4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
11 *************************************************************************
12 ** This module contains C code that generates VDBE code used to process
13 ** the WHERE clause of SQL statements. This module is responsible for
14 ** generating the code that loops through a table looking for applicable
15 ** rows. Indices are selected and used to speed the search when doing
16 ** so is applicable. Because this module is responsible for selecting
17 ** indices, you might also think of this module as the "query optimizer".
19 #include "sqliteInt.h"
23 ** Extra information appended to the end of sqlite3_index_info but not
24 ** visible to the xBestIndex function, at least not directly. The
25 ** sqlite3_vtab_collation() interface knows how to reach it, however.
27 ** This object is not an API and can be changed from one release to the
28 ** next. As long as allocateIndexInfo() and sqlite3_vtab_collation()
29 ** agree on the structure, all will be well.
31 typedef struct HiddenIndexInfo HiddenIndexInfo
;
32 struct HiddenIndexInfo
{
33 WhereClause
*pWC
; /* The Where clause being analyzed */
34 Parse
*pParse
; /* The parsing context */
35 int eDistinct
; /* Value to return from sqlite3_vtab_distinct() */
36 u32 mIn
; /* Mask of terms that are <col> IN (...) */
37 u32 mHandleIn
; /* Terms that vtab will handle as <col> IN (...) */
38 sqlite3_value
*aRhs
[1]; /* RHS values for constraints. MUST BE LAST
39 ** because extra space is allocated to hold up
40 ** to nTerm such values */
43 /* Forward declaration of methods */
44 static int whereLoopResize(sqlite3
*, WhereLoop
*, int);
47 ** Return the estimated number of output rows from a WHERE clause
49 LogEst
sqlite3WhereOutputRowCount(WhereInfo
*pWInfo
){
50 return pWInfo
->nRowOut
;
54 ** Return one of the WHERE_DISTINCT_xxxxx values to indicate how this
55 ** WHERE clause returns outputs for DISTINCT processing.
57 int sqlite3WhereIsDistinct(WhereInfo
*pWInfo
){
58 return pWInfo
->eDistinct
;
62 ** Return the number of ORDER BY terms that are satisfied by the
63 ** WHERE clause. A return of 0 means that the output must be
64 ** completely sorted. A return equal to the number of ORDER BY
65 ** terms means that no sorting is needed at all. A return that
66 ** is positive but less than the number of ORDER BY terms means that
67 ** block sorting is required.
69 int sqlite3WhereIsOrdered(WhereInfo
*pWInfo
){
70 return pWInfo
->nOBSat
<0 ? 0 : pWInfo
->nOBSat
;
74 ** In the ORDER BY LIMIT optimization, if the inner-most loop is known
75 ** to emit rows in increasing order, and if the last row emitted by the
76 ** inner-most loop did not fit within the sorter, then we can skip all
77 ** subsequent rows for the current iteration of the inner loop (because they
78 ** will not fit in the sorter either) and continue with the second inner
79 ** loop - the loop immediately outside the inner-most.
81 ** When a row does not fit in the sorter (because the sorter already
82 ** holds LIMIT+OFFSET rows that are smaller), then a jump is made to the
83 ** label returned by this function.
85 ** If the ORDER BY LIMIT optimization applies, the jump destination should
86 ** be the continuation for the second-inner-most loop. If the ORDER BY
87 ** LIMIT optimization does not apply, then the jump destination should
88 ** be the continuation for the inner-most loop.
90 ** It is always safe for this routine to return the continuation of the
91 ** inner-most loop, in the sense that a correct answer will result.
92 ** Returning the continuation the second inner loop is an optimization
93 ** that might make the code run a little faster, but should not change
96 int sqlite3WhereOrderByLimitOptLabel(WhereInfo
*pWInfo
){
98 if( !pWInfo
->bOrderedInnerLoop
){
99 /* The ORDER BY LIMIT optimization does not apply. Jump to the
100 ** continuation of the inner-most loop. */
101 return pWInfo
->iContinue
;
103 pInner
= &pWInfo
->a
[pWInfo
->nLevel
-1];
104 assert( pInner
->addrNxt
!=0 );
105 return pInner
->pRJ
? pWInfo
->iContinue
: pInner
->addrNxt
;
109 ** While generating code for the min/max optimization, after handling
110 ** the aggregate-step call to min() or max(), check to see if any
111 ** additional looping is required. If the output order is such that
112 ** we are certain that the correct answer has already been found, then
113 ** code an OP_Goto to by pass subsequent processing.
115 ** Any extra OP_Goto that is coded here is an optimization. The
116 ** correct answer should be obtained regardless. This OP_Goto just
117 ** makes the answer appear faster.
119 void sqlite3WhereMinMaxOptEarlyOut(Vdbe
*v
, WhereInfo
*pWInfo
){
122 if( !pWInfo
->bOrderedInnerLoop
) return;
123 if( pWInfo
->nOBSat
==0 ) return;
124 for(i
=pWInfo
->nLevel
-1; i
>=0; i
--){
125 pInner
= &pWInfo
->a
[i
];
126 if( (pInner
->pWLoop
->wsFlags
& WHERE_COLUMN_IN
)!=0 ){
127 sqlite3VdbeGoto(v
, pInner
->addrNxt
);
131 sqlite3VdbeGoto(v
, pWInfo
->iBreak
);
135 ** Return the VDBE address or label to jump to in order to continue
136 ** immediately with the next row of a WHERE clause.
138 int sqlite3WhereContinueLabel(WhereInfo
*pWInfo
){
139 assert( pWInfo
->iContinue
!=0 );
140 return pWInfo
->iContinue
;
144 ** Return the VDBE address or label to jump to in order to break
145 ** out of a WHERE loop.
147 int sqlite3WhereBreakLabel(WhereInfo
*pWInfo
){
148 return pWInfo
->iBreak
;
152 ** Return ONEPASS_OFF (0) if an UPDATE or DELETE statement is unable to
153 ** operate directly on the rowids returned by a WHERE clause. Return
154 ** ONEPASS_SINGLE (1) if the statement can operation directly because only
155 ** a single row is to be changed. Return ONEPASS_MULTI (2) if the one-pass
156 ** optimization can be used on multiple
158 ** If the ONEPASS optimization is used (if this routine returns true)
159 ** then also write the indices of open cursors used by ONEPASS
160 ** into aiCur[0] and aiCur[1]. iaCur[0] gets the cursor of the data
161 ** table and iaCur[1] gets the cursor used by an auxiliary index.
162 ** Either value may be -1, indicating that cursor is not used.
163 ** Any cursors returned will have been opened for writing.
165 ** aiCur[0] and aiCur[1] both get -1 if the where-clause logic is
166 ** unable to use the ONEPASS optimization.
168 int sqlite3WhereOkOnePass(WhereInfo
*pWInfo
, int *aiCur
){
169 memcpy(aiCur
, pWInfo
->aiCurOnePass
, sizeof(int)*2);
170 #ifdef WHERETRACE_ENABLED
171 if( sqlite3WhereTrace
&& pWInfo
->eOnePass
!=ONEPASS_OFF
){
172 sqlite3DebugPrintf("%s cursors: %d %d\n",
173 pWInfo
->eOnePass
==ONEPASS_SINGLE
? "ONEPASS_SINGLE" : "ONEPASS_MULTI",
177 return pWInfo
->eOnePass
;
181 ** Return TRUE if the WHERE loop uses the OP_DeferredSeek opcode to move
182 ** the data cursor to the row selected by the index cursor.
184 int sqlite3WhereUsesDeferredSeek(WhereInfo
*pWInfo
){
185 return pWInfo
->bDeferredSeek
;
189 ** Move the content of pSrc into pDest
191 static void whereOrMove(WhereOrSet
*pDest
, WhereOrSet
*pSrc
){
193 memcpy(pDest
->a
, pSrc
->a
, pDest
->n
*sizeof(pDest
->a
[0]));
197 ** Try to insert a new prerequisite/cost entry into the WhereOrSet pSet.
199 ** The new entry might overwrite an existing entry, or it might be
200 ** appended, or it might be discarded. Do whatever is the right thing
201 ** so that pSet keeps the N_OR_COST best entries seen so far.
203 static int whereOrInsert(
204 WhereOrSet
*pSet
, /* The WhereOrSet to be updated */
205 Bitmask prereq
, /* Prerequisites of the new entry */
206 LogEst rRun
, /* Run-cost of the new entry */
207 LogEst nOut
/* Number of outputs for the new entry */
211 for(i
=pSet
->n
, p
=pSet
->a
; i
>0; i
--, p
++){
212 if( rRun
<=p
->rRun
&& (prereq
& p
->prereq
)==prereq
){
213 goto whereOrInsert_done
;
215 if( p
->rRun
<=rRun
&& (p
->prereq
& prereq
)==p
->prereq
){
219 if( pSet
->n
<N_OR_COST
){
220 p
= &pSet
->a
[pSet
->n
++];
224 for(i
=1; i
<pSet
->n
; i
++){
225 if( p
->rRun
>pSet
->a
[i
].rRun
) p
= pSet
->a
+ i
;
227 if( p
->rRun
<=rRun
) return 0;
232 if( p
->nOut
>nOut
) p
->nOut
= nOut
;
237 ** Return the bitmask for the given cursor number. Return 0 if
238 ** iCursor is not in the set.
240 Bitmask
sqlite3WhereGetMask(WhereMaskSet
*pMaskSet
, int iCursor
){
242 assert( pMaskSet
->n
<=(int)sizeof(Bitmask
)*8 );
243 assert( pMaskSet
->n
>0 || pMaskSet
->ix
[0]<0 );
244 assert( iCursor
>=-1 );
245 if( pMaskSet
->ix
[0]==iCursor
){
248 for(i
=1; i
<pMaskSet
->n
; i
++){
249 if( pMaskSet
->ix
[i
]==iCursor
){
256 /* Allocate memory that is automatically freed when pWInfo is freed.
258 void *sqlite3WhereMalloc(WhereInfo
*pWInfo
, u64 nByte
){
259 WhereMemBlock
*pBlock
;
260 pBlock
= sqlite3DbMallocRawNN(pWInfo
->pParse
->db
, nByte
+sizeof(*pBlock
));
262 pBlock
->pNext
= pWInfo
->pMemToFree
;
264 pWInfo
->pMemToFree
= pBlock
;
267 return (void*)pBlock
;
269 void *sqlite3WhereRealloc(WhereInfo
*pWInfo
, void *pOld
, u64 nByte
){
270 void *pNew
= sqlite3WhereMalloc(pWInfo
, nByte
);
272 WhereMemBlock
*pOldBlk
= (WhereMemBlock
*)pOld
;
274 assert( pOldBlk
->sz
<nByte
);
275 memcpy(pNew
, pOld
, pOldBlk
->sz
);
281 ** Create a new mask for cursor iCursor.
283 ** There is one cursor per table in the FROM clause. The number of
284 ** tables in the FROM clause is limited by a test early in the
285 ** sqlite3WhereBegin() routine. So we know that the pMaskSet->ix[]
286 ** array will never overflow.
288 static void createMask(WhereMaskSet
*pMaskSet
, int iCursor
){
289 assert( pMaskSet
->n
< ArraySize(pMaskSet
->ix
) );
290 pMaskSet
->ix
[pMaskSet
->n
++] = iCursor
;
294 ** If the right-hand branch of the expression is a TK_COLUMN, then return
295 ** a pointer to the right-hand branch. Otherwise, return NULL.
297 static Expr
*whereRightSubexprIsColumn(Expr
*p
){
298 p
= sqlite3ExprSkipCollateAndLikely(p
->pRight
);
299 if( ALWAYS(p
!=0) && p
->op
==TK_COLUMN
&& !ExprHasProperty(p
, EP_FixedCol
) ){
306 ** Advance to the next WhereTerm that matches according to the criteria
307 ** established when the pScan object was initialized by whereScanInit().
308 ** Return NULL if there are no more matching WhereTerms.
310 static WhereTerm
*whereScanNext(WhereScan
*pScan
){
311 int iCur
; /* The cursor on the LHS of the term */
312 i16 iColumn
; /* The column on the LHS of the term. -1 for IPK */
313 Expr
*pX
; /* An expression being tested */
314 WhereClause
*pWC
; /* Shorthand for pScan->pWC */
315 WhereTerm
*pTerm
; /* The term being tested */
316 int k
= pScan
->k
; /* Where to start scanning */
318 assert( pScan
->iEquiv
<=pScan
->nEquiv
);
321 iColumn
= pScan
->aiColumn
[pScan
->iEquiv
-1];
322 iCur
= pScan
->aiCur
[pScan
->iEquiv
-1];
326 for(pTerm
=pWC
->a
+k
; k
<pWC
->nTerm
; k
++, pTerm
++){
327 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 || pTerm
->leftCursor
<0 );
328 if( pTerm
->leftCursor
==iCur
329 && pTerm
->u
.x
.leftColumn
==iColumn
331 || sqlite3ExprCompareSkip(pTerm
->pExpr
->pLeft
,
332 pScan
->pIdxExpr
,iCur
)==0)
333 && (pScan
->iEquiv
<=1 || !ExprHasProperty(pTerm
->pExpr
, EP_OuterON
))
335 if( (pTerm
->eOperator
& WO_EQUIV
)!=0
336 && pScan
->nEquiv
<ArraySize(pScan
->aiCur
)
337 && (pX
= whereRightSubexprIsColumn(pTerm
->pExpr
))!=0
340 for(j
=0; j
<pScan
->nEquiv
; j
++){
341 if( pScan
->aiCur
[j
]==pX
->iTable
342 && pScan
->aiColumn
[j
]==pX
->iColumn
){
346 if( j
==pScan
->nEquiv
){
347 pScan
->aiCur
[j
] = pX
->iTable
;
348 pScan
->aiColumn
[j
] = pX
->iColumn
;
352 if( (pTerm
->eOperator
& pScan
->opMask
)!=0 ){
353 /* Verify the affinity and collating sequence match */
354 if( pScan
->zCollName
&& (pTerm
->eOperator
& WO_ISNULL
)==0 ){
356 Parse
*pParse
= pWC
->pWInfo
->pParse
;
358 if( !sqlite3IndexAffinityOk(pX
, pScan
->idxaff
) ){
362 pColl
= sqlite3ExprCompareCollSeq(pParse
, pX
);
363 if( pColl
==0 ) pColl
= pParse
->db
->pDfltColl
;
364 if( sqlite3StrICmp(pColl
->zName
, pScan
->zCollName
) ){
368 if( (pTerm
->eOperator
& (WO_EQ
|WO_IS
))!=0
369 && (pX
= pTerm
->pExpr
->pRight
, ALWAYS(pX
!=0))
371 && pX
->iTable
==pScan
->aiCur
[0]
372 && pX
->iColumn
==pScan
->aiColumn
[0]
374 testcase( pTerm
->eOperator
& WO_IS
);
379 #ifdef WHERETRACE_ENABLED
380 if( sqlite3WhereTrace
& 0x20000 ){
382 sqlite3DebugPrintf("SCAN-TERM %p: nEquiv=%d",
383 pTerm
, pScan
->nEquiv
);
384 for(ii
=0; ii
<pScan
->nEquiv
; ii
++){
385 sqlite3DebugPrintf(" {%d:%d}",
386 pScan
->aiCur
[ii
], pScan
->aiColumn
[ii
]);
388 sqlite3DebugPrintf("\n");
398 if( pScan
->iEquiv
>=pScan
->nEquiv
) break;
399 pWC
= pScan
->pOrigWC
;
407 ** This is whereScanInit() for the case of an index on an expression.
408 ** It is factored out into a separate tail-recursion subroutine so that
409 ** the normal whereScanInit() routine, which is a high-runner, does not
410 ** need to push registers onto the stack as part of its prologue.
412 static SQLITE_NOINLINE WhereTerm
*whereScanInitIndexExpr(WhereScan
*pScan
){
413 pScan
->idxaff
= sqlite3ExprAffinity(pScan
->pIdxExpr
);
414 return whereScanNext(pScan
);
418 ** Initialize a WHERE clause scanner object. Return a pointer to the
419 ** first match. Return NULL if there are no matches.
421 ** The scanner will be searching the WHERE clause pWC. It will look
422 ** for terms of the form "X <op> <expr>" where X is column iColumn of table
423 ** iCur. Or if pIdx!=0 then X is column iColumn of index pIdx. pIdx
424 ** must be one of the indexes of table iCur.
426 ** The <op> must be one of the operators described by opMask.
428 ** If the search is for X and the WHERE clause contains terms of the
429 ** form X=Y then this routine might also return terms of the form
430 ** "Y <op> <expr>". The number of levels of transitivity is limited,
431 ** but is enough to handle most commonly occurring SQL statements.
433 ** If X is not the INTEGER PRIMARY KEY then X must be compatible with
436 static WhereTerm
*whereScanInit(
437 WhereScan
*pScan
, /* The WhereScan object being initialized */
438 WhereClause
*pWC
, /* The WHERE clause to be scanned */
439 int iCur
, /* Cursor to scan for */
440 int iColumn
, /* Column to scan for */
441 u32 opMask
, /* Operator(s) to scan for */
442 Index
*pIdx
/* Must be compatible with this index */
444 pScan
->pOrigWC
= pWC
;
448 pScan
->zCollName
= 0;
449 pScan
->opMask
= opMask
;
451 pScan
->aiCur
[0] = iCur
;
456 iColumn
= pIdx
->aiColumn
[j
];
457 if( iColumn
==pIdx
->pTable
->iPKey
){
459 }else if( iColumn
>=0 ){
460 pScan
->idxaff
= pIdx
->pTable
->aCol
[iColumn
].affinity
;
461 pScan
->zCollName
= pIdx
->azColl
[j
];
462 }else if( iColumn
==XN_EXPR
){
463 pScan
->pIdxExpr
= pIdx
->aColExpr
->a
[j
].pExpr
;
464 pScan
->zCollName
= pIdx
->azColl
[j
];
465 pScan
->aiColumn
[0] = XN_EXPR
;
466 return whereScanInitIndexExpr(pScan
);
468 }else if( iColumn
==XN_EXPR
){
471 pScan
->aiColumn
[0] = iColumn
;
472 return whereScanNext(pScan
);
476 ** Search for a term in the WHERE clause that is of the form "X <op> <expr>"
477 ** where X is a reference to the iColumn of table iCur or of index pIdx
478 ** if pIdx!=0 and <op> is one of the WO_xx operator codes specified by
479 ** the op parameter. Return a pointer to the term. Return 0 if not found.
481 ** If pIdx!=0 then it must be one of the indexes of table iCur.
482 ** Search for terms matching the iColumn-th column of pIdx
483 ** rather than the iColumn-th column of table iCur.
485 ** The term returned might by Y=<expr> if there is another constraint in
486 ** the WHERE clause that specifies that X=Y. Any such constraints will be
487 ** identified by the WO_EQUIV bit in the pTerm->eOperator field. The
488 ** aiCur[]/iaColumn[] arrays hold X and all its equivalents. There are 11
489 ** slots in aiCur[]/aiColumn[] so that means we can look for X plus up to 10
490 ** other equivalent values. Hence a search for X will return <expr> if X=A1
491 ** and A1=A2 and A2=A3 and ... and A9=A10 and A10=<expr>.
493 ** If there are multiple terms in the WHERE clause of the form "X <op> <expr>"
494 ** then try for the one with no dependencies on <expr> - in other words where
495 ** <expr> is a constant expression of some kind. Only return entries of
496 ** the form "X <op> Y" where Y is a column in another table if no terms of
497 ** the form "X <op> <const-expr>" exist. If no terms with a constant RHS
498 ** exist, try to return a term that does not use WO_EQUIV.
500 WhereTerm
*sqlite3WhereFindTerm(
501 WhereClause
*pWC
, /* The WHERE clause to be searched */
502 int iCur
, /* Cursor number of LHS */
503 int iColumn
, /* Column number of LHS */
504 Bitmask notReady
, /* RHS must not overlap with this mask */
505 u32 op
, /* Mask of WO_xx values describing operator */
506 Index
*pIdx
/* Must be compatible with this index, if not NULL */
508 WhereTerm
*pResult
= 0;
512 p
= whereScanInit(&scan
, pWC
, iCur
, iColumn
, op
, pIdx
);
515 if( (p
->prereqRight
& notReady
)==0 ){
516 if( p
->prereqRight
==0 && (p
->eOperator
&op
)!=0 ){
517 testcase( p
->eOperator
& WO_IS
);
520 if( pResult
==0 ) pResult
= p
;
522 p
= whereScanNext(&scan
);
528 ** This function searches pList for an entry that matches the iCol-th column
531 ** If such an expression is found, its index in pList->a[] is returned. If
532 ** no expression is found, -1 is returned.
534 static int findIndexCol(
535 Parse
*pParse
, /* Parse context */
536 ExprList
*pList
, /* Expression list to search */
537 int iBase
, /* Cursor for table associated with pIdx */
538 Index
*pIdx
, /* Index to match column of */
539 int iCol
/* Column of index to match */
542 const char *zColl
= pIdx
->azColl
[iCol
];
544 for(i
=0; i
<pList
->nExpr
; i
++){
545 Expr
*p
= sqlite3ExprSkipCollateAndLikely(pList
->a
[i
].pExpr
);
547 && (p
->op
==TK_COLUMN
|| p
->op
==TK_AGG_COLUMN
)
548 && p
->iColumn
==pIdx
->aiColumn
[iCol
]
551 CollSeq
*pColl
= sqlite3ExprNNCollSeq(pParse
, pList
->a
[i
].pExpr
);
552 if( 0==sqlite3StrICmp(pColl
->zName
, zColl
) ){
562 ** Return TRUE if the iCol-th column of index pIdx is NOT NULL
564 static int indexColumnNotNull(Index
*pIdx
, int iCol
){
567 assert( iCol
>=0 && iCol
<pIdx
->nColumn
);
568 j
= pIdx
->aiColumn
[iCol
];
570 return pIdx
->pTable
->aCol
[j
].notNull
;
575 return 0; /* Assume an indexed expression can always yield a NULL */
581 ** Return true if the DISTINCT expression-list passed as the third argument
584 ** A DISTINCT list is redundant if any subset of the columns in the
585 ** DISTINCT list are collectively unique and individually non-null.
587 static int isDistinctRedundant(
588 Parse
*pParse
, /* Parsing context */
589 SrcList
*pTabList
, /* The FROM clause */
590 WhereClause
*pWC
, /* The WHERE clause */
591 ExprList
*pDistinct
/* The result set that needs to be DISTINCT */
598 /* If there is more than one table or sub-select in the FROM clause of
599 ** this query, then it will not be possible to show that the DISTINCT
600 ** clause is redundant. */
601 if( pTabList
->nSrc
!=1 ) return 0;
602 iBase
= pTabList
->a
[0].iCursor
;
603 pTab
= pTabList
->a
[0].pTab
;
605 /* If any of the expressions is an IPK column on table iBase, then return
606 ** true. Note: The (p->iTable==iBase) part of this test may be false if the
607 ** current SELECT is a correlated sub-query.
609 for(i
=0; i
<pDistinct
->nExpr
; i
++){
610 Expr
*p
= sqlite3ExprSkipCollateAndLikely(pDistinct
->a
[i
].pExpr
);
611 if( NEVER(p
==0) ) continue;
612 if( p
->op
!=TK_COLUMN
&& p
->op
!=TK_AGG_COLUMN
) continue;
613 if( p
->iTable
==iBase
&& p
->iColumn
<0 ) return 1;
616 /* Loop through all indices on the table, checking each to see if it makes
617 ** the DISTINCT qualifier redundant. It does so if:
619 ** 1. The index is itself UNIQUE, and
621 ** 2. All of the columns in the index are either part of the pDistinct
622 ** list, or else the WHERE clause contains a term of the form "col=X",
623 ** where X is a constant value. The collation sequences of the
624 ** comparison and select-list expressions must match those of the index.
626 ** 3. All of those index columns for which the WHERE clause does not
627 ** contain a "col=X" term are subject to a NOT NULL constraint.
629 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
630 if( !IsUniqueIndex(pIdx
) ) continue;
631 if( pIdx
->pPartIdxWhere
) continue;
632 for(i
=0; i
<pIdx
->nKeyCol
; i
++){
633 if( 0==sqlite3WhereFindTerm(pWC
, iBase
, i
, ~(Bitmask
)0, WO_EQ
, pIdx
) ){
634 if( findIndexCol(pParse
, pDistinct
, iBase
, pIdx
, i
)<0 ) break;
635 if( indexColumnNotNull(pIdx
, i
)==0 ) break;
638 if( i
==pIdx
->nKeyCol
){
639 /* This index implies that the DISTINCT qualifier is redundant. */
649 ** Estimate the logarithm of the input value to base 2.
651 static LogEst
estLog(LogEst N
){
652 return N
<=10 ? 0 : sqlite3LogEst(N
) - 33;
656 ** Convert OP_Column opcodes to OP_Copy in previously generated code.
658 ** This routine runs over generated VDBE code and translates OP_Column
659 ** opcodes into OP_Copy when the table is being accessed via co-routine
660 ** instead of via table lookup.
662 ** If the iAutoidxCur is not zero, then any OP_Rowid instructions on
663 ** cursor iTabCur are transformed into OP_Sequence opcode for the
664 ** iAutoidxCur cursor, in order to generate unique rowids for the
665 ** automatic index being generated.
667 static void translateColumnToCopy(
668 Parse
*pParse
, /* Parsing context */
669 int iStart
, /* Translate from this opcode to the end */
670 int iTabCur
, /* OP_Column/OP_Rowid references to this table */
671 int iRegister
, /* The first column is in this register */
672 int iAutoidxCur
/* If non-zero, cursor of autoindex being generated */
674 Vdbe
*v
= pParse
->pVdbe
;
675 VdbeOp
*pOp
= sqlite3VdbeGetOp(v
, iStart
);
676 int iEnd
= sqlite3VdbeCurrentAddr(v
);
677 if( pParse
->db
->mallocFailed
) return;
678 for(; iStart
<iEnd
; iStart
++, pOp
++){
679 if( pOp
->p1
!=iTabCur
) continue;
680 if( pOp
->opcode
==OP_Column
){
682 if( pParse
->db
->flags
& SQLITE_VdbeAddopTrace
){
683 printf("TRANSLATE OP_Column to OP_Copy at %d\n", iStart
);
686 pOp
->opcode
= OP_Copy
;
687 pOp
->p1
= pOp
->p2
+ iRegister
;
690 pOp
->p5
= 2; /* Cause the MEM_Subtype flag to be cleared */
691 }else if( pOp
->opcode
==OP_Rowid
){
693 if( pParse
->db
->flags
& SQLITE_VdbeAddopTrace
){
694 printf("TRANSLATE OP_Rowid to OP_Sequence at %d\n", iStart
);
697 pOp
->opcode
= OP_Sequence
;
698 pOp
->p1
= iAutoidxCur
;
699 #ifdef SQLITE_ALLOW_ROWID_IN_VIEW
700 if( iAutoidxCur
==0 ){
701 pOp
->opcode
= OP_Null
;
710 ** Two routines for printing the content of an sqlite3_index_info
711 ** structure. Used for testing and debugging only. If neither
712 ** SQLITE_TEST or SQLITE_DEBUG are defined, then these routines
715 #if !defined(SQLITE_OMIT_VIRTUALTABLE) && defined(WHERETRACE_ENABLED)
716 static void whereTraceIndexInfoInputs(sqlite3_index_info
*p
){
718 if( (sqlite3WhereTrace
& 0x10)==0 ) return;
719 for(i
=0; i
<p
->nConstraint
; i
++){
721 " constraint[%d]: col=%d termid=%d op=%d usabled=%d collseq=%s\n",
723 p
->aConstraint
[i
].iColumn
,
724 p
->aConstraint
[i
].iTermOffset
,
725 p
->aConstraint
[i
].op
,
726 p
->aConstraint
[i
].usable
,
727 sqlite3_vtab_collation(p
,i
));
729 for(i
=0; i
<p
->nOrderBy
; i
++){
730 sqlite3DebugPrintf(" orderby[%d]: col=%d desc=%d\n",
732 p
->aOrderBy
[i
].iColumn
,
733 p
->aOrderBy
[i
].desc
);
736 static void whereTraceIndexInfoOutputs(sqlite3_index_info
*p
){
738 if( (sqlite3WhereTrace
& 0x10)==0 ) return;
739 for(i
=0; i
<p
->nConstraint
; i
++){
740 sqlite3DebugPrintf(" usage[%d]: argvIdx=%d omit=%d\n",
742 p
->aConstraintUsage
[i
].argvIndex
,
743 p
->aConstraintUsage
[i
].omit
);
745 sqlite3DebugPrintf(" idxNum=%d\n", p
->idxNum
);
746 sqlite3DebugPrintf(" idxStr=%s\n", p
->idxStr
);
747 sqlite3DebugPrintf(" orderByConsumed=%d\n", p
->orderByConsumed
);
748 sqlite3DebugPrintf(" estimatedCost=%g\n", p
->estimatedCost
);
749 sqlite3DebugPrintf(" estimatedRows=%lld\n", p
->estimatedRows
);
752 #define whereTraceIndexInfoInputs(A)
753 #define whereTraceIndexInfoOutputs(A)
757 ** We know that pSrc is an operand of an outer join. Return true if
758 ** pTerm is a constraint that is compatible with that join.
760 ** pTerm must be EP_OuterON if pSrc is the right operand of an
761 ** outer join. pTerm can be either EP_OuterON or EP_InnerON if pSrc
762 ** is the left operand of a RIGHT join.
764 ** See https://sqlite.org/forum/forumpost/206d99a16dd9212f
765 ** for an example of a WHERE clause constraints that may not be used on
766 ** the right table of a RIGHT JOIN because the constraint implies a
767 ** not-NULL condition on the left table of the RIGHT JOIN.
769 static int constraintCompatibleWithOuterJoin(
770 const WhereTerm
*pTerm
, /* WHERE clause term to check */
771 const SrcItem
*pSrc
/* Table we are trying to access */
773 assert( (pSrc
->fg
.jointype
&(JT_LEFT
|JT_LTORJ
|JT_RIGHT
))!=0 ); /* By caller */
774 testcase( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))==JT_LEFT
);
775 testcase( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))==JT_LTORJ
);
776 testcase( ExprHasProperty(pTerm
->pExpr
, EP_OuterON
) )
777 testcase( ExprHasProperty(pTerm
->pExpr
, EP_InnerON
) );
778 if( !ExprHasProperty(pTerm
->pExpr
, EP_OuterON
|EP_InnerON
)
779 || pTerm
->pExpr
->w
.iJoin
!= pSrc
->iCursor
783 if( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_RIGHT
))!=0
784 && ExprHasProperty(pTerm
->pExpr
, EP_InnerON
)
793 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
795 ** Return TRUE if the WHERE clause term pTerm is of a form where it
796 ** could be used with an index to access pSrc, assuming an appropriate
799 static int termCanDriveIndex(
800 const WhereTerm
*pTerm
, /* WHERE clause term to check */
801 const SrcItem
*pSrc
, /* Table we are trying to access */
802 const Bitmask notReady
/* Tables in outer loops of the join */
805 if( pTerm
->leftCursor
!=pSrc
->iCursor
) return 0;
806 if( (pTerm
->eOperator
& (WO_EQ
|WO_IS
))==0 ) return 0;
807 assert( (pSrc
->fg
.jointype
& JT_RIGHT
)==0 );
808 if( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))!=0
809 && !constraintCompatibleWithOuterJoin(pTerm
,pSrc
)
811 return 0; /* See https://sqlite.org/forum/forumpost/51e6959f61 */
813 if( (pTerm
->prereqRight
& notReady
)!=0 ) return 0;
814 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 );
815 if( pTerm
->u
.x
.leftColumn
<0 ) return 0;
816 aff
= pSrc
->pTab
->aCol
[pTerm
->u
.x
.leftColumn
].affinity
;
817 if( !sqlite3IndexAffinityOk(pTerm
->pExpr
, aff
) ) return 0;
818 testcase( pTerm
->pExpr
->op
==TK_IS
);
824 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
826 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
828 ** Argument pIdx represents an automatic index that the current statement
829 ** will create and populate. Add an OP_Explain with text of the form:
831 ** CREATE AUTOMATIC INDEX ON <table>(<cols>) [WHERE <expr>]
833 ** This is only required if sqlite3_stmt_scanstatus() is enabled, to
834 ** associate an SQLITE_SCANSTAT_NCYCLE and SQLITE_SCANSTAT_NLOOP
835 ** values with. In order to avoid breaking legacy code and test cases,
836 ** the OP_Explain is not added if this is an EXPLAIN QUERY PLAN command.
838 static void explainAutomaticIndex(
840 Index
*pIdx
, /* Automatic index to explain */
841 int bPartial
, /* True if pIdx is a partial index */
842 int *pAddrExplain
/* OUT: Address of OP_Explain */
844 if( IS_STMT_SCANSTATUS(pParse
->db
) && pParse
->explain
!=2 ){
845 Table
*pTab
= pIdx
->pTable
;
846 const char *zSep
= "";
849 sqlite3_str
*pStr
= sqlite3_str_new(pParse
->db
);
850 sqlite3_str_appendf(pStr
,"CREATE AUTOMATIC INDEX ON %s(", pTab
->zName
);
851 assert( pIdx
->nColumn
>1 );
852 assert( pIdx
->aiColumn
[pIdx
->nColumn
-1]==XN_ROWID
);
853 for(ii
=0; ii
<(pIdx
->nColumn
-1); ii
++){
854 const char *zName
= 0;
855 int iCol
= pIdx
->aiColumn
[ii
];
857 zName
= pTab
->aCol
[iCol
].zCnName
;
858 sqlite3_str_appendf(pStr
, "%s%s", zSep
, zName
);
861 zText
= sqlite3_str_finish(pStr
);
863 sqlite3OomFault(pParse
->db
);
865 *pAddrExplain
= sqlite3VdbeExplain(
866 pParse
, 0, "%s)%s", zText
, (bPartial
? " WHERE <expr>" : "")
873 # define explainAutomaticIndex(a,b,c,d)
877 ** Generate code to construct the Index object for an automatic index
878 ** and to set up the WhereLevel object pLevel so that the code generator
879 ** makes use of the automatic index.
881 static SQLITE_NOINLINE
void constructAutomaticIndex(
882 Parse
*pParse
, /* The parsing context */
883 WhereClause
*pWC
, /* The WHERE clause */
884 const Bitmask notReady
, /* Mask of cursors that are not available */
885 WhereLevel
*pLevel
/* Write new index here */
887 int nKeyCol
; /* Number of columns in the constructed index */
888 WhereTerm
*pTerm
; /* A single term of the WHERE clause */
889 WhereTerm
*pWCEnd
; /* End of pWC->a[] */
890 Index
*pIdx
; /* Object describing the transient index */
891 Vdbe
*v
; /* Prepared statement under construction */
892 int addrInit
; /* Address of the initialization bypass jump */
893 Table
*pTable
; /* The table being indexed */
894 int addrTop
; /* Top of the index fill loop */
895 int regRecord
; /* Register holding an index record */
896 int n
; /* Column counter */
897 int i
; /* Loop counter */
898 int mxBitCol
; /* Maximum column in pSrc->colUsed */
899 CollSeq
*pColl
; /* Collating sequence to on a column */
900 WhereLoop
*pLoop
; /* The Loop object */
901 char *zNotUsed
; /* Extra space on the end of pIdx */
902 Bitmask idxCols
; /* Bitmap of columns used for indexing */
903 Bitmask extraCols
; /* Bitmap of additional columns */
904 u8 sentWarning
= 0; /* True if a warning has been issued */
905 u8 useBloomFilter
= 0; /* True to also add a Bloom filter */
906 Expr
*pPartial
= 0; /* Partial Index Expression */
907 int iContinue
= 0; /* Jump here to skip excluded rows */
908 SrcList
*pTabList
; /* The complete FROM clause */
909 SrcItem
*pSrc
; /* The FROM clause term to get the next index */
910 int addrCounter
= 0; /* Address where integer counter is initialized */
911 int regBase
; /* Array of registers where record is assembled */
912 #ifdef SQLITE_ENABLE_STMT_SCANSTATUS
913 int addrExp
= 0; /* Address of OP_Explain */
916 /* Generate code to skip over the creation and initialization of the
917 ** transient index on 2nd and subsequent iterations of the loop. */
920 addrInit
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
922 /* Count the number of columns that will be added to the index
923 ** and used to match WHERE clause constraints */
925 pTabList
= pWC
->pWInfo
->pTabList
;
926 pSrc
= &pTabList
->a
[pLevel
->iFrom
];
928 pWCEnd
= &pWC
->a
[pWC
->nTerm
];
929 pLoop
= pLevel
->pWLoop
;
931 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
; pTerm
++){
932 Expr
*pExpr
= pTerm
->pExpr
;
933 /* Make the automatic index a partial index if there are terms in the
934 ** WHERE clause (or the ON clause of a LEFT join) that constrain which
935 ** rows of the target table (pSrc) that can be used. */
936 if( (pTerm
->wtFlags
& TERM_VIRTUAL
)==0
937 && sqlite3ExprIsSingleTableConstraint(pExpr
, pTabList
, pLevel
->iFrom
)
939 pPartial
= sqlite3ExprAnd(pParse
, pPartial
,
940 sqlite3ExprDup(pParse
->db
, pExpr
, 0));
942 if( termCanDriveIndex(pTerm
, pSrc
, notReady
) ){
945 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 );
946 iCol
= pTerm
->u
.x
.leftColumn
;
947 cMask
= iCol
>=BMS
? MASKBIT(BMS
-1) : MASKBIT(iCol
);
948 testcase( iCol
==BMS
);
949 testcase( iCol
==BMS
-1 );
951 sqlite3_log(SQLITE_WARNING_AUTOINDEX
,
952 "automatic index on %s(%s)", pTable
->zName
,
953 pTable
->aCol
[iCol
].zCnName
);
956 if( (idxCols
& cMask
)==0 ){
957 if( whereLoopResize(pParse
->db
, pLoop
, nKeyCol
+1) ){
958 goto end_auto_index_create
;
960 pLoop
->aLTerm
[nKeyCol
++] = pTerm
;
965 assert( nKeyCol
>0 || pParse
->db
->mallocFailed
);
966 pLoop
->u
.btree
.nEq
= pLoop
->nLTerm
= nKeyCol
;
967 pLoop
->wsFlags
= WHERE_COLUMN_EQ
| WHERE_IDX_ONLY
| WHERE_INDEXED
970 /* Count the number of additional columns needed to create a
971 ** covering index. A "covering index" is an index that contains all
972 ** columns that are needed by the query. With a covering index, the
973 ** original table never needs to be accessed. Automatic indices must
974 ** be a covering index because the index will not be updated if the
975 ** original table changes and the index and table cannot both be used
976 ** if they go out of sync.
