 * P5
8926 ** Synopsis: release r[P1@P2] mask P3
8928 ** Release registers from service. Any content that was in the
8929 ** the registers is unreliable after this opcode completes.
8931 ** The registers released will be the P2 registers starting at P1,
8932 ** except if bit ii of P3 set, then do not release register P1+ii.
8933 ** In other words, P3 is a mask of registers to preserve.
8935 ** Releasing a register clears the Mem.pScopyFrom pointer. That means
8936 ** that if the content of the released register was set using OP_SCopy,
8937 ** a change to the value of the source register for the OP_SCopy will no longer
8938 ** generate an assertion fault in sqlite3VdbeMemAboutToChange().
8940 ** If P5 is set, then all released registers have their type set
8941 ** to MEM_Undefined so that any subsequent attempt to read the released
8942 ** register (before it is reinitialized) will generate an assertion fault.
8944 ** P5 ought to be set on every call to this opcode.
8945 ** However, there are places in the code generator will release registers
8946 ** before their are used, under the (valid) assumption that the registers
8947 ** will not be reallocated for some other purpose before they are used and
8948 ** hence are safe to release.
8950 ** This opcode is only available in testing and debugging builds. It is
8951 ** not generated for release builds. The purpose of this opcode is to help
8952 ** validate the generated bytecode. This opcode does not actually contribute
8953 ** to computing an answer.
8955 case OP_ReleaseReg
: {
8959 assert( pOp
->p1
>0 );
8960 assert( pOp
->p1
+pOp
->p2
<=(p
->nMem
+1 - p
->nCursor
)+1 );
8961 pMem
= &aMem
[pOp
->p1
];
8962 constMask
= pOp
->p3
;
8963 for(i
=0; i
<pOp
->p2
; i
++, pMem
++){
8964 if( i
>=32 || (constMask
& MASKBIT32(i
))==0 ){
8965 pMem
->pScopyFrom
= 0;
8966 if( i
<32 && pOp
->p5
) MemSetTypeFlag(pMem
, MEM_Undefined
);
8973 /* Opcode: Noop * * * * *
8975 ** Do nothing. This instruction is often useful as a jump
8979 ** The magic Explain opcode are only inserted when explain==2 (which
8980 ** is to say when the EXPLAIN QUERY PLAN syntax is used.)
8981 ** This opcode records information from the optimizer. It is the
8982 ** the same as a no-op. This opcodesnever appears in a real VM program.
8984 default: { /* This is really OP_Noop, OP_Explain */
8985 assert( pOp
->opcode
==OP_Noop
|| pOp
->opcode
==OP_Explain
);
8990 /*****************************************************************************
8991 ** The cases of the switch statement above this line should all be indented
8992 ** by 6 spaces. But the left-most 6 spaces have been removed to improve the
8993 ** readability. From this point on down, the normal indentation rules are
8995 *****************************************************************************/
8998 #if defined(VDBE_PROFILE)
8999 *pnCycle
+= sqlite3NProfileCnt
? sqlite3NProfileCnt
: sqlite3Hwtime();
9001 #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
9003 *pnCycle
+= sqlite3Hwtime();
9008 /* The following code adds nothing to the actual functionality
9009 ** of the program. It is only here for testing and debugging.
9010 ** On the other hand, it does burn CPU cycles every time through
9011 ** the evaluator loop. So we can leave it out when NDEBUG is defined.
9014 assert( pOp
>=&aOp
[-1] && pOp
<&aOp
[p
->nOp
-1] );
9017 if( db
->flags
& SQLITE_VdbeTrace
){
9018 u8 opProperty
= sqlite3OpcodeProperty
[pOrigOp
->opcode
];
9019 if( rc
!=0 ) printf("rc=%d\n",rc
);
9020 if( opProperty
& (OPFLG_OUT2
) ){
9021 registerTrace(pOrigOp
->p2
, &aMem
[pOrigOp
->p2
]);
9023 if( opProperty
& OPFLG_OUT3
){
9024 registerTrace(pOrigOp
->p3
, &aMem
[pOrigOp
->p3
]);
9026 if( opProperty
==0xff ){
9027 /* Never happens. This code exists to avoid a harmless linkage
9028 ** warning about sqlite3VdbeRegisterDump() being defined but not
9030 sqlite3VdbeRegisterDump(p
);
9033 #endif /* SQLITE_DEBUG */
9035 } /* The end of the for(;;) loop the loops through opcodes */
9037 /* If we reach this point, it means that execution is finished with
9038 ** an error of some kind.