978 if( IsView(pTable
) ){
981 extraCols
= pSrc
->colUsed
& (~idxCols
| MASKBIT(BMS
-1));
983 mxBitCol
= MIN(BMS
-1,pTable
->nCol
);
984 testcase( pTable
->nCol
==BMS
-1 );
985 testcase( pTable
->nCol
==BMS
-2 );
986 for(i
=0; i
<mxBitCol
; i
++){
987 if( extraCols
& MASKBIT(i
) ) nKeyCol
++;
989 if( pSrc
->colUsed
& MASKBIT(BMS
-1) ){
990 nKeyCol
+= pTable
->nCol
- BMS
+ 1;
993 /* Construct the Index object to describe this index */
994 pIdx
= sqlite3AllocateIndexObject(pParse
->db
, nKeyCol
+1, 0, &zNotUsed
);
995 if( pIdx
==0 ) goto end_auto_index_create
;
996 pLoop
->u
.btree
.pIndex
= pIdx
;
997 pIdx
->zName
= "auto-index";
998 pIdx
->pTable
= pTable
;
1001 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
; pTerm
++){
1002 if( termCanDriveIndex(pTerm
, pSrc
, notReady
) ){
1005 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 );
1006 iCol
= pTerm
->u
.x
.leftColumn
;
1007 cMask
= iCol
>=BMS
? MASKBIT(BMS
-1) : MASKBIT(iCol
);
1008 testcase( iCol
==BMS
-1 );
1009 testcase( iCol
==BMS
);
1010 if( (idxCols
& cMask
)==0 ){
1011 Expr
*pX
= pTerm
->pExpr
;
1013 pIdx
->aiColumn
[n
] = pTerm
->u
.x
.leftColumn
;
1014 pColl
= sqlite3ExprCompareCollSeq(pParse
, pX
);
1015 assert( pColl
!=0 || pParse
->nErr
>0 ); /* TH3 collate01.800 */
1016 pIdx
->azColl
[n
] = pColl
? pColl
->zName
: sqlite3StrBINARY
;
1018 if( ALWAYS(pX
->pLeft
!=0)
1019 && sqlite3ExprAffinity(pX
->pLeft
)!=SQLITE_AFF_TEXT
1021 /* TUNING: only use a Bloom filter on an automatic index
1022 ** if one or more key columns has the ability to hold numeric
1023 ** values, since strings all have the same hash in the Bloom
1024 ** filter implementation and hence a Bloom filter on a text column
1025 ** is not usually helpful. */
1031 assert( (u32
)n
==pLoop
->u
.btree
.nEq
);
1033 /* Add additional columns needed to make the automatic index into
1034 ** a covering index */
1035 for(i
=0; i
<mxBitCol
; i
++){
1036 if( extraCols
& MASKBIT(i
) ){
1037 pIdx
->aiColumn
[n
] = i
;
1038 pIdx
->azColl
[n
] = sqlite3StrBINARY
;
1042 if( pSrc
->colUsed
& MASKBIT(BMS
-1) ){
1043 for(i
=BMS
-1; i
<pTable
->nCol
; i
++){
1044 pIdx
->aiColumn
[n
] = i
;
1045 pIdx
->azColl
[n
] = sqlite3StrBINARY
;
1049 assert( n
==nKeyCol
);
1050 pIdx
->aiColumn
[n
] = XN_ROWID
;
1051 pIdx
->azColl
[n
] = sqlite3StrBINARY
;
1053 /* Create the automatic index */
1054 explainAutomaticIndex(pParse
, pIdx
, pPartial
!=0, &addrExp
);
1055 assert( pLevel
->iIdxCur
>=0 );
1056 pLevel
->iIdxCur
= pParse
->nTab
++;
1057 sqlite3VdbeAddOp2(v
, OP_OpenAutoindex
, pLevel
->iIdxCur
, nKeyCol
+1);
1058 sqlite3VdbeSetP4KeyInfo(pParse
, pIdx
);
1059 VdbeComment((v
, "for %s", pTable
->zName
));
1060 if( OptimizationEnabled(pParse
->db
, SQLITE_BloomFilter
) && useBloomFilter
){
1061 sqlite3WhereExplainBloomFilter(pParse
, pWC
->pWInfo
, pLevel
);
1062 pLevel
->regFilter
= ++pParse
->nMem
;
1063 sqlite3VdbeAddOp2(v
, OP_Blob
, 10000, pLevel
->regFilter
);
1066 /* Fill the automatic index with content */
1067 assert( pSrc
== &pWC
->pWInfo
->pTabList
->a
[pLevel
->iFrom
] );
1068 if( pSrc
->fg
.viaCoroutine
){
1069 int regYield
= pSrc
->regReturn
;
1070 addrCounter
= sqlite3VdbeAddOp2(v
, OP_Integer
, 0, 0);
1071 sqlite3VdbeAddOp3(v
, OP_InitCoroutine
, regYield
, 0, pSrc
->addrFillSub
);
1072 addrTop
= sqlite3VdbeAddOp1(v
, OP_Yield
, regYield
);
1074 VdbeComment((v
, "next row of %s", pSrc
->pTab
->zName
));
1076 addrTop
= sqlite3VdbeAddOp1(v
, OP_Rewind
, pLevel
->iTabCur
); VdbeCoverage(v
);
1079 iContinue
= sqlite3VdbeMakeLabel(pParse
);
1080 sqlite3ExprIfFalse(pParse
, pPartial
, iContinue
, SQLITE_JUMPIFNULL
);
1081 pLoop
->wsFlags
|= WHERE_PARTIALIDX
;
1083 regRecord
= sqlite3GetTempReg(pParse
);
1084 regBase
= sqlite3GenerateIndexKey(
1085 pParse
, pIdx
, pLevel
->iTabCur
, regRecord
, 0, 0, 0, 0
1087 if( pLevel
->regFilter
){
1088 sqlite3VdbeAddOp4Int(v
, OP_FilterAdd
, pLevel
->regFilter
, 0,
1089 regBase
, pLoop
->u
.btree
.nEq
);
1091 sqlite3VdbeScanStatusCounters(v
, addrExp
, addrExp
, sqlite3VdbeCurrentAddr(v
));
1092 sqlite3VdbeAddOp2(v
, OP_IdxInsert
, pLevel
->iIdxCur
, regRecord
);
1093 sqlite3VdbeChangeP5(v
, OPFLAG_USESEEKRESULT
);
1094 if( pPartial
) sqlite3VdbeResolveLabel(v
, iContinue
);
1095 if( pSrc
->fg
.viaCoroutine
){
1096 sqlite3VdbeChangeP2(v
, addrCounter
, regBase
+n
);
1097 testcase( pParse
->db
->mallocFailed
);
1098 assert( pLevel
->iIdxCur
>0 );
1099 translateColumnToCopy(pParse
, addrTop
, pLevel
->iTabCur
,
1100 pSrc
->regResult
, pLevel
->iIdxCur
);
1101 sqlite3VdbeGoto(v
, addrTop
);
1102 pSrc
->fg
.viaCoroutine
= 0;
1104 sqlite3VdbeAddOp2(v
, OP_Next
, pLevel
->iTabCur
, addrTop
+1); VdbeCoverage(v
);
1105 sqlite3VdbeChangeP5(v
, SQLITE_STMTSTATUS_AUTOINDEX
);
1107 sqlite3VdbeJumpHere(v
, addrTop
);
1108 sqlite3ReleaseTempReg(pParse
, regRecord
);
1110 /* Jump here when skipping the initialization */
1111 sqlite3VdbeJumpHere(v
, addrInit
);
1112 sqlite3VdbeScanStatusRange(v
, addrExp
, addrExp
, -1);
1114 end_auto_index_create
:
1115 sqlite3ExprDelete(pParse
->db
, pPartial
);
1117 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
1120 ** Generate bytecode that will initialize a Bloom filter that is appropriate
1123 ** If there are inner loops within pLevel that have the WHERE_BLOOMFILTER
1124 ** flag set, initialize a Bloomfilter for them as well. Except don't do
1125 ** this recursive initialization if the SQLITE_BloomPulldown optimization has
1128 ** When the Bloom filter is initialized, the WHERE_BLOOMFILTER flag is cleared
1129 ** from the loop, but the regFilter value is set to a register that implements
1130 ** the Bloom filter. When regFilter is positive, the
1131 ** sqlite3WhereCodeOneLoopStart() will generate code to test the Bloom filter
1132 ** and skip the subsequence B-Tree seek if the Bloom filter indicates that
1133 ** no matching rows exist.
1135 ** This routine may only be called if it has previously been determined that
1136 ** the loop would benefit from a Bloom filter, and the WHERE_BLOOMFILTER bit
1139 static SQLITE_NOINLINE
void sqlite3ConstructBloomFilter(
1140 WhereInfo
*pWInfo
, /* The WHERE clause */
1141 int iLevel
, /* Index in pWInfo->a[] that is pLevel */
1142 WhereLevel
*pLevel
, /* Make a Bloom filter for this FROM term */
1143 Bitmask notReady
/* Loops that are not ready */
1145 int addrOnce
; /* Address of opening OP_Once */
1146 int addrTop
; /* Address of OP_Rewind */
1147 int addrCont
; /* Jump here to skip a row */
1148 const WhereTerm
*pTerm
; /* For looping over WHERE clause terms */
1149 const WhereTerm
*pWCEnd
; /* Last WHERE clause term */
1150 Parse
*pParse
= pWInfo
->pParse
; /* Parsing context */
1151 Vdbe
*v
= pParse
->pVdbe
; /* VDBE under construction */
1152 WhereLoop
*pLoop
= pLevel
->pWLoop
; /* The loop being coded */
1153 int iCur
; /* Cursor for table getting the filter */
1154 IndexedExpr
*saved_pIdxEpr
; /* saved copy of Parse.pIdxEpr */
1155 IndexedExpr
*saved_pIdxPartExpr
; /* saved copy of Parse.pIdxPartExpr */
1157 saved_pIdxEpr
= pParse
->pIdxEpr
;
1158 saved_pIdxPartExpr
= pParse
->pIdxPartExpr
;
1159 pParse
->pIdxEpr
= 0;
1160 pParse
->pIdxPartExpr
= 0;
1164 assert( pLoop
->wsFlags
& WHERE_BLOOMFILTER
);
1165 assert( (pLoop
->wsFlags
& WHERE_IDX_ONLY
)==0 );
1167 addrOnce
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
1169 const SrcList
*pTabList
;
1170 const SrcItem
*pItem
;
1174 sqlite3WhereExplainBloomFilter(pParse
, pWInfo
, pLevel
);
1175 addrCont
= sqlite3VdbeMakeLabel(pParse
);
1176 iCur
= pLevel
->iTabCur
;
1177 pLevel
->regFilter
= ++pParse
->nMem
;
1179 /* The Bloom filter is a Blob held in a register. Initialize it
1180 ** to zero-filled blob of at least 80K bits, but maybe more if the
1181 ** estimated size of the table is larger. We could actually
1182 ** measure the size of the table at run-time using OP_Count with
1183 ** P3==1 and use that value to initialize the blob. But that makes
1184 ** testing complicated. By basing the blob size on the value in the
1185 ** sqlite_stat1 table, testing is much easier.
1187 pTabList
= pWInfo
->pTabList
;
1188 iSrc
= pLevel
->iFrom
;
1189 pItem
= &pTabList
->a
[iSrc
];
1193 sz
= sqlite3LogEstToInt(pTab
->nRowLogEst
);
1196 }else if( sz
>10000000 ){
1199 sqlite3VdbeAddOp2(v
, OP_Blob
, (int)sz
, pLevel
->regFilter
);
1201 addrTop
= sqlite3VdbeAddOp1(v
, OP_Rewind
, iCur
); VdbeCoverage(v
);
1202 pWCEnd
= &pWInfo
->sWC
.a
[pWInfo
->sWC
.nTerm
];
1203 for(pTerm
=pWInfo
->sWC
.a
; pTerm
<pWCEnd
; pTerm
++){
1204 Expr
*pExpr
= pTerm
->pExpr
;
1205 if( (pTerm
->wtFlags
& TERM_VIRTUAL
)==0
1206 && sqlite3ExprIsSingleTableConstraint(pExpr
, pTabList
, iSrc
)
1208 sqlite3ExprIfFalse(pParse
, pTerm
->pExpr
, addrCont
, SQLITE_JUMPIFNULL
);
1211 if( pLoop
->wsFlags
& WHERE_IPK
){
1212 int r1
= sqlite3GetTempReg(pParse
);
1213 sqlite3VdbeAddOp2(v
, OP_Rowid
, iCur
, r1
);
1214 sqlite3VdbeAddOp4Int(v
, OP_FilterAdd
, pLevel
->regFilter
, 0, r1
, 1);
1215 sqlite3ReleaseTempReg(pParse
, r1
);
1217 Index
*pIdx
= pLoop
->u
.btree
.pIndex
;
1218 int n
= pLoop
->u
.btree
.nEq
;
1219 int r1
= sqlite3GetTempRange(pParse
, n
);
1221 for(jj
=0; jj
<n
; jj
++){
1222 assert( pIdx
->pTable
==pItem
->pTab
);
1223 sqlite3ExprCodeLoadIndexColumn(pParse
, pIdx
, iCur
, jj
, r1
+jj
);
1225 sqlite3VdbeAddOp4Int(v
, OP_FilterAdd
, pLevel
->regFilter
, 0, r1
, n
);
1226 sqlite3ReleaseTempRange(pParse
, r1
, n
);
1228 sqlite3VdbeResolveLabel(v
, addrCont
);
1229 sqlite3VdbeAddOp2(v
, OP_Next
, pLevel
->iTabCur
, addrTop
+1);
1231 sqlite3VdbeJumpHere(v
, addrTop
);
1232 pLoop
->wsFlags
&= ~WHERE_BLOOMFILTER
;
1233 if( OptimizationDisabled(pParse
->db
, SQLITE_BloomPulldown
) ) break;
1234 while( ++iLevel
< pWInfo
->nLevel
){
1235 const SrcItem
*pTabItem
;
1236 pLevel
= &pWInfo
->a
[iLevel
];
1237 pTabItem
= &pWInfo
->pTabList
->a
[pLevel
->iFrom
];
1238 if( pTabItem
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
) ) continue;
1239 pLoop
= pLevel
->pWLoop
;
1240 if( NEVER(pLoop
==0) ) continue;
1241 if( pLoop
->prereq
& notReady
) continue;
1242 if( (pLoop
->wsFlags
& (WHERE_BLOOMFILTER
|WHERE_COLUMN_IN
))
1245 /* This is a candidate for bloom-filter pull-down (early evaluation).
1246 ** The test that WHERE_COLUMN_IN is omitted is important, as we are
1247 ** not able to do early evaluation of bloom filters that make use of
1248 ** the IN operator */
1252 }while( iLevel
< pWInfo
->nLevel
);
1253 sqlite3VdbeJumpHere(v
, addrOnce
);
1254 pParse
->pIdxEpr
= saved_pIdxEpr
;
1255 pParse
->pIdxPartExpr
= saved_pIdxPartExpr
;
1259 #ifndef SQLITE_OMIT_VIRTUALTABLE
1261 ** Allocate and populate an sqlite3_index_info structure. It is the
1262 ** responsibility of the caller to eventually release the structure
1263 ** by passing the pointer returned by this function to freeIndexInfo().
1265 static sqlite3_index_info
*allocateIndexInfo(
1266 WhereInfo
*pWInfo
, /* The WHERE clause */
1267 WhereClause
*pWC
, /* The WHERE clause being analyzed */
1268 Bitmask mUnusable
, /* Ignore terms with these prereqs */
1269 SrcItem
*pSrc
, /* The FROM clause term that is the vtab */
1270 u16
*pmNoOmit
/* Mask of terms not to omit */
1274 Parse
*pParse
= pWInfo
->pParse
;
1275 struct sqlite3_index_constraint
*pIdxCons
;
1276 struct sqlite3_index_orderby
*pIdxOrderBy
;
1277 struct sqlite3_index_constraint_usage
*pUsage
;
1278 struct HiddenIndexInfo
*pHidden
;
1281 sqlite3_index_info
*pIdxInfo
;
1285 ExprList
*pOrderBy
= pWInfo
->pOrderBy
;
1290 assert( IsVirtual(pTab
) );
1292 /* Find all WHERE clause constraints referring to this virtual table.
1293 ** Mark each term with the TERM_OK flag. Set nTerm to the number of
1296 for(i
=nTerm
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
1297 pTerm
->wtFlags
&= ~TERM_OK
;
1298 if( pTerm
->leftCursor
!= pSrc
->iCursor
) continue;
1299 if( pTerm
->prereqRight
& mUnusable
) continue;
1300 assert( IsPowerOfTwo(pTerm
->eOperator
& ~WO_EQUIV
) );
1301 testcase( pTerm
->eOperator
& WO_IN
);
1302 testcase( pTerm
->eOperator
& WO_ISNULL
);
1303 testcase( pTerm
->eOperator
& WO_IS
);
1304 testcase( pTerm
->eOperator
& WO_ALL
);
1305 if( (pTerm
->eOperator
& ~(WO_EQUIV
))==0 ) continue;
1306 if( pTerm
->wtFlags
& TERM_VNULL
) continue;
1308 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 );
1309 assert( pTerm
->u
.x
.leftColumn
>=XN_ROWID
);
1310 assert( pTerm
->u
.x
.leftColumn
<pTab
->nCol
);
1311 if( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))!=0
1312 && !constraintCompatibleWithOuterJoin(pTerm
,pSrc
)
1317 pTerm
->wtFlags
|= TERM_OK
;
1320 /* If the ORDER BY clause contains only columns in the current
1321 ** virtual table then allocate space for the aOrderBy part of
1322 ** the sqlite3_index_info structure.
1326 int n
= pOrderBy
->nExpr
;
1328 Expr
*pExpr
= pOrderBy
->a
[i
].pExpr
;
1331 /* Skip over constant terms in the ORDER BY clause */
1332 if( sqlite3ExprIsConstant(pExpr
) ){
1336 /* Virtual tables are unable to deal with NULLS FIRST */
1337 if( pOrderBy
->a
[i
].fg
.sortFlags
& KEYINFO_ORDER_BIGNULL
) break;
1339 /* First case - a direct column references without a COLLATE operator */
1340 if( pExpr
->op
==TK_COLUMN
&& pExpr
->iTable
==pSrc
->iCursor
){
1341 assert( pExpr
->iColumn
>=XN_ROWID
&& pExpr
->iColumn
<pTab
->nCol
);
1345 /* 2nd case - a column reference with a COLLATE operator. Only match
1346 ** of the COLLATE operator matches the collation of the column. */
1347 if( pExpr
->op
==TK_COLLATE
1348 && (pE2
= pExpr
->pLeft
)->op
==TK_COLUMN
1349 && pE2
->iTable
==pSrc
->iCursor
1351 const char *zColl
; /* The collating sequence name */
1352 assert( !ExprHasProperty(pExpr
, EP_IntValue
) );
1353 assert( pExpr
->u
.zToken
!=0 );
1354 assert( pE2
->iColumn
>=XN_ROWID
&& pE2
->iColumn
<pTab
->nCol
);
1355 pExpr
->iColumn
= pE2
->iColumn
;
1356 if( pE2
->iColumn
<0 ) continue; /* Collseq does not matter for rowid */
1357 zColl
= sqlite3ColumnColl(&pTab
->aCol
[pE2
->iColumn
]);
1358 if( zColl
==0 ) zColl
= sqlite3StrBINARY
;
1359 if( sqlite3_stricmp(pExpr
->u
.zToken
, zColl
)==0 ) continue;
1362 /* No matches cause a break out of the loop */
1367 if( (pWInfo
->wctrlFlags
& WHERE_DISTINCTBY
) ){
1368 eDistinct
= 2 + ((pWInfo
->wctrlFlags
& WHERE_SORTBYGROUP
)!=0);
1369 }else if( pWInfo
->wctrlFlags
& WHERE_GROUPBY
){
1375 /* Allocate the sqlite3_index_info structure
1377 pIdxInfo
= sqlite3DbMallocZero(pParse
->db
, sizeof(*pIdxInfo
)
1378 + (sizeof(*pIdxCons
) + sizeof(*pUsage
))*nTerm
1379 + sizeof(*pIdxOrderBy
)*nOrderBy
+ sizeof(*pHidden
)
1380 + sizeof(sqlite3_value
*)*nTerm
);
1382 sqlite3ErrorMsg(pParse
, "out of memory");
1385 pHidden
= (struct HiddenIndexInfo
*)&pIdxInfo
[1];
1386 pIdxCons
= (struct sqlite3_index_constraint
*)&pHidden
->aRhs
[nTerm
];
1387 pIdxOrderBy
= (struct sqlite3_index_orderby
*)&pIdxCons
[nTerm
];
1388 pUsage
= (struct sqlite3_index_constraint_usage
*)&pIdxOrderBy
[nOrderBy
];
1389 pIdxInfo
->aConstraint
= pIdxCons
;
1390 pIdxInfo
->aOrderBy
= pIdxOrderBy
;
1391 pIdxInfo
->aConstraintUsage
= pUsage
;
1393 pHidden
->pParse
= pParse
;
1394 pHidden
->eDistinct
= eDistinct
;
1396 for(i
=j
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
1398 if( (pTerm
->wtFlags
& TERM_OK
)==0 ) continue;
1399 pIdxCons
[j
].iColumn
= pTerm
->u
.x
.leftColumn
;
1400 pIdxCons
[j
].iTermOffset
= i
;
1401 op
= pTerm
->eOperator
& WO_ALL
;
1403 if( (pTerm
->wtFlags
& TERM_SLICE
)==0 ){
1404 pHidden
->mIn
|= SMASKBIT32(j
);
1409 pIdxCons
[j
].op
= pTerm
->eMatchOp
;
1410 }else if( op
& (WO_ISNULL
|WO_IS
) ){
1411 if( op
==WO_ISNULL
){
1412 pIdxCons
[j
].op
= SQLITE_INDEX_CONSTRAINT_ISNULL
;
1414 pIdxCons
[j
].op
= SQLITE_INDEX_CONSTRAINT_IS
;
1417 pIdxCons
[j
].op
= (u8
)op
;
1418 /* The direct assignment in the previous line is possible only because
1419 ** the WO_ and SQLITE_INDEX_CONSTRAINT_ codes are identical. The
1420 ** following asserts verify this fact. */
1421 assert( WO_EQ
==SQLITE_INDEX_CONSTRAINT_EQ
);
1422 assert( WO_LT
==SQLITE_INDEX_CONSTRAINT_LT
);
1423 assert( WO_LE
==SQLITE_INDEX_CONSTRAINT_LE
);
1424 assert( WO_GT
==SQLITE_INDEX_CONSTRAINT_GT
);
1425 assert( WO_GE
==SQLITE_INDEX_CONSTRAINT_GE
);
1426 assert( pTerm
->eOperator
&(WO_IN
|WO_EQ
|WO_LT
|WO_LE
|WO_GT
|WO_GE
|WO_AUX
) );
1428 if( op
& (WO_LT
|WO_LE
|WO_GT
|WO_GE
)
1429 && sqlite3ExprIsVector(pTerm
->pExpr
->pRight
)
1432 if( j
<16 ) mNoOmit
|= (1 << j
);
1433 if( op
==WO_LT
) pIdxCons
[j
].op
= WO_LE
;
1434 if( op
==WO_GT
) pIdxCons
[j
].op
= WO_GE
;
1441 pIdxInfo
->nConstraint
= j
;
1442 for(i
=j
=0; i
<nOrderBy
; i
++){
1443 Expr
*pExpr
= pOrderBy
->a
[i
].pExpr
;
1444 if( sqlite3ExprIsConstant(pExpr
) ) continue;
1445 assert( pExpr
->op
==TK_COLUMN
1446 || (pExpr
->op
==TK_COLLATE
&& pExpr
->pLeft
->op
==TK_COLUMN
1447 && pExpr
->iColumn
==pExpr
->pLeft
->iColumn
) );
1448 pIdxOrderBy
[j
].iColumn
= pExpr
->iColumn
;
1449 pIdxOrderBy
[j
].desc
= pOrderBy
->a
[i
].fg
.sortFlags
& KEYINFO_ORDER_DESC
;
1452 pIdxInfo
->nOrderBy
= j
;
1454 *pmNoOmit
= mNoOmit
;
1459 ** Free an sqlite3_index_info structure allocated by allocateIndexInfo()
1460 ** and possibly modified by xBestIndex methods.
1462 static void freeIndexInfo(sqlite3
*db
, sqlite3_index_info
*pIdxInfo
){
1463 HiddenIndexInfo
*pHidden
;
1465 assert( pIdxInfo
!=0 );
1466 pHidden
= (HiddenIndexInfo
*)&pIdxInfo
[1];
1467 assert( pHidden
->pParse
!=0 );
1468 assert( pHidden
->pParse
->db
==db
);
1469 for(i
=0; i
<pIdxInfo
->nConstraint
; i
++){
1470 sqlite3ValueFree(pHidden
->aRhs
[i
]); /* IMP: R-14553-25174 */
1471 pHidden
->aRhs
[i
] = 0;
1473 sqlite3DbFree(db
, pIdxInfo
);
1477 ** The table object reference passed as the second argument to this function
1478 ** must represent a virtual table. This function invokes the xBestIndex()
1479 ** method of the virtual table with the sqlite3_index_info object that
1480 ** comes in as the 3rd argument to this function.
1482 ** If an error occurs, pParse is populated with an error message and an
1483 ** appropriate error code is returned. A return of SQLITE_CONSTRAINT from
1484 ** xBestIndex is not considered an error. SQLITE_CONSTRAINT indicates that
1485 ** the current configuration of "unusable" flags in sqlite3_index_info can
1486 ** not result in a valid plan.
1488 ** Whether or not an error is returned, it is the responsibility of the
1489 ** caller to eventually free p->idxStr if p->needToFreeIdxStr indicates
1490 ** that this is required.
1492 static int vtabBestIndex(Parse
*pParse
, Table
*pTab
, sqlite3_index_info
*p
){
1493 sqlite3_vtab
*pVtab
= sqlite3GetVTable(pParse
->db
, pTab
)->pVtab
;
1496 whereTraceIndexInfoInputs(p
);
1497 pParse
->db
->nSchemaLock
++;
1498 rc
= pVtab
->pModule
->xBestIndex(pVtab
, p
);
1499 pParse
->db
->nSchemaLock
--;
1500 whereTraceIndexInfoOutputs(p
);
1502 if( rc
!=SQLITE_OK
&& rc
!=SQLITE_CONSTRAINT
){
1503 if( rc
==SQLITE_NOMEM
){
1504 sqlite3OomFault(pParse
->db
);
1505 }else if( !pVtab
->zErrMsg
){
1506 sqlite3ErrorMsg(pParse
, "%s", sqlite3ErrStr(rc
));
1508 sqlite3ErrorMsg(pParse
, "%s", pVtab
->zErrMsg
);
1511 if( pTab
->u
.vtab
.p
->bAllSchemas
){
1512 sqlite3VtabUsesAllSchemas(pParse
);
1514 sqlite3_free(pVtab
->zErrMsg
);
1518 #endif /* !defined(SQLITE_OMIT_VIRTUALTABLE) */
1520 #ifdef SQLITE_ENABLE_STAT4
1522 ** Estimate the location of a particular key among all keys in an
1523 ** index. Store the results in aStat as follows:
1525 ** aStat[0] Est. number of rows less than pRec
1526 ** aStat[1] Est. number of rows equal to pRec
1528 ** Return the index of the sample that is the smallest sample that
1529 ** is greater than or equal to pRec. Note that this index is not an index
1530 ** into the aSample[] array - it is an index into a virtual set of samples
1531 ** based on the contents of aSample[] and the number of fields in record
1534 static int whereKeyStats(
1535 Parse
*pParse
, /* Database connection */
1536 Index
*pIdx
, /* Index to consider domain of */
1537 UnpackedRecord
*pRec
, /* Vector of values to consider */
1538 int roundUp
, /* Round up if true. Round down if false */
1539 tRowcnt
*aStat
/* OUT: stats written here */
1541 IndexSample
*aSample
= pIdx
->aSample
;
1542 int iCol
; /* Index of required stats in anEq[] etc. */
1543 int i
; /* Index of first sample >= pRec */
1544 int iSample
; /* Smallest sample larger than or equal to pRec */
1545 int iMin
= 0; /* Smallest sample not yet tested */
1546 int iTest
; /* Next sample to test */
1547 int res
; /* Result of comparison operation */
1548 int nField
; /* Number of fields in pRec */
1549 tRowcnt iLower
= 0; /* anLt[] + anEq[] of largest sample pRec is > */
1551 #ifndef SQLITE_DEBUG
1552 UNUSED_PARAMETER( pParse
);
1555 assert( pIdx
->nSample
>0 );
1556 assert( pRec
->nField
>0 );
1559 /* Do a binary search to find the first sample greater than or equal
1560 ** to pRec. If pRec contains a single field, the set of samples to search
1561 ** is simply the aSample[] array. If the samples in aSample[] contain more
1562 ** than one fields, all fields following the first are ignored.
1564 ** If pRec contains N fields, where N is more than one, then as well as the
1565 ** samples in aSample[] (truncated to N fields), the search also has to
1566 ** consider prefixes of those samples. For example, if the set of samples
1569 ** aSample[0] = (a, 5)
1570 ** aSample[1] = (a, 10)
1571 ** aSample[2] = (b, 5)
1572 ** aSample[3] = (c, 100)
1573 ** aSample[4] = (c, 105)
1575 ** Then the search space should ideally be the samples above and the
1576 ** unique prefixes [a], [b] and [c]. But since that is hard to organize,
1577 ** the code actually searches this set:
1590 ** For each sample in the aSample[] array, N samples are present in the
1591 ** effective sample array. In the above, samples 0 and 1 are based on
1592 ** sample aSample[0]. Samples 2 and 3 on aSample[1] etc.
1594 ** Often, sample i of each block of N effective samples has (i+1) fields.
1595 ** Except, each sample may be extended to ensure that it is greater than or
1596 ** equal to the previous sample in the array. For example, in the above,
1597 ** sample 2 is the first sample of a block of N samples, so at first it
1598 ** appears that it should be 1 field in size. However, that would make it
1599 ** smaller than sample 1, so the binary search would not work. As a result,
1600 ** it is extended to two fields. The duplicates that this creates do not
1601 ** cause any problems.
1603 if( !HasRowid(pIdx
->pTable
) && IsPrimaryKeyIndex(pIdx
) ){
1604 nField
= pIdx
->nKeyCol
;
1606 nField
= pIdx
->nColumn
;
1608 nField
= MIN(pRec
->nField
, nField
);
1610 iSample
= pIdx
->nSample
* nField
;
1612 int iSamp
; /* Index in aSample[] of test sample */
1613 int n
; /* Number of fields in test sample */
1615 iTest
= (iMin
+iSample
)/2;
1616 iSamp
= iTest
/ nField
;
1618 /* The proposed effective sample is a prefix of sample aSample[iSamp].
1619 ** Specifically, the shortest prefix of at least (1 + iTest%nField)
1620 ** fields that is greater than the previous effective sample. */
1621 for(n
=(iTest
% nField
) + 1; n
<nField
; n
++){
1622 if( aSample
[iSamp
-1].anLt
[n
-1]!=aSample
[iSamp
].anLt
[n
-1] ) break;
1629 res
= sqlite3VdbeRecordCompare(aSample
[iSamp
].n
, aSample
[iSamp
].p
, pRec
);
1631 iLower
= aSample
[iSamp
].anLt
[n
-1] + aSample
[iSamp
].anEq
[n
-1];
1633 }else if( res
==0 && n
<nField
){
1634 iLower
= aSample
[iSamp
].anLt
[n
-1];
1641 }while( res
&& iMin
<iSample
);
1642 i
= iSample
/ nField
;
1645 /* The following assert statements check that the binary search code
1646 ** above found the right answer. This block serves no purpose other
1647 ** than to invoke the asserts. */
1648 if( pParse
->db
->mallocFailed
==0 ){
1650 /* If (res==0) is true, then pRec must be equal to sample i. */
1651 assert( i
<pIdx
->nSample
);
1652 assert( iCol
==nField
-1 );
1653 pRec
->nField
= nField
;
1654 assert( 0==sqlite3VdbeRecordCompare(aSample
[i
].n
, aSample
[i
].p
, pRec
)
1655 || pParse
->db
->mallocFailed
1658 /* Unless i==pIdx->nSample, indicating that pRec is larger than
1659 ** all samples in the aSample[] array, pRec must be smaller than the
1660 ** (iCol+1) field prefix of sample i. */
1661 assert( i
<=pIdx
->nSample
&& i
>=0 );
1662 pRec
->nField
= iCol
+1;
1663 assert( i
==pIdx
->nSample
1664 || sqlite3VdbeRecordCompare(aSample
[i
].n
, aSample
[i
].p
, pRec
)>0
1665 || pParse
->db
->mallocFailed
);
1667 /* if i==0 and iCol==0, then record pRec is smaller than all samples
1668 ** in the aSample[] array. Otherwise, if (iCol>0) then pRec must
1669 ** be greater than or equal to the (iCol) field prefix of sample i.
1670 ** If (i>0), then pRec must also be greater than sample (i-1). */
1672 pRec
->nField
= iCol
;
1673 assert( sqlite3VdbeRecordCompare(aSample
[i
].n
, aSample
[i
].p
, pRec
)<=0
1674 || pParse
->db
->mallocFailed
|| CORRUPT_DB
);
1677 pRec
->nField
= nField
;
1678 assert( sqlite3VdbeRecordCompare(aSample
[i
-1].n
, aSample
[i
-1].p
, pRec
)<0
1679 || pParse
->db
->mallocFailed
|| CORRUPT_DB
);
1683 #endif /* ifdef SQLITE_DEBUG */
1686 /* Record pRec is equal to sample i */
1687 assert( iCol
==nField
-1 );
1688 aStat
[0] = aSample
[i
].anLt
[iCol
];
1689 aStat
[1] = aSample
[i
].anEq
[iCol
];
1691 /* At this point, the (iCol+1) field prefix of aSample[i] is the first
1692 ** sample that is greater than pRec. Or, if i==pIdx->nSample then pRec
1693 ** is larger than all samples in the array. */
1694 tRowcnt iUpper
, iGap
;
1695 if( i
>=pIdx
->nSample
){
1696 iUpper
= pIdx
->nRowEst0
;
1698 iUpper
= aSample
[i
].anLt
[iCol
];
1701 if( iLower
>=iUpper
){
1704 iGap
= iUpper
- iLower
;
1711 aStat
[0] = iLower
+ iGap
;
1712 aStat
[1] = pIdx
->aAvgEq
[nField
-1];
1715 /* Restore the pRec->nField value before returning. */
1716 pRec
->nField
= nField
;
1719 #endif /* SQLITE_ENABLE_STAT4 */
1722 ** If it is not NULL, pTerm is a term that provides an upper or lower
1723 ** bound on a range scan. Without considering pTerm, it is estimated
1724 ** that the scan will visit nNew rows. This function returns the number
1725 ** estimated to be visited after taking pTerm into account.
1727 ** If the user explicitly specified a likelihood() value for this term,
1728 ** then the return value is the likelihood multiplied by the number of
1729 ** input rows. Otherwise, this function assumes that an "IS NOT NULL" term
1730 ** has a likelihood of 0.50, and any other term a likelihood of 0.25.
1732 static LogEst
whereRangeAdjust(WhereTerm
*pTerm
, LogEst nNew
){
1735 if( pTerm
->truthProb
<=0 ){
1736 nRet
+= pTerm
->truthProb
;
1737 }else if( (pTerm
->wtFlags
& TERM_VNULL
)==0 ){
1738 nRet
-= 20; assert( 20==sqlite3LogEst(4) );
1745 #ifdef SQLITE_ENABLE_STAT4
1747 ** Return the affinity for a single column of an index.
1749 char sqlite3IndexColumnAffinity(sqlite3
*db
, Index
*pIdx
, int iCol
){
1750 assert( iCol
>=0 && iCol
<pIdx
->nColumn
);
1751 if( !pIdx
->zColAff
){
1752 if( sqlite3IndexAffinityStr(db
, pIdx
)==0 ) return SQLITE_AFF_BLOB
;
1754 assert( pIdx
->zColAff
[iCol
]!=0 );
1755 return pIdx
->zColAff
[iCol
];
1760 #ifdef SQLITE_ENABLE_STAT4
1762 ** This function is called to estimate the number of rows visited by a
1763 ** range-scan on a skip-scan index. For example:
1765 ** CREATE INDEX i1 ON t1(a, b, c);
1766 ** SELECT * FROM t1 WHERE a=? AND c BETWEEN ? AND ?;
1768 ** Value pLoop->nOut is currently set to the estimated number of rows
1769 ** visited for scanning (a=? AND b=?). This function reduces that estimate
1770 ** by some factor to account for the (c BETWEEN ? AND ?) expression based
1771 ** on the stat4 data for the index. this scan will be performed multiple
1772 ** times (once for each (a,b) combination that matches a=?) is dealt with
1775 ** It does this by scanning through all stat4 samples, comparing values
1776 ** extracted from pLower and pUpper with the corresponding column in each
1777 ** sample. If L and U are the number of samples found to be less than or
1778 ** equal to the values extracted from pLower and pUpper respectively, and
1779 ** N is the total number of samples, the pLoop->nOut value is adjusted
1782 ** nOut = nOut * ( min(U - L, 1) / N )
1784 ** If pLower is NULL, or a value cannot be extracted from the term, L is
1785 ** set to zero. If pUpper is NULL, or a value cannot be extracted from it,
1788 ** Normally, this function sets *pbDone to 1 before returning. However,
1789 ** if no value can be extracted from either pLower or pUpper (and so the
1790 ** estimate of the number of rows delivered remains unchanged), *pbDone
1793 ** If an error occurs, an SQLite error code is returned. Otherwise,
1796 static int whereRangeSkipScanEst(
1797 Parse
*pParse
, /* Parsing & code generating context */
1798 WhereTerm
*pLower
, /* Lower bound on the range. ex: "x>123" Might be NULL */
1799 WhereTerm
*pUpper
, /* Upper bound on the range. ex: "x<455" Might be NULL */
1800 WhereLoop
*pLoop
, /* Update the .nOut value of this loop */
1801 int *pbDone
/* Set to true if at least one expr. value extracted */
1803 Index
*p
= pLoop
->u
.btree
.pIndex
;
1804 int nEq
= pLoop
->u
.btree
.nEq
;
1805 sqlite3
*db
= pParse
->db
;
1807 int nUpper
= p
->nSample
+1;
1809 u8 aff
= sqlite3IndexColumnAffinity(db
, p
, nEq
);
1812 sqlite3_value
*p1
= 0; /* Value extracted from pLower */
1813 sqlite3_value
*p2
= 0; /* Value extracted from pUpper */
1814 sqlite3_value
*pVal
= 0; /* Value extracted from record */
1816 pColl
= sqlite3LocateCollSeq(pParse
, p
->azColl
[nEq
]);
1818 rc
= sqlite3Stat4ValueFromExpr(pParse
, pLower
->pExpr
->pRight
, aff
, &p1
);
1821 if( pUpper
&& rc
==SQLITE_OK
){
1822 rc
= sqlite3Stat4ValueFromExpr(pParse
, pUpper
->pExpr
->pRight
, aff
, &p2
);
1823 nUpper
= p2
? 0 : p
->nSample
;
1829 for(i
=0; rc
==SQLITE_OK
&& i
<p
->nSample
; i
++){
1830 rc
= sqlite3Stat4Column(db
, p
->aSample
[i
].p
, p
->aSample
[i
].n
, nEq
, &pVal
);
1831 if( rc
==SQLITE_OK
&& p1
){
1832 int res
= sqlite3MemCompare(p1
, pVal
, pColl
);
1833 if( res
>=0 ) nLower
++;
1835 if( rc
==SQLITE_OK
&& p2
){
1836 int res
= sqlite3MemCompare(p2
, pVal
, pColl
);
1837 if( res
>=0 ) nUpper
++;
1840 nDiff
= (nUpper
- nLower
);
1841 if( nDiff
<=0 ) nDiff
= 1;
1843 /* If there is both an upper and lower bound specified, and the
1844 ** comparisons indicate that they are close together, use the fallback
1845 ** method (assume that the scan visits 1/64 of the rows) for estimating
1846 ** the number of rows visited. Otherwise, estimate the number of rows
1847 ** using the method described in the header comment for this function. */
1848 if( nDiff
!=1 || pUpper
==0 || pLower
==0 ){
1849 int nAdjust
= (sqlite3LogEst(p
->nSample
) - sqlite3LogEst(nDiff
));
1850 pLoop
->nOut
-= nAdjust
;
1852 WHERETRACE(0x20, ("range skip-scan regions: %u..%u adjust=%d est=%d\n",
1853 nLower
, nUpper
, nAdjust
*-1, pLoop
->nOut
));
1857 assert( *pbDone
==0 );
1860 sqlite3ValueFree(p1
);
1861 sqlite3ValueFree(p2
);
1862 sqlite3ValueFree(pVal
);
1866 #endif /* SQLITE_ENABLE_STAT4 */
1869 ** This function is used to estimate the number of rows that will be visited
1870 ** by scanning an index for a range of values. The range may have an upper
1871 ** bound, a lower bound, or both. The WHERE clause terms that set the upper
1872 ** and lower bounds are represented by pLower and pUpper respectively. For
1873 ** example, assuming that index p is on t1(a):
1875 ** ... FROM t1 WHERE a > ? AND a < ? ...
1880 ** If either of the upper or lower bound is not present, then NULL is passed in
1881 ** place of the corresponding WhereTerm.
1883 ** The value in (pBuilder->pNew->u.btree.nEq) is the number of the index
1884 ** column subject to the range constraint. Or, equivalently, the number of
1885 ** equality constraints optimized by the proposed index scan. For example,
1886 ** assuming index p is on t1(a, b), and the SQL query is:
1888 ** ... FROM t1 WHERE a = ? AND b > ? AND b < ? ...
1890 ** then nEq is set to 1 (as the range restricted column, b, is the second
1891 ** left-most column of the index). Or, if the query is:
1893 ** ... FROM t1 WHERE a > ? AND a < ? ...
1895 ** then nEq is set to 0.
1897 ** When this function is called, *pnOut is set to the sqlite3LogEst() of the
1898 ** number of rows that the index scan is expected to visit without
1899 ** considering the range constraints. If nEq is 0, then *pnOut is the number of
1900 ** rows in the index. Assuming no error occurs, *pnOut is adjusted (reduced)
1901 ** to account for the range constraints pLower and pUpper.
1903 ** In the absence of sqlite_stat4 ANALYZE data, or if such data cannot be
1904 ** used, a single range inequality reduces the search space by a factor of 4.
1905 ** and a pair of constraints (x>? AND x<?) reduces the expected number of
1906 ** rows visited by a factor of 64.
1908 static int whereRangeScanEst(
1909 Parse
*pParse
, /* Parsing & code generating context */
1910 WhereLoopBuilder
*pBuilder
,
1911 WhereTerm
*pLower
, /* Lower bound on the range. ex: "x>123" Might be NULL */
1912 WhereTerm
*pUpper
, /* Upper bound on the range. ex: "x<455" Might be NULL */
1913 WhereLoop
*pLoop
/* Modify the .nOut and maybe .rRun fields */
1916 int nOut
= pLoop
->nOut
;
1919 #ifdef SQLITE_ENABLE_STAT4
1920 Index
*p
= pLoop
->u
.btree
.pIndex
;
1921 int nEq
= pLoop
->u
.btree
.nEq
;
1923 if( p
->nSample
>0 && ALWAYS(nEq
<p
->nSampleCol
)
1924 && OptimizationEnabled(pParse
->db
, SQLITE_Stat4
)
1926 if( nEq
==pBuilder
->nRecValid
){
1927 UnpackedRecord
*pRec
= pBuilder
->pRec
;
1929 int nBtm
= pLoop
->u
.btree
.nBtm
;
1930 int nTop
= pLoop
->u
.btree
.nTop
;
1932 /* Variable iLower will be set to the estimate of the number of rows in
1933 ** the index that are less than the lower bound of the range query. The
1934 ** lower bound being the concatenation of $P and $L, where $P is the
1935 ** key-prefix formed by the nEq values matched against the nEq left-most
1936 ** columns of the index, and $L is the value in pLower.
1938 ** Or, if pLower is NULL or $L cannot be extracted from it (because it
1939 ** is not a simple variable or literal value), the lower bound of the
1940 ** range is $P. Due to a quirk in the way whereKeyStats() works, even
1941 ** if $L is available, whereKeyStats() is called for both ($P) and
1942 ** ($P:$L) and the larger of the two returned values is used.
1944 ** Similarly, iUpper is to be set to the estimate of the number of rows
1945 ** less than the upper bound of the range query. Where the upper bound
1946 ** is either ($P) or ($P:$U). Again, even if $U is available, both values
1947 ** of iUpper are requested of whereKeyStats() and the smaller used.
1949 ** The number of rows between the two bounds is then just iUpper-iLower.
1951 tRowcnt iLower
; /* Rows less than the lower bound */
1952 tRowcnt iUpper
; /* Rows less than the upper bound */
1953 int iLwrIdx
= -2; /* aSample[] for the lower bound */
1954 int iUprIdx
= -1; /* aSample[] for the upper bound */
1957 testcase( pRec
->nField
!=pBuilder
->nRecValid
);
1958 pRec
->nField
= pBuilder
->nRecValid
;
1960 /* Determine iLower and iUpper using ($P) only. */
1963 iUpper
= p
->nRowEst0
;
1965 /* Note: this call could be optimized away - since the same values must
1966 ** have been requested when testing key $P in whereEqualScanEst(). */
1967 whereKeyStats(pParse
, p
, pRec
, 0, a
);
1969 iUpper
= a
[0] + a
[1];
1972 assert( pLower
==0 || (pLower
->eOperator
& (WO_GT
|WO_GE
))!=0 );
1973 assert( pUpper
==0 || (pUpper
->eOperator
& (WO_LT
|WO_LE
))!=0 );
1974 assert( p
->aSortOrder
!=0 );
1975 if( p
->aSortOrder
[nEq
] ){
1976 /* The roles of pLower and pUpper are swapped for a DESC index */
1977 SWAP(WhereTerm
*, pLower
, pUpper
);
1978 SWAP(int, nBtm
, nTop
);
1981 /* If possible, improve on the iLower estimate using ($P:$L). */
1983 int n
; /* Values extracted from pExpr */
1984 Expr
*pExpr
= pLower
->pExpr
->pRight
;
1985 rc
= sqlite3Stat4ProbeSetValue(pParse
, p
, &pRec
, pExpr
, nBtm
, nEq
, &n
);
1986 if( rc
==SQLITE_OK
&& n
){
1988 u16 mask
= WO_GT
|WO_LE
;
1989 if( sqlite3ExprVectorSize(pExpr
)>n
) mask
= (WO_LE
|WO_LT
);
1990 iLwrIdx
= whereKeyStats(pParse
, p
, pRec
, 0, a
);
1991 iNew
= a
[0] + ((pLower
->eOperator
& mask
) ? a
[1] : 0);
1992 if( iNew
>iLower
) iLower
= iNew
;
1998 /* If possible, improve on the iUpper estimate using ($P:$U). */
2000 int n
; /* Values extracted from pExpr */
2001 Expr
*pExpr
= pUpper
->pExpr
->pRight
;
2002 rc
= sqlite3Stat4ProbeSetValue(pParse
, p
, &pRec
, pExpr
, nTop
, nEq
, &n
);
2003 if( rc
==SQLITE_OK
&& n
){
2005 u16 mask
= WO_GT
|WO_LE
;
2006 if( sqlite3ExprVectorSize(pExpr
)>n
) mask
= (WO_LE
|WO_LT
);
2007 iUprIdx
= whereKeyStats(pParse
, p
, pRec
, 1, a
);
2008 iNew
= a
[0] + ((pUpper
->eOperator
& mask
) ? a
[1] : 0);
2009 if( iNew
<iUpper
) iUpper
= iNew
;
2015 pBuilder
->pRec
= pRec
;
2016 if( rc
==SQLITE_OK
){
2017 if( iUpper
>iLower
){
2018 nNew
= sqlite3LogEst(iUpper
- iLower
);
2019 /* TUNING: If both iUpper and iLower are derived from the same
2020 ** sample, then assume they are 4x more selective. This brings
2021 ** the estimated selectivity more in line with what it would be
2022 ** if estimated without the use of STAT4 tables. */
2023 if( iLwrIdx
==iUprIdx
){ nNew
-= 20; }
2024 assert( 20==sqlite3LogEst(4) );
2026 nNew
= 10; assert( 10==sqlite3LogEst(2) );
2031 WHERETRACE(0x20, ("STAT4 range scan: %u..%u est=%d\n",
2032 (u32
)iLower
, (u32
)iUpper
, nOut
));
2036 rc
= whereRangeSkipScanEst(pParse
, pLower
, pUpper
, pLoop
, &bDone
);
2037 if( bDone
) return rc
;
2041 UNUSED_PARAMETER(pParse
);
2042 UNUSED_PARAMETER(pBuilder
);
2043 assert( pLower
|| pUpper
);
2045 assert( pUpper
==0 || (pUpper
->wtFlags
& TERM_VNULL
)==0 || pParse
->nErr
>0 );
2046 nNew
= whereRangeAdjust(pLower
, nOut
);
2047 nNew
= whereRangeAdjust(pUpper
, nNew
);
2049 /* TUNING: If there is both an upper and lower limit and neither limit
2050 ** has an application-defined likelihood(), assume the range is
2051 ** reduced by an additional 75%. This means that, by default, an open-ended
2052 ** range query (e.g. col > ?) is assumed to match 1/4 of the rows in the
2053 ** index. While a closed range (e.g. col BETWEEN ? AND ?) is estimated to
2054 ** match 1/64 of the index. */
2055 if( pLower
&& pLower
->truthProb
>0 && pUpper
&& pUpper
->truthProb
>0 ){
2059 nOut
-= (pLower
!=0) + (pUpper
!=0);
2060 if( nNew
<10 ) nNew
= 10;
2061 if( nNew
<nOut
) nOut
= nNew
;
2062 #if defined(WHERETRACE_ENABLED)
2063 if( pLoop
->nOut
>nOut
){
2064 WHERETRACE(0x20,("Range scan lowers nOut from %d to %d\n",
2065 pLoop
->nOut
, nOut
));
2068 pLoop
->nOut
= (LogEst
)nOut
;
2072 #ifdef SQLITE_ENABLE_STAT4
2074 ** Estimate the number of rows that will be returned based on
2075 ** an equality constraint x=VALUE and where that VALUE occurs in
2076 ** the histogram data. This only works when x is the left-most
2077 ** column of an index and sqlite_stat4 histogram data is available
2078 ** for that index. When pExpr==NULL that means the constraint is
2079 ** "x IS NULL" instead of "x=VALUE".
2081 ** Write the estimated row count into *pnRow and return SQLITE_OK.
2082 ** If unable to make an estimate, leave *pnRow unchanged and return
2085 ** This routine can fail if it is unable to load a collating sequence
2086 ** required for string comparison, or if unable to allocate memory
2087 ** for a UTF conversion required for comparison. The error is stored
2088 ** in the pParse structure.
2090 static int whereEqualScanEst(
2091 Parse
*pParse
, /* Parsing & code generating context */
2092 WhereLoopBuilder
*pBuilder
,
2093 Expr
*pExpr
, /* Expression for VALUE in the x=VALUE constraint */
2094 tRowcnt
*pnRow
/* Write the revised row estimate here */
2096 Index
*p
= pBuilder
->pNew
->u
.btree
.pIndex
;
2097 int nEq
= pBuilder
->pNew
->u
.btree
.nEq
;
2098 UnpackedRecord
*pRec
= pBuilder
->pRec
;
2099 int rc
; /* Subfunction return code */
2100 tRowcnt a
[2]; /* Statistics */
2104 assert( nEq
<=p
->nColumn
);
2105 assert( p
->aSample
!=0 );
2106 assert( p
->nSample
>0 );
2107 assert( pBuilder
->nRecValid
<nEq
);
2109 /* If values are not available for all fields of the index to the left
2110 ** of this one, no estimate can be made. Return SQLITE_NOTFOUND. */
2111 if( pBuilder
->nRecValid
<(nEq
-1) ){
2112 return SQLITE_NOTFOUND
;
2115 /* This is an optimization only. The call to sqlite3Stat4ProbeSetValue()
2116 ** below would return the same value. */
2117 if( nEq
>=p
->nColumn
){
2122 rc
= sqlite3Stat4ProbeSetValue(pParse
, p
, &pRec
, pExpr
, 1, nEq
-1, &bOk
);
2123 pBuilder
->pRec
= pRec
;
2124 if( rc
!=SQLITE_OK
) return rc
;
2125 if( bOk
==0 ) return SQLITE_NOTFOUND
;
2126 pBuilder
->nRecValid
= nEq
;
2128 whereKeyStats(pParse
, p
, pRec
, 0, a
);
2129 WHERETRACE(0x20,("equality scan regions %s(%d): %d\n",
2130 p
->zName
, nEq
-1, (int)a
[1]));
2135 #endif /* SQLITE_ENABLE_STAT4 */
2137 #ifdef SQLITE_ENABLE_STAT4
2139 ** Estimate the number of rows that will be returned based on
2140 ** an IN constraint where the right-hand side of the IN operator
2141 ** is a list of values. Example:
2143 ** WHERE x IN (1,2,3,4)
2145 ** Write the estimated row count into *pnRow and return SQLITE_OK.
2146 ** If unable to make an estimate, leave *pnRow unchanged and return
2149 ** This routine can fail if it is unable to load a collating sequence
2150 ** required for string comparison, or if unable to allocate memory
2151 ** for a UTF conversion required for comparison. The error is stored
2152 ** in the pParse structure.
2154 static int whereInScanEst(
2155 Parse
*pParse
, /* Parsing & code generating context */
2156 WhereLoopBuilder
*pBuilder
,
2157 ExprList
*pList
, /* The value list on the RHS of "x IN (v1,v2,v3,...)" */
2158 tRowcnt
*pnRow
/* Write the revised row estimate here */
2160 Index
*p
= pBuilder
->pNew
->u
.btree
.pIndex
;
2161 i64 nRow0
= sqlite3LogEstToInt(p
->aiRowLogEst
[0]);
2162 int nRecValid
= pBuilder
->nRecValid
;
2163 int rc
= SQLITE_OK
; /* Subfunction return code */
2164 tRowcnt nEst
; /* Number of rows for a single term */
2165 tRowcnt nRowEst
= 0; /* New estimate of the number of rows */
2166 int i
; /* Loop counter */
2168 assert( p
->aSample
!=0 );
2169 for(i
=0; rc
==SQLITE_OK
&& i
<pList
->nExpr
; i
++){
2171 rc
= whereEqualScanEst(pParse
, pBuilder
, pList
->a
[i
].pExpr
, &nEst
);
2173 pBuilder
->nRecValid
= nRecValid
;
2176 if( rc
==SQLITE_OK
){
2177 if( nRowEst
> (tRowcnt
)nRow0
) nRowEst
= nRow0
;
2179 WHERETRACE(0x20,("IN row estimate: est=%d\n", nRowEst
));
2181 assert( pBuilder
->nRecValid
==nRecValid
);
2184 #endif /* SQLITE_ENABLE_STAT4 */
2187 #ifdef WHERETRACE_ENABLED
2189 ** Print the content of a WhereTerm object
2191 void sqlite3WhereTermPrint(WhereTerm
*pTerm
, int iTerm
){
2193 sqlite3DebugPrintf("TERM-%-3d NULL\n", iTerm
);
2197 memcpy(zType
, "....", 5);
2198 if( pTerm
->wtFlags
& TERM_VIRTUAL
) zType
[0] = 'V';
2199 if( pTerm
->eOperator
& WO_EQUIV
) zType
[1] = 'E';
2200 if( ExprHasProperty(pTerm
->pExpr
, EP_OuterON
) ) zType
[2] = 'L';
2201 if( pTerm
->wtFlags
& TERM_CODED
) zType
[3] = 'C';
2202 if( pTerm
->eOperator
& WO_SINGLE
){
2203 assert( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 );
2204 sqlite3_snprintf(sizeof(zLeft
),zLeft
,"left={%d:%d}",
2205 pTerm
->leftCursor
, pTerm
->u
.x
.leftColumn
);
2206 }else if( (pTerm
->eOperator
& WO_OR
)!=0 && pTerm
->u
.pOrInfo
!=0 ){
2207 sqlite3_snprintf(sizeof(zLeft
),zLeft
,"indexable=0x%llx",
2208 pTerm
->u
.pOrInfo
->indexable
);
2210 sqlite3_snprintf(sizeof(zLeft
),zLeft
,"left=%d", pTerm
->leftCursor
);
2213 "TERM-%-3d %p %s %-12s op=%03x wtFlags=%04x",
2214 iTerm
, pTerm
, zType
, zLeft
, pTerm
->eOperator
, pTerm
->wtFlags
);
2215 /* The 0x10000 .wheretrace flag causes extra information to be
2216 ** shown about each Term */
2217 if( sqlite3WhereTrace
& 0x10000 ){
2218 sqlite3DebugPrintf(" prob=%-3d prereq=%llx,%llx",
2219 pTerm
->truthProb
, (u64
)pTerm
->prereqAll
, (u64
)pTerm
->prereqRight
);
2221 if( (pTerm
->eOperator
& (WO_OR
|WO_AND
))==0 && pTerm
->u
.x
.iField
){
2222 sqlite3DebugPrintf(" iField=%d", pTerm
->u
.x
.iField
);
2224 if( pTerm
->iParent
>=0 ){
2225 sqlite3DebugPrintf(" iParent=%d", pTerm
->iParent
);
2227 sqlite3DebugPrintf("\n");
2228 sqlite3TreeViewExpr(0, pTerm
->pExpr
, 0);
2233 #ifdef WHERETRACE_ENABLED
2235 ** Show the complete content of a WhereClause
2237 void sqlite3WhereClausePrint(WhereClause
*pWC
){
2239 for(i
=0; i
<pWC
->nTerm
; i
++){
2240 sqlite3WhereTermPrint(&pWC
->a
[i
], i
);
2245 #ifdef WHERETRACE_ENABLED
2247 ** Print a WhereLoop object for debugging purposes
2251 ** .--- Position in WHERE clause rSetup, rRun, nOut ---.
2253 ** | .--- selfMask nTerm ------. |
2255 ** | | .-- prereq Idx wsFlags----. | |
2257 ** | | | __|__ nEq ---. ___|__ | __|__
2258 ** | / \ / \ / \ | / \ / \ / \
2259 ** 1.002.001 t2.t2xy 2 f 010241 N 2 cost 0,56,31
2261 void sqlite3WhereLoopPrint(const WhereLoop
*p
, const WhereClause
*pWC
){
2263 WhereInfo
*pWInfo
= pWC
->pWInfo
;
2264 int nb
= 1+(pWInfo
->pTabList
->nSrc
+3)/4;
2265 SrcItem
*pItem
= pWInfo
->pTabList
->a
+ p
->iTab
;
2266 Table
*pTab
= pItem
->pTab
;
2267 Bitmask mAll
= (((Bitmask
)1)<<(nb
*4)) - 1;
2268 sqlite3DebugPrintf("%c%2d.%0*llx.%0*llx", p
->cId
,
2269 p
->iTab
, nb
, p
->maskSelf
, nb
, p
->prereq
& mAll
);
2270 sqlite3DebugPrintf(" %12s",
2271 pItem
->zAlias
? pItem
->zAlias
: pTab
->zName
);
2273 sqlite3DebugPrintf("%c%2d.%03llx.%03llx %c%d",
2274 p
->cId
, p
->iTab
, p
->maskSelf
, p
->prereq
& 0xfff, p
->cId
, p
->iTab
);
2276 if( (p
->wsFlags
& WHERE_VIRTUALTABLE
)==0 ){
2278 if( p
->u
.btree
.pIndex
&& (zName
= p
->u
.btree
.pIndex
->zName
)!=0 ){
2279 if( strncmp(zName
, "sqlite_autoindex_", 17)==0 ){
2280 int i
= sqlite3Strlen30(zName
) - 1;
2281 while( zName
[i
]!='_' ) i
--;
2284 sqlite3DebugPrintf(".%-16s %2d", zName
, p
->u
.btree
.nEq
);
2286 sqlite3DebugPrintf("%20s","");
2290 if( p
->u
.vtab
.idxStr
){
2291 z
= sqlite3_mprintf("(%d,\"%s\",%#x)",
2292 p
->u
.vtab
.idxNum
, p
->u
.vtab
.idxStr
, p
->u
.vtab
.omitMask
);
2294 z
= sqlite3_mprintf("(%d,%x)", p
->u
.vtab
.idxNum
, p
->u
.vtab
.omitMask
);
2296 sqlite3DebugPrintf(" %-19s", z
);
2299 if( p
->wsFlags
& WHERE_SKIPSCAN
){
2300 sqlite3DebugPrintf(" f %06x %d-%d", p
->wsFlags
, p
->nLTerm
,p
->nSkip
);
2302 sqlite3DebugPrintf(" f %06x N %d", p
->wsFlags
, p
->nLTerm
);
2304 sqlite3DebugPrintf(" cost %d,%d,%d\n", p
->rSetup
, p
->rRun
, p
->nOut
);
2305 if( p
->nLTerm
&& (sqlite3WhereTrace
& 0x4000)!=0 ){
2307 for(i
=0; i
<p
->nLTerm
; i
++){
2308 sqlite3WhereTermPrint(p
->aLTerm
[i
], i
);
2312 void sqlite3ShowWhereLoop(const WhereLoop
*p
){
2313 if( p
) sqlite3WhereLoopPrint(p
, 0);
2315 void sqlite3ShowWhereLoopList(const WhereLoop
*p
){
2317 sqlite3ShowWhereLoop(p
);
2324 ** Convert bulk memory into a valid WhereLoop that can be passed
2325 ** to whereLoopClear harmlessly.
2327 static void whereLoopInit(WhereLoop
*p
){
2328 p
->aLTerm
= p
->aLTermSpace
;
2330 p
->nLSlot
= ArraySize(p
->aLTermSpace
);
2335 ** Clear the WhereLoop.u union. Leave WhereLoop.pLTerm intact.
2337 static void whereLoopClearUnion(sqlite3
*db
, WhereLoop
*p
){
2338 if( p
->wsFlags
& (WHERE_VIRTUALTABLE
|WHERE_AUTO_INDEX
) ){
2339 if( (p
->wsFlags
& WHERE_VIRTUALTABLE
)!=0 && p
->u
.vtab
.needFree
){
2340 sqlite3_free(p
->u
.vtab
.idxStr
);
2341 p
->u
.vtab
.needFree
= 0;
2342 p
->u
.vtab
.idxStr
= 0;
2343 }else if( (p
->wsFlags
& WHERE_AUTO_INDEX
)!=0 && p
->u
.btree
.pIndex
!=0 ){
2344 sqlite3DbFree(db
, p
->u
.btree
.pIndex
->zColAff
);
2345 sqlite3DbFreeNN(db
, p
->u
.btree
.pIndex
);
2346 p
->u
.btree
.pIndex
= 0;
2352 ** Deallocate internal memory used by a WhereLoop object. Leave the
2353 ** object in an initialized state, as if it had been newly allocated.
2355 static void whereLoopClear(sqlite3
*db
, WhereLoop
*p
){
2356 if( p
->aLTerm
!=p
->aLTermSpace
){
2357 sqlite3DbFreeNN(db
, p
->aLTerm
);
2358 p
->aLTerm
= p
->aLTermSpace
;
2359 p
->nLSlot
= ArraySize(p
->aLTermSpace
);
2361 whereLoopClearUnion(db
, p
);
2367 ** Increase the memory allocation for pLoop->aLTerm[] to be at least n.
2369 static int whereLoopResize(sqlite3
*db
, WhereLoop
*p
, int n
){
2371 if( p
->nLSlot
>=n
) return SQLITE_OK
;
2373 paNew
= sqlite3DbMallocRawNN(db
, sizeof(p
->aLTerm
[0])*n
);
2374 if( paNew
==0 ) return SQLITE_NOMEM_BKPT
;
2375 memcpy(paNew
, p
->aLTerm
, sizeof(p
->aLTerm
[0])*p
->nLSlot
);
2376 if( p
->aLTerm
!=p
->aLTermSpace
) sqlite3DbFreeNN(db
, p
->aLTerm
);
2383 ** Transfer content from the second pLoop into the first.
2385 static int whereLoopXfer(sqlite3
*db
, WhereLoop
*pTo
, WhereLoop
*pFrom
){
2386 whereLoopClearUnion(db
, pTo
);
2387 if( pFrom
->nLTerm
> pTo
->nLSlot
2388 && whereLoopResize(db
, pTo
, pFrom
->nLTerm
)
2390 memset(pTo
, 0, WHERE_LOOP_XFER_SZ
);
2391 return SQLITE_NOMEM_BKPT
;
2393 memcpy(pTo
, pFrom
, WHERE_LOOP_XFER_SZ
);
2394 memcpy(pTo
->aLTerm
, pFrom
->aLTerm
, pTo
->nLTerm
*sizeof(pTo
->aLTerm
[0]));
2395 if( pFrom
->wsFlags
& WHERE_VIRTUALTABLE
){
2396 pFrom
->u
.vtab
.needFree
= 0;
2397 }else if( (pFrom
->wsFlags
& WHERE_AUTO_INDEX
)!=0 ){
2398 pFrom
->u
.btree
.pIndex
= 0;
2404 ** Delete a WhereLoop object
2406 static void whereLoopDelete(sqlite3
*db
, WhereLoop
*p
){
2408 whereLoopClear(db
, p
);
2409 sqlite3DbNNFreeNN(db
, p
);
2413 ** Free a WhereInfo structure
2415 static void whereInfoFree(sqlite3
*db
, WhereInfo
*pWInfo
){
2416 assert( pWInfo
!=0 );
2418 sqlite3WhereClauseClear(&pWInfo
->sWC
);
2419 while( pWInfo
->pLoops
){
2420 WhereLoop
*p
= pWInfo
->pLoops
;
2421 pWInfo
->pLoops
= p
->pNextLoop
;
2422 whereLoopDelete(db
, p
);
2424 while( pWInfo
->pMemToFree
){
2425 WhereMemBlock
*pNext
= pWInfo
->pMemToFree
->pNext
;
2426 sqlite3DbNNFreeNN(db
, pWInfo
->pMemToFree
);
2427 pWInfo
->pMemToFree
= pNext
;
2429 sqlite3DbNNFreeNN(db
, pWInfo
);
2433 ** Return TRUE if X is a proper subset of Y but is of equal or less cost.
2434 ** In other words, return true if all constraints of X are also part of Y
2435 ** and Y has additional constraints that might speed the search that X lacks
2436 ** but the cost of running X is not more than the cost of running Y.
2438 ** In other words, return true if the cost relationwship between X and Y
2439 ** is inverted and needs to be adjusted.
2443 ** (1a) X and Y use the same index.
2444 ** (1b) X has fewer == terms than Y
2445 ** (1c) Neither X nor Y use skip-scan
2446 ** (1d) X does not have a a greater cost than Y
2450 ** (2a) X has the same or lower cost, or returns the same or fewer rows,
2452 ** (2b) X uses fewer WHERE clause terms than Y
2453 ** (2c) Every WHERE clause term used by X is also used by Y
2454 ** (2d) X skips at least as many columns as Y
2455 ** (2e) If X is a covering index, than Y is too
2457 static int whereLoopCheaperProperSubset(
2458 const WhereLoop
*pX
, /* First WhereLoop to compare */
2459 const WhereLoop
*pY
/* Compare against this WhereLoop */
2462 if( pX
->rRun
>pY
->rRun
&& pX
->nOut
>pY
->nOut
) return 0; /* (1d) and (2a) */
2463 assert( (pX
->wsFlags
& WHERE_VIRTUALTABLE
)==0 );
2464 assert( (pY
->wsFlags
& WHERE_VIRTUALTABLE
)==0 );
2465 if( pX
->u
.btree
.nEq
< pY
->u
.btree
.nEq
/* (1b) */
2466 && pX
->u
.btree
.pIndex
==pY
->u
.btree
.pIndex
/* (1a) */
2467 && pX
->nSkip
==0 && pY
->nSkip
==0 /* (1c) */
2469 return 1; /* Case 1 is true */
2471 if( pX
->nLTerm
-pX
->nSkip
>= pY
->nLTerm
-pY
->nSkip
){
2472 return 0; /* (2b) */
2474 if( pY
->nSkip
> pX
->nSkip
) return 0; /* (2d) */
2475 for(i
=pX
->nLTerm
-1; i
>=0; i
--){
2476 if( pX
->aLTerm
[i
]==0 ) continue;
2477 for(j
=pY
->nLTerm
-1; j
>=0; j
--){
2478 if( pY
->aLTerm
[j
]==pX
->aLTerm
[i
] ) break;
2480 if( j
<0 ) return 0; /* (2c) */
2482 if( (pX
->wsFlags
&WHERE_IDX_ONLY
)!=0
2483 && (pY
->wsFlags
&WHERE_IDX_ONLY
)==0 ){
2484 return 0; /* (2e) */
2486 return 1; /* Case 2 is true */
2490 ** Try to adjust the cost and number of output rows of WhereLoop pTemplate
2491 ** upwards or downwards so that:
2493 ** (1) pTemplate costs less than any other WhereLoops that are a proper
2494 ** subset of pTemplate
2496 ** (2) pTemplate costs more than any other WhereLoops for which pTemplate
2497 ** is a proper subset.
2499 ** To say "WhereLoop X is a proper subset of Y" means that X uses fewer
2500 ** WHERE clause terms than Y and that every WHERE clause term used by X is
2503 static void whereLoopAdjustCost(const WhereLoop
*p
, WhereLoop
*pTemplate
){
2504 if( (pTemplate
->wsFlags
& WHERE_INDEXED
)==0 ) return;
2505 for(; p
; p
=p
->pNextLoop
){
2506 if( p
->iTab
!=pTemplate
->iTab
) continue;
2507 if( (p
->wsFlags
& WHERE_INDEXED
)==0 ) continue;
2508 if( whereLoopCheaperProperSubset(p
, pTemplate
) ){
2509 /* Adjust pTemplate cost downward so that it is cheaper than its
2511 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2512 pTemplate
->rRun
, pTemplate
->nOut
,
2513 MIN(p
->rRun
, pTemplate
->rRun
),
2514 MIN(p
->nOut
- 1, pTemplate
->nOut
)));
2515 pTemplate
->rRun
= MIN(p
->rRun
, pTemplate
->rRun
);
2516 pTemplate
->nOut
= MIN(p
->nOut
- 1, pTemplate
->nOut
);
2517 }else if( whereLoopCheaperProperSubset(pTemplate
, p
) ){
2518 /* Adjust pTemplate cost upward so that it is costlier than p since
2519 ** pTemplate is a proper subset of p */
2520 WHERETRACE(0x80,("subset cost adjustment %d,%d to %d,%d\n",
2521 pTemplate
->rRun
, pTemplate
->nOut
,
2522 MAX(p
->rRun
, pTemplate
->rRun
),
2523 MAX(p
->nOut
+ 1, pTemplate
->nOut
)));
2524 pTemplate
->rRun
= MAX(p
->rRun
, pTemplate
->rRun
);
2525 pTemplate
->nOut
= MAX(p
->nOut
+ 1, pTemplate
->nOut
);
2531 ** Search the list of WhereLoops in *ppPrev looking for one that can be
2532 ** replaced by pTemplate.
2534 ** Return NULL if pTemplate does not belong on the WhereLoop list.
2535 ** In other words if pTemplate ought to be dropped from further consideration.
2537 ** If pX is a WhereLoop that pTemplate can replace, then return the
2538 ** link that points to pX.
2540 ** If pTemplate cannot replace any existing element of the list but needs
2541 ** to be added to the list as a new entry, then return a pointer to the
2542 ** tail of the list.
2544 static WhereLoop
**whereLoopFindLesser(
2546 const WhereLoop
*pTemplate
2549 for(p
=(*ppPrev
); p
; ppPrev
=&p
->pNextLoop
, p
=*ppPrev
){
2550 if( p
->iTab
!=pTemplate
->iTab
|| p
->iSortIdx
!=pTemplate
->iSortIdx
){
2551 /* If either the iTab or iSortIdx values for two WhereLoop are different
2552 ** then those WhereLoops need to be considered separately. Neither is
2553 ** a candidate to replace the other. */
2556 /* In the current implementation, the rSetup value is either zero
2557 ** or the cost of building an automatic index (NlogN) and the NlogN
2558 ** is the same for compatible WhereLoops. */
2559 assert( p
->rSetup
==0 || pTemplate
->rSetup
==0
2560 || p
->rSetup
==pTemplate
->rSetup
);
2562 /* whereLoopAddBtree() always generates and inserts the automatic index
2563 ** case first. Hence compatible candidate WhereLoops never have a larger
2564 ** rSetup. Call this SETUP-INVARIANT */
2565 assert( p
->rSetup
>=pTemplate
->rSetup
);
2567 /* Any loop using an application-defined index (or PRIMARY KEY or
2568 ** UNIQUE constraint) with one or more == constraints is better
2569 ** than an automatic index. Unless it is a skip-scan. */
2570 if( (p
->wsFlags
& WHERE_AUTO_INDEX
)!=0
2571 && (pTemplate
->nSkip
)==0
2572 && (pTemplate
->wsFlags
& WHERE_INDEXED
)!=0
2573 && (pTemplate
->wsFlags
& WHERE_COLUMN_EQ
)!=0
2574 && (p
->prereq
& pTemplate
->prereq
)==pTemplate
->prereq
2579 /* If existing WhereLoop p is better than pTemplate, pTemplate can be
2580 ** discarded. WhereLoop p is better if:
2581 ** (1) p has no more dependencies than pTemplate, and
2582 ** (2) p has an equal or lower cost than pTemplate
2584 if( (p
->prereq
& pTemplate
->prereq
)==p
->prereq
/* (1) */
2585 && p
->rSetup
<=pTemplate
->rSetup
/* (2a) */
2586 && p
->rRun
<=pTemplate
->rRun
/* (2b) */
2587 && p
->nOut
<=pTemplate
->nOut
/* (2c) */
2589 return 0; /* Discard pTemplate */
2592 /* If pTemplate is always better than p, then cause p to be overwritten
2593 ** with pTemplate. pTemplate is better than p if:
2594 ** (1) pTemplate has no more dependencies than p, and
2595 ** (2) pTemplate has an equal or lower cost than p.
2597 if( (p
->prereq
& pTemplate
->prereq
)==pTemplate
->prereq
/* (1) */
2598 && p
->rRun
>=pTemplate
->rRun
/* (2a) */
2599 && p
->nOut
>=pTemplate
->nOut
/* (2b) */
2601 assert( p
->rSetup
>=pTemplate
->rSetup
); /* SETUP-INVARIANT above */
2602 break; /* Cause p to be overwritten by pTemplate */
2609 ** Insert or replace a WhereLoop entry using the template supplied.
2611 ** An existing WhereLoop entry might be overwritten if the new template
2612 ** is better and has fewer dependencies. Or the template will be ignored
2613 ** and no insert will occur if an existing WhereLoop is faster and has
2614 ** fewer dependencies than the template. Otherwise a new WhereLoop is
2615 ** added based on the template.
2617 ** If pBuilder->pOrSet is not NULL then we care about only the
2618 ** prerequisites and rRun and nOut costs of the N best loops. That
2619 ** information is gathered in the pBuilder->pOrSet object. This special
2620 ** processing mode is used only for OR clause processing.
2622 ** When accumulating multiple loops (when pBuilder->pOrSet is NULL) we
2623 ** still might overwrite similar loops with the new template if the
2624 ** new template is better. Loops may be overwritten if the following
2625 ** conditions are met:
2627 ** (1) They have the same iTab.
2628 ** (2) They have the same iSortIdx.
2629 ** (3) The template has same or fewer dependencies than the current loop
2630 ** (4) The template has the same or lower cost than the current loop
2632 static int whereLoopInsert(WhereLoopBuilder
*pBuilder
, WhereLoop
*pTemplate
){
2633 WhereLoop
**ppPrev
, *p
;
2634 WhereInfo
*pWInfo
= pBuilder
->pWInfo
;
2635 sqlite3
*db
= pWInfo
->pParse
->db
;
2638 /* Stop the search once we hit the query planner search limit */
2639 if( pBuilder
->iPlanLimit
==0 ){
2640 WHERETRACE(0xffffffff,("=== query planner search limit reached ===\n"));
2641 if( pBuilder
->pOrSet
) pBuilder
->pOrSet
->n
= 0;
2644 pBuilder
->iPlanLimit
--;
2646 whereLoopAdjustCost(pWInfo
->pLoops
, pTemplate
);
2648 /* If pBuilder->pOrSet is defined, then only keep track of the costs
2651 if( pBuilder
->pOrSet
!=0 ){
2652 if( pTemplate
->nLTerm
){
2653 #if WHERETRACE_ENABLED
2654 u16 n
= pBuilder
->pOrSet
->n
;
2657 whereOrInsert(pBuilder
->pOrSet
, pTemplate
->prereq
, pTemplate
->rRun
,
2659 #if WHERETRACE_ENABLED /* 0x8 */
2660 if( sqlite3WhereTrace
& 0x8 ){
2661 sqlite3DebugPrintf(x
?" or-%d: ":" or-X: ", n
);
2662 sqlite3WhereLoopPrint(pTemplate
, pBuilder
->pWC
);
2669 /* Look for an existing WhereLoop to replace with pTemplate
2671 ppPrev
= whereLoopFindLesser(&pWInfo
->pLoops
, pTemplate
);
2674 /* There already exists a WhereLoop on the list that is better
2675 ** than pTemplate, so just ignore pTemplate */
2676 #if WHERETRACE_ENABLED /* 0x8 */
2677 if( sqlite3WhereTrace
& 0x8 ){
2678 sqlite3DebugPrintf(" skip: ");
2679 sqlite3WhereLoopPrint(pTemplate
, pBuilder
->pWC
);
2687 /* If we reach this point it means that either p[] should be overwritten
2688 ** with pTemplate[] if p[] exists, or if p==NULL then allocate a new
2689 ** WhereLoop and insert it.
2691 #if WHERETRACE_ENABLED /* 0x8 */
2692 if( sqlite3WhereTrace
& 0x8 ){
2694 sqlite3DebugPrintf("replace: ");
2695 sqlite3WhereLoopPrint(p
, pBuilder
->pWC
);
2696 sqlite3DebugPrintf(" with: ");
2698 sqlite3DebugPrintf(" add: ");
2700 sqlite3WhereLoopPrint(pTemplate
, pBuilder
->pWC
);
2704 /* Allocate a new WhereLoop to add to the end of the list */
2705 *ppPrev
= p
= sqlite3DbMallocRawNN(db
, sizeof(WhereLoop
));
2706 if( p
==0 ) return SQLITE_NOMEM_BKPT
;
2710 /* We will be overwriting WhereLoop p[]. But before we do, first
2711 ** go through the rest of the list and delete any other entries besides
2712 ** p[] that are also supplanted by pTemplate */
2713 WhereLoop
**ppTail
= &p
->pNextLoop
;
2716 ppTail
= whereLoopFindLesser(ppTail
, pTemplate
);
2717 if( ppTail
==0 ) break;
2719 if( pToDel
==0 ) break;
2720 *ppTail
= pToDel
->pNextLoop
;
2721 #if WHERETRACE_ENABLED /* 0x8 */
2722 if( sqlite3WhereTrace
& 0x8 ){
2723 sqlite3DebugPrintf(" delete: ");
2724 sqlite3WhereLoopPrint(pToDel
, pBuilder
->pWC
);
2727 whereLoopDelete(db
, pToDel
);
2730 rc
= whereLoopXfer(db
, p
, pTemplate
);
2731 if( (p
->wsFlags
& WHERE_VIRTUALTABLE
)==0 ){
2732 Index
*pIndex
= p
->u
.btree
.pIndex
;
2733 if( pIndex
&& pIndex
->idxType
==SQLITE_IDXTYPE_IPK
){
2734 p
->u
.btree
.pIndex
= 0;
2741 ** Adjust the WhereLoop.nOut value downward to account for terms of the
2742 ** WHERE clause that reference the loop but which are not used by an
2745 ** For every WHERE clause term that is not used by the index
2746 ** and which has a truth probability assigned by one of the likelihood(),
2747 ** likely(), or unlikely() SQL functions, reduce the estimated number
2748 ** of output rows by the probability specified.
2750 ** TUNING: For every WHERE clause term that is not used by the index
2751 ** and which does not have an assigned truth probability, heuristics
2752 ** described below are used to try to estimate the truth probability.
2753 ** TODO --> Perhaps this is something that could be improved by better
2754 ** table statistics.
2756 ** Heuristic 1: Estimate the truth probability as 93.75%. The 93.75%
2757 ** value corresponds to -1 in LogEst notation, so this means decrement
2758 ** the WhereLoop.nOut field for every such WHERE clause term.
2760 ** Heuristic 2: If there exists one or more WHERE clause terms of the
2761 ** form "x==EXPR" and EXPR is not a constant 0 or 1, then make sure the
2762 ** final output row estimate is no greater than 1/4 of the total number
2763 ** of rows in the table. In other words, assume that x==EXPR will filter
2764 ** out at least 3 out of 4 rows. If EXPR is -1 or 0 or 1, then maybe the
2765 ** "x" column is boolean or else -1 or 0 or 1 is a common default value
2766 ** on the "x" column and so in that case only cap the output row estimate
2767 ** at 1/2 instead of 1/4.
2769 static void whereLoopOutputAdjust(
2770 WhereClause
*pWC
, /* The WHERE clause */
2771 WhereLoop
*pLoop
, /* The loop to adjust downward */
2772 LogEst nRow
/* Number of rows in the entire table */
2774 WhereTerm
*pTerm
, *pX
;
2775 Bitmask notAllowed
= ~(pLoop
->prereq
|pLoop
->maskSelf
);
2777 LogEst iReduce
= 0; /* pLoop->nOut should not exceed nRow-iReduce */
2779 assert( (pLoop
->wsFlags
& WHERE_AUTO_INDEX
)==0 );
2780 for(i
=pWC
->nBase
, pTerm
=pWC
->a
; i
>0; i
--, pTerm
++){
2782 if( (pTerm
->prereqAll
& notAllowed
)!=0 ) continue;
2783 if( (pTerm
->prereqAll
& pLoop
->maskSelf
)==0 ) continue;
2784 if( (pTerm
->wtFlags
& TERM_VIRTUAL
)!=0 ) continue;
2785 for(j
=pLoop
->nLTerm
-1; j
>=0; j
--){
2786 pX
= pLoop
->aLTerm
[j
];
2787 if( pX
==0 ) continue;
2788 if( pX
==pTerm
) break;
2789 if( pX
->iParent
>=0 && (&pWC
->a
[pX
->iParent
])==pTerm
) break;
2792 sqlite3ProgressCheck(pWC
->pWInfo
->pParse
);
2793 if( pLoop
->maskSelf
==pTerm
->prereqAll
){
2794 /* If there are extra terms in the WHERE clause not used by an index
2795 ** that depend only on the table being scanned, and that will tend to
2796 ** cause many rows to be omitted, then mark that table as
2799 ** 2022-03-24: Self-culling only applies if either the extra terms
2800 ** are straight comparison operators that are non-true with NULL
2801 ** operand, or if the loop is not an OUTER JOIN.