9041 if( db
->mallocFailed
){
9042 rc
= SQLITE_NOMEM_BKPT
;
9043 }else if( rc
==SQLITE_IOERR_CORRUPTFS
){
9044 rc
= SQLITE_CORRUPT_BKPT
;
9048 if( db
->flags
& SQLITE_VdbeTrace
){
9049 const char *zTrace
= p
->zSql
;
9051 if( aOp
[0].opcode
==OP_Trace
){
9052 zTrace
= aOp
[0].p4
.z
;
9054 if( zTrace
==0 ) zTrace
= "???";
9056 printf("ABORT-due-to-error (rc=%d): %s\n", rc
, zTrace
);
9059 if( p
->zErrMsg
==0 && rc
!=SQLITE_IOERR_NOMEM
){
9060 sqlite3VdbeError(p
, "%s", sqlite3ErrStr(rc
));
9063 sqlite3SystemError(db
, rc
);
9064 testcase( sqlite3GlobalConfig
.xLog
!=0 );
9065 sqlite3_log(rc
, "statement aborts at %d: [%s] %s",
9066 (int)(pOp
- aOp
), p
->zSql
, p
->zErrMsg
);
9067 if( p
->eVdbeState
==VDBE_RUN_STATE
) sqlite3VdbeHalt(p
);
9068 if( rc
==SQLITE_IOERR_NOMEM
) sqlite3OomFault(db
);
9069 if( rc
==SQLITE_CORRUPT
&& db
->autoCommit
==0 ){
9070 db
->flags
|= SQLITE_CorruptRdOnly
;
9073 if( resetSchemaOnFault
>0 ){
9074 sqlite3ResetOneSchema(db
, resetSchemaOnFault
-1);
9077 /* This is the only way out of this procedure. We have to
9078 ** release the mutexes on btrees that were acquired at the
9081 #if defined(VDBE_PROFILE)
9083 *pnCycle
+= sqlite3NProfileCnt
? sqlite3NProfileCnt
: sqlite3Hwtime();
9086 #elif defined(SQLITE_ENABLE_STMT_SCANSTATUS)
9088 *pnCycle
+= sqlite3Hwtime();
9093 #ifndef SQLITE_OMIT_PROGRESS_CALLBACK
9094 while( nVmStep
>=nProgressLimit
&& db
->xProgress
!=0 ){
9095 nProgressLimit
+= db
->nProgressOps
;
9096 if( db
->xProgress(db
->pProgressArg
) ){
9097 nProgressLimit
= LARGEST_UINT64
;
9098 rc
= SQLITE_INTERRUPT
;
9099 goto abort_due_to_error
;
9103 p
->aCounter
[SQLITE_STMTSTATUS_VM_STEP
] += (int)nVmStep
;
9104 if( DbMaskNonZero(p
->lockMask
) ){
9105 sqlite3VdbeLeave(p
);
9107 assert( rc
!=SQLITE_OK
|| nExtraDelete
==0
9108 || sqlite3_strlike("DELETE%",p
->zSql
,0)!=0
9112 /* Jump to here if a string or blob larger than SQLITE_MAX_LENGTH
9116 sqlite3VdbeError(p
, "string or blob too big");
9118 goto abort_due_to_error
;
9120 /* Jump to here if a malloc() fails.
9123 sqlite3OomFault(db
);
9124 sqlite3VdbeError(p
, "out of memory");
9125 rc
= SQLITE_NOMEM_BKPT
;
9126 goto abort_due_to_error
;
9128 /* Jump to here if the sqlite3_interrupt() API sets the interrupt
9131 abort_due_to_interrupt
:
9132 assert( AtomicLoad(&db
->u1
.isInterrupted
) );
9133 rc
= SQLITE_INTERRUPT
;
9134 goto abort_due_to_error
;