2803 if( (pTerm
->eOperator
& 0x3f)!=0
2804 || (pWC
->pWInfo
->pTabList
->a
[pLoop
->iTab
].fg
.jointype
2805 & (JT_LEFT
|JT_LTORJ
))==0
2807 pLoop
->wsFlags
|= WHERE_SELFCULL
;
2810 if( pTerm
->truthProb
<=0 ){
2811 /* If a truth probability is specified using the likelihood() hints,
2812 ** then use the probability provided by the application. */
2813 pLoop
->nOut
+= pTerm
->truthProb
;
2815 /* In the absence of explicit truth probabilities, use heuristics to
2816 ** guess a reasonable truth probability. */
2818 if( (pTerm
->eOperator
&(WO_EQ
|WO_IS
))!=0
2819 && (pTerm
->wtFlags
& TERM_HIGHTRUTH
)==0 /* tag-20200224-1 */
2821 Expr
*pRight
= pTerm
->pExpr
->pRight
;
2823 testcase( pTerm
->pExpr
->op
==TK_IS
);
2824 if( sqlite3ExprIsInteger(pRight
, &k
) && k
>=(-1) && k
<=1 ){
2830 pTerm
->wtFlags
|= TERM_HEURTRUTH
;
2837 if( pLoop
->nOut
> nRow
-iReduce
){
2838 pLoop
->nOut
= nRow
- iReduce
;
2843 ** Term pTerm is a vector range comparison operation. The first comparison
2844 ** in the vector can be optimized using column nEq of the index. This
2845 ** function returns the total number of vector elements that can be used
2846 ** as part of the range comparison.
2848 ** For example, if the query is:
2850 ** WHERE a = ? AND (b, c, d) > (?, ?, ?)
2854 ** CREATE INDEX ... ON (a, b, c, d, e)
2856 ** then this function would be invoked with nEq=1. The value returned in
2859 static int whereRangeVectorLen(
2860 Parse
*pParse
, /* Parsing context */
2861 int iCur
, /* Cursor open on pIdx */
2862 Index
*pIdx
, /* The index to be used for a inequality constraint */
2863 int nEq
, /* Number of prior equality constraints on same index */
2864 WhereTerm
*pTerm
/* The vector inequality constraint */
2866 int nCmp
= sqlite3ExprVectorSize(pTerm
->pExpr
->pLeft
);
2869 nCmp
= MIN(nCmp
, (pIdx
->nColumn
- nEq
));
2870 for(i
=1; i
<nCmp
; i
++){
2871 /* Test if comparison i of pTerm is compatible with column (i+nEq)
2872 ** of the index. If not, exit the loop. */
2873 char aff
; /* Comparison affinity */
2874 char idxaff
= 0; /* Indexed columns affinity */
2875 CollSeq
*pColl
; /* Comparison collation sequence */
2878 assert( ExprUseXList(pTerm
->pExpr
->pLeft
) );
2879 pLhs
= pTerm
->pExpr
->pLeft
->x
.pList
->a
[i
].pExpr
;
2880 pRhs
= pTerm
->pExpr
->pRight
;
2881 if( ExprUseXSelect(pRhs
) ){
2882 pRhs
= pRhs
->x
.pSelect
->pEList
->a
[i
].pExpr
;
2884 pRhs
= pRhs
->x
.pList
->a
[i
].pExpr
;
2887 /* Check that the LHS of the comparison is a column reference to
2888 ** the right column of the right source table. And that the sort
2889 ** order of the index column is the same as the sort order of the
2890 ** leftmost index column. */
2891 if( pLhs
->op
!=TK_COLUMN
2892 || pLhs
->iTable
!=iCur
2893 || pLhs
->iColumn
!=pIdx
->aiColumn
[i
+nEq
]
2894 || pIdx
->aSortOrder
[i
+nEq
]!=pIdx
->aSortOrder
[nEq
]
2899 testcase( pLhs
->iColumn
==XN_ROWID
);
2900 aff
= sqlite3CompareAffinity(pRhs
, sqlite3ExprAffinity(pLhs
));
2901 idxaff
= sqlite3TableColumnAffinity(pIdx
->pTable
, pLhs
->iColumn
);
2902 if( aff
!=idxaff
) break;
2904 pColl
= sqlite3BinaryCompareCollSeq(pParse
, pLhs
, pRhs
);
2905 if( pColl
==0 ) break;
2906 if( sqlite3StrICmp(pColl
->zName
, pIdx
->azColl
[i
+nEq
]) ) break;
2912 ** Adjust the cost C by the costMult factor T. This only occurs if
2913 ** compiled with -DSQLITE_ENABLE_COSTMULT
2915 #ifdef SQLITE_ENABLE_COSTMULT
2916 # define ApplyCostMultiplier(C,T) C += T
2918 # define ApplyCostMultiplier(C,T)
2922 ** We have so far matched pBuilder->pNew->u.btree.nEq terms of the
2923 ** index pIndex. Try to match one more.
2925 ** When this function is called, pBuilder->pNew->nOut contains the
2926 ** number of rows expected to be visited by filtering using the nEq
2927 ** terms only. If it is modified, this value is restored before this
2928 ** function returns.
2930 ** If pProbe->idxType==SQLITE_IDXTYPE_IPK, that means pIndex is
2931 ** a fake index used for the INTEGER PRIMARY KEY.
2933 static int whereLoopAddBtreeIndex(
2934 WhereLoopBuilder
*pBuilder
, /* The WhereLoop factory */
2935 SrcItem
*pSrc
, /* FROM clause term being analyzed */
2936 Index
*pProbe
, /* An index on pSrc */
2937 LogEst nInMul
/* log(Number of iterations due to IN) */
2939 WhereInfo
*pWInfo
= pBuilder
->pWInfo
; /* WHERE analyze context */
2940 Parse
*pParse
= pWInfo
->pParse
; /* Parsing context */
2941 sqlite3
*db
= pParse
->db
; /* Database connection malloc context */
2942 WhereLoop
*pNew
; /* Template WhereLoop under construction */
2943 WhereTerm
*pTerm
; /* A WhereTerm under consideration */
2944 int opMask
; /* Valid operators for constraints */
2945 WhereScan scan
; /* Iterator for WHERE terms */
2946 Bitmask saved_prereq
; /* Original value of pNew->prereq */
2947 u16 saved_nLTerm
; /* Original value of pNew->nLTerm */
2948 u16 saved_nEq
; /* Original value of pNew->u.btree.nEq */
2949 u16 saved_nBtm
; /* Original value of pNew->u.btree.nBtm */
2950 u16 saved_nTop
; /* Original value of pNew->u.btree.nTop */
2951 u16 saved_nSkip
; /* Original value of pNew->nSkip */
2952 u32 saved_wsFlags
; /* Original value of pNew->wsFlags */
2953 LogEst saved_nOut
; /* Original value of pNew->nOut */
2954 int rc
= SQLITE_OK
; /* Return code */
2955 LogEst rSize
; /* Number of rows in the table */
2956 LogEst rLogSize
; /* Logarithm of table size */
2957 WhereTerm
*pTop
= 0, *pBtm
= 0; /* Top and bottom range constraints */
2959 pNew
= pBuilder
->pNew
;
2960 assert( db
->mallocFailed
==0 || pParse
->nErr
>0 );
2964 WHERETRACE(0x800, ("BEGIN %s.addBtreeIdx(%s), nEq=%d, nSkip=%d, rRun=%d\n",
2965 pProbe
->pTable
->zName
,pProbe
->zName
,
2966 pNew
->u
.btree
.nEq
, pNew
->nSkip
, pNew
->rRun
));
2968 assert( (pNew
->wsFlags
& WHERE_VIRTUALTABLE
)==0 );
2969 assert( (pNew
->wsFlags
& WHERE_TOP_LIMIT
)==0 );
2970 if( pNew
->wsFlags
& WHERE_BTM_LIMIT
){
2971 opMask
= WO_LT
|WO_LE
;
2973 assert( pNew
->u
.btree
.nBtm
==0 );
2974 opMask
= WO_EQ
|WO_IN
|WO_GT
|WO_GE
|WO_LT
|WO_LE
|WO_ISNULL
|WO_IS
;
2976 if( pProbe
->bUnordered
|| pProbe
->bLowQual
){
2977 if( pProbe
->bUnordered
) opMask
&= ~(WO_GT
|WO_GE
|WO_LT
|WO_LE
);
2978 if( pProbe
->bLowQual
) opMask
&= ~(WO_EQ
|WO_IN
|WO_IS
);
2981 assert( pNew
->u
.btree
.nEq
<pProbe
->nColumn
);
2982 assert( pNew
->u
.btree
.nEq
<pProbe
->nKeyCol
2983 || pProbe
->idxType
!=SQLITE_IDXTYPE_PRIMARYKEY
);
2985 saved_nEq
= pNew
->u
.btree
.nEq
;
2986 saved_nBtm
= pNew
->u
.btree
.nBtm
;
2987 saved_nTop
= pNew
->u
.btree
.nTop
;
2988 saved_nSkip
= pNew
->nSkip
;
2989 saved_nLTerm
= pNew
->nLTerm
;
2990 saved_wsFlags
= pNew
->wsFlags
;
2991 saved_prereq
= pNew
->prereq
;
2992 saved_nOut
= pNew
->nOut
;
2993 pTerm
= whereScanInit(&scan
, pBuilder
->pWC
, pSrc
->iCursor
, saved_nEq
,
2996 rSize
= pProbe
->aiRowLogEst
[0];
2997 rLogSize
= estLog(rSize
);
2998 for(; rc
==SQLITE_OK
&& pTerm
!=0; pTerm
= whereScanNext(&scan
)){
2999 u16 eOp
= pTerm
->eOperator
; /* Shorthand for pTerm->eOperator */
3001 LogEst nOutUnadjusted
; /* nOut before IN() and WHERE adjustments */
3003 #ifdef SQLITE_ENABLE_STAT4
3004 int nRecValid
= pBuilder
->nRecValid
;
3006 if( (eOp
==WO_ISNULL
|| (pTerm
->wtFlags
&TERM_VNULL
)!=0)
3007 && indexColumnNotNull(pProbe
, saved_nEq
)
3009 continue; /* ignore IS [NOT] NULL constraints on NOT NULL columns */
3011 if( pTerm
->prereqRight
& pNew
->maskSelf
) continue;
3013 /* Do not allow the upper bound of a LIKE optimization range constraint
3014 ** to mix with a lower range bound from some other source */
3015 if( pTerm
->wtFlags
& TERM_LIKEOPT
&& pTerm
->eOperator
==WO_LT
) continue;
3017 if( (pSrc
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))!=0
3018 && !constraintCompatibleWithOuterJoin(pTerm
,pSrc
)
3022 if( IsUniqueIndex(pProbe
) && saved_nEq
==pProbe
->nKeyCol
-1 ){
3023 pBuilder
->bldFlags1
|= SQLITE_BLDF1_UNIQUE
;
3025 pBuilder
->bldFlags1
|= SQLITE_BLDF1_INDEXED
;
3027 pNew
->wsFlags
= saved_wsFlags
;
3028 pNew
->u
.btree
.nEq
= saved_nEq
;
3029 pNew
->u
.btree
.nBtm
= saved_nBtm
;
3030 pNew
->u
.btree
.nTop
= saved_nTop
;
3031 pNew
->nLTerm
= saved_nLTerm
;
3032 if( pNew
->nLTerm
>=pNew
->nLSlot
3033 && whereLoopResize(db
, pNew
, pNew
->nLTerm
+1)
3035 break; /* OOM while trying to enlarge the pNew->aLTerm array */
3037 pNew
->aLTerm
[pNew
->nLTerm
++] = pTerm
;
3038 pNew
->prereq
= (saved_prereq
| pTerm
->prereqRight
) & ~pNew
->maskSelf
;
3041 || (pNew
->wsFlags
& WHERE_COLUMN_NULL
)!=0
3042 || (pNew
->wsFlags
& WHERE_COLUMN_IN
)!=0
3043 || (pNew
->wsFlags
& WHERE_SKIPSCAN
)!=0
3047 Expr
*pExpr
= pTerm
->pExpr
;
3048 if( ExprUseXSelect(pExpr
) ){
3049 /* "x IN (SELECT ...)": TUNING: the SELECT returns 25 rows */
3051 nIn
= 46; assert( 46==sqlite3LogEst(25) );
3053 /* The expression may actually be of the form (x, y) IN (SELECT...).
3054 ** In this case there is a separate term for each of (x) and (y).
3055 ** However, the nIn multiplier should only be applied once, not once
3056 ** for each such term. The following loop checks that pTerm is the
3057 ** first such term in use, and sets nIn back to 0 if it is not. */
3058 for(i
=0; i
<pNew
->nLTerm
-1; i
++){
3059 if( pNew
->aLTerm
[i
] && pNew
->aLTerm
[i
]->pExpr
==pExpr
) nIn
= 0;
3061 }else if( ALWAYS(pExpr
->x
.pList
&& pExpr
->x
.pList
->nExpr
) ){
3062 /* "x IN (value, value, ...)" */
3063 nIn
= sqlite3LogEst(pExpr
->x
.pList
->nExpr
);
3065 if( pProbe
->hasStat1
&& rLogSize
>=10 ){
3068 ** N = the total number of rows in the table
3069 ** K = the number of entries on the RHS of the IN operator
3070 ** M = the number of rows in the table that match terms to the
3071 ** to the left in the same index. If the IN operator is on
3072 ** the left-most index column, M==N.
3074 ** Given the definitions above, it is better to omit the IN operator
3075 ** from the index lookup and instead do a scan of the M elements,
3076 ** testing each scanned row against the IN operator separately, if:
3078 ** M*log(K) < K*log(N)
3080 ** Our estimates for M, K, and N might be inaccurate, so we build in
3081 ** a safety margin of 2 (LogEst: 10) that favors using the IN operator
3082 ** with the index, as using an index has better worst-case behavior.
3083 ** If we do not have real sqlite_stat1 data, always prefer to use
3084 ** the index. Do not bother with this optimization on very small
3085 ** tables (less than 2 rows) as it is pointless in that case.
3087 M
= pProbe
->aiRowLogEst
[saved_nEq
];
3089 /* TUNING v----- 10 to bias toward indexed IN */
3090 x
= M
+ logK
+ 10 - (nIn
+ rLogSize
);
3093 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d) "
3094 "prefers indexed lookup\n",
3095 saved_nEq
, M
, logK
, nIn
, rLogSize
, x
));
3096 }else if( nInMul
<2 && OptimizationEnabled(db
, SQLITE_SeekScan
) ){
3098 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
3099 " nInMul=%d) prefers skip-scan\n",
3100 saved_nEq
, M
, logK
, nIn
, rLogSize
, x
, nInMul
));
3101 pNew
->wsFlags
|= WHERE_IN_SEEKSCAN
;
3104 ("IN operator (N=%d M=%d logK=%d nIn=%d rLogSize=%d x=%d"
3105 " nInMul=%d) prefers normal scan\n",
3106 saved_nEq
, M
, logK
, nIn
, rLogSize
, x
, nInMul
));
3110 pNew
->wsFlags
|= WHERE_COLUMN_IN
;
3111 }else if( eOp
& (WO_EQ
|WO_IS
) ){
3112 int iCol
= pProbe
->aiColumn
[saved_nEq
];
3113 pNew
->wsFlags
|= WHERE_COLUMN_EQ
;
3114 assert( saved_nEq
==pNew
->u
.btree
.nEq
);
3116 || (iCol
>=0 && nInMul
==0 && saved_nEq
==pProbe
->nKeyCol
-1)
3118 if( iCol
==XN_ROWID
|| pProbe
->uniqNotNull
3119 || (pProbe
->nKeyCol
==1 && pProbe
->onError
&& eOp
==WO_EQ
)
3121 pNew
->wsFlags
|= WHERE_ONEROW
;
3123 pNew
->wsFlags
|= WHERE_UNQ_WANTED
;
3126 if( scan
.iEquiv
>1 ) pNew
->wsFlags
|= WHERE_TRANSCONS
;
3127 }else if( eOp
& WO_ISNULL
){
3128 pNew
->wsFlags
|= WHERE_COLUMN_NULL
;
3130 int nVecLen
= whereRangeVectorLen(
3131 pParse
, pSrc
->iCursor
, pProbe
, saved_nEq
, pTerm
3133 if( eOp
& (WO_GT
|WO_GE
) ){
3134 testcase( eOp
& WO_GT
);
3135 testcase( eOp
& WO_GE
);
3136 pNew
->wsFlags
|= WHERE_COLUMN_RANGE
|WHERE_BTM_LIMIT
;
3137 pNew
->u
.btree
.nBtm
= nVecLen
;
3140 if( pTerm
->wtFlags
& TERM_LIKEOPT
){
3141 /* Range constraints that come from the LIKE optimization are
3142 ** always used in pairs. */
3144 assert( (pTop
-(pTerm
->pWC
->a
))<pTerm
->pWC
->nTerm
);
3145 assert( pTop
->wtFlags
& TERM_LIKEOPT
);
3146 assert( pTop
->eOperator
==WO_LT
);
3147 if( whereLoopResize(db
, pNew
, pNew
->nLTerm
+1) ) break; /* OOM */
3148 pNew
->aLTerm
[pNew
->nLTerm
++] = pTop
;
3149 pNew
->wsFlags
|= WHERE_TOP_LIMIT
;
3150 pNew
->u
.btree
.nTop
= 1;
3153 assert( eOp
& (WO_LT
|WO_LE
) );
3154 testcase( eOp
& WO_LT
);
3155 testcase( eOp
& WO_LE
);
3156 pNew
->wsFlags
|= WHERE_COLUMN_RANGE
|WHERE_TOP_LIMIT
;
3157 pNew
->u
.btree
.nTop
= nVecLen
;
3159 pBtm
= (pNew
->wsFlags
& WHERE_BTM_LIMIT
)!=0 ?
3160 pNew
->aLTerm
[pNew
->nLTerm
-2] : 0;
3164 /* At this point pNew->nOut is set to the number of rows expected to
3165 ** be visited by the index scan before considering term pTerm, or the
3166 ** values of nIn and nInMul. In other words, assuming that all
3167 ** "x IN(...)" terms are replaced with "x = ?". This block updates
3168 ** the value of pNew->nOut to account for pTerm (but not nIn/nInMul). */
3169 assert( pNew
->nOut
==saved_nOut
);
3170 if( pNew
->wsFlags
& WHERE_COLUMN_RANGE
){
3171 /* Adjust nOut using stat4 data. Or, if there is no stat4
3172 ** data, using some other estimate. */
3173 whereRangeScanEst(pParse
, pBuilder
, pBtm
, pTop
, pNew
);
3175 int nEq
= ++pNew
->u
.btree
.nEq
;
3176 assert( eOp
& (WO_ISNULL
|WO_EQ
|WO_IN
|WO_IS
) );
3178 assert( pNew
->nOut
==saved_nOut
);
3179 if( pTerm
->truthProb
<=0 && pProbe
->aiColumn
[saved_nEq
]>=0 ){
3180 assert( (eOp
& WO_IN
) || nIn
==0 );
3181 testcase( eOp
& WO_IN
);
3182 pNew
->nOut
+= pTerm
->truthProb
;
3185 #ifdef SQLITE_ENABLE_STAT4
3189 && ALWAYS(pNew
->u
.btree
.nEq
<=pProbe
->nSampleCol
)
3190 && ((eOp
& WO_IN
)==0 || ExprUseXList(pTerm
->pExpr
))
3191 && OptimizationEnabled(db
, SQLITE_Stat4
)
3193 Expr
*pExpr
= pTerm
->pExpr
;
3194 if( (eOp
& (WO_EQ
|WO_ISNULL
|WO_IS
))!=0 ){
3195 testcase( eOp
& WO_EQ
);
3196 testcase( eOp
& WO_IS
);
3197 testcase( eOp
& WO_ISNULL
);
3198 rc
= whereEqualScanEst(pParse
, pBuilder
, pExpr
->pRight
, &nOut
);
3200 rc
= whereInScanEst(pParse
, pBuilder
, pExpr
->x
.pList
, &nOut
);
3202 if( rc
==SQLITE_NOTFOUND
) rc
= SQLITE_OK
;
3203 if( rc
!=SQLITE_OK
) break; /* Jump out of the pTerm loop */
3205 pNew
->nOut
= sqlite3LogEst(nOut
);
3207 /* TUNING: Mark terms as "low selectivity" if they seem likely
3208 ** to be true for half or more of the rows in the table.
3209 ** See tag-202002240-1 */
3210 && pNew
->nOut
+10 > pProbe
->aiRowLogEst
[0]
3212 #if WHERETRACE_ENABLED /* 0x01 */
3213 if( sqlite3WhereTrace
& 0x20 ){
3215 "STAT4 determines term has low selectivity:\n");
3216 sqlite3WhereTermPrint(pTerm
, 999);
3219 pTerm
->wtFlags
|= TERM_HIGHTRUTH
;
3220 if( pTerm
->wtFlags
& TERM_HEURTRUTH
){
3221 /* If the term has previously been used with an assumption of
3222 ** higher selectivity, then set the flag to rerun the
3223 ** loop computations. */
3224 pBuilder
->bldFlags2
|= SQLITE_BLDF2_2NDPASS
;
3227 if( pNew
->nOut
>saved_nOut
) pNew
->nOut
= saved_nOut
;
3234 pNew
->nOut
+= (pProbe
->aiRowLogEst
[nEq
] - pProbe
->aiRowLogEst
[nEq
-1]);
3235 if( eOp
& WO_ISNULL
){
3236 /* TUNING: If there is no likelihood() value, assume that a
3237 ** "col IS NULL" expression matches twice as many rows
3245 /* Set rCostIdx to the cost of visiting selected rows in index. Add
3246 ** it to pNew->rRun, which is currently set to the cost of the index
3247 ** seek only. Then, if this is a non-covering index, add the cost of
3248 ** visiting the rows in the main table. */
3249 assert( pSrc
->pTab
->szTabRow
>0 );
3250 if( pProbe
->idxType
==SQLITE_IDXTYPE_IPK
){
3251 /* The pProbe->szIdxRow is low for an IPK table since the interior
3252 ** pages are small. Thus szIdxRow gives a good estimate of seek cost.
3253 ** But the leaf pages are full-size, so pProbe->szIdxRow would badly
3254 ** under-estimate the scanning cost. */
3255 rCostIdx
= pNew
->nOut
+ 16;
3257 rCostIdx
= pNew
->nOut
+ 1 + (15*pProbe
->szIdxRow
)/pSrc
->pTab
->szTabRow
;
3259 pNew
->rRun
= sqlite3LogEstAdd(rLogSize
, rCostIdx
);
3260 if( (pNew
->wsFlags
& (WHERE_IDX_ONLY
|WHERE_IPK
|WHERE_EXPRIDX
))==0 ){
3261 pNew
->rRun
= sqlite3LogEstAdd(pNew
->rRun
, pNew
->nOut
+ 16);
3263 ApplyCostMultiplier(pNew
->rRun
, pProbe
->pTable
->costMult
);
3265 nOutUnadjusted
= pNew
->nOut
;
3266 pNew
->rRun
+= nInMul
+ nIn
;
3267 pNew
->nOut
+= nInMul
+ nIn
;
3268 whereLoopOutputAdjust(pBuilder
->pWC
, pNew
, rSize
);
3269 rc
= whereLoopInsert(pBuilder
, pNew
);
3271 if( pNew
->wsFlags
& WHERE_COLUMN_RANGE
){
3272 pNew
->nOut
= saved_nOut
;
3274 pNew
->nOut
= nOutUnadjusted
;
3277 if( (pNew
->wsFlags
& WHERE_TOP_LIMIT
)==0
3278 && pNew
->u
.btree
.nEq
<pProbe
->nColumn
3279 && (pNew
->u
.btree
.nEq
<pProbe
->nKeyCol
||
3280 pProbe
->idxType
!=SQLITE_IDXTYPE_PRIMARYKEY
)
3282 if( pNew
->u
.btree
.nEq
>3 ){
3283 sqlite3ProgressCheck(pParse
);
3285 whereLoopAddBtreeIndex(pBuilder
, pSrc
, pProbe
, nInMul
+nIn
);
3287 pNew
->nOut
= saved_nOut
;
3288 #ifdef SQLITE_ENABLE_STAT4
3289 pBuilder
->nRecValid
= nRecValid
;
3292 pNew
->prereq
= saved_prereq
;
3293 pNew
->u
.btree
.nEq
= saved_nEq
;
3294 pNew
->u
.btree
.nBtm
= saved_nBtm
;
3295 pNew
->u
.btree
.nTop
= saved_nTop
;
3296 pNew
->nSkip
= saved_nSkip
;
3297 pNew
->wsFlags
= saved_wsFlags
;
3298 pNew
->nOut
= saved_nOut
;
3299 pNew
->nLTerm
= saved_nLTerm
;
3301 /* Consider using a skip-scan if there are no WHERE clause constraints
3302 ** available for the left-most terms of the index, and if the average
3303 ** number of repeats in the left-most terms is at least 18.
3305 ** The magic number 18 is selected on the basis that scanning 17 rows
3306 ** is almost always quicker than an index seek (even though if the index
3307 ** contains fewer than 2^17 rows we assume otherwise in other parts of
3308 ** the code). And, even if it is not, it should not be too much slower.
3309 ** On the other hand, the extra seeks could end up being significantly
3310 ** more expensive. */
3311 assert( 42==sqlite3LogEst(18) );
3312 if( saved_nEq
==saved_nSkip
3313 && saved_nEq
+1<pProbe
->nKeyCol
3314 && saved_nEq
==pNew
->nLTerm
3315 && pProbe
->noSkipScan
==0
3316 && pProbe
->hasStat1
!=0
3317 && OptimizationEnabled(db
, SQLITE_SkipScan
)
3318 && pProbe
->aiRowLogEst
[saved_nEq
+1]>=42 /* TUNING: Minimum for skip-scan */
3319 && (rc
= whereLoopResize(db
, pNew
, pNew
->nLTerm
+1))==SQLITE_OK
3322 pNew
->u
.btree
.nEq
++;
3324 pNew
->aLTerm
[pNew
->nLTerm
++] = 0;
3325 pNew
->wsFlags
|= WHERE_SKIPSCAN
;
3326 nIter
= pProbe
->aiRowLogEst
[saved_nEq
] - pProbe
->aiRowLogEst
[saved_nEq
+1];
3327 pNew
->nOut
-= nIter
;
3328 /* TUNING: Because uncertainties in the estimates for skip-scan queries,
3329 ** add a 1.375 fudge factor to make skip-scan slightly less likely. */
3331 whereLoopAddBtreeIndex(pBuilder
, pSrc
, pProbe
, nIter
+ nInMul
);
3332 pNew
->nOut
= saved_nOut
;
3333 pNew
->u
.btree
.nEq
= saved_nEq
;
3334 pNew
->nSkip
= saved_nSkip
;
3335 pNew
->wsFlags
= saved_wsFlags
;
3338 WHERETRACE(0x800, ("END %s.addBtreeIdx(%s), nEq=%d, rc=%d\n",
3339 pProbe
->pTable
->zName
, pProbe
->zName
, saved_nEq
, rc
));
3344 ** Return True if it is possible that pIndex might be useful in
3345 ** implementing the ORDER BY clause in pBuilder.
3347 ** Return False if pBuilder does not contain an ORDER BY clause or
3348 ** if there is no way for pIndex to be useful in implementing that
3351 static int indexMightHelpWithOrderBy(
3352 WhereLoopBuilder
*pBuilder
,
3360 if( pIndex
->bUnordered
) return 0;
3361 if( (pOB
= pBuilder
->pWInfo
->pOrderBy
)==0 ) return 0;
3362 for(ii
=0; ii
<pOB
->nExpr
; ii
++){
3363 Expr
*pExpr
= sqlite3ExprSkipCollateAndLikely(pOB
->a
[ii
].pExpr
);
3364 if( NEVER(pExpr
==0) ) continue;
3365 if( pExpr
->op
==TK_COLUMN
&& pExpr
->iTable
==iCursor
){
3366 if( pExpr
->iColumn
<0 ) return 1;
3367 for(jj
=0; jj
<pIndex
->nKeyCol
; jj
++){
3368 if( pExpr
->iColumn
==pIndex
->aiColumn
[jj
] ) return 1;
3370 }else if( (aColExpr
= pIndex
->aColExpr
)!=0 ){
3371 for(jj
=0; jj
<pIndex
->nKeyCol
; jj
++){
3372 if( pIndex
->aiColumn
[jj
]!=XN_EXPR
) continue;
3373 if( sqlite3ExprCompareSkip(pExpr
,aColExpr
->a
[jj
].pExpr
,iCursor
)==0 ){
3382 /* Check to see if a partial index with pPartIndexWhere can be used
3383 ** in the current query. Return true if it can be and false if not.
3385 static int whereUsablePartialIndex(
3386 int iTab
, /* The table for which we want an index */
3387 u8 jointype
, /* The JT_* flags on the join */
3388 WhereClause
*pWC
, /* The WHERE clause of the query */
3389 Expr
*pWhere
/* The WHERE clause from the partial index */
3395 if( jointype
& JT_LTORJ
) return 0;
3396 pParse
= pWC
->pWInfo
->pParse
;
3397 while( pWhere
->op
==TK_AND
){
3398 if( !whereUsablePartialIndex(iTab
,jointype
,pWC
,pWhere
->pLeft
) ) return 0;
3399 pWhere
= pWhere
->pRight
;
3401 if( pParse
->db
->flags
& SQLITE_EnableQPSG
) pParse
= 0;
3402 for(i
=0, pTerm
=pWC
->a
; i
<pWC
->nTerm
; i
++, pTerm
++){
3404 pExpr
= pTerm
->pExpr
;
3405 if( (!ExprHasProperty(pExpr
, EP_OuterON
) || pExpr
->w
.iJoin
==iTab
)
3406 && ((jointype
& JT_OUTER
)==0 || ExprHasProperty(pExpr
, EP_OuterON
))
3407 && sqlite3ExprImpliesExpr(pParse
, pExpr
, pWhere
, iTab
)
3408 && (pTerm
->wtFlags
& TERM_VNULL
)==0
3417 ** pIdx is an index containing expressions. Check it see if any of the
3418 ** expressions in the index match the pExpr expression.
3420 static int exprIsCoveredByIndex(
3426 for(i
=0; i
<pIdx
->nColumn
; i
++){
3427 if( pIdx
->aiColumn
[i
]==XN_EXPR
3428 && sqlite3ExprCompare(0, pExpr
, pIdx
->aColExpr
->a
[i
].pExpr
, iTabCur
)==0
3437 ** Structure passed to the whereIsCoveringIndex Walker callback.
3439 typedef struct CoveringIndexCheck CoveringIndexCheck
;
3440 struct CoveringIndexCheck
{
3441 Index
*pIdx
; /* The index */
3442 int iTabCur
; /* Cursor number for the corresponding table */
3443 u8 bExpr
; /* Uses an indexed expression */
3444 u8 bUnidx
; /* Uses an unindexed column not within an indexed expr */
3448 ** Information passed in is pWalk->u.pCovIdxCk. Call it pCk.
3450 ** If the Expr node references the table with cursor pCk->iTabCur, then
3451 ** make sure that column is covered by the index pCk->pIdx. We know that
3452 ** all columns less than 63 (really BMS-1) are covered, so we don't need
3453 ** to check them. But we do need to check any column at 63 or greater.
3455 ** If the index does not cover the column, then set pWalk->eCode to
3456 ** non-zero and return WRC_Abort to stop the search.
3458 ** If this node does not disprove that the index can be a covering index,
3459 ** then just return WRC_Continue, to continue the search.
3461 ** If pCk->pIdx contains indexed expressions and one of those expressions
3462 ** matches pExpr, then prune the search.
3464 static int whereIsCoveringIndexWalkCallback(Walker
*pWalk
, Expr
*pExpr
){
3465 int i
; /* Loop counter */
3466 const Index
*pIdx
; /* The index of interest */
3467 const i16
*aiColumn
; /* Columns contained in the index */
3468 u16 nColumn
; /* Number of columns in the index */
3469 CoveringIndexCheck
*pCk
; /* Info about this search */
3471 pCk
= pWalk
->u
.pCovIdxCk
;
3473 if( (pExpr
->op
==TK_COLUMN
|| pExpr
->op
==TK_AGG_COLUMN
) ){
3474 /* if( pExpr->iColumn<(BMS-1) && pIdx->bHasExpr==0 ) return WRC_Continue;*/
3475 if( pExpr
->iTable
!=pCk
->iTabCur
) return WRC_Continue
;
3476 pIdx
= pWalk
->u
.pCovIdxCk
->pIdx
;
3477 aiColumn
= pIdx
->aiColumn
;
3478 nColumn
= pIdx
->nColumn
;
3479 for(i
=0; i
<nColumn
; i
++){
3480 if( aiColumn
[i
]==pExpr
->iColumn
) return WRC_Continue
;
3484 }else if( pIdx
->bHasExpr
3485 && exprIsCoveredByIndex(pExpr
, pIdx
, pWalk
->u
.pCovIdxCk
->iTabCur
) ){
3489 return WRC_Continue
;
3494 ** pIdx is an index that covers all of the low-number columns used by
3495 ** pWInfo->pSelect (columns from 0 through 62) or an index that has
3496 ** expressions terms. Hence, we cannot determine whether or not it is
3497 ** a covering index by using the colUsed bitmasks. We have to do a search
3498 ** to see if the index is covering. This routine does that search.
3500 ** The return value is one of these:
3502 ** 0 The index is definitely not a covering index
3504 ** WHERE_IDX_ONLY The index is definitely a covering index
3506 ** WHERE_EXPRIDX The index is likely a covering index, but it is
3507 ** difficult to determine precisely because of the
3508 ** expressions that are indexed. Score it as a
3509 ** covering index, but still keep the main table open
3510 ** just in case we need it.
3512 ** This routine is an optimization. It is always safe to return zero.
3513 ** But returning one of the other two values when zero should have been
3514 ** returned can lead to incorrect bytecode and assertion faults.
3516 static SQLITE_NOINLINE u32
whereIsCoveringIndex(
3517 WhereInfo
*pWInfo
, /* The WHERE clause context */
3518 Index
*pIdx
, /* Index that is being tested */
3519 int iTabCur
/* Cursor for the table being indexed */
3522 struct CoveringIndexCheck ck
;
3524 if( pWInfo
->pSelect
==0 ){
3525 /* We don't have access to the full query, so we cannot check to see
3526 ** if pIdx is covering. Assume it is not. */
3529 if( pIdx
->bHasExpr
==0 ){
3530 for(i
=0; i
<pIdx
->nColumn
; i
++){
3531 if( pIdx
->aiColumn
[i
]>=BMS
-1 ) break;
3533 if( i
>=pIdx
->nColumn
){
3534 /* pIdx does not index any columns greater than 62, but we know from
3535 ** colMask that columns greater than 62 are used, so this is not a
3536 ** covering index */
3541 ck
.iTabCur
= iTabCur
;
3544 memset(&w
, 0, sizeof(w
));
3545 w
.xExprCallback
= whereIsCoveringIndexWalkCallback
;
3546 w
.xSelectCallback
= sqlite3SelectWalkNoop
;
3547 w
.u
.pCovIdxCk
= &ck
;
3548 sqlite3WalkSelect(&w
, pWInfo
->pSelect
);
3551 }else if( ck
.bExpr
){
3554 rc
= WHERE_IDX_ONLY
;
3560 ** This is an sqlite3ParserAddCleanup() callback that is invoked to
3561 ** free the Parse->pIdxEpr list when the Parse object is destroyed.
3563 static void whereIndexedExprCleanup(sqlite3
*db
, void *pObject
){
3564 IndexedExpr
**pp
= (IndexedExpr
**)pObject
;
3566 IndexedExpr
*p
= *pp
;
3568 sqlite3ExprDelete(db
, p
->pExpr
);
3569 sqlite3DbFreeNN(db
, p
);
3574 ** This function is called for a partial index - one with a WHERE clause - in
3575 ** two scenarios. In both cases, it determines whether or not the WHERE
3576 ** clause on the index implies that a column of the table may be safely
3577 ** replaced by a constant expression. For example, in the following
3580 ** CREATE INDEX i1 ON t1(b, c) WHERE a=<expr>;
3581 ** SELECT a, b, c FROM t1 WHERE a=<expr> AND b=?;
3583 ** The "a" in the select-list may be replaced by <expr>, iff:
3585 ** (a) <expr> is a constant expression, and
3586 ** (b) The (a=<expr>) comparison uses the BINARY collation sequence, and
3587 ** (c) Column "a" has an affinity other than NONE or BLOB.
3589 ** If argument pItem is NULL, then pMask must not be NULL. In this case this
3590 ** function is being called as part of determining whether or not pIdx
3591 ** is a covering index. This function clears any bits in (*pMask)
3592 ** corresponding to columns that may be replaced by constants as described
3595 ** Otherwise, if pItem is not NULL, then this function is being called
3596 ** as part of coding a loop that uses index pIdx. In this case, add entries
3597 ** to the Parse.pIdxPartExpr list for each column that can be replaced
3600 static void wherePartIdxExpr(
3601 Parse
*pParse
, /* Parse context */
3602 Index
*pIdx
, /* Partial index being processed */
3603 Expr
*pPart
, /* WHERE clause being processed */
3604 Bitmask
*pMask
, /* Mask to clear bits in */
3605 int iIdxCur
, /* Cursor number for index */
3606 SrcItem
*pItem
/* The FROM clause entry for the table */
3608 assert( pItem
==0 || (pItem
->fg
.jointype
& JT_RIGHT
)==0 );
3609 assert( (pItem
==0 || pMask
==0) && (pMask
!=0 || pItem
!=0) );
3611 if( pPart
->op
==TK_AND
){
3612 wherePartIdxExpr(pParse
, pIdx
, pPart
->pRight
, pMask
, iIdxCur
, pItem
);
3613 pPart
= pPart
->pLeft
;
3616 if( (pPart
->op
==TK_EQ
|| pPart
->op
==TK_IS
) ){
3617 Expr
*pLeft
= pPart
->pLeft
;
3618 Expr
*pRight
= pPart
->pRight
;
3621 if( pLeft
->op
!=TK_COLUMN
) return;
3622 if( !sqlite3ExprIsConstant(pRight
) ) return;
3623 if( !sqlite3IsBinary(sqlite3ExprCompareCollSeq(pParse
, pPart
)) ) return;
3624 if( pLeft
->iColumn
<0 ) return;
3625 aff
= pIdx
->pTable
->aCol
[pLeft
->iColumn
].affinity
;
3626 if( aff
>=SQLITE_AFF_TEXT
){
3628 sqlite3
*db
= pParse
->db
;
3629 IndexedExpr
*p
= (IndexedExpr
*)sqlite3DbMallocRaw(db
, sizeof(*p
));
3631 int bNullRow
= (pItem
->fg
.jointype
&(JT_LEFT
|JT_LTORJ
))!=0;
3632 p
->pExpr
= sqlite3ExprDup(db
, pRight
, 0);
3633 p
->iDataCur
= pItem
->iCursor
;
3634 p
->iIdxCur
= iIdxCur
;
3635 p
->iIdxCol
= pLeft
->iColumn
;
3636 p
->bMaybeNullRow
= bNullRow
;
3637 p
->pIENext
= pParse
->pIdxPartExpr
;
3639 pParse
->pIdxPartExpr
= p
;
3640 if( p
->pIENext
==0 ){
3641 void *pArg
= (void*)&pParse
->pIdxPartExpr
;
3642 sqlite3ParserAddCleanup(pParse
, whereIndexedExprCleanup
, pArg
);
3645 }else if( pLeft
->iColumn
<(BMS
-1) ){
3646 *pMask
&= ~((Bitmask
)1 << pLeft
->iColumn
);
3654 ** Add all WhereLoop objects for a single table of the join where the table
3655 ** is identified by pBuilder->pNew->iTab. That table is guaranteed to be
3656 ** a b-tree table, not a virtual table.
3658 ** The costs (WhereLoop.rRun) of the b-tree loops added by this function
3659 ** are calculated as follows:
3661 ** For a full scan, assuming the table (or index) contains nRow rows:
3663 ** cost = nRow * 3.0 // full-table scan
3664 ** cost = nRow * K // scan of covering index
3665 ** cost = nRow * (K+3.0) // scan of non-covering index
3667 ** where K is a value between 1.1 and 3.0 set based on the relative
3668 ** estimated average size of the index and table records.
3670 ** For an index scan, where nVisit is the number of index rows visited
3671 ** by the scan, and nSeek is the number of seek operations required on
3672 ** the index b-tree:
3674 ** cost = nSeek * (log(nRow) + K * nVisit) // covering index
3675 ** cost = nSeek * (log(nRow) + (K+3.0) * nVisit) // non-covering index
3677 ** Normally, nSeek is 1. nSeek values greater than 1 come about if the
3678 ** WHERE clause includes "x IN (....)" terms used in place of "x=?". Or when
3679 ** implicit "x IN (SELECT x FROM tbl)" terms are added for skip-scans.
3681 ** The estimated values (nRow, nVisit, nSeek) often contain a large amount
3682 ** of uncertainty. For this reason, scoring is designed to pick plans that
3683 ** "do the least harm" if the estimates are inaccurate. For example, a
3684 ** log(nRow) factor is omitted from a non-covering index scan in order to
3685 ** bias the scoring in favor of using an index, since the worst-case
3686 ** performance of using an index is far better than the worst-case performance
3687 ** of a full table scan.
3689 static int whereLoopAddBtree(
3690 WhereLoopBuilder
*pBuilder
, /* WHERE clause information */
3691 Bitmask mPrereq
/* Extra prerequisites for using this table */
3693 WhereInfo
*pWInfo
; /* WHERE analysis context */
3694 Index
*pProbe
; /* An index we are evaluating */
3695 Index sPk
; /* A fake index object for the primary key */
3696 LogEst aiRowEstPk
[2]; /* The aiRowLogEst[] value for the sPk index */
3697 i16 aiColumnPk
= -1; /* The aColumn[] value for the sPk index */
3698 SrcList
*pTabList
; /* The FROM clause */
3699 SrcItem
*pSrc
; /* The FROM clause btree term to add */
3700 WhereLoop
*pNew
; /* Template WhereLoop object */
3701 int rc
= SQLITE_OK
; /* Return code */
3702 int iSortIdx
= 1; /* Index number */
3703 int b
; /* A boolean value */
3704 LogEst rSize
; /* number of rows in the table */
3705 WhereClause
*pWC
; /* The parsed WHERE clause */
3706 Table
*pTab
; /* Table being queried */
3708 pNew
= pBuilder
->pNew
;
3709 pWInfo
= pBuilder
->pWInfo
;
3710 pTabList
= pWInfo
->pTabList
;
3711 pSrc
= pTabList
->a
+ pNew
->iTab
;
3713 pWC
= pBuilder
->pWC
;
3714 assert( !IsVirtual(pSrc
->pTab
) );
3716 if( pSrc
->fg
.isIndexedBy
){
3717 assert( pSrc
->fg
.isCte
==0 );
3718 /* An INDEXED BY clause specifies a particular index to use */
3719 pProbe
= pSrc
->u2
.pIBIndex
;
3720 }else if( !HasRowid(pTab
) ){
3721 pProbe
= pTab
->pIndex
;
3723 /* There is no INDEXED BY clause. Create a fake Index object in local
3724 ** variable sPk to represent the rowid primary key index. Make this
3725 ** fake index the first in a chain of Index objects with all of the real
3726 ** indices to follow */
3727 Index
*pFirst
; /* First of real indices on the table */
3728 memset(&sPk
, 0, sizeof(Index
));
3731 sPk
.aiColumn
= &aiColumnPk
;
3732 sPk
.aiRowLogEst
= aiRowEstPk
;
3733 sPk
.onError
= OE_Replace
;
3735 sPk
.szIdxRow
= 3; /* TUNING: Interior rows of IPK table are very small */
3736 sPk
.idxType
= SQLITE_IDXTYPE_IPK
;
3737 aiRowEstPk
[0] = pTab
->nRowLogEst
;
3739 pFirst
= pSrc
->pTab
->pIndex
;
3740 if( pSrc
->fg
.notIndexed
==0 ){
3741 /* The real indices of the table are only considered if the
3742 ** NOT INDEXED qualifier is omitted from the FROM clause */
3747 rSize
= pTab
->nRowLogEst
;
3749 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
3750 /* Automatic indexes */
3751 if( !pBuilder
->pOrSet
/* Not part of an OR optimization */
3752 && (pWInfo
->wctrlFlags
& (WHERE_RIGHT_JOIN
|WHERE_OR_SUBCLAUSE
))==0
3753 && (pWInfo
->pParse
->db
->flags
& SQLITE_AutoIndex
)!=0
3754 && !pSrc
->fg
.isIndexedBy
/* Has no INDEXED BY clause */
3755 && !pSrc
->fg
.notIndexed
/* Has no NOT INDEXED clause */
3756 && HasRowid(pTab
) /* Not WITHOUT ROWID table. (FIXME: Why not?) */
3757 && !pSrc
->fg
.isCorrelated
/* Not a correlated subquery */
3758 && !pSrc
->fg
.isRecursive
/* Not a recursive common table expression. */
3759 && (pSrc
->fg
.jointype
& JT_RIGHT
)==0 /* Not the right tab of a RIGHT JOIN */
3761 /* Generate auto-index WhereLoops */
3762 LogEst rLogSize
; /* Logarithm of the number of rows in the table */
3764 WhereTerm
*pWCEnd
= pWC
->a
+ pWC
->nTerm
;
3765 rLogSize
= estLog(rSize
);
3766 for(pTerm
=pWC
->a
; rc
==SQLITE_OK
&& pTerm
<pWCEnd
; pTerm
++){
3767 if( pTerm
->prereqRight
& pNew
->maskSelf
) continue;
3768 if( termCanDriveIndex(pTerm
, pSrc
, 0) ){
3769 pNew
->u
.btree
.nEq
= 1;
3771 pNew
->u
.btree
.pIndex
= 0;
3773 pNew
->aLTerm
[0] = pTerm
;
3774 /* TUNING: One-time cost for computing the automatic index is
3775 ** estimated to be X*N*log2(N) where N is the number of rows in
3776 ** the table being indexed and where X is 7 (LogEst=28) for normal
3777 ** tables or 0.5 (LogEst=-10) for views and subqueries. The value
3778 ** of X is smaller for views and subqueries so that the query planner
3779 ** will be more aggressive about generating automatic indexes for
3780 ** those objects, since there is no opportunity to add schema
3781 ** indexes on subqueries and views. */
3782 pNew
->rSetup
= rLogSize
+ rSize
;
3783 if( !IsView(pTab
) && (pTab
->tabFlags
& TF_Ephemeral
)==0 ){
3786 pNew
->rSetup
-= 25; /* Greatly reduced setup cost for auto indexes
3787 ** on ephemeral materializations of views */
3789 ApplyCostMultiplier(pNew
->rSetup
, pTab
->costMult
);
3790 if( pNew
->rSetup
<0 ) pNew
->rSetup
= 0;
3791 /* TUNING: Each index lookup yields 20 rows in the table. This
3792 ** is more than the usual guess of 10 rows, since we have no way
3793 ** of knowing how selective the index will ultimately be. It would
3794 ** not be unreasonable to make this value much larger. */
3795 pNew
->nOut
= 43; assert( 43==sqlite3LogEst(20) );
3796 pNew
->rRun
= sqlite3LogEstAdd(rLogSize
,pNew
->nOut
);
3797 pNew
->wsFlags
= WHERE_AUTO_INDEX
;
3798 pNew
->prereq
= mPrereq
| pTerm
->prereqRight
;
3799 rc
= whereLoopInsert(pBuilder
, pNew
);
3803 #endif /* SQLITE_OMIT_AUTOMATIC_INDEX */
3805 /* Loop over all indices. If there was an INDEXED BY clause, then only
3806 ** consider index pProbe. */
3807 for(; rc
==SQLITE_OK
&& pProbe
;
3808 pProbe
=(pSrc
->fg
.isIndexedBy
? 0 : pProbe
->pNext
), iSortIdx
++
3810 if( pProbe
->pPartIdxWhere
!=0
3811 && !whereUsablePartialIndex(pSrc
->iCursor
, pSrc
->fg
.jointype
, pWC
,
3812 pProbe
->pPartIdxWhere
)
3814 testcase( pNew
->iTab
!=pSrc
->iCursor
); /* See ticket [98d973b8f5] */
3815 continue; /* Partial index inappropriate for this query */
3817 if( pProbe
->bNoQuery
) continue;
3818 rSize
= pProbe
->aiRowLogEst
[0];
3819 pNew
->u
.btree
.nEq
= 0;
3820 pNew
->u
.btree
.nBtm
= 0;
3821 pNew
->u
.btree
.nTop
= 0;
3826 pNew
->prereq
= mPrereq
;
3828 pNew
->u
.btree
.pIndex
= pProbe
;
3829 b
= indexMightHelpWithOrderBy(pBuilder
, pProbe
, pSrc
->iCursor
);
3831 /* The ONEPASS_DESIRED flags never occurs together with ORDER BY */
3832 assert( (pWInfo
->wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0 || b
==0 );
3833 if( pProbe
->idxType
==SQLITE_IDXTYPE_IPK
){
3834 /* Integer primary key index */
3835 pNew
->wsFlags
= WHERE_IPK
;
3837 /* Full table scan */
3838 pNew
->iSortIdx
= b
? iSortIdx
: 0;
3839 /* TUNING: Cost of full table scan is 3.0*N. The 3.0 factor is an
3840 ** extra cost designed to discourage the use of full table scans,
3841 ** since index lookups have better worst-case performance if our
3842 ** stat guesses are wrong. Reduce the 3.0 penalty slightly
3843 ** (to 2.75) if we have valid STAT4 information for the table.
3844 ** At 2.75, a full table scan is preferred over using an index on
3845 ** a column with just two distinct values where each value has about
3846 ** an equal number of appearances. Without STAT4 data, we still want
3847 ** to use an index in that case, since the constraint might be for
3848 ** the scarcer of the two values, and in that case an index lookup is
3851 #ifdef SQLITE_ENABLE_STAT4
3852 pNew
->rRun
= rSize
+ 16 - 2*((pTab
->tabFlags
& TF_HasStat4
)!=0);
3854 pNew
->rRun
= rSize
+ 16;
3856 ApplyCostMultiplier(pNew
->rRun
, pTab
->costMult
);
3857 whereLoopOutputAdjust(pWC
, pNew
, rSize
);
3858 rc
= whereLoopInsert(pBuilder
, pNew
);
3863 if( pProbe
->isCovering
){
3865 pNew
->wsFlags
= WHERE_IDX_ONLY
| WHERE_INDEXED
;
3867 m
= pSrc
->colUsed
& pProbe
->colNotIdxed
;
3868 if( pProbe
->pPartIdxWhere
){
3870 pWInfo
->pParse
, pProbe
, pProbe
->pPartIdxWhere
, &m
, 0, 0
3873 pNew
->wsFlags
= WHERE_INDEXED
;
3874 if( m
==TOPBIT
|| (pProbe
->bHasExpr
&& !pProbe
->bHasVCol
&& m
!=0) ){
3875 u32 isCov
= whereIsCoveringIndex(pWInfo
, pProbe
, pSrc
->iCursor
);
3878 ("-> %s is not a covering index"
3879 " according to whereIsCoveringIndex()\n", pProbe
->zName
));
3883 pNew
->wsFlags
|= isCov
;
3884 if( isCov
& WHERE_IDX_ONLY
){
3886 ("-> %s is a covering expression index"
3887 " according to whereIsCoveringIndex()\n", pProbe
->zName
));
3889 assert( isCov
==WHERE_EXPRIDX
);
3891 ("-> %s might be a covering expression index"
3892 " according to whereIsCoveringIndex()\n", pProbe
->zName
));
3897 ("-> %s a covering index according to bitmasks\n",
3898 pProbe
->zName
, m
==0 ? "is" : "is not"));
3899 pNew
->wsFlags
= WHERE_IDX_ONLY
| WHERE_INDEXED
;
3903 /* Full scan via index */
3906 || pProbe
->pPartIdxWhere
!=0
3907 || pSrc
->fg
.isIndexedBy
3909 && pProbe
->bUnordered
==0
3910 && (pProbe
->szIdxRow
<pTab
->szTabRow
)
3911 && (pWInfo
->wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0
3912 && sqlite3GlobalConfig
.bUseCis
3913 && OptimizationEnabled(pWInfo
->pParse
->db
, SQLITE_CoverIdxScan
)
3916 pNew
->iSortIdx
= b
? iSortIdx
: 0;
3918 /* The cost of visiting the index rows is N*K, where K is
3919 ** between 1.1 and 3.0, depending on the relative sizes of the
3920 ** index and table rows. */
3921 pNew
->rRun
= rSize
+ 1 + (15*pProbe
->szIdxRow
)/pTab
->szTabRow
;
3923 /* If this is a non-covering index scan, add in the cost of
3924 ** doing table lookups. The cost will be 3x the number of
3925 ** lookups. Take into account WHERE clause terms that can be
3926 ** satisfied using just the index, and that do not require a
3928 LogEst nLookup
= rSize
+ 16; /* Base cost: N*3 */
3930 int iCur
= pSrc
->iCursor
;
3931 WhereClause
*pWC2
= &pWInfo
->sWC
;
3932 for(ii
=0; ii
<pWC2
->nTerm
; ii
++){
3933 WhereTerm
*pTerm
= &pWC2
->a
[ii
];
3934 if( !sqlite3ExprCoveredByIndex(pTerm
->pExpr
, iCur
, pProbe
) ){
3937 /* pTerm can be evaluated using just the index. So reduce
3938 ** the expected number of table lookups accordingly */
3939 if( pTerm
->truthProb
<=0 ){
3940 nLookup
+= pTerm
->truthProb
;
3943 if( pTerm
->eOperator
& (WO_EQ
|WO_IS
) ) nLookup
-= 19;
3947 pNew
->rRun
= sqlite3LogEstAdd(pNew
->rRun
, nLookup
);
3949 ApplyCostMultiplier(pNew
->rRun
, pTab
->costMult
);
3950 whereLoopOutputAdjust(pWC
, pNew
, rSize
);
3951 if( (pSrc
->fg
.jointype
& JT_RIGHT
)!=0 && pProbe
->aColExpr
){
3952 /* Do not do an SCAN of a index-on-expression in a RIGHT JOIN
3953 ** because the cursor used to access the index might not be
3954 ** positioned to the correct row during the right-join no-match
3957 rc
= whereLoopInsert(pBuilder
, pNew
);
3964 pBuilder
->bldFlags1
= 0;
3965 rc
= whereLoopAddBtreeIndex(pBuilder
, pSrc
, pProbe
, 0);
3966 if( pBuilder
->bldFlags1
==SQLITE_BLDF1_INDEXED
){
3967 /* If a non-unique index is used, or if a prefix of the key for
3968 ** unique index is used (making the index functionally non-unique)
3969 ** then the sqlite_stat1 data becomes important for scoring the
3971 pTab
->tabFlags
|= TF_StatsUsed
;
3973 #ifdef SQLITE_ENABLE_STAT4
3974 sqlite3Stat4ProbeFree(pBuilder
->pRec
);
3975 pBuilder
->nRecValid
= 0;
3982 #ifndef SQLITE_OMIT_VIRTUALTABLE
3985 ** Return true if pTerm is a virtual table LIMIT or OFFSET term.
3987 static int isLimitTerm(WhereTerm
*pTerm
){
3988 assert( pTerm
->eOperator
==WO_AUX
|| pTerm
->eMatchOp
==0 );
3989 return pTerm
->eMatchOp
>=SQLITE_INDEX_CONSTRAINT_LIMIT
3990 && pTerm
->eMatchOp
<=SQLITE_INDEX_CONSTRAINT_OFFSET
;
3994 ** Argument pIdxInfo is already populated with all constraints that may
3995 ** be used by the virtual table identified by pBuilder->pNew->iTab. This
3996 ** function marks a subset of those constraints usable, invokes the
3997 ** xBestIndex method and adds the returned plan to pBuilder.
3999 ** A constraint is marked usable if:
4001 ** * Argument mUsable indicates that its prerequisites are available, and
4003 ** * It is not one of the operators specified in the mExclude mask passed
4004 ** as the fourth argument (which in practice is either WO_IN or 0).
4006 ** Argument mPrereq is a mask of tables that must be scanned before the
4007 ** virtual table in question. These are added to the plans prerequisites
4008 ** before it is added to pBuilder.
4010 ** Output parameter *pbIn is set to true if the plan added to pBuilder
4011 ** uses one or more WO_IN terms, or false otherwise.
4013 static int whereLoopAddVirtualOne(
4014 WhereLoopBuilder
*pBuilder
,
4015 Bitmask mPrereq
, /* Mask of tables that must be used. */
4016 Bitmask mUsable
, /* Mask of usable tables */
4017 u16 mExclude
, /* Exclude terms using these operators */
4018 sqlite3_index_info
*pIdxInfo
, /* Populated object for xBestIndex */
4019 u16 mNoOmit
, /* Do not omit these constraints */
4020 int *pbIn
, /* OUT: True if plan uses an IN(...) op */
4021 int *pbRetryLimit
/* OUT: Retry without LIMIT/OFFSET */
4023 WhereClause
*pWC
= pBuilder
->pWC
;
4024 HiddenIndexInfo
*pHidden
= (HiddenIndexInfo
*)&pIdxInfo
[1];
4025 struct sqlite3_index_constraint
*pIdxCons
;
4026 struct sqlite3_index_constraint_usage
*pUsage
= pIdxInfo
->aConstraintUsage
;
4030 WhereLoop
*pNew
= pBuilder
->pNew
;
4031 Parse
*pParse
= pBuilder
->pWInfo
->pParse
;
4032 SrcItem
*pSrc
= &pBuilder
->pWInfo
->pTabList
->a
[pNew
->iTab
];
4033 int nConstraint
= pIdxInfo
->nConstraint
;
4035 assert( (mUsable
& mPrereq
)==mPrereq
);
4037 pNew
->prereq
= mPrereq
;
4039 /* Set the usable flag on the subset of constraints identified by
4040 ** arguments mUsable and mExclude. */
4041 pIdxCons
= *(struct sqlite3_index_constraint
**)&pIdxInfo
->aConstraint
;
4042 for(i
=0; i
<nConstraint
; i
++, pIdxCons
++){
4043 WhereTerm
*pTerm
= &pWC
->a
[pIdxCons
->iTermOffset
];
4044 pIdxCons
->usable
= 0;
4045 if( (pTerm
->prereqRight
& mUsable
)==pTerm
->prereqRight
4046 && (pTerm
->eOperator
& mExclude
)==0
4047 && (pbRetryLimit
|| !isLimitTerm(pTerm
))
4049 pIdxCons
->usable
= 1;
4053 /* Initialize the output fields of the sqlite3_index_info structure */
4054 memset(pUsage
, 0, sizeof(pUsage
[0])*nConstraint
);
4055 assert( pIdxInfo
->needToFreeIdxStr
==0 );
4056 pIdxInfo
->idxStr
= 0;
4057 pIdxInfo
->idxNum
= 0;
4058 pIdxInfo
->orderByConsumed
= 0;
4059 pIdxInfo
->estimatedCost
= SQLITE_BIG_DBL
/ (double)2;
4060 pIdxInfo
->estimatedRows
= 25;
4061 pIdxInfo
->idxFlags
= 0;
4062 pIdxInfo
->colUsed
= (sqlite3_int64
)pSrc
->colUsed
;
4063 pHidden
->mHandleIn
= 0;
4065 /* Invoke the virtual table xBestIndex() method */
4066 rc
= vtabBestIndex(pParse
, pSrc
->pTab
, pIdxInfo
);
4068 if( rc
==SQLITE_CONSTRAINT
){
4069 /* If the xBestIndex method returns SQLITE_CONSTRAINT, that means
4070 ** that the particular combination of parameters provided is unusable.
4071 ** Make no entries in the loop table.
4073 WHERETRACE(0xffffffff, (" ^^^^--- non-viable plan rejected!\n"));
4080 assert( pNew
->nLSlot
>=nConstraint
);
4081 memset(pNew
->aLTerm
, 0, sizeof(pNew
->aLTerm
[0])*nConstraint
);
4082 memset(&pNew
->u
.vtab
, 0, sizeof(pNew
->u
.vtab
));
4083 pIdxCons
= *(struct sqlite3_index_constraint
**)&pIdxInfo
->aConstraint
;
4084 for(i
=0; i
<nConstraint
; i
++, pIdxCons
++){
4086 if( (iTerm
= pUsage
[i
].argvIndex
- 1)>=0 ){
4088 int j
= pIdxCons
->iTermOffset
;
4089 if( iTerm
>=nConstraint
4092 || pNew
->aLTerm
[iTerm
]!=0
4093 || pIdxCons
->usable
==0
4095 sqlite3ErrorMsg(pParse
,"%s.xBestIndex malfunction",pSrc
->pTab
->zName
);
4096 testcase( pIdxInfo
->needToFreeIdxStr
);
4097 return SQLITE_ERROR
;
4099 testcase( iTerm
==nConstraint
-1 );
4101 testcase( j
==pWC
->nTerm
-1 );
4103 pNew
->prereq
|= pTerm
->prereqRight
;
4104 assert( iTerm
<pNew
->nLSlot
);
4105 pNew
->aLTerm
[iTerm
] = pTerm
;
4106 if( iTerm
>mxTerm
) mxTerm
= iTerm
;
4107 testcase( iTerm
==15 );
4108 testcase( iTerm
==16 );
4109 if( pUsage
[i
].omit
){
4110 if( i
<16 && ((1<<i
)&mNoOmit
)==0 ){
4111 testcase( i
!=iTerm
);
4112 pNew
->u
.vtab
.omitMask
|= 1<<iTerm
;
4114 testcase( i
!=iTerm
);
4116 if( pTerm
->eMatchOp
==SQLITE_INDEX_CONSTRAINT_OFFSET
){
4117 pNew
->u
.vtab
.bOmitOffset
= 1;
4120 if( SMASKBIT32(i
) & pHidden
->mHandleIn
){
4121 pNew
->u
.vtab
.mHandleIn
|= MASKBIT32(iTerm
);
4122 }else if( (pTerm
->eOperator
& WO_IN
)!=0 ){
4123 /* A virtual table that is constrained by an IN clause may not
4124 ** consume the ORDER BY clause because (1) the order of IN terms
4125 ** is not necessarily related to the order of output terms and
4126 ** (2) Multiple outputs from a single IN value will not merge
4128 pIdxInfo
->orderByConsumed
= 0;
4129 pIdxInfo
->idxFlags
&= ~SQLITE_INDEX_SCAN_UNIQUE
;
4130 *pbIn
= 1; assert( (mExclude
& WO_IN
)==0 );
4133 assert( pbRetryLimit
|| !isLimitTerm(pTerm
) );
4134 if( isLimitTerm(pTerm
) && *pbIn
){
4135 /* If there is an IN(...) term handled as an == (separate call to
4136 ** xFilter for each value on the RHS of the IN) and a LIMIT or
4137 ** OFFSET term handled as well, the plan is unusable. Set output
4138 ** variable *pbRetryLimit to true to tell the caller to retry with
4139 ** LIMIT and OFFSET disabled. */
4140 if( pIdxInfo
->needToFreeIdxStr
){
4141 sqlite3_free(pIdxInfo
->idxStr
);
4142 pIdxInfo
->idxStr
= 0;
4143 pIdxInfo
->needToFreeIdxStr
= 0;
4151 pNew
->nLTerm
= mxTerm
+1;
4152 for(i
=0; i
<=mxTerm
; i
++){
4153 if( pNew
->aLTerm
[i
]==0 ){
4154 /* The non-zero argvIdx values must be contiguous. Raise an
4155 ** error if they are not */
4156 sqlite3ErrorMsg(pParse
,"%s.xBestIndex malfunction",pSrc
->pTab
->zName
);
4157 testcase( pIdxInfo
->needToFreeIdxStr
);
4158 return SQLITE_ERROR
;
4161 assert( pNew
->nLTerm
<=pNew
->nLSlot
);
4162 pNew
->u
.vtab
.idxNum
= pIdxInfo
->idxNum
;
4163 pNew
->u
.vtab
.needFree
= pIdxInfo
->needToFreeIdxStr
;
4164 pIdxInfo
->needToFreeIdxStr
= 0;
4165 pNew
->u
.vtab
.idxStr
= pIdxInfo
->idxStr
;
4166 pNew
->u
.vtab
.isOrdered
= (i8
)(pIdxInfo
->orderByConsumed
?
4167 pIdxInfo
->nOrderBy
: 0);
4169 pNew
->rRun
= sqlite3LogEstFromDouble(pIdxInfo
->estimatedCost
);
4170 pNew
->nOut
= sqlite3LogEst(pIdxInfo
->estimatedRows
);
4172 /* Set the WHERE_ONEROW flag if the xBestIndex() method indicated
4173 ** that the scan will visit at most one row. Clear it otherwise. */
4174 if( pIdxInfo
->idxFlags
& SQLITE_INDEX_SCAN_UNIQUE
){
4175 pNew
->wsFlags
|= WHERE_ONEROW
;
4177 pNew
->wsFlags
&= ~WHERE_ONEROW
;
4179 rc
= whereLoopInsert(pBuilder
, pNew
);
4180 if( pNew
->u
.vtab
.needFree
){
4181 sqlite3_free(pNew
->u
.vtab
.idxStr
);
4182 pNew
->u
.vtab
.needFree
= 0;
4184 WHERETRACE(0xffffffff, (" bIn=%d prereqIn=%04llx prereqOut=%04llx\n",
4185 *pbIn
, (sqlite3_uint64
)mPrereq
,
4186 (sqlite3_uint64
)(pNew
->prereq
& ~mPrereq
)));
4192 ** Return the collating sequence for a constraint passed into xBestIndex.
4194 ** pIdxInfo must be an sqlite3_index_info structure passed into xBestIndex.
4195 ** This routine depends on there being a HiddenIndexInfo structure immediately
4196 ** following the sqlite3_index_info structure.
4198 ** Return a pointer to the collation name:
4200 ** 1. If there is an explicit COLLATE operator on the constraint, return it.
4202 ** 2. Else, if the column has an alternative collation, return that.
4204 ** 3. Otherwise, return "BINARY".
4206 const char *sqlite3_vtab_collation(sqlite3_index_info
*pIdxInfo
, int iCons
){
4207 HiddenIndexInfo
*pHidden
= (HiddenIndexInfo
*)&pIdxInfo
[1];
4208 const char *zRet
= 0;
4209 if( iCons
>=0 && iCons
<pIdxInfo
->nConstraint
){
4211 int iTerm
= pIdxInfo
->aConstraint
[iCons
].iTermOffset
;
4212 Expr
*pX
= pHidden
->pWC
->a
[iTerm
].pExpr
;
4214 pC
= sqlite3ExprCompareCollSeq(pHidden
->pParse
, pX
);
4216 zRet
= (pC
? pC
->zName
: sqlite3StrBINARY
);
4222 ** Return true if constraint iCons is really an IN(...) constraint, or
4223 ** false otherwise. If iCons is an IN(...) constraint, set (if bHandle!=0)
4224 ** or clear (if bHandle==0) the flag to handle it using an iterator.
4226 int sqlite3_vtab_in(sqlite3_index_info
*pIdxInfo
, int iCons
, int bHandle
){
4227 HiddenIndexInfo
*pHidden
= (HiddenIndexInfo
*)&pIdxInfo
[1];
4228 u32 m
= SMASKBIT32(iCons
);
4229 if( m
& pHidden
->mIn
){
4231 pHidden
->mHandleIn
&= ~m
;
4232 }else if( bHandle
>0 ){
4233 pHidden
->mHandleIn
|= m
;
4241 ** This interface is callable from within the xBestIndex callback only.
4243 ** If possible, set (*ppVal) to point to an object containing the value
4244 ** on the right-hand-side of constraint iCons.
4246 int sqlite3_vtab_rhs_value(
4247 sqlite3_index_info
*pIdxInfo
, /* Copy of first argument to xBestIndex */
4248 int iCons
, /* Constraint for which RHS is wanted */
4249 sqlite3_value
**ppVal
/* Write value extracted here */
4251 HiddenIndexInfo
*pH
= (HiddenIndexInfo
*)&pIdxInfo
[1];
4252 sqlite3_value
*pVal
= 0;
4254 if( iCons
<0 || iCons
>=pIdxInfo
->nConstraint
){
4255 rc
= SQLITE_MISUSE_BKPT
; /* EV: R-30545-25046 */
4257 if( pH
->aRhs
[iCons
]==0 ){
4258 WhereTerm
*pTerm
= &pH
->pWC
->a
[pIdxInfo
->aConstraint
[iCons
].iTermOffset
];
4259 rc
= sqlite3ValueFromExpr(
4260 pH
->pParse
->db
, pTerm
->pExpr
->pRight
, ENC(pH
->pParse
->db
),
4261 SQLITE_AFF_BLOB
, &pH
->aRhs
[iCons
]
4263 testcase( rc
!=SQLITE_OK
);
4265 pVal
= pH
->aRhs
[iCons
];
4269 if( rc
==SQLITE_OK
&& pVal
==0 ){ /* IMP: R-19933-32160 */
4270 rc
= SQLITE_NOTFOUND
; /* IMP: R-36424-56542 */
4277 ** Return true if ORDER BY clause may be handled as DISTINCT.
4279 int sqlite3_vtab_distinct(sqlite3_index_info
*pIdxInfo
){
4280 HiddenIndexInfo
*pHidden
= (HiddenIndexInfo
*)&pIdxInfo
[1];
4281 assert( pHidden
->eDistinct
>=0 && pHidden
->eDistinct
<=3 );
4282 return pHidden
->eDistinct
;
4286 ** Cause the prepared statement that is associated with a call to
4287 ** xBestIndex to potentially use all schemas. If the statement being
4288 ** prepared is read-only, then just start read transactions on all
4289 ** schemas. But if this is a write operation, start writes on all
4292 ** This is used by the (built-in) sqlite_dbpage virtual table.
4294 void sqlite3VtabUsesAllSchemas(Parse
*pParse
){
4295 int nDb
= pParse
->db
->nDb
;
4297 for(i
=0; i
<nDb
; i
++){
4298 sqlite3CodeVerifySchema(pParse
, i
);
4300 if( DbMaskNonZero(pParse
->writeMask
) ){
4301 for(i
=0; i
<nDb
; i
++){
4302 sqlite3BeginWriteOperation(pParse
, 0, i
);
4308 ** Add all WhereLoop objects for a table of the join identified by
4309 ** pBuilder->pNew->iTab. That table is guaranteed to be a virtual table.
4311 ** If there are no LEFT or CROSS JOIN joins in the query, both mPrereq and
4312 ** mUnusable are set to 0. Otherwise, mPrereq is a mask of all FROM clause
4313 ** entries that occur before the virtual table in the FROM clause and are
4314 ** separated from it by at least one LEFT or CROSS JOIN. Similarly, the
4315 ** mUnusable mask contains all FROM clause entries that occur after the
4316 ** virtual table and are separated from it by at least one LEFT or
4319 ** For example, if the query were:
4321 ** ... FROM t1, t2 LEFT JOIN t3, t4, vt CROSS JOIN t5, t6;
4323 ** then mPrereq corresponds to (t1, t2) and mUnusable to (t5, t6).
4325 ** All the tables in mPrereq must be scanned before the current virtual
4326 ** table. So any terms for which all prerequisites are satisfied by
4327 ** mPrereq may be specified as "usable" in all calls to xBestIndex.
4328 ** Conversely, all tables in mUnusable must be scanned after the current
4329 ** virtual table, so any terms for which the prerequisites overlap with
4330 ** mUnusable should always be configured as "not-usable" for xBestIndex.
4332 static int whereLoopAddVirtual(
4333 WhereLoopBuilder
*pBuilder
, /* WHERE clause information */
4334 Bitmask mPrereq
, /* Tables that must be scanned before this one */
4335 Bitmask mUnusable
/* Tables that must be scanned after this one */
4337 int rc
= SQLITE_OK
; /* Return code */
4338 WhereInfo
*pWInfo
; /* WHERE analysis context */
4339 Parse
*pParse
; /* The parsing context */
4340 WhereClause
*pWC
; /* The WHERE clause */
4341 SrcItem
*pSrc
; /* The FROM clause term to search */
4342 sqlite3_index_info
*p
; /* Object to pass to xBestIndex() */
4343 int nConstraint
; /* Number of constraints in p */
4344 int bIn
; /* True if plan uses IN(...) operator */
4346 Bitmask mBest
; /* Tables used by best possible plan */
4348 int bRetry
= 0; /* True to retry with LIMIT/OFFSET disabled */
4350 assert( (mPrereq
& mUnusable
)==0 );
4351 pWInfo
= pBuilder
->pWInfo
;
4352 pParse
= pWInfo
->pParse
;
4353 pWC
= pBuilder
->pWC
;
4354 pNew
= pBuilder
->pNew
;
4355 pSrc
= &pWInfo
->pTabList
->a
[pNew
->iTab
];
4356 assert( IsVirtual(pSrc
->pTab
) );
4357 p
= allocateIndexInfo(pWInfo
, pWC
, mUnusable
, pSrc
, &mNoOmit
);
4358 if( p
==0 ) return SQLITE_NOMEM_BKPT
;
4360 pNew
->wsFlags
= WHERE_VIRTUALTABLE
;
4362 pNew
->u
.vtab
.needFree
= 0;
4363 nConstraint
= p
->nConstraint
;
4364 if( whereLoopResize(pParse
->db
, pNew
, nConstraint
) ){
4365 freeIndexInfo(pParse
->db
, p
);
4366 return SQLITE_NOMEM_BKPT
;
4369 /* First call xBestIndex() with all constraints usable. */
4370 WHERETRACE(0x800, ("BEGIN %s.addVirtual()\n", pSrc
->pTab
->zName
));
4371 WHERETRACE(0x800, (" VirtualOne: all usable\n"));
4372 rc
= whereLoopAddVirtualOne(
4373 pBuilder
, mPrereq
, ALLBITS
, 0, p
, mNoOmit
, &bIn
, &bRetry
4376 assert( rc
==SQLITE_OK
);
4377 rc
= whereLoopAddVirtualOne(
4378 pBuilder
, mPrereq
, ALLBITS
, 0, p
, mNoOmit
, &bIn
, 0
4382 /* If the call to xBestIndex() with all terms enabled produced a plan
4383 ** that does not require any source tables (IOW: a plan with mBest==0)
4384 ** and does not use an IN(...) operator, then there is no point in making
4385 ** any further calls to xBestIndex() since they will all return the same
4386 ** result (if the xBestIndex() implementation is sane). */
4387 if( rc
==SQLITE_OK
&& ((mBest
= (pNew
->prereq
& ~mPrereq
))!=0 || bIn
) ){
4388 int seenZero
= 0; /* True if a plan with no prereqs seen */
4389 int seenZeroNoIN
= 0; /* Plan with no prereqs and no IN(...) seen */
4391 Bitmask mBestNoIn
= 0;
4393 /* If the plan produced by the earlier call uses an IN(...) term, call
4394 ** xBestIndex again, this time with IN(...) terms disabled. */
4396 WHERETRACE(0x800, (" VirtualOne: all usable w/o IN\n"));
4397 rc
= whereLoopAddVirtualOne(
4398 pBuilder
, mPrereq
, ALLBITS
, WO_IN
, p
, mNoOmit
, &bIn
, 0);
4400 mBestNoIn
= pNew
->prereq
& ~mPrereq
;
4407 /* Call xBestIndex once for each distinct value of (prereqRight & ~mPrereq)
4408 ** in the set of terms that apply to the current virtual table. */
4409 while( rc
==SQLITE_OK
){
4411 Bitmask mNext
= ALLBITS
;
4413 for(i
=0; i
<nConstraint
; i
++){
4415 pWC
->a
[p
->aConstraint
[i
].iTermOffset
].prereqRight
& ~mPrereq
4417 if( mThis
>mPrev
&& mThis
<mNext
) mNext
= mThis
;
4420 if( mNext
==ALLBITS
) break;
4421 if( mNext
==mBest
|| mNext
==mBestNoIn
) continue;
4422 WHERETRACE(0x800, (" VirtualOne: mPrev=%04llx mNext=%04llx\n",
4423 (sqlite3_uint64
)mPrev
, (sqlite3_uint64
)mNext
));
4424 rc
= whereLoopAddVirtualOne(
4425 pBuilder
, mPrereq
, mNext
|mPrereq
, 0, p
, mNoOmit
, &bIn
, 0);
4426 if( pNew
->prereq
==mPrereq
){
4428 if( bIn
==0 ) seenZeroNoIN
= 1;
4432 /* If the calls to xBestIndex() in the above loop did not find a plan
4433 ** that requires no source tables at all (i.e. one guaranteed to be
4434 ** usable), make a call here with all source tables disabled */
4435 if( rc
==SQLITE_OK
&& seenZero
==0 ){
4436 WHERETRACE(0x800, (" VirtualOne: all disabled\n"));
4437 rc
= whereLoopAddVirtualOne(
4438 pBuilder
, mPrereq
, mPrereq
, 0, p
, mNoOmit
, &bIn
, 0);
4439 if( bIn
==0 ) seenZeroNoIN
= 1;
4442 /* If the calls to xBestIndex() have so far failed to find a plan
4443 ** that requires no source tables at all and does not use an IN(...)
4444 ** operator, make a final call to obtain one here. */
4445 if( rc
==SQLITE_OK
&& seenZeroNoIN
==0 ){
4446 WHERETRACE(0x800, (" VirtualOne: all disabled and w/o IN\n"));
4447 rc
= whereLoopAddVirtualOne(
4448 pBuilder
, mPrereq
, mPrereq
, WO_IN
, p
, mNoOmit
, &bIn
, 0);
4452 if( p
->needToFreeIdxStr
) sqlite3_free(p
->idxStr
);
4453 freeIndexInfo(pParse
->db
, p
);
4454 WHERETRACE(0x800, ("END %s.addVirtual(), rc=%d\n", pSrc
->pTab
->zName
, rc
));
4457 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4460 ** Add WhereLoop entries to handle OR terms. This works for either
4461 ** btrees or virtual tables.
4463 static int whereLoopAddOr(
4464 WhereLoopBuilder
*pBuilder
,
4468 WhereInfo
*pWInfo
= pBuilder
->pWInfo
;
4471 WhereTerm
*pTerm
, *pWCEnd
;
4475 WhereLoopBuilder sSubBuild
;
4476 WhereOrSet sSum
, sCur
;
4479 pWC
= pBuilder
->pWC
;
4480 pWCEnd
= pWC
->a
+ pWC
->nTerm
;
4481 pNew
= pBuilder
->pNew
;
4482 memset(&sSum
, 0, sizeof(sSum
));
4483 pItem
= pWInfo
->pTabList
->a
+ pNew
->iTab
;
4484 iCur
= pItem
->iCursor
;
4486 /* The multi-index OR optimization does not work for RIGHT and FULL JOIN */
4487 if( pItem
->fg
.jointype
& JT_RIGHT
) return SQLITE_OK
;
4489 for(pTerm
=pWC
->a
; pTerm
<pWCEnd
&& rc
==SQLITE_OK
; pTerm
++){
4490 if( (pTerm
->eOperator
& WO_OR
)!=0
4491 && (pTerm
->u
.pOrInfo
->indexable
& pNew
->maskSelf
)!=0
4493 WhereClause
* const pOrWC
= &pTerm
->u
.pOrInfo
->wc
;
4494 WhereTerm
* const pOrWCEnd
= &pOrWC
->a
[pOrWC
->nTerm
];
4499 sSubBuild
= *pBuilder
;
4500 sSubBuild
.pOrSet
= &sCur
;
4502 WHERETRACE(0x400, ("Begin processing OR-clause %p\n", pTerm
));
4503 for(pOrTerm
=pOrWC
->a
; pOrTerm
<pOrWCEnd
; pOrTerm
++){
4504 if( (pOrTerm
->eOperator
& WO_AND
)!=0 ){
4505 sSubBuild
.pWC
= &pOrTerm
->u
.pAndInfo
->wc
;
4506 }else if( pOrTerm
->leftCursor
==iCur
){
4507 tempWC
.pWInfo
= pWC
->pWInfo
;
4508 tempWC
.pOuter
= pWC
;
4513 sSubBuild
.pWC
= &tempWC
;
4518 #ifdef WHERETRACE_ENABLED
4519 WHERETRACE(0x400, ("OR-term %d of %p has %d subterms:\n",
4520 (int)(pOrTerm
-pOrWC
->a
), pTerm
, sSubBuild
.pWC
->nTerm
));
4521 if( sqlite3WhereTrace
& 0x20000 ){
4522 sqlite3WhereClausePrint(sSubBuild
.pWC
);
4525 #ifndef SQLITE_OMIT_VIRTUALTABLE
4526 if( IsVirtual(pItem
->pTab
) ){
4527 rc
= whereLoopAddVirtual(&sSubBuild
, mPrereq
, mUnusable
);
4531 rc
= whereLoopAddBtree(&sSubBuild
, mPrereq
);
4533 if( rc
==SQLITE_OK
){
4534 rc
= whereLoopAddOr(&sSubBuild
, mPrereq
, mUnusable
);
4536 testcase( rc
==SQLITE_NOMEM
&& sCur
.n
>0 );
4537 testcase( rc
==SQLITE_DONE
);
4542 whereOrMove(&sSum
, &sCur
);
4546 whereOrMove(&sPrev
, &sSum
);
4548 for(i
=0; i
<sPrev
.n
; i
++){
4549 for(j
=0; j
<sCur
.n
; j
++){
4550 whereOrInsert(&sSum
, sPrev
.a
[i
].prereq
| sCur
.a
[j
].prereq
,
4551 sqlite3LogEstAdd(sPrev
.a
[i
].rRun
, sCur
.a
[j
].rRun
),
4552 sqlite3LogEstAdd(sPrev
.a
[i
].nOut
, sCur
.a
[j
].nOut
));
4558 pNew
->aLTerm
[0] = pTerm
;
4559 pNew
->wsFlags
= WHERE_MULTI_OR
;
4562 memset(&pNew
->u
, 0, sizeof(pNew
->u
));
4563 for(i
=0; rc
==SQLITE_OK
&& i
<sSum
.n
; i
++){
4564 /* TUNING: Currently sSum.a[i].rRun is set to the sum of the costs
4565 ** of all sub-scans required by the OR-scan. However, due to rounding
4566 ** errors, it may be that the cost of the OR-scan is equal to its
4567 ** most expensive sub-scan. Add the smallest possible penalty
4568 ** (equivalent to multiplying the cost by 1.07) to ensure that
4569 ** this does not happen. Otherwise, for WHERE clauses such as the
4570 ** following where there is an index on "y":
4572 ** WHERE likelihood(x=?, 0.99) OR y=?
4574 ** the planner may elect to "OR" together a full-table scan and an
4575 ** index lookup. And other similarly odd results. */
4576 pNew
->rRun
= sSum
.a
[i
].rRun
+ 1;
4577 pNew
->nOut
= sSum
.a
[i
].nOut
;
4578 pNew
->prereq
= sSum
.a
[i
].prereq
;
4579 rc
= whereLoopInsert(pBuilder
, pNew
);
4581 WHERETRACE(0x400, ("End processing OR-clause %p\n", pTerm
));
4588 ** Add all WhereLoop objects for all tables
4590 static int whereLoopAddAll(WhereLoopBuilder
*pBuilder
){
4591 WhereInfo
*pWInfo
= pBuilder
->pWInfo
;
4592 Bitmask mPrereq
= 0;
4595 SrcList
*pTabList
= pWInfo
->pTabList
;
4597 SrcItem
*pEnd
= &pTabList
->a
[pWInfo
->nLevel
];
4598 sqlite3
*db
= pWInfo
->pParse
->db
;
4600 int bFirstPastRJ
= 0;
4601 int hasRightJoin
= 0;
4605 /* Loop over the tables in the join, from left to right */
4606 pNew
= pBuilder
->pNew
;
4608 /* Verify that pNew has already been initialized */
4609 assert( pNew
->nLTerm
==0 );
4610 assert( pNew
->wsFlags
==0 );
4611 assert( pNew
->nLSlot
>=ArraySize(pNew
->aLTermSpace
) );
4612 assert( pNew
->aLTerm
!=0 );
4614 pBuilder
->iPlanLimit
= SQLITE_QUERY_PLANNER_LIMIT
;
4615 for(iTab
=0, pItem
=pTabList
->a
; pItem
<pEnd
; iTab
++, pItem
++){
4616 Bitmask mUnusable
= 0;
4618 pBuilder
->iPlanLimit
+= SQLITE_QUERY_PLANNER_LIMIT_INCR
;
4619 pNew
->maskSelf
= sqlite3WhereGetMask(&pWInfo
->sMaskSet
, pItem
->iCursor
);
4621 || (pItem
->fg
.jointype
& (JT_OUTER
|JT_CROSS
|JT_LTORJ
))!=0
4623 /* Add prerequisites to prevent reordering of FROM clause terms
4624 ** across CROSS joins and outer joins. The bFirstPastRJ boolean
4625 ** prevents the right operand of a RIGHT JOIN from being swapped with
4626 ** other elements even further to the right.
4628 ** The JT_LTORJ case and the hasRightJoin flag work together to
4629 ** prevent FROM-clause terms from moving from the right side of
4630 ** a LEFT JOIN over to the left side of that join if the LEFT JOIN
4631 ** is itself on the left side of a RIGHT JOIN.
4633 if( pItem
->fg
.jointype
& JT_LTORJ
) hasRightJoin
= 1;
4635 bFirstPastRJ
= (pItem
->fg
.jointype
& JT_RIGHT
)!=0;
4636 }else if( !hasRightJoin
){
4639 #ifndef SQLITE_OMIT_VIRTUALTABLE
4640 if( IsVirtual(pItem
->pTab
) ){
4642 for(p
=&pItem
[1]; p
<pEnd
; p
++){
4643 if( mUnusable
|| (p
->fg
.jointype
& (JT_OUTER
|JT_CROSS
)) ){
4644 mUnusable
|= sqlite3WhereGetMask(&pWInfo
->sMaskSet
, p
->iCursor
);
4647 rc
= whereLoopAddVirtual(pBuilder
, mPrereq
, mUnusable
);
4649 #endif /* SQLITE_OMIT_VIRTUALTABLE */
4651 rc
= whereLoopAddBtree(pBuilder
, mPrereq
);
4653 if( rc
==SQLITE_OK
&& pBuilder
->pWC
->hasOr
){
4654 rc
= whereLoopAddOr(pBuilder
, mPrereq
, mUnusable
);
4656 mPrior
|= pNew
->maskSelf
;
4657 if( rc
|| db
->mallocFailed
){
4658 if( rc
==SQLITE_DONE
){
4659 /* We hit the query planner search limit set by iPlanLimit */
4660 sqlite3_log(SQLITE_WARNING
, "abbreviated query algorithm search");
4668 whereLoopClear(db
, pNew
);
4673 ** Examine a WherePath (with the addition of the extra WhereLoop of the 6th
4674 ** parameters) to see if it outputs rows in the requested ORDER BY
4675 ** (or GROUP BY) without requiring a separate sort operation. Return N:
4677 ** N>0: N terms of the ORDER BY clause are satisfied
4678 ** N==0: No terms of the ORDER BY clause are satisfied
4679 ** N<0: Unknown yet how many terms of ORDER BY might be satisfied.
4681 ** Note that processing for WHERE_GROUPBY and WHERE_DISTINCTBY is not as
4682 ** strict. With GROUP BY and DISTINCT the only requirement is that
4683 ** equivalent rows appear immediately adjacent to one another. GROUP BY
4684 ** and DISTINCT do not require rows to appear in any particular order as long
4685 ** as equivalent rows are grouped together. Thus for GROUP BY and DISTINCT
4686 ** the pOrderBy terms can be matched in any order. With ORDER BY, the
4687 ** pOrderBy terms must be matched in strict left-to-right order.
4689 static i8
wherePathSatisfiesOrderBy(
4690 WhereInfo
*pWInfo
, /* The WHERE clause */
4691 ExprList
*pOrderBy
, /* ORDER BY or GROUP BY or DISTINCT clause to check */
4692 WherePath
*pPath
, /* The WherePath to check */
4693 u16 wctrlFlags
, /* WHERE_GROUPBY or _DISTINCTBY or _ORDERBY_LIMIT */
4694 u16 nLoop
, /* Number of entries in pPath->aLoop[] */
4695 WhereLoop
*pLast
, /* Add this WhereLoop to the end of pPath->aLoop[] */
4696 Bitmask
*pRevMask
/* OUT: Mask of WhereLoops to run in reverse order */
4698 u8 revSet
; /* True if rev is known */
4699 u8 rev
; /* Composite sort order */
4700 u8 revIdx
; /* Index sort order */
4701 u8 isOrderDistinct
; /* All prior WhereLoops are order-distinct */
4702 u8 distinctColumns
; /* True if the loop has UNIQUE NOT NULL columns */
4703 u8 isMatch
; /* iColumn matches a term of the ORDER BY clause */
4704 u16 eqOpMask
; /* Allowed equality operators */
4705 u16 nKeyCol
; /* Number of key columns in pIndex */
4706 u16 nColumn
; /* Total number of ordered columns in the index */
4707 u16 nOrderBy
; /* Number terms in the ORDER BY clause */
4708 int iLoop
; /* Index of WhereLoop in pPath being processed */
4709 int i
, j
; /* Loop counters */
4710 int iCur
; /* Cursor number for current WhereLoop */
4711 int iColumn
; /* A column number within table iCur */
4712 WhereLoop
*pLoop
= 0; /* Current WhereLoop being processed. */
4713 WhereTerm
*pTerm
; /* A single term of the WHERE clause */
4714 Expr
*pOBExpr
; /* An expression from the ORDER BY clause */
4715 CollSeq
*pColl
; /* COLLATE function from an ORDER BY clause term */
4716 Index
*pIndex
; /* The index associated with pLoop */
4717 sqlite3
*db
= pWInfo
->pParse
->db
; /* Database connection */
4718 Bitmask obSat
= 0; /* Mask of ORDER BY terms satisfied so far */
4719 Bitmask obDone
; /* Mask of all ORDER BY terms */
4720 Bitmask orderDistinctMask
; /* Mask of all well-ordered loops */
4721 Bitmask ready
; /* Mask of inner loops */
4724 ** We say the WhereLoop is "one-row" if it generates no more than one
4725 ** row of output. A WhereLoop is one-row if all of the following are true:
4726 ** (a) All index columns match with WHERE_COLUMN_EQ.
4727 ** (b) The index is unique
4728 ** Any WhereLoop with an WHERE_COLUMN_EQ constraint on the rowid is one-row.
4729 ** Every one-row WhereLoop will have the WHERE_ONEROW bit set in wsFlags.
4731 ** We say the WhereLoop is "order-distinct" if the set of columns from
4732 ** that WhereLoop that are in the ORDER BY clause are different for every
4733 ** row of the WhereLoop. Every one-row WhereLoop is automatically
4734 ** order-distinct. A WhereLoop that has no columns in the ORDER BY clause
4735 ** is not order-distinct. To be order-distinct is not quite the same as being
4736 ** UNIQUE since a UNIQUE column or index can have multiple rows that
4737 ** are NULL and NULL values are equivalent for the purpose of order-distinct.
4738 ** To be order-distinct, the columns must be UNIQUE and NOT NULL.
4740 ** The rowid for a table is always UNIQUE and NOT NULL so whenever the
4741 ** rowid appears in the ORDER BY clause, the corresponding WhereLoop is
4742 ** automatically order-distinct.
4745 assert( pOrderBy
!=0 );
4746 if( nLoop
&& OptimizationDisabled(db
, SQLITE_OrderByIdxJoin
) ) return 0;
4748 nOrderBy
= pOrderBy
->nExpr
;
4749 testcase( nOrderBy
==BMS
-1 );
4750 if( nOrderBy
>BMS
-1 ) return 0; /* Cannot optimize overly large ORDER BYs */
4751 isOrderDistinct
= 1;
4752 obDone
= MASKBIT(nOrderBy
)-1;
4753 orderDistinctMask
= 0;
4755 eqOpMask
= WO_EQ
| WO_IS
| WO_ISNULL
;
4756 if( wctrlFlags
& (WHERE_ORDERBY_LIMIT
|WHERE_ORDERBY_MAX
|WHERE_ORDERBY_MIN
) ){
4759 for(iLoop
=0; isOrderDistinct
&& obSat
<obDone
&& iLoop
<=nLoop
; iLoop
++){
4760 if( iLoop
>0 ) ready
|= pLoop
->maskSelf
;
4762 pLoop
= pPath
->aLoop
[iLoop
];
4763 if( wctrlFlags
& WHERE_ORDERBY_LIMIT
) continue;
4767 if( pLoop
->wsFlags
& WHERE_VIRTUALTABLE
){
4768 if( pLoop
->u
.vtab
.isOrdered
4769 && ((wctrlFlags
&(WHERE_DISTINCTBY
|WHERE_SORTBYGROUP
))!=WHERE_DISTINCTBY
)
4774 }else if( wctrlFlags
& WHERE_DISTINCTBY
){
4775 pLoop
->u
.btree
.nDistinctCol
= 0;
4777 iCur
= pWInfo
->pTabList
->a
[pLoop
->iTab
].iCursor
;
4779 /* Mark off any ORDER BY term X that is a column in the table of
4780 ** the current loop for which there is term in the WHERE
4781 ** clause of the form X IS NULL or X=? that reference only outer
4784 for(i
=0; i
<nOrderBy
; i
++){
4785 if( MASKBIT(i
) & obSat
) continue;
4786 pOBExpr
= sqlite3ExprSkipCollateAndLikely(pOrderBy
->a
[i
].pExpr
);
4787 if( NEVER(pOBExpr
==0) ) continue;
4788 if( pOBExpr
->op
!=TK_COLUMN
&& pOBExpr
->op
!=TK_AGG_COLUMN
) continue;
4789 if( pOBExpr
->iTable
!=iCur
) continue;
4790 pTerm
= sqlite3WhereFindTerm(&pWInfo
->sWC
, iCur
, pOBExpr
->iColumn
,
4791 ~ready
, eqOpMask
, 0);
4792 if( pTerm
==0 ) continue;
4793 if( pTerm
->eOperator
==WO_IN
){
4794 /* IN terms are only valid for sorting in the ORDER BY LIMIT
4795 ** optimization, and then only if they are actually used
4796 ** by the query plan */
4797 assert( wctrlFlags
&
4798 (WHERE_ORDERBY_LIMIT
|WHERE_ORDERBY_MIN
|WHERE_ORDERBY_MAX
) );
4799 for(j
=0; j
<pLoop
->nLTerm
&& pTerm
!=pLoop
->aLTerm
[j
]; j
++){}
4800 if( j
>=pLoop
->nLTerm
) continue;
4802 if( (pTerm
->eOperator
&(WO_EQ
|WO_IS
))!=0 && pOBExpr
->iColumn
>=0 ){
4803 Parse
*pParse
= pWInfo
->pParse
;
4804 CollSeq
*pColl1
= sqlite3ExprNNCollSeq(pParse
, pOrderBy
->a
[i
].pExpr
);
4805 CollSeq
*pColl2
= sqlite3ExprCompareCollSeq(pParse
, pTerm
->pExpr
);
4807 if( pColl2
==0 || sqlite3StrICmp(pColl1
->zName
, pColl2
->zName
) ){
4810 testcase( pTerm
->pExpr
->op
==TK_IS
);
4812 obSat
|= MASKBIT(i
);
4815 if( (pLoop
->wsFlags
& WHERE_ONEROW
)==0 ){
4816 if( pLoop
->wsFlags
& WHERE_IPK
){
4820 }else if( (pIndex
= pLoop
->u
.btree
.pIndex
)==0 || pIndex
->bUnordered
){
4823 nKeyCol
= pIndex
->nKeyCol
;
4824 nColumn
= pIndex
->nColumn
;
4825 assert( nColumn
==nKeyCol
+1 || !HasRowid(pIndex
->pTable
) );
4826 assert( pIndex
->aiColumn
[nColumn
-1]==XN_ROWID
4827 || !HasRowid(pIndex
->pTable
));
4828 /* All relevant terms of the index must also be non-NULL in order
4829 ** for isOrderDistinct to be true. So the isOrderDistint value
4830 ** computed here might be a false positive. Corrections will be
4831 ** made at tag-20210426-1 below */
4832 isOrderDistinct
= IsUniqueIndex(pIndex
)
4833 && (pLoop
->wsFlags
& WHERE_SKIPSCAN
)==0;
4836 /* Loop through all columns of the index and deal with the ones
4837 ** that are not constrained by == or IN.
4840 distinctColumns
= 0;
4841 for(j
=0; j
<nColumn
; j
++){
4842 u8 bOnce
= 1; /* True to run the ORDER BY search loop */
4844 assert( j
>=pLoop
->u
.btree
.nEq
4845 || (pLoop
->aLTerm
[j
]==0)==(j
<pLoop
->nSkip
)
4847 if( j
<pLoop
->u
.btree
.nEq
&& j
>=pLoop
->nSkip
){
4848 u16 eOp
= pLoop
->aLTerm
[j
]->eOperator
;
4850 /* Skip over == and IS and ISNULL terms. (Also skip IN terms when
4851 ** doing WHERE_ORDERBY_LIMIT processing). Except, IS and ISNULL
4852 ** terms imply that the index is not UNIQUE NOT NULL in which case
4853 ** the loop need to be marked as not order-distinct because it can
4854 ** have repeated NULL rows.
4856 ** If the current term is a column of an ((?,?) IN (SELECT...))
4857 ** expression for which the SELECT returns more than one column,
4858 ** check that it is the only column used by this loop. Otherwise,
4859 ** if it is one of two or more, none of the columns can be
4860 ** considered to match an ORDER BY term.
4862 if( (eOp
& eqOpMask
)!=0 ){
4863 if( eOp
& (WO_ISNULL
|WO_IS
) ){
4864 testcase( eOp
& WO_ISNULL
);
4865 testcase( eOp
& WO_IS
);
4866 testcase( isOrderDistinct
);
4867 isOrderDistinct
= 0;
4870 }else if( ALWAYS(eOp
& WO_IN
) ){
4871 /* ALWAYS() justification: eOp is an equality operator due to the
4872 ** j<pLoop->u.btree.nEq constraint above. Any equality other
4873 ** than WO_IN is captured by the previous "if". So this one
4874 ** always has to be WO_IN. */
4875 Expr
*pX
= pLoop
->aLTerm
[j
]->pExpr
;
4876 for(i
=j
+1; i
<pLoop
->u
.btree
.nEq
; i
++){
4877 if( pLoop
->aLTerm
[i
]->pExpr
==pX
){
4878 assert( (pLoop
->aLTerm
[i
]->eOperator
& WO_IN
) );
4886 /* Get the column number in the table (iColumn) and sort order
4887 ** (revIdx) for the j-th column of the index.
4890 iColumn
= pIndex
->aiColumn
[j
];
4891 revIdx
= pIndex
->aSortOrder
[j
] & KEYINFO_ORDER_DESC
;
4892 if( iColumn
==pIndex
->pTable
->iPKey
) iColumn
= XN_ROWID
;
4898 /* An unconstrained column that might be NULL means that this
4899 ** WhereLoop is not well-ordered. tag-20210426-1
4901 if( isOrderDistinct
){
4903 && j
>=pLoop
->u
.btree
.nEq
4904 && pIndex
->pTable
->aCol
[iColumn
].notNull
==0
4906 isOrderDistinct
= 0;
4908 if( iColumn
==XN_EXPR
){
4909 isOrderDistinct
= 0;
4913 /* Find the ORDER BY term that corresponds to the j-th column
4914 ** of the index and mark that ORDER BY term off
4917 for(i
=0; bOnce
&& i
<nOrderBy
; i
++){
4918 if( MASKBIT(i
) & obSat
) continue;
4919 pOBExpr
= sqlite3ExprSkipCollateAndLikely(pOrderBy
->a
[i
].pExpr
);
4920 testcase( wctrlFlags
& WHERE_GROUPBY
);
4921 testcase( wctrlFlags
& WHERE_DISTINCTBY
);
4922 if( NEVER(pOBExpr
==0) ) continue;
4923 if( (wctrlFlags
& (WHERE_GROUPBY
|WHERE_DISTINCTBY
))==0 ) bOnce
= 0;
4924 if( iColumn
>=XN_ROWID
){
4925 if( pOBExpr
->op
!=TK_COLUMN
&& pOBExpr
->op
!=TK_AGG_COLUMN
) continue;
4926 if( pOBExpr
->iTable
!=iCur
) continue;
4927 if( pOBExpr
->iColumn
!=iColumn
) continue;
4929 Expr
*pIxExpr
= pIndex
->aColExpr
->a
[j
].pExpr
;
4930 if( sqlite3ExprCompareSkip(pOBExpr
, pIxExpr
, iCur
) ){
4934 if( iColumn
!=XN_ROWID
){
4935 pColl
= sqlite3ExprNNCollSeq(pWInfo
->pParse
, pOrderBy
->a
[i
].pExpr
);
4936 if( sqlite3StrICmp(pColl
->zName
, pIndex
->azColl
[j
])!=0 ) continue;
4938 if( wctrlFlags
& WHERE_DISTINCTBY
){
4939 pLoop
->u
.btree
.nDistinctCol
= j
+1;
4944 if( isMatch
&& (wctrlFlags
& WHERE_GROUPBY
)==0 ){
4945 /* Make sure the sort order is compatible in an ORDER BY clause.
4946 ** Sort order is irrelevant for a GROUP BY clause. */
4949 != (pOrderBy
->a
[i
].fg
.sortFlags
&KEYINFO_ORDER_DESC
)
4954 rev
= revIdx
^ (pOrderBy
->a
[i
].fg
.sortFlags
& KEYINFO_ORDER_DESC
);
4955 if( rev
) *pRevMask
|= MASKBIT(iLoop
);
4959 if( isMatch
&& (pOrderBy
->a
[i
].fg
.sortFlags
& KEYINFO_ORDER_BIGNULL
) ){
4960 if( j
==pLoop
->u
.btree
.nEq
){
4961 pLoop
->wsFlags
|= WHERE_BIGNULL_SORT
;
4967 if( iColumn
==XN_ROWID
){
4968 testcase( distinctColumns
==0 );
4969 distinctColumns
= 1;
4971 obSat
|= MASKBIT(i
);
4973 /* No match found */
4974 if( j
==0 || j
<nKeyCol
){
4975 testcase( isOrderDistinct
!=0 );
4976 isOrderDistinct
= 0;
4980 } /* end Loop over all index columns */
4981 if( distinctColumns
){
4982 testcase( isOrderDistinct
==0 );
4983 isOrderDistinct
= 1;
4985 } /* end-if not one-row */
4987 /* Mark off any other ORDER BY terms that reference pLoop */
4988 if( isOrderDistinct
){
4989 orderDistinctMask
|= pLoop
->maskSelf
;
4990 for(i
=0; i
<nOrderBy
; i
++){
4993 if( MASKBIT(i
) & obSat
) continue;
4994 p
= pOrderBy
->a
[i
].pExpr
;
4995 mTerm
= sqlite3WhereExprUsage(&pWInfo
->sMaskSet
,p
);
4996 if( mTerm
==0 && !sqlite3ExprIsConstant(p
) ) continue;
4997 if( (mTerm
&~orderDistinctMask
)==0 ){
4998 obSat
|= MASKBIT(i
);
5002 } /* End the loop over all WhereLoops from outer-most down to inner-most */
5003 if( obSat
==obDone
) return (i8
)nOrderBy
;
5004 if( !isOrderDistinct
){
5005 for(i
=nOrderBy
-1; i
>0; i
--){
5006 Bitmask m
= ALWAYS(i
<BMS
) ? MASKBIT(i
) - 1 : 0;
5007 if( (obSat
&m
)==m
) return i
;
5016 ** If the WHERE_GROUPBY flag is set in the mask passed to sqlite3WhereBegin(),
5017 ** the planner assumes that the specified pOrderBy list is actually a GROUP
5018 ** BY clause - and so any order that groups rows as required satisfies the
5021 ** Normally, in this case it is not possible for the caller to determine
5022 ** whether or not the rows are really being delivered in sorted order, or
5023 ** just in some other order that provides the required grouping. However,
5024 ** if the WHERE_SORTBYGROUP flag is also passed to sqlite3WhereBegin(), then
5025 ** this function may be called on the returned WhereInfo object. It returns
5026 ** true if the rows really will be sorted in the specified order, or false
5029 ** For example, assuming:
5031 ** CREATE INDEX i1 ON t1(x, Y);
5035 ** SELECT * FROM t1 GROUP BY x,y ORDER BY x,y; -- IsSorted()==1
5036 ** SELECT * FROM t1 GROUP BY y,x ORDER BY y,x; -- IsSorted()==0
5038 int sqlite3WhereIsSorted(WhereInfo
*pWInfo
){
5039 assert( pWInfo
->wctrlFlags
& (WHERE_GROUPBY
|WHERE_DISTINCTBY
) );
5040 assert( pWInfo
->wctrlFlags
& WHERE_SORTBYGROUP
);
5041 return pWInfo
->sorted
;
5044 #ifdef WHERETRACE_ENABLED
5045 /* For debugging use only: */
5046 static const char *wherePathName(WherePath
*pPath
, int nLoop
, WhereLoop
*pLast
){
5047 static char zName
[65];
5049 for(i
=0; i
<nLoop
; i
++){ zName
[i
] = pPath
->aLoop
[i
]->cId
; }
5050 if( pLast
) zName
[i
++] = pLast
->cId
;
5057 ** Return the cost of sorting nRow rows, assuming that the keys have
5058 ** nOrderby columns and that the first nSorted columns are already in
5061 static LogEst
whereSortingCost(
5062 WhereInfo
*pWInfo
, /* Query planning context */
5063 LogEst nRow
, /* Estimated number of rows to sort */
5064 int nOrderBy
, /* Number of ORDER BY clause terms */
5065 int nSorted
/* Number of initial ORDER BY terms naturally in order */
5067 /* Estimated cost of a full external sort, where N is
5068 ** the number of rows to sort is:
5070 ** cost = (K * N * log(N)).
5072 ** Or, if the order-by clause has X terms but only the last Y
5073 ** terms are out of order, then block-sorting will reduce the
5076 ** cost = (K * N * log(N)) * (Y/X)
5078 ** The constant K is at least 2.0 but will be larger if there are a
5079 ** large number of columns to be sorted, as the sorting time is
5080 ** proportional to the amount of content to be sorted. The algorithm
5081 ** does not currently distinguish between fat columns (BLOBs and TEXTs)
5082 ** and skinny columns (INTs). It just uses the number of columns as
5083 ** an approximation for the row width.
5085 ** And extra factor of 2.0 or 3.0 is added to the sorting cost if the sort
5086 ** is built using OP_IdxInsert and OP_Sort rather than with OP_SorterInsert.
5088 LogEst rSortCost
, nCol
;
5089 assert( pWInfo
->pSelect
!=0 );
5090 assert( pWInfo
->pSelect
->pEList
!=0 );
5091 /* TUNING: sorting cost proportional to the number of output columns: */
5092 nCol
= sqlite3LogEst((pWInfo
->pSelect
->pEList
->nExpr
+59)/30);
5093 rSortCost
= nRow
+ nCol
;
5095 /* Scale the result by (Y/X) */
5096 rSortCost
+= sqlite3LogEst((nOrderBy
-nSorted
)*100/nOrderBy
) - 66;
5099 /* Multiple by log(M) where M is the number of output rows.
5100 ** Use the LIMIT for M if it is smaller. Or if this sort is for
5101 ** a DISTINCT operator, M will be the number of distinct output
5102 ** rows, so fudge it downwards a bit.
5104 if( (pWInfo
->wctrlFlags
& WHERE_USE_LIMIT
)!=0 ){
5105 rSortCost
+= 10; /* TUNING: Extra 2.0x if using LIMIT */
5107 rSortCost
+= 6; /* TUNING: Extra 1.5x if also using partial sort */
5109 if( pWInfo
->iLimit
<nRow
){
5110 nRow
= pWInfo
->iLimit
;
5112 }else if( (pWInfo
->wctrlFlags
& WHERE_WANT_DISTINCT
) ){
5113 /* TUNING: In the sort for a DISTINCT operator, assume that the DISTINCT
5114 ** reduces the number of output rows by a factor of 2 */
5115 if( nRow
>10 ){ nRow
-= 10; assert( 10==sqlite3LogEst(2) ); }
5117 rSortCost
+= estLog(nRow
);
5122 ** Given the list of WhereLoop objects at pWInfo->pLoops, this routine
5123 ** attempts to find the lowest cost path that visits each WhereLoop
5124 ** once. This path is then loaded into the pWInfo->a[].pWLoop fields.
5126 ** Assume that the total number of output rows that will need to be sorted
5127 ** will be nRowEst (in the 10*log2 representation). Or, ignore sorting
5128 ** costs if nRowEst==0.
5130 ** Return SQLITE_OK on success or SQLITE_NOMEM of a memory allocation
5133 static int wherePathSolver(WhereInfo
*pWInfo
, LogEst nRowEst
){
5134 int mxChoice
; /* Maximum number of simultaneous paths tracked */
5135 int nLoop
; /* Number of terms in the join */
5136 Parse
*pParse
; /* Parsing context */
5137 int iLoop
; /* Loop counter over the terms of the join */
5138 int ii
, jj
; /* Loop counters */
5139 int mxI
= 0; /* Index of next entry to replace */
5140 int nOrderBy
; /* Number of ORDER BY clause terms */
5141 LogEst mxCost
= 0; /* Maximum cost of a set of paths */
5142 LogEst mxUnsorted
= 0; /* Maximum unsorted cost of a set of path */
5143 int nTo
, nFrom
; /* Number of valid entries in aTo[] and aFrom[] */
5144 WherePath
*aFrom
; /* All nFrom paths at the previous level */
5145 WherePath
*aTo
; /* The nTo best paths at the current level */
5146 WherePath
*pFrom
; /* An element of aFrom[] that we are working on */
5147 WherePath
*pTo
; /* An element of aTo[] that we are working on */
5148 WhereLoop
*pWLoop
; /* One of the WhereLoop objects */
5149 WhereLoop
**pX
; /* Used to divy up the pSpace memory */
5150 LogEst
*aSortCost
= 0; /* Sorting and partial sorting costs */
5151 char *pSpace
; /* Temporary memory used by this routine */
5152 int nSpace
; /* Bytes of space allocated at pSpace */
5154 pParse
= pWInfo
->pParse
;
5155 nLoop
= pWInfo
->nLevel
;
5156 /* TUNING: For simple queries, only the best path is tracked.
5157 ** For 2-way joins, the 5 best paths are followed.
5158 ** For joins of 3 or more tables, track the 10 best paths */
5159 mxChoice
= (nLoop
<=1) ? 1 : (nLoop
==2 ? 5 : 10);
5160 assert( nLoop
<=pWInfo
->pTabList
->nSrc
);
5161 WHERETRACE(0x002, ("---- begin solver. (nRowEst=%d, nQueryLoop=%d)\n",
5162 nRowEst
, pParse
->nQueryLoop
));
5164 /* If nRowEst is zero and there is an ORDER BY clause, ignore it. In this
5165 ** case the purpose of this call is to estimate the number of rows returned
5166 ** by the overall query. Once this estimate has been obtained, the caller
5167 ** will invoke this function a second time, passing the estimate as the
5168 ** nRowEst parameter. */
5169 if( pWInfo
->pOrderBy
==0 || nRowEst
==0 ){
5172 nOrderBy
= pWInfo
->pOrderBy
->nExpr
;
5175 /* Allocate and initialize space for aTo, aFrom and aSortCost[] */
5176 nSpace
= (sizeof(WherePath
)+sizeof(WhereLoop
*)*nLoop
)*mxChoice
*2;
5177 nSpace
+= sizeof(LogEst
) * nOrderBy
;
5178 pSpace
= sqlite3StackAllocRawNN(pParse
->db
, nSpace
);
5179 if( pSpace
==0 ) return SQLITE_NOMEM_BKPT
;
5180 aTo
= (WherePath
*)pSpace
;
5181 aFrom
= aTo
+mxChoice
;
5182 memset(aFrom
, 0, sizeof(aFrom
[0]));
5183 pX
= (WhereLoop
**)(aFrom
+mxChoice
);
5184 for(ii
=mxChoice
*2, pFrom
=aTo
; ii
>0; ii
--, pFrom
++, pX
+= nLoop
){
5188 /* If there is an ORDER BY clause and it is not being ignored, set up
5189 ** space for the aSortCost[] array. Each element of the aSortCost array
5190 ** is either zero - meaning it has not yet been initialized - or the
5191 ** cost of sorting nRowEst rows of data where the first X terms of
5192 ** the ORDER BY clause are already in order, where X is the array
5194 aSortCost
= (LogEst
*)pX
;
5195 memset(aSortCost
, 0, sizeof(LogEst
) * nOrderBy
);
5197 assert( aSortCost
==0 || &pSpace
[nSpace
]==(char*)&aSortCost
[nOrderBy
] );
5198 assert( aSortCost
!=0 || &pSpace
[nSpace
]==(char*)pX
);
5200 /* Seed the search with a single WherePath containing zero WhereLoops.
5202 ** TUNING: Do not let the number of iterations go above 28. If the cost
5203 ** of computing an automatic index is not paid back within the first 28
5204 ** rows, then do not use the automatic index. */
5205 aFrom
[0].nRow
= MIN(pParse
->nQueryLoop
, 48); assert( 48==sqlite3LogEst(28) );
5207 assert( aFrom
[0].isOrdered
==0 );
5209 /* If nLoop is zero, then there are no FROM terms in the query. Since
5210 ** in this case the query may return a maximum of one row, the results
5211 ** are already in the requested order. Set isOrdered to nOrderBy to
5212 ** indicate this. Or, if nLoop is greater than zero, set isOrdered to
5213 ** -1, indicating that the result set may or may not be ordered,
5214 ** depending on the loops added to the current plan. */
5215 aFrom
[0].isOrdered
= nLoop
>0 ? -1 : nOrderBy
;
5218 /* Compute successively longer WherePaths using the previous generation
5219 ** of WherePaths as the basis for the next. Keep track of the mxChoice
5220 ** best paths at each generation */
5221 for(iLoop
=0; iLoop
<nLoop
; iLoop
++){
5223 for(ii
=0, pFrom
=aFrom
; ii
<nFrom
; ii
++, pFrom
++){
5224 for(pWLoop
=pWInfo
->pLoops
; pWLoop
; pWLoop
=pWLoop
->pNextLoop
){
5225 LogEst nOut
; /* Rows visited by (pFrom+pWLoop) */
5226 LogEst rCost
; /* Cost of path (pFrom+pWLoop) */
5227 LogEst rUnsorted
; /* Unsorted cost of (pFrom+pWLoop) */
5228 i8 isOrdered
; /* isOrdered for (pFrom+pWLoop) */
5229 Bitmask maskNew
; /* Mask of src visited by (..) */
5230 Bitmask revMask
; /* Mask of rev-order loops for (..) */
5232 if( (pWLoop
->prereq
& ~pFrom
->maskLoop
)!=0 ) continue;
5233 if( (pWLoop
->maskSelf
& pFrom
->maskLoop
)!=0 ) continue;
5234 if( (pWLoop
->wsFlags
& WHERE_AUTO_INDEX
)!=0 && pFrom
->nRow
<3 ){
5235 /* Do not use an automatic index if the this loop is expected
5236 ** to run less than 1.25 times. It is tempting to also exclude
5237 ** automatic index usage on an outer loop, but sometimes an automatic
5238 ** index is useful in the outer loop of a correlated subquery. */
5239 assert( 10==sqlite3LogEst(2) );
5243 /* At this point, pWLoop is a candidate to be the next loop.
5244 ** Compute its cost */
5245 rUnsorted
= sqlite3LogEstAdd(pWLoop
->rSetup
,pWLoop
->rRun
+ pFrom
->nRow
);
5246 rUnsorted
= sqlite3LogEstAdd(rUnsorted
, pFrom
->rUnsorted
);
5247 nOut
= pFrom
->nRow
+ pWLoop
->nOut
;
5248 maskNew
= pFrom
->maskLoop
| pWLoop
->maskSelf
;
5249 isOrdered
= pFrom
->isOrdered
;
5252 isOrdered
= wherePathSatisfiesOrderBy(pWInfo
,
5253 pWInfo
->pOrderBy
, pFrom
, pWInfo
->wctrlFlags
,
5254 iLoop
, pWLoop
, &revMask
);
5256 revMask
= pFrom
->revLoop
;
5258 if( isOrdered
>=0 && isOrdered
<nOrderBy
){
5259 if( aSortCost
[isOrdered
]==0 ){
5260 aSortCost
[isOrdered
] = whereSortingCost(
5261 pWInfo
, nRowEst
, nOrderBy
, isOrdered
5264 /* TUNING: Add a small extra penalty (3) to sorting as an
5265 ** extra encouragement to the query planner to select a plan
5266 ** where the rows emerge in the correct order without any sorting
5268 rCost
= sqlite3LogEstAdd(rUnsorted
, aSortCost
[isOrdered
]) + 3;
5271 ("---- sort cost=%-3d (%d/%d) increases cost %3d to %-3d\n",
5272 aSortCost
[isOrdered
], (nOrderBy
-isOrdered
), nOrderBy
,
5276 rUnsorted
-= 2; /* TUNING: Slight bias in favor of no-sort plans */
5279 /* Check to see if pWLoop should be added to the set of
5280 ** mxChoice best-so-far paths.
5282 ** First look for an existing path among best-so-far paths
5283 ** that covers the same set of loops and has the same isOrdered
5284 ** setting as the current path candidate.
5286 ** The term "((pTo->isOrdered^isOrdered)&0x80)==0" is equivalent
5287 ** to (pTo->isOrdered==(-1))==(isOrdered==(-1))" for the range
5288 ** of legal values for isOrdered, -1..64.
5290 for(jj
=0, pTo
=aTo
; jj
<nTo
; jj
++, pTo
++){
5291 if( pTo
->maskLoop
==maskNew
5292 && ((pTo
->isOrdered
^isOrdered
)&0x80)==0
5294 testcase( jj
==nTo
-1 );
5299 /* None of the existing best-so-far paths match the candidate. */
5301 && (rCost
>mxCost
|| (rCost
==mxCost
&& rUnsorted
>=mxUnsorted
))
5303 /* The current candidate is no better than any of the mxChoice
5304 ** paths currently in the best-so-far buffer. So discard
5305 ** this candidate as not viable. */
5306 #ifdef WHERETRACE_ENABLED /* 0x4 */
5307 if( sqlite3WhereTrace
&0x4 ){
5308 sqlite3DebugPrintf("Skip %s cost=%-3d,%3d,%3d order=%c\n",
5309 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
, rUnsorted
,
5310 isOrdered
>=0 ? isOrdered
+'0' : '?');
5315 /* If we reach this points it means that the new candidate path
5316 ** needs to be added to the set of best-so-far paths. */
5318 /* Increase the size of the aTo set by one */
5321 /* New path replaces the prior worst to keep count below mxChoice */
5325 #ifdef WHERETRACE_ENABLED /* 0x4 */
5326 if( sqlite3WhereTrace
&0x4 ){
5327 sqlite3DebugPrintf("New %s cost=%-3d,%3d,%3d order=%c\n",
5328 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
, rUnsorted
,
5329 isOrdered
>=0 ? isOrdered
+'0' : '?');
5333 /* Control reaches here if best-so-far path pTo=aTo[jj] covers the
5334 ** same set of loops and has the same isOrdered setting as the
5335 ** candidate path. Check to see if the candidate should replace
5336 ** pTo or if the candidate should be skipped.
5338 ** The conditional is an expanded vector comparison equivalent to:
5339 ** (pTo->rCost,pTo->nRow,pTo->rUnsorted) <= (rCost,nOut,rUnsorted)
5341 if( pTo
->rCost
<rCost
5342 || (pTo
->rCost
==rCost
5344 || (pTo
->nRow
==nOut
&& pTo
->rUnsorted
<=rUnsorted
)
5348 #ifdef WHERETRACE_ENABLED /* 0x4 */
5349 if( sqlite3WhereTrace
&0x4 ){
5351 "Skip %s cost=%-3d,%3d,%3d order=%c",
5352 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
, rUnsorted
,
5353 isOrdered
>=0 ? isOrdered
+'0' : '?');
5354 sqlite3DebugPrintf(" vs %s cost=%-3d,%3d,%3d order=%c\n",
5355 wherePathName(pTo
, iLoop
+1, 0), pTo
->rCost
, pTo
->nRow
,
5356 pTo
->rUnsorted
, pTo
->isOrdered
>=0 ? pTo
->isOrdered
+'0' : '?');
5359 /* Discard the candidate path from further consideration */
5360 testcase( pTo
->rCost
==rCost
);
5363 testcase( pTo
->rCost
==rCost
+1 );
5364 /* Control reaches here if the candidate path is better than the
5365 ** pTo path. Replace pTo with the candidate. */
5366 #ifdef WHERETRACE_ENABLED /* 0x4 */
5367 if( sqlite3WhereTrace
&0x4 ){
5369 "Update %s cost=%-3d,%3d,%3d order=%c",
5370 wherePathName(pFrom
, iLoop
, pWLoop
), rCost
, nOut
, rUnsorted
,
5371 isOrdered
>=0 ? isOrdered
+'0' : '?');
5372 sqlite3DebugPrintf(" was %s cost=%-3d,%3d,%3d order=%c\n",
5373 wherePathName(pTo
, iLoop
+1, 0), pTo
->rCost
, pTo
->nRow
,
5374 pTo
->rUnsorted
, pTo
->isOrdered
>=0 ? pTo
->isOrdered
+'0' : '?');
5378 /* pWLoop is a winner. Add it to the set of best so far */
5379 pTo
->maskLoop
= pFrom
->maskLoop
| pWLoop
->maskSelf
;
5380 pTo
->revLoop
= revMask
;
5383 pTo
->rUnsorted
= rUnsorted
;
5384 pTo
->isOrdered
= isOrdered
;
5385 memcpy(pTo
->aLoop
, pFrom
->aLoop
, sizeof(WhereLoop
*)*iLoop
);
5386 pTo
->aLoop
[iLoop
] = pWLoop
;
5387 if( nTo
>=mxChoice
){
5389 mxCost
= aTo
[0].rCost
;
5390 mxUnsorted
= aTo
[0].nRow
;
5391 for(jj
=1, pTo
=&aTo
[1]; jj
<mxChoice
; jj
++, pTo
++){
5392 if( pTo
->rCost
>mxCost
5393 || (pTo
->rCost
==mxCost
&& pTo
->rUnsorted
>mxUnsorted
)
5395 mxCost
= pTo
->rCost
;
5396 mxUnsorted
= pTo
->rUnsorted
;
5404 #ifdef WHERETRACE_ENABLED /* >=2 */
5405 if( sqlite3WhereTrace
& 0x02 ){
5406 sqlite3DebugPrintf("---- after round %d ----\n", iLoop
);
5407 for(ii
=0, pTo
=aTo
; ii
<nTo
; ii
++, pTo
++){
5408 sqlite3DebugPrintf(" %s cost=%-3d nrow=%-3d order=%c",
5409 wherePathName(pTo
, iLoop
+1, 0), pTo
->rCost
, pTo
->nRow
,
5410 pTo
->isOrdered
>=0 ? (pTo
->isOrdered
+'0') : '?');
5411 if( pTo
->isOrdered
>0 ){
5412 sqlite3DebugPrintf(" rev=0x%llx\n", pTo
->revLoop
);
5414 sqlite3DebugPrintf("\n");
5420 /* Swap the roles of aFrom and aTo for the next generation */
5428 sqlite3ErrorMsg(pParse
, "no query solution");
5429 sqlite3StackFreeNN(pParse
->db
, pSpace
);
5430 return SQLITE_ERROR
;
5433 /* Find the lowest cost path. pFrom will be left pointing to that path */
5435 for(ii
=1; ii
<nFrom
; ii
++){
5436 if( pFrom
->rCost
>aFrom
[ii
].rCost
) pFrom
= &aFrom
[ii
];
5438 assert( pWInfo
->nLevel
==nLoop
);
5439 /* Load the lowest cost path into pWInfo */
5440 for(iLoop
=0; iLoop
<nLoop
; iLoop
++){
5441 WhereLevel
*pLevel
= pWInfo
->a
+ iLoop
;
5442 pLevel
->pWLoop
= pWLoop
= pFrom
->aLoop
[iLoop
];
5443 pLevel
->iFrom
= pWLoop
->iTab
;
5444 pLevel
->iTabCur
= pWInfo
->pTabList
->a
[pLevel
->iFrom
].iCursor
;
5446 if( (pWInfo
->wctrlFlags
& WHERE_WANT_DISTINCT
)!=0
5447 && (pWInfo
->wctrlFlags
& WHERE_DISTINCTBY
)==0
5448 && pWInfo
->eDistinct
==WHERE_DISTINCT_NOOP
5452 int rc
= wherePathSatisfiesOrderBy(pWInfo
, pWInfo
->pResultSet
, pFrom
,
5453 WHERE_DISTINCTBY
, nLoop
-1, pFrom
->aLoop
[nLoop
-1], ¬Used
);
5454 if( rc
==pWInfo
->pResultSet
->nExpr
){
5455 pWInfo
->eDistinct
= WHERE_DISTINCT_ORDERED
;
5458 pWInfo
->bOrderedInnerLoop
= 0;
5459 if( pWInfo
->pOrderBy
){
5460 pWInfo
->nOBSat
= pFrom
->isOrdered
;
5461 if( pWInfo
->wctrlFlags
& WHERE_DISTINCTBY
){
5462 if( pFrom
->isOrdered
==pWInfo
->pOrderBy
->nExpr
){
5463 pWInfo
->eDistinct
= WHERE_DISTINCT_ORDERED
;
5465 if( pWInfo
->pSelect
->pOrderBy
5466 && pWInfo
->nOBSat
> pWInfo
->pSelect
->pOrderBy
->nExpr
){
5467 pWInfo
->nOBSat
= pWInfo
->pSelect
->pOrderBy
->nExpr
;
5470 pWInfo
->revMask
= pFrom
->revLoop
;
5471 if( pWInfo
->nOBSat
<=0 ){
5474 u32 wsFlags
= pFrom
->aLoop
[nLoop
-1]->wsFlags
;
5475 if( (wsFlags
& WHERE_ONEROW
)==0
5476 && (wsFlags
&(WHERE_IPK
|WHERE_COLUMN_IN
))!=(WHERE_IPK
|WHERE_COLUMN_IN
)
5479 int rc
= wherePathSatisfiesOrderBy(pWInfo
, pWInfo
->pOrderBy
, pFrom
,
5480 WHERE_ORDERBY_LIMIT
, nLoop
-1, pFrom
->aLoop
[nLoop
-1], &m
);
5481 testcase( wsFlags
& WHERE_IPK
);
5482 testcase( wsFlags
& WHERE_COLUMN_IN
);
5483 if( rc
==pWInfo
->pOrderBy
->nExpr
){
5484 pWInfo
->bOrderedInnerLoop
= 1;
5485 pWInfo
->revMask
= m
;
5490 && pWInfo
->nOBSat
==1
5491 && (pWInfo
->wctrlFlags
& (WHERE_ORDERBY_MIN
|WHERE_ORDERBY_MAX
))!=0
5493 pWInfo
->bOrderedInnerLoop
= 1;
5496 if( (pWInfo
->wctrlFlags
& WHERE_SORTBYGROUP
)
5497 && pWInfo
->nOBSat
==pWInfo
->pOrderBy
->nExpr
&& nLoop
>0
5499 Bitmask revMask
= 0;
5500 int nOrder
= wherePathSatisfiesOrderBy(pWInfo
, pWInfo
->pOrderBy
,
5501 pFrom
, 0, nLoop
-1, pFrom
->aLoop
[nLoop
-1], &revMask
5503 assert( pWInfo
->sorted
==0 );
5504 if( nOrder
==pWInfo
->pOrderBy
->nExpr
){
5506 pWInfo
->revMask
= revMask
;
5512 pWInfo
->nRowOut
= pFrom
->nRow
;
5514 /* Free temporary memory and return success */
5515 sqlite3StackFreeNN(pParse
->db
, pSpace
);
5520 ** Most queries use only a single table (they are not joins) and have
5521 ** simple == constraints against indexed fields. This routine attempts
5522 ** to plan those simple cases using much less ceremony than the
5523 ** general-purpose query planner, and thereby yield faster sqlite3_prepare()
5524 ** times for the common case.
5526 ** Return non-zero on success, if this query can be handled by this
5527 ** no-frills query planner. Return zero if this query needs the
5528 ** general-purpose query planner.
5530 static int whereShortCut(WhereLoopBuilder
*pBuilder
){
5542 pWInfo
= pBuilder
->pWInfo
;
5543 if( pWInfo
->wctrlFlags
& WHERE_OR_SUBCLAUSE
) return 0;
5544 assert( pWInfo
->pTabList
->nSrc
>=1 );
5545 pItem
= pWInfo
->pTabList
->a
;
5547 if( IsVirtual(pTab
) ) return 0;
5548 if( pItem
->fg
.isIndexedBy
|| pItem
->fg
.notIndexed
){
5549 testcase( pItem
->fg
.isIndexedBy
);
5550 testcase( pItem
->fg
.notIndexed
);
5553 iCur
= pItem
->iCursor
;
5555 pLoop
= pBuilder
->pNew
;
5558 pTerm
= whereScanInit(&scan
, pWC
, iCur
, -1, WO_EQ
|WO_IS
, 0);
5559 while( pTerm
&& pTerm
->prereqRight
) pTerm
= whereScanNext(&scan
);
5561 testcase( pTerm
->eOperator
& WO_IS
);
5562 pLoop
->wsFlags
= WHERE_COLUMN_EQ
|WHERE_IPK
|WHERE_ONEROW
;
5563 pLoop
->aLTerm
[0] = pTerm
;
5565 pLoop
->u
.btree
.nEq
= 1;
5566 /* TUNING: Cost of a rowid lookup is 10 */
5567 pLoop
->rRun
= 33; /* 33==sqlite3LogEst(10) */
5569 for(pIdx
=pTab
->pIndex
; pIdx
; pIdx
=pIdx
->pNext
){
5571 assert( pLoop
->aLTermSpace
==pLoop
->aLTerm
);
5572 if( !IsUniqueIndex(pIdx
)
5573 || pIdx
->pPartIdxWhere
!=0
5574 || pIdx
->nKeyCol
>ArraySize(pLoop
->aLTermSpace
)
5576 opMask
= pIdx
->uniqNotNull
? (WO_EQ
|WO_IS
) : WO_EQ
;
5577 for(j
=0; j
<pIdx
->nKeyCol
; j
++){
5578 pTerm
= whereScanInit(&scan
, pWC
, iCur
, j
, opMask
, pIdx
);
5579 while( pTerm
&& pTerm
->prereqRight
) pTerm
= whereScanNext(&scan
);
5580 if( pTerm
==0 ) break;
5581 testcase( pTerm
->eOperator
& WO_IS
);
5582 pLoop
->aLTerm
[j
] = pTerm
;
5584 if( j
!=pIdx
->nKeyCol
) continue;
5585 pLoop
->wsFlags
= WHERE_COLUMN_EQ
|WHERE_ONEROW
|WHERE_INDEXED
;
5586 if( pIdx
->isCovering
|| (pItem
->colUsed
& pIdx
->colNotIdxed
)==0 ){
5587 pLoop
->wsFlags
|= WHERE_IDX_ONLY
;
5590 pLoop
->u
.btree
.nEq
= j
;
5591 pLoop
->u
.btree
.pIndex
= pIdx
;
5592 /* TUNING: Cost of a unique index lookup is 15 */
5593 pLoop
->rRun
= 39; /* 39==sqlite3LogEst(15) */
5597 if( pLoop
->wsFlags
){
5598 pLoop
->nOut
= (LogEst
)1;
5599 pWInfo
->a
[0].pWLoop
= pLoop
;
5600 assert( pWInfo
->sMaskSet
.n
==1 && iCur
==pWInfo
->sMaskSet
.ix
[0] );
5601 pLoop
->maskSelf
= 1; /* sqlite3WhereGetMask(&pWInfo->sMaskSet, iCur); */
5602 pWInfo
->a
[0].iTabCur
= iCur
;
5603 pWInfo
->nRowOut
= 1;
5604 if( pWInfo
->pOrderBy
) pWInfo
->nOBSat
= pWInfo
->pOrderBy
->nExpr
;
5605 if( pWInfo
->wctrlFlags
& WHERE_WANT_DISTINCT
){
5606 pWInfo
->eDistinct
= WHERE_DISTINCT_UNIQUE
;
5608 if( scan
.iEquiv
>1 ) pLoop
->wsFlags
|= WHERE_TRANSCONS
;
5612 #ifdef WHERETRACE_ENABLED
5613 if( sqlite3WhereTrace
& 0x02 ){
5614 sqlite3DebugPrintf("whereShortCut() used to compute solution\n");
5623 ** Helper function for exprIsDeterministic().
5625 static int exprNodeIsDeterministic(Walker
*pWalker
, Expr
*pExpr
){
5626 if( pExpr
->op
==TK_FUNCTION
&& ExprHasProperty(pExpr
, EP_ConstFunc
)==0 ){
5630 return WRC_Continue
;
5634 ** Return true if the expression contains no non-deterministic SQL
5635 ** functions. Do not consider non-deterministic SQL functions that are
5636 ** part of sub-select statements.
5638 static int exprIsDeterministic(Expr
*p
){
5640 memset(&w
, 0, sizeof(w
));
5642 w
.xExprCallback
= exprNodeIsDeterministic
;
5643 w
.xSelectCallback
= sqlite3SelectWalkFail
;
5644 sqlite3WalkExpr(&w
, p
);
5649 #ifdef WHERETRACE_ENABLED
5651 ** Display all WhereLoops in pWInfo
5653 static void showAllWhereLoops(WhereInfo
*pWInfo
, WhereClause
*pWC
){
5654 if( sqlite3WhereTrace
){ /* Display all of the WhereLoop objects */
5657 static const char zLabel
[] = "0123456789abcdefghijklmnopqrstuvwyxz"
5658 "ABCDEFGHIJKLMNOPQRSTUVWYXZ";
5659 for(p
=pWInfo
->pLoops
, i
=0; p
; p
=p
->pNextLoop
, i
++){
5660 p
->cId
= zLabel
[i
%(sizeof(zLabel
)-1)];
5661 sqlite3WhereLoopPrint(p
, pWC
);
5665 # define WHERETRACE_ALL_LOOPS(W,C) showAllWhereLoops(W,C)
5667 # define WHERETRACE_ALL_LOOPS(W,C)
5670 /* Attempt to omit tables from a join that do not affect the result.
5671 ** For a table to not affect the result, the following must be true:
5673 ** 1) The query must not be an aggregate.
5674 ** 2) The table must be the RHS of a LEFT JOIN.
5675 ** 3) Either the query must be DISTINCT, or else the ON or USING clause
5676 ** must contain a constraint that limits the scan of the table to
5677 ** at most a single row.
5678 ** 4) The table must not be referenced by any part of the query apart
5679 ** from its own USING or ON clause.
5680 ** 5) The table must not have an inner-join ON or USING clause if there is
5681 ** a RIGHT JOIN anywhere in the query. Otherwise the ON/USING clause
5682 ** might move from the right side to the left side of the RIGHT JOIN.
5683 ** Note: Due to (2), this condition can only arise if the table is
5684 ** the right-most table of a subquery that was flattened into the
5685 ** main query and that subquery was the right-hand operand of an
5686 ** inner join that held an ON or USING clause.
5688 ** For example, given:
5690 ** CREATE TABLE t1(ipk INTEGER PRIMARY KEY, v1);
5691 ** CREATE TABLE t2(ipk INTEGER PRIMARY KEY, v2);
5692 ** CREATE TABLE t3(ipk INTEGER PRIMARY KEY, v3);
5694 ** then table t2 can be omitted from the following:
5696 ** SELECT v1, v3 FROM t1
5697 ** LEFT JOIN t2 ON (t1.ipk=t2.ipk)
5698 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5702 ** SELECT DISTINCT v1, v3 FROM t1
5704 ** LEFT JOIN t3 ON (t1.ipk=t3.ipk)
5706 static SQLITE_NOINLINE Bitmask
whereOmitNoopJoin(
5714 /* Preconditions checked by the caller */
5715 assert( pWInfo
->nLevel
>=2 );
5716 assert( OptimizationEnabled(pWInfo
->pParse
->db
, SQLITE_OmitNoopJoin
) );
5718 /* These two preconditions checked by the caller combine to guarantee
5719 ** condition (1) of the header comment */
5720 assert( pWInfo
->pResultSet
!=0 );
5721 assert( 0==(pWInfo
->wctrlFlags
& WHERE_AGG_DISTINCT
) );
5723 tabUsed
= sqlite3WhereExprListUsage(&pWInfo
->sMaskSet
, pWInfo
->pResultSet
);
5724 if( pWInfo
->pOrderBy
){
5725 tabUsed
|= sqlite3WhereExprListUsage(&pWInfo
->sMaskSet
, pWInfo
->pOrderBy
);
5727 hasRightJoin
= (pWInfo
->pTabList
->a
[0].fg
.jointype
& JT_LTORJ
)!=0;
5728 for(i
=pWInfo
->nLevel
-1; i
>=1; i
--){
5729 WhereTerm
*pTerm
, *pEnd
;
5732 pLoop
= pWInfo
->a
[i
].pWLoop
;
5733 pItem
= &pWInfo
->pTabList
->a
[pLoop
->iTab
];
5734 if( (pItem
->fg
.jointype
& (JT_LEFT
|JT_RIGHT
))!=JT_LEFT
) continue;
5735 if( (pWInfo
->wctrlFlags
& WHERE_WANT_DISTINCT
)==0
5736 && (pLoop
->wsFlags
& WHERE_ONEROW
)==0
5740 if( (tabUsed
& pLoop
->maskSelf
)!=0 ) continue;
5741 pEnd
= pWInfo
->sWC
.a
+ pWInfo
->sWC
.nTerm
;
5742 for(pTerm
=pWInfo
->sWC
.a
; pTerm
<pEnd
; pTerm
++){
5743 if( (pTerm
->prereqAll
& pLoop
->maskSelf
)!=0 ){
5744 if( !ExprHasProperty(pTerm
->pExpr
, EP_OuterON
)
5745 || pTerm
->pExpr
->w
.iJoin
!=pItem
->iCursor
5751 && ExprHasProperty(pTerm
->pExpr
, EP_InnerON
)
5752 && pTerm
->pExpr
->w
.iJoin
==pItem
->iCursor
5754 break; /* restriction (5) */
5757 if( pTerm
<pEnd
) continue;
5758 WHERETRACE(0xffffffff, ("-> drop loop %c not used\n", pLoop
->cId
));
5759 notReady
&= ~pLoop
->maskSelf
;
5760 for(pTerm
=pWInfo
->sWC
.a
; pTerm
<pEnd
; pTerm
++){
5761 if( (pTerm
->prereqAll
& pLoop
->maskSelf
)!=0 ){
5762 pTerm
->wtFlags
|= TERM_CODED
;
5765 if( i
!=pWInfo
->nLevel
-1 ){
5766 int nByte
= (pWInfo
->nLevel
-1-i
) * sizeof(WhereLevel
);
5767 memmove(&pWInfo
->a
[i
], &pWInfo
->a
[i
+1], nByte
);
5770 assert( pWInfo
->nLevel
>0 );
5776 ** Check to see if there are any SEARCH loops that might benefit from
5777 ** using a Bloom filter. Consider a Bloom filter if:
5779 ** (1) The SEARCH happens more than N times where N is the number
5780 ** of rows in the table that is being considered for the Bloom
5782 ** (2) Some searches are expected to find zero rows. (This is determined
5783 ** by the WHERE_SELFCULL flag on the term.)
5784 ** (3) Bloom-filter processing is not disabled. (Checked by the
5786 ** (4) The size of the table being searched is known by ANALYZE.
5788 ** This block of code merely checks to see if a Bloom filter would be
5789 ** appropriate, and if so sets the WHERE_BLOOMFILTER flag on the
5790 ** WhereLoop. The implementation of the Bloom filter comes further
5791 ** down where the code for each WhereLoop is generated.
5793 static SQLITE_NOINLINE
void whereCheckIfBloomFilterIsUseful(
5794 const WhereInfo
*pWInfo
5799 assert( pWInfo
->nLevel
>=2 );
5800 assert( OptimizationEnabled(pWInfo
->pParse
->db
, SQLITE_BloomFilter
) );
5801 for(i
=0; i
<pWInfo
->nLevel
; i
++){
5802 WhereLoop
*pLoop
= pWInfo
->a
[i
].pWLoop
;
5803 const unsigned int reqFlags
= (WHERE_SELFCULL
|WHERE_COLUMN_EQ
);
5804 SrcItem
*pItem
= &pWInfo
->pTabList
->a
[pLoop
->iTab
];
5805 Table
*pTab
= pItem
->pTab
;
5806 if( (pTab
->tabFlags
& TF_HasStat1
)==0 ) break;
5807 pTab
->tabFlags
|= TF_StatsUsed
;
5809 && (pLoop
->wsFlags
& reqFlags
)==reqFlags
5810 /* vvvvvv--- Always the case if WHERE_COLUMN_EQ is defined */
5811 && ALWAYS((pLoop
->wsFlags
& (WHERE_IPK
|WHERE_INDEXED
))!=0)
5813 if( nSearch
> pTab
->nRowLogEst
){
5814 testcase( pItem
->fg
.jointype
& JT_LEFT
);
5815 pLoop
->wsFlags
|= WHERE_BLOOMFILTER
;
5816 pLoop
->wsFlags
&= ~WHERE_IDX_ONLY
;
5817 WHERETRACE(0xffffffff, (
5818 "-> use Bloom-filter on loop %c because there are ~%.1e "
5819 "lookups into %s which has only ~%.1e rows\n",
5820 pLoop
->cId
, (double)sqlite3LogEstToInt(nSearch
), pTab
->zName
,
5821 (double)sqlite3LogEstToInt(pTab
->nRowLogEst
)));
5824 nSearch
+= pLoop
->nOut
;
5829 ** The index pIdx is used by a query and contains one or more expressions.
5830 ** In other words pIdx is an index on an expression. iIdxCur is the cursor
5831 ** number for the index and iDataCur is the cursor number for the corresponding
5834 ** This routine adds IndexedExpr entries to the Parse->pIdxEpr field for
5835 ** each of the expressions in the index so that the expression code generator
5836 ** will know to replace occurrences of the indexed expression with
5837 ** references to the corresponding column of the index.
5839 static SQLITE_NOINLINE
void whereAddIndexedExpr(
5840 Parse
*pParse
, /* Add IndexedExpr entries to pParse->pIdxEpr */
5841 Index
*pIdx
, /* The index-on-expression that contains the expressions */
5842 int iIdxCur
, /* Cursor number for pIdx */
5843 SrcItem
*pTabItem
/* The FROM clause entry for the table */
5848 assert( pIdx
->bHasExpr
);
5849 pTab
= pIdx
->pTable
;
5850 for(i
=0; i
<pIdx
->nColumn
; i
++){
5852 int j
= pIdx
->aiColumn
[i
];
5854 pExpr
= pIdx
->aColExpr
->a
[i
].pExpr
;
5855 }else if( j
>=0 && (pTab
->aCol
[j
].colFlags
& COLFLAG_VIRTUAL
)!=0 ){
5856 pExpr
= sqlite3ColumnExpr(pTab
, &pTab
->aCol
[j
]);
5860 if( sqlite3ExprIsConstant(pExpr
) ) continue;
5861 if( pExpr
->op
==TK_FUNCTION
){
5862 /* Functions that might set a subtype should not be replaced by the
5863 ** value taken from an expression index since the index omits the
5864 ** subtype. https://sqlite.org/forum/forumpost/68d284c86b082c3e */
5867 sqlite3
*db
= pParse
->db
;
5868 assert( ExprUseXList(pExpr
) );
5869 n
= pExpr
->x
.pList
? pExpr
->x
.pList
->nExpr
: 0;
5870 pDef
= sqlite3FindFunction(db
, pExpr
->u
.zToken
, n
, ENC(db
), 0);
5871 if( pDef
==0 || (pDef
->funcFlags
& SQLITE_RESULT_SUBTYPE
)!=0 ){
5875 p
= sqlite3DbMallocRaw(pParse
->db
, sizeof(IndexedExpr
));
5877 p
->pIENext
= pParse
->pIdxEpr
;
5878 #ifdef WHERETRACE_ENABLED
5879 if( sqlite3WhereTrace
& 0x200 ){
5880 sqlite3DebugPrintf("New pParse->pIdxEpr term {%d,%d}\n", iIdxCur
, i
);
5881 if( sqlite3WhereTrace
& 0x5000 ) sqlite3ShowExpr(pExpr
);
5884 p
->pExpr
= sqlite3ExprDup(pParse
->db
, pExpr
, 0);
5885 p
->iDataCur
= pTabItem
->iCursor
;
5886 p
->iIdxCur
= iIdxCur
;
5888 p
->bMaybeNullRow
= (pTabItem
->fg
.jointype
& (JT_LEFT
|JT_LTORJ
|JT_RIGHT
))!=0;
5889 if( sqlite3IndexAffinityStr(pParse
->db
, pIdx
) ){
5890 p
->aff
= pIdx
->zColAff
[i
];
5892 #ifdef SQLITE_ENABLE_EXPLAIN_COMMENTS
5893 p
->zIdxName
= pIdx
->zName
;
5895 pParse
->pIdxEpr
= p
;
5896 if( p
->pIENext
==0 ){
5897 void *pArg
= (void*)&pParse
->pIdxEpr
;
5898 sqlite3ParserAddCleanup(pParse
, whereIndexedExprCleanup
, pArg
);
5904 ** Set the reverse-scan order mask to one for all tables in the query
5905 ** with the exception of MATERIALIZED common table expressions that have
5906 ** their own internal ORDER BY clauses.
5908 ** This implements the PRAGMA reverse_unordered_selects=ON setting.
5909 ** (Also SQLITE_DBCONFIG_REVERSE_SCANORDER).
5911 static SQLITE_NOINLINE
void whereReverseScanOrder(WhereInfo
*pWInfo
){
5913 for(ii
=0; ii
<pWInfo
->pTabList
->nSrc
; ii
++){
5914 SrcItem
*pItem
= &pWInfo
->pTabList
->a
[ii
];
5915 if( !pItem
->fg
.isCte
5916 || pItem
->u2
.pCteUse
->eM10d
!=M10d_Yes
5917 || NEVER(pItem
->pSelect
==0)
5918 || pItem
->pSelect
->pOrderBy
==0
5920 pWInfo
->revMask
|= MASKBIT(ii
);
5926 ** Generate the beginning of the loop used for WHERE clause processing.
5927 ** The return value is a pointer to an opaque structure that contains
5928 ** information needed to terminate the loop. Later, the calling routine
5929 ** should invoke sqlite3WhereEnd() with the return value of this function
5930 ** in order to complete the WHERE clause processing.
5932 ** If an error occurs, this routine returns NULL.
5934 ** The basic idea is to do a nested loop, one loop for each table in
5935 ** the FROM clause of a select. (INSERT and UPDATE statements are the
5936 ** same as a SELECT with only a single table in the FROM clause.) For
5937 ** example, if the SQL is this:
5939 ** SELECT * FROM t1, t2, t3 WHERE ...;
5941 ** Then the code generated is conceptually like the following:
5943 ** foreach row1 in t1 do \ Code generated
5944 ** foreach row2 in t2 do |-- by sqlite3WhereBegin()
5945 ** foreach row3 in t3 do /
5947 ** end \ Code generated
5948 ** end |-- by sqlite3WhereEnd()
5951 ** Note that the loops might not be nested in the order in which they
5952 ** appear in the FROM clause if a different order is better able to make
5953 ** use of indices. Note also that when the IN operator appears in
5954 ** the WHERE clause, it might result in additional nested loops for
5955 ** scanning through all values on the right-hand side of the IN.
5957 ** There are Btree cursors associated with each table. t1 uses cursor
5958 ** number pTabList->a[0].iCursor. t2 uses the cursor pTabList->a[1].iCursor.
5959 ** And so forth. This routine generates code to open those VDBE cursors
5960 ** and sqlite3WhereEnd() generates the code to close them.
5962 ** The code that sqlite3WhereBegin() generates leaves the cursors named
5963 ** in pTabList pointing at their appropriate entries. The [...] code
5964 ** can use OP_Column and OP_Rowid opcodes on these cursors to extract
5965 ** data from the various tables of the loop.
5967 ** If the WHERE clause is empty, the foreach loops must each scan their
5968 ** entire tables. Thus a three-way join is an O(N^3) operation. But if
5969 ** the tables have indices and there are terms in the WHERE clause that
5970 ** refer to those indices, a complete table scan can be avoided and the
5971 ** code will run much faster. Most of the work of this routine is checking
5972 ** to see if there are indices that can be used to speed up the loop.
5974 ** Terms of the WHERE clause are also used to limit which rows actually
5975 ** make it to the "..." in the middle of the loop. After each "foreach",
5976 ** terms of the WHERE clause that use only terms in that loop and outer
5977 ** loops are evaluated and if false a jump is made around all subsequent
5978 ** inner loops (or around the "..." if the test occurs within the inner-
5983 ** An outer join of tables t1 and t2 is conceptually coded as follows:
5985 ** foreach row1 in t1 do
5987 ** foreach row2 in t2 do
5993 ** move the row2 cursor to a null row
5998 ** ORDER BY CLAUSE PROCESSING
6000 ** pOrderBy is a pointer to the ORDER BY clause (or the GROUP BY clause
6001 ** if the WHERE_GROUPBY flag is set in wctrlFlags) of a SELECT statement
6002 ** if there is one. If there is no ORDER BY clause or if this routine
6003 ** is called from an UPDATE or DELETE statement, then pOrderBy is NULL.
6005 ** The iIdxCur parameter is the cursor number of an index. If
6006 ** WHERE_OR_SUBCLAUSE is set, iIdxCur is the cursor number of an index
6007 ** to use for OR clause processing. The WHERE clause should use this
6008 ** specific cursor. If WHERE_ONEPASS_DESIRED is set, then iIdxCur is
6009 ** the first cursor in an array of cursors for all indices. iIdxCur should
6010 ** be used to compute the appropriate cursor depending on which index is
6013 WhereInfo
*sqlite3WhereBegin(
6014 Parse
*pParse
, /* The parser context */
6015 SrcList
*pTabList
, /* FROM clause: A list of all tables to be scanned */
6016 Expr
*pWhere
, /* The WHERE clause */
6017 ExprList
*pOrderBy
, /* An ORDER BY (or GROUP BY) clause, or NULL */
6018 ExprList
*pResultSet
, /* Query result set. Req'd for DISTINCT */
6019 Select
*pSelect
, /* The entire SELECT statement */
6020 u16 wctrlFlags
, /* The WHERE_* flags defined in sqliteInt.h */
6021 int iAuxArg
/* If WHERE_OR_SUBCLAUSE is set, index cursor number
6022 ** If WHERE_USE_LIMIT, then the limit amount */
6024 int nByteWInfo
; /* Num. bytes allocated for WhereInfo struct */
6025 int nTabList
; /* Number of elements in pTabList */
6026 WhereInfo
*pWInfo
; /* Will become the return value of this function */
6027 Vdbe
*v
= pParse
->pVdbe
; /* The virtual database engine */
6028 Bitmask notReady
; /* Cursors that are not yet positioned */
6029 WhereLoopBuilder sWLB
; /* The WhereLoop builder */
6030 WhereMaskSet
*pMaskSet
; /* The expression mask set */
6031 WhereLevel
*pLevel
; /* A single level in pWInfo->a[] */
6032 WhereLoop
*pLoop
; /* Pointer to a single WhereLoop object */
6033 int ii
; /* Loop counter */
6034 sqlite3
*db
; /* Database connection */
6035 int rc
; /* Return code */
6036 u8 bFordelete
= 0; /* OPFLAG_FORDELETE or zero, as appropriate */
6038 assert( (wctrlFlags
& WHERE_ONEPASS_MULTIROW
)==0 || (
6039 (wctrlFlags
& WHERE_ONEPASS_DESIRED
)!=0
6040 && (wctrlFlags
& WHERE_OR_SUBCLAUSE
)==0
6043 /* Only one of WHERE_OR_SUBCLAUSE or WHERE_USE_LIMIT */
6044 assert( (wctrlFlags
& WHERE_OR_SUBCLAUSE
)==0
6045 || (wctrlFlags
& WHERE_USE_LIMIT
)==0 );
6047 /* Variable initialization */
6049 memset(&sWLB
, 0, sizeof(sWLB
));
6051 /* An ORDER/GROUP BY clause of more than 63 terms cannot be optimized */
6052 testcase( pOrderBy
&& pOrderBy
->nExpr
==BMS
-1 );
6053 if( pOrderBy
&& pOrderBy
->nExpr
>=BMS
){
6055 wctrlFlags
&= ~WHERE_WANT_DISTINCT
;
6058 /* The number of tables in the FROM clause is limited by the number of
6059 ** bits in a Bitmask
6061 testcase( pTabList
->nSrc
==BMS
);
6062 if( pTabList
->nSrc
>BMS
){
6063 sqlite3ErrorMsg(pParse
, "at most %d tables in a join", BMS
);
6067 /* This function normally generates a nested loop for all tables in
6068 ** pTabList. But if the WHERE_OR_SUBCLAUSE flag is set, then we should
6069 ** only generate code for the first table in pTabList and assume that
6070 ** any cursors associated with subsequent tables are uninitialized.
6072 nTabList
= (wctrlFlags
& WHERE_OR_SUBCLAUSE
) ? 1 : pTabList
->nSrc
;
6074 /* Allocate and initialize the WhereInfo structure that will become the
6075 ** return value. A single allocation is used to store the WhereInfo
6076 ** struct, the contents of WhereInfo.a[], the WhereClause structure
6077 ** and the WhereMaskSet structure. Since WhereClause contains an 8-byte
6078 ** field (type Bitmask) it must be aligned on an 8-byte boundary on
6079 ** some architectures. Hence the ROUND8() below.
6081 nByteWInfo
= ROUND8P(sizeof(WhereInfo
));
6083 nByteWInfo
= ROUND8P(nByteWInfo
+ (nTabList
-1)*sizeof(WhereLevel
));
6085 pWInfo
= sqlite3DbMallocRawNN(db
, nByteWInfo
+ sizeof(WhereLoop
));
6086 if( db
->mallocFailed
){
6087 sqlite3DbFree(db
, pWInfo
);
6089 goto whereBeginError
;
6091 pWInfo
->pParse
= pParse
;
6092 pWInfo
->pTabList
= pTabList
;
6093 pWInfo
->pOrderBy
= pOrderBy
;
6094 #if WHERETRACE_ENABLED
6095 pWInfo
->pWhere
= pWhere
;
6097 pWInfo
->pResultSet
= pResultSet
;
6098 pWInfo
->aiCurOnePass
[0] = pWInfo
->aiCurOnePass
[1] = -1;
6099 pWInfo
->nLevel
= nTabList
;
6100 pWInfo
->iBreak
= pWInfo
->iContinue
= sqlite3VdbeMakeLabel(pParse
);
6101 pWInfo
->wctrlFlags
= wctrlFlags
;
6102 pWInfo
->iLimit
= iAuxArg
;
6103 pWInfo
->savedNQueryLoop
= pParse
->nQueryLoop
;
6104 pWInfo
->pSelect
= pSelect
;
6105 memset(&pWInfo
->nOBSat
, 0,
6106 offsetof(WhereInfo
,sWC
) - offsetof(WhereInfo
,nOBSat
));
6107 memset(&pWInfo
->a
[0], 0, sizeof(WhereLoop
)+nTabList
*sizeof(WhereLevel
));
6108 assert( pWInfo
->eOnePass
==ONEPASS_OFF
); /* ONEPASS defaults to OFF */
6109 pMaskSet
= &pWInfo
->sMaskSet
;
6111 pMaskSet
->ix
[0] = -99; /* Initialize ix[0] to a value that can never be
6112 ** a valid cursor number, to avoid an initial
6113 ** test for pMaskSet->n==0 in sqlite3WhereGetMask() */
6114 sWLB
.pWInfo
= pWInfo
;
6115 sWLB
.pWC
= &pWInfo
->sWC
;
6116 sWLB
.pNew
= (WhereLoop
*)(((char*)pWInfo
)+nByteWInfo
);
6117 assert( EIGHT_BYTE_ALIGNMENT(sWLB
.pNew
) );
6118 whereLoopInit(sWLB
.pNew
);
6120 sWLB
.pNew
->cId
= '*';
6123 /* Split the WHERE clause into separate subexpressions where each
6124 ** subexpression is separated by an AND operator.
6126 sqlite3WhereClauseInit(&pWInfo
->sWC
, pWInfo
);
6127 sqlite3WhereSplit(&pWInfo
->sWC
, pWhere
, TK_AND
);
6129 /* Special case: No FROM clause
6132 if( pOrderBy
) pWInfo
->nOBSat
= pOrderBy
->nExpr
;
6133 if( (wctrlFlags
& WHERE_WANT_DISTINCT
)!=0
6134 && OptimizationEnabled(db
, SQLITE_DistinctOpt
)
6136 pWInfo
->eDistinct
= WHERE_DISTINCT_UNIQUE
;
6138 ExplainQueryPlan((pParse
, 0, "SCAN CONSTANT ROW"));
6140 /* Assign a bit from the bitmask to every term in the FROM clause.
6142 ** The N-th term of the FROM clause is assigned a bitmask of 1<<N.
6144 ** The rule of the previous sentence ensures that if X is the bitmask for
6145 ** a table T, then X-1 is the bitmask for all other tables to the left of T.
6146 ** Knowing the bitmask for all tables to the left of a left join is
6147 ** important. Ticket #3015.
6149 ** Note that bitmasks are created for all pTabList->nSrc tables in
6150 ** pTabList, not just the first nTabList tables. nTabList is normally
6151 ** equal to pTabList->nSrc but might be shortened to 1 if the
6152 ** WHERE_OR_SUBCLAUSE flag is set.
6156 createMask(pMaskSet
, pTabList
->a
[ii
].iCursor
);
6157 sqlite3WhereTabFuncArgs(pParse
, &pTabList
->a
[ii
], &pWInfo
->sWC
);
6158 }while( (++ii
)<pTabList
->nSrc
);
6162 for(ii
=0; ii
<pTabList
->nSrc
; ii
++){
6163 Bitmask m
= sqlite3WhereGetMask(pMaskSet
, pTabList
->a
[ii
].iCursor
);
6171 /* Analyze all of the subexpressions. */
6172 sqlite3WhereExprAnalyze(pTabList
, &pWInfo
->sWC
);
6173 if( pSelect
&& pSelect
->pLimit
){
6174 sqlite3WhereAddLimit(&pWInfo
->sWC
, pSelect
);
6176 if( pParse
->nErr
) goto whereBeginError
;
6178 /* The False-WHERE-Term-Bypass optimization:
6180 ** If there are WHERE terms that are false, then no rows will be output,
6181 ** so skip over all of the code generated here.
6185 ** (1) The WHERE term must not refer to any tables in the join.
6186 ** (2) The term must not come from an ON clause on the
6187 ** right-hand side of a LEFT or FULL JOIN.
6188 ** (3) The term must not come from an ON clause, or there must be
6189 ** no RIGHT or FULL OUTER joins in pTabList.
6190 ** (4) If the expression contains non-deterministic functions
6191 ** that are not within a sub-select. This is not required
6192 ** for correctness but rather to preserves SQLite's legacy
6193 ** behaviour in the following two cases:
6195 ** WHERE random()>0; -- eval random() once per row
6196 ** WHERE (SELECT random())>0; -- eval random() just once overall
6198 ** Note that the Where term need not be a constant in order for this
6199 ** optimization to apply, though it does need to be constant relative to
6200 ** the current subquery (condition 1). The term might include variables
6201 ** from outer queries so that the value of the term changes from one
6202 ** invocation of the current subquery to the next.
6204 for(ii
=0; ii
<sWLB
.pWC
->nBase
; ii
++){
6205 WhereTerm
*pT
= &sWLB
.pWC
->a
[ii
]; /* A term of the WHERE clause */
6206 Expr
*pX
; /* The expression of pT */
6207 if( pT
->wtFlags
& TERM_VIRTUAL
) continue;
6210 assert( pT
->prereqAll
!=0 || !ExprHasProperty(pX
, EP_OuterON
) );
6211 if( pT
->prereqAll
==0 /* Conditions (1) and (2) */
6212 && (nTabList
==0 || exprIsDeterministic(pX
)) /* Condition (4) */
6213 && !(ExprHasProperty(pX
, EP_InnerON
) /* Condition (3) */
6214 && (pTabList
->a
[0].fg
.jointype
& JT_LTORJ
)!=0 )
6216 sqlite3ExprIfFalse(pParse
, pX
, pWInfo
->iBreak
, SQLITE_JUMPIFNULL
);
6217 pT
->wtFlags
|= TERM_CODED
;
6221 if( wctrlFlags
& WHERE_WANT_DISTINCT
){
6222 if( OptimizationDisabled(db
, SQLITE_DistinctOpt
) ){
6223 /* Disable the DISTINCT optimization if SQLITE_DistinctOpt is set via
6224 ** sqlite3_test_ctrl(SQLITE_TESTCTRL_OPTIMIZATIONS,...) */
6225 wctrlFlags
&= ~WHERE_WANT_DISTINCT
;
6226 pWInfo
->wctrlFlags
&= ~WHERE_WANT_DISTINCT
;
6227 }else if( isDistinctRedundant(pParse
, pTabList
, &pWInfo
->sWC
, pResultSet
) ){
6228 /* The DISTINCT marking is pointless. Ignore it. */
6229 pWInfo
->eDistinct
= WHERE_DISTINCT_UNIQUE
;
6230 }else if( pOrderBy
==0 ){
6231 /* Try to ORDER BY the result set to make distinct processing easier */
6232 pWInfo
->wctrlFlags
|= WHERE_DISTINCTBY
;
6233 pWInfo
->pOrderBy
= pResultSet
;
6237 /* Construct the WhereLoop objects */
6238 #if defined(WHERETRACE_ENABLED)
6239 if( sqlite3WhereTrace
& 0xffffffff ){
6240 sqlite3DebugPrintf("*** Optimizer Start *** (wctrlFlags: 0x%x",wctrlFlags
);
6241 if( wctrlFlags
& WHERE_USE_LIMIT
){
6242 sqlite3DebugPrintf(", limit: %d", iAuxArg
);
6244 sqlite3DebugPrintf(")\n");
6245 if( sqlite3WhereTrace
& 0x8000 ){
6247 memset(&sSelect
, 0, sizeof(sSelect
));
6248 sSelect
.selFlags
= SF_WhereBegin
;
6249 sSelect
.pSrc
= pTabList
;
6250 sSelect
.pWhere
= pWhere
;
6251 sSelect
.pOrderBy
= pOrderBy
;
6252 sSelect
.pEList
= pResultSet
;
6253 sqlite3TreeViewSelect(0, &sSelect
, 0);
6255 if( sqlite3WhereTrace
& 0x4000 ){ /* Display all WHERE clause terms */
6256 sqlite3DebugPrintf("---- WHERE clause at start of analysis:\n");
6257 sqlite3WhereClausePrint(sWLB
.pWC
);
6262 if( nTabList
!=1 || whereShortCut(&sWLB
)==0 ){
6263 rc
= whereLoopAddAll(&sWLB
);
6264 if( rc
) goto whereBeginError
;
6266 #ifdef SQLITE_ENABLE_STAT4
6267 /* If one or more WhereTerm.truthProb values were used in estimating
6268 ** loop parameters, but then those truthProb values were subsequently
6269 ** changed based on STAT4 information while computing subsequent loops,
6270 ** then we need to rerun the whole loop building process so that all
6271 ** loops will be built using the revised truthProb values. */
6272 if( sWLB
.bldFlags2
& SQLITE_BLDF2_2NDPASS
){
6273 WHERETRACE_ALL_LOOPS(pWInfo
, sWLB
.pWC
);
6274 WHERETRACE(0xffffffff,
6275 ("**** Redo all loop computations due to"
6276 " TERM_HIGHTRUTH changes ****\n"));
6277 while( pWInfo
->pLoops
){
6278 WhereLoop
*p
= pWInfo
->pLoops
;
6279 pWInfo
->pLoops
= p
->pNextLoop
;
6280 whereLoopDelete(db
, p
);
6282 rc
= whereLoopAddAll(&sWLB
);
6283 if( rc
) goto whereBeginError
;
6286 WHERETRACE_ALL_LOOPS(pWInfo
, sWLB
.pWC
);
6288 wherePathSolver(pWInfo
, 0);
6289 if( db
->mallocFailed
) goto whereBeginError
;
6290 if( pWInfo
->pOrderBy
){
6291 wherePathSolver(pWInfo
, pWInfo
->nRowOut
+1);
6292 if( db
->mallocFailed
) goto whereBeginError
;
6295 /* TUNING: Assume that a DISTINCT clause on a subquery reduces
6296 ** the output size by a factor of 8 (LogEst -30).
6298 if( (pWInfo
->wctrlFlags
& WHERE_WANT_DISTINCT
)!=0 ){
6299 WHERETRACE(0x0080,("nRowOut reduced from %d to %d due to DISTINCT\n",
6300 pWInfo
->nRowOut
, pWInfo
->nRowOut
-30));
6301 pWInfo
->nRowOut
-= 30;
6305 assert( pWInfo
->pTabList
!=0 );
6306 if( pWInfo
->pOrderBy
==0 && (db
->flags
& SQLITE_ReverseOrder
)!=0 ){
6307 whereReverseScanOrder(pWInfo
);
6310 goto whereBeginError
;
6312 assert( db
->mallocFailed
==0 );
6313 #ifdef WHERETRACE_ENABLED
6314 if( sqlite3WhereTrace
){
6315 sqlite3DebugPrintf("---- Solution nRow=%d", pWInfo
->nRowOut
);
6316 if( pWInfo
->nOBSat
>0 ){
6317 sqlite3DebugPrintf(" ORDERBY=%d,0x%llx", pWInfo
->nOBSat
, pWInfo
->revMask
);
6319 switch( pWInfo
->eDistinct
){
6320 case WHERE_DISTINCT_UNIQUE
: {
6321 sqlite3DebugPrintf(" DISTINCT=unique");
6324 case WHERE_DISTINCT_ORDERED
: {
6325 sqlite3DebugPrintf(" DISTINCT=ordered");
6328 case WHERE_DISTINCT_UNORDERED
: {
6329 sqlite3DebugPrintf(" DISTINCT=unordered");
6333 sqlite3DebugPrintf("\n");
6334 for(ii
=0; ii
<pWInfo
->nLevel
; ii
++){
6335 sqlite3WhereLoopPrint(pWInfo
->a
[ii
].pWLoop
, sWLB
.pWC
);
6340 /* Attempt to omit tables from a join that do not affect the result.
6341 ** See the comment on whereOmitNoopJoin() for further information.
6343 ** This query optimization is factored out into a separate "no-inline"
6344 ** procedure to keep the sqlite3WhereBegin() procedure from becoming
6345 ** too large. If sqlite3WhereBegin() becomes too large, that prevents
6346 ** some C-compiler optimizers from in-lining the
6347 ** sqlite3WhereCodeOneLoopStart() procedure, and it is important to
6348 ** in-line sqlite3WhereCodeOneLoopStart() for performance reasons.
6350 notReady
= ~(Bitmask
)0;
6351 if( pWInfo
->nLevel
>=2
6352 && pResultSet
!=0 /* these two combine to guarantee */
6353 && 0==(wctrlFlags
& WHERE_AGG_DISTINCT
) /* condition (1) above */
6354 && OptimizationEnabled(db
, SQLITE_OmitNoopJoin
)
6356 notReady
= whereOmitNoopJoin(pWInfo
, notReady
);
6357 nTabList
= pWInfo
->nLevel
;
6358 assert( nTabList
>0 );
6361 /* Check to see if there are any SEARCH loops that might benefit from
6362 ** using a Bloom filter.
6364 if( pWInfo
->nLevel
>=2
6365 && OptimizationEnabled(db
, SQLITE_BloomFilter
)
6367 whereCheckIfBloomFilterIsUseful(pWInfo
);
6370 #if defined(WHERETRACE_ENABLED)
6371 if( sqlite3WhereTrace
& 0x4000 ){ /* Display all terms of the WHERE clause */
6372 sqlite3DebugPrintf("---- WHERE clause at end of analysis:\n");
6373 sqlite3WhereClausePrint(sWLB
.pWC
);
6375 WHERETRACE(0xffffffff,("*** Optimizer Finished ***\n"));
6377 pWInfo
->pParse
->nQueryLoop
+= pWInfo
->nRowOut
;
6379 /* If the caller is an UPDATE or DELETE statement that is requesting
6380 ** to use a one-pass algorithm, determine if this is appropriate.
6382 ** A one-pass approach can be used if the caller has requested one
6383 ** and either (a) the scan visits at most one row or (b) each
6384 ** of the following are true:
6386 ** * the caller has indicated that a one-pass approach can be used
6387 ** with multiple rows (by setting WHERE_ONEPASS_MULTIROW), and
6388 ** * the table is not a virtual table, and
6389 ** * either the scan does not use the OR optimization or the caller
6390 ** is a DELETE operation (WHERE_DUPLICATES_OK is only specified
6393 ** The last qualification is because an UPDATE statement uses
6394 ** WhereInfo.aiCurOnePass[1] to determine whether or not it really can
6395 ** use a one-pass approach, and this is not set accurately for scans
6396 ** that use the OR optimization.
6398 assert( (wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0 || pWInfo
->nLevel
==1 );
6399 if( (wctrlFlags
& WHERE_ONEPASS_DESIRED
)!=0 ){
6400 int wsFlags
= pWInfo
->a
[0].pWLoop
->wsFlags
;
6401 int bOnerow
= (wsFlags
& WHERE_ONEROW
)!=0;
6402 assert( !(wsFlags
& WHERE_VIRTUALTABLE
) || IsVirtual(pTabList
->a
[0].pTab
) );
6404 0!=(wctrlFlags
& WHERE_ONEPASS_MULTIROW
)
6405 && !IsVirtual(pTabList
->a
[0].pTab
)
6406 && (0==(wsFlags
& WHERE_MULTI_OR
) || (wctrlFlags
& WHERE_DUPLICATES_OK
))
6407 && OptimizationEnabled(db
, SQLITE_OnePass
)
6409 pWInfo
->eOnePass
= bOnerow
? ONEPASS_SINGLE
: ONEPASS_MULTI
;
6410 if( HasRowid(pTabList
->a
[0].pTab
) && (wsFlags
& WHERE_IDX_ONLY
) ){
6411 if( wctrlFlags
& WHERE_ONEPASS_MULTIROW
){
6412 bFordelete
= OPFLAG_FORDELETE
;
6414 pWInfo
->a
[0].pWLoop
->wsFlags
= (wsFlags
& ~WHERE_IDX_ONLY
);
6419 /* Open all tables in the pTabList and any indices selected for
6420 ** searching those tables.
6422 for(ii
=0, pLevel
=pWInfo
->a
; ii
<nTabList
; ii
++, pLevel
++){
6423 Table
*pTab
; /* Table to open */
6424 int iDb
; /* Index of database containing table/index */
6427 pTabItem
= &pTabList
->a
[pLevel
->iFrom
];
6428 pTab
= pTabItem
->pTab
;
6429 iDb
= sqlite3SchemaToIndex(db
, pTab
->pSchema
);
6430 pLoop
= pLevel
->pWLoop
;
6431 if( (pTab
->tabFlags
& TF_Ephemeral
)!=0 || IsView(pTab
) ){
6434 #ifndef SQLITE_OMIT_VIRTUALTABLE
6435 if( (pLoop
->wsFlags
& WHERE_VIRTUALTABLE
)!=0 ){
6436 const char *pVTab
= (const char *)sqlite3GetVTable(db
, pTab
);
6437 int iCur
= pTabItem
->iCursor
;
6438 sqlite3VdbeAddOp4(v
, OP_VOpen
, iCur
, 0, 0, pVTab
, P4_VTAB
);
6439 }else if( IsVirtual(pTab
) ){
6443 if( ((pLoop
->wsFlags
& WHERE_IDX_ONLY
)==0
6444 && (wctrlFlags
& WHERE_OR_SUBCLAUSE
)==0)
6445 || (pTabItem
->fg
.jointype
& (JT_LTORJ
|JT_RIGHT
))!=0
6447 int op
= OP_OpenRead
;
6448 if( pWInfo
->eOnePass
!=ONEPASS_OFF
){
6450 pWInfo
->aiCurOnePass
[0] = pTabItem
->iCursor
;
6452 sqlite3OpenTable(pParse
, pTabItem
->iCursor
, iDb
, pTab
, op
);
6453 assert( pTabItem
->iCursor
==pLevel
->iTabCur
);
6454 testcase( pWInfo
->eOnePass
==ONEPASS_OFF
&& pTab
->nCol
==BMS
-1 );
6455 testcase( pWInfo
->eOnePass
==ONEPASS_OFF
&& pTab
->nCol
==BMS
);
6456 if( pWInfo
->eOnePass
==ONEPASS_OFF
6458 && (pTab
->tabFlags
& (TF_HasGenerated
|TF_WithoutRowid
))==0
6459 && (pLoop
->wsFlags
& (WHERE_AUTO_INDEX
|WHERE_BLOOMFILTER
))==0
6461 /* If we know that only a prefix of the record will be used,
6462 ** it is advantageous to reduce the "column count" field in
6463 ** the P4 operand of the OP_OpenRead/Write opcode. */
6464 Bitmask b
= pTabItem
->colUsed
;
6466 for(; b
; b
=b
>>1, n
++){}
6467 sqlite3VdbeChangeP4(v
, -1, SQLITE_INT_TO_PTR(n
), P4_INT32
);
6468 assert( n
<=pTab
->nCol
);
6470 #ifdef SQLITE_ENABLE_CURSOR_HINTS
6471 if( pLoop
->u
.btree
.pIndex
!=0 && (pTab
->tabFlags
& TF_WithoutRowid
)==0 ){
6472 sqlite3VdbeChangeP5(v
, OPFLAG_SEEKEQ
|bFordelete
);
6476 sqlite3VdbeChangeP5(v
, bFordelete
);
6478 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
6479 sqlite3VdbeAddOp4Dup8(v
, OP_ColumnsUsed
, pTabItem
->iCursor
, 0, 0,
6480 (const u8
*)&pTabItem
->colUsed
, P4_INT64
);
6483 sqlite3TableLock(pParse
, iDb
, pTab
->tnum
, 0, pTab
->zName
);
6485 if( pLoop
->wsFlags
& WHERE_INDEXED
){
6486 Index
*pIx
= pLoop
->u
.btree
.pIndex
;
6488 int op
= OP_OpenRead
;
6489 /* iAuxArg is always set to a positive value if ONEPASS is possible */
6490 assert( iAuxArg
!=0 || (pWInfo
->wctrlFlags
& WHERE_ONEPASS_DESIRED
)==0 );
6491 if( !HasRowid(pTab
) && IsPrimaryKeyIndex(pIx
)
6492 && (wctrlFlags
& WHERE_OR_SUBCLAUSE
)!=0
6494 /* This is one term of an OR-optimization using the PRIMARY KEY of a
6495 ** WITHOUT ROWID table. No need for a separate index */
6496 iIndexCur
= pLevel
->iTabCur
;
6498 }else if( pWInfo
->eOnePass
!=ONEPASS_OFF
){
6499 Index
*pJ
= pTabItem
->pTab
->pIndex
;
6500 iIndexCur
= iAuxArg
;
6501 assert( wctrlFlags
& WHERE_ONEPASS_DESIRED
);
6502 while( ALWAYS(pJ
) && pJ
!=pIx
){
6507 pWInfo
->aiCurOnePass
[1] = iIndexCur
;
6508 }else if( iAuxArg
&& (wctrlFlags
& WHERE_OR_SUBCLAUSE
)!=0 ){
6509 iIndexCur
= iAuxArg
;
6512 iIndexCur
= pParse
->nTab
++;
6513 if( pIx
->bHasExpr
&& OptimizationEnabled(db
, SQLITE_IndexedExpr
) ){
6514 whereAddIndexedExpr(pParse
, pIx
, iIndexCur
, pTabItem
);
6516 if( pIx
->pPartIdxWhere
&& (pTabItem
->fg
.jointype
& JT_RIGHT
)==0 ){
6518 pParse
, pIx
, pIx
->pPartIdxWhere
, 0, iIndexCur
, pTabItem
6522 pLevel
->iIdxCur
= iIndexCur
;
6524 assert( pIx
->pSchema
==pTab
->pSchema
);
6525 assert( iIndexCur
>=0 );
6527 sqlite3VdbeAddOp3(v
, op
, iIndexCur
, pIx
->tnum
, iDb
);
6528 sqlite3VdbeSetP4KeyInfo(pParse
, pIx
);
6529 if( (pLoop
->wsFlags
& WHERE_CONSTRAINT
)!=0
6530 && (pLoop
->wsFlags
& (WHERE_COLUMN_RANGE
|WHERE_SKIPSCAN
))==0
6531 && (pLoop
->wsFlags
& WHERE_BIGNULL_SORT
)==0
6532 && (pLoop
->wsFlags
& WHERE_IN_SEEKSCAN
)==0
6533 && (pWInfo
->wctrlFlags
&WHERE_ORDERBY_MIN
)==0
6534 && pWInfo
->eDistinct
!=WHERE_DISTINCT_ORDERED
6536 sqlite3VdbeChangeP5(v
, OPFLAG_SEEKEQ
);
6538 VdbeComment((v
, "%s", pIx
->zName
));
6539 #ifdef SQLITE_ENABLE_COLUMN_USED_MASK
6543 for(ii
=0; ii
<pIx
->nColumn
; ii
++){
6544 jj
= pIx
->aiColumn
[ii
];
6545 if( jj
<0 ) continue;
6546 if( jj
>63 ) jj
= 63;
6547 if( (pTabItem
->colUsed
& MASKBIT(jj
))==0 ) continue;
6548 colUsed
|= ((u64
)1)<<(ii
<63 ? ii
: 63);
6550 sqlite3VdbeAddOp4Dup8(v
, OP_ColumnsUsed
, iIndexCur
, 0, 0,
6551 (u8
*)&colUsed
, P4_INT64
);
6553 #endif /* SQLITE_ENABLE_COLUMN_USED_MASK */
6556 if( iDb
>=0 ) sqlite3CodeVerifySchema(pParse
, iDb
);
6557 if( (pTabItem
->fg
.jointype
& JT_RIGHT
)!=0
6558 && (pLevel
->pRJ
= sqlite3WhereMalloc(pWInfo
, sizeof(WhereRightJoin
)))!=0
6560 WhereRightJoin
*pRJ
= pLevel
->pRJ
;
6561 pRJ
->iMatch
= pParse
->nTab
++;
6562 pRJ
->regBloom
= ++pParse
->nMem
;
6563 sqlite3VdbeAddOp2(v
, OP_Blob
, 65536, pRJ
->regBloom
);
6564 pRJ
->regReturn
= ++pParse
->nMem
;
6565 sqlite3VdbeAddOp2(v
, OP_Null
, 0, pRJ
->regReturn
);
6566 assert( pTab
==pTabItem
->pTab
);
6567 if( HasRowid(pTab
) ){
6569 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pRJ
->iMatch
, 1);
6570 pInfo
= sqlite3KeyInfoAlloc(pParse
->db
, 1, 0);
6572 pInfo
->aColl
[0] = 0;
6573 pInfo
->aSortFlags
[0] = 0;
6574 sqlite3VdbeAppendP4(v
, pInfo
, P4_KEYINFO
);
6577 Index
*pPk
= sqlite3PrimaryKeyIndex(pTab
);
6578 sqlite3VdbeAddOp2(v
, OP_OpenEphemeral
, pRJ
->iMatch
, pPk
->nKeyCol
);
6579 sqlite3VdbeSetP4KeyInfo(pParse
, pPk
);
6581 pLoop
->wsFlags
&= ~WHERE_IDX_ONLY
;
6582 /* The nature of RIGHT JOIN processing is such that it messes up
6583 ** the output order. So omit any ORDER BY/GROUP BY elimination
6584 ** optimizations. We need to do an actual sort for RIGHT JOIN. */
6586 pWInfo
->eDistinct
= WHERE_DISTINCT_UNORDERED
;
6589 pWInfo
->iTop
= sqlite3VdbeCurrentAddr(v
);
6590 if( db
->mallocFailed
) goto whereBeginError
;
6592 /* Generate the code to do the search. Each iteration of the for
6593 ** loop below generates code for a single nested loop of the VM
6596 for(ii
=0; ii
<nTabList
; ii
++){
6600 if( pParse
->nErr
) goto whereBeginError
;
6601 pLevel
= &pWInfo
->a
[ii
];
6602 wsFlags
= pLevel
->pWLoop
->wsFlags
;
6603 pSrc
= &pTabList
->a
[pLevel
->iFrom
];
6604 if( pSrc
->fg
.isMaterialized
){
6605 if( pSrc
->fg
.isCorrelated
){
6606 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSrc
->regReturn
, pSrc
->addrFillSub
);
6608 int iOnce
= sqlite3VdbeAddOp0(v
, OP_Once
); VdbeCoverage(v
);
6609 sqlite3VdbeAddOp2(v
, OP_Gosub
, pSrc
->regReturn
, pSrc
->addrFillSub
);
6610 sqlite3VdbeJumpHere(v
, iOnce
);
6613 assert( pTabList
== pWInfo
->pTabList
);
6614 if( (wsFlags
& (WHERE_AUTO_INDEX
|WHERE_BLOOMFILTER
))!=0 ){
6615 if( (wsFlags
& WHERE_AUTO_INDEX
)!=0 ){
6616 #ifndef SQLITE_OMIT_AUTOMATIC_INDEX
6617 constructAutomaticIndex(pParse
, &pWInfo
->sWC
, notReady
, pLevel
);
6620 sqlite3ConstructBloomFilter(pWInfo
, ii
, pLevel
, notReady
);
6622 if( db
->mallocFailed
) goto whereBeginError
;
6624 addrExplain
= sqlite3WhereExplainOneScan(
6625 pParse
, pTabList
, pLevel
, wctrlFlags
6627 pLevel
->addrBody
= sqlite3VdbeCurrentAddr(v
);
6628 notReady
= sqlite3WhereCodeOneLoopStart(pParse
,v
,pWInfo
,ii
,pLevel
,notReady
);
6629 pWInfo
->iContinue
= pLevel
->addrCont
;
6630 if( (wsFlags
&WHERE_MULTI_OR
)==0 && (wctrlFlags
&WHERE_OR_SUBCLAUSE
)==0 ){
6631 sqlite3WhereAddScanStatus(v
, pTabList
, pLevel
, addrExplain
);
6636 VdbeModuleComment((v
, "Begin WHERE-core"));
6637 pWInfo
->iEndWhere
= sqlite3VdbeCurrentAddr(v
);
6640 /* Jump here if malloc fails */
6643 pParse
->nQueryLoop
= pWInfo
->savedNQueryLoop
;
6644 whereInfoFree(db
, pWInfo
);
6646 #ifdef WHERETRACE_ENABLED
6647 /* Prevent harmless compiler warnings about debugging routines
6648 ** being declared but never used */
6649 sqlite3ShowWhereLoopList(0);
6650 #endif /* WHERETRACE_ENABLED */
6655 ** Part of sqlite3WhereEnd() will rewrite opcodes to reference the
6656 ** index rather than the main table. In SQLITE_DEBUG mode, we want
6657 ** to trace those changes if PRAGMA vdbe_addoptrace=on. This routine
6660 #ifndef SQLITE_DEBUG
6661 # define OpcodeRewriteTrace(D,K,P) /* no-op */
6663 # define OpcodeRewriteTrace(D,K,P) sqlite3WhereOpcodeRewriteTrace(D,K,P)
6664 static void sqlite3WhereOpcodeRewriteTrace(
6669 if( (db
->flags
& SQLITE_VdbeAddopTrace
)==0 ) return;
6670 sqlite3VdbePrintOp(0, pc
, pOp
);
6676 ** Return true if cursor iCur is opened by instruction k of the
6677 ** bytecode. Used inside of assert() only.
6679 static int cursorIsOpen(Vdbe
*v
, int iCur
, int k
){
6681 VdbeOp
*pOp
= sqlite3VdbeGetOp(v
,k
--);
6682 if( pOp
->p1
!=iCur
) continue;
6683 if( pOp
->opcode
==OP_Close
) return 0;
6684 if( pOp
->opcode
==OP_OpenRead
) return 1;
6685 if( pOp
->opcode
==OP_OpenWrite
) return 1;
6686 if( pOp
->opcode
==OP_OpenDup
) return 1;
6687 if( pOp
->opcode
==OP_OpenAutoindex
) return 1;
6688 if( pOp
->opcode
==OP_OpenEphemeral
) return 1;
6692 #endif /* SQLITE_DEBUG */
6695 ** Generate the end of the WHERE loop. See comments on
6696 ** sqlite3WhereBegin() for additional information.
6698 void sqlite3WhereEnd(WhereInfo
*pWInfo
){
6699 Parse
*pParse
= pWInfo
->pParse
;
6700 Vdbe
*v
= pParse
->pVdbe
;
6704 SrcList
*pTabList
= pWInfo
->pTabList
;
6705 sqlite3
*db
= pParse
->db
;
6706 int iEnd
= sqlite3VdbeCurrentAddr(v
);
6709 /* Generate loop termination code.
6711 VdbeModuleComment((v
, "End WHERE-core"));
6712 for(i
=pWInfo
->nLevel
-1; i
>=0; i
--){
6714 pLevel
= &pWInfo
->a
[i
];
6716 /* Terminate the subroutine that forms the interior of the loop of
6717 ** the RIGHT JOIN table */
6718 WhereRightJoin
*pRJ
= pLevel
->pRJ
;
6719 sqlite3VdbeResolveLabel(v
, pLevel
->addrCont
);
6720 pLevel
->addrCont
= 0;
6721 pRJ
->endSubrtn
= sqlite3VdbeCurrentAddr(v
);
6722 sqlite3VdbeAddOp3(v
, OP_Return
, pRJ
->regReturn
, pRJ
->addrSubrtn
, 1);
6726 pLoop
= pLevel
->pWLoop
;
6727 if( pLevel
->op
!=OP_Noop
){
6728 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
6732 if( pWInfo
->eDistinct
==WHERE_DISTINCT_ORDERED
6733 && i
==pWInfo
->nLevel
-1 /* Ticket [ef9318757b152e3] 2017-10-21 */
6734 && (pLoop
->wsFlags
& WHERE_INDEXED
)!=0
6735 && (pIdx
= pLoop
->u
.btree
.pIndex
)->hasStat1
6736 && (n
= pLoop
->u
.btree
.nDistinctCol
)>0
6737 && pIdx
->aiRowLogEst
[n
]>=36
6739 int r1
= pParse
->nMem
+1;
6742 sqlite3VdbeAddOp3(v
, OP_Column
, pLevel
->iIdxCur
, j
, r1
+j
);
6744 pParse
->nMem
+= n
+1;
6745 op
= pLevel
->op
==OP_Prev
? OP_SeekLT
: OP_SeekGT
;
6746 addrSeek
= sqlite3VdbeAddOp4Int(v
, op
, pLevel
->iIdxCur
, 0, r1
, n
);
6747 VdbeCoverageIf(v
, op
==OP_SeekLT
);
6748 VdbeCoverageIf(v
, op
==OP_SeekGT
);
6749 sqlite3VdbeAddOp2(v
, OP_Goto
, 1, pLevel
->p2
);
6751 #endif /* SQLITE_DISABLE_SKIPAHEAD_DISTINCT */
6752 /* The common case: Advance to the next row */
6753 if( pLevel
->addrCont
) sqlite3VdbeResolveLabel(v
, pLevel
->addrCont
);
6754 sqlite3VdbeAddOp3(v
, pLevel
->op
, pLevel
->p1
, pLevel
->p2
, pLevel
->p3
);
6755 sqlite3VdbeChangeP5(v
, pLevel
->p5
);
6757 VdbeCoverageIf(v
, pLevel
->op
==OP_Next
);
6758 VdbeCoverageIf(v
, pLevel
->op
==OP_Prev
);
6759 VdbeCoverageIf(v
, pLevel
->op
==OP_VNext
);
6760 if( pLevel
->regBignull
){
6761 sqlite3VdbeResolveLabel(v
, pLevel
->addrBignull
);
6762 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, pLevel
->regBignull
, pLevel
->p2
-1);
6765 #ifndef SQLITE_DISABLE_SKIPAHEAD_DISTINCT
6766 if( addrSeek
) sqlite3VdbeJumpHere(v
, addrSeek
);
6768 }else if( pLevel
->addrCont
){
6769 sqlite3VdbeResolveLabel(v
, pLevel
->addrCont
);
6771 if( (pLoop
->wsFlags
& WHERE_IN_ABLE
)!=0 && pLevel
->u
.in
.nIn
>0 ){
6774 sqlite3VdbeResolveLabel(v
, pLevel
->addrNxt
);
6775 for(j
=pLevel
->u
.in
.nIn
, pIn
=&pLevel
->u
.in
.aInLoop
[j
-1]; j
>0; j
--, pIn
--){
6776 assert( sqlite3VdbeGetOp(v
, pIn
->addrInTop
+1)->opcode
==OP_IsNull
6777 || pParse
->db
->mallocFailed
);
6778 sqlite3VdbeJumpHere(v
, pIn
->addrInTop
+1);
6779 if( pIn
->eEndLoopOp
!=OP_Noop
){
6782 (pLoop
->wsFlags
& WHERE_VIRTUALTABLE
)==0
6783 && (pLoop
->wsFlags
& WHERE_IN_EARLYOUT
)!=0;
6784 if( pLevel
->iLeftJoin
){
6785 /* For LEFT JOIN queries, cursor pIn->iCur may not have been
6786 ** opened yet. This occurs for WHERE clauses such as
6787 ** "a = ? AND b IN (...)", where the index is on (a, b). If
6788 ** the RHS of the (a=?) is NULL, then the "b IN (...)" may
6789 ** never have been coded, but the body of the loop run to
6790 ** return the null-row. So, if the cursor is not open yet,
6791 ** jump over the OP_Next or OP_Prev instruction about to
6793 sqlite3VdbeAddOp2(v
, OP_IfNotOpen
, pIn
->iCur
,
6794 sqlite3VdbeCurrentAddr(v
) + 2 + bEarlyOut
);
6798 sqlite3VdbeAddOp4Int(v
, OP_IfNoHope
, pLevel
->iIdxCur
,
6799 sqlite3VdbeCurrentAddr(v
)+2,
6800 pIn
->iBase
, pIn
->nPrefix
);
6802 /* Retarget the OP_IsNull against the left operand of IN so
6803 ** it jumps past the OP_IfNoHope. This is because the
6804 ** OP_IsNull also bypasses the OP_Affinity opcode that is
6805 ** required by OP_IfNoHope. */
6806 sqlite3VdbeJumpHere(v
, pIn
->addrInTop
+1);
6809 sqlite3VdbeAddOp2(v
, pIn
->eEndLoopOp
, pIn
->iCur
, pIn
->addrInTop
);
6811 VdbeCoverageIf(v
, pIn
->eEndLoopOp
==OP_Prev
);
6812 VdbeCoverageIf(v
, pIn
->eEndLoopOp
==OP_Next
);
6814 sqlite3VdbeJumpHere(v
, pIn
->addrInTop
-1);
6817 sqlite3VdbeResolveLabel(v
, pLevel
->addrBrk
);
6819 sqlite3VdbeAddOp3(v
, OP_Return
, pLevel
->pRJ
->regReturn
, 0, 1);
6822 if( pLevel
->addrSkip
){
6823 sqlite3VdbeGoto(v
, pLevel
->addrSkip
);
6824 VdbeComment((v
, "next skip-scan on %s", pLoop
->u
.btree
.pIndex
->zName
));
6825 sqlite3VdbeJumpHere(v
, pLevel
->addrSkip
);
6826 sqlite3VdbeJumpHere(v
, pLevel
->addrSkip
-2);
6828 #ifndef SQLITE_LIKE_DOESNT_MATCH_BLOBS
6829 if( pLevel
->addrLikeRep
){
6830 sqlite3VdbeAddOp2(v
, OP_DecrJumpZero
, (int)(pLevel
->iLikeRepCntr
>>1),
6831 pLevel
->addrLikeRep
);
6835 if( pLevel
->iLeftJoin
){
6836 int ws
= pLoop
->wsFlags
;
6837 addr
= sqlite3VdbeAddOp1(v
, OP_IfPos
, pLevel
->iLeftJoin
); VdbeCoverage(v
);
6838 assert( (ws
& WHERE_IDX_ONLY
)==0 || (ws
& WHERE_INDEXED
)!=0 );
6839 if( (ws
& WHERE_IDX_ONLY
)==0 ){
6840 assert( pLevel
->iTabCur
==pTabList
->a
[pLevel
->iFrom
].iCursor
);
6841 sqlite3VdbeAddOp1(v
, OP_NullRow
, pLevel
->iTabCur
);
6843 if( (ws
& WHERE_INDEXED
)
6844 || ((ws
& WHERE_MULTI_OR
) && pLevel
->u
.pCoveringIdx
)
6846 if( ws
& WHERE_MULTI_OR
){
6847 Index
*pIx
= pLevel
->u
.pCoveringIdx
;
6848 int iDb
= sqlite3SchemaToIndex(db
, pIx
->pSchema
);
6849 sqlite3VdbeAddOp3(v
, OP_ReopenIdx
, pLevel
->iIdxCur
, pIx
->tnum
, iDb
);
6850 sqlite3VdbeSetP4KeyInfo(pParse
, pIx
);
6852 sqlite3VdbeAddOp1(v
, OP_NullRow
, pLevel
->iIdxCur
);
6854 if( pLevel
->op
==OP_Return
){
6855 sqlite3VdbeAddOp2(v
, OP_Gosub
, pLevel
->p1
, pLevel
->addrFirst
);
6857 sqlite3VdbeGoto(v
, pLevel
->addrFirst
);
6859 sqlite3VdbeJumpHere(v
, addr
);
6861 VdbeModuleComment((v
, "End WHERE-loop%d: %s", i
,
6862 pWInfo
->pTabList
->a
[pLevel
->iFrom
].pTab
->zName
));
6865 assert( pWInfo
->nLevel
<=pTabList
->nSrc
);
6866 for(i
=0, pLevel
=pWInfo
->a
; i
<pWInfo
->nLevel
; i
++, pLevel
++){
6868 VdbeOp
*pOp
, *pLastOp
;
6870 SrcItem
*pTabItem
= &pTabList
->a
[pLevel
->iFrom
];
6871 Table
*pTab
= pTabItem
->pTab
;
6873 pLoop
= pLevel
->pWLoop
;
6875 /* Do RIGHT JOIN processing. Generate code that will output the
6876 ** unmatched rows of the right operand of the RIGHT JOIN with
6877 ** all of the columns of the left operand set to NULL.
6880 sqlite3WhereRightJoinLoop(pWInfo
, i
, pLevel
);
6884 /* For a co-routine, change all OP_Column references to the table of
6885 ** the co-routine into OP_Copy of result contained in a register.
6886 ** OP_Rowid becomes OP_Null.
6888 if( pTabItem
->fg
.viaCoroutine
){
6889 testcase( pParse
->db
->mallocFailed
);
6890 translateColumnToCopy(pParse
, pLevel
->addrBody
, pLevel
->iTabCur
,
6891 pTabItem
->regResult
, 0);
6895 /* If this scan uses an index, make VDBE code substitutions to read data
6896 ** from the index instead of from the table where possible. In some cases
6897 ** this optimization prevents the table from ever being read, which can
6898 ** yield a significant performance boost.
6900 ** Calls to the code generator in between sqlite3WhereBegin and
6901 ** sqlite3WhereEnd will have created code that references the table
6902 ** directly. This loop scans all that code looking for opcodes
6903 ** that reference the table and converts them into opcodes that
6904 ** reference the index.
6906 if( pLoop
->wsFlags
& (WHERE_INDEXED
|WHERE_IDX_ONLY
) ){
6907 pIdx
= pLoop
->u
.btree
.pIndex
;
6908 }else if( pLoop
->wsFlags
& WHERE_MULTI_OR
){
6909 pIdx
= pLevel
->u
.pCoveringIdx
;
6912 && !db
->mallocFailed
6914 if( pWInfo
->eOnePass
==ONEPASS_OFF
|| !HasRowid(pIdx
->pTable
) ){
6917 last
= pWInfo
->iEndWhere
;
6919 if( pIdx
->bHasExpr
){
6920 IndexedExpr
*p
= pParse
->pIdxEpr
;
6922 if( p
->iIdxCur
==pLevel
->iIdxCur
){
6923 #ifdef WHERETRACE_ENABLED
6924 if( sqlite3WhereTrace
& 0x200 ){
6925 sqlite3DebugPrintf("Disable pParse->pIdxEpr term {%d,%d}\n",
6926 p
->iIdxCur
, p
->iIdxCol
);
6927 if( sqlite3WhereTrace
& 0x5000 ) sqlite3ShowExpr(p
->pExpr
);
6936 k
= pLevel
->addrBody
+ 1;
6938 if( db
->flags
& SQLITE_VdbeAddopTrace
){
6939 printf("TRANSLATE cursor %d->%d in opcode range %d..%d\n",
6940 pLevel
->iTabCur
, pLevel
->iIdxCur
, k
, last
-1);
6942 /* Proof that the "+1" on the k value above is safe */
6943 pOp
= sqlite3VdbeGetOp(v
, k
- 1);
6944 assert( pOp
->opcode
!=OP_Column
|| pOp
->p1
!=pLevel
->iTabCur
);
6945 assert( pOp
->opcode
!=OP_Rowid
|| pOp
->p1
!=pLevel
->iTabCur
);
6946 assert( pOp
->opcode
!=OP_IfNullRow
|| pOp
->p1
!=pLevel
->iTabCur
);
6948 pOp
= sqlite3VdbeGetOp(v
, k
);
6949 pLastOp
= pOp
+ (last
- k
);
6950 assert( pOp
<=pLastOp
);
6952 if( pOp
->p1
!=pLevel
->iTabCur
){
6954 }else if( pOp
->opcode
==OP_Column
6955 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6956 || pOp
->opcode
==OP_Offset
6960 assert( pIdx
->pTable
==pTab
);
6961 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6962 if( pOp
->opcode
==OP_Offset
){
6963 /* Do not need to translate the column number */
6966 if( !HasRowid(pTab
) ){
6967 Index
*pPk
= sqlite3PrimaryKeyIndex(pTab
);
6968 x
= pPk
->aiColumn
[x
];
6971 testcase( x
!=sqlite3StorageColumnToTable(pTab
,x
) );
6972 x
= sqlite3StorageColumnToTable(pTab
,x
);
6974 x
= sqlite3TableColumnToIndex(pIdx
, x
);
6977 pOp
->p1
= pLevel
->iIdxCur
;
6978 OpcodeRewriteTrace(db
, k
, pOp
);
6980 /* Unable to translate the table reference into an index
6981 ** reference. Verify that this is harmless - that the
6982 ** table being referenced really is open.
6984 #ifdef SQLITE_ENABLE_OFFSET_SQL_FUNC
6985 assert( (pLoop
->wsFlags
& WHERE_IDX_ONLY
)==0
6986 || cursorIsOpen(v
,pOp
->p1
,k
)
6987 || pOp
->opcode
==OP_Offset
6990 assert( (pLoop
->wsFlags
& WHERE_IDX_ONLY
)==0
6991 || cursorIsOpen(v
,pOp
->p1
,k
)
6995 }else if( pOp
->opcode
==OP_Rowid
){
6996 pOp
->p1
= pLevel
->iIdxCur
;
6997 pOp
->opcode
= OP_IdxRowid
;
6998 OpcodeRewriteTrace(db
, k
, pOp
);
6999 }else if( pOp
->opcode
==OP_IfNullRow
){
7000 pOp
->p1
= pLevel
->iIdxCur
;
7001 OpcodeRewriteTrace(db
, k
, pOp
);
7006 }while( (++pOp
)<pLastOp
);
7008 if( db
->flags
& SQLITE_VdbeAddopTrace
) printf("TRANSLATE complete\n");
7013 /* The "break" point is here, just past the end of the outer loop.
7016 sqlite3VdbeResolveLabel(v
, pWInfo
->iBreak
);
7020 pParse
->nQueryLoop
= pWInfo
->savedNQueryLoop
;
7021 whereInfoFree(db
, pWInfo
);
7022 pParse
->withinRJSubrtn
-= nRJ
;